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Abstract

This thesis is an exploration of quantum repeaters from a practical point of view. Quantum
repeaters are devices which help improve the quantum communication capacity of a lossy
bosonic channel (which include photonic channels such as optical fiber) beyond what is
possible using a purely lossy channel. The analyses in this thesis involve modeling the
experimental imperfections inherent in the various devices which comprise a quantum
repeater, then combining these models to calculate various quantities of interest.

Two systems are analyzed in this thesis. One is a simple quantum repeater, while the
other is a potential building block for more complex quantum repeaters.

The simple quantum repeater scheme can be implemented with currently available
technology. In it, two parties perform quantum key distribution (QKD) by exchanging
photons with two quantum memories placed between them. Its secret key rate ideally
scales as the square root of the transmittivity of the optical channel, which is superior
to QKD schemes based on direct transmission because key rates for the latter scale at
best linearly with transmittivity. Taking into account imperfections in the setup, such as
detector efficiency and dark counts, we present parameter regimes in which our protocol
outperforms protocols based on direct transmission. We find that implementing our scheme
with trapped ions is a promising way to reach the necessary parameter regimes, and that
the regimes are easier to reach if the optical channels are very lossy.

The creation of entanglement between two quantum memories is an important building
block in some quantum repeater schemes. We consider a specific quantum memory consisting
of an atom trapped in a cavity. The system allows a CNOT operation to be performed
between an atom and a photon. We study three methods for taking advantage of this to
entangle two atoms: (1) interacting a coherent pulse with each atom, then performing an
entangling measurement on the pulses; (2) interacting a single coherent pulse with each
atom sequentially; (3) emitting an entangled photon from one atom and interacting it with
the other atom. The success probability of each method is compared, as well as the quality
of the entangled states produced by each one, taking into account imperfections which
appear in a specific experimental implementation of such memories. We find that there is a
tradeoff between success probability and entangled state quality when coherent states are
used, and that method 3 provides higher-quality entangled states than is possible with the
other two methods.
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Edifying Quote

I am inclined to believe—without proof, it is true, but on the basis of extremely strong
numerical evidence—that Confucius never knew what photons were, nor would he have
considered them friends even if he did know. It is probable, also, that he would have balked
at the idea of identifying quantum memories with gentlemen. Yet the words which open
his Analects seem to fit the theme of this thesis well:

學而時習之，不亦說乎？有朋自遠方來，不亦樂乎？人不知而不慍，不亦君
子乎？

To learn and then have occasion to practice what you have learned—is this not
satisfying? To have friends arrive from afar—is this not a joy? To be patient
even when others do not understand—is this not the mark of the gentleman?

— Confucius, Analects 1.1
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Chapter 1

Introduction

Among the various branches of quantum information theory, one of the most exciting is
undoubtedly quantum key distribution (QKD). In 1984, Bennett and Brassard published
a seminal paper [1] in which they outlined a very simple way to exploit the properties of
quantum mechanics to generate a secret key of arbitrary length and securely transmit it to
two parties who wish to communicate in secret. (By long-standing convention, we call these
parties Alice and Bob.) When used in the one-time pad scheme, this protocol promises an
extremely high level of security: given that certain conditions hold, the encryption cannot
be broken using any method consistent with the laws of physics. This is a stronger level
of security than was available up to that point; prior cryptographic schemes made the
additional assumption that the computational power of any eavesdropper is bounded in
some way. Since the publication of Bennett and Brassard’s protocol, the field of QKD has
grown at an impressive rate. Much work has been done in both theory and experiment,
and even commercial QKD systems have made an appearance.

One of the outstanding problems of QKD is the question of how to distribute key
over arbitrarily long distances. For practical reasons, photons are the only viable physical
systems with which to perform QKD. Unfortunately, the transmittivity of an optical channel
decreases rapidly as the length of the channel grows (exponentially, in the case of fiber).
This imposes a strong limit on the rate at which secret key can be generated when photons
are directly transmitted from Alice to Bob over long distances. Specifically, Takeoka, Guha,
and Wilde have shown that, when multi-mode signals are sent through a pure-loss bosonic
channel with transmittivity η, the quantum communication capacity of the channel is at
most

RTGW = log2

(
1 + η

1− η

)
bits per mode per channel use [2]. In particular, this means that the secret key rate
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CHAPTER 1. INTRODUCTION

of any QKD protocol performed over such a channel cannot exceed this bound. The
Takeoka-Guha-Wilde (TGW) bound is proportional to η for small η, meaning that the key
rate, too, must decrease rapidly with distance. The problem is exacerbated in practical
implementations of QKD, where experimental imperfections invariably introduce errors.
When the transmittivity becomes too low, these errors dominate the system and no key can
be generated at all. In order to improve this key rate vs. transmittivity scaling behavior
and achieve even a modest key rate at very long distances, it is necessary to look beyond
direct transmission.

The simplest way to overcome the problem is to simply introduce a relay between Alice
and Bob, who then separately use QKD to establish secret keys with it [3]. The relay
could then generate a single secret key for Alice and Bob to use. Alternatively, messages
could be routed through the relay, which encrypts and decrypts the messages using the
two secret keys as appropriate. The idea can be immediately extended to multiple relay
stations stretching over an arbitrary distance. However, all this requires that the relays be
trusted. Is it possible to devise a scheme that can surpass the TGW bound without making
additional trust assumptions?

The quantum repeater is one such scheme [4]. First described in [5], quantum repeaters
are auxiliary quantum devices placed along the channel between Alice and Bob, effectively
breaking it up into multiple low-loss channels. A full repeater scheme might involve the
use of many stations, each containing multiple qubits [5, 6, 7, 8, 9, 10, 11, 12]. These
resource requirements are too demanding for such a scheme to be practical at present. No
experiment has been performed that beats the TGW bound over any distance.

The aim of this thesis is to lay the groundwork for an experimental demonstration
of a quantum repeater—that is, an experiment in which the key rate exceeds the TGW
bound without trusting any device in the channel between Alice and Bob. We attack the
problem on two fronts. In one of them, we present a very simple quantum repeater scheme
that requires only two qubits in a central station between Alice and Bob. The behavior
of this scheme is analyzed in detail, taking into account a large number of experimental
imperfections, and conditions are found under which the scheme can beat the TGW bound.
This scheme can be implemented using currently available technology; however, it is not
immediately extendable to multiple stations and arbitrary distances. The second front of
attack relates to the implementation of extendable quantum repeater schemes. In many
of them, the establishment of entanglement between neighboring stations is an important
step (see, for example, [5, 6, 7, 8, 10]). We therefore compare and contrast three different
schemes for entangling two trapped-atom qubits; such an analysis should be helpful when
evaluating a given quantum repeater scheme in the presence of experimental imperfections.

This thesis is organized on the following plan. In Chapter 2, some background information
on quantum mechanics, QKD, and quantum repeaters is presented. Chapter 3 concerns the

2



CHAPTER 1. INTRODUCTION

simple quantum repeater scheme alluded to above, together with an analysis of its behavior
when imperfections are taken into account. In chapter 4, we consider three different schemes
for establishing entanglement between two spatially separated qubits. Finally, Chapter 5
contains some brief concluding remarks.

3



Chapter 2

Background

In this chapter, some essential concepts from quantum mechanics and quantum key distri-
bution, necessary to understand the remainder of this thesis, are briefly presented.

2.1 Fundamentals of quantum mechanics

Almost all of the material in this section is derived from [13], to which the reader is referred
for more details.

In quantum mechanics, the state of any physical system is completely specified by a
linear operator acting upon a complex Hilbert space; the latter is called the state space of
the system. The dimension of the state space is equal to the number of degrees of freedom
possessed by the physical system, and may be either finite or infinite. Systems with two
degrees of freedom play a special role in quantum information theory, and are called qubits.

Density operators

Not all linear operators are valid descriptions of a physical state; only so-called density
operators are admissible. Conversely, any density operator is a valid description of some
physical state.

Definition 1. A density operator (or density matrix ) is a positive semidefinite Hermitian
operator with unit trace.

Density operators of the form |ψ〉〈ψ|, where |ψ〉 is a unit vector in the state space,
represent what are called pure states. Pure states may naturally be identified with elements
of the state space according to the correspondence |ψ〉〈ψ| ↔ |ψ〉. (This correspondence only
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CHAPTER 2. BACKGROUND

specifies |ψ〉 up to a phase factor, which may be arbitrarily chosen.) It is often convenient,
when the state of a system is pure, to specify it by giving the corresponding vector. States
that are not pure are called mixed.

Any density operator ρ can be written as a convex combination of pure states—that is,
in the form

ρ =
∑
i

pi|ψi〉〈ψi| (2.1)

where the pi are positive real numbers satisfying
∑

i pi = 1 and the |ψi〉 are unit vectors. The
spectral theorem proves that such a decomposition always exists, but it is not necessarily
unique unless the state is pure.

Another important state of any physical system is the one described by the density
operator 1/n, where n is the dimension of the state space. The state is called the maximally
mixed state, and can be thought of as being a state of maximum “indeterminateness”:
nothing is known about the system other than its dimension. It corresponds to the uniform
distribution in probability theory.

Composite systems: tensor products and the partial trace

It is often of interest to consider not only one physical system in isolation, but two or more
of them jointly. The state space of a composite system is represented by the tensor product
of the state spaces of the subsystems. (When working with matrices, this corresponds to
the Kronecker product.) Systems consisting of two subsystems are called bipartite, and in
general, systems consisting of more than one subsystem are called multipartite.

A common convention, followed in this thesis, is to omit the tensor product sign ⊗
when its presence is implied by context.

One may also proceed in the other direction—that is, discard one of the subsystems of
a multipartite system and consider only the remainder. To model this, it is necessary to
introduce the partial trace operation.

Definition 2. Let A ∈ HA and B ∈ HB be any two linear operators. The partial trace
over HB of A⊗B is defined as

trHB(A⊗B) := A tr(B). (2.2)

(An analogous definition holds for trHA .) We extend this definition to arbitrary operators
in HA ⊗HB by defining the partial trace to be linear.

The partial trace may easily be stated in terms of matrix elements. Let T be a linear
operator on the tensor product of two finite-dimensional Hilbert spaces. We can decompose
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CHAPTER 2. BACKGROUND

it in terms of orthonormal basis vectors as follows:

T =
∑
ijmn

Tij,mn|i〉〈m| ⊗ |j〉〈n|. (2.3)

Then by applying the definition above, we find that tracing out the second subsystem gives

tr2(T ) =
∑
im

(∑
j

Tij,mj

)
|i〉〈m|. (2.4)

The coefficients
∑

j Tij,mj are the desired matrix elements. A formal similarity between this
expression and the operation of index contraction in tensor analysis may be noted.

Given a system described by the bipartite density operator ρAB, the act of discarding
subsystem B is sometimes referred to as “tracing out” system B. The resulting state
ρA = trB(ρAB) is called the reduced density operator for system A.

Measurements

Having modeled the state of a quantum mechanical system, it is natural to ask how a
measurement on the system is modeled. In quantum mechanics, each measurement is
represented by a set of measurement operators which, like density operators, act on the
state space. Each operator corresponds to a possible outcome of the measurement.

When a system in the state ρ undergoes a measurement represented by the set {Mn},
the nth measurement outcome is obtained with probability

pn = tr(MnρM
†
n). (2.5)

In order to guarantee that the probabilities sum to unity, we require the measurement
operators to satisfy the equation ∑

n

M †
nMn = 1. (2.6)

After the measurement, the state of the system changes from ρ to

ρn =
MnρM

†
n

tr(MnρM
†
n)
. (2.7)

Notice that the state of the system after the measurement depends on the measurement
outcome. According to some schools of thought, this change of state is responsible for an
effect called wavefunction collapse.

6



CHAPTER 2. BACKGROUND

In some situations, it is more convenient to work in terms of an alternative set of
operators called a POVM 1 than with measurement operators directly.

Definition 3. A POVM is a set of positive semidefinite Hermitian operators which sum
to the identity operator.

In the simplest case, the elements En of a POVM correspond to the measurement
operators Mn by En = M †

nMn, so each element corresponds to a measurement outcome.
More generally, it is possible to perform “coarse-graining” by associating several measure-
ment outcomes to one POVM element. In this case we have En =

∑
iM

†
iMi, where the

summation is over the subset of measurement operators to be associated with En.
The probability of obtaining the measurement outcome associated with the POVM

element En (or one of the outcomes, in the case of coarse-graining) is

pn = tr(Enρ). (2.8)

If the post-measurement state is not important, it is sufficient to characterize a mea-
surement by giving its POVM.

Given an orthonormal basis {|i〉} of a state space, the projectors {|i〉〈i|} form a set
of measurement operators (as well as a POVM). Measurements of this form are called
projective measurements, and the act of performing such a measurement is referred to as
“measuring in the {|i〉} basis”. A projective measurement performed on a pure state always
results in a pure state.

Quantum channels

We now turn to the question of how physical operations upon a system are to be modeled.
This is done using completely positive, trace-preserving maps, which are linear “superopera-
tors” whose properties guarantee that they map density operators to density operators.
Such maps are called quantum channels or quantum operations.

Definition 4. Let HA and HB be Hilbert spaces, and let L( · ) denote the set of all linear
operators on the specified space. A linear mapping Φ : L(HA)→ L(HB) is called a quantum
channel or quantum operation if it satisfies the following properties:

1. (Complete positivity) For all natural numbers n and all ρ ∈ L(HA ⊗ Cn),

ρ ≥ 0 =⇒ (Φ⊗ idn)(ρ) ≥ 0. (2.9)

Here idn is the identity map on L(Cn).

1POVM is an abbreviation of positive operator-valued measure, though the term is very rarely written
out in full.

7



CHAPTER 2. BACKGROUND

2. (Trace preservation) For all ρ ∈ L(HA), tr(ρ) = tr[Φ(ρ)].

The partial trace operation is an important example of a quantum channel.
Quantum channels which can be written in the form Φ(ρ) = UρU †, where U is a unitary

operator, are called unitary channels. When a unitary channel is applied to a pure state
like |ψ〉〈ψ|, the resultant state is again pure and corresponds to the vector U |ψ〉. A unitary
channel, in essence, acts as a change of basis on the state space.

An important result about quantum channels states that they can always be simulated
using unitary channels. One can do this by attaching an auxiliary system to the system of
interest, performing a unitary channel on the joint system, then discarding some part of
it. This result is called the Stinespring dilation theorem [13]. For simplicity, we present a
special case of this theorem where the quantum channel maps between spaces of the same
dimension.

Theorem 1. Let Φ : L(H) → L(H) be a quantum channel. Then there exists a Hilbert
space K, a unit vector |0〉 ∈ K, and a unitary operator U on H⊗K such that

Φ(ρ) = trK[U(ρ⊗ |0〉〈0|)U †] (2.10)

for any density operator ρ in L(H).

By introducing an orthonormal basis on the auxiliary system K and explicitly evaluating
the partial trace in terms of the basis vectors, we can rewrite (2.10) without introducing
an auxiliary system. This representation of a quantum channel is called the Kraus or
operator-sum representation. (This time, we will not restrict the domain and range of the
quantum channel to be the same.)

Theorem 2. Let Φ : L(HA)→ L(HB) be a quantum channel. Then there exists a set of
operators {Kn}, each mapping from HA to HB, such that

Φ(ρ) =
∑
n

KnρK
†
n (2.11)

for any density operator ρ in L(HA). Moreover, the Kn satisfy∑
n

K†nKn = 1. (2.12)

Note the similarity between the Kraus operators Kn and the measurement operators
Mn described above. Measuring a system is the same as applying a quantum channel.

8



CHAPTER 2. BACKGROUND

2.1.1 Entanglement

It was stated earlier that the state space of a composite system is the tensor product of
the state spaces of its subsystems. However, not all states of the composite system can be
represented as a tensor product of density operators on each of the subsystems, or even as
a convex combination of such products. Such states, which are not “compatible” with the
tensor product structure of the composite system, are called entangled.

To formalize this, we introduce the notion of a separable state. These are nothing but
convex combinations of product states, which are of the form ρA ⊗ ρB.

Definition 5. Let HA and HB be Hilbert spaces. A density operator ρAB ∈ L(HA ⊗HB)
represents a separable state if it can be written in the form∑

i

piρ
A
i ⊗ ρBi , (2.13)

where pi ≥ 0 for all i,
∑

i pi = 1, and the ρAi ∈ L(HA) and ρBi ∈ L(HB) are themselves
density operators.

Note that all separable pure states are product states.

Definition 6. Any state that is not a separable state is an entangled state.

Some of the most simple examples of entangled states are the four Bell states, which
are pure states of a system consisting of two qubits. Let {|0〉, |1〉} be an orthonormal basis
for the state space of a single-qubit system. Then the vectors which correspond to the Bell
states are defined as follows:

|Φ+〉 :=
1√
2

(|00〉+ |11〉)

|Φ−〉 :=
1√
2

(|00〉 − |11〉)

|Ψ+〉 :=
1√
2

(|01〉+ |10〉)

|Ψ−〉 :=
1√
2

(|01〉 − |10〉)

(2.14)

For clarity and brevity, we have written (for example) |00〉 for |0〉 ⊗ |0〉.
Note that these four vectors form an orthonormal basis for the state space of two qubits.

A measurement in this basis is called a Bell state measurement (BSM).

9



CHAPTER 2. BACKGROUND

The Bell states have this very important property: if one takes a system whose state
is described by |Φ+〉 and performs any projective measurement on one of the qubits, both
qubits will be in the same state after the measurement. This is true of the other Bell states
as well, up to a unitary channel on one of the qubits. Hence, in some sense, the Bell states
are perfectly correlated.

It is possible to define entanglement measures which quantify “how entangled” a given
bipartite state is. All entanglement measures are minimized by separable states; they are
also nonincreasing under local operations and classical communication (LOCC).2

Many entanglement measures are difficult to compute for a given bipartite state. The
logarithmic negativity, however, is quite easy to compute.

Definition 7. The logarithmic negativity of any bipartite density operator ρAB is defined
to be

LN(ρAB) := log2‖(T ⊗ id)(ρAB)‖1 (2.15)

where T is the transpose operation and ‖ · ‖1 denotes the trace norm (sum of singular
values).

The logarithmic negativity is zero for separable states. For two-qubit systems, the Bell
states maximize the logarithmic negativity, achieving a value of 1.

For more details on entanglement measures, the reader is referred to [14].

2.1.2 Quantum optics

In classical physics, electromagnetic waves are described by solutions of Maxwell’s equations.
These solutions can be decomposed into a linear combination of orthonormal basis functions,
each of which is called an optical mode. These modes may correspond, for example, to
waves of various different frequencies and polarizations. When the Hamiltonian of the
electromagnetic field is written in terms of these modes, it is mathematically equivalent to
the Hamiltonian of a set of uncoupled simple harmonic oscillators, each one corresponding
to a mode. In the quantum mechanical treatment of the electromagnetic field, one simply
replaces these simple harmonic oscillators with quantum harmonic oscillators.

The state space of a quantum harmonic oscillator is spanned by a countably infinite set
of orthonormal vectors {|n〉}∞n=0. The quantum states that correspond to these vectors are

2Informally, LOCC may be defined as follows. Suppose Alice and Bob each hold a part of the bipartite
state. They apply quantum operations only to their parts of the state, but can exchange classical information
which they use in deciding what quantum operations to perform. There is no limit to the number of times
they can exchange classical information or apply local quantum operations. Any quantum operation which
can be implemented by Alice and Bob in this way is LOCC.
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called Fock states or number states. In the context of quantum optics, the Fock state |n〉 is
the state in which there are n photons in a given optical mode.3

There are two important operators that act on the state space of a quantum harmonic
oscillator: the annihilation operator a and its adjoint, the creation operator a†. Their action
on Fock states is as follows:

a|n〉 =
√
n|n− 1〉 (2.16)

a†|n〉 =
√
n+ 1|n+ 1〉 (2.17)

It can be seen that a decreases the number of photons by one, while a† increases it by
one, hence the names of the operators. The creation and annihilation operators satisfy the
commutation relation

[a, a†] = 1. (2.18)

Note that the creation and annihilation operators of two different modes always commute,
since they act on different subspaces of the tensor product space of the two modes.

Another important operator is N := a†a. This is called the number operator, and takes
its name from the fact that the nth Fock state is an eigenvector of N with eigenvalue n:
N |n〉 = n|n〉. In other words, it counts the number of photons in a mode.

States which are described by eigenvectors of the annihilation operator are called coherent
states. One reason why they are important is that, in most cases, they accurately model
the pulses of light emitted from a laser. In fact, we will assume throughout this thesis that
all laser pulses are coherent states. A coherent state is completely characterized by its
corresponding eigenvalue, which can be any complex number; this eigenvalue is called the
amplitude of the state. In terms of Fock states, coherent states can be written in the form

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (2.19)

where α is the eigenvalue corresponding to |α〉.
If a coherent state is measured in the Fock state basis, the probability of obtaining the

nth Fock state is

P (n|µ) = e−µ
µn

n!
(2.20)

where µ := |α|2. This is a Poisson distribution with mean µ. Because Fock states contain a
definite number of photons, we may interpret this as meaning that the number of photons
in a coherent state has a Poisson distribution with mean photon number µ.

3Note that symbols like |0〉 or |1〉 are often used to represent states other than Fock states. The context
should make it clear what the appropriate interpretation of them are.
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a1

a2

b1
b2

Figure 2.1: Diagram of a beamsplitter. The input and output light beams are labeled by their
respective annihilation operators.

Unsurprisingly, coherent states involving multiple modes are described in terms of tensor
products of single-mode coherent states.

Beamsplitters

One of the most important devices used to manipulate photons is the beamsplitter. Ab-
stractly, it can be thought of as a device having two input and two output ports, each
port corresponding to an optical mode. If a beam of light is sent through one input port,
with nothing entering the other one, the action of a beamsplitter is that of a half-silvered
mirror placed at an angle to the incident light: the beam is split into two beams which
leave through the output ports. Indeed, beamsplitters are sometimes implemented using
such mirrors.

Let a1 and a2 denote the annihilation operators for the two input modes and b1 and b2
be the annihilation operators for the two output modes, as illustrated in Fig. 2.1. Then the
action of a beamsplitter is such that these operators are related as follows:[

b1
b2

]
=

[
t r
−r∗ t∗

][
a1
a2

]
. (2.21)

The coefficients t and r are complex numbers that are constrained to satisfy

|t|2 + |r|2 = 1. (2.22)

Note that (2.21), together with the constraint (2.22), implies that b1 and b2 satisfy the
commutation relation (2.18) if a1 and a2 do. It may also be shown that a†1a1 + a†2a2 =
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b†1b1 + b†2b2, meaning that the number of photons entering the beamsplitter is the same as
the number that exit it.

It is worth pointing out that, if two coherent states are incident on a beamsplitter, the
output states are also coherent states. Moreover, the amplitudes of the input and output
coherent states are related in exactly the same way as the annihilation operators are in
(2.21). Thus, if |α1〉 and |α2〉 were coherent states incident on a beamsplitter,

|α1〉|α2〉 → |tα1 + rα2〉|−r∗α1 + t∗α2〉. (2.23)

In the case of a 50/50 beamsplitter, in which the half-silvered mirror (or its equivalent)
reflects 50% of incoming light and transmits the rest, one may choose t = r = 1/

√
2.

When photons are sent through a lossy optical channel, such as an optical fiber or the
atmosphere, some of them may be lost. This loss is usually modeled as a beamsplitter,
with one input and one output port representing the channel and the other output port
representing the outside environment into which photons are leaking. The other input port
is assumed to be in the Fock state |0〉, since no light enters it. If the transmittivity of the
channel (the probability that a photon traverses the channel without being lost) is η, then
choosing t =

√
η and r =

√
1− η in (2.21) results in the correct probability for photon loss.

2.2 Quantum key distribution

Suppose Alice wants to send a message to Bob, but does not wish her message to be read
by Eve the eavesdropper. For simplicity, assume that her message is a string of bits. The
following is one scheme she could use to encrypt her message:

1. Create a secret key, a string of random bits that is as long as the message, and securely
send it to Bob.

2. Combine the message and the secret key using the bitwise XOR operation.

3. Send the resulting encrypted message to Bob, who decrypts it by combining it with
the secret key using bitwise XOR.

This scheme is called the one-time pad, and has been proved to be information-theoretically
secure; this means that the scheme cannot be broken even if Eve has unlimited computing
power. This very attractive property sets it apart from schemes such as the well-known
Advanced Encryption Standard (AES) [15], which is secure in the practical sense that Eve
requires more computational power to break it than is available in the present day—though
she could do it with unlimited computing power. Despite its simplicity, however, the
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one-time pad is difficult to use in practice. One key requirement is that the secret key
needs to be sent to Bob securely, which is not always easy to arrange. One can think of
the one-time pad, then, not as solving the problem of sending a message securely, but as
reducing this problem to that of sending a random string securely.

The BB84 protocol

In 1984, Bennett and Brassard [1] devised a protocol for sending a random string securely
by exploiting the principles of quantum mechanics. In their protocol, Alice has an apparatus
that can send qubits in one of four states:

|0〉, |1〉, |+〉 :=
|0〉+ |1〉√

2
, |−〉 :=

|0〉 − |1〉√
2

. (2.24)

The set {|0〉, |1〉} is an orthonormal basis for the state space of a qubit; we will call it the
Z basis. The set {|+〉, |−〉} is another such basis, which we will call the X basis. Bob has
a measurement device than can measure qubits in one of these two bases. Alice and Bob
also share an authenticated communication channel. Messages sent over it are public, but
cannot be changed or forged.

Bennett and Brassard’s protocol, now known as BB84, is as follows.

1. Alice randomly chooses a bit value, either 0 or 1, and a basis in which to encode
that bit value, either Z or X. She then sends a qubit to Bob, the state of which she
chooses according to the following scheme:

Z X

0 |0〉 |+〉
1 |1〉 |−〉

2. Bob randomly chooses either Z or X, measures the incoming qubit in that basis, and
records the bit value that corresponds to his measurement result (again according to
the above scheme).

3. Steps 1 and 2 are repeated a large number of times. Alice and Bob each end up with
a random bit string called their raw key.

4. Using the authenticated channel, Alice and Bob reveal to each other the bases they
used to send and measure each qubit. Whenever Alice and Bob used different bases
to send and measure a qubit, they discard the corresponding bit from their raw keys.
The resulting strings are called their sifted keys.
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5. Alice and Bob reveal a portion of their sifted keys to each other to estimate the
number of errors between them. If this is too high, they abort the protocol. Otherwise,
they perform processes called error correction and privacy amplification to resolve
discrepancies between the sifted keys and eliminate any information Eve may have
about them. Alice and Bob end up with identical, random bit strings about which
Eve has no information. This is their secret key, which they can use in the one-time
pad scheme.

We will not describe the processes of error correction and privacy amplification in detail,
contenting ourselves with the knowledge that such processes exist.

The security of this protocol relies on the fact that, if Eve wishes to obtain any
information on the key, she needs to make measurements on the qubits that Alice sends. In
order for her to correctly determine what bit value is being encoded by a given qubit, she
must measure in the same basis as the one in which Alice sent it in. If Eve measures in
the other basis, it can easily be calculated that she obtains the correct bit value only with
probability 1/2. If she then passes on the post-measurement qubit to Bob, he also obtains
the correct bit value with probability 1/2 even if he did measure in the correct basis. In
this way, Eve introduces errors into the communication (with some probability) whenever
she tries to eavesdrop.

BB84 represents one method for performing quantum key distribution (QKD). Many
other QKD protocols now exist; they all solve the problem of securely distributing a secret
key to Alice and Bob by relying, like BB84, on the properties of quantum systems.

We should mention here that, in practice, QKD is always implemented using photons
[16]. It is true that photons are easily lost and that optical channels with near-unit
transmittivities are impractical; in fact, these problems form the core motivation for this
thesis. However, there is simply no other practical, reliable way to send qubits over long
distances. In BB84, the qubit states could be realized using photon polarization states
(in which |0〉 and |1〉 represent horizontal and vertical polarization, respectively), by time
bin states (where |0〉 and |1〉 represent early and late arrival of photons), or in some other
manner.

In this thesis, we will focus on a variant of BB84 called efficient BB84 [17]. It is almost
exactly the same as BB84, except that Alice and Bob choose to send and receive qubits in
the Z basis much more often than in the X basis. The result is that much fewer bits are
discarded in the sifting process (step 4). (This does come at a price: Alice and Bob are
required to perform a more sophisticated error analysis in step 5. But we need not concern
ourselves with that.) In the limit of infinitely long secret keys, the probability of choosing
the X basis may be made arbitrarily low, so that essentially no bits are discarded in the
sifting process.
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It can be shown that BB84 (in both its regular and efficient variants) is equivalent
to one in which the two qubits of the Bell state |Φ+〉 are distributed to Alice and Bob,
who both measure them in the same way Bob does in step 2 above [18]. Alice and Bob
then discard those bits where they measured in different bases. This equivalence will be of
extreme importance in the following chapter of the thesis, where Alice and Bob extend the
range at which they can perform BB84 using a “central station” that (ideally) distributes
Bell states.

Secret key rate

The most important figure of merit used to evaluate a QKD protocol is the secret key rate
(often shortened to key rate). Here we state the definition in terms of channel uses, but
one may analogously define secret key rates per unit time.

Definition 8. For a given QKD protocol, the secret key rate per channel use is the number
of bits of secret key that can be generated each time the quantum channel is used, in the
limit of infinitely long secret keys.

The key rate for efficient BB84, implemented using single photons, is [17, 16]

R = Y1[1− h(e1)− fh(e1)]. (2.25)

Here Y1 is the yield : the probability of Bob successfully detecting a photon given that
Alice sent a single photon. The parameter e1 is the quantum bit error rate (QBER): the
fraction of Alice and Bob’s sifted keys that do not match, as estimated in step 5 above.
(The subscript 1 refers to the fact that single photons are being used.) The factor f is an
error correction inefficiency factor. An ideal error correction scheme—one that results in
the longest secret key for a given length of raw key—would correspond to f = 1; non-ideal
schemes have f > 1. Finally, the function h is the binary entropy function, defined as

h(x) := −x log2(x)− (1− x) log2(1− x). (2.26)

Whenever the expression 0 log2 0 occurs, we will set it equal to 0. Lastly, it should be
mentioned that, whenever R is not positive, it is conventionally taken to be 0.

In a practical implementation of QKD, it is almost always the case that errors between
Alice and Bob arise that are not attributable to eavesdropping. In principle, if the behavior
of a QKD system is known, it could be possible to take such errors into account. However,
this kind of analysis turns out to be impractical. We need not mention, too, that it is
dangerous to attribute any error to experimental imperfections without extremely strong
justification. For this reason, we will attribute all errors to eavesdropping, no matter the
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source. (These errors, of course, are corrected along with any errors caused by eavesdropping
in the error correction step.) This may decrease the key rate, but that is a small price to
pay for security.

2.2.1 Decoy states

The BB84 protocol, when implemented with single photons, is somewhat impractical:
sources of light that reliably emit single photons are difficult to build. It is much easier
to use lasers. However, lasers have one defect when used for QKD: they emit coherent
states, which do not contain a definite number of photons. This creates a vulnerability:
if a particular laser pulse is found to have at least two photons, Eve could split off one
of the photons and send the remainder to Bob. She then waits until Bob announces the
bases he used to measure his photons (step 4), then measures her photon in the same basis
that Bob did. She thus obtains information on Bob’s raw key without inducing any error
between Alice and Bob. This is problematic, of course: Alice and Bob rely on errors to
detect eavesdropping.

It appears necessary, then, to assume that all pulses containing two or more photons
leak information to Eve. This means that the laser intensity must be set quite low to reduce
the chance of emitting a pulse containing multiple photons. If Alice sends photons over a
lossy optical channel with transmittivity η, then the key rate is optimized when the mean
photon number of the laser pulses is on the order of η. Even then the key rate is low, on
the order of η2. But perhaps that assumption is unduly pessimistic. Is it possible to obtain
a better characterization of the information leakage?

The solution is provided by the concept of decoy states [19, 20]. By sending laser pulses
with different laser intensities and recording statistics for each intensity setting, Alice and
Bob can infer whether Eve has been tampering with their channel. It is important that
these decoy pulses be interspersed randomly among the signals used for generating the
secret key, so that Eve cannot determine which pulses are decoys and which are true signals.
The key4 to this approach is the expression

Qµ =
∞∑
n=0

P (n|µ)Yn. (2.27)

Here Qµ is the probability that Bob detects a signal given that Alice’s laser pulses have
mean photon number µ, P (n|µ) is as given in (2.20), and Yn is the yield of n-photon states:
the probability that Bob detects a signal given that Alice sent a pulse containing n photons.
Eavesdropping would affect the yields Yn. Now, Alice and Bob can determine Qµ from their

4Pun intended.
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data, but not the Yn directly. If Alice and Bob could determine Qµ for all values of µ, then
it is reasonable to think (though not proven) that they can solve for the Yn. But even by
using two or three settings for µ, they can determine bounds on the possible values of Yn.
In this way, they can find out whether Eve has been eavesdropping and determine what
fraction of their signals derive from pulses containing single photons (and can be safely
used to create a secret key).

A similar analysis can be performed for the error rate using the expression

Eµ =
∞∑
n=0

P (n|µ)Ynen, (2.28)

where en is the error rate for the bits of the raw key that derive from n-photon signals.
The key rate for BB84, implemented using laser pulses and decoy states, is [19]

Rdecoy = Y1µe
−µ[1− h(e1)]− fQµh(Eµ) (2.29)

where µ is the average photon number for signal states (laser pulses from which the secret
key is to be generated) and f is the error correction inefficiency. Y1 and e1, the yield and
QBER for single-photon states respectively, are estimated as outlined above.

Note that, using decoy states, it is no longer necessary to keep the mean photon number
very low. The key rate in this case is proportional to the channel transmittivity η, which is
a significant improvement.

2.3 Quantum repeaters

It has been pointed out that photons are the only practical physical systems with which
to perform QKD. They have one great fault, however: they can get lost! This of course
affects the secret key rate. In (2.25), for example, Y1 heavily depends on the transmittivity
of the channel between Alice and Bob—the probability that a photon can get from one
end of the channel to the other. In fact, Y1 is equal to the transmittivity if there are no
background photons or other spurious detection events. The key rate, then, is proportional
to the transmittivity.

This specific example is a manifestation of the fact that channel loss places a fundamental
bound on the amount of quantum information that can be sent through the channel each
time it is used. Takeoka, Guha, and Wilde have shown in [2] that, when light signals (which
may, in general, involve multiple modes) are sent through a pure-loss optical channel with
transmittivity η, the quantum communication capacity of the channel is upper bounded by

RTGW = log2

(
1 + η

1− η

)
(2.30)
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bits per mode per channel use [2]. Here, pure-loss means that the channel acts like a
beamsplitter, as described in Sec. 2.1.2; it contains no components which affect the quantum
state of the signals in any other way. For ease of reference, we will call this result the TGW
bound.

As a result of the TGW bound, the secret key rate that can be achieved using a pure-loss
optical channel cannot be higher than RTGW. There is no QKD protocol whose key rate
exceeds this bound, no matter whether single photons, coherent states, or more exotic
photonic states are used to send signals, so long as a pure-loss channel is used.

When η is small, the TGW bound reduces to RTGW ≈ (2/ ln 2)η ≈ 2.89η. This limit is
no mere mathematical curiosity, but has a practical importance. The transmittivity of an
optical fiber of length L has the functional form

η = e−L/Latt , (2.31)

where Latt is a characteristic quantity called the attenuation length. The exponential
decrease means that when L > Latt, transmittivities are quite low. A reasonable value for
Latt is on the order of 22 km, so loss in fiber is significant even at moderate distances.

We see, then, that the R ∝ η scaling exhibited by BB84 cannot be improved upon, no
matter what QKD protocol is used, so long as the assumptions leading to the TGW bound
hold and transmittivities are low. In order to transcend the scaling behavior imposed by
the TGW bound, Alice and Bob need to be connected using a channel that does not simply
behave like a beamsplitter. This is where quantum repeaters enter the picture. Abstractly
speaking, we might define them as follows.

Definition 9. A quantum repeater (QR) is any device that allows quantum communication
over an optical channel to be performed at a rate exceeding the TGW bound.

This definition draws a very clear dividing line between true QR schemes, whose
performance exceeds anything that is theoretically possible using a pure-loss channel, and
schemes which show an improvement over existing protocols over pure-loss channels, but
could nevertheless be emulated using a scheme over a pure-loss channel.

QRs are most commonly envisaged as auxiliary quantum devices placed along the
channel between Alice and Bob, effectively breaking it up into multiple low-loss channels.
The original quantum repeater scheme by Briegel et al. [5] fits this description, as do all of
the QR schemes described in this thesis.

We are particularly interested in quantum repeaters that allow QKD to be performed
at secret key rates exceeding the TGW bound. Moreover, we will confine our attention to
devices that do not require the trust of Alice and Bob. This precludes such schemes as
having Alice and Bob share separate secret keys with some relay station, which uses the
keys to decrypt and re-encrypt messages routed through it.

19



CHAPTER 2. BACKGROUND

Before we can obtain a more concrete idea of what a quantum repeater might look
like, let us review some of the basic tools and techniques used by many quantum repeater
schemes.

2.3.1 Tools for QRs

Quantum memories

In almost all quantum repeaters schemes, the auxiliary devices placed between Alice and
Bob contain one or more quantum memories. A quantum memory (QM) is a physical
system in which a quantum state (usually a qubit) can be stored, manipulated, and read
out at will. They can be implemented, for example, using trapped ions [21, 22, 23], atomic
ensembles [7], or atoms in cavities [24].

We will be particularly interested in QMs that can be entangled with single photons.
(This can be done with both ions and atoms; see [25] and [24] respectively.) The reason for
this is because two QMs can be entangled using such entangled photons as intermediaries.
This might be done, for example, by entangling one QM with a photon and causing it to
interact with another QM, or by entangling each QM with a photon and performing a Bell
state measurement on the photons (an instance of entanglement swapping, a technique
described below).

Quantum teleportation and entanglement swapping

Quantum teleportation, originally described in [26], is a technique for transmitting an
arbitrary quantum state from one position to another without having to move a physical
system containing the state through the intervening space. This is achieved with the help
of an auxiliary bipartite entangled state, one subsystem of which is near the state to be
teleported; the other subsystem will hold the quantum state after the teleportation is
complete. For simplicity, we describe the method for teleporting a pure qubit state; the
same steps apply to teleporting a mixed state. (Qubit teleportation will be sufficient for
our purposes.)

Let |ψ〉A = α|0〉+ β|1〉 be the qubit that Alice wishes to teleport to Bob, and suppose
that Alice and Bob share the Bell state |Φ+〉A′B. In order to perform the teleportation,
they proceed as follows.

1. Alice performs a Bell measurement between the qubit |ψ〉A and subsystem A′ of the
Bell state. Subsystem B collapses into one of the following states, depending on the
result of Alice’s measurement:
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Result State of system B

|Φ+〉 α|0〉+ β|1〉
|Φ−〉 α|0〉 − β|1〉

Result State of system B

|Ψ+〉 β|0〉+ α|1〉
|Ψ−〉 β|0〉 − α|1〉

2. Alice sends her measurement outcome to Bob.

3. Depending on what Alice sends him, Bob sends system B through a unitary channel
described by one of the following operators:

Result Unitary

|Φ+〉 1

|Φ−〉 Z

|Ψ+〉 X

|Ψ−〉 XZ

Here X and Z are Pauli matrices. After this correction, system B ends up in the
state |ψ〉B = α|0〉+ β|1〉.

Several properties of quantum teleportation are to be noted. First, Alice does not need
to know what |ψ〉A is. In order to teleport it, all that is necessary is that she measure
it jointly with one subsystem of a Bell state. Second, after the teleportation is finished,
Alice only has a random Bell state; she no longer has a copy of |ψ〉A. Third, Bob cannot
construct |ψ〉B without receiving Alice’s measurement result. Conversely, the information
sent from Alice to Bob is, by itself, not sufficient to reconstruct the state |ψ〉A.

Entanglement swapping is a special application of quantum teleportation; it causes two
distant quantum systems to become entangled without the need for preparing an entangled
state and physically moving the subsystems to the desired locations. Essentially, it works
by teleporting a subsystem of an entangled state. More explicitly, suppose that Alice and
Bob each share a copy of the state |Φ+〉 with some central station CC ′, so that the total
system is in the state |Φ+〉AC |Φ+〉C′B. Then by using |Φ+〉C′B to teleport subsystem C to
B, Alice and Bob end up sharing a Bell state.
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Alice Bob
Figure 2.2: A quantum repeater scheme. Dots represent quantum memories, lines indicate
entanglement, and dashed boxes indicate Bell state measurements.

Quantum teleportation can be performed using states other than |Φ+〉. If the auxiliary
entangled state used for teleportation is close to |Φ+〉AB but contains some error, the final
teleported state will contain some error. Similarly, entanglement swapping using imperfect
Bell states will induce errors in the final entangled state. These facts, together with the
fact that the information communicated by Alice during teleportation is insufficient to
reconstruct the initial state, are crucial when applied to QKD. They mean that quantum
teleportation is secure against eavesdroppers if Alice communicates her measurement result
over an authenticated channel, and that Eve introduces errors whenever she tries to tamper
with the auxiliary entangled state.

Finally, it should be mentioned that the correction in step 3 above is not always strictly
necessary. Suppose Alice teleports one of the states in (2.24) to Bob, who immediately
measures it in the X or Z basis. He can obtain the correct measurement outcome without
performing step 3 if he instead applies an appropriate bit flip to his measurement result. If
he measured in the X basis, then he flips his result if the Bell measurement yielded |Ψ+〉 or
|Ψ−〉; similarly, if he measured in the X basis, he applies a bit flip if the Bell measurement
yielded |Φ−〉 or |Ψ−〉. The ability to “reinterpret” his measurement result is important in
experiments because it removes a potential source of error.

2.3.2 A concrete QR scheme

We are now ready to look at a concrete QR scheme. Fig. 2.2 illustrates a simplified version
of the scheme described in [5]. A number of stations, each containing two QMs, are placed
at regular intervals between Alice and Bob. The two of them each have a station as well,
with one QM each. Each station is connected to its neighbors with optical channels.

When Alice wishes to send a quantum signal to Bob, each QM is caused to be entangled
with a QM in a neighboring station, so that a series of entangled pairs stretches from Alice
to Bob. Finally, a Bell measurement is performed at each station, and all the measurement
results sent to Bob. Essentially, this is nothing but entanglement swapping writ large. The
end result is that Alice and Bob share an entangled state, which can be used to teleport a
quantum signal from Alice to Bob.

The benefit of this scheme over the direct transmission of signals from Alice to Bob

22



CHAPTER 2. BACKGROUND

lies in the fact that the success of entangling a given pair of QMs is independent of the
success of entangling any other pair. Once a pair is successfully entangled, it can store
its entangled state until all the other links are ready. The effect is that, if QKD were to
be performed using this repeater system, the key rate would scale as the transmittivity of
the individual links and not as the transmittivity of the whole channel from Alice to Bob.
More explicitly, assume that the repeater stations are connected using optical fiber. If a
direct connection from Alice to Bob would have transmittivity η, then the QR-assisted key
rate goes as η1/N where N is the number of links between stations.

Recall that the TGW bound constrains the key rate to scale at best as R ∝ η (assuming
η � 1). However, the scheme we have presented here scales as R ∝ η1/N , which is superior.
We see, then, that this scheme really is a quantum repeater in the sense of Definition 9
above.

There are a number of factors that stand in the way of experimentally implementing such
a scheme, however. Chief among them is the fact that, in practice, QMs do not perfectly
retain a stored quantum state: in a process called dephasing, the stored state decays over
time [10]. This introduces errors in the Bell states used for entanglement swapping, inducing
potentially large errors in the final entangled state and in any state subsequently teleported
from Alice to Bob. Another factor is the greater number of inefficiencies and sources of loss
which are introduced by the repeater stations. If too severe, such losses may negate the
benefit of introducing the stations.

Different QR schemes overcome such errors in different ways. The first QR proposal
[5], a simplified version of which was presented above, places multiple pairs of quantum
memories in each station. Multiple entanglement links are produced between each of the
stations, and these imperfectly entangled states are used in a process called entanglement
distillation to produce a single high-quality entangled state between Alice and Bob. Another
approach, described in [8], is basically the same as the scheme presented above except that
instead of producing Bell states between single QMs, encoded Bell states are produced
between banks of QMs. Because of the redundancy involved in encoding a single Bell state
in multiple pairs of QMs, this scheme is more tolerant of error. Yet another scheme [9] does
away with entanglement swapping altogether, instead encoding every signal sent by Alice
into a number of photons and sending them towards Bob. Along the way, the photons
encounter repeater stations at which quantum error correction is performed. If a sufficient
number of photons reach each station, the error correction regenerates the original signal.

Unfortunately, all of these schemes are impractical because they require the use of many
QMs. It can be difficult to implement even two QMs in a lab, let alone the long string of
them required by even the simple QR scheme presented at the beginning of this subsection.
Although simpler QM schemes have been proposed [27], no experiment to date has ever
beat the TGW bound.
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Chapter 3

Beating the TGW bound using a
single quantum repeater node

3.1 Introduction

In this chapter, we analyze a simplified quantum repeater scheme, containing only one node,
which has the potential to beat the Takeoka-Guha-Wilde (TGW) bound. In it, two parties
perform QKD by measuring photons sent from a central station containing two quantum
memories (Fig. 3.1). If the station is placed midway between the parties, each photon need
only travel half the distance between them. Moreover, the presence of the memories means
that the probability of one party successfully measuring a photon is independent of the
success of the other party. Together, these imply that the secret key rate for our protocol
is expected to scale as

√
ηch, where ηch is the transmittivity of an optical fiber stretching

between the parties. Such scaling would be a fundamental improvement over any scheme
relying on direct transmission, and gives it the potential to surpass the TGW bound. Here,
we study whether this scheme can beat the TGW bound in practice, taking into account

BB84 

meas.

Alice Bob

BB84 

meas.
QM

BSM

QM

Figure 3.1: Schematic of the proposed protocol. One quantum memory (QM) sends entangled
photons to Alice, the other to Bob. Once both parties successfully measure photons using BB84
measurements, a Bell measurement is performed on the QMs.
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experimental imperfections.
One of the merits of this scheme is that it can be implemented using currently available

technology. Though not directly scalable to multiple repeater stations, it represents a
step towards a fuller implementation of quantum repeaters such as the ones alluded to
in Sec. 2.3.2 of the previous chapter. It is similar in spirit to the protocol described in
[27], except that in their proposal single photons or weak laser pulses are sent toward the
central station instead of being emitted from the quantum memories (QMs). Our protocol
thus simplifies the experimental requirements, at the cost of introducing wait times due to
classical communication.

3.2 Description of the protocol

The protocol we consider in this chapter is illustrated in Fig. 3.1. It uses two quantum
memories in a central station placed between Alice and Bob, who wish to establish a secret
key via QKD. We do not assume a particular implementation of the QMs, but we do
require that each QM can be entangled with a single photon (as in, for example, ion-photon
entanglement [25] or the DLCZ scheme [6]). The photonic degree of freedom used to encode
qubits can be freely chosen; examples include polarization or time-bin encoding. We further
assume that the two QMs can be jointly measured in the Bell basis, either by applying
the appropriate quantum channels and then directly measuring them or by mapping the
memory states onto photons and performing an optical Bell measurement. Alice and Bob
are connected to the central station by lossy optical channels, and each have measurement
apparatuses that allow them to measure incoming photons in one of two settings which
correspond to mutually unbiased bases of the qubit subspace (as in BB84). As in Sec. 2.2
of Ch. 2, we will call the bases X and Z.

The procedure to produce one bit of raw key is as follows:

1. An entangled memory-photon state is prepared in one of the QMs and the photon
sent to Alice, who performs a BB84 measurement on the photon. (See the chart given
in Ch. 2, Sec. 2.2.) This is repeated until she successfully detects a photon.

2. Same as the previous step, but with Bob and the other QM.

3. A Bell measurement is performed on the two QMs and the result announced to Bob.

4. If Bob measured in the Z basis, he applies a bit flip to his BB84 measurement if the
Bell measurement yielded |Ψ+〉 or |Ψ−〉. Similarly, if he measured in the X basis, he
applies a bit flip if the Bell measurement yielded |Φ−〉 or |Ψ−〉.
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This procedure is repeated until a sufficient amount of raw key is obtained. The rest of the
protocol is the same as in efficient BB84.

The protocol described here admits of a few variations: the QMs could be simultaneously
or sequentially loaded by performing steps 1 and 2 either at the same time or in sequence,
and the position of the central station can be changed. In Sec. 3.6, we will explore the
difference between simultaneous and sequential loading as well as the effect of changing the
position of the central station.

3.3 Benchmarks

In comparing our protocol to schemes based on the direct transmission of photons from
Alice to Bob, the TGW bound is the most stringent standard of comparison. We will,
however, compare our protocol to other scenarios as well; this will make it easier to see
how well it matches up to concrete schemes that can be performed in a lab. The direct
transmission benchmarks with which we will compare our protocol are as follows:

1. The TGW bound on the secret key rate per mode,

RTGW = log2

(
1 + ηch
1− ηch

)
, (3.1)

where ηch is the channel transmittivity. For small ηch, this reduces to RTGW ≈
(2/ ln 2)ηch ≈ 2.89ηch.

2. BB84 with an ideal single-photon source and an ideal detector setup (no errors and
no losses other than channel loss).

3. BB84 with an ideal single-photon source and a realistic detector setup (nonzero
misalignment error and dark counts, imperfect detector efficiency).

4. Decoy-state BB84 with a laser and a realistic detector setup.

5. BB84 using a quantum memory as a single photon source and a realistic detector
setup.

The figure of merit to be considered in this chapter is the key rate per mode. Because
BB84 requires two optical modes when implemented with the usual polarization or time-bin
encoding, its key rate expression takes on a factor of 1/2. We may compare the key rate
per mode of our protocol to those of the benchmarks above either on a per time unit or
a per channel use basis. In this chapter we will compare key rates per channel use only,
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Figure 3.2: Key rate per channel use per mode vs. distance for the benchmarks listed in Sec. 3.3.
The thick curve corresponds to the TGW bound (benchmark 1). Parameter values are as given in
Sec. 3.6.

though in future work it is of course desirable to compete on a per time unit basis. Any
reference to “key rates” in the remainder of this chapter, then, should be taken to mean
“key rates per mode per channel use”. Expressions for the key rates of benchmarks 2–5 are
given in Appendix A.

Fig. 3.2 shows plots of key rates as a function of the distance between Alice and Bob.
Note that all of these benchmarks are proportional to ηch (within certain limits, depending
on the benchmark).

3.4 Component modeling

In this section, we present a simple model of the experimental behavior of each component
in the setup described in Sec. 3.2 in the absence of eavesdropping.

3.4.1 Quantum memories

In this chapter, we consider QMs that are adequately described by the following model. A
photon-memory entangled state can be generated in a QM with probability ηp; each attempt
to do so requires a preparation time of Tp. When a photon is successfully generated, it
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is maximally entangled with the QM; without loss of generality, we may take the initial
memory-photon state to be the Bell state |Φ+〉.

The memory-channel photon coupling efficiency is ηc. This includes not only the
probability of a photon entering the optical channel, but the success probability of any
process that occurs between the memory and the channel. For example, it contains the
probability of successfully performing a wavelength conversion (if such is necessary).

Dephasing refers to the degradation of the state stored in a QM over time, and is
characterized by a dephasing time T2. We will model dephasing using the following map
[10], which takes as input the initial state ρ of the QM and returns the state of the QM
after it has dephased for time t:

Γt(ρ) := [1− λdp(t)]ρ+ λdp(t)ZρZ (3.2)

where

λdp(t) :=
1− e−t/T2

2
(3.3)

and Z is the Pauli Z operator. Notice that, in this model, the off-diagonal elements of ρ go
to zero as t→∞.

3.4.2 Channels

Alice and Bob are connected to the central station by optical channels of lengths LA and
LB respectively; the length of the total channel is therefore L = LA + LB. The speed of
light through these channels is c. The transmittivity of a channel of length l is

ηch(l) = e−l/Latt (3.4)

where Latt is the attenuation length.
The probability of error due to setup misalignment between Alice and the central station

is emA. Setup misalignment is a discrepancy between the coordinate system that Alice
imposes on the photon’s state space and the one that the central station imposes; in the
case of polarization encoding, this means Alice’s detector is physically rotated relative to
the central station. Misalignment results in an effective rotation of the qubit state of the
photon. If we assume the rotation angle to be random and symmetrically distributed about
0, the initial memory-photon state |Φ+〉 becomes

(1− emA)|Φ+〉〈Φ+|+ emA|Ψ−〉〈Ψ−| (3.5)

when the photon reaches a detector. This holds for Bob as well, with misalignment error
emB.
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3.4.3 Detectors

For their BB84 measurements, Alice and Bob each use a detector setup consisting of an
optical element that can distinguish photonic qubit states in the X and Z bases (such as a
polarizing beam splitter for polarization qubits) and two threshold detectors which signal
the presence or absence of photons, but do not count the number of photons in a given
pulse. We assume that Alice and Bob actively choose the basis in which to measure. Each
detector has a dark count probability of pd; each setup has efficiency ηd.

If a photon heading towards one of the setups is in the state ρ, the effect of dark counts
can be mimicked by photons which are effectively in the modified state

α(η)ρ+ [1− α(η)]
1

2
, (3.6)

where

α(η) :=
η(1− pd)

1− (1− η)(1− pd)2
(3.7)

and η is the probability that the photon reaches the detector setup. This assumes the use
of a squashing map [28] which randomly assigns a measurement outcome to events in which
both detectors click, reflected by ρ being mapped into the maximally mixed state. (The
squashing map eliminates the need to consider higher-dimensional state spaces by mapping
two-photon events into one-photon events according to the preceding prescription.)

3.4.4 Bell state measurement

The probability of successfully performing a Bell state measurement on the two QMs is
pBSM.

We model errors in the BSM by applying the depolarizing channel

∆λBSM
(ρ) = λBSMρ+ (1− λBSM)

1

4
(3.8)

to the QMs before a perfect BSM. The parameter λBSM indicates how close the actual BSM
is to an ideal BSM.

3.5 Key rate analysis

The secret key rate is lower bounded by [17, 16]

R =
Y

2
[1− h(eX)− fh(eZ)]. (3.9)
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Here, the yield Y is the probability per channel use that Alice and Bob’s measurements, as
well as the BSM, were successful. h(e) is the binary entropy function, eX and eZ are the
quantum bit error rates (QBERs) between Alice and Bob in the X and Z bases, and f is
the error correction inefficiency. The factor of 1/2 comes from the fact that our protocol
requires the use of two optical modes.

Because the total channel between Alice and Bob is divided in two by the central station
and because the number of signals sent over each segment of the channel may in general
be different, it is not immediately obvious how to count channel uses. To be conservative,
we define the number of channel uses required to produce one bit of raw key to be the
greater of the number of times Alice or Bob used their segments of the channel during the
production of that bit. (Note that this is not the sum of the number of times Alice and
Bob used their segments of the channel, even in the case of sequential loading.)

3.5.1 Yield

The probability that a photon emitted from the central station is detected by Alice is

ηA := ηtote
−LA/Latt . (3.10)

where we have defined
ηtot := ηpηcηd. (3.11)

Due to the effect of dark counts, the probability that her detector clicks is

η′A := 1− (1− ηA)(1− pd)2. (3.12)

Let NA denote the number of photons that need to be sent to Alice so that her detector
clicks once; it is a geometrically distributed random variable with success probability η′A.
Expressions similar to the above apply for Bob.

The average number of channel uses required for both Alice and Bob’s detectors to click
is E[max(NA, NB)] where E is the expected value operator. The yield is therefore

Y =
pBSM

E[max(NA, NB)]

= pBSM

(
1

η′A
+

1

η′B
− 1

η′A + η′B − η′Aη′B

)−1
. (3.13)

In evaluating the expectation value, we have used a result in [27].
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3.5.2 Quantum bit error rates

Taking into account all the parameters listed in Sec. 3.4, we find (in the absence of
eavesdropping) that

eX = λBSMα(ηA)α(ηB)[εm(1− εdp) + (1− εm)εdp] +
1

2
[1− λBSMα(ηA)α(ηB)] (3.14)

eZ = λBSMα(ηA)α(ηB)εm +
1

2
[1− λBSMα(ηA)α(ηB)] (3.15)

where

εm = emA(1− emB) + (1− emA)emB (3.16)

εdp = E
[
λdp(tA)[1− λdp(tB)] + [1− λdp(tA)]λdp(tB)

]
. (3.17)

We may interpret εm and εdp as the total misalignment and dephasing errors, respectively,
between Alice and Bob. Here tA and tB are the times that Alice and Bob’s QMs are left to
dephase for.

At this point, we have fully determined eZ in terms of the parameters set out in Sec. 3.4.
In order to evaluate eX , we need only two more quantities: the dephasing time intervals tA
and tB. These are the subject of the following subsection.

Dephasing

Each time a QM emits a photon towards Alice, she must signal whether or not she
successfully measured her photon before the QM prepares another one. This constrains the
amount of time that elapses between photons to be at least

τA = Tp +
2LA
c
. (3.18)

Similar remarks apply to Bob.
If it happens that LA 6= LB, then (3.18) allows the QMs to run at different rates.

Throughout this chapter, we will assume that each QM runs at the maximum rate allowed
by (3.18). It is possible to choose the rates to be the same, but we will not do so here.

For both sequential and simultaneous loading, we may assume without loss of generality
that Bob signals a successful measurement later than Alice does. The BSM is performed as
soon as he does, so the QM that sends him photons dephases for a time

tB =
2LB
c
. (3.19)
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The QM that sends photons to Alice dephases for a longer period of time because it must
wait for Bob to make a successful measurement. If the QMs are sequentially loaded, Alice’s
QM dephases for

tseqA = NBτB +
2LA
c
. (3.20)

If they are loaded simultaneously, then it dephases for

tsimA = |NB −NA|τB +
2LA
c
. (3.21)

In (3.17), because of the linearity of the expectation value operator E, we need only
evaluate E[e−tA/T2 ]. For sequential loading,

E
[
e−t

seq
A /T2

]
=

η′B exp
(
−2LA

cT2

)
eτB/T2 + η′B − 1

. (3.22)

For simultaneous loading, a result from [27] gives

E
[
e−t

sim
A /T2

]
=
η′Aη

′
B exp

(
−2LA

cT2

)
η′A + η′B − η′Aη′B

[
1

1− e−τB/T2(1− η′A)
+

1

1− e−τB/T2(1− η′B)
− 1

]
. (3.23)

3.6 Results

Unless otherwise noted, the following parameter values were used for the results in this
section. They are plausible values for an implementation of our protocol using trapped-ion
quantum memories connected to Alice and Bob via optical fiber. A single ion fluorescence
collection efficiency of 4.2% has been demonstrated in [29], a trapped-ion qubit was measured
to have a dephasing time of 2.5 s in [21], and a two-qubit gate was used to entangle two
ions with a fidelity of 99.3% (corresponding to λBSM = 0.99) in [22].

• ηp (preparation efficiency) = 0.66

• Tp (preparation time) = 2 µs

• ηc (photon-fiber coupling efficiency × wavelength conversion) = 0.04× 0.3

• T2 (dephasing time) = 1 s

• c (speed of light in optical fiber) = 2× 108 m/s

• Latt (attenuation length) = 22 km

• emA (misalignment error) = emB = 0.01
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• pd (dark count probability per detector) = 10−8

• ηd (detector efficiency) = 0.3

• pBSM (BSM success probability) = 1

• λBSM (BSM ideality parameter) = 0.97

• f (error correction inefficiency) = 1.16

For decoy-state BB84 (benchmark 4), we will set the mean photon number of the signal
states equal to 1. For the above numbers, we find that ηtot = ηpηcηd = 0.0024.

3.6.1 Protocol variations

Simultaneous vs. sequential loading

For this comparison, the central station is located halfway between Alice and Bob.
We have found, for the parameter values given above, that simultaneous and sequential

loading of QMs in our protocol yield almost indistinguishable key rates per channel use
over all values of L for which the rates are nonzero (Fig. 3.3). A rough comparison of the
dephasing time intervals tseqA and tsimA suggests that this holds whenever τB/(T2ηtot) is small
over all values of L for which the key rates are nonzero. The parameters we have used are

sequential

simultaneous

0 10 20 30 40 50 60 70
L (km)10-7

10-6

10-5

10-4

10-3
R

Figure 3.3: Key rate per channel use vs. distance for simultaneous and sequential loading. The
two curves are virtually indistinguishable.
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within this regime: τB/(T2ηtot) = 0.140 at L = 66 km. Outside of it, however, the difference
can be dramatic: there are cases where the key rate is nonzero for simultaneous loading
but not for sequential loading.

One might expect to see, at least in the ideal case where the dephasing time T2 is
very long, that the key rate for simultaneous loading is twice that of sequential loading.
The reason this factor of two does not appear is because we count channel uses for both
sequential and simultaneous loading in the same way. (Recall that we are considering key
rates in terms of channel uses, not time.)

Because we will always be well within the parameter regime where simultaneous and
sequential loading give nearly the same key rate, we will consider only sequential loading in
the remainder of this chapter.

Optimization of central station position

When the QMs are sequentially loaded, it need not be true that placing the central station
halfway between Alice and Bob will yield the maximum key rate. This is because there is
an inherent asymmetry in our protocol in this case: Bob only begins making measurements
after Alice has finished hers.

Fig. 3.4 shows the behavior of the key rate (per channel use) as a function of L when the
central station is placed at L/2 and when it is placed at the position that maximizes the
key rate. For small L, both key rates are approximately the same, and scale proportionally
to
√
ηch = e−L/(2Latt). When L becomes large enough for memory dephasing to become

significant, the unoptimized key rate drops to zero. Around that same point, the optimized
key rate transitions from e−L/(2Latt) scaling to ηch = e−L/Latt scaling—which is the same as
for direct transmission—and continues thus until L is so large that detector dark counts
become significant, at which it too drops to zero.

For greater insight into this behavior, consider Fig. 3.5, which shows the optimal central
station position as a fraction of L as L is varied. For lower values of L, the station remains
near the middle. Once dephasing becomes significant, the optimal position moves closer
to Bob. This keeps dephasing errors low because Bob’s link runs quicker, giving Alice’s
QM less time to dephase. At longer distances, the optimal position is a fixed distance away
from Bob, just far enough away that the dephasing in Alice’s QM does not overwhelm the
system with errors. The price of suppressing dephasing errors in this way is that the key
rate scales with the transmittivity of the longer link in the setup, so the key rate scaling is
degraded.
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Figure 3.4: Key rate vs. distance when the central station is at L/2 and when its position is
optimized. (ηc was increased to 0.3 to better show the features of the curves.) Near 150 km, the
unoptimized key rate begins to drop to 0 and the optimized key rate transitions from e−L/(2Latt)

scaling to e−L/Latt scaling.
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Figure 3.5: Optimal central station position as a function of the total distance L. (Alice’s
position is taken to be at L = 0.) Near where the scaling changes from e−L/(2Latt) to e−L/Latt ,
around L = 150 km, the optimal position moves away from L/2 and remains a fixed distance
away from Bob.
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3.6.2 Beating direct transmission

We are now in a position to determine the conditions under which our protocol can beat the
direct transmission benchmarks listed in Sec. 3.3. First, note that at L = 0 the performance
of our protocol may be worse than that of the benchmarks because the central station
introduces additional sources of loss. However, because the key rate for our protocol scales
better with distance than the benchmark key rates when L is not too large, crossover with
one or more of them is possible at some L > 0.

When the central station position is optimized, crossover can only occur in the e−L/(2Latt)

regime (excluding marginal cases)—that is, when the optimal position is near the midpoint
between Alice and Bob. Equivalently, crossover can only occur when the unoptimized key
rate is nonzero. For this reason, we will fix the central station at L/2 for the remainder of
this section instead of optimizing its position. It is worth mentioning that crossover with a
certain benchmark does not mean that our protocol beats it for all L beyond the crossover
point; the interval over which our protocol is superior may be quite small. But optimizing
the central station position can potentially increase the range of distances over which our
protocol beats the benchmark compared to the leaving the station at L/2.

We identify two parameters, the combined efficiency ηtot and the dephasing time T2,
which are crucial in determining whether crossover occurs with any of the benchmarks
and which can be improved from the values given at the beginning of this section. For
example, the photon-fiber coupling efficiency in ηc could be pushed from 0.04 to as high as
0.3 [30] (leading to ηtot = 0.0178), while a T2 of 50 s has already been demonstrated [23].
Fig. 3.6 shows the regions in ηtot-T2 space in which we can beat each of the benchmarks. It
is clear from the figure that we cannot beat any of the benchmarks with the parameters
given at the beginning of the section. From our perspective, improving ηtot is preferable
to improving T2. If ηtot were fixed at a low value, the T2 required to beat the benchmarks
would be unreasonably long. In such a case, the experiment itself may run so slowly that it
is infeasible to accumulate a significant amount of secret key.1

Each region may be explained in the following way. When L is small enough for errors to
be negligible, the key rate of our protocol is R ≈ R0e

−L/(2Latt) while that of the benchmark
of interest is Rb ≈ Rb,0e

−L/Latt , where R0 and Rb,0 are the key rates at L = 0 of our protocol
and of the benchmark respectively.2 These curves intersect at a distance Lint. If Lint is
smaller than some characteristic distance Ldp beyond which dephasing becomes significant,

1Recall, from Definition 8 of the previous chapter, that secret key rate is defined in the limit of infinitely
long keys. We have implicitly assumed throughout the chapter that so-called finite-size effects are negligible.
But this is not true if the experiment cannot produce a large amount of key in a reasonable amount of time.

2This does not quite apply to the TGW bound, which goes to infinity as L→ 0. In this case, one must
continue the e−L/Latt behavior all the way to L = 0, so that Rb,0 = 2/ ln 2.

36



CHAPTER 3. BEATING THE TGW BOUND USING A SINGLE QR NODE

1

2

3

4

5

10-3 10-2 10-1
ηtot10-2

10-1

100

101

T2

Figure 3.6: Regions in ηtot-T2 space where our protocol beats each of the benchmarks listed in
Sec. 3.3, together with approximations of their boundaries obtained using (3.24) (dashed lines).
For benchmark 5 (quantum memory as single photon source), we have fixed ηc = 0.3× 0.3.
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Figure 3.7: Approximating the crossover point using the scaling behavior of the key rates. Note
that the intersection point of the approximating curves coincides with the crossover point of the
key rate curves, and that the intersection occurs before dephasing becomes significant and the key
rate of our protocol goes to 0. (We have set ηc = 0.3.)
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then there is a crossover. The boundary of the crossover region corresponds to Lint = Ldp.
These ideas are illustrated in Fig. 3.7.

Based on this explanation, we can derive an approximate formula for the boundary of
the region in which crossover occurs with a given benchmark with key rate Rb:

T2 = K

[
QTp
η2tot

+
2Latt ln(Q/ηtot)

c

(
1 +

Q

η2tot

)]
. (3.24)

Here

Q =
3Rb,0

2Rηtot=1
0

, (3.25)

Rηtot=1
0 denotes the key rate of our protocol when L = 0 and ηtot = 1, and K is a fitting

parameter characterizing how long the QMs must dephase for, as a fraction of T2, before
dephasing becomes significant. It needs to be chosen to fit the exact crossover region
boundary; empirically, K = 14 gives a good fit. This approximation is valid when Tp � T2
and pd � η2tot/Q. A derivation is given in Appendix B.

The dashed lines in Fig. 3.6 are the boundary approximations given by (3.24).

Attenuation length; the high-loss limit

Let us now consider the high-loss limit, where the attenuation length Latt is very small.
This limit is interesting in the context of hybrid quantum-classical networks. In passive
optical networks, where multiple users are connected to a source, each user is effectively
connected to the source via a high-loss channel. The limit is also applicable when the
wavelength of the photons emitted by the QMs happens to be greatly attenuated by the
optical channel.

The effect of reducing the attenuation length is to make it easier to beat the benchmarks,
as shown in Fig. 3.8 and predicted in (3.24). This is because the photons cannot travel
as far, so there is less dephasing. However, because of the nonzero preparation time Tp,
beating the benchmarks is still nontrivial in the Latt → 0 limit. The high-loss limit thus
represents a regime in which experimental requirements are relaxed, yet the benchmarks
can still meaningfully be beaten.

Fig. 3.9 shows the effect of changing the preparation time Tp and the dark count
probability pd on the ηtot-T2 regions in which our protocol can beat the TGW bound. As
expected from (3.24), the benchmarks become easier to beat as Tp goes down. (This is true
whatever the value of Latt.) We also see that when Tp = 0 and Latt → 0, they can be beat
for any value of T2. Because there is no dephasing at all in this case, T2 plays no role in
determining whether there is a crossover.
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Latt = 22 km
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Figure 3.8: Boundaries of regions in ηtot-T2 space where our protocol beats the TGW bound
for various attenuation lengths.
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Figure 3.9: Boundaries of regions in ηtot-T2 space where our protocol beats the TGW bound in
the limit Latt → 0. Solid lines indicate pd = 10−8, dashed lines pd = 10−5. Blue, orange, green,
and red lines indicate Tp = 100, 10, 5, and 0 µs respectively.
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Eq. (3.24) suggests that when Tp = 0 and Latt → 0, crossover can happen for any value
of ηtot. However, Fig. 3.9 shows that crossover can happen only when ηtot is sufficiently
large. There is no contradiction: when ηtot is too low, the condition pd � η2tot/Q is violated
and (3.24) no longer holds. It turns out that there is no crossover when ηtot is small because
dark counts become significant. Using reasoning similar to that employed in deriving (3.24)
(with the characteristic dephasing length Ldp replaced with a characteristic dark count
length Ld), we can obtain the following approximation to the minimum ηtot necessary for
our protocol to beat a given benchmark:

ηmin
tot =

√
Qpd(2− pd)(1− ξ)

(1− pd)(pd + ξ − pdξ)
. (3.26)

The quotient of key rates at zero distance, Q, is as defined in (3.25), and depends on the
choice of benchmark. The fitting parameter ξ is a measure of how much error due to dark
counts our system can tolerate before the key rate drops to zero. For the parameter values
given at the beginning of the section, ξ = 0.012 fits well. This equation is valid when
Tp � T2 and pd � ηtot. The derivation is in Appendix B.

3.7 Conclusion

In this chapter, we have analyzed a QKD protocol in which Alice and Bob exchange
signals with a central station consisting of two quantum memories: a rudimentary quantum
repeater node. We have also introduced a number of benchmarks to which our protocol
can be compared, the most important of them being the Takeoka-Guha-Wilde bound on
the secret key rate. We showed that our protocol can, in principle, beat the benchmarks
because of its improved rate-vs.-distance scaling: the key rate of all protocols relying on
direct transmission between Alice and Bob scales at best with e−L/Latt , while our protocol
scales as e−L/(2Latt). In effect, our protocol doubles the attenuation length. Finally, we
explored the conditions under which we can beat the benchmarks in practice.

Our protocol cannot be scaled up to arbitrary lengths in the same way as the one
described in Sec. 2.3.2 of Ch. 2. One cannot simply string together multiple copies of the
central station without introducing some method for entangling two of these stations. This
could be done, for example, using an optical Bell measurement. But the introduction of
such a measurement would be a nontrivial change in the protocol, necessitating additional
analysis. Because our protocol is so simple, it is feasible to implement using currently
available technology while still exhibiting the rate improvement of a full quantum repeater
scheme and the ability to beat the TGW bound. Beating the bound would, in and of itself,
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be a fundamental experimental achievement—an achievement which we have shown to be
within reach, particularly in the high-loss limit. Our protocol, then, is a first step towards
the experimental implementation of quantum repeaters.
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Chapter 4

Entangling two spatially separated
quantum memories

4.1 Introduction

The generation of entanglement between two spatially separated quantum memories (QMs)
is an important step in many quantum repeater schemes [5, 6, 7, 8, 10]. From a practical
point of view, this is one of the most difficult and error-prone aspects of implementing a
quantum repeater.

In this chapter, we focus on a specific experimental implementation of a QM and explore
three different methods for how two of them can be entangled. Two of them involve coherent
states, while the third relies on entangled single photons (much like in the previous chapter).
We will compare the probability that each method successfully produces an entangled state,
as well as the quality of the entanglement. In the analysis, we will show that there is a
tradeoff between success probability and quality of entanglement in the first two schemes,
controlled by the amplitude of the coherent states. But neither of them can generate states
that are as entangled as those produced by the third scheme.

The QM of interest is a single atom trapped in a cavity, as described in [31, 32, 33].
Certain tasks expected of a QM have already been experimentally demonstrated with this
system. For example, a research team headed by Rempe has demonstrated the processes of
“writing” the state of a photonic qubit into an atom and “reading” it out into a photon
again [32]. In [31], it was verified that an atom could be entangled with a photon. This
was achieved by means of an atom-photon interaction which is equivalent to the so-called
controlled-NOT (CNOT) operation, as we will now describe.
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4.1.1 The atom-photon interaction

Qubit basis states are encoded as two hyperfine ground states of the atom, though we
will denote them abstractly as {|0〉, |1〉}. The cavity is resonant with a transition between
|1〉 and an excited state which is mediated by right circularly polarized photons. It is
not resonant with any transition from |0〉, nor with any transition involving left circularly
polarized photons. This structure gives rise to an interesting interaction between the
trapped atom and a photon that is reflected off the cavity. In the ideal case, the interaction
can be described as follows. Let |L〉 and |R〉 denote states in which a single photon is left
and right circularly polarized, respectively. Then the effect of reflecting a single photon off
of the cavity is that of a quantum operation known as the controlled π phase gate:

|0〉|L〉 → |0〉|L〉
|0〉|R〉 → |0〉|R〉
|1〉|L〉 → |1〉|L〉
|1〉|R〉 → −|1〉|R〉.

(4.1)

When applied to a right polarized coherent state, this operation has the effect of inducing
a sign change in the coherent state amplitude: |α〉 → |−α〉. (Note that in the Fock state
expansion of |α〉, only the terms with odd photon number receive a sign change under this
interaction.) It has no effect on left polarized photonic states.

If we write the interaction (4.1) in terms of the horizontal/vertical polarization states

|H〉 :=
|L〉+ |R〉√

2
, |V 〉 :=

|L〉 − |R〉√
2

, (4.2)

we find that it is equivalent to the CNOT operation:

|0〉|H〉 → |0〉|H〉
|0〉|V 〉 → |0〉|V 〉
|1〉|H〉 → |1〉|V 〉
|1〉|V 〉 → |1〉|H〉.

(4.3)

Note the interchange between horizontal and vertical polarizations when the atom is in the
state |1〉. This interchange occurs with coherent states, too: |1〉|α, β〉 → |1〉|β, α〉, where
the first and second modes correspond to horizontal and vertical polarization, respectively.

CNOT is well known to be an entangling operation: it can transform a separable
state into an entangled state [13]. As mentioned above, it was used to produce atom-
photon entanglement in [31]. We will now explore its use as a building block for creating
entanglement between two atoms.
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4.2 Three schemes for entangling two QMs

We here describe three possible schemes for entangling two trapped atoms. They are
illustrated in Fig. 4.1. The first two were inspired by work done in [34, 35], which give
schemes for entangling two QMs using coherent states and controlled phase gates. The
third has actually been realized; see [36].

Scheme 1. Initialize each atom to the state |+〉 (where, as in Ch. 2, we define |±〉 :=
(|0〉 ± |1〉)/

√
2). Reflect a right circularly polarized coherent state |α〉 off of each cavity,

then perform a “pseudo-Bell state measurement” on the two coherent states by sending

( ) ( )

( ) ( )

( ) ( )

1.

2.

3.

Figure 4.1: Three schemes for creating entanglement between two trapped atoms. Scheme 1:
Reflect a coherent state off of each cavity, send them through a beamsplitter, then measure them.
Scheme 2: Reflect a coherent state off of both cavities sequentially, then measure it. Scheme 3:
Generate an atom-photon entangled state in one cavity, reflect the photon off of the other cavity,
then measure the photon.
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them into a 50/50 beamsplitter and making a measurement on the output. (Note that the
two coherent states must have the same phase.) The atoms are then left in an entangled
state which depends on the measurement outcome.

Scheme 2. Initialize each atom to the state |+〉. Interact one atom with the horizontally
polarized coherent state |

√
2α〉, then interact the resultant state with the other atom.1

Finally, make a measurement to find whether the polarization of the coherent state was
horizontal or vertical. This decouples the optical modes from the system and leaves behind
an entangled state, conditioned on the measurement outcome.

Scheme 3. Stimulate one atom to emit a single photon whose state is entangled with the
atomic qubit state. Interact the photon with the other atom, which is initialized in the
state |+〉. Finally, measure the photon in the {|H〉, |V 〉} basis. Again, the entangled state
depends on what outcome is measured.

Notice that while schemes 1 and 2 rely on coherent states, scheme 3 is fundamentally a
single-photon scheme.

Before considering experimental imperfections, it is instructive to calculate the outcomes
of the three schemes given above in the case where all processes are ideal.

4.2.1 Scheme 1

The joint state of the atoms and the coherent states just before the pseudo-BSM is

|00〉|α〉|α〉+ |01〉|α〉|−α〉+ |10〉|−α〉|α〉+ |11〉|−α〉|−α〉
2

. (4.4)

Here, the first ket in each term refers to the two atoms, while the second and third refer to
the two right circularly polarized coherent states. We may rewrite the state in the form

|Φ+〉|Φ̃+
α 〉+ |Ψ+〉|Ψ̃+

α 〉√
8N+

+
|Φ−〉|Φ̃−α 〉+ |Ψ−〉|Ψ̃−α 〉√

8N−
, (4.5)

1The factor of
√

2 is included so that the total number of photons used in this scheme and the previous
one are the same. Note that when written in terms of left and right circularly polarized modes, the coherent
state becomes |α, α〉.
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where we have defined

N± := (2± 2e−4|α|
2

)−1/2 (4.6)

|Φ̃±α 〉 := N±(|α〉|α〉 ± |−α〉|−α〉) (4.7)

|Ψ̃±α 〉 := N±(|α〉|−α〉 ± |−α〉|α〉) (4.8)

In this form, we see that we can project the atoms into an entangled state if we had a
measurement that could distinguish between the four states {|Φ̃±α 〉, |Ψ̃±α 〉}. This cannot be

done perfectly since this is not an orthonormal set: 〈Φ̃+
α |Ψ̃+

α 〉 = sech(2|α|2) (though the set
is otherwise pairwise orthogonal). There is, however, a simple way to distinguish them with
some nonzero failure probability. If they were sent through the two input ports of a 50/50
beamsplitter, the states would be transformed as follows:

|Φ̃±α 〉 → |cat±〉|0〉
|Ψ̃±α 〉 → |0〉|cat±〉

(4.9)

where
|cat±〉 := N±

(
|
√

2α〉 ± |−
√

2α〉
)

= N±e
−|α|2

∞∑
n=0

(
√

2α)n√
n!

[1± (−1)n]|n〉.
(4.10)

The states |cat±〉 are commonly called cat states [37], a reference to Schrödinger’s cat.
Note that in the Fock state expansion of |cat+〉, only even photon numbers appear;

similarly, only odd photon numbers appear in |cat−〉. Therefore, by measuring the number
of photons coming out of each beamsplitter output port (or, more precisely, the parity of

the photon number), it is possible to distinguish the states {|Φ̃±α 〉, |Ψ̃±α 〉} and project the
atoms into one of the Bell states. This is the “pseudo-BSM” alluded to above.

We emphasize that it is not possible to distinguish the original four states perfectly,
even though the cat states are orthogonal. Note that |Φ̃+

α 〉 and |Ψ̃+
α 〉, which we have shown

to be non-orthogonal, both map to states containing a |0〉|0〉 component. This outcome,
which corresponds to no photons being measured at all, means that the measurement failed.
The success probability of the measurement is psucc = 1− e−2|α|2 .

Although |cat±〉 could be distinguished if the photon number parity could be measured,
it is difficult in practice to construct a photon number detector. Photon number parity
detectors are no easier. Much more common are threshold detectors, which signal the
presence or absence of a photon, but not how many photons there are. The POVM for such
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a measurement is, in terms of Fock states,{
Eno click := |0〉〈0|, Eclick :=

∞∑
n=1

|n〉〈n|

}
. (4.11)

Threshold detectors appear at first sight to be useless for distinguishing between the states
{|Φ̃±α 〉, |Ψ̃±α 〉}, since each output port of the beamsplitter corresponds to two of the states.
Suppose, however, that a photon comes out of the first output port. Even though this could
have been triggered by either of the states |Φ̃±α 〉, the probability that the triggering state

was |Φ̃+
α 〉 is smaller than that of |Φ̃−α 〉 by a factor of approximately |α|2. This can be seen

by an inspection of the leading terms of Eclick|cat±〉, which are

Eclick|cat+〉 =
2α2e−|α|

2

√
1 + e−4|α|2

|2〉+ · · · (4.12)

Eclick|cat−〉 =
2αe−|α|

2

√
1− e−4|α|2

|1〉+ · · · (4.13)

The effect is that, if the photon number parity detectors were replaced with threshold
detectors, the atoms would be left in a mixed state with a large contribution from |Φ−〉〈Φ−|.
A full calculation shows that, if the first detector clicked, the two atoms would be found in
the state

(1− eBSM)|Φ−〉〈Φ−|+ eBSM|Φ+〉〈Φ+| (4.14)

where

eBSM :=
1− e−2|α|2

2
. (4.15)

A similar result holds if the second detector clicked, but with |Ψ−〉 and |Ψ+〉.
Photon number detectors could be approximated using a large number of threshold

detectors. The basic idea is to diffuse the incoming signal into multiple modes such that
the probability of each mode containing more than one photon is small, then use threshold
detectors to detect photons in each mode. This could be done using a series of beamsplitters
[38], or by using beam-shaping optical components to spread out the incoming signal over
an array of detectors (demonstrated in e.g. [39]). As for photon number parity detectors,
one could in fact be constructed using the very cavity-atom system under consideration;
see [33]. However, since threshold detectors are more practical than either photon number
detectors or parity detectors (no matter how they are implemented), we will assume the use
of threshold detectors throughout the remainder of this chapter. This allows for a possibly
fairer comparison with schemes 2 and 3, too, since they require only threshold detectors.
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Another fact that should be mentioned is that this scheme relies on the phase of the
initial amplitude, arg(α), being the same for the two coherent states. Experimentally,
the mean photon number |α|2 is easy to control by changing the intensity of a laser, but
coordinating the phases of two separate pulses is more difficult. Having noted this potential
problem, however, we will not worry about it in the remainder of this chapter.

4.2.2 Scheme 2

Just before the polarization measurement, the system is in the state

|Φ+〉|
√

2α, 0〉+ |Ψ+〉|0,
√

2α〉√
2

(4.16)

where the first and second coherent state modes refer to horizontal and vertical polarization,
respectively. It is clear that the polarization measurement is successful if at least one photon
reaches the detector. Using (2.20), we find that the success probability is psucc = 1− e−2|α|2 .
Given that the measurement is successful, the atoms are left in either |Φ+〉 or |Ψ+〉,
depending on the measurement outcome; both outcomes are equally likely.

4.2.3 Scheme 3

As described in [36], after an atom is stimulated to emit an entangled photon, the atom-
photon state is

|0〉|L〉 − |1〉|R〉√
2

. (4.17)

Note that this is essentially the same as |Ψ−〉, but between the atom and the photon.
After the photon interacts with the second atom, the entire system is in the state

|0+〉|L〉 − |1−〉|R〉√
2

=
1√
2

(
|0+〉 − |1−〉√

2
|H〉+

|0+〉+ |1−〉√
2

|V 〉
)
. (4.18)

Upon measurement of the photon, the atoms are left in one of the states (|0+〉 ± |1−〉)/
√

2,
depending on the measurement outcome; both states occur with equal probability. These
entangled states are the same as |Φ±〉 except for a unitary on the second atom. Unlike the
other schemes, this process is deterministic; it succeeds with probability 1.
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4.3 Component modeling

In this chapter, we will not model the components of the setup as elaborately as was done
in the previous chapter. In particular, we assume that our threshold detectors are perfect.
Additionally, we assume that each cavity contains exactly one atom at all times. We will,
however, take into account the following imperfections.

Note that, because of imperfections, there is a chance that both detectors click in scheme
1 and that photons of both polarizations are detected in scheme 2. These cases are treated
as inconclusive, as if there had been no detection at all.

4.3.1 Loss

We assume that all losses can be modeled using beamsplitters, and that nonlinear optical
effects can be neglected.

When photons interact with a cavity, they are lost with a probability that depends on
the atom-photon state [31]. If the state was one of |0〉|L〉, |0〉|R〉, or |1〉|L〉, the photon is
successfully reflected with probability η. If the state was |1〉|R〉, the photon is reflected
with a different probability η′. Notice that this is the same state that picks up a negative
sign in (4.1).

The effect is more striking when written in terms of right circularly polarized coherent
states:

|0〉|α〉|0〉E → |0〉|
√
η α〉|

√
1− η α〉E

|1〉|α〉|0〉E → |1〉|−
√
η′ α〉|−

√
1− η′ α〉E.

(4.19)

The subscript E refers to the environment into which photons get lost.
Apart from cavity losses, the optical channel between the cavities is also lossy, with

transmittivity ηch.

4.3.2 Mode mismatch

The optical mode functions within the cavities are not the same as for free space. This mode
mismatch means that, with probability ξ, photons reflected off a cavity do not interact
with it. If a coherent state |α〉 were to impinge on a cavity, it could be rewritten in terms
of a matched and a mismatched mode as

|α〉 = |α′〉matched|α′′〉mismatched, (4.20)

where α′ and α′′ are are such that the probability of measuring a photon in the mismatched
mode is ξ. The conditional phase shift acts only on the matched mode. Because none of
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the measurements involved in the three schemes distinguishes between the matched and
mismatched modes, the resulting states are effectively the same as if the conditional phase
shift were applied probabilistically. Specifically, if ρ is the photon-atom state before the
interaction and CRπ is the controlled π phase gate, then spatial mismatch means that

ρ→ (1− ξ)CRπ(ρ) + ξρ (4.21)

after the interaction.
It may be of interest to note that, if the probability that a cavity did not contain an

atom were nonzero, this case would be modeled using (4.21), as a probabilistic application
of the conditional phase gate.

Note that if a photon reflects off a cavity without interacting, it does not suffer the
cavity losses outlined in the previous subsection.

4.3.3 State preparation

All of the above schemes require at least one of the atoms to be initialized to the state |+〉.
In practice, this initialization cannot be done perfectly; there is some probability of error.
We will assume that the atoms are actually initialized to the state

(1− ep)|+〉〈+|+ ep|−〉〈−| (4.22)

where ep is the error probability.
Additionally, scheme 3 requires that one of the atoms emit an entangled photon. This

can be done with probability ηent.

4.4 Results

Unlike last chapter, we are not interested in performing QR-assisted QKD using the
trapped-atom system considered in this chapter—though this is a goal for future work.
For this reason, we cannot use the secret key rate as a figure of merit. Because our task is
to entangle two atoms, it makes sense to consider the probability that the entanglement
can be established, as well as how strongly entangled the resulting state is (given that
the operation was successful). The first of these two requires no further explanation. The
second we will quantify using the logarithmic negativity function defined in (2.15): the
higher this quantity, the better the entanglement. Note, however, that each of the schemes
generate different entangled states depending on the measurement outcome. We will deal
with this by averaging their logarithmic negativities, weighted by the probability of the
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corresponding measurement outcomes. (These probabilities, of course, are conditioned on a
successful measurement.) The two figures of merit that we will consider in this chapter,
then, are the success probability and the average logarithmic negativity.

For all of the plots in this section, the following parameter values were used. They are
taken from [31], except for ηent which was taken from [36].

• η (cavity reflectivity) = 0.7

• η′ (cavity reflectivity for |1〉|R〉) = 0.66

• ξ (mode mismatch) = 0.08

• ep (state preparation error) = 0.05

• ηent (entangled photon emission probability) = 0.4

4.4.1 Pseudo-BSM location (scheme 1)

In scheme 1, we have not specified the location at which the pseudo-BSM is to be performed.
In the ideal case, the location does not matter. However, when channel loss is taken into
account, the final atom-atom state does indeed change as a function of the pseudo-BSM
location.

Because the amount of channel loss undergone by the two coherent states will differ if
the pseudo-BSM is not performed at the midpoint between the atoms, it is necessary to
make one point clear: we require the mean photon numbers of the coherent states to be the
same at the beamsplitter. The success of the pseudo-BSM depends on this. The effect seen
in (4.10), where the photons leave the beamsplitter through only one of the two output
ports, could not occur if the mean photon numbers of the input pulses were not the same.
Naturally, this requirement means that the mean photon numbers of the initial coherent
states are not the same. They need to be changed to adapt to the loss, and are related by√
ηch,1 α1 =

√
ηch,2 α2, where the subscripts 1 and 2 refer to the two coherent states and the

segments of optical channel through which they travel.
Given that requirement, numerical evidence suggests that the midpoint between the two

atoms is the optimum point in the following sense. If the probability psucc that one of the
detectors successfully detects a photon is held fixed (so the coherent state amplitudes vary
with the pseudo-BSM location), then the average logarithmic negativity is maximized when
the beamsplitter is placed midway between the atoms. An example of this can be seen in
Fig. 4.2. Similar plots were made with varying parameter values, and all are optimized at
the midpoint.

In what follows, we will assume that the pseudo-BSM is performed at the midpoint.
Note that, in this case, the initial amplitudes of both coherent states are equal.
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Figure 4.2: Average logarithmic negativity for scheme 1 as a function of the distance L of
the pseudo-BSM from one atom (normalized to the total distance Ltot between the atoms). The
success probability psucc is fixed at 10−3, and the coherent state amplitudes of the initial pulses
are allowed to vary with L. We have used ηch = 0.01.

Figure 4.3: Average logarithmic negativity vs. success probability for schemes 1 (solid lines), 2
(dashed lines), and 3 (points). The lines for schemes 1 and 2 are parameterized by the coherent
state parameter α; scheme 3 is only represented by points because it has no parameter to vary.
Blue, orange, green, red, and purple correspond to ηch = 1, 0.5, 0.43, 0.1, and 0.01 respectively.
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4.4.2 Success probability and logarithmic negativity

When scheme 1 is implemented with threshold detectors, we see that, even in the ideal
case, there is a tradeoff between the success probability and the amount of error in the
resulting entangled state: as the success probability increases, so does the error. When
imperfections are taken into account, it turns out that this type of tradeoff holds for scheme
2 as well. In both schemes, the success probability and the average logarithmic negativity
depend on the coherent state amplitude α, so by tuning this parameter, it is possible to
choose between a high success probability and a higher-quality entangled state. Fig. 4.3
shows what success probabilities and average logarithmic negativities can be achieved in
these two schemes by tuning α. It is notable that, when the channel transmittivity is above
0.43, scheme 2 is superior to scheme 1 for almost all values of the success probability, but
that this relationship is reversed when ηch drops below 0.43. This value of 0.43 appears to
depend on the cavity reflectivities η and η′, but not on the other parameters.

Because scheme 3 is a single-photon scheme, the success probability and the quality of
entanglement cannot be tuned; they depend entirely on the imperfections inherent in the
components of the system. Fig. 4.3 shows the average logarithmic negativity vs. success
probability for this scheme as discrete points on the plot. One can see that the average
logarithmic negativity does not depend on channel loss, and that it is superior to the
maximum value achievable with the other schemes. This can be attributed to the fact that
channel loss does not degrade a single-photon signal in the same way it does a coherent
state signal. Single photons are either lost or left unaffected by the optical channel; coherent
states are attenuated rather than lost entirely. Moreover, in this scheme the signal is affected
by imperfections in only one cavity, while in schemes 1 and 2 both cavities contribute errors.

4.5 Conclusion

Entangling two distant qubits is an essential step in many quantum repeater schemes, such
as the one described in Sec. 2.3.2 of Ch. 2. In this chapter, we analyzed three possible
schemes for entangling two trapped atoms of the type described in [31]. Taking into
account a number of experimental imperfections, we compared the success probability of
these schemes as well as the quality of the resulting entangled states. It is expected that
analyses like the one presented in this chapter will lay the groundwork for the experimental
implementation of a QR scheme which can, unlike the one in the previous chapter, be
extended to arbitrary distances.
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Chapter 5

Concluding remarks

The main theme of this thesis has been the exploration of quantum repeaters from an
practical point of view. The emphasis, in all the research presented in this work, has
been on mathematically modeling various imperfections and inefficiencies inherent in the
components of a quantum repeater, and on assembling these models to obtain an idea of
how well a given task can be done.

Chapter 3 describes an experiment that can be performed using currently available
equipment. We analyzed in detail all the various components of a simple quantum repeater
scheme and determined conditions under which it can beat the TGW bound. We have
shown that high efficiencies and long memory dephasing times are required to do so.
The parameter regions are not out of reach, though, and could likely be achieved with
state-of-the-art trapped ion technology. It is hoped that the experiment will actually be
performed in the near future. If the TGW bound is exceeded in such an experiment, it will
be a notable achievement: the first implementation of a true quantum repeater.

Chapter 4 is a little more future-oriented. It is not concerned with a specific implemen-
tation of a quantum repeater, but grapples with one of the major building blocks of many
quantum repeater schemes: the generation of entanglement between qubits. To that end,
we compared three schemes for entangling two trapped-atom quantum memories, looking
in particular at the success probability of each scheme and the logarithmic negativity
of the generated entangled states. The analysis presented here is not entirely complete:
imperfections in the detectors, for example, have yet to be considered. We have shown,
however, that there is a clear tradeoff between success probability and logarithmic negativity
when coherent states are used to establish the entanglement. We also found that, if we
instead stimulate one atom to emit an entangled photon and use this photon to establish
entanglement with the other atom, better entangled states are obtained. These conclusions
are unlikely to change in a more detailed analysis.
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CHAPTER 5. CONCLUDING REMARKS

One avenue for further work would be to analyze the behavior of a specific quantum
repeater scheme that uses trapped atoms, in the style of the analysis in Chapter 3. The
work in Chapter 4 could form the groundwork for such an analysis. This would be very
helpful in determining whether a viable and fully scalable quantum repeater can be built
using such atoms.

It is hoped that the results in this thesis will be helpful in understanding the behavior of
quantum repeaters in the presence of experimental imperfections—an important endeavor,
for theoretical perfection is somewhat difficult to come by in an imperfect universe. May
this and similar work speed the day in which a quantum repeater is built in the laboratory.
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Appendix A

Benchmark key rates

In this appendix, we list the secret key rates per mode of benchmarks 2–5 in Sec. 3.3.
We will do so by giving explicit expressions for the observables in (2.25) and (2.29) in
terms of the experimental parameters in Sec. 3.4. We assume throughout that there is no
eavesdropping activity.

For benchmarks 2, 3, and 5, Alice transmits single photons to Bob. In accordance with
(2.25), the efficient BB84 key rate per mode is

R =
Y1
2

[1− h(e1)− fh(e1)]. (A.1)

For benchmark 5, put

η := ηtote
−L/Latt

Y1 := 1− (1− η)(1− pd)2

e1Y1 := Y1/2− (1/2− em)η(1− pd).
(A.2)

Here Y1 and e1 are the yield and QBER for single photons, f is the error correction
inefficiency, L is the length of the optical channel between Alice and Bob, and em is the
setup misalignment error probability. The other variables are as defined in Sec. 3.4. The
factor of 1/2 comes from the fact that BB84 uses two optical modes.

For an ideal single photon source (benchmark 3), ηp = ηc = 1. For an ideal detector
setup (benchmark 2), ηd = 1 and pd = em = 0. This amounts to setting e1 = 0 and ηtot = 1,
and results in R = e−L/Latt/2 = ηch/2.

Based on (2.29), the key rate per mode for decoy-state BB84 with a laser (benchmark
4) is

Rdecoy =
1

2

(
Y1µe

−µ[1− h(e1)]− fQµh(Eµ)
)
. (A.3)
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In terms of the experimental parameters in Sec. 3.4, we have

Qµ := 1− e−ηµ(1− pd)2

EµQµ := Qµ/2− (1/2− em)(1− e−ηµ)(1− pd).
(A.4)

Here µ is the average photon number for signal states; Y1, e1, f , and em are as defined
above.
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Appendix B

Approximation of crossover regions

In this appendix, we derive (3.24) and (3.26). We will assume that the QMs are loaded
sequentially and that the central station is at L/2. Let Rb be the key rate for the benchmark
whose crossover region we wish to approximate.

We will first derive (3.24). As outlined in the discussion leading up to that equation,
our approach is to equate the intersection of the curves R0e

−L/(2Latt) and Rb,0e
−L/Latt with

some characteristic dephasing length Ldp in order to find the boundary of the crossover
region. (R0 and Rb,0 are the key rates at L = 0 of our protocol and of the benchmark,
respectively.)

The first step is to find conditions under which

R0 ∝ ηtotR
ηtot=1
0 . (B.1)

If pd is small and Tp � T2, then eX and eZ are approximately independent of ηtot—see (3.7)
and (3.22)—and R0 only depends on ηtot through Y . If we further assume that η′A ≈ ηA,
then

Y = pBSM
ηtot(2− ηtot)

3− 2ηtot
≈ 2

3
pBSMηtot. (B.2)

to first order in ηtot. These conditions are therefore sufficient for the approximation in (B.1)
to hold, with proportionality constant 2/3.

Given this fact, the intersection of the two curves is at

Lint = 2Latt ln

(
Q

ηtot

)
(B.3)

where Q is defined in (3.25). Note that Tp � T2 implies that Q is independent of T2.
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We now derive a characteristic dephasing length by determining the distance at which
Alice’s QM dephases for a significant fraction of T2. (Recall that Alice’s QM always dephases
longer than Bob’s.) That is, we put

T2
K

= E(tseqA ) =
Ldp

c
+

Tp + Ldp/c

ηtote−Ldp/(2Latt)
(B.4)

where we have again used η′A ≈ ηA. The fitting parameter K defines the fraction of T2 at
which dephasing becomes significant.

Equation (B.4) cannot be solved for the dephasing length Ldp using elementary functions,
but this is unnecessary: to find the crossover boundary, we need only substitute Lint for
Ldp. After a minor rearrangement of terms, this yields (3.24).

It may appear that a small pd implies that η′A ≈ ηA. It is true that pd � 1 implies
|η′A − ηA| � 1, but since ηA � 1 and η′A � 1 in general, this is not strong enough to
meaningfully say that η′A ≈ ηA. We require instead that |η′A − ηA|/ηA � 1. Moreover,
because we have used η′A ≈ ηA in deriving (B.4), we require this to hold for all L up to
Ldp—or, equivalently, up to Lint. By manipulating (3.12), we can write

|η′A − ηA|
ηA

=

(
1

ηA
− 1

)
(2pd − p2d) ≈

(
1

ηA
− 1

)
pd. (B.5)

If ηA is close to 1, then (1/ηA − 1)pd is already small and the approximation holds. If
ηA � 1, then (1/ηA − 1)pd ≈ pd/ηA, which is small for all L up to Lint when pd � η2tot/Q.
This condition, then, together with Tp � T2, guarantees the validity of (3.24).

Let us now derive (3.26). This time, we will compare Lint with a length Ld at which
errors due to dark counts become significant.

The error due to dark counts is related to α(ηA), defined in (3.12). We will put
1− ξ = α(ηA) where ξ is a parameter indicating the amount of error the system can tolerate
due to dark counts. Rearranging this equation, we obtain

Ld = 2Latt ln

(
ηtot(1− pd)(pd + ξ − pdξ)

pd(2− pd)(1− ξ)

)
. (B.6)

By equating Ld and Lint, we obtain (3.26).
In deriving this equation, we have made no assumptions beyond those required for

(B.1). In particular, we do not require η′A ≈ ηA for all L up to Lint, but only at L = 0.
This means that the condition on pd is less strict: pd � ηtot.

Finally, we note that the condition pd � η2tot/Q, required for (3.24), can be obtained
from a linearization of the square of (3.26).
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