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Abstract

It is essential to enable information extraction from software. Program tracing tech-
niques are an example of information extraction. Program tracing extracts information
from the program during execution. Tracing helps with the testing and validation of soft-
ware to ensure that the software under test is correct. Information extraction is done by
instrumenting the program. Logged information can be stored in dedicated logging memo-
ries or can be buffered and streamed off-chip to an external monitor. The designer inspects
the trace after execution to identify potentially erroneous state information. In addition,
the trace can provide the state information that serves as input to generate the erroneous
output for reproducibility.

Information extraction can be difficult and expensive due to the increase in size and
complexity of modern software systems. For the sub-class of software systems known as
real-time systems, these issues are further aggravated. This is because real-time systems
demand timing guarantees in addition to functional correctness. Consequently, any in-
strumentation to the original program code for the purpose of information extraction may
affect the temporal behaviors of the program. This perturbation of temporal behaviors can
lead to the violation of timing constraints, which may bias the program execution and/or
cause the program to miss its deadline. As a result, there is considerable interest in devis-
ing techniques to allow for information extraction without missing a program’s deadline
that is known as time-aware instrumentation. This thesis investigates time-aware instru-
mentation mechanisms to instrument programs while respecting their timing constraints
and functional behavior. Knowledge of the underlying hardware on which the software
runs, enables the extraction of more information via the instrumentation process.

Chip-multiprocessors offer a solution to the performance bottleneck on uni-processors.
Providing timing guarantees for hard real-time systems, however, on chip-multiprocessors
is difficult. This is because conventional communication interconnects are designed to
optimize the average-case performance. Therefore, researchers propose interconnects such
as the priority-aware networks to satisfy the requirements of hard real-time systems. The
priority-aware interconnects, however, lack the proper analysis techniques to facilitate the
deployment of real-time systems. This thesis also investigates latency and buffer space
analysis techniques for pipelined communication resource models, as well as algorithms for
the proper deployment of real-time applications to these platforms.

The analysis techniques proposed in this thesis provide guarantees on the schedulabil-
ity of real-time systems on chip-multiprocessors. These guarantees are based on reducing
contention in the interconnect while simultaneously accurately computing the worst-case
communication latencies. While these worst-case latencies provide bounds for computing
the overall worst-case execution time of applications on chip-multiprocessors, they also pro-
vide means to assigning instrumentation budgets required by time-aware instrumentation.
Leveraging these platform-specific analysis techniques for the assignment of instrumenta-
tion budgets, allows for extracting more information from the instrumentation process.
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Chapter 1

Introduction

In this thesis, we address two problems that exist in the field of real-time embedded sys-
tems. The first problem is the instrumentation of embedded software. It is essential to
take timing constraints into account when instrumenting real-time software. Hence, it is
crucial to find new instrumentation techniques that are more suited for real-time systems.
The second problem is scalability. Modern chip-multiprocessors (CMPs) connect a large
number of embedded processing elements using a pipelined communication interconnect.
While the use of CMPs is becoming widespread in general purpose computing, its adoption
for hard real-time systems has been cautious at best. This is because of the need to provide
provable guarantees that the hard real-time software always meets its timing requirements.
Providing tight bounds on the communication latencies between tasks deployed on CMPs
can increase the instrumentation budget available for time-aware instrumentation. My
main research focus is, thus, (1) providing solutions to instrumentation of real-time em-
bedded software and (2) providing analysis techniques to enable using CMPs as a platform
for real-time systems.

1.1 Tracing

Program tracing is the extraction of information from a program at runtime during its
execution. The tracing technique was developed as early as programming itself [3, 10].
There are various ways for tracing program execution; instrumentation, sampling, and
emulation. Instrumentation is the insertion of additional code to the original program to
support tracing. The instrumentation process can either be applied to the source code
or the binary executable of the program. It can also be a static or a dynamic process.
Sampling can also be used to extract information about a running program. The program
is unmodified and, at certain intervals, an external monitor interrupts the program to
capture some parameters. Emulation as well is recognized as a method for tracing. The
reason is that the emulated system can be totally controlled and every single instruction
execution is visible for instrumentation.

A common example of tracing program execution is state logging where monitors ex-
tract certain critical software state information and program counter locations. Logged



information can be stored in dedicated logging memories or can be buffered and streamed
off-chip to an external monitor. The designer inspects the trace after execution to identify
potentially erroneous state information. In addition, the trace can provide the state infor-
mation that serves as input to generate the erroneous output for reproducibility. These
techniques are used during the software design process to test, validate, and debug the sys-
tem, but they are also often used during deployment as well. This is to continue collecting
trace information in the event of certain failures that require diagnosis.

1.1.1 Tracing of Real-Time Systems

Of all computers, 98% are embedded systems and plenty of those are real-time control
systems (DARPA, 2000). This highlights the prevalence of real-time systems in our daily
lives including, but not limited to: automotive vehicles, aeroplanes, cellular phones, etc.
Real-time applications can be classified into hard real-time and soft real-time applications.
For hard real-time applications, it is imperative to meet deadlines. Missing deadlines can
lead to system failure which might result in loss of life for instance. Soft real-time appli-
cations, on the other hand, can occasionally miss deadlines without causing serious harm.
Missing deadlines, however, leads to a degradation in the overall system performance.

While the various real-time applications have different non-functional requirements such
as safety and memory consumption, they are all time-sensitive systems. In general, writing
correct software is both difficult [71] and expensive [13]. This is further aggravated for real-
time systems because in addition to functional correctness, timeliness is important. Tracing
is one of the common techniques for debugging real-time systems. The instrumentation
process, required to enable tracing, naturally causes perturbation to the system under
analysis. Hence, any instrumentations to the original program code may affect the temporal
behaviors of the system. Typically, the more tracing code the program executes during the
run, the more the perturbation in temporal behaviors. The reason is that, in general, the
addition of more tracing code increases the number of instructions the processor executes
leading to a longer execution time (except for timing anomalies).

This perturbation of temporal behaviors raises issues during testing and validation in
the software design process, and during deployment. In the former, violating the temporal
constraints of the program may bias the execution of the program to certain operations,
which otherwise would not occur in a real deployment. In the latter, deployment is simply
not possible if the program may potentially miss its deadline. As a result, there is con-
siderable interest in devising techniques to allow for program tracing while meeting the
program deadlines that is known as time-aware instrumentation [39, 63, 62, 5].

1.2 Time-Aware Instrumentation

Time-aware instrumentation tries to preserve logical correctness as well as meeting tim-
ing constraints. While a minor influence on execution time maybe be acceptable within
a specified timing constraint, naive instrumentation will usually violate such constraints.



Time-aware instrumentation attempts to honor the timing constraints and shifts the exe-
cution time profile (ETP) of the program closer to the program’s deadline.

Case studies investigated in related work [39] demonstrate the promise of the general
concept but the results revealed new problems. Figure 1.1 shows the ETP of a case study
reported in [39] on the one laptop per child (OLPC) keyboard controller. The figure
shows the success of time-aware instrumentation in shifting the ETP of the instrumented
program. While the shift in the ETP is visible, it is lower than expected. The expectation
was a larger shift in the time profile towards longer execution times. Further investigation
revealed that, in this example, about 25 percent of the paths share basic blocks with the
worst-case path (WCP). This means that large portions of the program are unavailable for
instrumentation, because instrumenting them could affect the worst-case execution time
(WCET) and thus violate existing timing constraints.
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Figure 1.1: Execution time profiles of the OLPC keyboard controller [39]

1.2.1 Goals and Contributions

In this thesis, we investigate different techniques for increasing the effectiveness of time-
aware instrumentation. The following is a summary of our contributions:

1. Execution time profile shift-effectiveness metric (ETPsem) [63]: We propose
the ETPsem to measure the effectiveness of a time-aware instrumentation approach,
so that different approaches can be compared against each other. One way to mea-
sure the effectiveness of time-aware instrumentation is a visual inspection as seen
in Figure 1.1. This involves manual assessment and lacks accuracy. Another way
is to calculate the instrumentation coverage as the ratio of extracted information to
what is expected or desired. We introduce ETPsem as a more efficient metric for
time-aware instrumentation.

2. Program transformation [63]: A central element for time-aware instrumentation
is to identify regions in the program which can be instrumented. We propose an
algorithm that identifies instrumentable edges in a program’s control-flow. An in-
strumentable edge is one that lends itself for time-aware instrumentation. Different



approaches can use these edges for program instrumentation. We demonstrate the
utility of this algorithm by introducing Branch Block Creation and CFG Cloning as
two such approaches to increase the effectiveness of time-aware instrumentation at
the expense of code size.

3. Instrumentation on the WCP [68]: We propose a slack-based conditional in-
strumentation technique for debugging hard real-time programs. This instrumenta-
tion technique preserves functional behavior, and temporal behaviors of the original
program while allowing the instrumentation of variables on the WCP. Conditional
instrumentation allows the instrumented code to execute only when there is suffi-
cient slack in the program. We accomplish this using a timer to record the available
slack during execution. This is a run-time approach to check for slack. Then, we ad-
dress the challenge of selecting points in the program code to insert such conditional
instrumentations. We use a purely software technique to implement conditional in-
strumentation and compare it against a technique that extends the processor with
instructions to perform the conditional checks.

4. INSTEP [62]: Software systems are rich in extra-functional (or non-functional [132,
|) requirements such as timing, code sizes, communication bandwidth, power con-
sumption, and memory consumption. While our work focuses on time-aware in-
strumentation, other extra-functional properties might exist in the real-time system.
Maintaining an extra-functional property during instrumentation is complicated and
managing multiple properties simultaneously is even more so. Extra-functional prop-
erties can be competing where meeting one property might break another. We present
a static instrumentation framework that gives the developer unprecedented control
over what to instrument and what to preserve. It thereby presents the first fully-
implemented instrumentation mechanism that considers multiple competing extra-
functional properties. INSTEP uses trees to represent instrumentation intents and
automata to represent cost models.

1.3 Chip-Multiprocessors for Real-Time Systems

Real-time embedded applications, and software in general, continue to evolve with increas-
ing complexity. This increasing complexity of real-time applications translates into a need
for higher computational power to satisfy their real-time requirements. Due to the limits
on power consumption and heat dissipation in processors, increasing their performance is
not a viable solution anymore. Multicore architectures pose themselves as a solution to
the performance bottleneck. For the correct operation of the real-time system, a guarantee
must be provided that the entire system is schedulable. This is done by ensuring that the
temporal requirements of all tasks are met, which requires an estimate on the WCET of
tasks and the worst-case communication latency between the tasks. Providing timing guar-
antees for hard real-time systems, however, on multicore interconnects is difficult. This is
because conventional communication interconnects are designed to optimize the average-
case performance. These, however, are a hindrance to accurately predicting the worst-case



communication time in the interconnects. Therefore, recent research focuses on developing
custom network-on-chip (NoC) interconnects to facilitate their adoption as a platform for
real-time applications.

Common NoC implementations include resource reservation and run-time arbitration
(priority-aware) networks. Time division multiplexing (TDM) is an example of resource
reservation networks. Resource reservation networks statically allocate resources to pre-
vent contention between communication tasks in the network at runtime. Priority-aware
networks, on the other hand, allow contention between communication tasks. Contention
is resolved at runtime using priority-aware arbitration routers. TDM networks guarantee
schedulability of tasks as part of their static allocation of resources and have small buffer
requirements (one flit for guaranteed services and one packet for best-effort services) [11].
In this type of networks, if there is no data to be transmitted in a certain time slot, the slot
will remain empty; thereby, not allowing other tasks to use it resulting in under-utilization
of communication resources. For low latency communication, a larger proportion of slots
are assigned; thus, causing low latency communication to be intertwined with the band-
width when using TDM. Moreover, TDM networks do not cleanly support sporadic tasks.
This is because sporadic tasks are triggered by external events and, hence, it is unknown
at design time when exactly they start.

Priority-aware networks have better resource usage compared to TDM but require a
worst-case latency (WCL) analysis to guarantee schedulability of the network tasks [120,

]. A priority-aware network architecture was proposed by Shi and Burns [120, ,

, ]. This architecture supports wormhole switching and priority arbitration between
network messages. Shi and Burns also present a WCL analysis that we call flow-level
analysis (FLA) that determines the worst-case communication latency in the priority-aware
network [126, 124].

1.3.1 Goals and Contributions

The most recent WCL analysis for priority-aware networks is FLA [126, 124]. This analysis
is crucial to determine the schedulability of communication tasks and accordingly the feasi-
bility of deploying a real-time application on a priority-aware network. FLA assumes that
the paths taken by communication tasks are indivisible units of communication. Hence,
FLA does not incorporate the effects of pipelining and parallel transmission of data in
the network. Aspects, other than the WCL analysis, need as well to be considered for
the successful deployment of real-time applications on priority-aware networks. These in-
clude mapping of tasks to the network cores, path-selection for the communication between
tasks, and buffer space assignment to the routers of the network. Our goal is to provide
an integrated solution to deploying real-time applications on priority-aware networks while
considering pipelining and parallel data transmission in the networks. The following is a
summary of our contributions:

1. Stage-level analysis (SLA) [64]: We propose a pipelined communication resource
model for analyzing the worst-case latencies for hard real-time systems. This model



supports pipelined and parallel transmission of data over communication resources
with fixed priority preemption. We also present an associated stage-level analysis that
uses the pipelined communication resource model to produce tight WCL estimates.
The model supports communication tasks that are either periodic or sporadic. This
analysis is suitable for interconnects that use run-time arbitration such as the priority-
aware network proposed by Shi and Burns [126, 124].

. Offset-based worst-case response time (WCRT') analysis [65]: An important
challenge in distributing hard real-time systems onto modern computing platforms
is in developing WCRT analysis techniques that combine communication and com-
putation execution latencies. Such WCRT analysis techniques must consider the
WCL of data transmissions across the communication medium connecting the pro-
cessing resources, and its effect on any dependent computation tasks to determine
accurate WCRT estimates. We present extensions to both FLA and SLA to com-
pute end-to-end worst-case latencies of applications including both computation and
communication tasks. We also present a holistic analysis algorithm for computing
the dynamic offsets and jitters of tasks.

. Buffer space requirements [66]: To enable the deployment of real-time appli-
cations to priority-aware networks, recent research proposes WCL analyses for such
networks. Buffer space requirements in priority-aware networks, however, are seldom
addressed. Hence, we bound the buffer space required for valid WCL analyses and
consequently optimize router design for application specifications by computing the
required buffer space in priority-aware routers. In addition to the obvious advantage
of bounding buffer space while providing valid WCL bounds, buffer space reduction
decreases chip area and saves energy in priority-aware networks. We present a de-
tailed buffer space analysis using each WCL analysis: namely stage-level buffer-space
analysis (SLBA) and flow-level buffer-space analysis (FLBA).

. Buffer space allocation in priority-aware routers: Although computing the
buffer space bounds required for valid WCL analyses is necessary, it only provides
an upper bound to the required buffer space. Further reduction of the buffer space
is possible, but might lead to higher worst-case latencies. These higher worst-case
latencies are acceptable as long as the deployed applications are schedulable. We
extend SLA to incorporate buffer space limits and we present an algorithm for buffer
space allocation in the priority-aware routers.

. Path selection [67]: We propose a path selection algorithm (PSA) assisted by SLA
that aims to improve the number of schedulable tasks by selecting appropriate paths
in the priority-aware network. We use SLA because it considers the pipelining effect
of worm-hole switched NoCs, and it provides tight WCET bounds. In particular, we
propose an algorithm that utilizes observations from SLA to efficiently select paths
in the priority-aware network. To avoid the high complexity of an optimal algorithm,
our algorithm uses heuristics to find least interference paths and to consider lower
priority tasks while selecting paths for the higher priority ones.



1.4 Organization

This thesis is organized as follows. Chapter 2 presents an overview of the related work on
the research topics addressed in this thesis. Chapter 3 presents ETPsem and techniques to
increase the effectiveness of time-aware instrumentation (time-aware instrumentation con-
tributions 1-3). Chapter 4 presents INSTEP, a static time-aware instrumentation frame-
work (time-aware instrumentation contribution 4). Chapter 5 presents the stage-level WCL
analysis (CMPs for real-time systems contribution 1). Chapter 6 presents the offset-based
WCRT analyses (CMPs for real-time systems contribution 2). Chapter 7 discusses the
buffer space requirements and buffer space allocation in priority-aware routers (CMPs for
real-time systems contributions 3 and 4). Chapter 8 discusses the proposed PSA for real-
time systems on priority-aware networks (CMPs for real-time systems contributions 5).
Chapter 9 concludes this thesis.



Chapter 2

Overview

In this chapter, we discuss the related work on the research topics addressed in this thesis.
First, we overview related work on information extraction techniques. Next, we overview
related work on the different aspects of deploying real-time applications on CMPs.

2.1 Information Extraction

We mentioned in Chapter 1 that information extraction techniques include tracing, sam-
pling, and emulation. We review the related work on these topics in this section as well as
related work on multi-objective compilation.

2.1.1 Instrumentation

A program can be instrumented at the source code level either automatically or manu-
ally. In automatic instrumentation, a tool parses the program, may generate a control-flow
graph (CFG), and eventually insert instrumentation points. An example of automatic
instrumentation tools is the GNU compiler collection (GCC) profiling and code coverage
instrumentation tool. On the other hand, in manual instrumentation, developers are in
control, walk through the source code, and insert instrumentation statements whenever
they see fit. Traditional debugging is a typical use case for manual instrumentation. As-
sume that the developer has received a bug report including a test case that causes the
bug. Typical behavior is that the developer tries to identify the origin of the bug by man-
ually inserting printf () statements at key points and rerunning the test case [69, ].
By inserting more printf () statements and removing unnecessary ones, the developers
test different bug hypotheses until they find the right one and can proceed with fixing
the bug. Obviously, manual instrumentation, while being the most flexible, has the worst
characteristics with respect to interference, because developers cannot estimate changes
in the WCET [152] or memory consumption for modern computer architectures. This
makes it also hard to find timing-related software defects using this method, because the
instrumentation might temporarily clobber the defect.



Some instrumentation tools are capable of inserting instrumentation points to binary
executables. This can happen either statically or dynamically during program execution.
QPT is a program profiler and tracing system that measures the execution frequency of
basic blocks and control flow [75]. EEL also provides similar functionalities for analysis and
modification of executables for while abstracting details of instruction sets and executable
file formats [74]. ATOM is another framework for building customized program analysis
tools [134]. Binary static instrumentation tools also include Etch [119] the program perfor-
mance evaluation and optimization system, and Morph [156] which re-optimizes programs
to apply profile-based and other platform specific optimizations. Multiple tools exist that
support dynamic binary instrumentation. Dynamic binary instrumentation tools that use
code transformation during program execution include Dyninst [21], Kerninst [141], De-
tours [52], and Vulcan [30]. Most of these instrumentation tools, however, suffer from trans-
parency issues, i.e., they modify native behavior of the program under analysis [20]. Exam-
ples of transparent dynamic binary instrumentation tools that have software code caches
and dynamically compile binaries include Pin [35], DynamoRIO [19], and Valgrind [103].
Other examples of dynamic binary instrumentation also include DTrace, SystemTAP, Frysk
and GDB. These tools overwrite code locations with trap instructions to execute instru-
mentation code, then after the interrupt handling and instrumentation code execution, the
original instructions are restored and executed.

Some instrumentation tools are more oriented towards the analysis of parallel programs.
Mellor-Crummey et al. propose a software instruction counter [92] to help debug parallel
programs using the integrated approach to parallel program debugging and performance
analysis on large-scale shared-memory multiprocessors introduced by Fowler et al. [11].
Thane [113] and Dodd et al. [32] present integrated approaches for monitoring and de-
bugging of real-time systems. Kim et al. uses formal requirements for the monitoring and
checking of Java programs at run time [70]. Moore et al. [96] and Omre [107] introduce hard-
ware trace debuggers. Some other examples of hardware trace debuggers include the JTAG
and NEXUS trace debugging interfaces. Cargill et al. use dedicated hardware counters to
support the debugging and profiling of compiled programs [23]. There also exists work on
replay mechanisms in hardware tracing. Replay mechanisms record sufficient information
during program execution that later on helps the developer deterministically recreate an
equivalent execution. A lot of research has been conducted on hardware supported replay
mechanisms for non-deterministic applications [121, , , , 7, 50, , 95]. Some
work also exists on tracing interrupts during program execution [137, 45]. Although such
approaches naturally provide low interference, they can still have a significant impact on
performance [97] and behavior and thus warrant research on characterizing interference
levels and possible bounds.

All these instrumentation methods are known to affect the behavior of the program
including its temporal behavior which is sometimes not acceptable in real-time embedded
systems. Partial instrumentation, as a means of ensuring timeliness, can be used to build
inductive debugging mechanisms for deployed resource and space constrained systems.
Since it is hard to reproduce bugs from user bug reports [15], even having a partial trace
can help extract information. Partial traces help extract information and can be input to
additional debugging tools [123, 114].



Fischmeister and Lam [39] introduce time-aware instrumentation which honors the
programs timing constraints, especially the worst-case behavior. The idea was mainly to
instrument programs at code locations that leaves the WCET of the program unmodified.
The proposed tool instruments programs, optimizing for code space and instrumentation
coverage, while meeting time constraints.

2.1.2 Sampling

The goal of execution monitoring is to record an execution trace of the program under test.
The external monitor observes the execution of the program and needs to log the program’s
execution path. In sampling-based tracing, the external monitor periodically examines the
state of the program and stores it. It is clear that we can obtain more accurate traces
through increasing the sampling frequency at the price of sampling overhead.

Liblit et al. present a sampling infrastructure with low overhead that collects sam-
ples from numerous runtime executions [31]. These samples are used for bug isolation in
subsequent program executions. Liblit et al. also present a random sampling technique
for statistical multiple bug isolation in complex applications [$3]. Zheng et al. propose
an interactive collective voting scheme for program runs to statistically identify multiple
bugs in software [157]. Fischmeister et al. introduce an approach to bound the cost of
monitoring program execution through fixed rate sampling [10]. This approach discusses
optimal tradeoffs between accuracy and overhead. It also provides a framework for the re-
construction of system state and execution paths. Thomas et al. extends the work in [10)]
through investigating the expressiveness and efficiency of different marker schemes [1415].
This work also proposes and discusses the applicability of two new marker schemes. Gprof,
which is part of the GNU binary utilities, uses an operating system virtual timer to sample
the program at regular intervals [16]. It can also produce a call graph through the instru-
mentation of each function entry in the program code. However, the effect of this kind of
instrumentation on program execution cannot be estimated.

Another type of sampling involves the usage of performance counters. These coun-
ters are used to count instructions, cache misses, branch delays, and other similar met-
rics. OProfile is an example of a Linux-based performance analysis tool that uses perfor-
mance counters sampling [31]. Cheung et al. propose Endoscope, a declarative aquisi-
tional software monitoring framework, to monitor the state and performance of program
execution [26]. Jiang et al. introduce metric-correlation models for bug detection in soft-
ware systems and fault localization [58]. Ball et al. present algorithms that optimize the
placement of profiling code according to the estimated and measured frequency of each
basic block execution in a CFG [9]. Hutchins et al. [53] and Frankl et al. [12] propose
branch-based monitoring techniques using definitive-use associations (DUAs). DUA is the
association between variable definition (value stored in memory) and variable use (value
fetched from memory) which are used for control-flow and data-flow coverage. Santelices
et al. present a method to efficiently monitor DUAs based on branch monitoring, and to
accurately predict some DUAs from branch coverage information [122].
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2.1.3 Emulation

An emulated system can be totally controlled and analyzed during its execution. This
increase in flexibility comes at the expense of performance (slower real-time execution).
Examples of emulation systems are Unisim [0] and Qemu [I1] which emulate different
processor architectures. Another example is the Valgrind emulation system [103] which
is used for program instrumentation, validation, and performance analysis. Valgrind is
a framework for creating dynamic analysis tools for memory debugging, memory leak
detection, and cache profiling. Valgrind has tools for the detection of memory and thread
bugs, profiling of cache and branch prediction, heap profiling, and overrun detection in
heaps, stacks, or arrays. Phillips also presents work on using an emulator with traces [113].

2.1.4 Multi-Objective Compilation

Naik and Palsberg [9%] present a framework for code-size-aware compilation. They formu-
late register allocation as an Integer linear programming (ILP) problem. The objective is
to minimize target code size under a set of linear constraints. Lee et al. [78] introduce a
framework to balance the tradeoffs between code size, execution time, and energy consump-
tion in a real-time embedded system. It minimizes a system’s cost function while satisfying
the design constraints. They enable a tradeoff between code size and execution time based
on a dual instruction set processor. The framework satisfies the design constraints and
assigns code/WCET pairs to the tasks to minimize the system cost function.

2.2 Chip-Multiprocessors

Buses are the most popular communication architecture between system-on-chip (SoC)
components. Buses are widely used due to their flexibility and easy adoption. On the
other hand, they are power inefficient and lack scalability [76]. Point-to-point connections
offer dedicated communication channels between the SoC components. However, the re-
quired number of wires for the point-to-point scheme makes it unscalable [30]. Another
architecture alternative is SoC interconnect architecture that model multiprocessor sys-
tems. NoC interconnects [30, 13] offer a reusable solution to the limitations of buses and
point-to-point connections. In this section, we overview some aspects of the NoC intercon-
nects.

2.2.1 Architecture and Operation

The NoC topology determines the layout of the network nodes as well as the connections
between the nodes. Mesh [73] and torus [30] interconnects are amongst the most popular
NoC topologies.

The way packets traverse the NoC routers is determined by the switching protocol.
Circuit switching protocols establish dedicated connections between source and destination
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pairs for packet traversal. Packet switching, on the other hand, does not reserve links.
Examples of packet switching protocols include store and forward, virtual cut through,
and wormhole switching. In store and forward [31], a router must buffer a complete packet
before forwarding it to a neighboring router. This increases the transmission latency as well
as buffer requirements. In virtual cut through [33], a packet does not have to be buffered
and can be directly transmitted to another router. However, if the receiving router is busy,
then the complete packet must be buffered. Wormhole switching [105] operates similarly
but reduces the buffering requirement to the flit level of the packet. Virtual channels
(VCs) [31] can be used to provide multiple buffer queues for the same physical channel.
Wormhole switching along with using VCs increases the network utilization by reducing
blockage in the NoC.

Routing algorithms define the paths that packets take in the NoC [31]. In deterministic
routing, the path selection process is deterministic for any source and destination pair. In
adaptive routing, on the other hand, the routes can change dynamically to, for instance,
avoid congestion in the network. While adaptive routing increases the network efficiency, it
adds a communication overhead and has more complicated logic compared to deterministic
routing.

Flow control mechanisms are responsible for controlling the traversal of packets between
the network routers and for the prevention of overflow in buffers. The handshake flow con-
trol involves the exchange of valid and acknowledgement signals between the sender and
the receiver, respectively [155]. While handshaking is simple, it has a high overhead. In
the ACK/NACK flow control scheme, the receiving router will respond with an acknowl-
edgment (ACK) signal if it has enough buffer space to accept the incoming flit, otherwise it
will reply with a negative acknowledgment (NACK) signal [115]. This scheme is combined
with a GO-BACK-N policy in which the sender sends flits continuously without waiting
for ACK signals until it receives a NACK. Upon the occasion of receiving a NACK, the
sender resends the flit for which the NACK was received as well as all the flits that were
sent after it. The ACK/NACK scheme is more efficient than handshaking, but requires
expensive buffering for resending purposes. Credit-based flow control uses credits to avoid
overflowing full buffers [116]. An upstream router has credits equivalent to the available
buffer space at a downstream router. These credits are decremented as the upstream router
sends flits downstream and are incremented as the downstream router frees buffer space.

2.2.2 Real-Time Communication

There are several research efforts that enable real-time communication over CMPs [11,

, , 17]. Bjerregaard and Sparso [17] present a clock-less NoC called message passing
asynchronous NoC (MANGO) for guaranteed services. They use an asynchronous latency
guarantee arbiter, which consists of a set of VCs, and priority selection and arbitration
modules to support real-time communication. MANGO combines wormhole switching with
virtual circuits and provides guaranteed service in terms of bandwidth and latency [17]. The
arbiter used by MANGO ensures that a flit in a virtual channel can block a lower priority
flit only once. This is different from the fixed priority scheme used in this work. Wiklund
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and Liu [151], and Wolkotte et al. [153] use circuit switching that requires establishing a
connection between source and destination before sending data packets.

Millberg et al. [93] and Lu et al.[87] use the TDM approach for communication. TDM
divides the link access into equal time slots such that a communication task can use the
slot time to transfer its own packets. Athereal [11] uses TDM to guarantee WCL bounds
on real-time communication tasks. In each time slot, the router forwards the data from
input to output ports. According to a pre-determined slot table, network adapters inject
packets into the routers. Hence, TDM avoids contention between packets in the network,
and has no need for arbitration and buffering of packets [133]. The WCL depends on the
slot allocation [87], which computes the time for the last flit of a task to reach its destina-
tion. Athereal, like MANGO, combines guaranteed service with best-effort to increase its
resource utilization [118]. Hence, the Athereal router design [14] supports both guaranteed
service and best-effort traffic. Each router contains a slot table to control the switching of
the guaranteed service traffic.

A light version of Athereal, aelite [18], is available. It carries the routing information
inside packets headers, and only supports guaranteed service traffic. This simplifies the
routers by avoiding the use of slot tables. Another version of aelite is called dAElite [1306].
It supports multi-cast routing by using slot tables.

In TDM NoCs, a global notion of time is required for the usage of the slot tables in the
routers. This can be achieved using a fully-synchronous NoC implementation [133]. This,
however, might be practically infeasible due to different operating frequencies on cores as
well as difficulties with clock distribution. Alternative implementations of the NoC are,
hence, needed. In [18], a mesochronous implementation of aelite is presented. This can be
achieved by adding first in first out (FIFO) buffers on the links to compensate for phase
differences between clocks.

Shi and Burns [126, 128] propose the use of priority-based routers with wormhole switch-
ing to support real-time communication. This approach supports multiple priorities, and
their routers ensure that higher priority tasks can preempt lower priority ones.

2.2.3 Timing Analysis

The problem of the WCL computation for inter-process communication in real-time systems
is addressed in [60, , ]. Authors develop an upper bound on the delivery time of
messages. The downsides of these methods are the overhead of the establishment and
tear down of channels between source and destination pairs, as well as under utilization
of the system’s resources. They also store packets at intermediate nodes which leads to
expensive buffer capacity for storing early arriving packets and queuing packets in order
of arrival [60].

The two common approaches used in customizing interconnects for real-time applica-
tions use resource reservation or run-time arbitration. An example of a resource reservation
approach is TDM [93, 44, 87]. This approach statically allocates slots to communication
tasks such that no other task can use that slot other than the assigned one. In the event
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that there is no data to be transmitted in that slot, the slot remains empty; thereby, not
allowing other tasks to use it resulting in under-utilization of communication resources.
For low latency communication, a larger proportion of slots are assigned; thus, causing
low latency communication to be inter-twined with the bandwidth when using TDM. Note
also that TDM does not cleanly support sporadic tasks. This is because sporadic tasks are
triggered by external events and, hence, it is unknown at design time when exactly they
start.

Run-time arbitration, on the other hand, arbitrates access to communication resources
at run-time. Hence, contention is expected, and the WCL analysis accounts for these con-
tentions. One such communication architecture was proposed by Shi and Burns [120, ]
that supports wormhole switching with priority-based arbiters that allow higher priority
communication to preempt lower ones. Moreover, this approach overcomes the tight cou-
pling of latency and bandwidth suffered by TDM and TDM-like approaches, and it allows
for a variety of communication task types with its use of priorities. Shi and Burns also
present a WCL analysis, which we call FLA [126, 128] that determines the WCLs between
communicating tasks. Their analysis includes direct and indirect interferences from other
communications. This analysis is central in determining the schedulability of the commu-
nication tasks. However, FLA assumes a model where the tasks are indivisible units of
communication. As a consequence, FLA does not incorporate the effects of pipelining and
parallel transmission of data in its communication model. This restriction in the model
results in higher upper-bounds on the communication latencies.

There exists other techniques to compute end-to-end worst-case delays on networks.
These include network calculus [151], an extension of network calculus for real-time sys-
tems called real-time network calculus [1411], holistic analysis [116, 89, |, and delay
calculus [55, H0].

Network calculus [151] is a deterministic queuing theory that uses max/min-plus al-
gebra to determine performance bounds on load and service of a network. It is based
on analyzing dataflows (that can be computation or communication) to generate cumula-
tive functions of events entering a node and departing a node. Real-time calculus [1411]
specializes network calculus for real-time embedded systems by characterizing dataflows
as interval bound functions, and incorporating methods to model schedulers [112]. Tra-
ditional worst-case bound methods in network calculus assume blind multiplexing. This
requires that no assumptions are made for the arbitration of multiple tasks traversing a
server. It is known that tighter upper-bounds can be computed by providing insights of the
multiplexing [16]. Real-time calculus enables this with models of its arbitration schedulers.
Furthermore, real-time calculus uses both upper and lower bound curves on arrival and ser-
vice to compute worst-case delays, which contribute to tighter worst-case delays estimates.
However, a difficulty shared by these approaches is that of analyzing tasks with certain
traversal patterns such as those that are in nested and non-nested tandem [16]. A nested
tandem situation is one where the path that communication tasks take are either nested
within the task under analysis or disjoint. This difficulty arises because these approaches
convolve arrival/service curves of each node; hence, the pipelined behavior of the network
is not considered. This results in double-counting of events (repeatedly accounting for
events that have already caused interferences at an earlier node) in the dataflow yielding
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pessimistic worst-case bounds. Our approach differs compared to these in that the analysis
is not as general as network or real-time calculus. This allows us to incorporate details
of the arbitration scheme, and the pipeline behavior of the network. This enables us to
remove events that result in double-counting of interferences does by understanding that
once a task has interfered, then its re-interference does not extend the worst-case latency;
therefore, achieving a tighter WCL.

Holistic analysis [146, 89, 108] introduces a worst-case response time analysis [0, 109]
for transactional task models by considering task offsets. These task offsets are combined
with jitters to characterize the arrival pattern of tasks at each node. The offset represents
the earliest a task can be released, and the jitter represents the worst-case. Using the
offset and jitter of a task arriving on a particular node, holistic analysis computes the
offset and jitter of the task leaving that node. This becomes the arrival pattern for tasks
for the next stage. Holistic analysis iteratively computes these patterns across all nodes
resulting in the end-to-end worst-case latency of a given task. The primary difference
between holistic analysis and the proposed approach is that holistic analysis does not
take into account relationships between different resources. Thus, it does not leverage the
pipelined transmission of data, which the proposed approach does in order to deliver a
tighter upper-bound.

Delay calculus [55, 56, 57] proposes a method to compute end-to-end worst-case delays
experienced by jobs executed over multiple stages. Unlike holistic analysis, delay calculus
incorporates pipelined behavior in its analysis. However, delay calculus requires that the
task executes completely before proceeding to the next stage of the pipeline. In our pro-
posed model, we do not have this restriction. The preemption model is also significantly
different than the one of proposed. A job in delay calculus may be preempted midway
during execution, and resumed later once the higher priority job completes. This is differ-
ent from the model proposed in this work, where a data unit is either preempted before
transmission or is successfully routed to the output port. Hence, a data unit is either
preempted in its entirety or not. We find that out model respects router models where
midway transmissions are usually not preempted. Additionally, delay calculus only par-
tially considers tandem situations. We find that the proposed model can more accurately
model the communication resources such as NoCs that support switching techniques that
operate at the flit-level such as wormhole switching..

2.2.4 Buffer Space Requirements

Since NoC designs usually target specific applications (or application classes), multiple
works investigate customizing NoC designs to optimize performance while limiting cost [12,

|. Some of these works focus on limiting buffer space in NoCs. Hu and Marculescu [51]
propose an algorithm for customizing buffer space in NoC routers at a system-level. Given
a buffer space budget, they assign buffers to input channels to maximize performance. The
proposed work, however, does not consider real-time requirements of tasks and does not
ensure timeliness. Manolache et al. [90] propose a technique for changing the mapping
of data packets to network links and the release timing of packets to reduce buffer sizes
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and ensure timeliness. While the work does not consider wormhole switching (flit-level
preemption) or VC resource allocation, it can be extended to apply to them. The authors
use the WCRT analysis proposed by Palencia and Gonzalez [108] to compute the buffer
space requirements. This WCRT analysis, however, assumes all tasks sharing resources
(including indirectly interfering tasks) to be directly interfering with each other, this pro-
duces higher buffer space upper bounds. A similar result applies to WCL bounds as shown
in [65]. Kumar et al. [72] present a simulation based algorithm for reducing buffer sizes
while considering latency requirements. The authors use simulation to capture the con-
tention between tasks on network resources which does not provide worst-case guarantees
for real-time tasks. Al Faruque and Henkel [/] propose an approach for reducing VC buffers
which also does not provide real-time guarantees.

Goosens et al. [11] propose the Hthereal TDM-based NoC. They provide a full imple-
mentation with buffers for handling best-effort and guaranteed services. Coenen et al. [27]
present an algorithm to find the minimal buffer sizes required to decouple computation
and communication in the TDM NoC using credit-based flow control while maintaining
real-time guarantees to tasks. Similarly, in this thesis, we attempt to bound the buffer
space requirements for priority-aware networks.

2.2.5 Path Selection

Several algorithms exist for path selection in a network. Among these are Shortest Path,
widest shortest path (WSP), and shortest widest path (SWP), which are greedy ap-
proaches [17]. The WSP algorithm selects the shortest path with least interference (most
residual capacity). The SWP selects the shortest amongst all low interference paths.

Another class of algorithms consider other tasks while selecting a path, but are more
computationally expensive. Examples are the minimum interference routing algorithm
(MIRA) [61], light minimum interference routing [38], and profile-based routing [139].
MIRA routes a task such that it does not create much interference with a route that may
be critical to satisfy new tasks. Light minimum interference routing algorithm operates like
MIRA, but with a reduced computation complexity. Profile-based routing uses a traffic
profile of the network to predict requirements for tasks, and solves a multi-commodity
network flow problem. Distributed routing algorithms also exist [129], which are online
algorithms that either require a global state that leads to high communication overhead
and performance degradation, or do not share a global state and compensate with a large
number of control messages and subsequently do not scale.

There is research on path selection for worm-hole switched networks [79, , 59, 99].
Some of these methods attempt to find contention-free paths or minimize total cost, some-
times leading to higher ratios of unschedulability of tasks [99]. Others attempt to minimize
the maximum contention value, which is similar to the techniques used in MIRA [61, 38].
However, all of these approaches consider the path of a task as an indivisible unit; thus,
they require a computationally expensive enumeration of paths for path selection.
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Chapter 3

Increasing the Effectiveness of
Time-Aware Instrumentation

We mentioned in Chapter 1 that time-aware instrumentation of the OLPC case study
revealed that large portions of the program are unavailable for instrumentation, because
instrumenting them could affect the WCET and thus violate existing timing constraints.
This raises the question of how to measure the effectiveness of a time-aware instrumentation
approach, so that we can compare the different time-aware instrumentation approaches.
Therefore, in this chapter, we propose ETPsem as a new metric for time-aware instrumen-
tation.

A central element for time-aware instrumentation is to identify regions in the program
which can be instrumented. We propose an algorithm that identifies instrumentable edges
in a program’s control-flow. An instrumentable edge is one that lends itself for time-aware
instrumentation. Different approaches can use these edges for program instrumentation.
We demonstrate the utility of this algorithm by introducing Branch Block Creation and
CFG Cloning as two such approaches to increase the effectiveness of time-aware instru-
mentation at the expense of code size.

We also propose a slack-based conditional instrumentation technique for debugging
hard real-time programs. This instrumentation technique preserves functional behavior,
and temporal constraints of the original program while allowing the instrumentation of
variables on the WCP. We investigate methods to select instrumentation points so as to
meet certain constraints. We present hardware and software implementations of the slack-
based conditional instrumentation technique.

3.1 Overview of Time-Aware Instrumentation

Time-aware instrumentation aims to instrument a program while minimizing changes to
the timing behavior on the WCP. Since the execution time of the program differs from
one execution path to another, the idea is to instrument programs only in locations that
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have minimal impact on the program’s WCET. In the optimal case, this means adding
zero overhead to the program on the WCP.

The work flow for time-aware instrumentation differs from standard instrumentation
in that it has extra steps to consider timing. Figure 3.1 shows the work flow of our ap-
proach. Initially, we analyze the program’s source code, establish timing information, and
generate its CFG. The instrumentation tool analyzes the program and considers timing
information. The instrumentation tool instruments the program based on a time-aware
instrumentation technique such as the one proposed in previous work [39] or our proposed
slack-based conditional instrumentation. The tool outputs an instrumentation configura-
tion which the framework uses to compute an expected instrumentation coverage for a
given set of variables. After running the tool, the developer checks whether the achieved
expected coverage is acceptable. If the results are satisfactory, the developer will execute
the instrumented program. Otherwise, if the expected coverage is insufficient, then the
developer will have two means by which to attempt increasing the coverage. First, the
developer can use our approaches to transform the program into a program that is more
suitable for instrumentation. Second, the developer can change the debugging budget given
to the instrumentation. This increases the number of instrumentation points. If neither of
these two is successful, then the framework will report that it is unable to instrument and
meet the desired coverage.

Source
analysis

Transformed Propose inst. Expected Collect
configuration | coverage ok traces

Insufficient
coverage

Transform
Program

Cannot
transform

Try to extend
time budget

Could extend
Cannot extend

Cannot satisfy
constraints

Figure 3.1: Work flow for time-aware instrumentation

The instrumentation process uses time differences between execution paths and different
basic blocks to ensure that the instrumented program stays within the original program’s
time limits on the WCP. Sometimes, however, due to processor anomalies, cache behavior,
etc., the timing might change. After each complete instrumentation attempt, the frame-
work will analyze the WCET behavior to check if it exceeds the execution time of the
original WCP plus the debugging budget. If this occurs, the framework will attempt a dif-
ferent instrumentation configuration which reduces the coverage on non-WCPs to satisfy
the timing requirements. This process will be iteratively repeated until the program meets
its timing constraints.
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3.2 Model and Terminology

Developers usually use instrumentation to trace information of interest such as the state
changes of variables. To, for example, trace changes of a variable x, instrumentation must
be applied to all places in the program that modify the variable x and add code to record
its value. Time-aware instrumentation will choose which ones to instrument based on the
timing constraints of the program.

We extend the abstract model of programs presented by Fischmeister and Lam [39].
The abstract model represents the source program as an extended CFG. A basic block
is a portion of source code of the program with one entry point and one exit point. We
augment the definition of a vertex with an associated type as shown in Definition 1. Using
this definition of a vertex, we define the extended CFG as shown in Definition 2. We call
this abstract model a one-state change CFG (OSCCFG).

Definition 1 (Vertex). A vertez is a basic block with at most one assignment to the same
variable. We represent a vertex as a tuple v = (i,t) where i € N is a unique identifier, and
t € {None,IP} is an instrumentation type associated with the vertex.

The unique identifier allows us to distinguish and reference vertices. A vertex with the
None instrumentation type is the default for all vertices. IP indicates that an IP is added
to that vertex. Only one IP can be added to a vertex. Note that a vertex is a basic block
of the program with the additional requirement that each basic block modifies any variable
at most once within it. A traditional CFG contains vertices with multiple state changes
to the same variables via assignments within a vertex. We split such vertices into multiple
vertices with only one state change to the same variable in each vertex, and construct edges
between them.

Definition 2 (One state-change CFG). An OSCCFG is a directed graph G := (V, E, vs, v,)
where V' is the set of vertices, E CV x V 1is the set of edges that represent flow of control,
and vs, v, € V' are unique start and exit vertices, respectively.

A path of an OSCCFG G describes a traversal of the graph as shown in Definition 3.
We denote the set of all paths from v, to v, as P,_,,, and the WCP as the path with the
largest WCET estimate. To extract the sequence of vertices from a path p,_,, we employ
the helper function vertices : py, ., — V. Notice that we superscript domains with ] to
denote a sequence and {} for a set.

Definition 3 (Path). A path p,, ., from source vertex v, to destination vy in an OSCCFG
G is a sequence of vertices (Vs = v1,Va, ..., Up_1,V, = vq) with n € N being the number of
vertices forming the path.

Figure 3.2 shows an example ETP of a program. The WCET of a program is an
upper-bound on the execution time of any path in the program. The difference between
the WCET and the actual execution time of any program instance is commonly called
slack. Note that the actual execution time is a run-time characteristic. The static time
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window, «, is the difference between the program’s WCET and deadline such that a =
Deadline — WCFET. For safety concerns, systems are designed with a a window « that is
sufficient to act as a safety assurance margin. In addition to the differences between lower
execution times and the WCET, instrumentation can also make use of the debugging
time budget available to a program. A program’s debugging time budget [ is usually a
small percentage of the static time window «. The debugging budget [ is a percentage of
the CPU resources dedicated to debugging and must be accounted for in the schedulability
analysis. Therefore, we can utilize the debugging budget for instrumentation in the manner
described in Section 3.1.

Sample
o Execution WCET  Deadline
OC) 1 : 1
> Runtime
o Slack (8
[T
0 Time

Figure 3.2: Example of a program’s execution time variation

The instrumentation process might increase the WCET of a program by an overhead
O. Perturbations in the WCET are acceptable as long as they are less than or equal to
the debugging budget [, specified by the developer. Depending on the extent to which the
system is loaded, the debugging budget may permit programs to absorb small increases
in the WCET, and still ensure that the temporal deadlines are correct. So for single-task
applications without interrupts, we must ensure that the overhead O is below the debugging
budget 3. For instrumenting concurrent applications, we must ensure the schedulability of
the whole workload after adding all overheads to the WCETSs of the instrumented program
functions. The specific way to distribute the available debugging budget among the tasks
is up to the developer. However, a naive way to distribute the budget would be to assign
weights to tasks (for instance following the tasks importance) and distribute the budget
according to these weights.

3.3 ETP Shift-Effectiveness Metric

Related work [39] used a coverage (also named reliability) criterion as a metric for the
quality of instrumentation. The instrumentation coverage of an instrumented program
is the ratio of the amount of information extracted at run time to the desired amount.
So, for example, when the developer wants to trace 100 variable assignments and the
instrumentation only yields 30 assignments, then the instrumentation coverage will be 0.3.

This metric fails to capture the potential for extracting information at an abstract level,
because it only compares concrete solutions. For example, to compare two instrumentation
techniques using instrumentation coverage, this metric measures the values for the different
techniques for a particular execution of the program. Instead, a more useful metric can
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capture the quality of the different techniques over a wide range of inputs and, therefore,
for different program executions. This metric should potentially estimate the shift in the
program’s ETP per unit coverage for each instrumentation technique.

This section presents a new metric for time-aware instrumentation [63]. The metric
complements the previously explored coverage metric. ETPsem captures the potential for
instrumentation and thus defines the optimal bound on time-aware instrumentation for
any function based on its ETP. Figure 3.3a shows such ETPs for a fictive function. Values
on the x-axis show the different execution times of the program and the y-axis shows the
frequency at which the execution time occurs when executing this function.

Time-aware instrumentation bases on the idea of a “right shift” in the ETP during
instrumentation. The ETPs of the OLPC case study demonstrate this right shift in Fig-
ure 1.1. The ETP of the instrumented program exhibits a right shift from the unin-
strumented program’s ETP. The reason is that instrumentation utilizes paths with lower
execution times (compared to the WCET). Instrumenting these paths increases their exe-
cution times and thus shifts the ETP to the right.

ETPsem uses this observation to quantify the theoretic optimum for time-aware in-
strumentation. The insight is that any software-based instrumentation inserts code in the
programs and thus shifts the ETP. For the same coverage, the less the shift in the ETP, the
more effectively the method has used the slack (disregarding any execution time anomalies
that might exist). ETPsem uses time/coverage as its basis with a double integral over
time.

Figure 3.3 illustrates the ETPsem. Figure 3.3a shows the ETPs of the original and
different instrumented programs. Figure 3.3b shows the cumulative distribution function
for Figure 3.3a. The more the shift in the ETP of the instrumented program, the further its
cumulative distribution from that of the uninstrumented program. From a slack utilization
standpoint, an optimal instrumentation is one where all paths in the profile become fully
utilized for instrumentation and thus exhibit the same execution time as the worst-case
path. From a coverage perspective, an instrumentation technique is more effective when
it extracts more information and, thus, has higher coverage. Integrating the cumulative
distribution curves once more and dividing the values by the instrumentation coverage
obtains the effectiveness of the instrumentation. As the effectiveness of the instrumentation
increases, the value of the ETPsem metric decreases because of higher coverage and better
slack utilization (smaller area under the cumulative distribution curves).

The theoretical optimal value on ETPsem is zero (see Section 3.3.1 for details). If
after an instrumentation, ETPsem results in 0, this means that no more instrumentation
is possible. Note that it might be the case that an instrumentation technique can extract
all data of interest without fully utilizing the slack on each path. In that case, ETPsem’s
value will be greater than zero.

ETPsem is a measure of how successful an instrumentation technique is in consuming
slack in the program (between lower execution times of non-WCPs and the WCET) for
the sake of tracing a certain amount of information. In general, the smaller value, the
more efficient the instrumentation technique is as it has better slack utilization per unit
coverage. Note, however, that for the same instrumentation coverage, a higher ETPsem
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value might be viewed as as a more effective instrumentation. For example, assume two
instrumentation methods applied to the same program result in the same coverage but
different ETPsem values. The one with a higher value means less slack utilization, i.e., a
more efficient utilization of time, to extract the same information.
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Figure 3.3: Illustrative example of the ETPsem

3.3.1 Formalized ETPsem

So far, we informally introduced ETPsem. Here, we provide the optimality criterion and
prove that the optimal value is zero.

Frequency

. . : Time

Figure 3.4: Execution time profile to prove Theorem 1

Figure 3.4 shows an ETP which we will use for our proof. We use a piecewise contin-
uous function by first setting the initial value of the function to zero and then creating
a linear increase after time [. As explained before, the more the shift in the ETP after
instrumentation, the better the score on ETPsem must be. In Figure 3.4, € is the critical
element in this setup as it controls how much leeway (or slack) there is left for the right
shift. If € becomes zero, then there will be no more room left for any instrumentation and
ETPsem has achieved its maximum and thus optimal value.

Definition 4 (ETPsem). ETPsem is defined by the function

Y(t) = é//ETP(t) d*t
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where o is the instrumentation coverage and ETP is the execution time profile of the in-
strumented program.

Definition 4 shows the formalized ETPsem metric. Note that ETPsem, Y(¢), is only of
interest at the deadline d. This is because we are interested in the utilization of slack in
the program for instrumentation up to the deadline d.

Theorem 1 (Optimality of ETPsem). Given a program function to be instrumented and
a deadline d, the optimal value for Y(d) is 0.

We demonstrate that Theorem 1 holds by computing ETPsem for an ETP as shown in
Figure 3.4 and argue that as we set € to 0, the resulting value of ETPsem becomes 0. Our
selected ETP is representative for any possible ETP. The following proof is sufficient to
show that for any ETP a lower value of the metric indicates a more effective instrumentation
and that 0 is the theoretical optimum.

Proof. Let Figure 3.4 describe our ETP for a function with a deadline of d with:

0 if t <1,
Le—1 ift>1

ETP(t) = {

ETP(t) is a density function, thus [ ETP(t)dt = 1. Since % = 1, we can substitute f
in ETP(t) with f = 2 and get:

0 ift <,

ETP(t) = { ,

The lead time to the shortest path is irrelevant, because the function is zero and so
does not contribute to the metric as fé [ ETP(t)d*t = 0. Thus, we only consider ¢ > [
and, therefore, can use a shifted x-coordinate x =t — [ as follows:

2
Fla) = = (x)

=
We compute ETPsem as Y (z) = G(z)/0, so we integrate F(x) and receive:
3
G(x) = //F(m)d% = 1/36—2 +c

The length of € controls the shape of the ETP. Given that F(0) = 0 and G(0) = 0, we
substitute x with the limits of the integration 0 and € in GG and receive:

€

= (1/3¢)

0

G(x)
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Obviously, the steeper the increase (and thus the shorter €), the less time remaining for
instrumentation and the closer the results are to optimality. Since:
€

lim G(z)

e—0 0

11_{%1/3620

we show that as less time becomes available for instrumentation, the value of ETPsem
approaches 0.

As e approaches 0, ETP(t) becomes an impulse. Any ETP will become an impulse as
all paths have the same execution time. Therefore, our chosen ETP is representative for
any ETP. O

3.4 Program Transformation

In this section, we investigate program transformation as a means of increasing the effec-
tiveness of time-aware instrumentation [03].

3.4.1 Edge Detection for Program Transformation

In a program’s CFG, uninstrumentable non-WCP edges are ones that lie on non-WCPs and
connect to basic blocks of the WCP. They are uninstrumentable because instrumenting
any of the basic blocks to which they connect changes the WCET of the program. These
uninstrumentable non-WCP edges limit the shift in the ETP and are the basic elements
used by methods that increase the coverage and ETPsem. Figure 3.5a shows a sample CFG
with five basic blocks A, B, C, D and E. Assuming that (A, B,C, D, E) is the WCP, then
the uninstrumentable non-WCP edge set includes (A, C) and (C, E), because these edges,
although being non worst-case edges, they share all their basic blocks with the WCP.

(a) Original OSCCFG (b) Branch Block Creation (c) CFG Cloning

Figure 3.5: Example of program transformation
We propose an algorithm to identify such edges as the basic building block for improving
time-aware instrumentation. Function 1 shows this algorithm. The algorithm takes as

input the OSCCFG G(V, E) and the WCP p,, ,,, of the OSCCFG, and it returns the set of
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edges of interest. The helper function children : v — V' returns the set of direct successor
vertices of a vertex v. The queue operations enqueue and dequeue enqueue an element into
and dequeue an element from a queue, respectively.

This algorithm finds non-WCP edges that have subpaths of the WCP connecting their
head and tail vertices. In Function 1, lines 5-6 iterate through all edges of the directed
OSCCFG G that have both vertices on the WCP p,, ,,. For each edge e, line 7 queues the
direct successors of the head vertex of the edge in the queue @) except for the tail of the
edge e and line 8 marks the vertex as wvisited. Then, line 9 iterates on all vertices in the
queue ). Line 10 dequeues a vertex v from () and lines 11-12 expand the direct successors
of v and mark them as wvisited. Line 13 checks each of the direct successors of v, if the
direct successor is the tail of the edge e, then line 14 will add edge e to set B. Otherwise,
line 17 would enqueue the direct successor in @), if it was not visited before. This algorithm
is polynomial in time with respect to the number of vertices.

Function 1 Edge Identification

Input: OSCCFG G, py, v,

Output: EU
1: Let S be the set of visited vertices
2: Let B < () be the set of edges for creating basic blocks
3: Let Q be an empty queue

4:

5: for e = (vq,vp) € FE do

6:  if vy € py, v, and vy € Py, ., then
T: Q < children(vg) \ vp

8: S < {va}

9: while @ # () do

10: vy <= dequeue(Q)

11: S <= SU{v,}

12: for v € children(v;) do
13: if v = vy then

14: B < BU {e}

15: break while loop
16: else if v ¢ S then
17: enqueue(Q, v)

18: end if

19: end for
20: end while
21:  end if
22: end for

23: return B

3.4.2 Branch Block Creation

Branch Block Creation is a program transformation technique that uses the edge detection
mechanism described in Section 3.4.1. Branch Block Creation creates locations in the

25



program for instrumentation. This increases the number of instrumentable basic blocks in
the program.

Overview

Figure 3.5 illustrates how Branch Block Creation transforms programs to increase the code
locations available for time-aware instrumentation. Figure 3.5a shows a sample OSCCFG
with five basic blocks A, B, C, D, E. Assuming that (A, B,C, D, F) is the WCP, (A, C, E),
(A,C,D,E), and (A, B,C, E) are non-WCPs that cannot be instrumented because they
share all their basic blocks with the WCP. Applying Branch Block Creation modifies the
OSCCFG as shown in Figure 3.5b. We create two new basic blocks F' and G on edges
(A,C) and (C, F) (detected by Function 1), respectively. This creates new non-WCPs
with basic blocks F' and GG that can be used for instrumentation given that the execution
time of these paths stays less than or equal to that of the WCP (A, B,C, D, E).

The Branch Block Creation algorithm may modify the program’s WCP, depending on
the target architecture and compiler. After instrumentation, the end of basic block B
(which used to be a fall-through block) now contains a new unconditional branch instruc-
tion to jump past the code at F. This instruction did not exist in the original program.
Therefore, the creation of basic block F' results in an overhead of one unconditional branch
instruction on the WCP (A, B, C, D, E) (same happens due to GG). Note that the location
of the unconditional branch instruction, whether in the if or the else block, is architecture
specific. If the instruction is in the if block then it will modify the WCP; otherwise it will
not. Note also that even if the compiler adds the instruction to the if block, inverting the
condition will move the instruction to the non-WCP (the instrumentation block) leading to
an unmodified WCP. Therefore, modifying the WCP is avoidable. But since the avoidance
is either architecture specific or requires code modification, this work assumes that the
Branch Block Creation modifies the WCP.

Algorithm

The algorithm for Branch Block Creation iterates on the set of edges obtained as output
from Function 1 and creates basic blocks on these edges. We use these created basic blocks
for instrumentation either by instrumenting every basic block for modified variables or
through the minimization of instrumentation points [39].

Branch Block Creation may add overhead on the WCP and this overhead must stay
below the program’s debugging budget § (assuming that Branch Block Creation adds in-
structions on the WCP). This may lead to an increase in the WCET of the program. Thus,
We want to choose only a subset of the basic blocks to create such that the overhead O is
within the given budget S for instrumentation. Equation 3.1 describes this optimization
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problem:

Max Z b; x (vars; * frequency;)

=1

subject to Z b; * (overhead; * frequency;) < 3
i=1

where b; € {0,1} fori=1,2,...,n. (3.1)

vars; is the number of traced variables at the created basic block i, frequency; is the number
of times the basic block i executes (determined by the WCET analysis tool), and overhead;
is the overhead on the WCP caused by creating the basic block ¢. n is the total number of
created basic blocks from Function 1, and b; is the binary variable.

Solving the problem of finding a subset of the basic blocks to create is non-deterministic
polynomial time (NP)-Complete. We can show this by first polynomially reducing the
binary knapsack problem to this problem, thus proving that its NP-Hard, and then showing
that the problem lies in NP. The knapsack problem has n items as input. The ith item has
a value u; and a weight w;. The solution is a subset of items, with a total value Y w; > U
where U is a target value, that can be placed in the knapsack such that their total weight
> w; < W where W is a maximum weight. In the decision version of our problem, we have
n basic blocks and each basic block 7 has a value u; = vars; frequency; corresponding to the
total number of traced assignments and a weight w; = overhead; * frequency, corresponding
to the overhead it adds. The solution in our case is a subset of the basic blocks with
> u; > U that we can create such that their total overhead > w; < 8. Hence, a polynomial
reduction is straight-forward from that point. We map the items to the basic blocks, the
value of each item to the total number of traced assignments, and the weight of each
item to the overhead of creating a basic block. The maximum weight the knapsack can
carry maps to the maximum overhead that the WCP can tolerate which is 5. Now, to
prove that our problem € NP, we show that it is verifiable in polynomial time. Given
a subset of basic blocks, we can in linear time compute the total overhead ) w;, and in
linear time compute the sum of values ) w;, then in constant time check if > u; > U and
> w; < B. Therefore, our problem is NP-Complete. We solve the problem using binary
integer programming (BIP).

The set of basic blocks to be created on the edges returned from Function 1 is given as
input to this optimization problem. The output is the set of basic blocks to actually create

and use for instrumentation. We use this subset of created basic blocks for instrumentation
to satisty the program’s debugging budget 5.

3.4.3 CFG Cloning

In this section, we propose CFG Cloning as another transformation technique that uses
the edge detection algorithm outlined in Section 3.4.1. CFG Cloning facilitates instrumen-
tation on non-WCPs that share basic blocks with the WCP. CFG Cloning does not add
instructions to the WCP and offers more instrumentation flexibility at the expense of code
size.
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Overview

We illustrate the concept of CFG Cloning using the example OSCCFG in Figure 3.5a.
Again, we assume that (A, B, C, D, E) is the WCP. Although the OSCCFG contains three
other non-WCPs, we cannot instrument them, because they share all their basic blocks
with the WCP.

CFG Cloning duplicates whole subgraphs of the OSCCFG to permit instrumenting
them. Figure 3.5¢c shows the OSCCFG after we do CFG Cloning. First, for the edge
(A, C'), which does not fall on the WCP, we duplicate the basic block C' and its subgraph.
Edge (C, E) as well does not belong to the WCP and so we duplicate basic block E. It is
worth noting that the edge (C, E) has been duplicated before (in the subgraph of C'), and,
therefore, we duplicate it twice, once for each occurrence. We choose to duplicate cloned
occurrences because they represent different execution paths in the program and, hence,
increase the number of locations at which instrumentation can be inserted. Now, each of
the three non-WCPs that used to share basic blocks with the WCP, have their own paths
with some unshared basic blocks.

Algorithm

The algorithm for CFG Cloning iterates on the set of edges obtained as output from Func-
tion 1 and copies the tail basic blocks of these edges along with their subgraphs. The algo-
rithm removes each of these edges and creates new edges from the head basic blocks to the
copied subgraphs. Function 2 implements the algorithm for CFG Cloning. The algorithm
takes as input the OSCCFG G(V, E) and the WCP p,_,,,. The output is a new OSCCFG
G'. The helper functions children, enqueue and dequeue are as defined in Section 3.4.1.
The function copy : v — v’ copies a vertex v. Function original : v — v returns the original
vertex v from which v" was copied. Functions addFEdge: G,e and removeFEdge: G,e add and
remove an edge e to/from a graph G, respectively. Function create : v — G creates new
graph G with a head node v and function addChild : G,v,v" adds v" as a child to vertex v
in graph G.

In Function 2, line 7 iterates through all edges returned from a call to Function 1.
For each edge e, lines 8-9 copy the tail vertex v, of the edge and create a new graph S.
Lines 11-26 then iterate through the children vertices of v, until the algorithm copies the
subgraph of v, to S. After that lines 27-28 remove the edge e and create an edge from v,
the head vertex of e to the head of the new graph S. Finally, the instrumentation algorithm
can instrument the new OSCCFG G’. This algorithm is exponential in time with respect
to the number of vertices in the OSCCFG G.

One drawback of CFG Cloning is the potentially large increase in code size. In general,
this increase is exponential, and Figure 3.5¢ already indicates this. This is because when
a basic block is duplicated all its subgraph is duplicated as well. Moreover, we duplicate
basic blocks as well as any copies of them that are created from the duplication of any
ancestor basic block. Although we limit the CFG Cloning to the scope of functions and
loops, the exponential duplication can still cause problems.
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Function 2 CFG Cloning

Input: OSCCFG G, py, 4,
Output: OSCCFG G’

1: Let B < ) be the set of edges for creating basic blocks
2: Let S < ) be a graph
3: Let @ be an empty queue
4:
5. G' < copy(G)
6: B < Edgeldentification(G’, py, ,)
7: for e = (v,, ) € B do
8: vy < copy(vp)
9: S <« create(vy)
10:  enqueue(Q,v;)
11:  while Q # 0 do
12: V' < dequeue(Q)
13: v < original(v')
14: for ¢ € children(v) do
15: ' < copy(c)
16: if (v,c) € B then
17: B << BU (V)
18: end if
19: if ¢ ¢ S then
20: addChild(S,v', ")
21: enqueue(Q, )
22: else
23: addEdge(S, (v',))
24: end if
25: end for
26: end while
27:  removeEdge(G', e)

28:  addChild(G', v,,v})
29: end for
30: return G’
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Given that there is a certain limit on the increase in code size, we want to choose only
a subset of the basic blocks that the algorithm duplicates while maximizing the amount of
traced information. We model this problem as a non-linear programming (NLP) problem
as shown in Equation 3.2.

n
Max E b; * vars; * frequency;
i=1

subject to Z b; * code; < codepar
i=1
where b; = H bj whereb; € {0,1} fori=1,2,...,n (3.2)

JES;

Here, b; is a binary variable designating a duplicated basic block ¢, S; is the set of duplicated
basic blocks upon which the existence of basic block ¢ depends, vars; is the set of traced
variables at basic block i, frequency; is the number of times basic block ¢ executes, and
code; is the amount of code added by duplicating basic block i. n is the total number
of basic blocks available for duplication. For example, for the OSCCFG in Figure 3.5¢,
we have three possible duplications C’, E’, and E"” (from E”). The code added by C’
equals the total size of basic blocks C, D, E, while the code added by E’, E"” is equal to
the size of basic block E only. The existence of E” would be valid only if C" was chosen
for duplication.

After obtaining the new OSCCFG G’ from the CFG Cloning algorithm, the duplicated
basic blocks are passed as input to the optimization problem in Equation 3.2. The output
is only a subset of all duplicate basic blocks. The set of duplicate blocks that have not
been selected will be removed from the CFG G’ and their subgraphs. The edges that were
removed for creating these vertices will have to be reconstructed. This can easily be done
because the edges are already stored in the set B in Function 1.

3.4.4 Experimentation

We explore the two transformation methods in practice using the SNU real-time benchmark
suite [3]. This benchmark suite contains 17 C programs that implement numeric and digital
signal processing (DSP) algorithms. The benchmarks have on average 117 lines of code
and 34 basic blocks. We extended the benchmarks with a wide range of inputs to generate
reasonable ETPs.

We apply the program transformation techniques to all benchmarks before instrument-
ing them. For the instrumentation of the programs, we use the technique proposed by
Fischmeister et al. [39]. We compare the instrumentation of the transformed benchmarks
against the instrumentation without transformation. Note that the transformation and
instrumentation process is fully automated. We use CIL [101] for static code analysis and
CFG extraction.

All experiments were run on a Keil MCB1700 board running an NXP LPC1768 micro-
controller unit (MCU) which is a 100 MHz ARM Cortex-M3 microcontroller. This 32-bit
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microcontroller has an MPU, 512kB on-chip Flash ROM, 64kB RAM, a nested vectored
interrupt controller, and an eight channel general purpose DMA controller. The board
has a 10/100 Ethernet Port, a USB 2.0 full-speed Device controller, two CAN interfaces,
two serial ports, an SD/MMC card interface, a 5-position Joystick and push-button, an
amplifier and speaker, up to 70 general purpose input-output pins, a 20-pin JTAG, a 10-pin
Cortex debug connector, and a 20-pin Cortex debug and ETM trace connector.

Trace data from each benchmark was logged in a buffer and sent off-chip to a PC
monitor for analysis. Note that a task sends data off chip at the end of a super loop as in a
cyclic executive system. We use RapiTime [2] to analyze the WCET of the programs. We
trace all variable assignments except for function arguments, constants, and loop counters.
We set a debugging budget S for each program that is 2% of its WCET.

The goal of experimentation is to quantitatively assess the transformation techniques
using the following metrics:

e ETPsem: This metric indicates the extent by which an instrumentation method
utilizes time for instrumentation coverage.

e Average instrumentation coverage: Instrumentation coverage shows the effec-
tiveness of an instrumentation method in capturing variable assignments. For each
benchmark, we calculate the coverage for every input and compute the average across
all inputs.

e Instrumentation time: This metric shows the time the tool spends in parsing the
code, instrumentation, optimizing for debugging budget 5, and any retries required.
The instrumentation tool will retry the instrumentation with reduced overhead, if
the WCET overhead after instrumentation exceeds the debugging budget .

e Increase in code size: Every instrumentation point adds extra code to the program.
The less the increase in code size, the more effective the instrumentation approach
is in utilizing code space for instrumentation.

e Number of retries: It shows how often the instrumentation tool reduces the in-
strumentation coverage due to exceeding the debugging budget 5. A small number
of retries is essential for the applicability of the approach.

Results

Figure 3.6 shows the average instrumentation coverage for the different instrumentation
approaches. The error bars show the maximum and minimum coverage over all executions
of each benchmark. For the benchmarks: ffti1k, fibcall, insertsort, jfdctint, and matmul,
none of the instrumentation approaches was able to extract any information. This hap-
pens, because either the program has a single path which is the WCP that cannot be
instrumented, or the program has multiple paths but adding any instrumentation code
modifies the program’s WCP.
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Figure 3.6: Average instrumentation coverage for program transformation

Table 3.1: ETPsem and number of retries

ETPsem Retries
Benchmark || previous | Creation Cloning Previous | Creation | Cloning
adpcm-test 8.719 x 107 | 7.583 x 108 | 7.441 x 108 0 0 4
bs 4.417 x 101 | 4.417 x 10" | 4.417 x 10* 1 1 1
cre 1.725 x 106 | 1.724 x 105 | 8.609 x 10° 1 1 1
fft1 3.325 x 107 | 3.325 x 107 | 3.341 x 10° 0 0 0
fir 8.576 x 100 | 8.241 x 10° | 8.241 x 10° 1 0 0
lms 9.950 x 107 | 1.139 x 107 | 1.139 x 107 0 0 0
ludemp - 19.863 x 10° | 9.863 x 10° 0 0 0
minver 2.105 x 10% | 1.614 x 107 | 1.620 x 107 0 0 0
gsort-exam -] 1.739 x 10% | 1.297 x 102 0 0 2
qurt 2.251 x 10% | 1.513 x 10% | 1.513 x 10? 0 0 0
select 9.324 x 10% | 1.321 x 10% | 1.021 x 10? 0 1 3
sqrt 7.397 x 103 | 2.470 x 103 | 2.470 x 10? 0 0 0

Table 3.1 shows the results for ETPsem and the number of retries for each of the
instrumentation approaches. Table 3.2 shows the results for the instrumentation time and
the increase in code size for each of the instrumentation approaches. We omit the data of
the five benchmarks for which none of the instrumentation approaches was able to extract
any traces. ETPsem is undefined for two benchmarks with previous work which fails to
extract any information from these benchmarks. The instrumentation for all benchmarks is
limited by a 2% debugging budget 3, and if exceeded, the instrumentation tool will repeat
the instrumentation while reducing coverage. The benchmarks gsort-exam and select show
the increase in code size when using CFG Cloning.

Figure 3.7 illustrates the benefit of the proposed instrumentation approaches. The
vertical line represents the WCET plus a 2% debugging budget 5. The figure shows
the uninstrumented ETP of the ¢sort-ezam benchmark. It also shows the shifted ETPs
with four different instrumentation approaches; previous work, Branch Block Creation,
CFG Cloning, and naive instrumentation. The time-aware instrumentation techniques
shift the ETP within the debugging budget 8. Naive instrumentation instruments for vari-
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Table 3.2: The overhead on the WCP and increase in code size

Instrum. Time [mS] Code Size Inc.[bytes]
Benchmark || provious| Creation Cloning || Previous | Creation | Cloning
adpcm-test 167 177 420 8 84 468
bs 30 38 48 16 16 16
cre 32 44 61 20 28 608
fit1 57 69 79 28 44 88
fir 108 91 91 36 48 52
Ims 59 66 70 32 40 44
ludemp 62 67 70 0 20 108
minver 100 104 109 24 144 512
gsort-exam 55 63 104 31 40 1628
qurt 32 41 51 24 32 36
select 69 101 135 20 144 2,000
sqrt 29 33 35 24 32 36

ables of interest without taking timing into account. Although, the instrumented program
achieves full coverage, its ETP fails to obey the timing requirement.
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Figure 3.7: Execution time profiles for gsort-exam

Discussion

In 11 out of 12 instrumentable benchmarks, Branch Block Creation and CFG Cloning al-
ways increase the instrumentation coverage. For the benchmark bs, all instrumentation
methods perform alike. In many cases, both transformation techniques perform equally
well, in terms of coverage, except for select in which CFG Cloning performs better. The
reason is that Branch Block Creation has less basic blocks to instrument on the execu-
tion path, whereas CFG Cloning clones basic blocks along with their subgraphs thus more
instrumentable basic blocks. Hence, using CFG Cloning adds more flexibility to the in-
strumentation process leading to an increase in the instrumentation coverage for some
executions of the programs.
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ETPsem is effective in identifying efficient instrumentation methods. The better the
utilization of slack on non-WCPs for the obtained coverage, we get a smaller value of
ETPsem. For the adpcm-test benchmark, for example, both Branch Block Creation and
CFG Cloning increase the coverage from 0.003 to 0.03 compared to previous work. Accord-
ing to their ETPsem, however, Branch Block Creation and CFG Cloning shift the ETP by
6.3% and 5.4% more than previous work, respectively. In such case, it is up to the developer
to decide whether such a shift in the program’s ETP is acceptable for the corresponding
increase in coverage. In some cases, the coverage obtained by Branch Block Creation and
CFG Cloning are equal but the values obtained from ETPsem are substantially different
such as for benchmark gsort-ezam. The reason is that although both essentially extract the
same amount of information, Branch Block Creation utilizes less slack for instrumentation.
For the fft1 benchmark, although all three instrumentation methods achieve the same cov-
erage, CFG Cloning has a higher ETPsem. This means that CFG Cloning is better at
utilizing the program’s slack to extract the same information. ETPsem is thus useful for
choosing an instrumentation metric over the other if, for example, their coverage match.

The instrumentation time of the benchmarks is acceptable and has a maximum of 420
mS. As a test for scalability, we concatenated all benchmarks into one C file of about 3200
lines of code. The instrumentation time was 653 mS. In most cases, the first instrumenta-
tion attempt was successful in honoring the debugging budget 8. The tool had to adjust
the instrumentation in some cases with a maximum of 4 retries.

Out of 17 benchmarks, 5 are not instrumentable even after transformation. Two
benchmarks are instrumentable only after transformation. Branch Block Creation and
CFG Cloning increase the instrumentation coverage, on average over all benchmarks, com-
pared to previous work by 5.8 and 5.9 times, respectively. CFG Cloning increases the
program code size considerably but gives more flexibility to instrumentation and has a
better utilization of slack in most of the cases. ETPsem is an indicator of the effectiveness
of the instrumentation approaches.

3.5 Slack-based Conditional Instrumentation

Slack-based conditional instrumentation is a mechanism that allows developers to instru-
ment programs on the WCP [08]. As such it permits them to extract information from the
program at run time, even if the current execution flow includes some blocks of the WCP.

The assumptions underlying the idea of slack-based conditional instrumentation are
that (1) timing constraints imposed on applications are typically conservative and (2) the
WCP, even when executed, rarely uses the WCET [152]. We conclude from the first
assumption that there is a static time window « between the WCET and the deadline.
This time window is static because it is independent of the actual execution time at run
time. It is common in safety critical applications, for instance, to keep the CPU utilization
low [102]. From the second assumption, we conclude that there is run-time (dynamic)
slack between the actual execution time and the WCET [150]. Slack-based conditional
instrumentation will use the run-time slack by executing the instrumentation code, if the
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system has sufficient slack available; hence, the term conditional in slack-based conditional
instrumentation.

We present three scenarios for slack-based conditional instrumentation:

e Scenario 1: Basic method. We insert instrumentation points at all variable
assignments that we want to trace.

e Scenario 2: Minimizing the number of instrumentation points. It is crucial
to add as little to the program as necessary regardless whether we add program code,
timing overhead, or memory overhead. This scenario discusses minimizing the overall
number of instrumentation points in the program.

e Scenario 3: Minimizing the number of instrumentation points in the pres-
ence of timing constraints. This scenario builds upon the previous one and is
relevant for real-time applications. Assuming the application has less time budget
than needed to trace all variable assignments, here we investigate adding to the pro-
gram only a subset of the instrumentation points to produce, on average, the maximal
amount of trace information during runs.

For this work, we implement the slack-based conditional instrumentation for all scenar-
ios using both software and hardware solutions.

3.5.1 The Underlying Concepts

In this section, we refer to conditional instrumentation code points, which are conditionally
executed at run-time based on available run-time slack, as conditional instrumentation
points (CPs). We also refer to instrumentation code points used in previous work [39] and
used in Section 3.4, which are always executed at run time, as IPs. We assume that we can
reliably estimate the WCET of instrumentation code points. Hence, there are two types
of instrumentation points that we can insert into a program: CPs and IPs.

We extend the model presented in Section 3.2 to support conditional instrumentation
points. We extend the definition of a vertex to support a third instrumentation type CP
which denotes a conditional instrumentation code point as shown in Definition 5. Only
one instrumentation point, either an IP or a CP, can be added to a vertex.

Definition 5 (Vertex). A vertex is a basic block with at most one assignment to the same
variable. We represent a vertex as a tuple v = (i,t) where i € N is a unique identifier, and
t € {None,IP,CP} is an instrumentation type associated with the verte.

We typically insert IPs at vertices that lie on paths other than the WCP. For instru-
menting vertices on the WCP, we always use CPs. It might occur that after instrumen-
tation, the WCP changes. We discover this through rerunning the WCET analysis after
instrumentation. If the WCP changes, we will convert all instrumented vertices on the new
WCP from IPs to CPs. Although, in this work, we use both IPs and CPs for instrumen-
tation, it is possible to use only CPs to instrument the whole program. Using only CPs
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for instrumentation facilitates instrumenting multiple WCP programs and eliminates the
need for the conversion of IPs to CPs when the WCP changes. It, however, also leads to
higher overhead on paths other than the WCP due to the conditional execution of CPs as
compared to IPs.

CPs check whether there is sufficient slack time available to execute the instrumentation
code, and if there is, then the program will execute the instrumentation code; otherwise,
the program will skip it. We call the portion of code in the CP that checks whether
sufficient slack is available to execute the instrumentation code as the overhead of the CP.
The overhead of a CP is always executed.

Adding CPs on the WCP may lead to an increase in the WCET because of the additional
overhead O. However, WCETSs are typically lower than the application deadline. As
mentioned in Section 3.2, perturbations in the WCETSs are acceptable as long as they are
less than or equal the debugging budget . In practice, when we are instrumenting a
single-task application, we first apply Scenarios 1 or 2. If they lead to an increase in the
WCET beyond the application’s deadline, then we will use Scenario 3 to choose a subset of
the CPs for the available debugging budget 5. For instrumenting concurrent applications,
we must ensure the schedulability of the whole workload as mentioned in Section 3.2.

An Illustrative Example

We illustrate slack-based conditional instrumentation with the example shown in List-
ing 3.1. The program code in Listing 3.1 shows that, after incrementing x, when the value
of variable x is greater than 10, the program will update variables ¢, y, and z. Otherwise,
it will increment the value of variable z. At the end of the code fragment, the program
increments z, updates y, updates z, then increments x. We annotate Listing 3.1 with labels
A, B, C, D, E, and F that identify vertices for its OSCCFG G shown in Figure 3.8.

Listing 3.1: C program without instrumentation

There are two paths in G: p; = (A, B, E, F) and p, = (A,C, D, E, F). Let us assume
that path ps is the WCP in this example, which we show as shaded vertices and we want to
trace all state changes to variables x and y. We compare 3 cases of instrumentation to trace
all state changes of x and y in this example, namely IPs on WCP, CPs on WCP (Scenario 1),
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Figure 3.8: Original program Figure 3.9: All CPs on WCP Figure 3.10: Minimal CPs on WCP

and minimal CPs on WCP (Scenario 2). In order to compare the different instrumentation
cases, consider the following hypothetical setting (used only for illustration). Assume that
each basic block in G has a WCET of 2 time units and run-time execution time of 1.5 time
units. Let the cost of recording and retrieving the current state of the program be 0.8 time
units and recording a single variable to a buffer be 0.08 time units. Let the cost of checking
whether sufficient run-time slack exists be 0.1 time units. For example, to check whether
sufficient run-time slack exists and if so, record a variable x to the buffer, the cost incurred
would be 0.1 + 0.8 + 0.08 = 0.98 time units. Assume that the debugging budget assigned
to the program by the developer is 1 time unit. Hence, in the worst case, the instrumented
program must finish execution by 2 %5+ 1 = 11 time units. Note that instrumentation
points are executed at the end of basic blocks but before any branches are executed. Using
the above mentioned hypothetical setting, the 3 cases are as follows:

e Case I: All IPs on WCP. Since A, C, E and F modify either x or y, we add IPs
to these basic blocks. Using the above setting and upon execution of the program,
this results in an execution time of 7.5+ (0.88) *4 = 11.02 time units, which exceeds
the deadline assigned to the program.

e Case II: All CPs on WCP (Scenario 1). In this case, we add CPs to basic blocks
A, C, F and F, shown in Figure 3.9. Figure 3.9 also shows the buildup of run-time
slack as program executes. The cost of checking for run-time slack is 0.1, and the cost
of recording a single variable (including checking for run-time slack) is 0.98 according
to the hypothetical setting mentioned above. If a basic block annotated with CP has
sufficient run-time slack to execute the instrumentation then the instrumentation
block is executed, hence reducing available run-time slack by 0.98, otherwise the
run-time slack is reduced by 0.1. As seen in Figure 3.9, A and C have insufficient
run-time slack to execute the instrumentation code to record x and y, respectively.
At each of the basic blocks A and C, after the basic block executes, the run-time
slack increases by 0.5 but decreases by 0.1 to check for sufficient run-time slack at the
CP. Basic blocks F and F have sufficient run-time slack to execute instrumentation
code to record y and x, respectively. Each of the CPs at £ and F' consume 0.98 of
the run-time slack to instrument the variable at that CP.
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e Case III: Minimal CPs on WCP (Scenario 2). In this case, we add CPs only at
basic blocks D and F' which record both variables x and y as shown in Figure 3.10.
The cost of recording both x and y at a basic block, including checking for run-time
slack, is 0.8 +0.08 x 2 + 0.1 = 1.06 according to the setting mentioned above. It can
be seen that sufficient run-time slack is available at D and F' to record variables x
and .

One can infer from the above example the following conclusions. The addition of IPs
on the WCP could lead to a violation of the deadline assigned to the application, which
is not desirable in a safety-critical real time setting. With addition of CPs on the WCP,
there is a higher chance of execution of the instrumentation code if placed at a vertex that
is further away from the start vertex (closer to the exit vertex). This is simply due to
the fact that run-time slack builds up as basic blocks are executed during the program
execution. Scenario 2 makes use of this by minimizing CPs and delaying the tracing of
variables (more details in Section 3.5.2). Lastly, with every CP introduced in the program,
there is a mandatory cost of checking whether sufficient run-time slack exists at each CP.
Suppose if the cost of checking for sufficient run-time slack is high enough for the program
to miss its deadline, then one has to selectively insert CPs in the program. We use Scenario
3 as a remedy for the above mentioned problem, to select CPs such that maximum state
changes of variables of interest are recorded (more details in Section 3.5.3).

3.5.2 Minimization of CPs on the WCP

In this section, we describe Scenario 2 which minimizes the number of CPs that capture
all possible state changes of the variables that we want to trace on the WCP. This scenario
maintains a set of modified variables. We delay capturing the state change of this set of
modified variables till just before any of the variables gets overwritten. When we delay
capturing a state change, the program executes more code, which probably leads to gaining
more run-time slack as illustrated in the example discussed in Section 3.5.1. Gaining more
run-time slack will increase the likelihood of the execution of the CPs. We denote the set
traceVars C VARS as the variables we want to trace where VARS is the set of all variables
in the program. Our approach extracts a set of vertices such that each vertex contains at
most one state change of any variable in traceVars. We annotate each of these vertices as
a CP. This ensures that the instrumented program will capture (if run-time slack permits)
all possible state changes for all variables in traceVars.

We illustrate this approach by revisiting the OSCCFG shown in Figure 3.10. Path
pe = (A, C,D,E,F) is the WCP, which we show as shaded vertices. This approach
identifies subpaths (A, C, D) and (E, F') that capture one state change of each of x and y.

We change the instrumentation type of the destination vertices of these paths D and F' to
CP.

We show this algorithm in Function 3. It takes as input the variables that we want
to trace, traceVars, and the WCP between start vertex v, and exit vertex vy, py,.,. The
output is the set of vertices V1 that have to be instrumented. We introduce several helper
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functions in describing this algorithm. To extract the set of variables being assigned new
values in a vertex, we use function modifiedVars(v) : V. — varl’. We use the function
predecessor(v) : V. — V to extract the vertex that has an incident edge on v on the WCP.
We use functions scopeBegin : V. — {true, false} and scopeEnd : V — {true, false} to
identify the beginning and end of scopes, respectively. A scope corresponds to a loop on
the WCP and can be identified by static analysis [117, 80] (also applies to continue and
break statements). Note that if a vertex marks the beginning of multiple scopes, it will
be split into multiple vertices such that each new vertex marks the beginning of only one
scope. Function getScopeVars : V — varll is used to extract the set of variables that are
modified within a scope where the input argument to getScopeVars corresponds to the
beginning of the scope. The stack operations push and pop are used to push an element
and pop an element from a stack, respectively.

The core idea of the algorithm is to delay the recording of a variable change until the
point where at least one of the variables of interest gets overwritten. Function 3 iterates
through the vertices on the WCP p,, ,, in order. While iterating through the vertices, set
M holds the variables of interest that have been modified without any of the variables
being overwritten. Set I holds the set of vertices to be conditionally instrumented along
with the variables to instrument at each vertex. For each vertex v, the algorithm extracts
the set modV ars which is the set of variables of interest that vertex v modifies. First,
the algorithm checks whether vertex v begins a new scope. If vertex v begins a new scope
and this scope modifies any of the variables in set M, then the algorithm will choose to
instrument all variables in M before entering the scope, i.e., at the vertex preceding the
beginning of the scope (excluding the loop’s back-edge). After a new scope starts, the set
M is pushed into a stack S. If a vertex modifies any of the variables in the set M, then the
algorithm will choose to instrument variables in M at the preceding vertex. Afterwards,
set M will be updated with the set of modified variables at vertex v. If a vertex v marks
the end of a scope, then the vertex v will be instrumented with the variables in set M (if
any) and set M will be popped from the stack S to restore the set of modified variables
before the scope started. If the exit vertex is reached and the set M is not empty, then the
exist vertex will be instrumented with the variables in set M. Finally, we iterate through
the set V1 obtained as output from Function 3 and add CPs to these vertices to record the
specific variables associated with each vertex. The complexity of the algorithm is linear in
the number of vertices on the WCP.

3.5.3 Constrained Minimization of CPs

In this section, we augment the approach from Section 3.5.2 to consider a constraint on
the increase in the WCET caused by instrumenting the WCP. We minimize the number
of instrumentation points to capture the maximum number of state changes of variables
in traceVars given a debugging budget f.

We use Function 3 to get a minimal number of CPs required to trace all the state
changes of variables of interest (traceVars). Then, we select a subset of these CPs such
that we trace the maximum number of variables of interest keeping the overhead of the
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Function 3 Minimization of CPs on WCP

Input: traceVars, py, o,
Output: V{1

2:

4:

6:

10:

12:

14:

16:

18:

20:

22:

24:

26:

28:

30:

32:

Let M < () be the set of variables being monitored
Let I < () be the set of instrumented vertices
Let S be an empty stack

for v € vertices(py, v, ) do
modV ars < modi fiedVars(v) NtraceVars

if scopeBegin(v) then
if getScopeVars(v) N M # () then
I «+ I U{(predecessor(v), M)}
M« 0
end if
push(S, M)
end if

if M NmodVars # () then
I «+ I U{(predecessor(v), M)}
M+ 0

end if

M +— M UmodVars

if scopeEnd(v) then
if M # () then
I+ 1TU{v, M}
end if
M + pop(S)
end if
end for

if M # () then
I+ TU{v,, M}
end if

return
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CPs within the budget 3. We can describe the problem of selecting a subset of CPs using
Equation 3.3.

Maxz b; * (varsInCP; * frequency;)

=1

subject to Z b; * (overhead; * frequency;) < 8
i=1

where b; € {0,1} fori=1,2,...,n (3.3)

Here, varsInCP; is the number of variables monitored in the CP i, frequency; is the number
of times CP i is attempted, and overhead; is the overhead of CP i. The total number of
CPs, n, is obtained from Function 3, and b; is the BIP variable. Notice that we do not
include the execution time incurred by the instrumentation code because at run-time we
determine whether we have sufficient run-time slack to execute the instructions monitoring
the variables. Note also that the WCET analysis tool determines frequency;. It is important
to clarify that frequency; is not the number of times the instrumentation code inside CP
1 executes, but rather the frequency of executing the conditional check of the CP, i.e. the
number of times the CP is attempted. Although using the value supplied by the WCET
analysis tool is pessimistic, our goal is to make sure that we honor the program’s timing
constraints.

Solving our problem for finding a subset of CPs to create is NP-Complete. We can
show this by first polynomially reducing the binary knapsack problem to our problem,
thus proving that its NP-Hard, then showing that our problem € NP. The proof is similar
to the one we derived in Section 3.4.2. We solve our problem using BIP. We use standard
BIP tools to solve the optimization problem and instrument the resulting vertices picked
by the BIP solver.

3.5.4 Implementation Approaches

We experimented with two approaches for implementing the instrumentation of a pro-
gram: software-based and hardware-based. The software-based approach makes changes
to the program code using traditional programming constructs, and the hardware-based
approach uses special instruction-set architecture (ISA) extensions to perform the instru-
mentation. Although, the software-based approach is simpler to implement, we consider
both approaches to compare their perturbation costs. We briefly describe these two ap-
proaches.

Software Approach

The software-based approach uses function calls in the program to extract cycle counter
values. Listing 3.2 shows a simple example of a software implementation of CPs. Functions
func_a and func_b have WCETs of wcet, and wcety, respectively. Assume that the WCET
of all instrumentation code at labels B, C, and D is wcet,,, and at labels E and F is wcet,, .
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int main(void){
A: globalTime = getTime () + wcetq;

func_a();
B: if (globalTime — getTime () >= wecetc, ){
C: // Instrumentation Code

D: globalTime —+= wcety;

func_b () ;
E: if (globalTime — getTime () >= wecete, ) {
// Instrumentation Code

L)

Listing 3.2: A software implementation of conditional instrumentation

When the program executes, it sets variable globalTime at label A, to the time at
which function func_a will finish execution in the worst-case. After func_a completes, the
instrumentation code compares globalTime to the current time to check whether there is
sufficient run-time slack to execute the instrumentation code of func_a. The instrumenta-
tion code then updates globalTime at label D to hold the time at which function func_b
finishes in the worst-case. The same check for instrumentation is repeated after func_b.

Note that getTime is not an OS function call but rather an instruction that reads a
dedicated free running hardware timer on the chosen processor. Hardware timers exist
in the processors used for embedded systems and are either memory- or register-mapped
timers.

Hardware Approach

Our hardware-based approach requires extensions to the ISA. We describe these ISA ex-
tensions and their use with a simple example.

Hardware Extensions: We extend a cycle-accurate ARMv5 architecture platform with
a 32-bit count-down timer, and we extend its ISA with two instructions. We introduce
the set timer stt instruction, and a check time chk instruction. Figure 3.11 shows the
stt and chk instruction encodings. The stt instruction has a single 16-bit immediate
operand (timH:timL) while the chk instruction has two 8-bit immediate operands; (slk)
and (raddrL:raddrH). Every clock cycle, the 32-bit timer will decrement its value by one
if it is greater than zero. The stt instruction adds its 16-bit operand, (timH:timL), to the
value already in the timer. The chk instruction compares its first 8-bit operand (slk) to the
value of the timer, and if the first operand value is greater than the timer value then the
processor will branch past the number of instructions specified in the second 8-bit operand
of the instruction, (raddrL:raddrH). Otherwise, the code will execute normally without
branches.

We incorporate the stt and chk instructions into the five-stage pipelined architecture
consisting of Fetch, Decode, Fxecute, Memory and Writeback stages. In the Fetch stage,
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STT <timH:timL>

31 28 27 20 19 8 7 4 3 0

0o0o00Oj01111111 timH 1111] timL

CHK <slk>,<raddrH:raddrL>

31 28 27 20 19 12 11 8 7 4 3 0

0001f01111111 slk raddrH |1 1 1 1] raddrL

Figure 3.11: Instruction encodings of the stt and chk instructions

the processor fetches the instruction at the address in the program counter and increments
the program counter by four. In the Decode stage, the processor decodes the instructions
and reads the value of the 32-bit timer in the case of stt or chk. In the Execute stage of the
stt instruction, the arithmetic logic unit (ALU) adds the value of the 16-bit operand to the
timer value and the processor writes back the result to the timer in the Writeback stage. In
the case of executing the chk instruction, the ALU subtracts the first 8-bit operand from
the timer value in the Ezrecute stage. In the same stage, the branch logic shifts the second
8-bit operand two bits to the left and adds the result to the new program counter value
from the Fetch stage. If the result of the ALU operation is negative, then a multiplexer
(MUX) will set the program counter to the output of the branch logic in the next Fetch
stage, i.e., a branch will occur. Otherwise, the MUX output will set the program counter
to the incremented value of the program counter from the previous Fetch stage.

Functional Operation: Listing 3.3, a rework of Listing 3.2, illustrates the use of stt and
chk instructions in slack-based conditional instrumentation. Functions func_a and func_b
have WCETSs of wcet, and wcet;, cycles, respectively. The instrumentation code, chk and
stt instructions at labels B, C, and D have a WCET of wcet,, cycles. The instruction count
in the instrumentation code at label C is instr.,. The chk instruction and instrumentation
code at labels E and F have a WCET of wcet., cycles. The instruction count in the
instrumentation code at label F is instr,,.

int main(void){

A: asm("stt wcety");
func_a();
B: asm("chk wecete, ,instre; ") ;

C: // Instrumentation Code

D: asm("stt wcetp");

func_b () ;
E: asm("chk wcetc,,instre,");
F: // Instrumentation Code

Listing 3.3: Conditional instrumentation using stt and chk instructions

For one execution of the example shown, functions func_a and func_b will have an
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actual execution time of exec, and exec, cycles, respectively. The stt instruction at label
A sets the timer to wcet, (assuming the timer is initialized to zero at the start of program
execution). The chk instruction at label B compares the timer (wcet, — exec,) to weet,,
which is the time needed to instrument function func_a. If the timer is greater than or
equal to the instrumentation time, the processor will execute the instrumentation code.
Otherwise, the processor will branch forward instr., instructions, past the instrumentation
instructions to function func_b. The next pair of stt and chk instructions operate similarly
for function func_b. Notice that these instructions make use of accumulated run-time
slack. If the run-time slack is insufficient to execute a CP, the timer will carry forward the
run-time slack for use at the next CP.

3.5.5 Experimentation

The time-aware slack-based conditional instrumentation tool is fully implemented and au-
tomated. We use a cycle-accurate ARM simulator as a platform for the implementations.
We choose this platform because we propose ISA extensions for the hardware implemen-
tation. Hence, the Unisim cycle-accurate simulator [6] offered us a convenient platform
to compare both the software and hardware implementations. The software approach,
however, can easily be applied to any other platform. Since we implemented our software
approach for Unisim, we implemented getTime as a single instruction that reads the sim-
ulator’s timestamp. We use the Unisim’s default configurations including the latencies for
register and memory accesses.

Following the time-aware instrumentation flow in Figure 3.1, the tool starts off with the
identification of the basic blocks for the input program and the extraction of its OSCCFG
at the C source code level. The tool then calls a WCET analysis tool to compute the
WCET for each basic block in the OSCCFG. We also use the WCET analysis tool to find
the WCP for the input program. We used RapiTime v2.4 [2] as our WCET analysis tool.
The instrumentation tool then proposes an instrumentation configuration for either the
software or hardware approaches and inserts the instrumentation points in the basic blocks
based on the chosen instrumentation scenario. Finally, the tool compiles the instrumented
program using the Unisim ARMvb5 cross compiler, runs the cycle-level simulation, extracts
the logged trace data from the instrumentation, and quantitatively analyzes the data for
the sake of experimentation. The tool re-analyzes the WCET of the instrumented program.
This may trigger a rerun of the instrumentation process.

We experiment with the SNU real-time benchmark suite [3], which contains 17 C bench-
marks that implement numeric and DSP algorithms. They have 117 lines of code and 34
basic blocks on average. We compare our approaches with the technique proposed by
Fischmeister et al. [39], which we refer to as previous work.

The goals of our experimentation are as follows:

e Show that conditional instrumentation extracts more trace information compared to
previous work.

e Assess the effectiveness of Scenarios 2 and 3 in minimizing the overhead on the WCP.
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e Quantify the overhead added by the instrumentation process in the software and
hardware implementations.

e Investigate the effect of conditional instrumentation and the different implementa-
tions on the ETP of the input program.

To experiment with Scenarios 1 and 2, we run the SNU benchmark with its provided
input for the software and hardware implementations. To illustrate the effect of conditional
instrumentation on the execution time, we generate an ETP for one benchmark with all
permutations of its input data. For Scenario 3, we use one benchmark and instrument
it for every possible debugging budget until we achieve maximum coverage. We trace
all variables except function arguments, constants, and loop counters by logging them to
dedicated memory buffers.

Metrics

We quantitatively assess our approach using the following metrics:

¢ Ratio of executed vs attempted instrumentation points on the execution
path: A program with loops and/or multiple function calls may attempt to execute
the same CP several times. A program executes a CP based on the presence of
enough run-time slack for its execution. The total ratio of executed to attempted in-
strumentation points (both IPs and CPs) measures how successful an instrumentation
approach is in inserting instrumentation code that a program eventually executes.

e Instrumentation coverage on the execution path: Instrumentation coverage
along a path shows the ratio of variable assignments that are traced after running
an instrumented program to those that a developer desires to trace. Therefore, it is
the probability that instrumentation on a path captures variable assignments before
their re-assignment and, hence, loss of information.

e Inserted overhead on the WCP in cycles: In the worst-case scenario, an in-
strumented program executes its WCP such that there is insufficient run-time slack
to execute any CPs on that path. However, there is an increase in the program’s
WCET because CPs add overhead to the WCP. This includes any inserted overhead
due to conditional checks or dynamic slack computation.

e Increase in code size: Every instrumentation point adds extra code to the orig-
inal source code. The less the total increase in code size, the more effective the
instrumentation approach is in utilizing code space for instrumentation.

Results for Scenarios 1 and 2

We compare software and hardware implementations of Scenarios 1 and 2 against previous
work.
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Figure 3.12 shows the ratio of executed to attempted instrumentation points over the
execution path of the benchmarks. For some benchmarks, previous work shows no value
in the figure for one of the following reasons: (1) the executed path never hits an IP which
leaves the ratio undefined, (2) the benchmark has only a single path, which is the WCP,
and thus it has no IPs, or (3) the benchmark has multiple paths, but IPs were removed
because the instrumented path became the new WCP.
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B Scenario 1 Software
@ Scenario 2 Software
@ Scenario 1 Hardware
O Scenario 2 Hardware
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fftl fftlk fibcall fir  insertsort jfdctint Ims ludcmp matmul minver  gsort qurt select sqrt

Benchmark

Figure 3.12: Executed vs attempted instrumentation points for Scenarios 1 and 2

The results show the benefits of conditional instrumentation. For previous work, a
benchmark always executes attempted IPs; thus, the ratio when available is always 1.0.
Previous work is only able to instrument six benchmarks. This is shown in Figure 3.12
where only benchmarks: cre, fft1, fir, Ims, qurt, and select have values using the previous
work’s approach. Conditional instrumentation, even using the software solution, is able to
trace all benchmarks but one (fibcall). While the ratio varies and it is up to the developer
to decide whether the ratio is acceptable, conditional instrumentation at least provides the
ability to trace.

For some benchmarks, all methods have the same ratio, but for others (bs, insertsort
and jfdctint) the hardware implementation outperforms the software. For the fibcall bench-
mark, none of the methods executes any of the instrumentation code. This means that
there is insufficient run-time slack at all CPs.

We also compare the instrumentation coverage for the software implementation of Sce-
nario 1 against previous work in Table 3.3. This table shows the mean value, the 95%
confidence interval (CI), and the standard error of mean (SEM). Even with conservative
estimates, the software implementation is at least one order of magnitude better than
previous work.

Table 3.3: Instrumentation coverage for the software implementation of Scenario 1

Instrumentation ‘ Mean ‘ 95% CI ‘ SEM
0.026 |  0.040 | 0.019

Previous Work

Scenario 1 - Software | 0.569 0.220 | 0.104

Figure 3.13 presents the instrumentation coverage comparison. The hardware imple-
mentation clearly increases the instrumentation coverage compared to software. Notice
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that for the hardware implementation, Scenario 2 has higher coverage compared to Sce-
nario 1. However, the jfdctint benchmark violates this rule. This result shows that merging
instrumentation points does not necessarily lead to a higher instrumentation coverage. The
reason is that although the run-time slack might be sufficient to execute a small instru-
mentation code, it might be insufficient to execute larger instrumentation code where the
smaller one is merged. This also explains why for the sqrt benchmark, using the software
implementation, Scenario 1 has higher coverage than Scenario 2.
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Figure 3.13: Instrumentation coverage for Scenarios 1 and 2

Table 3.4 presents the cost, in terms of the execution overhead on the WCP in cycles,
O, and the increase in code size in bytes, of logging variable assignments for each of the
instrumentation approaches. The values of the overhead and code size increase for the
software approach are relatively high as compared to the WCET and the code size of the
original programs. Although previous work leaves the WCET of the WCP unchanged and
has minimal increase in code size, it also has least coverage of the proposed approaches.
One value shows an overhead of -90 which means that the WCET of the program decreased
after instrumentation which may happen due to variations in cache hits/misses and branch
predictions [152].

We compare the increase in code size of our approaches to the software implementation
of Scenario 1. The increase in code size of Scenario 2 software, Scenario 1 hardware and
Scenario 2 hardware have values of 92.4%, 31.9% and 29.7% on average. In the worst-case,
the hardware methods minimize the increase in code size 2.3 times as compared to the
software methods.

Moreover, the hardware implementation decreases the overhead on the WCP. On av-
erage, compared to the overhead on the WCP of Scenario 1 software, Scenario 2 software,
Scenario 1 hardware and Scenario 2 hardware have values of 89.4%, 21.0% and 22.7%, re-
spectively. The minimization of instrumentation points does not always lead to a decrease
in the overhead on the WCP. The reason is that adding code to the original program does
not always lead to a higher execution time due to the variation in cache hits/misses and
branch predictions. Thus, adding less instrumentation points does not always mean less
overhead on the WCP.

Interpretation of Results: Slack-based conditional instrumentation instruments 16
benchmarks versus only six for previous work. The hardware implementation highly out-
performs the software implementation and is able to gain an average of 41.5% coverage for
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Table 3.4: Overhead on the WCP and the increase in code size for Scenarios 1 and 2

Previous Software Hardware

Benchmark Work Scenario 1 Scenario 2 Scenario 1 Scenario 2

Code O Code 0] Code o Code o Code 0]

[Byte] | [Cycle] || [Byte] | [Cycle] || [Byte]| [Cycle] || [Byte]| [Cycle] || [Byte] | [Cycle]
adpcm-test 0 0| 5,956 (9,150,736 || 5,376 | 7,037,912 | 2,064 |817,030 || 1,968 | 638,385
bs 0 0 540 369 540 368 172 87 172 97
cre 20 0 992 85,363 796 82,334 288 | 26,915 224 | 26,699
fit1 40 0 1,556 4,963 || 1,488 5,702 504 71 480 -90
fit1k 0 0 1,004 1,598,363 944 | 809,057 316 | 101,491 300 | 58,187
fibcall 0 0 344 936 344 949 112 152 112 151
fir 76 0| 2,208 67,581 || 2,048 49,607 708 | 20,298 680 | 19,588
insertsort 0 0 244 1,558 244 1,558 72 401 72 401
jidctint 0 0f 1,352 3,816 || 1,352 3,821 580 1,643 580 1,611
Ims 76 0f 2,336 | 716,426 2,156 | 587,927 776 | 163,416 728 | 114,402
ludemp 20 0f 1,136 6,570 || 1,068 6,628 348 1,530 324 1,561
matmul 0 0 236 5,415 236 5,415 64 1,634 64 1,634
minver 84 0f 1,912 5,223 || 1,724 4,569 624 1,425 568 1,324
gsort-exam 0 0 636 1,240 576 1,119 192 364 176 357
qurt 48 0f 1,320 2,338 || 1,088 2,163 428 1,590 372 1,283
select 52 0 688 1,807 628 1,474 216 496 200 426
sqrt 48 0 704 2,833 572 2,683 216 1,049 172 1,187

three benchmarks that the software implementation fails to extract any data from. The
hardware implementation decreases the overhead on the WCP compared to software by
21.0% and it also decreases the increase in code size by 31.9%. In some cases, the mini-
mization of CPs sometimes leads to a lower instrumentation coverage due to insufficient
run-time slack to execute higher execution time CPs. Minimization of CPs sometimes also
leads to higher overhead on the WCP which is due to timing anomalies [152].

Execution Time Profiles

To demonstrate the variation in the execution times with and without instrumentation,
we present the ETPs for the insertsort benchmark, which implements the insertion sort
algorithm. To generate the ETPs, we do the following: (1) use an input array of 6 ele-
ments and generate benchmarks for all possible permutations of the input elements, (2)
compile and simulate these generated benchmarks, (3) analyze the execution time of each
benchmark, and (4) repeat steps 1,2 and 3 for the software and hardware-based methods.

Figure 3.14 plots the different ETPs of the insertsort benchmark. The software in-
strumentation stretches the original ETP. The reason is the change of the instrumentation
overhead as the input changes. The number of attempted CPs is least for the best-case
execution times (minimum loop iterations) and, thus, the instrumentation overhead is min-
imal. As the execution time increases, i.e., more CPs are attempted, the overhead increases
causing the stretching of the ETP. This is not the same for the hardware instrumentation
ETP because the overhead of the software instrumentation is comparable to the execution
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time of the instrumentation code itself unlike hardware instrumentation. The hardware
instrumentation pushes the graph to the right and condenses it, i.e., the variance decreases.
The overall effect of instrumentation on the original ETP is decreasing the density of the
lower execution times and increasing the density of the higher execution times.
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Figure 3.14: Execution time profiles for the insertsort benchmark

Interpretation of Results: The hardware implementation of conditional instrumen-
tation results in the desired effect of condensing the ETP of a program. On the other
hand, software implementation stretches the graph due to the high overhead of checking
for run-time slack at the CPs.

Results for Scenario 3

To experiment with the software and hardware implementations of the time constrained
minimization instrumentation scenario, we present results for the minver program which
performs a 3x3 matrix inversion. Notice that to see the effect of Scenario 3 in choosing CPs,
we need to generate versions of the program each with a different time budget. In practice,
the time budget available for instrumentation of a task depends on the the application
and the underlying hardware. To collect results, we (1) calculate the overhead and the
number of traced variables at each CP, (2) measure the frequency of execution of each CP,
(3) increment the debugging budget § by one cycle (starting by 0), (4) run the algorithm
given in Section 3.5.3 to instrument the program, (5) compile and cycle-level simulate the
program, and (6) repeat steps 3, 4, and 5 until we reach the maximum instrumentation
coverage.

Figure 3.15a shows the instrumentation coverage of the minver benchmark as the de-
bugging budget/ increases. We observe that the instrumentation coverage increases as [
increases as expected. This is because more CPs can be inserted in the code. Notice that
increasing [ after all CPs are inserted, increases the coverage because it adds more initial
slack to the program and thus the program executes more CPs. It is apparent from the
figure that at some points increasing 3 leads to less coverage. The reason is that increasing
£ might lead to inserting a CP instead of a few others because the former traces more
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variables. Typically, this should lead to higher coverage, however, it also means that the
inserted CP needs more execution time and there might be insufficient run-time slack for
its execution.

Figures 3.15b and 3.15c present the variation in the increase in code size and overhead
on the WCP as f increases, respectively. Generally, code size and overhead increase as
[ increases but clearly there are large variations as the figures show. The reason for the
sudden drops is that at a certain point increasing the budget leads to the replacement of
many CPs by only one, because the latter traces more variables as compared to all the
former combined, thus leading to a decrease in the added code size or added overhead.
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Figure 3.15: Constrained minimization of CPs for the matrix inversion algorithm

Interpretation of Results: As expected, the instrumentation coverage, WCET over-
head, and code size increase as the time budget for instrumentation increases. Sudden
drops in code size and overhead happen when the instrumentation algorithm replaces a
number of CPs with a smaller number of CPs, which maximizes our objective function and
also leads to less code and less overhead. Drops in the coverage are due to the insertion of
CPs that need more slack for execution and eventually fail to execute. This means that we
need a better formalization of the problem in the presence of timing constraints (Scenario
3) to be able to choose optimal CPs.

3.6 Discussion

This section focuses on some high-level issues regarding the applicability of the results and
the proposed techniques.

Usefulness of Partial Instrumentation: In the presentation of this work, the exam-
ples and experimentation focus on tracing data variables. Similarly, time-aware instru-
mentation can trace control flow and function calls. Since our main target is to ensure
timeliness of the instrumented software, it imposes a constraint on the instrumentation
process. This constraint interferes with achieving a fully instrumented software. Hence,
a developer will sometimes want to partially sacrifice some of the logged information for
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the sake of timeliness of a real-time system. A full instrumentation, however, can still be
constructed from the union of multiple partial instrumentation instances. This might not
be convenient in some cases, but, however, allows timely execution of the partially instru-
mented versions of the software versus a full instrumentation. Apart from constructing a
full instrumentation, the extracted partial instrumentation are still useful. They can be
used to build inductive debugging mechanisms for deployed resource and space constrained
systems. Since it is hard to reproduce bugs from user bug reports, even having a partial

trace can help extract information [15]. Partial traces can also be an input to additional
debugging tools [123, |. In [I14], the authors use partial traces in a portable trace-
oriented debugger. In [123], the authors demonstrate the ability to build highly accurate

calling context trees.

Instrumentation of multiple WCPs: Our analysis ignores the exceedingly rare case
of multiple WCPs existing in a program. This case did not appear in any of the bench-
marks used for experimentation. However, addressing multiple WCPs is an easy task. For
program transformation techniques, our instrumentation tool would simply avoid instru-
menting any WCP. The algorithm for finding instrumentable edges will then take multiple
WCPs as an input. As for conditional instrumentation, We mentioned earlier that if the
WCP changes after instrumentation, then the tool will convert the IPs on the new WCP
to CPs. The tool can simply extend this concept to directly instrument multiple WCPs
with CPs. If the target is the minimization of the number of CPs under a time budget
constraint, then the tool will apply the minimization to all WCPs.

WCET analysis tools: Our analysis uses RapiTime [2] to obtain the WCET of basic
blocks. RapiTime is a measurement-based WCET analysis tool and thus might underesti-
mate the actual WCET. WCET, however, is only an input to our instrumentation tool and
thus the validity of the proposed concept is independent of the accuracy of the analysis
tool. The choice of RapiTime for WCET analysis was due to the availability of the tool
in our labs, past experience using it, and independence of the architecture on which the
software executes. It is also the de facto industrial standard applied in fields like aerospace
and automotives. We can obviously replace RapiTime with a static analysis tool such as
aiT [37] to obtain WCETS, but this is also known to be costly for modern architectures.

Rerunning the WCET analysis: The time-aware instrumentation techniques can
modify the block layout of the program especially CFG Cloning. Modifying the layout
can change memory and cache profiles, which in turn may change the WCET or even the
WCP of the program. We discover such changes through rerunning the WCET analy-
sis. This is also required to ensure that the new WCET, after inserting instrumentation
points, is still below the deadline. If changes happen and the debugging budget 5 dis-
allows the change, the framework will attempt a different transformation configuration.
For program transformation techniques, the framework will reduce the number of cloned
or inserted blocks, for instance. For conditional instrumentation, the framework will re-
duce the number of inserted CPs. Note that since the analysis uses a measurement-based
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WCET analysis tool, it will only consider instrumentation code in a CP if run-time slack
is available to execute it at run time. For static analysis tools, we remove parts that will
be conditionally executed at run time, or else the tool will consider them part of a new
WCP. In general, the number of instrumentation retries is usually low [62].

Extensibility to other optimization criteria: In Sections 3.4.2, 3.4.3, and 3.5.3, our
algorithms only focus on optimizing for the debugging budget S or for code size. The value
of inserting or cloning basic blocks, and of inserting CPs is determined by the number of
traced variables and the frequency of attempting to trace these variables. Other criteria
can be considered such as the usefulness of the traced variables from a tracing perspective
that allows for making more optimal decisions.

Software vs hardware implementations of conditional instrumentation: The
experiments show that the hardware implementation adds less code and execution time
overhead to the original code compared to the software implementation. The reason is
that software conditions and incrementing the global timer translate to several assembly
instructions as opposed to single instructions that we propose in hardware. Although
changing the architecture will modify the experimentation results due to ISA changes, the
proposed concepts remain valid.

Limitations of the proposed approaches: In the experimentation, we focused on
tracing scalar variables. It is possible to extract other information such as array elements,
function calls, or branches. However, there can be other constraints on the instrumen-
tation process besides the temporal constraints such as the size of the information to be
extracted, memory available for buffering information, and the bandwidth available for
sending information off-chip. For the proposed approaches, however, we only consider
the timing constraints. Other constraints present research opportunities such as periodic
partial emptying of instrumentation buffers to maximize instrumentation coverage under
memory constraints.

We assume the availability of WCET analysis tools to obtain the WCET of programs
as well as that of instrumentation code [152, 25, 22]. We also assume that we can obtain
the WCP of a program as a sequence of vertices from the start to the exit vertex [32]
(context-sensitive WCET analyzers are not used). Our tool reruns the WCET analysis for
the instrumented program to ensure timeliness after changes to cache behavior due to the
insertion of instrumentation points. While analyzing cache behavior is possible [19], our
tool does not model or analyze cache behavior and, hence, the need to rerun the WCET
analysis. The number of retries of the instrumentation process is usually low [62].

Conditional instrumentation is based on the inherent assumption that the overhead of a
CP is less than the WCET of the instrumentation code inside the CP. Otherwise, replacing
the CP with an IP would have less overhead. Usually, the instrumentation code involves
reading variables from memory and either writing these variables to memory buffers or
sending them off-chip. Hence, CPs usually have less overhead than their instrumentation
code. Otherwise, our tool can be modified to replace a CP with an IP in that case.

D2



3.7 Summary

Instrumentation for information extraction supports understanding specific aspects and
behavior of the software at run time. Time-aware instrumentation tries to preserve logical
correctness and timing constraints during instrumentation.

In this chapter, we introduce ETPsem as a new metric for measuring the performance
of time-aware instrumentation techniques. We also present two program transformation
approaches that can be used to increase the effectiveness of time-aware instrumentation.
On average, these transformation approaches increase the instrumentation coverage by at
least five times compared to direct instrumentation of the original programs. While the
two approaches are straightforward, they and the new metric lay the foundation for future
work for more complicated approaches as well as for instrumentation mechanisms going
beyond timing and logical correctness.

In this chapter, we also investigate a slack-based conditional instrumentation mech-
anism that obeys timing constraints but can also extract information on the WCP. We
compared hardware and software-based implementations in detail and proposed solutions
to two problems of how to efficiently use slack-based conditional instrumentation. We also
reported on non-intuitive results such as minimizing the number of instrumentation points
may have negative side effects. Overall, however, conditional instrumentation improves
over previous work on time-aware instrumentation by an order of magnitude in instrumen-
tation coverage and several orders of magnitude in the number of executed instrumentation
points at the expense of code size.
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Chapter 4

INSTEP: A Static Time-Aware
Instrumentation Framework

Software systems are rich in extra-functional (or non-functional [132; 85]) requirements
such as timing, code sizes, communication bandwidth, power consumption, and memory
consumption. Current instrumentation techniques are unfit for such systems, because these
techniques ignore such extra-functional properties. Consequently, using a current instru-
mentation framework for such systems can introduce side effects that produce unintended
behavior. For instance, embedded software run on micro-controllers that might have lim-
ited on-chip memory. Instrumenting such software programs might lead to exceeding the
memory limit. Another example is time-sensitive programs in the field of real-time em-
bedded systems. Instrumentation of a real-time program might cause it to exceed its time
budget or deadline.

Changing the location of the instrumentation code in a program can have an effect on
the extra-functional properties. Consider, for instance, the function in Listing 4.1. The
function prints the value of z in the if and else statements, and prints w before returning.
Calling this function 10 million times has an execution time of around 2.29 seconds on
a 2.5GHz dual core platform. The printf() calls can be slightly modified by removing the
calls at labels A and B, and printing both z and w in the call at label C. This reduces the
execution time to around 1.75 seconds. Hence, the proper placement of instrumentation
code can affect the performance and thus can help meet extra-functional properties like
timing. Similar examples for other properties like binary size or communication channel
throughput are straightforward.
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int simple(int x, int y){
int z,w;
if (x% 2= 0){
z = x + 100;

A: printf ("%d\n" ,z);
} else {
z =x % 9;
B: printf ("%d\n" ,z);
W= (z /2 y;
C: printf ("%d\n" ,w);
return w + z;
}

Listing 4.1: Simple C function for illustration

Maintaining an extra-functional property during instrumentation is complicated and
managing multiple properties simultaneously is even more so. Extra-functional properties
can be competing where meeting one property might break another. The instrumentation
framework needs to weigh and trade off such competing properties. As an example, assume
that the instrumentation framework can choose from several variables to instrument and
locations in the source code where to instrument them. It might be the case that instru-
menting, for example, six variables at one location minimizes the instrumentation time.
However, at the same time, the system might have insufficient bandwidth to store and
communicate the six variables at once and thus splitting up the instrumentation would
be favorable. At that point minimizing both execution time and memory bandwidth is
impossible.

We present a static instrumentation framework that gives the developer unprecedented
control over what to instrument and what to preserve [02]. It thereby presents the first
fully-implemented instrumentation mechanism that considers multiple competing extra-
functional properties. INSTEP uses trees to represent instrumentation intents (IIs) and
automata to represent cost models. The work provides insight into pruning the search
space of instrumentation alternatives to find a feasible instrumentation. The experiments
demonstrate the usage of IIs and cost models together with four different constraints and
objectives. We experimented with multiple benchmarks as well as an industrial automotive
module. The experimental results show the accuracy of INSTEP in honoring constraints
and demonstrate its practicality and scalability.

The framework is directly applicable to a variety of use cases, including debugging
and testing. In testing and oracle selection, the number of test inputs required to achieve
a certain level of fault finding can be reduced through selecting an oracle that has a
higher percentage of internal program variables [135]. However, increasing the number of
internal variables used by the oracle, increases perturbation to extra-functional properties
which may lead to violation of some constraints. Therefore, it is essential to choose an
oracle which reduces test cases but at the same time preserves constraints. For security
research, malware detection software uses instrumentation to identify malicious behavior.
Instrumentation, however, introduces abnormal latencies in parts of the code. Malware may
thus use the real-time clock to determine whether it is being monitored, and will stop any
malicious activity as a precautionary measure, if it suspects so [74]. Emerging malware has
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also begun embedding complex evasion techniques to detect monitoring environments as a
means to protect itself from being discovered [21]. For instance, W32/MyDoom [91] and
W32/Ratos [117] adopt self-checking and code execution timing techniques to determine
whether they are under analysis or not. Hence, preserving timing while instrumenting code
for malware detection can increase the efficiency of detecting malicious behavior.

4.1 Extra-Functional Instrumentation Overview

INSTEP is a static instrumentation framework that considers multiple competing extra-
functional properties while instrumenting a program. Developers start by specifying their
instrumentation intents. IIs specify variables of interest, their weights, and logical relations
among them. Section 4.2 explains IIs in more detail. The II specification allows the
framework to extract at run-time the information which is most valuable to the developer.
INSTEP also permits developers to specify cost models for the different extra-functional
properties of interest. A cost model is a weighted automaton that assigns different costs
to actions like variable instrumentation and variable bit-width assignment. This helps
INSTEP to maximize or minimize certain properties and satisfy constraints on others.

Figure 4.1 shows the block diagram for INSTEP. The framework operates in two phases:
(1) the partial program derivation phase and (2) the determinising instrumentation phase.
In the partial program derivation phase, INSTEP transforms the input program into a
partial program based on the IIs. A partial program is one containing non-deterministic
choices which have to be resolved [119].

The partial programs in INSTEP contain possible alternatives of where to execute the
instrumentation. In the determinising instrumentation phase, INSTEP transforms the
non-deterministic partial program into a deterministically instrumented program. This
transformation is based on cost models for competing extra-functional properties together
with any constraints on any property. In this phase, the framework attempts to find a
feasible solution that satisfies all constraints and maximizes the objectives (or minimizes
them based on their semantics).

Separating the framework into two phases fosters modularity and reuse. The use of
partial programs as an intermediate representation shows promise [119] and allows for the
modularity of the design to support extensions like different language processors or differ-
ent back-ends. One possible extension, for example, is generating multiple instrumented
programs that cover all the IIs (in case one is not enough) and at the same time honor
constraints. Another reason is re-using the partial program for instrumentation after, for
example, relaxation of cost models or constraints.

The development of the framework involved solving a set of challenges that are spe-
cific to its two phases of operation. Section 4.2 discusses the partial program derivation
phase. It specifies the instrumentation intent representation and addresses the first chal-
lenge of deriving instrumentation alternatives from the IIs to create a partial program.
Section 4.3 discusses the determinising instrumentation phase. It describes the repre-
sentation of automata-based cost models and gives examples of various extra-functional
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Figure 4.1: Extra-functional instrumentation framework

properties. It also addresses the second and third challenges. The second challenge is
pruning the search space of the partial program. The third challenge is the formulation of
an optimization problem from the cost models, the constraints, and the partial program.
Solving this optimization problem yields a deterministically instrumented program.

4.2 Partial Program Derivation

In this phase, INSTEP uses two inputs: (1) the input program and (2) the instrumenta-
tion intents (IIs). With these, INSTEP extracts the program’s OSCCFG and generates
instrumentation alternatives based on the IIs. This section describes the inputs and the
generation process in detail.

4.2.1 The Input Program

INSTEP uses CIL [101] to extract the input program’s CFG. INSTEP supports data struc-
tures in MISRA C [94] compliant programs (more details in Section 4.5). INSTEP supports
advanced constructs such as nested statements and recursive functions. We use the same
program model as in Section 3.2. We use an OSCCFG such that each basic block contains
at most one assignment to any variable of interest. Thus, if a basic block in the original
CFG contains two assignments for variables mentioned in the IIs, then our model will split
it into two basic blocks.

Listing 4.2 shows a sample input code which is part of the sqrt benchmark from the SNU
benchmark suite [3]. Figure 4.2a shows the CFG for the input program before splitting any
basic blocks. Basic block (B, C, D) contains all three statements B, C, and D. Assuming
that the IIs contain the variables dz, z, val, diff, flag, Figure 4.2b shows the modified CFG
after splitting basic block (B, C, D) into three separate basic blocks B, C, and D. INSTEP
uses this generated OSCCFG for its transformations.
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A: if (!flag){
B: dx = (val—(xx*x))/(2.0%x);
C x = x + dx;
D: diff = val—(x*x);
E: if (fabs(diff) <= min_tol){
F flag = 1;
}
}

Listing 4.2: Sample input code

S

(a) Original CFG (b) Generated OSCCFG

?eeee

Figure 4.2: Input programs

4.2.2 The Instrumentation Intent

The input IIs in INSTEP represent a set of required instrumentations specified by the
developer. An II follows a tree structure specifying variables of interest specific to this
particular II and values representing the importance of these variables. The tree of an II
specifies a logical relation between the variables. For example, consider statement B in
Listing 4.2. If a developer wants to trace variable dz, he might be interested in either vari-
able dx or variables val and x. This intent has the following propositional logic expression:
(dz V (val A x)). As Figure 4.3a shows, the II for this statement consists of two branches
where the AND-ed variables lie on the same branch, and the OR-ed variables lie on differ-
ent branches. The developer assigns the values based on the importance or usefulness of
the variables. The particular II in Figure 4.3a only uses values 1, 0, and 1 for the variables
dx, val, and z, respectively. This encodes that variable val alone is useless without variable
z, and that variables val and z have an equal value to dz. Figure 4.3 shows the IIs for the
statements B, C', D, and F of the input program in Listing 4.2.

A node in an II tree can contain more information than just a variable’s name. For
example, in Figure 4.3b INSTEP requires a separation in the II between variable z on the
left hand side (LHS) of statement C' and variable z on the right hand side (RHS). Line
numbers are also required to identify the locations of the variables.
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Figure 4.3: Instrumentation intents for the input program

IT Specification: An II can originate from different sources. During a debugging session,
the developer will most likely specify the II. A simple tool based on program slicing could
generate IIs from a high-level specification. If variables are equally important, the developer
can leave the II values at their defaults as in Figure 4.3a. Testing tools and tracing tools
can also generate the IIs based on a high-level specification [100]. The results show that
our framework is robust and tolerates inaccuracies in the model.

4.2.3 The Derivation of the Partial Program

After extracting the input program’s OSCCFG and parsing the IIs, INSTEP finds instru-
mentation alternatives for the different variables in the IIs. An instrumentation alternative
is one or more locations in the code where a variable can be instrumented to extract its
desired state before it changes. Normally, an instrumentation alternative is a single basic
block (one location) at which a variable can be instrumented (recall that each basic block
contains at most one assignment to any variable of interest). An alternative, however, can
be multiple basic blocks (more than one location). Consider the example in Figure 4.4
which shows a code snippet and its corresponding OSCCFG. The variables of interest are
z, w, and z. One instrumentation alternative of variable z is at the end of block J (one
location). Another alternative, can be after the if-condition (block K) and before the
branch sink P. So, for instance, blocks L and M (together) can be instrumented to cover
all sub-paths between nodes K and P and provide a valid instrumentation alternative.
Therefore, if an alternative is comprised of multiple basic blocks, this means that all these
blocks have to be instrumented to represent a valid instrumentation of the variable.

The instrumentation engine finds locations in the OSCCFG that permit instrumenta-
tion. The engine coarsely follows the following rules:

1. Variable is on the LHS of a statement: INSTEP inserts instrumentation alter-
natives at the current basic block (containing the statement) and at all the following
blocks until the variable’s value is overwritten.

2. Variable is on the RHS of a statement: INSTEP inserts instrumentation al-
ternatives starting at the block containing the last variable’s assignment prior the
current basic block and until the next block that overwrites the variable’s value.
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Figure 4.4: Example to illustrate instrumentation alternatives

3. Variable is on both sides of the statement: (as in statement C' of Listing 4.2)
INSTEP inserts instrumentation alternatives starting at the block containing the last
variable’s assignment until the block containing the statement of interest (alternatives
for the RHS). It also inserts alternatives starting from the current assignment of the
variable until the variable’s value gets re-assigned (alternatives for the LHS).

Note that these are only the coarse rules used by the engine and that the implementation
contains more detailed rules. The exact locations of the alternatives depend on the type of
the basic blocks, branches in the OSCCFG, etc. Consider a variable var that is assigned in
some basic block B. To fulfill the aforementioned rules, the instrumentation engine should
be able to traverse the OSCCFG upwards (towards the root) and downwards (away from
the root) from B to find instrumentation alternatives for var. Function 4 briefly describes
how the instrumentation engine finds alternatives moving downwards from B. Function 5
outlines how the engine finds alternatives moving upwards from B. Function 5 frequently
calls the Function 6 to instrument the parent(s) of a basic block. To illustrate how the
instrumentation engine operates, we describe the operation of Function 4 along with a few
cases out of around 366 different cases that INSTEP covers.

Functions 4 and 5 take as input: the OSCCFG G, the variable var for which instru-
mentation alternatives are to be found, and the basic block B in which var exists. The
OSCCFG can have blocks of the following types: branch (if or switch statement) which has
more than one child, loop-start, loop-break, return (a return statement), and instruction
(instructions with no branches). The function addAlt adds the start or end of a basic block
as an instrumentation alternative. Recall that an alternative can be multiple basic blocks.
The proposed algorithms may also find alternatives for one of the multiple blocks that form
an alternative. For instance, consider the example in Figure 4.4. If Function 4 is finding
alternatives for variable x at block J, then after storing blocks L and M as one alternative,
it will store N as an alternative for M. Hence, when storing an alternative, function addAlt
keeps track of which block the alternative is for (details are omitted from the algorithm
for clarity). The enqueue operation used in the algorithm, would only enqueue a block if
it was not enqueued before.

Function 4 starts by instrumenting the end of the input block B and enqueuing its child
(an instruction block always has one child). The dequeued block is handled according to
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Function 4 Find Alternatives Downwards

Input: OSCCFG @G, instrumentation variable var, basic block B
Output: instrumentation alternatives

NN NNRFRE P BFPBR B B BB 2 2 2 &

[\
(Va1

26:

N

let @ be an empty queue

call addAlt(end of B)
enqueue B’s child in @
while @ is not empty do

dequeue C from @
if C is a loop-break block or a return block or an ancestor of B then
do nothing
else if C is a loop-start block then
let D be the loop-break block
if the loop does not modify var then
enqueue D’s child in @
end if
else if C is an instruction block and does not modify var then
call addAlt(end of C)
enqueue C’s child in @
else if C is a branch source then
let D be the branch sink
if D exists and wvar is not modified between C' and D then
enqueue D in @
end if
if D does not exist or D is not C’s child then
call addAlt(start of C’s children)
enqueue each of C’s children
end if
end if

27: end while
28: return instrumentation alternatives
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Function 5 Find Alternatives Above

Input: OSCCFG @G, instrumentation variable var, basic block B
Output: instrumentation alternatives

1: let @ be an empty queue

2:

3: call addAlt(start of B)

4: call InstrumentParents(G, var, B, Q)

5: while @ is not empty do

6:  dequeue C from @

7: if C is a loop-start block then

8: do nothing

9: else if C is an instruction block then
10: call addAlt(end of C)

11: if C does not modify var then

12: call InstrumentParents(G, var, C, Q)
13: end if

14:  else if C is a loop-break block then

15: let D be the loop-start block

16: if the loop does not modify var then
17: call InstrumentParents(G, var, D, Q)
18: end if

19:  else if C is a branch source then
20: call InstrumentParents(G, var, C, Q)

21: end if
22: end while
23: return instrumentation alternatives

Function 6 Instrument Parents

Input: OSCCFG @G, instrumentation variable var, basic block C, queue @
1:
2: if C is a branch sink then
3:  let D be the branch source
4 if var is not modified between C' and D then
5: enqueue D in )
6: end if
7: if D is not one of C’s parents then
8 call addAlt(end of C’s parents)
9 enqueue each of C’s parents
10:  end if
11: else if C has one parent then
12:  if C’s parent is a branch source then

13: call addAlt(start of C)
14:  end if

15:  enqueue C’s parent in ()
16: else

17: call addAlt(start of C)
18: end if
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its type. We describe a few cases that explain the operation of Function 4. Consider,
for example, Listing 4.2 and its OSCCFG in Figure 4.2b. If INSTEP is finding instru-
mentation alternatives for variable diff, then the first instrumentation alternative will be
the end of basic block D. Normally, children of an if-block are an alternative as well,
however, in this case, the if-block E has a branch sink GG which is also one of its children.
Instrumenting the child F' alone is not an alternative, because it will leave subpath (E, G)
without instrumentation. Hence, INSTEP bypasses the if-block and chooses its sink G as
an alternative. Note that this will only be possible, if no subpath modifies the variable
diff. Another example is: if INSTEP finds the start of a loop, then INSTEP will continue
finding alternatives following the break of the loop only if the variable is not modified
inside the loop. A third example is: if the algorithm encounters a loop-break (without first
encountering a loop-start), this means that block B is inside a loop. The algorithm, in
that case, will not find alternatives beyond the loop break because information is missed
by instrumenting outside the loop.

Function 5 operates in a manner similar to that of Function 4. It starts by instrumenting
the start of the input block B and calls Function 6 to instrument the parents of B. If, for
example, B is a branch sink, then the corresponding branch source will be enqueued for
instrumentation as an alternative only if var is not modified in any branch between the
source and sink blocks. Another example is: if INSTEP finds the break of a loop, then
INSTEP will continue finding alternatives before the start of the loop only if var is not
modified inside the loop.

4.2.4 The Partial Program

The partial program is an intermediate representation that contains all possible instru-
mentation alternatives. The derivation phase of the framework inserts the instrumentation
alternatives in the input program to generate the partial program. Listing 4.3 shows the
partial program for the input program in Listing 4.2 after INSTEP inserted the instru-
mentation alternatives. Note that the notation in the listing is only for illustration pur-
poses, because an instrumentation alternative must hold more information. For example,
the framework needs to know which alternatives must simultaneously exist if on parallel
branches, for instance. For the statement C, Listing 4.3 uses x.l and z.r to differentiate
between the left and right x variables, respectively. (II;,val), for example, represents a
location where the variable val from I1; can be instrumented.
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(I11,val) ,(II1l,x),(II2,x.x),(II3,val)
A: if(!flag) {
(I11,val) ,(II1l,x),(II2,x.7r),(II3,val)

B: dx = (val—(xx*x))/(2.0%x);
(I11,dx),(I11,val) ,(II1,x),(II2,x.r),(II2,dx),(II3,val)
C: x = x 4+ dx;
(I11,dx),(II1,val),(II2,x.1),(II2,dx) ,(II3,val),(II3,x)
D: diff = val—(xx*x);
(I11,dx),(II1,val),(II2,x.1),(II2,dx),(II3,diff),(II3,val),(II3,x)
E: if (fabs(diff) <= min_tol) {
F: flag = 1;
(I14,flag)
}

G: (II1,dx),(II1,val),(II2,x.1),(II2,dx),(II3,diff),(II3,val),(II3,x),(II4,flag)

Listing 4.3: Partial program

4.3 Determinising the Instrumentation

In this phase, INSTEP processes three inputs: (1) the partial program from the first phase,
(2) constraints on the instrumentation, and (3) cost models for instrumentation methods.
INSTEP uses these three inputs to formulate an optimization problem and attempts to
solve it using local searching [14] to find a feasible solution. A feasible solution is a se-
lection of the instrumentation alternatives that satisfies the constraints, and maximizes or
minimizes other objectives that may exist. This section describes the constraints, the cost
models, the formulation of the optimization problem, and the final output of INSTEP.

4.3.1 Specifying the Constraints

Constraints are restrictions on the instrumented program that might prevent it from achiev-
ing the maximum value of the instrumentation intents or the highest output for any other
objective. Constraints primarily pose limits on some extra-functional properties. For ex-
ample, one constraint may be a limit on the code size of the program after instrumentation.
Another constraint might be a limit on the memory consumption while running an instru-
mented program. Finally, an upper limit of the debugging budget added to the WCET
for the instrumentation [39, 63, 68] is another form of constraint. Enforcing such con-
straints on the instrumentation process requires knowledge of the cost functions. A cost
model specifies the cost for the different aspects of instrumentation. Modern modeling
systems like UML/MARTE and AADL facilitate specifying the different constraints and
cost models by the developer.

4.3.2 Cost Models

In this context, cost models are simply weighted automata that describe costs of actions.
The development of the cost models themselves is out of the scope of this work. Figure 4.5
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shows two cost models for instrumentation points. Figure 4.5a represents a code size cost
model for adding a printf() instrumentation point for integers on an ARM Cortex-M3. The
cost for the first variable is 14 bytes of code and 8 bytes for each extra variable that can be
added in the same printf() statement. The first variable has a cost of 14 because it includes
instructions for a function call which are added once for an instrumentation point of this
type. Figure 4.5b shows a code size cost model for writing the instrumented variable to
a buffer array using GCC on an Intel Core i5-2520M CPU. Each variable would add 32
bytes of code to the program.

(v,32)

(v,8)
(v,14)
OanC

Figure 4.5: Cost models

The values in a cost model depend on many factors. Example factors include the used
hardware, the type of instrumentation (e.g., printf() to the serial port of a chip, saving to
a buffer, sending over TCP/IP), and the type of variable (e.g., integer, double, character).
There might also be an overhead cost for including a library required for instrumentation
(to use the network stack for example). The use of automata provides a general concept
that, for instance, also supports extending INSTEP to consider caches and costs of reading
from cache versus main memory [149]. This work considers cost models for code size of
instrumentation points, timing of instrumentation points, and detection latency. A cost
model for the timing of a printf() instrumentation point may look like that of code size.
Detection latency is the latency between assigning the variable and instrumenting it.

Accuracy of cost models: Cost models are widely used to estimate performance costs
of certain operations such as writing to memory and data transmission [149, [412]. Tt is clear
that adding cost models for all details of the target architecture complicates the analysis
but provides more precise results. We assess the effect of using inaccurate cost models on
the output of INSTEP. This is discussed in more detail in Section 4.4.

4.3.3 The Formulation

INSTEP combines the cost models, the constraints, and the partial program into an op-
timization problem. In its current form, INSTEP supports four main extra-functional
properties: II values, code size, execution time, and detection latency. Each of these can
be used in objectives and constraints. For example, a developer can choose to minimize
code size or set an upper limit as a constraint. It is easy to extend INSTEP to consider
types of variables, different instrumentation types, and other properties such as memory
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consumption and tracing bandwidth (for TCP/IP). The formulation in the examples below
uses printf() to a serial port as the instrumentation type.

Decision Variables

The framework creates a boolean variable for each instrumentation variable in the IIs in-
dicating whether the variable is instrumented or not. It also creates a boolean variable for
each instrumentation alternative to indicate whether the alternative is chosen or not. Vari-
able flag in Listing 4.3, for example, has two instrumentation alternatives so the framework
will create three variables; I1_flag, 11} _flag_F_e, and I1}_flag-G_s denoting the instrumen-
tation of variable flag, instrumenting flag at the end of node F', and instrumenting flag at
the start of node G, respectively. For each variable, the framework creates the following
constraint:
— var+ Z alternatives > 0

This encodes that the variable is instrumented only if one of its alternatives is chosen. For
variable flag, in Listing 4.3, the constraint will be:

— I flag+ I14_flag-F-e + I1}_flag-G_s > 0

11 Values Property

INSTEP will maximize the total value of all IIs or meet a minimum value, if the developer
specifies a constraint. The value of an II is the maximum of the values of all variables in an
IT tree. The value of a variable is the summation of the values on the path leading to the
variable’s node in the II tree from its root. This value of a variable is only realizable if it
is instrumented and all its ancestor variables are instrumented as well. If a variable exists
more than once in a tree, the maximum of these values is taken. For example, considering
I, in Figure 4.3a, its value is equal to:

V1 =max(ll1_dx* 1,111 _val* 0, [11_val* 11 xx (0 + 1))

This shows that instrumenting variable val alone is useless and also reflects that variable
x is useful only if val is instrumented as well.

Code Size Property

For both timing and code size, cost models specify the costs of instrumentation for these
two extra-functional properties. Hence, each instrumentation point that INSTEP inserts
in the code will have a cost that needs to be considered. For example, consider the instru-
mentation point at the start of node A in Listing 4.3. It has four variables available for
instrumentation. To formulate the cost in terms of code size, consider the cost model in
Figure 4.5a. Simply, if any of the variables is instrumented at that point, a cost of 14 bytes
will be incurred and 8 bytes for each extra variable. This can be formulated as follows,
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taking into account that a variable can appear more than once at the same instrumentation
point in a partial program:

code_A_s = (14 — 8) x (111 wal||[I11_x||I12_x.r||I13_val)
+ 8% (11 val||[II13val) + 8« ([11 x|[[12_x.T)

This computes the extra overhead for the first variable of the instrumentation point if
any variable is instrumented. It also incurs the cost of a variable only once if it exists in
multiple IIs. INSTEP formulates a similar cost function for each instrumentation point
with regards to timing.

The framework represents the total code size after instrumentation as the total of (1)
original code size, (2) any overhead for using printf() instrumentation (cost incurred if any
instrumentation point exists), and (3) the cost of all instrumentation points with respect
to code size. The developer can specify minimizing code size as an objective or set a limit
on the total code size that should not be exceeded.

Execution Time Property

As for timing, to respect a given debugging time budget, INSTEP requires knowledge of
the WCET of the program, the WCET of the different basic blocks, function calls, and
the worst-case number of executions of each basic block. This work assumes the presence
of correct but maybe conservative WCET analysis tools. INSTEP extracts function calls
through static analysis, and obtains all other information through the RTBx data logger
and RapiTime [2], the measurement-based WCET analysis tool. The timing of the main
function of the program from start to end, after instrumentation, can be either minimized as
an objective or be constrained with a developer-specified debugging budget. To formulate
the effect of instrumentation on the timing of the code, INSTEP formalizes the cost of
a function as the maximum timing of all paths in the function. This formulation is a
conservative approximation as it ignores cache effects, branch prediction, etc. Taking the
maximum of all paths requires enumerating all paths which is exponential. Therefore,
INSTEP traverses the OSCCFG of a function and instead of enumerating paths, it takes
the maximum of subpaths from a branching source node to its sink. This is a practical
over-approximation and worked well in the experiments.

INSTEP also prunes paths according to the following rules:

e If the subpaths between a branch source and sink, do not have instrumentation points
or function calls, INSTEP will prune the max function to the subpath with the largest
timing.

e If a subset of the subpaths has instrumentation points and /or function calls, INSTEP
will only consider this subset along with the largest timing subpath.

INSTEP can further prune the OSCCFGs (through abstracting them for example), but this
will only be effective for complex timing cost models that include more architecture-related
information.
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The cost of a function is equal to the cost of its basic blocks multiplied by the number
of executions of the blocks and taking the maximum of subpaths in case of branches. The
cost of a block is equal to the WCET of the block, the WCET of any instrumentation
point in the block (from the cost model), and any function calls in the block. The cost of
a function call is simply equal to the formulated cost of the called function. Note that the
cost of calling and returning from a function is already part of the WCET of the basic block
which includes the function call. The cost of the function in Listing 4.2 and Figure 4.2b
would be:

func=(A+t As)«WyxIy+ (B+t.Bs+tB.e)
x WpxIp+ (C+tCe)xWexlo+ (D+t.De)
xWpxIp+ ExWgxIp+ (F+t.Fe)xWpxlIp
+ (G +t.G.s)x Wg * Ig

where t_B_s and t_B_e, for example, are the costs of the instrumentation points at the start
and end of node B, respectively. In practice, the path (E, G), for example, might be worse,
with respect to timing, than the path (E, F,G); however, this is an approximation that
INSTEP uses in its current form. If the WCET of the instrumented program exceeds the
specified debugging budget, INSTEP will find the instrumentation point causing the vio-
lation, remove the instrumentation point and rerun the analysis to ensure that constraints
are met. INSTEP will detect a violation, if after rerunning the WCET analysis, the WCET
of a block exceeds the expected increase according to the cost models. The experiments
show that the violations do not often occur, and if they do, the number of retries is low.
This is because INSTEP can use one WCET analysis report (provides WCET of basic
blocks) to detect multiple violations of the instrumentation process.

Detection Latency Property

The detection latency of a variable is the minimum of the detection latencies of its in-
strumentation alternatives. A function like 1/z can represent this property where x is the
amount of time from the specified variable location until its instrumentation. Since the
instrumentation is at the granularity of the basic blocks, the detection function will only
be defined at possible instrumentation locations (start and end of blocks). A developer’s
goal might be minimizing latency, i.e., maximizing the detection function or specifying a
constraint on the detection latency. Several paths might exist between a statement and the
instrumentation alternative. In such case, the maximum latency of the different subpaths
is chosen. If a variable has ancestors in the II, then the detection latency is the maximum
of its detection latency and latencies of all its ancestors. The detection latency of an II is
the minimum across all its nodes.

4.3.4 The Instrumented Program

After INSTEP formalizes the optimization problem, it uses local search to find a feasible
solution. Local search is used because the problem is highly non-linear with a large number
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of decision variables resulting from the instrumentation alternatives. Such combinatorial
model is out of the scope of current state-of-the-art solvers relying on classical tree-search
techniques [11]. Local search attempts to find candidate solutions by applying local changes
in the search space. The solution would be an assignment to the defined boolean variables
which can be easily used to transform the partial program into an instrumented program.
Local search either returns an infeasible solution, if the constraints can never be satisfied,
a feasible solution, or an optimal solution. A solution is infeasible if, for example, the
specified constraint for code size is below the original code size. If the input constraints
are at least equal to the corresponding values of the input program, i.e., if, for example,
WCET constraint is at least equal to the input program WCET, then local search will
always find a feasible solution.

For our experiments, we used the standard setup for local search and it worked reason-
ably well as Section 4.4 demonstrates. The pseudo-random number generator seed is set
to zero. The simulated annealing level is set to one. The search is parallelized over two
threads. The experimental results show the applicability and practicality of our approach.
Finding the best configuration parameters for local search is out of the scope of this work.

4.4 Experimentation

This section presents experimentation using the fully automated framework INSTEP.

4.4.1 Experimental Setup

There are three sets of experiments:

1. We experiment with the SNU real-time benchmark suite [3]. It contains 17 C bench-
marks that have 117 lines of code on average, and implement numeric and DSP
algorithms.

2. We run an experiment on the web server example [1] for NXP LPC17xx ARM-based
micro-controllers. This program implements a dynamic web server and has a total
of 1,846 lines of C code.

3. We conduct an experiment on an automotive control module. It has 177,298 lines of C
code and 6,297 basic blocks. This number excludes definitions in header files, since the
industrial partner provided only parts of the overall application. Consequently, the
experiments on this program only show the scalability of INSTEP and applicability
to industrial code, without showing the results on the WCET analysis.

The benchmarks were run on a Keil MCB1700 board running an NXP LPC1768 MCU
which is a 100 MHz ARM Cortex-M3 microcontroller. This 32-bit Microcontroller has an
MPU, 512kB on-chip Flash ROM, and 64kB RAM. Section 3.4.4 describes the hardware

and the on-board peripherals in more detail.
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Metrics

We quantitatively evaluate the accuracy and precision of the framework using the following
metrics:

e WCET of the instrumented program: We run a WCET analysis for the instru-
mented program. The WCET should be less than or equal to the input program’s
WCET plus a specified debugging budget 5.

e Code size of the instrumented program: The code size of the instrumented
program should be less than or equal to the constraint set on the program size after
instrumentation.

e Satisfaction of IIs: This metric is a measure of the percentage of satisfied IIs for
each benchmark. This metric is an indicator of how much instrumentation coverage
INSTEP can achieve while obeying all the constraints.

e Number of retries: If the WCET of the instrumented program exceeds the input
program’s WCET plus the debugging budget 8, INSTEP will remove the instrumen-
tation points that cause a higher WCET than expected. Finding these instrumen-
tation points is straightforward. The WCET analysis tool outputs the WCET of
each basic block before and after instrumentation, and basic blocks that now violate
the constraints are immediately visible. INSTEP then reanalyzes the WCET of the
modified program. We report the number of retries required to produce the final
instrumentation.

e INSTEP execution time: The size of the inputs (e.g., number of IIs, code size)
can increase the time that INSTEP needs to generate the instrumented program.
This metric indicates the applicability of INSTEP to large-scale software programs
used in industry.

e Number of instrumentation alternatives in the partial program: As the
code size of the input program increases, it becomes more challenging to derive an
instrumented program honoring the extra-functional properties while maximizing
objectives. A large program offers multiple locations for instrumenting a variable
which also complicates the optimization problem.

e Number of equations and expressions in the optimization problem: This
metric shows the complexity of the optimization problem required to instrument a
large software program.

Extra-Functional Properties

The experimentation considers four extra-functional properties: the II values, code size,
execution time, and detection latency. We use a printf() to the serial port of the micro-
controller for instrumentation. Thus, the code size cost model is the one shown in Fig-
ure 4.5a. The cost for the first variable is 14 bytes of code and 8 bytes for each extra
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variable that can be added in the same printf() statement. Additionally, there is an over-
head cost of 460 bytes for including the library required for instrumentation. A cost model
for the timing of a printf() instrumentation point is similar to that of code size but with
different values. The first variable in a printf() statement costs 4,000 cycles, and each extra
variable in the same printf() statement costs 3,850 cycles as measured on the target plat-
form. Finally, the function 1/z represents the cost model for detection latency. Execution
time and code size properties are considered constraints to the optimization problem. We
limit the debugging budget (constraint) by a 10% increase in the WCET of the input pro-
gram [35]. The code size constraint is arbitrarily chosen to be an additional 554 bytes to
the input program size. 554 bytes are the size of the input library plus five separate printf
statements where each instruments a single variable. The optimization has two objectives:
maximizing II values and minimizing the detection latency.

Choice of IlIs

Each SNU benchmark is run with 1,100 different inputs and has two different sets of IIs: (1)
a maximum of 30 input IIs, and (2) a maximum of four IIs. The IIs were randomly chosen
to avoid any bias in the experimental results. Note that only six out of 15 benchmarks had
enough variables to form 30 IIs. For the rest of the benchmarks and for the first set of the
ITs, the maximum number of IIs available for each benchmark was input to INSTEP. The
web server experiment has 79 Ils as input. This is the maximum number of IIs available
in the web server software. The automotive module experiment has three versions. The
objective of the first version is to instrument all assignments of an arbitrary local variable
in a function, resulting in nine IIs. The second version instruments the five most occurring
global variables in the program, which is equivalent to 54 IIs. Whereas the third version

instruments the five most occurring local variables across all functions represented in 21
IIs.

4.4.2 Experimental Results

The results of the different sets of experiments show that instrumented benchmarks do not
violate any of the constraints. The results also show that INSTEP satisfies more IIs com-
pared to a naive instrumentation. They also demonstrate the scalability and applicability
of INSTEP to industrial software.

Figure 4.6a shows the ratio of the WCET of the instrumented benchmark to that of
the input. Figure 4.6b shows the increase in code size of the instrumented benchmarks.
Benchmarks select and sqrt have a WCET ratio of 1 and no increase in code size for 11
Set 2. This means that INSTEP did not instrument any variables so as not to violate any
of the constraints. The figures show that the increase in both the WCET and code size
are within the specified constraints. Note that benchmarks bs and insertsort are omitted
from the results, because inserting any instrumentation point in any of them would violate
a constraint. Hence, INSTEP left these two benchmarks intact without instrumentation.
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Table 4.1 shows the WCET, the code size, and the lines of code of the benchmarks
before instrumentation. For each set of IIs, the table shows for each benchmark: the
number of IIs satisfied from the input ones, the execution time of INSTEP, the number
of instrumentation alternatives, the number of equations and expressions, the number of
retries. In what follows, we draw conclusions from each of these metrics.
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Figure 4.6: WCET ratio and increase in code size of instrumented benchmarks

INSTEP vs Naive Instrumentation

The code size constraint was set such that it comprises five printf() statements with a single
variable each. This means that a naive instrumentation will most probably satisfy five IIs
at most. Table 4.1 shows that, out of 34 experiments, there were 17 experiments with more
than five IIs. In 14 out of these 17 experiments, INSTEP satisfied more than five IIs with
a maximum of 26 for the automotive module. This indicates the strength of the framework
in finding alternatives and merging them to satisfy the most IIs and honor constraints.
Figure 4.7 also shows the percentages of the input Ils that INSTEP was able to satisfy.
For some benchmarks, the satisfied number of IIs in the second set is less than four, while
being much larger for the first set. This depends on which subset of IIs from the first set
are chosen for the second. It might be the case that the chosen subset of IIs for the second
set, violate constraints. In such case, INSTEP does not satisfy any of the IIs as it is the
case with select and sqrt benchmarks.

Retries

Table 4.1 shows that retries were required in 16 out of 38 experiments. In most of the
cases, one retry was required and at most four retries were needed with an average of 0.85
retries. The number of retries is low due to the ability of INSTEP to find (and remove)
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Figure 4.7: Satisfaction of instrumentation intents

multiple instrumentation points causing a violation to the debugging budget using one
WCET analysis report. The reason is that one WCET analysis report is sufficient to
detect violations in each basic block of the program’s OSCCFG. The low number of retries
shows the practical feasibility and viability of INSTEP even for large programs.

Execution Time

Table 4.1 shows the execution time of INSTEP. The execution time increases as the input
program has a more complicated or larger OSCCFG, more Ils, etc. The execution time has
a reasonable average of 2.64 seconds with a maximum of 32 seconds for instrumenting the
automotive module. The reported time does not include the time required for applying local
search. Figure 4.8 shows the time required by local search to find the best reported feasible
solution within 10 minutes. In 30 out of 38 experiments, local search found the solution
in only one second. All other times in the figure appeared only once with a maximum of
261 seconds. This shows that a satisfactory solution can be found in a reasonable amount
time.
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Figure 4.8: Local search time

Instrumentation Alternatives, Equations, and Expressions

Table 4.1 also shows the instrumentation alternatives, number of equations, and expressions
for each experiment. The number of equations and expressions in the optimization problem
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exceeded 1,300 and 33,000, respectively which shows the complexity of the problem. The
number of alternatives reached 3,041 which indicates the efficiency of the tool in finding
multiple alternatives. It also shows that INSTEP scales and can accommodate this large
number of alternatives within reasonable time limits. INSTEP also handles the large
number of equations and expressions, and local search finds satisfactory solutions that
satisfy a large number of IIs in an acceptable time frame.

Inaccuracy of Cost Models

To test the effect of inaccurate cost models on the output of INSTEP, the experiments
were repeated using modified cost models for time and code size. Two modified versions of
the cost models were used: (1) underestimated models which reduce the cost of transitions
in the original time and code size models by 500 cycles and 2 bytes, respectively, and
(2) overestimated models which increase the cost of transitions by the same values for
both of the original models. Underestimating the cost model can lead to more violations
which increase the number of retries. In 60% of the experiments, the number of retries
did not change, and increased by only one retry in the rest of the cases. Overestimating
the cost model might reduce the number of satisfied IIs. In 80% of the experiments, the
number of satisfied IIs did not change, and decreased by only one otherwise. This shows
that inaccuracies in the cost models can be tolerated by INSTEP which can still output
satisfactory results.

4.5 Discussion

This section discusses some issues regarding the limitations and applicability of INSTEP.

Logical correctness: INSTEP preserves the logical (functional) correctness of a pro-
gram after instrumentation. The only modification that INSTEP makes to a program is
the insertion of instrumentation points. These instrumentation points only read variables
from memory locations and there is no concurrent variable access. For all experiments, the
outputs from the instrumented programs matched those of the uninstrumented programs.

MISRA C compliance: INSTEP supports instrumenting data structures in MISRA
C [91] compliant programs which restricts, for instance, the usage of pointers and unions.
MISRA C also restricts the usage of dynamic memory allocation (malloc()). Extending
INSTEP to consider memory consumption of the software as an extra-functional property
is therefore restricted to static memory allocation.

Concurrency: With the current WCET analysis tools in place, INSTEP only supports
instrumenting foreground /background systems and multi-programming systems with run-
to-completion semantics. Concurrency complicates computing the budgets and testing
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Table 4.1: Experimentation results for INSTEP

weceTr | Code | Lines ||y |y | Run | pqu | Expr- .
Benchmark [cycles] Size of Set | Met Time natives| ations| essions Retries
[bytes] | Code [ms]
Deployed -1974.848 (177,298 || Set 1| 9/9] 9,084 34| 162 3,873 0
Automotive Set 226/54 | 31,152 1,944| 1,349| 12,664 0
Module Set 317/21 12,836 271  304| 5,194 0
[Web Server [ 4.148 x 10°] 10,590 1,846 Set 1[21/79]29,090] 3,041[ 733] 33,788 ] 0
adpem 5.770 x 109 8540 522 [ Set 1[15/30] 1,169 908| 229] 2,745 0
Set 2| 4/4| 296 47 65| 429 0
cre 9.280 x 10°| 1,100 72|/ Set 1| 9/17| 116 61| 120 332 1
Set 2| 1/4 83 25 45 161 1
fft1 3.439 x 10%] 4752 146 ][ Set 1| 8/16| 147 70| 129] 427 0
Set 2| 2/4 97 20 37| 180 2
fit1k 2.106 x 10" 5,256 92/ Set 1[10/25| 270 261| 189 878 1
Set 2| 4/4 82 17 32 132 0
fibcall 3.941 x 10° 608 32][Set 1| 1/5 42 22 37| 103 1
Set 2| 1/4 56 19 30 88 3
fir 2.791 x 107| 6,428 176 || Set 1]10/30| 294 211 236] 840 0
Set 2| 2/4| 103 20 36 165 0
jfdctint 8.104 x 107| 1,440 186/ Set 1| 3/30| 1,132| 1,912 278| 4,030 2
Set 2| 1/4 86 42 36 159 2
Ims 5.293 x 10%| 6,596 158 Set 1| 8/30] 219 156] 171 673 1
Set 2| 2/4| 120 41 50| 258 2
Tudemp 2.686 x 109| 4,084 82/ Set 1| 8/21| 186 100| 183| 576 1
Set 2| 3/4 85 20 45 181 1
matmul 1.528 x 105 1,012 32][Set 1| 2/2 64 6 16 63 0
Set 2| 2/2 52 6 16 63 0
minver 8.573 x 107| 4,936 143 Set 1]12/30| 433 217 233 989 0
Set 2| 1/4| 128 15 32| 207 3
qsort 1.696 x 10° | 1,936 83| Set 1| 8/19] 227 200 131 691 1
Set 2| 2/4 87 32 33 174 1
qurt 1.751 x 106 4,148 95| Set 1[12/30| 1,376 909| 213] 2874 1
Set 2| 4/4 86 28 37 189 0
select 8.618 x 10%| 1,376 72([Set 1| 1/14| 180 104] 104 444 2
Set 2| 0/4| 102 46 43| 229 0
sqrt 4530 x 10° | 4,036 46| Set 1| 2/8 81 42 66 185 0
Set 2| 0/4 73 27 41 138 0
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whether a block will exceed its budget; however, the underlying concepts still apply and
can be extended given the available tools.

Hardware tracing: One limitation on hardware tracing is that some systems do not
support hardware debugging. Hardware tracing also offers traces at a low system level,
e.g., instruction level. This makes software tracing more suited to debugging at a higher
object level, e.g., debugging a task control block. Another aspect is the evolution of the
tracing mechanism along with the software being debugged. If the software is modified or
updated, a software tracing mechanism can be easily maintained along with it, as opposed
to a hardware tracing module or device.

Partial tracing information: In this work, the examples and experiments focus on trac-
ing data variables. Similarly, INSTEP can trace control flow and function calls. INSTEP
focuses on extracting information while preserving the input program’s extra-functional
properties. This definitely limits the amount of information that INSTEP can extract from
the program. INSTEP, however, attempts to maximize the satisfied IIs as the experiments
demonstrate. Note also that partial traces are useful for analyzing and understanding pro-
grams, as well as for optimizations [123, |. Moreover, INSTEP is easily extensible to
generate multiple instrumentations of the same input program to satisfy all IIs (if possible).
This allows extracting more tracing information but from different program runs (which is
a limitation to the debugging process).

4.6 Summary

Current tracing and instrumentation tools only preserve functional correctness of the pro-
gram. Unfortunately, some application domains require tools that not only consider the
functional correctness, but also consider extra-functional properties such as timing. We
propose INSTEP; an instrumentation framework that preserves extra-functional proper-
ties. To generate the instrumented program, INSTEP derives a partial program based
on the developer’s II. Then, it formulates an optimization problem according to the in-
put cost models and constraints, and solves the problem using local search. The design of
INSTEP allows for the re-usability of partial programs and for future extensions. INSTEP,
in its current state, honors four extra-functional properties. We conducted experiments on
benchmarks as well as an industrial automotive module. The experimental results show the
accuracy and precision of the tool in honoring constraints. They also show the practicality
and scalability of INSTEP.
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Chapter 5

Stage-Level Analysis for CMPs

The FLA proposed by Shi and Burns [120, | assumes a communication model where the
tasks are indivisible units of communication. As a consequence, FLA does not incorporate
the effects of pipelining and parallel transmission of data in its communication model. This
restriction in the model results in higher upper-bounds on the communication latencies.

We address this issue by proposing a pipelined communication resource model for an-
alyzing the WCLs for hard real-time systems. This model supports pipelined and parallel
transmission of data over communication resources with fixed priority preemption. We
also present an associated analysis, SLA, that uses the pipelined communication resource
model to produce tight WCL estimates [(4]. The model supports communication tasks
that are either periodic or sporadic. This analysis is suitable for interconnects that use
run-time arbitration such as that proposed by Shi and Burns. In Theorems 2 and 3, we
present SLA under the condition that task deadlines are less than or equal to their corre-
sponding periods. This prevents jobs of the same task from interfering with each other. In
Theorem 4, we analytically and empirically prove the tightness of SLA compared to FLA.
In Theorem 5, we extend the analysis to relax the deadline assumption and obtain a more
generalized WCL analysis.

5.1 Resource Model

The resource model consists of pipelined communication resources that connect the com-
putation resources. The computation tasks execute on the computation resources and
communicate using communication tasks that execute on the communication resources.
Our work focuses on analyzing the worst-case latencies for the communication tasks. The
communication tasks that execute over the communication resources support fixed priority
preemption. A communication task can execute over multiple communication resources or
stages. Figure 5.1a shows a deployment of communication tasks to communication re-
sources. Each node represents a computation resource and each edge represents a commu-
nication resource. Figures 5.1b and 5.1c show the resource model for communication tasks
T¢ and 7o, respectively. The communication task 7¢, used for the communication from the
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computation task running on node V; to computation task running on node V7, executes on
five stages. The communication stages are pipelined and have the following characteristics:

1. A path for the communication between two computation tasks is a sequence of one
or more stages. A communication task accesses the stages of its path in an orderly
fashion.

2. Data is transmitted on stages in parallel, i.e., when data moves from an earlier
to a later stage, new data can be transmitted on the earlier stage in parallel. In
Figure 5.1b, after a data unit is transmitted on stage sg 1, it will move to stage sg 2
and a new data unit can be transmitted on stage s .

3. If a data unit of a communication task 7; is transmitted at time ¢ on one stage s;;_1,
then it will be ready for transmission at time ¢+ R, , on the next stage s;; (where R,
is a delay associated with accessing a new stage). This data unit will be transmitted
on the next stage at time ¢ + R, , unless it is preempted by a higher priority data
unit.

A\

4

T6

»

»

G,N

V3 jﬁi V4 56,3 V5 56,4 Ve 56,5 V7 E56,1|SG,2|56,3|SS,4|56,5E
2,2
82,;/ B 5 > T > (b) Model for task 74
V2
/I Esz,1|sz,2 @
(a) Deployment of communication tasks to resources (¢) Model for task 7

Figure 5.1: Motivating example

If multiple data units are ready for transmission on a stage, then the higher priority one
will be transmitted on the stage. Figure 5.1a shows that tasks 73 and 75 share the same
second stage sg2 = S20. If a data unit from 7 and another from 7, attempt to transmit on
S (Or s92) at time ¢, the higher priority data unit will be transmitted on sg2. The lower
priority data unit will only transmit when there are no higher priority data units pending
transmission.

Since communication tasks support fixed priority preemption, then a higher priority
task can preempt the execution of a lower priority task on any stage. Hence, in the proposed
model, buffers are required at the computation resources and between the communication
resources. We assume in this chapter that there is enough buffer space to store data.
However, we can use the stage-level analysis to also derive an upper-bound on the buffer
space requirements as we show in Chapter 7. Note that since tasks support fixed priority
preemption, lower priority tasks might starve for communication resources. The analysis
presented in this chapter finds the WCL for each communication task; hence, it can detect
if starvation may occur.
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5.2 Communication Task Model

We present the definitions, terminology and the model necessary for describing the stage-
level analysis. In our analysis, we assume the assignment of distinct priorities to com-
munication tasks. We assume that a set of communication tasks I' is deployed on the
communication resources. We also assume that communication tasks have fixed paths
that are determined offline.

Definition 6 (Communication task set). The set of communication tasks I' = {1; :
Vi € [1,n]} has n communication tasks, where a communication task 7; is a 5-tuple
<R~,7},Di,JlR,Li>. This describes a communication task T; with priority P;, period T;
between successive job transmissions, real-time deadline D;, release jitter JE, and the basic

stage latency L.

A communication task transmits data from a source computation resource to a desti-
nation. A communication task is schedulable if its WCL R; is less than or equal to the
deadline D;. The release jitter JF is the worst-case delay in a job’s release time. Commu-
nication tasks can be periodic tasks with a period 7T; or sporadic tasks with a minimum
interarrival time T; between jobs. The basic stage latency, L;, is the WCL of a job of the
task on one stage when it does not suffer interferences from any other tasks on that stage.

The path that the communication task 7; traverses is a sequence of stages denoting
multiple communication resources that it crosses to reach from the source computation
resource to the destination.

bl

Definition 7 (Path). A path 6; for communication task ; is a sequence of stages (s; 1, - . .
Si.16:])-

Definition 8 (Subpath). A subpath o;(s;;) for communication task T; is a sequence of
stages

(Sins--.,Si1) such that 0;(s;;) has the same first stage sy as path §;, and | < |0;| with s,
being the last stage of the subpath.

We use |0;| to denote the number of stages in path §;. The basic latency of a commu-
nication task 7; along its path 9; is its execution time on all stages along its path without
suffering any interference. The term Ry, , is the delay experienced by a data unit as it
moves from stage s;;—1 to stage s;;. Since the stages are pipelined and tasks experience a
delay R,,, when moving from one stage to another, we can compute the basic latency of
a communication task as C; = L; + Zz:z...\ 5| R, ,. Note that a higher priority data unit,
moving from one stage to another, can be blocked by a lower priority data unit that has
already started transmission. This blocking time (at each stage) is at most the latency
of transmitting one data unit. This time is constant at each stage. For clarity, we drop
the blocking time from our analysis and derivations given that it is a constant that can be
added to the WCLs presented in this work.

We use the notation s € 9; to denote that a stage s exists on the path §;. We also use
0; N 6; to denote the set of stages that exist on both paths §; and §;. For s,s" € §;, we use
tick (s’) to denote a stage that precedes another stage s in the path §;.
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We present an illustrative example in Figure 5.1a to familiarize the reader with the
terminology. Figure 5.1a maps six communication tasks to communication resources: [' =
{71, T2, T3, T4, T5, 76} with the priorities P, > P, > P; > Py > P5; > P;. Edges between
nodes represent communication resources. Note that the choice of our paths in Figure 5.1a
are selected solely to illustrate and explain the stage-level analysis. Table 5.1 presents
the basic stage latency, the period (or minimum interarrival time), the deadline, and the
jitter for each of the tasks in Figure 5.1a. For simplicity, the tasks have zero jitter and the
task deadlines are equal to their periods. Henceforth, we use the term “task” to refer to a
communication task.

Table 5.1: Data for communication tasks in Figure 5.1a

Task

1
T2
73
T4
Ts
T6

T | D

O NN NN N |
o 00 0O 0O OO
o 00 0O O O

OO OO OO |~

20 | 50

We use Figure 5.2 to show the transmission of one job of 74 on each of the stages in
the path ¢ for the example configuration in Figure 5.1a. We assume a per stage delay
Rs,, = 1. For example, since 75 has a higher priority than 7g, jobs of 75 will preempt the
job of 7. White spaces on stage (v4, v5) represent gaps caused by interfering tasks on the
predecessor stage (vs,vs4). These tasks no longer interfere with 74 on stage (vy,vs), but
the data units of 74 remain separated by the gaps shown due to interferences on previous
stages. Note that in our derivation of an upper bound for the latency, we assume that
these gaps are part of the latency of task 74 as we show in more detail in the following
sections.

0123456 7 8 9 1011121314151617 1819 2021 22 23 24 25 26 2728 29 30 31 32 33 34 35 36 37 38 39 4041 42 43 44

sq=(vs,v6) _i 1 !

85:(’05,’[}7)

Figure 5.2: Timeline of task 74 in Figure 5.1a

5.3 Direct Interference

Direct interference occurs when a higher priority task 7; preempts a lower priority task 7;
on a shared stage. We formalize direct interference at the stage-level in Definition 9, and

80



the set of tasks resulting in direct interferences on a stage in Definition 10.

Definition 9 (Direct interference). A task 7; suffers direct interference from task 7; on a
stage s if and only if s € 6, N, and P; < P;.

Definition 10 (Direct interference set). The set of tasks directly interfering with task ;
on a stage s is SP = {r; | Vr; €T, s € 6; N §; and P, < P;}.

From Figure 5.1a, we observe that 74 has direct interference on its second stage sgo =

(vs,v4) from tasks 75 and 75 such that S 2 = {m, 75}

(v3,v4

5.4 Worst-Case Latency with Direct Interference

We derive the WCL for the special case of D; < (T; — JF). This case prevents interference
of a job of a task under analysis with other jobs of the same task. This is commonly
referred to as self-blocking. Later, we relax this restriction.

We define the worst-case contribution of a higher priority task to the latency of a task
under analysis in Lemma 1. We then derive the WCL for the first stage on the path of the
task under analysis in Lemma 2, followed by deriving the WCL for any arbitrary stage on
the path in Lemma 4. Finally, we derive the WCL for the task under analysis along its
path in Theorem 2.

Figure 5.3a shows a sample activation pattern for the jobs of a higher priority task 7;
directly interfering with a task under analysis 7;. The time instant ¢, represents the release
of the job under analysis of task 7;.

T t t

N N 0 0
= e S |y Sy
I K
(a) Example pattern (b) Modified pattern

Figure 5.3: Activation pattern of task 7;

Lemma 1. The worst-case contribution from a higher priority task 7; to the latency of
a job under analysis of task 7, on a stage s € 0; is achieved when the following rules are
applied:

1. Jobs of 7j that are activated before ty and have enough jitter to be released at ty are
released at tg.

2. Jobs of 1; that are activated after ty are released immediately with no jitter.

3. The release of one of the jobs of T; coincides with toy after experiencing mazimum
Jitter.
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Proof. These three rules lead to a larger WCL for the job under analysis. The first rule is
concerned with jobs of 7; that are activated before ¢y, but can be released at or after t,. If
these jobs are released before ¢, they will either not interfere with the job under analysis or
will cause less interference compared to being released at ty. Also if these jobs are released
after tg, they might not contribute to the WCL of the job under analysis. Hence, releasing
the jobs at t; leads to maximum interference.

The second rule states that jobs activated after t; should be immediately released. Since
these jobs are activated after ¢y, then they might interfere with the job under analysis. The
earlier the jobs are released, the higher the chance they will cause interference. Hence, the
immediate release of these jobs contributes most to the WCL of the job under analysis.

The third rule states that the contribution of 7; to the latency of the job under analysis
is worst when the release of one of its jobs coincides with t; after suffering maximum jitter.
Consider, for instance, the activation pattern in Figure 5.3a. Assume (without loss of
generality), that according to the first two rules, only one job of 7; has enough jitter to be
released at ¢ (first job to the left of ¢y) and two jobs activated after t, contribute to the
latency of the job under analysis (first two jobs to the right of ¢y). Moving the activations
of the jobs of 7; earlier in time (as shown in Figure 5.3b) until the first job (released at
tp) has maximum jitter while still being released at ¢y, contributes most to the latency of
the job under analysis. The reason is that by moving activations earlier in time, jobs of 7;
that were activated after ¢y (the last job to the right) and could not interfere with the job
under analysis might be able to cause interference. O]

Lemma 2. The WCL R; of a task 7; suffering direct interferences from other tasks in SP

on the first stage s = s;1 € §; under the condition D; < (T;— JF), is given by the following:

s

where

Ii:

gD
V7 E%i

T;

R+ Jf
LN

Proof. Given D; < (T;—JF), then a job under analysis of task 7; does not suffer interference
from other jobs of the same task. Assume R; is the upper bound on the WCL of a job

under analysis of task 7;. Consider a higher priority task 7; € SP that directly interferes
S

with task 7;. From Lemma 1, the interval of time during which 7; can interfere with the job
under analysis is the WCL of the job plus the maximum release jitter of 75, i.e., R; + JJR.

The maximum number of jobs of task 7; that interfere with 7; in that interval of time
lji-&-JjR

T

is thus equal to The latency contribution of 7; to the WCL of 7; is equal to
the maximum number of interfering jobs multiplied by the basic stage latency of 7;, i.e.,

Rri—JR
[TJ—‘ * L;. Therefore, the WCL of 7; on stage s;; is the summation of the interference
J
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from all higher priority tasks in the set SP plus the basic stage latency of 7;, i.e., I; + L.

This results in a recurrence relation that can be solved iteratively to find R;. O
S

Under the assumption that D; < (T; — JI) and using only direct interference, so far we
have derived the WCL of a task under analysis 7; on the first stage of its path ;. Next,
we derive the WCL of 7; on any arbitrary stage s along its path §;. The terms R; and

I; represent the WCL and the worst-case interference of task 7; on a stage s’ preceding a

S
stage s on the path ¢;, respectively.

Lemma 3. The WCL R; of task ; on stage s is monotonically non-decreasing with respect

to the sequence of stages of the task’s path 6;.

Proof. R; is the worst-case time interval between the first and last data units of the job

of 7; on stage s'. If no new interferences exist on stage s (compared to those on stage s),
then the WCL R; is equal to R;. The reason is that any data unit that was transmitted
s s’

at a time ¢ on stage s’ will attempt transmission at time ¢ + R,, , on stage s with the same
ordering of data units as on s’. Assume a higher priority data unit was transmitted at time
t on stage s’ followed by a data unit of 7; at time ¢ + 1. If the higher priority data unit
does not exist on stage s, then the slot at time ¢ + R;,, will be empty. This will not cause
the 7; data unit to transmit any earlier on stage s as it will attempt transmission at time
t+1+ R,,, leaving a gap at the time ¢ + R;,,. Therefore, the WCL on stage s is greater
than or equal that on stage s, i.e., é%’ > R;. H
S

Lemma 4. The WCL R; of a task 7; suffering direct interferences from other tasks in SP

on stage s € 0;, is given by:
Ri=1;+1L;

where

R+ Jf
VTjE%iD

D D
vr;€8PNS]

Proof. Base Case: Note that in the interference term I;, and for the first stage s = s; 1,
S

the stage s’ does not exist. Hence, for the first stage, I; = 0. Also the set S? NSP = 0,
s’ s s/

R+ JI
/ J
which makes the last term Z ST * L; = 0. Therefore, for the first stage,
VT, €§1DF‘IS/1D J
the interference term becomes the one derived from Lemma 2. This provides the base case
for our proof. We prove Lemma 4 by induction. Assume Lemma 4 holds for an arbitrary

stage s’ € ;. We now prove Lemma 4 for the succeeding stage s € §;.
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Consider three higher priority tasks: 7;, 7, and 7; that interfere with task 7;. Assume
that 7; interferes with 7; only on stage s’, 7; interferes on stage s only, and that 7, causes
interference on both stages s’ and s. For simplicity (and without loss of generality), assume
that these are the only interfering tasks with 7; on the stages s’ and s such that Sf) ={r, ™%}

S

and §f) = {7, 1}

In Lemma 3, we illustrated that any higher priority jobs that caused interference to 7;
on s’ cannot cause any more interference on stage s. If any new interference occurs on stage
s, then it will delay the data units arriving from s’ by an interval of time equivalent, in the
worst-case, to the interference caused by the new jobs. Hence, a conservative approach to
computing the latency of 7; on stage s would be by adding the interferences from 7, and
7; on stage s to the latency computed on stage s':

R+ JE R+ JI

T, T

We, however, can further tighten the upper bound on the latency of 7; on stage s. Note
that in the Equation 5.1 (conservative approach), we computed R; to include interference
S

from jobs of 74, although, some of these jobs have already been accounted for in R;. Since

higher priority jobs that caused interference to 7; on s’ cannot cause any more interference

on stage s, then we can achieve a tighter latency bound by ensuring that, in the computa-

tion of R;, we only add interferences that were not accounted for in R;. The WCL on stage
S s/

s', R, includes interferences in the set SP = {7;,7}. The WCL on stage s, R;, should
inclilde interferences in the set SP = {Tsk,ﬂ}. Note, however, that 7 is a COHliIIOIl task,
ie., Sl? NSP = {7} so we Wants to only add interference from 7, and any new jobs from
Th t}fat di(i not exist on s’. Also note that, from Lemma 3, the WCL R; is monotonically

S
non-decreasing with respect to the stages on path 9;. Hence, the number of jobs of 7
causing interference on stage s can only be greater than or equal to those on stage s’. The

Ri+JE
number of jobs of 7, that caused interference on stage s’ is [S' T ’ —‘ . And the number of
. : | Bt .
Tr jobs that causes interference on stage s is | = 7 |- Therefore, a tighter bound can be

achieved by subtracting the latency of the jobs of 75, that already existed on stage s’ and
will definitely exist in the jobs interfering on stage s:

Ri+ JE

T T}

Ri—f—JlR R/Z—FJE
*Ll —
Ty

Since R; = I; + L; and };ZZ = I/Z + L;, then we can replace R; and RZ by I; and I/i,
respectively in the equation. And by generalizing the equation, we add interferences in the

set SP (corresponding to 7, and 7;) and subtract interferences in the set of common tasks
S
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SP NSP (corresponding to 7). We, hence, get:

|VRZ' ; JJR“
L Lj— s
1 v €8PNSP 1
[l

Next, we show a theorem for computing the WCL of a task on its path ¢; under the
assumption that D; < (T; — JI*) and using only direct interferences. Note that if a task 7;
directly interferes with the task under analysis 7; on a non-consecutive set of stages, then
7; must be split into two or more directly interfering tasks such that each newly created
task interferes with 7; on consecutive stages.

Theorem 2. The WCL R; of a task T; suffering only direct interferences along its path J;
where the last stage on the path is s = s, 5, and under the condition D; < (T; — JR), s
given by:

Ri=R;+J'+ Y R,
1=2...|5;]

where

Ry =1+ L;

»

R+ Jf

I + e R YT
T; 7 T;
vr;eSP vr;eSPnsp

Proof. From Lemma 3, the WCL of a task under analysis 7; is monotonically non-decreasing
with respect to the stages. Hence, the WCL R; is largest at the last stage of the path

s = 8i5, € 0;. The WCL R; is measured from the time (the release of the job under

I;

analysis of task 7;). Since, the job could have been released after suffering maximum jitter,
then the WCL measured from the activation time is equal to R; + J£. And since we

want to find the WCL across the whole path §;, then we must take into account the stage
delay R,,,. Since this delay is experienced between stages, then the total delay is equal
to Zl:l..l&l R, ,. Therefore, the WCL of task 7;, R; = R; + JE+ 2122”4514 R,,, where

s = 8;)5,] € 0; is the last stage on the path d;. The recurrence relation derived in Lemma 4
is used to find R;. O
S

5.5 Indirect Interference

Task 7; suffers indirect interference on a stage from task 7, when task 7; has direct inter-
ference with an intermediate task 7;, and 7; has direct interference with task 73; however,
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7; has no direct interference with 7. In addition, the interference between 7; and 7, must
occur before 7; interferes with 7;. We formally describe this in Definition 11, and the set of
indirectly interfering tasks in Definition 12. Revisiting Figure 5.1a, we point out that task
76 has indirect interference with task 7y through an intermediate task 7 on stage (vs, vy)
such that S [={n}.

(1)3 7U4)

Definition 11 (Indirect interference). Given two stages s and § on path &;, task 7; suffers
indirect interference from task T, on stage s if and only if (s € ;N ;) A (5 € 0;NIx) A (s #
S)N(5¢ )N (5€0j(s)), and P, < P; < DB

Definition 12 (Indirect interference set). Given two stages s and § on path 0;, the set of
tasks indirectly interfering with task 7; on stage s is St = {, | V1;, 7. € T, (s € 5;N0;) A\ (8 €

G;NI)AN(sF#S)N(5¢5) N (5€0i(s)), and P, < P; < By}

Indirect interferences are accounted for by indirect interference jitter. Lemma 1 intro-
duced the conditions under which a higher priority task 7; causes maximum interference
to 7;. It is clear that the interference caused by 73 can delay the release of the jobs of 7;.
Assume that the interference that 7; suffers from task 7 is equal to ;. From the point of
view of 7;, the maximum jitter that 7; can suffer is equal to the sum of the interference
that 7; suffers from 7, and its release jitter; I; 4 JJR. In the worst case (with respect to
7;), this indirect interference can further delay the jobs of 7; activated before ¢, while the
jobs activated after t, are immediately released. This extra jitter caused by the indirect
interference is known as indirect interference jitter. Consider the timeline in Figure 5.2.
Task 74 suffers direct interference on stage s from task 7 and suffers indirect interference
from task 7 through the intermediate task 7. Task 75 suffers an interference of 2 time
units from task 7;. Hence, the first release of task 7, on stage s9 5 at tp = 1 has a maximum
indirect interference jitter of 2 time units. The subsequent jobs of task 7, are released
immediately at their activation time.

It is important to mention that the indirect interference jitter depends on the indirect
interference set of the task under analysis. Using the same aforementioned tasks as an
example, this means that I; only contains interference from common tasks in the direct
interference set of 7; and the indirect interference set of 7;. This is because other tasks
interfering with 7; and in the direct interference set of 7;, §f , but not in the indirect

interference set of 7;, S, are tasks that directly interfere with 7;, i.e., in the set SP. These
S S

tasks are already accounted for by direct interference on 7; and should not be accounted

for by indirect interference jitter through 7;. Hence, the indirect interference that 7; suffers

through 7; is from tasks in the set SP N'S]. We use the terms R;(7;) and I;(7;) to denote
S S S

S
the WCL and worst-case interference of task 7;, respectively, but only due to tasks in the

set SP N'S]. Therefore, the indirect interference jitter of a task 7; with respect to a task

under analysis 7; is given by:

JI = Rj(Ti) - Lj (52)
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where

5 5 *Lk
Ty
VT}CEEJDﬁ?{

Z s Tk * Lk

D D I
YTk €SP NS PNS]

5.6 Worst-Case Latency with Indirect Interference

We can now extend Theorem 2 to account for both direct and indirect interferences. The
WCL of task 7; when it experiences both direct and indirect interferences is given by
Theorem 3.

Theorem 3. The WCL R; of a task 7; suffering both direct and indirect interferences
along its path 0; where the last stage on the path is s = s;)5, and under the condition
D; < (T, — JE), is given by:

Rz‘:]ijJﬁ"‘ Z Ry,

1=2...|8;]
where
51; = gz + L;
§i+Jf+{§ §i+Jf+{§
gl I \mze:@'? Tw o vr;eSPns P L "

Proof. Indirect interference jitter delays the release of higher priority jobs directly inter-
fering with the task under analysis 7;. From Lemma 1, the interval of time during which 7;
can interfere with 7; is the WCL of the job plus the maximum jitter of 7;. The maximum
jitter of 7; is equal to the sum of the release and indirect interference jitters of 7, JJR + { ]I )

Hence, the interval of time during which 7; can interfere with 7; is equal to R; + JjR +J §
S S

Substituting this term for the numerators of the summations in Theorem 2 provides the
WCL for task 7; with direct and indirect interferences. O

5.7 An Illustrative Example

We use Figure 5.1a as an illustrative example to show how SLA is applied and compare
it to FLA [126, 128]. Recall that the tasks in Figure 5.1a have the data in Table 5.1, and
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the following priorities: P, > P, > P3 > Py, > P5 > P,. Table 5.2 shows the WCLs for all
six tasks using both FLA and SLA. We observe that the results from SLA are less than or
equal to the upper bounds computed by FLA. Task 74 is unschedulable using FLA.

01234546 7 8 9 10111213141516171819

Figure 5.4: Timeline of task 74 in Figure 5.1a using FLA

According to FLA, 74 has direct interference with the tasks 7, 73, 74, and 75. Figure 5.4
shows the timeline for task 74 using FLA. The four tasks that interfere with 75 have a basic
stage latency of two time units and a period of 8 time units. This means that all four
tasks consume all bandwidth, i.e,. the utilization of the communication resources reaches
a 100%, and the data units of 74 can never be sent. Thus, 74 is unschedulable for any
deadline. This occurs because FLA assumes that 74 suffers simultaneous interference from
To, T3, T4, and 75 on all stages along its path. This is certainly not the case as shown in
Figure 5.2. In fact, the WCL of 74 can be computed, but it requires performing the analysis
at the stage-level. This provides a simple example where SLA performs better than FLA.

Table 5.2: Results for the example in Figure 5.1a using both SLA and FLA

Task | 7 1 T2 T3 | T4 | Ty T6

FLA | 3|5 |33 |6] -
SLA | 3 |53 |3 ]5 |43

5.8 Tightness Analysis

We expect SLA to have tighter latency bounds compared to FLA. The reason is that FLA
assumes that the interference that a task suffers on any stage occurs on the whole path of
the task while SLA restricts the interference only to the stages on which they happen. In
what follows, we formally prove that SLA provides tighter bounds than FLA.

Theorem 4. Given a set of tasks T and their paths, R¥L4 < RFLA vr, € T.

Proof. According to FLA [126], the WCL of 7; measured from the release of 7; is given by:
RFLA 4 JR 4 JI
R = )" { : T.J L1« C; +C; (5.3)
vrjesP J
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The worst-case interference occurs when the higher priority tasks share all stages with the
path §; of 7;. This means that the set of all interfering tasks on d;, SP = SD In that case,

7

using Theorem 3, R; on all stages of §; are equal and RSLA R +> 16| Ry, , (measured
from the release of 7;). Given that C; = L; + Zl:znl&\ Ry, ,, RfLA can be given by:

RYMA =37, |5\Rszz+JR+JI
> - x L+ C; (5.4)

vr;esP J

For FLA, JI = R; — C; and for SLA JI~ is given by Equation 5.2. For SLA, the
worst-case interference jitter occurs when SD = SI In that case, JI =R;—L; = R; —

>ima. s, sy — Lj = R;—C}. Therefore, JI J]. Taklng this into account and comparing

Equations 5.3 and 5.4, the only difference between FLA and SLA are the terms L; and Cj,
and the stage delay in the summation. Since Cj = L; + 2,5 5| Rs,,, and |6;] > 1 then
L; < ;. And since the stage delay has a negative sign in the numerator of the summation,
therefore, RPL4 < RFLA and our analysis gives a tighter bound compared to FLA.

For the case when there is no interference, RF14 = C; and RY14 = L +Zl:2._|§i| R, =

RFEA. Since in the presence of interference, R¥L4 < RFLA and in the absence of interfer-
ence, RSLA RFEA then RYLA < RILA, O

5.9 Relaxing the Deadline Restriction

In this section, we relax the assumption D; < (T; — JF). This means that jobs of the same
task can interfere with one another. Since our model transmits data units of the same
priority based on FIFO ordering, then a job released earlier in time will have a higher
priority than other jobs of the same task that are released later.

We use the term level-i busy period, B;, to define an interval of time during which data

units of priority P; or higher are continuously transmitted on stage s before the stage is
idle. For example, in Figure 5.2, the time interval ¢t = 4 to ¢ = 43 on stage s¢5 = (vg, v7)
of task 74 represents a level-6 busy period. If we can find an upper bound on a level-i busy
period, then we can find the maximum number of jobs of task 7; that interfere with each
other. The WCL of task 7; is then computed as the maximum WCL of all 7; jobs in the
level-i busy period. First, we find an upper bound for a level-i busy period. Then, we
define the WCL of each 7; job in the level-i busy period.

Lemma 5. The level-i busy period on stage s € §; considering both direct and indirect
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interferences to task t; is given by:
BH—J]R—l—JJI- B+ JE
V7; €§ZD

Bit IR+ g1 B I

— Z ESLE N Ay * L;

0y T
VTjE%iDﬂS/iD

Proof. Base Case: The rules in Lemma 1 still hold after relaxing the deadline assumption.
Considering a level-i busy period, Lemma 1 holds for all tasks of priority ¢ or higher. First,
we consider the first stage s = s;; on the path d; of the task under analysis 7;. On this
stage, the length of the busy period is the latency of all 7; jobs plus interference from any
higher priority jobs. Assuming the upper bound on the busy period is ?i, then according

to Lemma 1, the interval of time during which jobs of 7; can exist in the busy period
is equal to the length of the busy period plus the maximum jitter of 7;, i.e., B; + J&.

Also, the interval of time during which jobs of a higher priority task 7; exist in the busy
period is equal to the busy period length plus maximum jitter, i.e., Bz-—i-JJR—i-J ]I . Therefore,

considering all higher priority tasks, the length of the busy period on the first stage s = s;1
can be given by:

B, = (5.5)

D
VT; €§i

T} T;

J

Bi+JjR+J§" BZ-+JZT
S L+ | | * Ly

Equation 5.5 represents the base condition for our proof. We proceed to prove this
Lemma by induction, assuming that the given Lemma holds for a stage s’ € ;. We showed
in Lemma 3 that the latency of task 7; is monotonically non-decreasing with respect to
the stages of the path ¢;. Similarly, the length of the level-i busy period is monotonically
non-decreasing with respect to the stages of the path §;. We also showed that common
higher priority jobs between stages s’ and s cannot cause more interference on stage s than
the interference they caused on stage s’. Following the same reasoning, jobs of priority i or
higher that exist in the busy period of stage s’ cannot contribute more to the busy period
on stage s than their contribution on stage s’. Hence, we can find the busy period on stage
s by adding the latency of all jobs of priority ¢ or higher on stage s to the length of the
busy period on s’ while subtracting the latency of common jobs.

Since, the length of the busy period is monotonically non-decreasing, then the number
of jobs of task 7; or any higher priority task 7; on stage s is larger than the number of jobs
of the same task on stage s’. The latency of the common jobs between stages s’ and s is
the latency of the higher priority jobs on stage s’ of the tasks in the set %ZD N Sf) plus the

latency of the jobs of task 7; that exist on stage s’. This can be represented by:

B+ Jj+ Jj B+ Jf
e Ly | |+ L (5.6)

D D
vr;€8PNS]
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Therefore, we can find the busy period on stage s by summing contribution from jobs
of priority i or higher on stage s (as represented by Equation 5.5) to the length of the busy
period on stage s, B;, and subtracting the contribution from common jobs (as represented

by Equation 5.6). Thus, proving the Lemma. O]

So far, we have derived an upper bound on the level-i busy period on a stage s, B;.
S

To find the WCL of 7; on a stage s, we need to compare the WCLs of all jobs in the busy
period B Thus, we need to find the maximum number of jobs of 7; in the busy period Bz,

B i+ JR
pBZ = 7 —‘ We number the jobs of 7; in the busy period B fromp=1top= sz,

Wlth p = 1 being the first job released in the busy period. In Theorem 5, we find the WCL
of each job in the busy period and use them to find the WCL of ;.

Theorem 5. The WCL R; of a task 1; suffering both direct and indirect interferences along
its path 0; where the last stage on the path is s = s, 5, s given by:

Ri= max (wi(p) — (p—1)*T; + J%) + Z Ry,

p=1l..pB; s
s 1=2...|6]
where
(p) +Jf + J] )+ JE+ J!
gz(p) = s/l(p,) + Z T * Ly — Z T * L
vr;esy ! vr;eSPNsP J

D if p < Pp,i
p/ = S' (57)

pB; otherwise
/

Proof. We first derive w;(p), the worst-case completion time of job p on stage s measured
from the start of the bussy period B;, on the first stage s = s; ;. Then proceed to prove the
Theorem by induction. )

Base Case: The time interval ?Z(p) represents the time at which the p™ job of 7

completes transmission. It includes higher priority jobs of interfering tasks and higher
priority jobs of 7; (jobs that were released earlier than job p). The latency of 7; jobs in
w;(p) including the p™ job is equal to p * L;. The interval during which a higher priority

task 7; can interfere with 7; is equal to the time interval w;(p) plus maximum jitter, i.e.,
S

zgl(p) + JJR + {j . Hence, considering all higher priority tasks, we can represent the time
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interval w;(p) on the first stage s = s1 by:
S

wi(p) + JP+ J}
J T | «Lj+pxL; (5.8)

J

Notice that the definition of w;(p) reduces to Equation 5.8 on the first stage of the path
S
0;. Equation 5.8 serves as the base condition for our proof. We now assume the Theorem
holds for a stage s’ € §; and derive it for stage s.
Again, we use two facts that we proved in Lemma 3. The first is that w;(p) is monoton-
S

ically non-decreasing. And the second is that common higher priority jobs between stages

s" and s cannot cause more interference on stage s. Assuming that job p exists on both

stages s and ', then we can obtain w;(p) by adding to w;(p) the latency of jobs that exist
s s’

on stage s and subtracting the latency of common jobs between stages s and s’. Note that
the common jobs include jobs from 7; as well. Hence, we can represent w;(p) by:
S

w;(p) + JJR + JJI'

w;(p) = wi(p) + Z {S 7 S—‘*Lj—l—p*Li

J

VTj€§P
wi(p) + JE+ J1
_ Z s = |« L —px*L; (5.9)
vr;€SPNSP J

Equation 5.9 is valid under the assumption that job p of task 7; exists on both stages
s’ and s. Since w;(p) is monotonically non-decreasing, then the number of 7; jobs on stage

s are greater than or equal to that on stage s’. Thus, job p might only exist on stage s

but not s’. So we introduce the term p’. If job p exists on s’, then p’ = p and Equation 5.9

holds. However, if job p does not exist on stage s, then w;(p) is undefined. In such case,
Sl

we find common jobs in the interval u/Ji(p p,i) which is the worst-case completion time of the
last job pp,; on stage s’ measured from the start of the busy period B;. This is effectively

the whole length of the busy period on stage s’. Therefore, we modify Equation 5.9 to use
p’ to refer to the job on the preceding stage s’. The equation thus becomes:

w;(p) + JjR + J§
wi(p) = wi(p') + > T * Lj+px L
v EeSP ’
’U/i(p') + JJR + J]I-
- > s xL;—p x L (5.10)

T;

. D D
V7§ E§i OSSIZ-

Since w;(p) = ILi(p) + p * L; and wi(p') = IL;i(p') + p' * L, then substituting them in
Equation 5.10 yields the definition of w;(p) in the Theorem.
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Now, we need to find the WCL of each of the jobs of 7; in the busy period B;. Since
w;(p) is the worst-case completion time of job p in the interval B;, where s = s;5, is
the last stage on path §; then subtracting the activation time of job p from w;(p) yields

the WCL of the job. The first job p = 1 is released at the start of the busy period after
suffering maximum release jitter, hence the activation time of the first job is at time —Jf
(relative to the start of the busy period). The second job is released immediately at its
activation time, i.e., at time T'— J&, and the third job at time 2 * T — JF. Hence, the p'"
job is activated at time (p—1)*T; — JE. The WCL of job p is thus w;(p) — (p— 1) * T; + JI.
Taking the maximum latency across all jobs, p = 1...ppg;, yields Sthe WCL of task 7; on

the last stage of its path §;. Adding the stage delay to WCL gives us the WCL of 7; along
its path ¢;:
Ri= max (wi(p)—(p—-1)*T,+J"+ > R,

p=1l..pB; s
s 1=2...|5;|

5.10 Experimentation

We quantitatively evaluate the proposed stage-level analysis. The evaluation is performed
on a priority-aware NoC with flit-level preemption [126]. Each node in the NoC consists of a
processing element and a router. Priority-aware routers have multiple VCs with associated
priorities. These priorities are used to preempt the routing of packets at the flit level in
lower priority VCs by flits in higher priority VCs. The router selects the output port for a
data unit in the VCs based on its desired destination. Computation tasks execute on the
processing elements (processing resources) and communicate using messages on the NoC
links. Messages transmitted over the network links map to communication tasks executed
on communication resources in our model. Data is transmitted in parallel across the links
between two communicating processing elements through wormhole switching. Both SLA
and FLA can be applied to the priority-aware NoC.

The quantitative evaluation for SLA is performed on a large set of synthetic bench-
marks. Using synthetic benchmarks allows varying different factors and measuring their
effect on SLA. It also allows us to test extremes of factors, e.g., high and low utilizations,
that otherwise are difficult to test for. We perform our experiments on 4 x 4 and 8 x 8
instances of the NoC. We compare the analytical bounds of SLA to those of FLA [120].
We randomly generate communication tasks and compute the WCLs using both SLA and

FLA.

The goals of our experimentation are as follows:

e Show that SLA schedules more task sets compared to FLA, and quantify the increase
in schedulability.

e Quantify the improvement (tightness) of the latency bounds computed by SLA over
FLA.
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e Quantify the percentage of schedulable task sets that result in an improved latency
bound.

e Compare the analysis time of SLA and FLA.

The experiment setup involves changing a number of factors to assess their effect on
the analysis.

1. Number of communication tasks is in the range (1,100) in steps of 1.

2. Task period (or minimum interarrival time for sporadic tasks), T;, is chosen in the
range (1000,1000000) through a uniform random distribution.

3. Task deadline, D;, is chosen as a multiple of the period, e.g., 2 x Tj.

4. Communication utilization is varied in the range (10%, 6000%) in steps of 60%.This
factor represents the utilization of the communication resources in the network. Full
utilization of a single communication resource is represented by 100% utilization. The
full utilization of a 4 x 4 mesh is represented by 2400% and for a 8 x 8 at 11200%,
respectively.

5. Task release jitter, JE, is set to zero.
6. An arbitrary priority assignment scheme is used for choosing task priorities.
7. Task mapping is random.

8. A shortest path algorithm is used to select paths for communication tasks between
source and destination nodes.

9. A 100 test cases are generated for each possible configuration (40000 configurations).
We use the following metrics for evaluation:

e Schedulability: A communication task is unschedulable if: 1) its total WCL is
larger than its deadline (R; > D;), or 2) no solution is found for the iterative analysis
equation on any stage on the task’s path. For the latter case, the stopping condition
for the equation on any stage is when the latency computed in an iteration exceeds
the deadline. A test case will be unschedulable if one of the tasks in its task set is un-
schedulable. The schedulability metric is a measure of the percentage of schedulable
test cases for a particular configuration.

e Improvement in WCLs: For each test case, we compute the WCL of each task
using both SLA and FLA. For a particular communication task, the improvement in
the computed WCL bound is calculated as 1 — RSL4/RFLA. We report the average
improvement for a test configuration. This metric is only valid for schedulable tasks.
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e Fraction of tasks with improved latencies: For a given test case, this metric
shows the percentage of tasks that have a tighter WCL bound using SLA compared
to FLA. This metric only applies to schedulable tasks.

e Analysis time: This is the time taken to compute the latency bounds for all tasks
in a test case using both SLA and FLA. For any given configuration, we report the
average analysis time over all test cases.
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Figure 5.5: Schedulability results for SLA and FLA

Schedulability: Figures 5.5a and 5.5b show the schedulability against the communica-
tion utilization for task sets with 100 tasks and deadlines of 2 *T" and 10 % T', respectively.
Both graphs demonstrate approximately the same trend. For a 4 x 4 NoC instance, both
SLA and FLA are able to schedule task sets for very low utilizations. As the utilization
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increases, SLA schedules more task sets compared to FLA. The reason is that SLA per-
forms the analysis on the stage-level, thus reducing the latency bounds and increasing the
schedulability of task sets. The same behavior is observed for an 8 x 8 NoC instance.
However, the gap in schedulability between SLA and FLA widens compared to the 4 x 4
instances. This is because 8 x 8 NoC instances have more communication resources and
tasks can traverse longer paths which leads to more interferences. Also higher communi-
cation utilizations means that tasks have larger basic stage latencies which leads to larger
interferences. As interferences increase, the tightness of SLA manifests more and leads to
a larger schedulability gap compared to FLA.

Figures 5.5¢ and 5.5d show the schedulability against the number of tasks for utilizations
1210% and 2410%, respectively. At a communication utilization of 1210%, SLA performs
slightly better than FLA in terms of schedulability in 8 x 8 NoC instances. As the number
of tasks increase, the ratio of schedulable task sets increases for both SLA and FLA. The
reason is that the utilization is divided amongst more tasks, thus reducing the per task
utilization and accordingly interferences, hence, scheduling more task sets. For a 4 x 4
NoC instance, SLA schedules more task sets than FLA which has a very low schedulability
ratio even as the number of tasks increases. The reason is that at U = 1210% in 4 x 4
NoC instances, FLA is still not able to schedule all tasks due to the high interferences
while SLA can perform better because it provides a tighter analysis. For a communication
utilization of 2410%, both SLA and FLA cannot schedule any of the task sets with more
than 10 tasks in 4 x 4 NoC instances due to high interferences. In an 8 x 8 NoC instance,
SLA schedules more task sets compared to FLA as the number of tasks increases. This
further demonstrates the tightness of SLA over FLA.

Latency Improvement: Figure 5.6a shows the latency improvement against the com-
munication utilization for task sets with 100 tasks. As the utilization increases, the im-
provement in latencies computed by SLA over FLA increases to about 15%. The reason
is that increasing the utilization, increases the interferences between tasks, leading to a
wider gap in the computed latency bounds between SLA and FLA. This happens up to a
certain utilization turning point, after which the improvement starts decreasing again as
the utilization increases. This is because beyond that turning point, more interferences
cause more tasks to be unschedulable. This turning point is at a higher utilization value
in 8 x 8 NoC instances due to the existence of more communication resources.

Figure 5.6b shows the latency improvement against the number of tasks for a commu-
nication utilization of 3610%. Increasing the number of tasks, increases the interferences,
thus, leading to a higher improvement in latency bounds. The improvement in latency is
higher in 8 x 8 NoC instances because more tasks can be scheduled due to the presence of
more communication resources.

Figure 5.6¢ shows the ratio of tasks with improved latency bound against the number
of tasks at a communication utilization of 3610%. As the number of tasks increases, more
interference occurs, and more tasks have an improved latency bound using SLA compared
to FLA. The percentage of tasks with improved latency increases as the number of tasks
increases, and reaches approximately a 100%.
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Figure 5.6: Latency and computation time results for SLA and FLA

Computation Time: Figure 5.6d compares the average computation times of both SLA
and FLA. The analysis time for SLA is approximately double that of FLA. We find this
to be reasonable for the quality of results delivered by SLA. This is acceptable since SLA
performs the analysis at the stage-level compared to the flow-level using FLA.

Summary: For all 4,000,000 test cases, the WCL is reduced on average by 5.2%, and
the number of schedulable test cases is increased by 34.0%. Any task that is schedulable
using FLA is also schedulable using SLA. The ratio of latency bounds (SLA to FLA) is less
that or equal 1.0 for all schedulable tasks. This means that SLA is at worst the same as
FLA, which verifies our tightness analysis. The analysis time of SLA is on average double
that of FLA. The average analysis time over all test cases for SLA is 71.0 mS and 36.4 mS
for FLA. We use the Wilcoxon matched pairs test to reason about the significance of our
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results. The p-value for both the analysis and the schedulability is less than 2.2 x 10716,

5.11 Summary

This chapter presents a stage-level WCL analysis for pipelined communication intercon-
nects. The proposed SLA accounts for direct and indirect interference that arise from
interferences between tasks. We analytically show that SLA will in the worst-case provide
results that are equivalent to that of FLA, but otherwise provide tighter estimates. We
illustrate this with an example that for a fixed topology, task mapping, and their respective
paths, the number of schedulable tasks when using SLA is higher than FLA. Our results
show an average improvement over FLA in the WCL analysis by approximately 5% and in
schedulability of tasks by 34%.
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Chapter 6

Offset-based WCRT Analysis for
CMPs

Hard real-time applications must guarantee that their temporal requirements are met at
all times. This requires a WCRT analysis, which provides a method to compute the upper-
bounds on the amount of time it takes an application to complete execution. Such an anal-
ysis is essential in determining whether a hard real-time application meets its application
deadlines. If it does, then the application is deemed schedulable; otherwise, unschedulable.
The requirement to deliver tight WCRT estimates is paramount when developing such
an analysis because it improves schedulability. Therefore, researchers proposed various
WCRT techniques aiming to provide tight and accurate WCRTSs of such distributed hard
real-time systems [110, , 89].

These efforts make the fundamental assumption that the communication occurs over
a single shared bus interconnect. A shared bus interconnect consists of a single commu-
nication resource that only allows mutually exclusive access. This presents a traditional
communication resource model, but, it does not apply to computing platforms prevalent
today. Nowadays, platforms consist of multi-processor systems with multiple processing
resources that are typically connected using communication resources such as a NoC. Mod-
elling the interconnect as a single shared bus interconnect does not accurately model the
communication resources available in such platforms. Furthermore, it does not capture
the pipelined nature of the communication resources that allow for parallel transmission of
data between processing resources across multiple stages of the communication resources.
This prohibits accurately predicting the latencies offered by communication resources such
as NoCs resulting in gross over-estimates for the WCRTSs. Hence, recent research [(]
focuses on deriving tight worst-case latencies on multi-processor platforms by considering
the pipelined nature of the communication resources.

We extend both FLA and SLA by introducing dynamic offsets for dependencies between
computation and communication tasks modelled using a directed acyclic graph (DAG) [65].
Section 6.2 presents a holistic analysis for computing the dynamic offsets and jitters. In
Section 6.4, we present the theory for offset-based flow-level analysis (OFLA) which in-
cludes two variants of the analysis. The first is an exponential analysis, and the second is
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a polynomial one. We also propose offset-based stage-level analysis (OSLA) in Section 6.3,
a WCRT analysis technique that extends SLA. OSLA extends SLA to use dynamic offsets
to accurately model the dependencies between the computation and communication tasks
of an application. We present the theory behind OSLA, which also includes two variants
of the analysis; exponential and polynomial. For both OFLA and OSLA, we apply the
approximations proposed by Maki-Turja and Nolin [89] to the polynomial analyses.

6.1 System Model

In this section, we describe our task model. We use the same processing and communication
resource model used for SLA as in Section 5.1. We also present an overview of offsets and
jitters of tasks.

6.1.1 Task Model

In this chapter, we compute the WCRTSs of applications while we computed the WCLs of
communication tasks in Chapter 5. Hence, our task model focuses on characterizing ap-
plications including both computation and communication tasks. This requires extending
the task model presented in Section 5.2.

Definition 13 (Real-time system). A real-time system is a set of n applications A =
{A1, Ay, ..., A} where each application A; € A is denoted by a 4-tuple (G, Dy, Ty, JI).
This describes an application A; with task graph Ga,, end-to-end deadline D;, period T;,
and release jitter JI.

An application is a DAG with a task graph G4, = (I'¢, M) consisting of a set of nodes
'Y that represent computation tasks and a set of edges ' that represent communication
tasks, respectively.

Definition 14 (Computation task). A computation task of A;, 7 € TS is denoted by
a S-tuple (Cig, Ve, , Pi). This describes a task Ty that has priority Py, and a WCOET Cy,
when executed on some processing resource v, , and priority Py,.

Definition 15 (Communication task). A communication task of A;, T € Ffw 18 denoted
by a 3-tuple (L, 8, Pi). This describes a task 1, that has priority Py, and a WCL Ly,
when transmitting data across a series of contiguous communication resources 0y, between
the source and destination processing resources: v, and vq,, .

The worst-case transmission latency L; is the latency that an instance of the task
T;1 takes to transmit data on a single communication resource when it does not suffer
interferences from any other tasks. Assuming a stage delay of one cycle for clarity, the
worst-case transmission latency of task 7;; along its path is Cj = Lix + |0;x| — 1 where
|0ik| is the number of stages on the path ¢;; of communication task 7;;. Note that if a
communication task 7; interferes with another task 7;; on a non-contiguous set of stages,
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then the interfering task 7; must be split into two or more tasks such that each of the
new tasks interferes with task 7;; on a contiguous set of stages. We use the notation
Tike to refer to the c-th instance (job) of task 7;,. For clarity of presentation, we use
the function schedule ©(t, s) to denote the assignment of data units of the various jobs
to the communication resource. More specifically, each time slot ¢t on a stage s of the
communication resources is either transmitting a datum or is idle.

Regarding a NoC implementation, computation tasks will execute on the processing
elements of the NoC. Communication tasks are messages communicated between the com-
putation tasks. Messages are transmitted on a set of contiguous links that form paths
between the processing nodes.

We restrict the task graph to be single rooted, and for the root to be a computation
task that is activated at the application’s period, and has a maximum release jitter J=.
The release jitter JI is the worst-case delay in the release time of the application or the
first task in the application’s task graph. The exit task is also a computation task of
the task graph without any successor computation tasks. Application A; is schedulable if
and only if the WCRT of each exit task is less than or equal to the deadline D;. Notice
that a communication task enforces precedence constraints between other computation
and communication tasks. For example, a communication task 7;; executes only after
its source computation task completes execution. The destination computation task only
begins after both the source computation task and the corresponding communication task
complete execution. We do not place any restrictions on the deadlines, the release jitters,
and the periods such that the deadline and/or the release jitter can be larger than the
period. We assume distinct priority assignment to the tasks, but, we do not enforce any
specific priority assignment to the computation and communication tasks, i.e., the priority
assignment does not have to follow the order or precedence of the tasks in the task graph

Ga,.

(3

Figures 6.1a and 6.1b present an illustrative example of a DAG as the task graph
for an application A; and its mapping onto a pipelined mesh communication resource
model. Ellipses identify computation tasks, and arrows represent communication tasks.
For example, computation task 71; has a WCET of 5 time units, and communication task
713 has a WCL of 2 time units. Figure 6.1b shows the mapping of A; onto a 2 x 3 mesh.
As an example, 71 and 714 are mapped onto v; and vg, respectively, with a communication
task 712 that traverses the path ((vy,v2), (ve, v3), (vs, vg))-

6.1.2 Offsets and Jitters

Our task graph represents precedence dependencies between computation tasks through
communication tasks. We use offsets and jitters to ensure that these precedence constraints
are satisfied. We also support dynamic offsets as introduced by Palencia and Gonzalez [105].

The application’s root task is activated periodically with a period T;. Each task 7
in the application is activated after a specific time interval from the activation of the
root vertex. We call this time interval, offset ¢;;, which is the best-case release time of
task 7;z. This occurs when the preceding tasks execute for their WCET without suffering
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Figure 6.1: Illustrative example application A;: Task graph and its mapping

interferences from higher priority tasks. This assumes that a task’s best-case execution
time is equal to its WCET without interference. The offset for the root task is zero. A
task’s offset is equal to the sum of the WCETSs of the tasks along the path leading to that
task starting from the root vertex. The offset of a specific job instance 7. is measured
from the activation of the corresponding instance of the root task, 7;;.. There might exist
multiple paths leading to a task, the offset, in that case, is equal to the maximum offset of
all paths leading to that task. If interference exists, then the task release can be delayed
from its best-case release time. The release jitter of a task is the maximum difference
between its activation time and its release time, i.e., it is the difference between the best-
case and the worst-case release times of the task. Again, if multiple paths lead to the
task, then the release jitter is equal to the maximum jitter from all paths. The worst-case
release time of a task 7;, from the activation of the root vertex, is the sum of its offset ¢;
and release jitter J¥. Note that the release jitters of the tasks depend on their WCRTS,
and the computation of WCRTs depends on the release jitters. This, therefore, requires
iteratively computing WCRT's and assigning jitters until either a fixed point is reached or
the application is unschedulable. In Section 6.2, we introduce a holistic analysis [110] that
iteratively computes the jitters followed by the WCRT of each task.

Figure 6.1c shows a schedule for the task graph in Figure 6.1a to illustrate offsets, jitters,
and response times. This schedule has two applications A; and an interfering application
Ainterfere- Application Ajpier pere has a higher priority than A;. Up arrows denote release
times. The timing diagrams show execution sequences of A; without and with interference.
Notice in Figure 6.1c (without interference), that 75 can at best start after the WCET
of task 711 because, according to the task graph in Figure 6.1a, 75 is dependent on 717
completing its execution. Hence, the offset ¢15 of task 75 is its best case release time which
is equal to 5 time units.
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Jitters are used to model worst-case temporal dependencies among tasks. In the case
with interference (lower diagram in Figure 6.1c), 71; suffers a release jitter J& of 1 time
unit. Task 77 releases at time 1; however, it could be released at any time from 0 up to
and including its maximum release jitter, which is the application’s release jitter JF = JI.
Although task 7; is released at time 1, it experiences interference from a task in Apter fere
delaying its execution to time 2. Task 7q; suffers another interference from another task of
Ainterfere at time b causing 71; to delay its end time to 9. The worst-case response time [,
of 111 is, thus, 9. Task 75 releases at time 9, which is the end time for 7. The difference
between the release time of 715 and its offset 5 provides the release jitter Jf%. The release
time of 72 coincides with some other interfering task of A;pterfere such that it gets delayed
even further. The WCRT of 75 is denoted by Ri5, which is 17. We use .ﬁiu to denote the
WCRT of 715 from its activation time. This is equal to 12 time units.

6.2 Holistic Analysis

Holistic analysis [116] presents an iterative technique to compute the offsets and jitters of
tasks. This technique starts with an assignment of offsets and jitters, and computes the
response times of the task, which then provide updates on jitters of following tasks. The
iterative method is necessary because the offsets and jitters depend on the response times
of preceding tasks. We use this holistic analysis [116] technique to combine the response
times of computation tasks executing on processors, and computation tasks transmitting
data across links on the NoC to determine end-to-end worst-case response times.

Algorithm 7 presents the key steps in our holistic analysis. We assume that the applica-
tion set A, the mapping of tasks to the resources, and the communication routes are given.
The algorithm starts by computing initial offsets and jitters for each task. The first task 7;;
of each application has a release jitter equal to the application’s release jitter (J5 = JF),
and since the first task is the root vertex of the applications DAG, the task’s offset is
zero (¢ = 0). All other tasks are assigned a jitter of zero and an offset derived using
ComputeOffsets (see Section 6.2.1). Then, the algorithm computes the WCRT of every task
in every application using ComputeWCRT. For communication tasks, ComputeWCRT uses
either OFLA (Section 6.4) or OSLA (Section 6.3). For computation tasks, ComputeWCRT
employs traditional offset-based WCRT analysis for tasks on uniprocessors [103]. Please
see [108] for further details. Note that we restrict the set of higher priority tasks that inter-
fere with a task under analysis 7., to those tasks that are mapped to the same processing
element as 7,,. The task jitter is derived using Computelitters (see Section 6.2.2), which
uses the WCRT of the precedent tasks (denoted by pre). The algorithm iterates until it
reaches a fixpoint. This is when the jitters and WCRTSs do not change, or a task misses
the application deadline. Note that if no deadline is missed, then the algorithm is guar-
anteed to converge to a fixpoint because the WCRT analysis is monotonic in the release
jitters [108], i.e., increasing the jitters can not cause the computed WCRT for any task to
decrease. Finally, the WCRT of the application is obtained using ComputeAppWCRT as the
maximum WCRT among all exit tasks of the application. An unschedulable application is
one whose WCRT is larger than the deadline.
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Function 7 Holistic analysis

Input: Application set A, mapping of tasks from A to resources, and communication routes.
Output: Offsets, jitters, WCRT for each task, and end-to-end WCRT for all applications.

1:

2: for all 4; € Ado

3:  Offsets(7;1) < 0

4: Jitters(tyy) + JE

5. forall 7y € TS UTM k> 1do

6: Offsets(7;;) <= ComputeOffsets(7;y)

7 Jitters(7;) < 0

8: end for

9: end for

10: for all A; € A do

11:  while —fixpoint(Jitters, ResponseTime) do
12: for all 7, € FZC U FIM do

13: ResponseTime(7;;) «— ComputeWCRT (7;x)
14: Jitters(7;) < Computelitters(7;x, ResponseTime(pre(7;x))
15: if ResponseTime(7;;) > D; then

16: Unschedulable(A4;) < TRUE

17: break while loop

18: end if

19: end for

20: end while

21: end for

22: for all A; € A, ~Unschedulable(A4;) do

23:  AppResponseTime(A4;) - ComputeAppWCRT (4;)
24: end for

6.2.1 ComputeOffsets: Computing Offsets

Unlike prior works [108, 89] that only support a linear temporal dependency between tasks
of a transaction, we support DAGs, which allow for parallel dependencies between tasks.
Consequently, we compute offsets for tasks as follows.

¢ = max Y  Cjy (6.1)

VTij€Pik

where ¢;;, is the offset for task 7, Il;; is the set of all paths in the application’s DAG,
G 4,, starting from 7,1 to 7, and py is the set of tasks in an individual path of II;;. There
may exist multiple paths to a particular task; hence, the computed offset must consider
the worst-case scenario over all possible paths leading to that task. This amounts to the
summation of WCETs/WCRTs of tasks (Cj;) for each path, and finding the path with
the largest value (the max operation). For example, there are two paths that lead to task
716 in Figure 6.1a. The offset for 714 is the maximum between path (71, 712) and path
(T11,T13, T14, T15). Using Equation 6.1 and a stage delay of one time unit, we select the
worst-case offset between 12 and 13, respectively, leading to an offset ¢4 that is equal to
13.
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6.2.2  Computelitters: Computing Jitters

Similar to offsets, we compute the release jitter of every task (excluding the root task)
by incorporating the WCRTSs of preceding tasks on the path, and the application’s release
jitter. The release jitter Jf,z of task 7;; is defined as follows:

= max (> Ry) = ou (6.2)
VTi; EPik
Equation 6.2 selects the maximum of the sum of WCRTSs in every path from the root task
T;1 to task 7;; thereby, selecting the largest of the WCRT contributions.

6.3 Offset-based Stage-Level Analysis

OSLA computes the WCRT for communication tasks by considering the pipelining and
parallel data transmission of jobs on the pipelined communication resources. We present
an exponential and a polynomial analysis. We also prove that each of these analyses gives
a safe upper bound for the WCRT of the communication task under analysis.

6.3.1 Direct and Indirect Interference

We use the same definitions of direct and indirect interference as in Sections 5.3 and 5.5,
respectively. We use the symbol SP(7,;) to denote the set of tasks of application A; that
directly interfere with task 7,, along its path d,. We use the symbol SiD(Tab) to denote

the set of tasks of application A; that directly interfere with task 7,, on stage s of its path
dqp- The indirect interference set Sin(Tab) is the set of tasks indirectly interfering with task
Ta» through the intermediate task 7;;. Tasks in the indirect interference set Sfj(Tab) do not
share any stage with task 7., but they must still be considered in the analysis because they
can delay 7;;. We account for indirect interference by computing an indirect interference
jitter term ij (7ap) for task 7;; in Section 6.3.4. The indirect interference jitter Jilj(rab) is
then summed to the release jitter szj to obtain the maximum jitter suffered by task 7;;
before reaching the stage on which it causes interference to task 7.

6.3.2 Derivation of a Response Time Estimate

We mentioned in Section 5.1 that the task transmission schedule is divided into time slots.
The time slot ¢ is the time interval [¢,¢ + 1) (we use both notations interchangeably). We
also explained in Section 6.1 that if a data unit of 7, is transmitted in the interval [t, ¢+ 1)
on a stage s1, then it becomes ready for transmission in the interval [t 4+ 1,¢ + 2) on the
next stage s, of d,,. When a data unit becomes ready for transmission in a slot ¢, then it
will actually be transmitted in that slot unless it is preempted by a higher priority data
unit. For clarity of presentation, as mentioned in Section 6.1, we use the function schedule
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O(t, s) to denote the assignment of a data unit of a job 74, of task 74, to a particular slot
t on stage s.

We focus on deriving an upper-bound Rap to the response time of the task under
analysis 7,,. Since indirect interferences are accounted for by indirect interference jitter, for
clarity, we only consider directly interfering tasks. The ordered set of stages {s1,...,s/s,,(}
comprises the stages traversed by 7, along its path d,, where |0,| is the number of stages
n (5(11,.

In our derivation, we first consider the transmission of any job 7., of task 7,, in any
valid schedule ©(t, s;) on all stages of d,,. We discuss how to compute an upper-bound }A%ab
to the response time of 7, for that specific schedule; for clarity, we measure the response
time from the activation time of 7. itself. Next, we show that the upper-bound can be
maximized by modifying the pattern of release times of jobs of the tasks in SP(7,;), as well
as the jobs of 7, itself. Finally, we show that independent of the schedule (e.g., O(t, si))
and the specific job instance ¢ of 7,5, the proposed release time modification always yields
a pattern within a finite set of critical activation patterns. Hence, we can derive a safe
response time upper-bound for 7,, by computing the maximum value of the response time
upper-bound over all critical activation patterns.

We first introduce two model transformations to help us in our discussion. The trans-
formations do not alter the transmission semantic of the model, but they simplify reasoning
about the correctness of our proposed analysis. Note that based on our resource model,
we consider that jobs of the same communication task are transmitted in FIFO order.
Hence, when analyzing the job under analysis 7., we simply assume that the priority of
any job 7T, that follows T4, i.e., with ¢ > ¢, is lower than the priority of 7,;.. The second
transformation involves the schedule ©(¢, s;,). Note that if any job 7;;, is released on stage
sk at time ¢, the job can not start executing on a successive stage sy (with k41 < [;;)
before time t + [. Therefore, release times can not be directly compared across different
stages. To solve this issue, we define a stage-normalized schedule where the transmission
schedule on successive stages is moved earlier in time so that release times coincide across
all stages.

Definition 16 (Stage-normalized schedule). Given a schedule O(t, sy) over all stages in
dap, the corresponding stage-normalized schedule is O(t, s;) = O(t + k — 1, s5,).

An example of a stage-normalized schedule is shown in Figure 6.3. The reported sched-
ule is the stage-normalized version of the schedule presented in Figure 6.2, and it will be
used as a running example throughout this section. Up arrows in both figures represent
release times, and the job under analysis, 7., is shown in black Any datum transmitted
at time ¢t on stage so in Figure 6.3 is transmitted at time ¢ + 1 in Figure 6.2; any datum
transmitted at time ¢ in s3 in Figure 6.3 is transmitted at time ¢ + 2 in Figure 6.2; and so
on. Also note that as a consequence of this model transformation, a datum transmitted
in time slot ¢ on stage s will now be transmitted in the same slot ¢ on stage si,q if the
schedule is not busy transmitting a higher priority datum. This property will significantly
simplify the proofs of Lemmas 7 and 9, since it allows us to compare the busy/idle state
of the schedule on two stages s;, s, independent of the distance ¢ — [ between the stages.
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We next formalize the concept of a busy interval on stage sj, which is common to analysis
of systems with fixed-job priority.

S1

52

53

S4

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Figure 6.2: An example schedule (up arrows are release times)
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Figure 6.3: An example of the stage-normalized schedule

Definition 17 (P,.-level busy interval). We say that [t,t") is a Pye.-level busy interval
on stage sy in © if the stage-normalized schedule continuously transmits jobs with priority
greater than or equal to Py in slots (t,...,t" — 1) and Ty is not completed before slot
t'— 1. An interval [t,t") that is not P.-level busy is then Py.-level idle.

P-level busy intervals allow us to determine the interference caused by higher priority
jobs on 7, in every stage sy of d,5,. For simplicity and since lower-priority jobs do not affect
the schedule of 7, in any way, assume that all jobs in Figure 6.3 have higher priority than
the job under analysis. Similarly, note that by definition, jobs that arrive on stage s after
Tabe finishes executing on that stage do not need to be included in the busy interval. Then
as an example, [0,2), [3,7) and [9, 12) are all maximal-length P,.-level busy intervals on
s3. Also note that [3,5), as well as any other interval contained in a maximal-length busy
interval, is a P.-level busy interval by itself. In single-resource systems, the concept of
busy interval helps the analysis because the response time of a job is necessarily bounded
by the length of the unique busy interval in which it appears. However, in our situation,
job Tape is transmitted within different P,;.-level busy intervals on each stage. To effectively
use the concept of a busy interval, we thus define a new abstraction, called a busy chain,
which concatenates P,.-level busy intervals across all stages. As we will later prove, the
busy chain is defined in such a way that each higher priority job can interfere with 7.
only once.

Definition 18 (Busy chain). Let t5,,| be the time at which the job under analysis Tape
finishes execution on its last stage si5,,| n ©, i.e., its last datum is transmitted in slot
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tis,,| — 1 (interval [t)s,,| — 1, t5,,))- For each stage sy, in dap starting from sis,, and towards
s1, let ty_q be the earliest possible time such that [ty_1,tx) is a Pup.-level busy interval on s.
If the stage-normalized schedule is not Py.-level busy in slot t;, — 1 on sy, then tp_1 = ty.
Hence, ([to,t1), ..., [t5,,) — 1. ts,,|)) is the busy chain for Tape in O.

It is easy to see that every job 7,. admits a unique busy chain for a given stage-
normalized schedule ©. An example of a busy chain is reported in Figure 6.3. Starting
from stage s, where t4, = 13, the earliest time for which we have a P,,.-level busy interval
on stage s; ending in t4 is the time t3 = 5. On stage s3, we again find the largest time
interval [to,t3) such that it is a P,.-level busy interval. This time is 2 = 3. On stage
Sg, the time slot [2,3) is Pye-level idle. This means that there is not a Py.-level busy
interval on stage so that ends at time t, = 3, hence, t; = t; = 3. On stage s;, the time ¢,
that creates the longest P,.-level busy interval ending in t; = 3 is tyo = 1. Therefore, the
busy chain for job 74 is ([1,3),[3,3),[3,5), [5, 13)). Note that since t;_; is defined as the
earliest possible time such that [t;_1,%x) is a Pye-level busy interval on sy, it follows that C)
must be P.-level idle in slot t;_1 — 1 (interval [tx_1 — 1,tx_1)) on stage sg. In Figure 6.3,
the schedule is always idle before tg,...,t3 in stages si,...,s4, respectively. Finally, to
show that the definition is consistent, we prove that the busy chain always contains the
execution of T,., i.e., the finishing time of 7,,. on any stage s, is no earlier than the start
time t;_; of the busy chain on that stage.

Lemma 6. Let t£ be the time at which the job under analysis Ty finishes executing on
stage sj, in ©, then t£ > th_1.

Proof. The lemma proceeds by induction on the stage number k, starting from k = |0,
and proceeding backwards until £ = 1. Note that according to Definition 18, t{;ab‘ = b5, =
t15.5]—1, hence the base case immediately follows.

Assuming that the hypothesis holds for each stage up to stage sp.1, we now show that
it also holds for stage s,. By definition of a busy chain, the schedule on stage sg,; is
P.y-level idle in [t — 1,1;). Since t£ 41 = tg, this implies that no job with priority greater
than or equal to 7, is transmitted in slot ¢, — 1 on stage s;.;. Hence, all data of 7.,
must be transmitted on stage s, in slots t; or after; otherwise, a datum of 7, would be
transmitted in slot ¢; — 1 on stage sp;; and the slot would not be P,.-level idle. This
implies that t£ >ty > t_1, concluding the proof. n

Let ¢ be the activation time of 7,.. The response time of 7, in © is C1as] — t =
(t15,,] — to) — (t —t5). We can thus obtain an upper-bound on the response time of 7. by
fixing £ and ¢, and computing an upper-bound on the length of the busy chain L1500 — lo-
This is similar to how the maximum length of the busy interval is used to bound response
time in [108]. The following lemma proves the key property of the busy chain for interfering
higher priority jobs.

Lemma 7. Consider the busy chain of Tae in ©. A given datum of any job Tij, cannot be
transmitted both within the Pp.-level busy interval [t;_1,t;) on s, and within the Py.-level
busy interval [t,_1,t,) on s, with ¢ > L.
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Proof. The proof is similar to the induction step for Lemma 6. Note that since 7;j, is
executed in the busy chain, it must hold that P;;, > FPg.. Consider a datum of 7;;, that is
transmitted on stage s; in slot ¢} with ¢;_; <t} < ¢;. In the stage-normalized schedule, the
datum becomes ready on s;41 at the same time t; < ¢;. By definition of a busy chain, the
schedule on s;,1 is Pye-level idle in [t; — 1,¢;); since tlf +1 = b according to Lemma 6, this
implies that no job with priority greater than or equal to 7., is transmitted in slot ¢; — 1
on stage s;4;. Hence, the datum must be transmitted on stage s;41 in a slot t;,, <t — 1;
otherwise, it would be transmitted at ¢, — 1 and the slot would not be P,.-level idle. If
q = [+1, this concludes the proof; otherwise, note that ¢;,; < t;—1 implies t;,; < ;1. We
can then repeat the same argument to show that on stage s;, 9, the datum is transmitted
in slot #),, < t;;1 — 1. By induction, we can then obtain ¢; < t, ; — 1, concluding the
proof. O

Intuitively, Lemma 7 implies that every datum of an interfering job 7;;, needs to be
counted only once towards the length of the busy chain of 7,,.. However, different data
units of the same job can be transmitted within the busy chain on different stages. For
example in Figure 6.3, the first datum of the task released at time 3 on s3 is transmitted
within [t9, t3) on stage s3, while the second datum is transmitted within [t3,%4) on s4. We
use this property to compute the desired upper-bound to fj5,,| — to in Lemmas 8 and 9.
These two lemmas provide a way to compute the length of interfering jobs on each stage.

Definition 19 (Interfering job set). Let *EJ be the set of all jobs with priority higher than

or equal to Py, that are transmitted on stage sy, with the exclusion of Ty itself.

Definition 20 (Workload). Let Wg.(t,t') be the sum of the transmission times of all jobs
k

in set gJ that are released in the interval [t,t') in the schedule ©.

Note that the set §J does not include the job under analysis 7,., but it includes any

previous jobs of task 7.

We are now ready to compute an upper bound on the length of the busy chain #5,,| —Zo.
Our methodology works by induction: we first compute the maximum length of the busy
chain segment [tg,t;) on stage s; in Lemma 8 (base case). We then compute an upper
bound to [to, ;) for each stage s, in Lemma 9 (induction step), up to stage si5,,. The
main intuition is that the busy chain is formed by a sequence of P,;.-level busy intervals on
each stage; hence, on each stage si, the transmission times of jobs in g 7 must be sufficient

to continuously transmit in the interval [ty_1, ). We thus bound the length of [to, ;) by
computing the sum of transmission times of jobs that can be transmitted within continuous
P-level busy intervals up to stage sp. We will show that we can use the defined workloads
W§J, ..., Wgs to compute such sum (note that workloads are defined based on release times

k
of jobs, not when they are transmitted); furthermore, since Lemma 7 stipulates that a job
datum cannot contribute to the busy chain on more than one stage, we will need to ensure
that each job’s transmission time is counted only once.

109



Lemma 8. Consider the busy chain of T, in schedule ©. Then for any value A such that:
A = Loy + Wga(to, to + A),
1
A is an upper-bound to t; — ty.

Proof. Note that by definition of a busy chain, the schedule is P,,.-level busy on s; in
[to, t1) and Pye-level idle in [tg — 1,t0). Hence, no job in § 7 released on s, before ty can be

transmitted in slot £y or after. Furthermore, clearly no job in ,%’J released at or after to+ A

can be transmitted in [tg, to + A). Therefore, A = Ly, + Wgu(to, to + A) is the sum of the
1

transmission time of all jobs in §J that can be executed in [to, tg + A), plus 74 itself. We

consider three possible cases:

1. There is a P.-level idle slot in [tg,to + A). Then by definition ¢; < tg + A.

2. The schedule is P,.-level busy in [tg, tg+ A) and 74, is released in [tg, tp + A). Then
it follows that 7,5 must finish exactly at to + A and the schedule is P,.-level idle
after tg + A, implying t; = to + A.

3. The schedule is Pyy-level busy in [tg, to + A) and 74 is not released in [to, to + A).
This is impossible, since Wgu(to,to + A) < A implies that there are not enough

1
data units of jobs in é"] to transmit continuously in the interval [tg,to + A) without

considering 7, itself.
In summary, considering the first two cases, we have t; < to+A, concluding the lemma. [

Since we are interested in the tightest possible upper-bound to the response time of
Tabe, We simply compute the minimal value w' of A for which Lemma 8 holds as:

U)l = m1n{A|A = Lab + WSJ<t0, t() + A)} (63)

As an example, when we apply Lemma 8 to the stage-normalized schedule in Figure 6.3,
we obtain w! = 8 and thus t; +w! = 9, which safely over-approximates the length of the
busy chain on s;. It is easy to see that the computed bound must have finite length as
long as the sum of the utilization (e.g., L;;/T;) of jobs in gJ is less than one; therefore,

under such assumption we can always compute a valid value for w®.

Lemma 9. For 1 < k < |6u,|, w"* is an upper-bound to t, — to, where:

wk :mln{A\A = Lab + WSJ(tO, to + A) + [kil - W( S JnsJ)(to, to + wkil)} (64)
k k—1 k

0 ifk=1

where It =47 _
w — Ly, otherwise
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Proof. Note that for k = 1, Equation 6.4 reduces to Equation 6.3. Also, the intersection
(kS1J N Lg 7 ) represents the set of jobs with priority higher than or equal to P, that are
transmitted on s; as well as on the previous stage s;_1.

The proof proceeds by induction. Assume that for all stages up to s,_1, the hypothesis
holds and furthermore w*~! includes the transmission time of all jobs in kS1J released in

[to, to + w* 1) plus Ta.. By Lemma 8 and definition of Wy (¢,t'), this is true for k —1 = 1
1
(base case). We need to prove that it holds for stage s, (induction step).

We show that the maximum sum of transmission lengths of 7,,. plus jobs transmitted
in the busy chain on (sy, ..., sg) in [tg, to +w") is w*; we can then use the same three cases
as in the proof of Lemma 8 to prove that w* is a valid upper bound to t;, —t,. No job in 5‘1

released at or after tq 4+ w® can be transmitted in [to, to + wk). We will next prove that no
job in EJ released before ¢y can be executed in the busy chain on stage sy (Pye-level busy

interval [t;_1,1;)). Finally, according to Lemma 7, any datum of a job contributing to the
busy chain on stages si,...,sx_1 can not contribute to the busy chain on s,. Therefore, we
can upper-bound the sum of the transmission lengths of 7,,. plus jobs transmitted in the
busy chain in [tg, to +w") by taking the workload ng (to, to +w"), summing the maximum
length of the busy chain w*~! up to stage s;_; (which includes 74.), and subtracting the
transmission time of jobs that are released in %J within [tg, to + w®) but were already

counted in w*~!, which is W( s 7 s7)(tos to + wk~1); this is equivalent to computing wk
k—1 k
according to Equation 6.4. This concludes the induction step, since we have also shown

that w* indeed includes the transmission time of all jobs in g 7 released in [tg, to +w") plus

Tabe-
We still need to prove that no job in %J released before ¢ty can be executed in the
Ppe-level busy interval [ty_1,tx). Assume that a job 75, € %’ 7 is released before t, on stage

s;, with { < k. Let ¢; be the slot during which the last datum of 7;;, is transmitted on
s;. Then it must be that ¢; < t;_; — 1, otherwise, 7;;, would be transmitting during the
P.p-idle slot [t;_1 — 1,¢;_1) given that tlf > t;_1 according to Lemma 6. We then use the
same reasoning as in Lemma 7 to show that ¢} < t;_; —1, where ¢}, is the slot during which
the last datum of 7;;, is transmitted on sy. O

Figure 6.3 shows the values of wt, ... w? computed for the figure’s schedule. Let us
consider w? = Lqp + Wi (to, to + w?) + w' — Loy, — Wiss q57)(to, to + w'). As previously
2 1 2

discussed, w! includes the transmission times of all jobs on s; including the task under
analysis T (in solid black). Wy (to, to + w?) includes the transmission times of the jobs
2

between the time interval [4,10]. Notice that the job in [0,2) is not included since it is
released at time 0 <ty = 1. We then subtract Wgsn gs)(to, to + w') which comprises the
1 2

jobs that were included in w! but are also transmitted on s,. This results in w? = 10 and
to +w? = 11. Similarly ¢y +w?® = 15, and ¢, +w* = 19. Note that w?, ..., w?* significantly
over-approximate the length of the busy chain; this is because the data transmitted on stage
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sp in [3,8) and the datum transmitted on sy and s3 in [5,6) is counted in the workload
despite not being part of the chain. However, as we show in the next section, the over-
approximation allows us to greatly reduce the number of different job release time patterns
that we need to check to find the worst-case response time of 7.

6.3.3 Critical Activation Patterns

Lemma 9 gives us a way to compute an upper-bound R on the response time of 7, based
on the pattern of release times of interfering jobs in ©: (1) we first compute the bound
wl¥ab! for the length of the busy chain #5,,| —to, and (2) we then obtain R = w!%| — (f—to)
Note that R represents the response time of 7y in the stage-normalized schedule ©. We
can compute the response time R in the original schedule © as R=R+ |04] — 1. Finally,
since R and R are measured from the activation time of Tabe, W€ can obtain the response
time from the activation of the root vertex of application A, as R = R+ ®ap. Unfortunately,
this procedure is not feasible, since we would need to compute R for all jobs Tup. of Tap,
and all possible release patterns to obtain the worst-case. To address this, we present
the following lemma to show that we only need to consider a finite set of release patterns
and jobs to determine the worst-case. The key idea is that we can create a worst-case
pattern by releasing each interfering job as soon as possible at or after ¢y; this maximizes
the workloads computed in Lemmas 8 and 9.

Lemma 10. Consider applying the following rules to the release pattern of jobs in ©:

1. Every job 7,j, that is activated before to and can be released at or after ty is released
at to.

2. Every job 7,5, that is activated after ty is released immediately at its activation time.

3. The activation time of every application A; is moved earlier in time until one job of
A; is released at time ty after suffering mazimum jitter.

Then the response time bound R computed for the modified release pattern will be no less
than the response time bound computed for the original pattern.

Proof. The first rule is concerned with any job 7;;, that is activated before t,, but can be
released at or after ¢y. If job 7;;, is released before t, it will either not interfere with the
job under analysis 7, or will cause less interference compared to being released at ty. Also
if 7, is released after ¢y, it might not interfere with 7,,.. Hence, releasing 7;;, at ¢y leads
to maximum interference.

The second rule states that any job 7;;, activated after ¢, should be immediately re-
leased. Since 7;j, is activated after ¢y, then it might interfere with the 74.. The earlier 7;5,
is released, the higher the chance it will interfere with 7,,.. Hence, the immediate release
of 7, causes the most interference.

The third rule states that the contribution of application A; to the latency of 7. is
worst when the release of one of its jobs coincides with ¢y after suffering maximum jitter.
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Moving the activations of the jobs of A; earlier in time until one job has maximum jitter
while still being released at ¢y, contributes most to the latency of 7,,.. The reason is that
by moving activations earlier in time, jobs of A; that were activated after ¢, have a higher
chance of causing more interference to 7.

Consider any interval [tg, tp+A) as in Lemmas 8 and 9. If a job was released in [ty, to+A)
in the original pattern, then it will still be released in [ty, to + A) in the modified pattern.
This is because Rules 1 and 2 force any job that could be released within [to,to + A) to
indeed be released within the interval. Furthermore, Rule 3 can not cause any job released
at or after t; to be released before t;. Therefore, the value of Wf] (to, to+A) for any set %’ J

computed in the modified pattern will be greater than or equal to the value computed in
the original pattern. It is then easy to see that for all stages s, the computed value of w*
can not decrease after applying these three rules. Since R = w!%| — (f — tp), to conclude
the proof it suffices to note that the activation time ¢ of 7, in the modified pattern can
not be larger than in the original pattern. This is because Rule 3 can move the activation

time of 7, to occur earlier but not later in time. O
Ty to
Pab bab bab Pab Pab
Tab 1 1 1 _ —
it o ly lo f 1 ta
I ']ab l
Dak Dak Dar Pak Pak
Tak L 1 _‘I.' L1 '_l - >
I Jak
(a) Original release pattern
to Pabk
Tab _| Al 1 | ] ;I' J. -
t,Q t,1 tO tl t2
Tak 41 | 1 | 1 | 1 >
Jak’

(b) Modified release pattern

Figure 6.4: Release patterns of jobs of application A,

Figure 6.4a shows an example timeline including t,, the beginning of a busy chain. It
also shows activation times (down arrows) t_o, ...ty for several jobs of 74, as well as jobs
of another higher priority task 7,; of application A,. Note that the first job of 7, cannot
be released at or after 5. Rule 1 applies to the first three jobs of 7,, and the second and
third job of 7,.; they are activated before ¢ty and have enough jitter to be released at or
after ty. These jobs are released at ty. Rule 2 applies to the last two jobs of both tasks;
they are activated after ty. These jobs are released immediately at their activation times.
Finally, Figure 6.4b shows the modified pattern after applying Rule 3; the activation time
of A, is moved earlier in time until the second job of 7, is released at t, after suffering
maximum jitter.

We call the modified pattern, obtained from Lemma 10, a critical pattern. Let 7., with
c < ¢, be the first job of 7, released at or after to. The number of critical patterns for 74,
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where 7, is the first such job is then (|S? (745)|4+1) [ [ys.o|S? (7as)|. The application under
analysis A, is activated at a time such that either a job of any interfering task in S?(7,) or
Tabe 18 Teleased at tg after suffering maximum jitter, providing [SP(7.3)| + 1 combinations.
Every other application A; is activated at a time such that a job of any interfering task in
SP(14p) is released at ty after suffering maximum jitter, providing |[SP(7,)| combinations.
Each of the possible critical activation patterns is characterized by a tuple v of indices,
one per application. Each index v(i) identifies the task of application A; that coincides
with the beginning of the busy chain. Lemma 10 represents the equivalent of Theorems
1 and 2 in Palencia and Gonzalez [108], which prove that a critical instant for the task
under analysis can be built by releasing one task of each application at the critical instant
after suffering maximum jitter. Intuitively, the beginning of the busy chain ¢y represents
the equivalent of the critical instant, except that it accounts for transmission on multiple
stages and must thus include patterns that would not be valid in single-resource systems.
For example, note in Figure 6.2 that the schedule is not P,.-level idle at time ¢y on stages
sy and ss.

Given a critical pattern, the index of the first job 7, released at or after ¢, is relevant
because it determines the activation time ¢ of Tupe. However, the time difference t —to
used to compute R depends only on the difference ¢ — ¢/. In other words, the same critical
release patterns apply to all jobs 7, of 74 as long as we vary the number of jobs of 7,
that are released in [tg, to + w!%e!).

6.3.4 Indirect Interference Jitter

Given a task under analysis 7,5, the phase ¢;;, between any task 7;; and the beginning of
the busy chain of a critical activation pattern created by task 7 is given by:

wijk = Ty — (¢ix + J§ + Jjp(Tap) — bij) mod T;

where ¢;; is the reduced offset of task 7;; to the period 0 to 7; and J;;C(Tab) is the interference
jitter suffered by 7, and is given by:

Jh(Ta) = Rie(Tap) — Lig — JI — b

The interference jitter JiIk(Tab) represents the interference suffered by task 7;; only due to
tasks in the indirect interference set of task 7,5, S (74). We use the notation R (7.) to
denote the response time of task 7;;, only due to interference from higher priority tasks in
the set ka(Tab). As an example, Figure 6.4b shows the phase @up@) = @asr between 74,
and the beginning of the busy chain created by 7., assuming that Jo, = J& + JL (1,).
Note that for the first job of 7, activated after tgy, . is exactly equal to the length of
the interval ¢ — to used in Section 6.3.3.

6.3.5 Exponential Analysis

Now we are ready to present the formulation for the exponential response time analysis.
Let us use the term critical instant for the beginning of the busy chain, ty, of a critical
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activation pattern. We introduce a numbering scheme to track the number of job instances
that we need to consider in a busy chain. We use p = —1 to refer to the instance activated
in the interval [ty — 2 % Ty, tg — T5,), p = 0 in the interval [tg — T,,t0), p = 1 in the interval
[to, to+T14), and so on. Note that the numbering scheme corresponds with the indices of fp
in Figure 6.4; furthermore, we have f, — t; = Qabu(a) + (P — 1) * T,. The first job instance
that we consider is one with the least index that has enough jitter to be part of the busy

R
chain. Hence, the first job instance pf ,, = — L%{WJ + 1.

Lemma 11. The worst-case contribution of an application A; to the busy chain of T4 on
stage s; when the activation of task T;. coincides with the critical instant is given by:

JR + JI Tab) + ©ij t— 07
Wi (Tap, 1, 1) = Z <{ ij ’LJ({T. b) ]kJ n [ TQ‘.) ]k-‘) * Lyj
vje§iD(Tab) ‘ !

Proof. By definition, a workload Wy (¢, ') includes the transmission times of all jobs in the
1
set le' 7 that are released in the interval [t, ). The set § 7 includes all jobs of higher priority

tasks of application A;, §?(Tab), that contribute to the workload on stage s;. Consider an

arbitrary higher priority task of application A;, 7;;. According to the first rule of Lemma 10,
all job instances of 7;; that are activated before the critical instant and have enough jitter
that allows them to contribute to the workload, are released at the critical instant. The
first term of the summation accounts for these job instances, this is similar to the derivation
in [108]. The second term simply applies the second rule of Lemma 10. The job instances
belonging to the second rule are a series of periodic activations starting ¢;;; time units
after the critical instant. Note, that by definition of a workload, activations released at
time ¢’ are not part of the workload. O

We further explain Lemma 11 using Figure 6.4b applied to task 7., where v(a) = k.

The first term LJ‘ﬁ“JrJ‘{’“gf:bH%kkJ accounts for the second and third jobs that are activated
before the critical instant. The second term (F;—Zk’ﬂ accounts for the two jobs that are
activated after the critical instant. Note that according to the definition of the workload, if
the numerator ¢t — @, is such that it exactly matches the period, then we will not consider

the last job as part of the worst-case contribution W (7ap, 1, ).

For clarity of presentation, we define W}, (7, [, ) as the worst-case contribution of an
application A; on the response time of task 7., on stage s;_; solely due to tasks that are
common on stages s, and s;, i.e., in the set leD(Tab) N %?(Tab). We also use p} ,, to

f— l b

denote the largest-numbered job instance in the interval w'.

Lemma 12. For each activation pattern v, the worst-case length of the busy chain for each
job p of task 1., up to stage s; is determined by:

wip(p) = Loy (P) + (P = o + 1) % Ly

l
[oy(p) = 10 (0) + VZ Wit (7ab s w3y (p)) = VZ Wi (Tans 1, w0 2 (')
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p ifp< pPha
where p' = -1
P Bay, Otherwise

Proof. This proof directly descends from Lemma 9. In the above equation, if we remove
the restriction to a specific job instance p, then we compute 1;)2,) which is the length of

the busy chain up to stage s; where the largest-numbered job instance is p} ,,. We also
l I

1;]31, ~Pabv(a)

replace p by [ T

| to find the largest-numbered job instance in %)Zb. The equation
then becomes:
Q;JZb — Pabu(a)
Ta
{Zb = I{IZb + Z Wiy (Tab, L, llUZb) - Z Wi/v(i)(Tab7 L, /;UIZb)
Vi Vi

wa:{Zb"i_([

; —‘ _pg,ab +1) % Ly

Thus, computing w! as introduced in Lemma 9. The only difference is that tluzb separates

interference from higher priority tasks and jobs from the same task into different terms.

!/

For the first stage (k = 1), the terms lllgb and W/, (Ta, [, t) are zeros thus yielding:

wa - Qpabv(a)

v v l v
s = 3 Wit (el ) ([ =t 4 1)+ Ly (6.5)

This is equivalent to Equation 6.3. The first term is the interference from higher priority
tasks (excluding jobs of 7). The second term represents all jobs of 7, including the job
under analysis.

In order to compute tlugb(p) for a specific job instance then we only consider interfer-

ence from higher priority tasks while excluding any job instances that are activated after
p. Similar to Lemma 9, and using Lemma 11, to compute zlugb(p), we add interference from

higher priority tasks .ll v, (p) to the jobs of 7, up till p. To compute { v, (p), we use the inter-
ference on the previous stage z { 1Zb(]o’ ) plus any interference on stage s; while subtracting
interferences that are common on stages s;_; and s;.

Note that we use p’ instead of p in lvlulzb(p') and l{1gb<p/)' This is due to the fact that a

certain p might only exist on stage s; but not s;_1. In such case, the worst-case length of
the busy chain that can be considered from the previous stage is only up till the maximum
p existing on 1t, 1.e., p 5 -

-1

O

Theorem 6. The worst-case response time of task T is obtained by:

Ry, = max < max (R Zb(p))> + [0ap| — 1
Vu p:p&ab'nwp %,ab |5ab
ab
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where |ﬁ|2b(p) = ‘Zb(p) — Pabo(a) — (P = 1) * To + Puap-
ab ab

Proof. Using Lemma 12, we can find the worst-case length of the busy chain for each
job p on any stage along the path dq, of 74 for a particular activation pattern v. We
also showed that the response time for a job of 7, is R = wll — ( —¢y), ie, R =

\5w|gb<p) — Qabw(a) — (p — 1) * T, for job p. To obtain the response time |6R|Zb(p) measured
ab ab

from the activation of application A,, rather than the activation of 7,,, we also need to
add the offset ¢g,. Next, we compute the maximum worst-case response time across all
job instances, which gives us the worst-case response time of 7, for activation pattern v.
From Lemma 10, we consider the maximum worst-case response time across all activation
patterns to obtain the WCRT of task 7,5, Ra. ]

6.3.6 Polynomial Analysis

The difficulty with the exponential analysis is that it is exponential in the number of
critical activation patterns. Hence, we derive an upper bound on the interference caused
by an application A; as the maximum interference caused by considering each task in A;
to coincide with the critical instant. We use the notation:

Wi (Tap, 1, 1) = max  Wig(Ta, [, 1)

Vke§{3 (Tap)

to compute this upper bound on a specific stage s;. We use this approximation only for
higher priority applications and not application A, to which the task under analysis 7
belongs. The number of critical activation patterns that we must consider is thus reduced
to |[SP(744)| + 1. In what follows, we derive a polynomial WCRT analysis for our pipelined
communication model. For clarity of presentation, we use:

Wi (Tap, 1, 1) = max Wi (7w, 1, 1)
Vke%?(ﬂzb)

where W/ (7ap, [, t) is the worst-case contribution of an application A; to the busy chain of
task 7,, on stage s;_; solely due to tasks that are on stage s;_; but not s;, i.e., in the set

§1zp (Tab) \%D (Tab)-

Lemma 13. For a critical instant created with task 7,., the worst-case length of the busy
chain for each job p of task 1., up to stage s; is determined by:

Tf)abc(p) - Z Z WZ’N* (Taba S, Szijlabc(p/)) + Z Wz* (Taln lu Qf)abc(p))

s=2...l Vi#£a Vi
+ Z W;;(Taba S, slijlabc(p/» + Wac(Tab7 lu %}abc(p)) + (p - pz,ab + 1) * Lab
s=2...1
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Proof. We first transform the interference from Lemma 12 into a more convenient form for
the discussion. Consider using Lemma 12 to compute a busy chain (through dropping p
as shown earlier). The interference from higher priority tasks is accounted for by:

{ab - l_jl‘lb + %: I/Vw(i)(Tabv L w Z Taba [ wl b)

The term z[ 131) can in turn be expanded into:

ab - Z VVW( Tab; 17 lzijlab Z (1) Tab7 17 ZEU2ab)
We expand all terms until reaching the first stage s;. Hence, we get:

ab_Zsz) 7_ab71 U} )
+ %: VVw(z) Tab) 27 %}ab - Z , ; Tab7 2 wv ) +...
+ ; WZU(Z) (Tab7 l - 1 w ab Z w ’L) T(lb’ 17 lqi)2Zb)
+ Z VViv(i)(Taba l> ’UJ Z iv(4) 7_aba la w b)

Vi
Recall that > ., W/ (Tab,l, wab) is the interference on stage s;_; from tasks in the set
§1D(Tab) N SD(Tab)- Hence the terms, > o Wive) (Tap, I — 1, wab) 2 _vi Wiyiy (Tab, 1, wab)
can be rewritten as ) ., WV, i )(Tab, [, W ab) which is the mterference due to tasks in the set
Eﬁp (Tab)\§iD (Tap). This is intuitive since the first term is interference from the set l§1i (Tab)

and the second term is the interference from the set lSﬂD (Tap) N ?? (Tap). Therefore, we can

write the interference in Lemma 12 in the form:

ZW” (Tabs 2, Wep) ZW” (Tav, L, W +;Ww(z‘)(%b,l;l;}3b)

Or in a more compact form:

ab_ Z Z Tab,S w +;I/Viv(i)(7—ab7l71f2b)

s=2...l Vi

Next, we consider the first stage on path ., of 7,,. The interference on stage s; is
equal to sz io(i) (Tap, 1 wab) Using the approximation introduced earlier, the interference

will be equal to > ., W, (Tab, 1 wab) Since the approximation considers the maximum

interference that can be achleved by A; through considering each task to coincide with
the critical instant, then doing the summation over all higher priority tasks yields an
interference that is greater than or equal to considering any individual activation pattern,
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e, WX(Tup, 1,1{)3,,) is an upper bound of ) ., Wiy (7as, 1, w v). This is similar to the

derivation in [116].

Let us consider the second stage so. The interference on this stage is equal to:

v " o v
[ = ZW Tab>2 w + ;M/w(z)(TabaZ%)ab)

This is the sum of interferences from tasks that are only on stage 1 and tasks that exist
on stage 2. Now consider the approximation:

Z Wi//*<7-ab7 2, %UZb) + Z VVi*(Tabv 2, %)Zb)
Vi

Vi

Since W} (7ap, 2, wabc) > Wivei) (Tabs 2, w” ,) and the same holds for the interference that
occurs only on stage L, W/ (Tap, 2 wab) > Wiy (Tab, 2, 11025,) Hence, the approximation on

stage s, yields an upper bound to the interference on that stage. Similarly this can be
extended to all stages until stage |J4|.

Lastly, in this Lemma, we only apply the approximation to higher priority applications,
i.e., Vi # a. Hence, we compute an upper bound for the interference from all higher priority
applications. To find the polynomial worst-case response time for task 7., we need to
consider all possible critical instants from application A,. O]

Theorem 7. The worst-case response time of task Ty is obtained by:

Ry = max ( max (Rabc(p))>+]5ab|—1
VeeSP (4p)Ub PPl P Bab |8abl
ab

where |5R abc(p) = w abc(p) — Pabv(a) — (p - 1) * Ta + ¢ab-

ab [0abl

Proof. The proof is similar to that of Theorem 6. Lemma 13 computes the worst-case
length of the busy chain for each job p on any stage along the path é,, of 7., when a task
Tae Creates the critical instant. First, we obtain the worst-case response time of a job p
measured from the activation of application A,. Next, we compute the maximum worst-
case response time across all job instances. Then, to find the worst-case response time, we
consider the creation of the critical instant by all higher priority tasks of application A, as
well as by task 7. O

6.4 Offset-based Flow-Level Analysis

Similar to OSLA, we also extend FLA [128, , | with offsets to indicate precedence
relationships between computation and communication tasks.
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6.4.1 Exponential Analysis

Recall that FLA does not take the pipelining of communication resources into consider-
ation. Hence, the path d,, of the task under analysis 7, is viewed as a single resource.
Similar to OSLA, we apply Lemma 10 to obtain a set of critical activation patterns. The
number of critical patterns that we need to consider for an exponential analysis is also
(ISP (7ap)l + 1) - TlyiaSP (7ap)|. The indirect interference jitter Jj suffered by a task 7
is defined in Section 6.3.4 with a slight modification. Since the whole path of the task 7;
is viewed as a single resource, then the worst-case transmission latency on a stage, L, is
replaced by the worst-case transmission latency on the whole path, Cj;. The equation thus
becomes:

Jh(Ta) = Rip(tap) — Clit, — Jif — bun (6.6)

We can use the same reasoning from Lemma 11 to compute the worst-case contribution
of an application A; to the response time of task 7,, when the critical instant coincides
with the activation of task 7;;. Again, since OFLA views the path d4, of task 7., as a single
resource, we replace L;, with C;,.. The equation then becomes:

Jig + i (Tab) + 03 t— i
Wik (Tap, t) = Z (L J J(T'b) (pij + { nglﬂ) * Cij
ViESP (Tap) ! ‘

For each activation pattern v, the worst-case length of the busy interval for task 7, is
determined by:

v v wg — Pabv(a v
wly = 3 Wiat (7ans i) + ([~ | = iy + 1) 5 Cap
Vi a

where pg ,;, is the lowest-numbered job instance as defined in Section 6.3.5. Notice that
this equation is equivalent to the worst-case length of the busy chain on the first stage
as defined by OSLA in Equation 6.5. The first term accounts for interference from higher
priority tasks, and the second term accounts for jobs of 7, including the job under analysis.

We now find the worst-case completion time of each job instance p in the busy interval
of task 7,,. To do this, we consider interference only up till job p and discard any job
instances activated after p. The worst-case completion time w?,(p) of job p is given by:

win(p) =D Wan(iy (Tan, Wi (p)) + (p = Pap + 1) * Cap (6.7)
Vi
Theorem 8. The worst-case response time of task T is given by:

R, = max ( max oy (p))

Yo \P=Pg abPB,ab

where Ry (p) = wey(p) — Pabo(a) — (0 — 1) * To + Pap
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Proof. Using Equation 6.7, we can obtain the worst-case completion time of each job
instance p in the busy interval of task 7,,, for a given activation pattern v. We can
now obtain the worst-case response time of job instance p, RY,(p). To get the worst-case
response time of job p, we subtract from the worst-case completion time, the activation
time of job p. The activation of job p occurs at time @40y + (p — 1) * T, measured from
the critical instant. To obtain the worst-case response time measured from the activation
of application A,, we add the offset ¢, of task 7.

To obtain the worst-case response time of task 7., first, we find the job instance with
the highest worst-case response time for each activation pattern v. Then, we find highest
worst-case response time amongst all activation patterns. O

6.4.2 Direct and Indirect Interferences

Equation 6.6 presents the worst-case contribution of application A; on the response time
of task 7,,. The jitter, suffered by the higher priority task 7;; causing interference, includes
both release jitter and indirect interference jitter. The indirect interference jitter results
from tasks in the indirect interference set of task 74, and through the intermediate task 7;;.
However, it might be the case that for a particular activation pattern, the offset between
the indirectly interfering task and the critical instant is such that it does not contribute
to the busy interval of 7. In that case, a tighter worst-case response time of task 7, for
that activation pattern, can be achieved by not considering that indirectly interfering task.

Consider the task under analysis 7,,. Assume the directly interfering task 7;;, and
an indirectly interfering task 7; which indirectly interferes with 7, through 7;;. When
computing the worst-case contribution of application A; to the response time of task 7
for an activation pattern v, the indirect interference jitter of task 7;;, J,L.Ij (Tap), is used. This
indirect interference jitter is computed based on the worst-case response time of task 7;;
due to tasks in the indirect interference set of 7., including task 7. Hence, the worst-
case effect of task 73, on 74, is increasing the jitter of task 7;; by an amount of time
equivalent to the contribution of 73; to the worst-case response time of 7;;. Note that this
indirect interference jitter is computed through the worst-case response time of task 7;;,
which, according to Theorem 8, is the worst-case response time across all critical activation
patterns for task 7;;. This means that the indirect interference jitter of task 7;; is computed
based on the worst-case for task 7;; and irrespective of the activation pattern v for which
Tab 18 being analyzed. This leads to the conclusion, that for the activation pattern v, task
Ty (which has already been accounted for in the indirect interference jitter of 7;;) might
have an offset from the critical instant such that it does not contribute to the busy interval
of Tab-

Theorem 9. The worst-case response time of task 7, is given by:

R,y = max(min( max  R)(p)))
Yo Ya p:pﬁ,ab---P“B,ab

where a 18 a combination resulting from considering each task causing indirect interference
as either in the direct or indirect interference set of T,.
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Proof. We can find out whether task 7;; contributes to the busy interval of 7,;, by moving
it to the direct interference set of 7,,. In that case, it will not cause indirect interference
jitter through 7;;, and if it does not contribute to the busy interval of 7, it will not affect
the worst-case response time analysis. It is safe to consider 73, as a directly interfering task,
because if 73, contributes to the busy interval of 7,5, then its contribution will only increase
by considering it as a directly interfering task. Therefore, in both cases (considering task
Ti as either indirectly or directly interfering with 7,,), the computed worst-case response
time of 7,, will be a correct upper bound to the response time except that one bound
will be tighter than the other. A tighter worst-case response time can, thus, be computed
by considering each task in the indirect interference set of task 7., as either indirectly or
directly interfering with 7. m

The implication of considering each task causing indirect interference as either in the
direct or indirect interference sets results in an exponential number of combinations. If
|ST(743)| is the number of indirectly interfering tasks with task 7., then the number of
combinations that we need to check is equal to 218" (mav)l for each activation pattern v.

6.4.3 Polynomial Analysis

The worst-case response time computation using Theorem 9 is exponential in the number
of activation patterns and the number of tasks indirectly interfering with 7,,. The com-
putational complexity is, thus, (IS? (7ap)| + 1) - [Tia IS (7an)] - 218" ()l For practical and
tractability reasons, we discover and present an approximated polynomial analysis.

Approximation 1

This approximation is similar to the one presented in Section 6.3.6. We derive an upper
bound on the interference caused by an application A; to the busy interval of task 7., by
computing the maximum interference caused by considering each task in A; to coincide
with the critical instant. We apply this to all higher priority applications interfering with
Tap but not to application A, to which 7,, belongs. The number of activation patterns
that we need to consider becomes [S”(7,;)| + 1 and the upper bound on the interference is
computed as:

Wi* (Tab7 t) = Vkergg()iab) Wzk (Tab7 t)

The completion time wgp.(p) of job p of task 7., when the critical instant coincides with
the activation of task 7,. is given by:

wabc(p) = v%; I/Vi*(Tab; wabc(p)) + Wac(Taba wabc(p)) + (p — Po,abc + 1) * Cab (68>

This is similar to the computation in the exponential version of the analysis (Equation 6.7).
The first term represents the upper bound on the interference on each application except
A,. The second term represents the interference suffered from tasks of application A, when
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task 7, coincides with the critical instant. The last term accounts for jobs of task 7., up
to and including the job under analysis p.

The worst-case response time of job p of task 7, when the critical instant coincides
with the activation of task 7,. is given by:

Rabc(p) - wabc(p) — Pabe — (p - 1) * Ta + ¢ab (69)

where wg.(p) is computed using Equation 6.8.

Approximation 2

The second approximation handles the combinations resulting from considering the tasks
in the indirect interference set of 7., S’(74), as either indirectly or directly interfering
with 7. Instead of checking all 2I8" (vl combinations, we only check two:

1. aq: All tasks in the indirect interference set of 7., indirectly interfere with 7.

2. ap: All tasks in the indirect interference set of 7., directly interfere with 7.

This results in a polynomial analysis with (|SP(74)| + 1) - 2 computations.

Theorem 10. The worst-case response time of task T4, is given by:

Ray = max min max R
ab VCGSC]ED(Tab)Ub(O‘Lag <p:p8,ab"'p1})3,ab abc(p)))

where RS, .(p) is computed using Equation 6.9.
Proof. Using Equation 6.9, we can obtain the worst-case response time of each job instance
p in the busy interval of task 7,;,, measured from the activation of application A,. We
consider a number of critical activation patterns created by each of the higher priority
tasks in application A, (including 7,;) coinciding with the critical instant. For each of these
critical patters, we take the minimum worst-case response time of the two combinations
that we check, ar; and ay The WCRT of task 7, is then obtained by taking the maximum
across all critical activation patterns. O

6.5 Experimental Evaluation

For the experimental evaluation of the proposed WCRT analysis, we present an application
of a priority-aware NoC as presented by Shi and Burns [120, , |. This NoC supports
wormbhole switching with flit-level preemption. Details of the NoC architecture are available
in [126]. In particular, we propose two instances of NoCs with sizes 4 x 4 and 8 x 8 for
the deployment platform. Each node in the NoC is a processing resource in the resource
model, and each link between two nodes represents a stage in the pipelined communication
resources. A computation task executes on the node, and the communication task transmits
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data across multiple links to its destination node. These links of the NoC correspond to
the different stages of the communication resource. We experiment with exponential and
polynomial versions of OSLA, OFLA, and Palencia and Gonzalez’s analyses (PAL) [108].
We also add the optimization by Turja and Maki [39] to all polynomial versions.

We setup the experiments with the following parameters:

10.

11.

12.

13.
14.

DAGs are randomly generated to represent arbitrary applications.

The number of applications per test case is 10.

. The number of tasks per application is varied in the range (3,10).
. The application period is randomly chosen in the range (1000, 1000000).
. The deadline is chosen as a coefficient (e.g. 10x) of the period.

. The applications are prioritized using rate-monotonic priority assignment.

An arbitrary priority assignment scheme is chosen for priority of tasks within each
application.

. The application release jitter is set to zero.

. Task offsets and jitters are calculated based on the methods presented in Section 6.2.

The communication utilization is equally divided between applications ranging from
10% to 4800% in steps of 60.

The processing resource utilization is set to 500%.
Applications are randomly mapped.
The routes for the communication tasks are selected using a shortest path algorithm.

For each configuration, 100 random test cases are generated and executed.

We use the following metrics for evaluation:

e Schedulability: An application will be unschedulable if the response time of any of

its tasks exceed the application’s deadline. A test case will be unschedulable if one
of its applications is unschedulable. The schedulability metric is a measure of the
percentage of schedulable test cases for a particular configuration.

e Analysis time: This is the time taken to compute the worst-case response times

for all applications in a test case. For any given configuration, we report the average
analysis time over all test cases.
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Schedulability: Figure 6.5 shows the average schedulability of applications, with 10
tasks per application, against communication utilization for the various WCRT analysis
techniques. Figure 6.5a shows the average schedulability for a 4 x 4 NoC with a deadline of
each application equal to twice its period. The schedulability of the exponential version of
OSLA is higher than that of the exponential versions of both OFLA and PAL. Furthermore,
as we increase the communication utilization of the NoC, we observe that OSLA has a
higher schedulability than the other analysis techniques. OSLA continues to schedule
application sets even after OFLA and PAL fail to schedule any application set. This is
because OSLA is able to better analyze workloads with a large amount of interference per
stage. Since such interferences do not exist when the utilization is low, all three techniques
do equally well. This holds for all graphs in Figure 6.5. From Figure 6.5b, we make the
same observations with the period set to 10 times that of the period. Notice that increasing
the deadline results in higher schedulability for all analyses simply because the deadline
is larger. Figures 6.5¢ and 6.5d show the schedulability of the polynomial versions of the
analysis for an 8 x 8 NoC. Once again, the polynomial version of OSLA outperforms OFLA
and PAL in terms of schedulability.
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Figure 6.5: Schedulability of application sets with 10 tasks per application

Computation Time: Figure 6.6 displays the run time of the exponential and polynomial
versions of OSLA, OFLA, and PAL. The results show that the run time of the exponen-
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tial versions grow exponentially as we increase the number of tasks per application when
compared to the polynomial. It also shows that the run time for the exponential OSLA
is larger than others. Exponential OSLA performs the WCRT analysis for an exponential
number of activation patterns on multiple stages, thus the large run time. Exponential
PAL has a run time larger than that of exponential OFLA. Although, both OFLA and PAL
view a communication task’s route as a single resource, exponential PAL considers indirect
interference as direct interference. This increases the number of activation patterns that
have to be considered which is exponential in an exponential analysis. Thus, leading to a
higher execution time compared to exponential OFLA.
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Figure 6.6: Run time comparison of OSLA, OFLA, and PAL

Summary: On average, OSLA improves schedulability by 48.3% and 66.7% over OFLA
and PAL, respectively. OFLA improves schedulability, on average, by 38.1% compared to
PAL.

6.6 Summary

This chapter presents a holistic analysis for computing offsets and jitters of tasks in a DAG
task graph. We present OSLA and OFLA for computing the WCRT of applications in a
pipelined communication resource model. A concrete application of this model is in esti-
mating worst-case latencies across communication interconnects such as a priority-aware
NoC. In developing these WCRT analysis techniques, we construct an exponential analysis,
and its corresponding polynomial analysis. We provide proofs of correctness to ensure that
the analyses provide upper bounds for the response times. To evaluate the analyses, we
create two instances of a NoC, and deploy a large suite of synthetic benchmarks. These
synthetic benchmarks are essential and necessary to stress test the analysis techniques.
Our results show that OFLA improves schedulability by 38.1% compared to PAL for the
two NoC sizes. The results also show that the schedulability of OSLA is 48.3% and 66.7%
higher than the schedulability of OFLA and PAL for the two NoC sizes.
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Chapter 7

Buffer Space Analysis for CMPs

Recent WCL analyses, including FLA, SLA, OFLA, and OSLA, have been developed
for priority-aware networks with flit-level preemption. Priority-aware networks employ
wormhole switching [106] and virtual channel resource allocation [31]. These techniques
reduce the required buffer space, by handling packets at the flit level, and allow multiple
flit buffers (virtual channels) to access the same physical channel. However, priority-
aware networks are susceptible to chain-blocking (blocked flits spanning multiple routers).
Chain-blocking creates back-pressure in the priority-aware network which eventually leads
to blocking of the computation and communication tasks. Even though, it is clear that
the blocking of tasks due to back-pressure affects the WCL of the communications tasks,
recent analyses ignore blocking due to back-pressure and, hence, assume infinite buffer
space in the network. This assumption is a serious impediment to implementing priority-
aware networks because the buffer space required to guarantee the validity of the computed
WClLs is unknown. This chapter presents the necessary buffer space bounds to ensure the
validity of WCLs (FLA and SLA) and the compositionality of holistic WCL estimates
(OFLA and OSLA). Reducing the buffer space beyond these necessary bounds, creates a
back-pressure in the network that can affect the resultant WCL analysis. Later in this
chapter, we also incorporate the effect of limited buffer space on the WCL analysis.

The main contribution in this chapter is the allocation of buffer space in priority-aware
routers. NoC designs usually target specific applications, and, hence, customizing the de-
sign to limit cost, such as buffer space, is applicable [12, 18]. This chapter computes buffer
space bounds to provide an ability to implement priority-aware networks and enable ex-
isting WCL analyses to provide timing guarantees for real-time applications. This enables
us to design a priority-aware router with reconfigurable virtual channel buffers.

7.1 System Model

We use the same resource model as in Section 5.1. We also use the same communication
task model presented in Section 5.2 with some minor extensions. We assume the assignment
of distinct priorities to communication tasks. We also assume that a set of communication
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tasks I' is deployed on the communication resources, and that the communication tasks
have fixed paths that are determined offline. The priority-aware network employs wormhole
switching, and a credit-based task-control mechanism to prevent buffer overflow such as one

used in the Athereal NoC [11] and QNoC [18]. The credit feedback delay in the network
is given by CF.

Each communication task 7; has a basic stage latency L;. The number of flits in
one packet of the communication task 7; is F;. The basic stage latency L; can, thus, be
computed as %, which is the total packet size divided by the stage bandwidth.

For clarity of presentation and without loss of generality, we assume that % =1to
simplify the conversion between transmission latency and buffer space. The proportionality
between transmission time and buffer space enables us to cleanly leverage WCL analyses

for the buffer space computation.

7.2 Buffer Space Requirements

In this section, we introduce SLBA and FLBA to compute the buffer space required in
the routers of the priority-aware NoC to guarantee a valid WCL analysis. Priority-aware
routers implement a task-control mechanism to prevent buffer overflow. If a virtual channel
in a receiving router is full, flits from the corresponding virtual channel in the sending router
will be blocked until there is space at the downstream router buffer. This might lead to
chain-blocking and the creation of back-pressure in the network which might invalidate the
WCL analysis. Therefore, our goal is to compute the buffer space required for each virtual
channel at each router to prevent back-pressure in the NoC. For each task 7;, we compute
the buffer space V;q (measured in flits) required at the virtual channels used by 7; at each

stage s along its path §; to avoid back-pressure in the network. First, we consider the
simplest case.

Lemma 14. Given a task 7; that suffers no interference from higher priority tasks (SP = 0)
and under the condition D; < T; — JI* (no self-blocking), the buffer space required at each
virtual channel along 6; is VC; = 1.

Proof. Since the routers implement the wormhole switching protocol, then each router will
directly forward received flits to the next router in the path d; of 7;. For example, if one
router forwards a flit to another router at time ¢, the receiving router will forward the flit
in the next cycle t; + 1. And since the virtual channels used by 7; are used exclusively by
7; along its path §; and no contention occurs for the network stages (S” = (), then flits of
7; are never blocked and are directly forwarded from one router to the other. Therefore, a
buffer of one flit size suffices for the virtual channels of task 7; in that case. O

Next, we consider two different interference scenarios:

S 1. Interference from higher priority tasks with no self-blocking from packets of the same
task under analysis.
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S 2. Interference from higher priority tasks with self-blocking from packets of the same task
under analysis.

We introduce SLBA and FLBA to compute buffer space requirements for each inter-
ference scenario along the path of each task. If enough buffer space exists at each router
to accommodate the blocked flits, there will be no back-pressure in the network.

7.2.1 Stage-Level Buffer-Space Analysis

SLBA computes the buffer space at each router on the path of the task under analysis.
Using the interference on a specific stage on the path of task 7;, we can compute the buffer
space required in the virtual channel sending flits of 7; on that specific stage. Theorems 11
and 12 compute the buffer space at each virtual channel for the interference scenarios S1
and S2, respectively.

Lemma 15. Given a task under analysis 7; suffering a worst-case interference I; from
S

higher priority tasks in the set SP on stage s on its path §;, an upper bound to the buffer

space required at the corresponding virtual channel is given by VC; = I; + 1.
S S

Proof. From Lemma 14, the buffer space required at each virtual channel along d; when
no interference exists is one flit. Hence, if I; = 0 on stage s, a buffer space of one flit will

S
be needed at the corresponding virtual channel, i.e., VC; = 1. However, if I; > 0, more
S S
buffer space will be required to prevent back-pressure.
A priority-aware router forwards a flit to each of its output channels every cycle. Con-

sider a flit of 7; attempting to access stage s in a certain cycle. This flit can only be blocked
by higher priority flits in the set SP. In the worst-case, this flit of 7; will be blocked for

a number of cycles equal to I;. T}Siis will lead to other flits of 7; accumulating in a FIFO

order. To prevent back—presgure, enough buffer space is needed to buffer these flits of 7;
in the same virtual channel. Since a priority-aware router forwards a flit every cycle, then
each cycle for which 7; is blocked causes the accumulation of one more flit in the same vir-
tual channel. Hence, in the worst-case, an extra buffer space of I; flits is needed to buffer

flits accumulating from a maximum blocking time of I; cycles. Therefore, an upper bound

to the buffer space required at the virtual channel buffering flits of task 7; to access stage
s is equal to I; + 1. Note that, by definition, the worst-case latency of 7; is a contiguous

S
time interval during which flits of 7; and higher priority flits access stage s, i.e., including
the transmission of flits of tasks 7;. Hence, no interference other than I; can occur before
S

all blocked flits of 7; can access stage s and the virtual channel becomes empty. O]

We use Lemma 15 to derive the buffer space requirements for each of the different
interference scenarios.
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Figure 7.1: Interference scenario S1 on stage s

Theorem 11. Given a task under analysis 7; with WCL R; on stage s of its route 6;

suffering interference only from higher priority tasks in the set SP under the condition
S

D; < T; — JE, the buffer space required at the corresponding virtual channel is given by:

Ri+ J + J!
VC; = min(L;, S
i min(L Z T
vr; €SP

J

Proof. Since R; is the WCL of task 7; on stage s, then the time window during which a

higher priority task 7; can interrupt 7; is R; + JJ* 4+ J/. The number of times that task
Ri+JR4J1!

7 21. And the interference that 7; suffers from the task
J

7; interrupts 7; is equal to |

—Rﬁb; aad 1= * L;. The maximum blocking I that 7; can suffer from all
J

higher priority tasks is equal to the sum of the interference Suffered from all higher priority
tasks. Therefore, using Lemma 15, an upper bound to the buffer space VC; is equal to
S

7; is then equal to |

R I
Simesp [ " A * Ly + 1.

The required buffer size is, however, also bounded by the number of flits in one packet of
the task, i.e., F; = L;. We use Figure 7.1 to prove that both bounds prevent back-pressure
in the network. The figure shows flits of task 7; (white) accessing stage s while suffering
interference from higher priority flits (grey). Assume that the first flit of 7; attempts to
access stage s at a time ¢; (upward arrow in the figure). This flit will be blocked for an

amount of time I, = Ri —L;.
S

Case I +1 < L;: At time ty =t + ]Z, the buffer will have I + 1 flits and the first flit
will be accessmg stage s, creating an empty slot for a new mcommg flit. The last flit in
the packet of task 7; accesses the stage s at time t3 =, + gz + L;.

Case L; < I;+1: At time ty = t; + L;, the buffer will have all flits of the packet under
analysis of tasks 7; while the first flit is still blocked. After a blocking time I;, the last flit
in the buffered packet of task 7; will access the stage s at time t3 =1, + g i j— L;.

In both cases, buffers sizes of I; + 1 and L; flits, respectively, will be sufficient under

two conditions: (1) no new interference occurs before time t3 and (2) no flits of another
packet of 7; arrive to the buffer before time t3. By definition, the WCL R; is measured

S
from the time the first flit of a packet of 7; attempts accessing stage s (at time ¢1) until the
time when the last flit of the packet accesses the stage (at time t3). Hence, no interference
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other than I, (used to compute R;) can occur before t3 or else it would have been part of
I;. Thus, satisfying the first condition. The earliest time at which the first flit of a new
packet attempts to access stage s is ty = t; + T; — JE. The flit of the new packet will be
blocked if t4 < t3, ie., t1 +1; — JZ-R <ti+ L;+ I,;. Since I; = R; — L;, then the blocking
occurs when T}, — JZR < R;. And for schedulability to be satisfied R; < D;. So the blocking
occurs when T; — JE < D; which contradicts the no self-blocking condition D; < T; — JE.
Hence, the second condition is satisfied as well. Therefore, min(L;, I; + 1) is a safe upper

bound to the buffer space VC; to prevent back-pressure. O]
S

To compute the buffer space in the presence of self-blocking, we consider the busy
period of task 7; on stage s. The busy period is the longest contiguous time interval of flits
of priority equal to or higher than that of 7; accessing stage s before the stage becomes

idle.

Theorem 12. Given a task under analysis T; with a busy period B; suffering interference
S

from higher priority tasks in the set SP on stage s along the path &;, the buffer space required

at the corresponding virtual channel is given by:

B; + JJR + ij
\/SCZ = mln(Z‘ZB’i k Li) Z #
vr;ESP

J

Proof. The proof is similar to the proof of Theorem 11. The busy period B; is the time

window during which interference from higher priority tasks can occur. Using Lemma 15,
Bi+J+J]
an upper bound to the buffer space VC; is equal to Evrj esp [—W * L;+1. The buffer
space is also bounded by the number of flits of 7; in the l;usy period which is equal to the
number of packets pp; multiplied by the latency (number of flits) in one packet L;. The
’ R

Bi-ﬁ—Jl
number of packets of 7; in the busy period is equal to [*——1.

If time ¢ is the time at which the first flit of 7; attempts transmission in the busy period,
then the time at which the last flit of 7; accesses stage s is equal to t3 = t1+1,+ppi*L;. We
s s

need to prove that the buffer space bound is sufficient under the two conditions mentioned
in the proof of Theorem 11. The first condition (no further interference) is satisfied by the
definition of a busy period. If further interference occurs before t3, it would have already
been accounted for by ]é: ;- The first flit of a new packet (beyond the busy period) can

attempt to access stage s at time ty =t +pp,; *T; — JZR. This new flit can only be blocked
if t4 < t3, i.e., when sz‘ « Ty — JIt < I~ —|—p;i x L;. Since ]» = ? —pBZ- x L;, then blocking
happens when pB e T Ji < B ThlS contradlcts the deﬁnltlon of a busy period because
if the length of the busy per10d exceeded the activation time of the new packet, it would
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have been part of the busy period. Therefore, min(pg; * L;, I; + 1) is a safe upper bound
to the buffer space VC; to prevent back-pressure. O

7.2.2 Flow-Level Buffer-Space Analysis

FLBA is applied for each task in the network while considering the whole path of the task
as an indivisible unit during analysis. In this case, the buffer space computed using FLA
will apply to each router along the path of the task under analysis. The theorems and
proofs are similar to those used by SLBA but applied to the whole path of the task instead
of each stage on its path. Hence, replacing L; by C}; in the interference terms.

Theorem 13. Given a task under analysis T, with WCL R; suffering interference only
from higher priority tasks in the set SP along its path &; under the condition D; < T; — JE,
the buffer space required at each virtual channel used by 1; along ; is given by:

Ri+ Jit+ J!
T

J

VC; = min(L;,

VT GSZD

Theorem 14. Given a task under analysis T; with a busy period B; suffering interference
from higher priority tasks in the set SP along its path &;, the buffer space required at each
virtual channel used by 1; along 6; is given by:

B+ J 4 J]

VTjESiD J

7.2.3 Experimentation

We quantitatively evaluate the proposed buffer space computation techniques: SLBA and
FLBA. We compare the proposed techniques to PAL [108] which was used for buffer space
computation in [90]. We perform the evaluation on a set of synthetic benchmarks as
in [90]. Synthetic benchmarks allow us to assess the effect of different factors (as well as
their extreme values) on the buffer space computation. We perform our experiments on
4 x 4 and 8 x 8 instances of the priority-aware NoC. Our goals from these experiments are
to:

1. Demonstrate the feasibility of computing buffer spaces for priority-aware networks

\)

. Quantify the reduction in the number of unfeasible implementations

w

. Quantify the reduction in buffer space bounds computed by the proposed analyses

W

. Compare the computation times of buffer spaces using PAL, SLBA, and FLBA

Our experiments involve changing multiple factors to evaluate their affect on buffer
space computation:
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1. The number of communications tasks varies from 1 task to 100 tasks (in steps of 1).
2. The source and destination pairs of the tasks are randomly mapped to the NoC.
3. The routes for the tasks are computed using a shortest-path algorithm.

4. A uniform random distribution is used to assign periods (or minimum interarrival
time for sporadic tasks) 7; to communication tasks in the range (1000,1000000).

5. The task’s deadline D; is an integer multiple of its period.
6. An arbitrary priority assignment scheme is used for selecting task priorities.

7. The utilization of the NoC’s communication resources varies from 10% to 6000% (in
steps of 60%).

8. We have 40000 possible configurations and we generate 100 different test cases for
each configuration.

We use the following evaluation metrics:

¢ Infeasible implementations: Some of the tasks might require an unbounded buffer
space. This is equivalent to accumulating flits in a virtual channel’s buffer without
the flits getting a chance to access the communication channel. If one task requires
unbounded buffer space, the test case will be considered as an infeasible implemen-
tation.

e Buffer space requirements: The buffer space requirement for a particular task is
the sum of the buffer space needed at all the virtual channels along the task’s route.
For each configuration, we report the average buffer space requirement across all test
cases. This metric is only valid for feasible implementations.

e Computation time: This is the time taken to compute the buffer space require-
ments for all tasks in a test case. For any given configuration, we report the average
computation time over all test cases.

Infeasible Implementations: Figure 7.2a shows the percentage of infeasible implemen-
tations against the utilization of the communication resources in the priority-aware NoC.
Increasing the utilization of the network stages results in an increase in the interference
suffered by the communication tasks in the network. As the interference increases, some
of the tasks will require an unbounded (infinite) buffer space. The graph shows that for
any utilization, SLBA has the least percentage of infeasible implementations followed by
FLBA followed by PAL. SLBA and FLBA reduce infeasible implementations by 42% and
27%, respectively compared to PAL.
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Figure 7.2: Infeasible implementations and buffer space requirements

Buffer Space Requirements: Figure 7.2b shows the required buffer space against the
number of tasks at a network utilization of 910%. As the number of tasks increases,
the required buffer space increases due to the increase of virtual channels and increase of
interference in the network. SLBA has the least buffer space requirements followed by
FLBA then PAL On average, SLBA and FLBA reduce the buffer space by 79% and 67%,
respectively, compared to PAL.

Computation Time: Figure 7.3 shows the computation time of the buffer space anal-
ysis techniques against the number of tasks. To guarantee fairness between the different
techniques, the computation time includes the time required to run the corresponding
WCL analyses needed to apply the buffer space analysis techniques. PAL has the least
computation time followed by FLBA then SLBA. On average, SLBA, FLBA, and PAL
have computation times of 49 ms, 23 ms, and 16 ms, respectively.
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Figure 7.3: Computation time against number of tasks
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7.3 Buffer Space Allocation

In the previous section, we computed the buffer space required for each virtual channel at
each router to prevent back-pressure in the NoC. However, usually, there is a restriction
on the buffer space available per router in the network. If the buffer space requirements,
computed using SLBA or FLBA, exceed the buffer space restrictions at any router in the
network, we cannot avoid back-pressure due to the restricted buffer space. In that case,
the WCLs computed using SLA will be invalid because SLA does not consider this back-
pressure. In this section, we extend SLA to include the effect of buffer space restrictions.
We also present an algorithm to allocate the buffer space, available at each router, to
the router’s VCs. This algorithm operates by incrementally increasing the buffer space
available for communication tasks, within the given buffer space restrictions, until the
tasks meet their deadlines.

7.3.1 Stage-Level Analysis

First, we need to establish a separation between two types of interferences: (1) the inter-
ference that a task 7; suffers from higher priority tasks on a stage s, and (2) the inter-
ference/blockage that 7; suffers on stage s due to limited buffer space at the downstream
router of the same stage. The first type of interference, g i, results from the contention

on stage s from higher priority tasks. The second type of interference results from back-
pressure. It is the amount of time for which flits of 7; are blocked from accessing stage s
because the corresponding buffer in the downstream router is full. For clarity, we refer to
the second type of interference by the term blockage. For a stage s, the upstream router
is symbolized by UR and the buffer space available for task 7; in UR is VC The down-

stream router is denoted by DR (which is also the upstream router of stage st UR) and
the buffer space available at DR for task 7; is VC

First, we will compute the worst-case blockage suffered by task 7; while ignoring credit
feedback delay. Then, we extend it to include credit feedback delay. Finally, we present
theorems for incorporating the buffer space restrictions into SLA.

Worst-Case Blockage without Credit Feedback Delay

A task under analysis 7; will suffer a worst-case blockage IB; on stage s of its route due
S

to limited buffer space at the downstream router of stage s. The amount of blockage on
stage s due to back-pressure depends on the interference suffered by 7; from higher priority
tasks on the next stage s*.

Lemma 16. Given a task under analysis 7;, the worst-case blockage that T; suffers due to
back-pressure on the last stage s;5, of its route d; is 1B; = 0.
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Proof. We showed in Section 7.2 that the buffer space VC’ required by task 7; at UR

depends on the interference suffered by 7; on stage s. We also proved in Lemma 14 that
the buffer space required when there is no interference from higher priority tasks is VC; = 1.

Since no stage follows the last stage s5,|, task 7; does not suffer interference on any stages
following si5,). Hence, according to Lemma 14, the buffer space needed at the destination
router of task 7; is only one flit. A flit of task 7;, at the destination router, will not be blocked
because it will not traverse a stage on which it can suffer interference (we consider only
interference on the network’s stages). Since there is no blockage at the downstream router
of stage s5,, then no blockage can occur on that stage due to back-pressure. Therefore, the
worst-case blockage that 7; suffers due to back-pressure on the last stage 55, is ISBi =0. O

We first consider the scenario when there is no self-blocking for the task under analysis,
i.e., under the condition D; < T; — Jf. We compute IB; for any stage s on the route of
s

task 7;. To compute IB;, we consider the interference that happens on stages following
S

stage s on the route §;. Using this interference, we can find the amount of blockage that
7; suffers on stage s because of the limited buffer space at DR.
S

Lemma 17. Given a task under analysis 7; with a worst-case latency R; on stage s of
its route &;, under the condition D; < T; — JE, and given that ng' > L;, the worst-case

blockage that T; suffers due to back-pressure on stage s is IB; = 0.

Proof. In the proof of Theorem 11, we demonstrated that under the condition D; < T;—JI,
L; is an upper bound to the buffer space required at UR. We also showed that, in the

interval R;, the maximum number of flits of task 7; that can be transmitted is L;. Consider,
the buffer space V+C,- available for task 7; at DR. If V+Ci > L;, this means that the buffer
space will be enough to hold all flits of 7; that can be transmitted within R;. Hence, in

that case, flits of 7; cannot be blocked on stage s, and IB; = 0. n

Lemma 18. Given a task under analysis 7; with a worst-case latency R; on stage s of
its route 6;, under the condition D; < T; — JZ-R, and given that V+Ci < L;, the worst-case

blockage that T; suffers due to back-pressure on stage s is given by:

IBi(R,) = max (0, IB;(R;) +

S

Ri+ JE+ JI
s—]s]w s L, —V9->

{ T;
vri€ S P\SY

Proof. For the last stage s;5,, the succeeding stage s* does not exist. Hence, the term
[+Bi(Ri) = 0. Also, the set SD \SP does not contain any tasks. Hence, for the last stage

sis,, 1Bi(R;) = max(0, VC ) = 0 which is the one derived from Lemma 16. This forms

the base case of our proof
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Our proof proceeds by induction. Assume that the lemma holds for stage s*, and
we prove the lemma for stage s. Consider the blockage [?i(Ri) that 7; suffers on stage

sT. Using the assumption that % = 1 from Section 7.1, this means that IB;(R;)
andwi S+ s
flits will be blocked from accessing stage s*. Due to back-pressure, this blockage will be

propagated to stage s. The buffer at the downstream router of stage s will hold VC’

flits of these blocked flits. Hence, the number of blocked flits on stage s will be equal to
I§Z(Rl) V;C’Z This does not take into account any interference that occurs on stage s*.

Consider the interference that 7; suffers from higher priority tasks on stage s*. These
higher priority tasks can be divided into two groups: (1) tasks that also interfere with 7;
on stage s, and (2) tasks that only interfere with 7; on stage s™. Consider the first group
of tasks. We proved in Lemma 3 that tasks of this group cannot cause more interference
on stage st than the interference they caused on stage s. We also established that, given
interference only from this group of tasks, if a flit of 7; transmits at time ¢ on stage s, then
it will transmit at time ¢+ 1 on stage s™. Since, in that case, flits of 7; are not blocked, this
means that no blockage can occur from the first group of tasks. Now, consider the second
group of tasks. These tasks cause new interferences on stage s that did not exist on stage
s. These new interferences will block the flits of 7;. The number of blocked flits corresponds
to the amount of new interference suffered on stage s™. The set %ZD \?ZD contains the tasks

S

causing new interferences. Hence, the term:

T.

J

Ri+Ji+J}
EAEELE L Y
vri€ § P\SP

computes the new interference suffered on stage s™.

The total blockage that task 7; can suffer on stage s, therefore, equals the blockage
suffered on stage s* in addition to the new interference caused on stage s™. However, the
number of blocked flits on stage s are the ones that cannot be buffered at DR. Therefore,

S

the blockage suffered on stage s now becomes:
R+ JF + Jf
T.

J

IB;(R;) +

st

|V “ * L — VC
VTjESiD\SiD
st s

Clearly, this blockage will only occur if the the buffer at the downstream router of stage
s cannot hold all the blocked flits. This means that if the blockage on stage s is less than
or equal to the number of flits V+CZ-, no blockage will occur. Hence, the usage of the max

operator to set the blockage to zero in that case. O]
We illustrate Lemma 18 using Figure 7.4. Task 7; sends flits on stage s and suffers

blockage from task 7; that causes interference on stage s*. The buffer space available for
7; at DR, V+Ci = 5. Hence, 7;, while being blocked, can send five flits before DR is full.
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Task 7; blocks 7; from ¢ + 1 to t + 7, i.e., a blockage of six flits. Task 7; can send five flits
between ¢ and ¢t + 5, after which any blockage creates a gap during the transmission of
7; on stage s. Task 7; sends 12 flits on stage s*. The blockage suffered by 7; is equal to
12 — V+C’Z- =12 — 5 =7. Next, we compute ISBi when self-blocking is possible.

Ti
Stages _ |, , . 1 [ 1. 011, [.1 St
Tj
t t+5 t+10 t+15 t+20

Figure 7.4: Illustration of Lemma 18

Lemma 19. Given a task under analysis T; with a busy period B; on stage s of its route d;,
S

and given that VPZ- > pp.i * L;, the worst-case blockage that T; suffers due to back-pressure

on stage s is IB; = 0.

Proof. In the proof of Theorem 12, we demonstrated that with self-blocking, pp; * L; is

an upper bound to the buffer space required at UR. The rest of the proof is similar to the
proof of Lemma 17. ]

Lemma 20. Given a task under analysis 7; with a busy period B; on stage s of its route 9;,

and given that \8/+Cz < Z;B’i x L;, the worst-case blockage that ; suffers due to back-pressure
on stage s is given by:

B+ Jf+ J!
LT .

IB;(B;) = max (0, H_?i<Bi) +
s s s s j

vri€ S PASY {
Proof. The proof is similar to that of Lemma 18. n

Credit Feedback Delay

So far, we have computed the blockage resulting from back-pressure in the network on any
stage of the task’s path. We, however, did not consider the credit feedback delay associated
with the credit flow-control mechanism. Apart from the blockage that we computed in
Lemmas 18 and 20, there is a credit feedback delay that is incurred every time the upstream
buffer of a stage runs out of credit. We assume that once the buffer at the downstream
router sends out a flit, it sends a credit back to the upstream router. The credit feedback
delay, CF), is the time between the downstream router sending out the credit and its receipt
by the upstream router (including any associated processing delays).

Lemma 21. A task 7;, without suffering any interference or blockage, can continuously
send flits on stage s, only if V+Ci > CF + 1.
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Proof. Assume that the first flit is sent at time ¢ from the upstream buffer and reaches
the downstream buffer at time ¢ + 1. Before time ¢, the upstream buffer has V+Ci credits
S

equivalent to the size of the downstream buffer. The upstream buffer decrements a credit
at time ¢ as it sends a flit out. The credit corresponding to the first flit is sent upstream at
time t+1, and is received by the upstream buffer after CF time units, i.e., at time t+1+ CF.
The upstream buffer will lose the last of its initial IS/+C',- credits at time ¢ + IS/+OZ~ — 1 while

sending out the flit number V+Ci. To be able to send a flit at time ¢ + V+C’i, the upstream

S
buffer must receive the credit corresponding to the first flit it sent out by that time.

Therefore, for 7; to continuously send flits on stage s, the following condition must be
satisfied: t + 1+ CF <t + V+C’i, ie, 14+ CF< V+C’,~. O

We illustrate Lemma 21 using Figure 7.5. Task 7; suffers no interference on stages s
and sT, and the buffer space available for 7; at DR is VC = 5. Hence, the upstream router

of stage s, UR starts with five credits at time t In Flgure 7.5a, the credit feedback delay
is CF = 3, hence7 the relation V+Oi > CF + 1 is satisfied. When the downstream router of

stage s, sends out the first flit at time ¢ + 1, it sends a credit upstream that is received at
time t 4+ 4. Therefore, the credit being used by UR at time t + 4 gets replaced, and the

number of available credits stays at two. This continues until task 7; sends all of its flits on
stage s. In Figure 7.5b, the credit feedback delay is CF = 5, hence, violating the relation
V+Ci > CF+ 1. The first credit sent upstream by DR at time ¢ + 1 will be received at time

t + 6. Hence, UR will run out of credits at time ¢ + 5, and the flits of 75 will suffer a gap

S
of one time unit during transmission.

UR 543222222223 45 credis UR?‘.‘??}(.’}}}}}?.I??redlts
Ti Ti
Stage s e e ey eyt Stage s N o I R/
Stage s+—|——|—|—|—|—0—|—|—|—|—l—|—|—|—>t Stage 3+—1——|—~—|—|—l—l—~—0—~—|—l—|—0—>t
t t+5 t+10 t t+5 t+10
(a) CF=3 (b) CF=5

Figure 7.5: Illustrative example of Lemma 21

Lemma 22. The worst-case blockage suffered by a task ; on stage s, under the condition
V+C,» > CF + 1, increases by CF + 1 time units when credit feedback delay is considered.

Proof. Assume the first flit of 7; is sent at time ¢ from the upstream buffer of stage s, UR.

The earliest time at which the credit for the first flit will be replaced is t + 1 + CF. SAt
time t 4+ CF, the number of credits will drop to V+CZ- — CF. From Lemma 21, we know that

if there is no interference or blockage, flits will be continuously sent. In that case, at time
t+ 1+ CF, a credit will be sent and another will be received, fixing the number of credits
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at V+Cl- — CF. This will continue as long as no interference or blockage is suffered on stage
S
s.

Consider the time instant t. which is the first time instant at which the number of
credits available in UR becomes 1. The least amount of blocking needed to reach the time

S
instant ¢, can be obtained by computing the drop required in the number of credits to
reach 1 credit. This drop is equal to V+Ci — CF — 1 credits. Since a flit is sent in one time
S

unit, then a blockage of V+CZ- — CF — 1 flits is required to reach the time instant ¢.. Note
that if V+CZ» = CF+1, the number of credits will drop to 1 after CF time units without any
blockage (ng —CF—-1=0).

Any blockage suffered, beyond the V+CZ~ — CF — 1 flits (required to reach t.), will cause

the number of credits to drop to zero. This creates a gap (empty time slot) on stage s.
Hence, any blockage suffered, beyond a blockage of V+Ci — CF — 1 flits, creates a gap on

stage s. The size of this gap (in time units) is equivalent to the number of flits causing the
blockage.

Consider the time t; > t. at which the last flit sent by task 7; on stage s is received
by DR. Between t and t;, task 7; is either sending flits on stage s or suffering blockage
S

(ignoring interferences on stage s). The blockage suffered in this time interval is only the
blockage in excess of V+Ci — CF — 1 flits. We showed in Lemma 18 that task 7; suffers

blockage in excess of IZCZ-. Therefore, the extra blockage suffered due to credit feedback
delay is equal to V+C’,- — (V+C’Z —CF—-1)=CF+1.

So far, we have ignored interference suffered on stage s. Any interference suffered on
stage s will only stop UR from sending flits. This means that UR will stop using credits

and can only gain credfts. In that case, only more blockage m?ght be needed until the
number of credits drops to 1 and the blockage starts creating gaps on stage s. This extra
blockage will always be less than or equal to the interference suffered. Therefore, CF + 1
is still an upper bound to the increase in blockage suffered by task 7; on stage s due to
credit feedback delay. O

We illustrate Lemma 22 using Figure 7.6, which is a rework of the example in Figure 7.4
while taking into account a credit feedback delay CF = 2. Task 7; suffers blockage from 7;
and runs out of credit at UR at time ¢t + 5. After a blockage of six flits, the first credit is

sent upstream at time ¢+ 7 and is received at time ¢t +9. Between ¢ +5 and t + 9, 7; suffers
a blockage of four flits which is equivalent to 6 — V;C,- +CF+1=6-5+2+1=4. Any

further blockage by 7; after time ¢ + 7 creates an equivalent gap on stage s. The figure
shows how any blockage beyond V+Cl- — CF—1=5—-2—1 =2 flits, creates gaps in the

transmission of the flits of 7; on stage s. The total blockage suffered by 7; is, therefore,
12 — 1/+C§+CF+1:12—5+2+1:10ﬂits.
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Figure 7.6: Illustration of Lemma 22

The Worst-Case Latency Analysis

Now, we can present the theorems for SLA while taking buffer space restrictions into
account. Theorem 15 presents SLA when there is no self-blocking for the task under
analysis, i.e., D; < T; — JE. Theorem 16 presents SLA when self-blocking can occur.

Theorem 15. The WCL R; of a task 7; along its path 6; and under the conditions D; <
(T; — JE) and VC; > CF + 1, is given by:
Ri=R;+JE+ |61

where

Ri+Jf+ J!
S S
—_— *Lj—
T;
J V1, eSP D
T;€S;°NS;
s s/

0 if VG > L

Ri+JE+J!
22| %« L; - VC;+ CF + 1 otherwise

T;

R+ Jf+ Jf
s 5  Lj

max (0, IBi(Ri) +
st S

V7j65§?\§zp

Proof. Taking buffer space restrictions into account, the WCL of task 7; takes the buffer
space blockage into account. From Lemma 17, the blockage IB; = 0 when V+CZ~ > L;. Using

Lemma 22, the blockage computed in Lemma 18 increases by CF+1 time units. Therefore,
the WCL of task 7; can be represented as shown above. n

Theorem 16. The WCL R; of a task 7; along its path 6; and under the condition VC; >
CF + 1, is given by:

Ry = max (wi(p)—(p—1)* T+ J) +[5] -1

p=1..pp; s
S

where
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0 if Vgi > PB,i * L

R gl
B (w; _ wi(p) + J* + J;
s ’(?Z(p)) max (0, I];%l(wl(p)) + Z { - S Lj=VCi+CF+1]  otherwise
s s s

T
J
vr;€ § P\SP

/

{p ifp < pp
p= s

pB, otherwise
Q/

Proof. In Lemma 19, we showed that the blockage IB; = 0 when V+C'Z~ > pp,i * L;. Using
Lemma 22, the blockage computed in Lemma 20 increases by CF + 1 time units. To
compute the worst-case completion time w;(p) of each job p in the busy period of 7;, we
compute the blockage suffered by p only during w;(p). Therefore, the WCL of task 7; can

be represented as shown above. O]

Theorem 17. The WCL computed using FLA is an upper bound to that computed using
SLA while considering buffer space restrictions.

Proof. The blockage computed using Theorems 15 and 16 is maximized when — V+C'Z~ +

CF+ 1 = 0. In that case, computing the blockage on one stage becomes equivalent to
accounting for interferences that occur on subsequent stages. FLA treats the task’s path
as a single resource, and, hence, assumes that all interferences occur on this single resource.
Therefore, in the worst-case, accounting for buffer space restrictions using SLA results in
a WCL equivalent to the one computed using FLA. O

7.3.2 Allocation Algorithm

Normally, there is a limit on the buffer space available for each router in the NoC. This
buffer space available to a router is distributed between the VCs of the tasks whose paths
include this particular router. Increasing the buffer space for a task can help reduce the
blockage that this task suffers. A buffer space allocation algorithm should achieve the
following objectives:

Objective 1. Schedule all tasks in a task set that is to be deployed on the NoC.

Objective 2. Minimize buffer space usage in the VCs of each router.

Optimally, the algorithm would check every possible buffer configuration for the NoC
to find the least buffer space usage while scheduling all tasks in the NoC. Such algorithm,
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however, would be highly exponential. Therefore, we propose an algorithm that attempts
to achieve these objectives using observations from the WCL analysis.

The new interferences suffered by the task under analysis on a stage st contributes to
the blockage suffered on the preceding stage s. The blockage contributing to the WCL is
that in excess of V+Ci — CF — 1. Hence, increasing the size of the buffer V+C',~ in the router

leading to the stage s reduces the suffered blockage. Therefore, if a task is unschedula-
ble, the proposed algorithm will primarily attempt to gradually increase the buffer space
available in a VC preceding a stage on which interference occurs.

Algorithm 8 BUFFER SPACE ALLOCATION
Input: T, By, Bitep
Output: VC;, Vs € d;, Vr; € T

I: Set VC, = CF+1, Vs €6, ¥ € T

2: for ail 7 €' do

3:  Compute R;

4:  while R; > D; do

5: Smod = NULL

6: for all s € §; do

7: if buffer( U5R> < Byjim and (gz > I ;or (gz = SI ; and buffer( U5R> < buﬁer(sUR)))
then mod mod mod

8: Smod = S

9: end if

10: end for

11: if $poq # NULL then

12: SVCZ- = SVCi + min(Bgtep, Biim — buffer( U;R))

13: elsgod e

14: Set I unschedulable and exit

15: end if

16: Compute R;

17:  end while

18: end for

19: return VC;, Vse€ §;, Vr; € T
S

Algorithm 8 shows the proposed buffer space allocation algorithm. The inputs to the
algorithm are the set of tasks I' deployed on the NoC, the limit By, on the buffer space
per router, and the step By, by which the algorithm increments buffer space in VCs. A
more efficient buffer space allocation can be obtained by decreasing By, at the expense of
the complexity and computation time of the algorithm. The output from the algorithm is
a buffer space assignment to the VCs along the path of each task such that the tasks are
schedulable. The algorithm uses the helper function, buffer, which returns the total buffer
space usage of VCs in a specific router.

The algorithm starts by assigning the size of all VCs to CF + 1 flits. This is the
minimum size of a VC for which Theorems 15 and 16 hold (line 1). The algorithm loops on
all tasks in order of decreasing priority (line 2), and computes the WCL of each task using
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Theorems 15 and 16 (line 3). The algorithm checks whether each task meet its deadline
(line 4). If a task does not meet its deadline (R; > D;), the algorithm will start increasing
the buffer space usage for this task. The algorithm modifies the buffer size of one VC at
a time. The VC that the algorithm chooses to modify must have room for increasing its
buffer space, i.e., buffer(UR) < By,. Amongst all VCs of a task, the algorithm chooses
to modify the VC precediilg the stage suffering most interference to reduce blockage. If
multiple stages suffer the same interference, the algorithm will choose to modify the VC
belonging to the router with the least buffer space usage (line 7). After selecting the VC to
modify, the algorithm will increase its buffer size by the smaller of By, and the buffer space
available in the router before reaching By, (line 12). Note that if the algorithm cannot
find a VC to modify, this means that all VCs of the task have allocated their maximum
possible buffer space. In such case, the task and the task set are unschedulable, and the
algorithm exits (line 14). After each VC modification, the algorithm re-computes R; to
check whether the task meets its deadline.

7.3.3 Experimentation

We quantitatively evaluate the modified SLA that takes buffer space restrictions into ac-
count. We also evaluate the proposed buffer space allocation algorithm. We perform the
evaluation on a set of synthetic benchmarks as in [90]. We perform our experiments on
4 x 4 and 8 x 8 instances of the priority-aware NoC. Our goals from these experiments are
to:

1. Demonstrate the feasibility of considering buffer space restrictions in the WCL anal-
ysis

2. Evaluate the performance of SLA compared to FLA when taking buffer space restric-
tions into account

3. Compare the buffer space bounds assigned using the proposed buffer space allocation
algorithm against SLBA and FLBA

4. Compare the computation times of the proposed algorithm against SLBA and FLBA
We vary the following factors in our experiments:

1. The number of communications tasks varies from 1 task to 100 tasks (in steps of 1).
2. The source and destination pairs of the tasks are randomly mapped to the NoC.
3. The routes for the tasks are computed using a shortest-path algorithm.

4. A uniform random distribution is used to assign periods (or minimum interarrival
time for sporadic tasks) T; to communication tasks in the range (1000,1000000).

5. The task’s deadline D; is an integer multiple of its period.
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10.

. An arbitrary priority assignment scheme is used for selecting task priorities.

The utilization of the NoC’s communication resources varies from 10% to 6000% (in
steps of 60%).

. The credit feedback delay is equal to the time taken to send one flit.

VC sizes are increased uniformly in 10 steps starting from two flits (CF + 1) with a

step equal to %00 from the size of a packet.

We have 400000 possible configurations and we generate 100 different test cases for
each configuration.

We use the following evaluation metrics:

Schedulability: A test case will be unschedulable if one of the tasks in its task
set is unschedulable. The schedulability metric is a measure of the percentage of
schedulable test cases for a particular configuration.

Improvement in WCLs: For each test case, we compute the WCL of each task
using both SLA and FLA. Remember that FLA is still an upper bound to SLA even
when buffer space restrictions are considered. We report the average improvement
for a test configuration. This metric is only valid for schedulable tasks.

Analysis time: This is the time taken to compute the latency bounds for all tasks
in a test case using both SLA and FLA. For any given configuration, we report the
average analysis time over all test cases.

Buffer space requirements: The buffer space requirement for a particular task is
the sum of the buffer space needed at all the virtual channels along the task’s route.
For each configuration, we report the average buffer space requirement across all test
cases.

Algorithm Computation time: This is the time taken to allocate buffer space
using the proposed algorithm for all tasks in a test case. For any given configuration,
we report the average computation time over all test cases.

Schedulability: Figures 7.7a and 7.7b show the schedulability against the buffer size of
the VCs for task sets with 100 tasks and utilizations 1210% and 2410%, respectively. Note
that FLA does not consider buffer sizes, and, hence, the schedulability result does not
change for different buffer sizes. At a communication utilization of 1210%, SLA improves
schedulability over FLA only slightly for 8 x 8 NoC instances as buffer space increases. For
4 x 4 NoC instances, the schedulability of SLA increases from 1.1 times that of FLA for a
buffer size of two flits, up to 4.3 times for a buffer size equal to 2 + 0.1 * L;. The reason
is that as more buffer space becomes available, blockages decreases and SLA computes
tighter WCL bounds which increases schedulability. For a communication utilization of
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Figure 7.7: Schedulability results for SLA and FLA against VC size

2410%, both SLA and FLA cannot schedule any task sets with 100 tasks for 4 x 4 NoC
instances due to high interferences. In 8 x 8 NoC instances, the schedulability of SLA is
equal to that of FLA for a buffer size of two flits, and increases to 3.4 times that of FLA
for a buffer size equal to 2 + 0.1 % L;. The schedulability of SLA increases over FLA as
more buffer space is available for the tasks.
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Figure 7.8: Latency and computation time results for SLA and FLA

Latency Improvement: Figure 7.8a shows the latency improvement against buffer sizes
for task sets with 100 tasks and a communication utilization of 3610%. As more buffer space
is available, the improvement in latencies computed by SLA over FLA increases from 1.6%
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to about 7.0% for 4 x 4 NoC instances. For 8 x 8 NoC instances, this improvement increases
from 2.4% to 12.1% as more buffer space is available for the tasks. The improvement in
WCLs increases because when more buffer space is available, SLA computes tighter WCL
bounds.

Analysis Time: Figure 7.8b compares the average computation times of both SLA and
FLA. The analysis time for SLA is approximately double that of FLA, which is acceptable
given the quality of the results of SLA.
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Figure 7.9: Results for the buffer space allocation algorithm

Buffer Space Requirements: Figure 7.9a shows the average buffer spaces computed
using the buffer space allocation algorithm, SLBA, and FLBA against the number of tasks
at a network utilization of 910%. As the number of tasks increases, the required buffer
space increases due to the increase of virtual channels and increase of interference in the
network. The proposed buffer space allocation algorithm shows a large reduction in the
buffer space requirements. On average, the buffer space allocation algorithm reduces the
buffer space requirements by 85.1% and 88.9% compared to SLBA and FLBA, respectively.

Algorithm Computation Time: Figure 7.9b compares the average computation times
of the buffer space allocation algorithm to SLBA and FLBA. The algorithm’s computation
time is about 3.8 times that of SLBA. This is a reasonable increase in computation time
given the large reductions in the computed buffer space requirements.

Summary: The main conclusion from our experiments is that SLA is able to schedule
task sets for buffers with a size of only two flits. The schedulability of SLA improves over
FLA by only 0.1% for a buffer size of two flits and increases up to 11.9% for a buffer
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size equal to 2 + 0.1 x L;. Compared to FLA, SLA reduces WCLs by 1.1% for two flit
buffers, and by 4.7% for buffer sizes equal to 2 + 0.1 * L;. Over all test cases, the average
analysis times using SLA and FLA are 81.3 mS and 40.5 mS, respectively. The buffer
space allocation algorithm reduces the required buffer space to schedule task sets by 85.1%
and 88.9% compared to SLBA and FLBA, respectively. Over all test cases, the average
computation time of the buffer space allocation algorithm is 222.7 mS.

7.4 Summary

The increase in computational requirements of real-time software and the performance
limitations of uniprocessors make CMPs with NoC interconnects a viable platform for real-
time software. Although recent research focuses on WCL analysis techniques for priority-
aware networks, buffer space requirements were not investigated. Limiting buffer space
is also important to reduce silicon area and energy. Typically, NoCs are designed for a
specific application or application-classes, hence, designers can customize buffer space based
on application requirements. In this chapter, we extended the two most-recent analyses
for WCL computation in priority-aware networks to compute buffer space requirements in
priority-aware routers which guarantee the validity of the WCL analyses. Our experiments
show that SLBA and FLBA reduce the number of infeasible implementations by 42% and
27% compared to PAL, respectively. SLBA and FLBA also reduce the required buffer space
by 79% and 67%, respectively at the expense of an acceptable increase in computation time.

In this chapter, we also present theorems that incorporate buffer space limitations into
the WCL bounds computed using SLA. SLA was able to schedule task sets with buffer
spaces as small as two flits per VC. We also present a buffer space allocation algorithm that
uses the extensions made to SLA. The proposed algorithm reduces the required buffer space
to schedule task sets by 85.1% and 88.9% compared to SLBA and FLBA, respectively.
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Chapter 8

Path Selection

We showed in Chapter 5, that at the expense of a detailed analysis, SLA results in signif-
icantly tighter bounds than FLA. These analyses model communication as periodic tasks
on the priority-aware NoC, and they assume that the mapping of tasks, and the paths
the tasks take are given. The set of tasks of an application are schedulable if the WCET
or WCL of every task is less than or equal to its deadline. However, we notice that for
an application with the same set of tasks and deadlines, the choice of paths can greatly
influence the schedulability result of the entire application. Assuming a given mapping of
the communication tasks onto the NoC, we contend that by judiciously selecting the paths
the tasks take, we can increase the number of schedulable tasks; in turn, allowing more
tasks to be schedulable.

In this chapter, we present a path selection algorithm assisted by SLA that aims to
improve the number of schedulable tasks by selecting appropriate paths in the NoC [67].
We use SLA because it considers the pipelining effect of worm-hole switched NoCs, and it
provides tight WCL bounds. This is unlike FLA, which treats the task as an indivisible unit
across multiple network links. In particular, we propose a PSA that utilizes observations
from SLA to efficiently select paths in the priority-aware NoC. PSA considers constraints
on the number of virtual channels that can be present at router ports. To avoid the high
complexity of an optimal algorithm, PSA uses heuristics to find least interference paths,
and to consider lower priority tasks while selecting paths for the higher priority ones. We
propose and compare six heuristics. For evaluation purposes, PSA operates using one of
these heuristics.

8.1 System Model

We use the same resource model as the one presented in Section 5.1. We also use the same
network model as in Section 5.2. For clarity, we assume a one cycle delay per stage. For an
application with parallel tasks, we assume a given mapping of these tasks on the priority-
aware NoC. We only consider priority-aware NoCs with mesh topologies. These tasks are
marked as source and destination pairs based on the communication task between them.
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All nodes of the priority-aware NoC contain both a processing element that executes tasks,
and a router.

Recall that in the priority-aware NoC, the routers are priority-aware arbiters that im-
plement worm-hole switching with flit-level preemption, and task control. The router
architecture we employ was originally proposed in [120, |, but for clarity we briefly
describe its architecture. The router has a VC for every distinct communication task with
a unique priority that passes through the router. Consequently, there exists a VC for each
priority level. The VCs are designed as FIFO buffers at the input ports of the router.
These FIFOs store the flits to be routed. The router selects the output port for a flit
in the VCs based on its desired destination. When there are multiple flits waiting to be
routed, the router selects and forwards the flit to the output port with the highest priority
amongst all the waiting flits. Flow control guarantees that the router only sends data to
the neighboring router if the neighbor has enough buffer space to store the data. If the
highest priority flit is blocked in the network, the next highest priority flit can access the
output link. Nodes are connected using bidirectional links with uniform bandwidth.

Since there is a VC for every distinct communication task, this guarantees that dead-
locks due to cyclic dependencies never occur. The reason is that each task has its own
buffers and thus never blocks another task for buffer space. If we, however, extend our
model to allow sharing of VCs by multiple tasks, we must guarantee that our deterministic
path selection algorithm is still deadlock-free. We can achieve this by ensuring that as the
algorithm proceeds, we have an acyclic channel dependency graph [29]. Other algorithms
have also been developed to ensure deadlock-freedom in wormhole NoCs [1410)].

8.2 Path Selection Algorithm

The path selection problem for deploying a hard real-time application on a priority-aware
NoC is the following: discover possible paths on the NoC that tasks can take given their
source and destination (Vj, V) pairs, and task requirements such that the tasks meet their
respective deadlines. That is, given a graph G = (V, E), and a set of tasks I' = {7y, ..., 7%},
select a path d; for each task 7; such that its worst-case latency is less than or equal to its
deadline D;.

8.2.1 Optimal Path Selection Algorithm

Objective. Satisfy the deadline requirements of the tasks by searching all possible paths
from source to the destination of each task.

Assuming that a path visits a node only once, each task will have 4*3v~! possible paths
(assuming a NoC with v nodes) in a mesh topology because from each node descends three
possible nodes to traverse (four for the source node). An optimal algorithm selects a path
for the first task, then selects one for the second and so on. If at any point the worst-case
latency is larger than the deadline then the algorithm backtracks one step, and selects
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an alternative path. Hence, the decision tree has k levels corresponding to the number
of tasks, and from each node descends 4 * 3V~! choices that correspond to all possible
paths yielding O((3%)*). Due to the exponential complexity of the optimal path selection
algorithm, it is necessary to find alternatives using heuristics.

8.2.2 Heuristic-based Path Selection Algorithm

The optimal path selection algorithm has exponential complexity that makes its applicabil-
ity impractical. Therefore, we present a heuristic-based path selection algorithm that uses
the stage-level analysis to guide the path selection process. Recall from Chapter 5 that the
worst-case latency of a task on a link depends on its latency, and the interfering tasks on
the preceding link. Our heuristics for path selection ensure that backtracking is not used,
and all paths are not enumerated. In addition, the heuristic routes higher priority tasks
while considering its impact on lower priority tasks. This is to avoid starving lower priority
tasks by avoiding the assignment of critical links to higher priority tasks (if possible).

Objectives

Our overall goal with path selection is to select paths for communication tasks that improve
their schedulability while incorporating the following objectives:

Objective 1. Account for lower priority tasks.

While selecting paths for higher priority tasks, expected paths for lower priority ones
are taken into account to maximize schedulability. Otherwise, PSA may overload certain
links that result in unschedulable lower priority tasks. By accounting for lower priority
tasks, we prevent them from being starved.

Consider the example in Figure 8.1, in which we select paths for the tasks 74, 7, and
(order indicates decreasing priority). Task 7, has a tight deadline (close to its basic stage
latency). And its total latency, if it suffers no interferences, willbe Ry = L1 +2—-1=3. It
is clear that 7 will miss its deadline if it suffers interference from the higher priority task
To. So if the path selection algorithm routes task 7 such that it does not interfere with task
71 (using the path (Vy, Vi, V5, V3) for instance), then task 7 will meet its deadline. Hence,
PSA attempts to account for lower priority tasks so that they can meet their deadlines.
The different heuristics, that we propose, use different methods of identifying expected
paths of lower priority tasks as discussed later in this section.

Objective 2. Consider the availability of shortest paths.

The criticality of links for lower priority tasks depends on their utilization as part of all
available shortest paths. The intuition behind the criticality is that the more the number
of available shortest paths, the more likely it is for a lower priority task to be schedulable.
Similarly, the lower the number of available shortest paths, the less likely it is for the lower
priority task to be schedulable. This concept is similar to that of critical links in [61, 38].
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Figure 8.1: An illustrative example for objectives 1 and 2 of PSA

Consider the example in Figure 8.1. Task 71 has a single shortest path: (Vj, Vs, V).
Task 75 has two shortest paths: (Vs, Vs, V3) and (Vs, V5, V3). If both tasks have tight
deadlines, the shortest paths’ links of task 7 will be more critical than those of 7. This is
because the more interference that 7 suffers on its shortest path, the less likely it is that
71 will be schedulable. Task 75, however, has higher chances of being schedulable because
it has more shortest paths. Note that a task’s shortest paths can share some links. For
instance, task 7y has three shortest paths. Link (V}, V), for instance, is common in two of
them. Such link becomes more critical than a link that appears in only one shortest path.
The different heuristics, that we propose, use more than one criterion to assign criticality
to links. We discuss this in more detail later in this section.

Objective 3. Minimize the heterogeneity of interfering tasks.

We promote the sharing of links between tasks that already interfered on previous links.
Consider the example in Figure 8.2a. Using the data in Table 8.2b, we use SLA to compute
the WCL of task 7. The latency of 7 on link (v, v,) equals Ry = [%1 x2+5=11. Task
7o suffers no interference on link (v, v3) and, hence, it continues with the same latency of
11 time units. The latency on (vs,vs) is Ry = [£2] %2+ 11 = 23. The total latency is then
Ry =23+3—-1=25.

Now assume, instead, that task 7 suffers interference only from 7 on all three links of
the path d5. In this case, the WCL of 75 on the first link will be (as computed previously)
Ry = [%] * 245 = 11. On the second and third links, since no new interferences are
introduced, the WCL remains the same Ry = 11. The total WCL, including link delays,
then becomes Ry = 11 +3 — 1 = 13. Hence, we identify from SLA that a task 7; sharing
multiple links with a task 7; results in a lower worst-case latency than sharing fewer links
with different tasks. Therefore, PSA should favor sharing links with tasks with which it

had interfered with on previous links.

Objective 4. Consider the maximum number of virtual channels per router port.

Although PSA uses distinct priority assignment to communication tasks, the NoC ar-
chitecture and available chip area might limit the number of virtual channels that can exist
per router port. PSA attempts to find paths for communication tasks such that the virtual
channel constraints are met.
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Figure 8.2: An illustrative example for objective 3 of PSA

Algorithm

We use the interference that a task suffers on a link as the cost of that link. We construct
the network graph G to capture the topology, and as the algorithm proceeds, it adds edges
that represent sharing more than one successive link with the same task, but do not actually
exist as links in the NoC. These edges hold the cost of interference over multiple links, and
the intermediate nodes that represent actual NoC nodes. For example, if the algorithm
selects the path [vy, vq, v3] for task 71, then when selecting the path for 75, the algorithm
will set the interference for links (v, vy) and (vy,v3), and creates a new edge (vq,v3) that
has a cost of interference with 7 on both links and saves v, as an intermediate node.
Although, this might not be an optimal solution with respect to space for representing all
possible cases of multiple link interferences, this heuristic allows us to achieve Objective
3 efficiently and improve schedulability. The algorithm’s complexity is discussed in more
detail at the end of this section.

Since the algorithm does not enumerate all possible paths for a task, the order of
assigning paths to tasks affects the latencies and the overall system schedulability. Accom-
modating multiple tasks in the network is known as the multi-commodity tasks problem,
which is an NP-Complete problem [2%, ]. Notice that this makes the path selection al-
gorithm intractable. Hence, we perform the path selection process according to the priority
of the tasks: descending order of priorities (high to low). However, we still accommodate
lower priority tasks while selecting a path for a higher priority task using six different
heuristics. The algorithm operates using one of these six heuristics.

H 1. Identify critical links as ones with least residual capacity. Assign weights to critical
links based on the capacity required by each task being routed. Residual capacity is the
difference between the capacity of a link and the capacity of the tasks being transmitted
over it.

H 2. Identify critical links as the links constituting the paths of lower priority tasks with
only a single shortest path.

H 3. Assign costs to all links in all shortest paths of each lower priority task. This cost
depends on the number of available shortest paths to a task, and how critical the links are
depends on how many shortest paths use the same link.

H 4. Identify critical links as ones with least residual capacity. Assign weights to critical
links based on how close the best case latency of the task being routed to its deadline.
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H 5. Identify critical links as the links constituting the paths of lower priority tasks with
only a single shortest path. While routing a task, decrement the number of considered lower
priority tasks until a selected path allows the schedulability of the task.

H 6. Assign costs to all links in all shortest paths of each lower priority task. While routing
a task, decrement the number of considered lower priority tasks until a selected path allows
the schedulability of the task.

Algorithm 9 PATH-SELECTION H1
Input: G(V,E), I' ={r : Vi € [1,k]}
Output: {6;: Vie [1,k]}

1: Let LC <+ {}

2: for all 7; € I" do

33 Let G'(V,E')st. V<~V and E' < F

4:  LC < LowestCapacities(G’, vs,, vg,)
5. UE «+ {}

6: for all 9; € LC do

7: for alle € 0; and e ¢ UE do

8: UE=UEU/{e}

0 w - Lizhondusdtn

10: w(G',e) « w(G e) +w

11: updatelntermediate(G’, €)

12: end for

13:  end for

14:  for all e € F do A

15: if RC(e) < “270 M or tasks(c) = MAX_VC then
16: w(G' e) 0

17: end if

18:  end for

19:  0; « Dijkstra(G’, vs,, va,)

20:  0; < expandIntermediate(G’, 0;)
21 INTERFERENCE-COSTS(G, ;)
22: end for

23: return {J;: Vi€ [1,k]}

Heuristics H1 and H4

Heuristics H1 and H4 are similar in the way they identify critical links. However, they
assign weights differently to these links. When routing a particular task, H1 assigns weights
to the critical links according to the capacity required by the task and the residual capacity
on the links. If the task requires a high capacity, H1 will assign a high weight to the critical
links. On the other hand, H4 assigns weights to critical links according to the slack the
task being routed has. The proposed algorithm computes a task’s slack as the difference
between the task’s deadline and its basic latency. The more the slack to the deadline,
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a larger weight will be assigned by the algorithm. The intuition is that as more slack is
available, the higher the chance is of meeting the deadline when avoiding critical links.

Algorithm 9 shows how Heuristic H1 operates. The input to the Algorithm 9 is a
priority-aware NoC with a mesh topology of size n x n represented as a graph G = (V, E),
and I' with k tasks ordered according to their priorities with 1 being the highest. The
output is a set of paths for each of the tasks in I'. When selecting a path for a task, the
algorithm updates the cost of that path in the graph G. The cost on each edge accounts
for both higher and lower priority tasks (using one of the six heuristics).

Each selected path will add interferences to the graph according to Function 10. The
function call edgelnter ference(G,e) calculates the interference on edge e, and function
nodelnter ference(G, [v;, ...,v;]) computes interference on a sequence of adjacent nodes
[Vi,...,v;] forming a path. When the algorithm selects a path for a task, it adds edges
between each node on the path and all of its successive nodes. The call intermediate saves
the intermediate nodes for newly created edges. If the edge is an actual link, then the
algorithm will add the interference on that link to the weight of the edge. However, if it is
not a link, then the algorithm will set the weight of the edge to the interference on the path
formed by the intermediate nodes of that edge in one of three cases: (1) the edge does not
exist, or (2) the edge exists and has the same intermediate nodes as the one the algorithm
is adding, or (3) the interference on the edge being added is less than the existing one.

Function 10 INTERFERENCE-COSTS
Input: G, § = [vs,...,v4]
for all v; € § do
for v; € [v;,...,vq] do
e « (vi,vj)
if j —i =1 then
w(@G, e) < edgelnterference(G, e)
else if w(G,e) = 0V nodelnterference(G, [v;,...,v]) < w(G,e)V intermediate(G,e) =

[’Ui, e, ’Uj] then
w(G, e) < nodelnterference(G, [v;, . . ., vj])
intermediate(G, e) = [vj, ..., vj]
end if
end for
end for

To account for lower priority tasks using H1, the algorithm finds the least capacity paths
by calling the function LowestCapacities. The LowestCapacities algorithm is a variation of
Dijkstra’s algorithm that finds paths with lowest capacities (LC) [61, 38]. For each unique
edge in the least capacity paths (edges in the set UF), the algorithm adds weights to the
links as shown on line 10. The residual capacity on an edge e is represented as RC(e). The
function updateIntermediate(G, e) updates the costs of all edges that do not belong to the
topology if they have the edge e as an intermediate edge. The algorithm, then, eliminates
links that have a residual capacity less than the required bandwidth. The function tasks(e)
finds the number of tasks traversing a particular edge. The algorithm also eliminates links
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that have reached the maximum number of virtual channels, MAX VC, at the receiving
router port.

Dijkstra’s algorithm is used to find the least cost path for the task being routed. The
function expandIntermediate(G,d) replaces edges in a path that do not belong to the
actual topology with the equivalent intermediate nodes. This algorithm operates in a
manner similar to that of minimum interference routing algorithms but with a few differ-
ences: (1) uses link-level interference for costs on links versus capacities, (2) keeps track
of the cost of sharing multiple links with higher priority tasks, and (3) assigns weights
differently. Heuristic H4 operates like H1 but assigns weights according to the equation
w < Dy — L + Az + Ay where Ax and Ay are the horizontal and vertical displacements,
respectively, of the source and destination nodes.

Heuristics H2, H3, H5, and H6

Algorithm 11 PATH-SELECTION H3

Input: G(V,E), ' = {7, : Vi € [1,k]}
Output: {6;: Vi€ [1,k]}

1: Let SPC[1,n—1][1,n —1] + []
2: Let SPE[1,n —1][1,n — 1] « []
3: SPCli,j] « MAX Y (i,j) € M
4: LOWER-PRIORITY(SPC,SPE,n—1,n—1)
5: for all 7; € I" do
6: Let G'(V,E')st. V'« Vand ' <+ E
7 for TjG[Ti_H,...,Tk] do
8: Az <« |(vs, mod n) — (vg, mod n)|
9: Ay < |vg, /n — vg, /n|
10: for all e € SPE[Az, Ay| do
T VO
12: w(G,e) + w(Ge) +w
13: updatelntermediate(G’, e)
14: end for
15:  end for
16: for alle € F do
17: if tasks(e) = MAX_VC then
18: w(G' e) <0
19: end if
20:  end for
21:  ¢&; < Dijkstra(G’, v, v4,)
22:  0; < expandIntermediate(G’, 0;)

23:  INTERFERENCE-COSTS(G, §;)
24: end for
25: return {0;: Vi€ [1,k]|}

Heuristic H2 assigns weights to the lower priority tasks with only a single shortest path.
The idea is based on helping higher priority tasks avoid these links to give a chance for
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lower priority tasks to meet their deadline. Heuristic H5 is similar to H2 but decrements
the considered lower priority tasks until the task being routed meets its deadline. The
algorithm for H5 starts by taking into account all lower priority tasks. If the task being
routed is unschedulable, then the algorithm will remove the assigned weights for the least
priority task. The algorithm keeps on decreasing the number of considered tasks until the
task being routed is schedulable or all lower priority tasks have been dropped. Heuristic
H3 assigns weights to all links of all shortest paths of lower priority tasks. The weights
being assigned are based on how critical the links are in the shortest paths and the number
of available shortest paths for each lower priority task. Heuristic H6 performs similarly,
but decrements the considered lower priority tasks until the task being routed meets its
deadline.

Algorithm 11 shows the operation of heuristic H3. The inputs and outputs of Algo-
rithm 11 are similar to those of Algorithm 9. To account for lower priority tasks using H3,
the algorithm finds the number of shortest paths available, and the number of times each
edge is used amongst all the shortest paths for every lower priority task. The simplest
method to obtain this information is by finding all shortest paths for a task, which for a
mesh topology has a complexity of 22"~V i.e. 2". However, notice that that the informa-
tion we require depends only on the relative x and y positions of the source and destination
nodes: Az and Ay. Hence, we use memoization, which is a form of dynamic programming
that reduces the complexity to n. The algorithm makes a single call to Function 12 that
calculates the number of shortest paths, and the count of each edge on these paths for
all possible combinations of Ax and Ay. Array SPC stores the number of shortest paths
available for a given Ay and Az, and array SPFE stores, for every Ay and Az, the number
of times each edge appears on these shortest paths. SPC has n? entries while SPE has
n? % 2n x (n — 1) entries. The function recursively uses the information from nodes with
lower values of Ay and Ax.

Algorithm 11 adds costs to the edges based on a speculation of the paths that will
be selected for lower priority tasks as described above. The function count(SPE][i,j],e)
retrieves the count of an edge e for a specific Ay and Axz. The algorithm calculates Ay
and Az for each lower priority task and adds a cost to the links involved. A weight is used
to represent the criticality of the edge which is equal to the edge count in SPFE divided
by the number of shortest paths. This weight is multiplied by, L, the basic link latency
of the lower priority task over the slack that it has to its deadline on the speculated path
where Dy, is the deadline and C}, is the basic latency. The algorithm eliminates links that
have utilized the maximum number of virtual channels. Dijkstra’s algorithm is used to
find the least cost path for the task being routed.

Heuristic H2 only accounts for lower priority tasks with only a single shortest path.
Hence, the criticality of the edges for H2 is the same for all considered shortest paths, i.e.,
it does not require knowledge of the edge count SPE or the shortest paths count SPC.
Therefore, Algorithm 11 for H2 will not instantiate SPE and SPC arrays or call LOWER-
PRIORITY. The algorithm will only update edge costs if a lower priority task has a single
shortest path, i.e., (Az = 0V Ay = 0). The weight assigned to all edges of the shortest
path is equal to the basic link latency over the slack that it has to its deadline on the

speculated path, i.e., line 11 in Algorithm 11 would be w + DkL—ka'
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Function 12 LOWER-PRIORITY
Input: SPC, SPE, i, j
if SPC[i,j] < MAX then
return SPCi, j]
end if
if i=0& j =0 then
SPC[i,j] « 1
SPEi,j] + []
else if i = 0 then
SPCli,j] < LOWER-PRIORITY(SPC,SPE,i,j — 1)
SPEli,j] + SPEi,j — 1] + edge(i, j,i,j — 1)
else if j = 0 then
SPCli, j] + LOWER-PRIORITY(SPC,SPE,i—1,j)
SPEli,j] + SPE[i — 1, j] + edge(i,j,i — 1, 7)
else
SPCi, j] + LOWER-PRIORITY(SPC,SPE,i,j — 1)+
LOWER-PRIORITY(SPC,SPE,i —1,j)
SPEli,j] < SPEli,j — 1) + SPE[i — 1, j] + edge(i, j,i,j — 1) + edge(i, j,i — 1, )
end if

Heuristics H5 and H6 are equivalent to H2 and 3, respectively, but with a slight modi-
fication to Algorithm 11. An extra loop will exist outside the loop at line 7. The new loop
will decrement the set of considered lower priority tasks when assigning weights until the
task for which the algorithm is selecting a path becomes schedulable.

Complexity Analysis

Recall that we have k tasks in a graph with v vertices. Function 12 has a complexity v and
is called only once. At worst, each task will have a path with v nodes. The number of edges
that the algorithm will create is given by: k* (v —2)+ (v —3)+...+1) = kx> (v —1).
Thus, in the worst case, the algorithm will create k * v? edges. The functions Dijkstra and
expandIntermediate have linear complexity v. The function updatelntermediate uses
a structure that saves, for each edge e, newly created edges which e is a part of as an
intermediate edge. The maximum number of edges that can be involved in all shortest
paths between two nodes is 2(v — \/v). The overall complexity of Heuristic H3 is therefore
given by: k? % 2(v — \/v) * k * v* which is O(k® * v®). Although, this is a high complexity
compared to minimum interference algorithms for example, PSA never elicits that upper
bound computation time which assumes that each edge is part of all newly created edges.

Heuristic H2 only updates costs of edges on single shortest paths, i.e., line 10 in Al-
gorithm 11 will only loop on edges in a single path. In a /v x y/v mesh topology, a
single shortest path means that (Az = 0V Ay = 0). Thus, the number of edges in such
a path is at worst /v — 1. The overall complexity of Heuristic H2 is therefore given by:
k% % (y/u — 1) % k x v* which is O(k® x v2?).

Heuristics H5 and H6 are similar to H2 and H3, respectively, but have an extra loop to
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decrease the number of considered tasks. This loop raises the order of k in the complexity
by one. Thus, leading to a complexity of O(k* x v*®) and O(k* * v3) for H5 and H6,
respectively.

Heuristics H1 and H4 identify links with least residual capacity when routing each task.
The LowestCapacities algorithm has a complexity O(v?) [358]. The number of links in the
mesh is equal to 2(v — y/v). Calling the function updateIntermediate for all critical links
has a complexity of O(2(v — \/v) *2(v —y/v)) = O(v?). Hence, for k tasks, the complexity
is equal to O(k * v?). Table 8.1 summarizes the complexity of all heuristics.

Table 8.1: Complexity of the different heuristics

Heuristic | Complexity
H1 O(k * v?)
H2 O(k? x v*9)
H3 O(k3 % v3)
H4 O(k * v?)
H5 O(k* x v%9)
H6 O(k* x v?)

8.3 Experimentation

We quantitatively compare PSA against the WSP algorithm, and MIRA [61, 38]. We also
evaluate the operation of PSA using each of the six proposed heuristics. In Section 8.3.1,

we prove the statistical significance of our experimentation results. All tests were run on
an AMD Opteron 6174 2.2 GHz processor with 8.0 GB of memory.

We vary several parameters during experimentation to assess their effect on the schedu-
lability of tasks, and the execution time of the different algorithms. The proposed ranges
for the parameters are either in accordance with or cover a wider range than the ones used
in [126]. Note that for the utilization range, we start from an 0.4 link utilization to stress
test the different algorithms at higher utilization values. Our experiments use 4 x 4 and
8 x 8 mesh topologies for the NoC. We vary the following factors in our experiments:

1. The basic link latency of a task is randomly chosen from a uniform distribution in
the range [16,1024].

2. We vary the link utilization between [0.4,0.85] in step increments of 0.05. The link
utilization of a task 7; is its basic link latency divided by its period: U; = L;/T;.

3. The deadline D; takes values between [0.7,1.0] in increments of 0.1 as a ratio of
period T;.

4. The number of tasks in the network ranges between [10, 100] in steps of 10.

5. The maximum allowed number of virtual channels per router port is 4.
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6. The mapping of the source and destination nodes for the communication tasks is
random.

7. Priorities are randomly assigned to the tasks.

8. With these parameters, we have a full factorial experiment with 800 different config-
urations. We generate 1000 test cases per configuration.

We use the following metrics to quantitatively evaluate the performance of the heuristics
that we propose:

e Number of schedulable configurations: A task is unschedulable in one of two
cases: 1) total worst-case latency of its route is larger than its deadline, or 2) no route
is available that satisfies the bandwidth requirements of the task. If, for any given test
case, any task is unschedulable, then the test case is unschedulable. Comparing the
number of schedulable configurations across the different heuristics measures their
ability to make the best use of the NoC resources to schedule an application. A
higher number of schedulable configurations is better.

e Ratio of unschedulable tasks: For each test case, we measure the number of un-
schedulable tasks for each path selection algorithm. The ratio of unschedulable tasks
for any given test case shows how one path selection algorithm improves schedulabil-
ity over another. The average ratio of unschedulable tasks at a certain factor level is
the geometric mean of all ratios of one path selection algorithm to the other at that
factor level. Note that the ratio of unschedulable tasks can still be calculated for an
unschedulable configuration. A lower ratio of unschedulable tasks is better.

e Computation time: The computation time for a test case is the time the algorithm
spends in selecting paths for all tasks in the test case. This metric enables us to
reason about the feasibility of using a path selection algorithm in the deployment of
applications to a NoC.

Schedulability of Configurations

Figure 8.3a shows the number of schedulable configurations for each of the heuristics against
the number of tasks. Each point is an average of 80 configurations with 1000 test cases
per configuration. For 40 tasks and beyond, the number of fully schedulable configurations
drops to zero for all path selection algorithms, because the number of tasks becomes too
large to fit in a 4x4 or an 8x8 mesh. As the number of tasks increase, the number of
schedulable configurations for any heuristic drops. WSP has the lowest number of schedu-
lable configurations. H1, H4, and MIRA perform closely with H1 performing slightly better
than MIRA which in turn performs slightly better than H4. These three algorithms identify
critical links based on residual capacity and perform approximately alike. Heuristics H3
and H6 schedule more configurations than H2 and H5. H6 performs better than H3, and
H5 performs better than H2. Using the shortest paths of lower priority tasks to identify
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Figure 8.3: Schedulability results
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critical links considerably increases the number of schedulable configurations. Decrement-
ing the number of considered lower priority tasks, using H5 and H6, only slightly increases
schedulable configurations over Heuristics H2 and H3, respectively.

Figure 8.3b shows the number of schedulable configurations for each of the heuristics
against link utilization. Generally, as the utilization increases, the number of schedulable
configurations decreases. This is because the periodicity of the tasks gets closer to their
basic link latencies, thus increasing the interference. As utilization increases from 0.5 to
0.55, however, there is a sudden increase in the schedulability. Note that this increase in
utilization, decreases the period of a task to less than double its basic link latency. Hence,
when weights are assigned to critical links, they are completely avoided by higher priority
tasks instead of sharing them with lower priority ones. The reason is that each task requires
more than half the bandwidth capacity of each link. Therefore, more lower priority tasks
end up being scheduled, and in turn increasing the number of schedulable configurations.
Heuristics H3 and H6 schedule more configurations than H2 and H5. Again, H1, H4, and
MIRA perform closely with H4 performing better at higher utilizations. This indicates
that at higher utilizations, when the deadlines are tighter, it is more beneficial to use the
deadline for assigning weights versus the bandwidth capacity required by the tasks.

Figure 8.3c shows the number of schedulable configurations for each of the heuristics
against the deadline. As the deadline (as a ratio of the period) increases, the number of
schedulable configurations increases. This is because tasks can tolerate more interferences
as the deadlines increase. Similar to the previous graphs, Heuristics H3 and H6 schedule
more configurations than H2 and H5. H1, H4, and MIRA also perform closely. H1 and H4
schedule more configurations than MIRA at a higher deadline.

Ratios of Unschedulable Tasks

Figure 8.3d shows the average ratio of the number of unschedulable tasks of each heuristic
to WSP against the number of tasks. A smaller ratio indicates less unschedulable tasks for a
heuristic compared to WSP. As the number of tasks increases, the number of unschedulable
tasks increases for all algorithms, hence, decreasing the ratio between them and WSP.
Heuristics H3 and H6 have the least number of unschedulable tasks followed by Heuristics
H2 and H5. These are followed by H1, H4, and MIRA, respectively.

Figure 8.3e shows the average ratio of unschedulable tasks against the link utilization.
Generally, as the utilization increases, the number of unschedulable tasks increases due to
more interference. Again, Heuristics H3 and H6 have the least number of unschedulable
tasks followed by Heuristics H2 and H5. H1, H4, and MIRA perform closely with H4
performing better at higher utilizations followed by H1. This is the similar to the pattern
in Figure 8.3b. This leads to the conclusion that at higher utilizations, storing the cost
of interference over multiple links results in better schedulability. It also shows that using
the deadline to assign weights to critical links results in more schedulable tasks as opposed
to capacity requirements.

Figure 8.3f shows the ratio of unschedulable tasks against the deadline. In general,
increasing the deadline gives a higher chance for tasks to meet their deadlines, thus de-
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creasing the number of unschedulable tasks. The performance of the different heuristics is
similar to their performance in the previous figures.

Figure 8.4a shows the ratio of the number of unschedulable tasks for MIRA and the
Heuristics H1, H2, and H3 to WSP against the number of tasks for an 8x8 mesh with
U=0.4and D = 1.0. Figure 8.4b shows the same data but for MIRA and the Heuristics
H4, H5, and H6. For a given number of tasks, each box in the figure represents 1000
random test cases. The boxes represent the lower quartile, median, and upper quartile of
the data, and the whiskers show the minimum and maximum observations. It is clear that
H2, H3, H5, and H6 always perform better than WSP and MIRA except for some outliers.
H1 has a comparable performance to MIRA for 10 tasks and performs better as the number
of tasks increases. H4 performs worse than MIRA till 20 tasks and then starts to perform
better as the number of tasks increases. H1 starts performing better than H2, H3, H5, and
H6 as the number of tasks increases beyond 40 tasks. H4 performs better than H2, H3,
H5, and H6 as the number of tasks increases beyond 50 tasks. For lower number of tasks,
using shortest paths Heuristics (H2, H3, H5, and H6) can help leave these paths open for
lower priority tasks thus increasing schedulability over H1 and H4. However, as number
of tasks increase, these paths are occupied and avoiding links with low residual capacity
(H1 and H4) becomes more important and improves schedulability. H1 performs better
than H4. H5 and H6 perform slightly better than H2 and H3, respectively. The graph also
shows that for a small number of cases, WSP has less unschedulable tasks compared to
the other algorithms. The reason is that, in these cases, increasing the cost of critical links
leads to selecting non-shortest paths. This leads in some cases to unschedulable tasks due
to high interference on the chosen paths.
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Figure 8.4: Ratio of unschedulable tasks against number of tasks for 8 x 8 mesh, U = 0.4, D = 1.0

Computation Time

Figure 8.5a shows the average execution times of the algorithms against the number of
tasks. Each point represents an average of 80000 test cases with 1000 for each of the
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80 different configurations. It is clear how Heuristics H5 and H6 have higher execution
times compared to the other algorithms. The reason is that these heuristics decrement the
number of considered lower priority tasks until finding a path that allows the schedulability
of a higher priority task. This leads to a higher execution time complexity as we indicated
earlier.
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Figure 8.5: Average computation times for the different algorithms against number of tasks.

Figure 8.5b shows a close-up on the average execution times of the Heuristics H1, H2,
H3, and H4 against the number of tasks. WSP takes the least amount of execution time,
and H2 closely follows MIRA. H1, H4, and H3, however, have higher execution times. The
reason is that H2 only adds costs to lower priority tasks with one shortest path, thus doing
less computations than H1, H4, and H3. H3 has the highest computation time because it
updates the cost of all edges in all shortest paths of lower priority tasks. The maximum
observed computation times are 1.8, 2.2, 2.8, 2.9, 2.0, 2.2, 11.8, and 17.1 seconds for WSP,
MIRA, H1, H2, H3, H4, H5, and H6, respectively.

8.3.1 Summary of Experimental Results

Table 8.2 summarizes the schedulability results for all 800000 tests that were run. The
table shows the geometric mean of the percentage improvement in schedulability of each
heuristic over both WSP and MIRA. The 95% confidence intervals and the standard error
of mean are shown as well. We also use the Wilcoxon matched pairs test to measure the
significance of the improvement in schedulability of all heuristics. The p-value for the
schedulability results of each heuristic is less than 2.2 x 10716, thus showing the statistical
significance of the results.

In summary, for all 800, 000 tests, we observe an average improvement in schedulability
of 10.7%, 11.5%, 12.7%, 11.0%, 11.7%, and 12.8% over WSP for H1, H2, H3, H4, H5, and
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Table 8.2: Summary of experimentation results

. Improvement over WSP Improvement over MIRA
Heuristic
Mean | 95% CI SEM Mean | 95% CI SEM

H1 10.7% | 0.06211% | 0.03619% 3.1% | 0.05839% | 0.02979%
H2 11.5% | 0.07034% | 0.03589% 3.8% | 0.05792% | 0.02955%
H3 12.7% | 0.07132% | 0.03639% 4.9% | 0.06121% | 0.03123%
H4 11.0% | 0.06115% | 0.03120% 3.3% | 0.06860% | 0.03500%
H5 11.7% | 0.07051% | 0.03598% 4.0% | 0.05797% | 0.02958%
H6 12.8% | 0.07211% | 0.03679% 5.0% | 0.06095% | 0.03110%

HG6, respectively. The average improvement over MIRA is 3.1%, 3.8%, 4.9%, 3.3%, 4.0%,
and 5.0% for H1, H2, H3, H4, H5, and H6, respectively.

On average, H1, H3, and H4 have higher computation times than MIRA by 27.1%,
57.8%, and 29.8%, respectively. H5 and H6 have higher average computation times than
MIRA by 3.7 and 6.5 times, respectively. While, H2 uses, on average, less computation
time compared to MIRA by 0.9%. The computation times of the first four heuristics are
close to that of MIRA.

An interpretation of the experimentation results guides the choice of the heuristics to
use for path selection. For smaller number of tasks in the NoC, Heuristics H2, H3, H5, and
H6 schedule more tasks and configurations compared to H1 and H4. For larger number of
tasks beyond 40 for an 8 x 8 mesh size and beyond 20 for a 4 x 4 mesh size, Heuristics H1
and H4 give better schedulability results.

The utilization is the factor that differentiates H1 and H4. H1 schedules more tasks at
low utilizations. While H4 improves over H1 for higher utilizations beyond 0.6.

H5 and H6 have much higher computation times than their lower complexity counter-
parts: H2 and H3. They, however, give better schedulability results.

H3 has a slightly better performance than H2 but with almost double the execution
time. The same relation holds between H6 and H5, respectively.

8.4 Set-top Box Application

We illustrate the usability of the proposed path selection algorithm on a dual input channel
set-top box application. While this is a soft real-time application, we still use it mainly
because it’s a well-established application [77] with a significant amount of communication
between its various tasks.

We use the proposed PSA to select paths for the different tasks in the dual input
channel set-top box application. This application is an example of common digital video
recorders that allow recording and watching two different video streams. It can record an
input video stream to the storage device, and at the same time enable watching another
input video stream which can either be pre-recorded or from another input channel. Hence,
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in this case study, we implement the MPEG-2 encoding of the input video stream that is
being recorded, and the MPEG-2 decoding of the input video stream being watched from
disk on a multi-core real-time priority-aware NoC.

We represent the encoding and decoding throughput requirements as timing constraints
(latency requirements). Note that the results of this case study (Table 8.4) still hold for
a hard real-time application with the same task/communication characterization. We
implement a cycle-accurate simulator of the priority-aware NoC in SystemC and use it to
assess the applicability of PSA and its impact on interferences and schedulability. Our
simulator models the cores, the interconnect, and the priority-aware routers.

Figure 8.6 shows the block diagram and the mapping of the set-top box application
(assuming a 4x4 mesh priority-aware NoC). We indicate the mapping on the block as
the number, e.g., the Motion Estimation block is mapped onto core 14. We annotate
this diagram to show the encoder that writes to the hard disk, and the decoder that
outputs to the display. The encoder consists of the tasks: Source, Motion FEstimation,
DCT Estimation, Transform, Quantize, VLE, iQuantize, iTransform, and Disk. Except
for Quantize and VLE which communicate on the same core, all other communication
takes place across the NoC as shown in Figure 8.6. The decoder is composed of: Source,
VLD, iQuantize, tDCT, and Motion Compensation. The encoding and the decoding run
in parallel. The first column of Table 8.3 names the communication tasks which require
path selection in the NoC. We also add source and destination tasks for a graphical user
interface visualization, represented as task Source-Screen in Table 8.3.

~ISource J otion = pcr dTransform MPEG2
i{ Input Chl Estimation Estimation Encoder
i h g f e e :
Disk iTransform iQuantize Quantize VLE

Usource H| ﬂ ‘ [ . I
| Disk |_> VLDﬂ—F iQuantize iDCT Cgrf;

i MPEG2 Decoder

Figure 8.6: Set-top box block diagram and mapping

We apply WSP, MIRA, and PSA (with each of its six heuristics) to the set-top box
application. The inputs to all algorithms are the same: (1) the mapping of the tasks to
cores as shown in Figure 8.6 and (2) the characteristics of the communication tasks. The
algorithms are required to select paths for the communication tasks. Table 8.3 shows the
characteristics and the mapping of the different tasks in the application. Each communica-
tion task has a source node V; and a destination node V; which correspond to the mapping
of the tasks in Figure 8.6. A task has a priority P (a smaller number represents a higher
priority), a basic link latency L, and a period T'. For simplicity we assume each task has
zero release jitter J® and has a deadline D equal to its period T. We also assume a rate
monotonic priority assignment where tasks of equal periods are assigned priorities based
on their precedence relations.

166



Table 8.3: Data for set-top box application

Task Symbol | P L T Ve | Vg
Source-VLD T 1 250|375 ] 0 3
VLD-iQuant Tj 2 1250 | 375 | 3 4
iQuant-iDCT Tk 3 1250|375 | 4 7
iDCT-MC T 4 | 250 | 375 | 7 | 8

Source-ME Ta 5 1200 | 550 | 15 | 14
ME-DCT Estim. b 6 | 200 | 550 | 14 | 13
DCT Estim.-Trans. Te 7 1200 | 550 | 13 | 8
Trans.-Quant/VLE Td 8 | 250 | 550 | 8 | 15
Quant/VLE-iQuant Te 9 | 250 | 550 | 15| 9
iQuant-iTrans. Ty 10 | 250 | 550 | 9 | 15
iTrans.-Disk Ty 11 | 250 | 550 | 15 | 9

Source-Screen Ty 12 | 200 | 400 | O 1

Table 8.4: Results for the set-top box case study

Tk WSP MIRA H1, H4 H2, H3, H5, H6
Path WCL Path |WCL Path |WCL Path WCL
Ti 0,1,2,3] 253 0,1,2,3] 253 0,1,2,3] | 253 0,4,5,1,2,3] 255
7 3,7654] | 254 || [3,2,1,04] | 254 || [3.2,1,04] | 254 3,2,1,5,4] 254
T [4,5,6,7] 253 [4,5,6,7] 253 [4,5.6,7] | 253 [4,8,9,5,6,7] 255
n || [7,11,10,9,8] | 254 || [7.6,54,8] | 254 || [7,6,5,4,8] | 254 [7,6,5,9,8] 254
Ta 15,14] 201 [15,14] 201 [15,14] 201 [15,14] 201
™ [14,13] 201 [14,13] 201 [14,13] 201 [14,13] 201
e [13,12,8] 202 [13,12,8] | 202 [13,12,8] | 202 [13,12,8] 202
74 ||[8,12,13,14,15]| 254 |/[8,9,10,11,15]| 254 ||[8,9,10,11,15]| 254 || [8,12,13,14,15] | 254
7. || [15,14,13,9] | 1053 || [15,11,10,9] | 253 || [15,11,10,9] | 253 [15,14,10,9] 453
7 || [9,10,11,15] | 253 || [9,13,14,15] | 253 || [9,13,14,15] | 253 9,10,11,15] 253
7, || [15,11,10,9] | 753 || [15,14,13,9] | 1053 || [15,11,10,9] | 503 ||[15,11,10,14,13,9]| 455
Ty [0,1] 701 [0,1] 701 0,1] 701 [0,1] 201

Table 8.4 shows the paths selected by the different algorithms and the worst-case latency
of each task. The selected paths are also shown in Figure 8.7 where each task is given a
symbol (Table 8.3). According to the discussion in Section 8.3.1, since we have less than
20 tasks for a 4 x 4 mesh, we expect Heuristics H2, H3, H5, and H6 to perform better than
H1 and H4. Note that maybe because this is a small example, Heuristics H2, H3, H5, and
H6 have the same results and Heuristics H1 and H4 choose similar paths as well. WSP
has three unschedulable tasks, MIRA has two, Hl and H4 have one, and the other four
heuristics schedule all the tasks.

WSP chooses the shortest path for each of the tasks which restricts the choice of paths.
For task 7. (Quant/VLE-iQuant), WSP chooses the path with the most residual capacity
but still suffers high interference. The same happens for task 7, (iTrans.-Disk). Task 7,
(Source-Screen) has a single shortest path but suffers interference from task 7; (Source-

VLD).
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Figure 8.7: Routing of the tasks for the different algorithms

MIRA makes smarter choices by avoiding critical links to satisfy lower priority tasks.
The paths selected by MIRA are shown in Figure 8.7a. For task 7, (iTrans.-Disk), MIRA
chooses a path with the most residual capacity, however, this is not the best choice. Al-
though the chosen path has the most residual capacity, it interferes with two other tasks: 7,
(Source-MFE) and 1, (ME-DCT Estim). The path [15,11,10,9] would have been a smarter
choice as it causes less interference, this is however an artifact of PSA. The task 7, (Source-
Screen) does not have much options as it suffers interference on all possible paths making
it unschedulable.

Heuristics H1 and H4 fail to schedule task 7, (Source-Screen) like MIRA and WSP.
They, however, improve on MIRA by scheduling the task 7, (iTrans.-Disk). The main
reason is that PSA tries to minimize the heterogeneity of interfering tasks (Objective 3)
which is what makes the task schedulable.

Heuristics H2, H3, H5, and H6 schedule all tasks. The reason for this result is their
ability to avoid the paths required by lower priority tasks. While routing the highest
priority task 7; (Source-VLD), they avoid the path [0,1] which is the path for task 7,
(Source-Screen) thus making it schedulable. For the other tasks, they minimize interference
and the heterogeneity of interfering tasks to maximize schedulability.

In summary, for this application, PSA scheduled more tasks compared to MIRA and
WSP, and only PSA managed to schedule the whole application. WSP and MIRA failed
to schedule three and two tasks, respectively. Heuristcs H1 and H4 failed to schedule one
task, while the other four heuristics scheduled all the tasks of the application.

8.5 Summary

This chapter presents a path selection algorithm for routing real-time communication tasks
across a priority-aware NoC. Our algorithm accommodates the dependency of latencies
on traversed links, enables PSA to minimize the heterogeneity of interfering tasks, and
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consequently reduces the worst-case latency by appropriately selecting paths. We develop
six heuristics to account for expected paths of low priority tasks. All heuristics improve
schedulability compared to WSP by at least 10%. Compared to MIRA, H1 and H4 have
only an average improvement of 3.1% and 3.3%, respectively. These two heuristics perform
worse than MIRA for a number of configurations. H2 and H3 improve over MIRA in
schedulability by 3.8% and 4.9%, respectively. H5 and H6 improve in schedulability over
MIRA by 4.0% and 5.0%, respectively, with a small improvement over H2 and H3. The
computation times of the first four heuristics are comparable to MIRA’s and much less
than that of the optimal algorithm. The results show that SLA-based PSA utilizing H2 is
a good option in terms of complexity, computation time, and schedulability for doing the
path selection of tasks.
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Chapter 9

Conclusion

Information extraction and performance scalability are two challenges that exist in the field
of real-time systems. Deploying real-time systems to chip-multiprocessors is a solution to
the performance scalability problem. This thesis presents techniques for achieving this
deployment. These CMP-specific analysis techniques compute tight worst-case latencies
for the deployed tasks. This enables assigning more budget to the instrumentation process.
Assigning more budget to the time-aware instrumentation techniques proposed in this
thesis, allows extracting more information from programs.

Researchers develop custom NoC interconnects to use as a platform for real-time appli-
cations. Although priority-aware networks have advantages over TDM NoCs, there is no
complete flow that facilitates deploying real-time applications on priority-aware networks.
In this thesis, we try to complete this flow by presenting an analysis for deploying hard
real-time applications on priority-aware networks. This includes:

1. A stage-level analysis for computing WCLs of communication tasks in priority-aware
networks.

2. An offset-based WCRT analysis for computing end-to-end WCRTSs of real-time ap-
plications in priority-aware networks.

3. A buffer-space analysis for computing the buffer space require for valid WCL analysis
techniques for priority-aware networks.

4. An extension of stage-level analysis to incorporate limits on buffer space and a buffer
space allocation algorithm.

5. A path-selection algorithm to select paths for communication tasks that reduce net-
work interference and increase schedulability.

Future work is required to complete the deployment flow for hard real-time applications
on priority-aware NoCs. This includes:
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1. A mapping algorithm to map computation tasks to the different NoC cores to reduce
interference in the network and increase schedulability. It is common practice to
combine both the mapping and path selection algorithms. Interference computations
on the stage-level of the network using SLA might produce better results than existing
algorithms.

2. A priority-assignment algorithm to assign priorities to the computation and commu-
nication tasks to increase schedulability. The proposed analyses can be extended to
support priority sharing between tasks. An algorithm that assigns priorities to tasks,
including shared priorities, should also take buffer space allocation into account. SLA
can be used to compute WCLs on each stage based on allocated buffer space and
priorities of tasks.

3. An implementation of the priority-aware network with reconfigurable routers to re-
allocate buffer space between virtual channels based on application requirements.
The synchronization scheme used in the implementation might require modifications
to the proposed analyses.

In this work, we address one of the prominent challenges in deploying hard real-time
applications on priority-aware NoCs. That is, bounding the buffer space requirements in the
virtual channels of the priority-aware routers. We also provide tighter worst-case latency
analysis techniques compared to state-of-the-art in bounding communication latencies and
response times in priority-aware networks. Tightening the worst-case latency bounds,
increases the static time window between the application’s worst-case response time and
its deadline. This, in turn, increases the instrumentation budget available for the different
computation tasks of the application. Increasing the instrumentation budget allows the
time-aware instrumentation techniques, proposed in this work, to extract more information
from the program.

The results from the work on deploying hard real-time applications on priority-aware
NoCs are promising. This work, however, only focuses on analysis techniques for priority-
aware NoCs. A key element to validating these results is experimenting on an implemen-
tation of the priority-aware network which is part of future work. The proposed analyses
assume a fully-synchronous priority-aware NoC. Fully synchronous networks, however, have
limitations such as processing cores operating at different and maybe adaptive clock fre-
quencies. Also clock distribution amongst the cores is difficult, and the minimization of
clock skew is complex and costly. These limitations can be addressed using new clock gen-
eration and distribution techniques, and by using asynchronous communication resources
such as in globally asynchronous, locally synchronous (GALS)-type NoCs. Hence, some
implementation-specific aspects might affect the applicability and practicality of the pro-
posed deployment flow, and might require modifying the proposed techniques.

Information extraction techniques for real-time systems have to consider the time re-
quirements of such applications. We present techniques that enable static source-code
time-aware instrumentation for real-time applications. These techniques allow informa-
tion extraction from real-time applications while meeting their timing constraints. These
approaches to time-aware instrumentation include:
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1. Program transformation techniques to increase the effectiveness of time-aware instru-
mentation.

2. Slack-based conditional time-aware instrumentation to enable instrumenting the worst-
case path of a program.

3. A static instrumentation framework, INSTEP, for preserving the extra-functional
properties of a program including time.

These time-aware instrumentation techniques make use of the instrumentation budget
available to the program. Since, these techniques take the program’s timing constraints
into account, they cannot extract full traces from the instrumented program. However, the
extracted partial traces can be composed to increase the instrumentation coverage. Apart
from increasing the instrumentation coverage, partial traces are still useful. For instance,
they can be used to build inductive debugging mechanisms for deployed resource and space
constrained systems.

Worst-case execution time analysis is required for the proposed time-aware instrumen-
tation techniques. It is required before the instrumentation process to compute the WCET
of the different basic blocks of the program’s CFG. WCET analysis is also required after
the instrumentation process to ensure that the timing constraints are met. This is needed
because the proposed techniques ignore certain side-effects of the instrumentation process
such as changing the program’s memory and cache layouts. Although, in certain cases,
due to timing violations, the instrumentation process has to be repeated, the number of
retries required are low.

The proposed static source-code instrumentation techniques are suited for hard real-
time applications. These techniques can be applied to applications where WCET analysis
is common and source-code is available for instrumentation. Other time-aware instru-
mentation techniques, such as time-aware dynamic binary instrumentation, can be used
otherwise.

The time-aware instrumentation techniques proposed in this work respect the program’s
timing constraints. The information they extract is limited by the instrumentation budget
available to the program. Knowledge of the underlying platform, on which the real-time
system runs, can result in assigning higher instrumentation budgets to programs. In this
work, we present techniques for using CMPs, in particular priority-aware NoCs, as a plat-
form for deploying real-time systems. These techniques enable computing tight worst-case
latencies and response times for the real-time application. Hence, they allow for assigning
higher instrumentation budgets to applications, which enables extracting more information
using the time-aware instrumentation of real-time applications.
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