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Abstract

In this thesis, a class of clustered censored distributions are proposed in various fi-
nancial modelling processes. In particular, the proposed distribution can accommodate
many stylized (observed) phenomena across different stock markets, especially those with
price limits. One main attractive characteristics of the proposed distribution is that it
can capture the clustered behaviour of the data over certain continuous interval (while the
traditional censored distribution can only allow the clusters to be on the bounds). The
clustered censored distribution is developed and presented, to some extent, in a general
way so that it can be transformed into other well-known distributions, such as the classical
Normal distribution, one- (or two-) sided truncated distribution, one- (or two-) sided cen-
sored distribution, etc. The clustered censored distribution is further designed into some
well-known financial modelling structures, such as Generalized Autoregressive Conditional
Heteroskedasticity (GARCH, Bollerslev (1986)) process. We also investigate the potential
applications of the proposed models in this thesis to risk management.

Overall, there are three main chapters in the thesis. Chapter 1 introduces the fun-
damental theory and properties of the proposed clustered censored distribution. As a
starting point, Normality is mainly considered in this chapter. Built on Chapter 1, Chap-
ter 2 designs a GARCH process with the cluster censored Normal distribution (referred
as GARCHCCN). The model performance is investigated via Monte Carlo experiments
and empirical data. The risk implication is also discussed in Chapter 2. Chapter 3 consists
of two dimensions of the extensions. Sections 3.1-3.4 extend the model using clustered
censored heavy tailed distributions, such as Student-t and Generalized Error Distribution
(GED), for a better performance in capturing the tail behaviour. Section 3.5 examines the
dynamic spillover effects under the proposed model framework. There are 14 supporting
appendices (A-N) mainly for proofs, tables and figures.
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from different perspectives, e.g., how a policy maker and a stock trader can benefit from
using my models instead of others. Professor Maynard and professor Chen offered amazing
helps all the time. Professor Li was a part of my Generals committee, a thesis reader,
and an inspiration in many way. Likewise, professor Ivan Medovikov at Brock University,
who was my facilitator in both the Econometrics PhD workshop and Canadian Economics
Associate (CEA) conference at Ryerson University, gave me lots of very useful suggestions
on making the thesis more succinct. In the 32nd Meeting of Canadian Econometric Study
Group (CESG), I received a lot of invaluable comments from many researchers. To all
these wonderful people I owe a deep sense of gratitude.

Next, I just want to mention professor Michael Shub in St. George campus at University of
Toronto where I received my Hon. BSc. I was overwhelmed by the difficulties of the third
and fourth year Mathematics courses. Therefore, I never thought I would pursue a PhD
in Economics. Because of professor Shub, I found that doing research can be ‘cool’. I still
remember how excited I was when I saw the books under his name on the desk in his office.

Moreover, I want to express my sincere gratitudes to professor Francisco M. Gonzalez,
professor Lutz-Alexander Busch, professor Anindya Sen, professor Matthew Doyle, and
many other professors in University of Waterloo. Professor Lutz-Alexander Busch’s mi-
croeconomics and professor Doyle’s macroeconomics courses were brilliant. This was one of
the reasons why I continued my education in Economics. Professor Sen introduced various
research skills that had been repeatedly used during this research. Professor Francisco M.

iv



Gonzalez came to my presentations and helped to bring clarity to writing and presentation
even when he was very busy.

The following teachers also have changed my whole aspect on my learning. My Chinese
teacher at Qianlin Central Elementary School (in Fujian province, China) and my uncle -
Mr. YuanChui Wang, my Mathematics teacher at Fuqing Third Middle School (in Fujian
province, China) - Mr. JiaGui Shi, my Chinese teacher at Fuqing Third Middle School
(in Fujian province, China) - Mr. YouQing Xue, and my English teacher at Central Com-
merce Collegiate (currently named, Central Toronto Academy) in Toronto - Ms. Ferreiro
have made positive impacts on my education. A special thank-you is given to Ms. Mary
McPherson and Ms. Clare Bermingham in wring center at University of Waterloo.

Never would I forget my dearest colleagues whom I met in University of Waterloo, Hongxin
Lin, Zhikun Pang, Yiling Zhang, Ivanka Wu, Yang Yu, Yaxin Zhang, Sushan Wang, Ed-
ward Wang, Silvia Nishiguchi, Xin Liu, Mingxuan Liu, Yanchen Liu, Behnoush Amery,
Hang Gao, Mohamad Ghaziasgar, Yichun Huang, Hongxiu Li, Allison Mascella, Yu Chen,
Qian Ji, Yazhuo Pan, Renfan Tian, Andrea Todoran, Kasia Poplawski, Brian Law, Michael
Farymarz, and Sara Aghakazemjourabbaf. I remember all the funny things we have done
together and the little secrets we shared. I am grateful to Class 1 students graduating in
Year 1993 at Qianlin Central Elementary School for having the best childhood with me.
To Class 2 students graduating in Year 1996 from Grade 8 and Class 1 students graduating
in Year 1999 from Grade 11 at Fuqing Third Middle School, I thank you for helping me
to become a better person. Thank you, my childhood friends - LiQing Lin, ChaoFan Lin,
KeEn Lin, Po Wang, FeiChao, Yong Chen, Aiqin, YueE, Fan, HangBin, etc. We have been
separated by distance for many years now - yet the special places you hold in my heart
have not been abandoned. Thanks a lot, my friends - Maria, Sunny, Yumeng, Minghao,
Jie Chen, Aadhya, Jasmine, Shiny Zhang, Mr. XiaWen Li and his wife, etc. I also want to
thank my neighbours at Westvale, my daughter’s teachers at Westvale Public School, my
son’s Speech Language Specialist - Ms. Heather Kleihauer, and Justin at KidsAbility in
Waterloo for their kindness and helps. For all these colleagues, classmates, and friends, I
accept our long-lasting friendship for what it was, for what it is, a treasure, and a beautiful
chapter in the book of my life.

I am blessed to have my family members. My parents - Mr. Xiao Ming Lin and Mrs.
Yi Ying Wang, who immigrated to Canada in year 2000 mainly for giving me the best
education, supported me regardless of their own financial plan. My grand-parents - Mr.
Maoren Wang and Mrs. Ailian Zheng, my grandma - Mrs. Meisong Xue, my uncles -
Mr. Xiao Kang Lin, Mr. Xiao Hua Lin, and Mr. Xiao Chang Lin, my aunts - Mrs. Xi-
angHua Zhou and Mrs. YiYu Wang, my cousins - Meiying Wang, Angela, Qiaoming Xue,
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Chapter 1

Truncated Normal, Censored
Normal, and Clustered Censored
Normal

1.1 Literature Review

Various trading limits have been in place worldwide for decades. The main types of trading
limits are price limits, circuit breakers, trading halts, and position limits. Price limits con-
fine the trading price of the coming day to a certain range according to the present day’s
closing price. Circuit breakers prohibit simultaneous trading of an asset and its related fu-
tures contracts or options. Trading halts stop all trading activities so as to ease extremely
large fluctuations of stock prices or dramatically high trading volumes. Position limits
restrict the number of contracts a trader can have at one time. Among these, price limits
are most frequently used. For example, the price limits in the Taiwan Stock Exchange
Center (TSEC) Weighted Index, the Shanghai Stock Exchange (SSE) Composite Index,
the Korea Composite Stock Price Index (KOSPI), and the Cotation Assistée en Continu
(CAC)1 40 are set as a percentage based on previous day’s closing price. The daily per-
centage limit in TSEC is 7%, in both the SSE Composite Index and CAC 40 is 10%, and
in the KOSPI Index is 15%. Price limits are combined with other trading limits. When
the price limits are hit, a trading halt is issued for a half hour or more to cool down a mar-
ket. The Egyptian Stock Exchange has both price limits and a subsequent circuit breaker
window. Farag and Cressy (2012) found that the information-spreading pattern follows
immediate dissemination hypothesis under simple price limit systems and acts more like
sequential dissemination, or market inefficiency when circuit breakers are also implemented.

1The CAC 40 is a benchmark French composite index and it takes its name from the Paris Bourse’s
early automation system Cotation Assistée en Continu.
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The history of trading limits in financial markets can be traced from the Black Mon-
day, October 19, 1987, when stock markets world wide shed a huge amount of value in a
short period of time. The Brady Commission and the Working Group on Financial Mar-
kets recommended remedies to ease extreme fluctuations. From then, price limits have
been used in stock markets in Egypt, Japan, Taiwan, France, Korea, China and many
other countries. They exist in American futures and options of agricultural commodities,
e.g., corn, wheat, oat, and orange juice (Roll (1984)); precious metals, e.g., silver, copper,
and gold; and petroleum products, e.g., gas and crude oil; and also in US treasury bill
rates (Wei (2002)), government bonds, interest rates in UK 2, and foreign exchange rates
in some countries, e.g., Japanese Yen to U.S. dollars (Goldman and Tsurumi (2005)). De-
bates about their effectiveness and efficiency continued over the past 20 years. Price limit
advocates (e.g., Edwards and Neftci (1988, 1991), Arak and Cook (1997), Dark (2011))
suggested that price limits lower volatility, protect stock hedgers, and discourage specu-
lation. In contrast, price limit critics, Telser (1981), Fama (1989), Lehmann and Modest
(1989), Ma et al. (1989), Miller (1989), Chen (1998), Huang et al. (2001), Lauterbach
and Uri (1993), among others argued that the limits cause volatility spillover, delay price
discovery, and interfere with trading.

Furthermore, Brennan (1986) showed that price limits improve the efficiency of futures
contract trading if traders are risk neutral and have limited information. Kodres (1994)
stated that if prices become too volatile, a short delay of trading can result in a large
price change. Then the judiciously chosen price limits were Pareto superior to uncon-
strained prices. Chou and Lin (2011) suggested that even in a market where traders had
abundant information, price limits were useful when traders were risk averse. Price lim-
its deter manipulation (Kim and Park (2010)). In Pakistan, the annual returns of stock
brokers’ personal equity investments were 50-90 percentage points more than those earned
by outsider traders (Khwajia and Mian (2005)). Therefore, price limits are more desirable
in markets with higher monitoring costs, greater corruption rates, and lower efficiency in
regulatory and technological performance (Deb et al. (2013)).

Another field of price limit literature is on volatility forecasting and model selection. Trun-
cated or censored distributions are employed to restrict variables in a domain. Leading
works of truncated normal (TN) and censored normal (CN) include Hald (1949), Cohen
(1950, 1954), Gupta (1952), Epstein and Sobel (1953), Amemiya (1973), Nelson (1981),
and Schneider (1984). These two models may not have satisfactory empirical performance
because the effects of price limits are diverse on both variance and kurtosis. Ma, Rao, and
Sears (1989) revealed that price limits provide a cooling off period for futures markets.
Kavussanos and Manalis (1999) found that price limits do not affect volatility, but only

2For example, as of April 1st, 2014, the payday loans in UK have an initial cost cap of 0.8% per
day, fixed default fees capped at £15, and total cap of 100%. Furthermore, Canada, some U.S. states,
Netherlands, Poland, Ireland, Japan, Belgium, some Australian states, Slovakia, France, Belgium and
many other countries, have interest rate ceilings on consumer credit.
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slow down the convergence to the equilibrium price. Kim and Rhee (1997) inferred that
although volatility decreases after prices hit the limits, the volatility right afterwards is
still higher than that after hitting the 90% or 80% range of limits3. Thus, the authors
claimed that price limits increase volatility. Kim (2001) observed that wider bounds might
not necessarily increase volatility. For kurtosis, Yang and Brorsen (1995) explained thin-
tailness in the pork bellies futures return series with price limits while most of stock return
series are leptokurtic. In brief, price limits may increase, decrease, or have no effect on
volatility and kurtosis.

If CN and TN were appropriate for modelling financial returns with price limits (two
sided), variance and kurtosis should have increased as bounds become wider and vice versa.
Moreover, clusters are caused by the prohibition of trading outside bounds, behavioural
changes due to bounds, the discount rate, and the minimum price difference rule between
ticks. In particular, the fluctuation unit (tick) rule makes trading at bounds less likely.

“Operating Rules of the Taiwan Stock Exchange Corporation” stated in Article 62, the
fluctuation unit (tick) of the prices of trading orders shall be determined as follows:

“Where the market price of a stock is less than 10 dollars per share, the tick shall be
1 cent, or 5 cents if the price is from 10 dollars to less than 50 dollars, or 10 cents if the
price is from 50 dollars to less than 100 dollars, or 50 cents if the price is from 100 dollars to
less than 500 dollars, or 1 dollar if the price is from 500 dollars to less than 1000 dollars, or
5 dollars if the price is 1,000 dollars or more. The tick for government bonds and corporate
bonds shall be five cents. The tick for convertible bonds shall be 5 cents if the price is less
than 150 dollars, or 1 dollar if the price is from 150 dollars to less than 1,000 dollars, or 5
dollars if the price is 1,000 dollars or more.”

During a period of exceptionally optimistic or pessimistic expectations of future stock
prices, traders relentlessly trade at prices around bounds and so push the prices closer to
bounds. This phenomenon, referred as the magnet effect, was investigated in Edwards and
Neftci (1988), Lee et al. (1994), Subrahmanyam (1994), Kim and Limpaphayom (2000),
Abad and Pascual (2007), Tooma (2011), Cho et al. (2003), and Kim et al. (2013). Hence,
to include this so called magnet effect, a class of clustered censored (e.g., clustered censored
normal, abbreviated as CCN , as the introductory model) distributions are proposed. The
rest of this chapter is organized as follows, Section 1.2 depicts TN , CN , and CCN models,
particularly different clusters about bounds; Section 1.3 explores how misspecification of
underlying models affects the model estimations and how variance/kurtosis changes with
respect to bounds and underlying parameters under Gaussian distribution; Section 1.4

3If the upper bound of a stock is Upper and the lower bound is Lower, the 90% ranges are [0.9 ∗
Upper, Upper) and (Lower, 0.9 ∗ Lower], and the 80% ranges are [0.8 ∗ Upper, 0.9 ∗ Upper) and (0.9 ∗
Lower, 0.8 ∗ Lower].
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compares the fitted TN , CN , and CCN models of 5 Taiwanese, 5 Chinese, 5 Korean, and
5 French stocks by the MLE algorithm; and Section 1.5 concludes and provides suggestions
for future research.

1.2 Truncated, Censored, and Clustered Censored nor-

mal

Let the lower bound be Lower, the upper bound be Upper, the underlying mean be µ,
and the standard deviation be σ. pdf stands for the probability density function and cdf
stands for the cumulative density function, henceforth. f(x;µ, σ) is the pdf of the normal
distribution with the mean, µ, and the standard deviation, σ. F (x;µ, σ) is the cdf .

Therefore,

f(x;µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)

1.2.1 Truncated Normal

Let x be a variable with a TN distribution. Let the underlying mean be µ and the
underlying standard deviation be σ over the domain [Lower, Upper]. The distribution is
given by

x ∼ TN((µ;σ2), Lower, Upper)

pdftn and cdftn are the pdf and cdf . meantn, vartn, skewnesstn, and kurtosistn stand for
the mean, variance, skewness, and kurtosis. These values are derived in equations A.0.1,
A.0.2, A.0.3, and A.0.4 by using norminti’s for i ∈ {1, 2, 3, 4} in Appendix A.

pdftn(x) =

{
f(x;µ,σ)

F (Upper;µ,σ)−F (Lower;µ,σ)
ifLower ≤ x ≤ Upper

0 else

cdftn(x) =


0 ifx < Lower
F (x;µ,σ)−F (Lower;µ,σ)

F (Upper;µ,σ)−F (Lower;µ,σ)
ifLower ≤ x ≤ Upper

1 ifx > Upper

1.2.2 Censored Normal

Let x be a variable with a CN distribution.

x ∼ CN((µ;σ2), Lower, Upper)
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meancn, varcn, skewnesscn, and kurtosiscn in equations A.0.7, A.0.8, A.0.9, and A.0.10
are the mean, variance, skewness, and kurtosis derived by using cninti’s in equations A.0.5
and A.0.6. i ∈ {1, 2, 3, 4}

pdfcn(x) =


f(x;µ, σ) ifLower < x < Upper
F (Lower;µ, σ) ifx = Lower
1− F (Upper;µ, σ) ifx = Upper
0 else

cdfcn(x) =


0 ifx < Lower
F (x;µ, σ) ifLower ≤ x < Upper
1 ifx ≥ Upper

The main difference between TN and CN can be illustrated by the following example.
A class of students have an exam that has a grade∈ [0, 17] and only people who have a
grade greater or equal to 10 pass the exam. The marks of the whole class are a truncated
series with the lower bound of 0 and the upper bound of 17. If only the grades of those
people who pass the exam and the failing rate are known, this data is censored with the
lower bound of 10 and the upper bound of 17. The difference between the shapes of a TN
and a CN with the same underlying parameters and bounds is that a CN has the extra
clusters right at bounds. 4

1.2.3 Clustered Censored Normal

Figure 1.2 is the histogram of the stock returns of a Taiwanese stock, Quanta Computer
from January 4, 2000 to June 24, 2014. The total number of data is 3554. Figure 1.3 is
the histogram of the stock returns of a Taiwanese stock, Nanya Technology from August
8, 2000 to June 24, 2014. The total number of data is 3393. The number of bins used in
both figures are 40. The daily limit of a Taiwanese stock is 7%. So the lower and upper
bounds shown in these two figures lie almost symmetrically on the two sides of 0 as the
values of -7.2571 and 6.7659. Figure 1.3 has more obvious clusters about the bounds than
figure 1.2. Therefore, it might be useful to have a distribution with parameters that define
different ranges and shapes of clusters.

Figure 1.1 presents the shape of a pdf curve of a typical CCN distribution. The pdf of
this CCN consists of three main segments: The pdf in x ∈ [−4,−2] is referred as the left
clusters; the pdf in x ∈ [−2, 2] is similar to normal distribution; the pdf in x ∈ [2, 4] is the
right clusters. The pdf for any value outside of the domain [−4, 4] is 0. This distribution

4Stock return series touch the bounds more frequently than an index price series, so stock returns tend
to behave like a censored distribution and indices are more likely to be truncated distributions.
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Figure 1.1: pdf of a typical CCN
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Figure 1.2: Histogram of Quanta Computer
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Figure 1.3: Histogram of Nanya
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is a CCN , in which the underlying mean is 0, the underlying standard deviation is 1,
the clustering rate5 around Lower is 0.5, the clustering rate around Upper is 0.5, the left
clustering coefficient is −1, the right clustering coefficient6 is 1, and the domain is [−4, 4].

Having seen an example of CCN , we formally introduce the distribution in details. The
underlying mean is µ. The underlying standard deviation is σ. The left clustering rate
is l1 and the right clustering rate is r1. The left clustering coefficient is m1 and the right
clustering coefficient is m2. The lower bound is Lower and the upper bound is Upper. Let
Lower < µ and Upper > µ. The distribution is given by

x ∼ CCN((µ;σ2; l1; r1;m1;m2), Lower, Upper)

Let a1 = µ+ (Lower − µ) ∗ l1 and b1 = µ+ (Upper − µ) ∗ r1.

The clustering rates, l1, r1 ∈ [−1, 1], and the values are well defined as long as Lower ≤
a1 ≤ b1 ≤ Upper. The values of the clustering rates are not restricted inside of [0, 1]
because we can have a CCN that has the underlying distribution to be standard normal,
l1 to be−0.03, and r1 to be 0.7. Thus, a1 is 0.12 and b1 is 2.8. a1 ≤ b1 is satisfied in this case.

Let A = f(a1;µ, σ) and B = f(b1;µ, σ). If Lower ≤ x ≤ a1, the pdf is proportional
to the curve expressed as A ∗ exp(m1 ∗ (x− a1)). If a1 ≤ x ≤ b1, pdfccn(x) is proportional
to the pdf of a normal distribution that is f(x;µ, σ). If b1 ≤ x ≤ Upper, pdfccn(x) is
proportional to the curve shown as B ∗ exp(m2 ∗ (x − b1)). m1 and m2 reflect how steep
the clusters are around the lower and upper bounds. A value Ω is included in the pdf in
order to satisfy these two conditions:

1. cdfccn(Lower, (µ;σ2; l1; r1;m1;m2), Lower, Upper) = 0 and cdfccn(Upper, (µ;σ2; l1; r1;
m1;m2), Lower, Upper) = 1

2. cdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) is a non-decreasing function.

To define the pdf , cdf , and the first four moments of a CCN , Li(y, (µ;σ2; l1; r1;m1;m2), L-
ower, Upper), Li, Mi(y, (µ;σ2;µ;σ2; l1; r1;m1;m2), Lower, Upper), Mi, Ri(y, (µ;σ2;µ;σ2;-
l1; r1;m1;m2), Lower, Upper), and Ri in equations B.0.2, B.0.4, B.0.7, B.0.8, B.0.9, and
B.0.12 are used. If m1 6= 0, let L0 =

∫ a1
Lower

A ∗ exp(m1 ∗ (x− a1))dx = A(1− exp(Lower−
a1))/m1; otherwise, L0 = A ∗ (a1 − Lower). M0 =

∫ b1
a1
f(x;µ, σ)dx. If m2 6= 0, R0 =∫ Upper

b1
B ∗ exp(m2 ∗ (x − b1))dx = B(exp(Upper − b1) − 1)/m2; otherwise, R0 = B ∗

(Upper − b1).

5If the left clustering rate is l1, the left clusters are in the domain [Lower, l1∗(Lower−µ)+µ]. Similarly,
the right clustering rate r1 defines the right clusters to be in [r1 ∗ (Upper − µ) + µ,Upper].

6The left and right clustering coefficients decide the shapes of the clusters.
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Ω = L0 + F (b1;µ, σ)− F (a1;µ, σ) +R0 (1.2.1)

The pdf and cdf 7 of x are computed by using L0(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper),
M0(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper), and R0(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper)
in equations B.0.10, B.0.7, B.0.5, B.0.13, and B.0.9,

pdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) =


f(x;µ,σ)

Ω
ifa1 ≤ x ≤ b1

exp(m1(x−a1))A
Ω

ifLower ≤ x ≤ a1
exp(m2(x−b1))B

Ω
ifb1 ≤ x ≤ Upper

0 else

cdfccn(x) =



0 ifx < Lower
L0(x,(µ;σ2;l1;r1;m1;m2),Lower,Upper)

Ω
ifLower ≤ x ≤ a1

L0+M0(x,(µ;σ2;l1;r1;m1;m2),Lower,Upper)
Ω

ifa1 ≤ x ≤ b1
L0+M0+R0(x,(µ;σ2;l1;r1;m1;m2),Lower,Upper)

Ω
ifb1 ≤ x ≤ Upper

1 ifx > Upper


Let pm be the probability between a1 and b1

8. Equations B.0.3, B.0.8, B.0.6, B.0.14,
and B.0.12 compute Li, Mi, Ri for i = 0, 1, 2, 3, 4 9. Consequently, the mean, variance,
skewness, and kurtosis of x are expressed as meanccn, varccn, skewnessccn, and kurtosisccn.

meanccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) = E(x)

= (L1 +M1 +R1)/Ω
(1.2.2)

E(x2) = (L2 +M2 +R2)/Ω (1.2.3)

varccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) = E(x2)− (E(x))2 (1.2.4)

The value of varccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) can be obtained by using equations
1.2.2 and 1.2.3.

E(x3) = (L3 +M3 +R3)/Ω (1.2.5)

7To save space, cdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) is denoted as cdfccn(x) in the definition
below.

8We use pm to compare the proportion in the clusters among different stocks. We don’t have a critical
value of pm, by which we claim the pm value is large or small.

9The definitions of these values are explained in Appendix B.
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σ∗ =
√
varccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) is the population standard deviation.

skewnessccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) = skewness(x)

= E

(
(x−mean(x))3

((σ∗)2)
3
2

)

=
E(x3) + 2 ∗ (E(x))3 + 3 ∗ E(x2) ∗ E(x)

(σ∗)3

(1.2.6)

The value of skewnessccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) can be calculated by using
equations 1.2.2, 1.2.3, and 1.2.5.

E(x4) = (L4 +M4 +R4)/Ω (1.2.7)

kurtosis(x) = kurtosisccn((µ;σ2; l1; r1;m1;m2), Lower, Upper)

= E

(
(x−mean(x))4

((σ∗)2)2

)
=
E(x4) + 6(E(x))2E(x2)− 4E(x)E(x3)− 3(E(x))4

(σ∗)4

(1.2.8)

The value of kurtosisccn((µ;σ2; l1; r1;m1;m2), Lower, Upper) can be found by using equa-
tions 1.2.2, 1.2.3, 1.2.5, and 1.2.7.

The next section presents Monte Carlo simulations on estimations under TN , CN , and
CCN . From the outcomes of the Monte Carlo simulations, it is shown that even when
we do not know the true distribution of a data series, clustered censored distribution can
contain special cases, e.g., normal, truncated and censored distributions, and the Laplace
distribution. In particular, both the clusters about bounds and the diverse changes of both
variance and kurtosis with respect to the changes of bounds (depicted as the ‘variance− b’
and ‘kurtosis−b’ curves in figures D.1 and D.2) are satisfied by using CCN . Furthermore,
we will show in the empirical evidence section that it is very likely that financial returns
with limits are clustered censored. Therefore, it is important to see under Gaussian, the
possible outcomes (in particular, the biases of parameter estimates) of our decision and
assessment to use unlimited, truncated, censored, or clustered censored model.

1.3 Monte Carlo Simulations

In this section, several experiments of Monte Carlo simulations are conducted to illustrate
the statistical properties of TN , CN , and CCN . In particular, we investigate how the
bounds affect the parameter estimation if the true model is either TN or CN and how
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parameters estimations react on changing bounds and underlying parameters if the true
model is CCN . The experiments have data size of either 500 or 5000, and the repetition
number is 1000. Table C.0.1 lists the experiments performed, for example, experiment 1
uses TN as the true model and the bounds are [−4, 4], [−3.8, 3.8], [−3.6, 3.6], [−3.4, 3.4],
[−3.2, 3.2], [−3, 3], [−2.8, 2.8], [−2.6, 2.6], [−2.4, 2.4], [−2.2, 2.2], and [−2, 2] (table C.0.2).
If the data size is changed from 5000 to 500, the estimates of experiment 2 are presented
in table C.0.3. Similarly, the estimates of CN simulations with respect to different bounds
are in tables C.0.4 and C.0.5. For CCN , the estimate changes with respect to bounds are
in tables C.0.6 and D.0.2. Those with respect to clustering coefficients are in C.0.7 and
D.0.3. Changes with respect to clustering rates with data sizes of 5000 and 500 are in
tables C.0.8 and D.0.4.

All these above-mentioned simulations have underlying mean, 0. The corresponding esti-
mates in tables C.0.2, C.0.3, C.0.4, and C.0.5 reveal that the means estimated by using
either the underlying model or normal are just close to the underlying mean in symmetric
simulations. The estimate of the standard deviation by using the true model are closer to
its real value, 1, than that from other models. Furthermore, the standard deviation esti-
mated by normal model is the population standard deviation of the simulated data. The
population standard deviation of CN simulations is greater or equal to that of TN when
given the same underlying mean, standard deviation, and bounds. This fact is consistent
with figure D.1 and it will be elaborated later in this chapter.

Moreover, experiment 5 sets the bounds for CCN to be [−12, 12], [−10, 10], [−6, 6], [−4, 4],
[−3, 3], and [−2, 2]. If only the data size in experiment 5 is changed from 5000 to 500, the
outcomes of experiment 8 are obtained. The pdfs of each pair of bounds are plotted in fig-
ure D.4. As bounds grow, the distribution converges to its underlying normal distribution
(figure D.4). Experiment 6 is the same as experiment 5, but with a underlying mean of 0,
a underlying σ of 1, both clustering rates of 0.5, and a domain of [−3, 3]. The values of m1

and m2 are symmetric about y-axis, including −2 and 2, −1 and 1, 0.3 and −0.3, 1 and
−1, and 2 and −2. The corresponding pdf shapes are in figure D.6. As the left clustering
coefficient decrease, and the right one increases, the clusters have steeper shapes and the
pdf curves are more likely to have ‘W’ shapes. If only the data size is changed from 5000
to 500, experiment 9 is performed. Experiment 7 is the same as experiment 5, but with
an underlying mean of 0, an underlying σ of 1, m1 and m2 of −2 and 2, and a domain of
[−3, 3]. The values of clustering rates are equal, including 0.2, 0.5, 0.6 and 0.8. If only the
data size is changed from 5000 to 500, experiment 10 is performed.

Based on these Monte Carlo simulations, tables C.0.6, D.0.2, and figure D.4 show that
our simulations are in the range where variance is above the underlying variance (figure
D.1). Therefore, the population standard deviation, σ∗ increases and then converges to

11



the underlying σ. In fact, normal, CN , TN , the Laplace distribution10 are special cases of
CCN . If bounds converge to (−∞,∞), l1 and r1 both greater than 0, a CCN distribution
converges to a normal distribution. A CCN with l1 and r1 both arbitrarily close to 1, the
pdf at the lower bound equal to F (Lower;µ, σ), and the pdf at the upper bound equal to
1−F (Upper;µ, σ), resembles a CN . A CCN with l1 and r1 both equal to 1 is a TN . When
l1 and r1 are 0 and bounds are (−∞,∞), CCN converges to the Laplace distribution if
m1 = 1

%
> 0 and m2 = −m1.

To justify these superior-subordinate relationship, we plot the fitted normal, TN , CN ,
and CCN in the third row in table C.0.2 given the true model, a TN with mean of 0, σ
of 1, and bounds of [−2, 2], in figure C.1. In figure C.2, the underlying model is CN with
mean of 0, σ of 1, and bounds of [−2, 2]. The fitted models are from the third row in table
C.0.4. In figure C.3, the fitted models in the last row in C.0.6 are plotted. The underlying
model is CCN with mean of 0, σ of 1, clustering rates of 0.5, clustering coefficients of
−2 and 2, and bounds of [−2, 2]. These three figures illustrate that CCN can be trusted
to find the underlying distribution even when the true model is either CN or TN , but
not the other way around. Similarly, figures D.3a, D.3c, D.3b, and D.3d show that CCN
can be transformed to normal, TN, CN, and the Laplace with certain restrictions upon
parameters and bounds.

Generally speaking, σ∗ converges to its underlying value as pm becomes bigger in CCN
simulations. As m1 increases and/or m2 decreases, pm rises (tables C.0.7 and D.0.3). As
l1 and/or r1 increase(s), pm increases (tables C.0.8 and D.0.4). As bounds become wider,
pm is bigger (tables C.0.6 and D.0.2).

For asymmetric simulations, table D.0.1 shows that as bounds become wider, the biases
of mean and standard deviation estimations by normal model decrease in CN , TN , and
CCN simulations. In addition, as the clusters have a wider range, e.g., the left and/or
right clustering rates decrease, or steeper clustering shapes about the bounds, e.g., the
left and/or right clustering coefficients have greater absolute values (and the left clustering
coefficient is smaller than 0 and the right clustering coefficient is greater than 0), the biases
of both mean and standard deviation estimated by normal model increase. Yet the biases
of mean estimates are not influenced by the changes of bounds in symmetric simulations.

Furthermore, figures D.1 and D.2 display how the variance and kurtosis change with respect
to bounds, denoted as [−b, b] and b ∈ [0, 10] for TN , CN , and CCN models. These figures
show that CCN satisfies the above-mentioned diverse changes of variance and kurtosis

10The pdf of a Laplace distribution with mean of µ and a scale parameter of % > 0, is shown as the
following function,

pdfLaplace(x, (µ; %)) =
1

2%
exp(−|x− µ|

%
)
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with respect to bounds, e.g., in Kim (2001). The variance and kurtosis of CN are higher
or equal to those of TN if the two distributions have the same underlying parameters
and bounds. Similarly, the variance and kurtosis of CCN is greater or equal than that of
either CN or TN if all these three distributions have the same underlying parameters and
bounds. Although this may be true, if b is smaller than the underlying standard deviation,
the kurtosis of a CCN might be smaller than those of CN and TN . The variance of a
CCN can either be greater or smaller or equal to its underlying variance, but the variances
of CN or TN can only be smaller or equal to their underlying variances.

The ‘variance − b’11 curve for a CCN pivots up and to the right if l1 and/or r1 de-
crease(s), as shown from the comparisons between the curves defined as ‘variance of
CCN if pa = (0; 1; 0.6; 0.6;−1; 1)’ and ‘variance of CCN if pa = (0; 1; 0.7; 0.7;−1; 1)’.
The ‘variance− b’ curve pivots up and to the right and has a higher peak if m1 is smaller
and/or m2 is larger, which can be seen from the curves defined as ‘variance of CCN if
pa = (0; 1; 0.6; 0.6;−1; 1)’, ‘variance of CCN if pa = (0; 1; 0.6; 0.6;−2; 2)’, and ‘variance
of CCN if pa = (0; 1; 0.6; 0.6; 1;−1)’. The ‘kurtosis − b’ 12 curves have similar chang-
ing patterns with respect to the underlying parameters and bounds as the ‘variance − b’
curves. The flexible values of variances, kurtoses, the ranges of clusters, and the shapes of
clusters are practical for different doubly limited stock returns (figures 1.2 and 1.3).

1.4 Empirical Evidence

Let pt be the adjusted closing price of the stock at the time period t.

ut = 100log

(
pt
pt−1

)
(1.4.1)

The starting and ending dates of 5 Taiwanese, 5 Chinese, 5 Korean, and 5 French stocks are
presented in table E.0.1. The minimum and maximum of each stock are each 100∗log(1−r)
and 100 ∗ log(1 + r), and r is the daily percentage limit. The fitted normal, TN , CN , and
CCN models by the MLE algorithm for each stock return series are summarized in table
E.0.3.

Let k be the number of parameters, for example, k = 6 for CCN and k = 2 for all
other models; T is the number of values in u. LOGL is the log-likelihood value.

AIC = 2k − 2LOGL

11In this figure, variance values are plotted with respect to the value of b, which defines the bounds as
[−b, b].

12In this figure, kurtosis values are plotted with respect to the value of b, which defines the bounds as
[−b, b].
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BIC = k ∗ log(T )− 2LOGL

Table E.0.3 reveal that CCN has the smallest AIC and BIC in every stock, and the
evidence against higher BIC is very strong for every stock according to table E.0.2 (Kass
and Raftery (1995))13. The AIC and BIC values of normal, TN , and CN are very close
in each stock. The pm’s of the fitted CCN models are different and they are in a range of
[0.4911, 0.9729]. The pm’s of Iljin Electric Co Ltd is the highest in all the 20 stocks in this
chapter. Most of the pm’s are above 0.8 except Nan Kang (0.7353), China MinSheng Bank
(0.5463), Hansol Artone Paper Co. Ltd (0.7632), Phoenix (0.6785), and Carrefour (0.4911).

Figures E.1a, E.1b, E.1c, E.1d, E.2a, E.2b, E.2c, E.2d, E.3a, E.3b,E.3c, E.3d, E.4a, E.4b,
E.4c, E.4d, E.5a, E.5b, E.5c, and E.5d include the histogram, the fitted normal curve, TN ,
CN , and CCN all in one figure for the stocks in table E.0.1. The pdf curves for the fitted
normal, TN , and CN models are similar for each stock, so TN or CN may not significantly
improve data fitting compared to normal model. The fitted CCN has a narrower shape
around the peak and thicker ends around the two bounds than other fitted models in each
stock. If the clustering rates are closer to 1, the left clustering coefficient is smaller than
-1, and the right clustering coefficient is greater than 1, the clusters are obvious and the
pdf curve of the fitted CCN has a ‘W’ shape, e.g., Tung Kai Technology in figure E.1b.
In contrast, if the clustering rates are closer to 0, the left clustering coefficient is greater
than -1, and the right clustering coefficient is smaller than 1, the clusters are not obvious
and the pdf shapes are similar to those in figures E.5c and E.5d. The nuance of clusters is
usually accompanied with smaller l1 and r1. In addition, the left and right clusters are not
symmetric in each stock, but the levels of asymmetry vary: ShinWoo Co., Ltd and Borneo
International Furniture BIF Co Ltd in figures E.3c and E.3d have steeper right clusters but
Nan Kang and China Merchants in figures E.2a and E.2c have almost symmetric clusters.

1.4.1 cdf Comparisons

It is important to compare the cdf of the empirical data with those of each fitted models
to measure the goodness of fit. cdf comparisons are related to the values at risk (VaRs)
forecast in next chapter. It is shown in figures E.6a, E.6b, E.6c, E.6d, E.7a, E.7b, E.7c,
E.7d, E.8a, E.8b, E.8c, E.8d, E.4a, E.9b, E.9c, E.9d, E.10a, E.10b, E.10c, and E.5d, that
CCN is better at tracing the cdf curve of each data than other models. Even when the
clusters at zero are obvious in the cdf plots of Taiflex, Tung Kai, Tri Ocean, Jye Tai,

13These benchmark values are derived in Kass and Raftery (1995). B10 is the likelihood ratio or the
Bayes factor, pr(D/H1)/pr(D/H0), in which D is the data, H1 is the hypothesis that favours model 1, H0

is the hypothesis that favours model 0, and pr stands for the probability. The difference between the two
BICs of two different models can be approximated by twice the logarithm of the Bayes factor. To have a
very strong evidence against model 0, B10 must be greater than 150 and thus 2log(B10) must be greater
than 10. Page 777 in Kass and Raftery (1995) and Jeffreys (1961, app. B) provide more details on how to
choose the critical values.
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Nan Kang, GD Power, and Inner Mongolia Baotou, the cdfs of fitted CCN are the best
approximation of the empirical cdfs. In particular, in Hansol, AirBus, Essilor, Bouygures,
Carrefour, and Renault, the CCN cdfs are almost identical to their empirical cdf . In
addition, we do not find there is a relation between pm values and the impact of clusters
on deviating pdf and cdf of a CCN from those of other three fitted models. Figures E.10c
and E.9b show very similar differences in cdf curves among four fitted models while the
pm values are very different, 0.4911 and 0.9729.

1.4.2 Clusters at zero

There is concern on clusters at zero. The Laplace distribution can have a sharp peak at its
median. Therefore, we want to add cluster censored property to the Laplace distribution
to see if the distribution can capture the clusters at zero. Let A = pdfLaplace(a1, (µ; %)) and
B = pdfLaplace(b1, (µ; %)).

cdfLaplace(x, (µ; %)) =

{
exp(x−µ

%
)

2
ifx < µ

1− exp(−x−µ
%

)

2
ifx ≥ µ

In the following equation, the definitions of L0 and R0 are exactly the same as those in
equation 1.2.1 only except the changes of values A and B,

Ωcclaplace = L0 + cdfLaplace(b1, (µ; %))− cdfLaplace(a1, (µ; %)) +R0 (1.4.2)

A clustered censored Laplace distribution, abbreviated as CCLaplace, has the following
pdf ,

pdfcclaplace(x, (µ; %; l1; r1;m1;m2), Lower, Upper) =



exp(−|x−µ|% )

2%

Ωcclaplace
ifa1 ≤ x ≤ b1

exp(m1(x−a1))A
Ωcclaplace

ifLower ≤ x ≤ a1

exp(m2(x−b1))B
Ωcclaplace

ifb1 ≤ x ≤ Upper

0 else

Figures 1.4 and 1.5 have clusters at zero. There are 500 bins in the histogram of
Microsoft Corporation stock returns because this company has much more data, from
March 13, 1986 to September 16, 2015. The stagnant stock prices exist in mature companies
that are unable to find large growth opportunities. The clusters at zeros as shown in the
histogram of stock returns of Microsoft Corporation in figure 1.5 are due to the lack of
new technologies and initiatives to dramatically increase investment and productivity, and
the payouts of dividends. These reasons can explain the clusters at zeros for other stock
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Figure 1.4: Histogram (30 bins) and Fitted Curves: Taiflex
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Figure 1.5: Histogram (500 bins) of Microsoft Corporation

−40 −30 −20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

pd
f

 

 

histogram of Microsoft

17



Table 1.4.1: Fitted Laplace and clustered censored Laplace

Model µ % l1 r1 m1 m2 −LOGL BIC

Taiflex
Laplace 0.0000 1.9076∗∗∗ 3.1272e+003 6.2688e+003

(0.0000) ( 0.0522)

bounds are [100*log(0.93),100*log(1.07)]

CCLaplace 0.0000 1.9184∗∗∗ 0.7919∗∗∗ 0.9492∗∗∗ −0.5608 8.9508 3.0358e+003 6.1148e+003
(0.0005) ( 0.0718) ( 0.0262) ( 0.0079) ( 0.2546) ( 1.9730)

CCN 0.0407 2.2024∗∗∗ 0.7306∗∗∗ 0.9357∗∗∗ −0.6138∗∗ 9.8839∗∗∗ 3.0587e+003 6.1318e+003
(0.0449) ( 0.0499) ( 0.0209 ) ( 0.0094) ( 0.2137 ) ( 1.9981)

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

returns. From the comparison between the bounded and unbounded histograms in figures
1.4 and 1.5, we infer that clusters at zero are not caused by bounds. On the contrary, the
clusters at bounds are ostensible in figure 1.4 but not 1.5. In figure 1.4, both CCN and
CCLaplace are able to capture the clusters at bounds. These two fitted models illustrate
almost identical ranges and shapes of clusters while the fitted Laplace and CCLaplace
have similar pdf shapes in the middle section, the domain inside of the bounds except the
clustering ranges. In conclusion, the Laplace distribution can help to capture clusters at
zero. However, from table 1.4.1, the BIC of fitted Laplace is much greater than those of
other two models while the difference between the BICs of fitted CCLaplace and CCN is
relatively small. We suggest that it is more important to accommodate clusters at bounds
than clusters at zero to improve a model’s goodness of fit.

1.5 Conclusions

In this chapter, Monte Carlo simulations are used to show that if the real model is TN , the
true standard deviation is under estimated by 12.02%14 if bounds are ignored (while in fact,
bounds are [−2, 2] in C.0.2). Given the same underlying parameters and bounds, if the real
model is CN , the underlying standard deviation is under estimated by 4.24% in C.0.4. If
the real model is CCN with clustering rates of 0.5, and the left and right clustering coeffi-
cients of -2 and 2, the true standard deviation is over estimated by 42.80% in C.0.6 if bounds
are overlooked. Likewise, if the true distribution is CCN((0.1; 1; 0.7; 0.7;−2; 2),−3, 3), the
µ and standard deviation estimated by normal model have an upward bias of 70.80% and
an upward bias of 41.49% respectively in table D.0.1. Subsequently, the all-in-one figures

14A bias is the absolute difference between the parameter estimate and the true value in Monte Carlo
simulation. When the bias is presented in percentage term, the bias is equal to the absolute difference
divided by the true value. If the parameter estimate is greater than the true value, there is an upward
bias; otherwise, there is a downward bias.
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and the superior-subordinate relationship validate the fact that the resemblances between
the histograms of data series and the pdf curves of the corresponding fitted CCN models
are much closer than those between the histograms of data series and the pdf curves of the
fitted normal, CN , and TN models.

CCN is a special case of a mixture distribution. It is not possible to have a traditional
finite Gaussian mixture distribution that has clusters unless we use a mixture of half nor-
mal distributions. We will investigate this type of mixture distributions more in our future
work.

Furthermore, volatility clustering has often been discussed in research about financial time
series. Different models, e.g., the generalized autoregressive conditional heteroskedasticity
(GARCH, Bollerslev (1986)) and stochastic volatility models are recommended to char-
acterize this feature. V aRs have been frequently used by both financial institutes and
regulatory agencies to access the credit rating and minimum capital required to cover the
risk. In section 1.4.1, the comparisons of cdf curves among fitted models give a hint that
better V aR estimation can be achieved by using a clustered censored time series model
rather than its unlimited, censored, or truncated counterparts. Hence, in Chapter 2, we ex-
tend clustered censored property into a time varying volatility model in hope of improving
both in-sample and out-of-sample V aR forecasts.
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Chapter 2

GARCH(p, q) with clustered censored
normal innovations

2.1 Literature Review

Financial institutes nowadays provide services for clients worldwide. Research on finan-
cial returns with price limits are of interest since bounds exist in Korea, Taiwan, France,
China, and many other countries, and numerous types of financial markets, e.g., futures
and options of precious metals, petroleum goods, and agricultural products in the U.S., as
mentioned above in Chapter 1. Furthermore, the debates about government intervention
in market economy heat up after the recent global economic downfall beginning in year
2007. Starting from April 8, 2013, a “limit up, limit down” (LU/LD) under Securities and
Exchange Commission (SEC) regulations replaced circuit breaker in which a limit state
was imposed if a stock’s trading volume increased or decreased by 10% within a rolling
five-minute window.

The reference price of the current LU/LD rule is the average of trading prices over the
preceding five minute and it is adjusted every 30 seconds if there are 1% change in the
price. If trading limit (a percentage limit of 10% based on the reference price) are met, that
stock enters into a limit state1 for 15 seconds. Therefore, it is important to find models
that contain special characteristics due to the existence of limits.

Several approaches were used in the research on volatility forecasting of financial returns
with price limits. Hodrick and Srivastava (1987) and McCurdy and Morgan (1987, 1989)
proposed to either ignore or delete price limits. To ignore the price limits means treating

1A limit state ends only if one of the followings happens: a trade offered within the bounds/bands is
made, the offers sitting on the bounds/bands are cancelled or modified, and the bounds can be changed
so the offers no longer sit on the bounds/bands.
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data as if there were no limits. To delete the price limits means that all financial returns
hitting the limits are removed. Wei and Chiang (1997) criticized these two proposals by
arguing that the estimated standard deviation for Japanese yen futures during 1977-1979
had a downward bias of 5.7% if price limits were ignored and of 14.3% if the limits were
deleted. Furthermore, clusters around the limits may also cause complications besides the
bounds (Edwards and Neftci (1988), Lee et al. (1994), Subrahmanyam (1994), Kim and
Limpaphayom (2000), Abad and Pascual (2007), Tooma (2011), and Kim et al. (2013)).
McCurdy and Morgan (1987) suggested changing data from daily to weekly. This sugges-
tion is not appropriate because data size decreases substantially and limits still exist every
day. Moreover, weekly limits are seven times of daily limits and weekly data may not be
affected by limits as much as daily data.

Since financial data consistently exhibit volatility clustering, time varying conditional vari-
ance processes are used. One benchmark model is the GARCH model in Bollerslev (1986).
Wei (2002) proposed a censored-GARCH process using the Bayesian method with an ap-
plication to Treasury bill futures over a period of high volatility and frequent limit moves.
Goldman and Tsurumi (2005) depicted a Markov chain sampling approach, a method pri-
marily proposed by Nakatsuma (2000), with a doubly truncated ARMA−GARCH model
on the Japanese Yen to U.S. dollar exchange rate over a specific period of stringent con-
straint. Yang et al. (2009) demonstrated the usefulness of the Bayesian approach with a
censored stochastic volatility model, by modelling the returns of two actively traded stocks
on the Taiwan Stock Exchange and two U.S. futures contracts on the Chicago Board of
Trade during volatile periods. Kodres (1993) used a maximum likelihood approach and
GARCH model with censored normal tails to test the unbiasedness hypothesis2 on foreign
exchange futures market.

Levy and Yagil (2006) compared six alternative models of the return-generating pro-
cess (RGP ). The models included a GARCH (1,1) process by the MLE algorithm;
GARCH with censored normal (Chou (1999)) by the MLE algorithm; GARCH with
truncated normal (Chou (1999)) by the MLE algorithm; GARCH(1,1) by the expectation-
maximiz -ation (EM) algorithm (Dempster et al. (1977)); the adjusted version of dummy-
variables model (Park (2000)) by the MLE algorithm; and the near-limit model 3(Levy
and Yagil (2005)) by the MLE algorithm. The authors used the mean square error
(MSE) and the MSE coefficient of variation as ranking criteria. The better perfor-
mance of the near-limit model shows that it is needed to include the clusters around
the limits for building a more acceptable model. Wei and Chiang (1997) used the gen-
eralized method of moments (GMM) to estimate the mean, variance, and covariance of
doubly truncated daily prices. This chapter proposes a GARCH(1,1) model with CCN

2 The hypothesis assumes that the futures rate is an unbiased predictor for the futures spot rate.
3A comparison between the near-limit model and GARCH with CCN tails is of interest. We hope to

present the comparison in future research.
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tails (GARCHCCN) using the MLE algorithm and compares the performance among
a GARCH(1,1), a GARCH(1,1) with truncated normal (GARCHTN), a GARCH(1,1)
with censored normal (GARCHCN), and GARCHCCN 4.

The rest of this chapter is arranged as follows. Section 2.2 introduces the mathematical
models and demonstrates the statistical properties of truncated, censored, and clustered
censored GARCH under Gaussian using Monte Carlo simulations. Section 2.3 presents
the empirical evidence of 5 stocks from the TSEC Weighted Index, 5 stocks from the SSE
Composite Index, 5 stocks from the KOSPI Index, and 5 stocks from the CAC 40 by
using GARCH(1,1), GARCHCN , GARCHTN , and GARCHCCN . Then, conclusions
are made based on the results in Sections 2.2 and 2.3.

2.2 Mathematical models and Monte Carlo Simula-

tions

The mathematical set-ups for each model contain the same time varying conditional vari-
ance generating process given as,

ht = κ+ (α1ht−1 + ...+ αpht−p) + (β1u
2
t−1 + ...+ βqu

2
t−q) (2.2.1)

The return for any time period t is denoted as ut. ut ∼ N(0, ht) in GARCH(p, q)5;
ut ∼ CN((0;ht), Lower, Upper) in GARCHCN(p, q); ut ∼ TN((0;ht), Lower, Upper)
in GARCHTN(p, q); and ut ∼ CCN((0;ht; l1; r1;m1;m2), Lower, Upper) in GARCHC-
CN(p, q).

It have been discussed in last chapter that the empirical data with limits tend to be clus-
tered censored distributions. Clustered censored distributions contain special cases, e.g.,
censored or truncated distributions. In addition, we will justify the fact thatGARCHCCN
provides a better goodness of fit for financial returns with bounds in Empirical Evidence
section in this chapter. Thus, it is necessary to discuss the outcomes of using wrong mod-
els by using Monte Carlo simulations. We use p = 1 and q = 1 as primary models of
GARCH(p, q), GARCHCN(p, q), GARCHTN(p, q), and GARCHCCN(p, q).

In order to investigate the biases (the absolute differences between the true values and
the estimates) of parameters estimated by using GARCH or the real model in simula-
tions of GARCHCN , GARCHTN , and GARCHCCN models, Monte Carlo simulations

4To make sure the estimates give a global optimum of log likelihood value, we use different initial
values when using MLE, as well as plotting the curves of the log likelihood with respect of changes of each
parameter based on the obtained optimal set of estimates.

5To save space, GARCH is abbreviated as G; GARCHCN is as GCN ; GARCHTN is as GTN ; and
GARCHCCN is denoted as GCCN in table H.0.3.
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presented in table F.0.1 are used. Ng and Lam (2006) found that the correlation of con-
ditional variances of estimated model between the limited samples and the large samples
(e.g., 3000) is not less than the high value of 0.90 if sample size is more than 1000. Thus, at
least 1000 observations are recommended for GARCH. Yet a set of parameter estimates
for κ, α, and β is considered efficient if p-value of each parameter is not greater than 0.01.
In table G.0.2, Monte Carlo simulations of GARCH model give parameter estimates for
κ, α, and β, with a confidence interval greater than 99% if data size is at least 1400, which
is 400 more than the number suggested by Ng and Lam (2006). To have efficient set of
parameter estimates for κ, α, and β, at least 1800 data are required in GARCHCCN
simulations (table G.0.3). Estimate biases are investigated by Monte Carlo simulations
that have 5000 data in each simulation, and the simulations are repeated 1000 times.

For each parameter, there are 1000 estimated values and 1000 standard deviations derived
from Hessian Matrix. The mean and standard deviation of the 1000 estimated values of
each parameter are attained. This value of standard deviation of the parameter is denoted
as the S-standard deviation. The mean of every standard deviation group derived from
Hessian Matrix is represented by the MH-standard deviation. For example, the two stan-
dard deviations for each estimated parameter in GARCHCN simulations are listed in table
F.0.2: the one on the right of the slash embedded in the parenthesis under an estimated
parameter is the related S-standard deviation, and the one on the left is the corresponding
MH-standard deviation. Monte Carlo simulations of GARCHCN have different bounds,
e.g., [−2.5, 2.5], [−3, 3], [−3.5, 3.5], [−4, 4], and [−5, 5]. Moreover, to decide p − value of
the estimated parameter, the S-standard deviation is used rather than the MH-standard
deviation because table G.0.1 indicates that when data size is small, the MH-standard
deviation converges to the related S-standard deviation as repetition number increases 6.
Roughly speaking, the two approximations of standard deviation are similar. In Empirical
Evidence, we obtain standard error of each parameter estimate from Hessian matrix and
these standard errors are used to calculate the p-value of each estimate. In practice, the
S-standard deviation and MH-standard deviation both are not feasible because we only
have one sample. In this case, the two bootstrapping algorithms in Tibshirani (1996)7

- bootstrap pairs sampling algorithm and bootstrap residual sampling algorithm, can be
used.

6Differences between MH-standard deviation and S-standard deviation under some circumstances were
discussed in many past research, e.g., Harding et al (2014) and Tibshirani (1996). Two factors determine
the precision of the parameter estimates, the population’s variability and sample size. Population’s vari-
ability and the S-standard deviation are positively related. The measure of S-standard error is inversely
proportional to a function of sample size, often

√
T . T is the sample size.

7Tibshirani (1996) compared the delta method based on the Hessian, bootstrap estimators, and the
“sandwich” estimator. He demonstrated that the two bootstrap methods perform best. The author
indicated in the paper that these two methods capture variability partly due to the choice of starting
weights.
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Tables F.0.2 and F.0.3 indicate that the biases of the parameters estimated by using
GARCH in GARCHCN simulations are smaller than those in GARCHTN simulations
when underlying parameters and bounds are the same. When the bounds are [−2, 2], the
upward bias of κ is 7.2%, the downward bias of α is 1.35%, and the upward bias of β is 0.06%
by using GARCHCN in GARCHCN simulations, while the upward bias of κ is 6.6%,
the downward bias of α is 1.36%, and the downward bias of β is 68.86% by GARCH. The
biases of theses two models are almost identical. BIC values of GARCHCN are greater
than those of GARCH. Choosing true model based on BIC values might be misleading.

On the contrary, in GARCHTN simulations with the same underlying parameters and
bounds as mentioned above, the true model exhibits an upward bias of 46.53% in κ, a
downward bias of 10.58% in α, and an upward bias of 11.13% in β, while GARCH has
a greater upward bias of 147.87% in κ, a greater downward bias of 35.93% in α, and a
greater downward bias of 46% in β. The BIC value of the true model is lower than that
of GARCH. These facts coincide with the simulations in previous chapter, in which the
population standard deviation of CN model is closer to the true standard deviation than
that of TN (figure D.1).

Moreover, the BIC of the real model is lower than that of GARCH in GARCHCCN
simulations as long as κ, α, β, and clustering coefficients are all statistically significant with
a confidence interval of 99% (table F.0.4). As the BIC values of the fitted GARCHCCN
and GARCH move closer to each other, the estimates of κ, α, and β using GARCHCCN
converge to those using GARCH. The biases of GARCH estimates decrease when bounds
change from [−3, 3] to [−4, 4] (rows 1 and 2 in table F.0.4). Specifically, the first row has
an upward bias of 561.66% in κ, a downward bias of 0.52% in α, and a downward bias of
83.72% in β by GARCH, while there are a lower upward bias of 399.67% in κ, a down-
ward bias of 0.58% in α, and a smaller downward bias of 40.73% in β by GARCHCCN .
The second row has an upward bias of 403.67% in κ, an upward bias of 6.03% in α, and
a downward bias of 83% in β by GARCH, while there are a much smaller upward bias
of 69.67% in κ, an upward bias of 3% in α, and a smaller downward bias of 35% in β
by GARCHCCN . However, the biases of GARCH estimates increase as bounds increase
from [−4, 4] in the second row to [−5, 5] in the third row. In rows 3-5, the biases of GARCH
estimates decline as bounds increase. This consequence of changes of the estimated biases
matches the concave down ‘variance− b’ curve in the first chapter.

The S-standard deviations and MH-standard deviations are similar if domains are [−3, 3],
[−4, 4], and [−5, 5] and when l1 and r1 are 0.6, m1 is 0.85, and m2 is -0.85 as shown in rows
6 to 8; or when l1 and r1 are 0.6, m1 is 0.55, and m2 is -0.55 (rows 11− 13 in table F.0.4).
The comparisons of rows 6 and 11, rows 7 and 12, rows 8 and 13, rows 9 and 14, and rows
10 and 15 suggest that with the same bounds, the GARCHCCN model with a smaller m1

and greater m2 still have the estimates of clustering coefficients statistically significant with
a confidence interval greater or equal to 95%, while with the same significance level, the
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estimates of clustering coefficients of the GARCHCCN simulations with a grater m1 and
smaller m2 are not statistically significant. As a matter of fact, the clusters can be ignored.

Similarly, the comparisons between rows 1 and 6, between rows 2 and 7, between rows
3 and 8, between rows 4 and 9, and between rows 5 and 10 show that the GARCHCCN
with lower clustering rates still have clustering coefficient estimates that are statistically sig-
nificant with a confidence interval greater or equal to 95% while its counterparts closely re-
semble the fitted GARCH model. Given these points, if the BIC values of GARCHCCN
and GARCH are fairly close according the rules in E.0.2, the clustering coefficients are
negligible. These findings explain why Korean and Chinese stocks usually have lower clus-
tering rates than Taiwanese stocks in table H.0.3. Even though the bounds of Korean and
Chinese stocks are wider than those of Taiwanese ones, the clustering coefficients may be
statistically significant with a confidence interval greater or equal to 95% when the clus-
tering rates are lower and the clustering ranges are wider. Nevertheless, even when the
clusters can be ignored, the estimated clustering rates are statistically significant with a
confidence interval of 95% (table F.0.4).

There are large parameter estimation biases in percentage term when bounds are about
twice of the underlying standard deviation and large biases in clustering coefficients (not
statistically significant with a significant level of 10%) when bounds are over 6 or 7 of
the underlying standard deviation in Monte Carlo simulations of GARCHCCN - yet our
empirical evidence next section show that small relative bounds causing large estimation
biases or large relative bounds resulting in large standard error for estimated clustering
coefficients are not likely to occur. The relative bounds, the ratios between lower/upper
bounds and the underlying standard deviation, tend to be larger than five in table I.0.1.
Estimates are all statistically significant with a confidence interval of 90%. It would be
better if we can define a circumstance that GARCHCCN gives an unbiased set of param-
eters. The circumstance can be a combination of restrictions on relative bounds, clustering
coefficients, and clustering rates. We are looking forward to having this part of research
in future. In addition, the empirical evidence in next section illustrate the superiority of
GARCHCCN over other models by using BIC values, in-sample VaRs, and out-of-sample
VaRs.

2.3 Empirical Evidence

2.3.1 Fitted Models: 5 Taiwanese, 5 Chinese, 5 Korean, and 5
French stocks

Table H.0.2 lists the data used in this section. There are obvious differences in the κ,
α, and β estimated by using GARCHCCN compared to those using other models. The
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κ’s, α’s, and β’s estimated by using GARCH, GARCHTN , and GARCHCN are very
similar in each stock (table H.0.3). The κ of the fitted GARCH is about half of that
of GARCHCCN in ChinaTrust, Fubon, Formosa Petrochemical Corp, Inner Mongolia
Baotou, Samsung, Enex, and LVMH. The difference of β’s between the fitted GARCH
and GARCHCCN models is 0.0210 out of the β of the fitted GARCHCCN of 0.0263
in Acer, 0.0216 out of 0.0314 in ChinaTrust, 0.0269 out of 0.0447 in Clevo, 0.0206 out of
0.0280 in Fubon, 0.0203 out of 0.0203 in Formosa Petrochemical Corp, 0.0305 out of 0.0301
in TsingHuaTongFang, 0.0265 out of 0.0272 in GDPower, 0.0470 out of 0.0216 in China
Merchant Banks, 0.0386 out of 0.0459 in ShangHai International Airport, 0.0188 out of
0.0384 in Posco, and 0.0216 out of 0.0468 in Danone.

In addition, the clustering rates, the left and right clustering coefficients of two stocks
from the same composite index can be very different. The clustering coefficient, m1 is in
[0,1]; and m2 is in [-1,0] in every stock except Acer, Clevo, China Merchants Bank, and
BNP. The values of m1 and m2 are symmetric if m1 = −m2. If m1 < −m2, there are
steeper left clusters; conversely, there are steeper right clusters. Steeper right clusters are
observed in Acer, ChinaTrust, Clevo, Fubon, TsingHuaTongFang, China Merchants Bank,
and Gemalto.

The rates l1 and r1 are different in stocks from the same composite index. These rates of
stocks in the TSEC Weighted Index are usually higher than those in other indices. The
values of l1 and r1 are close to 0.8 in all Taiwanese stocks except Formosa Petrochemi-
cal Corp. Instead, for most Chinese, Korean, and French stocks, the values are usually
close to 0.5 or lower. Comparing l1 to r1, we find that Acer, ChinaTrust, Clevo, Fubon,
TsingHuaTongFang, GDPower, Inner Mongolia Baotou, China Merchants Bank, Shang-
Hai International Airport, Naver, Samsung, Willbes, Enex, Posco, and Danone have bigger
right clustering rates. l1, r1, m1, and m2 estimates are statistically significant with a 99.9%
confidence interval in every stock, only except the m1’s in ChinaTrust with a p− value of
1.84% and Gemalto with a p-value of 4.23%. To sum up, clusters in the 20 stocks are not
negligible.

In table I.0.1, the notation of σ is the solution of x (which represents the converging value
of the underlying conditional standard deviation) in the equation x2 = κ + α ∗ x2 + β ∗
ccn2nd((0;x2; l1; r1;m1;m2), Lower, Upper), while the value

√
κ/(1− α− β) usually used

in GARCH is also displayed. The lower value of
√
κ/(1− α− β), the convergent value of

population standard deviation, compared to σ in each stock only except GDPower suggests
that in general, price limits decrease volatility.

The relative bounds are Lower/σ and Upper/σ. GDPower, Shanghai International Air-
port, Samsung, Willbes, Enex, Posco, and Danone have −Lower/σ and Upper/σ greater
than 8. The clustering rates of these stocks (except Enex) are in a domain of [0.3, 0.4].
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This is expected because in order to have clusters that are not negligible, the ranges of
clusters should be wider if relative bounds are comparably large (this corresponds to the
conclusions based on table F.0.4 in Section 2.2).

Comparing GDPower with ShangHai International Airport, we observe that the m2 of
GDPower, -0.4375, has greater magnitude than that of ShangHai International Airport,
-0.2847. In addition, the relative bounds of GDPower are wider. With almost identical Ω
and pm, the population standard deviation in GDPower is greater.

Comparing GDPower with Enex, we found that the clustering rates of Enex are both
around 0.75 while those of GDPower are about 0.3. The Ω and pm of Enex both are
equal to 1. The cdf of the two sides of clusters is arbitrarily equal to 0 in Enex. Nev-
ertheless, in GDPower, the cdf of clusters is 0.0352. In conclusion, higher population
standard deviation of GDPower compared to the underlying standard deviation is caused
by a mixture of comparatively larger bounds and greater portions at clusters about bounds.

Moreover, in table I.0.1, Ω ∈ [1, 1.0917] and pm ∈ [0.8931, 1]. A value of pm arbitrar-
ily close to 1 does not mean that the clusters are negligible because of heteroscedasticity
in the fitted models. The Ω and pm values, as well as the underlying conditional variance,
are changing over time.

2.3.2 In-sample VaR Estimates

The estimated parameters in section 2.3.1 are used to calculate the one-day-ahead VaRs
for given p’s that are 10%, 5%, and 2.5%. Table I.0.2 contains the failure ratio, the Kupiec
likelihood ratio, and E(shortfall2). If ut < −V aRt, in which V aRt is the p V aR at t,
there is a failure/violation. The failure ratio is conducted as x/T , where x is the num-
ber of violations for a significant level equal to p; and T is the total number of observations.

Kupiec LR test is useful because it is rarely the case that the failure ratio is exactly
equal to p. The test measures the Proportion of Failures (POF ) and checks the consis-
tency of the number of violations with p, under null hypothesis that the model is correct
by assuming the number of violations follows the binomial distribution. The test statistics
are given by,

LRPOF = −2log

 px ∗ (1− p)T−x(
x
T

)x [
1−

(
x
T

)T−x]
 ∼ χ2(1) (2.3.1)

If the p−value of this test is smaller than a chosen threshold value c, called the significance
level of the test, the hypothesis is rejected and the model is considered to be inaccurate
for the data.
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E(shortfall2) measures the usefulness of the fitted model to lower potential loss. The
smaller the value is, the better the fitted model is. For each date t, shortfallt = ut+V aRt,
if there is a failure at t. Otherwise, shortfallt is equal to 0. E(shortfall2) is the mean of
shortfall2t that is equal to the sum of shortfall2t over all the dates divided by x.

In Rc1 , c1 is the p − value. For each stock, a model is rejected at a significance level
c as long as it has any (Rc1) mark and c1 ≤ c because if a model is adequate for a finan-
cial time series, its LR test score for any of the three p’s should not exceed the related
critical value. The critical values of χ2(1) distribution are 3.841 for c1 = 0.05, 5.024 for
c1 = 0.025, and 6.635 for c1 = 0.01. In table I.0.2, no R sign is displayed if LR test is
smaller than 3.841. There is a R0.05 if the LR test is in [3.841, 5.024), R0.025 if the LR test
is in [5.024, 6.635), and R0.01 if the LR test is in [6.635,∞).

GARCHCCN is not rejected as a good model for each stock with c equal to 5%. Nonethe-
less, GARCH, GARCHCN , and GARCHTN are rejected with a significance level of 5%
in all stocks except Acer. The in-sample V aRs of each time period are plotted in figures
I.1a, I.1b, I.1c, I.1d, I.2a, I.2b, I.2c, I.2d, I.3a, I.3b, I.3c, I.3d, I.4a, I.4b, I.4c, I.4d, I.5a,
I.5b, I.5c, and I.5d. The minus V aRs of GARCHCCN are inside of the bounds and
display POF that is fairly close to the selected p in each stock.

2.3.3 Out-of-sample VaRs

Tables G.0.2 and G.0.3 imply that GARCH model needs more than 1400 data to find a
stable and efficient estimation of parameters and GARCHCCN model requires a minimum
amount of 1800. Therefore, data with more than 1800 returns are used to find the out-
of-sample V aRs, where the model is estimated on the returns over the preceding T − 400
days, {u}t∗t∗−(T−400)+1, and the VaR forecast is made for some period {t∗ + 1, ..., t∗ + s}. T
is the total number of data. s is the forecast time horizon and it is assumed to be s = 1
day. t∗ = T − 400, T − 399, ..., T − 1. In past literature, it is debated that out-of-sample
V aRs should be favourable to the in-sample forecasts for model selection.

Moreover, Christoffersen′s Interval Forecast Test is added in this section to check the
existence of violation clusters. Christoffersen′s Interval Forecast Test is probably the
most well-known test for conditional coverage and it has been discussed in Jorion (2001),
Campbell (2005), Dowd (2006) and Christoffersen (1998). It tests whether the exception
of each day’s outcome is based on the violation of the previous day. The test is carried out
by describing an indicator that has a value of 1 if the return exhibits a loss greater than
the p (we use the same p’s as in in-sample V aRs, which are 0.1, 0.05, and 0.025) V aRt

and a value of 0 otherwise.
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It =

{
1 if violation occurs
0 else

Then let nij be the indicator that condition i occurs on the previous day and j on the
current day. The outcomes can be displaced in a 2× 2 contingency table:

It−1 = 0 It−1 = 1
It = 0 n00 n10

It = 1 n01 n11

n00 + n01 n10 + n11

Let πi be the probability that an exception occurs given the previous day’s indicator
is i. Therefore, π0 = n01/(n01 + n00) and π1 = n11/(n11 + n10). Let π be the proba-
bility that an exception occurs disregarding of the indicator of the previous day and so
π = (n01 + n11)/(n01 + n00 + n11 + n10).

The model is not rejected as a good model if the null hypothesis, the likelihood that
an exception occurs is independent of whether or not an exception occurs on the previous
day, is not rejected by the test defined by the following formula:

LRind = −2 ∗ log
(

(1− π)n01+n00πn11+n10

(1− π0)n00πn01
0 (1− π1)n10πn11

0

)
(2.3.2)

By combining this test with the Kupiec test, we have a joint test of failure rate and inde-
pendence of exceptions, e.g., conditional coverage:
LRcc = LRind + LRPOF

This test statistics is χ2(2) since there are two independent LR-statistics in the test.

In table H.0.1, GARCHCCN has better Kupiec LR test and LRcc independent test in
Acer, Clevo, Fubon, Formosa Petrochemical Corp, TsingHuaTongFang, GDPower, Shang-
Hai International Airport, Naver, Willbes, Enex, Danone, Gemalto, and Vallourec; and
comparable performance in the rest of the stocks. In addition, the out-of-sample V aRs for
the last 400 periods of each stock are plotted in figures H.1a, H.1b, H.1c, H.1d, H.2a, H.2b,
H.2c, H.2d, H.3a, H.3b, H.3c, H.3d, H.4a, H.4b, H.4c, H.4d,H.5a, H.5b, H.5c, and H.5d.

2.4 Conclusions

In this chapter, the in-sample and out-of-sample V aRs are presented to convey strong sup-
port for GARCHCCN when compared with GARCH, GARCHCN , and GARCHTN
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in evaluating risks for the doubly bounded data with either ostensible or hard to observed
clusters. The fittedGARCHCCN has the smallest BIC for each stock. The lowestKupiec
test and lowest E(shortfall2) of in-sample V aRs in 20 stocks indicate GARCHCCN can
have more precise estimations of one-day-ahead in-sample V aRs and may help to lower fi-
nancial losses while the other three models are deemed as inaccurate with a significance level
of 0.05 in 19 out 20 stocks. Furthermore, the out-of-sample Kupiec and Christoffersen′s
tests show that clustered censored property can explain why out-of-sample V aR tests of
the other models exhibit violation clusters. Empirical evidence also show that the relative
bounds are mostly over five and price limits tend to make population standard devia-
tion lower than underlying standard deviation. However, this does not mean increasing
bounds will lead to larger variance because we found that as bounds change, the changes of
clustering rates and clustering coefficients become intertwined, e.g., larger relative bounds
accompanied with comparably smaller clustering rates and flatter clusters.

It is hard to say whether GARCHCCN has better LRcc test for p equal to 0.1 or other
p’s. For instance, compared to other three models, GARCHCCN has better LRcc when p
equal to 0.1, but comparable LRcc values when p equal to other two values in Fubon, For-
mosa Petrochemical Corp, and TsingHuaTongFang. This fact makes sense because when
p is either 0.05 or 0.025, the variables between the lower bound and the minus p V aR of
the fitted GARCHCCN may just be censored values (in Chapter 3, we call them mapped
values) of variables generated from a GARCH model. In this case, the p V aRs for each
fitted models are very close to each other. At the same time, the better out-of-sample
V aR forecast when p is equal to 0.1 suggests that price limits distort the distribution of
a financial time series at a cdf value close to 0.1. GARCHCCN is more suitable than
other models to detect this distortion. On the other hand, in Willbes, it is shown that
GARCHCCN can also exhibit better out-of-sample V aR forecast when p is 0.025. In fact,
GARCHCCN outperforms other three models under different circumstances.

However, GARCHCCN is rejected as a good model with a confidence interval of 99.5% in
ChinaTrust, Clevo, Inner Mongolia BaoTou, and GDPower; of 95% in Fubon and Posco;
and of 90% in LVMH according to the LRcc values. It was demonstrated that GARCH
with heavy tailed distributions, e.g., Student-t, outperform GARCH with a normal error
distribution when there is no bound on financial data. Consequently, I examine whether
better out-of-sample V aR estimate can be achieved by using the combination of clustered
censored property and heavy tail distributions, such as Student − t and GED in next
chapter.

Likewise, TGARCH and EGARCH (Li et al. (1996), Rabemananjara and Zaköıan (1993),
and Zaköıan (1994)) with clustered censored distributions can be implemented to include
the leverage effect between returns and variance. In addition, a model may be proposed in
future to capture the spillover effects from unrealized return today to tomorrow’s volatility
and return. Through this model, policy makers can find an optimal set of bounds that
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balances the negative effects of price limits, e.g., volatility spillovers (a consequent of an
extremely large volatility is large fluctuations over several subsequent days), and the posi-
tive effects, e.g., population standard deviation lower than underlying standard deviation.

Finding the comovements of financial returns is of great practical importance because
the covariance of assets in a portfolio affects the optimal hedging positions. Asset pricing,
risk management, and portfolio allocation are closely related to the correlations among dif-
ferent financial assets (Bollerslev, Engle, and Wooldridge (1988), Ng (1991), and Hansson
and Hördahl (1998)). As a result, multivariate cluster censored models will be evaluated.
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Chapter 3

Clustered Censored GARCH with
Student-t and Spillovers

3.1 Introduction

The modern empirical finance contains two main approaches, namely the unconditional and
the conditional approaches. The unconditional approach using the Gaussian distribution
was the first to be considered but numerous papers, e.g., Mandebrot (1963), Fama (1965),
Blatterberg and Gonedes (1974), Box and Tiao (1962), Mittnik and Rachev (1993), Shep-
hard (1996), Rydberg (2000), Mittnik, Rachev, and Paolella (1998), Mittnik and Rachev
(2000), demonstrated the returns of financial assets have fatter tails and more peaked
about the center than that predicted by a Gaussian distribution. In Chapter 1, we have
found that under Gaussian, the adding of clustered censored property improved data fit-
ting for 20 stocks. In particular, CCN has sharper peak than CN , TN , and normal,
e.g., figures E.2b and E.2c. The clusters about the lower and upper bounds can be cap-
tured by using different clustering ranges and shapes. Since heavy tailed distributions,
e.g., Student-t distribution, outperform Gaussian distribution in unlimited financial assets
using the unconditional approach, an extension of clustered censored property to heavy
tailed distributions can be proposed to describe the unconditional distribution of financial
returns.

On the other hand, the conditional approach became common in empirical finance. One
of the predominant models is developed by Engle (1982) and latter Bollerslev (1986). In
its standard form GARCH models have normal conditional distribution of assets returns.
However, for many financial returns, the error series normalized by the conditional variance
generating process may still be leptokurtic. Bollerslev (1987), Beine, Laurent, and Lecourt
(2002) among others used Student− t distribution. Nelson (1991) and Kaiser (1996) rec-
ommended GED. Both Student − t and GED have been investigated by Hsieh (1989).
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The Laplace distribution was discussed in Granger and Ding (1995). The stable Paretian
distributions were evaluated in Liu and Brorsen (1995), Panorska et al. (1995), and Mit-
tnik and Paolella (2003). Curto et al. (2007) found that a GARCH model with Student-t
outperforms the Normal and stable Paretian distributions using the out-of-sample density
forecasts for the daily returns of the US, German, and Portuguese main stock market in-
dexes (to have a comparison of large and small economies). Therefore, GARCH models
with heavy tails tend to outperform GARCH with a normal error distribution in bound-
less financial time series. Similarly, under price limits GARCH with a clustered censored
heavy tailed distribution tends to outperform GARCHCCN .

VaR emerged as a suitable measure of risk and it became substantially popular due to
its simplicity. Despite the lack of complexity and sub-additivity in VaR (Cheng, Liu, and
Wang (2004)), it has been recommended by numerous international financial institutes,
e.g., the Bank for International Settlements and the SEC. An extension of clustered cen-
sored property to Student − t is worth doing since the suggested GARCHCCN even
though outperforms GARCH, GARCHCN , and GARCHTN , was rejected as an appro-
priate model for seven out of twenty stocks with a significance level of 10% in Chapter
2. The out-of-sample VaR forecasts are compared among alternative conditional distribu-
tional models for seven stocks.

The rest of this chapter is organized as follows. Section 3.2 introduces clustered censored
Student−t in both exponential and polynomial forms. Section 3.3 demonstrates the perfor-
mance of the out-of-sample V aR estimate of GARCH with Student− t 1innovations, and
clustered censored Student − t in exponential and polynomial forms among seven stocks.
Similarly, the six moments, including mean, variance, skewness, kurtosis, E(utut−1), and
E(u2

tu
2
t−1), simulated by fitted models are compared with those of data in order to select

the preferred conditional distributional model from a set of candidate models. Section 3.4
concludes and presents a direction of future research that emphasizes on spillover effects.
Section 3.5 demonstrates both group and one-to-one mapping rules as two approaches to
test spillover effects.

3.2 Clustered Censored Student-t in exponential and

polynomial forms

Let v > 2. The pdf of standardized Student− t with a degree of freedom, v, at value x is
shown as

pdfstdtst(x; v) =
Γ(v+1

2
)

Γ(v
2
)
√
π(v − 2)

(1 +
x2

v − 2
)−

v+1
2 (3.2.1)

1The model and moments of a clustered censored GED are illustrated in Appendix K. This chapter
omits the empirical performance of GARCH with GED tails.
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A generalized Student− t distribution has a location parameter of µ, a scale parameter of
σ, and a degree of freedom of v. The pdf is

pdfgt(x;µ, σ, v) =
Γ(v+1

2
)

σΓ(v
2
)
√
π(v − 2)

(1 +
(x− µ)2

(v − 2)σ2
)−

v+1
2

=
pdfstdtst(

x−µ
σ

; v)

σ

(3.2.2)

Similar to CCN model, the pdf of a clustered censored generalized Student − t can
be divided into three segments. Let parameters = (µ;σ2; v; l1; r1;m1;m2). Lower is
the lower bound; and Upper is the upper bound. Let a1 = µ + l1 ∗ (Lower − µ) and
b1 = µ + r1 ∗ (Upper − µ). A = pdfgt(a1;µ, σ, v) and B = pdfgt(b1;µ, σ, v). The value
of Ωccgt(parameters, Lower, Upper) is the sum of the following three values as shown in
equations J.0.30, J.0.27, J.0.34, J.0.40, and J.0.35.

Ωccgt(parameters, Lower, Upper) = L0ccgt(parameters, Lower, Upper)

+M0ccgt(parameters, Lower, Upper)

+R0ccgt(parameters, Lower, Upper)

(3.2.3)

Therefore, by using equations J.0.31, J.0.26, J.0.36, J.0.30, J.0.27, J.0.33, J.0.39, and
J.0.35, the pdf and cdf functions are written as

pdfccgt(x) =


pdfgt(x;µ,σ,v)

Ωccgt(parameters,Lower,Upper)
ifa1 ≤ x ≤ b1

exp(m1(x−a1))A
Ωccgt(parameters,Lower,Upper)

ifLower ≤ x ≤ a1

exp(m2(x−b1))B
Ωccgt(parameters,Lower,Upper)

ifb1 ≤ x ≤ Upper

0 else

cdfccgt(x) =



0 ifx < Lower
L0ccgt (x,parameters,Lower,Upper)

Ωccgt(parameters,Lower,Upper)
ifLower ≤ x ≤ a1

L0ccgt+M0ccgt (x,parameters,Lower,Upper)

Ωccgt(parameters,Lower,Upper)
ifa1 ≤ x ≤ b1

L0ccgt+M0ccgt+R0ccgt (x,parameters,Lower,Upper)

Ωccgt(parameters,Lower,Upper)
ifb1 ≤ x ≤ Upper

1 ifx > Upper


(Notes: pdfccgt(x,parameters,Lower,Upper), cdfccgt(x,parameters,Lower,Upper), L0ccgt

(parameters,Lower,Upper), M0ccgt(parameters,Lower,Upper), and R0ccgt(parameters,Lo
-wer,Upper) are shortened as pdfccgt(x), cdfccgt(x), L0ccgt , M0ccgt , and R0ccgt in the equations
of pdfccgt and cdfccgt.)
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The mean, variance, skewness, and kurtosis are derived in equations J.0.42, J.0.44, J.0.46,
and J.0.48. During the research, I have found a polynomial clustered form. The reasons
for having a new form of clusters are first, the concern about the shapes of clusters, e.g.,
whether exponential functions are too steep to define the clusters (for example, the cluster-
ing spike at upper bounds in figures E.3c and E.3d are much higher than the clusters demon-
strated in the histograms); second, standard deviations of estimates using GARCHCCST
can be too big (which might be caused by the overly steep exponential form of clusters),
e.g., Clevo, GDPower, and Lotes (table L.0.3). Let parameters = (µ;σ2; v; l1; r1; ρ1; ρ2)

i ∈ {0, 1, 2, 3, 4}

If x ∈ [Lower, a1],

1. and ρ1+i+1 6= 0, Liccgtp (x, parameters, Lower, Upper) = A (a1−Lower+1)ρ1+i+1−(a1−x+1)ρ1+i+1

ρ1+i+1
.

2. and ρ1 + i+ 1 = 0, Liccgtp (x, parameters, Lower, Upper) = A(log(a1 − Lower + 1)−
log(a1 − x+ 1)).

If x ∈ [b1, Upper],

1. and ρ2 + i+ 1 6= 0, Riccgtp (x, parameters, Lower, Upper) = B (x−b1+1)ρ2+i+1

ρ2+i+1
.

2. and ρ2 + i+ 1 = 0, Riccgtp (x, parameters, Lower, Upper) = B ∗ log(x− b1 + 1).

Let x ∈ [a1, b1], Miccgtp (x, parameters, Lower, Upper) = Miccgt(x, parameters, Lower, Upper).

Ωccgtp(parameters, Lower, Upper) = L0ccgtp (a1, parameters, Lower, Upper)

+R0ccgtp (Upper, parameters, Lower, Upper)

+M0ccgtp (b1, parameters, Lower, Upper)

(3.2.4)

The pdf and cdf are defined as follows:

pdfccgtp(x) =


pdfgt(x;µ,σ,v)

Ωccgtp (parameters,Lower,Upper)
ifa1 ≤ x ≤ b1

(a1−x+1)ρ1A
Ωccgtp (parameters,Lower,Upper)

ifLower ≤ x ≤ a1

(x−b1+1)ρ2B
Ωccgtp (parameters,Lower,Upper)

ifb1 ≤ x ≤ Upper

0 else

35



cdfccgtp(x) =



0 ifx < Lower
L0ccgtp

(x,parameters,Lower,Upper)

Ωccgtp (parameters,Lower,Upper)
ifLower ≤ x ≤ a1

L0ccgtp
+M0ccgtp

(x,parameters,Lower,Upper)

Ωccgtp (parameters,Lower,Upper)
ifa1 ≤ x ≤ b1

L0ccgtp
+M0ccgtp

+R0ccgtp
(x,parameters,Lower,Upper)

Ωccgtp (parameters,Lower,Upper)
ifb1 ≤ x ≤ Upper

1 ifx > Upper



(Notes: pdfccgtp(x,parameters,Lower,Upper), cdfccgtp(x,parameters,Lower,Upper), L0ccgtp

(parameters,Lower,Upper), M0ccgtp (parameters,Lower,Upper), and R0ccgtp (parameters,Lo
-wer,Upper) are shortened as pdfccgtp(x), cdfccgtp(x), L0ccgtp , M0ccgtp , and R0ccgtp in the equa-
tions of pdfccgtp and cdfccgtp .)

3.3 GARCH with Student-t, Clustered Censored Student-

t in polynomial form and exponential form; and

their Empirical Performance

The following models, GARCHST , GARCHCCST , and GARCHCCSTp, have the same
conditional variance generating function as

ht = κ+ αht−1 + βu2
t−1

The error terms have different distributions.

1. ‘GARCHST ’2

ut ∼ ST (0, ht, v)

2. ‘GARCHCCST ’3

ut ∼ CCST ((0;ht; v; l1; r1;m1;m2), Lower, Upper)

2This expression of ut ∼ ST (µ, σ2, v) means that ut is a variable that follows a Student− t that has a
location parameter as µ, a latent scale parameter as σ, and a degree of freedom as v. This distributional
model is in section 3.2.

3This expression of ut ∼ CCST ((µ;σ2; v; l1; r1;m1;m2), Lower, Upper) means that ut is a variable that
follows a clustered censored Student-t (in exponential clustered form) that has the location parameter as
µ, the latent scale parameter as σ, the degree of freedom as v, the left and right clustering rates as l1 and
r1, the left slope as m1, the right slope as m2, the lower bound as Lower, and the upper bound as Upper.
This distributional model is in section 3.2.
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3. ‘GARCHCCSTp’
4

ut ∼ CCSTp((0;ht; v; l1; r1; ρ1; ρ2), Lower, Upper)

3.3.1 Data

The data used in this section include ChinaTrust, Clevo, Fubon, GDPower, LVMH, and
Posco, in which the p− values of out-of-sample LRcc tests of the fitted GARCHCCN are
lower than 10% in Chapter 2. The starting and ending dates are in table H.0.2. Another
stock, Lotes from December 10, 2007 to May 14, 2014 is also tested. A common way to
analyse the time evolution of the returns is sequential differences of the natural logarithm
of prices pt, ut = log(pt/pt−1)× 100.

3.3.2 Out-of-sample Tests

The objective of this section is to find the model which gives most precise out-of-sample
V aR forecasts among GARCHST , GARCHCCST , and GARCHCCSTp. The model
parameters are re-estimated via MLE based on sufficient number of recorded financial
returns, from t1 to t1 + T1 − 1, at each increment of t1 from 1, as is common in actual
applications. Thus, out-of-sample Kupiec tests, E(shortfall2), and LRcc are illustrated.
T1 is set as T −T0, in which T is the number of observations in data. The V aRs for the last
T0, which is defined as 400, dates in the data are evaluated to choose the best conditional
distribution out of a model group consisting of Student-t, CCST , and CCSTp.

GARCHCCST and GARCHCCSTp have smaller BIC values than GARCHST ex-
cept in Posco. The obvious advantage of a polynomial clustered form is that the fit-
ted GARCHCCSTp has much smaller standard deviations for κ, α, β estimates than
GARCHCCST has in Clevo, GDPower, and Lotes (table L.0.3).

The out-of-sample V aR measures are shown in table L.0.1. Both Kupiec and LRcc values of
GARCHCCST and GARCHCCSTp are lower than those of GARCHCCN in each stock.
For example, in Clevo, when p is 0.1, the Kupiec and LRcc tests of the fitted GARCHCCN
are 11.9226 and 14.2571, but the tests are 4.4218 and 8.6523 for both GARCHCCST and
GARCHCCSTp. In Lotes, the p−values change from 0.005 to 0.1 for both the Kupiec LR
test, and the LRcc by using GARCHCCST and GARCHCCSTp instead of GARCHST .
GARCHCCST and GARCHCCSTp increase the p−values of the Kupiec and LRcc tests

4This expression of ut ∼ CCSTp((µ;σ2; v; l1; r1; ρ1; ρ2), Lower, Upper) means that ut is a variable that
follows a clustered censored Student− t (in polynomial clustered form) that has the location parameter as
µ, the latent scale parameter as σ, the degree of freedom as v, the left and right clustering rates as l1 and
r1, the left degree of polynomial as ρ1, the right degree of polynomial as ρ2, the lower bound as Lower,
and the upper bound as Upper. This distributional model is in section 3.2.
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from 0.005 to 0.05 and from 0.005 to 0.025 compared to GARCHST model in Clevo.
Similarly, in GDPower, GARCHST is not rejected as a good model with a confidence
interval of 97.5% but both GARCHCCST and GARCHCCSTp are not rejected with a
smaller confidence interval of 95% for both tests. In ChinaTrust and Posco, p − values
increase from 0.1 to much greater values. For example, the Kupiec tests of GARCHCCST
and GARCHCCSTp in Posco for p of 0.1 are 0.7219 compared with 3.0143 of GARCHST .

Overall, the two different forms of clusters have similar Kupiec and Christoffersen′s
tests and there is no evidence showing which form of clusters performs better according to
the Kupiec LR and Christoffersen′s tests. Both forms of clusters are useful at improving
out-of-sample V aR forecasts for five out of seven stocks in table L.0.1, while in Fubon and
LVMH, the three models have almost identical values of tests.

3.3.3 Moment Simulations and Comparisons

If a model is suitable for a data series, the moments of a simulated data with a large data
size by using the fitted model should be closer to the true moments than those of other
un-suitable models. Xu et al. (2011) made an comparison of empirical moments across
their model and other alternative models to suggest that their model provides a closer
match for the first four moments. Similarly, the purpose of this section is to compare
how close the simulated moments of the fitted models are to the true moments in order to
select the best conditional distributional model among a selection group. The simulation
data size is 50,000. The moments include mean, variance, skewness, kurtosis, E(utut−1),
and E(u2

tu
2
t−1). This moment simulation method finds its preferred model for a series

of financial returns when the sum, S, of squared residuals at each moment, is smallest
among fitted models. The lowest S is made bold in Table L.0.4. Table L.0.4 shows that
GARCHCCST and GARCHCCSTp have much lower S values than the conventional
GARCHST . The S value of GARCHST is greater or equal to 6.7929 times of that of
either GARCHCCST or GARCHCCSTp. In Clevo, the S of GARCHST is 5.1437e+005
times of that of GARCHCCST .

In particular, among the first four moments, the biases of variance and kurtoses are more
noticeable than those of other moments. Variances simulated by GARCHCCST and
GARCHCCSTp are much closer to that of corresponding stock than that by GARCHST
for all the seven stocks except LVMH. In LVMH, the variances are 4.2086 for GARCHST ,
3.3803 for GARCHCCST , 3.7367 for GARCHCCSTp, and 4.0454 for the data. The
simulated variances of the three time series models have very similar biases (differences
between the simulated moments and empirical moments) in LVMH, while in other stocks,
e.g., Clevo and GDPower, simulated variance of GARCHST is at least double of that of
GARCHCCST , GARCHCCSTp, or the data. At the same time, kurtoses simulated by
GARCHCCST and GARCHCCSTp have lower biases than that by GARCHST in each
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stock. For instance, in ChinaTrust with an empirical kurtosis equal to 5.1582, the kurtoses
of GARCHCCST and GARCHCCSTp are 4.5925 and 5.0888, while the simulated kur-
tosis of GARCHST is 74.0920.

The large differences between the kurtoses of empirical data and simulated data of fitted
GARCHST models are consistent with the findings in Heracleous (2007) that GARCHST
model and sample kurtosis give biased and inconsistent estimates for the degree of free-
dom parameter. The reason for the large biases is that simulate data generated by using
Student-t distribution or GARCHST usually contain some extremely large outliers. In ta-
ble 3.3.1, “sample moments” are the moments simulated by using fitted models; “empirical
moments” are moments derived from data series. Microsoft data used here is the same as
in Chapter 2. It is found that if there is no bounds, the minimum and maximum of “sample
moments” are much larger than empirical ones by using GARCHST . A large outlier can
deviate sample variance and kurtosis away from empirical moments dramatically (in table
L.0.4). Several of them result in even greater biases. By excluding those outliers, we can
have a much better sample variance and kurtosis. “sample moments (excluding simulated
variables out of [-35.8315, 17.8692])” in table 3.3.1 are obtained accordingly. However, by
doing this, we manually add a set of bounds on the simulation. On the other hand, a hand-
ful of outliers have a small (sometimes negligible) impact on cdf and V aR. As a result,
the disadvantages of GARCHST compared to other two models in out-of-sample V aR
estimates (table L.0.1) are not as apparent as those in sample moments. When price limits
exist, GARCHCCSTp and GARCHCCST do not seem to have large biases in moment
simulations not only because of bounds but also for clusters retained. As shown in table
3.3.1, sample moments by deleting simulated variables out of the domain of empirical data
still exhibit comparably larger biases than the sample moments derived by using fitted
GARCHCCST and GARCHCCSTp in table L.0.4.

In addition, GARCHCCSTp has lower S’s in two out of seven stocks, while the S values
of GARCHCCST are 24.4734 compared to 310.1954 of GARCHCCSTp in ChinaTrust,
502.6951 to 1.0799e+ 003 in Clevo, 5.3881 to 25.6727 in Fubon, 318.3817 to 1.2635e+ 003
in Lotes, and 943.5703 to 1.0498e+ 003 in Posco. Therefore, GARCHCCST is preferred
to GARCHCCSTp via the S selection rule.

3.4 Conclusions

In Chapter 2, GARCHCCN is demonstrate to be more suitable than censored, truncated,
and unlimited GARCH model under Gaussian for its greater p− values of in-sample Ku-
piec tests and lower out-of-sample LRcc in most stocks. Similarly, GARCHCCST and
GARCHCCSTp outperform GARCHST according to the p − values of out-of-sample
V aR measures and S values in moment simulations. In a word, clustered censored prop-
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Table 3.3.1: Microsoft: Comparisons between sample moments (sample size of 50,000) and
empirical moments

κ α β v −LOGL BIC
0.0185∗∗∗ 0.9390∗∗∗ 0.0604∗∗∗ 5.3063∗∗∗ 1.5186e+004 3.0408e+004
( 0.0055) (0.0069) ( 0.0073) ( 0.3084)

Empirical moments
minimum maximum mean variance skewness kurtosis E(utut−1) E(u2

tu
2
t−1)

-35.8315 17.8692 0.0869 4.9401 -0.6136 17.9271 0.0446 68.8428
Sample moments
minimum maximum mean variance skewness kurtosis E(utut−1) E(u2

tu
2
t−1)

-171.2947 157.7349 -0.0267 21.9183 -0.0355 306.6418 -0.0154 3.2751e+004
Sample moments (excluding simulate variables out of [-35.8315, 17.8692])
minimum maximum mean variance skewness kurtosis E(utut−1) E(u2

tu
2
t−1)

-35.7627 17.8665 -0.0387 7.8015 -1.2123 20.5928 0.0297 322.2157

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

erty is needed for improving risk forecasts.

However, many other questions we have under a bounded environment remain unanswered.
For instance, are there spillover effects from previous periods’ leftover to this period’s re-
turn or volatility? Would spillover effects change with respect to bounds? To answer these
questions, the first step we take is to define an appropriate mapping from an underlying
distribution to the related observable distribution. The ideal mapping rule is one-to-one,
but we find that in an one-to-one mapping, an underlying return within the bounds may
need to be mapped into an observed value different from its original value. This fact is
not consistent with the traditional mapping rule, in which returns within bounds stay the
same after being mapped (Wei (2002)). The next section describes some approaches we
used in detecting spillover effects.

3.5 Future Research Interest: Spillovers

As a policy maker, it is interesting to find how a set of bounds influence trading activi-
ties. Through changes of bounds and trading limit policies, a policy maker may infer a
relationship between trading activities and bounds. It is possible to find how spillovers,
differences between latent stock returns and their realized stock returns, from past periods
influence trading prices today. Spillovers are normally referred to correlations among dif-
ferent financial returns but in this thesis, spillovers are unrealized parts of trading prices.
Latent stock returns are not observed in reality and this makes an analysis of spillovers
extremely difficult. We believe that it is possible to test spillover effects by using a time
series model. An appropriate mapping rule is fundamental for the success of this model.
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3.5.1 Simulation of GARCH(1,1) with spillovers

In this section, we examine the estimate biases due to spillovers in RGP , an abbreviation
that stands for return generating process. The mapping rule used is a group mapping since
a value outside of bounds are mapped to any variable in a range within the bounds.

The leftovers from the unrealized returns over past days may have effects on today’s ob-
served return. The simulations in Wei (2002) added the sum of the differences between
all past days’ observed returns and underlying returns to today’s return. The author as-
sumed no effect from the leftovers to the underlying volatility. The dynamic is explained
as follows. The underlying return at time t is denoted as utruet , the observed return is
useent , and the sum of the accumulated leftovers from the first period until time t and the
underlying return of utruet is umiddlet .

Given a series of returns, {utruet}
T
t=1, generated from a GARCH(1, 1) process with κ = 0.1,

α = 0.8, and β = 0.1, the existence of two bounds causes the spillover effects. At the first
time period, there is no spillover. Therefore, umiddle1 = utrue1 .

The mapping rule is defined as follows. The underlying conditional variance generation
process is not influenced by bounds.

ht = κ+ αht−1 + βu2
truet−1

The underlying mean at each time t is 0. umiddlet is mapped into useent . We also assume
the mapped values of umiddlet will make the distribution of useent to be a CCN distribution
with parameters of (0;h(t); l1t ; r1t ;m1;m2) at each time period of t. Let useent = umiddlet if
umiddlet ∈ [Lower, Upper]. To simplify the process, we let m1 = −m2 and we can change
the value of m2 in simulations. The clustering rates of l1t and r1t change with respect to
the clustering coefficients. To make Ωccn = 1 at each time t, l1t and r1t have to satisfy the
following equations:

1. cdfccn(l1t∗Lower, (0;h(t); l1t ; r1t ;−m2;m2), Lower, Upper) = F
(
l1t ∗ Lower, 0,

√
h(t)

)
2. cdfccn(r1t∗Upper, (0;h(t); l1t ; r1t ;−m2;m2), Lower, Upper) = F

(
r1t ∗ Upper, 0,

√
h(t)

)
Hence, l1t and r1t are derived from the values of m2, h(t), Lower, and Upper.

Let pat = (0;h(t); l1t ; r1t ;−m2;m2). If umiddlet < Lower, useent ∈ [Lower, l1t ∗ Lower]
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and the pdf for useent (the distribution of the mapped value) is

pdfccn(useent , pat, Lower, Upper)− f
(
useent , 0,

√
h(t)

)
cdfccn(l1t ∗ Lower, pat, Lower, Upper)− F

(
l1t ∗ Lower, 0,

√
h(t)

)
+ F

(
Lower, 0,

√
h(t)

)
(3.5.1)

If umiddle1 > Upper, useent ∈ [r1t ∗ Upper, Upper] and the pdf for useent is

pdfccn (useent , pat, Lower, Upper)− f
(
useent , 0,

√
h(t)

)
1− cdfccn(r1t ∗ Upper, pat, Lower, Upper) + F

(
r1t ∗ Upper, 0,

√
h(t)

)
− F

(
Upper, 0,

√
h(t)

)
(3.5.2)

useen1 is the mapped value of umiddlet according to this mapping rule. The leftover is
umiddle1 − useen1 for the second time period. Let λ be the discount factor. umiddle2 =
utrue2 + λ ∗ (umiddle1 − useen1). useen2 is the mapped value of umiddle2 , and so on. In the
simulations, we change λ and m2 to show how the parameter estimates change accord-
ingly. λ is either 0.8 or 1. λ is not greater than 1 because a discount factor greater
than 1 will result in diffusion of returns. m2 is either 1 or 2. The bounds are [−3, 3]. An
simulation with a data size of 5000 is done according to the mapping rule mentioned above.

In table L.0.2, when λ = 1 and m2 increases from 1 to 2, the downward biases of κ’s by
GARCHCCN and GARCH increase. In GARCHCCN , κ changes notably from 0.0824
to 0.0694 and the true value is 0.1. The downward biases of β’s decrease. As an illustration,
β increases from 0.0852 to 0.0997 and the true value is 0.1. However, when λ = 0.8, as
m2 increases, the downward biases of κ’s by GARCHCCN and GARCH decrease, e.g.,
from 0.0857 to 0.0902 in GARCHCCN . The downward biases of β’s change to upward
biases, e.g., from 0.0893 to 0.1158 in GARCHCCN . If m2 = 2 or m2 = 1, as λ increases,
the downward biases of κ’s increase. When λ = 1, as m2 rises, the upward biases of α’s
for both fitted models increase, while when λ = 0.8, the upward biases of α change to
downward biases. This means lower value of λ and higher value of m2 have contrary effects
to κ and α estimates but affect β estimates in the same direction. In addition, a greater
true value of m2 leads to a larger right clustering coefficient. Correspondingly, clusters are
steeper.

It is hard to describe how a lower λ affects the clustering coefficient estimates because
both the clustering rates and clustering shapes change. When m2 = 1, a lower λ is accom-
panied by steeper clusters. When m2 = 2, a smaller λ results in flatter left clusters and
steeper right clusters. Since l1 and r1 are related to the clustering coefficients, as clusters
become more obvious, the clustering rates have to become greater so the clustering ranges
become smaller. This sequential changes are needed to make Ωccn = 1 at each time t. The
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estimated clustering rates and coefficients coincide with this fact.

Due to the time varying conditional variance, the clustering rates of l1 and r1 change
over time. However, we can still obtain the values of l1t and r1t each period from the
simulation process. The mean, median, standard deviation of these two variables, each de-
noted as mean(l1), median(l1), std(l1), mean(r1), median(r1), and std(r1) in table L.0.2,
are presented. There are upward biases about 0.07 in the estimates of either l1 and r1 by
using GARCHCCN model if mean(l1) and mean(r1) are used as the estimates of l1 and r1.

Overall, the fitted GARCHCCN models have lower BIC values than GARCH. The
models capture the clusters in the simulations although the clustering coefficients have
much greater magnitudes than the true values of m1 and m2. For instance, in the first sim-
ulation, left clustering coefficient is -27.0139 while the true value is -1. The right clustering
coefficient is 30.7408 while the true value is 1. Although the large biases of these clustering
coefficients might be due to the wrong assumption of fixed clustering rates (while in fact
they are changing on each date t), the biases of parameter estimates demonstrate that it
is necessary to examine the spillover effects when doing a financial modelling. Moreover,
the accumulations of leftovers may have impact on the underlying variance as well as the
mean. More research need to be done on spillover effects.

3.5.2 Mapping Rules

As discussed in Chapter 1, the relationship between daily limits and the underlying/population
standard deviation was investigated in past literature especially for arguing the pros and
cons of price limits. Research for this purpose compare data with and without price limits
and some comparisons are completed by using data with different limits. It is not difficult
to find countries where price limits got aborted after a period of imposition. It is also
possible to find stock returns with different limits over time (Maghyereh et al (2007) and
Kim (2001)). However, the comparison of stock returns in different time horizons may not
be convincing due to economic cycles or other interior and exterior factors that might alter
trading prices.

Thus, a stock that is traded in two markets (one with and the other without price limits)
simultaneously can be used. Nevertheless, stock returns are not independent from educa-
tion and income levels of traders. It is unlikely that the same stock traded in two different
countries have equal volatility given different wealth (Li (2007)) and preferences. It has
been shown that noisy traders have impact on stock performance. Rational arbitrageurs
with limited horizon do not eliminate the belief that the price fluctuates randomly in near
future (Brown (1999) and Bhushan et al.(1997)). Chang et al. (2009) target at the fact
that un-informed traders exacerbate the magnet effect. Cho et al. (2003) find the accel-
eration trends to both lower and upper bounds. Returns within the 3% of the lower and
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upper bounds affect both conditional mean equation of the return and conditional variance
equation for next period of time. However, it is hard to separate price momentum effects
(Jegadeesh and Titman (1993)), a clustering of price increase or decrease, from spillover
and magnet effects. Furthermore, Lee and Swaminathan (2000) find that price momentum
effects reverse over over Years 3 through 5 but not through the third year following portfo-
lio formation. Kim and et al (2008) compare the effects from trading halts with those from
price limits to stocks in the Spanish Stock Exchange in the period of frequent enforcements
of trading halts and price limit hits. Others compared variances right after the returns hit-
ting the limits with those following the returns within the bounds (Kim and Rhee (1997)),
but rough comparisons can not explain spillover effects if more details are wanted, e.g.,
change of underlying mean/variance with respect to the changes of bounds. An adequate
mapping rule needs to be analysed in order to find meticulous details of spillover effects.

In this section, I suggest using a mixture of one-to-one and group mappings between a
normal distribution and a CCN , because in a CN distribution (a special case of CCN)
a range of variables, x < Lower (Lower is the lower bound, Upper is the upper bound),
are mapped into Lower. However, the empirical evidence in Chapter 1, 2, and Section
3.3 show that clusters might not be right at bounds. Masters and Gurley (2003) proposed
a stochastic non-Gaussian simulation method capable of reliably preserving both spectral
and probabilistic contents for a distribution deviating from Gaussian due to extreme envi-
ronmental pressure, such as strong winds (Gioffre et al. (2000), Kumar and Stathopoulos
(2000)). I can use this method since a CCN is a distortion of a Gaussian distribution. The
percentiles of a CCN do not change from the underlying normal distribution. A variable
x of a normal distribution can be matched with a y with the corresponding CCN by us-

ing cdfccn(y, pa, Lower, Upper) = F
(
x, pa(1),

√
pa(2)

)
, given pa = (µ;σ2; l1; r1;m1;m2).

The underlying normal distribution is N(pa(1), pa(2)). Thus, cumulative density function
mapping (cdf mapping) can be combined with this so called group mapping.

It is easy to find a real life example that is related to this mapping rule. When a class
has extremely high or low grades, the distribution of grades is unlikely to be a Gaussian
distribution. An instructor adds more to poor grades in order to force the distribution of
the grades closer to a normal distribution. This mapping rule from a non-Gaussian to a
Gaussian is one to one and the sequence from highest to the lowest marks is not changed.
The ranks of students are kept the same before and after mapping. In a word, the cdf is
not changed.

Figures N.1, N.2, and N.3 demonstrate the mapping rule from a random variable of x
with a normal distribution to y, a variable with a CCN distribution. The intersections of
the purple lines with the two cdf ′s in these figure give an example of mapping between y
and x. The intersection of the purple line with the red curve is y and that of the purple
line with the green curve is x. There is a unique intersection between the red and green
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curves in each of figures N.1 and N.2. Let this intersection be point A, the intersection
between the blue line and the two cdf curves. Let x∗ be the mapped value of point A to
the horizontal axis.

Θ ∈ [0, 1]

E(x− y) =
∫ 1

0
(F−1(Θ, µ, σ)− cdf−1

ccn(Θ, pa, Lower, Upper)) dΘ

F−1 is the inverse cumulative function of normal and cdf−1
ccn is the inverse cumulative

function of CCN . When Θ = 0 or Θ = 1, F−1(Θ, µ, σ) is not a number in MATLAB.
Therefore, we set Θ1 = 10−6 (this is just an example since what value Θ1 is depends on the
pdf of CCN). If Θ ∈ [0 + Θ1, 1−Θ1], the cdf mapping is used. For Θ < Θ1, we set a map-
ping from CCN variables in the domain of [Lower, cdf−1

ccn(Θ1, pa, Lower, Upper)] to normal
variable in the domain of (−∞, F−1(Θ1, µ, σ)] and vice versa. Similarly, we have a group
mapping from CCN variables in the domain of [cdf−1

ccn(1 − Θ1, pa, Lower, Upper), Upper]
to normal variable in the domain of [F−1(1−Θ1, µ, σ),∞).

E(x−y) =

∫ ∞
−∞

(cdfccn(x, pa, Lower, Upper)−F (x, µ, σ))∗x dx = µ−meanccn(pa, Lower, Upper)

The value can be found by using simulations. On the contrary, E(x−y)2 =
∫ 1

0
(F−1(Θ, µ, σ)−

cdf−1
ccn(Θ, pa, Lower, Upper))2 dΘ is not easy to derived. It is easier to calculate the first and

second moments of leftovers, E(x− y) and E(x− y)2 in group mapping, e.g. the mapping
rule in 3.4.1., but the leftover of group mapping is the mean of one-to-one mapping over a
domain and so spillover effects computed in a group mapping are not precise.

The one-to-one mapping has its own problem as well. It is hard to explain why an underly-
ing variable inside of the bounds is mapped to a different value with a CCN distribution.
We believe that some trading offers inside of the bounds are crowded out by the offers
made by people whose ideal prices are outside of the bounds. However, it may not be
reasonable that crowding out effects result in a mapping rule following the cdf mapping
rule perfectly.

Nevertheless, one-to-one mapping is much simpler than group mapping since under the
assumption that CCN is not symmetric, matching up the domains of mapping can be
complicated. As a result, we try the one-to-one mapping rule. Let underlying parame-
ters of a CCN be (0; 2.72; 0.8; 0.7; 0.99;−0.99) and bounds be [−5, 5], by using a mapping
simulation of data size 1000, latent values are plotted along with observed values in figure
N.4. In figure N.5, underlying parameters of a CCN are (0; 2.72; 0.8; 0.7; 0.99;−0.99) and
bounds are [−7.5, 7]. Latent and observed values diverge around bounds. In these two
figures, the latent values are greater than their related observed values. The graphs of
the cdf mapping for bounds of [−5, 5] and [−7.5, 7] are shown as figures N.6 and N.7. In
figure N.8, bounds are [−14, 14]. An underlying variable can be mapped into a value that
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is greater than, equal to, or less than its latent value.

CCN and GARCHCCN are used in the following set-up containing spillover effects.
Chilisin (from September 27, 2001 to April 24, 2015), a Taiwanese stock, is used as an
example. The mapping rule, a combination of group and one-to-one mapping, explained
right above is used. Let Θ = cdfccn(y, pa, Lower, Upper).

x = F−1(Θ, pa(1), pa(2))

This whole mapping from y to x is denoted as x = mappingback(y, pa, Lower, Upper). The
first moment difference is x− y and the second moment difference is (x− y)2. t stands for
the date. Suppose the return series of uTt=1 have spillover effects from both the first and
second moments based on a GARCHCCN model. The parameters include κ, α, β, l1, r1,
m1, m2, CL1 (the spillover coefficient for the first moment when the true value is lower than
the lower bound), CR1 (the spillover coefficient for the first moment when the true value is
greater than the upper bound), CL2 (the spillover coefficient for the second moment when
the true value is lower than the lower bound), and CR2 (the spillover coefficient for the
second moment when the true value is greater than the upper bound). For any period of
t, pat = (meant;ht; l1; r1;m1;m2).

umiddelt = mappingback(ut, pat, Lower, Upper)

c1t = 0

c2t = 0

If umiddelt < Lower, c1t = CL1 and c2t = CL2; if umiddelt > Upper, c1t = CR1 and
c2t = CR2.

meant+1 = c1t ∗ (umiddelt − ut)

ht+1 = κ+ αht + β(ut −meant)2 + c2t ∗ (umiddelt − ut)2

This model is denoted as GARCHCCNmapping.

3.5.3 Conclusions

In table 3.5.1, the fitted GARCHCCN models with or without the spillovers have al-
most identical LOGL and GARCHCCNmapping may have a greater BIC value than
GARCHCCN (table 3.5.1). One of the reasons is that by using GARCHCCN relative
bounds are large. For instance, table I.0.1 shows the bounds are wider than three times and
some are over 10 times of the underlying standard deviation. There are very few variables
causing spillovers. According to table E.0.2, it is strongly supported that GARCHCCN
has a greater BIC than GARCHST . The underlying distribution assumed might be wrong
at the first place and the mapping rule needs to be adjusted as well. The differences of
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v values between the fitted GARCHCCST and GARCHCCSTp and those of the fitted
GARCHST in table L.0.3 suggest that there might be more variables causing spillovers
if the underlying conditional distributional model is Student-t rather than normal. More-
over, figure 1.4 and table 1.4.1 suggest that GARCH with clustered censored Laplace and
spillover effects is worth doing.

Table 3.5.1: Fitted GARCHCCNmapping and GARCHCCN Models

Chilisin
parameters GARCHCCNmapping GARCHCCN
κ 0.2895∗∗∗ 0.2793∗∗∗

( 0.0098e-03) ( 0.0648)
α 0.8733∗∗∗ 0.8728∗∗∗

( 0.0422e-03) ( 0.0232)
β 0.0385∗∗∗ 0.0430∗∗∗

( 0.0024e-03) ( 0.0075)
l1 0.7342∗∗∗ 0.7330∗∗∗

( 0.0305e-03) ( 0.0136)
r1 0.8629∗∗∗ 0.8632∗∗∗

( 0.0897e-03) ( 0.0085)
m1 −0.7044∗∗∗ −0.7147∗∗∗

( 0.0080e-03) ( 0.1389)
m2 3.8326∗∗∗ 3.9304∗∗∗

( 0.1695e-03) ( 0.3879)
CL1 −0.0370∗∗∗

( 0.0011e-03)
CR1 −0.1047∗∗∗

( 0.6666e-03)
CL2 0.0537∗∗∗

( 0.0025e-03)
CR2 0.0655∗∗∗

( 0.0017e-03)
−LOGL 7.3317e+03 7.3348e+03
BIC 1.4753e+004 1.4726e+004
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Appendix A

The First Four Moments of CN and
TN

A.0.4 The first four moments of standard normal with two bounds

x ∼ N(µ;σ2) and if x ∈ [Lower, Upper]

y =
x− µ
σ

Let Lower1 = Lower−µ
σ

and Upper1 = Upper−µ
σ

. Therefore, y ∈ [Lower1, Upper1].
Consequently,

f(x;µ, σ) =
f(y; 0, 1)

σ

F (x;µ, σ) = F (y; 0, 1)

y is a variable with standard normal distribution.

∀i ∈ {1, 2, 3, 4}

stdinti(Lower1, Upper1) =

∫ Upper1

Lower1

yif(y; 0, 1) dy

If i = 1, it is equal to−f(Upper1; 0, 1)+f(Lower1; 0, 1). If i = 2, it is equal to−Upper1f(Upper1; 0, 1)+
Lower1f(Lower1; 0, 1)+F (Upper1; 0, 1)−F (Lower1; 0, 1). If i = 3, it is equal to−Upper1

2f(Upper1; 0, 1)+
Lower1

2f(Lower1; 0, 1)+2stdint1(Lower1, Upper1). If i = 4, it is equal to−Upper1
3f(Upper1; 0, 1)+

Lower1
3f(Lower1; 0, 1) + 3stdint2(Lower1, Upper1).

norminti(µ, σ, Lower, Upper) =

∫ Upper

Lower
xi ∗ f(x, µ, σ) dx

If i = 1, it is equal to µ ∗ (F (Upper, µ, σ)− F (Lower, µ, σ)) + σ ∗ stdint1(Lower1, Upper1).
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If i = 2, it is equal to σ2 ∗ stdint2(Lower1, Upper1) + 2µσ ∗ stdint1(Lower1, Upper1) + µ2 ∗
(F (Upper, µ, σ)− F (Lower, µ, σ)).
If i = 3, it is equal to σ3 ∗ stdint3(Lower1, Upper1) + 3µ2σ ∗ stdint1(Lower1, Upper1) + 3σ2µ ∗
stdint2(Lower1, Upper1) + µ3(F (Upper, µ, σ)− F (Lower, µ, σ)).
If i = 4, it is equal to σ4 ∗ stdint4(Lower1, Upper1) + 4µ3σ ∗ stdint1(Lower1, Upper1) + 6σ2µ2 ∗
stdint2(Lower1, Upper1)+4σ3µ∗stdint3(Lower1, Upper1)+µ4∗(F (Upper, µ, σ)−F (Lower, µ, σ)).

A.0.5 The First Four Moments of TN

meantn((µ;σ2), Lower, Upper) =
normint1(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)
(A.0.1)

vartn((µ;σ2), Lower, Upper) =
normint2(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)
−(meantn((µ;σ2), Lower, Upper))2

(A.0.2)

(A.0.3)

skewnesstn((µ;σ2), Lower, Upper)

= [
normint3(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)

− 3meantn((µ;σ2), Lower, Upper)
normint2(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)

+ 2meantn((µ;σ2), Lower, Upper)3]/[vartn((µ;σ2), Lower, Upper)3/2]

(A.0.4)kurtosistn((µ;σ2), Lower, Upper)

= [
normint4(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)
− 3meantn((µ;σ2), Lower, Upper)4

+
6meantn((µ;σ2), Lower, Upper)2normint2(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)

− 4meantn((µ;σ2), Lower, Upper)normint3(µ, σ, Lower, Upper)

F (Upper, µ, σ)− F (Lower, µ, σ)
]/[vartn((µ;σ2), Lower, Upper)2]

A.0.6 The First Four Moments of CN

If i ∈ 1, 2, 3, 4,

cninti((µ;σ2), Lower, Upper) =

∫ Upper

Lower
pdfcn(x)xi dx (A.0.5)

Therefore, ∀i = 1, 2, 3, 4,

(A.0.6)cninti((µ;σ2), Lower, Upper) = norminti(µ, σ, Lower, Upper)

+(F (Lower, µ, σ))Loweri+(1−F (Upper, µ, σ))Upperi
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meancn((µ;σ2), Lower, Upper) = cnint1((µ;σ2), Lower, Upper) (A.0.7)

varcn((µ;σ2), Lower, Upper) = cnint2((µ;σ2), Lower, Upper)−meancn((µ;σ2), Lower, Upper)2

(A.0.8)

(A.0.9)

skewnesscn((µ;σ2), Lower, Upper)

= [cnint3((µ;σ2), Lower, Upper)

− 3meancn((µ;σ2), Lower, Upper)cnint2((µ;σ2), Lower, Upper)

+ 2meancn((µ;σ2), Lower, Upper)3]/[varcn((µ;σ2), Lower, Upper)3/2]

(A.0.10)kurtosiscn((µ;σ2), Lower, Upper)

= [cnint4((µ;σ2), Lower, Upper)− 3meancn((µ;σ2), Lower, Upper)4

+ 6meancn((µ;σ2), Lower, Upper)2cnint2((µ;σ2), Lower, Upper)

−4meancn((µ;σ2), Lower, Upper)cnint3((µ;σ2), Lower, Upper)]/[varcn((µ;σ2), Lower, Upper)2]
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Appendix B

The First Four Moments of CCN

Let x be a variable with a CCN distribution. pdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) is
the pdf as defined in the CCN section.

Let y ∈ [Lower, a1], so
∀i ∈ {0, 1, 2, 3, 4}

If m1 6= 0:

Li(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = Ω ∗
∫ y

Lower
yipdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) dx

=
A

m1
[yi ∗ exp(m1(y − a1))− Loweri ∗ exp(m1(Lower − a1))]−

i ∗ Li−1(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper)

(B.0.1)

L0(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) =
A

m1
[exp(m1(y − a1))− exp(m1(Lower − a1))]

(B.0.2)

Let y = a1 in equation B.0.2,

L0 =
A

m1
[1− exp(m1(Lower − a1))] (B.0.3)

Li = Li(a1, (µ;σ2;m1;m2; l1; r1), Lower, Upper) (B.0.4)

But if m1 = 0:

Li(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = A
yi+1 − Loweri+1

i+ 1
(B.0.5)

Li = Li(a1, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = A
ai+1

1 − Loweri+1

i+ 1
(B.0.6)
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Let y ∈ [a1, b1], so
∀i ∈ 1, 2, 3, 4

Mi(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = Ω ∗
∫ y

a1

yipdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) dx

= norminti(µ, σ, a1, y)

(B.0.7)

If y is equal to b1 in equation B.0.7, the following formula is derived.

Mi = Ω ∗
∫ b1

a1

yipdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) dx

= norminti(µ, σ, a1, b1)

(B.0.8)

Let y ∈ [b1, Upper], so
∀i ∈ 1, 2, 3, 4

If m2 6= 0:

Ri(y, [µ;σ2;m1;m2; l1; r1), Lower, Upper) = Ω ∗
∫ y

b1

yipdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper) dx

=
B

m2
[yi ∗ exp(m2(y − b1))− bi1]

− i ∗Ri−1(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper)

(B.0.9)

R0(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) =
B

m2
[exp(m2(y − b1))− 1] (B.0.10)

Let y = Upper in equation B.0.10,

R0 =
B

m2
[exp(m2(Upper − b1))− 1] (B.0.11)

For i = 1, 2, 3, 4,

Ri = Ω ∗
∫ Upper

b1

yipdfccn(x, (µ;σ2; l1; r1;m1;m2), Lower, Upper)

=
B

m2
[yi ∗ exp(m2(Upper − b1))− bi1]− i ∗Ri−1

(B.0.12)

If m2 = 0:

R0(y, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = B
yi+1 − bi+1

1

i+ 1
(B.0.13)
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R0 = R0(Upper, (µ;σ2;m1;m2; l1; r1), Lower, Upper) = B
Upperi+1 − bi+1

1

i+ 1
(B.0.14)
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Appendix C

Results from Monte Carlo
Simulations for TN, CN, CCN
models with a data size of 500 or
5000

Table C.0.1: Simulation List

Experiment No. True Model Purpose Data Size Table Rows
1 TN Bounds change 5000 C.0.2 All
2 TN Bounds change 500 C.0.3 All
3 CN Bounds change 5000 C.0.4 All
4 CN Bounds change 500 C.0.5 All
5 CCN Bounds change 5000 C.0.6 All
6 CCN m1 and m2 change 5000 C.0.7 All
7 CCN l1 and r1 change 5000 C.0.8 All
8 CCN Bounds change 500 D.0.2 All
9 CCN m1 and m2 change 500 D.0.3 All
10 CCN l1 and r1 change 500 D.0.4 All
11 TN Bounds change when µ=0.1 5000 D.0.1 1-3
11 CN Bounds change when µ=0.1 5000 D.0.1 4-6
11 CCN Bounds change when µ=0.1 5000 D.0.1 9&10
11 CCN m1 and m2 change when µ=0.1 5000 D.0.1 7-9
11 CCN l1 and r1 change when µ=0.1 5000 D.0.1 9&11
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Figure C.1: True Distribution of TN with bounds of [-2,2] and Fitted pdf Curves

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

fr
eq

ue
nc

y(
x)

 

 

histogram of a univariate data simulation from  TN  with a data size of 5000
fitted normal
fitted CN
fitted CCN
fitted TN

56



Figure C.2: True Distribution of CN with bounds of [-2,2] and Fitted pdf Curves
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Figure C.3: True Distribution of CCN with bounds of [-2,2] and Fitted pdf Curves
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Table C.0.2: Results from Experiment 1 for TN

Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

[−4, 4] -0.0008 0.9997∗∗∗ -0.0008 1.0002∗∗∗ -0.0008 0.9997∗∗∗ -0.0009 0.9996∗∗∗ 0.9905∗∗∗ 1.0024∗∗∗ -1.4221 0.8712
( 0.0139) ( 0.0093) ( 0.0139 ) (0.0094) ( 0.0139 ) ( 0.0093) ( 0.0139 ) ( 0.0096 ) ( 0.0581 ) ( 0.1447 ) ( 8.7876 ) ( 3.2053)

[−3, 3] 0.0002 0.9865∗∗∗ 0.0010 0.9993∗∗∗ 0.0010 0.9859∗∗∗ 0.0012 0.9974∗∗∗ 0.9748∗∗∗ 0.9746∗∗∗ -1.0854 1.2580
( 0.0137) (0.0094) ( 0.0134 ) (0.0095) ( 0.0137 ) (0.0095) ( 0.0140 ) ( 0.0111) ( 0.0429) ( 0.0452 ) ( 7.3087 ) ( 6.4649)

[−2, 2] 0.0000 0.8799∗∗∗ 0.0001 1.0006∗∗∗ 0.0000 0.8798∗∗∗ -0.0001 0.9970∗∗∗ 0.9691∗∗∗ 0.9721∗∗∗ -0.2844 0.3505
( 0.0126 ) (0.0073) (0.0163 ) ( 0.0156) ( 0.0126 ) ( 0.0073) ( 0.0164 ) ( 0.0156) ( 0.0328 ) ( 0.0373 ) ( 2.8004 ) ( 2.1387)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
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Table C.0.3: Results from Experiment 2 for TN

Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

[−4, 4] -0.0011 0.9998∗∗∗ -0.0011 0.9994∗∗∗ -0.0011 0.9989∗∗∗ -0.0010 0.9988∗∗∗ 1.0000∗∗∗ 1.0000∗∗∗ -0.2379 0.2589
( 0.0453 ) ( 0.0314) ( 0.0454 ) ( 0.0316) (0.0453 ) ( 0.0314) ( 0.0455 ) ( 0.0314 ) ( 0.7744 ) ( 1.5997 ) ( 2.4520 ) ( 1.1285)

[−3, 3] -0.0003 0.9857∗∗∗ -0.0003 0.9985∗∗∗ -0.0003 0.9848∗∗∗ 0.0007 0.9922∗∗∗ 0.9748∗∗∗ 0.9899∗∗∗ -20.2465 16.8953
( 0.0464) (0.0303) (0.0477 ) ( 0.0346) ( 0.0464 ) (0.0302) ( 0.0491 ) ( 0.0347 ) ( 0.0830) (0.1658 ) ( 157.5152 ) ( 156.3750)

[−2, 2] -0.0001 0.8794∗∗∗ -0.0001 1.0011∗∗∗ -0.0001 0.8785∗∗∗ -0.0017 0.9817∗∗∗ 0.9553∗∗∗ 0.9487∗∗∗ -4.9314 6.0292
( 0.0383 ) ( 0.0244) ( 0.0496 ) ( 0.0532) ( 0.0383 ) ( 0.0243) ( 0.0521 ) ( 0.0571 ) ( 0.0674 ) ( 0.0690 ) ( 21.4400 ) ( 29.7312)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
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Table C.0.4: Results from Experiment 3 for CN

Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

[−4, 4] 0.0011 1.0002∗∗∗ 0.0011 1.0006∗∗∗ 0.0011 1.0002∗∗∗ 0.0011 1.0005∗∗∗ 0.9993∗∗∗ 0.9993∗∗∗ -165.1612 374.1531
( 0.0139 ) (0.0105) ( 0.0139 ) ( 0.0106) (0.0139 ) ( 0.0105) ( 0.0143 ) ( 0.0102 ) ( 0.0667 ) ( 0.0495 ) ( 1.1014e+003 ) ( 2.2310e+003)

[−3, 3] 0.0019 0.9955∗∗∗ 0.0019 1.0098∗∗∗ 0.0019 0.9970∗∗∗ -0.0076 0.9993∗∗∗ 0.9993∗∗∗ 0.9073∗∗∗ -1000 1030
( 0.0463 ) ( 0.0319) ( 0.0477 ) ( 0.0368) ( 0.0466 ) ( 0.0328) ( 0.0472 ) ( 0.0356) ( 0.0907) ( 0.1024) ( 1.6758e+004 ) ( 4.9602e+003)

[−2, 2] 0.0006 0.9599∗∗∗ 0.0010 1.2170∗∗∗ 0.0006 1.0007∗∗∗ -0.0063 1.0000∗∗∗ 0.9993∗∗∗ 0.9993∗∗∗ -2000 2010
( 0.0128 ) (0.0081) ( 0.0206 ) ( 0.0278) ( 0.0133 ) ( 0.1405) ( 0.0521 ) ( 0.1597 ) ( 0.2276 ) ( 0.1887 ) (5.0849e+003 ) ( 4.6664e+003)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
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Table C.0.5: Results from Experiment 4 for CN

Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

[−4, 4] -0.0001 1.0011∗∗∗ -0.0001 1.0007∗∗∗ -0.0001 1.0002∗∗∗ -0.0010 1.0001∗∗∗ 1.0000∗∗∗ 0.9894∗∗∗ -0.0179 0.1941
( 0.0474 ) (0.0327) ( 0.0475 ) ( 0.0330) (0.0474 ) ( 0.0327) ( 0.0401 ) ( 0.0377 ) ( 1.1292e-005 ) ( 0.0491 ) ( 0.9466 ) ( 0.5224)

[−3, 3] -0.0009 0.9939∗∗∗ -0.0010 1.0080∗∗∗ -0.0009 0.9955∗∗∗ -0.0059 0.9877∗∗∗ 0.9914∗∗∗ 0.9931∗∗∗ -841.9550 860.7989
( 0.0433 ) (0.0342) ( 0.0447 ) ( 0.0392) ( 0.0435 ) ( 0.0348) ( 0.0423 ) ( 0.0383) ( 0.0909) ( 0.0800) ( 3.5627e+003 ) ( 963.8479)

[−2, 2] -0.0029 0.9576∗∗∗ -0.0041 1.2141∗∗∗ -0.0026 0.9970∗∗∗ -0.0020 1.0507∗∗∗ 0.9931∗∗∗ 0.9950∗∗∗ -2301.3 2109.8
( 0.0464 ) (0.0246) ( 0.0751 ) ( 0.0851) ( 0.0485 ) ( 0.0310) ( 0.1504 ) ( 0.2701) ( 0.1816 ) ( 0.2162 ) ( 5.3034e+003 ) ( 6.1347e+003)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
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Table C.0.6: Results from Experiment 5 for CCN with repect to bounds

pm Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

0.9990 [−12, 12] -0.0006 1.0585∗∗∗ -0.0001 1.0614∗∗∗ -0.0001 1.0614∗∗∗ -0.0005 0.9998∗∗∗ 0.5497∗∗∗ 0.5444∗∗∗ −3.7780 3.8158
(0.0136 ) ( 0.0307) ( 0.0141 ) (0.0282) ( 0.0141 ) (0.0282) ( 0.0131 ) ( 0.0099 ) ( 0.1117 ) (0.1144) (4.6015) (7.0786)

0.9683 [−10, 10] 0.0011 1.9525∗∗∗ -0.0020 0.9564∗∗∗ 0.0011 1.9525∗∗∗ -0.0020 1.9564∗∗∗ 0.5035∗∗∗ 0.5010∗∗∗ −2.0495∗∗∗ 2.0180∗∗∗

( 0.0275 ) ( 0.0595) ( 0.0274 ) ( 0.0578 ) ( 0.0274 ) ( 0.0578) (0.0146 ) ( 0.0112 ) ( 0.0162 ) (0.0163 ) ( 0.2458) ( 0.2518)
0.3586 [−6, 6] -0.0041 4.4677∗∗∗ 11.9400 2.7042e+ 05 0.0002 4.4651∗∗∗ 0.0007 1.0004∗∗∗ 0.5001∗∗∗ 0.4996∗∗∗ −2.0031∗∗∗ 1.9943∗∗∗

(0.0696 ) ( 0.0251) ( 4.6979e+03 ) ( 3.9575e+05 ) ( 0.0664 ) (0.0218) ( 0.0255 ) ( 0.0185 ) ( 0.0071 ) (0.0071 ) ( 0.0536 ) ( 0.0554)
0.2765 [−5, 5] -0.0015 3.8958∗∗∗ 170.3752 3.0681e+ 05 0.0035 3.8942∗∗∗ -0.0010 0.9996∗∗∗ 0.4996∗∗∗ 0.4999∗∗∗ −1.9993∗∗∗ 2.0038∗∗∗

(0.0530) ( 0.0201) ( 3.7763e+03 ) ( 3.9570e+05) ( 0.0575 ) ( 0.0168) ( 0.0201) ( 0.0235 ) ( 0.0089 ) ( 0.0081) ( 0.0533 ) ( 0.0506)
0.2480 [−4, 4] 0.0018 3.1189∗∗∗ -65.2269 2.1180e+ 05 -0.0033 3.1197∗∗∗ 0.0013 1.0018∗∗∗ 0.4993∗∗∗ 0.4997∗∗∗ −1.9938∗∗∗ 1.9951∗∗∗

( 0.0460 ) ( 0.0123) ( 2.7333e+03 ) ( 2.6794e+05 ) ( 0.0418 ) ( 0.0131) ( 0.0330 ) ( 0.0335 ) ( 0.0106 ) ( 0.0095 ) ( 0.0551) ( 0.0549)
0.2595 [−3, 3] -0.0008 2.2720∗∗∗ 324.8356 1.4705e+ 05 0.0054 2.2697∗∗∗ -0.0007 1.0013∗∗∗ 0.5000∗∗∗ 0.4989∗∗∗ −2.0037∗∗∗ 1.9942∗∗∗

( 0.0316 ) ( 0.0099 ) ( 2.0951e+03 ) ( 1.9877e+05 ) ( 0.0310 ) ( 0.0082 ) ( 0.0379 ) ( 0.0476 ) ( 0.0118 ) ( 0.0120 ) ( 0.0644) ( 0.0623)
0.3063 [−2, 2] 0.0018 1.4280∗∗∗ -68.4227 9.0980e+ 04 -0.0016 1.4290∗∗∗ 0.0015 0.9989∗∗∗ 0.4987∗∗∗ 0.4988∗∗∗ −1.9977∗∗∗ 1.9998∗∗∗

( 0.0212) ( 0.0063 ) ( 1.8729e+03 ) ( 1.4487e+05 ) (0.0192) ( 0.0071 ) ( 0.0496 ) ( 0.0855 ) ( 0.0167 ) ( 0.0177 ) ( 0.0913 ) (0.0875)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
m1 = −2, m2 = 2; Real clustering rate=0.5
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Table C.0.7: Results from Experiment 6 for CCN with respect to m1&m2

pm m1&m2 Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

0.3063 −2&2 0.0018 1.4280∗∗∗ -68.4227 9.0980e+ 04 -0.0016 1.4290∗∗∗ 0.0015 0.9989∗∗∗ 0.4987∗∗∗ 0.4988∗∗∗ −1.9977∗∗∗ 1.9998∗∗∗

( 0.0316 ) ( 0.0099 ) ( 2.0951e+03 ) ( 1.9877e+05 ) ( 0.0310 ) ( 0.0082 ) ( 0.0379 ) ( 0.0476 ) ( 0.0118 ) ( 0.0120 ) ( 0.0644) ( 0.0623)
0.4508 −1&1 -0.0006 1.8345∗∗∗ 349.2766 1.0326e+ 005∗∗∗ 0.0030 1.8353∗∗∗ 0.0014 1.0026∗∗∗ 0.5007∗∗∗ 0.5007∗∗∗ −1.0037∗∗∗ 0.9983∗∗∗

( 0.0263) ( 0.0116) ( 3.9911e+003) ( 5.1370e+004 ) ( 0.0256 ) ( 0.0115) ( 0.0277) ( 0.0378) ( 0.0141 ) (0.0164 ) ( 0.0678) (0.0755)
0.6320 0.3&− 0.3 -0.0001 1.3163∗∗∗ -0.0004 0.9982∗∗∗ 0.4986∗∗∗ 0.4993∗∗∗ 0.2925∗∗∗ −0.2900∗∗∗

( 0.0182 ) ( 0.0124) ( 0.0218 ) (0.0314 ) ( 0.0329 ) ( 0.0292 ) ( 0.1106) ( 0.0955)
0.6906 1&− 1 -0.0008 1.1338∗∗∗ −0.0025 0.9979∗∗∗ 0.4887∗∗∗ 0.4987∗∗∗ 0.9736∗∗∗ −0.9581∗∗∗

( 0.0159 ) ( 0.0108) ( 0.0213 ) ( 0.0273 ) ( 0.0867 ) (0.0686 ) ( 0.1287 ) ( 0.1216)
0.7654 2&− 2 0.0001 0.9789∗∗∗ -0.0017 1.0100∗∗∗ 0.5136∗∗∗ 0.5340∗∗∗ 1.9714∗ −2.0808∗∗∗

( 0.0133) (0.0105) ( 0.0207 ) ( 0.0306) ( 0.0975) ( 0.1543) ( 0.9135) ( 0.3957)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
Real clustering rate=0.5. Bounds [-3,3]
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Table C.0.8: Esitmates from CCN simulations: l1 and r1

pm l1&r1 Normal CCN
µ σ µ σ l1 r1 m1 m2

0.0346 0.2 0.0022 2.5457∗∗∗ -0.0099 0.9295∗∗ 0.1990∗∗∗ 0.1968∗∗∗ −2.0073∗∗∗ 2.0057∗∗∗

( 0.0362 ) ( 0.0056 ) ( 0.3380 ) ( 0.3532 ) ( 0.0315 ) ( 0.0351 ) ( 0.0428 ) ( 0.0442)
0.3063 0.5 0.0018 1.4280∗∗∗ -0.0007 1.0013∗∗∗ 0.5000∗∗∗ 0.4989∗∗∗ −2.0037∗∗∗ 1.9942∗∗∗

( 0.0316 ) ( 0.0099 ) ( 0.0379 ) ( 0.0476 ) ( 0.0118 ) ( 0.0120 ) ( 0.0644) ( 0.0623)
0.5007 0.6 -0.0025 1.8905∗∗∗ -0.0003 1.0009∗∗∗ 0.5995∗∗∗ 0.6004∗∗∗ −1.9958∗∗∗ 2.0037∗∗∗

( 0.0252 ) ( 0.0122) ( 0.0245 ) ( 0.0274 ) ( 0.0115 ) ( 0.0104 ) ( 0.1043 ) ( 0.0911 )
0.8676 0.8 -0.0003 1.1088∗∗∗ -0.0006 0.9978∗∗∗ 0.7987∗∗∗ 0.7992∗∗∗ −2.0487∗∗∗ 2.0704∗∗∗

(0.0152 ) ( 0.0119) ( 0.0155 ) ( 0.0134) ( 0.0193 ) ( 0.0181 ) (0.5940 ) ( 0.5766)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
m1 = −2, and m2 = 2. Bounds [-3,3]
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Figure D.1: Comparison of variance− b among CN, TN, and CCN
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Figure D.2: Comparison of kurtosis− b among CN, TN, and CCN
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Table D.0.1: Esitmates from Asymmetric simulations

Row No.
1 true model µ σ domains

TN 0.1 1 [-2,2]
normal µ σ TN µ σ

0.0767∗∗∗ 0.8785∗∗∗ 0.0992∗∗∗ 1.0001∗∗∗

(0.0125) (0.0079) (0.0162) ( 0.0169)
2 true model µ σ domains

TN 0.1 1 [-3,3]
normal µ σ TN µ σ

0.0973∗∗∗ 0.9857∗∗∗ 0.1000∗∗∗ 0.9994∗∗∗

(0.0141 ) ( 0.0091) ( 0.0145) (0.0104)
3 true model µ σ domains

TN 0.1 1 [-4,4]
normal µ σ TN µ σ

0.0990∗∗∗ 0.9997∗∗∗ 0.0991∗∗∗ 1.0002∗∗∗

(0.0140 ) ( 0.0094) (0.0140) ( 0.0095)
4 true model µ σ domains

CN 0.1 1 [-2,2]
normal µ σ CN µ σ

0.0964∗∗∗ 0.9583∗∗∗ 0.1010∗∗∗ 0.9997∗∗∗

(0.0133 ) (0.0087) (0.0139 ) ( 0.0111)
5 true model µ σ domains

CN 0.1 1 [-3,3]
normal µ σ CN µ σ

0.1001∗∗∗ 0.9986∗∗∗ 0.1003∗∗∗ 1.0012∗∗∗

(0.0138 ) (0.0098) (0.0139 ) ( 0.0101)
6 true model µ σ domains

CN 0.1 1 [-4,4]
normal µ σ CN µ σ

0.1000∗∗∗ 1.0007∗∗∗ 0.1000∗∗∗ 1.0007∗∗∗

(0.0138 ) (0.0096) (0.0139) (0.0096)

true model µ σ l1 r1 m1 m2 domains pm
7 CCN 0.1 1 0.5 0.5 0.3 -0.3 [-3,3] 0.7330

normal µ σ CCN µ σ l1 r1 m1 m2

0.1261∗∗∗ 1.3124∗∗∗ 0.0977∗∗∗ 0.9981∗∗∗ 0.4997∗∗∗ 0.4974∗∗∗ 0.2950∗∗∗ −0.2988∗∗∗

( 0.0185 ) ( 0.0122) ( 0.0241 ) ( 0.0300 ) ( 0.0273 ) ( 0.0340 ) ( 0.0983 ) ( 0.0934)
8 CCN 0.1 1 0.5 0.5 -1 1 [-3,3] 0.4879

normal µ σ CCN µ σ l1 r1 m1 m2

0.2132∗∗∗ 1.8262∗∗∗ 0.0982∗∗∗ 1.0036∗∗∗ 0.5027∗∗∗ 0.5000∗∗∗ −1.0103∗∗∗ 0.9996∗∗∗

( 0.0265 ) ( 0.0117) (0.0274 ) ( 0.0372 ) ( 0.0151 ) ( 0.0138 ) ( 0.0773 ) ( 0.0653)
9 CCN 0.1 1 0.5 0.5 -2 2 [-3,3] 0.2765

normal µ σ CCN µ σ l1 r1 m1 m2

0.2986∗∗∗ 2.2548∗∗∗ 0.0963∗∗ 0.9965∗∗∗ 0.4996∗∗∗ 0.4981∗∗∗ −2.0043∗∗∗ 1.9992∗∗∗

( 0.0324 ) ( 0.0112) ( 0.0393 ) ( 0.0513 ) ( 0.0138) ( 0.0126 ) (0.0731) ( 0.0642)
10 CCN 0.1 1 0.5 0.5 -2 2 [-2,2] 0.4923

normal µ σ CCN µ σ l1 r1 m1 m2

0.1225∗∗∗ 1.4238∗∗∗ 0.0992∗∗ 1.0013∗∗∗ 0.4989∗∗∗ 0.4995∗∗∗ −2.0012∗∗∗ 2.0070∗∗∗

( 0.0200 ) (0.0067) ( 0.0496 ) (0.1019 ) ( 0.0200 ) ( 0.0178 ) ( 0.0990) ( 0.0885)
11 CCN 0.1 1 0.7 0.7 -2 2 [-3,3] 0.8101

normal µ σ CCN µ σ l1 r1 m1 m2

0.1708∗∗∗ 1.4149∗∗∗ 0.1021∗∗∗ 0.9996∗∗∗ 0.6995∗∗∗ 0.7016∗∗∗ −2.0113∗∗∗ 2.0280∗∗∗

( 0.0181 ) ( 0.0132) (0.0168 ) ( 0.0171 ) (0.0129 ) ( 0.0110 ) ( 0.2311) ( 0.1798)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table D.0.2: Results from Experiment 8 for CCN with repect to bounds (data size: 500)

pm Bounds Normal TN CN CCN
µ σ µ σ µ σ µ σ l1 r1 m1 m2

0.9990 [−12, 12] -0.0042 1.0583∗∗∗ -0.0044 1.0635∗∗∗ -0.0044 1.0635∗∗∗ -0.0014 0.9998∗∗∗ 0.6071∗∗∗ 0.5766∗∗ −1.7385 2.1277
( 0.0472 ) ( 0.0925) ( 0.0506 ) ( 0.0895 ) ( 0.0506 ) ( 0.0895) ( 0.0355 ) ( 0.0356 ) ( 0.1841 ) (0.2067 ) ( 11.1676 ) ( 18.9930)

0.9683 [−10, 10] 0.0068 1.9551∗∗∗ 0.0023 1.9473∗∗∗ 0.0023 1.9472∗∗∗ 0.0101 0.9971∗∗∗ 0.5097∗∗∗ 0.5129∗∗∗ −2.2772∗∗ 2.3304∗

( 0.0786 ) ( 0.1676) ( 0.0923 ) ( 0.1887 ) ( 0.0923 ) ( 0.1889) ( 0.0439 ) ( 0.0308 ) ( 0.0497 ) ( 0.0538 ) ( 0.8996 ) ( 1.0538)
0.3586 [−6, 6] -0.0072 4.4667∗∗∗ -284.0407 1.0521e+ 005 0.0120 4.4600∗∗∗ -0.0072 0.9900∗∗∗ 0.4976∗∗∗ 0.4974∗∗∗ −2.0087∗∗∗ 2.0212∗∗∗

( 0.1902 ) ( 0.0759) ( 4.5679e+003) ( 3.0682e+005 ) ( 0.1948 ) ( 0.0501) ( 0.0759) ( 0.0586 ) ( 0.0215 ) ( 0.0223 ) ( 0.1748 ) ( 0.1786)
0.2765 [−5, 5] 0.0058 3.8939∗∗∗ 254.2409 8.3366e+ 004 -0.0088 3.8914∗∗∗ -0.0011 0.9961∗∗∗ 0.4982∗∗∗ 0.4979∗∗∗ −2.0048∗∗∗ 2.0063∗∗∗

( 0.1732 ) ( 0.0573) ( 3.6071e+003 ) ( 2.4023e+005 ) ( 0.1680 ) ( 0.0525) ( 0.0936 ) ( 0.0728 ) ( 0.0248 ) ( 0.0275 ) ( 0.1644 ) ( 0.1681)
0.2480 [−4, 4] -0.0125 3.1198∗∗∗ 108.6379 7.7524e+ 004 0.0125 3.1169∗∗∗ 0.0026 0.9961∗∗∗ 0.4963∗∗∗ 0.4965∗∗∗ −2.0060∗∗∗ 1.9974∗∗∗

( 0.1417 ) (0.0396) ( 2.7268e+003 ) ( 2.0088e+005) ( 0.1436 ) ( 0.0431) ( 0.1038 ) ( 0.1081 ) ( 0.0310 ) ( 0.0316 ) (0.1870 ) ( 0.1838)
0.2595 [−3, 3] 0.0620 2.2670∗∗∗ -206.9143 7.1812e+ 004 -0.0002 2.2715∗∗∗ -0.0582 1.2135∗∗∗ 0.4479∗∗∗ 0.5704∗∗∗ −2.0407∗∗∗ 2.2425∗∗∗

(0.1014 ) (0.0718) ( 2.2085e+003) ( 1.6997e+005 ) ( 0.0912 ) ( 0.0292) (0.1088) (0.1045) ( 0.0292 ) (0.0203) ( 0.0982) ( 0.0912 )
0.3063 [−2, 2] -0.0079 1.4270∗∗∗ 39.2987 2.6142e+ 004 0.0025 1.4275∗∗∗ -0.0075 0.9347∗∗∗ 0.4883∗∗∗ 0.4836∗∗∗ −2.0377∗∗∗ 2.0020∗∗∗

( 0.0622 ) (0.0201) ( 1.4881e+003 ) ( 7.2900e+004 ) ( 0.0615 ) (0.0213) ( 0.1277 ) ( 0.2097 ) ( 0.0531 ) ( 0.0505 ) ( 0.2794 ) ( 0.2824)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
m1 = −2, and m2 = 2. Real clustering rate=0.5.
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Table D.0.3: Estimates from CCN simulations: m1&m2 (data size: 500)

pm m1&m2 Normal CCN
µ σ µ σ l1 r1 m1 m2

0.3063 −2&2 -0.0079 1.4270∗∗∗ -0.0075 0.9347∗∗∗ 0.4883∗∗∗ 0.4836∗∗∗ −2.0377∗∗∗ 2.0020∗∗∗

( 0.0622 ) (0.0201) ( 0.1277 ) ( 0.2097 ) ( 0.0531 ) ( 0.0505 ) ( 0.2794 ) ( 0.2824)
0.4508 −1&1 -0.0115 1.8343∗∗∗ 0.0018 1.0080∗∗∗ 0.4947∗∗∗ 0.5004∗∗∗ −0.9964∗∗∗ 1.0102∗∗∗

( 0.0773 ) ( 0.0390) ( 0.0875 ) ( 0.1375 ) ( 0.0544 ) (0.0475) ( 0.2374) ( 0.2361)
0.6320 0.3&− 0.3 -0.0072 1.3121∗∗∗ -0.0020 0.9691∗∗∗ 0.4770∗∗∗ 0.4917∗∗∗ 0.2356 −0.2347

( 0.0620 ) ( 0.0381) ( 0.0667 ) (0.1130 ) ( 0.1091) ( 0.1105 ) (0.3573 ) ( 0.2749)
0.6906 1&− 1 0.0038 1.1325∗∗∗ -0.0011 0.9975∗∗∗ 0.5207∗∗ 0.4851∗∗∗ 0.8964 -0.8087

( 0.0521 ) (0.0334) ( 0.0668 ) ( 0.1267 ) ( 0.2113 ) ( 0.1534 ) ( 0.9896 ) ( 0.7260)
0.7654 2&− 2 0.0003 0.9765∗∗∗ -0.0056 1.0616∗∗∗ 0.5246∗ 0.5301∗∗ 0.3984 -6.7339

( 0.0453 ) ( 0.0303) ( 0.0528 ) ( 0.1555 ) ( 0.2359 ) ( 0.2169 ) ( 30.6837 ) (51.8943)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
Real clustering rate=0.5. Bounds [-3,3]
1000 simulations with a data size of 500.



72

Table D.0.4: Estimates from CCN simulations: l1 and r1 (data size: 500)

pm l1&r1 Normal CCN
µ σ µ σ l1 r1 m1 m2

0.0346 0.2 -0.0036 2.5456∗∗∗ -0.0274 1.0041∗∗ 0.1809∗∗∗ 0.1604∗∗∗ −2.0166∗∗∗ 1.9893∗∗∗

(0.1181 ) ( 0.0186) ( 0.2733 ) ( 0.4121 ) ( 0.1000 ) ( 0.1227 ) ( 0.1425 ) ( 0.1537)
0.3063 0.5 -0.0079 1.4270∗∗∗ -0.0075 0.9347∗∗∗ 0.4883∗∗∗ 0.4836∗∗∗ −2.0377∗∗∗ 2.0020∗∗∗

( 0.0622 ) (0.0201) ( 0.1277 ) ( 0.2097 ) ( 0.0531 ) ( 0.0505 ) ( 0.2794 ) ( 0.2824)
0.5007 0.6 0.0047 1.8869∗∗∗ -0.0006 0.9969∗∗∗ 0.6008∗∗∗ 0.5999∗∗∗ −2.0461∗∗∗ 2.0428∗∗∗

(0.0894) ( 0.0414 ) ( 0.0759 ) ( 0.0858 ) ( 0.0335 ) ( 0.0362 ) ( 0.3346 ) (0.3380)
0.8676 0.8 0.0016 1.1111∗∗∗ 0.0029 0.9947∗∗∗ 0.8012∗∗∗ 0.7939∗∗∗ −2.7845 2.1486

( 0.0497 ) ( 0.0376 ) ( 0.0477 ) ( 0.0434 ) ( 0.0541 ) ( 0.0627 ) ( 3.3232 ) ( 2.6254)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
m1 = −2, and m2=2. Bounds [-3,3]
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Figure D.4: pdfs of CCN if only bounds change(µ = 0, σ = 1, m1 = −2, m2 = 2, and l1=r1 = 0.5)
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Appendix E

Empirical Performances of Normal,
CN, TN, and CCN for 5 Taiwanese
stocks, 5 Chinese stocks, 5 Korean
stocks, and 5 French stocks

Table E.0.3: Empirical comparison of normal, CN, TN, and CCN

Moments/Parameters Data Four Models
5 Taiwanese Stocks (daily limit of 7%)

TaiFlex normal TN CN CCN
µ -0.0186 -0.0018 -0.0187 0.0407

( 0.0707 ) ( 0.0710) ( 0.0967) (0.0449)
σ 2.5834∗∗∗ 2.6770∗∗∗ 2.5824∗∗∗ 2.2024∗∗∗

( 0.0500 ) ( 0.0575 ) ( 0.0500) ( 0.0499)
l1 0.7306∗∗∗

( 0.0209 )
r1 0.9357∗∗∗

( 0.0094)
m1 −0.6138∗∗

( 0.2137 )
m2 9.8839∗∗∗

( 1.9981)
-LOGL 3.1656e+003 3.1551e+003 3.1656e+003 3.0587e+003
AIC 6.3351e+003 6.3141e+003 6.3351e+003 6.1294e+003
BIC 6.3455e+003 6.3245e+003 6.3455e+003 6.1318e+003
pm 0.9439

Tung Kai normal TN CN CCN
µ −0.1124∗ -0.0605 −0.1020∗∗ −0.0284∗∗∗

( 0.0615 ) ( 0.0624) (0.0555 ) ( 0.0154 )
σ 3.2226∗∗∗ 3.4942∗∗∗ 3.0773∗∗∗ 2.1026∗∗∗

( 0.0435 ) ( 0.0726 ) ( 0.0417 ) ( 0.0345)
l1 0.7452∗∗∗

( 0.0109)
r1 0.8456∗∗∗

( 0.0077)
m1 −1.5100∗∗∗

(0.1515)
m2 4.1203∗∗∗

( 0.3182)
-LOGL 6.9220e+003 6.8371e+003 6.9220e+003 6.2911e+003
AIC 1.3848e+004 1.3678e+004 1.3848e+004 1.2594e+004

Continued on next page
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Table E.0.3 – continued from previous page
Moments/Parameters Data Four Models

BIC 1.3860e+004 1.3690e+004 1.3860e+004 1.2630e+004
pm 0.8659

Tri Ocean
Textile

normal TN CN CCN

µ 0.0329 0.0625 0.0083 −0.2170∗∗∗

( 0.0462) ( 0.0467) ( 0.0077 ) ( 0.0357 )
σ 2.7018∗∗∗ 2.8431∗∗∗ 2.6243∗∗∗ 1.9819∗∗∗

( 0.0327 ) ( 0.0401 ) ( 0.0318 ) ( 0.0276)
l1 0.7727∗∗∗

( 0.0128)
r1 0.7815∗∗∗

( 0.0088)
m1 −1.4498∗∗∗

( 0.2200)
m2 2.3832∗∗∗

( 0.1851)
-LOGL 8.2466e+003 8.2065e+003 8.1635e+003 7.6949e+003
AIC 1.6497e+004 1.6417e+004 1.6497e+004 1.5402e+004
BIC 1.6510e+004 1.6429e+004 1.6497e+004 1.5439e+004
pm 0.9087

Jye Tai Pre-
cision

normal TN CN CCN

µ -0.0138 0.0071 -0.0132 −0.1595∗∗∗

( 0.0515) ( 0.0519) ( 0.0144) ( 0.0389)
σ 2.6496∗∗∗ 2.7676∗∗∗ 2.6509∗∗∗ 1.8723∗∗∗

( 0.0364) ( 0.0433) ( 0.0365 ) ( 0.0288)
l1 0.7233∗∗∗

( 0.0138)
r1 0.8522∗∗∗

( 0.0085)
m1 −1.1869∗∗∗

( 0.1802)
m2 5.2206∗∗∗

( 0.4524)
-LOGL 6.3299e+003 6.3039e+003 6.3301e+003 5.7803e+003
AIC 1.2664e+004 1.2612e+004 1.2664e+004 1.1573e+004
BIC 1.2676e+004 1.2624e+004 1.2676e+004 1.1608e+004
pm 0.9104

Nan Kang
Rubb Tire

normal TN CN CCN

µ -0.0106 0.0091 -0.0106 0.0096
( 0.0459) ( 0.0461) ( 0.0073 ) ( 0.0076)

σ 2.6226∗∗∗ 2.7308∗∗∗ 2.6222∗∗∗ 1.3424∗∗∗

( 0.0324 ) ( 0.0381 ) ( 0.0324 ) ( 0.0269)
l1 0.3484∗∗∗

( 0.0081)
r1 0.3705∗∗∗

( 0.0085)
m1 0.1650∗∗∗

( 0.0312)
m2 −0.1226∗∗∗

( 0.0336)
-LOGL 7.7875e+003 7.7581e+003 7.7875e+003 7.4064e+003
AIC 1.5579e+004 1.5520e+004 1.5579e+004 1.4825e+004
BIC 1.5591e+004 1.5532e+004 1.5591e+004 1.4861e+004
pm 0.7353
5 Chinese Stocks (daily limit of 10%)

China Min-
Sheng Bank

normal TN CN CCN

µ 0.0519 0.0520 0.0519 0.0106
( 0.0400) ( 0.0400) ( 0.0446) ( 0.2309)

σ 2.2556∗∗∗ 2.2555∗∗∗ 2.2552∗∗∗ 1.5452∗∗∗

( 0.0283 ) ( 0.0283 ) ( 0.0283) ( 0.1879)
l1 0.2619∗∗∗

( 0.0236)
r1 0.0532∗∗∗

( 0.0120)
m1 −0.6001∗∗∗

( 0.0415)
m2 −0.5675∗∗∗

Continued on next page
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Table E.0.3 – continued from previous page
Moments/Parameters Data Four Models

( 0.0275 )
-LOGL 7.0805e+003 7.0804e+003 7.0805e+003 6.8839e+003
AIC 1.4165e+004 1.4165e+004 1.4165e+004 1.3780e+004
BIC 1.4177e+004 1.4177e+004 1.4177e+004 1.3816e+004
pm 0.5463

China
Merchants
Energy
Shipping

normal TN CN CCN

µ -0.0871 -0.0865 -0.0871 0.0972∗

( 0.0608) ( 0.0608) ( 0.0829) ( 0.0578)
σ 2.5720∗∗∗ 2.5736∗∗∗ 2.5713∗∗∗ 1.9671∗∗∗

( 0.0430 ) ( 0.0432 ) ( 0.0430 ) ( 0.0385)
l1 0.3839∗∗∗

( 0.0139)
r1 0.7106∗∗∗

( 0.0251)
m1 0.3339∗∗∗

( 0.0488)
m2 1.1790∗∗∗

( 0.3219 )
-LOGL 4.2233e+003 4.2231e+003 4.2233e+003 4.0706e+003
AIC 8.4506e+003 8.4502e+003 8.4506e+003 8.1533e+003
BIC 8.4616e+003 8.4612e+003 8.4616e+003 8.1862e+003
pm 0.9289

Beijing
North Star

normal TN CN CCN

µ -0.0645 -0.0608 -0.0636 0.0017
( 0.0687) ( 0.0687) ( 0.2555) ( 0.0116)

σ 2.9277∗∗∗ 2.9400∗∗∗ 2.9330∗∗∗ 1.9101∗∗∗

( 0.0486 ) ( 0.0495) ( 0.0488 ) (0.0402)
l1 0.4467∗∗∗

( 0.0116)
r1 0.4056∗∗∗

( 0.0143)
m1 0.0005∗∗∗

( 0.0356)
m2 −0.2948∗∗∗

( 0.0487)
-LOGL 4.5271e+003 4.5258e+003 4.5279e+003 4.3148e+003
AIC 9.0582e+003 9.0556e+003 9.0598e+003 8.6416e+003
BIC 9.0692e+003 9.0666e+003 9.0708e+003 8.6746e+003
pm 0.8800

GD Power
Develop-
ment

normal TN CN CCN

µ 0.0436 0.0439 0.0436 0.0566
( 0.0516) ( 0.0515) ( 0.0727) ( 0.0849)

σ 2.3769∗∗∗ 2.3770∗∗∗ 2.3763∗∗∗ 1.8935∗∗∗

( 0.0365) ( 0.0365) ( 0.0364 ) ( 0.0373)
l1 0.3857∗∗∗

( 0.0146)
r1 0.4342∗∗∗

( 0.0165)
m1 0.4576∗∗∗

( 0.0605)
m2 −0.4442∗∗∗

( 0.0700)
-LOGL 4.8545e+003 4.8545e+003 4.8545e+003 4.7583e+003
AIC 9.7131e+003 9.7129e+003 9.7131e+003 9.5286e+003
BIC 9.7244e+003 9.7242e+003 9.7244e+003 9.5625e+003
pm 0.9209

Inner Mon-
golia Bao-
tou Steel
Union

normal TN CN CCN

µ -0.0243 -0.0237 -0.0239 0.0180
( 0.0455) ( 0.0455) ( 0.0169) ( 0.0241)

σ 2.5198∗∗∗ 2.5212∗∗∗ 2.5209∗∗∗ 1.8224∗∗∗

( 0.0322) ( 0.0323) ( 0.0322 ) ( 0.0297)
l1 0.3362∗∗∗

Continued on next page
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Table E.0.3 – continued from previous page
Moments/Parameters Data Four Models

( 0.0105)
r1 0.4811∗∗∗

( 0.0124)
m1 0.4651∗∗∗

( 0.0371)
m2 −0.0748∗∗∗

( 0.0607)
-LOGL 7.1788e+003 7.1786e+003 7.1798e+003 6.9303e+003
AIC 1.4362e+004 1.4361e+004 1.4364e+004 1.3873e+004
BIC 1.4374e+004 1.4373e+004 1.4376e+004 1.3909e+004
pm 0.9008
5 Korean Stocks (daily limit of 15%)

Shin Woo
Co., Ltd.

normal TN CN CCN

µ -0.1081 -0.0309 −0.0974∗ −0.2990∗∗∗

( 0.0945) ( 0.0946) ( 0.0604) ( 0.0661)
σ 5.7677∗∗∗ 5.7220∗∗∗ 5.5969∗∗∗ 3.6792∗∗∗

( 0.0669 ) ( 0.0775) ( 0.0679 ) ( 0.0495)
l1 0.5948∗∗∗

( 0.0115)
r1 0.9252∗∗∗

( 0.0045)
m1 −0.1951∗∗∗

( 0.0384)
m2 7.3313∗∗∗

(0.5411)
-LOGL 1.0816e+004 1.0786e+004 1.0796e+004 9.8389e+003
AIC 2.1636e+004 2.1576e+004 2.1596e+004 1.9690e+004
BIC 2.1648e+004 2.1589e+004 2.1609e+004 1.9727e+004
pm 0.9006

Borneo In-
ternational
Furniture
BIF Co Ltd

normal TN CN CCN

µ -0.0502 -0.0390 -0.0468 −0.0965
( 0.0760) ( 0.0760) ( 0.0448) ( 0.1138)

σ 4.4683∗∗∗ 4.4942∗∗∗ 4.4858∗∗∗ 3.1524∗∗∗

( 0.0537 ) ( 0.0552) ( 0.0541) ( 0.0415)
l1 0.4914∗∗∗

( 0.0119)
r1 0.8801∗∗∗

( 0.0085)
m1 0.0377

( 0.0345)
m2 4.6819∗∗∗

( 0.4596)
-LOGL 1.0083e+004 1.0079e+004 1.0079e+004 9.3987e+003
AIC 2.0170e+004 2.0163e+004 2.0162e+004 1.8809e+004
BIC 2.0182e+004 2.0175e+004 2.0174e+004 1.8846e+004
pm 0.9344

Hansol Ar-
tone Paper
Co Ltd

normal TN CN CCN

µ -0.0673 -0.0672 -0.0660 −0.1958∗∗∗

( 0.0809) ( 0.0808) ( 0.1149) ( 0.0416)
σ 3.1485∗∗∗ 3.1476∗∗∗ 3.1534∗∗∗ 1.3310∗∗∗

( 0.0572 ) ( 0.0572) ( 0.0573 ) ( 0.0368)
l1 0.1582∗∗∗

( 0.0057)
r1 0.1749∗∗∗

( 0.0062)
m1 0.3571∗∗∗

( 0.0285)
m2 −0.3302∗∗∗

( 0.0266)
-LOGL 3.8893e+003 3.8893e+003 3.8905e+003 3.5372e+003
AIC 7.7827e+003 7.7827e+003 7.7850e+003 7.0864e+003
BIC 7.7933e+003 7.7933e+003 7.7957e+003 7.1183e+003
pm 0.7632

Iljin Electric
Co Ltd

normal TN CN CCN

Continued on next page
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Table E.0.3 – continued from previous page
Moments/Parameters Data Four Models

µ 0.0177 0.0183 0.0172 0.0519
( 0.0939) ( 0.0939) ( 0.0229) ( 0.1192)

σ 3.5642∗∗∗ 3.5644∗∗∗ 3.5654∗∗∗ 2.8548∗∗∗

( 0.0665 ) ( 0.0665) ( 0.0665 ) (0.0549)
l1 0.5392∗∗∗

( 0.0224)
r1 0.7814∗∗∗

( 0.0270)
m1 -0.1323

( 0.0905)
m2 1.7726∗∗∗

( 0.4487)
-LOGL 3.8729e+003 3.8729e+003 3.8732e+003 3.7040e+003
AIC 7.7499e+003 7.7497e+003 7.7505e+003 7.4199e+003
BIC 7.7604e+003 7.7603e+003 7.7610e+003 7.4516e+003
pm 0.9729

Phoenix
Holdings
Inc.

normal TN CN CCN

µ -0.0114 -0.0110 −0.0111∗ −0.0022
( 0.0680) ( 0.0679) ( 0.0070) ( 0.0145)

σ 3.4989∗∗∗ 3.4993∗∗∗ 3.4996∗∗∗ 2.4352∗∗∗

( 0.0481 ) ( 0.0481) ( 0.0481 ) ( 0.0363)
l1 0.3631∗∗∗

( 0.0105)
r1 0.8208∗∗∗

( 0.0161)
m1 0.2157∗∗∗

( 0.0341)
m2 4.1652∗∗∗

( 0.5855)
-LOGL 7.0814e+003 7.0813e+003 7.0816e+003 6.5294e+003
AIC 1.4167e+004 1.4167e+004 1.4167e+004 1.3075e+004
BIC 1.4179e+004 1.4178e+004 1.4179e+004 1.3106e+004
pm 0.6785
5 French Stocks (daily limit of 10%)

Airbus
Group
(AIR.PA)

normal TN CN CCN

µ 0.0399 0.0403 0.0409 0.1124∗∗∗

( 0.0429) ( 0.0429 ) ( 0.2593) ( 0.0386)
σ 2.4413∗∗∗ 2.4421∗∗∗ 2.4517∗∗∗ 2.1561∗∗∗

( .0303 ) ( 0.0304 ) ( 0.0306 ) ( 0.0295)
l1 0.4711∗∗∗

( 0.0151)
r1 0.8586∗∗∗

( 0.0198)
m1 0.4169∗∗∗

( 0.0614)
m2 3.6430∗∗∗

( 0.9058)
-LOGL 7.4956e+003 7.4954e+003 7.5038e+003 7.3637e+003
AIC 1.4995e+004 1.4995e+004 1.5012e+004 1.4739e+004
BIC 1.5007e+004 1.5007e+004 1.5024e+004 1.4776e+004
pm 0.9682

Essilor In-
ternational
SA (EI.PA)

normal TN CN CCN

µ 0.0510 0.0510 0.0518∗ −0.0647∗∗∗

( 0.0348) ( 0.0348) ( 0.0237) ( 0.0251)
σ 2.1021∗∗∗ 2.1019∗∗∗ 2.1405∗∗∗ 1.4684∗∗∗

( 0.0246) ( 0.0246) ( 0.0260 ) ( 0.0176)
l1 0.7917∗∗∗

( 0.0218)
r1 0.5016∗∗∗

( 0.0123)
m1 −6.6412∗∗∗

( 1.1616)
m2 0.4348∗∗∗

( 0.0887 )
-LOGL 7.8989e+003 7.8989e+003 7.9560e+003 6.9852e+003

Continued on next page
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Moments/Parameters Data Four Models

AIC 1.5802e+004 1.5802e+004 1.5916e+004 1.3982e+004
BIC 1.5814e+004 1.5814e+004 1.5928e+004 1.4020e+004
pm 0.9709

Bouygues
SA (EN.PA)

normal TN CN CCN

µ -0.0082 -0.0081 -0.0067 −0.0246
( 0.0384) ( 0.0384) ( 0.0367) ( 0.0234)

σ 2.3178∗∗∗ 2.3180∗∗∗ 2.3298∗∗∗ 1.5486∗∗∗

( 0.0271) ( 0.0272) ( 0.0274 ) ( 0.0080)
l1 0.2568∗∗∗

( 0.0086)
r1 0.3347∗∗∗

( 0.0155)
m1 0.5563∗∗∗

( 0.0303)
m2 −0.4053∗∗∗

( 0.0362 )
-LOGL 8.2424e+003 8.2423e+003 8.2553e+003 7.9397e+003
AIC 1.6489e+004 1.6489e+004 1.6515e+004 1.5891e+004
BIC 1.6501e+004 1.6501e+004 1.6527e+004 1.5929e+004
pm 0.8470

Carrefour
SA
(CA.PA)

normal TN CN CCN

µ -0.0215 -0.0215 −0.0217∗∗∗ −0.1359∗∗∗

( 0.0329) ( 0.0329) ( 0.0023) ( 0.0520)
σ 1.9947∗∗∗ 1.9944∗∗∗ 1.9954∗∗∗ 1.0064∗∗

( 0.0233) ( 0.0233) ( 0.0232 ) ( 0.0510)
l1 0.1247∗∗∗

( 0.0062)
r1 0.0735∗∗

( 0.0290)
m1 0.7096∗∗∗

( 0.0264)
m2 −0.6978∗∗∗

( 0.0196)
-LOGL 7.7579e+003 7.7579e+003 7.7599e+003 7.4959e+003
AIC 1.5520e+004 1.5520e+004 1.5524e+004 1.5004e+004
BIC 1.5532e+004 1.5532e+004 1.5536e+004 1.5041e+004
pm 0.4911

Renault
Soci
(RNO.PA)

normal TN CN CCN

µ 0.0173 0.0179 0.0173 0.0502
( 0.0416) ( 0.0416) ( 0.0105) ( 0.0392)

σ 2.5155∗∗∗ 2.5170∗∗∗ 2.5291∗∗∗ 1.7362∗∗∗

( 0.0295) ( 0.0283) ( 0.0297 ) ( 0.0339)
l1 0.2919∗∗∗

( 0.0089)
r1 0.3091∗∗∗

( 0.0102 )
m1 0.4752∗∗∗

( 0.0295)
m2 −0.5100∗∗∗

( 0.0313)
-LOGL 8.5574e+003 8.5571e+003 8.5682e+003 8.3440e+003
AIC 1.7119e+004 1.7118e+004 1.7140e+004 1.6700e+004
BIC 1.7131e+004 1.7131e+004 1.7153e+004 1.6737e+004
pm 0.8202

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table E.0.1: Data in Chapter 1

Taiwanese stocks
TaiFlex From September 1, 2008 to May 16, 2014
Tung Kai Technology From August 20, 2002 to May 16, 2014
Tri Ocean Textile From January 4, 2000 to June 21, 2014
Jye Tai Precision From August 4, 2003 to May 16, 2014
Nan Kang Rubb Tire From January 4, 2000 to May 16, 2014

Chinese stocks
China MinSheng Bank From December 19, 2000 to May 16, 2014
China Merchants Energy Shipping From December 1, 2006 to May 16, 2014
Beijing North Star Company Limited From October 16, 2006 to May 16, 2014
GD Power Development Company From March 18, 2005 to May 16, 2014
Inner Mongolia Baotou Steel Union From March 9, 2001 to May 16, 2014

Korean stocks
Shin Woo Co., Ltd. From January 4, 2000 to May 16, 2014
Borneo International Furniture BIF Co Ltd From January 4, 2000 to May 16, 2014
Hansol Artone Paper Co Ltd From December 28, 2007 to May 16, 2014
Iljin Electric Co Ltd From August 1, 2008 to May 16, 2014
Phoenix Holdings Inc. From August 4, 2003 to May 16, 2014

French stocks
Airbus Group (AIR.PA) From September 3, 2001 to May 16, 2014
Essilor International SA (EI.PA) From January 3, 2000 to May 16, 2014
Bouygues SA (EN.PA) From January 3, 2000 to May 16, 2014
Carrefour SA (CA.PA) From January 3, 2000 to June 20, 2014
Renault Soci (RNO.PA) From August 4, 2003 to May 16, 2014

Table E.0.2: Classification of the significance level of ∆BIC

∆BIC Evidence against higher BIC
0 to 2 Not Worth more than a bare mention
2 to 6 Positive
6 to 10 Strong
> 10 Very Strong
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(b) cdf of Inner Mongolia Baotou
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(d) cdf of AirBus



93

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

 

 

cdf of Essilor
 cdf of fitted normal
cdf of fitted TN
cdf of fitted CN
cdf of fitted CCN

(a) cdf of Essilor
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Appendix F

Monte Carlo Simulations for
GARCHTN, GARCHCN, and
GARCHCCN

Table F.0.1: Monte Carlo simulation list: GARCH models

Experiment No. True Model Purpose Data Size Table Rows
12 GARCHCN Bounds change 5000 F.0.2 All
13 GARCHTN Bounds change 5000 F.0.3 All
14 GARCHCCN Bounds change 5000 F.0.4 1-5;6-10;11-15
15 GARCHCCN m1 and m2 change 5000 F.0.4 6&11;7&12;8&13;9&14;1&15
17 GARCHCCN l1 and r1 change 5000 F.0.4 1&6;2&7;3&8;4&9;5&10
18 GARCHCN Bounds change 5000 F.0.2 All
19 GARCHTN Bounds change 5000 F.0.3 All
20 GARCHCCN Bounds change 5000 F.0.4 1-5;6-10;11-15
21 GARCHCCN m1 and m2 change 5000 F.0.4 6&11;7&12;8&13;9&14;1&15
22 GARCHCCN l1 and r1 change 5000 F.0.4 1&6;2&7;3&8;4&9;5&10
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Table F.0.2: Results from Experiment 12 of GARCHCN

models pm bounds κ α β -LOGL

real value 0.15 0.8 0.07

GARCHCN 0.9545 [-2,2] 0.1608∗∗ 0.7892∗∗∗ 0.0709∗∗∗ 7.2635e+003
(0.0617/ 0.0616) (0.0647/0.0643) (0.0163/0.0154) (61.3040)

GARCH 0.1599∗∗ 0.7891∗∗∗ 0.0482∗∗∗ 7.0362e+003
( 0.0811/0.3282) (0.0872/0.3378) (0.0108/0.0135) ( 53.9886)

GARCHCN 0.9876 [-2.5,2.5] 0.1573∗∗∗ 0.7928∗∗∗ 0.0713∗∗∗ 7.3660e+003
(0.0498/0.0469) (0.0522/0.0496) ( 0.0144/ 0.0135) (71.8482)

GARCH 0.1570∗∗∗ 0.7962∗∗∗ 0.0598∗∗∗ 7.2793e+003
(0.0482/0.0519) (0.0508/ 0.0556) (0.0115/ 0.0128) ( 67.1229 )

GARCHCN 0.9973 [-3,3] 0.1587∗∗∗ 0.7923∗∗∗ 0.0696∗∗∗ 7.3913e+003
(0.0420/0.0458) (0.0443/0.0481) ( 0.0124/0.0127) (63.3846)

GARCH 0.1589∗∗∗ 0.7944∗∗∗ 0.0648∗∗∗ 7.3633e+003
(0.0412/0.0471) ( 0.0436/ 0.0498) (0.0115/ 0.0125) ( 61.5284 )

GARCHCN 0.9995 [-3.5,3.5] 0.1600∗∗∗ 0.7905∗∗∗ 0.0709∗∗∗ 7.4053e+003
(0.0416/0.0418) (0.0440/0.0442) ( 0.0120/0.0126) (73.7681)

GARCH 0.1602∗∗∗ 0.7913∗∗∗ 0.0690∗∗∗ 7.3973e+003
(0.0413/ 0.0453) ( 0.0435/ 0.0453) (0.0114/0.0124) (72.9906 )

GARCHCN 0.9999 [-4,4] 0.1529∗∗∗ 0.7967∗∗∗ 0.0706∗∗∗ 7.4034e+003
(0.0391/0.0404) (0.0416/0.0430) ( 0.0119/0.0125) ( 73.7882)

GARCH 0.1531∗∗∗ 0.7969∗∗∗ 0.0701∗∗∗ 7.4013e+003
(0.0392/ 0.0407) ( 0.0416/ 0.0434) (0.0118/0.0125) (73.3713 )

GARCHCN 1 [-5,5] 0.1547∗∗∗ 0.7961∗∗∗ 0.0699∗∗∗ 7.4081e+003
(0.0393/0.0759) (0.0423/0.0804) (0.0122/0.0176) (77.1545)

GARCH 0.1547∗∗∗ 0.7962∗∗∗ 0.0698∗∗∗ 7.4079e+003
(0.0393/0.0751) ( 0.0423/0.0792) ( 0.0122/ 0.0173) ( 77.0876 )

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.

Table F.0.4: Results from Experiments 14, 15, and 16 of GARCHCCN

Row No. κ α β l1 r1 m1 m2 -LOGL BIC
bounds [-3,3]

real value
1 0.03 0.86 0.11 0.3 0.3 0.85 -0.85

GARCHCCN
0.1499∗∗∗ 0.8550∗∗∗ 0.0652∗∗∗ 0.6722∗ 0.6020 −7.6405∗∗∗ −1.8945∗∗∗ 8.0937e+03 1.6247e+004
( 0.8283 /
0.1333 )

( 0.8341 /
0.0649 )

( 0.7207 /
0.0504 )

( 0.0240 /
0.3274 )

( 0.0274 /
0.3821 )

( 0.5505 /
16.4856 )

( 0.1734/
1.6573)

( 36.3695)

GARCH
0.1985∗∗∗ 0.8555∗∗∗ 0.0179∗∗∗ 8.2205e+03 1.6467e+004
( 0.1986 /
0.0979 )

( 0.1325 /
0.0664 )

( 0.0104/
0.0089 )

( 46.0422
)

bounds [-4,4]
real value

2 0.03 0.86 0.11 0.3 0.3 0.85 -0.85
GARCHCCN
0.0509∗∗∗ 0.8857∗∗∗ 0.0715∗∗∗ 0.3988∗∗ 0.3747∗∗ 0.8289∗∗∗ −0.8055∗∗∗ 8.9476e+03 1.7955e+004
( 0.0360 /
0.0466 )

( 0.0358 /
0.0326 )

( 0.0220 /
0.0357 )

( 0.0098 /
0.1313 )

( 0.0209 /
0.1473 )

( 0.0486 /
0.1005 )

( 0.0489/
0.1129)

( 38.0589)

GARCH
0.1511∗∗∗ 0.9119∗∗∗ 0.0187∗∗∗ 9.0315e+03 1.8089e+004
( 0.0862 /
0.0768 )

( 0.0441 /
0.0427 )

( 0.0074/
0.0083 )

( 40.6363
)

bounds [-5,5]
real value

Continued on next page
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Table F.0.4 – continued from previous page
Row No. κ α β l1 r1 m1 m2 -LOGL BIC

3 0.03 0.86 0.11 0.3 0.3 0.85 -0.85
GARCHCCN
0.0725∗∗∗ 0.8537∗∗∗ 0.1051∗∗∗ 0.3766∗ 0.3699∗ 0.3893 −3.0355 9.4949e+03 1.9049e+004

( 0.0429 /
0.0838 )

( 0.0355
/0.0416 )

( 0.0264 /
0.0522 )

( 0.0181 /
0.1995 )

( 0.0163 /
0.1864 )

( 0.7159 /
1.7617 )

( 5.4421/
16.3927)

( 65.9044)

GARCH
0.2600∗∗∗ 0.8717∗∗∗ 0.0323∗∗∗ 9.5647e+003 1.9155e+004
( 0.1150 /
0.0935 )

( 0.0481 /
0.0373 )

( 0.0091/
0.0099 )

( 65.2999
)

bounds [-6,6]
real value

4 0.03 0.86 0.11 0.3 0.3 0.85 -0.85
GARCHCCN
0.0431∗∗∗ 0.8578∗∗∗ 0.1087∗∗∗ 0.3279∗ 0.3277∗∗ 0.7991 −0.5339 9.7376e+03 1.9535e+004
( 0.0187 /
0.0421 )

( 0.0282 /
0.0254 )

( 0.0296 /
0.0260 )

( 0.0254 /
0.1360 )

( 0.0155 /
0.1167 )

( 2.3060 /
9.2279 )

( 0.4800/
4.4458)

(
110.4976)

GARCH
0.1743∗∗∗ 0.8988∗∗∗ 0.0449∗∗∗ 9.8458e+03 1.9717e+004

( 0.1180 /
0.2105 )

( 0.0466 /
0.0688 )

( 0.0111/
0.0110)

( 99.4684
)

bounds [-7,7]
real value

5 0.03 0.86 0.11 0.3 0.3 0.85 -0.85
GARCHCCN
0.0340∗∗∗ 0.8577∗∗∗ 0.1107∗∗∗ 0.3010∗∗∗ 0.3019∗∗∗ 0.8490 −30.8489 9.6834e+03 1.9426e+004
( 0.0093 /
0.0110 )

( 0.0148 /
0.0160 )

( 0.0155 /
0.0155 )

( 0.0107 /
0.0162 )

( 0.0101 /
0.0165 )

( 3.0330
/7.0335 )

( 23.0335/
100.0297)

(
177.5358)

GARCH
0.0848∗∗∗ 0.9061∗∗∗ 0.0702∗∗∗ 9.8436e+03 1.9713e+004
( 0.0183 /
0.0418 )

( 0.0105 /
0.0171 )

( 0.0071/
0.0136 )

( 165.1921
)

bounds [-3,3]
real value

6 0.03 0.86 0.11 0.6 0.6 0.85 -0.85
GARCHCCN
0.0315∗∗∗ 0.8587∗∗∗ 0.1099∗∗∗ 0.6013∗∗∗ 0.6050∗∗∗ 0.8532∗∗∗ −0.8014∗∗∗ 7.4489e+03 1.4957e+004
( 0.0076 /
0.0081 )

( 0.0168 /
0.0156 )

( 0.0154 /
0.0106 )

( 0.0183 /
0.0266 )

( 0.0176 /
0.0437)

( 0.1144 /
0.1279 )

( 0.1146/
0.1263)

(
112.5196)

GARCH
0.0478∗∗∗ 0.8847∗∗∗ 0.0792∗∗∗ 7.5770e+03 1.5180e+004
( 0.0102 /
0.0139 )

( 0.0141 /
0.0166 )

( 0.0092/
0.0094 )

( 116.5319
)

bounds [-4,4]
real value

7 0.03 0.86 0.11 0.6 0.6 0.85 -0.85
GARCHCCN
0.0309∗∗∗ 0.8591∗∗∗ 0.1096∗∗∗ 0.5965∗∗∗ 0.6003∗∗∗ 0.8361∗∗∗ −0.8379∗∗∗ 7.5882e+03 1.5236e+004
( 0.0058 /
0.0057 )

( 0.0124 /
0.0128 )

( 0.0116 /
0.0118 )

( 0.0184 /
0.0286 )

( 0.0184 /
0.0275 )

( 0.1236 /
0.1472 )

( 0.1265/
0.1325)

(
203.3828)

GARCH
0.0300∗∗∗ 0.8738∗∗∗ 0.1094∗∗∗ 7.6695e+03 1.5365e+004
( 0.0056 /
0.0066 )

( 0.0104 /
0.0124 )

( 0.0096/
0.0103 )

( 209.5608
)

bounds [-5,5]
real values

8 0.03 0.86 0.11 0.6 0.6 0.85 -0.85
GARCHCCN
0.0305∗∗∗ 0.8601∗∗∗ 0.1089∗∗∗ 0.6042∗∗∗ 0.6107∗∗∗ 12.3209 −0.8094∗∗∗ 7.1622e+03 1.4384e+004
( 0.0051 /
0.0052 )

( 0.0118 /
0.0113 )

( 0.0105 /
0.0103 )

( 0.0241 /
0.0530 )

( 0.0257 /
0.0451 )

( 0.1603 /
33.7560 )

( 0.1846/
0.2332)

(
278.8020)

GARCH
0.0256∗∗∗ 0.8649∗∗∗ 0.1178∗∗∗ 7.1985e+03 1.4423e+004
( 0.0046 /
0.0048 )

( 0.0107 /
0.0114 )

( 0.0100/
0.0097 )

(
285.6016

)
bounds [-6,6]

real value
9 0.03 0.86 0.11 0.6 0.6 0.85 -0.85

GARCHCCN
0.0306∗∗∗ 0.8598∗∗∗ 0.1096∗∗∗ 0.6216∗∗∗ 0.6229∗∗∗ 125.7647 −6.4322 6.9088e+03 1.3877e+004
( 0.0052 /
0.0050 )

( 0.0120 /
0.0122 )

( 0.0122 /
0.0112 )

( 0.0360 /
0.0930 )

( 0.0432 /
0.0895 )

( 136.5455
/ 857.5000

)

( 20.7200/
53.2233)

(
255.0770)

GARCH
0.0273∗∗∗ 0.8614∗∗∗ 0.1157∗∗∗ 6.9246e+03 1.3875e+004
( 0.0049 /
0.0047 )

( 0.0116 /
0.0123 )

( 0.0101/
0.0110)

(
257.7580

)
bounds [-7,7]

real value
10 0.03 0.86 0.11 0.6 0.6 0.85 -0.85

GARCHCCN
Continued on next page
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Table F.0.4 – continued from previous page
Row No. κ α β l1 r1 m1 m2 -LOGL BIC

0.0305∗∗∗ 0.8586∗∗∗ 0.1110∗∗∗ 0.6653∗∗∗ 0.6831∗∗∗ 156.5235 −62.8729 6.7619e+03 1.3583e+004
(

0.0060 /
0.0047 )

( 0.0133 /
0.0109 )

( 0.0115 /
0.0101 )

( 0.1949 /
0.1545 )

( 0.1841 /
0.1407 )

( 491.9487
/

744.0744)

(
500.0445/
296.7431)

(
212.1572)

GARCH
0.0291∗∗∗ 0.8592∗∗∗ 0.1134∗∗∗ 6.7685e+03 1.3563e+004
( 0.0052 /
0.0048 )

( 0.0124 /
0.0110 )

( 0.0102/
0.0100)

(
213.6784

)

bounds [-3,3]
real value

11 0.03 0.86 0.11 0.6 0.6 0.55 -0.55
GARCHCCN
0.0313∗∗∗ 0.8579∗∗∗ 0.1123∗∗∗ 0.6032∗∗∗ 0.5994∗∗∗ 0.5282∗∗∗ −0.5551∗∗∗ 7.8483e+03 1.5756e+004

(
0.0095 /
0.0104 )

( 0.0190 /
0.0188 )

( 0.0190 /
0.0166 )

( 0.0171 /
0.0325 )

( 0.0168 /
0.0324 )

( 0.1238 /
0.1252 )

(
0.1083/0.1207)

(
113.9027)

GARCH
0.0619∗∗∗ 0.8858∗∗∗ 0.0746∗∗∗ 8.0362e+03 1.6098e+004

( 0.0143 /
0.0206 )

( 0.0155 /
0.0170 )

( 0.0093/
0.0101 )

(
122.5698

)
bounds [-4,4]

real value
12 0.03 0.86 0.11 0.6 0.6 0.55 -0.55

GARCHCCN
0.0304∗∗∗ 0.8581∗∗∗ 0.1117∗∗∗ 0.6015∗∗∗ 0.5998∗∗∗ 0.5438∗∗∗ −0.5500∗∗∗ 8.0918e+03 1.6243e+004

(
0.0059 /
0.0058 )

( 0.0119 /
0.0122 )

( 0.0118 /
0.0123 )

( 0.0161 /
0.0277 )

( 0.0162 /
0.0251 )

( 0.1013 /
0.1064 )

( 0.1013/
0.1112)

(
201.8033)

GARCH
0.0293∗∗∗ 0.8783∗∗∗ 0.1103∗∗∗ 8.2256e+03 1.6477e+004
( 0.0057 /
0.0077 )

( 0.0095 /
0.0115 )

( 0.0093/
0.0102 )

(
210.2005 )

bounds [-5,5]
real value

13 0.03 0.86 0.11 0.6 0.6 0.55 -0.55
GARCHCCN
0.0302∗∗∗ 0.8595∗∗∗ 0.1105∗∗∗ 0.6014∗∗∗ 0.6050∗∗∗ 0.5505∗∗∗ −0.5472∗∗∗ 7.6176e+03 1.5295e+004

(
0.0053 /
0.0047 )

( 0.0147 /
0.0100 )

( 0.0148 /
0.0098 )

( 0.0280 /
0.0336 )

( 0.0278 /
0.0312 )

( 0.1796 /
0.1609 )

( 0.1970 /
0.1226)

(
309.2230)

GARCH
0.0226∗∗∗ 0.8673∗∗∗ 0.1234∗∗∗ 7.6882e+03 1.5402e+004
( 0.0042 /
0.0042 )

( 0.0096 /
0.0105 )

( 0.0098/
0.0097)

(
318.6398 )

bounds [-6,6]
real value

14 0.03 0.86 0.11 0.6 0.6 0.55 -0.55
GARCHCCN
0.0309∗∗∗ 0.8592∗∗∗ 0.1094∗∗∗ 0.6048∗∗∗ 0.6109∗∗∗ 0.5492∗ −4.8905 7.1159e+03 1.4291e+004

(
0.0051 /
0.0051 )

( 0.0118 /
0.0115 )

( 0.0104 /
0.0102 )

( 0.0303 /
0.0477 )

( 0.0356 /
0.0567 )

( 0.2017 /
0.2248 )

( 28.6495
/ 46.8255)

(
291.7922)

GARCH
0.0248∗∗∗ 0.8621∗∗∗ 0.1206∗∗∗ 7.1480e+03 1.4322e+004
( 0.0044 /
0.0045 )

( 0.0107 /
0.0118 )

( 0.0100/
0.0103 )

(
298.9383 )

bounds [-7,7]
real value

15 0.03 0.86 0.11 0.6 0.6 0.55 -0.55
GARCHCCN
0.0306∗∗∗ 0.8595∗∗∗ 0.1099∗∗∗ 0.6417∗∗∗ 0.6542∗∗∗ 30.9309 −46.0195 6.8839e+03 1.3827e+004

(
0.0058 /
0.0055 )

( 0.0128 /
0.0124 )

( 0.0106 /
0.0110 )

( 0.0814 /
0.1102 )

( 0.0837 /
0.1277 )

( 0.7174 /
252.6887 )

(
1.1695e+03/
296.2876)

(
258.7401)

GARCH
0.0274∗∗∗ 0.8606∗∗∗ 0.1157∗∗∗ 6.8975e+03 1.3821e+004
( 0.0046 /
0.0055 )

( 0.0110 /
0.0126 )

( 0.0101/
0.0111 )

(
263.2629

)
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table F.0.3: Results from Experiment 13 of GARCHTN

models bounds κ α beta -LOGL

real value 0.15 0.8 0.03

GARCHTN [-2,2] 0.2198 0.7153∗∗ 0.0334 6.1141e+003
( 0.2094/0.1533) (0.2524/ 0.1868) (0.0208/ 0.0272) (35.9863)

GARCH 0.3718 0.4582 0.0162 6.2280e+003
( 0.2656/0.0865) ( 0.3727/ 0.0965) (0.0114/ 0.0134) ( 43.3077)

GARCHTN [-2.5,2.5] 0.2185 0.7184∗∗∗ 0.0332∗ 6.5592e+003
(0.1840/0.1287) ( 0.2183/0.1543) ( 0.0168/ 0.0189) ( 50.2963)

GARCH 0.2739 0.6409∗∗ 0.0243∗ 6.5926e+003
(0.2431/ 0.0490) (0.2987/0.0531) (0.0124/0.0126) ( 53.5484 )

GARCHTN [-3,3] 0.2139 0.7258∗∗∗ 0.0309∗ 6.7159e+003
(0.1956/ 0.0975) (0.2240/ 0.1157) (0.0131/ 0.0126) (52.2444 )

GARCH 0.2234 0.7138∗∗ 0.0273∗∗ 6.7229e+003
(0.2105/ 0.0445) ( 0.2430/ 0.0474) ( 0.0120/0.0124) (53.1007 )

GARCHTN [-3.5,3.5] 0.2367 0.7006∗∗∗ 0.0322∗∗ 6.7657e+003
( 0.2100/ 0.0401) (0.2393/0.0427) (0.0133/ 0.0125) ( 56.6892)

GARCH 0.2430 0.6933∗∗ 0.0311∗∗ 6.7658e+003
(0.2211/ 0.0410) (0.2530/0.0436) ( 0.0130/ 0.0123) ( 56.7173 )

GARCHTN [-4,4] 0.2238 0.7967∗∗∗ 0.0706∗∗∗ 6.7710e+003
( 0.1920/ 0.0388) (0.0416/0.0417) ( 0.0119/0.0124) (59.8072)

GARCH 0.2238 0.7133∗∗∗ 0.0314∗∗ 6.7722e+003
(0.1920/ 0.0391) ( 0.2212/0.0419) (0.0128/ 0.0124) (59.9601 )

GARCHTN [-5,5] 0.2430 0.6933∗∗ 0.0311∗∗ 6.7693e+003
(0.2211/ 0.0438) (0.2530/0.0468) (0.0130/ 0.0132) ( 59.6758)

GARCH 0.2245 0.7150∗∗∗ 0.0308∗∗ 6.7693e+003
(0.1986/0.0439) ( 0.2245/ 0.0468) ( 0.0128/ 0.0131) ( 59.6841 )

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
Real mean=0, Real standard deviation=1.
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Appendix G

GARCH simulations and Parameter
Estimation - A comparison between
10,000 simulations with a data size of
500 and 1000 simulations with a data
size of 500

Table G.0.1: GARCH Simulations and Parameters Estimated

models κ α β
real value 0.15 0.8 0.05
GARCH 0.2622 0.6726∗∗ 0.0650

(0.1846 / 0.2306) (0.1959/ 0.2446) ( 0.0481/0.0368)
10,000 simulations with a data size of 500.
models κ α β
real value 0.15 0.8 0.05
GARCH 0.4105 0.5275 0.0582

( 5.9250 /0.3402 ) ( 5.9783/0.3431 ) ( 0.1372/0.0397)
1000 simulations with a data size of 500.
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table G.0.2: GARCH Simulations and Parameters Estimated as sample size changes

sample size κ α β
real value 0.2 0.8 0.1
5000 0.2048∗∗∗ 0.7979∗∗∗ 0.0993∗∗∗

(0.0380) ( 0.0271) ( 0.0119)
1400 0.2305∗∗ 0.7848∗∗∗ 0.0993∗∗∗

( 0.0951) ( 0.0613) ( 0.0243)
1000 0.2450 0.7725∗∗∗ 0.1033∗∗∗

( 0.1311 ) ( 0.0819 ) ( 0.0256)
1000 simulations with a data size of 1000, 1400, or 5000.
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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101

Table G.0.3: GARCHCCN Simulations and Parameters Estimated as sample size changes

sample size κ α β l1 r1 m1 m2 Lower Upper −LOGL
real value 0.03 0.86 0.11 0.6 0.6 0.85 -0.85 -3 3
5000 0.0315∗∗∗ 0.8587∗∗∗ 0.1099∗∗∗ 0.6013∗∗∗ 0.6050∗∗∗ 0.8532∗∗∗ −0.8014∗∗∗ 7.4489e+03

( 0.0076 / 0.0081 ) ( 0.0168 / 0.0156 ) ( 0.0154 / 0.0106 ) ( 0.0183 / 0.0266 ) ( 0.0176 / 0.0437) ( 0.1144 / 0.1279 ) ( 0.1146/ 0.1263) ( 112.5196)
2200 0.0354∗∗ 0.8526∗∗∗ 0.1129∗∗∗ 0.6020∗∗∗ 0.6023∗∗∗ 0.8344∗∗∗ −0.8124∗∗∗ 3.2996e+03

( 0.0173/ 0.0159 ) ( 0.0306/ 0.0301 ) ( 0.0265 /0.0254 ) ( 0.0296 / 0.0550 ) ( 0.0302 / 0.0515 ) ( 0.2095 / 0.2136 ) ( 0.2043 / 0.1865 ) ( 76.7135)
2000 0.0346∗∗ 0.8515∗∗∗ 0.1159∗∗∗ 0.5967∗∗∗ 0.5966∗∗∗ 0.8163∗∗∗ −0.8231∗∗∗ 3.0101e+03

( 0.0169/ 0.0170) ( 0.0293/ 0.0305) ( 0.0284 /0.0267 ) ( 0.0296 / 0.0554 ) ( 0.0285 / 0.0579 ) ( 0.1944 / 0.2200 ) ( 0.2005 /0.2522 ) ( 64.7461)
1800 0.0320∗∗ 0.8515∗∗∗ 0.1160∗∗∗ 0.5950∗∗∗ 0.5995∗∗∗ 0.8177∗∗∗ −0.7995∗∗∗ 2.7049e+03

( 0.0231/ 0.0158 ) ( 0.0363/ 0.0286 ) ( 0.0312 / 0.0233 ) ( 0.0309 / 0.0625 ) ( 0.0306 / 0.0635 ) ( 0.2494 / 0.2632 ) ( 0.2385/0.2813 ) ( 70.4308)
1600 0.0355∗ 0.8496∗∗∗ 0.1175∗∗∗ 0.5998∗∗∗ 0.6058∗∗∗ 0.8159∗∗ −0.8142∗∗ 2.4024e+03

( 0.0327 / 0.0168 ) ( 0.0430/ 0.0307 ) ( 0.0479 /0.0283 ) ( 0.0370 / 0.0727 ) ( 0.0404 / 0.0668 ) ( 0.3750 / 0.2612 ) ( 0.3122 / 0.2850 ) ( 64.6101)
1400 2.2323 0.6972∗∗∗ 0.1785 0.3102∗∗ 0.3147∗∗ 0.8312∗∗∗ −0.8450∗∗∗ 2.2574e+03

( 93.1800/ 26.5765 ) ( 2.7319/ 0.2729 ) ( 1.3632 /0.2017 ) (0.1658 / 0.1222 ) ( 0.6221 / 0.1250 ) ( 0.3326 / 0.1079 ) ( 0.4692 / 0.1094 ) ( 22.8479)
1000 simulations with a data size of 1400, 1600, 1800, 2000, 2200, or 5000.
Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001



Appendix H

Fitted GARCH, GARCHTN,
GARCHCN, and GARCHCCN of 5
Taiwanese, 5 Chinese, 5 Korean, and
5 French stocks; and out-of-sample
VaR test statistics

Table H.0.1: Out-of-sample VaR test statistics

Data p/model x/T Kupiec LR test E(shortfall2) LRcc

Acer 0.1
GARCH 0.0680 6.3372(0.025) 2.0223 9.1482(0.025)

GARCHTN 0.0775 2.4198 1.6928 5.2573 (0.1)
GARCHCN 0.0775 2.4198 1.9041 5.2573(0.1)
GARCHCCN 0.1128 0.0950 1.8641 1.9358

0.05
GARCH 0.0340 3.0215 1.6982 5.3947 (0.1)

GARCHTN 0.0350 2.1073 0.7164 2.5510
GARCHCN 0.0350 2.1073 0.8296 5.0622(0.1)
GARCHCCN 0.0498 0.0425 0.7737 2.2192

0.025
GARCH 0.0180 1.1120 1.3809 3.2385

GARCHTN 0.0150 1.9110 0.3423 5.2002(0.1)
GARCHCN 0.0175 1.0296 0.3881 3.7054
GARCHCCN 0.0200 0.4399 0.2314 2.6094

ChinaTrust 0.1
GARCH 0.0675 5.2396 (0.025) 0.7330 5.7440(0.1)

GARCHTN 0.0700 4.4218(0.05) 0.7091 5.0741 (0.1)
GARCHCN 0.0700 4.4218(0.05) 0.7091 5.0741 (0.1)
GARCHCCN 0.0775 2.4198 0.6413 2.5801

0.05
GARCH 0.0250 6.3979 (0.025) 0.3054 6.9121(0.05)

GARCHTN 0.0275 5.0591(0.025) 0.2993 5.6829(0.1)
GARCHCN 0.0275 5.0591(0.025) 0.2993 5.6829(0.1)
GARCHCCN 0.0225 7.9423(0.005) 0.2539 8.3577(0.025)

0.025
GARCH 0.0200 0.4399 0.1362 0.7673

GARCHTN 0.0150 1.9110 0.1432 2.0942
GARCHCN 0.0150 1.9110 0.1432 2.0942
GARCHCCN 0.0125 3.1324(0.1) 0.0992 3.2593

Clevo 0.1
GARCH 0.0400 20.2443(0.005) 3.5480 21.5815(0.005)

GARCHTN 0.0375 22.2724 (0.005) 3.4039 23.4446 (0.005)
GARCHCN 0.0400 20.2443(0.005) 3.5446 21.5815(0.005)
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Table H.0.1 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2) LRcc

GARCHCCN 0.0525 11.9226(0.005) 2.9662 14.2571 (0.005)
0.05

GARCH 0.0250 6.3979 (0.01) 2.1705 6.9121(0.05)
GARCHTN 0.0200 9.7144(0.005) 2.1055 10.0418(0.01)
GARCHCN 0.0250 6.3979(0.01) 2.1714 6.9121(0.05)
GARCHCCN 0.0275 5.0591(0.025) 1.7856 5.6829 (0.1)

0.025
GARCH 0.0125 3.1324(0.1) 1.4619 3.2593

GARCHTN 0.0125 3.1324(0.1) 1.3872 3.2593
GARCHCN 0.0125 3.1324 (0.1) 1.4644 3.2593
GARCHCCN 0.0150 1.9110 1.1739 2.0942

Fubon 0.1
GARCH 0.0600 8.1812(0.005) 1.5236 8.3520(0.025)

GARCHTN 0.0600 8.1812(0.005) 1.5021 8.3520 (0.025)
GARCHCN 0.0600 8.1812(0.005) 1.5140 8.3520 (0.025)
GARCHCCN 0.0700 4.4218(0.05) 1.4806 5.0741 (0.1)

0.05
GARCH 0.0400 0.9014 0.7348 1.0893

GARCHTN 0.0400 0.9014 0.7234 1.0893
GARCHCN 0.0400 0.9014 0.7289 1.0893
GARCHCCN 0.0425 0.4980 0.7286 0.6013

0.025
GARCH 0.0225 0.1061 0.3687 0.5215

GARCHTN 0.0250 0 0.3632 0.5142
GARCHCN 0.0225 0.1061 0.3653 0.5215
GARCHCCN 0.0225 0.1061 0.3521 0.5215

Formosa Petrochemical Corp 0.1
GARCH 0.0600 8.1812 (0.005) 1.5236 8.3520(0.025)

GARCHTN 0.0600 8.1812(0.005) 1.5021 8.3520(0.025)
GARCHCN 0.0600 8.1812 (0.005) 1.5140 8.3520(0.025)
GARCHCCN 0.1150 0.9587 0.9319 2.5319

0.05
GARCH 0.0400 0.9014 0.7348 1.0893

GARCHTN 0.0400 0.9014 0.7234 1.0893
GARCHCN 0.0400 0.9014 0.7292 1.0893
GARCHCCN 0.0525 0.0518 0.3862 0.7185

0.025
GARCH 0.0225 0.1061 0.3687 0.5215

GARCHTN 0.0250 0 0.3632 0.5142
GARCHCN 0.0225 0.1061 0.3656 0.5215
GARCHCCN 0.0350 1.4624 0.1269 1.9060

TsingHuaTongFang 0.1
GARCH 0.0675 5.2396(0.025) 4.2827 5.7440(0.1)

GARCHTN 0.0675 5.2396(0.025) 4.1993 5.7440(0.1)
GARCHCN 0.0675 5.2396(0.025) 4.2459 5.7440(0.1)
GARCHCCN 0.0950 0.1128 3.8328 0.7014

0.05
GARCH 0.0450 0.2175 3.0584 0.2622

GARCHTN 0.0450 0.2175 1.9895 0.2622
GARCHCN 0.0450 0.2175 2.0055 0.2622
GARCHCCN 0.0475 0.0535 1.6812 0.0642

0.025
GARCH 0.0300 0.3860 2.1427 1.1303

GARCHTN 0.0300 0.3860 0.9312 1.1303
GARCHCN 0.0300 0.3860 0.9250 1.1303
GARCHCCN 0.0250 0 0.5946 0.5142

GDPower 0.1
GARCH 0.0350 24.4391(0.005) 0.9913 24.8828(0.005)

GARCHTN 0.0350 24.4391(0.005) 0.9913 24.8828(0.005)
GARCHCN 0.0325 26.7540(0.005) 1.1256 27.3738 (0.005)
GARCHCCN 0.0600 8.1812(0.005) 0.9872 8.3520(0.025)

0.05
GARCH 0.0400 0.9014 1.0360 2.1533

GARCHTN 0.0200 9.7144 (0.005) 0.3381 10.0418(0.01)
GARCHCN 0.0175 11.7422 (0.005) 0.4031 11.9923(0.005)
GARCHCCN 0.0225 7.9423(0.01) 0.3262 9.6879(0.01)

0.025
GARCH 0.0075 6.9011 (0.01) 0.4510 6.9465(0.05)

GARCHTN 0.0075 6.9011(0.01) 0.0939 6.9465(0.05)
GARCHCN 0.0100 4.7615(0.05) 0.1139 4.8425(0.1)
GARCHCCN 0.0100 4.7615(0.05) 0.0169 4.8425(0.1)

Inner Mongolia Baotou 0.1
GARCH 0.0875 0.7219 4.6064 7.4631 (0.05)

GARCHTN 0.0875 0.7219 4.4557 7.4631(0.05)
GARCHCN 0.0900 0.4583 4.5613 7.6106(0.05)
GARCHCCN 0.1125 0.6702 4.6614 6.4300 (0.025)

0.05
GARCH 0.0475 0.0535 2.4426 1.9543

GARCHTN 0.0500 0 2.3465 2.1118
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Table H.0.1 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2) LRcc

GARCHCN 0.0500 0 2.4607 2.1118
GARCHCCN 0.0525 0.0518 2.2424 2.3864

0.025
GARCH 0.0300 0.3860 1.3663 1.1303

GARCHTN 0.0275 0.0994 1.3100 0.7232
GARCHCN 0.0275 0.0994 1.4039 0.7232
GARCHCCN 0.0250 0 0.9304 0.5142

China Merchants Bank 0.1
GARCH 0.0800 1.8953 3.6613 3.3142

GARCHTN 0.0800 1.8953 3.6148 3.3142
GARCHCN 0.0825 1.4387 3.5119 3.0921
GARCHCCN 0.0900 0.4583 4.5417 1.1135

0.05
GARCH 0.0400 0.9014 2.4313 2.2386

GARCHTN 0.0425 0.4980 2.4063 2.0116
GARCHCN 0.0425 0.4980 2.3789 2.0116
GARCHCCN 0.0575 0.4528 2.9483 0.5504

0.025
GARCH 0.0250 0 1.8758 0.5142

GARCHTN 0.0250 0 1.8426 0.5142
GARCHCN 0.0250 0 1.8445 0.5142
GARCHCCN 0.0250 0 2.1296 0.5142

ShangHai International Airport 0.1
GARCH 0.0550 10.5805(0.005) 1.1631 10.6248(0.005)

GARCHTN 0.0525 11.9226(0.005) 1.2123 11.9341 (0.005)
GARCHCN 0.0425 18.3465(0.005) 1.3009 18.4498(0.005)
GARCHCCN 0.0950 0.1128 1.0812 0.1605

0.05
GARCH 0.0275 5.0591 (0.025) 1.1555 5.6829 (0.1)

GARCHTN 0.0275 5.0591(0.025) 1.0296 5.6829 (0.1)
GARCHCN 0.0250 6.3979 (0.025) 0.6278 6.9121 (0.05)
GARCHCCN 0.0400 0.9014 0.5409 2.2386

0.025
GARCH 0.0175 1.0296 0.9899 1.2796

GARCHTN 0.0175 0.6017 0.3285 1.2796
GARCHCN 0.0075 6.9011 (0.01) 0.3565 6.9465(0.05)
GARCHCCN 0.0175 1.0296 0.2643 1.2796

Naver 0.1
GARCH 0.0700 4.4218(0.05) 5.4578 5.0741(0.1)

GARCHTN 0.0700 4.4218(0.05) 5.4143 5.0741 (0.1)
GARCHCN 0.0700 4.4218(0.05) 5.4071 5.0741 (0.1)
GARCHCCN 0.0800 1.8953 5.3770 1.9781

0.05
GARCH 0.0475 0.0535 2.9125 1.9543

GARCHTN 0.0450 0.2175 2.8852 1.9189
GARCHCN 0.0450 0.2175 2.8840 1.9189
GARCHCCN 0.0525 0.0518 2.9241 0.0633

0.025
GARCH 0.0300 0.3860 1.6339 1.1303

GARCHTN 0.0300 0.3860 1.6149 1.1303
GARCHCN 0.0300 0.3860 1.6139 1.1303
GARCHCCN 0.0325 0.8446 1.6058 1.7204

Samsung 0.1
GARCH 0.0825 1.4387 2.8169 2.0683

GARCHTN 0.0800 1.8953 2.9594 2.7264
GARCHCN 0.0825 1.4387 2.7738 2.0683
GARCHCCN 0.0875 0.7219 2.8120 1.0360

0.05
GARCH 0.0550 0.2042 1.7381 0.6924

GARCHTN 0.0525 0.0518 1.8551 0.0633
GARCHCN 0.0525 0.0518 1.7070 0.0633
GARCHCCN 0.0525 0.0518 1.7072 0.0633

0.025
GARCH 0.0175 1.0296 1.2249 1.2796

GARCHTN 0.0175 1.0296 1.3223 1.2796
GARCHCN 0.0175 1.0296 1.1987 1.2796
GARCHCCN 0.0175 1.0296 1.1671 1.2796

Willbes 0.1
GARCH 0.0650 6.1368 6.1752 6.1969(0.05)

GARCHTN 0.0650 6.1368 5.9573 6.1969 (0.05)
GARCHCN 0.0650 6.1368 6.1752 6.1969 (0.05)
GARCHCCN 0.1075 0.2446 5.5633 1.6030

0.05
GARCH 0.0375 1.4350 3.4444 1.7357

GARCHTN 0.0375 1.4350 3.2820 1.7357
GARCHCN 0.0375 1.4350 3.4444 1.7357
GARCHCCN 0.0525 0.0518 2.2954 0.7185

0.025
GARCH 0.0150 1.9110 2.2578 5.2002(0.1)
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Table H.0.1 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2) LRcc

GARCHTN 0.0125 3.1324 2.1282 7.1809(0.05)
GARCHCN 0.0150 1.9110 2.2578 5.2002(0.1)
GARCHCCN 0.0200 0.4399 0.7911 0.7673

Enex 0.1
GARCH 0.0550 10.5805(0.01) 6.1020 13.0295(0.05)

GARCHTN 0.0550 10.5805 (0.01) 6.0077 13.0295 (0.005)
GARCHCN 0.0550 10.5805(0.01) 6.0301 13.0295 (0.005)
GARCHCCN 0.1000 0 5.4330 0.2790

0.05
GARCH 0.0250 6.3979(0.01) 3.1907 6.9121(0.025)

GARCHTN 0.0350 6.3979 (0.01) 3.1420 6.9121 (0.025)
GARCHCN 0.0250 6.3979 (0.01) 3.1467 6.9121 (0.025)
GARCHCCN 0.0350 2.1073 2.2367 3.1258

0.025
GARCH 0.0150 1.9110 1.8082 2.0942

GARCHTN 0.0150 1.9110 1.7755 2.0942
GARCHCN 0.0150 1.9110 1.7712 2.0942
GARCHCCN 0.0150 1.9110 0.9629 2.0942

Posco 0.1
GARCH 0.0675 5.2396 (0.025) 1.2108 5.7440(0.1)

GARCHTN 0.0750 3.0143 (0.1) 1.4139 3.2786
GARCHCN 0.0800 1.8953 2.6186 6.0881 (0.05)
GARCHCCN 0.0700 4.4218 (0.05) 1.0427 5.0741(0.1)

0.05
GARCH 0.0425 0.4980 0.7353 2.0116

GARCHTN 0.0375 1.4350 0.7735 1.7357
GARCHCN 0.0350 2.1073 1.4712 8.9590(0.025)
GARCHCCN 0.0425 0.4980 0.5947 2.0116

0.025
GARCH 0.0200 0.4399 0.5204 0.7673

GARCHTN 0.0300 0.3860 0.4427 1.2187
GARCHCN 0.0250 0 0.8816 1.3886
GARCHCCN 0.0175 1.0296 0.4018 1.2796

French Stocks
BNP 0.1

GARCH 0.0775 2.4198 1.7252 2.5801
GARCHTN 0.0725 3.6809(0.1) 1.7958 3.6874
GARCHCN 0.0775 2.4198 1.7439 2.5801
GARCHCCN 0.0825 1.4387 1.6832 1.4698

0.05
GARCH 0.0450 0.2175 0.7955 1.9189

GARCHTN 0.0475 0.0535 0.8155 1.9543
GARCHCN 0.0500 0 0.8083 2.1118
GARCHCCN 0.0500 0 0.7728 2.1118

0.025
GARCH 0.0325 0.8446 0.3406 1.7204

GARCHTN 0.0325 0.8446 0.3455 1.7204
GARCHCN 0.0325 0.8446 0.3483 1.7204
GARCHCCN 0.0325 0.8446 0.3176 1.7204

Danone 0.1
GARCH 0.0725 3.6809(0.1) 0.8220 3.6816

GARCHTN 0.0725 3.6809(0.1) 0.3772 3.6816
GARCHCN 0.0725 3.6809(0.1) 0.8017 3.6816
GARCHCCN 0.0875 0.7219 0.8703 0.7221

0.05
GARCH 0.0500 0 0.3777 2.0035

GARCHTN 0.0475 0.0535 0.8212 1.8518
GARCHCN 0.0450 0.2175 0.3694 1.8223
GARCHCCN 0.0600 0.7937 0.4252 3.7357

0.025
GARCH 0.0250 0 0.1952 0.4622

GARCHTN 0.0250 0 0.1948 0.4622
GARCHCN 0.0250 0 0.1899 0.4622
GARCHCCN 0.0325 0.8446 0.2166 1.6520

Gemalto 0.1
GARCH 0.0600 8.1812 (0.005) 1.4286 8.3520(0.025)

GARCHTN 0.0600 8.1812(0.005) 1.4261 8.3520(0.025)
GARCHCN 0.0600 8.1812(0.005) 1.4230 8.3520(0.025)
GARCHCCN 0.0775 2.4198 1.9764 2.5055

0.05
GARCH 0.0300 3.9074 (0.05) 0.4844 4.6517 (0.1)

GARCHTN 0.0300 3.9074(0.05) 0.4835 4.6517(0.1)
GARCHCN 0.0275 5.0591 (0.025) 0.4802 5.6829(0.1)
GARCHCCN 0.0500 0 0.8641 0.0000

0.025
GARCH 0.0200 0.4399 0.1229 0.7673

GARCHTN 0.0200 0.4399 0.1231 0.7673
GARCHCN 0.0200 0.4399 0.1198 0.7673
GARCHCCN 0.0275 0.0994 0.3377 0.7232
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Table H.0.1 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2) LRcc

Vallourec 0.1
GARCH 0.0725 3.6809 (0.1) 2.1780 3.6874

GARCHTN 0.0750 3.0143 (0.1) 2.0923 3.0493
GARCHCN 0.0725 3.6809 (0.1) 2.1584 3.6874
GARCHCCN 0.0950 0.1128 2.2385 0.1885

0.05
GARCH 0.0325 2.9278 1.3000 6.4033(0.05)

GARCHTN 0.0325 2.9278 1.2551 6.4033(0.05)
GARCHCN 0.0325 2.9278 1.2891 6.4033(0.05)
GARCHCCN 0.0450 0.2175 1.3096 1.6191

0.025
GARCH 0.0125 3.1324 0.9065 7.1809(0.05)

GARCHTN 0.0125 3.1324 0.8756 7.1809(0.05)
GARCHCN 0.0125 3.1324 0.8984 7.1809(0.05)
GARCHCCN 0.0150 1.9110 0.8643 3.2002

LVMH 0.1
GARCH 0.0725 3.6809 (0.1) 1.4533 4.0765

GARCHTN 0.0750 3.0143 (0.1) 1.4139 3.2786
GARCHCN 0.0750 3.0143 (0.1) 1.4139 3.2786
GARCHCCN 0.0750 3.0143 (0.1) 1.4433 3.2786

0.05
GARCH 0.0375 1.4350 0.7931 1.7357

GARCHTN 0.0375 1.4350 0.7735 1.7357
GARCHCN 0.0375 1.4350 0.7735 1.7357
GARCHCCN 0.0400 0.9014 0.7852 1.0893

0.025
GARCH 0.0300 0.3860 0.4525 1.2187

GARCHTN 0.0300 0.3860 0.4427 1.2187
GARCHCN 0.0300 0.3860 0.4427 1.2187
GARCHCCN 0.0300 0.3860 0.4443 1.2187

Table H.0.3: Fitted Models

Parameters Data 4 different GARCH models
5 Taiwanese Stocks

Acer G GTN GCN GCCN
κ 0.0649∗∗ 0.0545 0.0547∗ 0.0942∗∗∗

( 0.0215) ( 1.3283) ( 0.0209) ( 0.0267)
α 0.9428∗∗∗ 0.9337∗ 0.9453∗∗∗ 0.9430∗∗∗

( 0.0096) ( 0.4514) ( 0.0090 ) ( 0.0125)
β 0.0473∗∗∗ 0.0663∗∗∗ 0.0480∗∗∗ 0.0263∗∗∗

( 0.0074) ( 0.1972) ( 0.0069 ) ( 0.0056 )
l1 0.7586∗∗∗

( 0.0128)
r1 0.8504∗∗∗

( 0.0089)
m1 −0.9022∗∗∗

( 0.1518)
m2 2.9185∗∗∗

( 0.3093)
-LOGL 8.2309e+003 8.1623e+003 8.2288e+003 7.8975e+003

BIC 1.6486e+004 1.6349e+004 1.6376e+004 1.5852e+004
ChinaTrust G GTN GCN GCCN

κ 0.0358∗∗∗ 0.0255∗∗∗ 0.0334∗∗∗ 0.0690∗∗∗

( 0.0099) ( 0.0089) (0.0043) ( 0.0155)
α 0.9387∗∗∗ 0.9376∗∗∗ 0.9397∗∗∗ 0.9350∗∗∗

(0.0079) ( 0.0079) ( 0.0025) ( 0.0097)
β 0.0530∗∗∗ 0.0616∗∗∗ 0.0535∗∗∗ 0.0314∗∗∗
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

( 0.0068) ( 0.0079) ( 0.0029) ( 0.0044)
l1 0.6459∗∗∗

( 0.0160)
r1 0.8499∗∗∗

( 0.0127)
m1 −0.2178∗

( 0.1043)
m2 3.2807∗∗∗

(0.4655)
-LOGL 6.1672e+003 6.1378e+003 6.1664e+003 5.9512e+003

BIC 1.2359e+004 1.2300e+004 1.2357e+004 1.1958e+004
Clevo G GTN GCN GCCN

κ 0.1088∗∗∗ 0.1222 0.1057∗∗∗ 0.1578∗∗∗

( 0.0257) (270.9143) ( 0.0260 ) ( 0.0286)
α 0.9143∗∗∗ 0.8936 0.9138∗∗∗ 0.9068∗∗∗

( 0.0114) ( 59.4321) ( 0.0114 ) ( 0.0118)
β 0.0716∗∗∗ 0.1064 0.0741∗∗∗ 0.0447∗∗∗

( 0.0093) ( 1.5803) (0.0095) ( 0.0056)
l1 0.8208∗∗∗

( 0.0106)
r1 0.8494∗∗∗

( 0.0080)
m1 −1.8123∗∗∗

( 0.2189)
m2 2.9940∗∗∗

( 0.2684)
-LOGL 8.9054e+003 8.7897e+003 8.9023e+003 8.4059e+003

BIC 1.7836e+004 1.7604e+004 1.7829e+004 1.6869e+004
Fubon G GTN GCN GCCN

κ 0.0494∗∗∗ 0.0426∗∗∗ 0.0480∗∗∗ 0.0827∗∗∗

( 0.0151) ( 0.0140) ( 0.0177 ) ( 0.0211)
α 0.9378∗∗∗ 0.9363∗∗∗ 0.9368∗∗∗ 0.9336∗∗∗

(0.0110) (0.0112) (0.0121) (0.0136)
β 0.0486∗∗∗ 0.0548∗∗∗ 0.0515∗∗∗ 0.0280∗∗∗

(0.0080) (0.0092) (0.0086) (0.0056)
l1 0.6764∗∗∗

(0.0152)
r1 0.8692∗∗∗

(0.0143)
m1 −0.5079∗∗∗

(0.1422)
m2 4.1510∗∗∗

(0.7095)
-LOGL 6.2292e+003 6.2155e+003 6.2283e+003 6.0623e+003

BIC 1.2483e+004 1.2455e+004 1.2481e+004 1.2181e+004
Formosa G GTN GCN GCCN
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Parameters Data 4 different GARCH models

Petrochemical
Corp

κ 0.0143∗∗∗ 0.0141∗∗∗ 0.0098∗∗∗ 0.0217∗∗∗

( 0.0053) (0.0049) (0.0042) (0.0064)
α 0.9539∗∗∗ 0.9526∗∗∗ 0.9551∗∗∗ 0.9582∗∗∗

(0.0078) (0.0077) (0.0083) (0.0093)
β 0.0406∗∗∗ 0.0425∗∗∗ 0.0433∗∗∗ 0.0203∗∗∗

(0.0069) (0.0069) (0.0079) (0.0048)
l1 0.4680∗∗∗

(0.0167)
r1 0.4608∗∗∗

(0.0161)
m1 0.4761∗∗∗

(0.0933)
m2 −0.4757∗∗∗

(0.0889)
-LOGL 4.6908e+003 4.6890e+003 4.6876e+003 4.5876e+003

BIC 9.4052e+003 9.4015e+003 9.3784e+03 9.2319e+003

5 Chinese Stocks

TsingHua
TongFang G GTN GCN GCCN

κ 0.1691∗∗∗ 0.1651∗∗∗ 0.1611∗∗∗ 0.2214∗∗∗

(0.0425) (0.0420) (0.0223) (0.0601)
α 0.9174∗∗∗ 0.9135∗∗∗ 0.9181∗∗∗ 0.9081∗∗∗

(0.0132) (0.0132) (0.0076) (0.0207)
β 0.0606∗∗∗ 0.0682∗∗∗ 0.0633∗∗∗ 0.0301∗∗∗

(0.0092) (0.0100) (0.0067) (0.0065)
l1 0.5086∗∗∗

(0.0130)
r1 0.6967∗∗∗

(0.0163)
m1 0.1584∗∗∗

(0.0490)
m2 0.6861∗∗∗

(0.1296)
-LOGL 8.0344e+003 8.0233e+003 8.0362e+003 7.8094e+003

BIC 1.6093e+004 1.6071e+004 1.6097e+004 1.5676e+004
GDPower G GTN GCN GCCN

κ 0.1013∗∗∗ 0.1011∗∗∗ 0.4808∗∗∗ 0.0741∗∗∗

(0.0266) (0.0270) (0.4655e-
004)

(0.0202)

α 0.9254∗∗∗ 0.9239∗∗∗ 0.7789∗∗∗ 0.9135∗∗∗

(0.0130) (0.0129) (0.4660e-
004)

(0.0188)

β 0.0535∗∗∗ 0.0559∗∗∗ 0.1309∗∗∗ 0.0272∗∗∗

(0.0088) (0.0086) (0.0124e-
004)

(0.0060)

Continued on next page
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

l1 0.2896∗∗∗

(0.0079)
r1 0.3031∗∗∗

(0.0078)
m1 0.4585∗∗∗

(0.0341)
m2 −0.4375∗∗∗

(0.0311)
-LOGL 7.2625e+003 7.2597e+003 7.2917e+003 7.0219e+003

BIC 1.4549e+004 1.4544e+004 1.4608e+004 1.4101e+004
Inner

Mongolia
Baotou

G GTN GCN GCCN

κ 0.1577∗∗∗ 0.1586∗∗∗ 0.2095∗∗∗ 0.1990∗∗∗

(0.0444) ( 0.0467) (0.0452 ) ( 0.0440)
α 0.8923∗∗∗ 0.8829∗∗∗ 0.8598∗∗∗ 0.8848∗∗∗

( 0.0175) ( 0.0194) ( 0.0185 ) ( 0.0209)
β 0.0874∗∗∗ 0.1024∗∗∗ 0.1136∗∗∗ 0.0348∗∗∗

( 0.0134) ( 0.0166) ( 0.0163 ) ( 0.0063)
l1 0.4227∗∗∗

( 0.0123)
r1 0.5363∗∗∗

( 0.0131)
m1 0.2933∗∗∗

( 0.0465)
m2 0.1237∗∗∗

( 0.0624)
-LOGL 7.0232e+003 7.0136e+003 7.0299e+003 6.7681e+003

BIC 1.4071e+004 1.4051e+004 1.4084e+004 1.3592e+004
China

Merchants
G GTN GCN GCCN

Bank
κ 0.0598∗∗∗ 0.0625∗∗∗ 0.0766∗∗∗ 0.0736∗∗∗

(0.0204) ( 0.0214) ( 0.0237 ) ( 0.0204)
α 0.9228∗∗∗ 0.9135∗∗∗ 0.9112∗∗∗ 0.9480∗∗∗

( 0.0154) (0.0163) ( 0.0163 ) ( 0.0118)
β 0.0686∗∗∗ 0.0810∗∗∗ 0.0789∗∗∗ 0.0216∗∗∗

(0.0144) (0.0168) ( 0.0158 ) ( 0.0053)
l1 0.4752∗∗∗

( 0.0174)
r1 0.7375∗∗∗

( 0.0272)
m1 0.1700∗∗∗

( 0.0601)
m2 1.0129∗∗∗

( 0.2860)
-LOGL 4.0357e+03 4.0311e+03 4.1011e+003 3.9846e+003

Continued on next page
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

BIC 8.0939e+03 8.0847e+03 8.2247e+003 7.9188e+03
ShangHai
Interna-
tional

Airport

G GTN GCN GCCN

κ 0.1256∗∗∗ 0.1279∗∗∗ 0.3463∗∗∗ 0.1408∗∗∗

( 0.0208) ( 0.0221) (0.3554e-
004)

( 0.0230)

α 0.8885∗∗∗ 0.8850∗∗∗ 0.7854∗∗∗ 0.8432∗∗∗

(0.0123) ( 0.0134) (0.0346e-
004)

( 0.0208)

β 0.0835∗∗∗ 0.0884∗∗∗ 0.1502∗∗∗ 0.0459∗∗∗

( 0.0095) (0.0107) (0.3255e-
004)

( 0.0075)

l1 0.2919∗∗∗

( 0.0078)
r1 0.3474∗∗∗

( 0.0087)
m1 0.4288∗∗∗

( 0.0371)
m2 −0.2847∗∗∗

( 0.0390)
-LOGL 6.7237e+03 6.7196e+03 6.7445e+003 6.4288e+003

BIC 1.3472e+04 1.3464e+04 1.3513e+004 1.2914e+004

5 Korean Stocks

Naver G GTN GCN GCCN
κ 0.0737∗∗∗ 0.0727∗∗∗ 0.7982∗∗∗ 0.0815∗∗∗

(0.0254) ( 0.0250) ( 0.0002 ) ( 0.0259)
α 0.9622∗∗∗ 0.9621∗∗∗ 0.8228∗∗∗ 0.9617∗∗∗

( 0.0065) ( 0.0064) ( 0.0001) ( 0.0078)
β 0.0291∗∗∗ 0.0294∗∗∗ 0.0893∗∗∗ 0.0207∗∗∗

( 0.0046) (0.0046) (0.0053) ( 0.0042)
l1 0.3859∗∗∗

(0.0176)
r1 0.4220∗∗∗

( 0.0140)
m1 0.4920∗∗∗

( 0.0496)
m2 −0.3290∗∗∗

( 0.0401)
-LOGL 7.0931e+003 7.0926e+003 7.1202e+003 7.0473e+003

BIC 1.4119e+004 1.4209e+004 1.4264e+004 1.4150e+004
Samsung G GTN GCN GCCN

κ 0.0188∗∗∗ 0.0162∗∗∗ 0.0090∗∗∗ 0.0333∗∗∗

( 1.8834e-
008)

( 0.0063) ( 0.0041 ) ( 0.0089)

α 0.9638∗∗∗ 0.9648∗∗∗ 0.9677∗∗∗ 0.9645∗∗∗

Continued on next page
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

( 1.050e-
004)

( 0.0046) (0.0044 ) ( 0.0056)

β 0.0326∗∗∗ 0.0323∗∗∗ 0.0317∗∗∗ 0.0237∗∗∗

( 8.9954e-
004)

( 0.0043) ( 0.0042 ) ( 0.0039)

l1 0.3294∗∗∗

( 0.0128)
r1 0.4928∗∗∗

( 0.0221)
m1 0.4559∗∗∗

( 0.0491)
m2 −0.2842∗∗∗

( 0.0698)
-LOGL 7.8545e+03 7.8540e+003 7.8515e+003 7.8109e+003

BIC 1.5734e+004 1.5733e+004 1.5728e+004 1.5679e+004
Willbes G GTN GCN GCCN

κ 0.2310∗∗∗ 0.2326∗∗∗ 0.2016∗∗∗ 0.2303∗∗∗

( 0.0510) (0.0465) (0.0502) ( 0.0413)
α 0.9015∗∗∗ 0.8937∗∗∗ 0.9032∗∗∗ 0.8942∗∗∗

( 0.0131) ( 0.0129) ( 0.0112) ( 0.0156)
β 0.0823∗∗∗ 0.0952∗∗∗ 0.0884∗∗∗ 0.0293∗∗∗

( 0.0111) ( 0.0122) (0.0044) (0.0049)
l1 0.3116∗∗∗

( 0.0075)
r1 0.3866∗∗∗

( 0.0089)
m1 0.2257∗∗∗

( 0.0201)
m2 −0.0965∗∗∗

( 0.0232)
-LOGL 9.6492e+003 9.6334e+003 9.6453e+003 9.2641e+003

BIC 1.9323e+004 1.9292e+004 1.9315e+004 1.8586e+004
Enex G GTN GCN GCCN

κ 0.2292∗∗∗ 0.2374∗∗∗ 0.2298∗∗∗ 0.1998∗∗∗

( 0.0427) ( 0.0437) ( 0.0117) ( 0.0342)
α 0.9075∗∗∗ 0.9019∗∗∗ 0.9067∗∗∗ 0.8507∗∗∗

( 0.0115) ( 0.0122) (0.7098-
003)

( 0.0204)

β 0.0754∗∗∗ 0.0829∗∗∗ 0.0769∗∗∗ 0.0457∗∗∗

( 0.0098) ( 0.0110) ( 0.0099 ) ( 0.0082)
l1 0.7704∗∗∗

( 0.0057)
r1 0.7372∗∗∗

( 0.0064)
m1 0.3296∗∗∗

( 0.0167)
m2 −0.2754∗∗∗
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

( 0.0164)
-LOGL 9.6209e+003 9.6146e+003 9.6197e+003 9.2278e+03

BIC 1.9267e+004 1.9254e+004 1.9264e+004 1.8513e+04
Posco G GTN GCN GCCN

κ 0.0327∗∗∗ 0.0327∗∗∗ 0.0250∗∗∗ 0.0485∗∗∗

( 0.0091) ( 0.0090) ( 0.0077) ( 0.0109)
α 0.9377∗∗∗ 0.9372∗∗∗ 0.9398∗∗∗ 0.9406∗∗∗

( 0.0069) ( 0.0070) ( 0.0070) ( 0.0080)
β 0.0572∗∗∗ 0.0579∗∗∗ 0.0586∗∗∗ 0.0384∗∗∗

( 0.0066) ( 0.0067) ( 0.0067) ( 0.0054)
l1 0.2889∗∗∗

( 0.0100)
r1 0.3872∗∗∗

( 0.0149)
m1 0.5049∗∗∗

( 0.0479)
m2 −0.4136∗∗∗

( 0.0547)
-LOGL 7.6623e+003 7.6616e+03 7.6596e+003 7.6010e+003

BIC 1.5349e+004 1.5348e+04 1.5344e+004 1.5259e+004

5 French Stocks

BNP G GTN GCN GCCN
κ 0.0366∗∗∗ 0.0308∗∗∗ 0.0357∗∗∗ 0.0412∗∗∗

( 0.0096) ( 0.0088) ( 0.0090 ) ( 0.0095 )
α 0.9210∗∗∗ 0.9194∗∗∗ 0.9192∗∗∗ 0.9186∗∗∗

( 0.0087) ( 0.0088) ( 0.0083 ) ( 0.0083)
β 0.0726∗∗∗ 0.0788∗∗∗ 0.0755∗∗∗ 0.0723∗∗∗

( 0.0081) ( 0.0089) ( 0.0076 ) ( 0.0075)
l1 0.9994∗∗∗

( 0.0001)
r1 0.9990∗∗∗

( 0.0001)
m1 −1.3708e+

003∗∗∗

(141.4291)
m2 791.3239∗∗∗

( 81.8575)
-LOGL 7.6824e+003 7.6673e+003 7.6675e+003 7.4894e+003

BIC 1.5390e+004 1.5359e+004 1.5360e+004 1.5036e+004
Danone G GTN GCN GCCN

κ 0.0377∗∗∗ 0.0376∗∗∗ 0.0347∗∗∗ 0.0518∗∗∗

( 0.0071) ( 0.0071) ( 0.0073 ) ( 0.0097)
α 0.9164∗∗∗ 0.9161∗∗∗ 0.9165∗∗∗ 0.9044∗∗∗

( 0.0080) ( 0.0081) ( 0.0077 ) ( 0.0132)
β 0.0684∗∗∗ 0.0690∗∗∗ 0.0724∗∗∗ 0.0468∗∗∗

( 0.0070) ( 0.0072) ( 0.0071 ) ( 0.0071)
l1 0.2943∗∗∗
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

( 0.0096)
r1 0.3070∗∗∗

( 0.0089)
m1 0.6965∗∗∗

( 0.0643)
m2 −0.6513∗∗∗

( 0.0546)
-LOGL 6.4871e+003 6.4867e+003 6.4882e+003 6.3608e+003

BIC 1.2999e+004 1.2998e+004 1.3001e+004 1.2779e+004
Gemalto G GTN GCN GCCN

κ 0.1109∗∗∗ 0.1097∗∗∗ 0.1061∗∗∗ 0.0950∗∗∗

( 0.0359) ( 0.0366) ( 0.0301 ) ( 0.0312)
α 0.9446∗∗∗ 0.9446∗∗∗ 0.9465∗∗∗ 0.9345∗∗∗

( 0.0129) ( 0.0132) ( 0.0106 ) ( 0.0163)
β 0.0313∗∗∗ 0.0318∗∗∗ 0.0306∗∗∗ 0.0232∗∗∗

( 0.0067) ( 0.0067) ( 0.0054 ) ( 0.0054)
l1 0.4937∗∗∗

( 0.0202)
r1 0.3777∗∗∗

( 0.0132)
m1 0.1709∗

( 0.0991)
m2 −0.4765∗∗∗

( 0.0473)
-LOGL 4.9645e+003 4.9640e+003 4.9693e+003 4.8288e+003

BIC 9.9522e+003 9.9512e+003 9.9618e+03 9.7117e+003
Vallourec G GTN GCN GCCN

κ 0.1251∗∗∗ 0.1194∗∗∗ 0.1242∗∗∗ 0.0881∗∗∗

( 0.0303) ( 0.0284) ( 0.0165 ) ( 0.0265)
α 0.9363∗∗∗ 0.9124∗∗∗ 0.9122∗∗∗ 0.9254∗∗∗

( 0.0135) ( 0.0121) ( 0.0073 ) ( 0.0166)
β 0.0658∗∗∗ 0.0714∗∗∗ 0.0711∗∗∗ 0.0343∗∗∗

( 0.0101) ( 0.0098 ) ( 0.0080 ) ( 0.0076)
l1 0.5893∗∗∗

( 0.0118)
r1 0.5798∗∗∗

( 0.0114)
m1 0.3772∗∗∗

( 0.0406)
m2 −0.3572∗∗∗

( 0.0367)
-LOGL 8.3739e+003 8.3659e+003 8.3768e+003 8.2304e+03

BIC 1.6772e+004 1.6756e+004 1.6778e+004 1.6518e+04
LVMH G GTN GCN GCCN

κ 0.0342∗∗∗ 0.0331∗∗∗ 0.0236∗∗∗ 0.0515∗∗∗

( 0.0082) ( 0.0083) ( 0.0061 ) ( 0.0119)
α 0.9276∗∗∗ 0.9266∗∗∗ 0.9285∗∗∗ 0.9254∗∗∗
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Table H.0.3 – continued from previous page
Parameters Data 4 different GARCH models

( 0.0079) ( 0.0236) (0.0077) ( 0.0109)
β 0.0633∗∗∗ 0.0654∗∗∗ 0.0698∗∗∗ 0.0482∗∗∗

( 0.0071) (0.0074 ) ( 0.0074 ) ( 0.0071)
l1 0.4603∗∗∗

( 0.0207)
r1 0.4678∗∗∗

( 0.0155)
m1 0.4865∗∗∗

( 0.0758)
m2 −0.3970∗∗∗

( 0.0638)
-LOGL 7.2992e+003 7.2962e+003 7.2930e+003 7.2512e+003

BIC 1.4623e+004 1.4617e+004 1.4433e+04 1.4560e+004

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table H.0.2: Data used in Table H.0.3

Acer From January 4, 2000 to June 24, 2014
ChinaTrust From May 16, 2002 to June 24, 2014

Clevo From January 4, 2000 to May 13, 2015
Fubon From December 20, 2001 to June 24, 2014

Formosa Petrochemical Corp From December 26, 2003 to June 24, 2014
Chinese stocks

TsingHuaTongFang From January 27, 2000 to June 24, 2014
GD power From January 18, 2000 to June 24, 2014

Inner Mongolia Baotou From March 9, 2001 to May 16, 2014
China Merchants Bank From December 1, 2006 to June 24, 2014

ShangHai International Air Port From July 29, 2000, 2000 to June 24, 2014
Korean stocks

Naver From October 29, 2002 to June 24, 2014
Samsung From January 4, 2000 to June 24, 2014
Willbes From January 4, 2000 to May 24, 2015
Enex From January 4, 2000 to May 24, 2015
Posco From January 4, 2000 to June 24, 2014

French stocks
BNP From January 3, 2000 to June 25, 2014

Danone From January 3, 2000 to June 25, 2014
Gemalto From May 18, 2004 to June 25, 2014
Vallourec From January 3, 2000 to June 27, 2014

LVMH From January 3, 2000 to June 25, 2014
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last 400 stock returns of Acer
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of Acer
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last 400 stock returns of ChinaTrust
−VaRs when p=0.1
−VaRs when p=0.05
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(b) VaRs of ChinaTrust
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last 400 stock returns of Formosa Petrochemical Corp
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(c) VaRs of Formosa Petrochemical Corp
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last 400 stock returns of Fubon
−VaRs when p=0.1
−VaRs when p=0.05
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(d) VaRs of Fubon
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last 400 stock returns of Clevo
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of Clevo
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last 400 stock returns of Inner Mongolia Baotou
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(b) VaRs of Inner Mongolia Baotou
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last 400 stock returns of China Merchants Bank
−VaRs when p=0.1
−VaRs when p=0.05
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(c) VaRs of China Merchants Bank
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last 400 stock returns of GDPower
−VaRs when p=0.1
−VaRs when p=0.05
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(d) VaRs of GDPower
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last 400 stock returns of ShangHai International Airport
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of ShangHai International Airport
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last 400 stock returns of TsingHuaTongFang
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(b) VaRs of TsingHuaTongFang
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last 400 stock returns of Naver
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(c) VaRs of Naver
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last 400 stock returns of Willbes
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(d) VaRs of Willbes
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last 400 stock returns of Posco
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of Posco
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last 400 stock returns of Samsung
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(b) VaRs of Samsung
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last 400 stock returns of Enex
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(c) VaRs of Enex
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last 400 stock returns of Danone
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(d) VaRs of Danone
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last 400 stock returns of Gemalto
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of Gemalto
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last 400 stock returns of BNP
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(b) VaRs of BNP
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last 400 stock returns of LVMH
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(c) VaRs of LVMH
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(d) VaRs of Vallourec



Appendix I

Empirical Performance: In-sample
VaR test statistics

Table I.0.1: Derive relative bounds from the fitted GARCHCCN for each stock

stocks
√
κ/(1− α− β) σ Lower/σ Upper/σ Ω pm

Acer 1.7517 2.3620 -3.0725 2.8645 1.0849 0.9058
ChinaTrust 1.4330 1.5484 -4.6869 4.3697 1.0099 0.9889
Clevo 1.8038 2.0766 -3.4947 3.2581 1.0397 0.9571
Fubon 1.4675 1.5488 -4.6856 4.3684 1.0086 0.9907
Formosa Petrochemical Corp 1.0046 1.4898 -4.8713 4.5416 1.0576 0.9177
TsingHuaTongFang 1.8928 2.2069 -4.7742 4.3188 1.0425 0.9507
GDPower 1.1178 1.0778 -9.7755 8.8430 1.0302 0.9648
Inner Mongolia Baotou 1.5733 2.1091 -4.9955 4.5190 1.0917 0.8931
China Merchants Bank 1.5560 1.6620 -6.3396 5.7348 1.0083 0.9905
Shanghai International Airport 1.1268 1.1500 -9.1621 8.2881 1.0320 0.9634
Naver 2.1519 2.8884 -5.6267 4.8388 1.0394 0.9279
Samsung 1.6799 1.9391 -8.3809 7.2074 1.0080 0.9890
Willbes 1.7348 1.8059 -8.9994 7.7392 1.0284 0.9686
Enex 1.3891 1.3891 -11.6995 10.0612 1.0000 1.0000
Posco 1.5197 1.5940 -10.1957 8.7680 1.0063 0.9918
BNP 2.1278 2.1311 -4.9439 4.4723 1.0000 1.0000
Danone 1.0303 1.0723 -9.8259 8.8886 1.0166 0.9786
Gemalto 1.4986 1.7869 -5.8964 5.3339 1.0039 0.9949
Vallourec 1.4785 1.4871 -7.0851 6.4092 1.0006 0.9993
LVMH 1.3967 1.4774 -7.1315 6.4512 1.0068 0.9915
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Table I.0.2: In-sample VaR test statistics

Data p x/T Kupiec LR test E(shortfall2)

Acer 0.1
GARCH 0.0951 0.9498 3.3117

GARCHTN 0.0923 2.3859 3.4154
GARCHCN 0.0926 2.2124 3.2548

GARCHCCN 0.1036 0.4991 3.3527

0.05
GARCH 0.0495 0.0162 2.6802

GARCHTN 0.0540 1.1902 2.5732
GARCHCN 0.0484 0.1911 2.5908

GARCHCCN 0.0509 0.0661 2.3867

0.025
GARCH 0.0290 2.2086 2.0424

GARCHTN 0.0355 14.1530R0.01 1.8667
GARCHCN 0.0273 0.7496 2.0295

GARCHCCN 0.0256 0.0542 1.5580

ChinaTrust 0.1
GARCH 0.0830 10.1636R0.01 2.9705

GARCHTN 0.0823 11.0030R0.01 3.0877
GARCHCN 0.0816 11.8777R0.01 3.0644

GARCHCCN 0.0903 3.1983 3.0298

0.05
GARCH 0.0482 0.2117 2.4258

GARCHTN 0.0509 0.0456 2.2953
GARCHCN 0.0482 0.2117 2.3171

GARCHCCN 0.0509 0.0456 2.2337

0.025
GARCH 0.0291 1.9660 2.0571

GARCHTN 0.0335 7.9409R0.01 1.7152
GARCHCN 0.0298 2.6383 1.8813

GARCHCCN 0.0308 3.8198 1.4508

Clevo 0.1
GARCH 0.0849 9.9742R0.01 3.3307

GARCHTN 0.0852 9.6176R0.01 3.5349
GARCHCN 0.0841 11.0851R0.01 3.2520

GARCHCCN 0.0961 0.6536 3.0807

0.05
GARCH 0.0502 0.0020 2.0552

GARCHTN 0.0557 2.5175 2.1632
GARCHCN 0.0494 0.0323 2.0018

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCCN 0.0504 0.0143 1.8646

0.025
GARCH 0.0257 0.0845 1.6277

GARCHTN 0.0398 28.8164R0.01 1.2725
GARCHCN 0.0263 0.2468 1.5319

GARCHCCN 0.0284 1.7101 1.2548

Fubon 0.1
GARCH 0.0834 9.9595R0.01 3.2704

GARCHTN 0.0811 12.9687R0.01 3.3797
GARCHCN 0.0805 13.9064R0.01 3.2857

GARCHCCN 0.0921 2.1625 3.0716

0.05
GARCH 0.0532 0.6563 2.6959

GARCHTN 0.0522 0.3207 2.7310
GARCHCN 0.0526 0.2350 2.6158

GARCHCCN 0.0519 0.4196 2.5364

0.025
GARCH 0.0305 3.5778 2.6338

GARCHTN 0.0311 4.4393R0.05 2.5934
GARCHCN 0.0292 2.1198 2.6299

GARCHCCN 0.0260 0.1144 2.3864

Formosa Petrochemical Corp 0.1
GARCH 0.0836 8.1409R0.01 2.0322

GARCHTN 0.0832 8.5405R0.01 2.0278
GARCHCN 0.0805 11.6246R0.01 1.9975

GARCHCCN 0.0991 0.0248 2.1614

0.05
GARCH 0.0445 1.7032 2.0532

GARCHTN 0.0445 1.7032 2.0532
GARCHCN 0.0441 1.9567 1.9426

GARCHCCN 0.0546 1.1031 1.9762

0.025
GARCH 0.0271 0.4509 1.9338

GARCHTN 0.0267 0.3008 1.9373
GARCHCN 0.0263 0.1805 1.8010

GARCHCCN 0.0302 2.6765 1.5418

TsingHuaTongFang 0.1
GARCH 0.0815 13.5996R0.01 6.1295

GARCHTN 0.0806 14.9844R0.01 6.0762
GARCHCN 0.0794 16.9429R0.01 6.0693

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCCN 0.1023 0.1890 6.0687

0.05
GARCH 0.0477 0.3754 5.4054

GARCHTN 0.0468 0.7292 5.4207
GARCHCN 0.0453 1.5855 5.4210

GARCHCCN 0.0525 0.4206 4.9382

0.025
GARCH 0.0314 5.2772R0.025 4.4233

GARCHTN 0.0311 4.8169R0.05 4.4317
GARCHCN 0.0299 3.1738 4.3764

GARCHCCN 0.0268 0.4482 3.5460

GDPower 0.1
GARCH 0.0727 30.5586R0.01 5.3707

GARCHTN 0.0727 30.5586R0.01 5.3388
GARCHCN 0.0713 34.1503R0.01 5.3961

GARCHCCN 0.1032 0.3796 5.0453

0.05
GARCH 0.0417 5.1971R0.025 5.7026

GARCHTN 0.0417 5.1971R0.025 5.6691
GARCHCN 0.0417 5.1971R0.025 5.5201

GARCHCCN 0.0517 0.2143 5.4002

0.025
GARCH 0.0272 0.6548 5.7173

GARCHTN 0.0275 0.8394 5.3579
GARCHCN 0.0275 0.8394 5.3579

GARCHCCN 0.0234 0.3819 6.1380

Inner Mongolia Baotou 0.1
GARCH 0.0764 20.5877R0.01 5.0173

GARCHTN 0.0755 22.3974R0.01 4.9469
GARCHCN 0.0797 15.1462R0.01 4.8451

GARCHCCN 0.1065 1.4406 5.3324

0.05
GARCH 0.0408 5.8513R0.025 5.1157

GARCHTN 0.0405 6.2854R0.025 5.0203
GARCHCN 0.0408 5.8513R0.025 5.1768

GARCHCCN 0.0495 0.0134 5.4212

0.025
GARCH 0.0256 0.0427 4.7686

GARCHTN 0.0256 0.0427 4.6652
GARCHCN 0.0272 0.5975 4.5871

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCCN 0.0243 0.0649 4.9679

China Merchants Bank 0.1
GARCH 0.0686 22.1747R0.01 8.9734

GARCHTN 0.0884 2.8413 5.3272
GARCHCN 0.0862 4.0435 5.2491

GARCHCCN 0.1015 0.0476 5.6845

0.05
GARCH 0.0445 1.2224 8.1432

GARCHTN 0.0532 0.3942 4.7670
GARCHCN 0.0499 0.0001 4.8506

GARCHCCN 0.0494 0.0140 4.8870

0.025
GARCH 0.0313 2.7374 6.9754

GARCHTN 0.0302 1.8878 4.9276
GARCHCN 0.0296 1.5190 4.7446

GARCHCCN 0.0258 0.0469 4.0412

ShangHai International Airport 0.1
GARCH 0.0677 42.2451R0.01 7.1642

GARCHTN 0.0744 25.8015R0.01 4.9776
GARCHCN 0.0686 39.7353R0.01 5.2624

GARCHCCN 0.1103 3.7087 4.4723

0.05
GARCH 0.0435 3.0398 7.4825

GARCHTN 0.0426 3.9842R0.05 5.5467
GARCHCN 0.0389 9.1437R0.01 5.8427

GARCHCCN 0.0515 0.1442 5.3864

0.025
GARCH 0.0294 2.4598 7.8088

GARCHTN 0.0263 0.2364 6.2906
GARCHCN 0.0251 0.0018 6.2935

GARCHCCN 0.0270 0.4982 5.7380

Naver 0.1
GARCH 0.0788 15.3786R0.01 6.3113

GARCHTN 0.0763 19.2829R0.01 4.8982
GARCHCN 0.0728 25.7047R0.01 5.0526

GARCHCCN 0.0924 1.9012 5.0678

0.05
GARCH 0.0418 4.2624R0.05 6.6205

GARCHTN 0.0387 8.3515R0.01 4.6237
GARCHCN 0.0383 8.8975R0.01 4.5749

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCCN 0.0464 0.8205 5.0013

0.025
GARCH 0.0244 0.0429 6.8016

GARCHTN 0.0237 0.2019 3.7594
GARCHCN 0.0202 2.8793 4.3745

GARCHCCN 0.0258 0.0733 4.3209

Samsung 0.1
GARCH 0.0869 7.0759R0.01 6.9308

GARCHTN 0.0838 10.9129R0.01 4.7463
GARCHCN 0.0805 16.1075R0.01 4.4981

GARCHCCN 0.0894 4.5739 R0.05 4.9211

0.05
GARCH 0.0474 0.5247 8.5990

GARCHTN 0.0468 0.7761 4.8898
GARCHCN 0.0449 2.0555 4.4391

GARCHCCN 0.0477 0.4177 5.1224

0.025
GARCH 0.0300 3.4383 9.8307

GARCHTN 0.0244 0.0548 5.9356
GARCHCN 0.0224 1.0023 5.3419

GARCHCCN 0.0221 1.2376 6.0537

Willbes 0.1
GARCH 0.0622 68.0018R0.01 21.4107

GARCHTN 0.0755 27.1432R0.01 10.5803
GARCHCN 0.0729 33.6828R0.01 10.1558

GARCHCCN 0.1085 2.9339 11.7413

0.05
GARCH 0.0364 16.0428 R0.01 24.5366

GARCHTN 0.0404 7.7630R0.01 10.8562
GARCHCN 0.0383 11.7752R0.01 10.2056

GARCHCCN 0.0526 0.5452 11.7622

0.025
GARCH 0.0237 0.2804 26.6092

GARCHTN 0.0242 0.1009 10.8695
GARCHCN 0.0223 1.1364 10.3367

GARCHCCN 0.0261 0.1700 10.9409

Enex 0.1
GARCH 0.0601 76.6339R0.01 15.8856

GARCHTN 0.0798 17.0998R0.01 10.4783
GARCHCN 0.0675 49.2227 R0.01 10.4121

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCCN 0.1098 3.8893 10.1016

0.05
GARCH 0.0367 15.4163R0.01 16.0602

GARCHTN 0.0375 13.5417R0.01 10.2327
GARCHCN 0.0372 14.1517 R0.01 10.2739

GARCHCCN 0.0508 0.0468 10.5361

0.025
GARCH 0.0266 0.3784 14.3972

GARCHTN 0.0670 50.9526R0.01 10.4783
GARCHCN 0.0239 0.1814 9.3719

GARCHCCN 0.0231 0.5557 10.8630

Posco 0.1
GARCH 0.0670 48.2572R0.01 6.4589

GARCHTN 0.0802 16.5890R0.01 4.1277
GARCHCN 0.0830 12.1114 R0.01 4.2708

GARCHCCN 0.0936 1.6364 4.5523

0.05
GARCH 0.0362 15.8399 R0.01 7.5835

GARCHTN 0.0513 0.1266 3.8501
GARCHCN 0.0485 0.1706 3.6675

GARCHCCN 0.0527 0.5405 4.4388

0.025
GARCH 0.0216 1.7861 8.7288

GARCHTN 0.0275 0.8683 3.7422
GARCHCN 0.0289 2.0955 4.1520

GARCHCCN 0.0272 0.6850 4.5899

French Stocks

BNP 0.1
GARCH 0.0728 33.1450R0.01 7.6076

GARCHTN 0.0888 5.3025R0.01 3.3663
GARCHCN 0.0885 5.5679 R0.01 3.2873

GARCHCCN 0.0896 4.5465 R0.05 3.2926

0.05
GARCH 0.0432 3.7689 8.2070

GARCHTN 0.0511 0.0864 2.8691
GARCHCN 0.0492 0.0552 2.8187

GARCHCCN 0.0500 0.0001 2.7810

0.025
GARCH 0.0310 4.9961R0.025 7.6524

GARCHTN 0.0304 4.1525 R0.025 2.6420

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCN 0.0288 2.0690 2.5868
GARCHCCN 0.0293 2.6876 2.5274

Danone 0.1
GARCH 0.0668 50.5758 R0.01 3.2021

GARCHTN 0.0746 28.5877R0.01 2.0425
GARCHCN 0.0708 38.3352R0.01 2.0485

GARCHCCN 0.0955 0.8221 2.0254

0.05
GARCH 0.0429 4.1127 R0.05 3.2730

GARCHTN 0.0396 8.9501 R0.01 2.2416
GARCHCN 0.0385 11.0114R0.01 2.1546

GARCHCCN 0.0505 0.0185 2.1697

0.025
GARCH 0.0252 0.0090 3.9447

GARCHTN 0.0247 0.0135 2.3401
GARCHCN 0.0233 0.4236 2.2781

GARCHCCN 0.0280 1.2750 2.1839

Gemalto 0.1
GARCH 0.0733 19.8845R0.01 5.3255

GARCHTN 0.0733 19.8845 R0.01 4.4714
GARCHCN 0.0737 19.2102 R0.01 4.4427

GARCHCCN 0.0946 0.7451 4.4032

0.05
GARCH 0.0406 4.5875R0.025 6.2058

GARCHTN 0.0366 9.4700R0.01 5.6430
GARCHCN 0.0366 9.4700R0.01 5.6414

GARCHCCN 0.0545 0.9567 4.7780

0.025
GARCH 0.0257 0.0497 6.8214

GARCHTN 0.0209 1.6454 6.8840
GARCHCN 0.0205 2.0302 7.0306

GARCHCCN 0.0297 1.9259 5.7801

Vallourec 0.1
GARCH 0.0733 31.8883 R0.01 7.0169

GARCHTN 0.0774 22.5728R0.01 4.6643
GARCHCN 0.0757 26.0889R0.01 4.5989

GARCHCCN 0.0996 0.0059 4.7993

0.05
GARCH 0.0478 0.3898 6.4296

GARCHTN 0.0423 4.7828R0.05 4.5245

Continued on next page
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Table I.0.2 – continued from previous page

Data p x/T Kupiec LR test E(shortfall2)

GARCHCN 0.0402 8.0054R0.01 4.5343
GARCHCCN 0.0486 0.1559 4.8191

0.025
GARCH 0.0293 2.6698 6.6215

GARCHTN 0.0261 0.1671 4.2338
GARCHCN 0.0247 0.0135 4.2222

GARCHCCN 0.0252 0.0090 4.2999

LVMH 0.1
GARCH 0.0825 13.1823 R0.01 4.1007

GARCHTN 0.0874 6.7247 R0.01 2.6529
GARCHCN 0.0817 14.4812 R0.01 2.4901

GARCHCCN 0.0986 0.0851 2.6778

0.05
GARCH 0.0500 0.0001 4.2961

GARCHTN 0.0475 0.4863 2.7230
GARCHCN 0.0453 1.7331 2.2749

GARCHCCN 0.0521 0.3476 2.7200

0.025
GARCH 0.0282 1.5214 5.2579

GARCHTN 0.0274 0.8606 2.9961
GARCHCN 0.0255 0.0410 2.2558

GARCHCCN 0.0296 3.0162 2.6631
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(a) VaRs of Formosa Petrochemical Corp.
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(b) VaRs of TsingHuaTongFang
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(c) VaRs of GDPower
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stock returns of China Merchants Bank
the values of −VaR each day if p−value=0.1
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(a) VaRs of China Merchants Bank
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stock returns of Naver
the values of −VaR each day if p−value=0.1
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(c) VaRs of Naver
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the values of −VaR each day if p−value=0.1
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stock returns of Willbes
−VaRs when p=0.1
−VaRs when p=0.05
−VaRs when p=0.025

(a) VaRs of Willbes
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stock returns of Vallourec
−VaRs each day when p=0.1
−VaRs each day when p=0.05
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(b) VaRs of Enex
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stock returns of Posco
the values of −VaR each day if p−value=0.1
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(c) VaRs of Posco
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stock returns of BNP
the values of −VaR each day if p−value=0.1
the values of −VaR each day if p−value=0.05
the values of −VaR each day if p−value=0.025

(d) VaRs of BNP
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stock returns of Danone
the values of −VaR each day if p−value=0.1
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(a) VaRs of Danone
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stock returns of Gemalto
the values of −VaR each day if p−value=0.1
the values of −VaR each day if p−value=0.05
the values of −VaR each day if p−value=0.025

(b) VaRs of Gemalto
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(c) VaRs of Vallourec
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stock returns of LVMH
the values of −VaR each day if p−value=0.1
the values of −VaR each day if p−value=0.05
the values of −VaR each day if p−value=0.025

(d) VaRs of LVMH



Appendix J

Moments of CCST

i ∈ {0, 1, 2, 3, 4} in all the following sections.

J.0.7 Moments of a standardized or generalized Student-t with
bounds

Let x be a truncated standardized Student-t with degree of freedom of v, the lower bound of a < 0,
the upper bound of b > 0. cdfstdtst(b; v) is the cumulative density function of the standardized
Student-t at b; cdfstdtst(a; v) is the cumulative density function of the standardized Student-t at
a. These MATLAB functions are in Kevin Sheppard’s UCSD GARCH Toolbox. In order to find
the moments of x, a function betainc(w, c, d,′ lower′) is utilized.

beta(c, d) =

∫ 1

0
tc−1(1− t)d−1 dt

=
Γ(c)Γ(d)

Γ(c+ d)

(J.0.1)

w ∈ [0, 1]

.

betainc(w, c, d, ‘lower′) =

∫ w
0 t

c−1(1− t)d−1 dt

beta(c, d)
(J.0.2)

betainc(w, c, d, ‘upper′) =

∫ 1
wt
c−1(1− t)d−1 dt

beta(c, d)
(J.0.3)

betainc(w, c, d, ‘lower′) and betainc(w, c, d, ‘upper′) are functions ready to be used in MATLAB.

Momi(a, b; v) =

∫ b

a
xi ∗ pdfstdtst(x; v) dx (J.0.4)
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Mom1(a, b; v) =

Γ(v+1
2 )(v − 2)

[(
1 + b2

v−2

)1− v+1
2 −

(
1 + a2

v−2

)1− v+1
2

]
2Γ(v2 )

√
π(v − 2)

(
1− v+1

2

) (J.0.5)

If a2 > (v − 2),

Mom2(−∞, a; v) =
betainc( v−2

v−2+a2
, v2 − 1, 1.5, ‘lower′)

2
(J.0.6)

else,

Mom2(−∞, a; v) =
betainc( a2

v−2+a2
, 1.5, v2 − 1, ‘upper′)

2
(J.0.7)

If b2 > (v − 2),

Mom2(−∞, b; v) = 1−
betainc( v−2

v−2+b2
, v2 − 1, 1.5, ‘lower′)

2
(J.0.8)

else,

Mom2(−∞, b; v) = 1−
betainc( b2

v−2+b2
, 1.5, v2 − 1, ‘upper′)

2
(J.0.9)

Mom2(a, b; v) = Mom2(−∞, b; v)−Mom2(−∞, a; v) (J.0.10)

If a2 > (v − 2),

Mom3(−∞, a; v) =
−betainc( v−2

v−2+a2
, v2 − 1.5, 2, ‘lower′)beta(v2 − 1.5, 2)(v − 2)1.5Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.11)

else,

Mom3(−∞, a; v) =
−betainc( a2

v−2+a2
, 2, v2 − 1.5, ‘upper′)beta(v2 − 1.5, 2)(v − 2)1.5Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.12)

If b2 > (v − 2),

Mom3(−∞, b; v) = −
betainc( v−2

v−2+b2
, v2 − 1.5, 2, ‘lower′)beta(v2 − 1.5, 2)(v − 2)1.5Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.13)
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else,

Mom3(−∞, b; v) = −
betainc( b2

v−2+b2
, 2, v2 − 1.5, ‘upper′)beta(v2 − 1.5, 2)(v − 2)1.5Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.14)

Mom3(a, b; v) = Mom3(−∞, b; v)−Mom3(−∞, a; v) (J.0.15)

If a2 > (v − 2),

Mom4(−∞, a; v) =
betainc( v−2

v−2+a2
, v2 − 2, 2.5, ‘lower′)beta(v2 − 2, 2.5)(v − 2)2Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.16)

else,

Mom4(−∞, a; v) =
betainc( a2

v−2+a2
, 2.5, v2 − 2, ‘upper′)beta(v2 − 2, 2.5)(v − 2)2Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.17)

If b2 > (v − 2),

Mom4(−∞, b; v) =
(2− betainc( v−2

v−2+b2
, v2 − 2, 2.5, ‘lower′))beta(v2 − 2, 2.5)(v − 2)2Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.18)

else,

Mom4(−∞, a; v) =
(2− betainc( b2

v−2+b2
, 2.5, v2 − 2, ‘upper′))beta(v2 − 2, 2.5)(v − 2)2Γ(v+1

2 )

2
√
πΓ(v2 )

(J.0.19)

Mom4(a, b; v) = Mom4(−∞, b; v)−Mom4(−∞, a; v) (J.0.20)

Then the moments for generalized Student-t with a location parameter µ, a scale parameter of
σ, degree of freedom parameter of v, the lower bound of Lower, and the upper bound of Upper
is also calculated as follows.

Momigt(Lower, Upper;µ, σ, v) =

∫ Upper

Lower
xi ∗ pdfgt(x;µ, σ, v) dx (J.0.21)

Mom1gt(Lower, Upper;µ, σ, v) = Mom1(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ + µ(cdfstdtst(

Upper − µ
σ

; v)

− cdfstdtst(
Lower − µ

σ
; v))

(J.0.22)
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Mom2gt(Lower, Upper;µ, σ, v) = Mom2(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ2

+ 2σµMom1(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ µ2(cdfstdtst(
Upper − µ

σ
; v)− cdfstdtst(

Lower − µ
σ

; v))

(J.0.23)

Mom3gt(Lower, Upper;µ, σ, v) = Mom3(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ3

+ 3σ2µMom2(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ 3σµ2Mom1(
Lower − µ

σ
,
Upper − µ

σ
; v) + µ3(cdfstdtst(

Upper − µ
σ

; v)

− cdfstdtst(
Lower − µ

σ
; v))

(J.0.24)

Mom4gt(Lower, Upper;µ, σ, v) = Mom4(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ4

+ 4σ3µMom3(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ 6σ2µ2Mom2(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ 4σµ3Mom1(
Lower − µ

σ
,
Upper − µ

σ
; v)

(cdfstdtst(
Upper − µ

σ
; v)− cdfstdtst(

Lower − µ
σ

; v))

(J.0.25)

J.0.8 Clustered Censored generalized Student-t

A = pdfgt(a1;µ, σ, v) and B = pdfgt(b1;µ, σ, v). All the other variables in this section are granted
the same meanings as in section 3.2.1. Let y ∈ [a1, b1],

Miccgt(y, parameters, Lower, Upper) = Momigt(a1, y;µ, σ, v) (J.0.26)

Miccgt(parameters, Lower, Upper) = Momigt(a1, b1;µ, σ, v) (J.0.27)

Let y ∈ [Lower, a1], if m1 6= 0,

Liccgt(y, parameters, Lower, Upper) =

∫ y

Lower
xi ∗A ∗ exp(m1 ∗ (x− a1))dx

=
A

m1
[yi − Loweri ∗ exp(m1 ∗ (Lower − a1))]− iLi−1ccgt(y,

parameters, Lower, Upper)/m1

(J.0.28)

Liccgt(parameters, Lower, Upper) = Liccgt(a1, parameters, Lower, Upper) (J.0.29)
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(J.0.30)L0ccgt(y, parameters, Lower, Upper) =
A

m1
[exp(m1(y − a1))

− exp(m1(Lower − a1))]

L0ccgt(parameters, Lower, Upper) =
A

m1
[1− exp(m1(Lower − a1))] (J.0.31)

Liccgt(parameters, Lower, Upper) =
A

m1
[ai1 − Loweri ∗ exp(m1 ∗ (Lower − a1))]− iLi−1ccgt(parameters,

Lower, Upper)/m1

(J.0.32)

If m1 = 0,

Liccgt(y, parameters, Lower, Upper) = A
yi+1 − Loweri+1

i+ 1
(J.0.33)

Liccgt(parameters, Lower, Upper) = Liccgt(a1, parameters, Lower, Upper) = A
ai+1

1 − Loweri+1

i+ 1
(J.0.34)

Let y ∈ [b1, Upper], if m2 6= 0,

R0ccgt(y, parameters, Lower, Upper) =
B

m2
[exp(m2(y − b1))− 1] (J.0.35)

R0ccgt(U, parameters, Lower, Upper) =
B

m2
[exp(m2(Upper − b1))− 1] (J.0.36)

Riccgt(y, parameters, Lower, Upper) =

∫ y

b1

xi ∗B ∗ exp(m2 ∗ (x− b1))dx

=
B

m2
[yi ∗ exp(m2 ∗ (y − b1)− b1i)]

− i ∗Ri−1ccgt(y, parameters, Lower, Upper)/m2

(J.0.37)

Riccgt(parameters, Lower, Upper) = Riccgt(Upper, parameters, Lower, Upper) (J.0.38)

If m2 = 0,

Riccgt(y, parameters, Lower, Upper) = B
yi+1 − bi+1

1

i+ 1
(J.0.39)

Riccgt(parameters, Lower, Upper) = Riccgt(Upper, parameters, Lower, Upper)) = B
Upperi+1 − bi+1

1

i+ 1
(J.0.40)

Suppose x follows clustered censored Student-t distribution with a location parameter of µ, a
scale parameter of σ, a degree of freedom of v, left and right clustering rates of l1 and r1, left and
right clustering coefficients of m1 and m2, lower bound of Lower, and upper bound of Upper.
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Let parameters = (µ;σ; v; l1; r1;m1;m2).

E(xi) = [Riccgt(parameters, Lower, Upper) + Liccgt(parameters, Lower, Upper)

+Momigt(a1, b1;µ, σ, v)]/Ωccgt

(J.0.41)

E(x) = meanccgt(parameters, Lower, Upper) (J.0.42)

Equation J.0.22 is used for the value of Mom1gt(a1, b1;µ, σ, v).

E(x2) = secondmomentccgt(parameters, Lower, Upper) (J.0.43)

Equation J.0.23 is used for the value of Mom2gt(a1, b1;µ, σ, v).

variance(x) = varianceccgt(parameters, Lower, Upper)

= secondmomentccgt(parameters, Lower, Upper)−meanccgt(parameters, Lower, Upper)2

(J.0.44)

E(x3) = thirdmomentccgt(parameters, Lower, Upper) (J.0.45)

Equation J.0.24 is used for the value of Mom3gt(a1, b1;µ, σ, v).

skewnessccgt(parameters, Lower, Upper)) = E

(
(x−mean(x))3

varianceccgt(parameters, Lower, Upper))
3
2

)

=
E(x3) + 2 ∗ (E(x))3 + 3 ∗ E(x2) ∗ E(x)

variance(x)
3
2

(J.0.46)

This skewness values of x can be found by using equation J.0.45, J.0.43, and J.0.42.

E(x4) = fourthmomentccgt(parameters, Lower, Upper)) (J.0.47)

Equation J.0.25 is used for the value of Mom4gt(a1, b1;µ, σ, v).

kurtosisccgt(parameters, Lower, Upper)) = kurtosis(x)

= E

(
(x−mean(x))4

variance(x)2

)
=
E(x4) + 6(E(x)(2E(x2)− 4E(x)E(x3)− 3(E(x))4

variance(x)2

(J.0.48)

This kurtosis value can be attained by using equation J.0.47, J.0.45, J.0.43, and J.0.42
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Appendix K

Moments of CCGED

Likewise, let v > 0. If x is a random variable of a standardized GED with a degree of freedom of
v, the pdf of x can be obtained by

Beta =

(
2−

2
v

Γ( 1
v )

Γ( 3
v )

)0.5

(K.0.1)

pdfstdtged(x; v) =
v2−(1+ 1

v
)

BetaΓ( 1
v )exp

[
−0.5 | y

Beta |v
] (K.0.2)

If x follows GED with a location parameter of µ, a scale parameter of σ, and degree of freedom
of v, the pdf of x is given by

pdfged(x;µ, σ, v) =
v2−(1+ 1

v
)

σBetaΓ( 1
v )exp

[
−0.5 | x−µ

Beta∗σ |v
]

=
pdfstdged(

x−µ
σ ; v)

σ

(K.0.3)

The pdf of a clustered censored generalized GED consist of three sections. Let parameters =
(µ;σ2; v; l1; r1;m1;m2). Lower is the lower bound and Upper is the upper bound. Let a1 =
µ+l1∗(Lower−µ) and b1 = µ+r1∗(Upper−µ). A = pdfged(a1;µ, σ, v) and B = pdfged(b1;µ, σ, v).

M0ccged(parameters, Lower, Upper) = cdfstdtged(
b1 − µ
σ

; ν)− cdfstdtged(
a1 − µ
σ

; ν) (K.0.4)

Using equations K.0.20, K.0.25, K.0.22, K.0.27, and K.0.4, the following formula is defined,

(K.0.5)
Ωccged(parameters, Lower, Upper) = L0ccged(parameters, Lower, Upper)

+M0ccged(parameters, Lower, Upper)

+R0ccged(parameters, Lower, Upper)
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Therefore, the pdf and cdf (Notes: pdfccged(x, parameters, Lower, Upper), cdfccged(x, parameters,
Lower, Upper), L0ccged(parameters, Lower, Upper), M0ccged(parameters, Lower, Upper), and
R0ccged(parameters, Lower, Upper) are shortened as pdfccged(x), cdfccged(x), L0ccged , M0ccged , and
R0ccged in definition of pdf and cdf below) are given by,

pdfccged(x) =


pdfged(x;µ,σ,v)

Ωccged(parameters,Lower,Upper) if a1 ≤ x ≤ b1
exp(m1(x−a1))A

Ωccged(parameters,Lower,Upper) if Lower ≤ x ≤ a1

exp(m2(x−b1))B
Ωccged(parameters,Lower,Upper) if b1 ≤ x ≤ Upper
0 else

cdfccged(x) =



0 if x < Lower
L0ccged

(x,parameters,Lower,Upper)

Ωccged(parameters,Lower,Upper) if Lower ≤ x ≤ a1

L0ccged
+M0ccged

(x,parameters,Lower,Upper)

Ωccged(parameters,Lower,Upper) if a1 ≤ x ≤ b1
L0ccged

+M0ccged
+R0ccged

(x,parameters,Lower,Upper)

Ωccged(parameters,Lower,Upper) if b1 ≤ x ≤ Upper
1 if x > Upper


The mean, variance, skewness, and kurtosie of x with a clustered censored GED are derived in
equations K.0.29, K.0.31, K.0.33, and K.0.35.

i ∈ {0, 1, 2, 3, 4}.

K.0.9 The moments of standardized or generalized GED with
bounds

Let x be a truncated standardized GED with degree of freedom of v, the lower bound of a < 0,
the upper bound of b > 0. cdfstdtged(b; v) is the cumulative density function of the standardized
GED at b; cdfstdtged(a; v) is the cumulative density function of the standardized GED at a. These
MATLAB functions are in Kevin Sheppard’s UCSD GARCH Toolbox.

In order to calculate the moments of x, a MATLAB function, gamcdf(x,m, n), is used. m,
n ∈ R

gamcdf(x,m, n) =
1

nmΓ(m)

∫ x

0
tm−1exp(− t

n
)dt (K.0.6)

If n = 1, a gamcdf(x,m) is equal to gamcdf(x,m, n). Consequently,

gamcdf(x,m) =
1

Γ(m)

∫ x

0
tm−1exp(−t)dt (K.0.7)
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Momistdtged(a, b; v) =

∫ b

a
xi ∗ pdfstdtged(x; v) dx (K.0.8)

Mom1stdtged(a, b; v) =

√
Γ( 1

v )

Γ( 3
v )

Γ( 2
v )

2Γ( 1
v )

gamcdf
[Γ( 3

v )

Γ( 1
v )
b2

] v
2

,
2

v

− gamcdf
[Γ( 3

v )

Γ( 1
v )
a2

] v
2

,
2

v


(K.0.9)

Mom2stdtged(a, b; v) = 0.5gamcdf

[Γ( 3
v )

Γ( 1
v )
b2

] v
2

,
3

v

+ 0.5gamcdf

[Γ( 3
v )

Γ( 1
v )
a2

] v
2

,
3

v

 (K.0.10)

Mom3stdtged(a, b; v) = 0.5
Γ( 4

v )

Γ( 1
v )

(√
Γ( 1

v )

Γ( 3
v )

)3
gamcdf

[Γ( 3
v )

Γ( 1
v )
b2

] v
2

,
4

v

− gamcdf
[Γ( 3

v )

Γ( 1
v )
a2

] v
2

,
4

v


(K.0.11)

Mom4stdtged(a, b; v) = 0.5
Γ( 5

v )

Γ( 1
v )

(
Γ( 1

v )

Γ( 3
v )

)2
gamcdf

[Γ( 3
v )

Γ( 1
v )
b2

] v
2

,
5

v

+ gamcdf

[Γ( 3
v )

Γ( 1
v )
a2

] v
2

,
5

v


(K.0.12)

Then the moments for generalized Student-t with a location parameter µ, a scale parameter
parameter of σ, degree of freedom parameter of v, the lower bound of Lower, and the upper
bound of Upper is also shown as follows.

Momiged(Lower, Upper;µ, σ, v) =

∫ Upper

Lower
xi ∗ pdfged(x;µ, σ, v) dx (K.0.13)

Mom1ged(Lower, Upper;µ, σ, v) = Mom1stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ

+ µ(cdfstdtged(
Upper − µ

σ
; v)− cdfstdtged(

Lower − µ
σ

; v))

(K.0.14)

Mom2ged(Lower, Upper;µ, σ, v) = Mom2stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ2

+ 2σµMom1stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ µ2(cdfstdtged(
Upper − µ

σ
; v)− cdfstdtged(

Lower − µ
σ

; v))

(K.0.15)
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Mom3ged(Lower, Upper;µ, σ, v) = Mom3stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ3

+ 3σ2µMom2stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ 3σµ2Mom1stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ µ3(cdfstdtged(
Upper − µ

σ
; v)− cdfstdtged(

Lower − µ
σ

; v))

(K.0.16)

Mom4ged(Lower, Upper;µ, σ, v)

= Mom4stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v) ∗ σ4 + 4σ3µMom3stdtged(

Lower − µ
σ

,
Upper − µ

σ
; v)

+ 6σ2µ2Mom2stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v)

+ 4σµ3Mom1stdtged(
Lower − µ

σ
,
Upper − µ

σ
; v)(cdfstdtged(

Upper − µ
σ

; v)

− cdfstdtged(
Lower − µ

σ
; v))

(K.0.17)

K.0.10 Clustered Censored GED

A = pdfged(a1;µ, σ, v) and B = pdfged(b1;µ, σ, v). All the other variables in this section are
granted the same meanings as in section 3.2.2.

Let y ∈ [Lower, a1], if m1 6= 0,

L0ccged(y, parameters, Lower, Upper) =

∫ y

Lower
A ∗ exp(m1 ∗ (x− a1))dx

=
A

m1
[exp(m1 ∗ (y − a1))− exp(m1 ∗ (Lower − a1))]

(K.0.18)

Then for i = 1, 2, 3, 4,

Liccged(y, parameters, Lower, Upper) =

∫ y

Lower
xi ∗A ∗ exp(m1 ∗ (x− a1))dx

=
A

m1
[yi ∗ exp(m1 ∗ (y − a1))− Loweri ∗ exp(m1 ∗ (Lower − a1))]

− i ∗ Li−1ccged(y, parameters, Lower, Upper)/m1

(K.0.19)
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Liccged(parameters, Lower, Upper) =

∫ a1

Lower
xi ∗A ∗ exp(m1 ∗ (x− a1))dx

=
A

m1
[a1

i − Loweri ∗ exp(m1 ∗ (Lower − a1))]

− i ∗ Li−1ccged(parameters, Lower, Upper)/m1

(K.0.20)

If m1 = 0,

Liccged(y, parameters, Lower, Upper) = A
yi+1 − Loweri+1

i+ 1
(K.0.21)

Liccged(parameters, Lower, Upper) = Liccged(a1, parameters, Lower, Upper) = A
ai+1

1 − Loweri+1

i+ 1
(K.0.22)

Let y ∈ [b1, Upper], if m2 6= 0,

R0ccged(y, parameters, Lower, Upper) =

∫ y

b1

B ∗ exp(m2 ∗ (x− b1))dx

=
B

m2
[exp(m2 ∗ (y − b1))− 1]

(K.0.23)

Then for i = 1, 2, 3, 4,

Riccged(y, parameters, Lower, Upper) =

∫ y

b1

xi ∗B ∗ exp(m2 ∗ (x− b1))dx

=
B

m2
[yi ∗ exp(m2 ∗ (y − b1))− bi1)]

− i ∗Ri−1ccged(y, parameters, Lower, Upper)/m2

(K.0.24)

Riccged(parameters, Lower, Upper) =

∫ Upper

b1

xi ∗B ∗ exp(m2 ∗ (x− b1))dx

=
B

m2
[Upperi ∗ exp(m2 ∗ (Upper − b1))− bi1)]

− i ∗Ri−1ccged(parameters, Lower, Upper)/m2

(K.0.25)

If m2 = 0,

Riccged(y, parameters, Lower, Upper) = B
yi+1 − bi+1

1

i+ 1
(K.0.26)

Riccged(parameters, Lower, Upper) = Riccged(Upper, parameters, Lower, Upper) = B
Upperi+1 − bi+1

1

i+ 1
(K.0.27)

Suppose x follows clustered censored student-t distribution with a location parameter of µ, a
scale parameter of σ, a degree of freedom of v, left and right clustering rates of l1 and r1, left and
right clustering coefficients of m1 and m2, lower bound of Lower, and upper bound of Upper.
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Let parameters = (µ;σ; v; l1; r1;m1;m2).

E(xi) = [Riccged(parameters, Lower, Upper) + Liccged(parameters, Lower, Upper)

+Momigt(a1, b1;µ, σ, v)]/Ωccged

(K.0.28)

E(x) = meanccged(parameters, Lower, Upper) (K.0.29)

Equation K.0.14 is used for the value of Mom1ged(a1, b1;µ, σ, v).

E(x2) = secondmomentccged(parameters, Lower, Upper) (K.0.30)

Equation K.0.15 is used for the value of Mom2ged(a1, b1;µ, σ, v).

variance(x) = varianceccged(parameters, Lower, Upper)

= secondmomentccged(parameters, Lower, Upper)−meanccged(parameters,
Lower, Upper)2

(K.0.31)

Let σ∗ =
√
variance(x).

E(x3) = thirdmomentccged(parameters, Lower, Upper) (K.0.32)

Equation K.0.16 is used for the value of Mom3ged(a1, b1;µ, σ, v).

skewnessccged(parameters, Lower, Upper) = E

(
(x−mean(x))3

varianceccged(parameters, Lower, Upper)
3
2

)

=
E(x3) + 2 ∗ (E(x))3 + 3 ∗ E(x2) ∗ E(x)

σ∗3

(K.0.33)

This skewness values of x can be found by using equation K.0.32, K.0.30, and K.0.29.

E(x4) = fourthmomentccged(parameters, Lower, Upper) (K.0.34)

Equation K.0.17 is used for the value of Mom4ged(a1, b1;µ, σ, v).

kurtosisccged(parameters, Lower, Upper) = kurtosis(x)

= E

(
(x−mean(x))4

variance(x)2

)
=
E(x4) + 6(E(x))2E(x2)− 4E(x)E(x3)− 3(E(x))4

σ∗4

(K.0.35)

This kurtosis value can be attained by using equation K.0.34, K.0.32, K.0.30, and K.0.29
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Appendix L

Out-of-sample VaRs of Seven Stocks

Table L.0.1: Out-of-sample VaR test statistics when T0 = 400

Data p x/T Kupiec LR test E(shortfall2) LRcc

ChinaTrust 0.1
GARCHST 0.0725 3.6809(0.1) 0.9329 4.4988(0.1)

GARCHCCST 0.0875 0.7219 0.8583 0.7239
GARCHCCSTp 0.0900 0.4583 0.8291 0.4817

0.05
GARCHST 0.0850 1.0482 0.8074 1.0525

GARCHCCST 0.0400 0.9014 0.3128 2.2386
GARCHCCSTp 0.0400 0.9014 0.3024 2.2386

0.025
GARCHST 0.0325 3.8036(0.1) 2.0942 2.0942

GARCHCCST 0.0150 1.9110 0.1132 2.0942
GARCHCCSTp 0.0150 1.9110 0.1073 2.0942

Clevo 0.1
GARCHST 0.0600 8.1812(0.005) 3.0792 11.2553 (0.005)

GARCHCCST 0.0700 4.4218(0.05) 2.9282 8.6523(0.025)
GARCHCCSTp 0.0700 4.4218(0.05) 2.9261 8.6523 (0.025)

0.05
GARCHST 0.0300 3.9074(0.05) 1.8640 4.6517(0.1)

GARCHCCST 0.0325 2.9278 (0.1) 1.7298 3.8036
GARCHCCSTp 0.0325 2.9278(0.1) 1.7269 3.8036

0.025
GARCHST 0.0125 3.1324(0.1) 1.1893 3.2593

GARCHCCST 0.0125 3.1324(0.1) 1.0414 3.2593
GARCHCCSTp 0.0125 3.1324(0.1) 1.0400 3.2593

Fubon 0.1
GARCHST 0.0800 1.8953 1.4504 2.0533

GARCHCCST 0.0800 1.8953 1.4558 1.9781
GARCHCCSTp 0.0800 1.8953 1.4571 1.9781

0.05
GARCHST 0.0400 0.9014 0.6346 1.0893

GARCHCCST 0.0400 0.9014 0.6242 1.0893
GARCHCCSTp 0.0400 0.9014 0.6233 1.0893

0.025
GARCHST 0.0225 0.1061 0.2440 0.5215

GARCHCCST 0.0225 0.1061 0.2253 0.5215
GARCHCCSTp 0.0200 0.4399 0.2248 0.7673

Continued on next page
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Table L.0.1 – continued from previous page
Data p x/T Kupiec LR test E(shortfall2) LRcc

GDPower 0.1
GARCHST 0.0725 3.6809 (0.1) 0.9329 4.4988 (0.1)

GARCHCCST 0.0875 0.7219 0.9634 1.0360
GARCHCCSTp 0.0875 0.7219 0.9640 1.0360

0.05
GARCHST 0.0250 6.3979 (0.025) 0.3093 7.7865(0.025)

GARCHCCST 0.0325 2.9278(0.1) 0.4225 3.8036
GARCHCCSTp 0.0325 2.9278 (0.1) 0.4221 3.8036

0.025
GARCHST 0.0100 4.7615(0.05) 0.0438 4.8425(0.1)

GARCHCCST 0.0200 0.4399 0.1261 0.7673
GARCHCCSTp 0.0200 0.4399 0.1256 0.7673

Lotes 0.1
GARCHST 0.0550 10.5805 (0.005) 1.0906 11.0688 (0.005)

GARCHCCST 0.0875 0.7219 0.9634 1.0360
GARCHCCSTp 0.0875 0.7219 0.9640 1.0360

0.05
GARCHST 0.0300 3.9074(0.05) 0.4342 4.6517(0.1)

GARCHCCST 0.0325 2.9278 (0.1) 0.4225 3.8036
GARCHCCSTp 0.0325 2.9278(0.1) 0.4221 3.8036

0.025
GARCHST 0.0150 1.9110 0.1460 2.0942

GARCHCCST 0.0150 1.9110 0.1460 2.0942
GARCHCCSTp 0.0150 1.9110 0.1460 2.0942

LVMH 0.1
GARCHST 0.0825 1.4387 1.4353 1.4698

GARCHCCST 0.0825 1.4387 1.4387 1.4698
GARCHCCSTp 0.0825 1.4387 1.4386 1.4698

0.05
GARCHST 0.0400 0.9014 0.7426 1.0893

GARCHCCST 0.0400 0.9014 0.7272 1.0893
GARCHCCSTp 0.0400 0.9014 0.7358 1.0893

0.025
GARCHST 0.0300 0.3860 0.3787 1.2187

GARCHCCST 0.0275 0.0994 0.3589 1.1863
GARCHCCSTp 0.0275 0.0994 0.3661 1.1863

Posco 0.1
GARCHST 0.0750 3.0143(0.1) 1.1725 4.0153

GARCHCCST 0.0875 0.7219 1.0953 1.2223
GARCHCCSTp 0.0875 0.7219 1.1006 1.2223

0.05
GARCHST 0.0400 0.9014 0.6391 2.2386

GARCHCCST 0.0500 0 0.5843 2.1118
GARCHCCSTp 0.0500 0 0.5867 2.1118

0.025
GARCHST 0.0175 1.0296 0.4043 1.2796

GARCHCCST 0.0200 0.4399 0.3406 0.7673
GARCHCCSTp 0.0200 0.4399 0.3414 0.7673
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Table L.0.2: Spillover Simulations and Parameter Estimates

models κ α β l1 r1 m1 m2 -LOGL BIC

real value 0.1 0.8 0.1 Lower = −3 and Upper = 3

λ = 1 and m2 = 1 mean(l1) mean(r1)
0.9046 0.9046
std(l1) std(r1)
0.0259 0.0259

median(l1) median(r1)
0.9096 0.9096

GARCHCCN 0.0824∗∗∗ 0.8263∗∗∗ 0.0852∗∗∗ 0.9742∗∗∗ 0.9672∗∗∗ −27.0139∗∗ 30.7408∗∗∗ 6.7844e+003 1.3628e+004
( 0.0176 ) ( 0.0263 ) ( 0.0110 ) ( 0.0071 ) ( 0.0059) ( 11.7751) ( 8.1025)

GARCH 0.0838∗∗∗ 0.8282∗∗∗ 0.0815∗∗∗ 6.8325e+003 1.3691e+004
( 0.0188 ) ( 0.0285 ) ( 0.0118)

λ = 0.8 and m2 = 1 mean(l1) mean(r1)
0.9047 0.9047
std(l1) std(r1)
0.0213 0.0213

median(l1) median(r1)
0.9119 0.9119

GARCHCCN 0.0857∗∗∗ 0.8210∗∗∗ 0.0893∗∗∗ 0.9804∗∗∗ 0.9752∗∗∗ −34.6042 40.1636∗∗∗ 6.8038e+003 1.3667e+004
( 0.0166 ) ( 0.0246 ) ( 0.0117 ) ( 0.0092 ) ( 0.0049) ( 25.4855) ( 10.9409)

GARCH 0.0883∗∗∗ 0.8229∗∗∗ 0.0825∗∗∗ 6.8421e+003 1.3710e+004
( 0.0189 ) ( 0.0276 ) ( 0.0115 )

λ = 0.8 and m2 = 2 mean(l1) mean(r1)
0.9158 0.9158
std(l1) std(r1)
0.0174 0.0174

median(l1) median(r1)
0.9223 0.9223

GARCHCCN 0.0902∗∗∗ 0.7932∗∗∗ 0.1158∗∗∗ 0.9777∗∗∗ 0.9752∗∗∗ −44.9300∗∗∗ 41.7272∗∗∗ 6.8351e+003 1.3730e+004
( 0.0149 ) ( 0.0265 ) ( 0.0120) ( 0.0051 ) ( 0.0047 ) ( 14.8384 ) ( 11.0333)

GARCH 0.0922∗∗∗ 0.7971∗∗∗ 0.1085∗∗∗ 6.9044e+003 1.3834e+004
( 0.0178 ) ( 0.0268 ) ( 0.0126)

λ = 1 and m2 = 2 mean(l1) mean(r1)
0.9159 0.9159
std(l1) std(r1)
0.0179 0.0179

median(l1) median(r1)
0.9219 0.9219

GARCHCCN 0.0694∗∗∗ 0.8341∗∗∗ 0.0997∗∗∗ 0.9772∗∗∗ 0.9745∗∗∗ −49.1766∗∗∗ 34.5543∗∗∗ 6.9524e+003 1.3964e+004
( 0.0131 ) ( 0.0207 ) ( 0.0122 ) ( 0.0040 ) ( 0.0054 ) ( 12.4184 ) ( 10.5648)

GARCH 0.0728∗∗∗ 0.8360∗∗∗ 0.0931∗∗∗ 7.0385e+003 1.4103e+004
( 0.0135 ) ( 0.0205 ) ( 0.0107 )

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001
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Table L.0.3: Fitted GARCH models with Student-t tails

models κ α β v l1 r1 m1 m2 -LOGL BIC

ChinaTrust
GARCHST 0.0257∗∗∗ 0.9304∗∗∗ 0.0696∗∗∗ 4.8250∗∗∗ 6.0758e+03 1.2184e+04

( 0.0122) ( 0.0110 ) ( 0.0114) ( 0.4698 )
GARCHCCST 0.0354∗ 0.9273∗∗∗ 0.0693∗∗∗ 4.4440∗∗∗ 0.9254∗∗∗ 0.9317∗∗∗ −5.6491∗∗∗ 7.2380∗∗∗ 5.8937e+003 1.1843e+004

( 0.0150) ( 0.0127) ( 0.0152) ( 0.6304) ( 0.0097) ( 0.0078) ( 1.0740) ( 1.1598)
GARCHCCSTp 0.0322∗ 0.9271∗∗∗ 0.0723∗∗∗ 4.2646∗∗∗ 0.9199∗∗∗ 0.9343∗∗∗ 5.2641∗∗∗ 8.8194∗∗∗ 5.8824e+03 1.1829e+04

( 0.0152) ( 0.0119 ) ( 0.0134) ( 0.4960) ( 0.0101) ( 0.0068) ( 1.0006) ( 1.1339)

Clevo
GARCHST 0.0652∗∗∗ 0.8913∗∗∗ 0.1087∗∗∗ 5.9269∗∗∗ 8.8373e+03 1.7708e+04

( 0.0290) ( 0.0144 ) ( 0.0150 ) ( 0.5954 )
GARCHCCST 0.0774 0.8787 0.1213 4.3080 0.8895 0.8896∗∗∗ −3.1660 4.0282 8.3340e+03 1.6734e+04

( 3.0709 ) ( 0.9440 ) ( 2.0368) ( 108.9981) ( 0.4886) ( 0.1720) ( 3.5063) ( 6.3290)
GARCHCCSTp 0.0781∗∗∗ 0.8795∗∗∗ 0.1205∗∗∗ 4.3009∗∗∗ 0.8904∗∗∗ 0.8986∗∗∗ 4.0024∗∗∗ 5.7081∗∗∗ 8.3288e+03 1.6723e+04

( 0.0299 ) ( 0.0159 ) ( 0.0176) ( 0.3633) ( 0.0062) ( 0.0054) ( 0.2852) ( 0.3666)

GDPower
GARCHST 0.0963∗∗∗ 0.9011∗∗∗ 0.0989∗∗∗ 3.3357∗∗∗ 6.9979e+03 1.4028e+04

( 0.0394) ( 0.0216 ) ( 0.0211) ( 0.2193 )
GARCHCCST 0.1450 0.8860 0.1140 3.1541∗∗∗ 0.9999∗∗∗ 0.9999∗∗∗ −1.6081e + 04∗∗∗ 1.0490e + 04∗∗∗ 6.6203e+03 1.3639e+04

( 1.3935 ) ( 0.5898 ) ( 0.1221) ( 3.3092) ( 1.6106e-05) (2.0927e-05) (1.6002e+03) (1.0465e+03)
GARCHCCSTp 0.2076∗∗∗ 0.8423∗∗∗ 0.1577∗∗∗ 3.1552∗∗∗ 0.9962∗∗∗ 0.9986∗∗∗ 151.0197∗∗∗ 551.9741∗∗∗ 6.8605e+03 1.3786e+04

( 0.0445 ) ( 0.0175 ) ( 0.0160) ( 0.0874) ( 0.0004) ( 0.0002) ( 16.6000) ( 57.7680)

Lotes
GARCHST 0.0304∗∗∗ 0.9183∗∗∗ 0.0817∗∗∗ 4.2748∗∗∗ 3.5066e+003 7.0426e+003

( 0.0291) ( 0.0273 ) ( 0.0245) ( 0.4430 )
GARCHCCST 0.0480 0.9072 0.0928 3.4540 0.9119∗∗∗ 0.9288∗∗∗ −4.1141 8.6786 3.2643e+003 6.5866e+003

( 0.8923 ) ( 0.8948 ) ( 0.6751) ( 42.3794) ( 0.1941) ( 0.1505) ( 10.0638) ( 10.9974)
GARCHCCSTp 0.0478 0.9078∗∗∗ 0.0922 3.4441 0.9067∗∗∗ 0.9319∗∗∗ 4.6274 10.8804∗∗∗ 3.2639e+003 6.5867e+003

( 0.7374 ) ( 0.3093 ) ( 0.4886) ( 15.4494) ( 0.1050) ( 0.0743) ( 4.4027) ( 1.5712)

LVMH
GARCHST 0.0345∗∗∗ 0.9214∗∗∗ 0.0708∗∗∗ 7.6150∗∗∗ 7.2391e+03 1.4511e+04

( 0.0106) ( 0.0100 ) ( 0.0107) ( 0.8951 )
GARCHCCST 0.0364∗∗∗ 0.9224∗∗∗ 0.0684∗∗∗ 7.7099∗∗∗ 0.9999∗∗∗ 1.0000∗∗∗ −1.5574e + 04∗∗∗ 2.6690e + 04∗∗∗ 7.0975e+03 1.4261e+04

( 0.0098 ) ( 0.0090 ) ( 0.0076) ( 0.8636) ( 9.1353e-06) ( 5.6598e-06) ( 1.8086e+03) ( 3.0983e+03)
GARCHCCSTp 0.0370∗∗∗ 0.9218∗∗∗ 0.0679∗∗∗ 7.8841∗∗∗ 1.0000∗∗∗ 0.9864∗∗∗ 2.4608e + 04∗∗∗ 43.4788∗∗∗ 7.1557e+03 1.4377e+04

( 0.0101 ) ( 0.0095 ) ( 0.0078) ( 0.8864) ( 6.9797e-06) ( 6.7417e-04) ( 3.0879e+03) ( 3.3642)

Fubon
GARCHST 0.0538∗∗∗ 0.9206∗∗∗ 0.0702∗∗∗ 4.7636∗∗∗ 6.1309e+03 1.2294e+04

( 0.0235) ( 0.0181 ) ( 0.0154) ( 0.4538 )
GARCHCCST 0.0604∗∗∗ 0.9202∗∗∗ 0.0628∗∗∗ 4.9131∗∗∗ 0.8761∗∗∗ 0.9396∗∗∗ −2.5817∗∗∗ 8.3922∗∗∗ 6.0083e+03 1.2081e+04

( 0.0241 ) ( 0.0189 ) ( 0.0158) ( 0.5739) ( 0.0156) ( 0.0083) ( 0.5566) ( 1.5007)
GARCHCCSTp 0.0601∗∗ 0.9197∗∗∗ 0.0649∗∗∗ 4.7740∗∗∗ 0.9020∗∗∗ 0.9420∗∗∗ 4.5926∗∗∗ 10.1136∗∗∗ 6.0098e+03 1.2084e+04

( 0.0248) ( 0.0188) ( 0.0160) ( 0.6032) ( 0.0118) ( 0.0074) ( 0.8579) ( 1.6642 )

Posco
GARCHST 0.0379∗∗∗ 0.9259∗∗∗ 0.0705∗∗∗ 5.6424∗∗∗ 7.5632e+03 1.5159e+04

( 0.0139) ( 0.0101 ) ( 0.0101 ) ( 0.5481 )
GARCHCCST 0.0385∗∗∗ 0.9259∗∗∗ 0.0700∗∗∗ 5.6702∗∗∗ 0.9847∗∗∗ 0.9048∗∗∗ −15.8378∗∗∗ 1.6549∗∗∗ 7.5529e+03 1.5171e+004

( 0.0146 ) ( 0.0102 ) ( 0.0103) ( 0.5392) ( 0.0125) ( 0.0283) ( 17.4381) ( 0.8544)
GARCHCCSTp 0.0381∗∗∗ 0.9254∗∗∗ 0.0715∗∗∗ 5.5401∗∗∗ 1.0000∗∗∗ 0.9390∗∗∗ −4.0887∗∗∗ 4.1689∗∗∗ 7.5560e+03 1.5177e+04

( 0.0134 ) ( 0.0097 ) ( 0.0107) ( 0.5281) ( 0.0028) ( 0.0208) ( 0.3102) ( 2.0492)

Notes: ∗p < .05, ∗∗p < .01, ∗∗∗p < .001



Table L.0.4: Simulated Moments with a data size of 50,000

Data/Fitted Models mean variance skewness kurtosis E(utut−1) E(u2tu
2
t−1) S

ChinaTrust 0.0228 4.7042 -0.0222 5.1582 0.1197 49.4065
GARCHST -0.0193 10.1892 -0.0589 74.0920 -0.1054 1.3241e+003 1.6296e+006

GARCHCCST 0.0261 5.4334 -0.0328 4.5925 -0.0349 44.5487 24.4734
GARCHCCSTp 0.0291 4.4976 0.0607 5.0888 -0.0054 31.7961 310.1954

Clevo 0.0493 8.0712 0.0562 3.5926 0.6657 110.1570
GARCHST -0.0231 25.8024 -1.2193 133.2548 -0.7911 1.6190e+004 2.5857e+008

GARCHCCST 0.0555 7.6436 0.0184 3.7620 0.0032 87.7507 502.6961
GARCHCCSTp 0.0713 7.0288 0.0321 4.0161 0.0378 77.3208 1.0799e+003

Fubon 0.0136 3.9925 -0.0871 5.3566 -0.0289 29.4134
GARCHST -0.0014 6.5113 0.1471 39.9018 -0.0094 303.4114 7.6275e+004

GARCHCCST -0.0043 4.4142 -0.0476 5.1025 0.0011 31.6812 5.3881
GARCHCCSTp -0.0067 3.9771 -0.0296 5.3234 0.0439 24.3476 25.6727

GDPower 0.0503 5.1081 0.0213 6.9328 0.0908 61.6979
GARCHST -0.0194 12.2799 -0.6503 49.3130 -0.1226 1.6032e+003 2.3781e+006

GARCHCCST -0.0033 3.8053 -0.0903 6.5862 -0.0024 22.9209 1.5055e+003
GARCHCCSTp -0.0080 4.7540 -0.0716 7.5048 -0.0838 45.0616 277.2595

Lotes 0.0449 6.7640 0.2875 4.2639 1.1065 86.0828
GARCHST -0.0008 12.9794 0.2553 96.7197 -0.2383 3.8137e+003 1.3904e+007

GARCHCCST 0.1741 6.5900 0.2109 4.3590 0.0341 68.2735 318.3817
GARCHCCSTp 0.1385 5.4865 0.2935 4.9974 0.1135 50.5816 1.2635e+003

LVMH 0.0137 4.0454 0.1035 6.5333 0.0458 31.3893
GARCHST 0.0022 4.2086 0.0264 13.2048 -0.0583 64.7740 1.1591e+003

GARCHCCST 0.0019 3.3803 -0.0328 5.2883 -0.0183 18.4040 170.6332
GARCHCCSTp 0.0199 3.7367 0.1829 6.1638 -0.0053 25.5796 33.9934

Posco 0.0237 5.4131 0.0012 7.6805 0.2872 65.3117
GARCHST 0.0158 16.8355 1.1817 267.6687 0.0638 1.7615+004 3.0806e+008

GARCHCCST 0.0069 4.4798 0.0364 5.7016 -0.0246 34.6737 943.5703
GARCHCCSTp 0.0141 4.4465 0.0815 5.6789 0.0113 32.9886 1.0498e+003
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Appendix M

mfiles

Table M.0.1: mfiles

mfile name Description

TN

NtE Finding the parameters
randraw Simulation

tnpdf the pdf function
tncdf the cdf function

CN
cnfit Finding the parameters

cnrnd Simulation
cnpdf the pdf function
cncdf the cdf function

CCN
ccnfit Finding the parameters
ccnllf -LOGL of CCN

ccnrnd Simulation
ccn1st E(x) and x follows CCN
ccn2nd E(x2) and x follows CCN
ccn3rd E(x3) and x follows CCN
ccn4th E(x4) and x follows CCN

ccnmean mean of x and x follows CCN
ccnvar variance of x and x follows CCN

ccnskewness skewness of x and x follows CCN
ccnkurtosis kurtosis of x and x follows CCN

pm the ccncdf between a1 and b1
ccncdf the cdf function for ccn
ccnpdf the pdf function for ccn

generalized GED
ggedfit Finding the parameters
gedrnd Simulation of standardized GED

truncated generalized GED
tgedfit Finding the parameters
tgedllf the -LOGL

tgedrnd Simulation of truncated standardized GED
gtgedrnd Simulation of truncated generalized GED

censored generalized GED
cgedfit Finding the parameters
cgedllf the -LOGL

cgedrnd Simulation of censored standardized GED
gcgedrnd Simulation of censored generalized GED

Continued on next page
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Table M.0.1 – continued from previous page
mfile name Description

CC generalized GED
ccged Finding the parameters

ccgedpdf the pdf of ccged
ccgedcdf the cdf of ccged
ccgedllf the -LOGL

ccgedrnd1 Simulation of CC generalized GED
ccgedskewness the skewness of ccged
ccgedkurtosis the kurtosis of ccged

ccgedvar the variance of ccged
ccgedmean the mean of ccged
ccgedfirst the mean of ccged

ccgedsecond the second moment of ccged
ccgedthird the third moment of ccged
ccgedfourth the third moment of ccged
firststdtged un-centred first moment of std ged with two bounds

secondstdtged un-centred second moment of std ged with two bounds
thirdstdtged un-centred third moment of std ged with two bounds
forthstdtged un-centred fourth moment of std ged with two bounds

generalized Student-t
st Finding the parameters

stllf the -LOGL
stdtrnd Simulation of standardized Student-t

truncated generalized Student-t
truncatedst Finding the parameters

tstrnd Simulation of truncated standardized Student-t
gtstrnd Simulation of truncated generalized Student-t

censored generalized Student-t
censoredst Finding the parameters

cstrnd Simulation of truncated standardized Student-t
gcstrnd Simulation of truncated generalized Student-t

CC generalized Student-t
scnstfit Finding the parameters
scnstllf the -LOGL of CC generalized Student-t

scnstrnd Simulation of CC generalized Student-t
scnstpdf the pdf of CC generalized Student-t
ccstcdf the cdf of CC generalized Student-t
ccstvar variance of ccst

ccstsecond un-centred second moment of ccst
ccstmean mean of ccst
ccstfirst un-centred first moment of ccst
ccstthird un-centred third moment of ccst
ccstfourth un-centred fourth moment of ccst

ccstskewness skewness of ccst
ccstkurtosis kurtosis of ccst
firststdtst un-centred first moment of stdtst with two bounds

secondstdtst un-centred second moment of stdtst with two bounds
thirdstdtst un-centred third moment of stdtst with two bounds
forthstdtst un-centred fourth moment of stdtst with two bounds

gt1 un-centred first moment of generalized Student-t with two bounds
gt2 un-centred 2nd moment of generalized Student-t with two bounds
gt3 un-centred 3rd moment of generalized Student-t with two bounds
gt4 un-centred 4th moment of generalized Student-t with two bounds

time varying functions

GARCH
insamplevarn the in-sample VaRs

outsamplevarn find the out-sample VaRs

GARCH with TN
ugarchv1 Finding the parameters

ugarchsim1 Simulation
insamplevartn find the in-sample VaRs

outsamplevartn find the out-sample VaRs

GARCH with CN
ugarchvcn Finding the parameters

ugarchsimcn Simulation
Continued on next page

153



Table M.0.1 – continued from previous page
mfile name Description

insamplevarcn find the in-sample VaRs
outsamplevarcn find the out-sample VaRs

GARCH with CCN
ugarch600jenota Finding the parameters
ugarchllf600jnota the -LOGL

ugarchsim600jnota Simulation
sim600j Monte Carlo simulation of GARCHCCN

insamplevar find the in-sample VaRs
outsamplevar find the out-sample VaRs

GARCH with fat tails: GED or Student-t
fattailed garch Finding the parameters

garchged finding the parameters for garch with ged tailes
garchgedllf the -LOGL for finding the parameters for garch with ged tailes

garchst finding the parameters for garch with st tailes
garchstllf the -LOGL for finding the parameters for garch with st tailes

fattailed garchlikelihood the -LOGL
ugarchsimged Simulation with GED tails
ugarchsimst Simulation with Student-t tails

insamplevarged find the value at risk given the fitted GARCH model with GED
insamplevarst find the value at risk given the fitted GARCH model with ST

outsamplevarged find the value at risk given the fitted GARCH model with GED
outsamplevarst find the value at risk given the fitted GARCH model with ST

GARCH with truncated GED
ugarchtged Finding the parameters

ugarchllftged the -LOGL
ugarchsimtged Simulation

GARCH with censored GED
ugarchcged Finding the parameters

ugarchllfcged the -LOGL
ugarchsimcged Simulation

GARCH with CC GED
garchccgednew Finding the parameters

ugarchllfccged10 the -LOGL
ugarchsimccged10 Simulation

GARCH with truncated Student-t
ugarchtst Finding the parameters

ugarchllftst the -LOGL
ugarchsimtst Simulation

GARCH with censored Student-t
ugarchcst Finding the parameters

ugarchllfcst the -LOGL
ugarchsimcst Simulation

GARCH with CC Student-t
garchccstnew Finding the parameters

ugarchllfccst10 the -LOGL
ugarchsimccst10 Simulation

GARCHCCSTp
ugarchccstkk Finding the parameters

ugarchllfccstkk the -LOGL
cdfinvccstkk given the value of cdf, find the variable
ccstkkrnd generate random variables

insamplevarccstkk find the in-sample VaRs
outsamplevarccstkk find the out-sample VaRs

ugarchsimccstkk simulation of data following garch with ccstp
ccstcdfkk the cdf of a variable under CCSTp distribution

ccgedcdfkk the cdf of a variable under CCGEDp distribution

group mapping
spill200 find the spillover value using function
spillemp find the spillover value using mapping rule

mapping10 mapping a normal variable to a ccn rnd variable
spill8 using the reversed mapping rule to calculate spilli for i = 1, 2

one to one mapping
Continued on next page
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Table M.0.1 – continued from previous page
mfile name Description
mappingback if a ccn variable is given, find its true value

mappingforward if a normal variable is given, find its matching ccn variable
ugarchllfmapping the −LOGL of a GARCHCCN model with both 1st and 2nd moment spillover
ugarchmapping find the parameters of a GARCHCCN model with both 1st and 2nd moment spillover

find value at risk
cdfinvtn find the value at risk for TN given p-value of x
cdfinvcn find the value at risk for CN given p-value of x
cdfinvccn find the value at risk for CCN given p-value of x
cdfinvccst find the value at risk for CCST given p-value of x

cdfinvccged find the value at risk for CCGED given p-value of x

simulation with spillover
spillmap simulations of a time series with spillover according to section 3.5.1

Laplace pdf
laplacepdf the pdf of Laplace distribution
laplacecdf the cdf of Laplace distribution
laplacellf the negative log likelihood of the Laplace distribution
laplacefit find the fitted parameters of the Laplace distribution

clustered censored Laplace pdf
cclaplacefit find the fitted parameters of the clustered censored Laplace distribution
ccnllflaplace the negative log likelihood of the clustered censored Laplace distribution
cclaplacepdf the pdf of the cclaplace
cclaplacecdf the cdf of the cclaplace
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Appendix N

Mappings

Figure N.1: the mapping between x and y: symmetric mapping
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Figure N.2: the mapping between x and y: asymmetric mapping
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Figure N.3: the mapping between x and y: TN
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Figure N.4: Latent and Observed Values with Bounds of [−5, 5]
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Figure N.5: Latent and Observed Values with Bounds of [−7.5, 7]
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Figure N.6: CDF v.s. x with Bounds of [−5, 5] and pa = [0; 2.7 ∗ 2.7; 0.8; 0.7; 0.99;−0.99]
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Figure N.7: CDF v.s. x with Bounds of [−7.5, 7] and pa = [0; 2.7 ∗ 2.7; 0.8; 0.7; 0.99;−0.99]
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Figure N.8: Latent and Observed Values with Bounds of [−14, 14]
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