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ABSTRACT 

 
 

Semi-analytical particle tracking methods are broadly used in determining advective transport 

within groundwater flow models. The Pollock method is currently implemented in the USGS model 

MODPATH as a semi-analytical particle tracking algorithm for structured grids in MODFLOW. 

However, this method is not valid for grid cells with irregular geometry, and new methods are needed to 

effectively represent local flow fields within arbitrarily shaped grid cells for tracking particles. There are 

currently two particle tracking methods that can create pathlines in arbitrary unstructured grids: 1) the 

SSP&A method and the method introduced by Painter et al. (2012). The SSP&A method uses local 

universal kriging interpolation of a MODFLOW hydraulic head solution in order to determine the particle 

velocity using head changes. The method by Painter et al. uses unconstrained least squares method on 

interior cells and constrained least squares method on boundary cells to calculate the particle velocity. 

However, these methods generate local interpolation-based velocity fields that do not respect the mass 

balance of the cell. Here, we develop an accurate semi-analytical particle tracking method for the new 

MODFLOW-USG, which uses a control volume finite difference (CVFD) approach for arbitrary 

unstructured grids.  

This particle tracking method (the Waterloo method) is based on a locally analytical Taylor Series 

reconstruction of the local velocity, which can be used to generate pathlines of particle movement using 

an Euler or high-order Runge-Kutta scheme. The approach is valid for any cell geometry and may be used 

for both steady-state and transient simulations, while still respecting the mass balance of the cell. By 

following the particle path from cell to cell, this method can trace the movement of a particle through any 

arbitrary unstructured multidimensional flow field generated from a CVFD model. 

The pathlines generated by the Waterloo method in rectilinear cells are compared to the pathlines 

by the Pollock method. The results show less than 1% differences in terms of the spatial and temporal 

distributions of the particle exit locations. The robustness of the Waterloo method is supported by its 

ability to handle complex flow field within a model that contains extreme heterogeneity and zero-

hydraulic conductivity zones. The approach also bypasses the “weak sink” problem by explicitly 

representing the local flow fields near wells or controlled by distributed leakage/recharge. Furthermore, 

this semi-analytical method is capable of handling multiple, off-center wells located anywhere within one 

cell. 
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Chapter 1 

Introduction 

 

In the past few decades, human advancements in agriculture, industry, and society have had major 

negative impacts on hydrological systems. These impacts include aquifer depletion, ecosystem 

degradation, and reduction of water quality (Zhou, 2011). To generate sustainable water resources 

development strategies, decision-makers need to adequately gather information regarding groundwater, 

surface water, and their interactions. Groundwater modeling has played an important role in the 

management and development of groundwater resources, and in predicting groundwater behavior. 

Groundwater models can be used as interpretative tools for understanding groundwater system dynamics 

and flow patterns as well as predictive tools for estimating the impacts of human activities on subsurface 

systems (Zhou, 2011). For years, groundwater scientists and engineers have been developing improved 

groundwater models in order to better simulate and predict groundwater conditions. 

Groundwater models are based upon the mathematical solution to a mass balance statement that is 

composed of continuity of a mass balance on water and Darcy’s Law. These mathematical representations 

allow hydrologists to, for example, calculate water table height or identify advective particle pathlines. 

These pathlines are defined as the path a small parcel of groundwater would trace as it moves through the 

subsurface over a given period of time.  

The accuracy of a groundwater model depends highly on the assumptions made during model 

construction and the variables chosen to reflect reality. Due to these limitations, computational 

groundwater models can only provide an approximation and are not able to perfectly simulate subsurface 

systems (Bredehoeft, 2005). The uncertainties associated with groundwater modeling include the 

deficient observational accuracy of the subsurface parameters, such as average horizontal and vertical 
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flow of water in the aquifer, hydraulic conductivities (which can only be inferred from flow and pressure 

data), saturated thickness of the aquifer, and porosity of the subsurface media. 

There have been numerous groundwater modeling software products developed over the years to 

improve the accuracy of the groundwater model to better represent subsurface systems. MODFLOW 

(Harbaugh, 2005) is a three-dimensional finite-difference groundwater model created by the U.S. 

Geological Survey (USGS) and is one of the most commonly used software products for simulating 

aquifer systems. The standard version of MODFLOW-2005 uses rectangular-based structured grids for 

discretization of the flow domain, where grid cell sides align with the Cartesian coordinate system and 

grid spacing is uniform in the cardinal directions. In two-dimensions, each cell must be a square or a 

rectangle, with each side of the cell touching one other cell at most. In order to increase resolution of a 

particular zone in the conceptual model, the resolution of the grids must be refined in the horizontal and 

vertical direction of the zone of interest, which results in higher computational costs than necessary. In 

2012, the USGS developed the new MODFLOW-USG (Panday et al. 2013), a completely modified 

implementation of MODFLOW, which can handle both structured and unstructured grids including 

nested grids, quadtree grids, Voronoi tessellations, and triangular-based grids. Unstructured grids are 

more desirable due to their ability to capture features like rivers and wells in a much more detailed 

manner and directly support variable resolutions. Although unstructured grids are more complex than 

structured grids, they are able to be refined only near the desired features within the conceptual model 

without significantly increasing the computational time of the simulation. MODFLOW-USG uses a 

Control Volume Finite Difference (CVFD) formulation that still allows mass conservation at a local scale, 

which provides accurate estimates of groundwater heads and flows around the desired features within the 

conceptual model. 

One of the objectives for which groundwater models are developed is to determine the flow path 

of a contaminant. Modeling advective transport of particles is important to predict whether or not a 

contaminant will travel from a source to nearby rivers, wells, or other places, and how long it will take for 

the contaminant to travel to those places. The standard advective particle tracking algorithm for 
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MODFLOW-2005, MODPATH, uses the Pollock method (Pollock, 2012), which is only valid for 

rectangular-based structured grids. The method calculates particle pathlines using linear interpolation of 

the velocities sourced from the cell-by-cell flows generated by MODFLOW. MODPATH can analytically 

calculate when and where a particle may end up within a cell or exit the cell using only the geometry of 

the cell and groundwater velocities in through the sides of the cell. Recently, the method has been 

extended to support nested Cartesian grids (Pollock, 2015) by splitting the cell that has one side touching 

multiple cells into similar sub-cells. However, the limitation to rectilinear cells remains. The new 

extension to MODPATH still cannot handle other unstructured grid configurations. However, for a 

number of reasons, non-rectilinear grid configurations are desirable. For instance, Voronoi cells can 

handle complex geometries and boundaries with proficient refinement and high resolution around rivers, 

wells, and other boundary conditions. 

A new semi-analytical particle tracking algorithm that can handle any type of structured and 

unstructured grid with arbitrary cell geometry in the x- and y-directions is here introduced. It presumes 

1:1 cell connections in the vertical direction, i.e., each model layer has the same two-dimensional 

unstructured grid configuration, but can handle rectilinear (standard or quad-based), Voronoi, hexagonal, 

or triangular grids. This method is incorporated into the mod-PATH3DU software developed by SSP&A 

inc. (Muffels et al, 2014) for particle tracking in groundwater models that use arbitrary unstructured grids. 

This algorithm assumes independent cells, i.e., the reconstruction of the velocity field in one cell is 

independent of what is occurring in other cells and requires only the cell boundary fluxes and the 

geometry of that particular cell. This algorithm will help hydrogeologists in producing accurate particle 

pathlines for a conceptual model at low computational cost.  

 

1.1 Problem Statement 

Groundwater models are deterministic mathematical models that require the solution of partial differential 

equations. These models are based on conservation of mass, momentum, energy, and consituitive models 
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such as Darcy’s Law (Konikow, 1992). Tools such as MODFLOW-USG and other unstructured 

groundwater flow simulators based on finite volume method or controlled volume finite element method 

(e.g., HydroGeoSphere (Therrien et al., 2010)) allow hydrologists to create both structured and 

unstructured grids that are more refined to capture features like rivers and wells in more detail. However, 

there are few algorithms which can be used to effectively reconstruct sub-cell velocity fields for particle 

tracking on the unstructured grids, none of which fully respect mass balance in the cell. A new method 

that can effectively represent local flow fields in arbitrary unstructured grids is desirable. This new 

method should have the capability to accurately estimate velocities at the sub-grid scale while respecting 

mass balance. 

 

1.2 Thesis Objective 

The objective of this thesis is to develop and test of a new sub-cell velocity reconstruction method for 

saturated groundwater flow models (called the Waterloo Method), which can handle any type of 

structured and unstructured grid and calculate the velocity at any point within a cell semi-analytically. 

The method can handle heterogeneity, vertical anisotropy, and transient variation in saturated thickness, 

and uses either Euler or High-Order Runge-Kutta schemes for pathline integration. This method is tested 

extensively and is applied to a number of challenging test cases. Furthermore, this thesis will attempt to 

show how the algorithm may handle arbitrary geometry, transient cases, the presence of wells, and is 

consistent with the Pollock method for rectilinear grids. Attempts will be made in this thesis to show the 

ability of Waterloo Method to handle challenging situations that other particle tracking algorithms are not 

able to sufficiently resolve, and effort will be spent to explain in depth the reasoning and methodology 

behind the development of this algorithm. Additionally, the differences between the particle pathlines 

generated using this method and using other particle tracking method are presented in this thesis in order 

to show the advantages of this method in comparison to the other methods. 
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1.3 Scope of Research 

This thesis includes only the development of semi-analytical particle tracking algorithm for structured and 

unstructured grids. This algorithm is inserted into the mod-PATH3DU software (Muffels et al., 2014) as a 

particle tracking algorithm for the new MODFLOW-USG, where the main input files required for this 

software must come from MODFLOW-USG. Every result from this algorithm is produced with the 

assumption that the input files provided for mod-PATH3DU, such as cell geometries and cell-by-cell 

flows are accurate; i.e., the discrete flow solution has converged and preserve mass balance. Extensions to 

grids which are non-uniform in vertical direction, problems with lateral material anisotropy, and the 

handling of connected linear networks are considered beyond the scope of this thesis. 

 

1.4 Thesis Outline 

This thesis is outlined as follows: 

 Chapter 1 provides the reasoning behind the development of this algorithm. It briefly discusses 

how groundwater modeling is crucial for use by hydrologists to represent the subsurface system. 

Limitations regarding the current particle tracking algorithm for MODFLOW-USG are discussed. The 

objective and the scope of the research surrounding the development of this semi-analytical particle 

tracking algorithm is included. 

 Chapter 2 presents background information about groundwater modeling, including the history of 

groundwater modeling software and particle tracking methods. This chapter discusses different 

approaches available for modeling the subsurface system and in generating particle pathlines for use in 

water resources management. A brief overview regarding the advantages and limitations of existing 

methods is also included. 
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 Chapter 3 provides detailed information on the new methodology used to reconstruct local flow 

fields and generate accurate particle pathlines in any type of structured and unstructured grid. The method 

includes the means of solving the local sub-cell governing equation in order to calculate the velocity 

distributions within a cell. Chapter 3 also discusses related assumptions used by the Waterloo Method and 

the methods for quantifying algorithm errors. 

 Chapter 4 presents the results of a number of tests used to assess the algorithm performance and 

discusses them in length. This chapter demonstrates the capability of the Waterloo Method to handle 

arbitrary unstructured grids. Comparisons between the outcomes of this method and other methods are 

provided; methods are contrasted in terms of both accuracy and computational costs. This chapter 

illustrates the sensitivity of the results if the preliminary assumptions are altered. The errors in this 

algorithm are assessed for spatial and temporal discretization effects and for changing model parameters, 

such as cell control points and order of approximation. The ability of this method to handle multiple wells 

within a cell that are not located at the center of the cell is presented. Chapter 4 also includes an 

investigation of different type of sink sources and how this method handles the “weak” sink problems. 

The method is deployed for challenging multi-layer models. 

 Chapter 5 summarizes the main conclusions and recommendations for this research. Limitations 

regarding the work that have been identified so far are also discussed.  
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Chapter 2  

Background 

2.1 Groundwater Modeling 

2.1.1 Overview 

The increased uses of groundwater resources throughout the world for development purposes require an 

expansion of our knowledge of groundwater systems and their interactions with the ecosystem. 

Hydrologists often use groundwater models as a tool to increase their understanding of a groundwater 

system and to predict its potential future responses. Likewise, groundwater models are used by regulators 

to support protection of the subsurface, such as during site remediation and well construction, in order to 

determine the standards for the quantity and quality of groundwater resources. One of the most common 

applications of groundwater models is the prediction of particle pathlines, such as advective particle 

tracking used to monitor contaminant transport or to delineate capture zones for wells. Information 

regarding particle movement in the subsurface system may help practitioners to assess whether or not 

contaminant can travel to nearby wells or rivers. The quality of these predicted pathlines depends upon 1) 

the validity of the conceptual model, 2) the accuracy of the numerical model, and 3) the accuracy of the 

tracking scheme. 

 One of the first steps in groundwater flow modeling is to establish the conceptual model of the 

subsurface system and to determine the modeling purpose. The definition of a conceptual model is the 

representation of the subsurface system in terms of physical hydrogeological features and their hydraulics 

(Wels et al., 2012). By starting with an adequate groundwater conceptual model, hydrologists may 

increase the predictive performance of their numerical groundwater models (Yang, 2009). A good 

conceptual model must satisfactorily reflect the user’s concept of the natural system, accurately describe 

the essential processes affecting groundwater flow, and be able to provide acceptable results in 



8 
 

comparison to observation data when translated into a mathematical model. Conceptual models for 

groundwater flow typically include the hydrogeologic setting of the field system, model domain, model 

boundaries, hydrostratigraphic units and hydraulic properties, and key components of groundwater-

surface water interaction. A desirable conceptual model should be developed with a sufficient level of 

simplicity while still retaining its complexity to be able to represent the physical elements and hydraulic 

behavior of the systems. Simplifying assumptions are often necessary because there are rarely sufficient 

data regarding the groundwater parameters in order to completely reconstruct the groundwater system. As 

the users’ understanding of the groundwater system improves, the conceptual model should be updated 

continually by incorporating any new observational information. A conceptual or mathematical model 

may be inadequate due to incomplete information of the model, incorrect assumptions regarding the 

parameters, ignorance of key processes influencing the model, and poor understanding of physical and 

chemical processes in the field subsurface system. 

 In order to be used for prediction, the conceptual model must typically be translated into a 

mathematical model, which may be either a simple analytic model or a more complex numerical model. 

Analytical solutions to investigate groundwater flow were first used in early 1960s to simulate 

hypothetical small drainage basins (Toth, 1963), helping to support key ideas about the nature of local and 

regional groundwater flow. Numerical models were exercised for the first time in late 1960s, e.g., Freeze 

and Witherspoon (1966), who used such models to simulate steady state regional flow patterns in layered 

aquifer system. Unlike analytical solutions, these numerical models were able to simulate three-

dimensional groundwater flow under heterogeneous and anisotropic conditions. As part of the Regional 

Aquifer System Analysis (RASA) program in 1978, the application of groundwater flow models to large 

scale aquifer system was regularly performed by the U.S. Geological Survey (Sun and Johnson, 1994). 

During this program, 25 important American aquifer systems were intensively studied in order to further 

understand the regional aquifer system’s responses to natural and human stresses, and the compilation of 

a national groundwater atlas. The RASA program used computer-based numerical groundwater flow 

models such as USGS 3D finite difference model and USGS MODFLOW (McDonald and Harbaugh, 
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1988) to simulate the effects of groundwater development and land use changes. Since its original 

publication in 1984, USGS MODFLOW has been extensively used as a three-dimensional finite-

difference groundwater model. It has since been joined by other numerical codes for simulating 

groundwater, each with its own capability and advantages, to simulate groundwater flow, transport, and 

geochemical reactions (e.g. MODFLOW (Harbaugh, 2005), SEAWAT (Guo and Langevin, 2002), 

FEFLOW (Diersch, 2013), HydroGeoSphere (Therrien et al., 2010)), or variably-saturated flow and 

transport (e.g. SUTRA (Voss and Provost, 2008), R-UNSAT (Lahvis and Baehr, 1997)). 

  

2.1.2 Particle Tracking & Contaminant Transport 

In determining well capture zones, hydraulic containment, and simulating the advective part of 

contaminant transport, it is important to conduct advective particle tracking simulation. Particle tracking 

is essentially tracing the position of an advected parcel of fluid through a fluid velocity field over time. 

The definition of a particle in this thesis is anything from a single molecule to a parcel of water; there is 

no parameter associated with the particles in the model other than its coordinate location. By releasing 

hypothetical particles in groundwater simulation, the movement of the particles and their end point can be 

calculated from groundwater velocities. In some cases, it may be desirable to track hundreds to thousands 

of hypothetical particles. Particle tracking can determine where the particle will end up after a specific 

period of time by conducting forwards-in-time simulation, or determine the particle original point by 

conducting backwards-in-time simulation.  

The primary transport mechanism of chemicals in high permeability aquifers is advection, which 

is fluid transport due to the fluid’s bulk motion. Many applications have been developed to only account 

for this advective component of transport (Konikow et al., 1996), and thus assume the dispersion and 

diffusion mechanism to be negligible. Advective flow velocities are obtained from Darcy’s Law: 

𝑣𝑖 = −
𝐾

𝜃

𝜕ℎ

𝜕𝑥𝑖
 (2.1) 
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Where 𝑣𝑖 is advective velocity in the ith direction [L/T], 𝐾 is hydraulic conductivity of the aquifer [L/T], 

𝜃 is porosity [-], and 
𝜕ℎ

𝜕𝑥𝑖
 is the hydraulic gradient in the ith direction, a change in hydraulic head per 

change in length [L/L]. The general approach for advective velocity in particle tracking is that given a 

velocity field and current particle location, the future location of the particle can be calculated over a time 

period via integration. 

Groundwater contamination may occur due to substance discharge from industries, urban 

activities, agricultural chemicals, or landfill leachate. This contamination may negatively impact the 

communities that use groundwater as their primary source of water. The migration of chemicals that 

enters the subsurface is controlled by three key transport mechanisms: advection, dispersion/diffusion, 

and retardation (Bedient et al., 1994). Dispersion is the spreading of molecules due to different flow paths 

of water. Diffusion is the movement of particles due to random molecular motion that is caused by 

thermal energy of the solute. Retardation is the act that causes particle movements to be delayed due to 

the difference in aquifer velocity. The partial differential equation that describes the fate of a contaminant 

in the three-dimensional, transient groundwater system is as follows (Zheng and Wang, 1999): 

𝜕(𝜃𝐶)

𝜕𝑡
=

𝜕

𝜕𝑥𝑖
(𝜃𝐷𝑖𝑗

𝜕𝐶

𝜕𝑥𝑗
) −

𝜕

𝜕𝑥𝑖
(𝜃𝑣𝑖𝐶) +∑𝑅𝑛 (2.2) 

Where 𝐶 is the dissolved concentration [M/L3], 𝜃 is the porosity of the subsurface medium [-], 𝑡 is time 

[T], 𝑥𝑖 is the distance along the respective Cartesian coordinate axis [L], 𝐷𝑖𝑗 is the hydrodynamic 

dispersion coefficient tensor [L2/T], 𝑣𝑖 is the seepage or linear pore water velocity related to the specific 

discharge or Darcy flux [L/T] that may be calculated from Equation 2.1, and ∑𝑅𝑛  is the chemical 

reaction term [M/L3T]. 

 The second term on the right hand side of Equation 2.2 represents the influence of advection, and 

is dominant when the hydrodynamic dispersion coefficient tensor is small. By conducting an adequate 

particle tracking simulations, which only simulate advective transport, users may predict with some 

degree of confidence whether or not a contaminant source is likely to enter important features such as 
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rivers and wells effectively by solving a simplified version of Equation 2.2. Additionally, multiple 

numerical methods for solving Equation 2.2 (e.g., the method of characteristics) rely upon accurate 

particle tracking. 

  

2.2 MODFLOW 

MODFLOW (originally developed by the USGS in 1984) (McDonald and Harbaugh, 1984) is one of the 

most commonly used groundwater flow models. There have been four main versions of MODFLOW 

since 1984: MODFLOW-88, MODFLOW-96, MODFLOW-2000, and MODFLOW-2005.The first two 

major releases of MODFLOW, MODFLOW-88 and -96, were initially conceived solely as groundwater 

flow simulation codes. MODFLOW-2000 was later developed as an expansion to improve the 

calculations regarding the groundwater flow transport and parameter estimation. The core process in 

MODFLOW-2000 is the Groundwater Flow (GWF) Process, which is the part of the code that solves 

groundwater flow equation (McDonald and Harbaugh, 2003). The latest major release using structured 

grids is MODFLOW-2005, which improved the management of internal data and provided a means to 

define multiple grids in a single MODFLOW simulation. This version of MODFLOW is the most stable 

and well-tested version of the code, and is presently the primary MODFLOW version distributed by the 

USGS and used in practice. The basic packages in the current version of MODFLOW include block-

centered flow, layer-property flow, horizontal flow barrier, river, recharge, well, drain, 

evapotranspiration, general-head boundary, strongly implicit procedure, preconditioned conjugate-

gradient, and direct solver packages. Each of these packages handles different boundary conditions and/or 

contributes to the solving the resultant discrete system of equations. 

The governing equation for three-dimensional groundwater flow through porous media with 

constant density can be described as follows (Rushton and Redshaw, 1979): 

𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑦 

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧𝑧

𝜕ℎ

𝜕𝑧
) +𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (2.3) 
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Where 𝐾𝑥𝑥  , 𝐾𝑦𝑦 , and 𝐾𝑧𝑧  are the hydraulic conductivity values in 𝑥, 𝑦, and 𝑧 direction [L/T]; 𝑊 

represents the volumetric flow rate for sink/source terms per unit volume of aquifer [1/T]; 𝑆𝑠 is the 

specific storage of the porous media [1/L]; and 𝑡 is time [T]. Equation 2.3 is the governing equation 

solved by MODFLOW, and can represent groundwater flow through heterogeneous, anisotropic media, 

with steady-state or transient flow, which may be influenced by sink or source terms. Under the 

conditions or assumptions where the media is homogeneous and isotropic (𝐾𝑥𝑥 = 𝐾𝑦𝑦 = 𝐾𝑧𝑧) with 

steady-state flow (𝜕ℎ/𝜕𝑡 = 0) and no sink or source terms (𝑊 = 0), the left hand side of Equation 2.3 

becomes the three-dimensional Laplace’s equation. 

 Although MODFLOW is considered an international standard for simulating and predicting 

groundwater conditions, there are still some limitations of the program. For instance, the water in the 

model must have a constant density, dynamic viscosity, and temperature throughout the modeling 

domain. MODFLOW-2005 currently cannot simulate complex geological features or simulate steep 

hydraulic gradients; the rewetting and drying of cells is also an issue (Harbaugh, 2005). Furthermore, 

MODFLOW-2005 still cannot handle non-rectilinear-based grids. However, these limitations can be 

addressed by using specialized versions of MODFLOW, including: 1) MODFLOW-NWT, a standalone 

program to handle cases regarding drying and rewetting nonlinearities of the unconfined groundwater 

flow equation, 2) MODFLOW-LGR, a 3D finite-difference groundwater flow model with local grid 

refinement, and 3) MODFLOW-USG, the unstructured grid version of MODFLOW that is based on an 

underlying CVFD formulation, and can use arbitrary unstructured grids. The primary focus of this thesis 

is the particle tracking algorithm for MODFLOW-USG. 

 MODFLOW-USG was first released in 2012 as a completely rewritten version of MODFLOW 

(Panday et al., 2013). The main purpose for the development of this MODFLOW version is to support a 

wide variety of structured and unstructured grids, such as nested grids, triangular-based grids, quad-based 

grids, and Voronoi Tessellations. This new flexibility in grid design is used to further focus resolution 

along rivers and around wells, and to better represent hydrostratigraphic units by subdiscretizing 
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individual layers. The core process in MODFLOW-USG remains the GWF Process, but extended to 

allow connections between a cell and an arbitrary number of other adjacent cells. One other new process 

within the MODFLOW-USG is the Connected Linear Network (CLN) Process, which is used to simulate 

the effects of multi-node wells and tile drains. Additional important packages incorporated into 

MODFLOW-USG include the Ghost Node Correction (GNC) Package that uses interpolated heads in the 

flow calculation between adjacent connected cells, and the Sparse Matrix Solver (SMS) Package to solve 

the system of flow equation, which is more complicated for the unstructured grids. Furthermore, 

MODFLOW-USG contains the Newton-Raphson formulation that is based on the formulation in 

MODFLOW-NWT as an optional process to handle problems regarding the drying and rewetting of cells 

by using the SMS Package. Current practical limitations of MODFLOW-USG include its incapability to 

support all of the packages that other MODFLOW versions do. These limitations may be addressed in the 

next version.  

 

2.2.1 Structured Grids 

There are various types of grids or cells that can be considered structured grids, in which the number of 

cell-connections is the same for all cells except along the boundaries. Figure 2.1 shows examples of 

structured grids presented in two-dimensional plan view. However, the structured grids discussed in this 

thesis are defined only as MODFLOW structured grids, which are the rectilinear-based grids; Grids A and 

B in the figure. Grids C through G in Figure 2.1 are considered non-rectilinear structured grids in 

groundwater flow modeling, which MODFLOW-2005 does not support. Rectilinear structured grids for 

discretization of the flow domain in standard MODFLOW require grid cell sides to align with the 

Cartesian coordinate system and grid spacing to be uniform in the cardinal directions. A conceptual model 

that consists of only structured grids is considered simple in terms of data management. However, its 

limitations include the inability to focus resolution along important features in the conceptual models 

such as rivers and wells. In order to increase the accuracy around those features, the size of the grids must 
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be refined in the both horizontal and vertical direction of the zones around the feature, hence impacting 

resolution across the whole modeled domain. 

 

 

 

 

 

 

 

 

 

 
The mesh refinement will result in higher computational time than necessary, because unimportant areas 

may be finely discretized. Figure 2.2 illustrates grid refinement around an important feature with a 

rectilinear grid. If, for example, the desired feature within the conceptual model is marked with the red 

dot, then it is more likely that the area around that feature will be refined in order to increase the accuracy 

of that area. The rows and columns of the whole conceptual model need to be refined as well in order to 

meet the restriction of the MODFLOW rectilinear structured grids, where each side of the cell must be 

touching one other cell at most, except along the boundary of the model. 

 

 

 

 

 

 

Important Feature 

Figure 2.2: Non-Uniform Rectilinear Structured Grids of a Conceptual Model (Figure from Hesch, 2013) 

Figure 2.1: Examples of Different Types of Structured Grids (Figure from Panday et al., 2013) 
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2.2.2 Unstructured Grids 

Due to the particular application of finite volume formulation in MODFLOW-USG, the construction of 

unstructured grids to represent the groundwater flow conceptual model becomes possible. This flexibility 

allows the grid cell geometry to be any shape: rectangular, triangular, nested, Voronoi Tessellations, or 

any combination thereof. Figure 2.3 depicts the unstructured grids with variable number of connections 

for each cell throughout the conceptual model. The unstructured geometry in MODFLOW-USG only 

apply in x and y direction; in cross-sectional view, the top and bottom cell faces are horizontal and the 

side faces are vertical, and thus the cells are prismatic in the vertical direction. However, since each side 

of the cells is not restricted to only be connected to one cell, the top and bottom side of each cell can also 

connect to multiple cells; nested grids may therefore be applied in the vertical direction. 

 

 

 

 

 

 

 

 

 

 

 

Unstructured grids are desirable due to their ability to focus resolutions along and around important 

features like rivers and wells within the conceptual model without violating the standard CVFD 

requirements. All of the grids in Figures 2.1 and 2.3 meet the CVFD requirements for MODFLOW-USG. 

Every type of grid in Figures 2.1 and 2.3, except for the Radial Grid (J), is within the scope of this thesis, 

Figure 2.3: Examples of Different Types of Unstructured Grids (Figure from Panday et al., 2013) 
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and thus is intended to be handled by the Waterloo Method. The advantages of using unstructured grids in 

groundwater flow model include better resolutions of features without refining the rest of the conceptual 

model; limiting grid refinement only to areas of interest. Figure 2.4 shows the unstructured version of 

Figure 2.2 using Voronoi Tessellation. The areas of interest become easier to identify, allowing the 

modeler to better understand the conceptual model and its important features. 

 

 

 

 

 

 

 

 

 

 

The features, such as the rivers and the well, within the conceptual model in Figure 2.4 become more 

apparent when using unstructured grids. The discretization file for the unstructured grids in MODFLOW-

USG is designed differently from the structured grids file. The current version of MODFLOW-USG does 

not require the coordinate of each node or cell, only the information regarding the cell connections. 

Groundwater flow modeling user interfaces, such as Visual MODFLOW Flex and Groundwater Vistas, 

may provide the Grid Specification File (.GSF) to determine the Cartesian coordinate of the vertices in 

each cell as well as the coordinate of the each cell’s center.  

 

River 

River 

River 

Well 

Figure 2.4: Voronoi Unstructured Grids of a Conceptual Model (Figure from Hesch, 2013) 
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2.3 Particle Tracking Algorithms 

There have been numerous particle tracking methods developed over the years to account for the 

advective component in Lagrangian-Eulerian methods for simulating contaminant transport (Konikow et 

al., 1996; Zheng, 1990; Yeh et al., 1992; Clement, 1997), and also for basic particle tracking. The 

development of different particle tracking methods is necessary to handle special cases of steady or 

transient flow, velocity variations over each time increment, and different grid structures. Numerical 

methods, such as finite difference and finite element methods, use fundamentally different descriptions of 

the velocity field. Examples of particle tracking methods that exist for structured grids include the Pollock 

method (Pollock, 1988), a semi-analytical particle tracking method for use with velocities generated from 

block-centered finite-difference groundwater flow models: This method is used by multiple contaminant 

transport methods, including the 3D method of characteristics groundwater flow and transport model 

software (MOC3D) (Konikow et al., 1996); an algorithm for the simulation of coupled hydrological 

transport of single or multiple chemical species and their chemical reactions (Zheng, 1999), incorporated 

into the Modular 3D Multi-Species Transport Model for Simulation of Advection, Dispersion, and 

Chemical Reactions of Contaminants in Groundwater System (MT3DMS); Other algorithms include 

those that can account for changes in velocity during a time step in a complicated unsteady flow (Suk and 

Yeh, 2009; 2010). By far, the most popular particle tracking method for rectilinear structured grids is the 

semi-analytical Pollock method, which is incorporated into the MODPATH particle tracking utility for 

MODFLOW.  

There have been numerous attempts over the past few years to develop a particle tracking 

algorithm for arbitrary unstructured grids. A new method for calculating flow streamlines or pathlines 

from a finite-volume flow solution was developed recently by Painter et al. (2012). This method uses 

unconstrained and constrained least squares methods on interior cells and boundary cells respectively in 

order to approximate cell-centered velocities. The reconstructed velocities are continuously interpolated 

in the streamline tracking calculation. The advantages of this method include simple implementation and 
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ability to fully support unstructured grids with arbitrary intercell connectivity. Furthermore, this method 

honors specified flux boundaries, including no-flow boundaries exactly, as long as control-volume nodes 

are placed on the domain boundaries. However, the method of Painter et al. (2012) may be insensitive to 

the number of discrete flux values available for each cell, even though it was tested and demonstrated 

using a flow solution based on the two-point flux approximation. Furthermore, the velocity field 

generated using this method does not respect the mass balance at cell faces or within the cell. In 2014, 

S.S. Papadopulos & Associates announced the release of mod-PATH3DU (Muffels et al., 2014), a 

particle path and travel-time simulator that can support a wide variety of structured and unstructured 

grids, which uses a kriging-based head interpolation approach and suffers from similar mass balance 

problems. More details regarding these other unstructured grids particle tracking algorithms are discussed 

later in this section.  

 

2.3.1 MODPATH 

The Pollock Method was first published in 1988 (Pollock, 1988) for semi-analytical particle tracking on 

rectilinear structured grids. The key assumption of the method is that each directional velocity 

components varies linearly within grid cell in its own coordinate system, which allows an analytical 

expression to be obtained describing the flow path within an individual grid cell (Pollock, 1988). Given 

the initial position of the particle as well as the cell geometry and the flows in through the cell faces, the 

particle coordinate along its pathlines within the cell and its travel time can be computed directly without 

numerical integration. An important application of this method includes tracing particle pathlines through 

any multidimensional flow field that is generated from a block-centered finite-difference groundwater 

flow model, such as MODFLOW. One limitation of using this method is that it cannot be extended to 

non-rectilinear cells. The method is here described in detail, because it is used for benchmarking of the 

new method. Figure 2.5 illustrates a rectilinear finite-sized cell and the inflows and outflows across its 

faces. 
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The calculation regarding the linear velocity interpolation functions in x-direction is as follows: 

𝑣𝑥𝑝 = 𝐴𝑥(𝑥𝑝 − 𝑥1) + 𝑣𝑥1 (2.4) 

𝐴𝑥 =
𝑣𝑥2 − 𝑣𝑥1

∆𝑥
 (2.5) 

where 𝑣𝑥𝑝 is the current particle velocity in x-direction [L/T]; 𝐴𝑥  is a constant that correspond to the 

component of the velocity gradient within the cell [1/T], which can also be described as 
𝜕𝑣𝑥

𝜕𝑥
; 𝑥1 represents 

the x-coordinate location of the face that is perpendicular to the x-direction at 𝑥 = 𝑥1 [L]; 𝑥𝑝 is the 

particle coordinate location in terms of x-direction [L]; 𝑣𝑥1 and 𝑣𝑥2  are the groundwater velocities at 

faces 𝑥1 and 𝑥2 respectively [L/T]; and  ∆𝑥 is the dimensions of the cell in the x direction (∆𝑥 =  𝑥2 −

𝑥1) [L]. The linear particle velocity and the velocity gradient constant (𝐴𝑥) are calculated in an identical 

manner for the y- and z-directions.  

 After obtaining the particle velocity and the velocity gradient constant, the time required for the 

particle to reach a particular face in the cell needs to be calculated in the x, y, and z directions: 

Figure 2.5: The Orientation of Rectilinear Finite-Difference Cells and the Cell Face Flows (Figure from Pollock, 

1988) 
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∆𝑡𝑥 = (
1

𝐴𝑥
) ln (

𝑣𝑥2
𝑣𝑥𝑝

) (2.6a) 

∆𝑡𝑦 = (
1

𝐴𝑦
) ln (

𝑣𝑦2

𝑣𝑦𝑝
) (2.6b) 

∆𝑡𝑧 = (
1

𝐴𝑧
) ln (

𝑣𝑧2
𝑣𝑧𝑝
) (2.6c) 

The first step is to determine the face in which the particle leaves the cell; whether it is the x-face, y-face, 

or z-face. Equations 2.6a, 2.6b, and 2.6c are used to solve for the time it would take for the particle to 

reach each potential exit plane. The smallest value of ∆𝑡 obtained from the equations corresponds to the 

actual exit face. The actual location of the particle exit point or particle location at a given time within the 

cell can then be calculated using the following formula: 

𝑥𝑝(𝑡2) =  𝑥1 + (
1

𝐴𝑥
) [𝑣𝑥𝑝(𝑡1) exp(𝐴𝑥  ∆𝑡) − 𝑣𝑥1 ] (2.7) 

Where, 𝑥𝑝(𝑡2) is the particle location along the x-axis at time 𝑡2 [L]; ∆𝑡 is the minimum travel time for 

the particle to exit either x, y, or z face (∆𝑡 = min(∆𝑡𝑥 , ∆𝑡𝑦 , ∆𝑡𝑧)) [T]. The location for a particle at a 

given time within the cell for y- and z-axis can also be computed in a similar manner. Equations 2.6 and 

2.7 can be applied to determine both the particle exit location and the time required for the particle to exit 

the cell. The location and the time are then used as the starting time and coordinate of the particle for the 

next cell until it reaches a boundary, an internal sink/source, or satisfies another termination criterion.  

 The Pollock method is implemented in the MODPATH algorithm (Pollock, 1994), which have 

been officially released as the particle tracking method for MODFLOW. Applications of MODPATH 

include capture zone delineation and the evaluation of hydraulic containment of pump-and-treat system. 

MODPATH version 1 was first released in 1989 to calculate pathlines of particles in steady-state flow for 

MODFLOW-88.  The most notable advantage of using MODPATH as a particle tracking algorithm is fast 

computational time; MODPATH is currently the fastest particle tracking algorithm available for finite-
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difference simulations. However, a disadvantage of MODPATH includes its restriction regarding 

rectilinear structured grids.  

In 2015, a new extension of MODPATH was developed to handle rectangular unstructured grids 

(Pollock, 2015), such as shown in Figure 2.3 (H), (K), and (L). The new extension is able to sufficiently 

handle rectangular-based structured grids as well as rectangular-based unstructured grids such as nested 

grids and quad-based grids. The method is extended for two-dimensional square grid cells that have a 

maximum 2:1 ratio of grid cells at adjacent lateral faces. Even with the new extension, the limitation of 

MODPATH regarding rectilinear cells still remains.  

 

2.3.2 Tracking on Unstructured Grids 

Due to the limitations in the Pollock method, it is desirable to develop a particle tracking algorithm that 

can handle arbitrary structured and unstructured grids with the same high degree of accuracy. Creating 

particle pathlines in unstructured grids is problematic due to the calculation requirement regarding a 

continuous velocity field. The kriging-based approach in mod-PATH3DU is one of the only particle 

tracking algorithms that can handle arbitrary unstructured grids. Another example of particle tracking 

method for unstructured control-volume grids is the method by Painter et al. (2012). These two methods 

are the only two known methods for tracking particles in unstructured grids. mod-PATH3DU (Muffels et 

al., 2014) was developed in 2014 by S.S. Papadopulos & Associates to calculate the three dimensional 

flow pathlines of purely advective solute particles for structured and unstructured grids supported by 

MODFLOW-USG. There are currently two particle tracking schemes contained within this software: 

Pollock method, and the SSP&A method. The Waterloo method developed for this thesis is incorporated 

into the next version of mod-PATH3DU; the users are able to choose which of the three particle-tracking 

methods is most suited for their need. The Pollock method in this program is applicable to rectilinear 

structured grids. The SSP&A method is grid independent as it uses local universal kriging interpolation of 

a MODFLOW hydraulic head solution and calculates velocity vectors from Darcy’s law using the 
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resultant head changes. The use of universal kriging to interpolate heads in the vicinity of a particle is 

applicable for velocity calculations in x- and y-direction; the SSP&A method currently uses the Pollock 

Method to calculate particle velocity in z-direction. 

 The numerical integration of particle paths in mod-PATH3DU is performed using a fourth-order 

Runge-Kutta scheme; the option of using Euler scheme for the particle pathlines generation is also 

available. The limitations regarding the applicability of the SSP&A method for particle tracking include 

the assumptions in the underlying tracking scheme, interpolation method, and the limitations in the 

groundwater flow model such as boundary and discretization effects. Furthermore, the SSP&A method 

cannot respect no-flow boundaries, the law of refraction, and the local velocity field does not respect mass 

balance. The symptoms of the particle tracking errors using the universal kriging interpolation depend on 

grid discretization, severe heterogeneity, and the proximity to certain boundaries. The main input files for 

mod-PATH3DU include files from MODFLOW-USG and files from third party software, such as grid-

specification files. More information regarding the required input and output files by this program is 

found in the User’s Guide for mod-PATH3DU (Muffels et al., 2014).  

 The particle tracking method that was introduced by Painter et al. (2012) is also able to trace 

particle pathlines on unstructured control-volume grids. As mentioned earlier in this section, Painter et al. 

approach is able to use constrained and unconstrained least squares methods on boundary cells and 

interior cells respectively. The cell-centered velocities that are approximated using these methods can be 

interpolated to any point in the domain of interest. This method has been compared to the Pollock method 

in structured grids and claimed that the overall comparison between the two results is reasonably good. 

Several advantages of the method by Painter et al. include simple implementation and able to fully 

support unstructured grids with arbitrary intercell connectivity. Unlike the SSP&A method, the Painter et 

al. approach honors specified flux boundaries, including no-flow boundaries, but only when control 

volume nodes are placed on the domain boundaries. The method originally assumes constant Darcy’s 

velocity in each cell to develop its equations. This assumption may result in discontinuous velocities at 
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cell faces, which can lead to inadequate particle tracking due to errors in mass balance. However, the 

discontinuities may be partially handled through a simple smoothing procedure.  

 

2.4 Analytical Solutions to Laplace Equation 

The Waterloo Method is based upon reconstructing the cell velocity field using local analytical solutions 

to the Laplace and Poisson equations, which are often encountered in fluid mechanics, elasticity, and heat 

and mass transfer theory.  As will be shown later, the Laplace equation can result from vertical integration 

of the MODFLOW governing equation within a cell. The two-dimensional Laplace equation for discharge 

potential Φ(𝑥, 𝑦) in Cartesian coordinates is: 

𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑦2
= 0 (2.8) 

This governing equation for sub-grid groundwater flow may be derived via application of continuity and 

Darcy’s law within a homogeneous, isotropic cell over a single time step. Note that Equation 2.8 has no 

direct dependency on time, only on the two-dimensional spatial variables x and y. Thus, the Laplace 

Equation above describes the steady state flow condition, and is solved subject to some boundary 

conditions. The analytical solution to Laplace Equation is one of the main foundations for the Waterloo 

method. 

 

2.4.1 Dupuit-Forchheimer Approximation 

The Dupuit-Forchheimer approximation to a three-dimensional groundwater flow model suggests that 

flowlines are predominantly horizontal and lateral velocities do not vary over the aquifer depth (Haitjema, 

1995); the hydraulic head is likewise presumed not to vary in the vertical direction. The main purpose of 

this approximation is generating three-dimensional streamlines using two-dimensional horizontal model 

by assuming that the resistance in vertical direction is nonexistent. This approximation was formulated by 

Jules Dupuit and Philipp Forchheimer in the late 1800s in order to simplify the equations for groundwater 
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flow to be able to obtain analytical solutions more easily. Here, the Dupuit-Forchheimer assumption will 

be invoked in each cell to simplify the three-dimensional groundwater flow equation into the more 

analytically tractable Poisson equation in each cell. This approximation may be used in computer models 

that are based on numerical or analytical approaches (Strack, 1984).  

 

2.4.2 Discharge Potential and Taylor Series Function 

For generating potential flow solutions, it is useful to work in terms of a complex discharge potential, 

expressed in complex coordinates. The use of 𝑧 symbol for the rest of this thesis is referred as the 

complex coordinate 𝑧 = 𝑥 + 𝑖𝑦 and no longer used to describe vertical direction in Cartesian coordinate, 

unless stated otherwise. A special property of any function of 𝑧 alone is that its real and imaginary parts 

automatically satisfy the Laplace equation. In other words, this property includes 𝑓(𝑧), but it does not 

include 𝑓(𝑧, 𝑧̅), where 𝑧̅ is the complex conjugate of 𝑧. The complex potential Ω(𝑧) can be written as 

follows: 

Ω(z) =  Φ(z) + 𝑖Ψ(z) (2.9a) 

∇2Ω =  ∇2Φ+ 𝑖∇2Ψ = 0 ,            Ω = f(z) (2.9b) 

The function Φ is here a surrogate for head in the groundwater flow equation. The stream function, 

denoted as Ψ, has contours that is always perpendicular to the potential contours; i.e., lines everywhere 

tangent to the flow direction. A complex discharge function can be defined as: 

𝑊 = −
𝑑Ω

𝑑𝑧
= −

𝜕Φ

𝜕𝑥
 − 𝑖

𝜕Ψ

𝜕𝑥
= 𝑄𝑥 − 𝑖𝑄𝑦 (2.10) 

where 𝑧 is the complex coordinate; and −
𝜕Ψ

𝜕𝑥
 can also be described as 

𝜕Φ

𝜕𝑦
 such that the discharge function 

𝑊 has its real and imaginary part of the discharge vector components. Using the discharge function, the 

discharge vector can be evaluated. Discharge vectors can be used in groundwater modeling to determine 
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the sub-grid velocity in each cell that can be useful for determining particle pathlines. The key point of 

the discharge potential in Equation 2.9a is that any Ω which is a function of complex coordinate along 𝑧 

satisfies the Laplace equation. For example, any function 𝑓(𝑧) can be used as a candidate solution to the 

complex Laplace equation. The two functions of complex coordinate z discussed in this thesis include the 

complex Taylor series and complex logarithmic function: 

f(z) =  ∑ 𝑎𝑛𝑧
𝑛  

∞

𝑛=0
 (2.11a) 

f(z) =
𝑄

2𝜋
 ln (𝑧) (2.11b) 

An example of complex Taylor series used to solve the complex potential due to a circular inhomogeneity 

described by (Janković & Barnes 1999) is as follows: 

Ω(z) =  Φ(z) + 𝑖Ψ(z) =  

{
 

 ∑ 𝑎𝑛𝑧
𝑛 

∞

𝑛=0
             |𝑧| < 1  

−∑ 𝑎𝑛̅̅ ̅𝑧
−𝑛

∞

𝑛=0
        |𝑧| ≥ 1 

 (2.12) 

Where Ω is the complex potential function; Φ is the discharge potential function; and Ψ is the associated 

stream function; 𝑧 is the location of interest in global coordinates in complex form 𝑧 = 𝑥 + 𝑖𝑦; 𝑎𝑛 is 

unknown complex coefficient. Equation 2.12 is applicable for simulating two-dimensional flows through 

large numbers of circular inhomogeneities in the Analytic Element Method (AEM).  

The complex Taylor series and complex logarithmic functions shown in Equations 2.11a and 

2.11b are here used as “building blocks” to assemble local exact solutions to the groundwater flow 

equation in each cell. By determining potential and stream function for each cell in a conceptual model, 

the sub-grid velocity distribution can be determined. The horizontal velocity at any point within a cell is 

required for tracking particles. 
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Chapter 3 

Methodology 

The Waterloo method is here developed to accurately track particles through various types of structured 

and unstructured grids in heterogeneous, anisotropic subsurface media, with steady-state or transient flow 

that may be influenced by sink or source terms; essentially filling the gaps that MODPATH cannot. The 

input files that are crucial for this method are mainly the cell geometry files and cell-by-cell flow files, as 

well as other necessary input files required for mod-PATH3DU. The development of Waterloo method 

prototyped in MATLAB and later transferred into C++ for incorporation into mod-PATH3DU. 

 

3.1 Governing Equation 

The governing equation for three-dimensional groundwater flow through porous media with constant 

density, similar to Equation 2.3 in Chapter 2, is given as follows (Rushton and Redshaw, 1979): 

 

𝜕

𝜕𝑥
(𝐾𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦 

𝜕ℎ

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝐾𝑧

𝜕ℎ

𝜕𝑧
) +𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
 (3.1) 

 

As is mentioned in Chapter 2, this equation is valid for transient or steady state groundwater flow through 

heterogeneous, anisotropic media. Equation 3.1 is derived via application of continuity and Darcy’s law.  

The sub-grid flow field is generated by invoking the Dupuit-Forcheimer approximation in each 

cell, whereby head is treated as uniform in the vertical direction and resistance to flow in the vertical 

direction is treated as negligible. The basic condition for the Dupuit-Forchheimer approximation is for the 

length of a flowline in a groundwater flow model to be larger in comparison to the aquifer thickness; this 

basic condition is often met in groundwater flow modeling. By invoking the Dupuit-Forchheimer 

approximation of the MODFLOW governing equation (Equation 3.1), and assuming no source and sink 

term within the cell, the three-dimensional equation can be transformed into a two-dimensional equation 
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by discretizing time derivation and vertically integrating over the saturated thickness of the aquifer, 

simplifying Equation 3.1 into: 

 
𝜕

𝜕𝑥
(𝐾𝑥𝑏

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦𝑏

𝜕ℎ

𝜕𝑦
) = (−(𝑞𝑡𝑜𝑝 − 𝑞𝑏𝑜𝑡) + 𝑆

𝛥ℎ

𝛥𝑡
) (3.2) 

 

Where 𝐾𝑥   and 𝐾𝑦  [L/T] are the hydraulic conductivities in the 𝑥 and 𝑦 directions; ℎ [L] is the hydraulic 

head; Δℎ is the variation in hydraulic head over the time step; 𝑏 is the saturated thickness of the cell [L]; 

and 𝑆 [-] is either equal to 𝑆𝑠𝑏 (the storativity) or 𝑆𝑦 (the specific yield), depending upon whether the cell 

is confined or unconfined. The fluxes 𝑞𝑡𝑜𝑝 and 𝑞𝑏𝑜𝑡  [L/T] are the fluxes through the top and bottom of the 

cell, respectively, are obtained from vertically integrating Equation 3.1, and are treated as positive for 

upward flows. Note that in each cell, for each MODFLOW time step, 𝐾𝑥 , 𝐾𝑦, 𝑞𝑡𝑜𝑝, 𝑞𝑏𝑜𝑡 , 𝛥ℎ 𝛥𝑡⁄  and 𝑆 are 

constant and uniform. Also note that the storage term, 𝑆 𝛥ℎ 𝛥𝑡⁄ , is treated as a constant over the 

MODFLOW time step and therefore will be treated in an analogous manner to the vertical flux. 

 For convenience, a Discharge potential, Φ [L3/T] is here used as a surrogate for groundwater 

head. The discharge potential used in this thesis is given by Strack (1989): 

Φ = {

1

2
𝐾(ℎ − 𝑧𝑏)

2                  (unconfined)

𝐾𝐻(ℎ − 𝑧𝑏) −
1

2
𝐾𝐻2         (confined)

 (3.3) 

Where 𝐾 = 𝐾𝑥 = 𝐾𝑦  is laterally isotropic hydraulic conductivity [L/T] and  𝐻 is the uniform constant 

saturated thickness in cases of confined flow [L]. By defining a discharge potential, Equation 3.3 can be 

consistently treated for both confined (𝑏 = 𝐻) and unconfined (𝑏 = ℎ − 𝑧𝑏, where 𝑧𝑏 is the cell bottom 

elevation) conditions. By combining Equations 3.3 and the left hand side of 3.2, the discharge potential 

can be obtained. The two-dimensional integrated discharge can be defined by vertically integrating the 

specific discharge and applying Darcy’s law to obtain the following expression: 

 



28 
 

𝑄𝑥 = 𝑏𝑞𝑥   = 𝑏 (−𝐾
𝜕ℎ

𝜕𝑥
)  ≡  −

𝜕Φ

𝜕𝑥
 (3.4a) 

𝑄𝑦 = 𝑏𝑞𝑦   = 𝑏 (−𝐾
𝜕ℎ

𝜕𝑦
)  ≡  −

𝜕Φ

𝜕𝑦
 (3.4b) 

Where 𝑞𝑥 and 𝑞𝑦 [L/T] are the specific discharges in x- and y-direction respectively; 𝑄𝑥 and 𝑄𝑦 [L2/T] 

are the integrated discharge; and 𝑏 is the saturated thickness. Using the discharge potential form from 

Equation 3.3, the governing equation shown in Equation 3.2 for two-dimensional Dupuit-Forchheimer 

flow can be simplified into the two-dimensional form of Poisson Equation in terms of the discharge 

potential:  

∇2Φ = −𝜇 (3.5) 

Where −𝜇 is the entire right hand side of Equation 3.2, and ∇2Φ is the entire left hand side of Equation 

3.2. Note that Equation 3.5, the Poisson equation, is related to the two-dimensional Laplace equation as 

shown in Equation 3.2; solutions may be generated by superimposing solutions to the Laplace equation 

with any particular solutions to Equation 3.5. Due to the Dupuit-Forchheimer assumption, the vertical 

velocity at any point within the cell can be calculated separately or even using another method.  

 

3.2 Local Problem Definition 

The first step of the Waterloo method is the reconstruction of sub-grid velocity distribution on a cell-by-

cell basis for each MODFLOW time step. There are two types of time steps discussed here: The time step 

used for numerical integration of particle pathlines, called the tracking time step; and the time step used 

MODFLOW in calculation of transient flows and heads, called the MODFLOW time step. In all cases, 

the tracking time step is always smaller than the MODFLOW time step. Reconstruction at the sub-grid-

cell level simplifies the particle tracking problem to that of a relatively simple boundary value problem 

within the cell, which satisfies specified flux conditions along all sides, and Equation 3.5 internal to the 
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cell. The four important parameters that need to be populated for the preliminary calculations in Waterloo 

method are: 1) the cell geometry; 2) the time-averaged flow rates in through the sides, top, and bottom of 

the cell for each MODFLOW time step; 3) the flow rates of any wells within the cell; 4) the saturated 

thickness at the start and end of the MODFLOW time step; and 5) the tracking duration.  

The key algorithm parameters to be determined in the Waterloo method are the total control 

points (𝑀) and the order of approximation (𝑁) of each cell. These parameters are necessary in order to 

determine the accuracy of the velocity reconstruction resultant and resultant travel times. 𝑀 is specified 

control points along the perimeter of the cell. These points along the perimeter of the cell control the 

accuracy of the calculation regarding sub-cell velocity reconstruction. The second crucial parameter for 

the preprocessing step of the algorithm is the order of approximation (𝑁). Both 𝑀 and 𝑁 are used to 

determine the accuracy of the solution to the local boundary value problem (BVP), which is further 

discussed in a later section in this chapter. The basic rule regarding these two parameters is that the 

number of total control points needs to be larger than or equal to two times the value for order of 

approximation (𝑀 ≥ 2𝑁). This ensures more equations than unknowns in the system of equations used 

for solving the BVP. The optimal values for these parameters are chosen to increase the accuracy and/or 

reduce the run-time of the simulation. Further details regarding these parameters are discussed in the 

errors section of this chapter. 

 

3.2.1 Cell Geometry 

In order to apply the Waterloo method, the coordinate of each vertex of every cell needs to be known. 

MODFLOW-USG does not explicitly provide information regarding the Cartesian coordinate of each 

node or cell, only the discretization file that contains information regarding the cell connection (DIS file 

for rectilinear structured grids, and DISU file for unstructured grids). The grid specification (GSF) file 

contains the Cartesian coordinate of each vertex and the connections between those vertices in a cell to 

make the polygon. These GSF files are not required by MODFLOW-USG, but are generated by third 
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party software such as Groundwater Vistas or Visual MODFLOW Flex. Cell geometry construction is 

possible by combining information from the discretization and grid specification files. The first step that 

the Waterloo method does regarding the cell geometry construction is to create the primary parameters. 

For example, the following parameters will generate the two-dimensional cell shown in Figure 3.1: 

 

Table 3.1: Primary Parameters to Generate Example 3.1 

Parameter Description Symbols Example Values 

Number of faces 𝑛𝑓𝑎𝑐𝑒𝑠 4 

Vertex coordinates of the cell 
(Arranged clockwise) 

[𝑥𝑖 𝑦𝑖] [

1000 1000
1000 1100
1100 1100
1100 1000

] 

Cartesian coordinate of the cell’s center [𝑥𝑐 𝑦𝑐] [1050 1050] 

Order of Approximation 𝑁 20 

Total control points 𝑀 40 

 

 

 

 

 

 

 

 

Figure 3.1 is an example of a rectilinear cell that has 4 sides and touching 4 other cells, hence 4 cell 

connections. However, in a situation where it is a quad-based grid, where one side of the cell may be 

touching two or more cells, the number of vertices for this cell and the number of faces may be more than 

4. The Waterloo method only works when the number of faces and the number of vertices match with 

number of cell connections. Note that it is important for the algorithm that the vertices are arranged in 

Figure 3.1: An Example of a Cell Geometry Constructed by the Algorithm 

900 950 1000 1050 1100 1150 1200
1000

1020

1040

1060

1080

1100

[𝑥𝑐 𝑦𝑐] 

[𝑥3 𝑦3] 

[𝑥1 𝑦1] 

[𝑥2 𝑦2] 

[𝑥4 𝑦4] 



31 
 

clockwise direction. However, it is unimportant which vertex is constructed first. The reason for this is 

because the other processing steps regarding the cell geometry, such as the use of M to specify how far 

along the perimeter each point is, are only valid when [𝑥𝑖 𝑦𝑖] is arranged clockwise; arranging [𝑥𝑖 𝑦𝑖] 

counterclockwise or in a random manner may cause the algorithm to produce erroneous results. The 

rearrangement of the vertices is done internally and is compatible with any prearrangement of vertices 

from any type of grid specification file. Since the total number of control points is already checked to be 

two times larger than the order of approximation, the next step in the algorithm is to calculate the 

secondary parameters, defined from the primary parameters. 

 

Table 3.2: Secondary Parameters Calculated from Primary Parameters in Example 3.1 

Parameter Description Symbols Example Values 

Vertices in complex coordinate 𝑧𝑖 [

1000 + 1000𝑖
1000 + 1100𝑖
1100 + 1100𝑖
1100 + 1000𝑖

] 

Length of each side of the cell [L] 𝐿𝑖 [

100
100
100
100

] 

Complex coordinate of the cell center 𝑧𝑐 1050 + 1050𝑖 

Cell perimeter [L] 𝑃 400 

Cell area [L2] 𝐴 10000 

Maximum radius between cell center  

and each cell vertex [L] 
𝑅 70.71 

 

The 𝑧𝑖 parameter is obtained directly from the [𝑥𝑖 𝑦𝑖] parameter. Using 𝑧𝑖, the length of each side of the 

cell can be computed easily even for cells with irregular geometry. The radius between the cell center and 

each cell vertex is computed using 𝑧𝑖 and 𝑧𝑐 in a similar manner for calculating 𝐿𝑖. The next 

preprocessing step for the algorithm regarding the cell geometry is to determine control point locations 

along sides of the cell; this step is to calculate the cell control parameters: 
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Table 3.3: Cell Control Parameters Calculated using the Primary and Secondary Parameters 

Parameter Description Symbols 

The side control that specifies how far along the perimeter of the 

cell each point is  
𝑆𝑐𝑡𝑟𝑙[1,𝑀] 

The complex side control points specify 

the complex coordinate of 𝑆𝑐𝑡𝑟𝑙  
𝑧𝑐𝑡𝑟𝑙[1,𝑀] 

The local complex side control points 

specify the localized 𝑧𝑐𝑡𝑟𝑙  
𝑍⃑𝑐𝑡𝑟𝑙[1,𝑀] 

 

The 𝑧𝑐𝑡𝑟𝑙 must be transformed into 𝑍⃑𝑐𝑡𝑟𝑙 such that the problem is recast in a local coordinate system. The 

equations to calculate 𝑆𝑐𝑡𝑟𝑙, 𝑧𝑐𝑡𝑟𝑙 , and 𝑍⃑𝑐𝑡𝑟𝑙 are as follows: 

𝑆𝑐𝑡𝑟𝑙
𝑖 =

(𝑖 − 0.5)

𝑀
𝑃      , 𝑖 = 1:𝑀 (3.6a) 

𝑧𝑐𝑡𝑟𝑙
𝑖 =  

(𝑆𝑐𝑡𝑟𝑙
𝑖 − ∑ 𝐿𝑘

𝑗−1
𝑘 )

𝐿𝑘
(𝑧𝑗+1 − 𝑧𝑗) + 𝑧𝑗       , 𝑖 = 1:𝑀 , 𝑗 = side with 𝑖 (3.6b) 

𝑍𝑐𝑡𝑟𝑙
𝑖 = 

𝑧𝑐𝑡𝑟𝑙
𝑖 − 𝑧𝑐
𝑅

      , 𝑖 = 1:𝑀 (3.6c) 

The 𝑆𝑐𝑡𝑟𝑙 is set such that none of the point is located at the vertex of the cell. 𝑧𝑐𝑡𝑟𝑙 is just the complex 

coordinate of each 𝑆𝑐𝑡𝑟𝑙 point in the cell. Note that the number of faces parameter only includes the side 

faces; the value of this parameter does not include the top and bottom face. 𝑍⃑𝑐𝑡𝑟𝑙 is a local coordinate 

system chosen such that the center coordinate  of the “new localized cell” is located at [0 0].  Schematic 

of an irregular shape cell that contains details regarding the primary, secondary, and cell control 

parameters is shown in the next sub-section. 

 

3.2.2 Time-Averaged and Well Flow Rates of the Cell 

The flow rates for every cell can be obtained from the cell-by-cell flow file, one of the MODFLOW-USG 

output files (the CBC file for the rectilinear structured grids and CBB file for the unstructured grids). 
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Since the cell vertices need to be rearranged in clockwise direction, the flows through each side of the cell 

also need to be rearranged accordingly to match with the vertices. The dimension of the flows obtained 

from the cell-by-cell flow file is L3/T. The sign convention for the flows in through the sides of the cell 

(𝑄𝑖) is negative for the flows leaving the cell, and positive for the flows entering the cell. The sign 

convention for the vertical flows (𝑄𝑣𝑒𝑟𝑡) for the cell is positive in upward direction and negative in 

downward direction. Example 3.2 is provided in this sub-section to show how the algorithm handles a cell 

with irregular geometry. The primary parameters of example 3.2 include: 

 

Table 3.4: The Primary Parameters of Example 3.2 

Parameter Symbols Example Values 

𝑛𝑓𝑎𝑐𝑒𝑠 5 

[𝑥𝑖 𝑦𝑖] 

[
 
 
 
 
253.0483 53.0072𝑖
251.4244 49.7577𝑖
247.8321 50.2979𝑖
247.2358 53.8814𝑖
250.4596 55.5558𝑖]

 
 
 
 

 

[𝑥𝑐 𝑦𝑐] [250 52.5] 

𝑁 20 

𝑀 50 

 

The secondary and cell control parameters for example 3.2 can be computed using the primary parameters 

shown in Table 3.4. The schematic of example 3.2 is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 
Figure 3.2: Schematic of Example 3.2 that Contains Primary, Secondary, and Cell Control Parameters 
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The flow parameters are shown in Table 3.5 below: 

 

Table 3.5: Flow Parameters for Example 3.2 

Parameter Description Symbols Example Values 

The time-averaged flow rates in through the 
sides of the cell; negative outward, positive 

inward. [L3/T] 

(This parameter must be arranged in 

accordance to the cell vertices) 

𝑄𝑖 

[
 
 
 
 
−25
−25
25
15
20 ]

 
 
 
 
𝑇

 

Cumulative vertical inflows [L3/T] 
(Negative upward, positive downward) 

𝑄𝑣𝑒𝑟𝑡  −30 

Well flow rates [L3/T] 

(Negative for pumping well, positive for 

injecting well) 
𝑄𝑤𝑒𝑙𝑙 −40 

 

As shown in Table 3.5, the value for well flow rates is negative for pumping well (i.e., the water leaving 

the cell), and vice versa for injecting well. The total net inflow to cell must be matched by a 

corresponding change with volume (i.e., for any given time step, the sum of 𝑄𝑖, 𝑄𝑤𝑒𝑙𝑙, and 𝑄𝑣𝑒𝑟𝑡  that are 

evenly distributed out to the cell perimeter must be equal to zero) in order to satisfy the mass balance. It is 

assumed that, given no other information, fluxes are uniformly distributed along each side of the element. 

This assumption may later be relaxed to handle special cases; however it is the easiest approach, which 

also ensures continuity between individual cells without the knowledge of adjacent cell flows. Figure 3.3 

represents the flow distributions and symbol conventions for example 3.2. 
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The 𝑄𝑣𝑒𝑟𝑡  shown in Table 3.5 includes the flows through the top and bottom of the cell, and storativity. 

The calculation of 𝑄𝑣𝑒𝑟𝑡  is similar to the −𝜇 term in Equation 3.5. The value for the change in storage is 

purposely left out from the table and assumed zero since example 3.2 is a steady state flow case. Details 

regarding the storativity are discussed later in this chapter. It is crucial to ensure the mass balance of the 

cell regarding the flows such that: 

( ∑ 𝑄𝑖

𝑛𝑓𝑎𝑐𝑒𝑠

𝑖=1

)− 𝑄𝑣𝑒𝑟𝑡 +𝑄𝑤𝑒𝑙𝑙 = 0 (3.7) 

The cell-by-cell flow information from MODFLOW should ensure the mass balance of each cell; failing 

to satisfy the condition in Equation 3.7 may cause the algorithm to produce an erroneous result. The 

vertical flux (𝑞𝑣𝑒𝑟𝑡) [L/T] of the cell is computed such that 𝑞𝑣𝑒𝑟𝑡 =
𝑄𝑣𝑒𝑟𝑡

𝐴
. The information regarding the 

wells provided by MODFLOW only includes the flow rates and the cell(s) in which the well(s) is/are 

located. MODFLOW does not provide any information regarding the coordinate location of each well, 

instead it assumes that any well exists within a cell is located at the center of the cell. Thus, example 3.2 

also uses this assumption. The information regarding the well flow rates for the pumping and injecting 

wells is provided by MODFLOW in the well package file.  

 After ensuring that the sum of corrected inflows satisfies the mass balance, the next step is to 

distribute the cell, vertical, and well flow rates along the perimeter of the cell; the parameters associated 

with this step are called the flow control parameters, which contains specified flux along all sides of the 

cell. The flow control parameters include the normal flows distributed along each of the 𝑧𝑐𝑡𝑟𝑙. The cell 

inflows are assumed to be distributed normally along the cell’s sides. The schematic of the side angles are 

provided in Figure 3.3. The cell side angles (𝛼𝑖) are obtained by using the argument of each side of the 

cell such that 𝛼𝑖 = arg (𝑠𝑖𝑑𝑒𝑖). The description of the flow control parameters and the cell side angles are 

shown in Table 3.6. 

 



36 
 

Table 3.6: Description of Flow Control Parameters and Cell Side Angles  

Parameter Description Symbols 

The angle for each side of the polygon calculated in radian 

(e.g. 𝛼1 = arg (Im(𝑧2 − 𝑧1) − 𝑖 Re(𝑧2 − 𝑧1)) 
𝛼𝑖[1, 𝑛𝑓𝑎𝑐𝑒𝑠] 

The normalized cell flows 𝑄𝜂
𝑐𝑒𝑙𝑙[1,𝑀] 

 

The calculations regarding the normalized cell, vertical, and well flows are necessary in order to 

determine the flow pattern inside the cell that contains the potential and stream functions. The equation to 

compute the normalized cell flows is as follows: 

𝑄𝜂 𝑖
𝑐𝑒𝑙𝑙 =

𝑄𝑗

𝐿𝑗
 (3.8) 

Where 𝑖 = 1:M, and 𝑗 = 1: 𝑛𝑓𝑎𝑐𝑒𝑠 , and 𝑗 is the side corresponding to control point 𝑖 The determination of 

𝑄𝜂 𝑖
𝑐𝑒𝑙𝑙  is crucial for calculating the particle velocity inside the cell. The calculations regarding normalized 

vertical and well flows are discussed in the next section. 

 

3.2.3 Saturated Thickness 

The saturated thickness reported in MODFLOW calculation is the relative saturated thickness for the cell; 

i.e., it is the current saturated thickness normalized by the height of the cell, which value varies between 1 

and 0. The coordinate of the top of water table is also calculable and done internally. The saturated 

thickness for each MODFLOW time step is necessary to both determine the sub-grid horizontal velocity 

distribution within the cell and to calculate the vertical velocity for transient flow case where the water 

table position may increase or decrease over time. Figure 3.5 shows an example of the saturated thickness 

that is lower than the top of water table. The example depicted in Figure 3.5 shows a cell that is 60% full. 

Thus, the relative saturated thickness reported by MODFLOW will be 0.60; a fully saturated cell will 

have saturated thickness of 1.00. The saturated thickness is used to determine the storage term of the cell 

as shown in Table 3.5 and to calculate the particle velocity at any point within the cell.  



37 
 

 

 

 

 

 

 

 

 

 

In transient flow case, the saturated thickness is especially important. Information regarding this matter is 

discussed in the transient flow section. 

 

3.3 Solution Approach 

Here, the local solution to the Poisson equation, shown in Equation 3.5, is generated via superposition of 

the potential functions for the cell, vertical, and well flows. The complex Taylor series is a flexible and 

exact solution to Equation 3.5 without the distributed source term and is augmented by additional terms, 

which exactly simulate the influence of wells, vertical recharge, leakage, and changes in storativity. As 

mentioned earlier in Chapter 2, the complex potential form in Equation 2.9a can be solved using Taylor 

series approximation. The form of the solution is given as a complex potential: 

 

Ω(𝑍) = Φ(Z) + 𝑖Ψ(𝑍) = ∑𝑎𝑛

𝑁

𝑛=0

𝑍𝑛 −
𝑞𝑣𝑒𝑟𝑡
2

Re(𝑅𝑍)2 +
𝑄𝑤𝑒𝑙𝑙
2𝜋

 log(𝑅|𝑍 − 𝑍𝑤|) (3.9) 

Where 𝑍 =
𝑧−𝑧𝑐

𝑅
 is the local complex coordinate; 𝑧𝑐 = 𝑥𝑐 + 𝑖𝑦𝑐 is the cell center ; 𝑧 = 𝑥 + 𝑖𝑦 is the global 

complex coordinate; and 𝑅 is the maximum radius of a circle centered at this point which fully encircles 

the cell. 𝑁 is termed the order of the approximation. A well with pumping/injecting rate 𝑄𝑤𝑒𝑙𝑙  is located 

𝑏 =  𝑠𝑎𝑡. 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

 

𝐻 = 𝑧𝑡𝑜𝑝 − 𝑧𝑏𝑜𝑡  

 

Bottom of Cell 

Particle 

Complex Flow 
Field Function  

Vertical Flux 
Function Well Function 

Figure 3.4: An Example of Water Table Located Below the Top of the Cell 
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at local well coordinate 𝑍𝑤 = 
𝑧𝑤𝑒𝑙𝑙−𝑧𝑐

𝑅
. Note that this solution approach generates both the discharge 

potential and stream function within the cell, though the stream function is, strictly speaking, only defined 

if 𝑞𝑣𝑒𝑟𝑡  and 𝑄𝑤𝑒𝑙𝑙 are zero. Using the flexible coefficients of the Taylor series (𝑎𝑛), a local flow solution 

which satisfies the governing flow equation exactly and precisely matches the boundary flux distribution 

along cell interfaces can be generated. The vertical flux function and well function are specified such that 

they satisfy the vertical flow distribution of uniform influx and a point source respectively; they do not 

satisfy the side boundary conditions, but they do satisfy the governing Equation 3.5. The coefficients 𝑎𝑛 

are determined by matching the normal flow rates along the sides of the cell at a set of 𝑀 control points 

along the cell perimeter. This leads to a set of 𝑀 equations for 𝑁 unknowns which is solved in a least 

squares sense as done by Janković and Barnes (1999). The details regarding coefficient calculation are 

explained in the next sub-section. Equation 3.9 is necessary to create the flow pattern inside the cell for 

potential and stream lines (the real value for potential contours and imaginary value for stream function 

contours). In order to determine the flow pattern inside the cell, the complex flow field function, vertical 

flux function, and well function need to be calculated. The complex flow field function calculation 

depends on the order of approximation described in previous section. Thus, the only unknown parameters 

in Equation 3.9 are the coefficients 𝑎𝑛.  

 

3.3.1 Identifying Coefficients 

The coefficients are determined by matching the normalized flow rates along the boundaries of the cell; 

the total volumetric flows through each side are therefore also matched. The first step for finding the 

Taylor series coefficients is to calculate the normalized Taylor flow rates (𝑄𝜂
𝑇𝑎𝑦𝑙𝑜𝑟). To obtain this 

parameter, the algorithm needs to use the combination of normalized flows for the cell, vertical, and well 

terms. Along each side, the inflows from the three terms in Equation 3.9 must be equal to the normalized 

cell flows  𝑄𝜂
𝑐𝑒𝑙𝑙  such that: 
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 𝑄𝜂
𝑇𝑎𝑦𝑙𝑜𝑟

=  𝑄𝜂
𝑐𝑒𝑙𝑙 −  𝑄𝜂

𝑣𝑒𝑟𝑡 −  𝑄𝜂
𝑤𝑒𝑙𝑙  (3.10) 

The  𝑄𝜂
𝑐𝑒𝑙𝑙  is already obtained from the previous section. The normalized vertical ( 𝑄𝜂

𝑣𝑒𝑟𝑡) and well flows 

( 𝑄𝜂
𝑤𝑒𝑙𝑙) can be calculated using the vertical (𝑄𝑣𝑒𝑟𝑡) and well flow rates (𝑄𝑤𝑒𝑙𝑙). In order to transform the 

vertical and well flows, which are determined by the functional form of Equation 3.9, into normal flows, 

the angle (𝛼𝑖) for each side of the cell is needed. The description of the side angle 𝛼𝑖 is available in Table 

3.6. Using these parameters, the  𝑄𝜂
𝑣𝑒𝑟𝑡  and  𝑄𝜂

𝑤𝑒𝑙𝑙  can be calculated as follows: 

𝑄𝜂 𝑖
𝑣𝑒𝑟𝑡 =  Re(−𝑞𝑣𝑒𝑟𝑡 ∗ 𝑅 ∗ Re(𝑍𝑐𝑡𝑟𝑙

𝑖 ) ∗ (cos(𝛼𝑗) + 𝑖 sin(𝛼𝑗)) (3.11a) 

 𝑄𝜂 𝑖
𝑤𝑒𝑙𝑙 = Re(−(

𝑄𝑤𝑒𝑙𝑙

2𝜋 ∗ 𝑅 ∗ (𝑍𝑐𝑡𝑟𝑙
𝑖 − 𝑍𝑤)

) ∗ (cos(𝛼𝑗) + 𝑖 sin(𝛼𝑗))) (3.11b) 

Where 𝑖 = 1:𝑀 . Note that the “𝑖” next to the sin(𝛼𝑗) in the equations above is the imaginary 

number √−1.0. Using Equations 3.8, 3.11, and 3.10, the normalized Taylor flows along the boundary of 

the cell can be determined. These parameters are essential in determining the Taylor series coefficients 

(𝑎𝑛). After obtaining  𝑄𝜂
𝑇𝑎𝑦𝑙𝑜𝑟

, the normal flows may be integrated along the cell perimeter such that: 

∫  𝑄𝜂
𝑇𝑎𝑦𝑙𝑜𝑟  𝑑𝑠𝑐𝑡𝑟𝑙

𝑆𝑐𝑡𝑟𝑙

0

=  ∫  𝑄𝜂
𝑐𝑒𝑙𝑙 −  𝑄𝜂

𝑣𝑒𝑟𝑡 −  𝑄𝜂
𝑤𝑒𝑙𝑙  𝑑𝑠𝑐𝑡𝑟𝑙

𝑆𝑐𝑡𝑟𝑙

0

= Ψ𝑇𝑎𝑦𝑙𝑜𝑟(𝑠) (3.12a) 

Ψ𝑖
𝑇𝑎𝑦𝑙𝑜𝑟

=  0.5 (𝑄𝜂 𝑖
𝑇𝑎𝑦𝑙𝑜𝑟

+𝑄𝜂 𝑖+1
𝑇𝑎𝑦𝑙𝑜𝑟) (𝑆𝑐𝑡𝑟𝑙

𝑖+1 − 𝑆𝑐𝑡𝑟𝑙
𝑖 ) + Ψ𝑖−1

𝑇𝑎𝑦𝑙𝑜𝑟
 , 𝑖 = 1:𝑀 (3.12b) 

The integral of  𝑄𝜂
𝑇𝑎𝑦𝑙𝑜𝑟

 in Equation 3.12a may be evaluated using the trapezoid rule depicted in Equation 

3.12b. The stream function needed to be generated by the Taylor series Ψ𝑖
𝑇𝑎𝑦𝑙𝑜𝑟

 is now known; The 

problem now simplifies to finding the coefficients 𝑎𝑛 which generate this specified stream function along 

the cell boundary. After obtaining the Taylor stream function, the Taylor series coefficient can be 

computed by solving an overspecified system of equations: 

Im(∑𝑎𝑛

𝑁

𝑛=0

(𝑍𝑐𝑡𝑟𝑙
𝑖 )𝑛) = Ψ𝑖

𝑇𝑎𝑦𝑙𝑜𝑟 , for each 𝑖 = 1:𝑀 (3.13) 



40 
 

After determining the Taylor stream function, the next necessary parameter for calculating the Taylor 

series coefficients by using Equation 3.13 is the unit stream function (Ψ𝑢𝑛𝑖𝑡) in the left hand side of 

Equation 3.13, that is determined at each control point along the boundary defined as the stream function 

generated if the coefficient 𝑎𝑗 = 1 and all other 𝑎𝑖 = 0. Using the local control point coordinates 𝑍𝑐𝑡𝑟𝑙, 

the Ψ𝑢𝑛𝑖𝑡  matrix with the size of 𝑀 by 2𝑁 can be calculated. The first step is to use the formula similar to 

the complex flow field function depicted as the first part of Equation 3.9 to find the imaginary part of the 

Taylor series. 

Ψ𝑖,𝑗
𝑢𝑛𝑖𝑡 =  Im (1(𝑍𝑐𝑡𝑟𝑙

𝑖 )
𝑗
)  , for 𝑗 = 0 to 𝑁, 𝑖 = 1 to 𝑀 (3.14a) 

Ψ𝑖,𝑗+𝑁
𝑢𝑛𝑖𝑡 = Im(i(𝑍𝑐𝑡𝑟𝑙

𝑖 )
𝑗
)  , for 𝑗 = 0 to 𝑁, 𝑖 = 1 to 𝑀 (3.14b) 

Note that the “i” next to 𝑍𝑐𝑡𝑟𝑙
𝑖  in Equation 3.14b is an imaginary value. By obtaining the unit stream 

function, The system of equations in Equation 3.13 can be reassembled into a matrix form such as 𝐴⃑ ∙ 𝑥⃑ =

𝑏⃑⃑. The matrix assembly of Equation 3.13 is as follows:  

[
 
 
 
 
Ψ1,1
𝑢𝑛𝑖𝑡 Ψ1,2

𝑢𝑛𝑖𝑡 … Ψ1,𝑁
𝑢𝑛𝑖𝑡 Ψ1,𝑁+1

𝑢𝑛𝑖𝑡 … Ψ1,2𝑁
𝑢𝑛𝑖𝑡

Ψ2,1
𝑢𝑛𝑖𝑡 Ψ2,2

𝑢𝑛𝑖𝑡 … Ψ2,𝑁
𝑢𝑛𝑖𝑡 Ψ2,𝑁+1

𝑢𝑛𝑖𝑡 … Ψ2,2𝑁
𝑢𝑛𝑖𝑡

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
Ψ𝑀,1
𝑢𝑛𝑖𝑡 Ψ𝑀,2

𝑢𝑛𝑖𝑡 … Ψ𝑀,𝑁
𝑢𝑛𝑖𝑡 Ψ𝑀,𝑁+1

𝑢𝑛𝑖𝑡 … Ψ𝑀,2𝑁
𝑢𝑛𝑖𝑡

]
 
 
 
 

 

[
 
 
 
 
 
 
 
Re(𝑎1)
Re(𝑎2)
⋮

Re(𝑎𝑁)

Im(𝑎1)
Im(𝑎2)
⋮

Im(𝑎𝑁)]
 
 
 
 
 
 
 

=  

[
 
 
 
 Ψ1

𝑇𝑎𝑦𝑙𝑜𝑟

Ψ2
𝑇𝑎𝑦𝑙𝑜𝑟

⋮

Ψ𝑀
𝑇𝑎𝑦𝑙𝑜𝑟

]
 
 
 
 

 (3.15) 

By following Equation 3.13, the Taylor series coefficient vector can be determined as shown in Equation 

3.15. The first half of the unknown coefficient vector consists of the real part of the coefficients, and the 

second half consists of the imaginary part. The unit stream function matrix for equation 3.15 is obtainable 

using Equations 3.14a and 3.14b. The system of equations is solved using a least squares algorithm (e.g. 

mod-PATH3DU uses Eigen Library for C++ to solve this). Essentially, it uses inverse matrix calculation 

such as [𝑎𝑛] = [Ψ
𝑢𝑛𝑖𝑡]

−1
[Ψ𝑇𝑎𝑦𝑙𝑜𝑟]. After obtaining the coefficient vector, this parameter can now be 

transformed into complex Taylor coefficient vector by matching the real and imaginary part together such 
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that 𝑎𝑖 = 𝑅𝑒(𝑎𝑖)  + 𝑖 Im(𝑎𝑖) is a complex parameter. This complex Taylor series coefficient 𝑎𝑛 can now 

be inserted into Equation 3.9 to compute the potential and stream function of the cell, hence creating the 

flow pattern inside the cell. Note that 𝑍𝑤 is the well local coordinate; when the location of the well is 

assumed to be at the center of the cell, this parameter is zero. Furthermore, if there is no vertical or well 

term within the cell the vertical and well functions will also return zero as 𝑄𝑣𝑒𝑟𝑡  and 𝑄𝑤𝑒𝑙𝑙 are both zeros.  

 Figure 3.5 represents a local flow problem that is solved semi-analytically using a complex 

Taylor Series and shows the capability of the Waterloo method to define the stream and potential function 

within a cell by reconstructing local flow field such that the flows in through the sides of the cell are 

uniformly distributed. The calculation of complex discharge potential is essential in determining the 

errors of the cell. 

 

 

 

 

 

 

 

 

Figure 3.5 only includes the flow in through the sides of the cell with no vertical flux and well flow rates 

term. The vertical flux and well function only return real value as shown in Equation 3.9. Therefore, if 

there is a vertical flux and well terms within a cell, the stream lines for the flow pattern are undefined. 

 

3.3.2 Complex Flow Velocities 

The horizontal complex flow velocities are essential for creating particle pathlines using the Waterloo 

method. By differentiating the complex discharge potential with respect to the complex coordinate 𝑧, the 
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Figure 3.5: The Local Flow Problem, Containing Flows through Each Side, and Potential and Stream Lines within 

the Cell. 
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velocity at any point may be calculated; essentially differentiating Equation 3.9 with the complex 

coordinate to obtain a similar result as Equation 2.10 in previous chapter:  

 

𝑄𝑥 − 𝑖𝑄𝑦 = −
𝜕𝛺

𝜕𝑧
= −

1

𝑅
∑ 𝑛𝑎𝑛

𝑁

𝑛=0

𝑍𝑛−1  + 𝑞𝑣𝑒𝑟𝑡𝑅𝑒(𝑅𝑍)  −  
𝑄𝑤
2𝜋

 
1

𝑅(𝑍 − 𝑍𝑤𝑒𝑙𝑙)
 (3.16) 

Here, 𝑄𝑥 and 𝑄𝑦 [L2/T] are the integrated discharge components, related to velocities 𝑣𝑥  and 𝑣𝑦 [L/T]. By 

dividing the fluxes by the saturated thickness and the porosity of the cell, the horizontal velocities at any 

point within the cell are obtainable: 

𝑣𝑥 =
Re (−

𝜕𝛺
𝜕𝑧
)

𝑏(𝑡𝑀𝑂𝐷)𝜃
=

𝑄𝑥
𝑏(𝑡𝑀𝑂𝐷)𝜃

 (3.17a) 

𝑣𝑦 =
Im(

𝜕𝛺
𝜕𝑧
)

𝑏(𝑡𝑀𝑂𝐷)𝜃
=

𝑄𝑦

𝑏(𝑡𝑀𝑂𝐷)𝜃
 (3.17b) 

Where 𝜃 is the cell porosity; and 𝑡𝑀𝑂𝐷  is the MODFLOW time step. The saturated thickness in Equations 

above represents the saturated thickness of the cell at the start of each MODFLOW time step (it is also 

referred to as 𝑏𝑛); the value is constant for steady state flow. After calculating the coefficients for the cell, 

vertical recharge, and well, the horizontal velocity distributions any point within the cell over a specific 

MODFLOW time step can be obtained by solving Equations 3.17a and 3.17b. Note that because of the 

Dupuit-Forchheimer assumption, the lateral velocities are presumed to be uniform in the vertical 

direction. This is consistent with Pollock’s method. The particle pathlines distribution in an unstructured 

cell is apparent in Figure 3.6.  

 

 

 

 

 

 

Complex Flux 
Field Function  

Vertical Flux 
Function 

Well Flux 
Function 

(b) (a) (c) 

Figure 3.6: Particle pathlines and head/stream function distributions generated for a cell with no vertical flux term 

(a), a cell with vertical flux evenly distributed out to the cell perimeter (b), and a cell with a well (c). 
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Figure 3.6(a) shows particle pathlines with potential and stream lines within the cell generated with no 

vertical and well fluxes, and hence the streamlines are defined in the image. Figure 3.6(b) shows the 

particle movement within a cell with only vertical flux that is evenly distributed out to the cell perimeter; 

the particle is originated at the center of the cell and exited the cell through one of its side. Figure 3.6(c) 

depicts a cell with a pumping well in a steady state flow case. The particle starting point is at one of the 

corners of the cell and ended up getting captured by the well. A particle horizontal velocity can be 

computed by solving Equations 3.16, 3.17a, and 3.17b, using the parameters obtained earlier in previous 

sections. The pathline integration may be performed using either Euler or High-Order Runge-Kutta 

schemes that are dependent on the chosen time step or space step. Details regarding these schemes are 

discussed later. In the algorithm, the horizontal velocities are calculated using Taylor series coefficients 

and other parameters which will change if the particle enters another cell (or at the beginning of a new 

MODFLOW time step for a transient flow case). As mentioned earlier, the calculations regarding 

horizontal velocities within a cell are independent of the calculations regarding the vertical velocities. 

Therefore, even with transient or steady state flow case, the cumulative coefficients of the cell and other 

parameters are not affected by the parameters to calculate vertical velocities; this is due to invoking of the 

Dupuit-Forchheimer approximation. 

 

3.4 Vertical Velocity 

The method to generate the vertical velocity is different from the method for the horizontal velocities of 

the cell, and is based upon mass balance considerations. The 𝜇 parameter in the algorithm consists of 

vertical flows from the top and bottom of the cell, and changes in cell storage (i.e., 𝑄𝑣𝑒𝑟𝑡 = (𝑄𝑡𝑜𝑝 −

𝑄𝑏𝑜𝑡) − 𝑆 
𝜕ℎ

𝜕𝑡𝑀𝑂𝐷
). The vertical velocity, 𝑣𝑧 , is generated from mass balance considerations in a manner 

similar to that of Strack (1985). The position of the particle over time is determined via a mass balance on 

the water below the particle elevation, relying upon the idea that water added from above the particle 

location will be stacked on top of the particle and will not impact the particle position, but water added or 
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removed from below the particle will raise or lower the particle. Figure 3.8 depicts the mass balance 

schematic regarding the vertical case. 

 

 

 

 

 

 

 

 

 

 

A mass balance on the water below the particle leads to the equation for vertical velocity for the Waterloo 

method is expressed as follows:  

 

𝑣𝑧(𝑧𝑝, 𝑡) =
𝑄𝑏𝑜𝑡
𝜃𝐴

+ 
 𝑧𝑝 − 𝑧𝑏

𝜃𝐴 (𝑏𝑛 + (𝑡 − 𝑡𝑛)
Δ𝑏
Δ𝑡
)
  ∑ 𝑄𝑖

𝑛𝑓𝑎𝑐𝑒𝑠

𝑖=1

 
(3.18) 

Where 𝑧𝑝 is the particle elevation, 𝐴 is the area of the cell footprint, 𝑄𝑖  is the volumetric flow through the 

ith of 𝑛𝑓𝑎𝑐𝑒𝑠, 𝑏
𝑛 is the saturated thickness at the start of the Modflow time step, which begins at time 𝑡𝑛  , 

and Δ𝑏 is the change in saturated thickness over the time step. The calculation of 𝑣𝑧(𝑧𝑝, 𝑡) is independent 

of the calculation to obtain the horizontal velocities in x and y direction. The approach is valid for any cell 

geometry and may be used for both steady state and transient simulations, provided a steady flow regime 

is assumed over each model time step. Pollock method also uses linear interpolation in the vertical 

direction, but the way this algorithm handles the steady state and transient cases in terms of the particle 

vertical direction is different than the Pollock method, as shown in equation 3.18. As shown in Figure 3.7, 
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Figure 3.7: Mass Balance Schematic Regarding Vertical Case. Unlike the Horizontal Flows, the Vertical Flows is 

Marked Positive on Upward Direction. 
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the vertical flux part of Equation 3.18 only includes the bottom vertical flux 𝑄𝑏𝑜𝑡  because flows in 

through the top of the cell will always be on above the particle location, whereas the flows from the 

bottom of the cell will always be below the particle location, and thus satisfying the preliminary 

assumption regarding the vertical velocity calculation. 

 

3.4.1 Steady State 

The requirement to solve the steady state flow problem is that the saturated thickness of the cell is 

unchanged over the whole time step. When the change in saturated thickness is zero, Equation 3.18 can be 

simplified into the following: 

𝑣𝑧(𝑧𝑝, 𝑡) =
𝑄𝑏𝑜𝑡
𝜃𝐴

+ 
 𝑧𝑝 − 𝑧𝑏

𝜃𝐴(𝑏𝑛)
  ∑ 𝑄𝑖

𝑛𝑓𝑎𝑐𝑒𝑠

𝑖=1

 (3.19) 

After calculating the vertical velocity of the particle, it is then moved to the next location until the particle 

pathlines distribution is created within the cell. The estimation of pathlines of the particle is discussed in 

the next section. Figure 3.8 represents an example of a pathline within a cell with steady state flow case.  
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Figure 3.8: Example of Steady State Flow Case, Where the Particle Exits the Cell through One of the Sides 
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The example problem in Figure 3.8 has zero horizontal net flow and zero change in storage. The image on 

the left shows the particle tracking in the plan view and the image on the right shows the tracking in the 

cross-section view. The particle exits the cell through one of the sides. The units for the flows in through 

the sides, top, and bottom of the cell are [L3/T]. The horizontal net flow term that is used for calculating 

the vertical flow is the horizontal cell flow rates parameter (i.e. 𝑄𝑖). The particle tracking algorithm for 

the vertical velocities in steady state may be treated similarly with the Pollock method because each cell 

must be treated, assuming that the bottom boundary of the cell is not connected to multiple cells.  

 

3.4.2 Transient Flow 

Transient flow occurs in a groundwater flow system when there is a change in water storage with time 

due to water accumulation or removal. In MODPATH, the transient flow is treated as a series of steady-

state flow periods. However, the water table presents a problem in a transient flow system as it behaves as 

a moving boundary. MODPATH deals with this problem by assuming that the water table moves in 

discrete jumps from one time step to the next. Similar to the steady state flow problem, the key 

assumption for the transient case is that only the flows below the particle location will impact the particle 

position. Four example cases for a falling water table are shown in Figure 3.9:  
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Figure 3.9: The Four Transient Cases, from the Left Side: Case (a) Falling Head with No Recharge and No Vertical 

Leakage, (b) Falling Head with Recharge and No Vertical Leakage, (c) Falling Head with No Recharge and Vertical 

Leakage, and (d) Falling Head with Recharge and Vertical Leakage; Streamlines are Approximated and for Rough 
Visualization Only 
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While dealing with these cases, the assumption made regarding steady state where Δ𝑏 = 0 is no longer 

valid. Figure 3.9 shows the four cases for the vertical flux where the storage of the cell changes over time. 

Case (b) assumes that there is no vertical leakage (𝑄𝑏𝑜𝑡 =0) but there is a vertical recharge from the top of 

the cell. Depending on the value of vertical recharge and horizontal leakage of the cell, the water table can 

decrease, increase, or stay the same. However, as stated in the previous assumption, an increase in water 

table will not affect the particle movement in the absence of other flows. Therefore, the vertical 

movement of the particle will only be directly affected when the water table is decreased. Case (c) is 

similar to Case (a) but with a vertical leakage within the cell. This vertical leakage will directly affect the 

change in storage and thus the vertical movement of the particle in the cell. Case (d) is similar to Case (c) 

but with an additional vertical recharge within the cell. The vertical recharge will affect the change in 

storage within the cell, but it will not directly impact the vertical movement of the particle. Figure 3.10 

shows an example of particle pathlines in a transient flow case.  

 

 

 

 

 

 

 

 

 

The example within the figure contains 𝑄𝑣𝑒𝑟𝑡 = −50
𝐿3

𝑇
. The pathlines of the particle within the cell show 

that the particle exits the cell through the bottom face. The top blue part of the right image of Figure 3.10 

shows the initial water table at the beginning of the time step. The bottom blue part is the water table 

elevation when the particle exits the cell. The end water table elevation does not represent the elevation at 

the end of a MODFLOW time step, just the elevation when the particle exits the cell. Here, upward 
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Figure 3.10: Example of Transient Flow Case, Where the Particle Exits the Cell through the Bottom 
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vertical flow direction is considered positive while downward flow direction is negative, but net 

horizontal flow direction into the cell is positive while flow going out of the cell is considered negative. 

Over each time step, the average vertical flux is constant but the water table elevation varies linearly in 

time. The cross sectional area of the cell and the average porosity are assumed to be constant throughout 

any time step. Another important assumption is that the increase in water table within the cell due to the 

water source from above the particle will not directly affect the movement of the particle.  

 

3.5 Pathline Integration 

After obtaining the horizontal and vertical velocities for the cell, there are different schemes available to 

create the particle pathlines in each cell. By using pathline integration, the particle’s path as it moves 

through the flow model may be determined. In mod-PATH3DU input files, the user has the option of 

choosing one of two types of pathlines distribution to track a particle within an unstructured cell: Euler or 

fourth-order Runge-Kutta schemes (Zheng, 1989; Zheng, 1992). The basic idea of forward and backward 

Euler scheme is that given the initial position of a particle and time step or space step, the next position of 

the particle may be determined. Using the Euler method, the particle pathlines may be generated with 

either time or space step. Each particle pathline obtained with the Euler scheme is determined by using 

either fixed space step or fixed time step. Figure 3.11 represents the particle pathlines in a cell that vary 

spatially and temporally. 

 

 

 

 

 

 

 

242 244 246 248 250 252 254 256 258

50

51

52

53

54

55

potential & stream function

 

 

potential

stream function

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30

40
boundary values

242 244 246 248 250 252 254 256 258

50

51

52

53

54

55

potential & stream function

 

 

potential

stream function

0 2 4 6 8 10 12 14 16 18 20
-30

-20

-10

0

10

20

30

40
boundary values

Figure 3.11: Particle Pathlines Integration with Euler Scheme for Fixed Time Step (Left) and Fixed Space Step 

(Right) 
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The left image of Figure 3.11 depicts the particle pathlines integration using fixed time step option and 

the right image uses fixed space step option. As it is shown in the right image, the distance between one 

particle position and the next is similar. Depending on the chosen time step or space step, the time and the 

location where the particle exits the cell may vary significantly. The advantage of using the fixed space 

step over the fixed time step option is that the particle pathlines do not get affected by the velocity 

variation in the conceptual model and are therefore more accurate even for large head gradients. 

However, it may require more computation if the fixed space step value is too small. The Euler method 

for calculating the next position of a particle using fixed time step and space step is as follows: 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 + 𝑣𝑥
𝑛 Δt,   𝑦𝑝

𝑛+1 = 𝑦𝑝
𝑛 + 𝑣𝑦

𝑛 Δt (3.20a) 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 +
𝑣𝑥
𝑛  

|𝑣𝑛|
Δx, 𝑦𝑝

𝑛+1 = 𝑦𝑝
𝑛 +

𝑣𝑦
𝑛 

|𝑣𝑛|
Δy (3.20b) 

Where 𝑥𝑝
𝑛+1 is the next particle position in x-coordinate; 𝑥𝑝

𝑛  is the current particle position in x-

coordinate; 𝑣𝑥
𝑛  is the current particle velocity in the x-direction; |𝑣𝑛| is the absolute value of the current 

complex horizontal velocity of the particle such that |𝑣𝑛| = √𝑣𝑥2 + 𝑣𝑦2; Δt is the fixed time step; and Δx 

is the fixed space step. Using the Euler scheme, the next particle position can be computed using either 

Equations 3.20a or 3.20b.The first-order Euler tracking scheme is simple and easy to simulate, but the end 

result of the pathlines may not be accurate if the time step or space step chosen during a simulation is too 

high. Therefore, using a higher order scheme for tracking particles may be more desirable. 

  To increase the accuracy of the calculations regarding the particle tracking relative to Euler 

scheme, the fourth-order Runge-Kutta scheme may also be implemented. The basic principle of this 

scheme is to move the particle from its initial position over a time interval by combining the results from 

several trial steps. The equations and full steps of fourth-order Runge-Kutta scheme are available in mod-

PATH3DU User’s Guidelines. The information gathered from those steps may then be used to for a 

fourth-order Taylor series expansion. Using this scheme, the algorithm can automatically find a more 
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optimal particle pathlines within the conceptual model. The accuracy of the Runge-Kutta scheme depends 

on the tracking time step size. As with Euler scheme, if the time step is too large, the particle pathline 

may be inaccurate by diverting from the actual flow path. Similarly, if the time step is too small, the 

simulation may require a significant computational effort to move the particle over a given distance 

within the conceptual model. By comparing the results between the full time step trial and the half time 

step trial, the adaptive step size control can be implemented within the algorithm; i.e., tracking time step 

is taken twice, once as a full step and once as two half steps. Using this adaptive time step procedure, the 

time step for each iteration in the simulation may vary. This way, the particle pathlines may be generated 

with high accuracy and as little computational time as possible. The equation for the fourth order Runge-

Kutta scheme that the Waterloo method uses for calculating the next position of a particle is as follows: 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 +
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

6
 (3.21a) 

𝑦𝑝
𝑛+1 = 𝑦𝑝

𝑛 +
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

6
 (3.21b) 

𝑧𝑝
𝑛+1 = 𝑧𝑝

𝑛 +
(𝑚1 + 2𝑚2 + 2𝑚3 +𝑚4)

6
 (3.21c) 

where 

 

𝑘1 =  ∆𝑡 𝑣𝑥(𝑥𝑝
𝑛, 𝑦𝑝

𝑛, 𝑧𝑝
𝑛) 

𝑘2 =  ∆𝑡 𝑣𝑥 (𝑥𝑝
𝑛 +

𝑘1
2
, 𝑦𝑝
𝑛 +

𝑙1
2
, 𝑧𝑝
𝑛 +

𝑚1

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑘3 =  ∆𝑡 𝑣𝑥 (𝑥𝑝
𝑛 +

𝑘2
2
, 𝑦𝑝
𝑛 +

𝑙2
2
, 𝑧𝑝
𝑛 +

𝑚2

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑘4 =  ∆𝑡 𝑣𝑥(𝑥𝑝
𝑛 + 𝑘3 , 𝑦𝑝

𝑛 + 𝑙3, 𝑧𝑝
𝑛 +𝑚3, 𝑡𝑝 + ∆𝑡) 

 

(3.22) 

𝑙1 =  ∆𝑡 𝑣𝑦(𝑥𝑝
𝑛 , 𝑦𝑝

𝑛, 𝑧𝑝
𝑛) 

𝑙2 =  ∆𝑡 𝑣𝑦 (𝑥𝑝
𝑛 +

𝑘1
2
, 𝑦𝑝
𝑛 +

𝑙1
2
, 𝑧𝑝
𝑛 +

𝑚1

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑙3 =  ∆𝑡 𝑣𝑦 (𝑥𝑝
𝑛 +

𝑘2
2
, 𝑦𝑝
𝑛 +

𝑙2
2
, 𝑧𝑝
𝑛 +

𝑚2

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑙4 =  ∆𝑡 𝑣𝑦(𝑥𝑝
𝑛 + 𝑘3 , 𝑦𝑝

𝑛 + 𝑙3, 𝑧𝑝
𝑛 +𝑚3, 𝑡𝑝 + ∆𝑡) 

(3.23) 
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𝑚1 =  ∆𝑡 𝑣𝑧(𝑥𝑝
𝑛 , 𝑦𝑝

𝑛, 𝑧𝑝
𝑛) 

𝑚2 =  ∆𝑡 𝑣𝑧 (𝑥𝑝
𝑛 +

𝑘1
2
, 𝑦𝑝
𝑛 +

𝑙1
2
, 𝑧𝑝
𝑛 +

𝑚1

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑚3 =  ∆𝑡 𝑣𝑧 (𝑥𝑝
𝑛 +

𝑘2
2
, 𝑦𝑝
𝑛 +

𝑙2
2
, 𝑧𝑝
𝑛 +

𝑚2

2
, 𝑡𝑝 +

∆𝑡

2
 ) 

𝑚4 =  ∆𝑡 𝑣𝑧(𝑥𝑝
𝑛 + 𝑘3, 𝑦𝑝

𝑛 + 𝑙3, 𝑧𝑝
𝑛 +𝑚3, 𝑡𝑝 + ∆𝑡) 

(3.24) 

 

Equations 3.21a, b, and c, 3.22, 3.23, and 3.24 above are taken directly from mod-PATH3DU User’s 

Guide (Muffels et al., 2014). 𝑡𝑝 in the equations above is the tracking time of the particle, and ∆𝑡 is the 

tracking time interval. By combining the information associated with the several trial steps in the fourth 

order Runge-Kutta scheme, the particle may be advanced from its initial position to the next. In 

comparison to the Euler scheme and Pollock’s method linear interpolation, the fourth order Runge-Kutta 

scheme may generally be more computationally intensive. However, the Runge-Kutta method is 

applicable to many cases, including any velocity interpolation scheme. 

  The advantages of using Euler scheme is that the user has more freedom in choosing fixed time or 

space step between the particle locations. However, it requires more knowledge about the groundwater 

model and the cell-by-cell flows. Using the fourth-order Runge-Kutta scheme with the adaptive time step 

size control procedure, the particle pathlines may be accurately generated, while still maintaining a 

reasonable computational time for the particle tracking simulation. In comparison with the Pollock semi-

analytical method (Pollock 1994), the Runge-Kutta scheme may require intensive computational time 

with the possibility of numerical truncation errors. However, the Runge-Kutta method is generally more 

applicable to any velocity interpolation scheme. Using the Waterloo method in mod-PATH3DU software, 

the users may choose between the Euler and fourth-order Runge-Kutta schemes during their simulation by 

modifying the input file. The integration of pathlines is one of the sources of errors within the algorithm. 

Selecting the time step (or space step) for the pathlines distribution may determine where and when the 

particle may end up in the conceptual model.  
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3.6 Sources of Errors 

As mentioned earlier in this chapter, there are several sources of velocity field reconstruction errors in 

Waterloo method: (1) the primary errors are truncation errors, where there are not enough terms in the 

Taylor series to represent the flow field; and (2) fitting errors, where discontinuities in the boundary 

conditions of the cell cannot be fitted properly; these errors are both boundary errors. In addition, tracking 

errors may be caused by insufficient temporal discretization used in pathline integration. These boundary 

and tracking errors are controlled by the total number of control points (M), the order of approximation 

(N), and the fixed time or space step chosen for the pathline integration. The errors obtained from the 

fixed time or space step parameter only affect the pathline integration of the particle tracking. However, 

the number of control points and the order of approximation chosen for each cell determine the ability to 

generate the complex velocity field within the cell.  

  The accuracy of the particle tracking depends on the tracking step size; too large of step size 

parameter may divert the actual flow path of the particle. A large fixed time or space step may affect the 

total time required for particle to exit the cell, and the location of the particle exit point. However, small 

time step may increase computational time of the simulation. Therefore, the algorithm implements the 

adaptive step size control procedure (Zheng, 1989; Zheng, 1992; Zheng, 1994; Zheng and Bennett, 2002). 

Using the adaptive time step, the tracking errors due to fixed time or space step may be decreased 

significantly.  

  The error in boundary condition includes a combination of truncation error and Gibbs 

phenomenon. The net impact of fitting and truncation error within the cell may be calculated using the 

following equation: 

∈ =
1

𝑀
 ∑

|𝑄𝑠𝑝𝑒𝑐
𝑖 −𝑄𝜂

𝑖 |

max |𝑄𝑠𝑝𝑒𝑐|

𝑀

𝑖=0

 (3.25) 

Where ∈ is the normalized absolute average error within the cell, evaluated at points in between control 

point location; M is the total number of control points along the cell perimeter; 𝑄𝑠𝑝𝑒𝑐  is the specified 
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normal integrated discharge obtained from the total corrected inflows at every side of the cell per length 

of each side of the cell; and 𝑄𝜂
𝑖  is the normalized integrated discharge at each evaluation point 𝑖. Equation 

3.25 is a measure of the fitting error obtained by comparing the calculated normalized flux and the 

specified normalized flux from the total corrected inflows. Figure 3.12 shows examples of the particle 

tracking simulation with different values of order of approximation and total number of control points. As 

mentioned earlier in the previous section, the basic rule regarding the values of order of approximation 

and total number of control points is that 𝑀 ≥ 2𝑁. If the total control points is less than 2N, the flow 

pattern inside the cell will not be created and the pathline integration will be absent from the cell. For 

simplicity purposes, the total control points are set at least two times the order of approximation for each 

example. Thus, the only variable that is directly changed for these examples is the order of approximation 

of the cell.  

 

 

 

 

 

 

 

 

 

 

 

 

The simulations in Figure 3.12 use a fixed time step of Δ𝑡 = 0.001. There is no vertical or well flux 

within the cell for simplicity purposes. As shown in Figure 3.12, changing the order of approximation 

Figure 3.12: Examples of the particle tracking within a cell with different values for the total number of control 
points and order of approximation of the cell. 
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affects both the error and the complex flow fields within the cell, and hence the total time and exit 

location of the particle tracking. It is desirable to determine an optimum value for both the total number of 

control points and the order of approximation for the cell in order to ensure the smallest value for the 

average velocity errors within the cell as well as reasonable computational time for the simulation. Figure 

3.13 depicts the boundary values of each example shown in Figure 3.12 arranged downward from 

simulation (a) to (d).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When determining on how to reduce errors, the goal is to match the normal fluxes obtained from the 

coefficients in the algorithm that is represented as the dotted blue lines with the specified normal flux 

from the input files that is represented as the solid blue lines in Figure 3.13. By choosing a large value 

Figure 3.13: The Specified and Normal Fluxes at Cell Boundaries for the Simulations in Figures 3.12 
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for the total number of control points and order of approximation within the cell, the error may be 

decreased. However, choosing large values for these parameters means increasing the computational cost 

of the particle tracking simulation. 

The other type of error, as part of boundary error, that is encountered in the algorithm is the one 

called Gibbs phenomenon, where the values of a partial sum expansion of a function appear to be 

persistently overshot or undershot near a jump discontinuity, compared to the values in the original 

function (Raeen, 2008). The fitting or boundary error of a cell can be reduced by choosing an optimum 

M and N of the cell; no matter how large these values are the fitting error may not be completely 

eliminated from any simulation. Using an adaptive time step or even a very small fixed or space step 

does not eliminate the tracking error for the cell. Figure 3.14 shows an example of Gibbs phenomenon 

induced symptoms in the particle tracking algorithm of the Waterloo method: 

 

 

 

 

 

 

 

 

The Gibbs phenomenon in Figure 3.14 is shown near the top, bottom, and left side of the cell, where the 

flows in through those sides are zero. The phenomenon is part of truncation error of particle tracking for 

this algorithm and it may affect the total time travel and particle end point location if the travel path of the 

particle is within the zone of the phenomenon. The solution to this issue is not within the scope of this 

thesis and may be addressed in the future. 

 

Figure 3.14: Example of Gibbs phenomenon during particle tracking using Waterloo method 
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3.7 Summary of Methodology 

To summarize this chapter, a flow chart is provided to better understand the steps for determining the 

particle pathlines using the Waterloo method. The flow chart is provided in Figure 3.15. The first thing 

that the user needs to do is populate all of the necessary parameters in order to start the preprocessing 

procedure for the algorithm. The parameters are available from MODFLOW input files and the grid 

specification file from the third party mesh-generating software (.DISU, .GSF, and .CBB files). The 

order of approximation and the total number of control points need to be specified. These two internal 

parameters determine the spatial and temporal accuracy of the particle tracking, as well as the 

computational time for the whole simulation. These two parameters are included in the primary 

parameters of the cell as shown in Table 3.1. The secondary parameters (Table 3.2), the cell and flow 

control parameters (Tables 3.3 and 3.6), and the unit stream function are needed in order to determine 

the Taylor series coefficients for the cell. These coefficients are essential in determining the flow pattern 

inside the cell (Figure 3.5), as well as the horizontal complex velocities for the cell. Calculating the flow 

pattern inside the cell for stream and potential lines using Equation 3.9 is not necessary in order to 

determine the velocity of the particle. The calculation of vertical velocity of the particle is independent 

of the calculation of horizontal velocities. After obtaining the velocities of the particle, it may then be 

moved to the next location within the cell. By repeating the step mentioned above, the algorithm can 

either use Euler or fourth-order Runge-Kutta scheme to create the particle pathlines for the conceptual 

model. The adaptive time step for the fourth-order Runge-Kutta scheme is recommended because it can 

significantly reduce the tracking error of the particle. The particle(s) movements are written into the 

output file of mod-PATH3DU, as well as the total time travel of each particle through the conceptual 

model. 
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Figure 3.15: The Flow Chart of Waterloo Method's Methodology 
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Chapter 4 

Results and Discussions 

In this chapter, various test cases are used to thoroughly illustrate and assess the effectiveness of the 

method described in Chapter 3. Impact of cell geometry, truncation error, overspecification ratio, and 

tracking time step are assessed. The Waterloo method is contrasted and compared to other available 

methods.  

 

4.1 Comparison to Pollock Method 

As mentioned earlier in this thesis, the Pollock method (Pollock, 1988) is a semi-analytical particle 

tracking method that has been widely used. The key characteristic of this method is that given the initial 

position of a particle anywhere within the cell, the next position of the particle and the time travel 

between them can be computed directly without numerical integration. Furthermore, the Pollock method 

determines the particle pathlines within a cell by using linear interpolation of the velocities sourced from 

the cell-by-cell flows that are generated from MODFLOW. However, the Pollock method is still limited 

to track particles within rectilinear grids, even with the new extension (Pollock, 2015) for handling nested 

grids and quad-based grids. Here the Waterloo method is benchmarked against the Pollock method using 

only rectilinear grid cells. Figure 4.1 represents example of a case that will be handled by the Waterloo 

method and the Pollock method with the same geometry, inflows in through the sides of the cell, and 

particle starting point; example 4.1. Figure 4.1 shows the geometry and cell inflows of the case example 

that will be run by the Waterloo method and the Pollock method. The 𝑑𝑥 value for this example is 𝑥2 −

𝑥1 = 1.5; the 𝑑𝑦 value is 𝑦2 − 𝑦1 = 1.0; and the porosity for this example 4.1 is 0.3. 
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The primary and flow parameters of example 4.1 are reported in Table 4.1.This is a simple example that 

is included in this chapter to benchmark the Waterloo method against the Pollock method.  These primary 

parameter values were chosen to create a simple two-dimensional rectilinear cell with fluxes from all of 

the cell’s sides. 

 

Table 4.7: Primary and Flow Parameters to Generate Example 4.1 

Parameter Symbols Example Values 

𝑛𝑓𝑎𝑐𝑒𝑠 4 

[𝑥𝑖 𝑦𝑖] [

−0.5 −0.5
−0.5 0.5
1 0.5
1 −0.5

] 

[𝑥𝑐 𝑦𝑐] [0.25 0] 

𝑁 30 

𝑀 80 

𝜃 0.3 

𝑄𝑖[L
3/T] [

13
−13
−2
2

]

𝑇

 

Figure 4.1: An Example of a Case with the Geometry and Cell Inflows of a Cell 
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The sign convention of the horizontal inflows for the Waterloo method is different from the Pollock 

method; positive for flows going into the cell, and negative for flows going out of the cell. The particle 

pathline for a starting point of (𝑥𝑝 𝑦𝑝) = (−0.25 −0.5) is shown in Figure 4.2 for both methods. 

  

 

 

 

 

 

 

 

Figure 4.2 shows the particle pathlines generated using the Waterloo method and the Pollock method. The 

Waterloo method uses a fixed integration time step of ∆𝑡 = 0.0001, and the Pollock method is plotted at 

intervals of the same ∆𝑡. As shown in Figure 4.2, the difference between the Waterloo and Pollock 

method particle pathline is not visually discernible. Since the pathlines for both methods are very close 

together, one seems to overlay the other. The red pathline is generated using the Waterloo method, and 

the blue pathline is generated using the Pollock method, using a fixed time step. The normalized absolute 

average error for this simulation is 0.0231. The particle end result for the example shown in Figure 4.1 is 

represented in Table 4.2. 

 

Table 4.8: The Particle Exit Point and the Time Travel for the Waterloo Method and the Pollock Method for 
Example 4.1 

Example 4.1 Pollock Waterloo % Difference 

Xp exit 1 1 0% 

Yp exit 0.3333 0.3312 0.63 % 

Travel Time 0.0704 0.0706 0.28 % 

Figure 4.2: The Particle Pathlines Generated using the Waterloo Method (Red Pathline) and the Pollock Method 
(Blue Pathline) in a Rectilinear Cell using Similar Parameters 
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As shown in Table 4.1, the particle exit position in terms of the x-axis is the same because both particles 

exit through the same face. In terms of y-axis, the difference between both methods is less than 1%. 

Similarly, the travel time of the simulation for the particle from the starting point to the exit point has less 

than 1% difference. The particle exit location and the time travel between them depend on the order of 

approximation, number of control points per side, and the algorithm fixed time step. The fixed space step 

option is not implemented for this or other examples in this section. By changing one or more of these 

primary parameters, the particle exit location and the travel time between them for the two methods may 

vary significantly. The parameters of example 4.1 are chosen solely to assess whether or not the method 

works; a very small fixed time step, and large N and M are used to minimize the boundary and tracking 

errors within the cell. 

 Another example to compare the end result between the two methods is shown in Figure 4.3. 

Example 4.2 shows two of the sides within the cell having no flow in through them.  

 

 

 

 

 

 

 

 

 

 

 

This type of example represents the hardest special case for rectilinear geometry because it has the highest 

boundary error due to Gibbs phenomenon; by being able to solve this case, the method is shown to solve 

the other cases with various other horizontal cell-by-cell inflows. Similar to example 4.1, example 4.2 
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Figure 4.3: An Example of a Special Case Handled by the Waterloo Method and the Pollock Method 
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only contains horizontal inflows; there is no vertical and well term within the cell. This is to keep the 

simplicity of the example and to show the horizontal velocity distribution created by the Waterloo 

method. The primary parameters for example 4.2 are slightly different than those of example 4.1 just to 

show some variations in the cell geometry. The primary and cell flow parameters for example 4.2 is 

shown in Table 4.3The examples shown thus far are to compare the horizontal particle pathlines between 

the two methods; i.e. the inflows in through the top and bottom of the cell are zero. 

 

Table 4.9: The Primary and Cell Flow Parameters of Example 4.2 

Parameter Symbols Example Values 

𝑛𝑓𝑎𝑐𝑒𝑠 4 

[𝑥𝑖 𝑦𝑖] [

−0.5 −1
−0.5 0.5
0.5 0.5
0.5 −1

] 

[𝑥𝑐 𝑦𝑐] [0 −0.25] 

𝑁 30 

𝑀 80 

𝜃 0.3 

𝑄𝑖 [

−3
0
0
3

]

𝑇

 

 

Similar to Example 4.1, both methods use a very small fixed time step of ∆𝑡 = 0.0001, with a large order 

of approximation and total control points of the cell to reduce any boundary and tracking error in the cell. 

The flow pattern inside the cell and the particle pathlines for both methods are represented in Figure 4.4. 
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The particle starting point for both methods is (𝑥𝑝 𝑦𝑝) = (0.48 −1). The normalized absolute average 

error for this simulation is 0.0278. This error is shown to measure the how accurate the flow field for the 

cell is. Similar to example 4.1, the difference between the two pathlines is very small that one seems to 

overlay the other. The particle end result for example 4.2 shown in Figure 4.4 is represented in Table 4.2: 

 

Table 4.10: The Particle Exit Point and the Time Travel for the Waterloo Method and the Pollock Method for 

Example 4.2 

Example 4.2 Pollock Waterloo % Difference 

Xp exit -0.5 -0.5 0% 

Yp exit 0.4700 0.4704 0.08 % 

Travel Time 0.5868 0.5884 0.27 % 

 

As mentioned earlier in this section, the end result for the Waterloo method highly depends on the 

parameters such as algorithm fixed time step, order of approximation, and number of control points. 

However, the users may manually determine the fixed time step between each particle location if they are 

using Euler scheme; the fourth-order Runge-Kutta scheme in the algorithm is applied using an adaptive 

Figure 4.4: The Flow Pattern and Particle Pathlines of Example in Figure 4.3 Generated using the Waterloo 

Method (Red Pathline) and the Pollock Method (Blue Pathline) 
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time step. Since the differences between the particle end results obtained using the Waterloo method and 

the Pollock method are very small on both examples 4.1 and 4.2, it is safe to say that the Waterloo 

method can handle the horizontal particle tracking in rectilinear cells within a comparable accuracy to the 

Pollock method. However, the Pollock method still has much lower computational cost compared to the 

Waterloo method. 

 The last example that is presented in this section for the comparison between the Waterloo 

method and the Pollock method is depicted in Figure 4.5. Example 4.3 shows the comparisons between 

the two methods after adding vertical flows. The 𝑑𝑥 value for this example is 𝑥2 − 𝑥1 = 1.0; the 𝑑𝑦 value 

is 𝑦2 − 𝑦1 = 1.0; 𝑑𝑧 value is 𝑧2 − 𝑧1 = 1.0; and the porosity for this example 4.3 is 0.3. The value for the 

porosity can be any value between, but not including, 0.0 and 1.0. Similar to previous examples in this 

section, the parameters are chosen to be simple and easily replicable. Because of the Dupuit-Forchheimer 

approximation that allows the calculation for horizontal velocities to be independent of the calculation for 

vertical velocity, the primary parameters for example 4.3 are reported in two-dimensions. The number of 

faces for this example is 4; the top and bottom faces of the cell are not necessary in order to determine the 

horizontal velocities of the cell.  
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Figure 4.5: Example of a Case with Vertical Velocity Distribution to be handled by the Waterloo Method and the 

Pollock Method 
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The last example shown in Figure 4.5 is for the comparison between the two methods when dealing with 

vertical velocity within the cell. The calculation regarding the vertical velocity at any point within a cell 

for the Waterloo method is presented in the methodology section, and is independent of the calculations 

for the horizontal velocity. The primary and flow parameters for example 4.3 is shown in Table 4.5. 

These parameters are slightly different than the previous examples in this section to show more cell and 

flow variations to be handled by the two methods. 

 

Table 4.11: The Primary and Flow Parameters of Example 4.3 

Parameter Symbols Example Values 

𝑛𝑓𝑎𝑐𝑒𝑠 4 

[𝑥𝑖 𝑦𝑖] [

−0.5 −0.5
−0.5 0.5
0.5 0.5
0.5 −0.5

] 

[𝑥𝑐 𝑦𝑐] [0 0] 

𝑁 20 

𝑀 80 

𝜃 0.3 

𝑄𝑖 [

5
−2
−3
4

]

𝑇

 

𝑧𝑡𝑜𝑝 1 

𝑧𝑏𝑜𝑡  0 

𝑄𝑡𝑜𝑝 -3 

𝑄𝑏𝑜𝑡  -7 

 

The case assumes steady-state flows such that the water table within the cell does not change over time.  

𝑧𝑡𝑜𝑝 and 𝑧𝑏𝑜𝑡  are the Cartesian coordinate of the top and bottom of the cell respectively. Note that the 
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number of faces is stated as 4; this is because this parameter does not include the top and bottom face, in 

order to determine the horizontal velocities of the cell. The flow pattern and the particle pathlines 

integration of example 4.3 is shown in Figure 4.6. 

 

 

 

 

 

 

 

 

In example 4.3, the starting point of the particles is (𝑥𝑝 𝑦𝑝 𝑧𝑝) = (−0.5 −0.35 1). Since there is a 

vertical term in the cell, the stream functions in the cell are undefined. Note that the sign convention of 

the inflows parameter stated here uses the Pollock method standard; positive flows toward the right along 

x-axis; toward the front along y-axis; and upward along the z-axis. The Waterloo method flows sign 

convention is positive for flows into the cell and negative for the flows going out of the cell. The vertical 

flows for the Waterloo method are positive upward and negative downward. Similar to the other examples 

in this section, example 4.3 contains pathlines generated from both methods to be nearly identical. The 

particle end location and time travel between them for both methods are shown in Table 4.3. 

 
Table 4.12: The Particle Exit Point and the Time Travel for the Waterloo Method and the Pollock Method for 

Example 4.3 

Example 4.3 Pollock Waterloo % Difference 

Xp exit 0.3634 0.3641 0.19% 

Yp exit 0.2889 0.2896 0.24% 
Zp exit 0 0 0% 

Travel Time 0.0635 0.0636 0.16% 

Figure 4.6: The Particle Pathlines Distribution in a Cell with Vertical Velocity Generated using the Waterloo Method 

(Red Pathline) and the Pollock Method (Blue Pathline) for Example 4.3; in Plan View (Left) and 3D (Right) 
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As shown in Table 4.3, the spatial and temporal differences between the two methods are still less than 

1% for cells with vertical velocity. The particles for both methods exit the cell from the same face: the 

bottom of the cell, hence Zp exit % difference is 0. Note that this test indicates that the mass balance 

formulation used to calculate vertical velocity under steady conditions, as shown in Equation 3.19, and 

the vertical influx term used in generating the horizontal velocities are both valid and correctly 

implemented. The comparison between the Waterloo method and the Pollock method within a cell with a 

pumping or injecting well in it is not presented in this thesis. This is due to Pollock method not being able 

to handle “weak sinks” within a cell, where some particles entering a particular cell may enter the sink or 

source and some other particles may bypass the sink, leaving through a cell face. Details regarding the 

ability of the Waterloo method to handle “strong sinks” and “weak sinks” are discussed later in this 

chapter.  

 

4.2 Applications to Moderately Complex Flow Fields 

As mentioned earlier in this thesis, the strength of the Waterloo method includes its ability to handle 

complex flow fields on an unstructured grid. The calculations regarding sub-grid velocity distributions 

and pathline integration can be implemented without the direct use of hydraulic conductivity information, 

assuming the cells are horizontally isotropic. In comparison with other particle tracking algorithms, the 

Waterloo method is better able to handle unstructured grids with complex flow fields. Here, multiple test 

cases for systems with moderate to significant heterogeneity are reported. The heterogeneity in hydraulic 

conductivity induces local velocity variations which are difficult or impossible to handle using the 

methods of Painter et al. (2012) or SSP&A (Muffles et al 2013). Flow problems with little heterogeneity 

tend to exhibit locally planar flow, which is readily handled by these interpolation-based tracking 

algorithms.  
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4.2.1  Zero Hydraulic Conductivity Zones 

When a particular cell has horizontal and vertical hydraulic conductivities that are much lower than the 

conductivities of the cells around it, or even zero hydraulic conductivity (zero-K), the particles tend to go 

around the low-K zones. Thus, the flow field around the zero-K zones tends to be more complex 

compared to other areas in the model that do not have zero-K zones. Figure 4.7 represents the first 

example of a conceptual model with zero-K zones spread throughout the model. The determination of the 

zones is completely randomized such that 30% of the cells have zero hydraulic conductivity and the rest 

of the cells have horizontal hydraulic conductivity of 0.1 m/d and vertical conductivity of 0.001 m/d. This 

test case also demonstrates the capacity of the method for multiple-cell tracking. The basic input files for 

Example 4.4 here are provided by Visual MODFLOW-Flex as part of its tutorial example (Schlumberger, 

2014). The only differences between example 4.4 and the tutorial example of the software are that this 

example does not contain any well or river. 

 

 

 

 

 

 

 

Figure 4.7 shows the conceptual model with unstructured grids that was generated using Visual 

MODFLOW-Flex with head contours generated using MODFLOW-USG. The left image of Figure 4.7 is 

Figure 4.7: An Example of a Conceptual Model with Zero-K zones Featuring Colored Head Distribution (Left) and 

Head Contours (Right) 
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the head distribution of the model shown in color, and the right image if this figure shows the head 

contours of the model. The example above is a simple steady-state example with constant head on both 

sides of the model and no flows on top and bottom of the model; particles released on the right side of the 

model exit through the left side of the model. All of the basic values to regenerate example 4.4 are 

provided in the tutorial (Schlumberger, 2014). As shown in the figure, even with zero-K cells the heads 

distribution and the head contours do not clearly indicate which cell contains zero hydraulic conductivity. 

This implies that particle tracking method that uses head distribution may not be able to accurately create 

pathline integration through this type of conceptual model, which turns out to be the case. The example in 

Figure 4.7 consists of a two-layered model. The hydraulic conductivity zones for both layers are the same. 

The model is horizontally isotropic such that 𝐾𝑥  and 𝐾𝑦 are the same for each cell throughout the entire 

model. Figure 4.8 depicts the particle pathlines generated using the Waterloo method for the system 

configuration in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Stagnated 

Figure 4.8: Particle Pathlines in Complex Flow Field for the Example in Figure 4.7 Generated using the Waterloo 

Method 
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The model has constant heads located on both sides of the model, where the flow goes from the right side 

to the left side, as shown in Figure 4.7 where the right side has constant head of 347 m and the left side 

has constant head of 325 m. There are a total of 3464 cells within the two-layered model with 1732 cells 

per layer. The domain of the model is depicted in Figure 4.7 as [x y] between [3000 and 16000] meters 

for both axes. In this particular case, there are 674 randomized zero-K cells with 337 zero-K cells per 

layer. The zones of zero hydraulic conductivity are randomized such that only 30% of the cells are zero-K 

cells. There are two layers in this model with 20 particles released from the right side of the model within 

the layer 1. However, the simulation is run using Euler scheme this time with fixed time step dt = 0.01 

day. As shown in Figure 4.8, the 6th and 14th particles from the top do not start inside the zero-K cells, but 

they enter those cells and therefore reported as stagnant by the algorithm. The rest of the particles travel 

around the zero-K zones and exit the model through the constant head cells on the left. The reason for this 

accidental stagnation is because the time step chosen for the simulation is slightly too high. Therefore, by 

using that particular time step, the algorithm moves the particle too far using the velocity of the particle at 

that point. By decreasing the time step or using the adaptive time step procedure, this type of situation 

may be avoided. After using the adaptive time stepping for the high-order Runge-Kutta scheme in the 

algorithm (not shown here), these particles do not enter the zero-K cells. The purpose of example 4.4 is to 

show how the Waterloo method is able to handle this type of situation, and to additionally illustrate that 

choosing the correct pathline integration scheme and its time step is extremely crucial for the accuracy of 

the particle tracking simulation.  

 Another example regarding the particle pathlines traveling in complex flow field through a 

conceptual model with randomized zones of zero hydraulic conductivity is shown in Figure 4.9. This 

example shows the comparisons between the Waterloo method and the SSP&A method. This example 4.5 

has similar basic parameters of example 4.4; the only differences are the hydraulic conductivity zones due 

to randomization. Each particle starting position is the same for both methods. Similar to example 4.4 in 

this section, the grid in example 4.5 is generated using Visual MODFLOW-Flex and the pathlines file is 
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created by mod-PATH3DU using the Waterloo method (Figure 4.9a) and the SSP&A method (Figure 

4.9b). 

 

 

 

 

 

 

 

 

 

 

 

 

There are 20 particles released at the right side of the model; 10 particles are released in the first layer and 

the other 10 particles are released in the second layer. There are only 16 particle pathlines that are 

generated in example 4.5 for both methods because the starting points of the four absent particles are 

inside the zero hydraulic conductivity zones, and thus immediately and validly reported as stagnant 

during the simulation. The red lines in Figure 4.9 represent the particle pathlines in the first layer, and the 

blue lines are the particle pathlines in the second layer for both methods. The cells marked in grey 

represent the cells with zero hydraulic conductivity. As shown in Figure 4.9 (a), the particle pathlines that 

are generated by the Waterloo method travel around the zones with zero hydraulic conductivity. This 

shows the capability of the Waterloo method to handle complex flow fields. However, the all of the 

particle pathlines generated by the SSP&A method erroneously enter the zero-K zones, as shown in 

Figure 4.9 (b). This is because the SSP&A method does not use the cell-by-cell flow to generate the 

(a) (b) 

Figure 4.9: Another Example of Particle Pathlines Traveling through a Conceptual Model with Zero Hydraulic 

Conductivity Zones Generated by the Waterloo Method (a) and the SSP&A method (b) 
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particle velocity within the cell; instead it uses head interpolation, which can lead to flows across zero-K 

interfaces.  

 The constant head zones at the sides of the model are both located in layer 1. Therefore, when the 

particles exit the model through the cells with constant head, they have to be in layer 1. The users must 

pay attention to the time step chosen when running the simulation using Euler scheme. The user must 

choose a very small time step in order to handle the flow field so the particles may not end up entering the 

cells with zero hydraulic conductivity and therefore treated as stagnant by the algorithm, as shown in 

example 4.4 for two of the particles. However, using such small time step may significantly increase the 

computational cost of the simulation. Thus, it may be better to use the adaptive time step procedure in the 

fourth-order Runge-Kutta scheme as implemented in example 4.5.  

 

4.2.2 Heterogeneity 

In a real subsurface system, the hydraulic conductivity of the porous media may vary from one area to 

another. Therefore, it is crucial for a particle tracking algorithm to be able to accurately handle 

heterogeneity; particularly in that it does not smooth out flow fields between cell centers, as both the 

SSP&A and Painter et al. (2012) methods do, and respects jumps in tangential flow along interfaces of 

changing hydraulic conductivity. As mentioned earlier in this thesis, for each time step in each cell, the 

hydraulic conductivities are constant and uniform. The methodology section of this thesis explains that 

the variation of hydraulic conductivities and hydraulic heads within each cell is combined and denoted as 

discharge potential. Since the every calculation that includes the discharge potential in this algorithm is 

done per cell-by-cell basis, the heterogeneity in the larger model does not directly affect the result of 

velocity distributions within a cell. However, this is not true with interpolation-based methods, which 

“smear” the local flow fields. Example 4.6 highlights the capability of the Waterloo method to 

sufficiently handle mild heterogeneity and is depicted in Figure 4.10. There are four different zones of 

hydraulic conductivity presented in the example; each is depicted with its own unique color. The basic 



73 
 

parameters of example 4.6 here use the information from Visual MODFLOW-Flex tutorial; e.g. ground, 

top layer, bottom layer, and boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 shows the movement of particles through different zones of hydraulic conductivity. This 

particular example demonstrates the ability of the algorithm to handle heterogeneous simulations. The 

domain of example 4.6 here is the same as example 4.4. The background zone in the model has a 

hydraulic conductivity of 0.01 m/d, the blue zone is 0.05 m/d, the green zone is 0.1 m/d, and the red zone 

is 0.5 m/d. The model has constant head located at the right end side of the model (347 m) and the left, 

top, and bottom of the model are no flow boundaries. There is a pumping well located at the top left of the 

model at (x,y) = (4000,13000) meters. The pumping rate for this example is 20000 m3/d. Therefore, the 

only location where the particles may exit is the well. There are 20 particles released from the right side 

of the model. Example 4.6 is simulated using both methods with fourth-order Runge-Kutta scheme with 

adaptive time step; the time step changes for each particle iteration. As is shown in Figure 4.10, the 

Figure 4.10: An Example of Particle Pathlines Traveling through Different Zones of Hydraulic Conductivity 
Generated using the Waterloo Method (Red Lines) and the SSP&A Method (Blue Lines) 
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particle pathlines travel through the lower hydraulic conductivity zones smoothly until it reaches the high-

K zone. The red lines represent particle pathlines generated using the Waterloo method and the blue lines 

are pathlines generated using the SSP&A method. As shown in Figure 4.10, SSP&A particles number 7, 

9, and 11 do not reach the well and get terminated erroneously in the red-K zone. The algorithm reports 

these particles as “terminated due to contradictory gradient”. Furthermore, the terminated particle 

pathlines created by the SSP&A method experience “jumps” in pathlines when entering the red-K-zone. 

This may be due to the similar bugs that cause the “contradictory gradient” termination. 

 Even though the Waterloo algorithm does not directly use hydraulic conductivities in generating 

the particle pathlines, the cell-by-cell flows generated by MODFLOW-USG affect the velocity 

distributions of the particles within each cell. Other examples that highlight the capability of the Waterloo 

method to handle heterogeneity are presented in Figure 4.11. These examples contain more advanced 

features and conditions within the model such as rivers, wells, and randomized hydraulic conductivity. 

These examples are shown in this section to show how the pathlines integration generated by the 

Waterloo method are appropriately generated in the presence of other sinks such as rivers, and multiple 

wells within the domain. Furthermore, every cell in both of the models in Figure 4.11 has randomized 

horizontal and vertical hydraulic conductivity.  

 

 

 

 

 

 

 

 

 

 
Figure 4.11: More Advanced Examples of Particle Pathlines in Heterogeneous Model with River (Left) and Wells 

(Right) 
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Each cell is horizontally isotropic with the randomized values of the horizontal hydraulic conductivities 

that vary between 10-1 and 10-4 m/d, and the randomized values of the vertical hydraulic conductivity that 

vary between 10-3 and 10-6 m/d. Due to these variations of hydraulic conductivity within each cell, the 

particles do not travel as smoothly as they normally would had the models been homogeneous. Due to 

this extreme heterogeneity within the model, there might be significant amount of vertical flows in many 

of the cells. Therefore, these examples show how the particles may travel to different layers due to the 

vertical flows, and how these “fluctuations” may affect the particle exit position. The domain size, 

constant head, and other basic parameters of the examples in Figure 4.11 are the same as example 4.4; 

these parameters are provided from Visual MODFLOW-Flex tutorial example. The left image of Figure 

4.11 shows a conceptual model with a high conductance river going through the model. The right image 

consists of four wells and one river that has low conductance; all of the wells are pumping wells with one 

well at the bottom having very low pumping rate in comparison to the other wells in the image. The 

models have two layers. The left image contains 4094 cells and the right image contains 4138 cells. There 

are 20 particles released in each of the example; 10 in the first layer, and the other 10 in the second layer. 

The constant heads for both examples are similar; higher constant head in the first layer of the right end of 

the model and lower constant head in the first layer of the left end of the model. Furthermore, because of 

the randomized vertical hydraulic conductivity for each cell, the particles constantly move between the 

first and the second layer of the models.  

 As presented in the left image of Figure 4.11, the particles travel through the model from the right 

side to the left side. Since the river conductance is high, the particles that happen to travel in the first layer 

when they hit the river cells enter those river cells; the particles in the second layer in the area below the 

river cells bypass those cells and exit the model through the constant head boundary at the left end of the 

model. The particles that are depicted in the right image of Figure 4.11 travel through the model from the 

right side to the left side. The river conductance in this example is very low, and thus the particles that 

travel towards the river cells do not enter the cells even though some of them are in the first layer at the 

time. Some of the particles in the right image constantly switch layers due to the significant variation in 
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vertical hydraulic conductivity throughout the entire model. The bottom of each well is located in the 

second layer, and thus the particles would switch to the second layer before entering the wells. The 

particles that do not get captured by the wells of the river exit the model through the constant heads 

boundary located at the first layer of the left end of the model. Note that the Waterloo method knows 

nothing about the boundary conditions of the model and it does not have to know. These examples 

represent how the Waterloo method can track particles through different zones of hydraulic conductivity; 

especially the last two examples that show extreme cases of heterogeneity, where the horizontal and 

vertical hydraulic conductivities of every cell are randomized, but still keeping the model to be 

horizontally isotropic.  

 The Waterloo method can readily handle vertical anisotropy. This is due to the Dupuit-

Forchheimer approximations that made the calculations for horizontal velocities to be independent of the 

calculations regarding the vertical velocities. Therefore, no matter how different the vertical hydraulic 

conductivity of one cell compared to its horizontal hydraulic conductivities, the velocity distributions of 

the particles, and thus the particle pathlines, are not affected. The examples presented in this section thus 

far show how the Waterloo method is able to handle moderately complex flow field in a conceptual 

model with unstructured grids. This ability is apparent when the Waterloo method is compared to the 

SSP&A method as shown in examples 4.5 and 4.6. This is one of the advantages of using the Waterloo 

method for tracking particles through arbitrary unstructured grids.  

 

4.3 Sinks and Sources 

Sinks and sources are used to define negative or positive contribution to a cell. MODPATH treats features 

like strong wells and rivers such that when a particle enters the cell containing these sinks, the pathlines 

stop at the boundary of the cell. However, the Waterloo method is able to efficiently handle sub-grid cell 

sinks and sources by explicitly representing the flow pattern within each cell. This proper treatment of 

“weak” sinks and sources (Zheng, 1994) is important because it may determine whether a particle should 
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be terminated (i.e. enters a river or gets pumped out of the subsurface system by a pumping well). This 

decision is crucial especially in advective contaminant transport to determine whether the contaminant 

may travel further in the groundwater system or be removed from the aquifer. 

 

4.3.1 Strong Sinks and Weak Sinks 

A strong sink is any sink strong enough such that all sides of the cell have inflows entering the particular 

cell; i.e. no water enters the cell through one side and discharges through another. As mentioned earlier, 

the Waterloo method considers the flows in through the sides, top, and bottom of the cells, generates the 

flow patterns, and calculates the velocities at any point within the cell. The cell, vertical, and well flows 

are obtainable via the cell-by-cell flow files provided by MODFLOW. Therefore, if a cell contains a 

strong sink, the movement of the particles inside the cell is implicitly handled by the algorithm. 

 The “weak” sinks and sources are those that do not result in complete inward or outward 

gradients along the faces of the cell which contains those sinks or sources (Zheng, 1994); i.e. water 

entering the cell with weak sink through one face may discharge through another face, depending on the 

flow pattern within the cell. Frequently encountered sinks include vertically oriented pumping wells, 

rivers, and constant head. An example of a cell that contains a “weak” well is presented in Figure 4.12. In 

this example, a simple conceptual model is discretized with an unstructured grid with constant head 

boundaries located at the end of both sides of the model with the flow going from left to right. The top 

and bottom end of the model contain no-flow boundaries. In the middle of the conceptual model, a 

pumping well is placed. The pumping well flow rate is chosen to create a weak sink, where some water 

entering the cell bypass that cell to go to the next cell. The aquifer in this example is homogeneous and 

isotropic. There are 13 particles released in this example within the cells near the well. The model is 

based upon a test case created by SSP&A to run a particle tracking simulation for the SSP&A method. 

Only a part of the cells around the wells is presented in the example to show more detailed pathlines 

integration. 
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As shown in Figure 4.12 above, the particles that enter the cell with a pumping well placed in it do not all 

get withdrawn by the well; two of the particles presented in the example above bypass the well and go to 

the next cell. The reconstructed head and stream function contours are shown in this figure for cells 

containing the pathlines. Rather than treating a cell with a sink as all strong sink, being able to determine 

whether a particular source is a weak sink or a strong sink may be better especially in a situation like the 

example in Figure 4.12, where some of the particles (or contaminant) bypass the well. Zheng (1994) 

introduced a procedure to handle weak sinks in a cell by using an approximate analytical solution to 

define the velocity distribution inside a cell that contains a weak sink or source. The reason for this is so 

the capture of the particles that enter the cell may be accurately determined. Pollock (1994) stated that 

there is no way to know whether a particle that enters a weak sink cell should discharge to the sink or pass 

  

 

Figure 4.12: An example of a Part of a Model with a Well located in the Middle Representing a Weak Sink 
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through the cell. However, this statement is only true if the sink distribution is unknown within the sink 

cell.  In MODPATH, cells that contain a weak sink well may require special measures in order to generate 

correct particle traces and individual travel times, and hence capture zones (Abrams et al. 2012). 

However, the Waterloo method does not require any special calculation regarding this matter because of 

the particle sub-cell velocity created using the cell-by-cell flows. 

 The cases in Figure 4.11 can also be treated as examples of the capability of the Waterloo method 

to handle sinks and sources. The river in the left image of the figure may be considered strong sink; the 

particles that enter the first layer of cells along the river all get absorbed by the river. The river in the right 

image of Figure 4.11 is considered weak sink, where even the particles in the first layer of the cells along 

the river do not get absorbed. The pumping wells in the same image are considered strong sink such that 

all of the particles entering the second layer of a cell with a well in it enter the well. Another way to 

handle the problems with weak sinks in particle tracking, the users can further increase the resolution 

around the wells by adding more refined grids. However, by doing so, the computational cost of the 

simulation may increase, and even the more refined cell that contains the sink or source may still be a 

weak sink cell. 

 

4.3.2 Multiple and Off-Center Wells 

Most of the current particle tracking algorithms that uses MODFLOW files as its input files work with the 

assumption that any well that exists within a cell is located at the center coordinates of the cell. This 

assumption is implemented because the Well Package provided by MODFLOW does not contain any 

information regarding the Cartesian coordinate of the well. The files generated by MODFLOW regarding 

a well only provides information on the flow rates of the well, as well as in which cell the particular well 

is located. Furthermore, since MODPATH does not track particles inside a cell with a sink or source, it 

becomes irrelevant where the well is located within a cell. However, the exact location of a well inside a 

cell may be very important because it may determine whether the well in that cell is considered weak sink 
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or strong sink; by changing the location of the well inside a cell, the particle pathlines inside the cell may 

change significantly. A cell that contains a strong sink well when it is located at the center of the cell may 

become a weak sink well if it is located somewhere else within the cell. However, the Waterloo method is 

developed with a capability to handle wells that may not be located at the center of the cell. Currently 

there is no information regarding the coordinate of the well from the input files. Therefore, the algorithm 

currently works with the assumption that the Cartesian coordinate of any well within a cell is located at 

the same coordinate of the cell’s center. Example 4.7 represents multiple, off-center wells that are located 

within a cell. The primary parameters of this cell are the same as example 3.2 in the previous section. As 

shown in Figure 4.13, the well is not located at the center of the cell. There are 10 particles that are 

released along the boundaries of the cell. The coordinate of the well is established manually, not obtained 

from any input file. As mentioned earlier, the equations for calculating the well flux function for the flow 

field within a cell and for particle velocity distributions assume that the complex well coordinate 𝑍𝑤𝑒𝑙𝑙  is 

the complex center coordinate of the cell  𝑧𝑐 = (𝑥𝑐 + 𝑖𝑦𝑐). 

 

 

 

 

 

 

 

 

 

However, the complex well coordinate can be inserted into the equations to change the location of the 

well within the cell. When the input file from MODFLOW regarding the well package is modified in the 

future to have the coordinate of a well inside a cell, the algorithm can be slightly altered to include the 

Figure 4.13: Particle Pathlines in a Cell with Multiple Wells; the Right Well has Twice the Pumping Rate of the 

Left Well 
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well coordinate. As presented in Figure 4.14, two of the particles enter the left well and the other particles 

enter the right well. 

  

4.4 Examination of Solution Accuracy 

The accuracy of the pathline integration in Waterloo method depends highly on the assumptions made 

and the parameters. By changing these parameters and assumptions, the total time required for the 

particles to exit the cell, as well as the particle exit location may change. As mentioned in the 

methodology section regarding the sources of error for the algorithm, by changing the order of 

approximation, total number of control points, and the integration algorithm fixed time or space step for 

each simulation, the particle positions may be altered. Details regarding the effects of the order of 

approximation and total number of control points to the total time travel of the particle are further 

discussed here. As shown in the examples thus far, the tracking error of the cell can be reduced by 

decreasing the time step. Furthermore, since an option to use adaptive time step is available in mod-

PATH3DU software, choosing fixed time or space steps may not be desirable anymore due to high 

computational cost. However, the fixed time step for Euler scheme is still used here to explore the impact 

of fitting (or boundary) errors within a cell; this is because Euler scheme is less complicated and does not 

have a high computational cost for tracking particle in a single cell. The test case used for error analysis 

(example 4.8) is presented in Figure 4.14.  
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Figure 4.14: An Example of Particle Pathlines through a Hexagonal Cell with Four No Flow Boundaries 
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This case includes a six-sided polygon with 4 no-flow boundaries, no well, and no vertical flux term 

within the cell. The simulation is kept simple to better represent the sensitivity of the parameters that 

contribute to the source of errors in the algorithm; there is no vertical or well term in this steady-state cell. 

The primary and cell flow parameters of example 4.8 is presented in Table 4.7. Several simulations are 

run using the same cell geometry and inflows through the sides of the cell. The only parameters that 

change for each simulation are the total number of control points and the order of approximation of the 

cell. Example 4.8 uses fixed time step Euler scheme to create the pathlines.  

 

Table 4.13: The Primary and Flow Parameters of Example 4.7 

Parameter Symbols Example Values 

𝑛𝑓𝑎𝑐𝑒𝑠 6 

[𝑥𝑖 𝑦𝑖] 

[
 
 
 
 
 
0.0424 −0.9482
−0.5662 −0.7677
−0.8814 0.1186
−0.1250 0.8750
0.6250 0.6250
0.8749 −0.1248]

 
 
 
 
 

 

[𝑥𝑐 𝑦𝑐] [0 0] 

𝜃 0.3 

𝑄𝑖 [2.25 0 0 0 0 −2.25] 

 

The particle starting point for each simulation is at (𝑥𝑝 𝑦𝑝) = (−0.55 −0.7725), chosen to be very 

close to one of the vertices, but not at the vertex, thus subject to the influence of Gibbs phenomenon. The 

fixed time step for example 4.8 is 0.001 for each simulation. The results of the simulations are shown in 

Figure 4.15. As shown in Figure 4.15, the total particle travel time of a particle in example 4.8 varies with 

the order of approximation and total control points of the cell. The smaller the values of these parameters 

are, the smaller the value for total particle travel time. 

 



83 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120

To
ta

l P
ar

ti
cl

e
 T

ra
ve

l T
im

e
 [

T]

Order of Approximation (N)

M=2N

M=3N

M=4N

 

 

 

 

 

 

 

 

 

 

This does not mean that the particle reaches the exit point faster; it means that the horizontal velocity 

distribution within the cell is inaccurate and it affects the travel time of the particle to exit the cell, as well 

as the particle exit position. The total control points for the cell are changed accordingly with the change 

in order of approximation. Three types of simulation were conducted as shown in Figure 4.15: 1) M is 

kept as minimum to be 2N (solid blue line); 2) M is set to be 3N (dotted red line); and M is set to be high 

such that M=4N (dotted green line). The order of approximation parameter for all three simulations varies 

between 2 and 100. The reason for these simulations is not only to see how the total particle travel time 

gets affected by the order of approximation, but also the total control points of the cell.  

 As depicted in Figure 4.15, the red and green dotted lines have less fluctuation in comparison to 

the solid blue line. The fluctuation that exists for all three simulations might be partly due to the Gibbs 

phenomenon as the particle travel path is very close to the boundaries of the cell that contain no inflows. 

The particle total time travels for all simulations vary significantly when the order of approximation is 

less than 20, and they stabilize when N is greater than about 30. The red and green lines show less 

fluctuation regarding the particle time travel. This shows that the higher the total control points are, the 

more “stable” the particle time travel curves will be. The blue line in Figure 4.16 shows a more stable line 

Figure 4.15: The Total Particle Travel Time with Different Order of Approximation and Total Control Points for 

Example 4.7 
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after N=30 but it shows fluctuation after N=80. This unusual fluctuation may be caused by the fluctuation 

in the normalized absolute average error within the cell. This phenomenon may occur using a pure 

collocation approach (i.e. M=2N). When the total control points parameter is set higher, as shown by the 

red and green lines in Figure 4.16, the fluctuation decreases but not completely gone. This is likely due to 

the presence of Gibbs phenomenon. The total time required for the particle to exit the point is 

approximately 1.68 [T]. The values for the normalized absolute average error of each simulation are 

depicted in Figure 4.16. The average and maximum errors are represented in this figure to show how the 

errors are affected by the order of approximation and total control points of the cell. 

 

 

 

 

 

 

 

 

  

 

 

As shown in Figure 4.16, the solid lines represent the average error of the cell with increasing order of 

approximation and total control points. The dotted lines represent the maximum error; this maximum 

error represents the highest value of error for the control points along the boundary of the cell. The 

average and maximum error for each simulation of example 4.8 decrease with increasing order of 

approximation. When the total control points are further increased, the error may be significantly 

decreased. As shown in the figure above, the maximum error of the cell boundary for M=4N is lower for 

the average error for M=2N. This further shows that the order of approximation and the total control 

Figure 4.16: The Normalized Absolute Average and Maximum Error with Increasing N for Example 4.8 
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points contribute significantly to the error of the cell, as well as the total time travel of the particle to exit 

the cell. As mentioned earlier in this section, there is a fluctuation regarding the total particle time travel 

when the order of approximation is high for M=2N. The average error for the cell when M=2N shows 

similar fluctuation when the order of approximation is high. By changing M and N to be extremely high 

the time it takes to finish the simulation increases considerably (e.g. computational time of the simulation 

for N=20, M=3N is about 5 seconds in unoptimized MATLAB code, and computational time of the 

simulation for N=100, M=3N is approximately 20 seconds). Note that each simulation is a particle 

tracking simulation for one particle in a single cell. Thus, overspecifying the order of approximation may 

result in considerable amount of computational cost for a large-scale simulation.The order of 

approximation is set internally within the mod-PATH3DU software to be relatively high for now; each 

cell contains N=40 and M=3N.  

 

4.5 Other Test Cases 

There are several test cases that are discussed in this section. The reason for simulating these test cases is 

to further show the capability of the Waterloo method to perform in complicated domains and to 

demonstrate how other tracking methods perform in these domains in comparison to the Waterloo 

method. Example 4.9 is taken from the quad-based grid example in paper by Pollock (2015). There are 

two simulations for this example: example 4.9a depicts how the Waterloo method and SSP&A method 

compare against the Pollock method in a rectilinear structured grid; example 4.9b represents how all three 

methods behave in rectilinear unstructured grid such as nested or quad-based grids. According to the 

paper, example 4.9a has maximum refinement of 2 x 2 in based grid cell with a total of 124 cells, and 

example 4.9b has maximum refinement of 8 x 8 in base grid cell and a total of 352 cells. The domain 

consists of 11 rows and 11 columns with uniform square cells of 200 feet on a side. No flow boundaries 

are specified along all four of the domain sides. Each nested child grid is 0.25 times the size of its parent’s 

grid; e.g. if the parent grid is 200 x 200 ft, the child grid is 100 x 100 ft, and its “grandchild” grid is 50 x 
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50 ft. It is important to note for this comparison that the information regarding the particles starting 

position is not stated explicitly in the Pollock (2015) paper, and thus there is no way to know the exact 

particle starting position for each simulation. Therefore, the particle starting point is approximated to be 

as similar as possible with the figure in Pollock paper. The pathlines generated by the Waterloo and 

SSP&A methods are overlaid onto the image obtained from the Pollock paper. Therefore, this example is 

not presented to exactly show the difference in result between the three methods, rather it is just an 

approximation of how the three methods would behave under the same situation. Example 4.9a is shown 

in Figure 4.17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned earlier, the pathlines generated with the Waterloo and the SSP&A methods are overlain 

onto the image obtained from the Pollock paper (2015). As shown in Figure 4.17, the pathlines generated 

from the Waterloo method and the Pollock method are very similar, except in a cell that is directly 

connected to the two constant head cells. Although it is just an approximation, it further shows that the 

Figure 4.17: Example 4.9a, Particle Pathlines Generated in a Rectilinear Structure Grids using Three Methods: The 

Waterloo Method (Red Line), The Pollock Method (Blue Line), and The SSP&A Method (Green Line) 
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results of these two methods are similar in a rectilinear structured grid. However, the SSP&A method 

produces pathlines that are very different than the other two pathlines. This is likely an interpolation 

artefact. Since the details regarding this example are not presented within the Pollock paper, some 

parameters, such as the particle starting locations, may be subject to approximation. The total time travel 

for the particles to reach the end point for the Pollock pathlines is not reported in Pollock (2015) paper. 

Thus, it is impossible to compare the total time travels of the particles between the three methods.  

Figure 4.18 depicts the pathlines generated for example 4.9b using all three methods in a 

rectilinear unstructured grid; e.g. nested grids. Similar to Figure 4.17, this example contains pathlines 

generated using the Waterloo and the SSP&A methods to be overlaid on top of the image obtained from 

the Pollock paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 4.18, the pathlines generated using the Waterloo method is different than the Pollock 

pathlines. This may be due to the positioning of the particle starting location; slight difference in particle 

Figure 4.18: Example 4.9b, Particle Pathlines Generated in a Rectilinear Structure Grids using Three Methods: The 

Waterloo Method (Red Line), The Pollock Method (Blue Line), and The SSP&A Method (Green Line) 
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starting position may result in significant difference in particle pathlines, particle end point location, and 

the travel time. However, the pathlines generated using the Waterloo and Pollock methods behave 

similarly in a rectilinear unstructured grid. However, the SSP&A method behaves differently than the 

other two methods, and two particles seem to terminate itself due to contradictory gradient, according to 

the output files. This again suggests that the Waterloo method can perform better than the SSP&A 

method.  
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Chapter 5 

Conclusions and Recommendations 

The primary challenge in tracking particles through arbitrary unstructured grids is the reconstruction of 

sub-grid velocity at any point within the cell. The Waterloo method is able to perform this reconstruction 

by solving local boundary value problems within an arbitrary polygonal cell given the side fluxes. 

Numerous test cases are investigated and presented in this paper in order to demonstrate the robustness of 

the Waterloo method. When the Waterloo method is compared to the Pollock method in rectilinear 

structured grids, the result shows differences in particles exit point and their time travel to be less than 

one percent, given a relatively large order of approximation and total control points with a small tracking 

time step. The robustness of the Waterloo method is shown by its ability to handle mild and extreme 

heterogeneity, vertical anisotropy, zero hydraulic conductivity zones, sinks and sources problems, and 

multiple and off-center wells. Most importantly, the Waterloo method is able to track particles through 

various types of unstructured grids with steady-state and transient flow. The Waterloo method is included 

within mod-PATH3DU software developed by the SSP&A. 

There are currently two methods available to track particles through unstructured grids: the 

method developed by Painter et al. (2012); and the SSP&A method (Muffels et al. 2014). The method by 

Painter et al. uses unconstrained and constrained least squares methods on interior cells and boundary 

cells respectively in order to approximate cell-centered velocities. The SSP&A method uses local 

universal kriging interpolation of a MODFLOW hydraulic head solution to calculate the velocity vectors 

using the resultant head changes. The local interpolation-based velocity fields generated using these two 

methods do not respect mass balance. However, the Waterloo method constructs the velocity fields within 

a cell while respecting the cell-by-cell flow going in through the sides, top, and bottom of the cell while 

still respecting the mass balance and no-flow boundaries. The Waterloo method uses the same governing 

equation for three-dimensional groundwater flow as the one used in MODFLOW-USG. The sub-grid 
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flow field is generated by invoking the Dupuit-Forchheimer approximation in each cell, where the 

resistance to flow in the vertical direction is neglected. Using this assumption, the calculation regarding 

vertical velocity is independent of the calculation regarding the horizontal velocities of the cell. The 

reconstruction of sub-grid velocity distribution on a cell-by-cell basis for each MODFLOW time step 

requires the construction of cell geometry and the time-averaged flow rates in through the sides, top, and 

bottom of the cell. Information regarding the cell geometry such as vertex coordinates for each cell are 

provided by mesh generating software such as Groundwater Vistas or Visual MODFLOW-Flex through a 

grid specification file. The cell flows are provided by MODFLOW-USG. Using the information obtained 

from the input files, internal algorithm parameters may be populated. Using these parameters, the Taylor 

series coefficients can be determined. These coefficients are necessary in order to determine the flow 

pattern inside the cell and the complex flow velocities. The complex potential and the complex velocities 

are calculated using complex Taylor series. The particle pathlines integration can be computed using 

Euler or fourth-order Runge-Kutta scheme; the pathlines integration is necessary to determine the particle 

end point location and time travel between them. 

There are two different types of errors within the algorithm: the boundary errors and the tracking 

errors. The boundary error is controlled by truncation errors, where there are not enough terms in the 

Taylor series to represent the flow field, and fitting errors, where discontinuities in the boundary 

conditions of the cell cannot be fitted properly. The parameters associated with the boundary errors 

include the order of approximation and total control points of the cell. These truncation errors may be 

reduced by increasing the value of the order of approximation and the total control points of the cell, but 

with the cost of higher computational time. These parameters are chosen internally to provide a relatively 

high accuracy in particle tracking with low computational cost. The tracking errors are caused by 

insufficient temporal discretization used in pathline integration. One solution to reduce tracking errors in 

the algorithm is to use the adaptive time step for the fourth-order Runge-Kutta scheme. The Gibbs 

phenomenon is another contributor to the boundary error. The appearance of significant impacts of Gibbs 
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phenomenon within a groundwater model appears to be rare in practice. The solution to handle the Gibbs 

phenomenon is not discussed in this paper; this is recommended for future work.  

Three examples are provided to compare the particle pathlines generated using the Waterloo 

method and the Pollock method. Each example represents a unique case in rectilinear structured grids. 

The results for all three examples regarding the particle exit point and the total time travel show the 

differences to be less than one percent, i.e. conducting particle tracking using the Waterloo method 

produces similar results as the Pollock method in rectilinear structured grids. Five additional examples are 

presented to show the ability of the Waterloo method to handle complex flow field with zero-hydraulic 

conductivity zones, mild heterogeneity, and extreme heterogeneity. The pathlines of the particle generated 

using the Waterloo method are compared to the pathlines from the SSP&A method. The particle pathlines 

generated by the SSP&A method seem very unusual in some cases. This may be caused by internal bugs 

within the SSP&A algorithm and may be addressed in the future. However, it is clear that many of these 

issues are linked to uncorrectable issues with the head interpolation approach for velocity reconstruction. 

The Waterloo method can handle strong and weak sinks or sources without any additional method. 

Furthermore, the Waterloo method is able to track particles within a cell that contains multiple off-center 

wells. The algorithm can handle this cases with some slight changes if, in the future, MODFLOW is 

updated to be able to provide multiple and off-center wells within a cell. 

 The Waterloo method can readily handle vertical anisotropy. However, cases regarding lateral 

anisotropy are not discussed here because it is outside the scope of this thesis; one idea for the future 

release regarding this matter is to use coordinate transformation, such that the vertex coordinates of the 

cell are rearranged to fit the differences between the horizontal hydraulic conductivities, as done by Fitts 

(2006). Furthermore, the Waterloo method is not ready to handle unstructured grids in the vertical 

direction; e.g., the bottom or top face of a cell is touching more than one other cells.  



92 
 

References 

Abrams, D., Haitjema H.M., and Kauffman L., (2012). “On Modeling Weak Sinks in MODPATH”. U.S. 
Geological Survey Staff – Published Research. Paper 589 

 

Barnes, R.J, Janković, I., (1999). “Two-dimensional flow through large numbers of circular 
inhomogeneities”. Journal of Hydrology, 226, pp. 204–210 

 

Bedient, P.B., H.S. Rifai, and C.J. Newell.  (1994). “Ground Water Contamination: Transport and 

Remediation”. United States: Prentice Hall, Inc., Englewood Cliffs, NJ (United States).  
 

Bredehoeft, J. (2005). “The conceptualization model problem – surprise”. Hydrogeology Journal 13 (1), 

pp. 37–46. 
 

Clement, T.P., (1997). “RT3D (Version 1.0): A Modular Computer Code for Simulating Reactive 

Multispecies Transport in 3-Dimensional Groundwater Systems”. A Report for the U.S. Department 

of Energy.Richland, WA: Battelle Pacific Northwest Laboratory; p. 59.  
 

Craig, J.R., Read, W.W., (2010). “The Future of Analytical Solution Methods for Groundwater Flow and 

Transport Simulation”, XVIII International Conference on Water Resources 
 

Diersch, H.J., (2013). “FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous 

and Fractured Media”. Groundwater Modelling Centre 
 

Faust, C.R. and Mercer J.W., (1980), “Groundwater Modeling: Numerical Models”, GROUND WATER. 

Vol. 18, No.4. 

 
Fitts, C.R., (2006), “Exact Solution for Two-Dimensional Flow to a Well in an Anisotropic Domain”, 

Ground Water – Jan-Feb. 2006, Vol. 44, No. 1, pp 99-101 

 
Freeze, R.A., Witherspoon, P.A., (1966). “Theoretical Analysis of Regional Groundwater Flow: 1. 

Analytical and Numerical Solutions to the Mathematical Model”. Water Resources Research 2 (4), 

641e656. 
 

Guo, W. and Langevin C.D., (2002). “ User’s Guide to SEAWAT: A Computer Program for Simulation 

of Three-Dimensional Variable-Density Ground-Water Flow”. U.S. Geological Survey, Techniques of 

Water-Resources Investigation 6-A7. 
 

Haitjema, H. M., (1995). “Analytic Element Modeling of Groundwater Flow”. Indiana University. 

Academic Press, Inc. 
 

Harbaugh, A. W. (2005). “MODFLOW-2005, The U.S. Geological Survey Modular Groundwater Model 

The Ground-Water Flow Process”. Technical report, U.S. Geologic Survey. 

 
Hazewinkel, M., ed. (2001), "Calculus", Encyclopedia of Mathematics, Springer, ISBN.  

 

Hesch W., (2013), “Understanding MODFLOW-USG: A Comparison between Structured MODFLOW 
and UnStructured MODFLOW”. Waterloo Hydrogeologic  

 



93 
 

Janković, I. and Barnes R.J., (1999). “High-order line elements in modeling two-dimensional 

groundwater flow”. J. Hydrol.226, 211–223. doi:10.1016/S0022-1694(99)00140-7. 
 

Janković, I. and Barnes, R.J., (1999). “Three-dimensional flow through large numbers of spheroidal 

inhomogeneities”. Journal of Hydrology, 226, pp. 224–233 

 
Konikow, L.F., (1992). “Ground-Water Models Cannot be Validated”. U.S. Geological Survey, Advances 

in Water Resources 15(1992) pp. 75-83. 

 
Konikow, L.F., Goode, D.J., Hornberger, G.Z., Reston, V.A., (1996). “A Three-Dimensional Method-of-

Characteristics Solute–Transport Model (MOC3D)”. U.S. Geological Survey Water Resources 

Investigation Report 96-4267. 
 

Lahvis, M.A. and Baehr, A.L., (1997). “Documentation of R-UNSAT, a Computer Model for the 

Simulation of Reactive, Multispecies Transport in the Unsaturated Zone”. U.S. Geological Survey, 

Open-File Report 97-630.  
 

Maier, U. and Bürger, C. (2013). "An accurate method for transient particle tracking." Water Resources 

Research, 10.1002/wrcr.20236, 3059-3063.  
 

McDonald, M.G., Harbaugh, A. W., (1984). “A Modular Three-Dimensional Finite-Different 

Groundwater Flow Model”. Technical report, U.S. Geologic Survey. 
 

McDonald, M.G., Harbaugh, A.W., (1988). “A Modular Three-dimensional Finite-Difference Ground-

Water Flow Model”. Open-File Report 83e875. U.S. Geological Survey. Book 6. 

 
McDonald, M.G. and Harbaugh, A.W., (2003), “The History of MODFLOW”, GROUND WATER Vol 41 

No. 2 

 
Muffels, C., Wang, X., Tonkin, M., Neville, C., (2014). “User’s Guide for mod-PATH3DU: A 

Groundwater Path and Travel-Time Simulator”. S.S. Papadopulos & Associates, Inc.  

 

National Groundwater & Contaminated Land Centre (NGCLC). (2001). “Guide to good practice for the 
development of conceptual models and the selection and application of mathematical models of 

contaminant transport processes in the subsurface”. NGCLC report NC/99/38/2. 

 
Painter, S.L., Gable, C.W., Kelkar, S. (2012). “Pathline Tracking on Fully Unstructured Control-Volume 

Grids”. Computational Earth Sciences Group DOI 10.1007/s10596-012-9307-1. Springer Science 

+Business Media B.V. 2012 
 

Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., Hughes, J.D., (2013). “MODFLOW-USG 

Version 1: An Unstructured Grid Version of MODFLOW for Simulating Groundwater Flow and 

Tightly Coupled Processes Using a Control Volume Finite-Difference Formulation”. U.S. Geological 
Survey, Techniques and Methods 6-A45 

 

Pollock, D.W., (1988). “Semianalytical computation of path lines for finite-difference models”. Ground 
Water 26 (6), 743–750. 

 

Pollock, D.W., (1989), “Documentation of computer programs to compute and display pathlines using 
results from the U.S. Geological Survey modular three-dimensional finite difference groundwater 

flow model”. U.S. Geological Survey Open-File Report 89–381, 188 p. 



94 
 

 

Pollock, D.W., (1994). “Users guide for MODPATH/MODPATH-PLOT, version 3: A particle tracking 
post-processing package for MODFLOW, the U. S. Geological Survey finite-difference ground-water 

flow model”. Open-file report 94-464, U.S. Geological Survey. 

 

Pollock, D.W., (2012). “User Guide for MODPATH Version 6 – A Particle-Tracking Model for 
MODFLOW”. U.S. Geological Survey, Techniques and Methods 6-A41 

 

Pollock, D.W., (2015). “Extending the MODPATH Algorithm to Rectangular Unstructured Grids”. U.S. 
Geological Survey 

 

Raeen, K., (2008), “A Study of The Gibbs Phenomenon in Fourier Series and Wavelets”, University of 
New Mexico 

 

Rushton, K. and Redshaw, S. (1979). “Seepage and groudwater flow: numerical analysis by analog and 

digital methods”. Wiley, New York, 1979. No. of pages: 339 
 

Schlumberger Water Services, (2014), “Visual MODFLOW Flex User’s Manual”. 

 
Strack, O.D.L., (1984). “Three-Dimensional Streamlines in Dupuit-Forchheimer Models”. Water 

Resources Research, Vol. 20, No. 7, pp. 812-822. 

 
Strack, O.D.L., (1985). “An application of determining streamlines in a Dupuit-Forchheimer model”. 

Hydrological Science and Technology Journal 1, no. 1: 17–23. 

 

Strack, O.D.L., (1989). “Groundwater Mechanics”. Englewood Cliffs, New Jersey: Prentice Hall. Out of 
print: Contact Strack Consulting Inc. 

 

Suk, H. and Yeh, G. (2009). ”Multidimensional Finite-Element Particle Tracking Method for Solving 
Complex Transient Flow Problems.” J. Hydrol. Eng., 14(7), 759–766. 

 

Suk, H. and Yeh, G. (2010). "Development of particle tracking algorithms for various types of finite 

elements in multi-dimensions." Computers & Geosciences, 10.1016/j.cageo.2009.09.011, 564-568.  
 

Suk, H. (2012). "Practical Implementation of New Particle Tracking Method to the Real Field of 

Groundwater Flow and Transport." Environmental Engineering Science, 10.1089/ees.2011.0153, 70-
78.  

 

Sun, R.J. and Johnson, R.H., (1994). “Regional Aquifer System Analysis Program of the U.S. Geological 
Survey”, 1978e1992. U.S. Geological Survey. Circular 1099 

 

Therrien, R., McLaren, R.G., Sudicky, E.A., Panday, S.M., (2010). “HydroGeoSphere: A Three-

Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute 
Transport”. Groundwater Simulations Group 

 

Toth, J., 1963. “A theoretical analysis of groundwater flow in small drainage basins”. Journal of 
Geophysical Research 68 (16), 4795e4812. 

 

United States Geological Survey (USGS), (2011), “Status of MODFLOW Versions and MODFLOW-
Related Programs Available on USGS Web Pages”, Office of Groundwater, U.S. Geological Survey 

 



95 
 

Voss, C.I. and Provost, A.M., (2008). “SUTRA, a model for saturated-unsaturated variable density 

ground-water flow with solute or energy transport”. U.S. Geological Survey, Water-Resources 
Investigations Report 02-4231, Virginia, 270 pp. 

 

Wels, C., Mackie, D., Scibek, J., (2012), “Guidelines for Groundwater Modelling to Assess Impacts of 

Proposed Natural Resource Development Activities”, British Columbia Ministry of Environment, 
Water Protection & Sustainability Branch. Robertson GeoConsultants Inc. & SRK Consulting 

(Canada) Inc. Report No. 194001  

 
Yang X., Aber, J.T., Steward D.R., (2009). “Using Conceptual Groundwater Data Model to Model 

Groundwater Flow with PMWIN”, Kansas State University, Department of Civil Engineering.  

 
Yeh, G.T., Sharp-Hansen, S., Lester, B., Strobl, R., Scarbrough, J., (1992). “3DFEMWATER 

/3DLEWASTE: Numerical Codes for Delineating Wellhead Protection Areas in Agricultural Regions 

Based on the Assimilative Capacity Criterion”. Washington, DC: U.S. Environmental Protection 

Agency. 
 

Zheng, C., (1989), “PATH3D, A ground-water path and travel-time simulator, version 3.0 user’s 

manual”, S.S. Papadopulos & Associates, Inc., Bethesda, MD.  
 

Zheng, C., Bethesda, M.D. (1990). “MT3D User's Manual: A Modular Three-Dimensional Transport 

Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in 
Groundwater Systems”. S.S. Papadopulos and Associates 

 

Zheng, C., (1992), “PATH3D, A ground-water path and travel-time simulator, version 3.2 user’s 

manual”, S.S. Papadopulos & Associates, Inc., Bethesda, MD.  
 

Zheng, C., (1994), “Analysis of particle tracking errors associated with spatial discretization”, Ground 

Water, vol. 32 no. 5: 821-828.  
 

Zheng, C. and Wang, P.P., (1999). “A modular three-dimensional multispecies transport model for 

simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems”, 

MT3DMS User’s Guide, The University of Alabama, Prepared for: U.S. Army Corps of Engineers. 
 

Zheng, C., and Bennett, G., (2002). “Applied Contaminant Transport Modeling”, 2nd ed., John Wiley & 

Sons, New York. 
 

Zhou, Y. and Li, W. (2011). “A Review of Regional Groundwater Flow Modeling”. Geoscience 

Frontiers, 2(2), pp.205-214, April 2011. 

 


