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Abstract

This thesis is devoted to the study of observables in the four dimensional superconformal
N = 4 Yang-Mills theory. We will be focused on the problem of computing higher point
correlation functions, scattering amplitudes and Wilson loops. Integrability is the main
actor in this context and will allow us to obtain answers that would be inconceivable
without it. In the case of correlation function, we will study them in the weak and strong
coupling limits separately where integrability possesses different incarnations. For the case
of scattering amplitudes and Wilson loops, we provide a non-perturbative solution.
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Chapter 1

Fields, strings and integrability

Fundamental particles in nature seem to be well described by gauge theories at least up
to the energy scales we are currently able to measure. As of middle 2015, this scale is
set at some impressive 13 TeV [1]. The standard model of elementary particles is cer-
tainly the most successful scientific theory we have developed as it seems to explain pretty
much everything we have been observing. In this theory, the strong force is described by
quantum chromodynamics (QCD) with a SU(3) gauge group, with the quarks being in its
fundamental representation. This is an example of a Yang-Mills gauge theory.

Despite its tremendous success, there are several features of QCD that are badly un-
derstood. One such example is how to describe it at low energies where it is strongly
coupled and thus sits outside the reach of perturbation theory. In particular, in this regime
quarks are confined and a solid explanation of this phenomena is one of the biggest open
questions in physics. Even at high energies, the Feynman diagram expansion is clearly
inefficient making it very hard to improve the precision of theoretical results by going to
higher loops.

The poor comprehension of strongly coupled gauge theories incited over the past decades
the study of simpler toy models with more symmetry or particular limits of known theories.
Omne prominent example is to consider SU(N) QCD in the limit where the number of
colours N goes to infinity keeping the combination g,;N fixed, where gyy is the Yang-
Mills coupling. This idea was first put forward by Gerard 't Hooft [2] and paved the
way towards a entire new field of research. Taking the large N limit reorganizes the
Feynman diagram series in terms of the parameter 1/N. FEach term in this expansion
corresponds to a different topology of the Feynman diagrams, pretty much like in string
theory the perturbation theory is organized in terms of topologies of the string worldsheet



and characterized in terms of the number of handles and holes of the surface. In fact,
this analogy is not accidental and reveals a deep connection between the gauge and string
theory which later gave rise to holography. We will come back to this point.

Large N QCD revealed yet another remarkable feature: the emergence of integrability
for the first time in the context of gauge theories. In [3], Lipatov suggested that the
asymptotic behaviour of the hadron-hadron scattering amplitudes in the limit of large
invariant energy s and fixed transferred momentum t could be described by means of
some one-dimensional lattice model. It turned out that this model is in fact integrable,
in the sense that the corresponding Hamiltonian can be exactly diagonalized by means of
the Bethe ansatz [4]. Beyond simpler cases like this, large N QCD is still a tremendous
problem and it is far from being solved.

It seems natural to consider supersymmetric Yang-Mills theories as they are typically
simpler. The particular case of maximally supersymmetric Yang-Mills in four dimensions,
N =4 SYM, is the most studied example. It is known to be conformal (the beta function
is zero) and hence the coupling constant does not run being simply a free parameter.

The AdS/CFT correspondence [5] identifies this theory with type II B superstring
theory in ten dimensional curved AdSsx S® spacetime. This can be regarded as a realization
of the 't Hooft idea of relating a gauge and a string theory in the large N limit. Among
many interesting features of the duality is the fact that the strong coupling regime of the
gauge theory is related to weakly coupled string theory, which is tractable. The physical
picture that emerges in the strong coupling is rather interesting as in several cases the
computation of physical observables boils down to pure geometrical problems. It is a
standard fact in string theory that the string vibrational modes in AdSs x S® correspond
to particles or fields propagating in this same background. In particular, a closed string
involves the massless fields of supergravity (of which the graviton is an example) and also
an infinite set of massive modes. These massive modes decouple as the coupling constant
goes to infinity and the computation of physical observables in the gauge theory turns into
gravitational problems with some geometrical meaning in AdS. This is the case for several
cases studied in literature, like some two and three point functions involving protected
operators. However, for most of the problems the massive modes are relevant not only
when we go away from the large 't Hooft coupling limit and the string dynamics plays
an important role. This is what happens for correlation functions involving non-protected
operators or scattering amplitudes. Fortunately, remarkably simple structures emerged in
the perturbative expansion of several physical observables that finally allowed for exact
results at any value of the coupling even when these massive modes enter into the game.
The most notable case is the appearance of integrability in the computation of anomalous
dimensions, correlation functions, scattering amplitudes and expectation values of Wilson



loops.

Integrability Integrable field theories form a class of quantum field theories for which
one can often obtain exact results for some observables, like S-matrices for scattering of
asymptotic states, spectrum of energies, or in some cases even the full correlation functions.
These theories live in two dimensions and their special properties result from the existence
of an infinite set of higher spin conserved charges. The existence of these tower of charges
restricts dramatically the dynamics of the theory. For instance, when we consider the
scattering of excitations we observe that no particle production is allowed and the momenta
of the particles are simply permuted during the scattering. More importantly, the scattering
of any number of particles factorizes into products of two to two scatterings. Hence,
all the information about the dynamics is contained in the two body S-matrix and this
factorizability property is mathematically encoded on the so-called Yang- Baxter equation.
This is the fingerprint of integrability in field theories.

A famous example of an integrable field theory is the sine-Gordon defined by the fol-
lowing action in 141 dimensions,

m2

1
S = /d% (ﬁaugb@“gb + 2 COS(/B¢)) ) (1.1)
The standard approach would be to consider the limit of small coupling constant 3, define
a set of vertices for the field ¢ (which in this case would be an infinite set) and do the
usual perturbation theory. Then one would eventually obtain the first few orders of the
scattering matrix for the asymptotic states of the theory.

However, it was shown that this theory actually possesses an infinite number of conser-
vation laws both at classical and quantum levels. With this knowledge, it was possible to
obtain the exact and explicit formula for the quantum S-matrix for any pair of particles of
the theory (which are a soliton, anti-soliton and their bound states)’. It is a clear example
that shows how integrability can be used to obtain information that otherwise would be
unthinkable to obtain.

Let us emphasize once more that the natural arena for integrability are the two di-
mensional models. An infinite set of conserved charges in higher dimensional field theories
renders them trivial - only the free field theory is integrable in higher dimensions [7]. This is
the reason why four dimensional N’ = 4 SYM is not integrable in the sense above explained.

!More specifically, this S-matrix bootstrap was based on Yang-Baxter, unitarity, crossing symmetry
and analyticity, see more in [6].



What happens is that for each observable in this theory that we aim at computing, we will
need to find an auxiliary two dimensional problem where integrability is manifest and can
then be used in its full glory. This is highly nontrivial though and in fact there is not a
canonical procedure to uncover the good auxiliary two dimensional integrable problem.

Perhaps the most successful and well studied instance where integrability was revealed
is the problem of computing the spectrum of conformal dimensions of the operators in
N =4 SYM. Let us start by reviewing some basic facts of this theory and then illustrate
how integrability comes about in this problem with some concrete example.

1.1 The field theory N =4 SYM

The action of N' = 4 SYM was given for the first time in [8], from the dimensional reduction
of N'=1 SYM in ten dimensions. The action of N'=1 SYM in ten dimensions is

1 _
S = / d"z tr <—§FMNFMN+MFMDM)\> : (1.2)

where I' are the Dirac matrices in ten dimensions, F);y is the field strength and A represents
a Majorana-Weyl spinor which has sixteen real independent components. The dimensional
reduction to four dimensions consists in imposing that the fields do not depend on six of
the ten spacetime coordinates, namely

oHtmAN =0, MU =9""U =0, m=1,...,6. (1.3)

Then we split the ten dimensional gauge field into a four dimensional gauge field A, and
six scalars,

Ay = (Au(z),¢i(z)), with p=0,...,3 and i=1,...,6. (1.4)

where we assume these fields are independent of the remaining six coordinates. Finally, the
Majorana-Weyl spinor can be expressed in terms of four Weyl plus four anti-Weyl spinors
of the four dimensional theory

)‘t = [(07 _3:1)7 tt (07 _3:4)7 (¢g:17 0)7 trt (wg:4’ O)] : (15)

One still needs to choose a convenient representation of the ten dimensional I' matrices
in terms of four and six dimensional v matrices [9]. Furthermore, one can rewrite the six
scalar fields arising from the internal components of the gauge field into components of



the tensor ®? in the antisymmetric representation of SU(4). Upon expanding the original
action (1.2) we obtain the N' =4 SYM lagrangian density

1 -
L = tr (—§FWFW+2D#<I>ab1>“c1>ab+2waaagjd(pma)a (1.6)

+29\2(M[(I)abv (IDCd} [(I)aln (I)Cd] - 2\/§QYM ([¢aav ¢ab]¢g - [&daa q)ab]izz?» :

The field content of this theory consists then of a gauge field A, four Weyl fermions 3
and six real scalars ®® = —®% and all these fields are in the adjoint representation of
the gauge group SU(N). Moreover it can be shown that the action is invariant under the
N = 4 on-shell supersymmetry transformations, as a result of the N’ = 1 supersymmetry
of the original action, and it is also exactly conformal.

1.2 Integrability in the spectrum problem

Weak coupling In a conformal field theory, it is always possible to find a basis of
(renormalized) operators such that the two point function has the form

0AB
Ou(x1)0p(x2)) = —5, 1.7
< A( 1) B( 2)> |I‘12|2AA ( )
where A4 are the conformal dimensions. In general, if the operators carry some Lorentz
indices the RHS of the above equation will involve some conformally invariant tensor struc-
ture. Let us suppose we want to determine the conformal dimensions at one loop where
we expect it to have the following perturbative expansion

AA:dA—i-gz"yA—l—... (18)

Here d 4 is the classical dimension of the operator Oy, 74 is its one-loop anomalous dimen-
2
eyl

sion and ¢* =

is the 't Hooft coupling.

We start with some bare operator O 4 and we consider its two point function with some
probe operator made out of arbitrary fields. It has the generic form

N

= | 12|24

<0§?) (1) OPrP) (25)) (1— g’ Hlog|zA?), (1.9)

where A is some normalization constant that might depend on the coupling. The matrix
H is the so-called mixing matrix. The renormalized operator is then obtained from the
bare operators by

O, = (1 + ¢*Hlog |A/u|>AB oV (1.10)

6



where p is some renormalization scale. H is such that the correlation function of O4
with any other operator is finite. Once we find this matrix, its diagonalization renders the
anomalous dimensions v4. The eigenvectors of this matrix which are made from a linear
combination of the bare operators then renormalize multiplicatively by p4.

Throughout this thesis we will be considering single trace gauge invariant operators
made out of the adjoint fields of the theory. Let us restrict ourselves for now to a particular
class of these single trace operators in which the fields involved are just a scalar Z = ¢3*
and a component of a Weyl fermion ¥ = «2_,. We will be analysing these operators in
greater detail in the forthcoming chapter. An example is

O=tr (Z...0...2) (1.11)

where the dots stand to any of the fields Z or ¥ and the number of fields of the operator
is L (also called the length of the operator).

We want to find the one-loop spectrum of anomalous dimensions for operators made
out of these fields following the logic above. The computation of all Feynman diagrams is
given in figure A.2 of appendix A.

In the end, we sum over all the diagrams as illustrated in figure 1.1. The mixing matrix
can be written as a sum of local operators acting on neighbouring fields inside the trace as
follows

L
H=2) (L —SPm) (1.12)

where the indices correspond to the position of the fields inside a trace. [ is the identity
operator and SP refers to the superpermutation operator that exchanges the position of
two fields and picks up a minus sign when these two fields are fermionic.

The outcome of this computation can be regarded as an Hamiltonian acting on a closed
spin chain state where each field inside the trace corresponds to a site of the spin chain.
What is remarkable about (1.12) is that this Hamiltonian is known to be integrable (see [10]
for a related discussion). In fact, this is nothing but a fermionic version of the Heisenberg
Hamiltonian which is diagonalizable by means of the Bethe ansatz. Therefore integrability
allows us to compute the anomalous dimensions for arbitrary operators made out of these
two kinds of fields. The computation we presented here parallels an analogous computation
by Minahan and Zarembo in 2002 [11] for operators made out of scalars, that triggered the
field of integrability in N'= 4 SYM.

Let us emphasize that the 141 dimensional auxiliary problem where integrability turns
up for the spectrum problem at weak coupling is the spin chain model. The factorizability

7
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Figure 1.1: Using the results of figure A.2, the sum of the graphs appearing in this figure
gives precisely the Hamiltonian of (1.12).

happens at the level of the S-matrix for the excitations in this spin chain model, and it is
not connected (at least directly) with the properties of the spacetime S-matrix of N' = 4
SYM.

Strong coupling The AdS/CFT duality identifies the single trace gauge invariant op-
erators with closed string states in AdSs x S°. Moreover, the conformal dimensions of the
operators are in correspondence with the energy of the corresponding closed string states.

8



The world-sheet of the closed string in AdSs x S° has a topology of a cylinder and can be
parametrized by a pair of coordinates (o, 7). Then the embedding coordinates in AdSs x S°
will be functions of the cylinder coordinates X*(o, 7). They are then promoted to quan-
tum fields and their dynamics is described by an action that is determined by the geometry
of the background. This action includes additionally some fermionic degrees of freedom.
When restricted to the bosonic degrees of freedom the action is simply the Polyakov ac-
tion with target space AdSs x S°. The point we want to emphasize is that string theory
naturally provides a two dimensional quantum field theory and this model turns out to be
integrable. The classical integrability of the model was shown in [12]. The appearance of
integrable structures on both sides of the duality was a sign that integrability somehow
persisted further at quantum level and in particular that the 2D worldsheet theory is fully
quantum integrable.

Recent developments The weak coupling integrability was afterwards extended to
other sectors and to higher loops [10, 13-15], eventually leading to the all loop conjec-
ture of the Asymptotic Bethe Ansatz (ABA) for long operators [16,17]. On the other side
of the correspondence, the semiclassical quantization of the folded string (GKP string) [18]
and agreement with the ABA [19] provided the first non-trivial interpolation between
weak and strong coupling. The developments on the spectrum problem culminated in the
2009’s solution given by the Thermodynamic Bethe Ansatz [20-22] originated from the Y-
system [23]. This was refined in the subsequent years to the Quantum Spectral Curve [24],
which is probably the ultimate simplification of the spectrum problem. An extensive review
of the integrability in the spectrum problem (and much more!) is given in [25].

1.3 Outline of the thesis

We will now focus our attention on the exact computation of observables other than the
conformal dimensions. Integrability will also be the main player for higher point correlation
functions, scattering amplitudes and Wilson loops, even though the corresponding auxiliary
two dimensional problems might be different.

I was co-author of the following papers: [26-30]. This thesis will not cover [26] and will
be based on the other papers. It is split in two main parts, each one covering a different
observable. The first part will be devoted to the correlation functions. The chapter 2
consists on the study of three point functions at weak coupling and its material strongly
overlaps with the paper [28]. The chapter 3 is about the strong coupling limit of four



point functions and is built on the contents of [27]. The second part covers the scattering
amplitudes/ Wilson loop problem. We will see that these two observables are actually
equivalent. The chapter 4 is a brief review of the subject, and the chapter 5 is based on the
papers [29,30]. We end up with some final remarks in chapter 6. Additionally, we include
several appendices that complement the main text with mostly technical aspects.

10
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Chapter 2

Correlation functions at weak
coupling

We now study the first class of observables of this thesis, namely the higher point corre-
lation functions of local operators in planar N = 4 Super Yang-Mills. The computation
of correlators is a whopping task. In standard gauge theories, one typically relies on per-
turbation theory for a small value of the coupling constant but one can hardly go further
in the perturbative order as the number of Feynman diagrams increases dramatically. In-
tegrability turns out to be pivotal in making the task feasible at weak coupling and as
recently reported in [31] to finally generate a non-perturbative solution for the three point
case.

The problem of three point functions in a conformal field theory is known to be reduced
to the computation of the so-called structure constants, as the spacetime dependence is
completely fixed from symmetry considerations. Moreover, the structure constant together
with the conformal dimensions of the operators contain all the dynamical information ap-
pearing in the OPE decomposition. Therefore we can reconstruct all higher point functions
from them. The non-perturbative knowledge of these two observables constitutes what one
would call a solution of N' =4 SYM.

The first attempts to compute three point functions go back to the early days of the
AdS/CFT correspondence [32] where it was found that for protected operators (chiral
primary operators) the structure constant is in fact coupling independent. Therefore, it
equals the tree level result and agrees with the string theory calculation. For non-protected
operators, the comparison is difficult because of the weak/strong coupling nature of the
duality. Nevertheless, there were several attempts to perform these computations at weak

14



coupling (in particular with the use of integrability) [33-42], and also at strong coupling
mostly in the classical limit [43-52].

We aim at reviewing how integrability tools can help in this problem at weak coupling
using the pedagogical example of the three point functions in the so-called su(1|1) subsector
of NV = 4 Super Yang-Mills.

2.1 Three-point functions at leading order

In this section, we perform the computation of the structure constants at leading order.
The setup that will be used for the calculation involves composite operators made out
of both fermionic and scalar fields. Each of these operators is thought of as a state of a
closed spin chain with the fermionic fields being excitations over a ferromagnetic vacuum.
The advantage of this approach is that the connection with the integrability tools of quan-
tum spin chains becomes manifest (see for instance [25]) and facilitates the combinatorial
problem.

The smallest (closed) sector of N' = 4 SYM containing both fermionic and bosonic
fields is the su(1|1). The field content of this sector consists of one complex scalar that we
will denote as Z = ®3* and a complex chiral fermion that shares with the scalar one R-
charge index, for instance ¥ = ¢2_,. The setup for the calculation of the planar three-point
functions that we will be considering involves an operator O; given by a linear combination
of single traces made out of products of these fields. More precisely,

O = > VD (ny,ng, ... np, )tr (Z@@Z) , (2.1)

1<niy <nz<..<npy,; <Ly

where L; is the length of the operator, N; is the number of its fermionic fields and n’s are
the positions of the excitations along the chain of Z’s. We designate the coefficients 1))
in this linear combination by wave-function. It is natural to consider the second operator
O, made out of the complex conjugate fields, namely

0y — Y O o) (pr\pz) (2.2)
1<n1 <na<...<nny, <Ls nng
In our conventions, the complex conjugate fields are given by
Z =(Z) = ®3y = O, (2.3)
U= (‘D)T = &4,&:1-

15



Figure 2.1: The leading order contribution to the three-point functions. The solid lines
represent a bosonic propagator and the dashed lines represent a fermionic propagator. We
also indicate our conventions for labelling the positions of the excitations. Notice that in
our setup the first N3 excitations of the operator Oy have always their position fixed.

From now on, we will omit the Lorentz spinorial indices at several places keeping in mind
that they are always kept fixed.

As a consequence of the R-charge conservation, it is clear that we cannot take the third
operator to be also in the same su(1|1) sector to which O; and O, belong, if we want to
have a non-vanishing result and avoid extremal correlation functions'. Instead, we consider
a “rotated” operator constructed by applying su(4) generators several times to a su(1|1)
operator of the type O;. The idea is to get a composite operator having a term with
only ¥ and Z fields in order to allow non-vanishing Wick contractions between all pairs
of operators (see figure 2.1 for an example of a non-extremal three-point function). More
precisely, let us suppose that we start with a state made out of ¥ and Z fields. In order
to convert a single Z into a Z we must apply a pair of su(4) generators that rotate its two
R-charge indices. In sum, we can generate a term with U’s and Z’s by considering the

IThe extremal case presents additional subtleties related to the mixing with double-trace operators,
see [33]. We will not investigate such issues in this thesis and therefore only non-extremal three-point
functions will be considered.

16



following operation

1

Os = (Ls — N3)2

(r? ety Z VO (ny, ..o tr (Z...0 ... W ... Z),
1§n1<...<nN3§L3
(2.4)
where 7%, are su(4) generators and they act on the fields inside the trace. Now, the su(4)
generators may also act on the field ¥ which carries one R-charge index. Therefore, this
operation will generate several terms coming from the different ways of acting with the
generators,

O3 = Z ¢(3)(n1,...,nN3)[ tr (Z..0...V...2)+

1§n1<...<nN3§L3

+ot (ZR v et 4] (25)

where in the first line we have the term where all the su(4) generators act on the scalar
fields Z. In the second line, we represent the terms where some of the generators also act
on the fermionic fields W. As an example of how the formula given above is evaluated
consider,

(r%yrty) - Tr (UZ) = (g ry) - Tr (9 @%1) = Tr (° @) + Tr (" 912).

At tree-level, the terms in the second line of (2.5) do not give any contribution due
to the R-charge conservation. In other words, one always has a zero Wick-contraction.
Therefore, at leading order, only the first line contributes and we get a tree-level diagram
of the type represented in figure 2.1. At one-loop, the terms in the second line will also
need to be taken into account. We emphasize that the operators O; in (2.1) and O; in
(2.4) are spinorial operators with Ny and N3 indices ov = 1 respectively. This follows from
the definition of the field ¥ given previously. The operator Oy in (2.2) has N, Lorentz
indices & = 1 associated to each of the fermions V.

In a conformal field theory, the two-point functions are completely fixed by the symme-
tries up to a normalization constant. For two operators having spinorial indices as shown
below, we have
(J 12,11)Ni

210|220

(011, (21) Oy 4,y (2)) = N (2.6)

where N is a constant associated to the normalization of the operator, A; is its conformal
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dimension and the tensorial structure is”
no( L E

7 (9,5 :
= , with xh = ol — a2t (2.7)
17,11 (27’(’)2 ’IZ]‘ 1] J

In the case of three-point functions of generic operators having spinorial indices, one
has many inequivalent tensor structures consistent with the conformal symmetry, and the
result of the correlation function is a linear combination of these structures. The constraints
following from conformal symmetry on the higher point functions were studied for instance
in [53-55]. However, for the setup considered in this work there is only one possible tensor
and the three-point functions is of the form

(Or11.10, (£1) Oai, iy, (22) O30y, (23)) = (2.8)
(J12,11>N1(J23,11)N3 V:;1352;Q30123(92)

|£L’12 |A1+A2*A3 |x13|A1+A3*A2 |$23|A2+A3*A1 ’

where we are considering N, = N; + N3 and ¢ = 16% with A the 't Hooft parameter.

The structure constant C23(g?) has a perturbative expansion when g2 is small, and its
leading order will be designated by C’fgé. Using the figure 2.1, we observe that the only
non-trivial Wick contractions occur between operators O and O,. The structure constant
C’}g% is then given by the product of the three wave-functions with a sum over the positions
of the excitations between these two operators,

(3) (1) (2)
=« 1,...,N3 Z ¢L2+1—n1\]1,.‘.7L2+1—n1wl,“.,N?”nl,...,an : (29)

]\73<TL1<...<TLN1 <Lso

0
(et

« is a normalization factor that comes from the fact that we are normalizing the operators
such that their two-point functions has the canonical form (2.6) with A; = 1. It is given

by
L1L2L3 . ) (j x (1. (j
=1/ /\W ,  with N(] = Z (@/)njl) ..... an) (@Z’njl) ..... an) . (2-10)

1§n1<...<an <L;

The main goal of this section is to find a closed formula for C’{g;.

2See Appendix A.1 for our conventions.
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2.1.1 The one-loop Bethe eigenstates and structure constants

To compute C’l(g?5 we must consider states with definite one-loop anomalous dimension [33].
The one-loop su(1|1) integrable Hamiltonian and S-matrix can be found in [10, 14] or in
the introduction of this thesis where it was computed directly. It can be written in terms
of the Pauli matrices as

L
1
HfﬂfE:Oumg—§¢@H+ﬁﬁH0, (2.11)
n=1

where L is the length of the spin chain. At leading order the two-excitation S-matrix is
independent of their momenta and simply given by

S(pl,p2) =—1. (2~12)

In order to find the eigenstates of the Hamiltonian given above, we use the usual
coordinate Bethe ansatz. A N-magnon state of a spin-chain of length L is of the form

WN) = Z ¢N(n17n2,---,nN)‘nla---anN>a (2-13)

1<ni<ne<...<ny<L

where the n;’s in |ny,... ny) indicate the position of the fermionic excitations ¥ on the
chain (for details about the coordinate Bethe ansatz see [25,33]). Notice that the ket
|n1,... ny) represents the trace in (2.1). The wave-function ¢y (ny,...,ny) is a combi-
nation of plane waves with as many terms as the number of possible permutations of the
momenta with the relative coefficients being the S-matrices. Since the leading order su(1|1)
S-matrix is just —1, the several terms in the wave-function will appear with alternating
signs which we write as

Un(ny,ng, ..., ny) = Z sign P exp(ipspa)n1 + iop@)N2 + - - - + Do p(N)10N) (2.14)
P
where P indicates sum over all possible permutations op of the elements {1,..., N}, and
sign P is the sign of the permutation. Moreover, we should impose the periodicity condition
by requiring the momenta p; to satisfy the Bethe equations

el =1, (2.15)

The cyclic property of the trace is implemented by imposing the zero momentum condition

of the state,
N

Z p; = 27 X integer . (2.16)

=1
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Having determined the eigenstates of the one-loop su(1]1) Hamiltonian, we can proceed
to compute the leading order structure constant C’fg% given in (2.9) by following some simple
steps. First, we notice that since the positions of the excitations of the third operator are
fixed, we can use (2.14) to write ¢® explicitly. It is simple to see that we obtain a
Vandermonde determinant which can be also presented as a simple product,

N3
o] _ ip® ip® Z (1) x1(2)
‘0123 = H e —erk (wnl,...,an) wl,...,Ng,nl,...,TLNl . (217)
i<k N3<n1<...<nN1§L2

Moreover we have replaced 1/1(;2) Loty PY (wr(Lll),,,.,an )* since they differ by at most
a sign.

Notice that the first Ny excitations of the wave-function ¢(® have their positions fixed
or frozen. In order to make the computation of this sum simpler, we consider an auxiliary
problem where we add N extra excitations to the wave-function 1) and liberate the fixed
N3 roots of 1(?) with their positions being summed over too,

— 1 * 2
Saux - Z (w£L1),...,TLN3+N1) ¢£L1),...,TLN3+N1' (218>

1§TL1<-..<TLN3+N1 <Lsg

The advantage of considering this auxiliary problem is that the sum (2.18) can be easily
computed due to the form of the wave-functions. Moreover, we can relate it with the
original sum appearing in (2.17) as we now explain. Indeed, let us consider that N3
momenta, say {pgl), ceey pg\lf;}, are complex. We can then dynamically localize the wave-

function around the original N3 positions by taking the limit of these momenta going to

. . . . (1) _in(D) .
minus infinity. More precisely, we send {e#1 ... e N3} to zero in such a way that

(1)

V< e (2.19)

e P
Thus, given the explicit form of the wave-function (2.14), we observe that in this limit the
sum over the positions of the extra roots in (2.18) is dominated by the term for which
ny = 1,...,ny, = Ns. This procedure of sending roots to a particular limit in order to
freeze their positions is the coordinate Bethe ansatz counterpart of the freezing trick used
in [34] at the level of the six-vertex model. Neglecting all the subleading terms, we get
that in this limit, (2.18) is reduced to

N3
—q (1) * 2
Sau;t — (H € Pr k) Z (¢1€L11),,TLN1) §,.)..,N3,n1,...,nN1 ) (220)

k=1 N3<TL1<...<TLN1 <Lso

20



where we recognize precisely the original sum of (2.17).

Returning to our auxiliary problem, we use again that the wave-function is completely
antisymmetric in its arguments to extend the limits of the sum (2.18). In compensation,
we merely have to introduce a trivial overall combinatorial factor. Using the explicit form
of the wave-function we write the sum (2.18) as

N1+N3

Souz = 'ZZ sign P sign () H 1pP(“> ng()a)> (2.21)

{ni} PQ

We emphasize again that we now sum without restrictions, 1 < n; < Ly, for all n;,. These
sums over n; can be explicitly computed as they are geometric series. Using the Bethe
equations and the total momentum condition for the operator Oy, we can then simplify
(2.21) to

N1+N3 ) N1+N3 1
Spuw = [ H (1 e Pa L2>] N'Z sign P sign () H o O (2.22)

a=1 as1 ePal — P

The remaining sum in the previous expression is manifestly the definition of a Cauchy
determinant and, therefore, it can be written explicitly as a simple product as follows
ipD) (1) (2) @)

N1+N3 " Hk(e J —epk )(epk _ep )
Sauar - 1-— e_Zpa L2 = 1 2
[H ( >] [T — e

a=1

(2.23)

Notice that this expression contains as a limit the norm of an operator.” It is given by

G) — N
NV =L}V (2.24)
, o
Finally, we take the limit of (2.23) when {e‘”’gl), ...,e PNs} vanish as in (2.19). Plug-
ging the resulting limit and taking into account the overall product multiplying the sum
n (2.20), we obtain our final result

e

31f we set N3 = 0 and consider p(-l)

(2.15). ’

&

a _ ezp](:l))

—]e
—~
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;" we get the expression for N/ after using the Bethe equations
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Let us remark that this expression is considerably simpler than the ones found for the
su(2) [34] and sl(2) [39] sectors. This is perhaps not surprising given that at leading order
we are dealing with a theory of free fermions so that the form of the su(1|1) wave-function
becomes quite simple. However, we will see that the one-loop result persists to be simpler
than in the other sectors.

2.2 One-loop three-point functions

In this section, we compute the structure constants at first order in the 't Hooft coupling
A for our setup. There are two main ingredients in this computation. Firstly, one has
to consider Bethe eigenstates that diagonalize the two-loop dilatation operator as these
states are of order A\. Secondly, one has to compute the relevant Feynman diagrams at
this order in perturbation theory. This second contribution can be compactly taken into
account through the insertion of an operator at specific points of the spin chains as will be
reviewed.

2.2.1 Two-loop coordinate Bethe eigenstates and Norms

The two-loop Bethe eigenstates are determined by diagonalizing the long-range Hamilto-
nian H [10]

H:H1+H2, (226)
where H; is given in (2.11) and
1, 45 4 9 1 4
H2 - 49 Z( U - ]' 4(0ngn+1 - ]') + (U 0n+1 + Un0n+1) g - 1_60n+2 (227)
—iag’(al Ot g+ o2 00 ,) — l01(1 +od ok, — 102(1 +03, )02
16 n\Yn+1"n+2 n+1Yn+2 8 n n+1/"n+2 8 n n+1/Yn+2 ) >

where o? are the Pauli matrices. In order to diagonalize it, we start with the usual coor-
dinate Bethe ansatz which works when the excitations are at a distance bigger than the
range of the interaction, i.e. when |n; —n;| > 2. In this region all we need is the two-loop
S-matrix which reads

1 @i (P b1 — P2 . (P2
S(p1,p2) = —1 — 8ig sm<2)81n( 5 >sm<2). (2.28)
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Given the long-range nature of the Hamiltonian (2.26), we expect the form of the wave-
function to be modified with respect to the usual Bethe ansatz (2.14). In fact, when
magnons are placed at neighbouring positions on the spin chain they interact in a non-
trivial way. Therefore, the wave-function must be refined by the inclusion of the so-called
contact terms. For instance, in the case of three magnons we write it as

P(ny,n2,n3) = P123 + 0213521 + 132532 + P3125951.532 + P231531.591 + 9321532551591 ,

where we have used the notation Sy, = S(pa, pp) and

(rbabc = eipan1+ipbn2+ipcn3 < ]- +g2 (C(pm pb) 5n2,n1+15n3>n2+1 + gz(c(plnpc) 5n2>n1+16n3,n2+1

+ 92 C(paapb7pc) 5n2,n1+15n3,n2+1> . (229)

The functions C are the contact terms which are fixed by solving the energy eigenvalue
problem. In the case of N-magnons, the wave-function has a similar structure. It consists
of N! terms coming from the permutations of {pi,...,pn} and N — 1 types of contact
terms namely C(p;, p;),-..,C(p1, ..., pn).
Unexpectedly, we have found that up to seven magnons the contact terms are simply
given by
N -1

Clp1s---,pN) = 5 (2.30)

Even though we have not proved the validity of this formula for an arbitrarily high number
of magnons, the pattern emerging up to seven magnons is quite suggestive. Given the
form of the contact terms in the su(2) and s[(2) sectors, the simplicity of the su(1|1) result
is quite surprising. In particular, notice that they are independent of the momenta of
the colliding magnons. This might be pointing towards the existence of a new algebraic
description of these states yet to be unveiled.

As already explained, in order to correctly compute the three-point functions we need
to know the norm of the Bethe eigenstates as we are normalizing the result by the two-point
functions. Remarkably, we have checked numerically up to six-magnons that the two-loop
(coordinate) norm is given by

) 1 &
N—jgggv@ ka—l—;n;logS(pm,pk) ) (2.31)

Interestingly, this formula is precisely the well-known Gaudin norm for the one-loop su(2)
Bethe states. Still within the su(2) sector, it was recently shown in [37] that this expression
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remains valid at higher loops leading to an all-loop conjecture for the norm. Moreover,
the two-loop norm for s[(2) Bethe states was found to be precisely of the type (2.31) as
described in [39]. In all these cases, the contact terms recombine exactly to preserve the
determinant form. This is very suggestive of an underlying hidden structure that is worth
investigating.

2.2.2 One-loop perturbative calculation

Loop computations will give rise to divergences which require the introduction of a reg-
ularization scheme. A very convenient one and the one that will be used in this work is
the point splitting regularization. At one-loop, only neighbouring fields inside any of the
single-trace operators interact and the divergences arise because the two fields are at the
same spacetime point. The idea behind the point splitting regularization is to separate
these two fields by a distance e which will act as a regulator *.

Consider a su(1]1) bare operator which is an eigenstate of the one-loop dilatation op-
erator. Its non-vanishing two-point function is of the form

O\ Ni 2
(Oiptr (@) Ouiy_iy (22)) = % (1r2a o (). a2
where the tensor on the right-hand side was defined in (2.7). In the expression above, A
and y; are the free scaling dimension and the one-loop anomalous dimension of the operator
O; respectively, N is a normalization constant and a; is a scheme dependent constant. In
addition, the three-point function of three su(1|1) bare operators that diagonalize the one-
loop dilatation operator is, in our setup, fixed by conformal symmetry and takes the form
(see [35] for details)

(O111n, (21) Oa14, iy, (02) O30y 1, (23)) = (2.33)

(J12,11)N1(J23,11>N3 1/V2/V3 (0)><
’x12|A0,1+A0,2—A0,3|x13‘A0,1+A0,3—A0,2|x23|A0,2+A0,3—A0,1 123

2 .2 2 .2 2 .2
1 gi! L1277 2 L1 3 L3271
L+ 9° (Cloy + ar +az + ag) — - log ( =22 ) — Zlog | 522 ) — S log ( =7
2 T53€ 2 T13€ 2 T1o€
4In order to preserve the gauge invariance, one can introduce a Wilson line between the two shifted
fields. This will in principle introduce extra diagrams at one-loop, coming from the gluon emission from

the Wilson line. However, we will show in the Appendix A.4 that this additional contribution actually
vanishes at this order in perturbation theory.
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Figure 2.2: The wavy-line in the figure is just a representation of a one-loop diagram (for
example, a gluon exchange). When the contribution of the square root of the two-point
functions is subtracted (this is the reason for the factor %), all the diagrams involving just
two operators are canceled.

where we have factored out the tree-level constant 01(22,,.

To extract the regularization scheme independent structure constant ng from the
expression above, we have to divide the three-point function by the square root of the
two-point functions of all the operators to get rid of the constants a;’s. After performing
this division, one can then read the meaningful structure constant.

From the Feynman diagrams computation point of view, it is actually simpler to cal-
culate Cg% instead of the combination (C’Sé + a1 + as + a3). In fact, because we have to
divide by the square root of the two-point functions, all one-loop diagrams in the three-
point function involving only two operators are canceled. The figure 2.2 has an example
of a such cancellation.

The conclusion is that one is left with the computation of only genuine three-point
diagrams, i.e., the diagrams involving fields from the three operators’. The allowed posi-
tions of the spin chains where it is possible to have those genuine diagrams are commonly
called the splitting points. We are then seeking the constants coming from the genuine
three-point diagrams subtracted by the constants coming from the same diagrams but now
seen as two-point processes. This is exemplified in the figure 2.3.

The details of the Feynman diagram computation are given in the Appendix A and
here we just provide the results. In the figure 2.4, we list all diagrams giving a non-zero
contribution to the three-point functions as well as the result of the respective scheme
independent constants. A relevant aspect of this computation is that some terms in the
second line of (2.5) are now important at one-loop level. Indeed, from figure 2.4 we realize
that the second graph of the second row mixes up the R-charge indices of the scalar and
the fermion. In particular, the scalar ® and the fermion 1? in the second line of (2.5)

S5This fact was dubbed the slicing argument in [30]
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Figure 2.3: A genuine three-point diagram to which we subtract half of the same diagram
but seen as a two-point process is shown. The constant coming from this combination of
diagrams is regularization scheme and normalization independent.

can be converted into a ¥ and a Z through this diagram. The resulting state can then be
contracted with the remaining external operators and give a non-vanishing contribution.

From the results of figure 2.4, we can directly read off an operator acting on the two
fields at the splitting points of an external state and that gives those same constants after
contraction with the remaining states. We denote this operator by F and define it by the
following matrix elements

(o | Flopeyt) = — goeg, (2.34)
<(I)ef (I)Qh | JT_'| (I)ab CI)Cd> -9 ggh,ab Sef,cd -9 Sef,ab Sgh,cd _ eabcd Eefgh 7
<q)de ¢f | f| q)ab ¢C> - 5fcgab,de ’ <¢f q)de | F | wc (I)ab> - 6fcgab,de ’

<CI)de ¢f | ./—"| ¢c CI)ab> — 5cegab,df ’ <¢f q)de | ]:'| q)ab 77Z)c> — 5cegab,df 7

where §%¢? = §ecgbd — §ed§b and in the second line we recognize the so(6) Hamiltonian
[11,35,36]. It is simple to check that the operator %]—" reproduces the constants of figure
2.4.

For the specific setup that we are considering only the diagrams of figure 2.4 are relevant,
since additional diagrams either cancel among them or vanish, see Appendix A for details.
In the case of a more general setup, the operator F defined receives corrections from new
diagrams.

In what follows, the operator F will appear with additional indices as F;;, which indicate
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Figure 2.4: These are the relevant one-loop diagrams for the three-point functions. All
other graphs give a zero contribution. The solid, wiggly and dashed lines represent the
scalars, gluons and fermions, respectively. The constants are obtained by combining the
three-point and two-point graphs as illustrated in figure 2.3. We have used the point
splitting regularization and the Feynman gauge. For three-point diagrams we take the
limit where a pair of dots (either top or bottom) are brought to the same spacetime points.
For the two-point function, both pairs of dots (top and bottom) are brought to the same
spacetime points. We are using the definition 0% = §24% — §252.

the sites in the spin chain where the operator acts. As an example, we have that

. 2 ..

i ] g i g

(...0Z7 ... |E]-}j\ U7y ==

which reproduces the result of the first diagram of the second row of figure 2.4. It is

important to note that when the operator F;; acts on non-neighbouring sites, it can pick
up additional minus signs due to statistics, for example,

2
_ (1T
(q/\pf WAL }"1L|Z : .\11...\11>_( 0"

where n denotes the number of fermionic excitations between the first and last sites and
we have used the last rule of (2.34).
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2.2.3 Final result

We now give the complete expression for the structure constants up to one-loop in the
setup considered in this work. It reads

2 2
0123 = X ( <1f|1+%FL3—Ng,L3—N3+1+%le,l‘Z--'Zilu-iLg—Ng) (235)

—
L3—N3
2 2
c 3 g g
@Byl + S Fravens + S Fal2)) x

N3
> oL 9 9
(@ 8Z. 2+ 5 Fngnst + 5 Fal3),

Ns  L3—Ns

where we have that

B LiLyLs
“=VNONONT (2:30)

with A being the respective norms and we are using the conventions

(00,0 - 03|04, 05, - 0) = 04y jy Oy Oip iy

where o is any field.
In the formula (2.35), i, can be either Z or ¥ and a sum over all these intermediate
states is implied. Moreover, we have included a superscript f in the bra associated to the

operator O; to emphasize that the state was flipped®, see [33] for details. The external
states are the two-loop corrected Bethe eigenstates as described in section 2.2.1, for instance

1) = DO+ g* )Y+ O(g"). (2.37)

We have checked that for the simple case of three half-BPS operators, the one-loop
correction to the structure constant vanishes as expected from the non-renormalization
theorem of [56], see Appendix A.3 for details.

The expression (2.35) can now be evaluated as an explicit function of the Bethe roots
by using the known form of the two-loop Bethe states. As the number of excitations on the

®In short, the flipping operation FI introduced in [33] is defined as F1: (ny,...,ny)|n1,...,nN) —

Yy, ..,y (L—ny+1,...,L—n1 +1] C, where C' means charge conjugation which exchanges Z < Z
and ¥ < V.
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external states increases, such task becomes tedious and the result gets lengthy obscuring
possible simplifications. Nevertheless, we can easily deal with states of arbitrary length
but only a few magnons. It turns out that the manipulation of the resulting expressions for
these simple cases reveals a strikingly compact structure that can be easily generalizable
for arbitrary complicated states. We then resort to the numerical approach in order to
confirm that such generalization actually holds. In the end, we find a formula given by a
very simple and natural deformation of the tree-level result (2.25), as follows

knl H f( Jy] ) N1 No
1<
Cros = € 51 [1 OO | [CRIaNTS )))] , (2.38)
2 o
[T 7w =
=1 5=
where we are using the notation y,(:) — ¢ and the normalization factor C is given by

c_ | LiLoLs
NONGNEG)

with ~; being the anomalous dimension of the operator ;. As described in the section
2.2.1, the norms AN'®) are given by the formula

14 ¢* (N} —1) ——Z%] , (2.39)

N =

4. k<N; a

Dy ZlogS ), by )] : (2.40)
m;élc
The most important and non—trwlal part of the final result is the function § which reads
2

f(s,t):(s—t){1—g—<f+z—l—s—%—t+2)]. (2.41)

2\t s s

The momenta p ) of the fermionic excitations must satisfy the Bethe equations which take

the form
(J)LJ = H( pk 7pl )) , (242)
i#£k
and the total momentum condition (2.16).

This ends this chapter. We have computed the full one-loop structure constant for op-
erators in su(1|1) sector and expressed it as a simple factorized formula depending solely on
the Bethe roots characterizing each operator. We add that these weak coupling integrabil-
ity methods inspired a new non-perturbative approach to the three-point function problem
in [31]. In the next chapter, we turn to an example of a strong coupling computation where
integrability appears in a completely different vestment.
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Chapter 3

Correlation functions at strong
coupling

At strong coupling, the problem of computing the correlation function is that of finding the
area of the minimal surface in AdSs x S° that goes to the AdS boundary at the operator
insertion points z,. In this section, we compute the AdS part of the correlation function
for four arbitrary heavy scalar operators inserted along a line. The method used here is
inspired by the integrability techniques originally developed for the Null Polygonal Wilson
loop problem [57] and later applied to the computation of three-point functions [46-49]. As
in these previous applications, integrability allows one to compute the minimal AdS action
without knowing the explicit classical solution. For the four point correlation function the
connection with Hitchin systems and the formalism developed in [58] is used intensely. As
in [46,47,57] the starting point of the method is the map of the string equations of motion in
AdS to a certain auxiliary linear problem by Pohlmeyer reduction. Ultimately the solution
takes the form of a set of functional equations that we call a x-system. These functional
equations are similar in spirit to the Y-system appearing in [57] and which naturally arise
in the solutions of integrable QFT’s.

For some specific BPS operators dual to strings spinning on the same great circle of
S5 the sphere contribution is well know. In this case we can construct the full strong-
coupling correlation function. We emphasize that these 4-point functions are generically
neither extremal nor protected. Non-protected results for correlation functions of heavy
operators at strong coupling are quite rare. For example, in [46], the AdS part of the
three-point function was computed. Additionally, the only complete, non-protected result
that we know of are [48] where the strong-coupling three-point functions of GKP strings is
computed and [49] that complemented [46] by computing the sphere part of the correlation
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function.! Furthermore, the new non-perturbative approach of [31] opened a window of

opportunity of exploring the physics of correlation functions at strong coupling.

3.1 Four point function generalities

For large 't Hooft coupling A, the semi-classical computation of correlation functions corre-
sponds to the evaluation of the AdSs and S® actions for classical solutions with the topology
of a four punctured sphere. The boundary conditions are that the solution close to each
puncture P,, which is associated with the gauge theory operator O,(z,), approaches the
AdS boundary at the point x, in the same way as a 2-point function involving O,(z,) and
some other heavy, scalar operator. In this chapter, we study the simplest case where the
operators are inserted on a line in R*. This implies that the string solution is contained in
a Euclidean AdS; subspace of AdSs. Moreover, there is only one independent cross-ratio.
The conformal symmetry of A/ = 4 constrains the four-point correlation function to take

the form .

(O1(21) Os(2) Os(2:5) Oaa)) = f(u) [ [ (an) (3.1)
a>b
where x4, = x, — 23, A, is the dimension of operator O,, Ay = (3. A¢) /3 — Ay — Ay and
u is the conformal cross-ratio

] (3.2)
L1234

Both the AdS and sphere contributions contain divergences as the string approaches
the position of the operators at the boundary of AdS, which requires a cut-off z = €. To
describe the world-sheet we use complex variables w,w. On the 4-punctured sphere, the
physical cut-off £ corresponds to cutting out small disks of radius €, around each puncture
P, at w,. Ultimately, we will need to establish a precise relation between the cut-oft’s ¢, and
E. As we will review later, this is possible given the data accessible from integrability [46].

In this chapter, we will consider operators with charges scaling as v/, and without spin
in AdS. Following the prescription developed in [45,46], we account for the states in the
sphere by introducing an extra contribution of wave-functions. Therefore, the semi-classical

1Using the results of this chapter it may be possible to extend the results of [48] to the complete N-point
functions of GKP strings at strong coupling since the mathematical problem is similar to the one treated
here.
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Figure 3.1: Insertions on the 4-punctured sphere. The gray ball represents the world-
sheet (the complex plane plus the point at infinity, or simply ‘the sphere’) and the black
boundary of the ball represents the equator of the sphere. The points w, are the punctures
on the sphere corresponding to the operators inserted at the positions z, at the boundary
of AdS,, which is represented by the straight line. We fix the points wq, ws, ws and x1, s,
x3 using the world-sheet and target-space conformal symmetry respectively. The position
of the fourth insertion w,y should be fixed by imposing the Virasoro constraint (i.e. the
vanishing of the full stress energy tensor). Alternatively, it should correspond as well to the
saddle point of the integrand of (3.3). By symmetry we expect this point to also be along
the real axis, and thus we have a notion of an ordering of the 4 punctures. In particular,
there is three distinct ranges for the location of w,. Consider the ordering of the x, shown
in this figure. Depending on the parameters of the problem (that is, the charges and cross
ratio), if the point is located between wy and w3 (as in panel A) then the insertions will
not cross and the string embedding will look schematically like the one shown in figure
3.2A. If it is located between w3 and w; (as in panel B) or between w; and wy then the
insertions cross each-other and we expect the string embedding to look like the one shown
in figure 3.2B.

four-point function is given schematically by
Va Va
/ Py e 7 o) £aas2 077 Sgea) 550 T W, 0, (3.3)

where the actions are evaluated on a classical (Euclidean) string solution approaching the
boundary of AdS at the positions of the insertion points x,.

In principle, there is an integral over all four insertion-points on the worldsheet. In
(3.3) we only integrate over the insertion w, since the position of the other punctures can
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be fixed by conformal transformations. Since we are considering the A\ — oo limit, one can
evaluate the integral over wy by saddle point and the end result is the integrand of (3.3)
evaluated at the dominant saddle point. Alternatively, we can use the Virasoro constraint
(i.e. vanishing of the full stress energy tensor) which provides a condition on the insertion
position w,. For the case we will study, the Virasoro constraint can be straightforwardly
solved as we will see.

The position of the fourth insertion turns out to have interesting consequences. There
are two issues here: the positions of the operators on the boundary and the positions of
the insertion points on the sphere. We can use the target-space conformal symmetry to
place three of the operators at x1 = 1, 29 = 0o, 3 = —1 and the world-sheet conformal
symmetry to fix w; = 1, wy = 0o, wy = —1. The position x4 is an input since we can
put O, anywhere along the line that contains O 23. On the other hand, once we choose
x4 the position of the fourth puncture is fixed at wy = wj; by the Virasoro constraint. By
symmetry we expect it to be located on the real axis and in this case we have a notion of
an ordering of the punctures. In particular, there are three possible in-equivalent orderings
depending on the position of wy. Figure 3.1 shows two of these possibilities. If the ordering
of the z, is the same as the w, then the insertions do not cross each other, as in figure 3.1 A.
If the ordering of the z, is different from that of the w,, then the insertions will cross as in
figure 3.1B. These two possibilities lead to two types of string embeddings with distinctly
different properties as is shown in figure 3.2. We will see that two types of solutions arise
naturally in our construction. We are able to characterize the qualitative features of the
spacetime embeddings and compute the minimal AdS action of both types of solutions.
We will return to this topic below.

3.2 AdS; Pohlmeyer reduction

In this section we briefly review the Pohlmeyer-reduction process. We begin with a discus-
sion of the string equations of motion and the stress-energy tensor, which is the starting
point of the reduction. We then introduce the function 7 in terms of which the AdS La-
grangian can be written. It turns out that ~ satisfies a non-linear but scalar equation of
motion that is a modified version of the well-know sinh-Gordon equation. Next we show
how the different types of string embeddings discussed in section 3.1 are encoded though
the boundary conditions imposed on 7. Finally we use the function v to write the AdS
action in a form where integrability is more readily applied.
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Figure 3.2: Two different possible string embeddings in AdS; which obey the required
boundary conditions. These two solutions are shown in panels A and B. The center panel
shows how to generate the configuration of panel B from that of panel A by interchanging
the order in which the insertions on the sphere attach to the boundary; this interchange
results in the characteristic folding shown in the embedding of panel B. These two types
of solutions arise from the possibility that for a given choice of operator insertion points x,
the insertion point wj (see figure 3.1) can be located in any of the three possible intervals

(wa, w3), (w3, wy), (wy,ws).

3.2.1 Equations of motion and stress-energy tensor

Recall that we can consider (euclidean) AdS, as a surface in R"? obeying the constraint
V.Y =) - ()’ + (¥3)* = -1 (3.4)

We write the action for a string in AdS, as
1
Szﬁ/fﬂ%Y0%WAaﬁY+n] (3.5)

and the resulting equations of motion as
Yy = ((9Y . 5Y) Y (3.6)

The first term in the action is just the free string action in RY?; the second term is a
Lagrange multiplier term that imposes (3.4).

The equations of motion (3.6) must be supplemented by the Virasoro constraints and
boundary conditions. The Virasoro constraint requires Tyys + Ts = 0. In particular, the
AdS contribution to the stress-energy tensor does not vanish. Fortunately the boundary
conditions allow us to completely fix the form of Ty = —Ts. Here we are interested

34



Figure 3.3: Schematic analytic structure of 7. The blue dots represent the (double) poles
of T at locations w, and corresponding to the operator insertions O,(z,). The yellow
crosses indicated zeros of T. We have fixed the positions of wy, ws and w3 using the world-
sheet conformal symmetry. We have arbitrarily placed wy in the interval (w3, w;) although
generically it can be located in any of the three intervals along the real axis.

in solutions with the topology of a four-punctured sphere where the punctures are at the
position of the operator insertions and thus the boundary conditions give the behavior of
the string solutions near the insertion points. The correct prescription is to demand that
the string goes to the boundary at the insertion points. Furthermore, it should approach
the boundary in a specific way as dictated by the vertex operators. The behavior of the
solution near the boundary will be dominated by the operator inserted there, independent
of the properties or number of other operators inserted at different points. This means that
the behavior near the insertion points can be determined from the 2-point function, where
the string solution is know explicitly. From the explicit solution for the 2-point function
one finds that the desired property of the solution near insertion point wy, is [46]

AQ

(8Y)2 = T(w) ~ m

(w — w,) (3.7)
where T (w) is the holomorphic component of T44s. The corresponding property also is
required for the anti-holomorphic component 7" (w). Thus we know that T should be an
analytic function on the (4-punctured) Riemann sphere with double-pole singularities at
the punctures. This fixes T to be a specific rational function.

First consider the denominator of the rational function 7. The polynomial in the
denominator is determined by the positions of the insertions. Three of the insertions can
be fixed by conformal symmetry, leaving one final insertion. Furthermore, one can apply the
Virasoro constraint T4gs + Ts = 0 that will fix the location of the fourth insertion point.
Alternatively, we can regard the integrand of (3.3) as a function of this final insertion
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point. In the limit v/A — oo the integral localizes at the saddle point wy = wy, thus fixing
completely the denominator of 7.

Now consider the numerator of 7. Without loss of generality we can consider the case
where there is no insertion at infinity since we can perform a transformation that maps
any arbitrary point to infinity. Then the polynomial in the numerator can be at most of
degree 4 (otherwise T' would not be regular at infinity) and therefore it is characterized by
5 parameters. Four of these parameters are fixed by the condition (3.7). The final unfixed
parameter, which we will call U, parameterizes the single cross-ratio of the four operators
(recall that four points in a line have only one independent cross-ratio). The precise map
between the parameter U and the cross-ratio u is quite involved but fortunately we will
not need it since the cross-ratio will be encoded in the y-system in a simple way. The
analytic structure of T" is shown schematically in figure 3.3. We will use this sort of figure
to represent 1" throughout this chapter.

3.2.2 The function ~

Our objective is to evaluate the AdS part of the string action. In Poincaré coordinates the
on-shell action becomes®

oY - Y = Or0x + 0202 _ VTT cosh~y (3.9)

22

where the above formula defines the function ~(w,w). It follows from the equations of
motion that ~ satisfies the modified sinh-Gordon equation

00y =V TT sinh . (3.10)

It is well known that this equation is classically integrable, and in what follows we exploit
this integrability to compute the AdS action.

Now let us determine what boundary conditions should be imposed on . For the
2-point function 7 = 0. Recall that the string solution should approach that of the 2-
point function as the string approaches the boundary at the operator insertion points z,.
Therefore we should require that v — 0 as w — w, [46]. Furthermore, in order to have

2The AdS> Poincaré coordinates are given by

R

Y . (3.8)

T
z
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a non-singular world-sheet metric the right-hand side of (3.9) should never vanish. Thus
when T has a zero v must have a logarithmic singularity to cancel it. In summary, the
boundary conditions on v are

1 _
v - i§ logTT (w— z,) (3.11)
v — 0 (w — w,) (3.12)

where z, denotes a zero of T" and w, a pole of T'. Notice that the regularity of the world-
sheet metric does not fix the sign of the logarithmic ‘spike’ in (3.11) and, in principle,
different choices are possible at each zero (recall that generically 7" will have 4 zeros for the
4-point function, as follows from the discussion of the previous section). These different
choices correspond to different string solutions having differing properties, and generically
different total action. We will refer to the spikes with the + (—) sign as u-spikes (d-spikes).
We will now describe how the choice of these signs is related to the string embeddings
shown in figure 3.2.

3.2.3 Spikes, fold-lines and string embeddings

As mentioned in the previous section there are 4 zeros of T" and at each zero we have a Z,
ambiguity (see equation (3.11)) in the choice of spikes of . A priori there are 2* different
choices for the spikes. However, it turns out that there are only 2 distinct choices that
correspond to target-space solutions with the desired properties. These two possibilities
are shown in figure 3.4. A discussion of why these are the only two possible choices is
given in appendix (. These two different possibilities correspond precisely to the two
different possible string solutions shown in figure 3.2. The key ingredient in making this
correspondence is the observation that contours on the world-sheet where v = 0 correspond
to fold-lines in the string embedding (see appendix C). The location of these contours is
directly connected with the choice of spikes. For example, between a u-spike and a d-spike
we know that there must be at least one such contour. In figure 3.4 the v = 0 contours
are indicated by the black curves. In appendix C we discuss in detail how the structure of
these contours is inferred from the choice of spikes.

Let us describe in more detail how we relate the two spike configurations in figure 3.4
to the two string embeddings in figure 3.2. As mentioned above, the key ingredient is to
study the fold lines in the two figures. First consider the target-space solution. In figure

3The main ideas are: first, configurations related by v — —v are not distinct since this is a symmetry
of (3.10), and second, one should choose the spikes such that v — —v under reflection about the real axis.
See appendix C.
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Figure 3.4: Contours where v = 0 based on the choice of signs in equation (3.11). These
contours are shown schematically by the black curves. The label u (d) at a zero indicates
the choice of sign + (—) in equation (3.11). We give a detailed discussion of why these are
the only possible structures for these contours in appendix C. The key in relating these
figures to the embeddings in figure 3.2 is that contours on the world-sheet where v = 0
map onto folds of the embedding.

3.2A it is clear that there is a single fold-line that runs through each of the punctures in
sequence. That is, there is a fold-line directly connecting x4 with x3 then x3 with zq, etc.
This is in agreement with the fold-structure implied by figure 3.4A since for this choice of
spikes we can deduce that there is a single contour where v = 0 running along the real axis
connecting w, to wz then ws to wy, etc. Thus the spike configuration of figure 3.4 describes
a string embedding of the type shown in figure 3.2A.

Now consider the folds of the embedding shown in figure 3.2B. Insertions x; and z3
are both connected by fold lines directly to the insertions x5 and x4. Furthermore, x,
and xz, are connected to each other by two fold-lines. This is because this configuration
is double-folded along that line, as one can see from the construction shown in the center
panel of figure 3.2. All of this is in perfect agreement with the fold-structure implied by
figure 3.4B. In particular, for this choice of spikes both w; and w3 are directly connected to
we and wj by contours where v = 0. Moreover, wy and wj are connected by two contours
where v = 0, precisely corresponding to the double-fold line connecting x5 and x4 in figure
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3.2B.

Let us comment on a subtle point regarding figure 3.4. Note that we have placed wj
in different intervals in the two figures. On one hand, we should do this in order to be
in agreement with figures 3.1 and 3.2. However, as we will see, given a cross-ratio v and
the insertion position wj, the fold structure is fixed. So, to compare two different fold
structures for a given cross ratio we are forced to consider wj in different intervals. This is
in perfect agreement with the intuitive perspective of figures 3.1 and 3.2. We will return
to this point in section 3.5.2.

3.2.4 The action as a wedge product

We will now return to the computation of the minimal AdS action (see equation (3.3)).
Explicitly, the quantity we want to evaluate is

B \/_X 0x0x + 020z

(3.13)
T Js\fea) z?

where ¥\{¢,} denotes the sphere with small disks of radius €, cut out at each puncture.
These cut-offs are not independent and are all fixed in terms of the single target-space
cut-off z = &; this is important in recovering the spacetime dependence of the correlation
function and we will return to this point below [46]. It is convenient to separate the action
into a piece that is independent of the cut-offs, and a piece where the dependence can be
explicitly evaluated. This can be done because the solution near the punctures is know. In
particular, we may write [46,57]

A:—g/ \/ﬁ(cosh’y—l)—ﬂ VTT (3.14)

d S\ {ea}

To extend the integration to the full sphere in the first term we have used the fact that
the action (3.9) goes like VT'T near the punctures as follows from (3.12). We will refer to
the first and second term in (3.14) as Ay, and Ag, respectively. Since T is known Ag,
can be evaluated explicitly in terms of the ¢,, but to eliminate the ¢, in terms of £ requires
detailed information about the string solution itself. Fortunately, the tools necessary for
computing Ay;, will also provide the necessary information to complete the calculation of
Agiv. Thus, let us focus for the time being on the computation of Ay, and return to Ag,
afterwards.

We would like to write Ay, in a form where the integrability of (3.10) is more readily
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usable. Following [46,57] we introduce the forms

w = VTdw (3.15)
1 /= 11
and then from a direct computation it follows that
Apin = L / wAnf (3.17)
2 /s

where ¥ denotes the double cover of the sphere defined by y2? = T(w). Extending the
integration from X to 5 simply involves a factor of 2 since each form is odd under sheet-
exchange. An important property of these forms is that they are both closed. The form w
is clearly closed since it is holomorphic, and the closure of 7 follows from the equations of
motion for 7. Notice that (3.17) would be true for any choice of the dw component of 7.
The specific coefficient appearing in (3.16) is necessary for the closure of the form.

Now we would like to apply the Riemann bilinear identity (RBI) to reduce (3.17) to
one-dimensional integrals over cycles on 3. There are two caveats in doing this — the
singularities in w and the singularities in 7. These issues where resolved in [46], and we
follow the approach used there (see [46] for a more detailed treatment and also [47] for a
different approach). The basic idea of the RBI is to write one of the forms of the wedge
product as an exact form, w = dF where F = [ Iﬂ; w, which is always possible on a Riemann
surface minus some contour, L. In the present case w has single poles and thus F' will have
logarithmic cuts which need to be accounted for. A way to side-step this complication is to
spread the single poles in w into a small square-root cuts such that F" has only square-root
cuts and no singularities. The cost of doing this is that the genus of ¥ increases, but the
upside is that the application of the RBI is simplified. This takes care of the singularities
in w. Now consider the form 7 which behaves as 1 ~ (w — z,) /2 near the zeros of 7. The
prescription of [46] is to remove the points z, from the domain by taking L to be the sum
of the standard contour for a Riemann surface of genus g and small contours C, encircling
the points z,. The integrand of (3.17) can then be written as d (F'n) (since dn = 0 on
the domain) and then Stokes theorem can be used to reduce the surface integral to a line
integral over the usual boundary of the genus g Riemann surface and the contours C,.
The end result is that each boundary C, contributes a correction of 7/12 to A fin I (3.17)

while the integral over the boundary of 5 gives the usual sum over cycles on 3 and thus

we have [16]
Atin, = (number of zeros)1 _ %w I} ]{77 (3.18)
122\, o
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where {v,} is a complete basis of cycles on > and I, is their intersection matrix. For
the four-point function there is generically 4 zeros and 4 poles. When we spread the four
poles we introduce an additional 4 cuts and thus the surface is genus 5 and there will be 5
a-cycles and 5 b-cycles; that is {Va} = {7Vay, Vor» Vags -++» Vas» Vs ;- The main point is that we
have reduced the computation of the surface integral (3.17) into a sum of 1-dimensional
cycle integrals of a closed form. Such integrals are precisely what integrability is good at
computing. In the following section we will see how to compute the cycles f%n by exploiting
the integrability of (3.10).

3.3 The linear problem

To compute the n-cycles appearing in (3.18) it is useful to consider the linear problem
associated with equation (3.10). Consider a function v obeying

O+ Ju)v =0, (0+Jz)=0 (3.19)
where the components of the connection J = J,dw + Jgzdw are given by
1
Jw - Aw + E¢w7 J@ == A@ + f@@ (320)

where A and ® are independent of the spectral parameter ¢ and given in terms of v and
T, T. We give the explicit forms of A and ® in appendix B. Note that we will frequently
write the spectral parameter as ¢ = ¢e’.

Compatibility of equations (3.19) for all £ is equivalent to the flatness of J, which is
satisfied if v obeys the equation of motion (3.10) and T (T') is purely holomorphic (anti-
holomorphic). In the following section we will discuss the relation between the solutions of

the (3.19) and the n-cycles appearing in (3.18).

3.3.1 Basic properties

There are a few aspects of the linear problem which will be essential for the following
analysis. Let us comment on each of them in turn.

e Solutions near punctures. Using (3.7) and (3.12) one can show that near the punc-
tures P, there are two linear-independent solutions of the form (see Appendix 5)

PEw) = (T/T) e Iy (3.21)

~ (W= we) AT T (@ — ) FTRE T | 1) (3.22)
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where |+) are the eigenvectors of 0. Notice that there is a solution that is expo-
nentially big and one that is exponentially small as one approaches the puncture
P,

‘Small’ solutions. Demanding that a function is both a solution of the linear problem
and also small at some puncture P uniquely defines that solution (up to overall
normalization). Thus there is a family of ‘small’ solutions s, each of which is small
at puncture P,. On the other hand, specifying that a solution has the big asymptotic
near P does not uniquely determine the solution since one could create another
solution obeying the same boundary conditions by adding an arbitrary multiple of

Sp.

Zo symmetry and ‘big’ solutions. Even though one cannot uniquely specify a solution
by demanding that it has the big asymptotic near P, there is nevertheless a special
solution big near P that is uniquely defined. This follows from the Z, symmetry of
the connection (3.20) which is given by

UJ(EU = J(e™¢) (3.23)

where U = io3. This symmetry implies that if sp(£) (we are suppressing the w, @

dependence) is the solution to (3.19) small at P then
ip = o’sp(e7"™E) (3.24)

is another solution of the linear problem. Moreover, from (3.21) it follows that Sp
is big at P. Thus we have a second uniquely defined family of solutions §,, each of
which is big at puncture P,.

Products of solutions. Given two solutions of the linear problem v; and 5, there is
a natural S L, invariant inner product

(1 Atha) = Det [{¢h1, ¢ }] (3.25)

This inner product is equivalent to the Wronskian of the two solutions. Important
properties of this Wronskian are that it is independent of w and w, and thus only
depends on the spectral parameter £&. Further, the product will vanish if the two
solutions are linearly dependent.

4In going from (3.21) and (3.22) we have been careless about the branches of w. In particular, we may
choose a particular branch at some P, such that the near-puncture solutions take the form (3.22) but
then if we smoothly continue v/7 to some other puncture P, it is possible that the small and big solutions
correspond to the opposite components from the small and big solutions at P,. This will be very important
below, since it will usually be the case in the construction we will use.
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Now that we have introduced these basic facts of the linear problem, we can state what is
perhaps the key ingredient in the whole computation.” We claim that the & — 0 expansion
of the inner product of two small solutions is the following [46, 57]

1., 1 b )
(Sa A\ sp) ~ exp 3¢ wab+§§wab+£/ n+0 (¢ )] (3.26)

where 7 is precisely the same form (3.16) that appears in the action formula (3.18) and
Wab, @ap are explicitly known in terms of integrals of w and @.° A derivation of (3.20)
is given in appendix B.4. The point is that by computing the inner products (s, A sp) (§)
we can extract the “puncture-puncture” integrals f: n by extracting the O (£) coefficient of
this inner product. All of the n-cycles appearing in (3.18) can be written in terms of linear
combinations of these puncture-puncture integrals. Thus, we can compute area (3.18) by
computing the inner products (s, A sp). The rest of this section is devoted to explaining
how we compute such inner products using techniques from integrability.

3.3.2 Defining solutions globally

Let us now comment on how to globally define the small solutions. Suppose that we want
to construct the small solution sp away from puncture P, say at some generic point A.
To do this we need to use the connection to transport the solution along some path from
the neighbourhood of P to the point A. However, it is clear from (3.21) that the solutions
of the linear problem have non-trivial monodromies around the punctures and therefore
homotopically different paths on the 4-punctured sphere will result in different values of the
small solution at A. In other words, solutions of the linear problem live on a (generically
infinite-sheeted) Riemann surface with branch points at the punctures. For the purposes
of calculating it is convenient to fix some conventions for dealing with the multivaluedness
of the solutions. We first define the sheets by cutting the Riemann surface as shown in
figure 3.5. The cuts all join at a common point and the monodromy about that point is
the identity since a path passing through all the cuts is contractable on the sphere. We
then define the value of the small solution associated with puncture P at some point A as
follows. Draw any curve from the neighbourhood of P to A. In the neighbourhood of P
one starts with sp. For every time the path crosses a cut emanating from some puncture

5To our knowledge the following fact first appear in [57]. Later it was used in [46,47] for 3-point function
computations. We give a derivation in appendix B.4; A different derivation appears in [47].

6To be more precise, this expansion will be true for certain s, and s, depending on certain conditions
stemming from the form of T' and also depending on the value of Arg(¢). Furthermore, the contour of
integration will be precisely defined by these conditions. We will discuss these conditions in detail below.
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(Mzsa)|a = (My "M My s4)|a

Figure 3.5: Our conventions for defining the solutions globally. The dashed blue lines em-
anating from the punctures indicate the conventions for ‘cutting’ the full Riemann surface,
thus defining the sheets. The red lines indicate the parallel transport of a solution from
Py to the point A along three paths. Two of the paths are homotopically equivalent due
to the triviality of the total monodromy MyMsM;M; = 1 (which follows from the fact
that any path encircling all the punctures with the same orientation is contractable on the
sphere). The third path is homotopically distinct from the other two, and thus the value
of the solution at A will differ by monodromy factors.

Q in the clockwise (counterclockwise) sense attach a factor Mg (Mg')." In this way, if
we transport along a path that is homotopically equivalent to a path that does not cross
any cuts then the small solution at A will be sp|4. If the path crosses the cut emanating
from puncture @) once in the clockwise sense, then the value of the small solution at A will
be (Mgsp)|a, and so on (see figure 3.5). In the case when sp is transported around the
puncture P one can see from the explicit form (3.21) of sp near P that the result will be
multiplication by a constant. That is

MPSP = UpSp (327)
Mpép = jipsp (3.28)

"Note that the result of a monodromy can be expressed as the linear map M since both s and Ms are
solutions of the linear problem. Therefore they can both be expanded in terms of two linearly independent
solutions of the linear problem, and thus they are related to each other simply by a linear map, or in other
words simply by multiplication by some matrix, M.

44



so that sp and §p are eigenvectors of Mp with eigenvalues pup and jip = 1/up respectively.
One cannot repeat such an analysis to evaluate Mgsp since generically one does not know
the explicit form of sp in the neighbourhood of Q.

3.3.3 WKB approximation and WKB Curves

As we will discuss shortly, it will be essential to have control over the & — 0, oo asymptotics
of the inner products (sp A sg) (£). It is clear from (3.19) — (3.20) that these are both
singular limits, and the basic idea of extracting this singularity — which is called the WKB
approximation — is as follows.” As discussed above, we have good control over the solutions
in the neighbourhood of the punctures. Thus we would like to study, in the limits & — 0, oo,
the transport of small sp along a curve w(t) which connects a neighbourhood of a puncture
P with a neighbourhood of another puncture (). Let us consider the transport away from
P (see figure 3.6). We will discuss the £ — 0 limit since the & — oo limit is similar.

w(t)

P

Re (\/gdw) >0

Figure 3.6: Transporting sp away from P along w(t). We have chosen the branch of ® in
(3.29) such that sp o< |[+) near wp. In other words, we have chosen the branch of ® such

that Re ((+| — ®,/¢dw|+)) = Re (dwﬁ/ﬁ) > 0 for dw pointing along w(t) away from
P and thus exp ( ff(t) dwvT / f) is exponentially diverging as & — 0.

/
P

At any point in ¥ the matrix ® has the two eigenvalues Fw/2 = Fv/T/2 dw (which are

8See appendix 5.4 or [58] for a more detailed treatment.
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single valued on the double cover i), and thus we can choose a gauge along w(t) where @
is diagonal and given by

13 9107 A

In the limit & — 0 some component of ®/¢ will dominate and thus the leading contribution
to s, at some point w along w(t) will be given by

e Jut /¢ ) (3.30)

where the value of o = £ depends on the branch of ® we have chosen (recall that |£) are
the eigenvectors of ¢3). This is the singular contribution in the limit ¢ — 0 for the same
reason that it is the small solution — namely, because

Re (o] (=®/¢) |o)) > 0 (3.31)

along a path traveling away from P,. The basic statement of the WKB approximation is
that so long as we transport along paths such that (3.31) is true along the whole path then
the leading contribution to sp in the £ — 0 limit is indeed given by (3.30). In other words,
as long as we transport along curves satisfying (3.31) everywhere, then we can reliably
extract the singularity as £ — 0 as it is simply given by (3.30). The curves along which
(3.31) is satisfied most strongly are those for which

Im ({o (=®/¢) |o)) =0 (3.32)

Curves satisfying this condition are called WKB curves. If we transport along some curve
satisfying (3.32) for Arg(£) = ¢, then the condition (3.31) will be satisfied for Arg () €
(0 —7/2,¢+ 7/2). In fact, we will need to control the asymptotics of sp in precisely such
a wedge of the &-plane, and thus we should always transport along WKB lines. We will
give the a very brief overview of the properties of these lines in the next subsection. For a
detailed treatment see [58].

3.3.4 WKB triangulation

As we discussed in section 3.3.2 we define the solutions of (3.19) globally by transporting
along specific paths. Transport of solutions along homotopically equivalent paths will lead
to the same result, whereas transport along homotopically inequivalent paths generically
will give different results. For this reason it is useful to set up a system of fiducial paths
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A: generic point B: pole C: zero

Figure 3.7: Local structure of WKB lines in the neighbourhood of, A: a generic point;
B: a double pole of T'; C: a simple zero of T. In the case of a generic point the WKB
curves form continuous non-intersecting lines. In the case of a singular point they form
logarithmic spirals for generic values of Arg(§). The exact nature of these spirals will not
be important. What is important is that the singular points act as sources/sinks of WKB
curves. In the case of a zero, there are three special WKB curves that asymptote to the
zero which are the red curves in panel C. These special curves, called separating curves,
determine the global structure of the WKB foliation.

between the punctures which we will use to globally define the solutions. Because we will
need to control the large/small £ asymptotics of the Wronskians, it is best to choose these
paths to be WKB curves — i.e. curves satisfying (3.32).

We will first consider the local structure of WKB curves. In the neighbourhood of a
generic point on the punctured sphere the WKB curves are smooth and non-intersecting
(see figure 3.7A). In the neighbourhood of a (double) pole of 7" the WKB curves follow
logarithmic spirals that asymptote to the singular point (see figure 3.7B). All that will be
important here is that the poles act as sources/sinks of WKB curves but the exact nature
of these spirals will not be important. Finally, working in the neighbourhood of a simple
zero of T" one can show that there are three special WKB curves that asymptote to the
zero and which govern the WKB lines near the zero (see figure 3.7C).

Now consider the global structure of the WKB curves. All WKB curves fall into one of
the following types [58]

o Generic WKB curves which are those that asymptote in both directions to a pole of
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Figure 3.8: Global WKB structure for an example with 4 punctures. The separating curves
are shown in black. In one cell we show several examples of homotopically equivalent curves
(shown in gray) that sweep the cell. Each cell defined by the separating curves has a 1-
parameter family of such curves. By choosing a representative curve from each family we
obtain the triangulation shown in figure 3.9. Notice that near each puncture (the blue
dots) we see the spiral structure shown in panel B of figure 3.7 and near each zero (yellow
x ) we see the local structure shown in panel C of figure 3.7.

T (potentially the same one);

e Separating WKB curves which asymptote to a zero of T in one direction and to a
pole of T in the other;

e Finite WKB curves which are closed or asymptote in both directions to a zero of T
(potentially the same one).

We will now describe how we use the WKB curves to set up a system of fiducial paths,
or more specifically, a triangulation. By triangulation we mean a triangulation of the
punctured sphere with all vertices at the punctures and at least one edge incident on each
vertex. Consider fixed 7" and Arg(¢) such that there are no finite WKB curves (this can
always be done since such curves only appear at special, discrete values of Arg(§)). First
draw all of the separating WKB curves — there will be 3N, of these, where Ny is the
number of zeros of 7" (since for the moment we are not allowing finite WKB curves). These
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E 74

P4 Pl

Figure 3.9: The WKB triangulation of the 4-punctured sphere following from the WKB
foliation shown in figure 3.8. Each edge E,; of the triangulation is a representative from
one of the families of homotopotically equivalent lines in each cell of figure 3.8. This
triangulation will be of central interest in the 4-point function computation.

curves will divide the punctured sphere up into cells with each cell defining a family of
homotopically equivalent generic WKB curves as shown in figure 3.8 for an example of the
4-punctured sphere. To construct the triangulation, choose a representative curve from each
cell, e.g. any one of the silver curves shown in figure 3.8. The claim is that the collection of
these representative curves, which we will call edges, gives the desired triangulation [58].”
As a concrete example, the triangulation associated with the cell-construction of figure 3.8
is shown in figure 3.9. This same triangulation will play an important role in the 4-point
function computation below.

We have now finished the discussion of how to construct the WKB triangulation for a
given T and Arg (§). Before moving on the the next section let us discuss one final point.
In the following it will be useful to lift edges of the triangulation to the double cover 3 and
to endow the lifted edges with an orientation. Recall that w = = VTdw is _a single valued
form on 3. Let 0; be a tangent vector of the lifted edge E at a point on 5. There are of
course two possible orientations for d;. Note that by virtue of (3.32) we have e w9, € R.
We define the orientation of the lifted edge F by the condition e~*w - 9, > 0. Notice that

9To see this in general consider a single zero of T' as shown in figure 3.7. The zero is on the boundary
of three cells. Choosing edges from the family of curves in each cell we see that they form a triangle. Thus
the edges form a triangulation of the punctured sphere with each triangle containing a zero of 7.
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P

Figure 3.10: The two triangles sharing the edge E:3. These two triangles define the quadri-
lateral ()g,,, which is shown in gray shading. Each blue dot represents a puncture, which
are the vertices of the triangulation and each black line and is an edge.

each edge on the punctured sphere will lift to two edges — one on each sheet of 3 and that
these two edges will have opposite relative orientation. Picking a particular orientation of
some edge is equivalent to picking a particular sheet of 3.

3.3.5 Coordinates

From the WKB triangulation we will now construct the so-called Fock-Goncharov coordi-
nates [58]. These are natural objects to work with because they are gauge invariant and
independent of the normalization of the small solutions. From the coordinates we will be
able to extract the n-cycles that we need to compute the action (3.18).

Consider some edge E of the triangulation. This edge is shared by precisely two trian-
gles, and these triangles form the quadrilateral Qg (see figure 3.10). Number the vertices
of Qg as shown in figure 3.10 with E going between P; and P3;. As we mentioned in section
3.3.1, associated with each puncture P, there is a small solution s,. The solutions cannot
be made globally smooth and single valued on the punctured sphere due to the monodromy
around each puncture. However, we can define them such that they are single valued and
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| N ,// (M481)|A ™ \
Figure 3.11: Here we show how to construct the coordinates xo4 (left panel) and x5,
(right panel) of the triangulation of figure 3.9. The gray shaded regions represent Q)24 and
()5, respectively. These figures should be pictured on the sphere. The dashed blue lines
emanating from the punctures indicate our conventions for defining the sheets of the small
solutions as explained in section 3.3.2. The red lines indicate how we globally define the
solutions s, by transporting away from P, using the connection. We use paths that never
leave the quadrilateral such that the solutions used to form the coordinates are guaranteed
to be single-valued and smooth throughout the quadrilateral, as required.

smooth throughout Qg.'"" We then define the Fock-Goncharov coordinate as [58]

(81 A 82)<83 A S4>
(82 A S3)<S4 A 81>

xe = (—1) (3.33)
where all the s, are evaluated at a common point in Qg.

As a concrete example consider the triangulation of the 4-punctured sphere shown in
figure 3.9. In figure 3.11 we show how to apply the procedure just described to construct
the coordinates corresponding to edges Ey, and Ey,. Consider first the left panel of 3.11.
We define each solution s, throughout ()24 by parallel transporting from each P, where
the explicit form of the solutions is known — see (3.21). The red lines indicate the parallel

10We will show this in some concrete examples momentarily.
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Figure 3.12: Here we describe the construction of the coordinate for the slightly degenerate
case where the coordinate corresponds to an edge ending at a vertex that has only two in-
cident edges (e.g. P, has only 2 incident edges: Ej and Fa3). We construct the coordinate
for edge Fs3 of the triangulation shown in figure 3.9. The quadrilateral prescription de-
scribed above still applies, but one must take care to correctly define (Jg and the solutions
inside Q. First of all, in order to have single-valued and smooth solutions throughout
(223 we must exclude a region between P; and P,. Otherwise ()23 would contain P3; and
thus the solutions could not be single valued in Q23 (there would be a monodromy around
P3). Since the boundaries of the quadrilateral must be edges of the triangulation, the only
choice is to remove a thin region running along edge E34 and then to treat the two ‘sides’
of Fs34 as different edges. In the figure we have represented this process by showing Fs, as
doubled and with the region between the new edges excluded from ()o3. We then define
the solutions throughout ()53 in the same way as described in figure 3.11, by analytically
continuing the solutions along paths from P, to A that stay within (o3 which is represented
as the shaded region. Once we have defined the solutions at a common point we form the
coordinate ya3 given in equation (3.35).

transport of each s, from P, to a common point A; clearly we can define the small solutions
at any point A € Qo4 in this way. Further, if the paths never leave the quadrilateral (or at
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least is always homotopically equivalent to a paths that never leave the quadrilateral) then
the solution defined in this way is guaranteed to be single-valued and smooth through-
out the quadrilateral, as required. With the solutions defined at a common point in the
quadrilateral we can construct the coordinate yo4, which is independent of the choice of
A € (Q24. Now consider the right panel of figure 3.11 where the grey shading indicates the
quadrilateral associated to edge )4,. These figures should be imagined on the sphere. Now
to transport the small solutions to a common point one cannot avoid passing under a cut
onto new sheets of some of the small solutions. For example s, must pass onto a new sheet
in order to be smoothly continued to the point A. This is because if we were to compare
the sy of the left panel and the sy of the right panel (by moving each respective A to a
common point A’ along the edge F34, for example) the two paths of continuation would
differ by a holonomy around Ps, and thus the values at the point A’ would not coincide
but would differ by the action of M3ﬂ. Of course which solution we call s, and Mflsg is
purely a matter of convention. Similarly, which solutions acquire factors of M, depends
on the choice of the point A. We stress that the coordinates are independent of all such
ambiguities, as one can easily check using identities such as (M.s, A sp) = (5o A M 1sy),
etc. Then from figure 3.11 we read off

<M§182 A M481)(84 VAN 83)
(M481 VAN 84)(83 A M?leQ)

(52 A s3)(s4 N S1) )
(s3 A sq)(s1 A s2) X2y

Xoa = (—1) =(-1) (3.34)

We will also need to construct coordinates in the slightly degenerate case where the
coordinate corresponds to an edge ending at a vertex that has only two incident edges
(including the edge under consideration) for example all edges in figure 3.9 except Foy
and Ey,. We show how to construct this coordinate in figure 3.12. Using the procedure

described there we find

(82 VAN M384)($3 A 84)
(M3S4 A 83)(84 N $2>’

(51 A M tsy) (59 A 8y)
(M 54 A 85)(54 A 81)

(3.35)

X2z = (—1) X1z = (—1)
The other two coordinates xs34 and x4 are computed in a similar way.

We have now completed our discussion of how to construct the coordinates. Before we
continue, let us comment on a useful property of these objects. Consider multiplying all
of the coordinates associated with edges meeting a given puncture P. For example, the
edges ending at P, in the triangulation of figure 3.9 are Ey9, Ey, Es3 and Fyy. Using
(3.34)-(3.35) we have

X12X4X23X24 = Hj - (3.36)

This property is true in general since the inner-products in the coordinates telescopically
cancel in the product and the only thing that remains is the effect of the monodromy

23



Figure 3.13: Computing the £ — 0 asymptotic of the coordinate yo4 for a typical WKB
triangulation. The blue disks represent the punctures and the black lines represent edges
of the triangulation. A yellow X represents a zero of w and the wavy yellow line shows
our convention for defining the sheets of ¥. The black arrows running along the edges
indicate the choice of the direction for the edges. Each red curve indicates the transport of
a small solutions in the limit & — 0. The dashed red lines correspond to the transport of
a solution appearing in the denominator of the coordinate. The transports used to form
the coordinate combine into the continuous integral of w near the boundary of ()94, which
can then be deformed into the cycle integral v94 shown in gray.

around the puncture which produces a p? factor. Thus we have the general rule [58]

I xe=# (3.37)

E meeting P

3.3.6 WKB asymptotics of the coordinates

The advantage of using the WKB triangulation is that the & — 0, co0 asymptotics of the
coordinates of the triangulation are easily extracted given the discussion of section 3.3.3.
That is, because we have maximum control over the large/small ¢ asymptotics of the
small solutions when we transport along WKB curves. We give only the basic idea of the
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derivation of these asymptotics here and refer the reader to appendix 5.4 and [58] for
details.

To obtain the asymptotic of some yg one simply needs to use expression (3.30) for
each inner-product of the coordinate, taking care to account for the direction of the WKB
lines. Consider the coordinate associated with edge Fo4 in figure 3.13. The expression for
this coordinate in terms of the small solutions is given in (3.34). We will now use formula
(3.30) to compute the asymptotic of this coordinate in the £ — 0 limit. Let us take the
directions of the WKB lines to be as given in figure 3.13. To evaluate the inner product
(s2 A s3) we must transport the solutions to a common point. Since there is a WKB line
flowing from P; to P, we can safely use (to leading order) expression (3.30) to transport
s3 to the neighbourhood of P, giving a contribution of the form (sy A s3) ~ e3 k5 w/€, To
evaluate (s3 A s4) we must transport sz to Py since that is the direction of the WKB line
and thus we get the contribution (s3 A s4) ~ ez s w6 We may then reverse the order of
integration in (s3 A s4) and also move it to the numerator of the coordinate. Then the
integrations from (sg A s3) and (s3 A s4) combine nicely into a continuous integral running
just inside the boundary of ()4 from the neighbourhood of P to P5; to P,. Repeating this
analysis for the remaining two brackets one obtains a closed cycle integral passing along
the boundary of (Q94. Recall from the discussion of section 3.3.4 that each triangle in the
WKB triangulation encloses one zero of w. The integral of w thus encloses two zeros and
so it can be deformed to the cycle integral shown in figure 3.13. Thus the non-vanishing
contribution in the limit £ — 0 is given by

YE ~ (—1) exp (%51/ W+ Céi”) (3.38)

The contour g is the cycle encircling the two zeros contained in Qg and its direction is
the same as that of the WKB lines corresponding to the brackets in the numerator of the
coordinate. The term Cg)) is the O(£%) contribution to the WKB expansion, which we will
discuss momentarily. The overall (—1) prefactor in (3.38) is the same (—1) appearing in
the definition of the coordinate (3.33).

To derive the subleading WKB corrections (in the £ — 0 limit, for example) is essentially
a matter of perturbation theory once the singular contribution has been extracted. We give
a detailed discussion of this in appendix B.4. Here we will simply focus on the result and
its implications. We find the first subleading contribution is given by

CV = log(—1)"" + ir (3.39)

where ug is the number of u-spikes enclosed by .
Finally the £ — oo asymptotic follows in the same way as the £ — 0 and leads to a
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cycle integral around Qg of £w.
To summarize, the £ — 0, 0o asymptotics for xg are given by

Xe ~ (—1)"F exp [%/ (% +§w)] (3.40)
E

where v is the cycle encircling the two zeros contained in Qg and its direction is the same

as that of the WKB lines corresponding to the brackets in the numerator of the coordinate.

Now it is clear how the choice of spikes (i.e. the choice of signs in (3.11)) is encoded into the

coordinates — via the constant term in the WKB expansion which contributes the (—1)"#

factor in (3.40). Recall that ug is the number of u-spikes encircled by 7.

3.3.7 Shift relation.

In section 3.3.1 we explained that there are two special solutions sp, §p associated with each
puncture P and that they are related to each other by a shift in the spectral parameter:
5p(€) = o3sp(e™™¢). Here we give an alternative relation between the small and big
solutions that does not involve shifting the spectral parameter. The solutions sp and §p
are linearly independent and thus we can expand any solution s in terms of them. In
particular we have

sp A sgQ spANSg\ -
— 3.41
°Q (gp/\SP) SP+(Sp/\§p P ( )
Mpsq = (2052 ps, o (S205) s (3.42)
Poe = gp/\SP Hpsp Sp/\gp Hpap '

For the second equality we have used (3.27)-(3.28). Combining these two equations it

follows that u ~
PSQ N\ S 9 Sp A\ sq
— = | =(1- 3.43
<MPSQ/\SP) ( IuP) (gp/\Sp) ( )

The utility of this equation is that it allows us to replace certain wronskians involving big
solutions (as on the RHS of (3.43)) in terms of small solutions with monodromies. This
will play a key role in the derivation of the functional equations that we present in the
following section.

3.3.8 x-system.

We will now derive a set of functional equations for the coordinates which, together with
certain analytic properties, allows us to determine the coordinates completely. Our inspi-
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ration comes from the solution of the bosonic Wilson-loop problem at strong coupling [57]
where the solution involves a set of functional equations of the schematic form'*

YY" = F,(Y) (3.44)

where f"** = f(64nin/2). On the RHS of (3.44) the function F, can depend on all of the
Y,, but with their arguments un-shifted. The only shifts in the spectral parameter occur
on the LHS of (3.44). For the Wilson-loop problem the F, are such that (3.44) takes the
form of a so-called Y-system which commonly appear in the context of 1 + 1 dimensional
integrable QFT’s. Here, using the general formalism of [58], we will arrive at a set of
functional equations with the same schematic form as (3.44) but with the F, of a different
form than that occurring in the Wilson-loop problem. We will call this type of functional
equation a y-system.
To derive a relation of the form (3.44) we begin with the LHS. Using (3.24) we have

XEXE = XEXE (3.45)

where X g is defined by taking y g and replacing each small solutions s, — S,. To obtain the
schematic form (3.44) we need to rewrite (3.45) in terms of only un-shifted small solutions.
That is, we need to get rid of all the tildes without introducing any shifts in the spectral
parameter. For this we can use (3.43) after applying the Schouten identity'” to (3.45) to

obtain
(14 Aw)(1+ A)

T = XEXE = 3.46
XEXE = XEXE = (T AT 5 Ag) (3.46)
where we have defined the useful auxiliary quantity
NS AN
Apg = (-1) (s \5r) (50 1 Sa) (3.47)

(Sp A §p) (SQ A\ §Q)

_ _1{ Mpsp N\s Mopsp N\ s
= (=) (1 +p3) (1) (e e °P’ °P 3.48
( >( +MP> ( +NQ) MPSQ/\SP MQSP/\SQ ( )

Here, the edge FE is the edge ac in Qg where the vertices are labeled abed in counter-
clockwise order. To go from (3.47) to (3.48) we used the shift relation (3.43). The last step
is to rewrite the wronskians appearing in (3.48) in terms of the coordinates. Once this is

"' The linear problem associated with that problem is very similar to the one considered here and the Y,
are (up to shifts in the spectral parameter) the coordinates associated with that problem. We are referring
here to the special case where the Wilson loop lives in an R; ; subspace.

12 (54 A sp)(8e A sa) + (8a Ase)(sq A sp)+ (8a Asg)(sy Ase) =0.
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Figure 3.14: Graphical rules for constructing ¥ (P;@Q — @). Start at edge Epg and con-
tinue in a counterclockwise fashion about P forming the nested product (3.49) by multiply-
ing the coordinates for each edge encountered along the way (i.e. the coordinates associated
with each edge intersected by the red line in the order indicated by the arrow). The dashed
blue line indicates our convention for cutting the solutions to account for the monodromy
around P. The small solutions used to form the coordinates are defined in the vicinity of
P by analytically continuing them throughout the triangles along the direction indicated
by the red arrow and thus if we use sg in xp, then we must include a monodromy matrix
when the solution is continued around P to form xp;.

done, combining (3.45) — (3.48), we can assemble a functional equation of the form (3.44).
To do this (following [58]) we introduce the quantity

Y(P;Q —Q)=1+xpa(l+xpa(I+..xp2(1+xpr1))) (3.49)

The coordinates appearing in this object are shown in figure 3.14. By repeatedly apply-
ing the Schouten identity (see footnote 12) starting with (14 xp;) one can see that the
Wronskians in (3.49) telescopically cancel so that'’

(S0 A Sat1)(Sp A Sq) _ (sp A sqa)(Mpsg A sqg)
(Sa+1 A Sa)(So Asp)  (sg A sa)(Mpsg A sp)

In going from the first equality to the second in (3.50) we have accounted for the monodromy
acquired by the small solutions when they are analytically continued around P (see figure

(PQ—Q)= (3.50)

13An easy way to see this in general is to use induction [58]. The case a = 1 is simple to
prove using Schouten identity. Then one can show (again using Schouten) that ¥ (P;Quq2 — Qo) =
1+ XPa+12 (P; Qat1 — Qo).
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3.14). Then, from (3.50) and (3.48) we have

(14 pp)* (1 + pg)*Apg = xroX (P;Q — Q)% (Q; P — P) (3.51)

Finally, using (3.51) in (3.46) and noting (3.49) we obtain a closed functional equation
for xg of the form (3.44). Repeating this procedure for the coordinate associated to each
edge in a given triangulation gives the desired set of functional equations. Note that this
procedure can be applied to derive the x-system for an arbitrary number of punctures.
In section 3.4 we will apply this procedure to the triangulation (3.9), which is one of the
triangulations of interest for the four-point function computation.

3.3.9 Inverting y-systems

In the previous section we showed how to derive the y-system associated with a given
triangulation of the N-punctured sphere. In this section we will discuss how to use the x-
system along with certain analytic properties of the coordinates to obtain integral equations
that determine the xg uniquely.

The basic idea behind the inversion of a x-system is to Fourier transform (the log of)
each equation since in Fourier space these nonlocal relations become local as the shifts in
the parameter 6 can be undone in the usual way. For such a procedure to be successful one
must have a certain amount of control of the analytic properties of the coordinates. Let us
discuss this carefully. The equations that we want to Fourier transform have the form

log x5 (0 +i¢) + log x4 (0 + i¢) = log Fg (Xi (0 + zqﬁ)) (3.52)

where Fg () is an explicit function of the coordinates which follows from the discussion of
section 3.3.8. We have introduced the arbitrary shift ¢ for reasons that will be explained
momentarily. Note that xgx5" = xzx5  since the small solutions are 27i-periodic, which
is why we can have either shift Fi (x*) on the RHS. The choice of this shift is arbitrary
since the objects we will eventually compute (the n-cycles) are functionals of the coordi-
nates only through Apg which is im-periodic and thus does not care about the choice of
shift. As a convention we choose the shift —ir/2.

To Fourier transform the relationship (3.52) one must be sure that the transform con-
verges. Moreover, to undo the shifts on the LHS, one must account for the singularities (if
any) of log x in the strip of width 7 centered along the line where the transform has been
performed. We will now discuss each of these issues in turn.

The information from the WKB analysis will allow us to ensure the convergence of
the Fourier transform, provided certain conditions are satisfied. First consider the LHS
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of (3.52). We need to ensure that the transform of each individual term converges. We
can ensure this if we know the asymptotics of the coordinates in the full strip Im (6) €
(¢ — /2,0 + 7/2). The coordinates should be derived from the triangulation that one has
at Im (0) = ¢. Then the WKB analysis guarantees that the asymptotics are given by (3.40)
in a strip that includes the region Im € (¢ — 7/2,¢ + 7/2). Each term on the LHS can
be made safe to transform by making (on the LHS only) the replacement xg — xg/ ng))

where X(E(‘)) is the asymptotic (3.40). This replacement does not modify the equation since

++
(xg)) (X?) =1
Now consider the RHS of (3.52), which has the form (see equation (3.46))

(1+ Aap)(1 + Aca)
(1+ Ape) (1 + Aga)

Each Apg is computed by (3.51) and (3.49). For the RHS of (3.53) to be decaying it is
sufficient for all of the Apg in (3.53) to be decaying. If all the y-functions are decaying
then from (3.51) and (3.49) it is clear that all of the Apy will decay; the p-factors will
decay by virtue of the rule (3.37). On the other hand, if all the y-functions are growing
the p-factors in (3.51) will dominate the RHS of (3.51) so that Apg is still decaying; to
see this one should re-express the u-factors in terms of the coordinates using (3.37). Thus
the RHS of (3.53) will decay if all of the yx-functions are growing, or alternatively if they
are all decaying. For generic ¢ it will generally not be true that the RHS of (3.53) is well
behaved, and one must try to find a range of ¢-values for which the xg are all decaying
or are all growing. If a suitable ¢ can be found, then (3.52) can be directly solved by
Fourier-transform. In all of the examples we have considered (in particular, those relevant
for the 4-point function) it has been possible to find such a ¢.

Concerning the issue of singularities within the strip of inversion, it follows from (3.19)
that the Wronskians (s, A sp) (0) are (in an appropriate normalization) analytic away from
0 = +oo. It is, however, possible for these objects to have zeros and in the following it is
an assumption that there are no zeros in the strip where we do the inversion.'* In section
3.4.1 we perform numerical tests that support this assumption.

Finally, we use the Fourier analysis to obtain

log X (0) = log X[ 0) — |
R

log i (x™ (0 +i¢)) = log (0 £ in/2 +i¢) (3.53)

49 log Fy (X (9)
2mi sinh (6" — 0 + 40)

(3.54)

4 In the limit where the WKB approximation holds, i.e. when § — 400 or in the limit of large zero
modes | Zg| — oo [58], it is clear that (in an appropriate normalization) the Wronskians will not have any
zeros since (suppose we compute the Wronskian near P,) then s, will be the big solution near P, and is
thus linearly independent of s, which is small at P,. For finite values of 6 (or alternately of |Zg|) we have
no concrete way of arguing that these zeros are not present.
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where Xg (0) = xg (0 + i¢ — im/2) and Xg)) is the (shifted) asymptotic (3.40) and F (X)
is an explicit function of the coordinates which follows from the discussion of the previous
section.

The equations (3.54) can easily be solved for the X by iterating them in a computer.
In the next subsection we will show how to extract the n-cycles of formula (3.18) from the

X g which are computed using (3.54). We will then perform some numerical tests in section
3.4.1.

3.3.10 Extracting n-cycles

Once the coordinates are computed according to the prescription of the preceding section
we extract the n-cycles as follows. What we need to compute are the individual Wronskians
(Sa A sp). For this, note that from (3.47) and footnote 12 we have

(Sa N Sb) (ga A §b)

(14 Aw) (54 A 3a) (55 A 3)

(3.55)

We can choose a gauge where (sp A §p) = 1. The final result will be gauge independent.
With this gauge choice we have

1og (54 A sp)” +10g (sa A sp) " =log (14 Ay) (3.56)

Here we will use the notation 8 — 6 + i¢ where # and ¢ are real. We then insert the
zero-modes on the LHS in the same way as for the y-system (see section 3.3.9). We are
only interested in P, and P, that are connected by a WKB line when Arg (£) = ¢, and thus
we have good control over the asymptotics in the required strip. Performing the Fourier
transforms we obtain

I I do'log (1 + Ay, (0 + i9))
1 a ) = Zp 019 a — O0+id = a / _ ab )
0g (Sa N 8p) (0 4 i9) (26 @ap + ;e wb)—i-  om cosh (0 — ) (3.57)
where we have defined
. . Aa / Ab /
Wep = lim  lim VTdw + — log(w, — w)) + — log(wy, — wy) (3.58)
W}, —Wq w{)—)wb Egp 2 2

The integration in (3.58) is performed along edge E,,. The direction of integration is the
same as the direction of the edge E,; (see appendix B.4). Note that the logarithmic terms
precisely cancel the divergence from the endpoints of integration in (3.58) so that the g,
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are finite. In going from (3.56) to (3.57) we have used the asymptotics for (s, A sp) derived
in appendix B.4.

Expanding (3.57) around  — —oo, and comparing with (3.26) with £ = e+ we read
oft

I o
/Eab n = /R ¢ log (1+ Ay, (0 +i¢)) (3.59)

The contour of integration in |’ B, 118 along the WKB line connecting P, and P, and the
direction of integration is the same as the direction of the edge F,,. This formula allows
us to compute the 7-cycles from the y-functions since the Apg are explicit functions of the
coordinates.

3.4 The AdS action

3.4.1 Regularized AdS action

Now that we have introduced the needed tools we are ready to calculate the action (3.18).
We will demonstrate for the case of the 4-point function, but the method is general and
could be performed for any number of operators inserted along a line. The computation
will be as follows. First we will introduce the relevant WKB triangulation which will
be topologically equivalent to the triangulation shown in figure 3.9. Second, using the
procedure of section 3.3.8 we will derive the y-system satisfied by the coordinates of this
triangulation. Supplementing these functional relations by the WKB asymptotics we will
invert these functional relations using the technique of section 3.3.9 to obtain a set of
integral equations that uniquely determine the coordinates. Finally, from coordinates we
extract the n-cycles using the method of section 3.3.10. Once we have the n-cycles, we
compute the action using (3.18).

Stress-energy tensor and WKB triangulation

For the purpose of the following computation, a useful parameterization of the stress energy
tensor is

1 co + cw + cow? + Uw?
T = —— | Cxo 3.60
)= G (= P (360
Here we have fixed three of the insertion points at w; = +1, wy = 00, ws = —1 using

the world-sheet conformal symmetry. The fourth insertion point is left at the position wy
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> _>
7w W9 w3 W4y ()

Figure 3.15: Constructing the triangulation for the 4-point function. In the left panel
we show the WKB cells for Arg(¢) = 0. The cell walls are formed by the separating
WKB curves as described in section 3.3.4; as described there, inside each cell there is a
1-parameter family of generic WKB curves and by taking a representative curve from each
family we obtain the triangulation shown in the right panel. In the right panel the black
lines are the edges of the WKB triangulation and the wavy yellow lines show our convention
for defining the branches of w. Notice that this triangulation is topologically equivalent to
the one shown in figure 3.9. This means that we can borrow the results derived for that
example. In particular, the coordinates can be carried over from that example by making
the proper identifications. The cycles corresponding to each coordinate are represented by
the gray curves — we show only the portion of each cycle on the sheet of w where the edge
E34 has orientation towards P, as indicated by the black arrow along edge Fsy.

which should be fixed by the Virasoro constraint. For the purpose of demonstration we
will take wy to be between ws = —1 and w; = +1. When the fourth insertion point is
located in one of the other intervals one can proceed by a similar procedure. The constants
Cq = Cq (wy, A) are functions of wy and dimensions of the operators and are fixed by the
condition (3.7). Their explicit expressions are given in appendix /). The parameter U
is unfixed by the condition (3.7) and implicitly parameterizes the cross ratio of the four
operators (recall that they are inserted along a line in the boundary theory so that there
is only one cross ratio). The analytic structure of T, the resulting WKB-structure and the
WKB triangulation are shown in figure 3.15.
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x-system for the 4-point function

From equation (3.46) and figure 3.15 we have

-1 (1 —|— Agg) (1 —|— A14)
TF s = 3.61
X24X24 <X24X24> (1+A34) (1—|—A12) ( )
1 1 1+ A
X12X1s = (X14XT4+) = X34X31 = (X23X§3+) = —El +A2A4§ (3.62)
24

To compute each Apg we use formulas (3.51) and (3.49) along with the rules given in figure
3.14. In that way we find

o xaa (T X2 (14 Xy (14 x23))) (1 + Xaz (14 X (14 Xa1)))
Apy = . 5 (3.63)
(1= p3) (1 — p3)
Ay = X (14 x34) (14 xoa (14 x12 (1 + X)) (3.64)
(1= p3) (1 = pi3)

with the rest of the Apy being related by relabelling (see appendix D for the explicit
formulas). These expressions and equations (3.61) — (3.62) provide a closed system of
functional equations for the 6 coordinates associated with the triangulation shown in figure
3.15.

These functional equations can be converted into integral equations of the form (3.54)
using the technique described in section 3.3.9. To apply the procedure of section 3.3.9 one
must find a ¢ such that the RHS of (3.52) is decaying, and for this one should appeal to
the WKB analysis. The WKB cycles which determine the asymptotics of the coordinates
are shown in figure 3.15. When Ay ~ Az and U ~ 0,w, ~ 0 the cycles shown in figure 3.15
all have Arg($, w) ~ 7/2."” In this case ¢ = 0 is a suitable choice since then all x will be

growing and (3.53) will decay rapidly.'® In summary, the integral equations in the region
of present interest are given by equations (3.54) with F given by (3.61) — (3.64). These
equations will remain valid for all values of the parameters A,, U, and w, such that the
triangulation is unchanged. If one deforms these parameters too much the triangulation

5Interestingly, when A; = A3 and U = wy = 0 there is a symmetry which causes the RHS of the
Xx-system to trivialize (i.e. to reduce to 1 for all xg) and the y-functions can be computed explicitly (they
are just equal to their zero-mode part). This is reminiscent of the case for the three-point function and,
in fact, there is also a change of coordinates that maps the specific case A1 = Az and U = wy = 0 to two
copies of a three-point function.

'0This will continue to be the case as long as the Arg(§. w) remain in the upper-half plane. In other-
words, the inversion procedure will be valid for all U and w, such that the triangulation is unchanged since
the triangulation will jump precisely when one of the 5€7E w crosses the real-axis [58].
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will jump. One can then easily write the y-system for the new triangulation and apply the
same procedure to obtain the integral equations for that region of parameters.'’

By numerically iterating these equations (using Xg) as the initial iterate for each xg)
we obtain the y-functions. The 7-cycles are then extracted from the y-functions using the
procedure of section (3.3.10). In the following section we will write the regularized AdS
action in terms of these n-cycles.

Finite part of AdS action

Now that we are able to compute the n-cycles (see previous subsection) we can use the

formula .
Afm:/ \/TT(cosh’y—l):Z—3 %w I} }{n : (3.65)
by 3 2 Ya Vb

(see section 3.2.2 and equation (3.18)) to compute the regularized part of the AdS action.
To use (3.65) there are few steps. These steps are simple but tedious and we will only list
them here (see appendix D for a detailed implementation). As described in section 3.2.2
one should first modify T by spreading the double poles slightly such that w = v/T'dw has
an additional square-root cut at each of these points. Then one should choose a complete
basis of a- and b-cycles (five of each is needed for the 4-point function). One can then apply
formula (3.18) and then take the limit in which the small cuts close to form simple poles in
w. Once this is done the area will generically be expressed in terms of three different types
of n-cycles: cycles connecting two punctures, cycles connecting a puncture with a zero and
cycles connecting two zeros. The latter two can be expressed as linear combinations of the
puncture-puncture cycles as described in appendix /). Once this is done, the final result
takes the elegant form

s .
Apin = = — 1 Z WENE (3.66)

where the sum runs over the edges in the triangulation (see figure 3.15), ng,, is defined
in (3.59) while wg,, is the w-cycles that intersects edge E,; (i.e. the integral of w that is
associated with the coordinate x.; these integrals are shown as the gray contours in figure
3.15).1%

Formula (3.66) and the procedure of section 3.3 for computing the 7-cycles solve the
problem of computing the regularized AdS contribution to the 4-point function. In the

17 Another (more elegant) approach would be to find a systematic way of analytically continuing the
integral equations from one region of parameters to another as was done for the TBA equations of [57].

18Note that in formula (3.66) both integrals wg and ng are the segment integrals between the appropriate
limits. For example, the wg = % f'ws w. In this sense we are abusive with the term ‘cycle’.
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] U \ As \ Ay \ AN \ JAD) \ Numerics \ X-system ‘
/5] 1 2 1 2 0.84807 0.84812
/21 1 2 1 2 0.82421 0.82423

Table 3.1: Comparison of the Ay;, obtained by numerically integrating (3.10) and the area
computed from the y-system. The results are for the spike configuration of figure 3.4B.

next section we present some numerical tests of the procedure. Let us note that the
procedure of section 3.3 is general and can be implemented for any number of punctures.
Further, while we have only proved equation (3.66) for the case of the 4-point function,
given its simplicity one might suspect that the formula holds in general (with 7/3 —
7/12 x (#number of zeros of T), of course)."” Even if the general result does not take
the simple form (3.66), for a given T' (i.e. for any number of punctures) the procedure
described in section 3.2.2 is still valid and one can still write Ay;, in terms of the ng for
the corresponding triangulation). In principle this solves the problem of computing the
regularized AdS contribution to the N-point function. We have performed numerical tests
only for the case of the 4-point function. We present these numerical results in the following
section.

Numerical tests

We now present numerical tests of the method described above. We solved numerically
the modified sinh-Gordon equation (3.10) for the function v and then using this numerical
solution to directly compute Ay, via

/ \/ﬁ(coshv - 1) (3.67)

The general set-up of the numerical problem essentially follows that of [46] with some
modifications. However, the numerical method that we use to solve the PDE (3.10) is
quite different from that of [46].” We place the punctures at w3 = —1, wy = 0, wy = 1,
and wy = oo. We then map the sphere to a square domain with the point at infinity
mapping to the boundary of the square and the real axis mapping onto itself. Since v must

191t would be a simple matter to check this, but we have not pursued this issue. We did check that the
formula holds for the 3-point function (see appendix E).

20We are very grateful to Romuald Janik for providing us with a copy of the code used in [46] which
was very useful in helping us to develop and test our own numerics.
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malA] ma|B| N
—0.033166||—0.031624 ?
—0.033166|—0.031624
—0.033167||—0.031626
—0.033168/|—0.031628
~0.033169/|—0.031629
—0.033168|—0.031629
—0.033167||—0.031627
—0.033166 ||-0.031626 || w, W

134[A] 1134 [B] 23
—0.014496 ||—0.013581
—0.014497||—0.013582
—0.014499 || —0.013585
—0.014501 ||—0.013587
—0.014503 ||—0.013589
—0.014503 ||—0.013589
—0.014502||—0.013589
~0.014502 ||-0.013588 || ws Wa

Figure 3.16: Here we show the values of 714 and 734 evaluated along several different
contours. For example, the column labeled 14[A]([B]) shows the values of 714 for the spike
configuration of figure 3.4A(B) for each of the contours shown to the right of the column.
We use the parameter values Ay = A} = 1, Ay = Ay = 2 and U = 1/5 for both spike
configurations. There are five digits that we trust since they are unchanged for the different
contours and they should be compared with our result from the functional equations that is

g SYSIAT & 0.033169, 7Y SV A] & —0.014503 and 7 VS ~ —0.031628,

My system[B] ~ —0.013588. In the digits where the forms are closed there is perfect

agreement with the analytic results.

vanish at the punctures, we should impose v = 0 along the boundary of the square domain
since wy maps to the boundary of the square in the new coordinates. Further, since for
either configuration of spikes (see section 3.2.3 and figure 3.4) there is a fold-line along
the real axis, we know v (x,0) = 0 where we are using the coordinates w = = + 7y and
writing v = y(z,y). Thus we can solve the problem in half of the square with the Dirichlet
boundary conditions v = 0 on the boundaries. Lastly, we must remove the logarithmic
singularities (3.11) in order to have a nice smooth function to solve for. A suitable function
N (w — ) (@ — 24)

1+ ww) (3.68)

1
2%eg=7+§zaalog[
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where we o, = +1 is determined by v ~ —aaélog TT at z,. The numerator of (3.68)
removes the log divergences (3.11) in v while the denominator is included to kill off these
additional log terms at infinity. In the numerical implementation we fix the spike configu-
ration we want to describe by choosing the set of {0,}. Finally, to numerically integrate
the equation (3.10) (re-written in terms of 7,4, of course) we use a standard relaxation
method with an uniform grid.

In table 3.1 we compare the numerical results with the analytic results. The numerical
results are obtained by the area computed using (3.67) with the numerical solution for .
The analytic result is obtained from (3.66) with the n-cycles computed using the y-system
procedure. These results show a good agreement of our formula with the numerics.

A sharper measure of the agreement between the analytics and numerics is to compare
directly the n-cycles. In figure 3.16 we show the numerical results for 7,4 and 734 computed
along several different contours. This allows us to test the closure of the numerical n which
we obtain from the numerical v via (3.16). Note that closure of  implies that v must obey
(3.10) and thus this is a good measure of the numerical error. Indeed, one can see in figure
3.16 that the numerical cycles agree with the analytical predictions in all digits in which
they are closed. That is, the numerics is in agreement with the analytics in all of the digits
for which the numerics can be trusted.

Finally, it would be interesting to perform numerical tests for a larger portion of the
parameter space (i.e. more values of the A,, U and wy). To perform a systematic study
will probably require an improvement of our numerical method as our current method,
while extremely simple, has very slow convergence.

3.4.2 Divergent part

In section 3.4.1 we completed the task of computing the first term in formula (3.14). In
this section we will discuss the second term

- PuVTT = -2 N Alloge, — A, 3.69
/z\{ea} 2 Z ° ’ (309

where A, is finite at ¢, — 0. The contribution A,., can be computed by simple but
tedious application of the Riemann bilinear identity and there are many ways to write the
result. For example

. 1
Apeg =1 Z wpwr — i=(wy — wyy ) (wes — wWyy) (3.70)
EcT 2

where the sum is over the triangulation shown in figure 3.15 and wg,, = @, is defined in

68



(3.58). The wg are defined in the same way as in (3.66). One can check this formula by
comparing with the direct 2D numerical integration of VTT with small circular disks cut
out around the puncture (in Mathematica one can use NIntegrate along with the Boole
command, for example).

We recall that (3.69) came from the regularization of the string action where we have
added and subtracted vT'T from the integrand of the AdS action. This integral depends
explicitly on the cut-off ¢, around the punctures. It will be important to understand the
connection with the physical cut-off £ at the boundary of AdS. Fortunately we can extract
the needed information from the linear problem since we have good analytic control over
the solutions near the insertion points. To proceed by this route (which parallels the
discussion of [46] for the 3-point function) we must first describe how the string embedding
coordinates are recovered from the linear problem formalism, which is via the aptly-named
reconstruction formulas. We will discuss this in the next subsection. After that, we will
use the reconstruction formulas to eliminate the ¢, in favor of £. From this procedure we
will recover the standard spacetime dependence in (3.1) along with a contribution to the
function f(u,v). This will complete the computation of the semiclassical AdS contribution
to (3.1).

Reconstruction formulas

The reconstruction formulas allow us to express the string embedding coordinates in terms
of solutions of the linear problem. This point is crucial in our construction for the following
reasons. First, we have introduced some regulators in the world-sheet, €,, that must be
related to the physical cut-off in the boundary of AdS, z = £. Second, by using them we
will be able make the spatial dependence explicit in the final result, namely the insertion
points x, of the operators in the gauge theory.

Consider two solutions of the linear problem, 14 and ¥ normalized as (¥4 A ¥p) = 1,
and construct a matrix ¥ as

U= (4 Up). (3.71)
The matrix ¥ obeys the same equations of motion as 14 g (3.19), namely
O+ J)¥ =0, (0+Jg)¥=0. (3.72)
where J,, and J; are defined in (3.19)-(3.20). One can verify using (3.9) that the quantity
1
y' = —3 tr (5102\IJT01\P)

loco (3.73)
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1 2

with 6! = o', 62 = —io?, &3 = 03, satisfies the same equations of motion as Y/ and also
the constraint y-y = —1 (with the AdS metric). In this way we establish a correspondence
between target space coordinates and solutions of the linear problem,

3

1
oYY =20 Uy, =V =i (U Uy + U W) (3.74)
z z

In order to relate the operator insertion points x, and physical cut-off £ with the linear
problem data, it is convenient to express 14 and ¥ in terms of the elementary solutions
s, and §, whose behavior close to the punctures is given by (3.21),

¢A = (wA A §a) Sa + (3(1 A wA) gaa ¢B = (wB A ga) Sa + (Sa A ¢B) §a (375)

Close to the punctures the solution §, becomes dominant. Then, using (3.74) and the
explicit form of 5, close to the puncture P, we get that

P ——— T (3.76)

where the subscript 0 indicates that the solutions are evaluated at § = 0 (recall that this is
the value where the physical problem is recovered — see equation (3.73)). Equation (3.76) is
the relation needed to make the connection between the world-sheet and physical cut-oft’s

Agloge, =log€ +log| (sa Aha) | (3.77)

Finally, using once again (3.74) we express the insertion points x, of the operators in the

gauge theory as
(Sa A wB)O

(50 A n)g (3.78)

Ty —

Physical regulator and spacetime dependence

We can now use (3.77) to eliminate the €, in (3.69) in favor of the physical cut-off at the
boundary of AdS z = &. We have

Z A2loge, = (Z Aylog € + Z Aglog| (sq A1ha) |(2)> (3.79)

where a and A refer respectively to the small solution s, and one generic solution 4
appearing in the reconstruction formulas. Now we will eliminate the factors | (s, A ¥4) |o
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in terms of objects that we can compute.

The terms | (s, At4) |3 can be related to the insertion points z, in target space and
overlaps of the elementary solutions evaluated at § = 0 through expression (3.78). Using
Schouten’s identity one can verify that

Tpe | (85 A 8a) lo] (Sc A sa) o
LbaZcq | (30 A Sb) ‘0

| (sa Aoa) |5 = (3.80)
for a,b, c distinct. This solution is unique up to different ways of rewriting the spatial
dependence using the cross-ratio

o — Tratas (51 A\ s4)g (52 A 83)g (3.81)

T12X34 (81 A 82)0 (83 A 84)0

where we have used (3.78). Note that we can compute the brackets appearing in (3.77)-
(3.78) using (3.57). In particular we have

1 1 df log (1+ A
log (sa A sp)y = <§wab + §wab> + /R %W (3.82)

This formula is valid when there is a WKB line connecting P, and P,. If a bracket appears
for which we do not have a WKB line, we can simply use the cross ratio (3.81) to eliminate
it in terms of brackets that can be computed using (3.82).

Finally, using (3.80) in (3.79) and massaging the resulting spacetime dependence by
extracting multiples of v and (1 4 u) we find

4
eQx@Ai logea _ H (’3(1 A Sb!o)_ﬁA“b (@ (383)

VA A
2

a>b

where Ay, = (>, Ac) /3— A, — Ay, The extra factor of 2 in the exponent on the left hand
side of (3.83) anticipates the sphere regularization which turns out to be similar to the
AdS part and will be treated in section 3.5.1.

We recognize in (3.83) the canonical spacetime dependence in the 4-point function of
a conformal field theory (compare with equation (3.1)). The appearance of the cut-off in
(3.83) is related to the renormalization of the operators. In fact, if we define Op, = 2404,
this will cancel the & factors in (3.83). To be more precise, we should define a 4-point func-
tion that is independent of the operator renormalization. The standard procedure is to
divide by the appropriate product of 2-point functions such that normalization factors can-
cel. The same factors of £ will appear in these 2-point functions and will cancel with those
in (3.83). We will thus drop the factors of £ in the formulas below.
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3.4.3 Summary of the AdS and divergent contributions

We have now computed all the parts of (3.14). In this section we summarize the full result.
The semiclassical limit of the 4-point function (3.1) is given by

4
(7 ™S fFin) ™ T [ an) (3.84)

a<b

where the * denotes evaluation at w, = wj; and we define

RIS (wy) = e A (3.85)
4

A0S () = e 25 A T (Isa A solo) ™Y (3.86)
a>b

and fﬁn will be defined momentarily. The contribution Ay;, is given by (3.66), A,e, is
given in (3.70), the brackets in f59°* are given by (3.82).

The sphere part of the correlation function contains divergences of the same type as
AdS. We therefore regularize it also by subtracting VTT. Such finite contribution is what
we denote by f fm

fﬁn = e—g f2<55 contribution—\/ﬁ) . (387)

where S® contribution stands for the S° Lagrangian and wavefunctions [46]. To compensate
this subtraction, we include the factor of 2 in front of A, in expression (3.86). In general
we cannot complete the construction of the 4-point function because we are unable to
compute the contribution f]‘?m. Fortunately, for correlators involving only BPS operators
of the same type (e.g. only Z and Z) the sphere part is known and we can assemble the
full result. This is the subject of the next section.

3.5 Full correlation function for BMN operators

In this section we compute the full correlation function for operators of the type tr Z when
A scales as VA For these type of operators, the sphere part f}gm was already known [59]
and therefore we can complete our computation. We stress that, unlike the three point
function, this four point correlator is not protected. In section 3.5.2, we comment on how
to fix the location of the puncture w, by the Virasoro constraint and discuss some issues
on the multiple string embedding configurations. In section 3.5.3 we perform an analytical
check of our procedure by studying the extremal limit where Ay = Ay + A3 + Ay, which
is known to be protected from quantum corrections.
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3.5.1 Sphere part

The sphere part of the correlation function involves the classical wave-functions associated
to the external states. We consider specifically the correlation function of four BMN
operators”' A ) ) A

(tr Z2 (1) tr Z22() tr 223 (23) tr Z24(xy) ), (3.88)

for which the wave-functions are known [60,61]. The string dual of these operators cor-
responds geometrically to a string that is point-like in the sphere and rotates around an
equator [62]. The surface developed by the worldsheet is not extended in the sphere.

Let X; (i = 1,...,6) be the coordinates in S®. This particular string state can be
expressed as

X, +iXy =" X;=0, i=3,...,6 (3.89)

where ¢ is an azimuthal angle of the sphere. The wave-functions for tr Z8e and tr 72«
are given respectively by

U, = eiBap(wa i) U, = o~ 1Bap(wa,wa) (3.90)
where the field ¢ is evaluated at the puncture corresponding to the respective operator
insertion.

As the wave-functions scale exponentially with v\, they will act as sources for the
equations of motion for . The total sphere contribution is then given by

b\ _
exp [—% (/ d*w 0p0p + i (AsPue—1 + AyPu—wy, — A1Pp—1 — Agcpwoo)>] . (3.91)

Considering both the contributions from the S® action and wave-functions as an effective
action, we obtain the equations of motion for ¢ which are solved by

o(w,w) =i (Aglog|w + 1| + Aylog |w — wy| — Ay log |w —1]) . (3.92)

This solution has an additional singularity at infinity with charge —Az — Ay + Aq(=
—Ay), corresponding to the wave-function inserted at infinity. This is consistent with R-
charge conservation. We may now plug (3.92) into (3.91), introducing cut-off’s around
the punctures to regulate this contribution. This amounts to evaluate the solution at a

21 We are using the following notation for the dimensions of the operators A, = vVAA,.
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distance € away from the punctures. As in the case of the AdS action, the logarithmic
divergences

exp

g > Allog ei] (3.93)

need to be regularized. We do this by subtracting VTT from the integrand. To compensate,
we add a similar contribution to the divergent part, that was already treated in the previous
section (indeed, this regularization procedure is responsible for the factor of 2 appearing
in front of A, in expression for f21%*% see (3.86)). The dependence on the cut-off’s
then disappears yielding the following expression for the regularized sphere action and
wave-functions

wy — 1|A1A4>]

s _ AsA
ffin = €xp [\/X <Areg —log 22321 — log PRSI

(3.94)

where 7, was defined in (3.87)

3.5.2 Fixing the fourth insertion point

We have shown how to compute the quantities (3.85)-(3.86) as a general function of wy.
However, to compute (3.84) we must still consider the Virasoro constraint in order to fix
this fourth insertion. Notice, that we have not made explicit use yet of this condition. The
Virasoro constraint requires that the full stress energy tensor Ta4s + Ts must vanish. This
translates into the condition

Taas = —Ts = —(Oup)”. (3.95)

that can be used to fix the parameter w,. The other parameter U translates the additional
degree of freedom of the cross ratio and that is one of the inputs of the problem (the other
inputs are the conformal dimensions of the operators). They are both related by

Xea(0 = 0;U) = T2 — (3.96)
T12 T34

by formulas (3.81) and (3.34).
Using the specific solution (3.92) and the conservation of R-charge, Ay = A3+ Ay — Ay,

we obtain that w, is fixed to be
A (—=(U =2))+ A3(U+2) + AU
2 (A — Ay) '

(3.97)

Wy =
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Depending on the external parameters of the problem (conformal dimensions and cross
ratio), the fourth insertion point w, might be located in any of the three intervals on the
real axis. This will automatically fix the spike configuration described in section 3.2.3 and
consequently the string embedding. In order to see this, consider the example of the WKB
triangulation we have been studying. There exist a priori two choices for the orientations
of the spikes, as discussed in section 3.2.3 and appendix C. Therefore, once we fix a cross
ratio u the overall sign of x,4 will be fixed as a consequence of the formula 3.40%* and
so does the spike configuration. The conclusion is that the external data determines the
orientation of the spikes and thus the configuration of the string embedding. This is in
perfect agreement with the mapping between figure 3.1 and 3.2 and it is non-trivial that
the integral equations encode this mapping.

3.5.3 Extremal Limit
In this section, we study the correlation function
(tr Z2(2) tr Z22(z5) tr Z2(3) tr 224 (2)) (3.98)
in the extremal limit when
Ay =2A + Ay. (3.99)

Such correlator is protected from quantum corrections as conjectured in [63] and later
proved in [64]. Thus, we expect to obtain the tree level gauge theory result which in the
planar limit is simply given by Wick contractions

1

2A L 2A 274"
Ty T3 Loy

(3.100)

The AdS part of our formula is universal in the sense that it only depends on the di-
mensions of the operators. On the other hand, the sphere part of the correlation function
involves the precise details of the operators inserted. Compared to the previous sphere
calculation (3.88), computing (3.98) just amounts to take the complex conjugate of the
wave function located at z, due to the replacement of Z — Z.

Let us start by studying the case when the cross ratio is v = 1 which also fixes the

220f course the corrections to 24 from iterating the integral equations will differ for the two different
spike configurations but they should not change the overall sign of ng);)~ We are taking this as a physically
motivated assumption in this discussion. We have checked this assumption in a few examples and found
that it holds.
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Figure 3.17: In the extremal limit, the main feature is that the zeros collide on the real
axis. The black lines represent the WKB cells whereas the gray lines represent the WKB
triangulation. At the exact extremal configuration, there are no WKB lines connecting 1
to 0 nor —1 to 0. We interpret this as a manifestation of the field theory fact that at tree
level all operators are Wick contracted only to the fourth operator.

position of the fourth insertion at w} = 0.* From this we will be able to see the general
mechanism that gives the expected simplification of our result. The first important obser-
vation is that in this limit the zeros of T'(w) collide on the real axis as depicted in figure
3.17. Let us start by analyzing what this implies at the level of the y-system. As the
integrals w4 and w3y vanish, the x’s associated to these cycles, namely ys34 and x4, tend
to —1. This observation has the remarkable consequence that the right hand side of all
equations in the y-system becomes trivially equal to 1 as one can easily verify **. As a re-

230ne can argue for this as follows. Using conformal symmetry, we can fix three of the points in the

target space at z3 = —1,z1 = 1 and z2 = co and also in the world-sheet at w3 = —1, w; = 1 and wy = oc.
The fourth point x4 will then be related to the cross ratio. For the particular choice of the cross ratio
(3.81) equal to 1, the fourth point will be located at zero. Moreover if we choose the points at 3 = —1

and z1 = +1 to have the same conformal dimension and the same type of fields (say Z’s) then this is a
very symmetrical configuration. Going back to the worldsheet coordinates, by symmetry we expect to find
wy; = 0. Of course, one can check this explicitly, by solving the x-system.

24This trivialization of the y-system is general and follows just from the fact that the two cycles w4 and
w34 vanish which implies that the x-functions xs34 and x14 become -1. In the specific case of U = wy =0
and A; = Ag, which turns out to correspond to cross ratio 1, the y-system is already trivial because of
the symmetry of the stress energy tensor in this particular point of the parameter space, see footnote 15).
Nevertheless, we emphasize that the trivialization of the x-system in general does not rely on this specific
symmetry of the stress energy tensor.
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sult, all x-functions are ezactly given by leading term of the WKB expansion (3.40)*. For
convenience, let us introduce an infinitesimal ¢ defined by the condition § = 2A 4+ Ay — As.
At the end of the day, we will take 6 — 0. In this limit, the solutions of the y-system are
then given by

7% cosh 6 7%‘5 cosh 6

_ m(2A5-8)
X23 = X12 = —€ y X34 = X14 = —€ y  X24a = X9y = € 2

cosh 6

(3.101)
We may now plug this solution in the expression (3.51) and extract the cycles using as
described in section 3.3.10. We find that all A’s vanish in the limit 6 — 0 except for Ay
and Asy, which tend to —1 as 0 goes to zero. This implies that all g, vanish except
for n14 and 734, which diverge since the integrand of these cycles becomes singular in this
limit. However, one must go back to the area formula (3.66) and realize that such cycles
are multiplied by a vanishing quantity. Indeed, (3.66) simplifies to

1 s
In the limit § — 0, the first term of this expression is explicitly given by
> —L78cosho m
) / df cosh flog (1 —e 2 ) +O(9) = —3 + O(0). (3.103)
0

Hence, it turns out that the finite AdS contribution vanishes in the extremal limit. We
believe this is the general mechanism for any value of the cross ratio.

The computation of the sphere contribution follows the same steps as before, with a
slight change on one vertex operator (recall that to get the extremal case, we replaced the
operator located at z; in (3.88) by tr ZA). The new solution for the equations of motion
is

o(w,w) =1i(Alog |w + 1] + Aylog |w| + Alog |w — 1) . (3.104)

Now when we compute the contribution of the sphere action and wavefunctions on this so-
lution, we find that it ezactly cancels the term V1T for A’s satisfying (3.99). Consequently,
the sphere part of the correlation function also vanishes in the extremal limit.

The divergent piece in the extremal becomes simply

4

_Va _ o0 do 15 cos ) 7o
. WAATEQH(‘SGASI)'O) VA _)5/ m10g<1_6 1no he)+@(5) - ;1og7+(’)(6)
a>b -
(3.105)

ZIndeed, when the right hand side of the y-system is 1, the kernel term in equation (3.54) vanishes and
we are left with leading WKB contribution.
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which goes to zero as 6 — 0. We are left with the spatial dependent part which, using that
the cross-ratio is 1, can be written as
1

() () ()™

(3.106)

This is nothing but the tree level result (3.100) of the gauge theory.

This section ends here. We have computed the AdS part of the four point function for
heavy scalar operators in A/ = 4 SYM in the classical limit. For the particular case of BPS
operators on a line with a single scalar field, the sphere part is known and thus we can
construct the full strong coupling four point function. We see no big obstacle in extending
this computation for any number of operators using the method outlined here. With this
we also conclude the first part of this thesis.
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Scattering amplitudes from
Integrability
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Chapter 4

Overview of Scattering Amplitudes

We now devote our attention to another class of observables in NV = 4 SYM for which
integrability serves as a precious tool in order to get non-perturbative results: the scattering
amplitudes. Concretely, we will be interested in computing the color-ordered amplitudes
and let us start by briefly review what they are (for a great review on scattering amplitudes
see [67]). As a standard fact in a SU(N) gauge theory with generators 7 with a =
1,...,N? — 1, we are always able to decompose an [—loop amplitude into the so-called
color ordered form

1
AD =N YT T[T 7] AYD (k;ap(l)...kap(n),ﬁ>+multi—traces. (4.1)
PESH [ Tn

The objects AP are often called the color-ordered amplitudes. We will consider the large
N limit where we can neglect the multi-trace contributions as well as the subleading terms
in N inside the color-ordered amplitude. These are the objects we are after and from now
on we ignore any contribution from the color factors. The color-ordered amplitudes are
functions of the momenta and the helicity configuration of the external particles.

Helicity structure In order to handle the massless particles momenta, we now grasp
over the spinor helicity formalism (see for instance [68]). The momentum p* of a given
particle can be conveniently written in double index notation as

P =0k, P (4.2)
The null momentum condition p? = 0 then translates into

det(p**) =0, (4.3)
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which implies that it can be written as
P = AUNY (4.4)
We then define the SL(2) invariant contractions as

() = \eqs, Al = Aappe®” (4.5)
and the ampitudes will then be expressed in terms of these brackets.

In N = 4 SYM the states are arranged into a CPT self-dual supermultiplet’. This is
conveniently organized into a so-called superfield

. 1 4. 1 CABC - 1 4 -

(n) =gt +7'a+ §TIAUB¢AB + §€ABCD7]AUB770¢D + 57749 , (4.6)
where the four 77’s are Grassmann variables labeled by the SU (4) index A = 1,2,3,4.
Here ¢g& is a gluon of positive/negative helicity, 14,94 are the four fermion pairs and
¢ap = —¢pa are the six real scalars.

These superfields can be considered as the superwavefunctions for the external lines of
a superamplitude A, (®q,...,P,). The super amplitude is a polynomial in the n-variables
which serve as bookkeeping variables of the particles being scattered. It is translational
and supersymmetric invariant which allows us to write it as follows”

PaaAn = 2 A, = 0= Ay (D, ..., D) = 6@ (D)0 (¢ Pu(®y, ..., D), (4.7)

where 6®(¢) = [T, | P q2 is a Grassmann delta function and P, is a polynomial
in the n variables. Given the fact that each variable 7' carries one SU(4) index and P
should be a SU(4) singlet, we conclude that this polynomial must contain only powers of
4 in the 7 variables. More precisely, we write the scattering amplitude as sum of SU(4)
singlet homogeneous polynomials of degree multiple of 4

A =3 (o) 80 (PO + PO 4 PO o PI0)

This function A,, can be regarded as a generating function for scattering amplitudes. Upon
expanding in the 7 variables one can extract a particular amplitude corresponding to a
specific configuration of external states. As an example, suppose we want to compute a

IThis is due to the extended supersymmetry; in theories with less supersymmetry one would need a

supermultiplet and its CPT conjugate separately.
)

2The supersymmetry generators are given by ¢2 = \,7* and ¢ Ad = N oA
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scattering amplitude with the i-th particle being a scalar. Then, using (4.6) one just needs
to pick the term of the expansion with 7272 for some A, B and similarly for other external
states.

We note that the term §®(¢?) is already of degree 8 in 7. This means that the pure
gluon amplitude must contain at least two negative helicity gluons. This is the maximally
helicity violating (MHV) amplitude and corresponds to the first term P® which is a
polynomial of degree zero in 7. The other terms correspond to NMHV, N2MHV, ...and
the last term is the MHV which can be obtained from the MHV by CPT conjugation. For
instance, the MHV amplitude is given at tree level by the famous Parke-Taylor formula [69],

0) _ 1
P = A @sy = Ty inl)

(4.9)

IR divergences At loop level, the scattering amplitudes develop infrared divergences,
with their origin either on the limit where a virtual gluon becomes soft (i.e. small energy
limit) or in the limit where a virtual gluon becomes collinear with an external particle.

Let us consider the MHV amplitudes for an arbitrary number n of gluons and define
the ratio

M, = ANV J ANV tree (4.10)

Because we are considering planar amplitudes, the exchange of the soft or collinear gluons
processes ought to occur between neighbouring external particles and therefore the IR
divergences will factorize into pieces that only depend on a single Mandelstam variable,
namely s;;11 = (p; — piz1)?. These infrared divergences were extensively studied in four
dimensional gauge theories (see [65] and references therein). In particular, they are known
to exponentiate. We are using here dimensional regularization and therefore the divergent
piece will be a function of some cut-off € and a scale pu;r. Taking the log of the loop
corrections M,,, we have [65],

N D O ph \©
log M, = gl[(l€)§+ = (i) + F Y (pr e paig) + Oe). (411)
=1 %

—Si,i+1

where the leading divergent term is governed by the cusp anomalous dimension I'cysp.
Importantly, the divergent term is universal for the full superamplitude A,, (not only the
MHYV) and it completely factorizes. This factorized piece contains all the IR divergences
of the amplitude.

This concludes our first look at the scattering amplitudes. We are now going to review
a duality relating scattering amplitudes with Wilson loops, which will be central in the
next chapter.
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4.1 The Wilson Loop duality

Strong coupling In the groundbreaking article [70], Alday and Maldacena suggested for
the first time the existence of a duality between gluon scattering amplitudes and Wilson
loops in the planar limit of N =4 SYM using the AdS/CFT correspondence.

They proposed a string theory prescription for computing scattering amplitudes at
strong coupling, which we now review. In order to set up the argument, we start by
considering the AdS5 metric written in Poincaré coordinates,

da3,, +dz?

22

ds* = R? (4.12)
The field theory asymptotic states are represented in the dual picture by open strings
ending on a D-brane placed at some z;r, which will serve as an infrared regulator, and in
the end the limit z;r — oo will be taken. In sum, the problem consists of summing over
worldsheets with topology of a disk with insertions at its boundary, embedded in AdSs.

The field theory asymptotic gluon states carry 4-momentum k along the x direction,
but on the D-brane, placed at zrg, the proper momentum is instead k,, = k=5t As zrg
is taken to infinity, with z; > R and keeping the gluon momentum k fixed, the proper
momentum becomes very large. We are left with a classical problem of finding the saddle
point of the world sheet path integral, as was considered by Gross and Mende [71].

The boundary conditions for the saddle point are typically hard to formulate given
the lack of explicit expressions for the vertex operators in AdS. Fortunately, in [70], it was
proposed an efficient way of describing these boundary conditions. Let us define the T-dual

variables as )

R
Oyt = Z—Qeag(‘?@x“. (4.13)
z
As argued in [70,72], the boundary conditions in these variables become
Ayt = y*(oi1) — y*(0:) = 2Tk} (4.14)

where the k! is the momentum of the i-th gluon and o; the worldsheet position of the

insertion. Importantly, once we define r = R;, we recover again the AdS metric in the
T-dual space,

dy%ﬂ + dr?
r2 '

This means that the regulator brane is now placed close to » = 0, which is the boundary

of the AdS dual space. Moreover, the above boundary condition means that each vertex

ds* = R? (4.15)
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operator insertion gets replaced by a segment line connecting two points whose separation
is given by the 4-vector momentum carried by that vertex operator. Given that the gluons
are massless and the conservation of total momentum is satisfied, the boundary condition
for the worldsheet is a null polygon living on the boundary of the dual AdS space. This
null polygon is constructed by concatenating the momenta of the scattered gluons one after
another. Finally, the scattering amplitude at leading order at strong coupling is the area
of the minimal surface’ ending on this contour

2
A, x exp (—R—Amm) = exp (—ﬂAmm> ) (4.16)

2 2T

It was further observed in [70], that this computation is formally identical to the compu-
tation of the expectation value of a Wilson loop on a light-like contour at strong coupling.
This was the first hint towards the duality between Wilson loops and scattering amplitudes.

Weak coupling Inspired by this proposal, a similar relation between these two ob-
servables was found at weak coupling [73] shortly after [70]. Let us consider the MHV
amplitudes for an arbitrary number n of gluons. The quantity M,,, defined in (4.10), splits
into a divergent part ZM1V which includes the IR divergences of the amplitude and a finite
part FMHY which we write down as

In M, =z 4 pMAEV (4.17)

The piece F, is a function of the momentum invariants (p; +- - - +p;+;-1)?, and it is scheme
independent (up to an additive constant). As we saw, the coefficient of the most divergent
term of Z}}L/IHV is given by the cusp anomalous dimension I'c,sp, and the subleading terms
divergent terms are scheme dependent.

On the other side of the duality, we have the Wilson loop defined on a null polygonal
contour C),, with light-like segments formed by the external on-shell gluon momenta,

k' =all  —al. (4.18)

K3 K3

The (bosonic) Wilson loop is defined as®

dz*

WIC,] = %Tﬂ?exp {ig /C n dtﬁAu(x(t))} . (4.19)

3More precisely it has only to be the extremal surface, according to the discussion in [72].
4The Maldacena-Wilson loop introduced in [74] comprises an additional term involving scalars. How-
ever, for a light-like contour it coincides with the standard Wilson loop.
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It also factorizes in a divergent factor ZW“ coming from the cusps and a finite piece £V,
I W[C,] = Z\W" + EWVE. (4.20)

The statement of the duality is that the finite pieces coincide up to an unimportant additive

constant c,
MYV = pWE 4 ¢ (4.21)

Moreover, the divergent pieces also coincide upon an identification of the parameters in
the two renormalization schemes. In particular, both leading divergences (IR divergence
on the amplitude side and UV divergence on the Wilson loop side) are governed by the
cusp anomalous dimension. This equality was observed perturbatively up to two loops and
for six particles [73].

Super Wilson loop The duality between MHV amplitudes and bosonic Wilson loops
instigated research for its extension to super amplitudes and some sort of supersymmetric
Wilson loop. Around the same time, two proposals for such a super Wilson loop were
put forward in [75,76]. The first proposal has its origin in the momentum twistor space
and replaces the integral of the standard connection by an integral of a superfield over the
supertwistor space.

The second proposal was designed exclusively for null polygonal contours and it is
perhaps given in a more familiar language. It endows the Minkowski spacetime with
Grassmann variables

n, i={1,....,n} A={1,....4}, (4.22)

which” are assigned to each edge of the polygon (index ) and transform in the fundamental
of the SU(4) R-symmetry (index A). The proposed generalization of (4.19) is

1
—Tl" (VmWnVn_l,n e W2V12W1) . (423)

W[Cn] = N

where V; ;11 are some operator insertions at the cusps of the polygon with the property
that Vi,iJrl =1+ 0(77) Additionally,

W; = Pexp (ig / thj(t)) (4.24)

SThese n-variables are related to the fj-variables introduced before by the relation 7; = ({(i — 1i)n; 11 +
(@4 Dmi—g + G+ 10— 1)n;) /(G — i) (40 + 1)
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is a generalized parallel transport along the edge p; with &; = %Au + O(n). Tt is clear
that the leading term in the 7 expansion is the the standard bosonic Wilson loop as in
(4.19). The explicit expressions of &; and V; ;41 are such that W[C,| is supersymmetric
in the sense Q4 W = 0° and they can be found in [76]. It is this supersymmetric Wilson
loop that is conjectured to be dual to super amplitudes. In particular, it has the following
expansion

ijkl ijkl)(mno
Wawper = Watv + mimZnint WSy + nin2nduintmnint wigsemer) o (4.25)

where Wykypy is the NFMHV amplitude divided by the Parke-Taylor MHV factor.

Dual superconformal symmetry Besides the standard conformal symmetry, the pla-
nar scattering amplitudes turned out to reveal an additional dual conformal symmetry.
This new symmetry is the ordinary conformal symmetry from the Wilson loop point of
view. Therefore, the existence of this extra symmetry in the amplitudes can be regarded
as a natural consequence of the duality. Furthermore, it was later extended to a full dual su-
perconformal symmetry. This is better exhibited by introducing the dual variables related
to the standard ones (\;, i, 7n;) by

NN =t g, A =000 -0 (4.26)

where the periodicity conditions z,,, = z; and 6,,,; = 6, are assumed. The first change of
variables is nothing but the one appearing in (4.18). The dual superconformal generators
are first order differential operators in the dual and standard (Ai,:\i,ﬁi) variables and
their expressions can be found in [118]. The dual superconformal symmetry can then be
stated as follows. First, it was noticed that the full planar superamplitude A, and its
MHYV component share the same IR divergences and they carry the helicity and the dual
conformal weights of the scattered particles (so that they transform covariantly under the
dual conformal symmetry). Hence it is convenient to factor out the MHV component and
rewrite the superamplitude as

Ay = A1V (14 RYMEV  RYMEV Ly V) (4.27)

where RN"MHV are called the ratio functions and are finite at all loops (i.e. free of IR

divergences). These functions are invariant under the standard and dual superconformal

6These generators are the half of the dual supersymmetry generators, Q = (Q, S). The other half of
the susy generators Q do not annihilate the superloop due to anomalies originated by quantum corrections
and give rise the so-called Q-equation.

38



transformations at tree level. At loop level, some of the dual superconformal symmetries
are broken by quantum corrections and give rise to anomalous Ward identities (see [90] for
a detailed treatment of dual superconformal symmetry).

4.2 The Operator Product Expansion program

The above duality mapped a scattering amplitude into another four dimensional observable,
the Wilson loop. Despite the obvious richness and insight of this duality, it does not
yet provide the natural playground for integrability, which only exhibits its power in two
dimensions. Built upon the developments reviewed in the previous sections, the 2010’s
article [79] revealed the two dimensional arena for integrability and set a new path towards
the exact solution for scattering amplitudes. It goes by the name of OPE for Wilson
loops, and that is the core of the second part of this thesis. Later a refinement of these
ideas gave rise to the pentagon OPE approach (POPE). Rehashing over the incarnation of
integrability in the scattering problem is the topic of this and forthcoming sections.

4.2.1 The OPE for Wilson Loops

Let us start by reviewing how the standard OPE in conformal field theory works. Consider
k operators inserted at the positions x;. Pick two of them say O; and O, and surround
them by a sphere according to the figure 4.1. This generates some state |¥) on the surface
of the sphere, defined as

W) = O1(x)02(0)[0) (4.28)

This state can then be expanded in terms of eigenstates of the dilatation operator, which
we refer to as energy eigenstates. Each of this energy eigenstates is in correspondence to a
primary operator or its descendants inserted at the origin by the operator-state correspon-
dence. So we can write

Oi(2)05(0)[0) = >~ Cu(w,0:)0u(2)].=0/0) , (4.29)

primaries Oy,

where C,(x,0,) can be expanded in powers of the 0,. Let us consider for instance the
contribution of a scalar primary O,. Then we have

constant

Cn(xa az)on(z)‘zzo = M—E"

(On(0) +...) | (4.30)
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Figure 4.1: In the standard OPE for correlation functions of local operators, we surround
two of the operators by a sphere which defines a state on its surface. We then decompose
it over the eigenstates of the dilatation operator. These correspond to the primaries and
their descendants.

for some constant FE, to be determined and the dots represent the descendants. This is the
standard OPE expansion for a CFT. A further constraint on the form of this expansion
comes from applying the dilatation operator to O; and O,. That fixes the constant F,, to
be E, = A1 + Ay — A,,, where A, is the conformal dimension of the operator O,,.

Now, let us suppose we want to compute the k-point function,

(01(0)05(x) ... Ok(x)). (4.31)
Using the OPE of the operators 1 and 2, we obtain that
(01(0)05(x) ... Op(r)) = > e " CronCis.i. (4.32)

Identifying the time ¢ with log |z|, we interpret this result as a sum over states that are
propagating out of the sphere with energy £,. The coefficients Cj; . are in principle compli-
cated functions of all insertion points and contain dynamic information of the theory. The
fundamental object is the three point vertex C's,, from which all higher point correlators
should be reconstructed.

This expansion is by no means unique as we could as well surround other set of operators
by spheres and play the same game. The consistency of the expansion in different channels
is required and it puts strong constraints on the correlation function, eventually determining
it completely. This is known as the conformal bootstrap and it is currently a very active
field of research (see for instance [77]).
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The OPE for Wilson loops has its origin on a similar idea. Consider a null polygonal
Wilson loop and pick two of its non intersecting edges. Then we divide the Wilson loop
into a bottom and a top part by cutting it along some imaginary line intersecting these
two edges as

(4.33)

and we sum over the states that propagate through the cut. These states are in correspon-
dence to the excitations of the flux tube that ends on these two selected null lines. They are
well studied in literature and in the case of N' =4 SYM they have different incarnations.
They can be regarded as excitations around the infinite spin limit of high spin operators
like Tr[® D7 ®] which have a spin chain description. Alternatively, using the gauge/gravity
duality, they correspond to excitations around the GKP string. The dimensions of these
operators can be computed at any value of the coupling constant following the work [80].
This sets the two dimensional integrable auxiliary problem we were after.

Finally, the geometry of the Wilson loop emerges when we act with some symmetries
associated to these two selected null lines on the bottom part of the loop, in the same
way as we acted with the dilatations on a subset of operators in the standard OPE for
correlation functions. These symmetries are the ones that govern this OPE expansion and
we now briefly review them.

Symmetries of a square Wilson loop Let us first consider two null Wilson lines in
R'3 which by conformal transformations can be mapped to the subspace RV, In RV, let
us place one of the lines along = and the other at null infinity. The two lines break some
symmetries of the full conformal group but preserve the following

e dilatations, D,
e boosts in x*, M+,
e rotations in the transverse directions, M2,

e translations in the x~ direction, P_,
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e special conformal transformations K~ .

If we consider the set of symmetries {D + M+~ P_, K_} then they form a subgroup
SL(2, R) that commutes with the remaining symmetries { D — M+~ M2}, This last set of
symmetries keeps the points on the two null lines invariant, whilst the first set actually move
points along those lines. In sum, this system of two null lines preserve SL(2, R) x Rx SO(2),
where SL(2, R) acts on z~, R essentially corresponds to dilatations on z* and SO(2) are
the rotations in the transverse directions.

We now consider a null square which will play a major role in the precise construction
of the OPE for Wilson loops. The square can be defined from the two infinite null lines
system as we now describe. Take a point on one of the null lines to be a vertex of the
square. Once that point is chosen, there will be another point in the other null line that is
null separated from the first. That defines one edge of the null square. We complete the
square by choosing another point on the null line according to the following figure

(4.34)

and in this way we define a null square. As far as the symmetries are concerned, it is
clear that translations P_ and special conformal transformations K~ are broken since
they do not preserve the two new edges of the square. Hence, the subgroup SL(2, R)
is broken down to R corresponding to the generator D + M*~. Therefore, the three
(commuting) symmetries of the null square are R x R x SO(2). As a convention the
generator H = D + M7~ is called the "Hamiltonian’ and the corresponding direction in
which it moves points is parameterized by 7 (so that the Hamiltonian acts as 0, ). Similarly,
the generator P = D — M™~ is designated by 'momentum’ and the conjugate coordinate
is o (so that momentum acts as 9,) and finally the last generator J = M is dubbed as
‘angular momentum’ conjugated to the angle ¢ (and also acts as 04). We illustrate this
parametrization of the square in figure 4.2.

The states propagating in this OPE expansion are characterized by the energy, mo-
mentum and spin in the transverse direction, precisely the eigenvalues of the symmetry
generators of the square. To isolate the contribution of the various quantum numbers,
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Figure 4.2: The three symmetries of the square are parametrized by the coordinates 7 in
the vertical direction, o in horizontal direction and ¢ on the transverse direction to the
plane where the square sits.

it turns out to be useful to introduce a three parameter family of polygons as we now
describe.

Parametrizing a null polygon To introduce a parametric family of polygons, we first
break the null polygon in the way outlined above. Select two non consecutive null sides of
the polygon and extend them to two null infinite lines. Then pick two points of one of the
two null lines, see figure 4.3, and this defines a reference null square as described before.
Moreover, we can cut the null Wilson loop into a bottom and a top part also illustrated in
figure 4.3.

As we have seen the square preserves some symmetries, generated by

M = 6T87+080+¢8¢ — 6—7’H+ioP+i¢J ) (435)

We now act with these symmetries in the bottom part and leave the top part invariant,
resembling the procedure we used in the OPE for correlation functions. This modifies
the geometry of the polygon and such change is parametrized by 7,0, ¢, which are the
conjugate coordinates to the three symmetries of the reference square.

The essential point now is to perform an expansion in terms of the eigenstates of the
three operators generating the symmetries of the square. Those eigenstates correspond to
the excitations of the color electric flux tube in between the two null lines that we selected
to cut the Wilson loop. By introducing the parametric family of polygons we can now
separate the different contributions of the different excitations of the flux tube according
to their quantum numbers. Once again, this parallels the standard OPE for local operators
where the expansion is organized in terms of their conformal dimension and spin.
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(a) (b) (c)

Figure 4.3: (a) In a general null polygon we define a square by first selecting two non
consecutive edges and prolong them into two null lines. We then choose two points on
these null lines. Once we choose them there will be two other points on the other null line
that are null separated from the first. This defines a reference square. (b) We apply the
symmetries of this reference square to the bottom cusps of the polygon. This parametrizes
the polygon by the three coordinates of the reference square. In the limit of large 7, the
bottom of the polygon is flattened and we get what we call the top part. This limit is usually
known as the collinear limit. (c) Alternatively we could have applied the symmetries to
the top half of the polygon. Then in the large 7 limit we would flatten the top and we
would get what we call the bottom part.

More precisely, we expect to have an expansion of the form

(W) = /dp e’’’ Z eme Z C(m,p)e EmPT 1 two particles + . . . (4.36)

E(m.p)
where the function C'(m, p) factorizes into a contribution from the bottom and top
C= Obottomctop . (437)

Chottom (Ctop) correspond to the overlap of the intermediate states with the bottom (top)
part of the polygon. In order to make (4.36) precise one needs to take care of the UV
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divergences of the Wilson loop that break these symmetries. However, these divergences
are well understood and can be handled in several simple ways. We will come back to this
point, but for now let us treat these symmetries as exact.

At large 7, it is clear that the lowest lying states (in particular the single particle states)
dominate the expansion. The limit of large 7 is called the collinear limit, and it corresponds
to the flattening of the bottom part of the polygon. In other words, as 7 — oo the polygon
degenerates into the top part represented in figure 4.3 (b).

In the next section, we present a more concrete and refined version of these ideas that
goes by the name of pentagon OPE, and it is the main subject of the second chapter of
this part of the thesis.

4.3 The Pentagon OPE (POPE) in perspective

The POPE approach’s main novelty with respect to what we have just seen is a different
decomposition of the Wilson loop not only in a bottom and top parts, but rather into
smaller building blocks: squares and pentagons.

There is a canonical way of breaking the null polygon in terms of squares as explained
in figure 4.4. The middle squares, which result from the overlap of two pentagons, assume
particular importance. In a n-sided polygon, there are n — 5 such middle squares. Each
of these squares has 3 symmetries, parametrized by the coordinates o;, 7;, ¢; as we have
just seen in the previous section, resulting in a total of 3(n — 5) parameters. This number
coincides precisely with the independent number of conformal cross ratios. We now act with
each of this symmetries to the bottom cusps of the respective middle square. Therefore,
we coordinatize all conformally independent n-sided polygons.

Concerning the dynamics, we start with a flux tube vacuum state on the bottom square.
It undergoes a transition to the following square, governed by the so-called pentagon tran-
sition P(0|¢1), where the zero in the first argument of P represents the vacuum. In this
square (the first middle square), we sum over all possible flux tube states 11, which cor-
respond to the eigenstates of the operators that generate the symmetries of that square.
These states propagate freely on the square and then undergo again into a transition to
the following square governed by some pentagon transition P(11|¢). We repeat this pro-
cedure for all middle squares, summing over all flux tube states, and in the final square we
have again the vacuum. In sum, we have the following sequence:

vacuum — ¢ — g — - -+ — Y,_5 — vacuum . (4.38)
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Figure 4.4: (a) We exemplify a canonical way of breaking a null polygon into a squares.
Pick one of the lower cusps of the polygon (the lowest red point on the figure) and draw a
null line emanating from it that intersects the polygon at another point. This defines the
first square, in the very bottom of the polygon. Pick the next cusp (the next to lowest red
point in the figure) and from it draw another null line that intersects the polygon at some
other point. That defines another square. We proceed in this way until we reach the top
of the polygon. (b) Each pair of squares define a pentagon. For instance, the two lowest
squares together form the pentagon in blue.

Taking into account the pentagon transition between two eigenstates of the color flux
tube, we get a representation of the Wilson loop W, in the form of an infinite sum over all
states,

Wn - Z P(O’wl)P<w1’w2) ce P(wn—G‘wn—E))P(wn—B’O) ezj(_EjTj+iijj+imj¢j) ’ (439)
»i

with {7;, 04, ¢;} a base of conformal cross ratios, which receive individually meaning of
time, space and angle in the ’th OPE channel [79,81].

We shall refer to the summand arising in this representation, as the POPFE integrand.
This integrand depends, amongst other things, on the n—>5 flux tube states which propagate
in each of the n — 5 middle squares. Such states are generically N-particle states which
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twist (energy) 4 3 2 1 2 3

U(1) charge -2 -3/2 -1 -1/2 0 1/2 1 3/2 2 5/2 3

Figure 4.5: Fundamental excitations of the flux tube. In the main diagonal we have the
gluons, scalars and fermions and in the top and bottom horizontal rows we have the gluon
bound states. Here Fy = F,_ and F_; = F;_, where the subscript 4 = — in F},, denotes
the light-like direction identified with the o direction of the flux tube while v = 2z =1 +142
and v = Z = 1 —12 stand for right- and left-handed polarizations with respect to the 1 — 2
plane transverse to the flux tube. Fl, is then a bound-state composed a excitations Fl;.

correspond to N excitations on top of the GKP vacuum and N can be 0,1,2,.... Being
an integrable system the charges of the state (energy, momentum and spin) are the sum
of the individual charges of the excitations. The energy and momentum of each excitation
can be parametrized by a Bethe rapidity u;. Hence, a state is parametrized by a set of
rapidities {uq,...,uny}. The set of excitations is composed by scalars, fermions, gluons
and bound-states of gluons [80] (see figure 4.5). For instance, we could have, in the i-th
square, a state with two gluons of positive helicity, a bound state of two gluons of negative
helicity, one scalar and a pair of fermions:’

o) = {F1(U1)7F1(U2),F—2(U3),¢AB(U4),¢C(U5)7¢D(U6)} : (4.40)

What makes this decomposition extremely powerful in planar N' = 4 SYM theory is

"Here A, B, C and D are SU(4) R-charge indices and the indices on F' indicate the helicity of the gluonic
excitation.
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that all of its building blocks can be computed at any value of the coupling thanks to the
integrability of the underlying theory. Namely, the flux tube spectrum is, as we mentioned
before, under total control [80] and the pentagon transitions can be bootstrapped [81-84]
following (a slightly modified version of) the standard form factor program for integrable
theories.

Through the celebrated duality between null polygonal Wilson loops and scattering am-
plitudes [73,85], the decomposition (4.39) provides a fully non-perturbative representation
of the so-called Maximal Helicity Violating (MHV) gluon scattering amplitudes in planar
N =4 SYM theory.

In the next chapter, we will extend the OPE to the full super Wilson loop beyond the
MHYV paradigm. On the way, we will make this OPE expansion more precise and define
the renormalized Wilson loop where the UV divergences are treated.
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Chapter 5

The POPE for all Helicity
Amplitudes

In this chapter we will argue that a suitable generalization of the pentagon transitions into
super or charged pentagon transitions allows one to describe all amplitudes, for any number
of external particles with arbitrary helicities and at any value of the 't Hooft coupling. We
will then formulate precisely the POPE integrand and provide all its coupling dependent
building blocks.

While the key ingredient in having an OPE expansion such as (4.39) is conformal
symmetry, a central ingredient in the charged pentagon approach will be supersymmetry.
The idea of charging the pentagons first appeared in [82] where certain charged transitions
were introduced and successfully compared against N¥MHV amplitudes. More recently,
further charged transitions were bootstrapped and matched with amplitudes in [84,86,87].
We are going to complete this picture by proposing a simple map between all possible
helicity amplitudes and all the ways charged pentagons can be patched together into an
OPE series like (4.39). An interesting outcome of this charged pentagons analysis is a
simple proposal for how parity acts at the level of the super Wilson loop.

5.1 The Charged Pentagon Program

In the dual Wilson loop picture, N¥MHV amplitudes are computed as we have seen by a
super Wilson loop decorated by adjoint fields inserted on the edges and cusps [76,88]. It
is this super loop that we want to describe within the pentagon approach.
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At first, let us ask ourselves what would be a natural extension of (4.39) that allows for
some regions of the loop to be charged due to the insertion of these extra fields. The minimal
modification one could envisage is to generalize the pentagon transitions to super pentagon
transitions or charged transitions, in which P(t|¢’) stands as the bottom component. As
for the N/ = 4 on-shell super field, a pentagon would naturally come in multiple of five
components

P =P+ x"Ps+ x*PPas + x*X*x Panc + x*XPXxXP Pascp (5.1)

where x is a Grassmann parameter, A = 1,2,3,4 an R-charge index, and where, for sake
of clarity, we have suppressed the states ¢ and ¢’. With these charged transitions at hand,
we could now imagine building up charged polygons such as

PaoPt = Z Pa(0]¢1) PA (g |0)e 1t
1

PagoPoPAB = ZPAB(OW)l)P(%|¢2)PAB(¢2|0)€_E”1+"' : (5.2)
P1,2
PanoPep o PP 0P = 37 Pan(Olun)Pon(t[a) PP (uslths) PP (5 0)e 7+
P1,2,%3

and so on. Here, an upper index represents a contraction with an epsilon tensor. Namely,
we use P4 = eABCP Py PAB = ABCD P, and PABC = ABCP P, to compress the

expressions above.

The most obvious change with respect to the MHV case is that R-charge conservation
now forbids some of the processes which were previously allowed and vice-versa. For in-
stance, in the creation amplitude Pag(0]...) we can produce a scalar ¢ 45 out of the vacuum,
since this excitation has quantum numbers that match those of the charged pentagon. At
the same time, neutral states such as the vacuum or purely gluonic states — which appeared
in the non-charged transitions — can no longer be produced by this charged pentagon.

What stays the same is that all these charged transitions can be bootstrapped using
integrability — as much as their bosonic counterparts. The scalar charged transition Pap
and the gluon charged transition Pspcp, for instance, already received analysis of this
sort in [82,84]." The fermonic charged transitions, P4 and Pspc, were more recently
constructed in [86, 87].

The super pentagon hypothesis (5.1) and its OPE corollary (5.2) are the two main
inputs in the charged pentagon program for helicity amplitudes. In the rest of this section

'Both were denoted by P, in these works.
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we present a simple counting argument supporting the equivalence between super OPE
series and super amplitudes.

The important point is that not all the N¥MHV amplitudes are independent. Because
of supersymmetry, many of them get linked together by means of so-called SUSY Ward
identities. At given number n of particles, there is a basis of N'(k,n) amplitudes in terms
of which one can linearly express all the remaining ones.

The problem of eliminating this redundancy, such as to count the N'(k, n) independent
amplitudes, was beautifully analyzed in [89]. As explained below, the very same counting
applies to inequivalent super OPE series like (5.2).

Counting the number of super OPE series is relatively easy:

At first, one notices that the R-charge of a polygon is always a multiple of four, as a
consequence of SU(4) symmetry. The first two cases in (5.2), for instance, involve charged
pentagons with a total of 4 units, as for NMHV amplitudes, while the last example in (5.2)
has a total of 8 units of charge, and should thus be related to N2MHV amplitudes.

In the NMHV case, the amount of charge in each of the n — 4 pentagons uniquely
specifies the super OPE series and there is clearly (n — 1)(n —2)(n — 3)(n — 4)/4! ways of
distributing four units of charge between the n — 4 pentagons in our tessellation. Precisely
this number is reported for N'(1,n) in [89], see discussion below (3.12) therein.

This kind of partitions no longer enumerate all cases starting with N2MHYV amplitudes.
For instance, there are three independent ways of charging all the four pentagons of an
octagon with two units of charge,

PapoPopoPAPoPP  PugoP P oPopoP?, PagoPopoP?oPB  (53)

with the last line in (5.2) being one of them. (We can understand this as coming from the
three possible irreducible representations in 6 ® 6 or, equivalently, as the three inequivalent
ways of forming singlets in 606®6®6.) Therefore, to count the number of N2MHYV charged
polygons we have to consider not only the number of ways of distributing eight units of
charge within four pentagons but also to weight that counting by the number of inequivalent
contractions of all the R-charge indices. Remarkably, this counting is identical to the one
found in [89] based on analysis of the SUSY Ward identities. This is particularly obvious
when looking at Table 1 in [89] where the number of independent N*MHV components
for 8 and 9 particles is considered. * In sum, our construction in (5.2) generates precisely

2The weight 3 =S A\=[2,2,2,2] in their table is precisely the one explained in our above discussion.
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Figure 5.1: We study the conformally invariant and finite ratio W introduced in [81]. It is

obtained by dividing the expectation value of the super Wilson loop by all the pentagons
in the decomposition and by multiplying it by all the middle squares.

N(2,8) =105, N'(2,9) = 490, ... different N2MHV objects, in perfect agreement with the
number of independent components arising from the study of the SUSY Ward identities.

It is quite amusing that the notation in [89] with a partition vector A = [Ay,..., A\p_4]
seems perfectly tailored to describe the charged pentagon approach where we have n — 4
pentagons with charges \; € {0, 1,2,3,4}. It also guarantees that the most general N\ MHV
counting works the same for both amplitudes and OPE series, and concludes this analysis.
The next step is to endow the charged pentagon construction with a precise dictionary
between charged polygons and helicity configurations of scattering amplitudes.

5.2 The Map

As we have seen, a compact way of packing together all helicity amplitudes is through a
generating function also known as the super Wilson loop with the expansion given in (4.25)
and we reproduce here to fix some notation

7kl ijkl)(mno
Wauper = Waav + 771 77] 77k77l WIETK/IH)V + 77@ 77j 77k771 77m77r2z77277§ WlészH(v ?) T+ (5.4)

The lower indices of the Grassmann 7 variables are associated to the edges of the polygon,
1=-1,0,1,...,n— 2.

Throughout this chapter we shall be using a rather unorthodox labelling of the edges of
the polygon, which is represented in figure F.1. Namely, we number the edges from bottom
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to top, with even numbers on one side and odd numbers on the other, like door numbers
within a street. Given that we think of the Wilson loop as a sequence of flux-tube states
propagating down this street, this is the most natural labelling from the OPE viewpoint.
It makes it particularly simple to locate the j-th pentagon in the tessellation: it is the
pentagon whose middle edge ends on edge j. The map between this labelling and the
conventional cyclic ordering is explained in the caption of figure F.1.

Let us make a comment about the divergences of the (super) Wilson loop and how to
deal with them. The super loop (5.4) has UV suppression factors associated to its cusps.”
One can find in the literature several different ways of renormalizing the loop, such as to re-
move these factors. The one most commonly used is the ratio function R = Wuper/ Wanv,
first introduced in [90]. For our discussion, however, the OPE renormalization is better
suited: it is obtained by dividing the super loop (5.4) by all the pentagons in its decompo-
sition and by multiplying it by all the middle squares [82]

n—4 n—>5
W = Wsuper/w with w = <H<V[/i’th pentagon>> / <H<Wi’th middle square>> y (55)

i=1 i=1

as shown in figure 5.1. The ratio function R and the loop W are then easily found to be
related to each other by R = W /Wuny. They are essentially equivalent, being both finite
and conformally invariant functions of the n’s and shape of the loop, but only R is cyclic
invariant.

5.2.1 The Direct Map

Our goal in this section is to find the map between the different ways of gluing the charged
transitions together, as in (5.2), and the components of the super loop (5.5). Put differently,
we would like to find a map between the 1’s and the x’s such that W in (5.5) also admits
the expansion

W ="PoPo- 0P+ xiXiXixi PizzaoPo---0P+XixXiXixs PrasoPso---0P+... (5.6)

in terms of the x’s.

There are two important properties of the super loop that will be relevant to our
discussion. First, recall that an 7 is associated to an edge of the polygon while a y is
associated to a pentagon. As such, there are many more terms in the n-expansion (5.4) or

3These UV divergences are T-dual to the IR divergences of the on-shell amplitudes.
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Figure 5.2: a) Any square in the OPE decomposition stands for a transition from the state
at its bottom (¢pottom) to the state at its top (¢iop). This transition is generated by a
conformal symmetry of the right and left edges of that square (conjugate to the flux time
7). b) Similarly, the super pentagon IP represents a transition from the state at its bottom
to the state at its top. In the fermionic y-directions, this transition is generated by a
super-conformal symmetry of the (j — 1)-th, j-th and (j + 1)-th edges in this figure.

(5.5) of the super loop than there are in the y-expansion (5.6). This is no contradiction,
however. The reason is that the n-components are not all linearly independent, since,
as mentioned before, they are subject to SUSY Ward identities. On the contrary, the y-
components all have different OPE interpretation and, in line with our previous discussion,
should be viewed as defining a basis of independent components for the amplitudes. In
other words, the map between x- and n-components is not bijective if not modded out by
the SUSY Ward identities. We can then think of the y-decomposition as a natural way of
getting rid of SUSY redundancy.

Second, the n-components of VW are not ‘pure numbers’, since they carry weights under

the little group; e.g., upon rescaling of the twistor’ Z; — « Z; the component W23,

transforms as W%, — W23, /a?. These helicity weights cancel against those of the
n’s, so that W is weight free in the end. In contrast, the components in (5.6), as well as the
corresponding x’s, are taken to be weightless. With this choice, the x-components coincide

with the ones predicted from integrability with no additional weight factors.

We now turn to the construction of the map. The question we should ask ourselves is:
What does it mean to charge a pentagon transition? Said differently, how do we move from
one pentagon-component to another in the x decomposition of P in (5.1)? To find out, it

4See appendix F for a brief review of twistors.
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helps thinking of the x’s as fermionic coordinates of sort and recall how usual (meaning
bosonic) variables are dealt within the OPE set up.

The bosonic cross ratios are naturally associated with the symmetries of the middle
squares. Namely, we can think of any middle square as describing a transition between
two flux-tube states, one at its bottom and the other one at its top, as depicted in 5.2.a.
Attached to this square are three conformal symmetries that preserve its two sides (left and
right). To move in the space of corresponding cross ratios (7,0, ¢) we act on the bottom
state with these symmetries

¢b0tt0m _) 6_H7+1PU+ZJ¢ ¢bottom . (5 . 7)

Equivalently, we could act with the inverse transformations on the state at the top (¢top),
since these are symmetries of the left and right sides sourcing the flux. In other words, the
OPE family of Wilson loops is obtained by acting on all the twistors below each middle
square with the conformal symmetries of that square.

Similarly, to move in the space of ‘fermionic coordinates’ we should act with a super-
charge. In contrast to the previous case, these are now associated to the pentagons in the
OPE decomposition. A pentagon transition represents the transition between two flux-
tube states, one on the bottom square and the other on the top square — the transition
being induced from the shape of the pentagon. So what we should do is to find the super-
charge that preserves the three sides of the pentagon sourcing the two fluxes, i.e., the sides
j—1,jand j+ 1 in figure 5.2.b, and act with it on the state at its bottom (pottom) OT,
equivalently, with the inverse symmetry on the state at its top (¢1op). There is precisely
one chiral supercharge that does the job, as we now describe.

Recall that we have 16 chiral supercharges at our disposal, that is, Q% where A is an
R-charge index and a is an SL(4) twistor index. By construction they annihilate the super
loop W on which they act as [91]

n—2
d , .
Q=) Z;LW with QYW =0. (5.8)

i=—1

By definition, for a given supercharge not to act on, say, the i-th side of the super loop,
we need the coefficient of 9/9n#* to vanish. This can be achieved by contracting the SL(4)
index a with a co-twistor Y such that Y - Z; = 0. In our case, since we want Q to be a
symmetry of the three sides of a pentagon, the co-twistor should be orthogonal to Z;_y,
Z; and Zj;1. There is exactly one such co-twistor:

}/;‘ = ijl AN Z] A Zj+1 . (59)
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It is then straightforward to define the operator 0/ 8)(? that charges the j-th pentagon.
It acts as Yj - Q4 on the state pottom entering the j-th pentagon from the bottom or,
equivalently, on what has created this state. In other words, 9/ 8)(;-1 is defined as Y; - Q4
in (5.8) but with the summation restricted to edges lying below the j-th pentagon:

0 1 e 0
= - NV Zis )| 5.10
oG G-1;0),G+1); &= ot (510)

Alternatively we could act on the state iy, at the top of the pentagon by restricting the
summation to edges lying above the j-th pentagon and flipping the overall sign. These two
prescriptions yield the same result since the two actions differ by Y; - 94 where O is the
full supercharge annihilating the super loop.

The normalization factor multiplying the sum in (5.10) needs some explanation. It is
introduced to make 0/9x weight free. In other words, it is defined such as to remove the
weight of the co-twistor Y; used to define our supercharge. In our notation, (i); extracts
the weight of the twistor Z; in the j-th pentagon. This operation is unambiguous once we
require it to be local with respect to the j-th pentagon, meaning that it should only make
use of the five twistors of this pentagon. Indeed, given a pentagon p with five twistors
Zay ...y Ze, the unique conformally invariant combination carrying weight with respect to
a is given by

4 {abed){cdea)(deab)(eabc)
(@) = (bede)®

Uniqueness is very simple to understand. If another such expression existed, its ratio with
(5.11) would be a conformal cross-ratio, which of course does not exist for a pentagon. A
nice equivalent way of thinking of the weight (5.11) is as the NMHV tree level amplitude
for the corresponding pentagon, that is

(5.11)

()" = W™ (5.12)

(Stated like this, the idea of dividing out by such weights is not new, see discussion around
(132) in [82].) Multiplying three such weights to make the normalization factor in (5.10),
we would get

(Zj-v, Zj1, 23, Z3) * {Zj, Zvjy, Zjrs Zjia)®

(Zjs1, Zuis Zis Zjs ) { Zojs j—laZj+17Zt|j><ZtU7 s Zb|j g(51>3)

((G-1);G),;G+1))" =
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where Z,;/ Zy; refer to the top/bottom twistors of the j-th pentagon respectively. Equiva-
lently, Zy;/Zy|; are the middle twistors of the (j+1)-th/(j—1)-th pentagons, see figure 1.
For further discussion of these weights and their rewriting see appendix ['.3.

Finally, there are two minor ambiguities in the above construction on which we should
comment. One is the overall normalization of (5.11) or (5.12) which is not fixed by the
symmetry argument above. The convention chosen here is equivalent to setting

(Zo, 71, Zo, Z_1>r

-1,—-1,-1,—-1
W;()entagon NMH)V =1. (514)

Pt = | ety
A second minor ambiguity comes from the fourth power in (5.11) or (5.12). Due to its
presence, to extract any weight we need to compute a fourth root, giving rise to a Zy4
ambiguity. In practice we start from a point where the right hand side of (5.13) is real and
positive for any j and pick the positive fourth root when extracting the weight on the left.
Then everything is real and can be nicely matched against the integrability predictions.
This seems reminiscent of the sort of positivity regions of [92]. It would be interesting
to study the Z, ambiguity further, and possibly establish a connection to the positivity
constraints of [92].

5.2.2 Interlude : Sanity Check

As a check of our map (5.10) we consider an eight-leg scattering amplitude, i.e., an octagon
or, equivalently, a sequence of four pentagons. For concreteness, we focus on the example
of PioPyoP3oPy = %%%%W at tree level and evaluate it in terms of the nine OPE
variables {7;, 0;, ¢;}. At this order, the OPE ratio VW coincides with the ratio function R
and we can easily extract components of the latter from the package [93]. For large OPE

times we find that
ProPyoPsoPy=e T2 o2 i o TaHIO/2 flo)+ ... (5.15)

which is actually already a non-trivial check of our construction. Indeed, we have four
charged pentagons each of which injects one unit of R-charge and one unit of fermion
number. As such, the lightest states that will flow in the three middle squares are a
fermion v, (with helicity —1/2) in the first square, a scalar ¢15 (with no helicity) in the
second square and the conjugate fermion 1153 = 9* (with helicity 4+1/2) in the last middle
square. In short, the leading process contributing to this amplitude should correspond to
the sequence of transitions

P - P P P
vacuum —s 1) — 1o —> 1193 — vacuum, (5.16)
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Figure 5.3: Leading OPE contribution to the NMHV octagon component P; o Py 0 P30

P, = %%%%W. For this component, each of the four pentagons in the octagon
1 2 3 4

decomposition carries one unit of R-charge and fermion number. From the flux tube point

of view, this corresponds to the sequence of transitions in equation (5.16).

as represented in figure 5.3. The three exponential factors in (5.15) are in perfect agreement,
with this expectation.

Most importantly, the function f(o;) should be given by the multiple Fourier transform
of the sequence of pentagon transitions. It beautifully is. This type of checks will be given
in section 5.5.

5.2.3 The Inverse Map

It is rather straightforward to invert the map (5.10) such as to obtain the 9/9n’s in terms
of the 9/0x’s. For that aim, it is convenient to put back the weights in (5.10) and define

; ; " . 0 0
pY = (j-1);(); <.1+1>j7:Yj-ZZi—A- (5.17)
v

Given the triangular nature of this map, charging the first few edges at the bottom is
as easy as writting the first few D’s explicitly. For the bottom edge, for instance, we
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immediately find that

) B DY
PV _v,. 7 = -4 5.18
A 1 13?7ﬁ‘1 877111 Y, -7, ( )

while taking this into account and moving to the following edge yields

0 _(M-2.)DY - (Yy-Z1)DY
ong! Y1-Z1)(Ya - Zo) 7

(5.19)

and so on.

By following this recursive procedure we will eventually find that 0/0n; is given as a
linear combination of DU*2 DU+ DWW In plain words, it means that charging
the edge j entails charging the entire sequence of pentagons lying all the way from that
specific edge to the bottom of the polygon. The drawback is that it has be so even for
an edge standing arbitrarily far away from the bottom of the polygon. This, however, is
at odds with the locality of the OPE construction, in which a random pentagon in the
decomposition only talks to its neighbours (through the flux-tube state that they share)
and has little knowledge of how far it stands from the bottom. Besides, it introduces an
artificial discrimination between bottom and top, despite the fact that our analysis could,
at no cost, be run from the top. The way out is easy to find: the bottom tail of the inverse
map is pure mathematical illusion, or, put differently, the inverse map beautifully truncates
such as to become manifestly top/bottom symmetric.

In sum, instead of a sum over j + 2 D’s, what we find is that (for 3 < j <n—2) 9/0n;
is given by the linear combination of the five neighboring pentagons only (see figure 5.4)

0 _ (V2. Vi, V3, Vi) D™+ 4 (V0,3 Yi, Vi) DY 2 (5.20)
onst (Vi1 Zji1) Vi1 - Zj1) Yi2 - Z5) (Yii2 - Z5)
Mathematically, this relation originates from the five-term identity
(Y2, Y0, Y, Y)Y+ 0 +(Y00, Y5, Y5, Y)Y = 0, (5.21)

which holds for any choice of five (co-)twistors and which simply follows from them having
four components. Once we plug the definition (5.17) into the right hand side of (5.20),
most terms cancel out because of this identity. Those that survive are boundary terms and
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Figure 5.4: A remarkable feature of our construction is that the inverse map turns out to
be local. Namely, charging edge j is done by charging the five pentagons touching this edge
and these five pentagons alone. We notice in particular that the two outermost pentagons
in this neighbourhood, which are shown in green above, are touching the endpoints of edge
7 only.

it is straightforward to work them out in detail. They precisely lead to the single term in
the left hand side of (5.20).”

Actually, it is possible to interpret the inverse map (5.20) such that it also applies to
the very first edges of the polygon, like in (5.18) and (5.19), provided that we properly
understand what we mean by Yy, Y_1, Y_5 and Y_3. (These co-twistors will show up when
using (5.20) for 9/0ne, /0N, 0/0ny and 0/0n-;.) For this we can pretend that there
are extra edges at the bottom of the polygon and the previous derivation would still go
through.® Of course, for these bottom (or top) cases, it is easier to proceed recursively as

To see that only the term proportional to 9/ On; survives it is useful to note that the orthogonality
relations Y;_o-Z;_1 =Y;_1-Zj_1 =Y;-Z;_1 = 0 allow us to freely extend slightly the summation range
of some of the five terms in (5.20). In turn, these relations follow trivially from the definition (5.9) of the
co-twistors. Finally, to check the overall normalization of both sides in (5.20), it is convenient to use the
identity (Yj_2,Y;1,Y}, Y1) = (Yjo1 - Zjp1) (Vi1 - Zj—1) (Y2 - Z5).

We can Simply define (}/O,Y_1,Y_2,Y_3) = (Y{07_1)1},Y{*)07_1},Y{_l)*’*},Y{*’*,*}), with Y{i,j7k} =
Zi NZj N\ Zy, and Z, being arbitrary twistors, which drop out of the final result. At the same time, we also
set (DoW, D_1W, D_oW, D_sW) = (0,0,0,0) .
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in (5.18) and (5.19).

This concludes our general discussion of the map. The proposals (5.20) and (5.10) are
the most important results.

5.2.4 Easy Components and the Hexagon

A polygon with n edges has a top pentagon and a bottom pentagon, plus n — 6 pentagons
which are neither top nor bottom and referred to as middle ones. Charging the bottom
or the top pentagons is considerably simpler than charging any middle one. Let us focus
on the bottom since the top is treated analogously. According to our general map (5.10),
we see that the differential operator that charges the bottom pentagon, 9/0y1, is simply

proportional to 9/0n_1,
0 Yi-Z 0

= X
Ox1 (0)1(1)1(2)r  On—y
which we can further simplify to (see e.g. (F.19) in the appendix for a thorough explana-
tion)

(5.22)

0 0
— =(—1); x
ox1 ( )1

o (5.23)
In other words, up to a trivial factor which absorbs the weight in 9/07n_1, charging a bottom
pentagon is the same as extracting components with 7’s at the very bottom of our polygon.
Similarly, charging the top-most pentagon is equivalent to putting n’s on the topmost edge.
It could hardly be simpler. Explicitly, for any polygon, there are five NMHV components
which are easy to construct:

PiggsoPo---0oPoP = wi4Wwb-b-b-

PigoPo---oPoP, = w3 Wl -l-ln=2)
PpoPo---0oPoPy = w2 Whln-2n=2) (5.24)
PioPo---0oPoPyy = wll] wi-tn—2n-2n-2)

PoPo---0Po 7)1234 — w[o] W(n72,n72,n72,n—2) _

where w[m] = ((=1)1)™ ((n — 2),_4)*™.

These are what we call the easy components. Morally speaking, from the first to the
last line, we can think of the easy components as inserting an F', ¢, ¢, ¥, F' excitation and
their conjugate at the very bottom and top of our polygon.
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(a) (b)

Figure 5.5: (a) OPE friendly edge labelling used in this chapter (big black outer numbers)
versus the more conventional cyclic labelling (small red inner numbers) for the hexagon.
(b) The five easy components of the NMHV hexagon. Each black square represents a dual
Grassmann variable n. For the hexagon these five components provide a complete base for
all NMHV amplitudes.

For an hexagon we have only two pentagons and thus the easy components in (5.24)
with n = 6 suffice to describe the NMHV hexagon, see figure 5.74. All other components
can be trivially obtained by Ward identities. For example, we can use invariance under

0 0 0 0

Y, Q= Yo Zor—=Y5-7Z_ Yo - Zog—+ Y5 24— 5.25
2 Q ;2 kank 2 1(977,1+ 2 03770+ 2 487]4 ( )

to replace any component with an index associated to the edge 0 to a linear combination of
components with 7’s associated to the top and bottom edges —1 and 4. Those, in turn, are
the components which we can neatly compute from the OPE construction. For example,
it immediately follows that

W(fl’fl’il’o) = 067)1234 oP + ﬂ P123 o P4 ) (526>
with
ng . Z_l 3/2 : Z4
Yo Zo ((=1)1)" (42)

— ) (5.27)
Y- Zo ((=1)1)*

Similarly, we can easily write down any other hexagon NMHV component in terms of the

OPE basis. Of course, this is equivalent to using the general inverse map (5.20), worked

out in the previous section.

There are other components whose OPE expansions closely resemble those of the nice
components (5.24). A notable example is the so-called cusp-to-cusp hexagon scalar com-
ponent RlleffoﬁA and its heptagon counterpart R}f’ﬁ 045+ ouch components were extensively
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analyzed in the past using the OPE [382,86,94,95]." What is nicest about them is their
utter simplicity at tree level, being described by a simple scalar propagator from the bot-
tom cusp (—1,0) to the top cusp (n — 3,n — 2). Based on the OPE intuition, one would
therefore imagine that this component should not behave that differently from the one in
the middle line in (5.24). Indeed one observes that the expansion of this component and of
the cusp-to-cusp components are exactly the same to leading order at large 7 and to any
loop order. Both are described by a single scalar flux tube excitation. However, as soon as
two-particle contributions kick in — in the sub-leading collinear terms — these components
start differing. A similar story is present for all other components in the family (5.24). For
example, gluonic components were intensively studied in [84]. A simple tree-level gluonic
example of this universality for the leading terms in the OPE was considered in detail
in [96]. The hexagon fermonic component W(1~1=14) was recently studied in [97].°

Finally let us note that the weight factors showing up in (5.24) are not a novelty. Al-
ready in [82] it was explained that to properly deal with weight free quantities we better
remove the weight of each pentagon by dividing out by the corresponding charged counter-
part, see (132) and surrounding discussion in [82]. Nevertheless, in practice, in all previous
OPE studies of super amplitudes, the weights (—1); and (n — 2),_5 of the bottom and
top twistors with respect to the corresponding pentagons were, for the most part, ignored.
Sometimes this is fine. For instance, if we are interested in amplitudes at loop level we can
always divide the ratio function by its tree level expression obtaining a weight free function
of cross-ratios which we can unambiguously match with the OPE. Said differently, we can
always normalize the tree level result by hand such that it agrees with the leading terms
in the OPE. In particular, for the purpose of comparing with the hexagon function pro-
gram [98-102] and using the OPE to generate high loop order predictions, it is overkilling
to carry these weights around. Moreover, with the choice of twistors in [82], such weights
actually evaluate to 1 which is one further reason why we never needed to take them into
account.

Having said all that, of course, to be mathematically rigorous, weight free quantities
(5.24) are what we should always manipulate. In particular, for higher n-gons, and as
soon as we also charge middle pentagons, it is important to keep track of these weights to
properly make contact with the OPE predictions.

"Recall once again that we are using here a slightly unconventional labelling of the edges as indicated in
figure F.1.b; These same cusp-to-cusp component were denoted Rg134 and Rr145 in [82] and Ragse in [94].
8This component was denoted W14 in the cyclic labelling in [97].
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5.2.5 Parity

The charged pentagon construction provides us with a novel intuition about how to under-
stand parity at the Wilson loop level.

Recall that the action of parity on a scattering amplitude is very simple. It is a symme-
try of the amplitude under which a positive helicity gluon transforms into a negative helicity
one, a positive helicity fermion transforms into its negative helicity conjugate counterpart
and finally a scalar excitation is trivially conjugated. All in all, this can be summarized in
the following nice relation [103]

n—2
/ [T d'ii e===mm Al A, ) = Al X, ] (5.28)

i=—1

However, the relation between amplitudes and super Wilson loops involves stripping out
the MHV tree-level factor along with going from the original amplitude 77’s to the Wilson
loop dual Grassman variables 1’s.” Together, these operations obscure the action of parity
for this stripped object. How is parity symmetry realized on the super Wilson loop? Put
differently, how does parity relate different ratio function components? Here we propose
that — once decomposed using the OPE y-components — parity at the Wilson loop level is
no more complicated than in the original amplitude language. Precisely, we claim that our
variables allow for a straightforward analogue of (5.28) in the Wilson loop picture as

n—4

/ [T d"v e == Ry, 2] = RIx, W1, (5.29)

i=1

where W, are Hodge’s dual momentum twistors [104]. The latter can be thought of as
parity conjugate of the Z’s and, up to an overall factor which drops out in (5.29), are given
byl(]

VVj = Zj_g N Zj N Zj+2 . (530)

Note that this is nothing but the conventional definition of the dual twistor involving three

consecutive edges; the shifts of 2 in the index are just an outcome or our labelling, see
figure F'.1.

9The convention for the labelling of the n’s and 7’s varies quite a lot in the literature. Our notation
here is in line with [76] and [92] for example (modulo the non-cyclic labelling of the edges of course).

10 Dual momentum twistors (as well as usual momentum twistors) are reviewed in some detail in appendix
F.1, see formula (F.4) for an explicit expression relating them to the original momentum twistors, including
all factors. Here we are dealing with weight free quantities and as a result, we can always safely drop any
normalization from either Z’s or W’s on the left or right hand sides in (5.29).
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The general relation (5.29) is a generating function for all parity relations between
N NMHV components and N*~#"*MHV components, such as the relation

Prazs o P =P o Piosulzw (5.31)
between two NMHV hexagon components, for instance, or the relation
Pz 0 P14 0 Pagg = Py o Poz o Prlzow (5.32)

relating NMHV and N2MHV seven-point amplitudes. More precisely, to convert such
identity into a relation for ratio function components, it is suffices to divide both sides by
W =PoPoP.' After doing so, the same relation in (5.32) reads

0 9 d 0 0 d 0 0 Rheptagon N2MHV — J 0 9 d Rheptagon NMHV
Ox1 0xF Ox3 Ox3 Ox; Ox3 OX3 O3 Ox1 Ox3 0x3 Ox3 (Z—>W)
5.33
where the y derivatives are given in terms of conventional 1 derivatives in (5.10). Another
more extreme example following from (5.29) is the relation

Pi231 © Pr23a 0 Praza = Po P o Plyw (5.34)

which encodes the fact that for seven points N3MHYV is the same as MHV. It is straight-
forward to generate more such relations by picking different components in (5.29).

Note that relations such (5.33) are quite unconventional. We are not entitled to compare
different n-components of the ratio function simply because they do not carry the same
helicity weights. Equating different n-components would be tantamount to comparing
apples and oranges. In contrast, when extracting the y-components as in (5.33) we generate
weight free quantities since the y’s — contrary to the n’s — carry no weight. This is what
allows us to write parity relations at the level of the Wilson loop in terms of simple relations
such as (5.32)—(5.33) or, simply, in terms of the master relation (5.29), without the need
of dressing the components by additional weight factors.

Having decoded in detail the notation behind our main claim (5.29), let us now explain
how the relations (5.32)—(5.33) are nicely suggested by the pentagon approach. Then, we
will explain what sort of checks/derivations we have performed.

Parity, first and foremost, is a symmetry that swaps the helicity of the external particles
in the V' = 4 supermultiplet that are being scattered, see (5.28). Similarly, parity also flips

HThe latter is symmetric under Z — W so we can evaluate it with either twistors Z or dual twistors
w.
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the helicity of the flux-tube excitations. Flipping the helicity of a flux-tube excitation is
trivial: it can be accomplished by simply flipping the signs of all angles ¢,’s, while keeping
the times 7; and distances o; invariant [79,81,82]. This is precisely what the transformation
Z «» W accomplishes!"™”

This explains the substitution rule in the right hand side of (5.31)—(5.34). To complete
the picture we also have to act with parity on the pentagon transitions. Naturally, it is
expected to swap the several super pentagon components in (5.1) in exactly the same way
that it acts on the usual super-field multiplet expansion (replacing the positive helicity
gluon with no 7’s with the negative helicity gluon with 4 7’s and so on.). This translates
into

Pioza < P s Pia3z <> Pa etc, (535)

which is precisely what is encoded in (5.32)—(5.33) or, more generally, in (5.29). In partic-
ular, these prescriptions neatly relate N'MHV and N*"*=4MHV amplitudes, as expected
for parity.

While (5.29) is what the OPE naturally suggests, the previous paragraph is obviously
not a proof. In any case, (5.29) is a concrete conjecture for the realization of parity at the
Wilson loop level that we should be able to establish (or disprove) rather straightforwardly
starting from (5.28), without any reference whatsoever to the OPE. It would be interesting
if a simple and elegant derivation of (5.29) existed, perhaps following the same sort of
manipulations as in [75]. This would elucidate further the origin of the (weight free) super
OPE Grassmann variables x.

What we did was less thorough. To convince ourselves of the validity of (5.29) we did
two simpler exercises: On the one hand, using the very convenient package by Bourjaily,
Caron-Huot and Trnka [93] we extensively tested (5.29) for a very large number of ratio
functions from NMHYV hexagons to N*MHYV decagons, both at tree and at one loop level."
On the other hand, we also looked for an analytic derivation of (5.29) from (5.28). We did
not find a particularly illuminating proof that establishes this in full generality but we did
manage to prove several sub-examples.

12More precisely, it is a very instructive exercise to observe that under Z; — W; the cross-ratios in
formula (160) in [82] precisely transform as (75,0, ¢;) — (75,05, —¢;). When preforming such check it is
important to take into account the conversion between the edge labelling used here and there, see caption
of figure F.1.

3When checking such identities for a very large number of edges, the package becomes unpractically
slow. The trick is to open the package and do a “find/replace operation” to eliminate several Simplify and
FullSimplify throughout. For analytical checks of relations such as (5.32)—(5.33), these simplifications
are superfluous.
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5.3 The POPE integrand

We are now in condition to make the OPE expansion for super Wilson loops precise. The
OPE integrand factorizes into considerably simpler building blocks which we can analyse
separately. It is perhaps worth mentioning from the get-go that this factorization is by no
means obvious. It stands as another wonderful (but mysterious) N' =4 SYM gift. Were
it not for it, one would hardly imagine bootstrapping the multi-particle contributions with
ease. Indeed, except for the first few particles contributions, almost no explicit form factor
summands for correlation functions in integrable theories are explicitly worked out. A
notable exception is the 2d Ising model. The unexpected simplicity we are encountering in
N =4 SYM theory motivates its portrait as the Ising model of Gauge Theories.

The three building blocks into which the OPE integrand factorizes are dubbed the
dynamical part, the matriz part and the form factor part,

integrand = (dynamical part) X (matrix part) X (form factors part), (5.36)

with the latter form factors being non-trivial for non-MHYV processes only. Here is what
we know about these building blocks :

Dynamical part - This is the part of the OPE integrand that is universally present,
which applies to all cases, MHV or non-MHV, and which treats all flux tube excita-
tions on a same footing, regardless of their quantum numbers / R-charges. It is the
most dynamical component of the integrand, hence its name, and not surprisingly
it exhibits the most complicated coupling dependence. Its overall form is however
extremely simple since it is factorized into a product over elementary pentagon tran-
sitions linking the various flux tube excitations and a product over square measures
and Boltzmann weights of each excitation. The geometry of the scattering ampli-
tude, in particular, only enters through these Boltzmann weights. All the transitions,
measures, energies and momentum appearing here are also rather universal. They
are written in the appendix G.

Matrix part - The matrix part takes care of the SU(4) group theoretical factor of the in-
tegrand. It can only show up when flux tube excitations with R-indices are present,
and is otherwise totally absent. This component of the integrand has the distin-
guished feature of being a coupling independent rational function of the particles’
rapidities, with no obvious factorization. Taming this group theoretical factor is an
interesting algebraic problem on its own [105] but it is beyond the scope of this thesis.

118



Form factors part - Lastly, we have the non-MHYV form factors. They are only needed
for non-MHV amplitudes, which are composed of so-called charged pentagon transi-
tions [29,82,97]. Luckily, these form factors are not independent objects. Instead,
we can construct them from their relation to the bosonic (or MHV) transitions with
fermionic excitations frozen to zero momentum. Applying this logic, we will obtain
their expressions for all excitations and transitions. The final result is then checked
against perturbative as well as self-consistency checks such as parity symmetry.

5.4 The abelian part

In this section we present the expression for the abelian part of the POPE integrand. It
captures by definition what remains of the full integrand after stripping out the matrix
part. (In some cases, when there is just no matrix part, the abelian part is of course
everything. This is the case for instance for states made out of gluons or their bound
states, which are intrinsically abelian.) As explained in the introduction, the abelian part
is composed of the dynamical and form factors parts,

abelian = (dynamical part) X (non-MHV form factors part). (5.37)

Conventionally, for MHV, only the dynamical part remains. For non-MHV, the latter
remains the same, but form factors should be added to the story. These ones are not really
independent and can be directly derived from suitable MHV processes, as we shall explain
in this section.

5.4.1 The dynamical part

We start with the main component. This one captures, in particular, the information about
the geometry, i.e. the cross ratios o;, 7;, ¢; of the polygon, and can be written as [81]

dynamical part = P( 0 [(V) u(W) e PEmtin®D)ortim(@ D)o,

(5.38)

where E(W), p(¥) and m(¥) are the energy, momentum and angular momentum of the
multi-particle state ¥. We have n — 5 such states in total, in accordance with the number
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Figure 5.6: Every two successive pentagons in the POPE decomposition are flipped with
respect to each other. Namely, if the cusp of one pentagon is pointing to the right then
the next one is pointing to the left and so on, --- — P — PL - PH 5 PL ...,

of middle squares in the tessellation, and for each of them we have a corresponding square
measure (W), see [81]. Finally, two consecutive squares with multi-particle states ® and
¥ are connected by means of a pentagon transition P(®|¥) or P(¥|®), where the bar
stands for the state where all excitations are replaced by their conjugate and their order
reversed. The fact that each other pentagon appears with such reversed states is a direct
consequence of the alternating nature of the pentagon tessellation as illustrated in figures
5.6 and 5.7. The alternating signs multiplying the momenta of the states in consecutive
middle squares have the same origin.

The factorization observed above is not a surprise and follows from symmetry consider-
ations of the OPE. In contrast, the simplicity of ' = 4 SYM theory starts to manifest itself
as soon as we start exploring the multi-particle nature of the various pieces. What hap-
pens here is that all the above mentioned blocks factorize further into one- and two-particle
blocks! To describe this factorization we introduce the notation ¥,, with n =1,..., N to
indicate the n-th excitation of the multi-particle state W. Then, the energy, momentum,
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Figure 5.7: When inserting the resolution of the identity between each pentagon it is
desirable to relate one sort of pentagon in figure 5.6 (say the ones with the cusp to the left)
to the other kind to render things more uniform. We relate a pentagon with its cusp to
the left to a pentagon with its cusp to the right by a “rotation”, which maps the bottom
to the top and the top to the bottom. In this convention, after rotating the pentagon we
relabel the associated rapidities as illustrated in this figure. This leads to an alternating
sign (—1)7 multiplying the flux tube space variables as written in (5.38).

angular momentum and measure all factorize into their single particle counterparts as"’

N
(W) e PR im0 = TT11(0,,) exp [~ E(V,)7 £ ip(¥,)o + im(¥,)¢] ,  (5.39)

n=1

where the sign + = (—1)’"! multiplying the momenta for states in the j-th middle square is
a simple outcome of the conventions mentioned above, see figure 5.7. It is convenient to use
a hatted measure [i to denote collectively the measure and the accompanying Boltzmann
factor, since these ones always come together. With this notation, the factorization we just
described would simply read a(¥) =[], 1(¥,). Most importantly, we observe a similarly
neat factorization for the pentagon transitions into fundamental 2-particle transitions [81,

14Tn [81] the measure part also included combinatorial factors for identical excitations. These factors
can instead be associated to the summation over the flux excitation that should be done in a way that
avoids double counting.

121



82,84,87,106]'

[ P(®n|Vmm)
P(®|W) = i : (5.40)
I;IIP@)H‘(I)T/) 1<_[ /P(IIIM‘\I]W)

The measures themselves are not independent from the pentagon transitions. On the
contrary, they can be extracted from the decoupling pole present in 2-particle transitions
involving identical in- and out- going particles,

Res Pyy (ulv) = (5.41)

fro(u)

We see that to fully describe the dynamical part all we need are the two-particle pen-
tagon transitions between any pair of single particle excitations. Most of them were already
written down in the literature, see e.g. [82-84,87,97,107]. It was found that, for any pair
of excitations {W¥, ®}, the pentagon transition takes the rather universal form

S\p@(u, U)

P\p|q>(lt|’())2 _ }"w(u,v)s ot 0)

(5.42)
where Syo(u, v) is the scattering phase (in the symmetric channel) for the excitations ¥ and
® and S,y (u,v) is its mirror counterpart.'® The functions Fyg(u, v) are simple functions
of the rapidities, involving eventually the Zhukowski variables. In table 5.1 we present our
ansatz for these functions for all pairs of excitations.

In the end, to evaluate the transition we still need to take the square-root of (5.42)
which poses some ambiguity on the branch choice. This ambiguity can be partially fixed
through comparison with data or with help of some reasonable normalization conditions
as done in appendix G. Explicit expressions for all the transitions and measures are also
given in this appendix (altogether with the transitions involving bound states of gluons
and small fermions [83]).

15Tet us stress again that formula (5.40) only captures the dynamical part of the transition. In the case
where ® = 0 and ¥ = ¢¢, for example, we get from (5.40) that Pyg(0[u,v) = 1/Py4(ulv) while in [83]
we had Py (0lu,v) = 1/(g*(u — v + 2i)(u — v 4 7)) x 1/Pg)s(ulv) which differs by a rational prefactor
and by the factor 1/g2. The former rational factor is interpreted here as being part of the matrix part
and thus discarded, while the power of 1/g? is just absent because of our new normalization of Py)4 (see
appendix G).

6When W is a gluon or scalar excitation, the mirror S-matrix is given by analytically continuing the
physical one in the standard way, S.wa(u,v) = Sge(u?,v). For fermions, the lack of a mirror transfor-
mation v renders the relation between the mirror S-matrix and the physical one less straightforward. It
involves a so-called anomalous mirror transformation as detailed in [83], see e.g. appendix A.4 therein.
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.7:¢F(u|v) =1 s

Foslul) = s

Faoult) = e

Frp(ulo) = LNV e b Z 00 0],

Frylulv) = = (gii—;—gzg—yv;g; / (5.43)
Fratul) = - LT 0t

T

Foslu) = ———A )

gry(u —v)(u —v+1)’

Fupp(ulv) = — v9Ty

(zy —g?)°

Table 5.1: Summary of prefactors for all twist-one squared transitions, with z = z(u),y =
z(v) and z = J(u+ \/u? — 4¢?) the Zhukowski variable. They agree with those found in
the literature up to minor redefinitions (see appendix G for details).

In concluding, we should mention that there are two main axioms behind these ansétze.
The most important (and still mysterious) one is the fundamental relation

ny(u|v) = :tSXy(u,U)Pyx(U|u), (544)

which comes with a minus sign whenever both X and Y are fermionic. Combined with
the factorization property (5.40) it guarantees that general transitions fulfill proper Watson
and decoupling equations. The other essential constraint is dubbed the mirror aziom which
states that

Pxpy(u™7|v) = Pyix(v|u), or more generally Pxg(u""|v)= Pgx(v]u), (5.45)

7

where —v denotes the inverse mirror rotation and with v a set of spectator rapidities.’
Combined with (5.44) the mirror axiom can be used to argue for the ansatz (5.42) as

TTechnically, X in this equation is restricted to be a gluonic or a scalar excitation. This is because, as
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well as to solve for the prefactor F. Finally, it is worth stressing that the solution to
such bootstrap axioms are by no means unique and comparison with perturbative data is
therefore crucial in backing up our proposals. This shall be discussed at length below.

5.4.2 Charged transitions and form factors

The physics that takes place on the flux tube is essentially the same regardless of whether
some of the pentagons are charged or not. What can possibly differ is the R-charge flow
throughout the pentagon evolution. Since the R-charge dependence was factored out into
the matrix part at the very beginning, one can ask if the abelian part proposed in (5.40)
can also be applied as it stands to these charged processes. The answer turns out to be
positive up to a minor modification: the inclusion of the so-called non-MHV form factors,
as sketched in (5.37). The need for these form factors is not a novelty and was previously
stressed in [82,87] from the study of certain components of the NMHV hexagon. To pave
the way to our general discussion, let us start by reviewing briefly, on a simple example,
why these form factors are needed at all, or equivalently why is the dynamical part not
enough for describing the abelian part of non-MHV amplitudes.

Consider the y-component Pia34 0 P, or equivalently P o Pia34, of an NMHV hexagon
mentioned in section 5.2.4. From R-charge conservation the excitations allowed on these
transitions are the same as in the bosonic MHV case P oP. As such, at twist zero we have
the vacuum, at twist one the positive and negative helicity gluons, F' and F, etc. Despite
this similarity, one does not expect the transitions, integrands, and full amplitude to be
the same for the two processes, since e.g. the MHV process treats symmetrically positive
and negative helicity gluons while the non-MHV one does not. (This is also immediately
confirmed at weak coupling by looking at the corresponding amplitudes.) At the level of
the POPE integrand for a single gluon,

PoP = 14 [Tl o+ [ Ghasl) 4
PusoP = 14 [ $hir) f)+ [ Shast) )+ (a9
d - d

this difference follows from the fact that the gluons are either produced or annihilated in the
presence of a charged transition P in the NMHV cases and it results in the gluonic form

explained in [83], the mirror rotation for the fermions is of a more exotic type, mapping the fermions into
higher-twist excitations.
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factors f and f. In other words, the dynamical part described before must be completed
with the knowledge of these form factors, which in the present cases simply read [82]

+p—

flu) = ——=1/f(u), (5.47)

where 2% = z(u + %) with z(u) = (u + \/u? — 4¢?)/2 the Zhukowski map of the rapidity
u. Note that such factor cannot be absorbed in the matrix part both because the matrix
part is, by definition, independent of the coupling and because in this abelian case there is
no matrix part.

Our main proposal is that the same structure persists for generic transitions. Namely,
the effect of charging a pentagon, ignoring the matrix part, is to dress the abelian part
by elementary form factors associated to each excitation present on the pentagons. More
specifically, we propose that the charged version of (5.40) reads

PI(@W) = g5 x |[] (ha,)" x H (he,)"| x P(®W), (5.48)

%

where ® = {®;} is the incoming set of excitations at the bottom square of the pentagon,
¥ = {¥,;} the outgoing set of excitations at the top, and » = 0,1,...,4 the amount of
R-charge carried by the pentagon. The rules of the game are extremely simple. The result
is factorized and for each excitation, or more precisely for each field creating the excitation
at the bottom or conjugate field annihilating it at the top, we associate a form factor. The
form factor can thus be thought of as being attached to the field and represents the net
effect of charging the transition, as illustrated in figure 5.8.

We immediately verify that the general rule (5.48) properly reduces to (5.46) in the case
of a single gluon. Indeed, as mentioned earlier, the form factor f above accounts for the
difference between a gluon F' produced on top of a charged and an uncharged pentagon,
ie.

F(u) = By(01w) / Py (0lu) (5.49)

By convention, or equivalently by applying (5.40) blindly, P(0|u) = 1, while (5.48) gives
us
P (0lu) = g° x (hp(w)* x 1, (5.50)

that is

f) = (et & hplu) = () . (5.51)
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(ha)"

) )
Pl(¥|®) = o = = (he)" x P(¥|®) x (ha)"
o o
(hw)"

Figure 5.8: The net effect of charging a pentagon is to dress each excitation on its edges by
a corresponding form factor. This one is attached to the field that creates or annihilates
the corresponding excitation in the bottom to top evolution picture. The picture above
illustrates our conventions, with a state ¥ at the bottom being created by a field ¥ and
a state ® at the top being annihilated by the field ®. The form factors associated to
these fields are then (hy)" and (hg)", with r the R-charge of the charged pentagon, or
equivalently, the number of times we act with a supercharge Q.

Similarly, we would read that

hF(u):< g )i. (5.52)

s

The remaining questions are what are the form factors for the other excitations, why is
the form factor for a composite state a product of elementary ones, and why is (5.48) valid at
all? The quick answers are that, due to their expected simple dependence (see (5.47)), form
factors are easily extracted from data analysis, as done in [82], and that their factorized form
is consistent with all the constraints the charged transitions must fulfill, as shall be discussed
in section 5.4.3 below. However, one can do much better than that and actually derive the
rule (5.48) directly from the uncharged transitions (5.40). The important observation [29]
is that charging a pentagon is the same as acting with a supersymmetry generator on one
of its edges, as we will now explain.

To start with, we recall that one can view the pentagon transitions as form factors for
a pentagon operator acting on the flux tube Hilbert space of states

P(Y[®) = (®[P|¥) =

(5.53)

As explained in [29], all we need to do in order to add a unit of R-charge to a pentagon
P is to act with a supersymmetry generator Q on the bottom state or, equivalently, with
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—Q on the top state. Here Q is the unique supercharge that commutes with P and is
represented by 0, on the super loop (5.6), see [29]. This leads to the relation :

Pa(¥|®) = (D[Pa|¥) = (@[PQ4|¥) =

(5.54)

Importantly, supersymmetry generators are realized on the flux as zero momentum fermions
[108]. That is, to act on the state |¥) with a supercharge Q4, we add to it a fermion and
then send the momentum of that fermion to zero. This directly links the charged transitions
to their un-charged counterparts, allowing us to extract all information about the former
from the latter.

Let us show more precisely how this works. Consider for example the transition from the
vacuum at the bottom to a single fermion ¢(u) at the top. Such transition is only possible if
we equip the transition with R-charge as in the charged transition Pa(0]u) = (1(u)|P4|0).
To obtain the latter transition from an uncharged one we can start with a similar fermion
¢(v) at the bottom, ie. from Pjj(vlu). We now wish to take the limit in which the
momentum of the fermion 1 (v) goes to zero, so that it becomes a supersymmetry generator
acting at the bottom. In appendix .5 we show carefully how the zero momentum limit
should be taken and in particular what is the proportionality factor. We find that

. 1—‘cusp . 1 Fcusp dv N 1T
Q|0) = 4/ g}g% Ip) = Ulggo\/ 2 %Mw(v) [(0)), (5.55)

where, following the notations of [83], the ‘check mark’ on top of the rapidity v, i.e. v,
indicates that the analytical continuation to the rapidity plane neighbouring the zero mo-
mentum point (reached at v = co) has been done (see [83] for further details). Using this
prescription, as well as the large v behaviours given in appendix .4, we conclude that

1
) [ewsp dO 5 5 s g \1
P(£|11]L(0|U> = Ulggo\/ 2igp %’udj(z}) X PJJW;(UW) =g 3 <m> , (5.56)

where the upper label in P indicates the amount of R-charge or equivalently the number
of x’s carried by the pentagon. The fermionic creation transition (5.56) is obviously of the
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type (5.48)%
_3 3
Fop(0lu) = g% x g (u) x Py (0lu) = g% x hy(u), (5.57)

with
hy(u) = (g/x)* (5.58)
the form factor for a single antifermion. As expected it shows a simple dependence on the

rapidity u of the excitation, once expressed in terms of the Zhukowski variable x = z(u),
as found earlier for the gluons.

It is not so much difficult to include more excitations in the top and check the fac-
torization of the form factors. Suppose, for instance, that we start with a multi-particle
transition involving fermions and send the momentum of one of them to zero as prescribed
by (5.55). As a result of the multi-particle factorization (5.40), the multi-particle form

factors must factorize as well."”

We can see this at work on simple examples, using the same P! procedure as before.
For instance, we can at no cost consider the same fermion creation transition with a gluonic
excitation F,(w) added on the top. This yields

1) L Lewsp dv L
By, Olu, w) = lim \/ %gp %M@) X Ppgp, (0)u,w) (5.59)

where, again, the upper index indicates that this new transition is taking place on top of
a pentagon carrying one unit of R-charge. It exactly differs from the chargeless transition
defined through (5.40) by the form factors. Indeed, using the factorization of the dynamical
part (5.40) together with (5.56) and (G.4), we derive that

Py, Ol w) = Py, (0, w) By (), (w). (5.60)
where
92 (signa)/4
h, (u) = n ] , (5.61)
z(u+ @)z (u—12)
in agreement with (5.51) and (5.52) for a = —1 and a = +1, respectively.

Instead of adding matter to the fermion 1) at the top, one can imagine replacing it
by a pair ¢y or a triplet ¥ (always with the small fermion (o) at the bottom) and

8Recall that following (5.40) we are working in a convention where the un-charged creation transition
of any excitation X is trivial. With the y-labelling this reads P(Elo;( (Olu) = 1.
19To see this in full generality one also needs the matrix part [105].
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hence access to the as-yet-unknown ¢ and v form factors. A proper analysis would require
introducing a matrix part, whose main role is to project the pair/triplet to the SU(4)
channel with one unit of R-charge. However, in both cases, the matrix part plays no role
as far as the form factors are concerned.”’ One can thus proceed without knowing its
explicit form and directly relate the ¢ and ¢ form factors to the large v behaviours of the
Pgs(0]u) and Py, (0|u) transitions. Using expressions in appendix G.4 one gets the system
of equations

v z(w)\
ho(whg(w) = g** lim \/Fcusp i 1 (D) X Py (0]u) Py (0]w) = (Q> ,

vooo \[ 2ig dpg g
3 1/4
Fcus ( )x(UZ)x(US)
_ _ 3 8
(5.62)

whose only reasonable solution is
ho(u) =1, hg(u) = (z/g)"*. (5.63)

Equations (5.58), (5.61), and (5.63) finalize our proposal for the charged transitions (5.48).
A couple of consistency checks for it will be given in the next sub-section. One easy test
can actually be run immediately. It comes from the physical requirement that a pair of
conjugate excitations should decouple on a charged transition exactly as they do in the
un-charged case. That is, the square limit (5.41) must remain the same on a charged
transition.”! Including the form factors, this condition translates into

Res Py (ulo) ha (u)hs () = (5.64)

pia(u)
which enforces

he(u)hg(u) = 1. (5.65)
This relation is easily seen to be satisfied.

In the end our form factors are all simply given in terms of Zhukowski variables. Putting
them together, for a polygon with n edges, gives us the full form factors part in (5.36) as

i(ri—4)

i N .
form factors part = Hg s (hgw)" (hgum)"™ (5.66)
i=0

20For completeness, we have indeed that the matrix part is oc 1/(u—w+3i/2) and o< 1/ [Ticj(ui—u;+1)
for the two cases at hand, i.e. for a state ¢(u)y(w) and ¥ (u1)w(uz)w(us) at the top, respectively. Because
it shows no dependence at all on the rapidity v of the fermion ¢(?) at the bottom, it cannot contribute to
the form factors.

21put differently, the propagation on the square is diagonal, so it cannot be charged.
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Pias o Py

Figure 5.9: Leading twist transition for the hexagon component P53 0P,4. In this example,
we assign the form factor (hlz,(u))3 to the bottom (blue) pentagon and (hy(u))" to the top
(red) pentagon.

where the index ¢ on top of the matter fields refers to the i’th square, with ¢ = 0 being the
first one at the very bottom and i = n — 4 the last one at the very top,”” while the same
index 7 in 7; refers to the i'th pentagon transition between states W) and W0+D with
r; units of R-charge. Note in particular that each excitation in a given square is assigned
two form factors — one for each of the pentagons that overlap on this particular square. A
simple example is depicted in figure 5.9.

As a summary, we can now write the OPE decomposition for a polygon with n edges
in a rather compact form. Up to the matrix part of course, we have

n—>o

A ri(ri=4) ri—Ti 1 i i
PoPo...oP|y = iHuq,(i)g 5 (hgw) PR (O g+ (5.67)

=0

with X a choice of x component, with r; Grassmann variables x’s in pentagon ¢, and with
PR/L(@O | p+)y = p(EO|Pi+) or P(E<Z+1)|§(Z)) for ¢ even or odd.

In what follows we shall perform two sort of checks of our proposal. The first kind
of checks — with which we will conclude this section — are internal self-consistency checks
of the POPE proposal. The second sort of checks concern explicit comparison against
perturbative data and are the main focus of section 5.5.

22We recall that the states in the very bottom (i = 0) and very top (i = n —4) squares are both vacuum
with measure and form factors equal to one.
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5.4.3 Consistency checks

In this section we shall present two consistency checks of the non-MHYV form factors pre-
sented above. Namely, we will first see that they are consistent with parity and finally
observe that they are compatible with the fundamental bootstrap axioms (and hence can
be regarded as factorized CDD factors).

Parity

As we have seen in section 5.2.5, parity symmetry establishes the following relation between
the OPE components

PoPo...oPlx =(PoPo...oP|g)|ps—sp- (5.68)

where X is the complement of the component X, namely

n—4
X — /H d'y; o i Xaxi X
i=1

For example, we can relate an NMHV component with X = x1x?x3x3 to an N*°MHV
with its complement X = yixax3xs ... xt 2 X3 _4x} 4. For parity to be a symmetry
of the super Wilson loop, the POPE decomposition should be invariant under » — 4 — r
together with a flip of the chirality of all the flux tube excitations, namely

(5.69)

XX

n—>»s
S T g™5 (g7 PO w00 (5.70)
=0

n—>
R (ri=4)r; —r)—(d—r; — (1) | ==(i+1
= IHMM)Q S ()T pRLEY Y :
i=0 bi——¢;

up to an unphysical relative normalization. Note that the overall power of ¢ is parity
invariant by itself. Now, the pentagon transitions and measures change at most by a sign
under this transformation (namely when fermions are involved) but they do not distinguish
the chirality of the flux tube excitations otherwise. Finally, using the relation (5.65) we
see that the form factor part is also invariant and thus parity is nicely satisfied.
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Bootstrap axioms

In a way, the pentagon transitions in (5.42) constitute the simplest solutions to the boot-
strap axioms they are expected to satisfy [81-84]. However, these solutions are by no
means unique. Any other solution to the bootstrap equations would differ from (5.42) by
a sort of CDD factor. As we shall now see, the form factors derived above can also be
interpreted as such CDD factors. Namely, the charged transitions (5.48) still go through
all the bootstrap axioms.

The most non-trivial axiom is the fundamental relation to the flux-tube S-matrix (5.44).
Clearly, this relation is unaltered by the form factors due to their factorized form. It
remains to check the mirror aziom (5.45) which was introduced when bootstrapping the
pentagon transitions involving gluons or scalars. For this mirror relation to be satisfied by
the charged transitions, the form factor should obey the relation

he(u™) = hg(u). (5.71)

This relation is trivially satisfied for scalars while for gluons it follows from the relation
2 (u™7) = ¢g*/2*(u).”® In fact, the validity of both axioms directly follows from the relation
between the charged transition and a zero momentum fermion (5.55) (taken to be one of
the ¥ excitations in (5.45) for example).

5.5 Comparison with data

We would like now to test our proposal (5.67) for the POPE integrand against available data
at weak coupling. Historically, this comparison was absolutely instrumental in unveiling
the general ansatz for the form factors.

The data we use is extracted from the package [93], which generates non-MHV am-
plitudes at tree level for any number of particles. The same package also yields one loop
amplitudes but for the purpose of this thesis we restrict our attention to tree-level checks
only.

In the POPE we have essentially five different types of elementary excitations, F, 1, ¢, 1, F,
and fifteen different pairings of them into transitions. These two numbers are in corre-
spondence with the five independent NMHV hexagons and fifteen independent NMHV
heptagons, respectively. At leading twist, the hexagons essentially probe the measures

Z3Beware that mirror transformation takes different form for scalars and gluons [82,109)].
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and the form factors. The heptagons on the other hand probe all building blocks of the
integrand and, in particular, the pentagon transitions involving mixed types of particles.
In this section we will confront our predictions against both hexagons and heptagons thus
probing all these ingredients at once.

At the same time, these checks also provide us with a strong test of the map between
N*MHV amplitudes and charged pentagons proposed in [29]. This one maps any N¥MHV
amplitude, as specified by choosing an n-component of the super loop, to a very precise
linear combination of the OPE friendly x-components (5.6) and vice-versa. It is the latter
x-components that admit a neat OPE interpretation and thus offer direct access to the
various pentagon transitions.

To illustrate this point, let us consider a random 7-component, say the NMHV heptagon
component W12 multiplying the monomial 7,72, n¢nPeapcp (see figure 5.12.a for
the convention of the edge labelling). According to our discussion, we expect it not to have
an obvious OPE expansion and indeed this is precisely what we find. To see it we extract
this tree-level component” from the package [93] as

evaluate@superComponent [{1,2},{3},{},{},{},{4},{}]0treeAmp[7,1]
and, to make it into a weight free quantity, multiply it by the weights ((—=1)1)? (1)1 (2)2

with (i); the weight of the twistor Z; in the j pentagon (see [29] for more details), which
we can express in terms of OPE variables using the twistors in Appendix F.2.?° We denote

this properly normalized heptagon component as W(—1=112)  In terms of OPE variables
we have B
e io io
W(—l,—1,1,2) _ = _ 6—01—71 N 6—01—271—71 + 0(6—471)’ (5‘72)

which clearly defies any reasonable OPE interpretation!*®

24 Actually, the package extracts the ratio function component R(:5F-D = W(i*j’k’l)/WMHV, but at tree
level they are the same.

25As is often the case, while this is the correct mathematical procedure, the naive evaluation of
WEL-LL2) with the twistors in Appendix F.2 would yield the very same result since, in this case, the
weights simply evaluate to 1.

26To start with, it simply does not depend on the OPE variables 7o, 02, ¢ at all, as if only the vacuum
were propagating in the second square of this heptagon. Even if we were to accept that, other puzzles
would immediately appear when interpreting the large 71 expansion: the first term looks like a twist
zero contribution — like the vacuum does — but with a non-trivial o7 and ¢; dependence — contrary to
the vacuum. There is no natural candidate for what anything like this would be. Also suspicious is the
fact that only even twists show up once we expand the result out at large 7. Moreover terms in the
near collinear expansion shout trouble: their dependence in oy is so simple that they would not have any
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Of course, this does not mean that we cannot describe this component within the POPE
approach. On the contrary, as explained in [29], once using the inverse map we can express
any component as a linear component of the nice y-components which in turn we can
describe at any loop order within the POPE. In this case, using the expression (21) of [29]
we would find

—-1,-1,1,2 —O1—09— i)
W( ) ”)_P120POP34601 o2—T2+—5
20—y — 2P1 102 _ ipy by _ idy “152
7)1207330734 (6 201 —T1—T2——5 > de o1—T2+ 5 3 toe o1—02—2To+ 5+ .

—01— O’2+l¢1 +1¢2 > +

1
#)+

e
id1 .
'P12 ° P34 oP ( 67201 7'1*— o 670170277'2+Tl+z¢2 e
(e*QUl p— 22 2 + e 1702~ T1+2¢>1+ 2 + e~ oot 2 5 >+

Praz o P o Py

7)12307)407) (6—01 T1—id1 Lo T1+id1 +6—02—7'2+Z¢2 4 e OO T2+Z¢1+l¢2+

—201 2T —201_|_1)_|_
b1

PiagaoPoP (6_201_Tl+% + 6_01_T> :
(5.73)
It is amusing to see how this precise linear combination of y-components, each with a nice
OPE expansion, combines into the component (5.72) without any obvious OPE picture.
Conversely, and perhaps less trivially, according to [29], a generic x-component is a precise
linear combination of several n- components. These are the components that we shall
directly confront against the integrability inspired predictions in the following subsections.

5.5.1 NMHYV Hexagon

Due to R-charge conservation, different NMHV components will support different flux tube
transitions. The hexagon — made out of two pentagons — is the simplest case where we
can clearly see this at work. For the components Pjo34 0 P and P o Piags, encountered
before, the excitations flowing in the middle square should form an R-charge singlet (for
example we could have the vacuum, any bound state of gluons, a pair ¢34, etc.). For
Piaz 0 Py (P1 o Pasq) we should have excitations with the same total R-charge as for a
fermion (anti-fermion), that is the state should be in the fundamental (antifundamental)
representation of SU(4). Finally for Pj5 o P34 we need the same R-charge as for a scalar,

sensible Fourier transform into momentum space. In short: this component is as weird as it could be from
an OPE perspective.
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i.e. a state in the vector representation of the R-symmetry group. As we have seen, these
five components form a basis over which we can expand any other component [29].

We can write explicitly the OPE integrand for these easy components. At leading twist,
they are (see figures 5.74 and 5.9)

PuscoP = 1o [ § i) (e, () (s (0)° [ 57 e (0) G, () Gy () ..
PusoPi = g1 [ 58 (@) hul) + ... (5.74)
C
du

PaoPsy = g *

i) ho(w) () 4
PoPus = 1 [ 58w () Gy ) + [ 5% e (0 (e () (i (10)* ...

]R/
ProPasy = g_i/
c
]R/

R

Although in the first and last line we have the same allowed excitations, the form factors
break the symmetry between the positive and negative helicity gluons. In particular, the
first terms in Pya34 0 P and P o Pio34 appear at tree level and the last terms are delayed to
two loops, as confirmed from data.

As thoroughly described in [83], the contour of the integration C for the fermions is over
a two-sheeted Riemann surface and can be conveniently splitted into two contributions: the
large and small sheet contours. The large sheet contour is performed over the real axis
with a small positive imaginary part whereas the small sheet contour is a counter-clockwise
half-moon on the lower complex plane. It is then natural to treat these contributions
independently as coming from a large fermion ¢y, and a small fermion ¢g. In appendix G.2
we provide the explicit formulae for the analytic continuation of the pentagon transitions
from the large to the small sheet.

Let us now study in detail the component Pjo3 o P, at leading twist as an illustration of
a check against data (see figure 5.9). The OPE integral splits into two terms corresponding
to the large and small fermion contributions

du

Piaz 0 Py = g_% % /le (u) (hTZL (u))3 h?f)L (U’) +9 / ;i_z ﬂﬁ’s (u) (hﬁs (u))3 hws (u) :

Clarge Csmall

]

(5.75)
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In this case the contour of integration Cyp.; does not enclose any singularity, resulting in a
vanishing contribution of the second term. We are only left with the first term that should
be integrated slightly above the real axis. Using the explicit expressions for the measure
and form factor at leading order in the coupling, we obtain

, du —im :

_ T Hip/2 2iuc 2

PragoPy=e / o —sinh(wu)e +0(g7) . (5.76)
R-+i0

According to the map worked out in [29], this component should relate to a component of
the super amplitude as follows

Praz o Py = ((—1)1)3 (4)2 wL—h-14) (5.77)

where, as before, the pre-factor (i); stands for the weight of the twistor Z; in the j™"
pentagon. In order to extract this component we use the aforementioned package by
running the following line in Mathematica

evaluate@superComponent [{1,2,3},{},{},{4},{},{}]0treeAmp[6,1]

still using the twistors given in Appendix [F.2.°" Upon expanding the outcome at leading
order in the twist and taking into account the weights, we obtain a perfect match validating
our conjecture for this particular transition.

The same type of checks are straightforward to generalize to the rest of the components
or to one loop level using the same package [93]. These probe the expressions for the form
factors presented in (5.66) at weak coupling. We have also verified the correctness of our
conjectures beyond leading twist when also the pentagon transitions start to play a role.
In the next section, we probe them more directly using the NMHYV heptagon.

5.5.2 NMHYV Heptagon

The NMHV heptagon is the appropriate laboratory to test the pentagon transitions in-
volving all possible pairings of the fundamental excitations. In particular, it is the first
polygon where the transitions between excitations in different squares arise. All the POPE
building blocks take now part in and consequently they are all scrutinised.

2TNote that one should convert between the OPE friendly and the cyclic labelling of the edges. Fig-
ure 5.74.a shows both labellings for the hexagon.

136



The heptagon has fifteen independent components [29], represented in figure 5.10. Five
of them, in the top line of that figure, can be constructed in a similar manner to the
hexagon by charging the outermost pentagons. To generate the remaining ten independent
components, it is unavoidable charging the middle pentagon. According to [29], charging
the middle pentagon typically involves rather nontrivial linear combinations of the super
amplitude n- components. Since we are also interested in testing this map, in what follows
we will focus mostly on such examples in which the middle pentagon is charged.

To leading twist each of the fifteen heptagon components probes a different pentagon
transition, see figure 5.10. We verified that their near collinear expansions are indeed
in perfect agreement with the proposals of the previous section once expanded out to
leading order in perturbation theory. Interesting as they are, the analysis of these cases
follow [82] almost verbatim and is therefore not particularly illuminating to present it in
detail. Instead, in this section we will consider a richer example involving multi-particle
states in both middle squares. These examples allow one to get a good picture of how
generic transitions show up at weak coupling. They also probe considerably more structures
in a very non-trivial way and allow us to stress the important role of the so-called small
fermions. The matrix part in the first one is trivially equal to 1 and in the second case it
is simple and has been determined before in [83].

The examples where more complicated matrices appear were also tested but we leave
them for a future publication, where the general construction of the matrix part will be
presented. All in all, we have tested all possible transitions at tree level up to twists three
in one square and two in the second one and several twist three (in both squares) transitions
with simple matrix part (in a total of 429 processes).

It is instructive to present one such example in detail. We will analyse the P o Pia3 0Py
component through the POPE lens. As mentioned above, to make things more interesting
and nontrivial we will look at some high twist contribution involving several particles
and/or bound-states. To be precise we shall consider the term proportional to

6_3T1_3i¢1 % 6—3724—5/2@'(;52 (578)

as illustration. What flux tube physical processes govern this contribution? To answer this
question it suffices to list everything that has the right quantum numbers to be allowed
to flow. In the case at hand we are looking at states with twist 3 both in the first middle
square and the second square. We are searching for states with helicity —3 in the first
square and +5/2 in the second square. Finally, we have R-charge considerations. For the
sequence P o Pjo3 0 P, we necessarily have an R-charge singlet in the first middle square
and a state in the fundamental (4) representation of SU(4) in the second middle square.
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Figure 5.10: Fifteen independent components for the NMHV heptagon with the corre-
sponding excitations at twist one. The components in the first line involve charging the
bottom and top pentagons only while the second and third line correspond to the remain-
ing ten components where the middle pentagon is also charged. As illustrated here, each
such component can be used as a direct probe of a pentagon transition.
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Figure 5.11: Fundamental excitations together with the effective excitation

Yo Fy (ak.a. D?1)) used in the example.

All in all, this information restricts the matter content enormously.

In the first square, for example, the absolute value of the helicity is maximal, equal
to the twist of the state. This saturation is achieved for purely gluonic states only, see
figure 5.11. There are therefore only three possible states in the first middle square,

[Foa(u)Fa) Faw),  [Fa(u)Fa(v),  [Fs(uw). (5.79)

The first two are multi-particle states and kick in at higher loop orders. The last one,
corresponding to a bound-state of three negative helicity gluons, is the only one showing
up at leading order at weak coupling.

In the second square things are more interesting. With helicity 5/2 there are only two
possible states we could envisage:

[Fi(u) Fy(0)y(w)),  [¢(w)Fa(u)) . (5.80)

At first we could imagine discarding both since they are both multi-particle states; how-
ever, when fermions are involved the coupling analysis is more subtle. The point is that
fermions can be either small or large and in the former case they act as sort of symmetry
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generators [83]. As such each of the states in (5.80) can be split into two cases depending on
whether the fermion is small or large. In particular, the second state |Fy(u)(v)) with the
fermion evaluated in the small fermion domain can be seen as a supersymmetry generator
acting on the excitation Fy(u) thus generating a single effective weak coupling excitation —
see figure 5.11 — and as such might show up already at leading order at weak coupling. (At
the same time the first state |Fy(u)Fy(v)(w)) with ¢ being a small fermion would behave
as a two particle state and thus show up only at higher orders in perturbation theory.)

In sum, to match against tree level data it suffices to focus on the process
vacuum — F_3(u) — ¢ (w)Fy(v) — vacuumn, (5.81)

which is what we turn to now. In this case the matrix part is trivial. Indeed, the R-charge
index of the fermion is unambiguously fixed once we pick an R-charge configuration for the
various x’s. In other words, the matrix part in (5.36) is equal to one and the full integrand
is just a product of the dynamical part and the form factor contribution. According to
(5.38) and (5.66) these read

By, (w[u) Pry y (v]u)

dynamical part = fip_,(u) fiy(w) fip, (v : (5.82)
S P, (w|v) Pryjy (v]w)
1
form factors part = — (hp,(u)? (hr_y(w)?® (hg(w))? (he,(v))? hy(w) hp, (v)(5.83)
g4
which we simply multiply together to obtain the POPE prediction
Wre spm = / / / (dynamical part) X (form factors part), (5.84)

small

where Cyman is the complex conjugate version of the half-moon contour mentioned be-
low (5.74), hence running in the upper half u plane, in agreement with the alternating
conventions in (5.38). (Equivalently, depending on the + sign in front of ipo in (5.38) we
use an +ie prescription for integration around zero momentum fermions in the correspond-
ing square.) Plugging all the building blocks together, we therefore arrive at

WF_34)¢FQ = €

5 .
% /d_“ / dv dw wl' (3 +iu) T2 — )l (§ —iu+iv) Q2 =2ivrw)e: | 042 |
2r ) 27 21 2i(w?+9) (v2+1) ((v—w)?+1)
R R ésmall

—371-3id1 g =32 +5/2idy (5.85)
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and verify that, despite the funny fractional powers of the coupling appearing in the indi-
vidual ingredients, the resulting integrand has a regular expansion in ¢ and starts at tree
level, as expected.

One of the three integrals involves a small fermion t(w) integrated over its correspond-
ing small fermion contour Ceman. An important universal property of small fermions is that
they can always be straightforwardly integrated out (at any value of the coupling in fact).
In this tree level example we see that the only singularity inside the half moon encircling
the upper half plane is the single pole at w = v +¢. The fermion integral thus collapses
into the corresponding residue contribution which freezes w to be attached to the rapidity
v in a Bethe string like pattern. The interpretation of such strings is that the fermion is
acting as a symmetry generator on the other excitation in this square, the bound-state of
gluons Fy(v). The result of this action is an effective twist 3 weak coupling excitation, see
figure 5.11, which is described by the Bethe string.

In sum, after integrating out the small fermion we end up with the integrations in u
and v for a single effective particle in each square. The resulting integral can then be
straightforwardly performed leading to the prediction

6_3T1 —319—3i¢1 +5’i¢2/2

WF,3~>’LZJ P, = (6201 I 1)3 (6202 + 1)3 (6202+201 + 0202 4 6201)5 X

+ 10 e90’1+6a’2 4 35 61101+60’2 + 28 61301+602 + 10 670’1+802 + 60 6901+802 + 105 6110’1+802
+ 56 el3o1+80‘2 + 5 650'1+1002 + 35 6701+100'2 + 105 690'1+100'2 + 130 6110'1+100'2 + 55 613a'1+100'2
+ e30’1+120’2 + 8 650'1+120'2 + 28 e70’1+120’2 + 56 e90’1+120’2 + 55 6110'1+120'2 + 20 6130'1—1—120'2) )
(5.86)
This example clearly illustrates the importance of checking the integrability against
perturbative data. After all, it is clearly a tall order to reproduce any result of the com-
plexity of (5.86). According to the proposal in [29], the amplitude P o Pja3 0 Py can be
extracted from standard n-components as

(€130'1+20'2 + 561101+402 + 86130‘1+40'2

d\30 (5)3 ( 0 9 )3 0
W= 1,2,3,—1 1,2,3,0 —W 5.87
() 6™ = @z \ Vons, T L2305 ) o (5:87)
= ((25))3(3)) ((1,2,3, =1)* WL 4 (12,3, -1)%(1, 2, 3,0) W09
2 2
+(1,2,3,-1)(1,2,3,0)2 WH005) (12 3 0)3 WO005)) (5.88)

Each of these components can be obtained by running similar code lines in Mathematica
as in the previous example of the hexagon, using the heptagon twistors in the Appendix
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Figure 5.12: (a) The POPE friendly edge labelling used in this chapter (big black outer
numbers) versus the more conventional cyclic labelling (small red inner numbers) for the
heptagon. (b) The NMHV heptagon process analysed in this section.

[.2. Once we evaluate the brackets and the weights, we expand the result at large 7 and
7o and pick the term proportional to (5.78). In this way we obtain a perfect match with
the expression (5.86)!

These are formidable checks of the full POPE construction as they are probing, at the
same time, the map between charging pentagons and charging edges of [29] as well as the
(weak coupling expansion of) the various elements of the POPE integrand. We performed
several other checks of this sort (more than a hundred of them) always obtaining a perfect
match. We also explored some higher loop data but our analysis there was much less
thorough. It would be interesting to push it much further both in higher twists and higher
loops. In particular, it would be nice to make contact with the very interesting recently
uncovered heptagon bootstrap [110]. This ends the second part of this thesis.
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Chapter 6

Final remarks

Solving a non-trivial interacting four dimensional quantum field theory seems now con-
ceivable for the first time. Planar N = 4 SYM appears to be a gifted point in the space
of quantum field theories, combining so many symmetries that we can aim at obtaining
non-perturbative solutions for many observables. In this regard, integrability is at the core
of the main developments of the last years. In this thesis, we have explored two main
classes of such observables: the higher point correlation functions and the scattering am-
plitudes/Wilson loops. In the correlation function problem, we have studied both the weak
and strong coupling regimes, where integrability emerges in two distinct ways with no «a
priori connection. At weak coupling, the representation of the single trace operators in
terms of spin chains allows us to make use of technology that often appears on integrable
condensed matter or statistical physics systems, such as Bethe ansatz, scalar products of
Bethe states and integrable form factors. It contrasts with the strong coupling side of the
problem, where integrability is associated to the classical two dimensional sigma model de-
scribing the world-sheet. The computation of a correlation function in this regime is that
of determining the area of a minimal surface embedded in AdS with specific boundary
conditions. This problem turns out to be solvable precisely due to the integrability of the
sigma model.

In the study of scattering amplitudes, we have seen that this quantity is dual to the
expectation value of a null polygonal Wilson loop. This Wilson loop supports a 141
dimensional integrable flux tube, whose spectrum and S-matrix of its excitations are known
non-perturbatively. In order to compute its expectation value, it was proposed to break
the polygon into more fundamental building blocks, namely the pentagons, that could be
bootstrapped using integrability. Later we glued them back together by performing a sum
over all propagating states in the Wilson loop.
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Let us now put the results of this thesis in the broader context of the state-of-the-art of
integrability in N” = 4 SYM. The weak coupling computation of the three point function we
have presented here proved to be an important check point for the most recent integrability
based bootstrap proposal of [31] (see also [112]). In this groundbreaking paper, the authors
proposed a framework to compute the all-loop structure constants in planar N' =4 SYM.
The three point function is pictured as a pair of pants, which can be regarded as the
splitting of a closed string into two other closed strings. Then the main step was to cut
the pair of pants into two hexagons which are more fundamental objects. Each of these
hexagons inherit some of the excitations associated to the original closed string states. The
dynamics of these excitations is integrable which allows to bootstrap the hexagons pretty
much in analogy with the pentagons of the Wilson loop. Later these hexagons are glued
back together by summing over the excitations along the cuts.

In both three-point function and scattering amplitudes problems, the all-loop solutions
involve the idea of breaking an object into smaller building blocks that are bootstrappable
by integrability, and then gluing them back together by performing a certain sum over
states whose charges and dynamics are fully under control at all loops. In the case of the
three point functions, these states are described by excitations above the BMN vacuum
whereas in the case of scattering amplitudes it is over the GKP vacuum. In both cases
there is an an all-loop Bethe ansatz description.

On the other hand, at strong coupling there is also some sort of unifying picture in both
problems. As mentioned in the core of the thesis, the scenario we have described for the
correlation functions is analogous for the scattering amplitudes. From the string theory
point of view, the scattering amplitude is also given by the area of a minimal surface in
AdS ending on a null polygonal contour. This problem was solved for general null polygons
in [57] and for smooth Wilson loops in [111]. It is natural to ask how the non-perturbative
proposals just described give rise to this more geometrical picture emerging in the string
side. In fact, part of it was already answered in [31] for the three-point functions and [81]
for scattering amplitudes, where the bootstrap solutions were shown to be consistent with
the minimal surfaces results. It would be very interesting to reconstruct the four point
function from the non-perturbative knowledge of the structure constants and recover the
strong coupling results presented in this thesis.

In addition to these two non-perturbative results for three point functions and scattering
amplitudes/Wilson loops, the solution of the spectral problem is also available in the liter-
ature and given in its most advanced form by the so-called Quantum Spectral Curve [24].
The method behind the spectral curve is different from cutting and gluing as in the other
examples, even though it might be possible to apply that logic by considering a cylinder
(which is the topology of the closed string associated to the two point function problem),
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break it into squares and bootstrap them. Nevertheless, in the Quantum Spectral Curve
there is no such sum over excitations and the efficiency of the method is truly remarkable.
One might wonder whether such powerful technology can possibly exist for these other
observables.

Zooming out a little bit more, planar N’ = 4 SYM seems to be very special among all
quantum field theories which raises many interrogations about what is really transferable
from solving it. One obvious question is how dependent of the large N limit this solution
is. Can we go beyond the planar limit? So far the studies of non-planar corrections to
anomalous dimensions did not yet reveal any traces of integrability (see [113] for a review).
In particular, the first 1/N correction to the dilatation operator involves the splitting and
joining of spin chains, and all the sites interact with each other. It is therefore unclear
how to define an asymptotic regime and integrability concepts like asymptotic S-matrix
or two-particle scattering are not applicable at least in the standard way. Related to this
question, is the somehow curious fact that for computing some planar structure constants,
namely those associated with extremal three-point functions, it is important to consider
the mixing of single with double trace operators which requires a diagonalization of the
non-planar dilatation operator. Perhaps methods inspired on the integrable bootstrap for
(non-extremal) three point functions [31] can be extended for the extremal case and from
there we might access some non-planar information of the theory. In any case, this issue
is clearly calling for an ingenious way out.

Along the same lines, how extendable and useful are these results to attack less sym-
metric theories like QCD? One particular connection that we might hope to establish is
with the QCD string or flux tube. As we have seen, the N/ = 4 flux tube is integrable.
There is no reason to expect the same to happen for the QCD flux tube though. That said,
it is interesting to point out that approximate low energy integrability of the worldsheet
theory was recently used [114, 115] for perturbative calculations of the spectrum of con-
fining strings in non-supersymmetric theories. The search for integrable flux tubes on less
symmetric theories is certainly an important route and the first steps were already taken
in [116].

On a more speculative guise, the origin of integrability and whether there is a connection
between integrability and dualities with string theories remain obscure despite of all exact
results already obtained. How do exactly gauge fields become strings and vice-versa in
N =4 SYM as we tune the coupling? Is it a general mechanism that can be exported
to other examples of gauge/gravity dualities and aid at constructing new duals of gauge
theories?

The solutions we just described constitute the state-of-the-art of the first complete
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all-loop description of a gauge theory in four dimensions. We believe this will stand as
a reference model to test new techniques or ideas that might emerge in the future for
quantum field theories, in similar fashion to the role that the Onsager’s solution of the two
dimensional Ising model played in the development of statistical physics and field theory.
Many doors are being opened right now and the depth of our questions is increasing as our
knowledge of existing theories expands. For these reasons, the next years promise to be
exciting. This is the end of the thesis.
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Appendix A

One-loop perturbative computation
details

A.1 Notation and conventions

In this Appendix, we fix our conventions for the perturbative computations. The N = 4
SYM with SU(N) gauge group has the Lagrangian given by formula (1.7) presented in the
introduction. The propagators extracted from this Lagrangian are (we are suppressing the
gauge indices and taking the leading order in N)
OO0 R —
‘ 8 (2m)2(—a? +ie)’
oy 1

a0 = ot Ot

_ Nuv 1
(Au(@)A4,0)) = =73 (2r)2(—22 + ie) ’

where 6% = §26% — 6252, We are using the Minkowski metric (+— — —) and the Feynman
gauge. The action of the (classical) supersymmetry generators are given by [118§]

[qam (I)bc] — # (5Z¢ac o 52¢ab) ,
4%, %] = 52Fﬁa )
(4%, 0] = 22 D7y,
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and the conjugate expressions for the action of ¢*; . The action of the R-symmetry gener-
ators is given by

1
[Talﬂq)cd]:5§q)ad+5gq)ca_§5gq)cd7
a c c,na 1a c
[r, ¥ =y —Zdb?ﬁ-

In the computations of the Feynman diagrams, in particular for the evaluation of the
integrals, we analytical continued to Euclidean space by using

2¥ = iz?, oY = —o%, oy =10y,

where the subscripts M means Minkowski space and E means FEuclidean space,

0
Op = Id2><27

and, finally, o, are the usual Pauli matrices.

A.2 Details of the perturbative computation

We now present the details of the perturbative computation of the three-point functions
at one-loop using the point splitting regularization. As reviewed in the main text, in order
to obtain scheme and normalization independent structure constants we also need to know
the results of the two-point functions.

Typically three kinds of integrals will appear in the computations

Y123 - /d4u [mlulxgulxgua
X1234 - /d4u Ix1u1x2u1x3u1z4ua
H12,34 = /d4u d4'U [xlu[:pgu[ulegvjx4v y

where I, ,, is the (euclidean) scalar propagator defined as

1
I, . = .
T (2m)P (@ — )
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The Y and X integrals are well-known and explicit expressions for them can be found for
instance in [36,119]. The integral H is not known analytic, however, only its derivatives
will be needed. In particular, the following combination [119] turns out to be useful

(al B a?) : (83 - 84>H12,34

F12734 = 7 7 (Al)
z1xolr3Ty
X234 X234
— + G — Gosa+ G312 — Gaaa,
]xlarg]wg:m Ix1z4[x2x3
where
G o Yabc Yabc
a,bc — -

I:Earc ]xaxb

We will need several limits of the expressions for Y and X, namely when pairs of distinct
points collapse into each other

Y, lim Y; 2—1lo —62 Laay
= 11m = —
113 S Tz g 72 1672’
e’ Ipywsd
X = lim X = (2-1 34 T123 72124
1134 m;ﬁ 1234 ( 0g <x%3xf4)) 1672

where we are considering x = 2 + ¢ with € — 0. We can also take a further limit of
the last expression above when x, — x3 giving

€ I% .
X3z = (1 — log ($—2>) ﬁ
13

Moreover, we also need limits of the first and second derivatives of both the Y and the X
integrals. We include the results of them below for completeness. The first derivatives are
given by

2 2 v 2
€, 1 € 13,1 T13.€7€,1
. pnLxrirs N A sV [0 A Y
lim 817MY123 = 5 a2 1-— 10g 5 — 5 s (AQ)
w2 =1 € 8w i3 4 2e
2 2
. € 3313,uf
lim a3,,u,Y123 = 1- log 9 — ) (AS)
T2—T1 1713 2
2,.2 2 2
I; 0 X . € 111$3]z1z4 1 1 €T3y x13,ﬂla:1x3[I1iU4 + x147#[$1x3[a‘1:{:4
m 0y ,AX1234 = 5 o 5 — log T
T2 =11 € 8w T13T74 4
v 2 v 2
_ Tigu€ €uloyas 13 4, | Tigue€ (0 S P
2¢2 2¢2 ’
2,.2 2
. x34,ujx1x3lz1x4lx3x4 €" T3y x13,#[z11311124
lim 05,Xi934 = — + ([ 1—log 5 ,
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As before, one can take further limits of these expressions when needed. The second

derivatives read

lim 0, ,ﬁz v Y123

T2—T1

lim 0, ua:s »Y123

T2—T1

2 2 o
S I£E1£E3 GHGV‘[zlzg 1 T13,p €’ . 167 T13,p prlg’UG [x1x3

et 42 €2 ( 6 €2 3e2 )
2 2 2 3

E_Vx13>l~"[-’51373 _ 6_Mx13:1"[21x3 + 8 x13p6 ]xll'g (23:13 €, — T13.4€ )

2 2 2 W M=V
€ 2 € 2 3€

P 2 P o

l (slu,z/]—xlx-g, _ 5 12 ( E + $13,p€ . 8w x13,p € xlgyo- € lezg )

62 82 182 36 262 3e2

62 ot 2 62 5
E log :L'13 I1LE35MV + — 9 1— 610g ;E_%3 I13,M‘T13,V]z1;53 s

2 2

€en 1 € €

MU=V 123 12 2 2 3

S T o + —.1313 Vlmlmg — 27 1-2 IOg 5 x137Hx137l,Ix1m3
€ 2 €2 13

1 62 87T2ZL'137,/€ T13.p € lea:
- (1 —log (—2>) 12 20 — Lt ) (A.4)

=~
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2 72 2 o
li N Oy X _ €u Cv Izlwslmu € EVI:D11‘3I$1$4 1 327 T13,p €’ X140 €
m 0,0z, X1234 = ——— 5+ 5 ( - 3 )
Ta—T1 € 41 6¢ Loy, €

Pl I

€,€,€

n v T1X3-T1T4 [ ]

64 (I14,p T1T4 T13.p xlxg)

2 o
B 167 €u €y €’ e [xlxg [x1x4 ]2 ]2
(x14,px14,0' T1T4 + x131px1310— -'ElmB)

3et
€, 0 0.1
HEX1XT37T1T9
- 262 (x14,1/[x1:1:4 + xl?),ujzmmg)
EI/[$1x3[CC1$4
+ 2¢2 (x147MIw1z4 + x13aulf€1z3)
8m2e, €1, .1
1% T1X3-T1T4 2
+ 3¢ (2214, 14, I3y T 7130 14w Loyas Lyiy)
Sm2e, eI, .. 1
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Using the above results, we can proceed to the computation of the two- and three-point
functions. The result of all the non-zero Feynman diagrams relevant for us is given in figure
A.1, where we have omitted terms involving €*#* that must either vanish when a pair of
point collide or cancel when all the diagrams are summed. This is the case in order to
preserve conformal invariance and parity.

The results of figure A.1 only contain derivatives of the function His 34 and it is possible
to evaluate them explicitly [120]. Consider the case when the derivatives act on either the
first or the second pair of points of H, namely 0, - 0,H12 34, and also the case when they act
on a point belonging to the first pair and a point belonging to the second pair, for instance
O1 - 04H12.34. The first case is straightforward to compute by using integration by parts and
the property of the euclidean propagator O, /,, = —0 @(z —y). The result is

1
01 - OaH 1934 = B (Yisalp zo + Yosaly 2o — Xi234) - (A.5)

For computing the second case, we need the function Fjs34 defined in (A.1) and some
identities of Hi934. Firstly, note that H satisfies the equation

(Orpp+ 0oy + 03y + 0up) Hinga =0, (A.6)

which can be proved by integration by parts. Similarly, it is possible to show that the
following identity holds

(O +0,—0;, —0;) Hioga + Ok - O H12.34 (A7)

DN —

0; - 0;Hy234 =
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for i # j # k # I. In order to get 0y - 04Hia 34, it is convenient to write it as

1 1
O1 - O4Hi934 = B (O1- 03+ 01+ Os) Higza — B (0103 — 01+ 04) Hiza - (A.8)

Now using (A.7), one can show that the first term on the right-hand side of (A.8) can be
written as

1 1
5 (Or - 03+ 01 - 04) Hinga = D) (01H1234 + 01 - O2H1334) (A.9)

where 0;H12 34 can be computed using the equation defining the euclidean propagator and
0y - 02 Hi234 is known from (A.5). Using (A.6), the second term on the right-hand side of
(A.8) can be written as

% (O1-05 — 01 - Os) Higga = i (Fiagalp 00 lpge, + (04 — O3)Hi234) (A.10)
Finally, substituting (A.9) and (A.10) in (A.8), one gets an expression for 0y - 04Hi234.
The expressions for the remaining cases where the derivatives act on other points can be
deduced analogously.

In order to get the two-point functions, one takes the limit where two pairs of points
collapse into each other that is x4 — x; and x3 — x5. The result of these limits gives the
Hamiltonian (1.12) mentioned in the introduction of this thesis.

We now proceed to the three-point functions. In order to obtain the constant coming
from each diagram, one takes the limit of the expressions given in figure A.1 where a
single pair of points collapses into each other. After taking that limit, the result will
have constant terms, divergent logarithmic terms and eventually Y functions and their
derivatives. The derivatives of the Y functions can be expressed in terms of the Y function
itself by using some of its properties. This will be explained in detail in the Appendix
A.3. After this procedure, the logarithmic terms will contribute to the standard regulator
dependence in (2.33) and the remaining Y functions will cancel with similar contributions
from other diagrams in a way that the conformal invariance is restored. One can then
read the constant part of the diagram. The final step is to subtract one half the constant
coming from the same diagram but when the two pairs of points collapse into each other
as described in figure 2.3. The results are given in figure 2.4.

Let us comment now on a detail of this computation. Our final results presented in the
figures 2.4 and A.1 do not contain the Feynman diagrams of figure A.3. This is the case
because the first two graphs of this figure turn out to cancel among them. They can give a
non-zero contribution in our setup only when either b = c =4 and a = 3 or a = ¢ = 2 and
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b = 3. However, as these two graphs always appear with the same weight and opposite
signs, they end up canceling. The last graph of the figure A.3 must vanish when |z15] — 0
because it is

x 6766760u UEMU%M E16/d4vd4 w (O Ly 0) (O Loyo) Lou (0] L) (ON L) — 0.

If it was non-vanishing it would produce a term with a different tensor structure of (2.33)
which would violate conformal invariance.

A.3 Some examples of three-point functions

We now give two examples of three-point functions. The first one is the case of three half-
BPS operators. It is well-known that this correlator is protected and therefore it constitutes
a check for our computations. Then we compute a non-protected three-point function both
by brute force and by using our prescription of inserting the operator F at the splitting
points.

A.3.1 Three half-BPS operators

Consider the following three half-BPS operators

0, = (ZZ) (A.11)
O3 = (r24r 5) - Tr (OZ) =Tr (VZ) + Tr (¢* ') . (A.13)

At tree-level the result is simply given by the sum of the two diagrams of figure A.4 and
reads 5 ]
= ("), -
(2m)08223,215 (71103, 213,
At one-loop, one has to sum the diagrams of figure A.5 and use the results given in figure
A.1 taking the appropriate limits. Some diagrams will still contain the function Y and
its first derivatives. The Y function depends on the external points in a way that does
not respect the spacetime dependence fixed by conformal symmetry, see equation (2.33).
However, when one sums the different diagrams this non-conformal spacetime dependence
turns out to cancel identically.

At the end of the day, summing all the diagrams gives a vanishing one-loop contribution

(O1(21)O3(22)O3(x3)) = (A.14)
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to the structure constant in agreement with the non-renormalization theorem for the three-
points functions of half-BPS operators introduced in [56]. Equivalently, one can also use our
prescription to reproduce this one-loop result. One simply has to sum over the insertions
represented in figure A.6 obtaining zero as expected.

A.3.2 Two non-BPS and one half-BPS operators

We consider now a non-protected three-point function. This example serves as an illus-
tration of some of the technical details of the brute force computation. Moreover, we also
use it to check our prescription of the F operator insertion at the splitting points. The
operators at one-loop level that we will consider are

O, = Tr(Z\I/\I/Z) : (A.15)
O, = (prw) : (A.16)
Os = (r’yr'y) -Tr(VZ) =Tr (VZ) + Tr (¢* ") . (A.17)

Note that the O; and O, are not half-BPS and therefore they will receive corrections as
explained in section 2.2.1. However, to compute the Feynman diagrams contribution we
do not need to take them into account. At tree-level the result is simply the sum of the
two diagrams of figure A.7 which gives

<Ol (x1)02($2)03($3)>0 = - (271’)10822.1'%337%2

1 y 1 1
X <(01‘§)1131,u%) ((UE)1181W@> <(‘71’§>11‘937pﬁ§3> :

The diagrams contributing at one-loop are represented in figure A 8.

As in the previous example, the dependence of each diagram on the Y function and its
derivatives will cancel when we sum over all the diagrams. This ensures that we obtain
a conformal invariant result. However, this cancellation is not immediate and it relies on
several properties of the Y function. The first observation is that the function Y is given
by
m¢(r, s)

leQ?) = W]xl,xy

(A.18)

2 2
where r = % and s = % and an explicit expression for ¢(r,s) can be found in [119].
13 13
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The important information for us is that the function ¢ satisfies the following differential
equations [36]

o(r,s) + (s + 1 —1)0sp(r, s) + 2r0,.¢(r, s) = _1057’ , (A.19)
o(r,s) + (s+r—1)0,.0(r, s) + 2505p(r, s) = —lofs ,

which can be used to relate the first derivatives of Y with Y itself. In addition, one can
take derivatives with respect to r and s of both the equations above to arrive at a system
of equations that relates second derivatives of ¢ with first derivatives and the function ¢
itself. Using then (A.18), it is trivial to get rid of the second derivatives of Y. These
properties of the function ¢ ensure that the non-conformal dependence of the three-point
function indeed cancel when all diagrams are summed over.

The final result is given by

T12

(O1(21)Oa(29) Os(z3)) = (010,05), (1 + 44? (—1 + 2log (é» + O(g4)>

which comparing with (2.33) gives the correct anomalous dimensions of the operators. This
is a non-trivial consistency check of our computation.

The structure constant can now be obtained by also computing the constants from the
two-point functions. We have all the tools at hand to perform such calculation and read
the one-loop constant. We obtain the following contribution from the Feynman diagrams
to the structure constant

3
) =3 (A.20)

Feynman diagrams contribution

Recall that this is not the final result, one also has to add the extra contribution from the
corrected two-loop Bethe states.

Finally, it is possible to test our prescription of inserting the F operator at the splitting
points, see figure A.9. Summing over all these insertions gives precisely the contribution
(A.20) to the structure constant.

A.4 Wilson line contribution

As mentioned before, the point splitting regularization breaks explicitly the gauge invari-
ance due to the fact that some fields inside the trace are now at a slightly different spacetime
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points. The introduction of a Wilson line connecting these fields restore the gauge invari-
ance at the price of introducing extra Feynman diagrams. In this Appendix, we show
that these extra diagrams do not contribute to the scheme and normalization independent
structure constant C’g% defined in (2.33).

A.4.1 Wilson line connecting two scalars

In our conventions the Wilson line operator is defined by
W, =Pexp {igYM/Audf“] )

When inserting a Wilson line connecting two scalars, it is necessary to consider the one-
loop graphs corresponding to the gluon emission depicted in figure A.10(a). Let us define
e' = zff — zf and at the end of the day we will take the limit ¢ — 0. Then we can
conveniently parametrize the Wilson line by x#(z) = x§ 4 ze*. The result of the sum of
the diagrams is

A

figure A.10(a) = bh

1
/ dZ Eu (Irgxg ait Y71x4 - Ix1x4 85 Yv2x3 + Ix1x4 a:})f }/2503 - [:chg azlf leac4) 5
0

(A.21)
where we have suppressed both the R-charge and the gauge indices which are the same as
in the tree-level case. From the formula (A.3), it follows that the first and second terms
of the above result are of order € and therefore vanish in the limit ¢ — 0. However, from
(A.2) we see that the third and last term give a finite contribution.

In order to compute the scheme and normalization structure constant C’S% of (2.33),
we have to subtract from the previous result one half of the one-loop diagrams from the
two-point functions as shown in figure A.11 (we take both the limits 24 — x5 and x5 — x1).
It is simple to show that the contribution of these diagrams cancels exactly the constant
coming from the expression (A.21). So, at this order in perturbation theory we do not get

any further contribution to C’S; and therefore we can safely ignore the Wilson lines.
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A.4.2 Wilson line connecting either a scalar and a fermion or
two fermions

In the case of a scalar and a fermion connected by a Wilson line, the contribution of the
diagrams depicted in A.10(b) is given by

/\ 1
figure A.10(b) = = / dz e [Im(amia‘* cOYips — 041000 Y 10y — 0% 010N Y104

0 E1i%v~p E1i%uYv

s 0%y OO Yi0a) + 0% 1Oy, (07 Vars — 02 Vags) ] . (A.22)

Using the expressions (A.2-A.4), one can easily see that this gives a finite contribution
in the limit when e goes to zero (in particular, the term with €,,,, vanishes). To this
result, we have again to subtract one half of the one-loop diagrams from the two-point
functions as was done in the previous subsection for the case of two scalars. Once again,
the contribution of these diagrams cancels exactly the expression (A.22).

In the case when we have a Wilson line connecting two fermions, the same argument
holds. Hence at one-loop level, we can ignore the Wilson lines contributions in all cases.
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Figure A.1: The results of the Feynman diagrams computation omitting both terms that
must vanish or cancel when summing all the diagrams (see text) and factors of N. The
solid, wiggly and dashed lines represent the scalars, gluons and fermions, respectively. The
d was defined in Appendix A.
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Figure A.2: The results of the Feynman diagrams for the two-point functions. They are
obtained by taking the limits x3 — x5 and x4 — 2 of the expressions in figure A.1.

¢S (a1) Daialz2) I (1) Yaeial®2) Pacialzr) Vg_io(2)
O\O o O\ 0 e} o
1 . 1 o
! o G o : o< G o =0
' 1
O/ o 5 \j 5 .
Pap(3) Va=1(4) < (x3) Dap(4) Yoy (x3) V=1 (24)

Figure A.3: The additional Feynman diagrams that do not contribute in the setup consid-
ered in this work. The solid and dashed lines represent the scalars and fermions, respec-
tively.
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Figure A.4: The tree-level diagrams for the three-point functions of the three half-BPS
operators considered in (A.11)-(A.13). Note that only the first term of Oz in (A.13) gives a
non-zero contribution at this order in perturbation theory as the second term clearly gives
a vanishing contribution due to R-charge conservation.
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Figure A.5: The one-loop diagrams contributing to the three-point function of the three
half-BPS operators considered in (A.11)-(A.13). In the last four diagrams of the second
row, the second term of O3 (see expression (A.13)) gives a non-zero result. In all other
diagrams only the first term of O3 contributes.
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Figure A.6: Inserting the F operator at the splitting points, one reproduces the vanishing
result expected for a three-point function of half-BPS operators. Apart from the graphics in
the figure, there are similar graphics with the operator F acting in the remaining splitting
points.

Figure A.7: The tree-level diagrams contributing to the three-point function of the opera-
tors (A.15)-(A.17). Once again, we only need to consider the first term of (A.17) at this
order in perturbation theory.
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Figure A.8: The relevant one-loop diagrams for the three-point function of the operators
(A.15)-(A.17). The second term of (A.17) gives a non-zero contribution namely the first
four diagrams of the third row.



Figure A.9: Inserting the operator F at the splitting points reproduce the result of the
one-loop Feynman diagrams.
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Figure A.10: The one-loop additional graphs coming from the Wilson line.
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Figure A.11: The Wilson line contributions to the two-point functions. In the combination
of the two- and the three-point diagrams that provide the scheme independent structure
constant (2.33), all the extra diagrams coming from the Wilson lines cancel each other at
this order in perturbation theory. In the figure, the diagram corresponding to the emission
of a gluon between the two Wilson lines is not depicted, since it is proportional to €2 and
vanishes in the limit ¢ — 0.
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Appendix B

The linear problem

B.1 Summary of the linear problem

The linear problem associated with (3.10) is given by

@+ ) =0, (0+ o) =0 (B.1)
where the connection has the form
1
Jw - Eq)w + Aun Jw — éq)@ + qu] (B2)
0 7%67,
b = (_%Tﬁ 0 ) (B:3)
0 —L1pe=7
b, = (_%ei 7 ) (B.4)
5 o
Ay = 8w(0 _%a) (B.5)
_ g, (H 0
Ay = am( : %AV,) (B.6)

For compactness we have introduced the combination 5 = 1/2(y+1log VTT ). The function
v is defined as the solution of the following problem

00y = TTsinhy
1 _
0% :l:§ logTT (w — z,) (B.7)

N
vo—

0 (w — w,)
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where z, and w, are the zeros and the poles of T', respectively.
For the near-puncture analysis as well as the WKB analysis it is useful to make the
field redefinition ¢ — b = G where

N 1 —y _
G — 5 <+e /21 /4p—1/4 1) (BS)

_e—/271/Ap—1/4 ¢

This is usually refered to as ‘diagonal gauge’ in the literature. In diagonal gauge we have

- 1

¢, = 5\/T(_01(1)) (B.9)
x 1 7 ( —cos sin

(I)w = §ﬁ ( —sinl}ifz cos{ll?y) (BlO)

i 37— log(TT) -3

Aw = Oy <4 8—%7 %v—élig(TT)> (B.11)
2 . 1yt Llog(TT) 0

Ao = o ( 0 0 %'y—&—%log(TT)) (B.12)

We are now ready to consider the behavior of the solutions near the points w, and z,.

B.2 Solutions near w,

Let us first consider the solutions of the linear problem in the neighborhood of one of the
punctures. From (B.7) and the explicit expressions for ® and A for w — w, we have

@wﬁ%ﬁ(—olfl), by VT (3 0) (B.13)

A 1 _ . 1 -
A, = 0, (_g logTT) ($19),  Ap— (g logTT) (+19) (B.14)
Then the solution in the vicinity of puncture P, is given by:
&i (w) = (T/T)I/B ei%fw€—1w+gw‘i> ~ (w . wa):tiAag—lfi (’LTJ . wa):tiﬁa£+i H:> (B15)

where |+) are the eigenvectors of the Pauli matrix 0. Note the characteristic monodromy
of the solutions about w,.
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B.3 Solutions near z,

Now we will consider the behavior of the solutions near the zeros z, of T'. Notice from (BB.3)
- (B.6) and (B.7) that the connection is regular or singular at z, depending on the direction
of the spike in v at z,. More specifically, the connection is regular if v ~ —log |w — z,| and
thus the solution will be regular in the vicinity of a d-spike. However, the connection has
a singularity if v ~ +log |w — z,| and at the u-spikes one can check that in gauge (B.3) -
(B.6) there are two linearly independent solutions behaving as

_ W—2Zq —1/4 W—2Zq, +1/4 0
U, = << Moz (WZE)M(W%)_M) (B.16)
where we have written the two solutions in matrix form as in (3.71). Notice that ¥ has
square-root type singularity at z, since it has a monodromy of ¥ — (—1) ¥ about z,. The
solutions associated with the punctures {sp} and {5p} inherit this square-root singularity
as one can see by expanding them in the basis (B.16) near z,.

In our analysis it is crucial to account for the additional monodromies originating
from u-spikes. Let us explain our conventions for doing this. If there is a u-spike at z,,
one can always make the gauge-transformation ¥ — \Ilz_alllf that removes the square root
singularity (W, is given in (B.16)). Of course this gauge transformation contains the same
multivaluedness and one must still account for it at the end of the day. In the main text
we use the point of view that this gauge transformation has been performed for each u-
spike. The connection in this gauge will only have singularities at the punctures and the
solutions in this gauge will only have non-trivial monodromies around the punctures. In
this way we can define small solutions that are single valued throughout some Qg, as is
the prescription of [58]. We must then be sure to account for the multivaluedness of these
gauge transformations whenever we have a holonomy that encloses an odd number of u-
spikes. Such holonomies arise in the WKB expansion of the coordinates and we will return
to this issue below.

B.4 WKB analysis

B.4.1 Statement of the WKB approximation
As we have discussed above, it is essential to have control over the & — 0, 0o asymptotics

of the inner products. It is clear from (5.1 — B.2) that these are both singular limits, and
the basic idea of extracting this singularity is as follows. As discussed above, we have good
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control over the solutions in the neighborhood of the punctures. Thus what we would like
to study is the transport

1 = /
Pexp [— /C(w;—m) ECD + A+ f@} W (w)) (B.17)

where C (w], — w) is a curve starting at w/,, a point in the neighborhood of w,, and termi-
nating at a generic point w. Note that at any point on the punctured sphere C' the Higgs
field ® has the two eigenvalues Fw/2 = F+/T /2 dw (which are single valued on the double

cover i]), and thus we can choose a gauge along C where ® is diagonal and given by

1 /—w 0

o= (70 o9
Now consider the & — 0 limit. First consider an infinitesimal segment of C in the neigh-
borhood of P,. In the neighborhood of P, the connection (in diagonal gauge) becomes
diagonal (see (B.13)-(B.14)) and thus one can break apart the path-ordered exponential.
In particular, one can isolate the singular part e~/ ®/¢|4) which will have one component
growing exponentially and one component decaying. Let us choose the branch of ® such
that the |[+) component is the one that is growing as we transport along C away from P,
(although for the moment we are still working in a neighborhood of P,). This will cor-
respond to the small solution at P, since it is exponentially decaying as it is transported
toward from P,. The WKB approximation is the statement that the exponentially growing
part of the solution as & — 0 will continue to be given by e~/ ®/¢|+) as we transport away
from the neighborhood of P, (now leaving the neighborhood of P,) as long as we follow a
curve such that at every point we have

Re (w/§) >0 (B.19)
This condition is satisfied most strongly along a curve such that
Im(w/€) =0 (B.20)

Condition (5.19) is called the WKB condition and curves satisfying (/3.20) are called WKB
curves [58]. Along a WKB curve defined for Arg(£) = 6 the WKB condition is satisfied
for Arg (¢) € (0 — /2,0 + w/2) and the WKB approximation is guaranteed to hold in this
range. For example, suppose there is a WKB line connecting P, to P, for 6 € (6_,0,)
but not outside that range. Then the WKB approximation will reliably give the & — 0, 0o
asymptotic for § € (0_ — 7/2,0, 4+ 7/2). These statements are proven in [58] and we refer
the reader there for a more detailed discussion.
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B.4.2 Subleading WKB

We will now consider the & — 0 limit of the inner products (or Wronskians) (s, A s4) (§).
We consider the case when P, and P, are connected by a WKB line which will be an
edge E, in the WKB triangulation. From the analysis of B.2 we know s, and s; in the
neighborhood of P, and P, respectively. In order to evaluate the Wronskian we need to
know the solutions at a common point. The approach here is to use the connection to
transport the solution s, along E,, to a point w; in the neighborhood of P, and then to
evaluate the Wronskian at wj. That is, we want to study the & — 0 behavior of

T
(sp|Pexp {— / dt EHO + V]|Sa> (B.21)
0
where we defined
Hy = id,, V =1wA,+w0d;+ od, (B.22)

The contour of integration in (B.21) is the edge E,, and the components of (B.22) are
defined in appendix B. The basic idea of the computation is to expand in a perturbative
series where £ 71 Hj acts as the free Hamiltonian. Such a procedure will be valid so long as
the free part of the Hamiltonian is sufficiently larger than V' for all points along the curve,
which will be true along the edges of the WKB triangulation. Then we can expand (/53.21)
in the Born series

1 1 tq
(= 1)y Of <<+Ie‘f° Ho/f) 1) — / dty (e~ To/8y (1)) e o' Ho/E| 4 (B.23)
0

1 to ty . "
+ /dtZ/ dty (+]e~ /i HO/EV(tQ)e—ftfHo/fv(tl)effo H0/€‘+>>
0 0

Let us explain a subtle point regarding the ‘external states’ in the above expression. We
start with the small solution at P, which we take to be ;. We then transport it to P,
and then extract the coefficient of the exponentially growing part — that is, we take the
inner product with the small part of this transported solution. Since ¥} ~ |+) grows as
we transport it along a WKB curve (i.e. it decays as one follows the curve into P, and thus
grows as we transport it away from P,) and Hj is diagonal, we infer that the small part
of the solution at P, is the solution proportional to |—). Thus we take the out-state to be
(—|v, . Finally, since the inner product is antisymmetric the (—| gets flipped to a (+].
Using the fact that |+) are eigenstates of the free Hamiltonian we can easily evaluate
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the order O(V°) and O(V?') terms in (B.23). For the O(V?) term, we insert the identity
|[+){(+| + |—){—]| between the two insertions of V. We find

(~1d5ds et fow/ﬁ( - [aneveor « 5 [ [Canciveom] + @2

/0 dt, / 2dtle—fffw/f<+|v<t2>|—><—|v<t1>|+>)

Now concentrate on the second term on the O (V?) contribution. As & — 0 the factor
exp (— ttf w/ f) will suppress the integrand except for the small range ty = t; + O(&) and

thus the result of the first integration will already be O(§). So to order £ we can take
w to be constant and V(t;) — V(t3). We then find for the second term in the O(V?)
contribution

et Iy le /0 s 'Z}%‘” (B.25)

Putting everything together, we see that the result re-exponentiates and we find

(—1)d o exp[ £/ AT — /dt V()4 +5/ dtﬂv—\/_lﬂ] (B.26)

Grouping each term based on its order in £ (including the prefactors 7;17_ 1%“ whose explicit
expression are given in (B.15)) we find

1 1
(86 A sa) (§) ~ exp {g&‘lwab + Qap + €Ty + 5%} (B.27)
where
. . Aa / Ab /
We = lim  lim VTdw + =2log(w, — w,) + = log(wy, — wy)| (B.28)
W) —Wq wé%wb Ep 2 2

Qgp = — /Eab (101,] <7a— log \/ﬁ) dw + leﬁw (7 + log \/ﬁ) dw) (B.29)

4

Nabp = /Eab <%ﬁ(cosh7 —1) dw+ ﬁ (87)° dw) (B.30)

This completes the derivation of formula (3.26) used in the main text. The integral w,g,
is defined as in (3.58). Note that the logarithmic terms in wg, in (B.27) are due to the
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prefactor zﬂb_ zﬁj These terms precisely cancel the singularities at the endpoints of the

integral fabw so that w,, is finite as we continue the limits of integration all the way up
the to punctures at w, and w, [46].

B.4.3 WKB expansion of the coordinates

In the previous section we derived the £ — 0 WKB expansion of (s, A s3) up to order O(§).
To compute the WKB expansion of the coordinate xg we simply combine the expansions
for each edge of the quadrilateral ), taking care to account for the directions of the WKB
lines as discussed in section 3.3.6. When this is done each of the integrals (B.28) - (13.30)
become closed integrals along the cycle vg. The asymptotics of the y-functions are needed
for the inversion of the y-system described in section 3.3.9. For that purpose only the
non-vanishing contributions are needed in the £ — 0, oo limits.

There is one very important subtlety that must be addressed here, which is that of the
monodromy around u-spikes discussed in appendix B.3. We take the point of view that we
have made the (multi-valued) gauge-transformation (B.16) that removes the monodromy
about each u-spike. The small solutions in this gauge are single valued throughout Qg,
but we must account for the monodromy of the gauge transformation about QQr. This
monodromy is simply (—1)“2 where ug is the number of u-spikes in Qg.

Combining the above discussion with (13.29), the constant term in the WKB expansion
of xg is given by

OO = log(~1)"F — }1/ (dfy+*dlog \/_) log(—1)"# + ix (B.31)
VE
To arrive at the last equality (B.31) we have used the fact that 7 is single-valued on the
4-punctured sphere so that the integral of dy on any closed contour is zero. The integral
of xdlog VTT is simple to do explicitly and gives the &im factor.!

The discussion of the & — oo limit follows along the same lines as the & — 0 limit.
The singular term is given by ¢ 5 ®/2 The constant term is the same. Thus the full
non-vanishing WKB asymptotic is given by

Xe ~ (—1)“F exp B /WE (lw+ gw)} (B.32)

!The + depends on the orientation of g but both signs have the same overall effect so that the % is
irrelevant.
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where we recall that ug is the number of u-spikes enclosed in vg. This is the expression
(3.40) used in the main text.
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Appendix C

Fold lines and Properties of v

In this appendix we discuss some properties of the function v and how they are related to
geometric features of the string embedding. In appendix C.1 we show that the world-sheet
contours where 7 = 0 map to the fold-lines of the target space solution; in appendix C.2 we
discuss how the geometry of the string embedding near the boundary is deduced from the
structure of these v = 0 contours near the points w,; finally, in section C.2.1 we show how
the global structure of the v = 0 contours is deduced from the choice of spikes in v. The
point of this appendix is to give the background details that were omitted in the discussion
of section 3.2.3.

C.1 Fold lines

In this section we show that the contours on the worldsheet where v = 0 map to the fold
lines of the string embedding. This was pointed out in [46]. Recall the relation between =
and the world-sheet metric

VTT coshy = M (C.1)
Furthermore, we have
0x)* + (92)* _ oz)% + (92)°
ST e 2 P U G2 )

Now, suppose that C is a curve on the worldsheet that maps to a fold-line of the string
and consider a point P in that curve. We can choose local coordinates at P so that
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the derivative takes the form 9, — €*® (O +10,,) where the direction 0, is chosen such
that 9,2 = 0. The prefactor ¢ is the Jacobian of the coordinate transformation (just
a translation and rotation). The defining property of the fold-line is then that the z-
coordinate reaches an local extrema and thus we also have d,x = 0 as we cross the fold.
Therefore along the fold-line we have (with 0,z = @)

.2 )
e’m’x +z

2 52 2| 52
VTT coshy — vtz , T(w) — em’u, T(w) — 5
z

22 22

(C.3)

Using the last two equations to solve for VTT we see that they are consistent with the
first equation only if v = 0. Therefore, the worldsheet contours where v = 0 map to the
fold-lines of the string-embedding. For this reason, we frequently refer to the contours
where v = 0 as fold-lines.

C.2 Structure of v near w,

To gain some intuition about the structure of the contours where v = 0 it is useful to study
the behavior of 7 near the points w,. Recall that « is defined as the solution to the PDE:

00y =\ TT sinh~y (C.4)

subject to the boundary conditions

v o= :I:%logTT (w— z4) (C.5)
v — 0 (w— F,) (C.6)

The boundary condition (C'.6) simply imposes that v is non-singular at the singularities of
T and this condition is automatically imposed if we demand the solution be regular away
from the zeros of T'.

Since we know that v must vanish at singularities of T, it’s natural to study the function
in the neighborhood of these points. Let us consider some P, and use polar coordinates
(r,¢) in which the origin is at w,. Since 7 is vanishing, we can linearize the RHS of (C'4).
Further, we can take VTT ~ |A[%/(4r2). The PDE becomes linear and separable and
using standard techniques one finds the series solution

Y~ go 28+ D g sin (me + 6,,) VAT (C.7)

m=1
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4<>9
A A’ B

Figure C.1: Single-folded and double-folded string in panels A and B respectively.

Now consider a small circle centered at » = 0. As r — 0 the series (C'.7) is dominated
by the lowest mode in the expansion. Thus along an infinitesimal circle centered at r = 0
the series (C'.7) will vanish 2m* times, where g,,~ is the smallest non-zero coefficient g,,,
m = 0,1,2,... in the series. Thus, if gy is the smallest non-zero coefficient then the series
will vanish only at the point w, which will be a local extrema. If m* = 1 then the series
will vanish along a single curve passing through P,; if m* = 2 then ~ will vanish along two
curves that intersect at P,, and so on.

The fact that the contours where v = 0 map to fold-lines of the target-space solution
gives a clear geometric meaning to each possible behavior m* = 1,2, ... near an insertion
point. For m* = 1 we will cross two fold-lines as the world-sheet coordinate traverses
a small loop around the point w,. This means that near the insertion point the string
is single-folded as shown in figure C.1A. For m* = 2 we will cross two fold-lines as the
world-sheet coordinate traverses a small loop around the point w,. This means that near
the insertion point the string is double-folded as shown in figure C.1B, for example. In
general for n > 0 the case m* = n should correspond to an n-folded string. The only subtle
case seems to be m* = 0. Apparently if m* = 0, as we traverse a closed loop around w,
the contour swept out in the target space does not close since there is no point at which
the coordinates (z, z) can ‘turn around’. In this section we are only interested in solutions
that are closed (i.e. the embedding coordinates have trivial monodromies around operator
the insertion points z,) and thus we will only study cases for which m* > 0 at all w,. This
is further discussed in appendix C.2.1.

It is important to keep in mind that (as we mentioned above) the behavior of v at P, is
not our choice, and is determined by regularity and the conditions (C.5). In other words,
for fixed T' the only remaining conditions one can specify are the choice of signs in (C'.5).
For each choice of signs there will be a unique m* for each P,. In the next section we
demonstrate how this works using the T" of the 4-point function discussed in the main text.
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C.2.1 Structure of contours where v =0

In this section we describe why the spike configurations of figure 3.4 are the only two
physically relevant configurations. Furthermore, we deduce the structure of the contours
where v = 0 for each of these spike configurations.

Consider T fixed to be that of the 4-point function discussed in the main text (see
equation (3.60) and figure 3.15). There are 4 zeros and therefore 24 ways to choose the
signs in (C.5). Because of the symmetry of (C'.4) under v — —~, without loss of generality
we can fix one of the spikes to be up which leaves 22 choices. Now, because the string is
embedded in AdSy; we know that it must be folded. Moreover we know that the operator
insertions z, will sit along the fold-lines of the target-space solution. In the world-sheet
coordinates this translates to the statement that we should require m* > 0 at each w,.
That is, there should be at least one contour where v = 0 running through each insertion
point w,. For the 4-point function T (see equation (3.60) and figure 3.15) the only obvious
way to accomplish this in general is to choose the spikes such that v — —~ under reflection
about the real axis. This leaves only the spike configurations of figure C.2A,B, which are
those of figure 3.4 used in the main text. We will now discuss the global structure of the
~v = 0 contours for these two choices of spikes.

In figure C.2 we show the fold-structure for three different spike configurations. The
black lines schematically represent the contours where v = 0 and one can read off the
m* associated with each puncture. The structure of these contours is determined purely
by the choice of the directions of the spikes of 7. We refer to these contours as ‘fold
lines’ since they map onto the fold-lines of the target-space embedding (see appendix C.1).
We guess the structure of the fold lines for each choice of the spikes as follows: u spikes
must be separated from d spikes by at least one fold line; we use the minimum number
of fold lines needed to accomplish this for all spikes. Note that fold lines must encircle
at least one zero of T.' This restriction is useful because, for example, it allows one to
rule-out the possibility of fold-lines corresponding to the gray contours in figure C.2C. This
is important because if it was possible for the gray contours to be fold-lines then it might

! Consider a closed contour along which v = 0 and suppose (for a contradiction) that it does not enclose
any zeros of T'. Let D be the region enclosed by the contour. This contour must separate positive values
from negative values (i.e. it cannot sit at the bottom of a ‘valley’ since this locally violates the equation
(C.4)). Suppose for simplicity that v < 0 in D. Since v is regular away from the zeros of T', there must be
at least one local minimum inside D, and therefore at least one point where (85 + 83) v > 0. Thus at such
a point the LHS of (C'.4) is positive or zero, but the RHS is strictly less than zero by assumption, which
is the desired contradiction.
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m* =1 m* =1 m* =1 m* =1

u
C .
mA=0 m™ m* =1
u

Figure C.2: Three different spike configurations and the corresponding structure of the
~v = 0 contours. The black lines schematically represent the contours where v = 0 and one
can read off the m* associated with each puncture. Panels A and B show the physically
relevant configurations studied in the main text. Panel C' shows a third spike configuration
which is not physical due to the presence of m* = 0 behavior at two of the insertion points.
The gray contours in panel C' indicate contours that cannot cannot correspond to fold-lines
due to the restriction that v = 0 contours must encircle at least one zero of T' (see footnote
1). In this figure we are not indicating the location point wj because it is not relevant for
the present discussion (so long as it is located somewhere on the real axis).

be possible to have a solutions with all m* > 0 for configuration C'. Configurations A
and B are the physical configurations that we study in this chapter and we have checked
the fold structures of figure C.2A,B numerically. Configuration C' is an example of a
spike-configuration that does not correspond to a target-space solution with the desired
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properties; the corresponding fold structure is only our best guess but we have not checked
it numerically.

To summarize this appendix, in appendix C.1 we showed that the world-sheet contours
where v = 0 map to the fold-lines of the target space solution; in appendix C.2 we discussed
how the geometry of the string embedding near the boundary is deduced from the structure
of these v = 0 contours near the points w,; finally, in section C.2.1 we discussed how the
global structure of the v = 0 contours is deduced from the choice of spikes in 7. From all
of this one can deduce some qualitative global features of the string embedding, which is
discussed in detail in section 3.2.3.
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Appendix D

Details of the 4-point function
computation

D.1 Explicit expression for stress-energy tensor coef-
ficients

For completeness we present the coefficients ¢, of the stress-energy tensor in formula (3.60),

A%
o = p
o = i [4Uwy + 2wy (14 wa) AF + (=1 + wy) (2wsAT + (1 + wy) (A3 — AF))]
o = % (<20 + (=1 +wa) 2AT = (1 + wy) *Aj]
- % [—4Uws +2 (1 4+ wa) A + (=1 +wa) (=247 + (1+wy) (=45 + AF))[D.1)
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D.2 Explicit expressions for x-functions and Apg

For reference, we include here the explicit expressions for the y-functions for the triangu-
lation of figure 3.15. They are given by

e
= R 03
o D ez
w = D ®3
= O 05
= ®

One can check that these coordinates satisfy the rule (3.37) at each puncture. The y-system
obeyed by these coordinates is given by

-1 (1 —|— Agg) (1 + A14)
++ S _ _
_1 1 1+ A
XlzXE+ = (X14X1+4+) = ><34X§4Jr = (X23X2+3+) = % (D.9)
24
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where the Apg are given by
1 14 vou (1 1
Ay — x12 (1 + x14) (1 + );24 (1+ );23 (1 + x24))) (D.10)
(1 — pi) (1 - M2)
Apy = X2 (14 xs0) (1 + Xos (1+ i (1+ X)) (D.11)
(1 - MQ) (1 - M3)
Ay = X3 (1+x23) (1 + >§24 (1+ >§14 (14 x24))) (D.12)
(1= p3) (1 — p)
1 1 1 1 %
Ay = x14 (1 + x12) (1 + );24( + >§34( + X24))) (D.13)
(1 —p3) (1 — pg)
Xaa (1 + xa2 (1 + xay (1 + X23))) (1 + xa3 (1 + X (1 + Xa1)))
(1 —p3) (1 — p3)
4 Xn (L4 x25 (1 + xoa (1 + x32))) (1 + xa1 (1 + xa2 (1 + X43))) D.15
2 1— 2) (1 — 2 (D.15)
(1 —p3) (1 — p3)
Using the explicit expressions for the coordinates (D.2)-(D.7), schouten identity and the
shift relation (3.43) one can directly verify the functional equations (D.8)-(D.9).

(D.14)

D.3 Finite part of AdS

In this section, we present some intermediate steps in the derivation of our formula (3.66)
for the finite part of the AdS contribution. We want to compute

I —

according to the steps outline in section 3.4.1. The complete basis of five a-cycles and
five b-cycles that we chose is depicted in figure D.1. From this figure we also read-off the
intersection matrix I, = (dat16 — da—1,) using the conventions described in the caption.
The only other ingredient we need is

/nz& i—2. .5 (D.17)

which follows from the regularity of n at the poles of T'. Plugging into (/.16) and computing
we find

5
T . .
Afm = g +1 (wa17723,22 + Wag1—-1,22 =+ Waz Tz, 2o + Way M, 2o + wa57700,22) -1 (Z Wh; | Mz3,24
=1
(D.18)
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Figure D.1: The cycles for Riemann bilinear identity. The dashed line represents a contour
in a different Riemann sheet. The wavy lines represent a choice of branch cuts. From this
picture we also read the intersection matrix I, of the cycles. For each pair of cycles, say
v, and 7, intersecting at a point with tangent vectors d, and 0, respectively, we assign
Iy =+1 (—1) if det [{Du, Op}] > 0(< 0).

where we are using the notation 7,, = fab n and we = fc w and the contours are defined in
figures D.1 and D.2.

Each of these 7, can be written as a linear combination of the ng, = [ 5, 11 Where the
integral is taken along the WKB-line from P, to P, and the direction of the contour is the
same as that of the WKB line. The idea is to combine the ng,, to form the contour that
we want. Let us exemplify with 7 ,,. From the WKB configuration, see figure D.2, we see
that the large 6 expansion of the ratio % involves a cycle that can be continuously
deformed into twice the line integral connecting the puncture at w = 1 and the zero at

w = z9. Therefore we have

1 [ df
M2y = 5/ —e? log

e T

1

- 5 (77E12 T NEy, — 77E24) (D19)

(1+Ap) (1+A4y)
(1+ Az)

In the same way we obtain
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Figure D.2: To extract line integrals connecting a zero to puncture or connecting two
zeros we combine products of elementary solutions that have WKB expansions involving
integrals over the paths indicated by the black lines. The resulting closed contours can be
continuously deformed into the contour that we want, indicated by the green lines. The
precise way of combining these products is dictated by the direction of the WKB lines
indicated by the gray arrows.

M = (1) (D.20)
N1z = % (2734 + M2 — Mg — 7oa) (D.21)

Neyzo = % (M2 — ma — 124) (D.22)
Nooyzo = % (114 — M2 — M24) (D.23)
Neszo = % (112 + 134 — N4 — N23) (D.24)

where the notation is the natural simplification of that used in (D.19). Plugging these
expressions into (1.18) and re-collecting each ng, one finds that the coefficient of ng is
simply wg where wg is the w-cycle the intersects edge E, not the integral of w along
edge F (which would be divergent). That is, it’s (1/2 of) the w-cycle associated with the
coordinate y g which are shown in figure 3.15. Thus we have

71— .
Afin = 3! Z WENE (D.25)

EeT

which is formula (3.66) as desired.

Equation (1.25) is perhaps the simplest possible result one could write from the trian-
gulation data. Given this simplicity, it is probably possible to derive the result in a much
more elegant way and perhaps even for any number of punctures. We have not pursued
this issue but feel that it merits further exploration.
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Appendix E

Three-point function in GMN
language

In this section we apply the method developed in section 3.3 to the three point correlation
function studied in [46]. We use the setup of [46], namely the same stress-energy tensor.
We aim at deriving a set of functional equations to extract the cycles used there.

As a starting point, we introduce the WKB triangulation for this configuration from
which we define the coordinates, see figure .1. From this figure, we easily derive the x-
system. Since the quadrilateral is very degenerate it follows from (3.46) that the right hand
side of the x-system is equal to 1. The reason is that the same auxiliary Apg’s appear both
in numerator and denominator canceling each other. Hence, the solution of the functional
equations is simply given by the WKB asymptotics. More explicitly, the x functions take

the form . .
_ - Hafbe
Xac = (—1) exp (—69/ w+ —e 9/ w) = — E.1
( ) 2 Yac 2 Yac 'ub ( )

where a, b and ¢ are distinct.! The spikes must be in pointing in opposite direction as
follows from the discussion of appendix C. This is the the origin of the (—1) prefactor in
(E.1). The cycles of w are given in terms of the dimensions of the operators,

/ W= in (=D — A+ A) (E.2)

Yac

IThis result also follows directly from the definition of the coordinates in terms of the small solutions,
_ (sc/\sb)(sa/\M(;lsb)
Xae = (M;lsb/\sc)(sb/\s,,,)
monodromy factors in (E.1).

for distinct a,b and ¢; all the inner-products cancel and one is left with only the
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Figure E.1: The WKB triangulation for the 3-point function is composed of 3 edges forming
two triangles on the sphere. Here we show the construction of the coordinate y;3. We are
using the edge-splitting procedure discussed in section 3.3.5 (in particular, see figure 3.12).
The gray contour shows the cycle associated with the coordinate y3.

Having the solutions of the functional equations, we can easily find the auxiliary quantities
Apg using the rules of section 3.3.8. The determination of the n-cycles is also straightfor-
ward. To compare with the result in [46] let us set A; = Ay = A and Ay = A,. We use
expression 3.57 to compute the cycles, and we get

/_11 = /R %ee log(1+ A7) = h(2A — As) + h(2A + Ay) — 2h(2A)  (E.3)

/1 T = /R ?ee log(1+ Az) = h(As) + h(2A + Ar) — h(2A) — h(2AL) (E.A)

where we define &0
h(z) = / — coshflog (1 — e *meh¥) | (E.5)
R v

This is precisely the result obtained in [46]. A last comment about the expression for the
area in the three point function. It is easy to show using the same type of manipulation
of the four point function case that the area can be expressed in terms of elements of the
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WKB triangulation as
7T .
Afm = E —1 E WENE (E6)
EeT

where the sum is over the edges of the triangulation of figure E.1. As in the case of the
four point function, we define 7g,, as the n-cycle that passes along edge E,;, from P, to B,
and wg,, as the w-cycle that intersects edge Fgp.
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Appendix F

Review of twistors and geometry

In this appendix we review some known facts about the geometry of amplitudes and in
particular, pentagons.

F.1 Variables

Scattering Amplitudes and null polygonal Wilson loops are conventionally parametrized by
a plethora of very useful variables. Amongst them, we have momentum twistors Z, spinor
helicity variables A and their parity conjugate A, and dual momentum twistors W. Let us
introduce them in our notation following [104] closely. We shall start by the momentum
twistors Z and construct all other variables from them.

A momentum twistor is a four dimensional projective vector Z; ~ AZ;. It is associated
to each edge of the null polygon, see figure F.1. Momentum twistors allow us to parametrize
the shape of the polygon in an unconstrained way, this being one of their main virtues.
Moreover, they transform linearly under conformal transformations and are therefore very
useful when dealing with a conformal theory such as N'= 4 SYM.

Note the labelling of edges we are using in this chapter is tailored from an OPE analy-
sis and is mot the conventional cyclic labelling commonly used to describing color ordered
partial amplitudes. In particular, in our convention, Z; and Z;;; (or Z;_1) are not neigh-
bours; instead they nicely face each other in the polygon tessellation, see figure F.1. The
trivial conversion between our labelling and a more conventional numbering of the edges
is presented in the caption of figure F.1.
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P(4ly)

Figure F.1: a) The pentagon transitions are the building blocks of null polygonal Wilson
loops. They represent the transition ) — ¢’ undergone by the flux-tube state as we move
from one square to the next in the OPE decomposition. This breaking into squares is
univocally defined by specifying the middle (or inner dashed) edge of the pentagon to be
Ziadle X (j —2,7,7+2,) —1)Zjs1 — (j —2,5,7 + 2,5+ 1)Z;_1. b) In the OPE-friendly
labelling of edges, adopted in this chapter, the middle edge of the j-th pentagon ends on
the j-th edge. As a result, the very bottom edge is edge —1 while the very top one is edge
n — 2. The map between the OPE index j and the more common cyclic index jey. reads

Jeye = 3 — 2(—=1)7(2j + 3) mod n.

Out of four momentum twistors we can build conformal invariant angle brackets

(ijkl) = €aweaZ{ 22527 o (ijkl) = ZiNZ; NZy N2y (F.1)

We construct spinor helicity variables A by extracting the first two components of each
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four dimensional momentum twistors'

/(1000
V= (1000 w3

With these spinor helicity variables we can construct Lorentz invariant two dimensional
angle brackets
(i,7) =€ NaXjg  or  (i,)y=Z;-1-Z; (F.3)

where I, is the usual infinite twistor which one can read off from the first definition.
Next we introduce the dual momentum twistors W which can be thought of as the parity
conjugate of the Z’s. The dual momentum twistors are defined by using three neighbouring
standard momentum twistors as

Z3 2575 Zj—a NZj N\ Zjio

W0 = €abed— — or W.: = — — .
pa = tabed o G+ 2) TG =200, +2)

Note that with this convenient normalization the dual momentum twistor W, has the
opposite helicity weight as the momentum twistor Z;. For the very bottom and top we
need to tweak the definition (F.4) due to the non-cyclic labelling we are using.”

(F.4)

With the dual momentum twistors we can now construct four brackets once more, now
denoted with square brackets

[ijkl] = W, WV Wi Wig  or ikl = Wy AW; AW AW (F.5)

Finally, we come to the parity conjugate spinor helicity variables A They can be now

! More precisely, we can always apply a global GL(4) rotation U to all the twistors (before extracting
the first two components) plus a residual GL(2) transformation V' to all the spinors (after extracting them
10 0 0
01 00
U and V to be the identity matrices. Nevertherless, it is worth keeping in mind that sometimes such
transformations can be quite convenient. For instance, the twistors in previous OPE studies — see e.g.
appendix of [82] — contain several zero components and will lead to singular \’s if extracted blindly. In
those cases, it is quite convenient to preform such generic conformal transformations when constructing
the spinor helicity variables.

from the first two components) such that in total \; =V - -U - Z;. Henceforth we set

ZoNZoAZ_ ZoAZ_1ANZ
2020021 W, = 22822122 at the bottom and

2Explicitly, the only tricky definitions are Wy = BT = 0on D

— Zn—aNZn_2NZn_3 — Zn—2NZn_3NZn_s D -
Wh—o = e Ln=2)(n—2.n—3) and W, _3 = e2n=3) (n—3.n=5) at the top, see figure F.1.

3Literally, the transformation ()\, 5\) — (5\, )\) acts on the momentum p, o’ = Aa)g as a reflection of
p2 since the corresponding Pauli matrix is antisymmetric while all others are symmetric. Once combined
with an 180° rotation in the 1-3 plane, we get what is conventionally denoted by parity. In sum, since
rotation symmetries are an obvious symmetry, one often slightly abuses notation to denote as parity any
transformation whose determinant is —1.
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defined as the last two components of the dual twistors,

v 0010
(00w w9

Out of two such twistors we can construct the Lorentz invariant square brackets

[ij] = e Xiah, s o [if]l =W 1. W, (F.7)

where the dual infinity twistor I’ can once gain be read off from the first definition.

A beautiful outcome of the construction above is that momentum conservation

0=> Nahiag fora=12andd=12 (F.8)

automatically follows from the definitions above. In other words, as is well known, the use
of twistors trivializes momentum conservation.

To summarize: At this point, each edge of our polygon is endowed with a momentum
twistor Z;, a dual momentum twistor W; and a pair of spinors \; and 5\]-. There are also
other null segments which play a critical role in our construction: the middle edges that
define our tessellation which are represented by the red dashed lines in figure IF.1 and whose
corresponding momentum twistors are given in the caption of that same figure. We quote
here for convenience:

Zmiddle = <] - 2aj7j + 27] - 1>Zj+l - <.] - 27j7j + 27] + 1>Zj—1 . (Fg)

Let us briefly explain how this equation can be established. This simple exercise beautifully
illustrates the power of Hodges’ momentum twistors when dealing with the geometry of
null lines. First, since Zmidadie N Zj—1, Zmiddle N Zj+1 and Z;_1 A Zj41 all correspond to the
same right cusp in figure I'.1a, we immediately have that Zyqaqe = aZ;11 + 8Z;-1. At
the same time the point Zyiqqie A Z; — where the middle line intercepts the left edge in
figure [".1a — lies on the line Z; o AN Z; +tZ;_o N\ Z; between the two left cusps. As such,
the middle twistor is also a linear combination of the twistors Z;, Z;_» and Z;;5 and thus
(7,7—2,742, Zmiaae) = 0. This condition immediately fixes the ratio 8/« to be as in (F.9).
The normalization of the projective twistor can be fixed arbitrarily with (F.9) being one
such choice. Following the logic above, we can now also associate to each middle edge a
dual twistor Wiaae and a pair of spinors Apiqqe and S\middle. They will indeed show up
below.
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We close this section with two useful identities which we shall use latter. The first is

2 o n (FlO)

where 7 and i are neighbouring edges and so are j and j. The second is
(abed) = (ab)(be){cd)[bc] and labed] = [ab][be][cd] (bc) (F.11)

which holds for any four consecutive twistors (starting with a followed by b, then ¢ and
then d at the end). Note that the second equality in (F.11) follows from the first equality
there together with (F.10). It also follows trivially from the first equality in (F.11) under
parity which simply interchanges square and angle brackets.

F.2 Hexagon and Heptagon twistors

In figure .2 we include the twistors we used in this thesis for the hexagon and heptagon
Wilson loop [82]. The symmetries of the middle squares are generated by the following

matrices
iqbl

e’l™ 72 0 0 0
0 e*"l*w% 0 0
Ml - io1 (Fl?)
0 0 et 0 .
0 0 0 e+t
and
e T 0 0 e R | gt R
ibo
0 e?2= 3" 0 0
M2 - 0 60'2_“1252 . 614;2 —79 €i<f2>2 —r _62‘(;25 —m 4 €T2+m% (Flg)
0 0 0 eTQer;Q

F.3 Pentagons and Weights

In a tessellation of an n-sided polygon, each two consecutive null squares form a pentagon.
As depicted in figure F.1, each such pentagon shares some edges with the larger polygon
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Z; =(1,0,1,1).M;

Zy = (1,0,0,0)

Z3 =(-1,0,0,1)

Zy=(0,1,-1,1)

Z5 =(0,1,0,0)
=(0,1,1,0).M;

= (1,0,1,1).M;.M>
= (1,0,0,0).M;. M,
= (~1,0,0, 1)

= (-1 ,3)

= (0, )
(o 1 0, O)M2
Z7—(0,1,1,0) M, .M,

Figure F.2: In this figure we present the hexagon and heptagon twistors used in the main
text. The respective middle squares are also indicated. The matrices M; and M, preserve
these middles squares and they are used to generate a family of hexagons and heptagons
parametrized by the coordinates 7;, 0;, ¢; with i = 1,2 for the respective square.

while some (either one or two) edges are middle edges defined by the tessellation, see also
(F.9).

These pentagons play a prominent role in our construction. In particular, here we want
to describe their importance in defining the weight of a given edge with respect to a given
pentagon. To simplify our discussion we label the edges of a generic pentagon as a, b, ¢, d, e.”

Pentagons have no cross-ratios. Nevertheless, they are not totally trivial. For instance,
they allow us to read of the weight of an edge of the pentagon (with respect to that

4For example, this pentagon could be the first pentagon in the tessellation in figure F.1b. In this case
we would set a = Z27 b=Zy,c=7Z_1,d= 7 and e = Zniddie line ending on edge 2-
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pentagon) through the pentagon NMHV ratio function components as

1 1
R(aabc) — R(aaaa) - = (F14)

R(abcd) —
abed ’ a’bc ’ at’

and so on. All such components can be extracted from a single R-invariant beautifully
written using momentum twistors in [75, 104],

4
AH1<<ade>nf + (bede)n? + (cdea)ni* + (deab)n? + (eabc)n?})
NMHYV pentagon _ A= . F.1
R (abed) (bede) (cdea) (deab) (eabc) (F.15)

From the relations (F.14) we read

Al — (abed) (cdea)(deab)(eabc)

Toede]? (F.16)
We can also re-write this relation using (F.11) as
40,,\4 4
a4 — <&b> <€a> / [Cd] (Fl?)

(ab)(bc)(de)(ea)(cd)" [ab][bc]|cd][de][ea]
where the familiar Parke-Taylor chains nicely show up.

Furthermore, note that a product of three weights with respect to the same pentagon
can be traded by the weight of any of the other two twistors of the pentagon using the first
relation in (F.14) with R(@® = 1/(abed). In particular, it follows that

1 a d
bee  (abce)  (dbce) (F.18)

This allows us to massage slightly some of the formulae in the main text. For example,
(5.10) can be written a bit more economically using

G-1);0);G+1);  W;-Z, G-1);G);G+1); W, 2,
where ¢; and b; indicate the top or bottom twistors of pentagon j respectively, see figure ['.3.

Note that it is irrelevant that we do not fix the normalizations of these top and bottom
twistors: they drop out in the ratios here constructed.
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J+3

Figure F.3: The weight factor (j —1);(j);(j + 1), associated to the j-th pentagon can be
expressed in terms of the twistors of the larger polygon. It involves the seven closest edges
to that pentagon, as illustrated in the figure. It is clear from this example the advantage
of using this edge labelling as opposed to the cyclic one.

We can also explicitly evaluate (F.19) by plugging in (I.16) the expressions for the
middle momentum twistors (I.9), see figure F.3. When doing so, one finds”

1 4
((j —1);G);G+ 1)j) - (F.20)

5As usual, for the bottom and top pentagons we need to adjust this formula slightly. For instance, for
j =1 we find Z_5 in the right hand side which is not defined, see figure F.1. The fix is very simple: we
should simply replace Z_5 by the very bottom twistor, that is Z_;. Similarly for the top pentagon, where
we should replace Z,,_1 by the very top twistor Z,,_s.
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Appendix G

Pentagon transitions and measures

In this appendix we summarize our knowledge about elementary transitions Pxy, with
(X,Y) being any pair of flux tube excitations. Their general structure is

Pxy (uv) = fx(u)Fxy (u,v) fy (—v)
 exp (2 (1) — i () M-y (o) + 20 (1) + i () M - Ry (0)]
(G.1)
where all the objects in the exponent were explicitly given in the appendix C of [83] for all
sorts of excitations of the flux tube (with M = Q-M in the notations of [83], see also [84]).

We also found convenient to strip out the factor
[ dt 1Jo
log fx(w) = [ (n(2gt) ~ 1)2
0
for each excitation, with Jy(z) = 1 + O(z?) the Bessel function of the first kind and
qx = —1/2,0,1/2,1,... for scalar, large fermion, elementary gluon, bound state of two
gluons, etc. (Note that in the case of a small fermion, i.e. X = g or g, we have
fx(u) =1 identically, see G.2 below.)

(2g1) 4 £ — emaxt/Ze-iut

et — 1 ’

(G.2)

The factor (G.2) as well as the term in the exponent above are quite universal and, in
particular, only depend on the absolute values of the U(1) charges (e.g. they cannot distin-
guish between (X,Y) = (1,4), (¥, %), (¥, ), or (,7)). As such, the function Fxy (u,v)
has the same conjugation property as its parent transition. Since all our transitions obey"

Py (ulv)” = Pyix(v|u), (G.3)

'We failed to find a reason for this simple property, but noticed that it is consistent both with the fun-
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upon complex conjugation (for real rapidities), with of course ¢ = ¢ for a scalar, F, = F_,
for a gluon, etc., then the exact same relation holds true for the corresponding functions
F.

The factor (G.2) as well as the exponential in (G.1) are also both irrelevant to leaden
order at weak coupling, with both log fx and the exponent in (G.1) being of order O(g?).
(This estimate is not uniform in the rapidities and holds only away from the locations of
singularities, which are at imaginary half integer values at weak coupling.) The leading
order weak coupling results can thus be directly obtained from the prefactors Fixy.

G.1 Summary of transitions

Knowing the transitions is equivalent to knowing the prefactors F' in (G.1). For them,
which as we just said are also all we need to know to leading order at weak coupling,
we have the following lists. (Up to few exceptions involving gluonic bound states, all the
transitions given below already appeared in [82-84,87,97,107].7 )

Transitions involving a gluon or a bound state of gluons

We start by the cases involving a gluon or a bound state of gluons.

The purely gluonic transitions are given by

Fr,p(u,v) = \/ (altalyl=t — g2) (zlelylHo) — g2) (aTralylHtl — g2)(zl-ayl=t — ¢2)
PPl gy — o Tl oy
( |3 (~ 5 w\b\ w-) - |a\j|11f\ Z-U) -~ forab>0,
@I+ 5 +iu)l(1+ 5 — )1+ 557 —iu+iv)
1 (G.4)

FFan (Uv U) = 2 2 2

2
V= =) (1 - =) (1 — ) (1 — =)

D1+ 228y — i)

[l ’

X e : for ab < 0,
M1+ 5 +aw)l(1+ 5 —iv)

damental relation (5.44), since Sxy (u,v)* = Sy x(v,u) = Sy 5 (v, u), and with the mirror equation (5.45).
In the latter case, one needs to use that 4~ turns into 4™ upon conjugation and that (5.45) is equivalent
to Pxy (u[vY) = Py x(v[u).

2Mixed transitions involving gluonic bound states were independently obtained by A. Belitsky.
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and the mixed ones by

eralg=a (L 4 12 4 gy — )

gl (1 4+ 4 )T (L — iv)

FFa¢(u7 U) - F(bFa(_U? _u) -

for any a, and by

2

(el gl=a)¥AT(2 4y — w)\/(1 — o) (1 - 5r)
PRI+ & +iu)l (1 — iv) ’
(2 elz=eaN AT (1 4+ £ + du — dv)
g (1 + § + i)l (1 = iv)y /(1 = 7E) (1 - )
(G.6)

for @ > 0. In all cases, we have * = z(u), 24 = z(u £ ia/2),y = z(v), yF) =
z(v+ib/2), z(u) = $(u+ /u? — (29)?) and T'(z) the Euler Gamma function. Transitions

involving v can be obtained by conjugating those with ), as in (G.3).

FFaw(u7 /U) - FwFa(_U7 _U’) - =

FF_aw(u, U) = Fd)F—a(_’U? _u) =

(Note that all the factors above are normalized such that the associated transitions are
equal to 1 to leading order at strong coupling, in the perturbative regime, i.e. for excitations
with momenta of the same order as their masses. This is the expected decoupling property
of the gluons at strong coupling.)

Transitions involving only scalars or fermions

We proceed with the remaining set of functions Flyy involving scalars and fermions. They

read
C(iu — iv)

gF(% + Zu)F(% —iv)’
VT (% +du — iv)
Fyp(u,0) = Fy(u,0) =
o (U, v) = Fyg(u,v) gL (3 +iu)[(1 —dv)’
(zy)> T (1 + du — v)
Fpp(u,v) = —=F5(u,v) = ’
q/np( ) WJ( ) 93/4F(1 + iu)F(l — w)m

izy) AT (i — i) /zy — ¢?

F — [ —
v (U, V) ga(u, v) T (1 + iu)L(1 — iv)

(The branch choice for the mixed transitions above was mostly driven by the goal of getting
the sign-free large (positive) v behaviours (G.15).)

Fyg(u,v) =
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The lists (G.4), (G.5), (G.6) and (G.7) cover all the pentagon transitions of the OPE
program.

G.2 Analytic continuation to small fermions

It is also convenient to store the representation for small fermions. This one is obtained by
direct analytical continuation, z(v) — z(0) = ¢*/x(v), and it was thoroughly exemplified
in [83]. The squared transitions, for instance, read as :

Sep(u, )
P ~\ 2 — _ ¢1/’ )
oulult) (u—v+4)Sepp(u,0)’

P (uw)Q _ gVt y(u —v — QA)SM)(U7 )
Fy (J7+y _ 92)(1‘—y _ QQ)S*qu(u, Qv}) )
PFJ;(UWJ)Q B (z%y —g°) a7y — g, )Spy(u, 0)

12 V9TY Sy (u, 0)
Py (ufo)” = (zy — ¢?)(u — v + 7) Sepy(u, )’
(2y — ¢%)Syy(u, v)
VITY (4 = ) S,y (u, 0)
P (12'@)2 _ (ZEy — 92>S¢¢(a.7 {J)
. VIZY (U= v) (U — v + 1) Sepp (0, 0)
\/MSWZ(?Z?{))

zy — g2)S, (0, 0)’

Py (ulp)® = —

Pys(u|v)® = (

where, again, ‘check marked’ rapidities indicate analytical continuation to the small mo-
mentum sheet.

More explicitly, and including bound states as well, we can take all the transitions
listed before and perform the continuation. The explicit form of the analytically continued
transitions still preserves the structure (G.1), but the prefactors as well as the functions
in the exponent are changed. The continuation of the exponent was explicitly worked out
in [83] and here we provide once again only the expressions for the prefactors. We stress in
particular that fy.(u) # fy(2) and Fxyg(u,v) # Fxy(u, 0), since upon continuation of the
full transition some extra terms are produced by the exponent in (G.1) and transferred to
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the prefactors. Instead, the correct analytic continuation produces fy,(u) =1 and
V9(u —v +ia/2)
2 2
ylatrelpal)ia, [(1 - J80)(1 - o)

[+a] p—al)1/4 2 2
Frps(u,v) = Fygr, (—v, —u) = u\/(l — g_) (1 — g—) , fora<0,

Frups(u,v) = Fygr, (v, —u) = — , fora>0,

\/g ;p["‘a]y x[—a]y
(G.9)
and
Fop (u,v) = 1/\/_ Fyso(u,v) =1/,
2 1 1/4 92
Fyps (u, v) x1/4 3/4/ Fygs(u,0) = gi/e (y> 1_x_y’
g2 1 y\l/A4 g2 (G.10)
Fygy(u,v) = x3/4 1/4/ Fygp(u,v) = 1/4 < ) 1=
y) /A4
Fygus(u,v) = m 1- x—y7 Fysis(u, ) 1/4/
G.3 Measures
We recall that the measures are obtained from the direct transition through
i
Resy—y Pajp(ulv) = ) G.11
wlule) = s (1)
For a given field X, they have the universal structure

—MX—(u)eX fx(u) - Rx(u) = 26x(u)' - M - kx(u
pa) = s e () Mo Rx(e) = 2o () Mowx()] (G2

and the functions My are given by

g
M = —
o(u) cosh(mu)’
5/4
: 7g°
My(u) = — )
w(w) Ve sinh(mu)y/22 — g2 (G.13)
1)’ T(1+ ¢ +iu)L(1+ 2 —4
Mg, (u) = (=) T(1+ § +iu)(1+ § — iu) , fora>0.

[(a)(zltelzle — g2)/((alt)? — g?)((277])2 — g?)
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Moreover, we have that pp ,(u) = pr, (v) and pgz(u) = —py(w). Upon analytical continu-
ation to the small fermion sheet, we obtain

My (u) = IV (G.14)

G.4 Zero momentum limit

Given a transition Ppy (@|v) it is immediate to derive its scalings at u = oo, i.e. for a
zero momentum fermion. This one can be read directly from the function Fy_y (u, v) listed
before, since the remaining factors in (G.1) all go to 1 in this limit. We get this way

1/4

Pyg(alv) ~ /Ay

s 1 y\1/4
Py (afv) ~ v (‘) : (G.15)

u

N

Pyp (0]v) ~ ———————, fora <0,
¢\Fa( | (y[+a}y[—a]>1/4
(y['i'a}y[_a])l/zl
Vi
where, again, y = z(v) and y* = z(v £ i%). This information was used to obtain the
non-MHV form factors hy(v) of the excitation Y (v) in the main text, with help of the
asymptotic behaviour of the Jacobian factor

for a >0,

Ceusp du us/4
5 (1 i) ~ G.16
\/ S (0 () ~ s (G.16)
itself following from
gt/ dpg r
~ /I/g p ~ cus
pali) ~ =T )~ g (G.17)
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G.5 The superconformal charge ©Q and the flux Gold-
stone fermion

In section 5.4.2 we used the realization of the superconformal generator Q4 as a zero
momentum fermion. The precise relation is (5.55) and is repeated here for convenience

Q/0) = 1/ = Jim [p) = lim \/ Loy d—Zuw(@) 13(5)) (C.18)

29 p—0 V—00

In this appendix we will derive this relation.

G.5.1 The zero momentum fermion

The non-trivial part of (G.18) is the factor dressing the zero momentum fermion state. To
derive it, we should first fix the normalization of that flux-tube state |+). It is instructive
to do this in two steps. First we note that we have a well defined flux tube square measure
i, which allows us to overlap states in the flux Hilbert space. Using the supersymmetry
algebra, this measure leads to a precise representation of the superconformal generators
on the flux, that we denote by Q4. There is no reason however for this realization of the
supercharge on the flux tube to be normalized in the same way as its realization on the
generating function of amplitudes or equivalently, the super loop. Namely, the two may
differ by an overall proportionality constant Q4 = ¢y x Q4.7 We shall now first relate Q4
to a zero momentum fermion using the measure and the supersymmetry algebra. We will
then fix the constant ¢y by demanding that pentagon NHMV amplitude is the same as the
MHYV one as appears in the generating function (5.6).

Consider first a delta-function normalized momentum states
(p(u)|p(v)) = 2m6(p(u) — p(v)) = (p=0[p=0)=2m(0) = Vol(o)  (G.19)

where Vol(o) is the infinite volume of the flux in the coordinate o conjugate to p. These
momentum states differ by a simple normalization factor (involving the measure p;) from
the rapidity states, which we conventionally normalize as [82]

27 cdv o)
%(U)(S(U —u) = |p(u) = —Z%w( ) |u) (G.20)

(vlu) =

3See [76] for a very similar relation.
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On the other hand, with respect to this square measure, we have

2|Qal0)I* = (O{Qa4, Q"}0) (G.21)

where |0) is the GKP vacuum, normalized so that (0|0) = 1. The commutator is a special
conformal generator that can be written in terms of the symmetries of the square as

> {Qa. Q' =2(6, —idy) +C, (G.22)

where the total helicity C = 0 in our case and for simplicity, we have summed over the
R-charged index, see section G.5.2. The GKP vacuum does not carry U(1) charge while 4,
measures its energy. We conclude that

1
“Teousp V() (G.23)

1Qa|0)[* = —EGKP<0!0> 1

where in the last step we used the interpretation of I'c,s, as the energy density of the flux
in the o direction [108]. It then follows that

1—‘cusp . Fcusp dv v T
QI0) = /=422 lim |p) = lim \/ QI (G.24)

where the check over the fermion rapidity (o) indicates that it is on the so-called small
fermion sheet where the zero momentum point is, see [83].

Next, we shall fix the proportionality constant c¢y. This is done by demanding that
the pentagon NHMV amplitude is the same as the MHV one. Translated to the POPE
notations, this condition reads

1= (o|0)iP[4](0|0) (G.25)

2
= — cusp li LYY % P 0 rd o - g_
( ) H e ! pwﬁw( 0j) X Ppajo(01, U2, U3, 04[0) X (matrix part) i

where in the last step we used the large v behaviours quoted in .4, together with

1

(vu)i



that can be read from the expressions in (5.2, and, finally, the expression for the matrix
part (which is nontrivial in this case) given by [105]

1

matrix part = —

o0, i)

i>]

We deduce that ¢y = 1/g/2 and hence the relation (G.18). In the following subsection we
elaborate on the commutation relation (G.22).

G.5.2 The commutator of superconformal charges

We shall now derive the relation relation (G.22) used above. For that aim, it is convenient
to decompose any twistor in the basis of the square four twistors, (see for example appendix
A of [82] for an explicate choice)

Z = Zb Zbottom + z Ztop + 2z, Zright + 2z Zleft . (G26)

In this basis, the three symmetries of the square are generated by

dr = 240z, — 240, , 0o = 2.0, — 210, and Oy = = (20, + 2105, — 2,05, — 210,) .

(G.27)
The relation (G.22) is an algebra relation between superconformal generators and therefore
we can use any representation of the generators to test it. When acting on the generating
function of helicity amplitudes, the supercharge is represented as Q% = Z%¢,. The operator
Q4 is a specific component of the superconformal generator Q% which was specified in [29].
To translate between (G.26) and the notations of [29] we may think of the square here
as the bottom square of the j’th pentagon in the POPE decomposition. Then, equations
(10)-(11) in [29] for the component of Q% read

N | .

QA = 5)(}4 X (Zj—l A Zj A Zj+1) : Z(Sn X Zb&nA (G28)
where we used that Z; = Zieq, Zj—1 = Zyigne and Zj 4 is a linear combination of Z,gn: and

Zyop. Here, we drop the proportionality factors in (G.28) as it drops out in the commutator
(G.22). We can now use the conjugate operator in this representation to evaluate the
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commutator in (G.22). We find*
D> {24, Q" = D {al0,a 00} =420, + Y 9t (G.29)
A A A

= 2(57- — Z(Sd,) + (zb(Szb + Ztézt + zrazr + Zlézl) + Z 77A677A
A

Here, the summation over the R-charge index was done for simplicity. Otherwise, on the
right hand side we would also had an R-charge generator. Alternatively to this deriva-
tion, ((.22) can be read from equation (3.9) in [91] by specifying to the corresponding
component.

4Note that the commutation relation ((:.29) is independent of the measure one uses to realise it and

thus {Qa, 04} = {Qa4,Q4}.
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