
Towards more Effective Censorship
Resistance Systems

by

Mohammad Tariq Elahi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

© Mohammad Tariq Elahi 2015

Some rights reserved.

BY NC SA

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The content in Chapter 2 was co-authored with Colleen Swanson, who provided the dis-
cussion of the global adversary and the failed limited sphere of influence assumption. John
Doucette provided the framework and preliminary analysis of the simple censor cases,
Steven Murdoch provided the real world problem motivation and the simulator and its de-
scription, and Hadi Hosseini provided a portion of the related work discussion in Chapter 3.
George Danezis provided a sketch and core code for the two PrivEx variants in Chapter 4.
Kevin Bauer provided the Tor simulation patch and scripts while Mashael AlSabah pro-
vided the related work discussion in Chapter 5. The rest of this thesis contains original
content and was authored under the supervision of Ian Goldberg.

iii

Abstract

Internet censorship resistance systems (CRSs) have so far been designed in an ad-hoc
manner. The fundamentals are unclear and the foundations are shaky. Censors are, more
and more, able to take advantage of this situation. Future censorship resistance systems
ought to be built from strong theoretical underpinnings and be based on empirical evidence.

Our approach is based on systematizing the CRS field and its players. Informed by this
systematization we develop frameworks that have broad scope, from which we gain general
insight as well as answers to specific questions. We develop theoretical and simulation-
based analysis tools 1) for learning how to manipulate censor behavior using game-theoretic
tactics, 2) for learning about CRS-client activity levels on CRS networks, and finally 3)
for evaluating security parameters in CRS designs.

We learn that there are gaps in the CRS designer’s arsenal: certain censor attacks go
unmitigated and the dynamics of the censorship arms race are not modeled. Our game-
theoretic analysis highlights how managing the base rate of CRS traffic can cause stable
equilibriums where the censor allows some amount of CRS communication to occur. We
design and deploy a privacy-preserving data gathering tool, and use it to collect statistics
to help answer questions about the prevalence of CRS-related traffic in actual CRS commu-
nication networks. Finally, our security evaluation of a popular CRS exposes suboptimal
settings, which have since been optimized according to our recommendations.

All of these contributions help support the thesis that more formal and empirically
driven CRS designs can have better outcomes than the current state of the art.

iv

Acknowledgements

ُ َمدْ ِالْح ه َّ ِينربَِّللِ َم العْاَل

These too few and inadequate words on this page can not convey the gratitude that
I have for the many mentors and supporters who have made possible this work, nor can
the sum of their influence and impact on myself and where I now stand be bound between
these covers; and yet, to thank them I must try.

Foremost is Ian Goldberg, my supervisor. I am truly indebted to him for his generosity;
from the freedom to take my time to explore and pick my topic, to the copious funding
that allowed me to focus on research, to all the time that I stole away by walking into his
always-open office with questions, and to the always collegial manner in which he shared
his knowledge and helped me work towards answers.

I am grateful to Nick Hopper for agreeing to be my external examiner and for spear-
heading the many areas of Internet censorship resistance that make it an interesting and
active field. I am grateful also to Srinivasan Keshav and Bernard Wong for their invalu-
able critique and feedback of my research proposal and along with Mahesh Tripunitara for
agreeing to be on my examining committee.

I would like to thank my many co-authors, especially Mashael Alsabah, Kevin Bauer,
George Danezis, Roger Dingledine, John Doucette, Hadi Hoseinni, Steven Murdoch, and
Colleen Swanson, for the great fun we have had solving hard problems and fighting the good
fight. I would also like to call out my CrySP lab mates Erinn Atwater, Cecylia Bocovic,
Navid Esfahani, Sarah Harvey, Kevin Henry, Ryan Henry, Atif Khan, Hassan Khan, Nikolas
Unger, Jalaj Upadhyay, and certainly not least, Tao Wang, for their gracious mental agility,
unconditional emotional support, and overall inclusiveness which made the CrySP lab a
home away from home and the Vortex a never-ending ride.

Finally, and with great affection, I want to thank my family—Ammi, Baba, Sanobar,
Bilal, and Sundus—for your unyielding faith in me as I embarked on this uncharted journey.
My dearest wife Mahvish, I will never forget the sacrifices you have made, the endless
support you bolstered me up with, and your wit and humor when I was feeling overwhelmed;
you have made all the difference. Little Sophia, the wheels on the bus do go round and
round, and may they always turn forever more.

v

In Memoriam

Mehboob Elahi
(1951–1998)

vi

Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4

2 A Systematization of Internet Censorship and Resistance 5
2.1 CRS Users and Use Cases . 8
2.2 Internet Censorship . 11

2.2.1 A Model of Censorship Apparatus 12
2.2.2 General Censor Threat Model . 15
2.2.3 General Censor Goals . 16

2.3 Censorship Resistance . 16
2.3.1 Censorship Resistance Components 16

2.4 Attack Surfaces . 21
2.4.1 CRS Information . 21
2.4.2 Dissemination channel . 22
2.4.3 Data channel . 23
2.4.4 Overt and Covert Destinations . 23

vii

2.4.5 CRS Client . 24
2.5 Desired CRS Design Goals . 25
2.6 Censorship Resistance Strategies . 27

2.6.1 Exposure Phase . 28
2.6.2 Detection Phase . 32
2.6.3 Response Phase . 35

2.7 Attack Mitigation and Remaining Gaps . 37
2.7.1 CRS Information and the Dissemination Channel 37
2.7.2 Data Channel . 39
2.7.3 Overt and Covert Destinations . 40
2.7.4 CRS Client . 41
2.7.5 Mitigation Summary and Trends 41

2.8 Revisiting Use Cases—Security and QoS 43
2.9 Revisiting Collateral Damage . 46
2.10 Conclusions . 47

3 Game-Theoretic Approaches to CRS Design 50
3.1 Introduction . 50
3.2 Censorship Games . 52
3.3 A Simple Censor Model . 53

3.3.1 Step 1: Single Round, No Apparatus 53
3.3.2 Step 2: Multiple Rounds, No Apparatus 55
3.3.3 Step 3: Multiple Rounds, With an Apparatus 57

3.4 More Realistic Censor Models . 61
3.4.1 Strategy Simulator . 63
3.4.2 Parameter Analysis . 67

3.5 Closing the Loop . 70
3.5.1 Methodology . 71

viii

3.5.2 Censor Equivalence Classes . 72
3.6 Related Work . 74
3.7 Conclusion . 75

4 Privacy-preserving Collection of CRS Statistics 77
4.1 Introduction . 77
4.2 Background . 79
4.3 Threat Model . 82
4.4 The PrivEx Schemes . 83

4.4.1 PrivEx based on Secret Sharing . 83
4.4.2 PrivEx based on Distributed Decryption 85
4.4.3 PrivEx Scheme Comparison . 88
4.4.4 Calculating and Applying Noise . 89

4.5 Security Analysis . 94
4.5.1 Resistance to Attacks . 94
4.5.2 Correlation Attack with Auxiliary Information 96
4.5.3 Security Proof for PrivEx-D2 Variant 96

4.6 Implementation . 99
4.6.1 Computational Overhead . 100
4.6.2 Communication Overhead . 102

4.7 Real-World Deployment . 105
4.8 Related Work . 108
4.9 Future Work . 111
4.10 Conclusion . 111

5 An Analysis of Path Selection Security in Tor 113
5.1 Introduction . 113
5.2 Background . 116

ix

5.2.1 Tor Overview . 116
5.2.2 Entry Guard Relays . 117

5.3 COGS Framework . 120
5.4 Measurements and Evaluation . 125

5.4.1 Natural Churn . 127
5.4.2 Guard Rotation . 129
5.4.3 Guard List Size . 131
5.4.4 Available Bandwidth . 134

5.5 Discussion . 134
5.6 Related Work . 138
5.7 Impact . 140
5.8 Conclusion . 141

6 Conclusion 143
6.1 Progress on Thesis . 143
6.2 Limitations . 143
6.3 Future Work . 144

References 147

x

List of Tables

2.1 Strategies employed to defend against censorship threats to CRS components 17
2.2 Attack surfaces and their relevant attacks 22
2.3 Drill-down of techniques employed to defend against censorship threats to

CRS components . 38
2.4 Overview of security and performance properties of various CRS designs . 44

3.1 Cover protocol bandwidth effects on utility: Censor Variant 1 69
3.2 Cover protocol bandwidth effects on utility: Censor Variant 2 69
3.3 Cover protocol traffic distribution affects on utility: Censor Variant 1 . . . 70
3.4 Cover protocol traffic distribution affects on utility: Censor Variant 2 . . . 70

4.1 PrivEx-S2 epoch computation overhead . 101
4.2 PrivEx-D2 epoch computation overhead 102
4.3 PrivEx-S2 epoch communication overhead 103
4.4 PrivEx-D2 epoch communication overhead 104

5.1 Tor guard stability, Apr–Nov 2011 . 127
5.2 Median Tor guard bandwidth, Apr–Nov 2011 135

xi

List of Figures

2.1 A general censorship arrangement with a simple CRS deployment 6
2.2 A simplified SoI and SoV arrangement . 11
2.3 An abstract censorship apparatus and workflow 13
2.4 CRS composition . 18
2.5 Tying strategies to the censor error model 27

3.1 Best censor strategies at critical circumvention traffic thresholds 61
3.2 Utility of a censor with high false-positive and false-negative tolerance . . . 65
3.3 Utility of a censor with high false-positive and false-negative tolerance . . . 65
3.4 Utility of a censor with high false-positive and low false-negative tolerance 66
3.5 Utility of a censor with high false-positive and low false-negative tolerance 67
3.6 Best censor blocking patterns for various censor types 73
3.7 Circumventor utility for best responses for various censor types 74

4.1 An overview of the Tor network and typical traffic flow 80
4.2 PrivEx-S2 variant based on secret sharing 84
4.3 PrivEx-D2 variant based on distributed decryption 86
4.4 Privacy loss due to differentially-private noise 90
4.5 Utility loss due to differentially-private noise 91
4.6 Security proof for PrivEx-D2 variant . 99
4.7 A CDF of the aggregated statistics collected by PrivEx as compared to the

Gaussian noise added . 106

xii

5.1 COGS framework . 121
5.2 Client compromise rates at various adversarial bandwidths 126
5.3 Stability of routers as well as only guards 128
5.4 Effects of natural churn and guard rotation on active guard list compromise 128
5.5 Comparison of natural churn and guard rotation effects on clients’ exposure

to guards . 130
5.6 Client compromise rates at various client guard list sizes, with guard rotation132
5.7 Client compromise rates at various client guard list sizes, without guard

rotation . 132
5.8 Client guard exposure with guard rotation at various guard list sizes . . . 133
5.9 Client guard exposure without guard rotation at various guard list sizes . . 133
5.10 Client’s expected circuit performance with guard rotation at various guard

list sizes . 134
5.11 Guard longevity, Apr–Nov 2011 . 137
5.12 Timeline of subsequent research and developments to the Tor network due

to COGS. 141

xiii

Chapter 1

Introduction

The Internet is a tool that impacts the lives of hundreds of millions of people around the
world. It allows the fluid exchange of information and ideas from disparate corners of the
globe, linking individuals together economically, socially, and politically. The ease with
which information can be disseminated has been a boon to successfully creating social
change. For example, history of the past few years shows that the events of the Arab
Spring were in part spurred by the ability of revolutionaries to organize and mobilize the
population at large through the use of social networking tools such as Facebook [BFJ+12]
and Twitter [EW11]. Additionally, news of unfolding events from the Arab Spring being
leaked from within—again through the Internet—engaged the rest of the world, bringing
attention to the unfolding events, and applying pressure on the ruling elite.

Indeed, so successful is the Internet for dissemination and organization that oppressive
regimes regularly curtail or outright censor it. These regimes are not alone, as many
governments, Internet service providers, and corporations exert varying levels of control
within their spheres of influence. While there may be legitimate reasons for controlling the
spread of information, such as privacy concerns, national security, corporate confidentiality,
and public safety, there are many questionable reasons, including the chilling of speech,
governmental overreach, and corporate misdeed.

These questionable reasons give rise to the circumventor whose aim is to push back
by overcoming the censor’s best efforts. To this end the circumventor produces, or uses,
techniques and technologies to circumvent or resist the censorship apparatus. The current
situation is one where widespread and sophisticated networking equipment operated by a
corrupt government allows it to enforce unjust and oppressive policies on their citizens.
Indeed, the field of censorship resistance concerns itself with bringing balance to the power
differential that now exists between the oppressor regimes and the oppressed citizenry.

1

The battle between the two sides—censor and circumventor—is a hotly contested strug-
gle to gain the upper hand, at least given the current Internet architecture. As the censor
learns how to be more effective, the circumventor learns how to overcome, which in turn
teaches the censor. This cycle repeats until one side reaches the limits of the resources
they are willing and able to invest and the costs they are willing to bear, at which point
a tentative equilibrium is reached. The resulting balance, however, may later shift due to
technological advances, changing political policies, or changes in resource limits.

At its core, the purpose of censorship resistance is to enable freedom of communica-
tion. The ideal censorship resistance system (CRS) is one which, even in the presence of
a powerful censor, provides a method of communication for users everywhere, enabling
connections to arbitrary destinations, and in a manner that does not expose users to the
censor’s (future) retribution.

It is true that CRSs can be used by malicious parties such as organized criminals.
However, the power dynamics are not the same as between the citizenry and censor as
we noted earlier. An organized malicious entity has more protections available to it than
the average citizen, such as weapons, safe houses, and liquid assets. The CRS certainly
can be leveraged, but it is not necessary since the malicious entity can just as successfully
harness alternative communication methods. Indeed, these communication methods have
existed before the advent of CRS designs, such as burner cell phones, satellite phones, and
underground tunnels infiltrating borders. The malicious actor can more easily achieve its
goals without CRSs than can the citizen who has no other recourse than to craft his own
solution—assuming he is capable.

1.1 Motivation

The CRS community has made great advances in providing circumvention solutions; how-
ever, we do not yet know how to evaluate the systems and compare them with one another
in terms of difficulty of detection and blocking, performance, and user security, among
other questions.

We identify the following concrete problem areas, which we then address in the remain-
der of this work.

The CRS field is not systematic. We find that there is a great need for the systemati-
zation of knowledge of the CRS field. This need is apparent when we consider the lack of
common frameworks for designing and evaluating CRS systems. It is clear that great effort

2

is being made in the pursuit of better CRS systems, yet we are unable to pinpoint what
it is about these designs that makes them good, how they interact with each other, and
also how they fare under different censorship scenarios. Often intrinsic properties (those
that the system can control through design) and extrinsic properties (those that emerge
from the environment and are not controlled by the design) cloud matters when we wish to
evaluate CRS design choices. A formal framework would allow us to separate the intrinsic
properties that are critical for effective CRSs and the extrinsic properties that prevail in
the operating environment. These intrinsic properties define the ideal CRS that the CRS
community can measure themselves against and ultimately aim for.

The next two problems are sides of the same coin. Together they provide the evidence
and support for the systematic designs, analysis, and deployment addressed above.

Censors are a mystery. On the one side—while there are a number of useful results
in the literature that identify the techniques and equipment being utilized to conduct
censorship—there is still a paucity of information when it comes to the censor’s beliefs and
preferences. This information is of great value to help in the analysis of the more general
problem of applying strategy to CRS design and deployment. Taking this strategic view
affords the opportunity to escape an escalating arms race where the circumventor tries to
outfox the censor.

CRS users are a mystery. The other side of the problem is that we do not have robust
models of CRS user behavior. Accurate models can provide valuable input to CRS design
leading to 1) apt designs that enhance performance and the user experience and 2) better
strategically savvy design choices and deployments. It is a challenge to collect useful user
information due to the risks associated with the collection of client-usage data, which may
compromise users’ privacy and security. Any solution needs to address these concerns for
not only the users but also the operators of CRSs.

In this work we make progress on all of these problems to make meaningful contributions
to the CRS field and support our thesis:

Thesis statement. Historical and contemporary CRS design is driven by novelty, ex-
perience, or favorable environmental conditions with little empirical or formal evidence to
support design decisions. As a remedy, we can produce a set of frameworks towards a more
principled and evidence-based approach to CRS design.

3

1.2 Contributions

The scope of censorship resistance research is broad. We narrow our scope and provide
contributions to four specific areas, which are listed below.

• Systematization of Knowledge. We present a model of the censor and censorship
and a taxonomy of censorship resistance in Chapter 2. These models allows us
to analyze different censorship threats and the applicable circumvention strategies.
This analysis leads us to identify gaps in the censorship resistance literature that we
selectively address.

• Game-Theoretic Analysis. We provide a detailed analysis of the censor as a rational
actor and produce a framework to model censorship as a strategic game with the CRS
and censor acting to increase their utility in Chapter 3. We present discussions of
various censorship scenarios. We then apply our game-theoretic framework to a real-
world problem of CRS deployment that maximizes the outcome for the censorship
resistor.

• Privacy-preserving CRS Data Collection. In our game-theoretic framework we notice
the need for empirical data, which is presently difficult to come by. One of the major
concerns is that data collection on CRS networks adds risk to its users. In Chapter 4,
we present a privacy-preserving data collection framework for use with CRS networks
and design a system that leverages it. We also present the results of a real-world
deployment of this system.

• Analysis and Prevention of a Client-Linking Attack in a CRS. Any deployed CRS
must resist attempts by the censor to scuttle the protection it provides. In Chapter 5,
we investigate the design of Tor, a commonly used CRS, to analyze its resistance to
active attacks by a censor aiming to identify its users. We find that the deployed
design is suboptimal and propose recommendations to enhance user privacy and
security. Our proposals have already been accepted by the Tor community and have
been rolled out into the deployed Tor network.

4

Chapter 2

A Systematization of Internet
Censorship and Resistance

We first present general background about Internet censorship and resistance to help orient
and motivate the discussions in the following chapters. We also systematize the literature
to provide a coherent framework to help our discussion and evaluation of censorship and
resistance use cases, properties, and strategies.

Generally speaking, the Internet is composed of many networks—operated and main-
tained by various entities large and small—connected together to allow communication
across different parts of it. Cooperation is the lynch pin that allows everything to work
more or less seamlessly. In particular, the Internet was not designed to prevent an ac-
tive adversary from reducing network connectivity and curtailing communications between
parts of it. In this work, we identify censors as adversaries that actively prevent free and
open access for users in their sway to information and opportunities for collaboration,
communication, and commerce with outside entities.

Overlay networks utilize pre-existing network connectivity between users on the Inter-
net. They leverage this connectivity to establish logical networks, which have customized
data transmission mechanisms, naming and addressing schemes, and network topologies
and behaviors. These logical networks add additional functionality that is different from
the underlying network they overlay. It is important to note that the overlay network
must interface with the underlying network to realize its functionality; however, from the
perspective of overlay network users, data, and observers, the interface is invisible and the
overlay network is the only reality. Examples of overlay networks existing on the Inter-
net today are the BitTorrent file-sharing network and the Tor anonymous communication
network.

5

The censor typically utilizes components commonly found in network deployments, such
as firewalls and intrusion detection systems (IDS).

A firewall, labeled “Censorship Apparatus” in Figure 2.1, is a common tool used to
enforce access control to certain parts of the Internet based on some set of rules that
implement a policy. The most significant firewalls (for censorship) are those operated
by nation states, i.e. the censors, that control Internet access, i.e. censorship, for their
populations.

A A

B

B*

B

Client Censorship
Apparatus

CRS
Proxy

Destination

C

C

CRS
Information

Figure 2.1: A general censorship arrangement with a simple CRS deployment.

There are many types of firewalls; some can only filter based on IP addresses, while
others can inspect and filter based on the contents of individual packets, while still oth-
ers are able to keep state across many packets and reconstruct what is occurring at the
application level and filter on that. We go into further details of firewall capabilities in
Section 2.4. Intrusion detection systems are related to firewalls, and are typically deployed
behind the firewall on the internal network to detect unwanted network entity behavior or
traffic patterns. These usually work in concert with the firewall to make it react to threats.

6

We assume that the censorship apparatus is composed of both firewall and IDS func-
tionality and do not differentiate between them for the remainder of this work, using the
generic term “firewall” to refer to both.

A network proxy, labeled “CRS Proxy” in Figure 2.1, is a tool that can be used to
bypass firewall restrictions. It provides an indirect method of accessing a restricted part
of the Internet. The only condition is that the proxy itself be accessible by users behind
the firewall.

A channel, at an abstract level, is a network path that allows the flow of information
from an origin to a destination on the network. More concretely, a channel is constructed
with networking software, which provides mechanisms for the establishment, maintenance,
and utilization of the channel. While there are a large number and variety of network
software and mechanisms, we are only concerned with their functionality in general and
refer to them in abstract as a “channel mechanism”.

Overt channels do not try to hide their existence and the censor can detect them passing
through their point of presence on the network and are allowed since they are not targets of
censorship. Often, with a few exceptions, the channel between the client and CRS proxy is
an overt channel. Covert channels attempt to hide from the censor’s detection. Generally,
they do this by using the overt channel as a cover for their covert traffic. The idea is
that the covert traffic can hide within the overt cover traffic and escape detection. As an
example, a possible overt channel is encrypted email traffic that in reality is being used
as a cover for HTTP requests designed to look like encrypted email traffic. To the censor
both types of traffic look the same and hence, in the ideal situation, are not blocked by
the censor’s firewall.

A common work flow for CRS utilization is depicted in Figure 2.1: The client desires
to connect to a censored destination, which in the absence of censorship would have been
done via channel A, but that channel is blocked by the censor. To overcome this obstacle,
a CRS is employed, which the client utilizes through channels B and B∗, which have been
created via a difficult-to-block mechanism utilizing overt and covert traffic to and from the
CRS proxy. In most cases the client will need to learn about, and how to communicate
with, the CRS proxy and so CRS information is learned through a channel C, which is
also difficult to block like channel B but has shortcomings, e.g. very high latency, making
it unsuitable as a data channel.

7

2.1 CRS Users and Use Cases

Users of CRSs include whistleblowers, content publishers, citizens wishing to organize, and
many more, and any one CRS may be employed simultaneously for multiple use cases.
Each use case may require different properties of the CRS. For example; a whistleblower
needs to have their identity protected and be able to get their message to an outsider
without raising suspicions that this is occurring; a content publisher wants that no amount
of coercion, of themselves or the hosts of their content, could impact the availability of
their content; and citizens wishing to organize would want unblockable access to their
self-organization tool.

By examining the literature and the use cases therein, we extract common CRS security
properties, keeping in mind that not every CRS design aims to achieve every property. We
describe these security properties next.

An unblockable data channel is one that the censor, having identified it, is unable to
block due to extenuating circumstances, most usually the threat of collateral damage.
If the censor is unable, or unwilling, to block the data channel then the CRS activity
can proceed unmolested.

An undetectable data channel is one that the censor is unable to identify as belonging
to CRS activity. This is a useful for cases where the censor could block the channel
if they knew it were CRS related.

An anonymous publisher is one whose identity is hidden from CRS-participating enti-
ties and observers on the Internet in general. This is to prevent the chilling of speech
that the threat of retribution by the censor would cause on the publisher.

An unlinkable client-destination path is one where an observer, within the CRS net-
work or outside it, cannot tell which destination a particular client is communicating
with. This prevents the censor, or any other observer, from learning whether the
client is communicating with known undesirable, and censored, destinations.

An incoercible publisher is one for whom the censor’s threats of force are not credible
due either to the fact that the publisher is outside the censor’s reach or to the fact
that the CRS is designed in such a way that makes it impossible to comply with the
censor’s demands.

8

An incoercible covert destination/storage is one for whom the censor’s threats of
force are not credible for the same reasons as those for the incoercible publisher
above.

A deniable client participant is one whose participation in the CRS is blurred with
innocuous activities to create reasonable doubt in the censor’s mind and give the
client plausible reasons for their, secretly CRS related, activities. This is to mitigate
the threat of censor retribution and the chilling of speech.

A deniable forwarder participant is, like the client participant above, one whose
participation is covered in reasonable doubt and this helps to prevent the censor
from blocking it or meting out punishment.

A deniable covert destination/storage participant is, like the forwarder participant
above, one whose participation is covered in reasonable doubt for the same reasons.

Along with the requirements for security, CRS clients’ usage is impacted by what is
possible to accomplish given the characteristics of the communication channel. Like the
security properties above, we again refer to the literature to extract common channel
characteristics below that help us compare and contrast CRS designs.

1. Latency is the delay introduced by the CRS in carrying out a user action, e.g.
sending a message, or receiving a file. The two types of CRS are low-latency and
high-latency with the former being useful where delays would impact usage, e.g. web
browsing, and the latter for uses that are not impacted by delays, e.g. leaking a
document to a whistleblowing website.

2. Throughput is the amount of bandwidth that the CRS needs to harness for both
its own functionality and to enable the use cases it was designed for. There are two
types: high-throughput and low-throughput. An example high-throughput CRS is
Tor where it consumes the bandwidth dedicated by numerous volunteer routers that
form the network, while Collage is a low-throughput CRS since it can only harness
bandwidth on the same order of magnitude as the size of image files that are posted
on photo-sharing websites.

3. Goodput is the useful bandwidth available, of the total throughput bandwidth above
minus the CRS’s operational overhead, for CRS user activity. A high-goodput CRS
means that the CRS is high-throughput and has low operational overhead resulting

9

in high amounts of bandwidth available for user activities. A low-goodput CRS
means that either the CRS is low-throughput to begin with or that the CRS is high-
throughput but has high overhead resulting in little bandwidth for user activities.
In the CRS examples above, Tor is a high-goodput CRS and is useful for large data
transfers, while Collage is low-goodput since it uses steganography, that adds a large
overhead but is still useful for smaller data-footprint activities.

4. Reachability is the range, or extent, of the Internet—which is composed of people,
web pages, and service platforms—that a CRS user can communicate and/or interact
with. The range can be general or limited; general being the same as unfettered access
to the Internet and limited being a curtailed set of niche destinations, audiences,
and/or content. The former is useful where the user wants transparent access to the
Internet such as a user who wishes to instant message with friends, watch streaming
movies, and post to social networking websites. The latter is useful where the user
only requires a limited part of the Internet such as communicating amongst a tight-
knit group of dissidents who only require access to one bulletin board system.

5. Interactivity of the CRS channel tells us whether bidirectional communication is
possible between CRS users or whether it is only unidirectional. A CRS that is
bidirectional means that it can be used by a user to both send and receive data,
whereas a unidirectional CRS can only transmit or receive data during any given
session of use of the system. A unidirectional CRS is useful where the user only
wishes to post to a message board but will not read the board themselves or when
they only wish to access information but will not be adding anything themselves. A
bidirectional CRS is useful for times where users needs to interact with, and react
to, other users and there is a need for a back and forth within the same session of
use of the CRS.

These channel characteristics, being either high/low, general/limited, or bi-/unidirect-
ional, define the quality of service1 (QoS) that a CRS user can expect. The channel QoS
dictates the user experience and the kinds of activities that are possible on that channel
and hence the use cases that it can support. We will see later in Section 2.8 how CRS
design goals are driven by user requirements for security and QoS.

1Usually quality of service is concerned with the performance of a given channel (i.e. latency, through-
put, and goodput); we add CRS-specific channel characteristics (reachability and interactivity) since these
are also pertinent in the CRS setting.

10

2.2 Internet Censorship

Censors vary widely with respect to their motivation, sphere of influence, and technical
sophistication. A wide range of entities, from individuals to corporations to state-level
actors, may function as a censor. Therefore, a CRS should be precise as to the type and
capabilities of the censor(s) that it is designed to circumvent.

In particular, the extent to which a censor can effectively attack a given CRS is a
consequence of that censor’s resources and constraints. We will focus on the technical
resources, capabilities, and goals of the censor, which are informed by their sphere of
influence (SoI), their sphere of visiblity (SoV), and their set of economic constraints.

User Dest

CRS

Figure 2.2: A simplified SoI (dark gray area with fist) and SoV (light gray area with
eye) arrangement. The arrows depict the communication channels among the entities.
The channel between the user and destination is within both the SoI and SoV, but the
destination itself is outside the SoI but may be within the SoV.

11

Sphere of Influence (SoI) is the degree of active control the censor has over the flow
of information and behavior of individuals and/or larger entities. Similarly, Sphere of
Visibility (SoV) is the degree of passive visibility a censor has over the flow of information
on its networks and those of other operators. The success or failure of a CRS depends in
large part on the assumptions its designers make about the SoI and SoV of the censor.

Figure 2.2 depicts a simplified, yet prevalent, example SoI and SoV. The user is within
the SoI and SoV of the censor as is their direct traffic to any destination on the Internet,
including to the CRS. Of course, unapproved destinations are blocked, leaving the CRS
the only means of access to those destinations. The CRS itself is not hidden from the
censor, but it is outside the censor’s SoI. This setup depicts the usual CRS scenario. Note
that the censor could influence, e.g. block, the direct traffic between the user and CRS
but, with the right CRS design in place, it is confounded about which traffic to actually
interfere with without impacting non-CRS traffic. We will discuss in-depth details of the
various CRS strategies in Section 2.6 that allow this censor confounding to happen. The
censor can always block all traffic, to the CRS as well as to the general Internet, but we
will examine in Chapter 3 how this course of action is not typically in the censor’s best
interests.

This is the essential challenge of CRS design: to allow users to access censored content
and destinations while within the influence and visibility of the censor and to keep the
censor ignorant of it despite its best efforts.

We specify the limitations to both SoI and SoV due to constraints that are physical, po-
litical, and economic. Limitations due to geography are an example of physical constraints,
while relevant legal doctrine, or international agreements and understandings, which may
limit the types of behavior in which a censor is legally allowed or willing to engage are
examples of political limitations. Economic constraints assume the censor operates within
some specified budget.

2.2.1 A Model of Censorship Apparatus

Recall that the aim of the censor is to distinguish between acceptable and unacceptable
traffic. The censor first deems some traffic as unacceptable, and when the population starts
to use CRSs, the censor then prohibits the CRS traffic itself. We focus on the latter, yet
allow that the former can also be aptly accommodated, in the discussion that follows. With
this in mind we model the censorship apparatus next.

At an abstract level the censorship apparatus is composed of a classifier and cost func-
tion that both feed in to a decision function as depicted in Figure 2.3. This simplification

12

allows us to distill censorship activity to three distinct categories or phases: Exposure, De-
tection, and Response. We then leverage this model in our censorship resistance taxonomy
to follow in Section 2.6.

Decision Function

Cost Function

Classifier

Figure 2.3: An abstraction of the censorship apparatus and workflow. T is the data
(network traffic), D are the distinguishers to be used for detection by the Classifier and Q
denotes the error rates of the chosen distinguishers (i.e. FNR and FPR); O is the output
(i.e. flagged traffic) of the classifier. A and B are the censor’s tolerances for collateral
damage (FPR) and information leakage (FNR) respectively and U is the resulting utility
function parameterized by A, B, and Q. R is the censor’s response based on the input O
and U into the Decision Function.

In the first phase the censor exposes distinguishers (D) that can, within an acceptable
margin of error (Q), identify prohibited network activity. This will be one of the inputs
of the Classifier, along with the network traffic (T), once it is deployed. As an example,
a censor may learn that a particular packet length is dominant for most, but not all, of
a particular CRS’s traffic, e.g. in Tor packets of length 586 bytes are prevalent. There is
also a small amount of non-CRS traffic that also has that particular packet length which
the classifier will confuse with CRS activity. If the error rates are acceptable to the censor,
the packet length of 586 bytes will be used as a distinguisher by the classifier.

In our model, we define the error rates as the false negative rate (FNR), also known
as information leakage where CRS traffic is mislabeled as being legitimate, thus allowing
the CRS user to access prohibited information, and false positive rate (FPR), also known
as collateral damage where legitimate traffic is mislabeled as being CRS related, thus

13

causing the censor to block legitimate traffic. We assume that the censor would prefer a
lower FNR and FPR whenever it has the opportunity. This is a reasonable assumption
since increasing these errors would not increase the censor’s utility in any realistic manner.
However, accuracy alone does not explain the observed behavior of censors, nor is it the
only input in to the censor’s decision making. We explore some of the missing aspects of
the censor’s decision function in Chapter 3.

In the second phase, the Classifier tries to detect all instances of the distinguisher using
a classification mechanism.2 In our example above, the classifier will flag network flows
where packets of length 586 bytes occur above a censor-defined threshold.

Finally, the censor will respond to the output (O) of the Classifier—along with input
from the Cost Function (U) which takes in to account the censor’s tolerance for errors
(A and B)—with a follow-up action (R) to limit or stop the prohibited activity. In our
example, the response could be to disconnect a flow, e.g. by sending RST packets to the
server to break the connection when packets of 586 bytes occurred too often, rendering
the CRS ineffective. The response would depend on the actual mechanism employed by
the CRS and how susceptible it is to different forms of interference. The censor needs to
balance the response to ensure that non-CRS activity does not become collateral damage.

It is clear that distinguishers play a vital role. We define them as being composed of
feature and value pairs. A feature is just an attribute, such as an IP address, protocol
signature, or a packet size distribution. A feature has an associated value which can be a
singleton, a list, or a range. In general, values are drawn in the form of a distribution from
all possible values that feature can take. Where this distribution is sufficiently unique to
the CRS the feature-value pairing is dubbed a distinguisher and can be used by the censor
to detect prohibited activities. In our example above, the feature was packet length since
there was a peak in the distribution at 586 bytes. Now the packet length as the feature
with value of 586 bytes forms a distinguisher the censor can utilize to identify the CRS.

The primary source of distinguishers is network traffic within the censor’s SoV. We can
map these distinguishers to the network, transport, and application layers of the network
stack. Distinguishers can be extracted from the feature-value pairs within headers and
payloads of protocols at the various network layers.

Some concrete examples include the source and destination addresses in IP headers
at the network layer, source and destination ports and the sequence number in the TCP

2We gloss over the details of the actual mechanism for the purpose of clarity of description and dis-
cussion. In reality the mechanism might be deterministic or stochastic, real-time or off-line, and have
thresholds for determining when to tag something as being CRS related, as well as a host of other param-
eters. We abstract away these details without loss of accuracy or generality.

14

header at the transport layer, and the TLS record content type in the TLS header in the
application layer. Furthermore, the payload of the packets, if unencrypted, can reveal
forbidden keywords. The censor may act on these distinguishers without fear of collateral
damage since there is little uncertainty about the veracity of the information.

The censor also learns from the explicit distinguishers above about the expected be-
havior of the traffic. A certain profile of feature-value pairs implies particular, and known,
traffic behavioral characteristics that the censor can use to detect anomalous, and poten-
tially CRS, traffic. For instance, a VoIP channel usually has data flowing in both directions
but rarely at the same time, as both parties are usually communicating interactively and
take turns to speak. A CRS that uses this channel for bulk download would only have data
flowing predominantly in one direction, with some data flowing back for data transmission
control, which would be the distinguisher the censor can use to detect the CRS usage.

To augment these explicit distinguishers, the censor can collect statistics about the
traffic to learn additional distinguishers such as packet length and timing distributions.

Distinguishers are high- or low-quality depending on if they admit low or high error
rates respectively. Furthermore, they can be low- or high-hanging depending on if little or
large amounts of resources are required to field them respectively. For the censor, high-
quality low-hanging distinguishers are ideal, whereas for the circumventor denying any
kind of distinguishers is ideal, but driving the censor to depend on only high-hanging and
low-quality ones is preferred if the ideal situation is not possible.

2.2.2 General Censor Threat Model

We now define our threat model based on the network-level capabilities of a censor. A
censor has complete visibility (SoV) of network traffic flows within its SoI. It may have
additional visibility outside of its SoI, such as information gained from collusion with third
parties. In particular, the censor may be a passive adversary with respect to some portion
of the network, only able to observe channel content, such as when an ISP grants access
to past network traffic flows.

The censor may be active with respect to some portion of the network (within the
SoI), with the ability to modify, delete, inject, and delay channel content. Furthermore,
the censor may have the ability to modify channel characteristics as well as content, such
as controlling the timing patterns of traffic. The censor may have additional insight into
the CRS system, that may be gleaned by being an active CRS participant or by devoting
resources in a volunteer-based CRS.

15

2.2.3 General Censor Goals

With these capabilities in mind, we define the technical goals of a censor as follows:

1. Detection and Identification of CRS traffic. The censor wants the ability to categorize
individual traffic flows as being part of a CRS. In particular, the censor may wish
to expose the identity of the person using the CRS, or the type of censored material
accessed.

2. Disruption of CRS traffic. The censor wishes to have the ability to disrupt any
CRS-related traffic of its choosing in a way that renders the CRS ineffective.

2.3 Censorship Resistance

Censorship resistance is the act of overcoming the threats of the censor’s SoI and SoV on
censored traffic—including the traffic of the CRS itself, and user and operator security—
while achieving an acceptable level of performance so as to be useful. There are a large
number of CRS designs that exist; we extract from them a common set of CRS components,
attack surfaces, design goals, and strategies, which we present in the remainder of the
chapter. Table 2.1 provides the structure and summary of the discussion that follows.

2.3.1 Censorship Resistance Components

We now describe the CRS components in detail (see Figure 2.4).

Out-of-band CRS Information. Certain CRSs require secret information to bootstrap
the data channel. This may include setup or operational information such as symmertric
keys, network dead-drop locations, and any other information that is necessary for the
client to learn how to participate in the CRS.

Out-of-Band Channel. A channel outside the censor’s SoI and SoV is termed an out-
of-band channel, and the censor can neither view nor affect it. This channel is used to
communicate out-of-band CRS-operational secrets that are assumed to somehow arrive
with absolute security versus the censor.

The key is that there is a limitation inherent to the channel that does not allow it to
be used as an ongoing data or dissemination channel, which would also obviate the need

16

Table 2.1: Strategies employed to defend against censorship threats to CRS components.
CRS strategies, to be outlined in Section 2.6 are on the left, divided into the censorship
phases described in Section 2.2.1. The CRS components, outlined in this section, are along
the top. A solid black square indicates that this strategy has been applied to this CRS
component.

CRS Information

Dissemination Channel

Data Channel

Overt & Covert Dest.

CRS Client

Unpredictable Values ■ ■
Rate Limit ■ ■ ■ ■
Lock-stepped Interaction ■ ■

E
xp

os
e

Obfuscate Values ■ ■
Indistinguishable Values ■ ■

D
et

ec
t

Value Churn ■ ■ ■ ■
Outside SoI ■ ■ ■ ■

R
es

po
nd

17

CRS Information

Out-of-band
CRS Information

Overt
Destination

CRS
Client

Covert
Destination

Dissemination
Channel

Data Channel

Out-of-Band
Channel

Camouflaged
Data Channel

Figure 2.4: High level components of a CRS.

to use a CRS in the first place. An example of such a channel is a person from outside
the SoV bringing addresses of CRS proxies on a USB stick through the airport and hand
delivering it to the client.

CRS Information. In order to participate in the CRS, a client must discover informa-
tion about the CRS, which can include addressing, naming, and routing information as
well as information to help with security needs such as authentication and encryption. In
general this is any information that the client needs to participate in the CRS.

Often this information is general and public, such as domain name mappings to IP ad-
dresses, routing information, and other general details that allow Internet communications.
However, it is also often the case that along with this public information, CRS-specific in-
formation is required, such as addressing information of CRS proxy servers, locations of
censored content, and other CRS-specific details. While Internet information is available
to all, under certain designs CRS-specific information could be restricted to prevent the
censor from learning it or from tampering with it.

18

Dissemination Channel. CRS information is requested and served over a dissemina-
tion channel. This channel can take many forms, such as ordinary email to a publicly
available address, a CRS-client issued lookup request to a directory serving a file, or an
anonymized encrypted connection to a hidden CRS information store, to name a few. Gen-
erally, the throughput and network characteristics of the dissemination channel are limited
as compared to the data channel as depicted in the figure by the relative thinness of the
line as compared to the data channel line. The dissemination channel is within the censor
SoV, and often SoI.

Data Channel. There are two types of data channels: one that is between the client
and overt destination, and another that is between the overt and covert destinations. Not
every CRS uses a channel of the second type. In all events, this is the data-carrier channel
transporting censored data to and from the client and the overt destination, and where
needed to the covert destination.

The client-to-overt-destination data channel may be camouflaged if the censor uses
traffic analysis to detect CRS activity. The overt-to-covert-destination data channel, if
one exists, may also have the same properties, but it may also not be camouflaged at all
since it is outside the censor SoV and SoI. The two channels may use different network
mechanisms and have very different security and performance properties.

Overt Destination. This is the destination that the censor can observe the client os-
tensibly communicating with over the client-to-overt-destination data channel.

The overt destination can play a few different types of roles depending on the CRS:

1. Forwarder: When the client wants to communicate with or gain access to censored
destinations that are external to the CRS, the overt destination acts as a proxy
forwarding traffic to and from the client and external destination.

2. Dummy Destination: Ostensibly, the client is communicating with the overt dummy
destination but in reality she is communicating with a third covert destination. As
an example, this can be achieved by means of networking equipment that diverts
the CRS traffic enroute to the dummy destination to the covert destination without
exposing it.

3. Covert Destination/Data store: When the covert page, person, or platform (see next
entry below) the client wants to communicate with is actually available at the overt
destination, the overt destination simply serves the content directly to clients using
the CRS.

19

Overt destinations are usually aware of CRS activity since they are playing an active
role in the data-communication channel and when they are acting as covert destinations.
Indeed, there most likely needs to be an installation of special software to enable CRS
functionality.

However, there are exceptions. For example, where the CRS design leverages already-
extant overt destination functionality, the overt destination may be unaware of CRS activ-
ity since it does not deviate from its regular operation. The CRS activity is a side effect,
albeit intentional due to the CRS mechanisms that were employed. A real-world example
is Google’s AppEngine, that allows websites to be hosted on Google’s cloud storage and
using Google’s IP addresses. A CRS that hosts content, for example instructions on how
to circumvent firewalls, on AppEngine is leveraging normal functionality for CRS uses and
does so without Google’s explicit acceptance or knowledge. [FLH+15] Another exception is
a dummy destination, which also does not even have to be a CRS participant or be aware
that it is being invoked by the client for the purpose of fooling the censor. A real-world
example is where, in response to a request from a client, a CRS server hosting content
can send censored content to the client and fool the censor as to the origin of the traffic
by spoofing the sender address with a dummy address. [Hsu00, WGN+12] The host at the
dummy address does not need to be involved in this deception.

There are variations to the basic roles above that may come in to play and we will point
them out where appropriate.

Covert Destination. This is the covert page, person, or platform the CRS client ulti-
mately wants to connect to. Page refers to any covert information that can be read. Person
is any entity that the client can interact with. Finally, platform refers to an application
or service that the client can utilize or leverage. This definition allows for use cases that
require interactivity as well as read and publish mechanics.

Some concrete examples include being able to read a dissident blog (page), a video call
with a friend (person), and tweeting about the location of the next anti-government rally
on Twitter (platform).

CRS Client. This is special CRS client software, or non-CRS software with CRS-
enabling modifications, that can utilize CRS information, channels, and destinations to
give the desired CRS behavior to the client.

20

Depending on the censorship scenario, a client may need to first obtain this software
through the out-of-band or dissemination channels.

We now describe the work flow with respect to the components of a CRS just described:

1. As a preliminary step the user may use an out-of-band channel to gather bootstrap-
ping information that facilitates access to and use of the CRS. This step is not
mandatory and only required by some systems.

2. A CRS user learns (enough) CRS information, through the dissemination channel,
to allow them to connect with an overt destination that will act as a CRS proxy,3
usually using CRS client software. In the case of the dummy destination, the actual
CRS proxy is the network equipment on the path to the dummy site.

3. The client connects to the CRS proxy over the data channel, which may be camou-
flaged to prevent detection.

4. The CRS proxy services the client’s requests, either fulfilling them itself, from local
resources, or forwarding them on to one or more covert destinations.

2.4 Attack Surfaces

Each of the CRS components can be targeted to attack CRS security and functionality, and
ultimately clients; we therefore refer to these components as attack surfaces: the exposed
pieces of the CRS able to be attacked. We will look at a number of general attacks on each
surface, summarized in Table 2.2, to gain insight about the particular issues and challenges
inherent to these CRS components.

2.4.1 CRS Information

Harvest: The censor can readily harvest CRS information that is public by observation
alone, and where it is restricted to clients or CRS operators it can do so by actively
infiltrating, or compromising, the CRS dissemination process. This is exactly the
process that some governments wishing to block access to the Tor network have
done, such as China [Lew09].

3Recall that the overt destination is not blocked and is either not suspected by the censor as participating
in a CRS, or is a high-value site that would cause too much collateral damage to block, or is an innocent
dummy destination.

21

Table 2.2: Attack surfaces and the general attack vectors that are relevant to each.
Attack Surface General Attack Vector

CRS Information Harvest
Poison

Disseminiation Channel Deny
Masquerade

Data Channel Detect
Deny
Disrupt & Degrade

Overt/Covert Destination Comb
Coerce
Crush
Curtail
Corrupt

CRS Client Compromise & Deny
Coerce
Link

Poison: The censor can corrupt, or modify, public information it is in control of as
well as the information it can inject into the CRS where it is possible. Examples
include DNS poisoning [BCK12] and routing table changes that isolate traffic to
known, trusted, and censored paths [SGTH12]. The censor needs to be careful about
corrupting information [ICA12] needed for Internet operations since it can impact
non-CRS use. [McP08]

2.4.2 Dissemination channel

Deny: The dissemination channel mechanism may be blocked, in the same manner as
data channels (see below), thus denying legitimate clients access to CRS information.

Masquerade: Where the CRS depends on secrecy of CRS information the censor can
pretend to be a legitimate client and use the dissemination channel to harvest in-
formation. China has twice, in 2009 and again in 2010, overwhelmed Tor’s bridge
distribution strategies by simply pretending to be enough legitimate users from dif-
ferent subnets on the Internet. [Din11c]

22

2.4.3 Data channel

Detect: From header information, which is in the clear, the censor can tell if the traffic
is going to a known CRS overt destination. Also, if it is in the clear, the content
(or payload) can provide evidence that the packet is CRS-related. Where this infor-
mation is unavailable, or obfuscated, traffic analysis based on packet statistics and
behavioral signatures can be used. The censor would compare these clues against
known CRS statistics and behaviors to see how well they match. [Din11a] Where
the clues match known non-CRS statistics and behaviors, the censor would look for
discrepancies that would give away the pretense.

Deny: The censor can drop all the identified CRS traffic at the firewall or another point of
presence, which would effectively sever the CRS data channel. For instance the Chi-
nese firewall, circa 2004, sent RST packets to both ends of a network flow whenever
it detected a Tor connection thus effectively severing the connection. [CMW06]

Disrupt/Degrade: Alternatively, especially when it is not confident, the censor can
manipulate the traffic by injecting spurious packets, dropping key portions of the
traffic, or modifying the contents of packets. [Lew12] Similarly, again when it is
not confident, the censor can also manipulate the characteristics of the underlying
network link the data channel is utilizing and introduce delays, low connection time-
out values [Tor13], and other constraints. This can be used where the CRS data
channel is brittle and not resilient to errors. This is especially useful where the
overt traffic is more robust to the disruptions and degradations the censor introduces
than the CRS traffic. [GSH13, LSH14] The censor can leverage this discrepancy
between CRS and non-CRS data channel error handling to target only the CRS
while leaving the non-CRS data effectively unmolested. These tactics can guard
against collateral damage that would otherwise be incurred if the censor employed
more drastic measures like disconnecting a network flow.

2.4.4 Overt and Covert Destinations

Comb: Where the censor is unable to efficiently harvest through the dissemination chan-
nel, they may comb the Internet by probing destinations for telltale signs of CRS
presence. For instance China has been very aggressive in probing for bridges by
watching outbound TLS connections to U.S. IP ranges and then following up with
Tor connection requests to verify the existence of a bridge. After this confirmation
step, all TLS connections are dropped by the Chinese firewall for users within China
connecting to that bridge. [Wil12]

23

Coerce: Within its SoI the censor can use legal, or extralegal, coercion to shut down an
overt destination. Indeed, history shows that this has been successful in the past,
for example where a popular anonymous email service was pressured by the U.S.
government to reveal users’ private information [Fis05].

Crush: For destinations outside the censor’s SoI where force or legal pressure cannot
be applied, the censor can mount a network attack. An example of this was when
China launched a distributed denial of service attack (DDoS), which overloads the
destination so that it can not service legitimate requests, against Github to target
censorship resistance content hosted there. [Goo15] Other attacks based on infiltra-
tion of resource pools can cause similar denial of service attacks.

Curtail: A censor can easily block the IP addresses of overt destinations hosting “un-
desirable” content, with firewall filter rules and DNS poisoning or injection attacks
against CRS information. Such methods are widespread and deployed as a matter
of course by censoring regimes. Aryan et al. [AAH13], Nabi [Nab13], and Clayton et
al. [CMW06] provide evidence of this for Iran, Pakistan, and China respectively. The
censor can also enact a “whitelist” that only allows access to approved destinations.

Corrupt: The censor could set up malicious resources, such as proxy nodes or fraudulent
documents that counteract the CRS’s goals, to attract unwary CRS clients and neg-
atively impact their CRS usage. For instance, adversarial guard relays are known to
exist on the Tor network, and they can be used to compromise Tor’s client-destination
unlinkability property. See Chapter 5 for an in-depth analysis of this form of attack.

2.4.5 CRS Client

Link: The censor could try to implicate clients for using a CRS, since such systems may
be regarded as having only illegitimate uses. The censor can do this by identifying
client connections to known CRS-participating overt destinations. The censor may
further be interested in access to covert destinations and/or content and can do
this by attracting clients to use or access censor-controlled CRS resources. Like the
corruption attack above, Chapter 5 provides an investigation of this attack vector as
well.

Coerce: The censor can pressure publishers into retracting their publications, and/or
chilling their speech. China regularly regulates the online utterances of its citizens,
using an army of thousands of workers who monitor all forms of public communication

24

and identify dissidents [ZPP+13], and uses force, such as imprisonment, to achieve a
chilling of free speech [Rif15].

Compromise & Deny: The censor can install monitoring software on the client com-
puter. This could be publicly announced and sanctioned by an authority, such as in
the case of Green Dam Youth Escort [WYH09]. The censor could impose rules that
demand clients install only compromised versions of communication software such
as TOM-Skype [mar12]. Finally, the censor can also install malware through covert
means or by tricking the unsuspecting client. The censor can block at the client level
by disallowing unapproved software from being installed on the operating system,
disrupting functionality of Internet searches by returning pruned results, and dis-
playing warnings to the user to dissuade them from attempting to seek or distribute
censored content through the client or even to use it.

2.5 Desired CRS Design Goals

We began this chapter by examining users and their use cases and extracted the relevant
security and performance requirements in Section 2.1. We modeled the censor and the
censorship apparatus and partitioned censorship activity into three phases in Section 2.2.
We then investigated general censorship resistance design and drew out the common CRS
components in Section 2.3, as well as the threats to each in Section 2.4. We are now in
a position to consolidate what we have learned into a coherent set of CRS functionality,
security, and performance design goals.

At the very general level a CRS has the following functionality goals:

1. CRS Information Discovery: The user must be able to learn proxy and/or content
network locations, as well as auxiliary information required to participate in the CRS.

2. CRS Data Transport: The CRS data channel must be able to punch through the
censor’s technological barriers and connect users with destinations (pages, people,
platforms) from which they would otherwise be blocked.

3. CRS Bootstrapping and Availability: The CRS should be designed to deploy on
the Internet of today and maintain consistent availability. It should not depend on
features and functionality that have not yet become, and are not likely to become in
the near term, a reality on the Internet.

25

A CRS must ensure the security of the above three functions as well as that of CRS
users and operators. We now consolidate the required CRS-security properties, that we
have extracted from the literature on attack surfaces and vectors, and real-world examples.
They are organized by the three phases of censorship from our model in Section 2.2.1:

• Exposure Reduction

1. Prevent CRS information harvesting that is possible by masquerading as a CRS
client and combing the Internet address space.

2. Prevent CRS participant identification that is possible by masquerading as a
CRS client or overt/covert destination.

3. Prevent active probing by the censor who is trying to distinguish whether CRS
infrastructure or content is present at a particular network location.

• Detection Prevention

1. Provide an undetectable data channel that camouflages traffic patterns, behav-
iors, and inconsistencies detectable by the censor.

• Response Mitigation

1. Provide an unblockable data channel that operates in a curtailed networking
environment that cannot be blocked without collateral damage to non-CRS
traffic.

2. Provide user and operator anonymity and deniability to prevent chilling effects
and self-censorship as well as to mitigate coercion.

3. Provide resilience against the censor actively participating in, compromising
parts of, removing parts of, and adding malicious resources to the CRS.

Finally we address the desired performance properties, discussed in Section 2.1, and note
that these are driven by specific use cases. However, it is clear that if all the properties are
maximized, i.e. provide the highest level of performance, then all use cases will be covered.

Therefore, the desired ideal CRS is one that provides all of the security properties
and has low latency, high throughput and goodput, has general reachability, and
allows bidirectional communication. However, in reality we see that there are few CRS
designs that provide all of these properties; often there is a trade-off between security and
performance. We shall see evidence of this later in Table 2.4 where we summarize security
and performance properties of real-world CRS designs. Thus, the types of use cases is
driven by the particular security and performance properties that the CRS achieves.

26

2.6 Censorship Resistance Strategies

Our aim has been to better understand how a CRS and censorship apparatus may in-
teract. We distilled the censorship apparatus to its main parameters and functions (in
Section 2.2.1) and we have just consolidated security goals common to all CRSs (in Sec-
tion 2.5) above. We can now draw out the essence of this interaction and cast it in terms of
the interaction between error rates inherent in the detection phase and strategies adopted
by the CRS to apply upward pressure on them. This way the many CRS designs, with
many a varied implementation detail, can be categorized by the manner in which they
apply this pressure.

FNR

FPR

Ideal for
CRS

Actual

Ideal for
Censor

1

10
0

Figure 2.5: Tying strategies to the censor error model. The diagonal line indicates the ideal
CRS amount of FNR and FPR and the bottom left corner is the ideal censor amount of
FNR and FPR. The dotted curve is the actual censor error rate. The censor puts leftward
and downward pressure on this curve while CRS strategies apply or alleviate pressure by
moving the curve upwards or rightwards.

Let us clarify what we mean by upward pressure. Consider Figure 2.5 as a graph of
the error rates (FNR vs. FPR) of a generic censorship apparatus, specifically the classifier.
The axes have been normalized with the extreme ends representing maximum error rate
and the origin representing no errors. This graph bears similarity to the more common
receiver operating characteristic (ROC) curve; the only change has been to replace the true

27

positive rate (TPR) with its compliment, FNR. The diagonal line joining the two extreme
ends of the axes represents the scenario where the censor is doing no better than random
guessing and hence not gaining any benefit from fielding a classifier and the distinguishers
it leverages. This is the ideal scenario for the CRS designer. At the other extreme, the
curve that hugs the two axes, not drawn for sake of reducing clutter, represents the best
outcome for the censor, where they incur no errors at all. The reality is the curve labeled
“Actual” that lies somewhere between the two extreme ideal scenarios. With the choice
of classification mechanism and distinguishers, the censor chooses where on the curve they
wish to be (i.e. the level of error they can tolerate) given that they are able to absorb the
cost of fielding such a classifier.

CRS strategies aim to push the curve closer to the diagonal (upwards and to the right),
the ideal CRS situation, and this is what is intended by upward pressure. Of course, with
the censor applying new techniques to move the curve down and the CRS moving it back
up, the net effect of the CRS could be to keep the curve in the same place.

When speaking of error rates of detection mechanisms it is important to keep in mind
how prevalent CRS activity is as compared to non-CRS activity on a given attack surface.
This is the basic idea behind the base rate fallacy. The censor, and CRS designer, need to
keep in mind that while the apparatus may have a seemingly low error rate, the base rate
of CRS activity might be a few orders of magnitude lower and thus the apparatus would
nonetheless cause almost all reported positives to be false positives.

We next discuss existing CRS strategies in turn, grouped by the relevant censorship
phase and describing how each strategy impacts the censor’s error rates and achieves the
security goals we outlined in Section 2.5.

2.6.1 Exposure Phase

For designs where CRS information is sensitive, CR strategies that target this phase aim
to prevent or slow the censor from learning high-quality distinguishers. The main threat is
to the dissemination channel and the CRS information itself. The main challenge is that
legitimate users learn CRS information easily while the censor cannot harvest efficiently.
In this phase, secret information has already been transmitted through an out-of-band
channel, and the CRS client is now ready to engage with the CRS proper.

Unpredictable Values (UV)

An unpredictable selection of distinguisher values, chosen from the possible value space
that includes non-CRS elements, ensures that the censor cannot implement an a priori

28

block of those values. Since the censor has yet to discover distinguisher values, there is a
window of opportunity where misclassification can occur, thereby temporarily maintaining
the FNR. Note that there is no protection from the censor learning that a certain value is
CRS-related, and only that the censor does not yet know of this relationship.

One method of generating unpredictable values is to recruit CRS participants outside
the SoI, who are in control of, or own, particular values of a feature, e.g. IP addresses,
and utilize them in a seemingly, to the censor, random manner. Another method—where
the value space is not restricted—is to adjust the distribution of CRS values across the
value space so that there is no pattern to be observed. For example, the CRS could
adjust the distribution of packet lengths by randomly padding the packets so that the new
distribution has no similarity to the original. In either method, the values can either be
used as-is, meaning that if a censor learns them then it knows the true identity and/or
location, or they are indirect values, meaning that the true value is obfuscated by a level
of indirection and the censor does not learn the true identity and/or location. A simple
example of this latter case is a person with a pseudonym in a messaging CRS that provides
sender and recipient anonymity. To talk to that person we address our message to their
pseudonym, but we do not learn their true name, or network address, or location in real
life, assuming that the messaging system is not compromised.

Some CRSs are useful for introducing unpredictable forwarder IP address values for
CRS usage. FlashProxy [FHE+12] runs Javascript proxy code within the browser of any
website client who visits a CRS-supporting website and makes them a piece of the CRS. It
is irrelevant whether or not this CRS-supporting site is blocked by the censor since these
temporary forwarders are created on the client side by anyone outside the SoI who visits
the site. DEFIANCE [LMP+12] utilizes a scheme for hopping among a large pool of IPs,
provisioned from cooperating ISPs. Tor [DMS04a] widely recruits volunteers to operate
Tor bridge [DM06a] nodes, relays whose addressing information is not shared like ordinary
Tor relays, and Psiphon [Psi], a single-hop CRS, purchases IP addresses to be used as
forwarder addresses.

Other CRSs are useful for protecting the content location (storage) and covert destina-
tion information. Utilizing the Remailer concept based on Chaum’s ideas [Cha81], Gold-
berg and Wagner’s Rewebber proposal [GW98] utilizes multi-hop routing for encrypted
publication on servers whose identities are hidden behind a pseudonymous name space.
This makes it difficult for the censor to block covert destinations since it is difficult to track
down the servers they are hosted on. Even if that were easy, it is impossible for the server
to know what content it hosts due to encryption and so it is therefore impossible to target
specific content. Similarly, Publius [WRC00] and Tangler [WM01] both use this same trick
of encrypting all stored content for plausible server deniability properties. The difference

29

is that in Publius the encryption key is shared among servers using a k-of-n threshold
secret scheme so that some lost, i.e. censored, shares are acceptable. Tangler on the other
hand invokes the concept of collateral damage by enforcing, through encryption, that any
single document depends on other documents and to remove it would mean the removal of
these other documents also. Where the censor has vested interests in certain documents re-
maining available, this technique provides good protection. Freenet [CSWH00] introduced
the use of peer-to-peer (P2P) overlay networking to provide censorship resistant storage
of documents. Search and retrieval operations cause redundant copies of documents to
be made thus ensuring their long-term availability. The decentralized topology ensures
that the censor cannot target the true location(s) of documents and also leverages the
fact that most servers will be beyond the censor’s influence. Building on top of this, Ser-
jantov [Ser02] introduces anonymous access and the concept of “forwarders” as a defence
behind which the “storers” of documents can hide and thus evade the censor. Although
not P2P in nature, Tor Hidden Services [DMS04a] also leverage anonymous access to hide
the true location and identity of servers from not only the users but also from the network
nodes.

Rate Limited (RL)

For the censor who attempts to harvest CRS information by masquerading as a legitimate
CRS participant, we can limit the rate at which the censor learns feature-value pairs by
adding mechanisms to slow down the dissemination process. This strategy works in concert
with the one above by enhancing the security of distinguisher values that are yet unknown
to the censor.

The four main methods are proofs of work, partitioning the value-space over time slices,
partitioning the value-space over CRS participant attribute(s), and trust-based. Proofs of
work include captchas and other puzzles that require the participant to spend some of
their resources to gain information. They become onerous when wide-scale harvesting
by a resource-bound censor is attempted. Value-space partitions over time slices ensure
that even if harvesting is efficient, the censor can only learn values according to the CRS’s
timetable. Similarly, partitioning over the participant attribute(s) ensures that participants
learn disjoint sets over the value-space and hence no one participant, who is restricted in
resources (e.g. limited IP addresses or low connectivity in a social graph), could potentially
learn all CRS information. These mechanisms aim to ensure that there exist windows of
opportunity where misclassification can occur and again maintain the FNR for as long as
possible.

30

Tor bridge addresses are made available through the dissemination channel using a
release schedule that only reveals a few addresses at a time. The idea is that, despite
the censor’s efforts, a timed release schedule introduces windows of availability where the
censor has not yet harvested and blocked the address.

Feamster et al. [FBW+03] utilize key space hopping as a means of partitioning the
proxy address space in a way that is dependent on attributes of the user, in this case
their IP address. This is also leveraged for Tor bridge address distribution. Thus, the
adversary needs to masquerade as many users in order to collect the values from the entire
address space. To further hinder the censor, we can employ proof of work and life schemes,
such as solving puzzles and captchas. Köpsell and Hillig [KH04] limit the rate of effective
harvesting of proxy addresses by the censor using a puzzle-based challenge that is presented
when requesting a proxy address. This requires the censor to expend effort to obtain proxy
addresses, and thus makes both automated and human-driven harvesting more expensive
and time consuming.

Proximax [LM11] assigns trust by measuring the safety of distribution channels. Each
channel (a user) is assigned a subset of proxy addresses, which are polled for availability.
Each channel is expected to redistribute the available addresses to other as-yet-untrusted
users. If the proxies remain active then that channel is to be trusted further, but if
they become unavailable, or unreachable, then the channel is not to be trusted and further
proxy information is not distributed through it. rBridge [WLBH13] utilizes a similar notion
where reputation is associated with distribution channels and reputation scores are used
for address dissemination. UnBlock [SCL+12] utilizes friend relationships in the Google+
social graph to help clients within the censor’s SoI use their contacts outside the SoI as
forwarders.

Lock-stepped Interactions (LI)

A censor can actively probe a suspected CRS proxies to confirm CRS participation. To
mitigate this threat a CRS can introduce a sequence of interactions to the client-proxy
protocol that hides the true nature of the CRS proxy. The aim is to prevent efficient
probing by the censor. This strategy is similar to rate limiting with a key difference that
this strategy focuses on mitigating attacks that involve censor-CRS interaction over the
data channel whereas earlier only the dissemination channel was considered.

The main method is to introduce an authentication mechanism during data channel
establishment between the client and overt destination. The properties of the mechanism
are similar to those of proofs-of-work mentioned earlier, except the CRS can monitor
connections and at first feign non-CRS behavior to confound the censor’s probes, e.g.

31

seeing if a particular port is accepting connections. Only after a successful controlled
interaction does the CRS expose itself. The assumption is that the censor needs to invest
resources to conduct the interaction, and thus makes harvesting less effective, which again
enables windows of opportunity during which the FNR can be temporarily maintained.

The CRS can require every connecting client to authenticate to the overt destination.
BridgeSPA [SJP+11], ScrambleSuit [WPF13], and DEFIANCE [LMP+12] all require clients
to present authentication tokens in order to receive service from the overt destination.
These tokens can be distributed through the discovery protocol, albeit in a rate-limiting
fashion such that the censor cannot harvest all tokens.

2.6.2 Detection Phase

We arrive at the next phase with the assumption that the censor has failed, fully or partially,
to prevent CRS clients from learning CRS information that allows them now to proceed
to actually using the CRS. The censor may leverage whatever they have learned about the
CRS from the previous phase by inspecting network traffic or from side-channels and is
now going to attempt to stop CRS usage.

Strategies here take advantage of the censor’s resource limitations by obfuscating low-
hanging high-quality distinguishers from the data channel, e.g. publicly known IP addresses
of CRS-participating overt destinations. The aim is to induce a higher cost to successfully
processing traffic on the data channel using the remaining, high-quality but higher-hanging,
distinguishers. This is an effective strategy in situations where real-time processing, i.e. at
network line speed, is required to prevent contemporaneous CRS traffic, or where off-line
processing would not yield information useful for future data channel detection. Distin-
guisher effectiveness is determined by the error rates, FNR and FPR, being low enough
to be practical for the censor to utilize. For this phase of censorship, the aim for CRS
strategies is to primarily make the data channel undetectable, but some also target other
CRS components. The effects of the strategies here boil down to “not looking like a CRS”
and “looking like a non-CRS”.

An example of this is found in Tor where the 586-byte fingerprint is removed from the
network flows by morphing the packet lengths into a non-Tor-like distribution [MLDG12,
WPF13] and hence “not looking like a CRS (Tor)”. This effectively denies the censor this
low-hanging high-quality distinguisher, and forces them to look to hopefully higher-hanging
distinguishers.

32

Obfuscated Values (OV)

This strategy aims to obfuscate distinguishers that uniquely identify the CRS. On the
data channel the two main low-hanging distinguishers are network addresses of covert
destinations, and the contents of the payload. These can be dealt with using encryption
and/or stenographic techniques. The potential FNR is maintained as long as the censor
resources are bounded and insufficient for attacking the encryption and steganographic
techniques and for leveraging higher-hanging distinguishers efficiently.

Hiding the fact the client is communicating with a covert destination can be provided
by manipulating the path the data channel takes. Instead of directly connecting with it,
the client instead connects with an intermediary node (the overt destination) and from
there is forwarded to the actual desired, covert, destination. Tor [DMS04a] is a popular
anonymous communication system that has increasingly been used for censorship resis-
tance since it bounces the data channel over three hops in a manner that ensures that
no one node, or observer, can link both client and destination together. In a similar,
but restricted variation, Web MIXes [BFK00] utilize cascades—nodes in predetermined
and fixed chains—and client- and server-side proxies to provide unlinkable traffic between
the user and host. More recently, Decoy Routing [KEJ+11], Telex [WWGH11], Cirri-
pede [HNCB11], and TapDance [WSH14] leverage details of encrypted Internet protocol
traffic to send signals to routers en-route to allowed overt destinations to divert the flow
of the traffic to censored covert destinations. The only conditions are that 1) the router is
on the path to overt destinations that would cause large collateral damage to the censor if
they became unreachable and 2) there be no alternative routes that avoid the router. The
main differences between the systems are in the encryption schemes used. Decoy routing
is based on symmetric encryption while Telex, Cirripede, TapDance are all based on asym-
metric encryption. Decoy routing sends a sentinel, a symmetric key the router and user
share, along with the TLS client hello message, whereas Telex tags a TLS random nonce
using public key steganography and Cirripede does something similar but with the initial
sequence number found in the TCP header. TapDance tags the TLS ciphertext itself to
achieve the same result. The trick is that the censor is unable to tell normal encrypted
traffic from decoy routed traffic but the router on the path is able to do so with little
effort. OSS [FNB13] leverages online scanning services that allow HTTP redirects, to read
data from the covert destination, and use them as a forwarder by embedding data in the
URL of the HTTP redirects. Finally, DenaLi [NFS14] uses errors that are pervasive in wifi
traffic as a steganographic channel. The key insight is that any node connected to a WiFi
access point can be a potential client and destination, and hence the covert destination
can remain hidden in plain sight.

33

Obfuscating CRS traffic requires managing its network-level characteristics. Wiley’s
Dust [Wil11] removes the fingerprint of Tor’s plaintext TLS handshake traffic by encrypting
it. It overcomes the censor’s ability to fingerprint string patterns, packet lengths, and
timing information of a Tor communication stream. ScrambleSuit [WPF13] removes the
unique packet size feature of 586 bytes through data padding to match generally occurring
packet size distributions, but not any specific protocol or service. Obfs3 [Din12] removes
the distinguishing ciphersuite information in the TLS handshake messages by encrypting
the entire TLS session.

Indistinguishable Values (IV)

As an extension to the previous strategy, we can deny all high-quality distinguishers (low-
or high-hanging) by ensuring that they are indistinguishable from non-CRS distinguishers.
The net effect is to make the CRS look like another target non-CRS. There are two as-
sumptions here: one is that the censor must chose to either allow CRS traffic unmolested
or ham-fistedly disrupt both CRS and non-CRS traffic since they are impossible to dis-
entangle; the second is that certain distinguishers admit values that can be used for both
CRS and non-CRS use simultaneously.

There are two main methods; the first step for each is to identify a non-CRS target
distribution for the high-quality distinguisher we wish to remove. In practice, the aim is
to ensure that the values of a feature of CRS traffic come from the same distribution as
non-CRS values. To generalize, we say that the CRS must conform to the same value
distribution as non-CRS traffic for all features. Any deviations from the distribution limits
the effectiveness of the strategy. Then, the first variant of the strategy tries to utilize the
non-CRS value distributions by adopting them in its design in an attempt at mimicry. The
second variant, instead of adopting the values, embeds the non-CRS itself as one of the
CRS components, and utilizes it for CRS purposes. The distinction is that in the former
the onus is on the CRS design and implementation of all aspects of the data channel to
conform to the non-CRS distribution, with the assumption that this is achievable goal.
In the latter the trust is shifted to the non-CRS data channel with the assumption that
introduction of CRS traffic does not cause a deviation in any non-CRS value distribution.
A variation of the latter, where the same distribution is impossible or difficult to obtain,
is to alternate between the CRS and non-CRS utilizing the value space, or some subset of
it. As long as the censor is unable to tell when the value is CRS and when non-CRS the
effect is the same as above.

The following examples adopt the traffic on Tor’s data channel (which is low-latency and
encrypted) to look like particular other non-CRS targets. SkypeMorph [MLDG12] adopts

34

Skype’s communication protocols and shapes the distribution of traffic characteristics of
Tor communications to look like that of a Skype video call. Format transforming encryption
(FTE) [DCRS13] transforms Tor traffic to mimic other types of traffic, e.g., HTTP or
Javascript. StegoTorus [WWY+12] uses stegonographic techniques to embed Tor traffic
within the payload of popular traffic, such as HTTP or JavaScript, to bypass censors. For
higher-latency traffic, Collage [BFV10], which extends the basic ideas of Infranet [FBH+02],
and Message in a Bottle [IKV12] utilize stegonographic techniques but embed CRS traffic
within images that are posted to popular image hosting platforms.

Large Internet companies such as Google, Amazon, and CloudFlare provide cloud-based
platforms for hosting services and content. Circumvention systems like GoAgent [goa11]
and meek [FLH+15] use the fact that these platforms host multiple services and all are
accessible from a common external address. From the censor’s perspective the CRS client is
connecting to the common platform address, but within the encrypted traffic is the address
of the true covert destination or location of content, which the platform knows about. This
mechanism is known as fronting and is common, and has legitimate uses in shared hosting
scenarios. In a similar fashion, CloudTransport uses the storage platform S3 from Amazon
as a read and write buffer in the cloud, in order to access the CRS operating on a server
elsewhere. From the censor’s perspective, the client is only accessing Amazon and not the
CRS. Freewave [HRBS12] made use of Skype super nodes, which are network nodes that
route calls between clients, as proxies to hide the true destination. It also encodes data as
audio, in the manner of a acoustic modem, over the Skype audio channel to hide the true
nature of the traffic. Facet [LSH14] also utilizes Skype but embeds YouTube videos into
the video stream thereby allowing CRS clients to view censored YouTube videos. Recent
CRS designs, such as Rook [VK15] and Castle [HNGJ15], leverage online gaming platforms
to make use of in-game chat features or game data manipulation as the CRS data channel.
In theory, from the censor’s point of view, the CRS and the legitimate non-CRS service are
indistinguishable with respect to the data channel. This is however quite difficult to achieve
in reality and CRSs do trip up on certain aspects of indistinguishability. [GSH13, HBS13]

2.6.3 Response Phase

Designing strategies for this phase is done with the mindset that they should prevent an
unwanted response from the censor. Generally, the censor’s response to the output of the
detection phase is to block, interfere with, or allow monitored activities on the attack
surfaces; the censor may also decide to devote additional resources analyzing the CRS to

35

learn more effective distinguishers.4 As stated in Section 2.5, the first goal of CRS strategies
in this phase is to ensure that exposure and detection of data channel distinguishers does
not lead to the data channel being blocked. The second goal is to provide plausible client
and operator deniability given the exposures and detection the censor has conducted. We
note that there are synergies between strategies in this phase and some from earlier phases
that are exploited for further CRS effectiveness.

Churned Values (CV)

To mitigate failures at the exposure and detection phases the CRS introduces churn as a
defense against the censor acting upon exposed distinguisher values. The idea is that a
distinguisher can lose its effectiveness if the values gleaned during the exposure phase are
no longer valid, and/or in continual flux. A CRS design can introduce churn by using values
only for a short lengths of time, or using them once. The censor needs to continuously
employ resources at the exposure phase for yet-unknown and currently employed CRS
values that maintain the FNR. The assumption is that the censor would prefer to find a
stable and consistent distinguisher that can be employed for a long time, such that the
costs of the exposure phase are amortized over the time the CRS is in play.

The usual method adopted by the circumventor is to provision a large pool of values
and then unpredictably utilize them and then expire them within short time frames. An
added CRS element that manages the transitions is also required. The contrast between
rate limiting and value churn strategies is that in the former the censor’s knowledge is
cumulative, whereas in the latter the censor’s knowledge is quickly outdated and acting on
it would come at a cost.

To ensure access to the CRS, FlashProxy’s forwarders are temporary and last only for
as long as a website client is viewing the website. DEFIANCE’s pool of IPs only serve
as CRS forwarders for brief periods of time. We note that value churn in the case of
FlashProxy is dictated by the website visitors, and hence extrinsic to the CRS, whereas
DEFIANCE manages the churn rate itself, through the dissemination channel. Churn also
occurs naturally but we do not consider it a factor since it is neither assured that it will
be quick enough, nor can there be control of how values are reused.

4These actions are contingent upon the knowledge the censor has about the accuracy of the detection
mechanism, together with the costs of false negatives and false positives. These are costs that economic
game theory may better explain, which we focus on in Chapter 3.

36

Outside the Scope of Influence (OSoI)

CRSs can leverage inherent limitations to the extent of the censor’s scope of influence, as
outlined in Figure 2.2, and place critical components that are susceptible to attack beyond
it. In this way the censor can know what to attack, but is unable to do anything to it;
contrast this with the indistinguishable values strategy from the previous phase, in which
the censor may only know that the non-CRS is being used for some CRS activity but
cannot distinguish CRS from non-CRS uses. Indeed, so central is this strategy that, with
a few exceptions, all CRSs employ it to some extent.

The main manner most CRSs employ this strategy is to place or utilize overt destina-
tions and CRS information outside the SoI, e.g. national or jurisdictional boundaries, to
which CRS clients are able to establish data and dissemination channels respectively.

To ensure availability of content and the CRS, Anderson’s Eternity Service [And96],
one of the earliest CRSs, leverages distribution of data across a large number of overt des-
tinations deployed in diverse jurisdictions, so that at least some servers will be outside any
given censor’s scope of influence. Back’s Usenet Eternity [Bac97] is a 1997 implementation
of this proposal. Indeed, many of the CRSs we have come across in the literature employ
the OSoI strategy. We can make one distinction, however, which is that some CRSs take
advantage of existing CRS-agnostic third-party infrastructure or services instead of de-
ploying their own CRS-specific infrastructure. Cloud providers like Google, Amazon, and
CloudFlare, or VoIP providers like Skype, or content hosts like YouTube and Flickr, are
all CRS-agnostic platforms that have been leveraged for their OSoI properties.

2.7 Attack Mitigation and Remaining Gaps

Let us now consider how each CRS component is protected by the strategies we have
identified. For each strategy we distill the main techniques used to realize them. Ideally,
there should be mitigations for all of the different censor attacks. We note the gaps and
discuss the properties of potential strategies that could fill them. Refer to Table 2.3 for a
handy reference for the discussion that follows.

2.7.1 CRS Information and the Dissemination Channel

We consider the CRS information and its dissemination channel together since they logi-
cally depend on each other. The primary target of the rate-limiting strategy is to combat

37

Table 2.3: A drill-down of Table 2.1, showing techniques employed to defend against
censorship threats to CRS components. The CRS components we described in Section 2.3.1
and the attacks on each, as discussed in Section 2.4, are organized along the top. The
rows are grouped by the phases of censorship described in Section 2.2.1. Each group is
organized by the strategies that apply to that phase and the techniques that realize them,
both discussed in Section 2.6. A solid black square indicates that this technique has been
applied to this attack vector.

CRS Component
CRS Diss. Data Overt/Covert CRS
Info. Chan. Channel Destination Client

P
ha

se
(S

tr
at

eg
y)

Technique A
tt

ac
k

H
ar

ve
st

Po
is

on

D
en

y

M
as

qu
er

ad
e

D
et

ec
t

D
en

y

D
is

ru
pt

&
D

eg
ra

de

C
om

b

C
oe

rc
e

C
ru

sh

C
ur

ta
il

C
or

ru
pt

C
om

pr
om

is
e

&
D

en
y

C
oe

rc
e

Li
nk

Actual Value ■
Indirect Value ■ ■ ■ ■

(U
V

)

Time ■ ■
Value-Space ■ ■
Proof-of-Work ■ ■ ■

E
xp

os
e

(R
L

)

Trust ■ ■ ■ ■

Client Authentication ■ ■

(L
I)

Traffic Patterns ■ ■
Covert Destination/Content ■ ■

(O
V

)

Adopt ■ ■

D
et

ec
t

Co-opt ■ ■

(I
V

)

Resource-Driven ■ ■ ■ ■ ■
CRS-Driven ■ ■ ■ ■ ■

(C
V

)

CRS-Specific ■ ■ ■

R
es

po
nd

CRS-Agnostic ■ ■ ■ ■ ■

(O
So

I)

38

the censor—masquerading as a CRS participant—from efficiently harvesting CRS informa-
tion. However, there are no strategies that mitigate the threat of the censor poisoning CRS
information. As noted earlier, it is not without risk for the censor to manipulate public
information used by both CRS and non-CRS activity, so there is at least an implicit level
of defense. Denial of the channel could be mitigated by the same strategies that secure the
data channel, where unpredictable and indistinguishable values make detection difficult.

2.7.2 Data Channel

Obfuscated and indistinguishable values certainly make it difficult to detect the data chan-
nel. Channel denial is mitigated by the success of these strategies as well as the strategy
of placing overt and covert destinations outside the scope of influence. However, there are
limits to the success that depend on how well these strategies are implemented. Trans-
forming traffic to look like another protocol, such as HTTP, generally has only limited
success [HRBS12, GSH13]. For instance, in the case of mimicry to obfuscate known distin-
guishers, the censor only has to find one disparity, whereas a CRS must perfectly imitate
the chosen cover protocol in order to succeed. Cover protocols are generally complex,
with behavior dependent on their particular use cases. An imitator has the task of not
only making the protocol look correct, i.e., matching explicit values, but also ensure it
behaves according to expected norms, i.e., matching implicit values. Common protocol-
level disparities are a result of incomplete or incorrect cover protocol implementation,
such as failure to handle errors in a consistent manner. Both SkypeMorph and Censor-
Spoofer suffer from systematic errors stemming from incomplete imitation of the cover
protocol [HBS13, GSH13, LSH14].

Even if CRS traffic is tunneled over the cover protocol, to avoid the problems inherent
to mimicry, the censor may be able to take advantage of channel usage inconsistencies and
content inconsistencies [LSH14]. A CRS may rely on channel characteristics in a different
manner from the cover protocol. If the overt protocol is more robust to network degra-
dation, for example, the censor can manipulate the network to disrupt CRS traffic, but
not legitimate cover protocol traffic. Iran conducted such an attack on Tor by limiting the
duration of TLS connections to two minutes. [Tor13] Legitimate connections, to text-based
websites, were not affected by this since the website has loaded within that time period.
On the other hand, Tor traffic is interrupted, as Tor TLS connections are longer lived than
two minutes and would need to be reestablished often. In a similar vein, Iran also throttled
TLS connections to 2 kilobits per second rates, making browsing and other activities diffi-
cult [Lew11]. These attempts are to block CRSs that do not perfectly match the use cases
of the popular protocols they tunnel through, which has the effect of making the usage

39

of the CRS onerous and thus discouraging it. Other examples include SWEET [ZHCB13]
and Freewave [HRBS12]. SWEET uses email as the carrier for web traffic. Since email
is a high-latency tolerant protocol and web traffic is not this disparity can be exploited
by the censor—who can simply delay all emails leaving the SoI—to impact only the CRS
and not the carrier protocol. Similarly, since streaming audio/video is loss tolerant, the
censor can disrupt CRSs like Freewave by dropping enough packets to disrupt Freewave
transmissions, while leaving actual Skype traffic within the threshold of acceptable level
of performance.

Even if the data channel is encrypted, the content of CRS communications may be
distinguishable from the content of the cover protocol. For example, Li et al. [LSH14] and
Geddes et al. [GSH13] show that Freewave may be detected using an n-gram based classifier
on packet lengths. This attack, however, is contingent on the censor accurately modeling
normal content. This may be easier for special-purpose protocols, such as VoIP, which
is used only for video or voice traffic, than for general-purpose protocols, such as TLS,
which is used for multiple types of data. Achieving indistinguishability of CRS traffic from
legitimate, popular cover protocols has been a natural focus in the research literature. In
light of difficulties ensuring consistency at the protocol, channel, and content levels, Li et
al. propose that CRSs not only use popular, unblocked cover protocols to tunnel traffic, but
also to match CRS content with that of the chosen cover protocol. Their proposal, Facet,
is a prime example of a system that attempts to do this, by building a data channel that
sends video traffic over Skype, and ensuring the video traffic approximately matches the
expected traffic pattern for a video chat call. It remains to be seen if further discrepancies
may be discovered with this approach.

2.7.3 Overt and Covert Destinations

Rate-limiting strategies help to mitigate the impact of the censor curtailing access to overt
destinations. The censor combing for CRS-related values is potentially mitigated by the
lock-stepped interaction strategy. Coercion resistance is provided by, again, placing CRS-
participating components outside the SoI. Hiding the true location or nature of covert
content, using the strategy of unpredictable values, also mitigates the threat of the censor
coercing content from being taken down.

Decoy routing CRSs [KEJ+11, WWGH11, HNCB11, WSH14] are an interesting at-
tempt at obfuscation that has attracted research attention. They work by placing CRS
stations within the network infrastructure itself, such as at routers at participating ISPs
outside the censor’s SoI. Users signal their intent to use the CRS by steganographically
tagging a seemingly innocent connection to a decoy destination (or dummy destination in

40

our terminology), which can be any site not blocked by the censor and that has a CRS
station on the network path between the client and itself . The user may then request her
real, blocked destination, which will be served by the CRS station. The main difference
between these systems lies in their ability to handle asymmetric flows, a feature of Decoy
Routing, Cirripede, and TapDance, and their reliance on an inline network-flow-blocking
element, which is necessary in all of these systems except TapDance. All of these systems
rely on strategic deployment, making it impossible for the censor to “route around” coop-
erating ISPs without significant collateral damage. If this assumption is invalid, however,
the censor can avoid or otherwise blackhole the route. The tools for this are already present
in networking equipment; the question is if an alternative route exists for desirable hosts
on the other side of the proxy. Thomson et al. [SGTH12] investigate the feasibility of this
attack while Houmansadr et al. [HWS14] evaluate the costs associated with it. This is an
open research problem, with game-theoretic analysis as an avenue for further pursuit.

However, gaps exist. The first is that most CRSs do not yet attempt to prevent crushing
tactics (such as a DDoS) against CRS-participating destinations or storage. The CRS
implicitly depends on the leveraged platform or their network connectivity provider to
prevent such a scenario. In general, preventing an DDoS attack does not yet have a robust
solution, outside of over-provisioning of bandwidth and IP addresses. The second gap
is that corrupted content and CRS participants are not prevented or mitigated by any
strategy. Both of these areas are avenues for future research.

2.7.4 CRS Client

The linking attack is the main vector that is mitigated in the exposure and detection
phases. Indirect values, trust, obfuscated and/or indistinguishable traffic patterns and
destinations are the main techniques employed. We have already discussed the relevant
examples from the literature in the discussion about overt/covert destinations and the
dissemination channel.

In the response phase, publisher coercion may be mitigated by CRSs that do not allow
the deletion or modification of published content. Alternatively, plausible deniability may
deflect suspicion, as seen in DenaLi [NFS14], where errors in broadcasted messages on the
local WiFi network are used to hide steganographic messages and CRS participation.

2.7.5 Mitigation Summary and Trends

In general, there is almost complete coverage across all the phases and attack vectors, save
for the gaps we have identified above. Looking at the attack coverage across the censorship

41

phases we note that there is good representation for response mitigation. What is striking
is that the technique of using CRS-agnostic infrastructure, services, and software provides
protection against more attacks than the technique of using CRS-specific ones. The main
reason is due to the potential collateral damage that would be incurred should the censor
interfere with CRS-agnostic platforms and services which also serve non-CRS purposes.
Also, CRS-agnostic software can provide compromise & denial protection because it is
popular and likely already present on the client’s computer. The value churn strategy
protects many of the components with its two techniques both providing similar attack
coverage. Unpredictable indirect values are the most useful form additionally providing
mitigation for combing, coercion, and client linking.

We observe that there is a trend to raise the bar for the censor to detect the data
channel, by mitigating the low-hanging distinguishers. However it is unclear what the
capabilities of the censor are with regard to the mitigated low-hanging distinguishers and
if the censor is even willing to engage in sophisticated traffic analysis. While it is difficult
to find out the true capabilities of a censor, it is perhaps still useful to find out how difficult
attacking lower- and higher-hanging distinguishers actually are. While the literature does
provide analysis of attacks they are usually tuned against particular CRS implementations
and the results are of limited scope and do not tell us if they are applicable to a realistic
censor. This is an avenue of research where studies of distinguisher effectiveness at Internet
scale could provide clues about which distinguishers are the most significant threats.

Another trend that emerges is that many recent CRSs leverage existing third-party
infrastructure and data channels to defend against the threat of blocking. Indeed, it seems
as if the indistinguishable values strategy has become the more favored one over obfuscating
and unpredictable values. The trend seems to indicate that CRS data channels are moving
from being CRS-specific to those that are CRS-agnostic. What this means is that whereas
CRS-specific implementations are crafted to meet all CRS design specifications, CRS-
agnostic implementations meet those same CRS specifications through happy coincidence.
This leads us to conclude that there are extrinsic properties that need to be accounted
for when evaluating such a CRS. This could be undesirable for three reasons. The first
is that it introduces dependencies on external parties that may not be invested in the
CRS’s success. The second is that the synergy that existed to allow the CRS to leverage a
particular extrinsic property is not by design, which means that there may be—from the
perspective of the CRS—unintended states that could render the CRS ineffective. Finally,
the fate of the CRS is tied to the leveraged service and how widely it is adopted and spreads
and this limits the potential client base of the CRS. A closer look at these issues is needed
to evaluate how critical they are and perhaps also how CRS designs can be adapted to
provide more control over extrinsic properties.

42

2.8 Revisiting Use Cases—Security and QoS

We now reconsider CRS design from the perspective of the users and use cases, and the
security and performance properties we first defined in Section 2.1. Table 2.4 provides a
reference for and summary to the discussion to follow. Our aim is to see what properties
are being satisfied with actual CRS designs and also to note trends, threats, and possible
synergies.

In this table we do not include a column for unblockable data channel since we con-
clude that all CRS designs in the literature provide circumvention through some means,
which have already been discussed in Section 2.7. Instead, in the table we focus on those
properties that help us distinguish CRS designs from each other.

Overall, we note that CRS designs have little synergy with each implementing its own
designs from scratch, most often with tightly integrated functionality; this precludes other
systems from leveraging the design and effort already invested. Even designs that share a
common base suffer from this shortcoming. A prime example is the Tor network and the
various solutions for ensuring its data channels are undetectable. Although the Tor com-
munity is actively trying to address the problem with the pluggable transport framework,
the desired level of reuse and modularity is not currently in place.

Only a few CRSs provide publisher anonymity, and the majority of those originally
debuted in the early 2000’s, or if not they leverage those early systems for this property.
It seems that recently the emphasis has shifted to providing read access whereas earlier
the specter of chilled speech was at the forefront. Similarly, protection against publisher
coercion is only provided by earlier systems. In contrast, we note that recent systems,
particularly those that leverage CRS-agnostic platforms, actually expose publishers. It
becomes clear why this is the case; all of these systems require the publisher to interact
directly with the CRS, either to set up accounts and/or store and manipulate files. This
is not a consequence of some inherent limitation of CRS-agnostic or co-opted designs but
rather due to this not being a design goal. This particular limitation can be addressed by
incorporating the anonymizing and coercion resistance techniques used in earlier systems,
or by utilizing those systems directly.

More generally, the trend for direct communication between clients and overt/covert
destinations, eschewing path obfuscation means that clients can be linked to their commu-
nication partners. The reason is that these systems are only designed to bypass blocking,
and are not intended to provide other security properties. This situation can be amelio-
rated with the use of an appropriate path obfuscation design; certain CRS designs (e.g.
Tor or Web MIXes) that provide publisher anonymity can be readily utilized for this pur-
pose. However, these designs do enjoy good performance across all the measures we have

43

Table 2.4: Overview of security and performance properties of various CRS designs and
the strategies they use to achieve them. White squares denote that the system does not
provide that security property or does not use that strategy, while black squares mean
that it does. Dashes denote that the security property does not apply to that particular
system. The systems are grouped by the similarity of the strategies they mainly leverage.
CRSs that utilize steganographic techniques are labeled with †, and those that leverage
CRS-agnostic platforms are labeled with ∗.

U
V

R
L

LI O
V

IV C
V

O
So

I

System Year Undetectable Data Channel

Anonymous Publisher

Unlinkable Client-Dest. Path

Incoercible Publisher

Incoercible Covert Dest.

Deniable Client

Deniable Forwarder

Deniable Covert Dest.

Reachability

Interactivity

Throughput

Goodput

Latency

■ □ □ □ □ □ ■ TAZ-Rewebber [GW98] 1998 □ □ ■ ■ ■ □ □ □ □ ■ ■ ■ ■
■ □ □ □ □ □ ■ Freenet [CSWH00] 2000 □ ■ ■ ■ ■ □ □ □ □ □ □ □ □
■ □ □ □ □ □ ■ Publius [WRC00] 2000 □ □ ■ ■ ■ □ □ ■ □ □ □ □ □
■ □ □ □ □ □ ■ Tangler [WM01] 2001 □ □ ■ ■ ■ □ □ ■ □ □ □ □ □
■ □ □ □ □ □ ■ Serjantov [Ser02] 2002 □ ■ ■ ■ ■ □ □ □ ■ □ □ □ □
■ □ ■ ■ □ □ ■ Tor-Hidden Services [DMS04a] 2004 □ ■ ■ ■ ■ □ □ □ □ ■ ■ ■ ■
■ ■ □ □ □ □ ■ Tor Bridges [DM06a] 2006 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
■ □ □ □ □ ■ ■ FlashProxy [FHE+12] 2012 □ ■ □ − − □ □ − ■ ■ ■ ■ ■
■ ■ ■ □ □ ■ ■ DEFIANCE [LMP+12] 2012 □ ■ □ − − □ □ − ■ ■ ■ ■ ■
□ ■ □ □ □ □ ■ Untrusted Messenger [FBW+03] 2003 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
□ ■ □ □ □ □ ■ Köpsell and Hillig [KH04] 2004 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
□ ■ □ □ □ □ ■ Unblock∗ [SCL+12] 2012 ■ − □ − − ■ □ − ■ ■ ■ ■ ■
□ □ ■ □ □ □ ■ BridgeSPA [SJP+11] 2011 − − − − − □ ■ − − − − − −
□ □ ■ ■ □ □ ■ ScrambleSuit [WPF13] 2013 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ ■ □ □ ■ TriangleBoy [Hsu00] 2000 □ − □ − − □ □ − ■ □ ■ ■ □
□ □ □ ■ □ □ ■ Web MIXes [BFK00] 2000 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Tor [DMS04a] 2004 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Dust [Wil11] 2010 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ ■ □ □ ■ COR∗ [JACF11] 2011 □ ■ ■ − − □ □ − ■ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Telex [WWGH11] 2011 ■ − □ − − ■ □ − □ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Decoy Routing [KEJ+11] 2011 ■ − □ − − ■ □ − □ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Cirripede [HNCB11] 2011 ■ − □ − − ■ □ − □ ■ ■ ■ ■
□ □ □ ■ □ □ ■ Obfsproxy [Din12] 2012 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ ■ □ □ ■ OSS∗ [FNB13] 2013 ■ − ■ − − ■ ■ − ■ ■ □ □ □
□ □ □ ■ □ □ ■ TapDance [WSH14] 2014 ■ − □ − − ■ □ − □ ■ ■ ■ ■
□ □ □ ■ □ □ □ DenaLi† [NFS14] 2014 ■ − ■ − − ■ ■ − □ ■ □ □ ■
□ □ □ □ ■ □ ■ Infranet†∗ [FBH+02] 2002 ■ □ □ □ ■ ■ ■ ■ □ □ □ □ □
□ □ □ □ ■ □ ■ Collage†∗ [BFV10] 2010 ■ □ □ □ ■ ■ ■ ■ □ □ □ □ □
□ □ □ □ ■ □ ■ GoAgent∗ [goa11] 2011 ■ − □ □ ■ ■ ■ □ ■ ■ ■ ■ ■
□ □ □ □ ■ □ ■ StegoTorus† [WWY+12] 2012 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ □ ■ □ ■ Freewave∗ [HRBS12] 2012 ■ − ■ − − □ ■ − ■ ■ ■ □ ■
□ □ □ □ ■ □ ■ SkypeMorph [MLDG12] 2012 ■ − ■ − − □ □ − ■ ■ ■ □ ■
□ □ □ □ ■ □ ■ CensorSpoofer [WGN+12] 2012 ■ − □ − − □ □ − ■ □ ■ ■ □
□ □ □ □ ■ □ ■ MIAB†∗ [IKV12] 2012 ■ □ □ □ ■ ■ ■ ■ □ □ □ □ □
□ □ □ □ ■ □ ■ SWEET [ZHCB13] 2013 ■ − □ − − ■ □ − ■ □ ■ ■ ■
□ □ □ □ ■ □ ■ FTE [DCRS13] 2013 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ □ ■ □ ■ Marionette [DCS15] 2015 ■ − − − − □ □ − ■ ■ ■ □ ■
□ □ □ □ ■ □ ■ CloudTransport∗ [BHS14] 2013 ■ − □ − − ■ ■ − ■ ■ ■ ■ ■
□ □ □ □ ■ □ ■ Facet∗ [LSH14] 2014 ■ − □ − − □ □ − □ □ ■ □ ■
□ □ □ □ ■ □ ■ Facade† [JBF+14] 2014 ■ □ □ □ ■ ■ ■ ■ □ □ ■ □ □
□ □ □ □ ■ □ ■ meek∗ [FLH+15] 2015 ■ − □ □ ■ ■ ■ □ ■ ■ ■ ■ ■
□ □ □ □ ■ □ ■ Castle†∗ [HNGJ15] 2015 ■ □ □ □ ■ ■ ■ ■ □ ■ □ □ ■
□ □ □ □ ■ □ ■ Rook†∗ [VK15] 2015 ■ □ □ □ ■ ■ ■ ■ □ ■ □ □ ■
□ □ □ □ □ □ ■ Eternity [And96] 1996 □ □ □ ■ ■ □ □ □ □ □ ■ ■ ■

Strategies Security Performance

44

defined and this indicates that there are security-performance trade-offs to be considered,
that depend on the use case and CRS design adopted.

The trend of forgoing client security in favor of performance depends on an assumption
that it is not realistic to assume that the majority of clients will be targeted or harmed.
However recent revelations, in particular those by Edward Snowden [Pau13], call into ques-
tion these design choices. The dramatic reach of the “Five Eyes”—a program of cooperation
and surveillance data sharing between the governments of Australia, Canada, New Zealand,
the United Kingdom, and the United States of America—necessitates a reevaluation of the
basic assumptions most CRSs make with respect to the censor’s sphere of influence and
visibility. Systems are typically not designed to withstand global passive adversaries, for
instance, and designs often count on distribution across diverse jurisdictions to make this
assumption realistic. Given that a significant number of government entities cooperate
and have far-reaching network capabilities, systems designed with these assumptions may
be more brittle than previously believed. The recent seizure of several Tor hidden ser-
vices [Lew14], for example, may be evidence of this level of global cooperation. While it is
unclear just how large the spheres of visibility and influence are for any given censor, their
reach is likely far larger than anticipated by current CRS designs.

Taking another look at the high-performance designs we identify an aspect worth not-
ing. While in all of these designs the potential throughput is comparable to that of unfet-
tered Internet access, in reality only those designs that leverage CRS-agnostic platforms
and services—which are provisioned for Internet-scale performance—are likely to actually
enjoy this level of performance. The other systems leverage individual nodes on the Inter-
net normally not resourced for high throughput and thus are more likely to only achieve
middling levels of performance. We will revisit this dichotomy later in the following section
when we consider the implications of utilizing CRS-agnostic entities in CRS design.

Overall we note the lack of an all-in-one CRS design that provides all of the security
properties we have identified. If we were to consider hybrid designs then we see that
recent CRS-agnostic designs that provide undetectable data channels coupled with the
early publishing designs may provide all of the desirable properties. Unfortunately, we
note the stark contrast between the performance profiles of both these types of designs
which may indicate a lack of synergy and the need for more research and thought in
how to overcome any inherent limitations. A more performance-profile synergistic match
seems to be CRS designs leveraging steganographic channels for access to materials on
popular platforms and the early publishing designs as above. The similarity in performance
properties indicates that these should be relatively straightforward to combine. Indeed,
we note that in all cases if the publisher and client were to access the popular platform—
which gives plausible deniability of CRS participation—through an anonymity CRS, say

45

Tor, then all of the security properties would be covered. Alas, this hybrid would be on the
low end of the performance spectrum. If we allow ourselves to relax one security property,
such as coercion resistance, then higher-performance hybrids are apparent, e.g. Tor hidden
services and Obfsproxy, which is likely a combination in use today.

2.9 Revisiting Collateral Damage

We now take a closer look at the philosophy of collateral damage and the part it plays in
the design of data channels and the selection of overt destinations for CRSs. The theory
goes: if we pick the perfect non-CRS service or platform to leverage, one that the censor
would balk at blocking due to the inherent collateral damage that is contingent on the
limitations of its classifier, then CRS activity would go unmolested. For example, we see
this with CloudTransport which leverages the Amazon cloud storage service as the non-
CRS to use as cover. If we are able to perfectly blend in, using indisguishable values for
example, then the censor is unable to cleanly remove (all) CRS activity, and thus we force
the censor to tolerate the CRS activity. What this means is that the CRS is causing the
non-CRS services and platforms to act as concentration points for maximizing collateral
damage potential.

Counter-intuitively, the censor may actually benefit from this concentration since the
attack surfaces and CRS security failures are also concentrated and now well defined, e.g.
only traffic to Amazon’s cloud storage service, and hence easier to deal with (contain). We
present three illustrative points where non-CRS service or platform concentration produces
negative outcomes.

The non-CRS service or platform is now a single point of failure, which means that if
the censor does decide to block it, perhaps because the CRS designer overestimated the
cost of the potential collateral damage or despite it, the CRS is effectively contained while
the impact is limited to the non-CRS service or platform only.

Local entities, or the censor itself, may develop local alternatives for the targeted non-
CRS service or platform and draw legitimate non-CRS service/platform users away, leaving
CRS users exposed. There are many instances of local alternatives such as Weibo, YouKu,
and Baidu.5 These local alternatives have the added benefit of being better censored since
they sit inside the SoI and thus the censor can nullify any potential CRS usage of the local

5We do not claim that these alternatives are a direct effort to quash CRS activity, but these alternatives
certainly do diminish the potential collateral damage since the non-CRS service/platform user base has
been thinned.

46

alternative while minimizing the impact to availability of the service/platform to regular
users.

Usually non-CRS services and platforms that have been leveraged in the past are op-
erated by single corporations. The censor can strike back at CRS systems by attacking
the non-CRS service or platform and/or the entity that operates it. The strike can be in
the form of actual network-level attacks [MWD+15] that cause the operator to reconsider,
or decry [DB15], its role as a host to CRS activity. Indeed, there is uncertainty around
exactly how the operating entity may respond. In the worst case it may even act as an
informant to the censor and monitor CRS activity. This is most troubling when we recall
that many high-performing CRS designs that utilize these platforms do not provide pro-
tection against client-destination linkage. Since the long-term viability of leveraging third
parties for CRS duty is unclear,6 it becomes critical that these security properties actually
be in place if non-CRS services are leveraged.

The picture this paints is that concentration is a poor direction since it has synergy with
the censor’s desire for containment. We should reexamine the trend of leveraging non-CRS
entities and platforms as a shield since this adds extrinsic factors into the CRS-design. As
we see from the discussion above, if collateral damage is to remain a deterrent then it must
not come from the concentration provided by an easily contained entity.

2.10 Conclusions

We conclude this chapter by identifying areas for future work that have been illuminated
by our discussion so far.

We identified that reuse and modularity were lacking and identified Tor pluggable
transports as one effort to address this shortcoming for the Tor ecosystem. The current
state is not at the desired level but there is progress in the right direction. Fog [ifi13b]
attempts to create a platform for pluggable transport component composability, but this
effort has stalled [ifi13a]. The greatest challenge has been a correct decomposition of
CRS component functionality, such that components are both composable and consistent
with the constraints of Internet networking. Jumpbox [MMBY14] alleviates, but does
not solve, the problem at the network interface layer, by providing a standard interface
for encapsulating pluggable transport traffic to look like regular web traffic. Khattak et
al. [KSM14] provide a systematization of extant pluggable transports and recommend the
notion of a “tweakable transport” as a possible way forward.

6In that, it is not yet known if public opinion will sway platform providers to protect CRS activity or
if business concerns will make CRS activity unwelcome. Recent events do not look promising.

47

We noted the rising trend of leveraging popular CRS-agnostic services and platforms
as a means of mitigating censor actions through collateral damage in the response phase.
We noted that these tend to concentrate the attack surface and that this helps the censor
better contain the CRS. We propose diffusion, which is the return to distribution of risk
over many entities, stakeholders, and attack surfaces.

Practically, diffusion means that CRS designs ought to leverage ubiquitous Internet
protocols, e.g. TLS, and network topologies, e.g. peer-to-peer, that avoid single points of
failure. Diffusion will also avoid providing a constrained set of stakeholders, since ubiqui-
tous technologies belong to no one and everyone, for the censor to target and pressure. The
end result would be that the censor should have a difficult time containing CRS activity
to some portion or subset of the network value space, and mitigate the impact and extent
of the potential collateral damage.

Our attention is also drawn to the lack of CRSs designed to enable free communication
among users within a censor’s SoI. Anderson’s Eternity Service set the initial direction
for considering censorship circumvention by assuming the existence of some entity beyond
the censor’s SoI who could develop and deploy CRSs. It is increasingly becoming realistic
to expect, however, that users never egress the censor’s sphere of influence or visibility.
Regimes have been known to shut off Internet access completely for periods of time, includ-
ing Egypt and Libya; [DSA+11] enabling citizenry to organize and communicate using the
internal network during such times becomes an important use case. Unfortunately, there
has been little research attention given to developing censorship circumvention systems
entirely contained within the censor’s SoI. DenaLi [NFS14] is a notable exception but it is
designed only for operation within a single LAN and, as a result, does not provide many
desirable user experience properties. However, it does show that there are viable solutions
for CRS schemes that operate within the censor’s SoI. Following the principle of diffusion
is key in this scenario since there is no non-CRS service or platform to leverage within the
SoI.

While we develop defenses within the framework of the current Internet architecture,
we, like some before us [TS14], also call for a next-generation Internet designed with
censorship resistance as an explicit feature by default.

An active research avenue focuses on the need for empirical data about real-world cen-
sorship with respect to CRS user impact and the censorship techniques used [BF13]. What
few investigations exist are informative, but provide only partial and possibly outdated
snapshots of the state of censorship. In particular, many CRS designs assume the censor is
capable and willing to engage in sophisticated traffic analysis, as we noted in Section 2.7.5.
As discussed earlier, a thorough analysis to evaluate censor attacks on distinguishers is
needed.

48

We also lack research into the relationship between the many CRS techniques and the
costs to the censor, particularly in terms of policy and decision making. This chapter ex-
amines and categorizes CRS techniques based on qualitative technical measures and makes
relative comparisons amongst the various strategies and techniques. A game-theoretic anal-
ysis of optimal strategies would be helpful in understanding the censor decision function
and identify useful techniques for CRS designs.

Furthermore, there is an implicit assumption that collateral damage is an overwhelming
factor in the censor’s decision function. Current CRS schemes are contingent on and try to
maximize collateral damage (FPR), but do not evaluate the impact of information leakage
(FNR) on censor behavior nor identify parameters that might affect it. Filling this gap
is an important next step in illuminating the dynamics of the censorship resistance game
and providing feedback on best practices for CRS design.

Indeed, we pursue the last two areas of research in Chapter 3, where we apply game-
theoretic analysis to censorship resistance and investigate the impact of information leak-
age, collateral damage, and accuracy of the censorship apparatus on the censor’s behavior.

49

Chapter 3

Game-Theoretic Approaches to CRS
Design

3.1 Introduction

In Section 2.10 we noted a lack of insight into the censor’s decision function since, so far, the
literature has treated that aspect of the censor as a black box. In this chapter we investigate
this aspect of censorship through the lens of game-theoretic analysis. Since the problem
space is large, we reduce our scope to the data channel and defenses against detection
of CRS-related traffic. This is timely because there is currently a lot of activity within
the community to develop better designs and implementations that address censorship
threats to the data channel. Specifically, we seek to understand how the error rates of the
censorship apparatus, both FPR and FNR, affect the censor’s behavior and if, and how,
the base rate of covert traffic can be used as a parameter in CRS designs.

Game theory is the study of how groups of rational, self-interested entities behave in
response to one another’s actions. In the context of censorship-resistant communications,
a game-theoretic approach can be used to assess the optimal behavior of a rational censor
and the designers of a CRS.

To facilitate this, we will analyze the behavior of the two parties, or players from now
onwards, in increasingly detailed versions of an abstract “censorship game”, designed to
capture the fundamentals of the censorship resistance dynamics, while still being simple
enough to readily analyze. This serves to reveal the essential components of the problem
domain.

50

These players try to maximize their benefits by thinking strategically about their ac-
tions, using information that they have about the environment and the other players. A
central assumption is the theory of “rational choice”, which states that an entity seeks to
maximize its utility independent of the other player’s utility and will choose an action that
is at least as good as any other action available to them. The utilities can be modeled by a
utility function (U) that assigns ordinal values to the utilities. That is, if a player prefers
outcome a over outcome b and outcome b over outcome c then the utilities are ordered
U(a) > U(b) > U(c).

Technological Limits

Recall from Section 2.2.1 that the censorship apparatus is limited by shortcomings of the
classifier, the computational and memory costs of real-time processing, and the partial
view of the attack surface, amongst other considerations. It is important, then, to take
into account the rate at which objects of interest are misclassified. The two types of
errors—false positives and false negatives—govern the confidence the censor has in their
censorship apparatus. The prevalence of each of these type of errors provides an important
input for both the censor and the circumventor in defining their respective strategies.

False Positives

From the censor’s perspective, false positives are the legitimate traffic, and users, that were
misclassified and blocked—the collateral damage. The censor naturally seeks to keep this
as low as possible.

As we have noted earlier in Section 2.7.5, the collateral damage strategy has been lever-
aged by numerous censorship resistance systems. However, in most cases the circumventor
assumes an all-or-nothing approach to censorship, which can be limiting when the censor
is content with partial blocking.

False Negatives

The censor tries to prevent as many clients, or as much traffic, as it can from circumventing
its blocks—termed information leakage. Due to the limits of technology it is unable to
identify all of them.

The circumventor’s aim is always to have as much, if not all, of its traffic classified as a
(false) negative. Strategies to obfuscate distinguishers or make them indistinguishable from

51

non-CRS traffic, as well as steganographic and encryption techniques are all instrumental
in achieving this goal.

We note here that since the circumventor is a rational player its aim is not to produce
collateral damage, or indeed to explicitly reduce the censor’s utility. It is only concerned
with maximizing its own utility, independent of the censor utility.

3.2 Censorship Games

In our model, a censorship game is a game played between two players. One player,
called the censor, has comprehensive control over the network of a target area (its SoI),
and wishes to prevent certain undesirable communications from being transmitted over
that network, while maximizing throughput of legitimate traffic.1 The other player, called
the circumventor, wishes to send censored traffic (e.g. political speech that the censor
disapproves of) over the censor-controlled channel, and may or may not care about the level
of throughput for other “legitimate” communications on the censor-controlled network.

The circumventor is able to disguise circumvention, or covert, traffic to match a certain
profile of legitimate cover traffic, and exercises control over the amount of traffic that is
sent by altering the base rate (BR) of the censorship resistance system (CRS) they have
deployed. The base rate can be set to any value in the range 0 ≤ BR ≤ BRmax, where
BRmax is the maximum amount of traffic that the CRS could transmit if it was fully
utilized.

The censor possesses the ability to shut off all traffic (both legitimate and circum-
vention). The censor may also, but not always, possess the ability to differentiate the
circumventor’s traffic from the legitimate traffic that it is disguised as, by means of some
censorship apparatus. This ability to differentiate is prone to errors classified as false
positives or false negatives.

Each player has a separate utility function that maps from the choice of action taken
by both players to the total reward acquired by one of them.

The game is played in a series of discrete rounds, happening in sequential discrete
timesteps. At the start of each round, both players simultaneously select an action, from
their action set, on the basis of the actions selected by the two players in all previous
rounds of the game, and on the basis of their own utility functions and calculations.

1This is a simplification since the censor may also care about other aspects that contribute to their
utility, such as international perception, political fallout, and citizen unhappiness to name a few.

52

In a censorship game, a strategy for the circumventor is a specification of how the base
rate parameter will be set at different timesteps in the game, and a strategy for the censor
is specification at different timesteps in the game of whether the channel will be left open
(allowing all traffic through) or not, and whether or not the apparatus will be used, if
it is available. In this setting, we do not model either circumventor or censor expending
resources to develop better CRSs or apparatus. For example, a strategy for the censor
might be to leave the channel open if the base rate of the circumventor was below a certain
level in all previous time steps, and to close it permanently otherwise. An example strategy
for the circumventor might be to send no traffic at all for some time, and then send a very
large burst of traffic. A strategy profile is a specification of a strategy for each player.

A Nash equilibrium is a strategy profile where neither player could improve their utility
by unilaterally adopting a different strategy. This is a stable point of the game, which we
might expect to observe frequently in reality. We will characterize the behaviors of the two
agents in terms of the Nash equilibria of the game.

We also assume throughout that both the censor and circumventor have perfect infor-
mation about each other. That is, both players know what the other has done (but not
necessarily what they will do next), and knows the exact utility function and parameters
being used by the other player.

3.3 A Simple Censor Model

We begin by considering the simplest version of the game where the censor controls only
one channel, which carries only one type of traffic. We assume that, absent the traffic of
the circumventor, this channel carries a total amount of legitimate traffic L. We normalize
both BR and L by setting L = 1−BR.

We now proceed with closed-form analysis of the game in three steps, gradually increas-
ing the complexity of the model.

3.3.1 Step 1: Single Round, No Apparatus

In this version of the game, the two players play just one round of the game, and the censor
has no access to an apparatus that would allow it to differentiate between the traffic of the
circumventor and the traffic of legitimate users.

53

The action space of the censor, denoted Xcen, consists of two strategies: 1 and 0 (On
and Off). Playing “On” means the censor allows all traffic to pass through, unimpeded,
while “Off” means all traffic transmission is halted.

The action space of the circumventor is a real number BR ∈ [0, 1], which is the amount
of circumvention traffic the circumventor chooses to send (as a fraction of the total traffic).

The utility functions of the censor and circumventor are respectively given by:

Ucen = (−αactXcen + αbct(1−Xcen))BR + (βaltXcen − βblt(1−Xcen))(1−BR) (3.1)

Ucir = (γactXcen − γbct(1−Xcen))BR + (δaltXcen − δblt(1−Xcen))(1−BR) (3.2)

Variables α[act,bct], β[alt,blt], γ[act,bct], and δ[alt,blt] are parameters that depend on the specific
players of the game. The subscripts act and bct stand for allow and block circumvention
traffic, respectively. The subscripts alt and blt stand for allow and block legitimate traffic,
respectively. The αact and αbct are the loss, or gain, of utility to the censor of allowing,
or blocking, one unit of circumvention traffic, respectively. Similarly, βalt and βblt are the
gain, or loss, in utility to the censor of having one unit of legitimate traffic transported
via, or blocked on, the channel, respectively. The ratios of αact to βalt and of αbct to βblt

characterize different types of censors. For example, an employer interested in reducing
employee idleness by preventing communication with social media sites, but ensuring that
productive online activities are not affected, might have a relatively low αact, but a relatively
high βalt. In contrast, a military agency trying to censor leakage of state secrets might
have a very high αbct relative to their βblt parameter. The counterpart parameters γact and
γbct show the utility gained, or lost, by the circumventor of a single unit of circumvention
traffic to be transported, or blocked, respectively. δalt and δblt show the utility gained, or
lost, of a single unit of legitimate traffic to be transported, or blocked, respectively. All of
these parameters can be normalized to the range [0, 1], where 0 means ambivalence and 1
means strong sensitivity.

Conventionally both δ parameters are assumed to be zero since typically CRS designers
are not concerned with the fallout of CRS usage nor are there any technical provisions to
reduce the impact of the fallout on non-CRS traffic in the designs in the literature. Also,
γbct is also assumed to be zero since typically CRS designs are ambivalent to blocked CRS
traffic. Thus the circumventor’s utility function is reduced to the following:

Ucir = γactXcenBR (3.3)

54

Analysis

It is apparent that the censor maximizes its utility by playing “On” if βalt(1 − BR) −
αactBR > αbctBR−βblt(1−BR), and “Off” otherwise.2 Consequently, the Censor leaves the
channel open if it believes the circumventor will play BR ≤ βalt+βblt

αact+αbct+βalt+βblt
; or BR ≤ F

for brevity, where F = βalt+βblt

αact+αbct+βalt+βblt
.

If the players know each others’ strategies, the utility of the circumventor is maximized
by setting BR = F. However, although this is a Pareto Optimal solution, it is actually not
a Nash equilibrium of the game. This is because the censor and circumventor decide their
actions simultaneously, and so do not know each others’ actions in advance. Given that
the censor plays “On”, the circumventor’s best response is actually to pick BR = BRmax,
since this maximizes the utility of the circumventor. Consequently, the profile where the
censor plays “On” and the circumventor plays BR = F is not a Nash equilibrium.

To find the Nash equilibrium, we note that if the censor plays “Off”, the circumventor is
equally happy to play BR = BRmax instead of any other value of BR (since all settings of
BR yields zero utility). This means the circumventor should play BR = BRmax regardless
of what the censor does, simplifying the game considerably. Knowing that the circumven-
tor’s utility is maximized by playing BRmax regardless, the censor would choose to play
“On” if and only if BRmax < F . In a game where this holds true, the Nash equilibrium is
for the censor to leave the channel open, and the circumventor to play BRmax. Otherwise,
the Nash equilibrium is for the censor to close the channel and for the circumventor to
play BRmax.

Thus, we can see that, in this simplified game, the Nash equilibrium depends on both
the maximum amount of traffic the circumventor can send, and on the tradeoff between
the costs and benefits to the censor of allowing and blocking circumvention traffic versus
keeping legitimate traffic flowing.

However, in nature, we rarely observe the equilibrium where censors elect to close
their channels entirely. In the next section, we show that a circumventor interested in
maintaining communications over a longer, uncertain time horizon, will behave differently,
leading to a different equilibrium from the one observed here.

3.3.2 Step 2: Multiple Rounds, No Apparatus

As in the Prisoner’s Dilemma, the Nash equilibrium in the simple censorship game de-
scribed above results from a failure to model the temporal dynamics of the game. Intu-

2Note that the analysis is invariant under affine transformations of the players’ utility functions.

55

itively, if both censor and circumventor know that exactly one round of the game will be
played, there is no reason for the circumventor to hold back: they will always send the
largest possible amount of traffic, and if the censor doesn’t block, the circumventor gets
as much reward as possible. If the censor does block, then the circumventor would not get
any reward regardless of what they played. In the face of such an opponent, the censor of
course must block, to avoid the unacceptable volume of illegitimate traffic that would be
sent.

The key result for cooperation in temporal games, due to Aumann [Aum59], is that
defection follows if the players know when the game will end. This is because, in the
last round of the game, the players are simply playing the static game again (there is no
temporal component, because the game will now end, just like in Case 1 above). Once
the players know how the final round will be played, then they can also infer how the
second last round should be played using exactly the same logic, by treating the game as
ending one round earlier than before. Inductively, the players will play the first round in
the same fashion as they would the last. However, when the game is played for an infinite
or indefinite number of rounds, then this need not be so.

Suppose that after each round of the game, another round is played with probability p,
and otherwise the players stop. This can model scenarios where the CRS or communication
technology has become deprecated, or because the conditions of censorship have changed.
A strategy in the context of this “supergame” (i.e. the game of playing many rounds of
the censorship game described in Case 1) consists of specifying a policy for how a player
plays, in light of everything their opponent has done in the past.

We analyze this game using the same utility function from case 1 since it is still appli-
cable. Again we assume that the δ and γbct parameters are zero due to typical CRS designs
not being concerned with the fallout of CRS activity and discount the blocked CRS traffic.

Analysis

An interesting Nash equilibrium now emerges (though not necessarily a unique one). The
censor adopts a policy to play “On” as long as the circumventor has never played BR > F
at any point in the past, and to play “Off” if even one prior iteration of the game involved
the circumventor sending more traffic than that. The circumventor adopts a policy of
playing BR ≤ F at every step.

To show that the censor leaving the channel open and the circumventor playing BR = F
is a Nash equilibrium, we use proof by induction.3

3This proof assumes that BR≪ 1, which is supported by empirical evidence from statistics we collected
on the Tor network that appear in Section 4.7.

56

In the first round, the circumventor could deviate and send up to BR = BRmax traffic.
However, doing so would result in a total utility of γactBRmax for this turn, and zero
utility thereafter. In contrast, using BR = F this turn, and defecting next turn instead,
would result in an expected total utility of γact(F + pBRmax). Provided that BRmax <
F + pBRmax, it is thus better to wait another turn before sending more traffic than F .
It follows that deviation for the circumventor will always be better in “one more turn”, if
BRmax < F

1−p
.

Unfortunately, there are other equilibria in this game. Notably, if BRmax > F , then
the policy where the censor always blocks, and the circumventor always sends BRmax is a
Nash equilibrium as well.

Interestingly, we note that p could be replaced by any discounting factor for the utility of
future rewards. So if, instead of representing the chance of a future game, p represented the
preference of each party for rewards today as opposed to in the future, a similar result could
be derived. In practice, most companies do use such a discounting factor when considering
the benefits of future rewards, since events in the future are fundamentally uncertain. To
provide a censorship resistance example: a whistleblower may use a discounting factor
where they are uncertain about their ability to communicate in the future and the value
of the information they wish to transmit may be of such high impact that maintaining the
channel for future use may be ignored.

We can conclude from this analysis that it is the best policy for the circumventor
interested in maintaining a long-term communication channel to keep BR ≤ F .

3.3.3 Step 3: Multiple Rounds, With an Apparatus

We now consider the case where the censor has some apparatus capable of distinguishing
the target, covert, traffic (BR) from the cover traffic (L). The apparatus correctly labels a
fraction TPR (the true positives) of the circumvention traffic, but also incorrectly labels a
fraction FPR (the false positives) of the legitimate traffic as circumvention traffic. Simi-
larly, traffic not positively labeled can be partitioned to that which is truly not circumven-
tion traffic, i.e. TNR (true negatives), and that which has been missed by the apparatus,
i.e. FNR (false negatives). We note that FNR = 1− TPR and TNR = 1− FPR. The
output of the apparatus is traffic with the “Positive” tag or “Negative” tag, referring to if
the apparatus deems the traffic as being CRS-related or not, respectively.

The new action space of the censor has two variables, denoted Xp and Xn, where
both can take the values 0 and 1 (Block and Allow). Xp governs traffic tagged “Postive”
and the censor can either block or allow this traffic. Similarly, Xn governs traffic tagged

57

“Negative” and the censor can again either block or allow the traffic. The action space of
the circumventor remains unchanged from before.

The presence of the apparatus serves to alter the utility functions of the players as
follows:

U ′
cen =BR′(−αact(TPR ·Xp + FNR ·Xn) + αbct(TPR(1−Xp) + FNR(1−Xn)))+

(1−BR′)(βalt(FPR ·Xp + TNR ·Xn)− βblt(FPR(1−Xp) + TNR(1−Xn)))
(3.4)

U ′
cir = BR′(γact(TPR ·Xp + FNR ·Xn)) (3.5)

The parameters are all normalized as before to the range [0, 1].
To help build intuition, as an example let us consider the censor’s sensitivity to block-

ing circumvention traffic (αbct). Its contribution to the censor’s utility function is BR′ ·
αbct(TPR(1−Xp) + FNR(1−Xn)) because a fraction BR′ of the traffic is circumvention
traffic, and of that, TPR of it is reported as positive, which will get blocked if Xp = 0, and
FNR = 1 − TPR of it is reported as negative, which will get blocked if Xn = 0. Similar
reasoning follows for the other parameters.

Analysis

Ultimately the dynamics of this game are similar to those in case 1 or 2 (depending on
whether we incorporate temporal dynamics or not), with adjustments to the parameters
of the censor. First, we analyze the censor’s strategy space and make the following obser-
vations.

The censor has four strategies to play. Strategy (Xp, Xn) = (1, 1) is the same as not
having an apparatus since the censor ignores the “Positive” tag on traffic and allows it
through as well as allowing all the traffic with the “Negative” tag.

Strategy (Xp, Xn) = (0, 0) is again the same as not having an apparatus and is also the
same as blocking all traffic since the censor disagrees with traffic tagged “Negative” and
blocks it as well as blocking all the traffic tagged “Positive”.

Strategy (Xp, Xn) = (0, 1) is where the censor goes along with the tagging of the
apparatus and blocks traffic labeled “Positive” and allows traffic labeled “Negative”.

Strategy (Xp, Xn) = (1, 0) implies that it is always better for the censor to disagree
with the apparatus completely and do the opposite of what its tagging suggests. So now,
traffic labeled “Positive” is allowed through while traffic labeled “Negative” is blocked. For

58

the sake of simplicity, we assume that should the censor find that disagreement is more
beneficial then it simply switches the tags which makes this strategy equivalent to strategy
(0, 1) above. This is the same as assuming that TPR ≥ FPR and, equivalently, that
TNR ≥ FNR.

We now consider these strategies in more detail. Setting (Xp, Xn) = (1, 1) in Equa-
tion 3.4 gives the following:

U ′
cen(1,1) =BR′(−αact) + (1−BR′)(βalt) (3.6)

Similarly, the other settings yield the following utility equations:

U ′
cen(0,0) =BR′(αbct) + (1−BR′)(−βblt) (3.7)

U ′
cen(0,1) =BR′(−αact · FNR + αbct · TPR)+

(1−BR′)(βalt · TNR− βblt · FPR)
(3.8)

To discover when it is better to play each strategy we compare each one against the
other. Since the censor’s utility depends on the circumvention traffic we state the results
of this comparison in terms of BR′.

For the censor to chose (1, 1) over (0, 0) then U ′
cen(1,1) ≥ U ′

cen(0,0) and the following must
hold:

BR′ ≤ βalt + βblt

αact + αbct + βalt + βblt

, (3.9)

or BR′ ≤ Fab, where Fab = βalt+βblt

αact+αbct+βalt+βblt
. The subscript ab denotes that when the

inequality holds the censor gets more utility by allowing all traffic through than by blocking
it. Note that F ≡ Fab.

For the censor to chose (1, 1) over (0, 1) then U ′
cen(1,1) ≥ U ′

cen(0,1) and the following must
also hold:

BR′ ≤ FPR(βalt + βblt)

TPR(αact + αbct) + FPR(βalt + βblt)
, (3.10)

or BR′ ≤ Fam, where Fam = FPR(βalt+βblt)
TPR(αact+αbct)+FPR(βalt+βblt)

. Similar to the convention used
above, the subscript am denotes that when the inequality holds the censor gets more utility
by allowing all traffic than by using the apparatus (the m stands for machine, since the
apparatus is a kind of machine).

59

For the censor to chose (0, 1) over (0, 0) means that U ′
cen(0,1) > U ′

cen(0,0) . Therefore the
following must also hold:

BR′ ≤ TNR(βalt + βblt)

FNR(αact + αbct) + TNR(βalt + βblt)
, (3.11)

or BR′ ≤ Fmb, where Fmb = TNR(βalt+βblt)
FNR(αact+αbct)+TNR(βalt+βblt)

. Again similar to before, the
subscript mb denotes that when the inequality holds the censor gets more utility by using
the apparatus than by blocking all traffic.

Each of Fab, Fam, and Fmb is a threshold on BR′ that drives the censor’s decision
to allow, block, or use the apparatus. We would like to discover the ordering between
the thresholds so that the censor can make informed (strategic) choices. We make an
observation that simplifies the analysis: the terms αact + αbct and βalt + βblt are common
and can be replaced with α and β, respectively. When determining the relative ordering of
the three thresholds, we will assume, as above, that TPR ≥ FPR (and equivalently, that
TNR ≥ FNR).

We begin by noting that Fab ≥ Fam ⇔ FPR ≤ TPR since:

Fab ≥ Fam

⇔ β

α + β
≥ FPR · β

TPR · α + FPR · β

⇔ α + β

β
≤ TPR · α + FPR · β

FPR · β

⇔ α

β
≤ TPR · α

FPR · β
⇔ FPR ≤ TPR

(3.12)

Similarly, we also note that Fmb ≥ Fab ⇔ FNR ≤ TNR since:

Fmb ≥ Fab

⇔ TNR · β
FNR · α+ TNR · β

≥ β

α + β

⇔ FNR · α+ TNR · β
TNR · β

≤ α + β

β

⇔ FNR · α
TNR · β

≤ α

β

⇔ FNR ≤ TNR

(3.13)

60

0 1BR’ Fam Fab Fmb

allow apparatus apparatus block

Figure 3.1: Best censor strategies at critical circumvention traffic thresholds. The cen-
sor’s strategies are in italics. The circumventor’s strategies are to send a proportion of
circumvention traffic, 0 ≤ BR′ ≤ 1, with the critical thresholds marked as Fam, Fab, and
Fmb.

Since Fmb ≥ Fab and Fab ≥ Fam, it is clear that the total ordering is Fmb ≥ Fab ≥ Fam.
Given this ordering, the censor will play according to the following strategies, which

are depicted in Figure 3.1. When BR′ ≤ Fam the censor will allow all traffic to flow. When
Fam ≤ BR′ ≤ Fab or Fab ≤ BR′ ≤ Fmb then the censor will use the apparatus rather
than allowing or blocking all the traffic, respectively. Finally, when BR′ > Fmb the censor
should block all traffic.

Turning to the circumventor we see that she actually only has two reasonable choices:
sending BR′ = Fam (in which case all of her circumvention traffic will get through), or
BR′ = Fmb (in which case only a fraction FNR of her circumvention traffic will get through).
The decision rests on whether FNR · Fmb ≥ Fam; i.e., when the inequality holds, the
circumventor should send BR′ = Fmb circumvention traffic, and otherwise she should send
BR′ = Fam.

The key takeaway from the analysis in this section is that neither party has an incentive
to deviate from the equilibrium points, as defined by the circumvention traffic thresholds
Fam, Fab, and Fmb. That is to say that as long as the circumventor does not send more
than Fmb traffic, the censor will not block it, but will apply its apparatus to reduce the
amount of circumvention traffic that gets through, or allow it entirely if it is below Fam.

It is clear then that the introduction of the apparatus, with its inherent TPR and
FPR, does not produce a deviation from the character of the Nash equilibrium that we
found in the simpler cases 1 and 2. The main effect is on the amount of traffic, BR′, the
circumventor can send through while ensuring that the inequalities above remain true.

3.4 More Realistic Censor Models

So far we have analyzed censor utility functions that are linear in nature. In reality, the
censor may be more risk averse. We mean by this that the censor’s stakes (costs) to

61

blocking CRS traffic, and not making mistakes, ramp up faster as rates of errors increase
than the linear model above. One way to capture this is to utilize an exponential utility
function for the censor.

The following is an example of an exponential censor utility function.

U ′′
cen = e−(C·FPR·(1−BR)+D·FNR·BR)) (3.14)

U ′′
cir = E · FNR ·BR (3.15)

Similar to the earlier α and β, the non-negative parameters C and D control the
sensitivity of the censor to false positives and false negatives respectively. Like γ before, the
non-negative parameter E controls the circumventor’s sensitivity to circumvention traffic
getting through the censor’s SoI; E = 1 for the remainder of this discussion. As before,
the variable FNR is the percentage of the circumvention traffic allowed (i.e. the false
negatives) and FPR is the percentage of legitimate traffic blocked (i.e. the false positives).
This function allows a wide range of plausible censor utility functions to be modeled, and
results in utility values between 0 (maximum dissatisfaction) and 1 (maximum satisfaction).

A second simplification we have thus far made was to only consider a single protocol
that the CRS could blend in with. In reality there are a plethora of protocols that a
CRS could use for cover, e.g. HTTP, TLS, and VoIP to name a few. Furthermore, it is
likely that some protocols are more critical, or at least more important, than others and
interfering with them would cost the censor more dearly.

Unfortunately, when we take these factors into consideration the preceding closed-form
style of analysis becomes more complex and less straightforward to reason about. We
change tacks here and leverage numerical simulation to help us analyze and gain further
insights. We exploit our finding from the closed-form analysis above that a protocol remains
unblocked as long as the circumventor does not transmit more than a certain amount of
traffic over it. We create a simulation that utilizes Equation 3.14 and Equation 3.15 above
and iterates over parameter values to help us find potential Nash equilibria for various
types of censors.

The aim of the analysis that follows is to explore how to identify cover protocols that
are good candidates as cover traffic for the amount of circumvention traffic that we wish
to send. We focus on the quantity of the cover traffic a protocol provides rather than its
other qualities such as its importance or the ease with which it can be imitated.

62

3.4.1 Strategy Simulator

Our simulator models the censorship game as follows. The circumventor moves first, and
produces a CRS which impersonates one or more protocols and distributes circumvention
traffic over these protocols according to some distribution. The censor can masquerade as a
CRS client, and is able to establish which protocols are being impersonated and how much
circumvention traffic is being sent over each. We examine the case where the impersonation
is good—the censor does not have an apparatus that can distinguish legitimate uses of the
protocol from uses of the protocol to carry circumvention traffic. Therefore, the censor
must choose to either block a protocol entirely—blocking both cover traffic (causing false
positives) and the circumventor’s traffic (causing true positives), or leaving it entirely
unblocked.

We let the censor move second because it is likely that the censor can move faster than
the circumventor—the circumventor must roll out new software to many users in order to
change strategy whereas the censor needs only to make a configuration change. In each
round the censor will choose a blocking strategy, i.e. which protocols they will block, to
maximize their utility. The goal of the circumventor is to find the right proportion of the
total amount of circumvention traffic to send over each protocol such that the censor’s
best strategy is the one the circumventor finds gives the most utility. This will be the
equilibrium strategy since if either party changes their choice, they will decrease their own
utility.

An interesting consequence of this model is that the utility function of the circumventor
does not matter, as all they can do is choose between the collection of scenarios which the
censor has decided to be optimum for a particular strategy of the circumventor. Therefore,
as long as the circumventor’s utility function is monotonically increasing in terms of the
false negative rate, the same equilibrium will be reached regardless of the function’s shape.

The simulator models relative importance of protocols, for both the censor and the
population in the censor’s SoI, by utilizing popularity of the protocol by traffic volume. As
a concrete source of information we use traffic-volume data supplied by the 2014 survey
of US Internet traffic [San14]. Our simulator makes some simplifying assumptions to
reduce the computational complexity of the simulation. We will provide more detail in
Section 3.4.1 where this becomes relevant.

False-Positive Intolerant Censor

We first consider a censor with low tolerance to false positives. We define this to mean that
there is at least one protocol which they are unwilling to block (a critical protocol), even

63

if blocking the protocol would result in blocking all of the circumventor’s traffic. In this
case the circumventor should choose the critical protocol and send all censorship-resistance
traffic over it. The censor will not block it, and so all of the circumvention traffic will get
through. Any alternative strategy for the circumventor would be less good, as choosing
multiple critical protocols would be more effort for no gain, and choosing a non-critical
protocol for some traffic might lead the censor to block it.

False-Positive Tolerant Censor: Variant 1

A more interesting case is where there is no such critical protocol. To give a concrete
example, assume that the circumventor can impersonate six protocols with the same rela-
tive quantities of traffic as the top six types of traffic from the survey: Netflix streaming
video (33.81%), YouTube streaming video (14.63%), HTTP (6.08%), BitTorrent (4.85%),
iTunes (3.12%) and Facebook (2.60%).4 We shall call the most prevalent protocol the top
protocol, and the least prevalent the bottom protocol, with the rest forming an ordering
in between.

As the censor utility function, we use Equation 3.14 with C = 0.3 and D = 0.25. This
is illustrated on Figure 3.2 for three values of true positive rates: 100% (top), 50% (middle)
and 0% (bottom).

We now need to compute the censor utility function for all combinations of censor strat-
egy and circumventor strategy. The censor can choose to block any selection of protocols
of the six considered (there is no reason to block any others). As a result there are 26 = 64
scenarios.

The circumventor can choose to send units of traffic in any distribution over the proto-
cols, but we exclude any distribution where the traffic distributed over protocol a is greater
than that distributed over protocol b when the quantity of cover traffic going over protocol
b is greater than that of a. We do this because if any excluded scenario were chosen, if a
and b were swapped, the censor utility function would be lower for every censor scenario
(assuming the censor prefers a lower false-positive rate).

Even making this assumption there are still an infinite number of circumventor scenarios
if we allow any fractional value for the amount of traffic. So, to reduce the scenario space
we quantize all circumvention traffic into multiples of 5 units up to a total of 100 units,
resulting in 282 circumventor scenarios. The result of simulating all scenarios is shown

4Note that these percentages do not add up to 100% since there will remain traffic types that are not
targetted by the CRS and thus the situation where the censor needs to block all Internet access will not
arise.

64

20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

C
e
n
so

r
U

ti
lit

y

False positives (%)

Figure 3.2: Utility of a censor with high false-positive and false-negative tolerance.

0 10 20 30 40 50 60
Censor Scenario

0

50

100

150

200

250

C
ir

cu
m

v
e
n
to

r
S
ce

n
a
ri

o

Best

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

C
e
n
so

r
U

ti
lit

y

Figure 3.3: Utility of a censor with high false-positive and false-negative tolerance.

65

20 40 60 80 100
0.00

0.25

0.50

0.75

1.00

C
e
n
so

r
U

ti
lit

y

False positives (%)

Figure 3.4: Utility of a censor with high false-positive and low false-negative tolerance.

in Figure 3.3, where blue is low utility and red is high utility. The censor scenarios are
sorted in order of increasing false-positive rate. The circumventor scenarios at the top have
traffic heavily skewed to the protocols with the most cover traffic; those at the bottom have
traffic more evenly distributed over the protocols. The small rectangles show the optimum
censor strategy for each circumventor strategy (white with the arrow labeled “Best” for
the equilibrium and black for others).

Even small changes in the circumventor scenarios result in large changes in optimum
censor scenario, but the equilibrium for this censor type is for the circumventor to distribute
circumvention traffic quite evenly over the protocols, but not completely. The top protocol
should get 40 units of traffic and the next four with 15 units of the traffic each with the
sixth not used at all. The censor will block protocols 3, 4, and 5, allowing 55 units of
circumvention traffic through. Were the attacker to block protocols 1 and 2, the additional
false positives would not justify the extra 55 units of true positive (circumvention) traffic.
Were the circumventor to move some traffic onto protocol 6, it would be blocked because
it has a smaller false-positive cost.

False-Positive Tolerant Censor: Variant 2

Let us now consider a censor who is equally tolerant to false positives, but far more sensitive
to false negatives than before, by changing D from 0.25 to 0.6 with the result shown in
Figure 3.4. Now a 50% false negative rate shows significantly lower censor utility than
variant 1 (the middle green line). The resulting simulation is significantly different as well,
as can be seen in Figure 3.5.

66

0 10 20 30 40 50 60
Censor Scenario

0

50

100

150

200

250

C
ir

cu
m

v
e
n
to

r
S
ce

n
a
ri

o

Best

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
e
n
so

r
U

ti
lit

y

Figure 3.5: Utility of a censor with high false-positive and low false-negative tolerance.

Now the optimum strategy for the censor is almost always to block many protocols,
resulting in a high false-positive rate (the right-hand side of the graph). The equilibrium
strategy is for 95 units of circumvention traffic to be distributed on protocol 1 and 5 units
to be distributed on protocol 2. The censor will block protocol 1, but leave protocol 2
unblocked. This lets only 5 units of circumventor traffic through, but it is better than
none, which almost every other strategy results in. For example, sending 100 units of
traffic over protocol 1 results in it being blocked. Sending 80 units over protocol 1 and 20
units over protocol 2 results in both protocols being blocked. Putting only 5 units over
protocol 2 is small enough that the extra benefit to the censor of blocking it is not large
enough to justify the high false positives.

3.4.2 Parameter Analysis

The analysis above provides some insight into how different censor types behave and the
optimum strategy for distributing traffic given the traffic volumes of potential cover pro-
tocols from real-world data. We now analyze what occurs when the number of protocols
is varied as well as the amount of cover traffic they provide.

67

Protocol Popularity

The popularity, or amount of cover traffic available, of a protocol plays a significant role
in the resulting Nash equilibrium and hence censor and circumventor strategies. We in-
vestigate this by taking a hypothetical protocol and varying its popularity, i.e. units of
cover traffic, relative to all other non-cover traffic on the censor’s network. Note that since
there is only one protocol the circumventor can only play one action, send all 100 units of
circumvention traffic over the protocol.5 We use this setup to re-evaluate the fault-tolerant
censors from above.

We see that for the censor with C = 0.3 and D = 0.25 the censor does not change
their blocking pattern until the cover protocol gets to be a little more than 83 units of
the total bandwidth. After this inflection point the censor switches to allowing the 100
units of circumvention traffic through since the collateral damage outweighs the benefit
of information blocking. The takeaway is that, in this scenario, if we could only target
one protocol it had better provide at least 83 units of cover traffic for each 100 units of
circumvention traffic, or we would not be able to use it as cover to safely send all the
circumvention traffic past the censor.

We can verify this simple case with one protocol using Equation 3.1 and rewriting it with
αblt and βact replaced with C and D—the remaining parameters set to zero—to produce
BR′′ ≤ C

C+D
which yields BR′′ ≤ 0.3

03+0.25
≈ 0.545. The censor will allow circumvention

traffic to flow (100 units of it since there is only one channel) if it is 54.5% of the total
traffic, i.e. the sum of the circumvention traffic and the cover traffic. This means that the
cover protocol must be 45.5% of the total traffic, corresponding to the 83

83+100
suggested by

the simulation.
However, for the censor with more sensitivity to information leakage, i.e. C = 0.3

and D = 0.6, the inflection point occurs at a much larger 203 units of cover traffic, which
closed-form analysis also confirms. This means that for this censor to allow 100 units of
circumvention traffic a very popular protocol needs to be used as cover. Table 3.1 and
Table 3.2 illustrate these trends.

While it seemed like it is better to target a protocol that is the majority of bandwidth
on the network in general, the above examples show that there are censors for whom this
approach can not be employed since their sensitivity to information leakage, D, is too high
as compared to their sensitivity to collateral damage, C.

5We do not model the situation where the circumventor can hold back sending all the traffic they wish
to send. We do this to simplify the analysis and also to illustrate the difference in the results where the
cover protocol is not popular and where it is.

68

Table 3.1: Cover protocol bandwidth effects on utility, C = 0.3, D = 0.25

Bandwidth Ucir Ucen

10 0 0.97
50 0 0.86

83.5 1 0.78
90 1 0.78
99 1 0.78

Table 3.2: Cover protocol bandwidth effects on utility, C = 0.3, D = 0.6

Bandwidth Ucir Ucen

10 0 0.97
50 0 0.86

100 0 0.74
201 1 0.55
210 1 0.55

Dynamics of Cover Bandwidth over Two Transports

The number of cover protocols can play a role in how the censor behaves. We investigate
this by utilizing two hypothetical cover protocols where the sum of their cover traffic is kept
constant. We then vary the amount of cover traffic units between the two to investigate
the effects on the censor’s best responses. We choose just below the inflection point from
the analysis above as the total cover traffic units to distribute between the two protocols,
i.e. 83 units of cover traffic. We do this to see if there is any difference in the censor’s
behavior.

We see from Table 3.3 that leveraging two cover protocols, where one is very small
compared to the other, against the first censor (C = 0.3, D = 0.25) causes reduced utility.
As the cover traffic ratio between the two protocols decreases we see that the circumventor
loses more utility which implies that in this scenario it is more beneficial to leverage a
single cover protocol than multiple protocols.

Against the second censor (C = 0.3, D = 0.6), for whom we saw that only a very large
amount of cover traffic (203 units) could cause it to deviate from its block-everything strat-
egy, we see from Table 3.4 that now targeting two protocols instead (with a much smaller
sum of 83 units of cover traffic) can cause the censor to allow 100 units of circumvention
traffic to flow over them.

69

Table 3.3: The effect of cover traffic distributed over two protocols on utility, C = 0.3,
D = 0.25

Bandwidths Ucir Ucen

82,1 0.95 0.79
72,11 0.85 0.78
62,21 0.70 0.79
52,31 0.60 0.78
42,41 0.50 0.78

Table 3.4: The effect of cover traffic distributed over two protocols on utility, C = 0.3,
D = 0.6

Bandwidths Ucir Ucen

82,1 0 0.78
72,10 0.5 0.78
62,20 0.10 0.78
52,30 0.15 0.78
42,41 0.20 0.78

It is interesting that the two censors produced such different results; in one case target-
ing two protocols (with their sum equal to the noted inflection point) produced a reduced
utility for the circumventor, while in another it allowed some portion of traffic to flow
where none was allowed before even though the amount of cover traffic did not increase. It
shows us that choice of not only which protocols (i.e. the amount of cover traffic they offer)
but also the ratio of cover traffic between them can have an impact on censor behavior,
such that it is beneficial to CRS activity. It is an avenue for future work to explore these
aspects more to understand and ultimately leverage the censor’s sensitivity to particular
protocols and their combinations.

3.5 Closing the Loop

Our censorship games depended on perfect information and this makes it necessary to
discover the correct type for the censor and the values of the parameters. However, this may
be difficult, if not impossible, since the censor’s preferences by their nature are unobservable
and the censor does not cooperate and hides the information. Hence, our discussions have
been concerned with a parameterized censor to allow us to explore various dimensions
of censorship. This parameterized “open-loop” analysis allows us to gain insight, but in

70

order to move towards applicability to real-world scenarios we must reconsider the role that
observations can play. Indeed, we can still make observations about the censor’s behaviors,
which are dictated by these hidden parameters. Indeed, we can now replace our need for
actual parameter values with observations of the censor. This insight allows us to conduct
a “closed-loop” analysis where we can potentially predict real-world behavior and CRS
outcomes.

Our approach is that, instead of working with utility for specific parameter values, we
gather up utility functions into equivalence classes of observed censor actions. Furthermore,
we only consider equivalence classes (i.e. censor behavior), and hence parameter values,
that directly impact the circumventor’s utility function. This has the added benefit of the
reduction in complexity in terms of equivalence class space and makes the problem more
tractable and enables us to find effective strategies for designing and deploying CRSs.

We do not completely, and accurately, attempt to map all parameters for all censors,
CRSs and users, but the framework presented here can help in refining censor behavior
models and be a jumping off point for future work.

3.5.1 Methodology

We first create a repository of censor equivalence classes based on observations of censor
behavior. These are collections of censor actions, or action profiles, that characterize its
behavior in the dimensions that the CRS is affected by. The profiles have a few conditions;
they are distinct from one another and the actions in the profile need to be observable
and maximize the censor’s utility. In the setting we have presented, the action profile is
the blocking pattern that the censor adopts. Each of the patterns is distinct and is easily
observable, e.g. by probing which protocols are blocked and at what level of traffic.

We then consider past (passively) observed censor behavior and the conditions (or
inputs) that cause it and map them to the equivalence classes. Where past observations
are not available, an active probing test suite can collect the needed data. Indeed, there
are repositories of past observed censorship events that we can mine for data that we
require. Projects like OONI [FA12] track worldwide censorship events while the Tor project
tracks country-level blocking incidents [Lew09, Lew12]. Both of these projects can provide
valuable insight about the censor’s behavior under conditions similar to the ones we are
interested in. The active probing test suites are generally geared towards the “how” of
censorship rather than the conditions that cause it, such as the rate of circumvention
traffic, which is what we are interested in. An added wrinkle is that the probing may
itself cause the censor to react and change its behavior and so must be carefully evaluated

71

to not contaminate the testing environment. Nevertheless, with further enhancements
and judicious deployment we expect that active probing can yield a fruitful source of
information to refine our equivalence class models for particular censors.

By these methods we would converge at 1) those equivalence classes that matter for
the CRS, 2) the region the equivalence classes occupies in the parameter space, and 3) the
boundaries between classes that transition a censor from one profile to another.

In this manner we could predict a particular censor’s behavior for given inputs and
hence can design CRSs that allow us to maximize the circumventor’s utility. What follows
is an application of our methodology on the parameterized censor from our discussions so
far. A similar application would follow for a particular real-world censor and CRS using
the historical and active data collection schemes we mentioned earlier.

3.5.2 Censor Equivalence Classes

We apply this methodology to our censor utility function, in Equation 3.14. First, we
enumerate the blocking patterns that we expect to appear due to U ′′

cen for the scenario
presented in Section 3.4.1 with the false-positive tolerant censor with six protocols. We
compile a heatmap of best responses by censors of varying sensitivity values, C and D, in
the range [0, 1]. The results are presented as the heatmap in Figure 3.6.

The interesting thing to note is that within this range out of the 64 possible blocking
patterns the censor’s best responses are limited to just 11, meaning that those are the
patterns that the circumventor actually needs to address. From this map of the blocking
patterns we can probe the censor’s type to converge on the equivalence class of a particular
censor by sending different proportions of circumvention traffic over the protocols and
noting the behavior of the censor.

Since we are only interested in censor patterns that provide positive utility to the
circumventor we also produce a circumventor utility heatmap (Figure 3.7) to compare with
the blocking pattern heatmap. There are 15 contiguous regions with the same circumventor
utility. These follow the same general trends of the blocking patterns but with some
censor equivalence classes providing two different utilities for certain ranges of values. We
note that there is a contiguous region (the black region in the top half) that provides no
circumventor utility, and this corresponds with the pattern to block the top protocol—
where the circumventor also sends all circumvention traffic over the top protocol—and the
pattern to block all protocols. The bottom light shaded region provides the most utility
(i.e. all circumvention traffic is allowed through) and this corresponds to the block-nothing
pattern.

72

Figure 3.6: Best censor responses (blocking patterns) for various censor types, i.e. values
of C and D. Each shade represent one blocking pattern and all regions with the same shade
represent a single censor equivalence class. The lighter shades denotes blocking patterns
where fewer protocols are blocked and darker shades denotes patterns where more protocols
are blocked.

73

Figure 3.7: Circumventor utility for best responses for various censor types, i.e. values
of C and D. Each shade represent 0.05 units of circumventor utility. The lighter shades
denote high utility and darker shades denote low utility, with black denoting zero utility
(i.e. no circumventor traffic allowed through).

This framework allows us to discover the overall shape of the game. Given the traffic
proportions of the cover protocols that the CRS can target we can use the methodology
above to discover which censor strategies are likely to come into play and the potential
circumventor utility we can achieve. This can allow the CRS designer to decide if it is
worth playing the game and to help them target the right set of cover protocols that allow
positive circumventor utility.

3.6 Related Work

Microeconomic approaches of incentive analysis and game-theoretical models have been
adopted in numerous applications of network security for preventing attacks and design-
ing adversarial intrusion detection models. In surveys [AB10, RES+10, MZA+13] of the
evolution of computer networks and security systems we see a drastic change from the use

74

of heuristic and ad hoc solutions, to analytical paradigms that are based on rich game-
theoretic models. This new shift has enabled researchers to account for players’ incentives
and attitudes towards decision making in various environments.

In the context of censorship resistance systems that are mainly inspired by peer-to-peer
file/media sharing frameworks, researchers have focused on two orthogonal approaches:
randomized file and functionality sharing where each node is assigned random resources,
and a discretionary model where peers can choose and modify their precise contributions
to the network [AMNO07, AM06]. Danezis and Anderson [DA04] studied these two frame-
works and showed that, in contrast to the initial intuition, the random model is less costly
to attack for all possible attacker strategies, and that the cost to censor a set of nodes
is maximized when resources are distributed according to node preferences. Contempo-
raneous to the work in this chapter, Tschantz et al. [TAPT14] promote the idea that
evaluating censorship resistance designs solely on technical attributes is shallow and at
times intractable and present game-theoretic analysis as an alternative. The analysis and
contributions are limited to considering abstract cost functions and preliminary conclusions
about the viability of economic analysis as a means of evaluating CRS designs.

To the best of our knowledge, our work is the first to offer a framework for game-
theoretic analysis of censorship resistance on the data channel in a variety of scenarios.

3.7 Conclusion

In this chapter, we focus attention on the censorship games wherein two rational and
self-interested players, namely censor and circumventor, play their best strategic responses
in a perfect information game. Considering a linear utility model, we start by analyzing
the simplest pure Nash equilibrium analysis and enrich the model step by step. We then
analyze the exponential utility setting and describe a simulated approach to equilibrium
analysis.

Our simple closed-form analysis yields insight about the existence of Nash equilibriums
that can be leveraged by CRS designs. Extending our analysis to more realistic censor-
ship scenarios, we leveraged simulation as an aid to discovering and analyzing equilibrium
points. This approach has application to real-world CRS-design problems, namely, of how
to select useful cover protocols and how to distribute circumvention traffic over them. Fi-
nally, we provide intuition about how one might go about discovering the censor’s type
using active probing as a method of convergence.

We note from our analysis that knowing and controlling the amount of circumvention
traffic BR relative to the cover traffic, e.g. by selecting cover protocols carefully, can allow

75

the game to stabilize on a CRS-friendlier Nash equilibrium. Unfortunately, we do not yet
have a systematic way to learn this value. The next chapter addresses this shortcoming.

76

Chapter 4

Privacy-preserving Collection of CRS
Statistics

Portions of this chapter were previously published in the proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security [EDG14].

4.1 Introduction

We now turn our attention to providing an empirical basis for CRS design. Today, there are
many popular anonymity networks and services such as Tor [DMS04a], JAP [KH04] (com-
mercially offered as JonDonym [Jon13]), i2p [jra03] and Anonymizer Universal [Ano13].

These networks provide the link obfuscation CRS security property. This obfuscation
is implemented with relays that form a communication path between a client and a des-
tination that hides information about who is connecting to whom, both from network
observers as well as from the destination itself. While they have been improved upon and
have grown in popularity, anonymity networks remain notorious for being difficult to study
[Loe09, Win13]. This is partly due to their inherent privacy properties, but also due to
ethical considerations: they are live systems, and any data collection about their use may
put in danger real users by compromising their anonymity.

Unfortunately, previous research on client behavior [MBG+08] led to controversy due
to private client information being gathered—even though it was destroyed and never
exposed [Sog11]. This set a precedent that client information, no matter how it is collected,
is off-limits for legitimate research, which had a chilling effect on research in this area.

77

Even with the risks, there are three main motivations for collecting empirical data. The
first is that developers of anonymity networks have so far been unable to inspect egress
trends. This information can guide designs that enhance performance and provide features
that better address the needs of users. For example, network designers would like to be
able to determine how much of the network’s traffic is for the purpose of protecting the
user’s identity from the website she visits, and how much is for the purpose of censorship
circumvention—protecting the identity of the website she visits from the censor. These
different user bases have different security and privacy requirements, and knowledge of the
prevalence of each set can help tune the network appropriately. The second motivation is
to inform the research community with realistic information about usage trends to guide
research in censorship resistance mechanisms, performance tuning, and resource allocation.
Finally, one of the important open questions in any anonymity network is how to model
client behavior since this is exactly the information that needs to remain confidential. With
realistic statistics we can shed light not only on client behavior but also use it to ensure
that when we test novel designs or system changes we can model their effects on clients in
a more realistic manner, leading to more ecologically valid results.

In order to reap these benefits, data-collection systems must then be mindful of four
main risks:

1. The network is run by volunteers and anyone with resources may join the network
by contributing nodes with bandwidth or computation cycles to relay traffic. This
limits the trustworthiness of nodes.

2. The data that may be collected at nodes is sensitive and directly publishing it may
break the non-collusion assumption required by relay-based anonymity networks to
maintain user anonymity.

3. The nodes that collect or process statistical information should not become targets
of compulsion attacks by making them more attractive targets of miscreants and
authorities.

4. Low-latency anonymity networks are vulnerable to correlation attacks [MD05, ØS06,
JWJ+13] that observe traffic volumes entering and leaving the network. Published
statistics must hide information that would allow a client-side adversary with a partial
view of the network (an ISP, for example) to mount such attacks.

To mitigate the risks, we propose PrivEx, a system for collecting aggregated anonymity
network statistics in a privacy-preserving manner.

78

PrivEx collects aggregated statistics to provide insights about user behavior trends
by recording aggregate usage of the anonymity network. To further reduce the risk of
inadvertent disclosures, it collects only information about destinations that appear in a
list of known censored websites. The aggregate statistics are themselves collected and
collated in a privacy-friendly manner using secure multi-party computation primitives,
enhanced and tuned to resist a variety of compulsion attacks and compromises. Finally,
the granularity of the statistics is reduced, through a noise addition method providing
(ϵ,δ)-differential privacy, to foil correlation attacks.

The novel contributions in PrivEx are:

1. A safe mechanism to collect client statistics from anonymity network egress nodes;

2. Two secure multi-party protocols that protect the intermediate values of a distributed
differential privacy (DDP) computation, optimized for the problem at hand;

3. Reduced noise in the results of the DDP computation leading to higher utility while
still maintaining the desired level of privacy, both as tunable parameters;

4. A security analysis detailing the resistance to compulsion, compromise and correla-
tion attacks;

5. An evaluation of the overhead and performance of a proof-of-concept implementation
of PrivEx; and

6. Preliminary analysis of data collected from a limited deployment.

4.2 Background

Anonymous Communication Networks (ACN). Anonymous communication net-
works allow clients to hide their accesses to web pages and other Internet destinations
from certain network observers (typically ones who can view network traffic on at most a
small portion of the Internet).

Low-latency networks, such as Tor, JAP/JonDonym, or i2p, obfuscate network traffic
by routing it through multiple nodes: an ingress node, some number of middle nodes, and
an egress node. The routing can be predetermined by the network, as in JAP/JonDonym,
or source-routed subject to some constraints, as in Tor and i2p. To achieve security against
network observers, traffic is encrypted so that the contents and metadata, including the

79

Client

Destination

Circuit with Telescoping
Nested Encryption

Data

Figure 4.1: An overview of the Tor network and typical traffic flow (dotted line), high-
lighting Tor circuits, which use telescoping nested encryption.

destination, are hidden from the ingress and middle nodes, as well as anyone observing the
ACN ingress or internal traffic.

Simpler anonymizing networks, such as Anonymizer Universal, use only a single node
and as a result are extremely susceptible to legal compulsion attacks (through court orders,
for example) [Sin07, Pou13]; hence, they will not feature in our discussions further.

Tor. Tor [DMS04a] is a popular ACN that provides anonymity by decoupling the routing
information between the client and the destination. Clients use three intermediary nodes
to route their traffic using onion routing. This prevents the destination from learning
who the client is, and it also prevents an observer local to the client from learning which
destination the client has connected to.

Tor, by default, uses three intermediate nodes in a connection between a client and
destination (Figure 4.1). The client uses a telescoping mechanism to construct a circuit
between herself and the last node, known as the exit node, which is the egress point of

80

the client’s traffic. As this is the location where PrivEx will perform its privacy-preserving
data collection, we will refer to this node as the data collector (DC) in the remainder of
the paper. Each client circuit has a unique identifier to help the DC manage the flow of
traffic for multiple clients at once. The default behavior is for the Tor client software to
switch to a new circuit every 10 minutes.

The DC node knows the destination but not the originator of a connection. This is
necessary to prevent it from relating the observed destination to any client and hence learn
about her habits, activities or interests. Traditionally, exit nodes are required to delete any
information about the connections that exit the Tor network through them. Publishing
such information may be combined by an adversary (such as an ISP or national firewall)
with a client-side view of the network to correlate exit activity with client activity to
deanonymize the network traffic.

Thus, to not introduce any new attack vectors, any effort to collect traffic data at exit
nodes, even in aggregate, will have to minimize the information leaked to the adversary.
This must hold even in the case that the adversary is able to compromise the node or
compel the node operator to reveal the state of the node.

We will use Tor as a model ACN in which to integrate PrivEx in the discussions that
follow. This should aid in clarifying the descriptions and to help the reader relate PrivEx
to real-world ACNs, but does not restrict the generality and applicability of PrivEx to
other systems.

Differential Privacy. Traditional differential privacy [Dwo06] protects a sensitive cen-
tral database—a table where rows hold sensitive data about individuals—that is to be kept
private. This central database holds raw records that are only to be released to the public
in noisy or aggregated form. The database allows multiple queries from clients who spend
from a privacy budget for each query.

Established differential privacy mechanisms add noise to the results of client queries
to ensure that personal information—i.e., information about a particular entity that con-
tributes to the results of a query—cannot be gleaned from those results. Intuitively, given
any two “neighbouring” databases, one containing an entity’s data and another without
that entity’s data, but otherwise equal, then the probability of observing any particular
output to a given query will be close for the two databases.

PrivEx implements a privacy mechanism based on adding noise from a Gaussian dis-
tribution.1 Adding an appropriate amount of Gaussian noise to the results of queries pro-
duces (ϵ, δ)-differential privacy: if D and D′ are two neighbouring databases (as described

1We discuss later why we use Gaussian instead of Laplacian noise.

81

above), then the probabilities PD(x) and PD′(x) that a given query outputs x when using
the databases D and D′ respectively, are related by PD(x) ≤ eϵ · PD′(x) + δ. [DKM+06]

In our setting, the database consists of one row for each censored website whose visits
we wish to count, and queries will simply be of the form “output the counts in each row
of the database (plus noise)”.

4.3 Threat Model

PrivEx maintains its security properties against an adversary that is local to the client or
the website servers they visit. The adversary is able to monitor traffic between the client
and the ingress of the anonymity network, or traffic between the egress of the network and
the client’s destination, but not both at the same time. This assumption is similar to the
one required to argue Tor is secure. As a result, this adversary is presumed to be unable
to defeat the anonymity system. However, if any information is also revealed by the DC
node, such as client usage statistics, that data could possibly be used to correlate traffic.
A secure statistics gathering system, like PrivEx, should prevent any such attacks.

We allow the adversary to operate nodes in PrivEx; i.e., deploy or compromise nodes
in the network and be part of the aggregation service itself. The adversary may also use
the anonymity network to relay its own traffic in order to induce desired statistics into
the aggregation process. Malicious nodes can report spurious data without generating or
processing the corresponding traffic.

PrivEx is secure when there is at least one honest data collector and at least one honest-
but-curious tally key server (described in Section 4.4). While dishonest data collectors can
report “junk” statistics and malicious servers can disrupt the protocol, the security require-
ment in PrivEx is that no client traffic pattern information from honest data collectors is
ever exposed: neither while it is stored on the data collectors, while it is in transit in the
network, nor while it is being processed by the aggregating service. That is, malicious
parties can disrupt the statistics reported by PrivEx, but cannot expose private data. In
the distributed-decryption variant of PrivEx (see Section 4.4.2), we can further detect mis-
behaving servers, apart from those that collect the actual data. We discuss the security
implications of malicious actors and publishing client statistics in further detail later in
Section 4.5.1.

82

4.4 The PrivEx Schemes

The goal of PrivEx is to count how many clients are visiting each of a list of particular
known censored websites.2 This is to establish an approximation of the base rate of CRS-
related activity on the network. These statistics are gathered and reported in a privacy-
sensitive manner so that the outputs of PrivEx cannot be used to perform traffic correlation
attacks. Note that it is straightforward to adapt PrivEx to collect statistics for any type
of event that the egress nodes can count, such as the traffic volume per circuit, variance in
circuit-management statistics, client navigation behavior, and so on.

The DC nodes in PrivEx run on the same machines as the egress nodes of the underlying
ACN. The DC listens for events of interest from the egress node, and securely aggregates
them. In our setting, an event will consist of the ACN egress node reporting that a
particular circuit has asked to perform a DNS lookup of a particular website.

PrivEx collects and aggregates statistics over a fixed period of time, called an epoch.
We pick an epoch according to the granularity of the statistics we wish to collect—for our
example ACN, Tor, we have chosen one hour as the epoch, to match the current frequency
with which the Tor client updates their CRS information.

We introduce two PrivEx scheme variants that provide secure and private aggregate
statistics of events collected by the DCs. They differ in the cryptographic primitives used
to protect the data while it is in storage and in the protection that they offer against
malicious actors.

The first scheme, based on secret sharing (PrivEx-S2), is secure in the honest-but-
curious setting but can be disrupted by a misbehaving actor. The second scheme, based
on distributed decryption (PrivEx-D2), is secure in the covert adversary setting in that
misbehaving servers can be identified. Most importantly, however, in both schemes, the
disruption of the protocol by malicious parties does not result in information leakage.

4.4.1 PrivEx based on Secret Sharing

There are three types of participants in PrivEx-S2: Data Collectors (DCs), Tally Key
Servers (TKSs), and a Tally Server (TS). The DCs relay traffic between the ACN and the
destination; they collect the statistics we are interested in. TKSs are third parties who
combine and store the secret shares received from DCs and relay aggregates of those secret

2This list can optionally have an “Other” entry to count the total number of visits to non-censored
websites as well.

83

Tally
Server

Data
Collector

Data
Collector

Tally Key
Server

DC 1

TKS j

TKS 2

TKS 1

DC i

DC 2

Tally Key
Server

DC 1

DC 2

DC i

TKS 1

TKS 2

TKS j

Figure 4.2: PrivEx-S2 variant based on secret sharing.

shares to the TS. The TS simply adds up the secret shares provided by the DCs and the
TKSs to produce the aggregated results. Figure 4.2 depicts an overview of our scheme.

Setup. At the beginning of every epoch, each pair of DC (i) and TKS (j) share a secret
key (Kij). This key can be the result of an ephemeral Diffie-Hellman exchange, or more
simply, each DC i can seed each TKS j with a shared key through a secure channel (e.g.,
TLS 1.2 using a ciphersuite that provides forward secrecy).

Each DC maintains a number of secure counters, each cryptographically storing the
count of accesses to a specific destination (wID). The DC cryptographically initializes
a database of records, each representing a secure counter, with the following schema:
[wID, CwID] where

CwID =

(
nwID −

∑
j

PRF(Kij;wID)

)
mod p

Here, nwID is the noise for this counter (see Section 4.4.4), PRF is a keyed pseudorandom
function, and p is a smallish prime (such as p = 231− 1). After this step, the DCs securely
delete their shared keys Kij and the noise nwID.

84

Each TKS (j) also uses Kij to compute its contribution to the count for each wID as:

SwID =

(∑
i

PRF(Ki,j;wID)

)
mod p

and then securely deletes its copy of the Kij. Alternatively, in order to mitigate failing
DCs, the TKSs can store the keys until the tally phase but this opens up the TKSs to
compulsion attacks to reveal the keys, and hence the individual DC statistics.

Counting. Upon a DNS lookup for a domain on the censored website list, the DC simply
adds 1 to the appropriate secure counter as follows: [wID, C ′

wID = (CwID + 1) mod p]. We
choose p large enough to expect no overflow of counting events—we can only reliably
aggregate up to p events per counter.

Aggregation. At the end of every epoch, all the DCs and all the TKSs send their
databases of secure counters to the TS.

The TS simply adds up all the shares received from the DCs and TKSs and publishes
the results, which are the aggregated destination visit totals from all the DCs plus the
total of the noise added by each DC at the setup stage in each counter. Once the results
are published for the current epoch, the tally server deletes the received data and awaits
the next epoch’s data to tally.

After sending their data for the epoch to the tally server, all the DCs and TKSs securely
delete their databases and reinitialize through the setup phase, starting the cycle again.

4.4.2 PrivEx based on Distributed Decryption

We now describe PrivEx-D2, depicted in Figure 4.3. PrivEx-D2 utilizes the Benaloh en-
cryption scheme [Ben94]—a distributed additive homomorphic encryption scheme. This
scheme is a variant on ElGamal: a (private,public) key pair is (a,A = ga) and an encryp-
tion of a message m ∈ Zq with randomness r ∈ Zq is EA(r;m) = (gr, Ar · hm), where
g and h are generators of a cryptographic group G of order q. Note the additive homo-
morphism: EA(r1;m1) · EA(r2;m2) = EA(r1 + r2;m1 + m2), where the multiplication is
componentwise. Decryption is Da(C1, C2) = DLh(C2/C

a
1). Note that decryption requires

the taking of a discrete log, but if the message space M is small (as is the case for counts
of website visits, or in Benaloh’s original application, counts of votes), this can be done

85

TKS 1

TKS j

TKS 2

TKS 1 TKS 2 TKS j

Data
Collector

Data
Collector

DC 1

DC i

DC 2

DC 1

DC 2

DC i

Tally Key Server

Tally Key
Server

Figure 4.3: PrivEx-D2 variant based on distributed decryption.

with the kangaroo [Pol78] or baby-step-giant-step [Sha71] methods in time O(
√
|M |), or

even faster if more space is consumed by a pre-computation table.
Note that PrivEx-D2 uses a public bulletin board (PBB) instead of a Tally Server;

the PBB is used as a repository of results and public keys from the DCs and TKSs. We
can instantiate it with a database server which maintains tables for the TKS public keys
and intermediate decryption results, and the final statistics of the epoch. To mitigate
misbehavior by an untrusted PBB, the messages stored thereon should be digitally signed
by their authors using long-term authentication keys.

Setup. At the beginning of every epoch, each TKS (j) picks a random (ephemeral)
private key aj ∈ Zq and computes its public key Aj = gaj . They publish the public keys to
the PBB, along with a non-interactive zero-knowledge proof of knowledge (using the Fiat-
Shamir heuristic) of the private key aj. Each DC then checks each proof, and calculates
the compound key A by taking the product of all the published keys: A =

∏
j Aj. Now

each DC, for each secure counter for website w in its table, computes the amount of noise
nw to be added (see Section 4.4.4), and stores EA(rw;nw) = (grw , Arw ·hnw). Note that the
randomness rw will be freshly chosen for each counter, and discarded immediately after
encryption, along with the plaintext nw.

86

Counting. When the DC observes a visit to a website under observation, it multiplies
(component wise) the appropriate encrypted counter by EA(r; 1) = (gr, Ar · h) where r
is random.3 After cw visits, the secure counter will hold (gr, Ar · hcw+nw) for some r. It
can optionally also re-randomize the all the other counters to ensure that two subsequent
snapshots of the database do not reveal which counter has been incremented.

Aggregation. At the end of the epoch, each DC (i) publishes to the PBB a commitment
to its encrypted counters for each website (w): C

(
⟨(gri,w, Ari,w · hci,w+ni,w)⟩w

)
, where C

is an appropriate commitment function. After all DCs have posted their commitments
to the PBB, each posts the opening of its commitment (the list of encrypted counters
⟨(αi,w, βi,w)⟩w = ⟨(gri,w, Ari,w ·hci,w+ni,w)⟩w). Each TKS j then checks that the DCs’ openings
are consistent with their commitments, and consolidates the openings by computing αw =∏

i αi,w. It then computes α
(j)
w , TKS j’s share of the decryption, as α

(j)
w = (αw)

aj , and
posts that back to the PBB, along with a non-interactive zero-knowledge proof of equality
of discrete logarithms to (g, Aj) to show that the computation was correct. Everyone
can then check the proofs and compute the value hcw+nw = (

∏
i βi,w) /

(∏
j α

(j)
w

)
, where

cw =
∑

i ci,w and nw =
∑

i ni,w. From here, cw + nw can be computed using one of the
discrete logarithm algorithms mentioned above. A proof of security for PrivEx-D2 can be
found in Section 4.5.3.

Filtering Statistics by Client Origin

So far, we have assumed there is a single list of censored websites whose visits we are
interested in counting. However, different websites are censored in different countries, and
we may wish to count a visit to, say, Wikipedia if the user is in China, but not in the UK,
a visit to the Pirate Bay if the user is in the UK, but not in Sweden, etc.

In this section, we present an extension to the PrivEx-D2 protocol that allows us to
maintain per-country lists of censored websites, and only count a visit by an ACN user to
a given website if that website appears on that user’s country’s list.

To do this, we of course need to determine what country the user is in. This is best
done at the ingress point to the ACN, where the true IP address of the user is visible.
Indeed, Tor already collects this information so that it can display per-country counts
of numbers of users. [Tor10b] It is of course vital that the DC not learn this potentially

3For a slight efficiency gain, r can be 0, so that the multiplication is by (1, h). The downside is that
this can leak information to an attacker that can observe the internal state of a DC at two different times
within one epoch, yet cannot observe that DC’s DNS lookups.

87

identifying information about the client. The ingress node will therefore forward to the
DC an encrypted vector encoding the country. The length of the vector is the number
of countries NC for which we are monitoring accesses to censored websites, plus one for
“Other”. The vector is then V = ⟨EA(rc; δc,c∗)⟩NC

c=0 where c∗ is the country the user is in
and δc,c∗ is 1 if c = c∗ and 0 otherwise. The rc are uniform random elements of Zq. The
ingress node also provides a zero-knowledge proof that each element of the vector is an
encryption of either 0 or 1, and that the sum of the plaintexts is 1. We note this is the
same proof as used in electronic voting schemes, for example. [Ben94]

The DC will check the zero-knowledge proof, and when it observes a connection to, say,
Wikipedia, will multiply into its count not EA(r; 1), as above, but rather

∏
c Vc, where the

product is over those countries c that censor Wikipedia. The remainder of the protocol is
unchanged. Each vector V is associated to a circuit at circuit construction time and the
DC knows which circuit requested the website.

4.4.3 PrivEx Scheme Comparison

Both schemes provide the security features we desire, but in some settings one may be
preferable over the other.

In volunteer-resourced ACNs, such as Tor, some nodes will inevitably have low compu-
tation and bandwidth resources and it is best to minimize their computational, memory,
and bandwidth overhead. In such cases, PrivEx-S2 is preferable since some messages are
overall shorter and the computational overhead of frequent operations is smaller.

The length of the epoch can affect our choice of scheme since the relative time to
set up and process the statistics increases for shorter epochs. While it is not a current
requirement, if we wanted more near-real-time statistics, say every 5 seconds, then we
would prefer PrivEx-S2 since the overhead is nearly negligible compared to PrivEx-D2.
There are limits to how short the epoch can be, however, due to network latency affecting
protocol communication.

On the other hand, PrivEx-D2 provides traitor detection of the TKSs and Denial of
Service (DoS) resistance. In PrivEx-S2, any DC or TKS can DoS the system for the epoch
if it does not report its statistics, whereas in PrivEx-D2 only DCs that report statistics
for the epoch are included in the aggregation process and misbehaving TKSs (traitors)
can be detected using cryptographic proofs ensuring that the computations were done
correctly. Furthermore, PrivEx-D2 can optionally enjoy stronger perfect forward secrecy—
against node seizure and adversaries that can view the memory contents multiple times in
an epoch—by re-randomizing even those counters that have not been changed with every
increment operation.

88

4.4.4 Calculating and Applying Noise

We introduce noise to our results to mitigate the risk of the correlation attack that reporting
exact results may introduce. A more thorough discussion of the correlation issue is found
in Section 4.5.2. In this section, we present the details of how the appropriate amount of
noise is computed and added to the tallies.

How Much Noise?

We add noise to protect the privacy of users, but at the same time, if we add too much
noise, it will hamper the utility of PrivEx; after all, we are deploying PrivEx to answer
certain questions about ACN usage. We adopt a principled approach to adding noise to
our statistics—one that allows the level of privacy and utility to be set to desired levels.
For this purpose we have selected the model of differential privacy that can provide (ϵ, δ)-
differential privacy through the addition of noise using a Gaussian mechanism with mean
0 and a standard deviation σ selected for the level of privacy and utility we require.

We wish to protect information about whether any individual user’s information is in
the published data set, or is not in it. To do this, we need to set an upper bound—called
the sensitivity (S)—on the maximum contribution one user can make to the count in any
epoch. For Tor, we use the fact that, by default, one circuit is created every ten minutes, so
that if our epoch length is, say, one hour, and we always ignore repeated visits to the same
website by the same circuit, we can set S = 6—the security implications of implementing
this are discussed in Section 4.5.1. For other ACNs, an appropriate sensitivity can be
similarly selected.

As we are interested in practical applications of PrivEx, we provide the means to
calculate the exact values of ϵ and δ through the lens of the privacy and utility levels we
desire.

What we are interested in controlling is the advantage (over random guessing) of an
adversary in guessing whether a particular user’s data is contained in the published (noisy)
statistics, even if the adversary knows all the other inputs to the statistics. That is, dis-
counting the known information, the adversary is trying to determine whether the published
statistics are more likely to represent a true measurement of 0 (the user is not present) or
S (the user is present).

Therefore, the adversary’s task is to tell if a given statistic is drawn from the distribution
N(0, σ) or N(S, σ). Given a reported statistic, if it is less then S

2
, the adversary’s best

guess is that the true statistic is 0, and S otherwise. It is easy to see that the advantage

89

0

0.001

0.002

0.003

0 S

S/2 σ

Privacy Loss (S=6)

N(µ=0,σ=240)
N(µ=6,σ=240)

Adversary's Advantage

Figure 4.4: The advantage is 0.5% (shaded area) of the adversary in guessing the correct
value of the statistic. Note the almost total overlap of the two probability distributions.

of the adversary is then given by the area under the N(0, σ) normal curve between 0 and
S
2
, as depicted in Figure 4.4.

The adversary’s advantage can then be minimized by selecting σ large enough such
that Pr[0 < N(0, σ) < S

2
] = Pr[0 < N(0, 1) < S

2σ
] is as close to 0 as desired. However,

choosing σ too large will hamper utility, as we discuss next.
To address our utility needs, we must first decide on a question to ask. A typical

question would be, “On average, how many visits are there to a given censored website per
epoch?”, and we may be content to know the answer to within some resolution K, say 100
or 1000. This gives us two benefits over the privacy adversary: we only care about average
behavior over many epochs, and not specific users at specific times (in order to carry out a
correlation attack); and we only care about results to within K, not to within single users’
contributions.

If we average over λ epochs, the standard deviation of our noise becomes σ√
λ
. Then, if we

want to distinguish two hypotheses that differ by K (e.g., does this website see closer to 0
visits per epoch or closer to K = 1000 visits per epoch over the ACN—a question we cannot

90

0

0.002

0.003

0 S K/2 K

S/2 σ/√λ σ

Utility Loss (S=6, K=100, λ=126)

N(µ=0,σ=240)
Utility Error aggregating over 1 epoch

N(µ=0,σ/√λ=21.38)
Utility Error aggregating over λ epochs

Figure 4.5: The probability of error is 0.1% (dark shaded area) when the reported statistic
(averaged over λ = 126 epochs) appears closer to K than to 0. Compare this to the much
larger error of 41.75% (lighter shaded area) when λ = 1.

answer today), our utility error—the probability we answer incorrectly—is Pr[N(0, σ√
λ
) >

K
2
] = Pr[N(0, 1) > K

√
λ

2σ
], as depicted in Figure 4.5. Slightly different questions would

produce slightly different formulas for the utility error, but they will be computable in the
same vein.

Therefore, for a given sensitivity S and tolerance P on the advantage of the privacy
adversary, we can work out the desired standard deviation σ for our noise by solving for
Pr[0 < N(0, 1) < S

2σ
] ≤ P using a standard normal curve z-table. Then, given a tolerance

U on the utility error, and a resolution K for our question, we can determine the number
of epochs λ we will need to average over by solving for Pr[N(0, 1) > K

√
λ

2σ
] ≤ U similarly.

In the presence of possibly malicious DCs, the situation is only slightly more compli-
cated. Malicious DCs (who do not immediately forget the amounts of noise with which
they initialized the secure counters) know the amount of noise they added. By removing
that from the reported tally, the remaining amount of noise (contributed by the honest
DCs) is less than expected.

91

As we will see in Section 4.4.4, each DC i adds noise selected from a normal distribution
whose standard deviation is proportional to its weight—the probability wi that that DC
will be selected by a user. If we can assume a lower bound H on the total weight of honest
DCs, we can adjust the above calculations in a simple manner. (In Section 4.5.1 we will
argue that H = 0.8 is a reasonable lower bound for Tor.) Honest DCs tune the amount of
noise to add by adjusting the value of σ to σH = σ

H
. This has the effect that honest DCs

add more noise so that it maintains the desired privacy level, at the expense of requiring
an increase in λ by a factor of H−2 (an increase of about 56% for H = 0.8) to achieve the
same level of utility as before.

A Worked Example. Using Tor as our ACN, and one-hour epochs, so S = 6, we want
to find σ given a desired privacy adversary advantage of at most 0.005. Consulting a
z-table, we find that we want S

2σ
≤ 0.0125, so σ ≥ 240. Then, if we want utility error

U = 0.01, the z-table says we need K
√
λ

2σ
≥ 2.33, so for σ = 240, K

√
λ ≥= 1120 will suffice.

Then if K = 1000, λ can be as low as 2 epochs, if K = 100, then λ = 126 epochs (or 5.25
days), but to get an average number of visits per epoch to within K = 1, we would need
over 140 years.

We now analyze the case where some fraction of DCs may be malicious. Assume that
we expect that the total honest weight is at least 80%. We adjust σ to σH = σ

H
= 240/0.8 =

300. Then, for the same utility error as above, K
√
λ ≥ 1400 will suffice. For the same

values of K we would now need 2 epochs, 8.2 days, and over 224 years respectively.
In the preceding analysis we only need consider the amount of noise to add in terms

of the standard deviation σ of the distribution we sample from. We can link this back to
(ϵ, δ)-differential privacy by observing the parameters’ relation to σ as follows [HR12]:

σ =
S

ϵ
·

√
ln
(
1.25

δ

)
Thus, rather than, as in previous works [HR12, DKM+06] , having the system designer
select not-very-meaningful values of ϵ and δ, and computing σ as above to determine how
much noise to add, we instead determine σ directly using parameters specifically pertinent
to the system and to the questions it is trying to answer.4

4Since we only ever make one query we do not need to calculate how much privacy budget we have left
after publishing our aggregated statistics.

92

Distributed Noise Application

The DCs independently apply the noise as we never want the raw (un-noisy) data to
be divulged. We can distribute the application of noise since we know from Dwork et
al. [DRV10] that if individual databases are differentially private then so is their sum.

A naive way to go about this, and one that avoids the use of third parties, is for the DCs
to publish their noisy data directly to the public. The consequence of this is that each DC
would need to add enough noise so that its individual statistics provided the desired bound
on the advantage of the privacy adversary. This would make the total noise considerably
larger (by a factor of the square root of the number of DCs), and so the number of periods
λ to average over must increase by a factor of the number of DCs in order to keep the
desired bound on the utility error.

This is why PrivEx works with global noise instead of local noise: each DC adds some
amount of noise, whose total is distributed as N(0, σ) for the desired σ, but does so using
secure multiparty computation so that the individual noise components are never revealed.

We then need to calculate how much noise each DC should add. What we want is for
each DC i to add noise from N(0, σi), where σi is proportional to the probability wi that
the DC will get used. In Tor, for example, high-bandwidth nodes get used with higher
probability, so they will see more usage, and add more noise, while more impoverished
nodes will have less usage and less noise.

Then, given the desired σ, we want to solve for the σi such that σi ∝ wi (so σi = wi ·ϕ for
some ϕ independent of i) and

∑
i N(0, σi) ∼ N(0, σ). Since

∑
i N(0, σi) ∼ N(0,

√∑
i σ

2
i),

we have that σ2 =
∑

i ((wi · ϕ)2), so solving for ϕ, we find that σi = wi · ϕ = σ · wi√∑
i(w

2
i)

.
In PrivEx, the values of ϕ and σ are made available to the DCs from the PBB or TKSs.

That we are adding together a potentially large number of independent noise sources is
the reason we target Gaussian rather than Laplacian noise: while adding many Gaussians
yields a Gaussian, a Laplacian distribution cannot be decomposed into sums of other
independent random variables.

We note that, when adding noise, it is important for each DC to preserve non-integral
and negative values for the noisy count, so that, when added together, extra biases are not
introduced. As the encryption used in our counters takes integer plaintexts, we must use a
fixed-point representation where all of our values are expressed as multiples of some small
number γ. If there are N DCs, then in order that adding N values of resolution γ together
will be unlikely to produce an error of more than 1, we set γ ≤ 1

2
√
N

.

93

For N ≈ 1000, as in the current Tor network, γ = 0.01 will suffice.5 Note, however,
that this fixed-point representation expands the plaintext space by a factor of 1

γ
, and so

increases the time to compute the discrete logarithm in the final step of the PrivEx-D2
protocol by a factor of 1√

γ
.

Targeted Temporal Queries

PrivEx publishes the noisy total statistics for each epoch. The amount of noise is computed
to protect privacy, and a number of epochs’ statistics must be averaged to gain utility.
However, these epochs do not need to be consecutive, so, for example, one could ask
questions like, “Is Wikipedia visited via this ACN more often on weekends or weekdays?”.
The number of epochs to average will not change, however, so if the epochs of interest are
spread out in time, the total time to answer such a question will increase.

4.5 Security Analysis

4.5.1 Resistance to Attacks

We now address the attacks that are of the most concern. Recall that our requirement for
security is that PrivEx should not reveal private information to an adversary, even if it
fails to produce meaningful answers to the system designers’ questions. Of course, we also
require that PrivEx produce meaningful answers in the absence of an adversary.

Legal or Other Compulsion

A DC can be compelled to reveal its database of collected statistics through a legal order
or extra-legal compulsion. If this database is stored in the clear then privacy would be
violated. PrivEx mitigates this threat by storing an encrypted database with the property
that the DC cannot decrypt the database on its own. Recall that at the setup stage in
PrivEx, all DC databases were encrypted using shared keys with, or public keys of, the
tally key servers.

The adversary can also compel the servers to comply in the decryption of individual
DCs’ measurements (with less noise than the aggregate). This would indeed be trouble-
some, but we mitigate this by ensuring that the PrivEx servers are distributed across

5This also deals with an issue with rounding and differential privacy identified by Mironov. [Mir12]

94

diverse legal boundaries making compulsion infeasible. Indeed, as long as at least one
server is uncompromised then all DC data is safe. Furthermore, since we start with fresh
keys for each epoch, this compulsion could not occur retroactively.

PrivEx requires that we bound the sensitivity—the maximum number of times one
client can access a particular website in one epoch. We do this by maintaining, in plaintext,
a list of websites visited during the lifetime of a circuit, which is 10 minutes in Tor. This
introduces a potential information leak if the adversary is able to compromise an honest
DC while circuits are being served; this would reveal the censored websites visited by each
circuit. While this in itself does not link a client to a destination an adversary may use
this information to correlate traffic patterns it can record at the client side of the circuit.
However, if the adversary can compromise an ACN relay while it is actively serving an
open circuit, then the encryption keys it could recover could compromise those circuits
anyway even without access to the plaintext list.

Malicious Actors

Data Collector. The DC can behave maliciously by reporting untrue statistics. While
there is no safeguard to an attack on the integrity of the statistics we are interested in, the
confidentiality of the statistics collected at other DCs and the aggregate statistics that are
output by PrivEx are safe from the actions of a misbehaving DC as long as the security
of the encryption schemes that we use remains intact. We may mitigate the impact of
this attack by using range proofs at additional computation and communication costs, but
this still does not remove the threat entirely. In Section 4.4.4 we suggested that H = .8
is a reasonable lower bound on the amount of honest DC weight for Tor. The reason we
give this value is that if more than 20% of the exit weight of Tor is compromised, then
Tor is sufficiently susceptible to circuit linking attacks [ABEG13], and could more easily
compromise clients without using the less-noisy statistics provided by the degraded PrivEx.

Finally, we note that if a DC is compromised, the adversary can also perform a cor-
relation attack, and can likely read the memory, including encryption keys protecting
any active circuits, thus retroactively deanonymizing them. This is a shortcoming of the
underlying ACN; PrivEx does not exacerbate this problem.

Tally Key Server. The tally key servers collectively play a critical role in the PrivEx
schemes and hence are vectors of attack. A bad actor may try to gain access to the statistics
in a less secure manner or an insecure intermediate form (i.e. without noise).

We guard against this in both variants of PrivEx by ensuring that in the setup stage
all DCs initialize their databases by encrypting each secure counter using the key material

95

provided by, or shared with, all the participating TKS servers. This ensures that even if
all but one TKS try to decrypt the data in an information-leaking manner, a single honest
server’s key material and noise added by the DCs prevents any information from being
revealed.

In PrivEx-S2, a single DC or TKS can launch a denial of service attack by not sending
its share, which would mean that for that epoch no results could be determined. In PrivEx-
D2, we can identify the misbehaving TKS, which introduces consequences to DoSing. In
either case, no private information is leaked.

Tally Server and Public Bulletin Board. The TS and PBB are unable to learn
anything extra by misbehaving since none of the intermediate data is ever in the clear and
their inputs and outputs are public, making verification possible.

4.5.2 Correlation Attack with Auxiliary Information

Data Collector traffic information may not reveal anything on its own, but there is a danger
that an attacker could fruitfully combine it with auxiliary information, such as observations
of a target user’s, or indeed of many users’, network traffic.

For example, if we did not add noise, but simply released accurate counts only if they
were in excess of some threshold, then an adversary could generate its own network traffic
to push the counts above the threshold, and then subtract its own traffic (for which it
knows the true counts) to yield accurate counts of potentially a single user’s traffic.

The differential privacy mechanism proposed adequately addresses this threat. It en-
sures that, for any adversary, the response of PrivEx if the target user did visit a target
website in a given epoch will be hard to distinguish from the response if the user did not.

We also note that since there is only one question PrivEx answers (How many visits
were made via the ACN to each of this list of websites in this epoch?), and it can be asked
only once per epoch, differential privacy’s notion of a “privacy budget” is not required in
our setting.

4.5.3 Security Proof for PrivEx-D2 Variant

We now show that the PrivEx-D2 scheme from Section 4.4.2 (using group G of order q with
generators g and h) is secure if ElGamal encryption (using the same group G with generator

96

g) is IND-CCA1. The latter fact is known to be true under reasonable assumptions [Lip10],
which establishes the security of PrivEx-D2.

The security property we seek is this: even if some of the DCs and all but one of the
TKSs are adversarial, the adversary will (for each website under consideration) learn no
information about the counts of the individual honest DCs, save for their sum.

We do this with a typical real-or-random game. Because the protocol uses non-
interactive zero-knowledge proofs based on the Fiat-Shamir heuristic, the proof is in the
random oracle model.

We denote the number of DCs by N , of which n are honest, and the number of TKSs
by M , of which only number 1 is honest. The adversary game G0 against the PrivEx-D2
protocol proceeds as follows:

Setup phase. S1: The adversary receives the honest TKS’s public key A1 from the
challenger, along with a non-interactive zero-knowledge proof of knowledge (NIZKPK) of
the corresponding private key a1 such that A1 = ga1 . S2: The adversary then outputs the
adversarial TKSs’ public keys A2, . . . , AM , along with the corresponding NIZKPKs of aj
such that Aj = gaj for j = 2, . . . ,M .

Counting phase. C1: The adversary supplies one plaintext pi for each honest DC
(i = 1, . . . , n). C2: The challenger chooses a uniformly random bit b. If b = 0, the
challenger sets p′i = pi for each i. If b = 1, the challenger picks uniformly random p′i ∈R Zq

under the single constraint that
∑

i p
′
i =

∑
i pi.

Aggregation phase. A1: The challenger computes its ciphertexts ⟨(gri , Ari · hp′i)⟩ni=1,
where A =

∏
j Aj and each ri is uniform random from Zq. The challenger sends commit-

ments to these ciphertexts to the adversary. A2: The adversary selects the ciphertexts for
the adversarial DCs arbitrarily, and multiplies them to yield the single ciphertext (x, y).
It outputs a commitment to (x, y) to the challenger. A3: The challenger opens its com-
mitments by sending ⟨(gri , Ari · hp′i)⟩ni=1 to the adversary. A4: The adversary opens its
commitment by sending (x, y) to the challenger. A5: The challenger computes the product
α of the first components of all the openings as α = x ·

∏
i g

ri , and returns αa1 to the ad-
versary, along with the NIZKPK of equality of discrete logarithms that logg A1 = logα α

a1 .
Note that αa1 = xa1 · A

∑
i ri

1 .
Output phase. The adversary now ouputs its guess b′ for the value of b. That is, it

tries to decide whether the ciphertexts output in step A3 corresponded to the plaintexts
supplied in step C1, or to random plaintexts with the same sum. The advantage of the
adversary is

∣∣Pr[b′ = b]− 1
2

∣∣.
We now construct game G1 such that the advantage of the adversary in winning game

G1 is the same as that of it winning game G0 in the random oracle model. To do this,

97

we observe that the challenger can program the random oracle to forge any NIZKPK it
creates, and can use the NIZKPK extractor to learn the adversary’s private values for
any NIZKPKs created by the adversary. Therefore, in game G1, we simply remove the
challenger’s NIZKPKs from steps S1 and A5, and change step S2 so that the adversary
outputs the private keys a2, . . . , aM . In addition, the binding and hiding properties of
the commitment mean that the adversary has to compute its (x, y) before seeing the
challenger’s ciphertexts. Therefore, we can rearrange the steps of the Aggregation phase
so that we remove the commitment steps A1 and A2, and swap the order of A3 and A4.

Now suppose an adversary A has non-negligible advantage in game G1. We next, using
A as a black box, construct an adversary B for the IND-CCA1 game for ElGamal that has
the same advantage. The IND-CCA1 game for ElGamal is as follows.

E1: The challenger E chooses a private key e uniformly at random from Zq, and outputs
the public key E = ge. E2: The adversary B constructs some (polynomial) number of
ciphertexts (αi, βi) and sends them to E . E3: E decrypts the ciphertexts and returns the
plaintexts βi/α

e
i to B. E4: B chooses two plaintexts m0,m1 ∈ G and sends them to E . E5:

E chooses a bit be uniformly at random, and sends an encryption (gr, Er ·mbe) of mbe to
B, where r ∈R Zq. E6: B outputs its guess b′e for the value of be. The advantage of B is∣∣Pr[b′e = be]− 1

2

∣∣.
Here is how B, acting as the challenger to adversary A for game G1, can win the above

IND-CCA1 game. This interaction is depicted in Figure 4.6. In step E1, E sends its public
key E to B. B sends A1 = E to A in step S1. In step S2, A outputs a2, . . . , aM to B. Let
â =

∑M
j=2 aj, and let A =

∏M
j=1Aj = E · gâ.

Now in step C1, A supplies p1, . . . , pn and in step A3, A supplies (x, y), both to B.
Now B turns back to E and submits (x−1, 1) as a ciphertext in step E2; E will compute
1/x−e = xe and return it to B in step E3. B now sets m0 = 1, picks λ ∈R Z∗

q, sets m1 = hλ,
and submits (m0,m1) to E in step E4. In step E5, E returns (R, S) = (gr, Er ·mbe) to B.
B now needs to compute its ciphertexts ⟨(gri , Ari · hp′i)⟩ni=1 to send to A in step A4,

such that the p′i equal the pi if be = 0, and the p′i are random, but with the same sum
as the pi, if be = 1. (That is, B implicitly sets b = be.) To do this, B picks si, . . . , sn
uniformly at random from Zq, and picks µ1, . . . , µn uniformly at random from Zq subject
to the condition that

∑
µi = 0.

Now let (Ri, Si) = (gsi ·Rµi , Asi ·Rµi·â ·Sµi ·hpi). If be = 0, so that mbe = 1, we have that
(Ri, Si) = (gsi+rµi , Asi · grµiâ ·Erµi · hpi) = (gsi+rµi , Asi+rµi · hpi), as required. On the other
hand, if be = 1, so that mbe = hλ, we have that (Ri, Si) = (gsi+rµi , Asi ·grµiâ ·Erµi ·hpi+λµi) =
(gsi+rµi , Asi+rµi · hpi+λµi). Since

∑
i µi = 0, the pi + λµi are random values in Zq summing

to
∑

i pi, again as required. B then sends ⟨(Ri, Si)⟩ni=1 to A in step A4.

98

E B A

E1: E

S1: A1 = E

S2: a2, ..., am

C1: p1, ...pn
A3: (x, y)

E2: (x−1, 1)

E3: xe

E4: (m0,m1) = (a, hλ)

E5: (R,S) = (gr, Er ·mbe)

A4: ⟨(gsi ·Rµi , Asi ·Rµi·â · Sµi · hpi)⟩ni=1

A5: xe · E
∑

si

b′

b′

ElGamal IND-CCA1 game Game G1

Figure 4.6: B using adversary A for game G1 to win the IND-CCA1 game for ElGamal
against E .

B’s last move is then to send (x ·
∏

Ri)
e to A in step A5. It can easily compute this,

as it retrieved xe from E in step E3, and (
∏

Ri)
e = E

∑
si+rµi = E

∑
si since

∑
µi = 0.

Finally, A guesses the value of b, and since b = be, B simply passes that guess on to E
as its own guess for be, winning the IND-CCA1 game for ElGamal if and only if A wins
game G1.

4.6 Implementation

We have built proof-of-concept implementations for both variants of PrivEx. They are
implemented in Python using the Twisted library for asynchronous networking between
the parties of the system.

99

Each PrivEx scheme uses a few hundred lines of Python code. The code is available
for download from our PrivEx website.6 Both schemes use TLS 1.2 with ECDHE for
communication between endpoints to ensure that the key material remains confidential
during transit and benefits from perfect forward secrecy. We set up long-lived TLS con-
nections when PrivEx first comes online; their communication and computational costs are
amortized over many epochs.

We have not implemented the Country of Origin feature at this time since we would
like to see PrivEx deployed in the Tor network with the core feature set before expanding
on it. The core implementation above is ACN agnostic, and we aim to integrate it with
Tor in the near future.

In the tables in this section, the “Per node” column is calculated by taking the total
cost for each type of PrivEx node and dividing it by the count of that type of node, to find
the cost at each type of node. This helps identify potential bottlenecks.

4.6.1 Computational Overhead

We present PrivEx overhead statistics to show that both schemes have low computation
requirements. The hardware for our experiments is a 3 GHz quad-core AMD desktop
computer with 4 GiB of RAM running stock Ubuntu 14.04.

Using a test harness we measure the time the core components of each PrivEx scheme
take under parameters typically found in the Tor network. We simulate a network of 10
TKSs and 1000 DCs; the latter reflects the number of exits in the current Tor network. The
number of censored websites to collect statistics for is 1000 and each website is “visited” one
million times. No actual website connections are made by the DCs since we are interested
in capturing the overhead of the PrivEx schemes.

PrivEx-S2. From Table 4.1, we note that the setup phase of PrivEx-S2 takes 4.1 s on
average and that the tally phase takes 470 ms on average (adding the “per node” times, as
the nodes act in parallel). Without any ACN traffic (i.e. no DC increment operations),
the total overhead wall-clock time per epoch is 4.6 s. The key figure to note is that the
addition operations at the DC nodes take less then 1µs each (900µs for 1000 visits per
DC) on average. This low cost is important, as this operation will be called the most often
and the impact on DC nodes must be negligible so that they can service ACN requests
without undue overhead.

6https://crysp.uwaterloo.ca/software/

100

https://crysp.uwaterloo.ca/software/

Table 4.1: The overhead per epoch (with 95% confidence intervals) incurred by participants
in the PrivEx-S2 scheme for 10 TKSs and 1000 DCs with 1000 websites with one million
visits per epoch.

Operation Total per epoch (ms) Per node (ms)
TKS initialize 0.012±0.004 0.0012±0.0004
TKS register 41000±3000 4100±300
DC initialize 40000±3000 40±3
DC register 312±8 0.312±0.008
DC increment 900±90 0.90±0.09
DC publish 1.7±0.1 0.0017±0.0001
TKS publish 0.56±0.06 0.056±0.006
TS sum 470±20 470±20
Epoch Total 83000±6000 —

PrivEx-D2. From Table 4.2, we note that the setup phase of PrivEx-D2 takes 297 ms on
average with the DC nodes bearing the most cost. The entire tally phase takes 1.69 m on
average per epoch (adding the “per node” numbers, as these operations occur in parallel).
Combining the overhead for both phases, the epoch overhead wall-clock time is 1.7 m on
average. We see in PrivEx-D2 that the addition operation takes 3.9µs on average and
again, like PrivEx-S2 above, this is desirable since it is the most frequent operation.

Discussion. PrivEx-S2 has lower computational cost than PrivEx-D2, by a factor of
almost 10 in our example. Yet, it is clear from these results that the computational
overhead at each type of node in PrivEx is low and that the time requirements are a small
fraction of the duration of an epoch. Indeed, even if there are applications where statistics
need to be gathered for shorter epochs, PrivEx can still be useful; as we saw earlier, for
each setup-tally cycle the PrivEx-S2 scheme incurs less than 4.6 s of overhead while the
PrivEx-D2 scheme incurs less than 1.7 m of overhead, which is very small compared to
the typical example epoch length of one hour. This means that the statistics collection
frequency can be as low as 5 s and 2 m respectively. This flexibility allows one to match
the appropriate PrivEx scheme to the application’s statistics frequency and threat model
requirements.

101

Table 4.2: The overhead per epoch (with 95% confidence interval) incurred by participants
in the PrivEx-D2 scheme for 10 TKSs and 1000 DCs with 1000 websites with one million
visits per epoch.

Operation Total per epoch (ms) Per node (ms)
TKS initialize 10.9±0.2 1.09±0.02
DC combine key 4.05±0.02 0.00405±0.00002
DC initialize 295000±600 295±0.6
DC increment 3.9±0.1 0.0039±0.0001
PBB productize 50400±400 50400±400
TKS decrypt 448000±3000 44800±300
PBB DL Lookup 6293±40 6290±40
Epoch Total 800000±3000 —

4.6.2 Communication Overhead

We now give a closed-form analysis of the communication costs of the two PrivEx schemes.
In the following description, DCN , TKSN , and WN represent the number of DC nodes,
TKS nodes, and websites for which we are collecting statistics, respectively.

An overhead in common for both schemes is the list of websites and the constants
for DDP calculations σ, ϕ, and γ. We make the conservative assumption that the website
domain name in the URL will not be more than 255 characters long, therefore the maximum
length of the URL list is 255 ·WN bytes. The constants require 8 bytes in total. In the
experimental setting above this overhead is ∼249 KiB, the overwhelming majority of it
being the website list. While it is not as significant, we note that the website lists and
values for the constants need not be transmitted every epoch, instead only being sent when
there is a drastic change in the network conditions or the website lists are updated.

PrivEx-S2. In the setup phase, each DC sends 16 bytes of key material to each TKS
for a total of 16DCN · TKSN bytes.

In the tally phase, each DC sends 4 bytes to the TS for each website in the database
for a total of 4WN · DCN bytes. Similarly, each TKS also sends the same amount to the
TS for each website for a total of 4WN · TKSN bytes.

In each epoch, the total communication cost, in bytes, is

16DCN · TKSN + 4WN(DCN + TKSN)

102

Table 4.3: Communication overhead (in KiB) of PrivEx-S2 for 1000 websites, 10 TKSs and
1000 DCs per epoch, using closed-form analysis. Note that we charge the data transfer to
the sender so nodes, e.g. TS, that only receive data show no communication overhead.

Setup Tally Total Per node
DC 156.25 3906.25 4062.50 4.06
TKS 0 39.07 39.07 3.91
TS 0 0 0 0
Total 156.25 3945.32 4101.56 —

For 10 TKSs and 1000 DCs tracking 1000 websites we see from Table 4.3 that the total
communication cost for every epoch is ∼4 MiB, but the cost for each type of node is far
lower at only ∼4 KiB.

PrivEx-D2. In the setup phase, each TKS sends 96 bytes of key material and zero-
knowledge proof to the PBB for a total of 96TKSN bytes. Then, each DC retrieves the
key material and the proofs from the PBB for a total of 96TKSN ·DCN bytes.

In the tally phase, each DC sends a 32-byte commitment to the PBB for a total of
32DCN bytes. After all DCs have sent their commitments, the PBB sends each DC the
commitments of the other DCs for a total of 32DC2

N bytes. Then, each DC sends a 64-byte
opening of the commitment for each website to the PBB for a total of 64WN ·DCN bytes.
The PBB then sends, in parallel, the opening of the DC’s commitments to each TKS for
a total of TKSN(DCN(64WN + 32)) bytes. In response each TKS sends the results of the
partial decryption for each website in the database, along with a zero-knowledge proof of
equality of discrete logs for a total of TKSN(32WN + 64) bytes.

In each epoch, the total communication cost, in bytes, is

32 (WN(2DCN · TKSN + 2DCN + TKSN)

+DC2
N + 4DCN · TKSN + 5TKSN +DCN

)
From Table 4.4 we see that, in our experimental setting, the total communication cost

for each epoch is ∼703 MiB, while each of the TKS and DC nodes send only ∼32 KiB and
∼63 KiB respectively. The bulk of the communication cost is borne by the PBB node.

Discussion. Both schemes scale linearly with the number of websites and TKSs. PrivEx-
D2 scales quadratically with the number of DCs while PrivEx-S2 remains linear. While it

103

Table 4.4: Communication overhead of PrivEx-D2 for 1000 websites, 10 TKSs and 1000
DCs per epoch, using closed-form analysis. Note the units in the column headings. Note
that we charge the data transfer to the sender so nodes, e.g. DCs, that only receive data
show no communication overhead.

Setup Tally Total Per node
(KiB) (MiB) (MiB) (KiB)

DC 0 61.07 61.07 62.54
TKS 0.94 0.31 0.31 31.74
PBB 937.5 641.17 642.09 657500
Total 938.44 702.55 703.47 —

is true that the PrivEx-D2 scheme is generally more expensive, we note that each DC and
TKS transmits only tens of KiB of traffic per epoch, which is comparable to PrivEx-S2.
However, the PBB transmits hundreds of mebibytes due to the higher security and privacy
guarantees it allows. To mitigate the impact of this load, it is expected that the PBB will
be well resourced for this task. Indeed, we expect that in real deployments the number of
TKSs would be closer to three and the number of websites would be closer to 100. In that
scenario, the total communication cost would be approximately 55 MiB per epoch.

The PrivEx-S2 scheme is relatively lightweight, enjoying very low overhead and perhaps
a better choice in low-bandwidth environments or where the size of the website list will be
very large.

Even so, in absolute terms, both PrivEx schemes have low overhead for DC and TKS
nodes. We note that in the Tor network, even relays in the 1st percentile by bandwidth
(18.4 KBps)—which are also the least likely to be chosen in circuits in any event—can
manage the load easily. [Tor10a]

From the perspective of the DC, which is also a node in the ACN, PrivEx does not
significantly impact bandwidth usage which can be better used to service ACN traffic.
From the perspective of the TKS, TS, and PBB, even though we expect that the servers
would be well provisioned for the task of aggregating statistics, the resource requirements
are low enough that they would also not be significantly impacted by participating in
PrivEx.

104

4.7 Real-World Deployment

Having designed and implemented PrivEx, we now use it to learn about the nature of
censorship traffic on the Internet. We are particularly interested in seeing the breakdown
of censorship traffic as it compares to non-censorship traffic on a particular network.

Methodology. For our study we target the Tor network for two reasons. First, a privacy-
preserving study of this nature has not been conducted and would yield useful insights
about Tor user behavior, specifically how much traffic is censorship resistance related.
Second, it would provide a proof-of-concept validation to the community that privacy-
preserving and utility-preserving data collection is practical and spur PrivEx uptake and
further research of these types of systems.

The first reason above may seem counterintuitive since we have classified Tor as a
CRS, and hence all traffic on the network should be considered censorship resistance re-
lated. From an abstract and global Internet perspective this observation is certainly true.
However, the Tor network is an ecosystem serving many purposes, including but not lim-
ited to censorship resistance. For a censor to block Tor—where such a block would have
potential collateral damage due to the defensive strategies we have discussed in Chap-
ter 2—the cost of information leakage due to the CRS activity on the network must be
higher than the cost of the collateral damage it would suffer. Recall from Chapter 3 that
knowing the base rate of CRS activity, or BR, helps fill in information that would help
evaluate if a block is economically responsible. Indeed, this analysis can tell Tor designers
if more collateral damage needs to be leveraged to tip the balance to prevent such a block.
Hence, Tor is an appropriate candidate for this type of study.

We utilize DNS requests as a means of learning about how often Tor users are interested
in CRS-related websites. We are aware that a DNS request does not necessarily translate
to an actual visit; e.g., web pages that track users through third-party advertising networks
will cause DNS queries to third-party domains but the user never actually “visits” those
domains. This is acceptable for our study since we assume that a domain appearing on
the censor’s blacklist is due to it being a target of censorship.

We compiled a list of nearly 6100 censored websites by scraping the GreatFire.org web-
site that tracks Chinese censorship by running connectivity tests from behind the national
firewall to websites on the Internet7 and a leaked list of websites blocked in Germany.8

7https://en.greatfire.org/
8https://bpjmleak.neocities.org—see archived version at https://web.archive.org/web/20140707204711

/https://bpjmleak.neocities.org/ for the list that has since been removed due to pressure from the German
authorities.

105

100 50 0 50 100 150 200
Visits

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

N(0,20.655911)
Privex: 135 Epoch(s)

Figure 4.7: A CDF of the aggregated statistics collected by PrivEx as compared to the
Gaussian noise added. A follow-up Kolmogorov-Smirnov test confirms that actual visits
were registered in the statistics collected with PrivEx.

106

Apparatus. We utilized the PrivEx-S2 variant for two main reasons. First, neither CRS-
client nor CRS-server software would have to be modified. Second, the low operational
resource requirements lowered the bar for entry and were helpful in recruiting volunteers
and resources.

Our initial proof-of-concept deployment consists of two TKSs, a TS, and a DC. The
TKSs are operated by third parties, one using a virtual hosting provider on the Isle of Man
and the other through the university network provider at the KU Leuven in Belgium. The
DC is co-hosted with the Tor exit node, nicknamed gurgle, operating at the University of
Waterloo in Canada. The TS is hosted on another machine at the same institution.

For the duration of the data collection reported here, gurgle had a probability of 0.15%
of being selected as the egress node from the Tor network. This means that we expect to
see this proportion of all traffic exiting the Tor network.

Collected Results. We set the epoch to one hour and collected statistics for 135 epochs,
which is more than the 126 epochs required for the level of privacy and utility from our
worked example in Section 4.4.4.

We validate that our implementation produces results with the same characteristics as
our analysis indicates and that they are reliable. We produce a CDF (Figure 4.7) of the
aggregated statistics and plot it against a CDF of the Gaussian noise function we utilized
with the standard deviation set to σ√

epochs
= 240√

135
= 20.655911, where σ is the same as in

the worked example above. We then ran a Kolmogorov-Smirnov test to ensure that the
distance between the two plots was positive and large enough to indicate that they were
drawn from two different distributions. The test showed a distance of 0.016 with likelihood
of between 0.05 and 0.10 that the observed difference is due to randomness. This indicates
that there were actual visits to the domains in our list and that we applied the expected
level of noise.

The results show that the average number of hits from the censored list is the range 586–
686 and those for off-list DNS requests is the range 31810–31910. This is a likelihood in the
range of 1.8–2.2% that a given DNS request coming to gurgle is for a site in our compiled
list, with probability exceeding 99%. This result provides an idea of the magnitude of the
answer to the question of how CRS-related traffic compares to the rest of the network.

From this measure we draw a conclusion that since the base rate is so low, the accuracy
of the censorship apparatus must be of a higher magnitude in order to avoid a large amount
of false positives, i.e. collateral damage. For example, using the higher base rate of 2.2%
above, a censorship apparatus that provides a 100% true positive rate (i.e., no information
leaks) and a 1% false positive rate (i.e., collateral damage) would only be correct 69% of

107

the time when it claimed that a some event was CRS related. The rest is collateral damage,
in stark contrast to the ostensible 1% rate stated above. To compensate for the additional
error and achieve the original 1% figure the apparatus would need to have a false postive
rate of 0.01%. If a censor wants to ensure negligible collateral damage in this low base
rate setting their apparatus must have a false positive rate of 0.001% which may be very
difficult to achieve.

4.8 Related Work

Differential Privacy. While PrivEx utilizes differential privacy (DP), there are many
key differences in the setting in which it is traditionally applied and the PrivEx setting.

In classical DP there is a trusted centralized database—usually a third-party host—who
can see the real data and is considered secure. Instead, in PrivEx the data is distributed
across nodes in the network where no entity has access to all of the real data from all of
the nodes. The only data that is revealed to anyone is the aggregated statistics with noise
added. An adversary would have to compromise a large fraction of the DCs, or all of the
TKSs, in order to access the private data of the honest parties.

In the usual DP setting the database is static across epochs and clients use up their
privacy budget to make a number of database queries—the results of which are usually
private unless they choose to make them public. As discussed at the end of Section 4.5.2,
in PrivEx, the database is completely refreshed at the start of every epoch and only a
single constant query is ever made every epoch, the result of which is then made public.

A number of works consider the problem of securely computing functions in a dis-
tributed differential privacy setting.

Dwork et al. [DKM+06] provide a method for generating shares of random Gaussian
noise in a multiparty setting mirroring the distribution of noise in our setting. The key
difference is that the parties work together to first produce noise shares which are then
used to perturb the data in their individual databases whereas in PrivEx the noise is
calculated independently using network state and does not incur extra protocol rounds.
Also, they assume that 2

3
of the participants will be honest while PrivEx makes no such

explicit restriction; i.e., a lone honest DC may enjoy the same level of privacy as the
designer intended, albeit with longer aggregation periods to gain the same level of utility
as designed.

In the two-party setting of distributed differential privacy, Goyal et al. [GMPS13] ex-
plicitly evaluate the accuracy-privacy tradeoffs for computing Boolean functions. Mironov

108

et al. [MPRV09] investigate calculating the distance between two vectors while McGregor
et al. [MMP+10] do the same for Hamming distance. All these works explore the limits of
DDP in the two-party setting. We contrast our work by noting that we consider a different
type of problem (the summation of integral inputs) and we evaluate the tradeoff between
the accuracy and privacy in the multiparty setting.

The closest related work is by Beimel et al. [BNO08]. The inputs in that setting are
binary, while those in ours are integral. While the binary inputs can indeed be adapted
to integers, there remain three key differences. Their protocol requires more rounds of
communication than ours, while we also allow for malicious parties, making PrivEx a more
practical solution in our setting. Finally, in their setting, to preserve DP, the database of
each DC is kept private and only binary outputs are released, whereas in our setting all
DCs release their private data, albeit with noise added to preserve DP.

Also of interest is work by Kasiviswanathan et al. [KNRS13] where network graphs
are analyzed to investigate how the removal and addition of nodes in the graph affect the
privacy of the information about the structure of the graph. While they also consider
differential privacy in the network setting, the key difference is that they investigate ways
to safely reveal information about the nodes of the network themselves, whereas we are
interested in the information that can be revealed by studying the traffic flowing through
the network; i.e., the network users’ information.

A general key difference to the previous literature is that PrivEx provides a way to
reason about the privacy and utility that the system provides whereas these previous works
leave it up to the system designer to work out. We provide an explicit statement of, and
relationship between, privacy and utility that are pertinent to data collection in ACNs—
this provides an easier-to-analyze system and potentially an easier path to deployment.

Secure Multiparty Computation. Secure multiparty computations have been used
in scenarios where the parties that perform the operations are not trustworthy. This
means that they should not learn the inputs of the calculations, should provide (implicit
or explicit) proofs that the calculations were performed correctly, and should not learn
anything more than the output of the calculation.

A closely related work is SEPIA [BSMD10] by Burkhart et al. where networks collect
data and wish to learn aggregate information about their networks without revealing their
individual inputs. It develops a number of operations that can be performed on network
data that can be evaluated by a pool of servers in a secure multiparty computation. While
both PrivEx and SEPIA try to achieve similar goals in the collection of network statistics
and use similar secret sharing schemes, there are a number of differences. First, while

109

the authors of SEPIA briefly mention differential privacy as a possible defence, PrivEx
provides a thorough treatment of how to use differential privacy to protect the aggregated
statistics in a principled manner. Related to that is that SEPIA also requires that honest
DCs sanitize their inputs, i.e. remove sensitive information, whereas PrivEx accomplishes
the same with the addition of DP noise. Second, PrivEx is secure as long as there is one
honest data collector—adding the appropriate level of noise, as outlined in Section 4.4.4—
and one honest TKS. This is in contrast to the SEPIA requirement that at least half of
the aggregators be honest. This is especially useful since PrivEx collects data from an
anonymity network where the stakes for information leakage are potentially higher and
hence require greater robustness to bad actors. Finally, we note that the data collectors
in SEPIA are provisioned for processing large quantities of traffic and data as they are
part of the ISP infrastructure, but these conditions may not apply in a volunteer-resourced
network like Tor. PrivEx has low overhead for the DCs.

The secret sharing scheme is based on the scheme presented by Barthe et al. [BDG+13]
which itself is an extension of previous works by Kursawe et al. [KDK11], Jawurek et
al. [JK12] and Shi et al. [SCR+11]. The novelty of PrivEx is that it introduces addition
using additive secret shares for coercion resistance and perfect forward secrecy, which these
previous works do not address.

Anonymity Network Data Collection. The work by McCoy et al. [MBG+08] pro-
vided many insights about Tor client behavior. Unfortunately, the method of safeguarding
the privacy of the collected data was considered by the community at large to be insuf-
ficient. [Sog11] Similarly, Diaz and Sassaman [DSD04] provided insights about mix input
traffic in Mix-stlye anonymous email networks by using actual traffic obtained from a
public node. Here too, the use of actual traffic data had the potential to deanonymize
clients. PrivEx ameliorates this state of affairs by providing researchers the means to
collect statistical data about clients of anonymous networks in a privacy-preserving and
compulsion-resistant manner.

Anonymity networks have to be careful about how they collect data about their network
and users since they are in a position of power and can potentially expose the entire
network. The operators of Tor also collect client-specific network usage data from their
guard and bridge nodes but not the exit nodes. The reason why it is considered safer to
do the former and not the latter—in the context of protecting client anonymity—is that
the guards/bridges already know who the clients that connect through them are so an
adversary who compromises those nodes would not learn any extra information.

A key difference between PrivEx and the present Tor data collection environment is
that in that latter, the true client statistics (aggregated at a per-country level, for example)

110

are stored in a centralized database. PrivEx does not allow any entity to learn any real
client data except the nodes that originally collected the data.

4.9 Future Work

As a potential additional application of PrivEx, we note that while the Tor network does
not typically try to hide the fact that a client is using Tor, there may be risks to revealing
statistics gathered through widespread ingress data collection similar to those addressed
by PrivEx of egress data collection. To address these potential risks, PrivEx can be applied
to the present guard/bridge data collection process, and provide the same benefits as those
that have been shown here for exit nodes.

An open question is whether PrivEx-like systems can be extended to collect data across
subsets of the network. The risks are that this will give the adversary the ability to partition
the data and perhaps learn something from the statistics that he should not have. If this
can be done safely, one direct benefit is that we could, in a privacy-preserving manner,
troubleshoot specific issues that are localized.

A limitation of PrivEx, since it is not needed for the scenarios we study, is that only
a single query can be made of the database. We would like to investigate how to support
multiple related queries—e.g., network load or circuit latency—while maintaining PrivEx’s
privacy and utility features.

4.10 Conclusion

We have presented PrivEx, a decentralized system for privately collecting client statistics
in anonymity networks. We have detailed two variants of PrivEx, one based on secret
sharing and the other on distributed decryption. Both schemes are efficient and resilient
to coercion attacks and malicious actors. We introduce noise, as defined in the differential
privacy setting, into our aggregation process to prevent information leakage that would
otherwise occur when the statistics are published.

We have used Tor as a case study and show how it can incorporate PrivEx; other
anonymity networks can similarly deploy PrivEx. In this case study we collect statistics
about client destination visits at the DC nodes. We show that this can be done in an effi-
cient manner with low computational and communication overhead for conditions typical
in the Tor network.

111

The statistics we have gathered from our small-scale deployment tell us that the inci-
dence of CRS traffic on the Tor network is close to 2% of the total website visits, which is
relatively low. This suggests that the censor would need to be very tolerant to collateral
damage or otherwise field a very accurate classifier leveraging high-quality distinguishers,
or block the network activity entirely. Due to the scale of the deployment we cannot
make specific conclusions about clients’ behaviors or their usage trends. With better and
more extensive website lists coupled with the deployment of PrivEx-D2 for country-specific
statistics we may be able to fill in the details of the broad-strokes picture that we can cur-
rently see.

Finally, with PrivEx, our aim is to convince administrators and users of anonymity
networks that client data collection is possible while maintaining anonymity and privacy.
The benefits are that valuable information about usage trends will help guide performance
and maintenance efforts. From the research perspective the benefits will be more accurate
usage statistics, client models, and clearer indicators of future directions that anonymous
communications and censorship resistance research should take.

112

Chapter 5

An Analysis of Path Selection
Security in Tor

Portions of this chapter were previously published in the proceedings of the 2012 ACM
Workshop on Privacy in the Electronic Society [EBA+12].

5.1 Introduction

The security properties of CRSs are dictated in large part by implementation details. In
this chapter we investigate a concrete example of a CRS, Tor [DMS04b], that mitigates
against CRS-client linking and publisher anonymity attacks, which we discussed in Sec-
tion 2.4. The CRS strategies being invoked are those of obfuscated values to protect paths
and destinations, and rate limiting the visibility of client communications from censor-
controlled nodes.

Tor is the most widely used volunteer-resourced anonymous communication network.
It is designed to provide communicating parties with anonymity from their communication
partners as well as unlinkability from passive third parties observing the network. This is
done by distributing trust over a series of Tor routers, which the network clients select to
build paths to their Internet destinations.

If the adversary can anticipate or compel clients to choose compromised routers then
CRS clients can lose their anonymity. Indeed, the client router selection protocol needs to
be secure against adversarial manipulation and leak no information about clients’ selected
routers. It is a key ingredient in maintaining the privacy properties that Tor provides.

113

When the Tor network was first launched in 2003, clients selected routers uniformly
at random—an ideal scheme that provides the highest amount of path entropy and thus
the least amount of information to the adversary. However, for load balancing reasons,
the router selection algorithm was changed in 2004 so that clients weight their selection
by the amount of bandwidth that routers offer to the network; a router that offers more
bandwidth to the network is selected more often by clients.

Another key change to the original router selection algorithm in Tor is the use of entry
guards. The concept of entry guards emerged as a solution to safeguard against a variety of
threats to end-user anonymity [WALS02, ØS06, BDMT07]. Originally, every time a client
created a circuit she would pick her first hop from the pool of all Tor routers meaning
that the probability of picking a high-bandwidth adversarial router would be high. Entry
guards are a restricted set of a few routers, picked by the client upon joining the network,
to serve as the first hop for all subsequent circuits. The effect is that whereas before the
adversary router could be picked every time a circuit is created, now it only gets a chance
when the client creates their entry guard list. More details follow in Section 5.2.1.

Guards were adopted into Tor with specific parameters that seemed likely to provide
acceptable security and load balancing characteristics for the network and end users. Those
parameters include the number of entry guards that a client begins with, and the amount of
time a client can use his/her entry guard before switching (rotating) to new entry guards.

Context and motivation. Since 2011, there has been renewed interest in reevaluating
these fixed parameters in combination with network conditions, such as churn and load
balancing, to more carefully determine the security that entry guards provide to users.

Dingledine [Din11b] formalized the open issues related to Tor’s entry guard design,
which are paraphrased below:

• Quantify the vulnerability due to natural guard churn, which is the added compromise
due to guard nodes going offline.

• Quantify the client compromise rates at different amounts of adversarial guard band-
width in the network.

• Quantify the vulnerability due to guard rotation and compare with natural churn.
Which of these is the dominant contributor to client compromise? Also, how does
varying the rotation periods affect the compromise rates?

• Quantify the client compromise effects of different guard list sizes.

114

While analysis [ØS06] provides evidence of security benefits and there is a consensus within
the Tor community that entry guards provide load balancing benefits, there is yet no em-
pirical evidence of the effects and limitations inherent in their design and in their imple-
mentation. Indeed, a lot of faith is placed in the design of guards and it is pragmatic to
ensure that this faith is well placed.

Understanding and improving entry guards. To gauge the security and perfor-
mance impact of entry guards in Tor and to provide direct answers to the questions above,
we conduct an empirical analysis of Tor’s entry guard selection and rotation algorithms by
constructing a simulation framework called Changing of the Guards (COGS).

Contributions. This chapter offers the following contributions to the field of anonymous
communications and censorship resistance:

• We present COGS, our simulation framework that is designed to provide quantitative
data about guard design choices.

• With COGS, we conduct an empirical characterization of entry guards fueled by
real data on Tor routers captured by the Tor data-collecting service.1 In particular,
we analyze natural churn, entry guard rotation, the number of entry guards chosen,
and other parameters in terms of their effects on security and performance through
large-scale simulation of Tor’s current entry guard selection and rotation algorithms.

• We investigate the trade-offs between the variables above from the perspectives of
security and performance.

• We present answers to open research questions posed by Dingledine with discussion
on future guard design research.

Our results indicate that Tor’s guard flag allocation process improves overall guard
stability and that guard rotation is a major contributor of client compromise yet is self-
limiting. We find that reducing the number of guards and increasing the churn period
improves client security by providing less compromised guard sets and increasing the time
to first compromise. However, we also find that for certain client/adversarial models using
more guards provides far superior security than possible under Tor’s current defaults.

1https://collector.torproject.org

115

5.2 Background

In this section, we present a detailed overview of Tor’s design and system architecture.

5.2.1 Tor Overview

We now augment the brief description in Section 4.2 about how Tor works with further
details about components of Tor that are relevant to COGS.

Recall that a Tor client can remain anonymous from Internet servers, and the parties in
communication can remain unlinked from each other from the perspective of an observer.
We shall now discuss the mechanics of how this is achieved.

The Tor network is composed of volunteer-operated nodes called Onion Routers (ORs),
also known as relays or nodes. These ORs provide network connectivity and bandwidth
capacity for end-user traffic. Anyone may operate a relay and indeed a strength of Tor is
the diversity and number of its network nodes. When an OR joins the network it announces
its details, such as its network address/port, its donated bandwidth capacity, and its exit
policy—stating to what Internet addresses and ports outside of the Tor network this relay
is willing to send traffic—to the (distributed) directory authority. The OR will then be
listed on the global list of relays and be a candidate for routing end-user traffic.

An end user downloads the Tor client, also known as an Onion Proxy (OP), which
on start up downloads the consensus document listing all running relays as well as relay
descriptors from the directory authority (or one of its mirrors). These documents contain
the details of each relay that the OP can use to route traffic through the network. In order
to protect clients against route bridging and fingerprinting attacks [DS08], these documents
are updated hourly so as to provide a current and consistent picture of the network to all
clients. Consensus documents are published precisely once per hour and descriptors are
updated in real time as their contents change.

The directory authority also provides metadata in the consensus document that helps
the OP route traffic more intelligently. In particular, the OP uses the consensus in the
process of constructing a circuit—a path through the Tor network. By default, circuits
consist of three ORs selected by the OP. We next describe the process of router selection
that is performed by OPs.

Router selection. In the default setting, the OP selects ORs from a distribution that
favours higher-bandwidth relays but also allows low-bandwidth relays to be utilized to some

116

extent. The three ORs in the circuit are termed the entry, middle, and exit ORs. The
OP communicates directly with the entry OR, the entry communicates with the middle
OR, and the middle communicates with the exit OR. Finally, the exit OR communicates
directly with the destination Internet server.

Although the number of circuits constructed is governed by immediate and anticipated
need, a general rule is that each circuit is used for ten minutes before the Tor client will
begin using a fresh circuit.

The OP constructs the circuit as follows. The OP first picks a suitable exit relay—
suitability being a function of the relay’s configuration as an exit relay (which is commu-
nicated to clients with the Exit flag in the consensus document) and its exit policy. Next,
the OP picks the entry OR while ensuring that all the relays have distinct /16 IP addresses
and relay families.2 (We provide more details on the constraints placed on entry selection
in Section 5.2.2.) The middle node is then picked in a similar fashion.

Finally, the OP constructs the circuit using the three ORs in an incremental and tele-
scoping manner. The OP negotiates cryptographic material with the entry OR and once an
encrypted channel is established between them it asks the entry OR to extend the circuit
towards the middle OR. The OP then negotiates cryptographic material with the middle
OR—communicating through the entry OR—to establish an encrypted channel between
them. The middle OR is then asked to extend the circuit to the exit OR and the process
is repeated to establish a secure channel between the OP and the exit relay.

5.2.2 Entry Guard Relays

All Tor relays are donated and as such it is hard to know which ones can be trusted.
It is easy, then, for the adversary to donate resources and participate in circuits. The
danger is when the adversary controls both the entry and exit ORs on a single circuit.
In this scenario the client address and destination address of the traffic are known to
the adversary who, through tagging or traffic confirmation attacks [Dan04, MZ07, ES09],
effectively deanonymizes the client. Following this previous work, Johnson et al. [JWJ+13]
show that these attacks are in fact easy to carry out.

Given enough time and the presence of adversarial ORs, the OP will eventually con-
struct circuits that have malicious entry and exit ORs. Since Tor picks relays weighted
according to bandwidth, a sufficiently resourceful adversary can deluge the network with
high-bandwidth relays and increase the rate at which it can compromise circuits.

2Operators of multiple Tor relays can voluntarily mark all the ORs they control as being in a common
family.

117

To mitigate this and related threats such as the predecessor attack [WALS02] and
locating hidden services [ØS06], entry guards were introduced. They limit the impact an
adversary can have on Tor’s user base by effectively reducing the number of times each
client selects its entry relays, thus slowing the rate of compromise and limiting the SoI of
the adversary.

Instead of picking a new entry every time a circuit is constructed, the OP maintains
a guard list of a handful of pre-selected entry relays. When the Tor client constructs this
list, it selects an expiry time for each of the guards in the list uniformly at random from
the range of 30–60 days; after that time, the guards will be dropped and repopulated, as
described in detail below. When circuits are constructed, the entry relay to be used is
selected uniformly at random from the client’s guard list. The rest of the circuit building
process remains the same. The effect of this change is that if no malicious guard relays
have been picked, the user is uncompromisable by the adversary until she picks new guards.
The disadvantage is that if a client does pick a malicious guard then she has a higher
probability of being compromised for the next 30–60 days. It is debatable if it is better to
a) be compromised with some probability all the time or to b) be either completely safe, or
else compromised with higher probability. Øverlier and Syverson [ØS06] provide analysis
that the latter is preferable and hence the guard mechanism is embedded in the Tor client
code.

Moreover, since entry guards have the potential of negatively affecting the performance
of the Tor network and security of its users, they need to be carefully selected. The main
mechanisms in place are the directory authority, which assigns guard status to relays, and
the guard selection algorithm executed by the Tor client. We next explain how the guard
flag is obtained by ORs and how the guard selection algorithm is carried out.

Guard flag. All ORs in the Tor network are monitored for availability and bandwidth
capacity by the directory authority. Relays deemed stable3 and providing bandwidth above
a certain threshold (currently the median of all relay bandwidths, or 250 KB/s, whichever
is smaller [DM06b]) are selected to receive the guard flag in the consensus document; this
flag marks a relay as eligible to be included in guard lists. This criterion promotes ORs
that will most likely be around for a long time and provide a level of bandwidth that
will not likely cause bottlenecks. However, we find that there is large variance in actual
guard bandwidth and stability. At the time of our experiments there were, on average,
800 routers with the guard flag. An important tension to note is that if the criteria are
too selective, then few guards will be available, forcing more traffic through fewer nodes,

3The Guard flag aims for high availability, not to be confused with the Stable flag from the consensus
document, which is given to relays with above-median mean-time-between-failures.

118

Algorithm 1: Tor’s approach to retrying unavailable entry guards
Input: Current time T , last attempt at time Eℓ to contact entry guard E, E has

been unreachable since time Eu

Output: Return true if we should try to contact E, false otherwise
1 d← T − Eu

2 if Eℓ < Eu then return true
3 else if d < 6hours then return T > (Eℓ + 1hour)
4 else if d < 3days then return T > (Eℓ + 4hours)
5 else if d < 7days then return T > (Eℓ + 18hours)
6 else return T > (Eℓ + 36hours)

at a cost to both network utilization and security. At the same time, if the criteria are
too lenient, then less stable guards are likely to churn more often, leading to larger guard
lists, and an increased likelihood of selecting a malicious guard. This paper investigates
this balance in detail.

Guard selection algorithm. Each client ensures that the number of guards—both
online and offline—in its guard list is at least the default number at all times. If a guard
goes offline, either temporarily or permanently, and there are fewer than two online guards
in the guard list, a new entry guard is picked, but each previous guard is retried periodically,
with an increasing back-off period,4 according to algorithm 1. In addition, each of the relays
in a client’s guard list expires in 30–60 days as a guard rotation event occurs. The algorithm
for picking a guard, in either scenario, is as follows:

• Read the consensus to find the set of relays with the guard flag set.
• Exclude guards already in the client’s guard list, if any.
• Exclude guards in the same /16 IP block or family as any of the guards in the client’s

guard list.
• Select a guard at random from the remaining list of relays, weighted by the relays’

adjusted bandwidths (see below).
• Assign a random expiration time 30–60 days hence.
• Repeat until the guard list contains the required number of guard relays.
4While we do not analyze the effects of changing the back-off periods—currently believed to be orthog-

onal to Tor’s guard design—COGS provides us the ability to do so in the future.

119

The adjusted bandwidths used as weights in the above algorithm are based on values
reported in the consensus for each relay, further adjusted by utility weights. Since Tor’s
bandwidth capacity is at a premium, and exit bandwidth capacity more specifically, this
weighting mechanism is in place to make the most of these resources, so that the network
as a whole does not suffer from overly poor performance. These weights are a function
of the total bandwidth of each relay type, the total network bandwidth, and the relative
bandwidths and relay flags of individual relays. As the bandwidth and relay composition
of the network changes, the bandwidth weights of individual relays also change. Note that
the weighted consensus bandwidths are scalars without units; it is best to think of them as
“points”, where relays with more points are more likely to be chosen in circuits. They are
not actual bandwidth measurements, and so it becomes difficult to translate this metric to
real-world client experiences. We will refer to these “points” as weighted bandwidth units
(WBU).

In general, exit bandwidth is protected such that relays with the Exit flag are chosen
in the exit position more than in other roles. In particular, guards that are also exits will
find themselves used more often as exits and less often as guards. This design choice will
have implications we will discuss later on.

Threat model. Tor provides anonymity properties against an adversary that has a lim-
ited visibility (SoV) of the network. The adversary may operate malicious relays in the
network and attain guard and exit flags by meeting the thresholds set out by the Tor
specification. The goal of the adversary is to have relays under its control selected as the
guard and exit relays on the same circuit, thus compromising the Tor user. The adversary
does not have unlimited bandwidth and we count any relays it compromises as its own
(i.e. within its SoI).

Our investigation of guards is concerned with the choices for parameters made by the
Tor community. These parameters are the guard rotation duration, which at present is set
to a uniformly random time between 30 and 60 days, and the number of guards, which at
present defaults to three.

5.3 COGS Framework

The design of the COGS framework is guided by Tor’s guard path selection design, its
governing parameters, the historical data sets available, and the research questions that we
would like to answer. The design is extensible in that future research questions pertaining

120

to guard and path selection can also be investigated using the same framework with minimal
effort.

The framework encompasses a) researcher-defined observables or run-time measure-
ments, b) the data sets available from the Tor data-collecting service, c) a Tor client
simulator with hooks into the internal running state of thousands of simulated clients, d)
configuration files that instrument the simulator for each experiment, and e) log parsers
for data aggregation and statistics. Figure 5.1 provides a graphical representation of the
framework. We will describe each in turn next.

Experiment
Configuration

Consensus
Document

Descriptor
Document

Simulator

Observables

....
1000s of clients

Log

Log parser1 process per core

Observed
Measurements

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

2011-04-01

2011-05-01

2011-06-01

2011-07-01

2011-08-01

2011-09-01

2011-10-01

2011-11-01

Fr
ac

tio
n

of
 a

ct
ive

 g
ua

rd
 lis

ts
 c

om
pr

om
ise

d

Date

Effects of Natural Churn, i.e. Tor without Guard Rotation

Tor: 3G, no rotation

Empirical
Results

Figure 5.1: COGS framework

Observables. In order to drive the analysis and produce justifiable answers to the ques-
tions posed earlier, we define the following observables—metrics, attributes and effects that
we want to measure. It is possible to introduce more observables for further research, some
of which are outlined in Section 5.8.

From the historical consensus and descriptor documents we pick observables that will
shed light into the behavior of guards. We focus on client compromise and how it is affected
by natural churn and the operational parameters chosen by the Tor community.

The pattern of up time and down time for each relay provides insight into its stability.
Using the consensus history we measure the consecutive down times of each relay; the same
is done for up times. From this we calculate the mean time to recover between two runs

121

of up times as well as the mean time between failure between two runs of down times.
Statistical analysis provides the average case for the general population of relays and that
of guards.

To measure the impact of guard selection we also record the number of guards that
observe each client during the simulation. This indicator is useful since it establishes the
high water mark of potential compromise for each client. Even though each guard may
have only been an active guard to a client for a short period of time, it is not safe to
assume that the short period afforded limited impact on the client’s privacy, since that
short period may have been very sensitive in nature.

Additionally, we measure the number of clients at each consensus for whom at least one
malicious guard is in the active guard list; we term this event guard list compromise. The
active guard list is the first N online relays in the client’s guard list ordered by age, where
N is the number of entry guards being utilized by the client. This metric provides a view
from the adversary’s perspective of how many clients it could potentially compromise at
any given time. Whereas Tor will always maintain a minimum of two online guards, we
experiment with active guard lists that at times shrink to one in Section 5.4.

Finally, to evaluate the effect on performance of reduced active guard lists that may
occur due to changes to Tor’s default behavior, we measure the occurrences of active
guard lists whose average bandwidth falls below a certain threshold. The number of active
guards is not as important here as the average of their bandwidths, since this value can
directly influence the client’s expected performance. We measure the average active guard
list bandwidth as an indicator of the end user’s experience and not as an expectation
of the performance of any particular circuit. Recall also, from Section 5.2.2, that the
weighted consensus bandwidths do not represent absolute bandwidths; nonetheless, we
can meaningfully compare the schemes against each other to find the relative merits of
each.

Data sets. The Tor data-collecting service provides hourly snapshots of publicly down-
loadable Tor relay descriptors and actual published consensus documents from mid-2007
to the present.5 This data offers a glimpse into the state of the Tor network over the years
in terms of the total number of relays, their flags, and their bandwidths. In addition, the
presence (or absence) of any particular relays enables us to analyze relay stability over
time.

5https://collector.torproject.org/archive/relay-descriptors/

122

Configuration files of run-time options. We can change the behavior of Tor clients,
the adversary’s attributes, and the network characteristics by passing parameters at run-
time through configuration files. Many experiments can be run simultaneously and inde-
pendently—contingent on compute and storage resources—to provide insights into the
behavior of stock Tor and the many interesting variations that research questions intro-
duce. This mechanism allows us to attain answers in an efficient and reproducible manner.
We discuss our parameter choices below in more detail.

Tor path selection simulator. Using the publicly available data sets and our selected
observables, we constructed a Tor path selection simulator that selects guard relays and
generates paths for a large number of simulated Tor clients. The simulator takes two pieces
of data and a configuration file as input:

1. Consensus documents: The simulator reads unmodified consensus documents, one at
a time, over the course of the time period desired. The consensus provides information
such as each relay’s bandwidth weighting and its flags.

2. Relay descriptors: The simulator also reads in relay descriptors that correspond to
each relay listed in a particular consensus to allow correct Tor client behavior.

3. Run-time options: The simulator takes run-time parameters to introduce malicious
relays (if an adversary is modelled), augment the behavior of clients (if required),
choose the number of clients to be simulated, and produce logs of the observables.

In order to ensure the highest possible level of fidelity to Tor’s design, our simulator
is based on Tor’s original source code (version 0.2.2.33). For each consensus period, the
simulated clients select or update their guard lists, following all of the Tor rules for guard
replacement as described in Section 5.2.2.

Our simulator allows us to control the guard rotation mechanism built in to Tor to test
the effects of various guard rotation durations (or lack of them) on client compromise and
also allows us to investigate the effects of client guard list size.

The granularity of our simulations is one hour, which corresponds to the granularity
of the consensus documents. Every consensus lists the relays that were available at the
time; they are loaded into the memory of our simulator, which then proceeds to select
guard relays according to Tor’s procedure for every client. These guards are written to a
log file for later processing. Each consensus is fed into the simulator as a means to walk
through time and produce guard selection scenarios. It uses parameter settings provided

123

by us to simulate different network characteristics such as the number of guards, guard
rotation period, and others. Where consensuses are missing from the Tor Metrics dataset,
the simulator skips that hour of history but all time-sensitive rules and operations are
followed and are reflected in the simulation results.

We can simulate an adversary with a fixed budget of relay bandwidth by injecting it
into the list of routers in each consensus period. The adversary is modeled by the amount
of bandwidth it owns and the number of nodes it controls.

We also instrument the Tor client code to log client state to disk for all observables
we are interested in. We refrained from logging all state changes due to storage constraint
considerations.

We have made COGS available as open-source software and it is available from https:
//crysp.uwaterloo.ca/software.

Simulation setup and parameter choices. Our simulations were run on multi-core
servers to take advantage of parallelism in the experiments. Each simulation run introduced
80,000 clients.6

It is not yet clear how to best model the client behavior as there is yet no consensus
within the Tor community on real-world client behavior. Indeed, this is a research problem
in itself and out of the scope of this work. Therefore, we model the user base size as
constant with no new clients joining the network, since our simulations focus on long-term
effects that are not sensitive to user churn. For simplicity the simulated clients are always
online, which is a worst-case scenario since live clients do not use Tor continuously.

We choose the duration of our simulation by providing the starting and ending epoch
times. We chose Apr 2011–Nov 2011 as our target time slice since it has relatively stable
bandwidth characteristics and a consistent consensus version number.

COGS allows the injection of malicious routers into the network at run time through a
configuration parameter.7 We have chosen to introduce the malicious relay one consensus
period, i.e. one hour, after the simulation has begun and all clients already have honest
guards in their lists. This simulates an adversary attacking Tor after clients have already
started using it and also establishes more conservative compromise rates—effectively a
lower bound. For our simulations we assigned our malicious relay the guard flag only since

6This sample size was chosen by conducting experiments of increasing sizes and finding the point at
which the resulting distributions stabilize, according to the Kolmogorov-Smirnov distance.

7While this paper investigates only one value of this parameter, it is simple to instantiate other behaviors
through other values.

124

https://crysp.uwaterloo.ca/software
https://crysp.uwaterloo.ca/software

also having the exit flag reduces the probability of a router being picked as a guard relay
and would confound our results. Note that the choice to operate an exit node is with the
relay operator and is not controlled by any authority.

The bandwidth assigned to this relay, approximately in the top 20% of guards, is
incorporated into the network using the same rules and bandwidth weightings as the normal
routers. Using the results from Murdoch and Watson [MW08], we only introduce one
malicious relay because Tor’s guard selection algorithm chooses guards in proportion to
their bandwidth; this design means that an adversary operating one high-bandwidth relay
is equivalent to one operating many low-bandwidth relays as long as the total bandwidths
are the same. Since we consider the adversary to be intelligent and capable of leveraging
any and every advantage, we consider a client to be compromised if even one malicious
guard exists in her active guard list.

It should be noted that while we initially set malicious bandwidth as a proportion
of the total bandwidth, this proportion changes over time along with the total network
bandwidth. We reason that keeping this value constant does not harm the experiments
since i) a real adversary would not measure bandwidths on the entire network to keep
malicious bandwidth proportions constant and ii) the bandwidth variance is small in our
selected time period.

Log parsers and data visualization. The log parsers—there are several variants de-
pending on the observables—extract the data we are most interested in and compile it into
a format that can then be fed into data visualization programs. The data can be processed
by a variety of parsers in order to gain insight into various aspects of guard design.

Our existing parsers process the raw logs to provide data on compromise rates, total
guard exposure over the experiment run and expected client performance.

While COGS is rooted in guard analysis, it can also be used to simulate other Tor-
related phenomena that do not involve actual network traffic. Examples include the anal-
ysis of client circuit diversity, the effects of introducing exit guards, and assessing whole-
network effects of heterogeneous client configurations.

5.4 Measurements and Evaluation

We next use COGS to collect the empirical data that will be used to answer the four open
research questions introduced earlier. The main aim is to understand the effects of various
guard design choices on compromise rates. We measure the frequency with which a client

125

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2011-04-09

2011-04-23

2011-05-07

2011-05-21

2011-06-04

2011-06-18

2011-07-02

2011-07-16

2011-07-30
F

ra
ct

io
n

of
 a

ct
iv

e
gu

ar
d

lis
ts

 c
om

pr
om

is
ed

Date

1000 WBU
100 WBU
10 WBU

Figure 5.2: Client compromise rates at various adversarial bandwidths, where WBU is the
amount of weighted bandwidth units assigned to the malicious relay.

picks new guards, since the more often guards are picked the more often a malicious relay
has the chance to be placed in the client’s guard list. The two main influences on the
frequency of guard selection—other than a new client joining the network—are natural
churn and guard rotation. We measure and evaluate characteristics of each in order to
better understand the threats to client privacy.

Adversarial bandwidth and compromise rates. We base the subsequent analysis on
the assumption that malicious bandwidth is directly related to compromise rates, albeit
in complex ways. As the adversary increases their bandwidth contribution they are able
to compromise more clients. This result is by design, as the Tor guard selection algorithm
favors relays with higher bandwidth. We confirm this assumption in Figure 5.2, which
shows that as the malicious bandwidth increases the compromise rates also increase.

Since relay bandwidth is independent of the other variables under study, we keep the
malicious relay’s bandwidth constant at 100 WBU for the rest of our experiments.

126

Table 5.1: Up and down times, in hours, of guard relays for Apr–Nov 2011. Guard down or
up means the number of consecutive hours a guard relay was offline or online respectively.
All down or up means the number of consecutive hours any type of relay was offline or
online respectively.

Min 1st Qu. Median 3rd Qu. Mean Max
Guard Down 1 1 3 11 42.17 4978

Guard Up 1 7 20 127 156.7 3829
All Down 1 3 10 20 45 5454

All Up 1 1 4 11 19.82 3829

5.4.1 Natural Churn

To measure the effect of natural churn, we start by first analyzing the consensus data and
establishing the pattern of churn (e.g., up and down times) for each relay over time. The
subsequent statistical analysis provides the results in Table 5.1. Note that we allow for the
effects of relays that had a high frequency of up/down events, and that only relays that
were available April to November 2011 were included in the data set.

The distance between the leftmost and rightmost curves in Figure 5.3 indicates that
guards are more stable compared to the general router population, due to their longer up
times and shorter down times.

Next, we measure the effect of natural churn on guard list compromise and present the
results in Figure 5.4 as the lower curve. For this analysis we have removed the normal
guard rotation mechanism in the Tor client to isolate the effects of natural churn. We
note that natural churn occurs frequently and also has a large effect on the network as
indicated by the large uptick in compromised guard lists over time. The sharp peaks and
valleys between May 1, 2011 and June 30, 2011 are indicative of honest guards that go
down briefly—during which time our malicious guard has an opportunity to move into the
active guard list—and then return—which bumps the malicious guard out of the active
list again. These characteristic short guard down times concur with both Table 5.1 and
Figure 5.3.

From the upward trend of the curve we now know that natural churn has a real and
lasting effect on client security and increases with time. Given enough time a long-lived
adversary will appear in all clients’ guard lists. This risk can be mitigated with periodic
guard rotation, which is presented next.

127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Hours

Guard down times
All router up times

All router down times
Guard up times

Figure 5.3: Router up and down times for all routers and for guards alone.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

2011-04

2011-05

2011-06

2011-07

2011-08

2011-09

2011-10

2011-11

2011-12

2012-01

F
ra

ct
io

n
of

 a
ct

iv
e

gu
ar

d
lis

ts
 c

om
pr

om
is

ed

Date

With guard rotation
Without guard rotation

Figure 5.4: Effects of natural churn and guard rotation on active guard list compromise.

128

5.4.2 Guard Rotation

The second factor to guard list compromise is the mechanism to rotate each client’s guards
after defined periods of time. By default a Tor client drops its guards that are between
30–60 days old in the guard list. There are two major reasons: to limit the number of
clients a single well-resourced guard can service, and hence compromise, at any given time
and to balance the load so that long-serving guards do not potentially end up bearing the
load of more clients over time. A negative effect is that clients with all honest guards are
exposed to potentially selecting a malicious guard upon rotation, thus ensuring that after
enough time all clients will have been compromised at some point.

It is difficult to isolate the effects of guard rotation from those of natural churn under
simulation with real data. We can, however, analyze the effects of guard rotation in closed
form and also analyze the empirical results of the additional effect of guard rotation to
natural churn in simulation.

During our target time slice of eight months, we expect that every client will rotate
their guards at most as often as every 30 days and at least as often as every 60 days. The
maximum number of potentially unique guards that a client selects in those eight months
is therefore 24, the minimum is 12, and the average is 17. This value is the number of
guard relays that can potentially compromise the client. Note that without guard rotation,
the least number of guards per client would be three.

The upper curve in Figure 5.4 shows the additional effect that guard rotation has
on compromise rates. In the first 30 days we see a steady increase on both curves in
compromise rates as only natural churn is in effect. Then between 30–60 days the guard
rotation really begins to show its effects in the upper curve, peaking at the end of May
after which point a steady state seems to have been reached, where the amount of new
compromised active lists is offset with losses in compromised active lists. The upward and
downward trends are in part due to the malicious relay being pushed out of the active
guard list by honest relays returning from a downtime.

It is obvious that guard rotation increases the chances of active guard list compromise
substantially. This result implies that guard rotation has a larger effect on compromise
than does natural churn alone. Although it is difficult to isolate the interplay of natural
churn and guard rotation it is simple to see that guard rotation does have negative effects.

A key takeaway here is that the nature of guard rotation and natural churn are different,
which explains the disparity between the curves. Guard rotation replaces a guard, while
natural churn only provides a backup guard. If the client picks no malicious guards (as is
the case initially), then with only natural churn in effect the malicious relay can only hope
to be picked once a client’s guard goes offline. However, it will never be at the top of the

129

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 c
lie

nt
s

Number of guards that see a client from Apr-Dec 2011

Without guard rotation
With guard rotation

Figure 5.5: Comparison of natural churn and guard rotation effects on clients’ exposure to
guards.

list and will be bumped out of the active list once the original guard returns. On the other
hand, when guard rotation is used, every 30–60 days the malicious relay has a chance to
be picked as one of the first three guards, thus cementing its place in the active guard list
and thereby enabling potential compromise whenever it is used.

Figure 5.5 shows the fraction of clients that have been seen by various numbers of
guards for Tor with and without guard rotation. Guard rotation increases the visibility of
each client on average to 19 guards. Recall that rotation causes at least 15 guards to see
the client at minimum, so coupled with natural churn this effect is amplified. The effects
of natural churn alone are small according to this metric: the mean increases to five versus
the minimum three guards per client as indicated by the left curve.

As a counterpoint we observe that guard rotation does serve a beneficial purpose. As
mentioned earlier, it reduces the likelihood that certain long-lived guards will accumulate
a large set of clients and hence potentially compromise them. This self-limiting nature
means that it is not desirable to remove guard rotation as a mechanism without a suitable
alternative; we are actively exploring this area as ongoing work.

130

5.4.3 Guard List Size

Next, we investigate the effects of the size of the client’s guard list and provide results
and analysis for various values. We include results both with and without guard rotation
enabled. For these experiments we run independent simulations for each of the guard list
size settings so the clients are homogeneous within each run.

Recall that the client will only replace a guard if guard rotation dictates it (if in effect)
or supplement it when there are fewer than two guards online from the client’s guard list.
Figure 5.6 shows client compromise rates with guard rotation when the size of the client’s
guard list is 1, 2, 3, 5 and 10 guards, where the ‘G’ stands for guards. From this analysis
we discover that increasing the size of the guard list increases the client compromise rates.

However, compare these rates to the results without guard rotation in Figure 5.7, where
the absolute compromise rates are far lower but steadily increase over time. Also note that
with guard rotation off, increasing the guard list size beyond 3 guards has the reverse effect
of decreasing client compromise (curves for 5 and 10 guards). However, this effect does not
last. We see the curve for 5 guards crossing over the 1 guard curve, with all indications of
eventually crossing over the 2 and 3 guard curves as well if the upward trend continues.
The same trend occurs for the 10 guard curve. The reason behind this trend is that initially
the pool of possible guards is large and all are online; as guards fail, the client does not
take any steps to replace them since the size of the guard list is still large enough and at
least two of them are online. As the guards that failed are removed from the list, more
guards are picked to maintain the overall size of the client’s guard list. This last effect
slowly erodes the advantage of starting off with a large pool of guards.

We now consider the number of guards seen over time for different starting guard list
sizes. Figure 5.8 shows the effect of increasing guard list size on clients’ guard exposure.
It is apparent that increasing the guard list size increases the client’s guard exposure.

Figure 5.9 provides results for when guard rotation is turned off. While the overall
guard exposure is far less than when guard rotation is in effect, we see the same trend
where larger starting guard list size equates to more guard exposure. We observe that
as the client guard list size increases, the probability of more guards ever being added
to the list decreases. This effect is particularly striking for the 10 guard curve, and also
evident for the 5 guard curve. This result is due to relative guard stability and also to the
condition that fewer than two guards be present before a new guard is added. Comparing
both figures we see a more general trend that without guard rotation the value of guard
exposure is close to the starting guard list size (more pronounced for higher values) whereas
with guard rotation the values of guard exposure are many times larger.

131

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2011-04

2011-05

2011-06

2011-07

2011-08

2011-09

2011-10

2011-11

2011-12

2012-01

F
ra

ct
io

n
of

 a
ct

iv
e

gu
ar

d
lis

ts
 c

om
pr

om
is

ed

Date

1G

2G
3G

5G

10G

Figure 5.6: Client compromise rates at various client guard list sizes, with guard rotation.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

2011-04

2011-05

2011-06

2011-07

2011-08

2011-09

2011-10

2011-11

2011-12

2012-01

F
ra

ct
io

n
of

 a
ct

iv
e

gu
ar

d
lis

ts
 c

om
pr

om
is

ed

Date

1G

2G

3G

5G

10G

Figure 5.7: Client compromise rates at various client guard list sizes, without guard rota-
tion.

132

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 c
lie

nt
s

Number of guards that see a client from Apr-Dec 2011

1G
2G
3G
5G

10G

Figure 5.8: Client guard exposure with guard rotation at various guard list sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

F
ra

ct
io

n
of

 c
lie

nt
s

Number of guards that see a client from Apr-Dec 2011

1G
2G
3G
5G

10G

Figure 5.9: Client guard exposure without guard rotation at various guard list sizes.

133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000

C
D

F

WWeighted Consensus Bandwidth

1G

10G
5G3G

2G

1G
10G

5G
3G

2G

Weighted consensus bandwidth

Figure 5.10: Client’s expected circuit performance with guard rotation at various guard
list sizes. Performance results without guard rotation are nearly identical.

5.4.4 Available Bandwidth

Before we can make any conclusions we must look at the effects of these parameters on the
average available bandwidth a client’s guards provide it. Figure 5.10 shows the expected
bandwidth for a client circuit. Results with and without guard rotation are nearly identi-
cal with negligible variations meaning that average performance is independent of guard
rotation.

Recalling that higher-bandwidth guards are more likely to be selected for spots in a
client’s guard list, poor guard bandwidth availability happens when all of a client’s active
guards have low bandwidth. This situation occurs with decreasing probability as the
number of active guards increases, as is reflected in the dramatic decrease in the long left
tail in Figure 5.10 as the number of guards increases from 1 to 3. Above 3, however, the
improvements are less pronounced.

5.5 Discussion

Next we discuss the implications of our findings and address Dingledine’s open research
questions.

134

Table 5.2: Median guard bandwidth (WBU) from Apr–Nov 2011

Min Median Mean Max
40 67 68.31 113

Guard stability and selection. As guards are the first hop on circuits, all of Tor’s
functionality is contingent on their availability. Section 5.4.1 shows that on the whole
guards are quite stable. Compared to the general population of relays, guards are generally
available for longer stretches of time and offline for shorter durations. This stability is a
consequence of the guard flag assignment process governed by the directory authority and
is as designed.

However, this process is not perfect, as we see that there are a large quantity of guards
with a wide variety of stability characteristics that deviate from the intended entry guard
design—recall Table 5.1 for the range of downtimes and uptimes for guards. We note that
the incidence of active guard lists with low average bandwidth in general is not prevalent;
note that the curves for 3–10 guards in Figure 5.10 do not have long tails to the left
of the median as compared to the 1 guard curve—meaning occasions where every guard
in a client’s active list has low bandwidth are rarer—and that perhaps the guard flag
allocations could be more selective. Indeed, Table 5.2 provides statistics on the median
guard bandwidth during our 8-month time slice; it is calculated by finding the median WBU
amongst all the guards in the consensus and then calculating statics based on those medians
across all the consensuses. It shows that the greatest median guard relay bandwidth across
all consensuses during that time slice is just 113 WBU, a level of active guard bandwidth
which is surpassed by all clients with “3G” or more and only suffered by 5% of “1G” clients
(Figure 5.10).

We reason that since low-bandwidth guard lists are rare, low-bandwidth guards are not
depended upon by end users and so removing them from guard lists will not have a big
impact from a performance perspective.

However, it can be argued that for the sake of load balancing these low-bandwidth relays
provide relief whenever the end user chooses them from their guard list instead of one of
their higher-bandwidth guards. These nodes may also provide added security through
additional relay diversity. We shall see in Section 5.7, where we discuss the impact of
COGS, that there is support to increase the minimum bandwidth of relays which may
mitigate these performance issues.

Natural churn and its effects on client compromise. In the lower curve in Fig-
ure 5.4, it is clear that natural churn provides an adversary increased opportunities to

135

compromise guard lists. We also note that although there is some downward pressure due
to returning honest guards, the trend is upwards over time. If not for guard rotation, after
a sufficient length of time a malicious relay should be able to compromise all client lists.
Recall that while guard rotation speeds up the adversary’s accumulation of clients initially,
it is self limiting as the rate of clients gained equals the rate of clients lost due to guard
rotation.

Furthermore, when reasoning about the impact of natural churn it is difficult to know
beforehand when a guard is likely to return, if ever. It is due to this uncertainty that Tor
uses such sensitive guard replacement policies and sophisticated retry mechanisms.

Putting natural churn in perspective, we can reason that it is an artifact that cannot
be removed from the network, and it has a large effect on the security and performance
of the network. Therefore, the best policy may be to avoid situations that lead to churn
in the first place by selecting guards more cautiously and mitigating the effects of churn
when we do find one of our active guards offline.

Guard rotation. Long-lived relays tend to accumulate clients over time, and malicious
relays will remain online to take advantage of this effect. Rotating guards does in fact
mitigate that eventuality.

We note that guard rotation does, however, increase the chance of compromise: see the
sudden increase in May 2011—when guard rotation began to take effect in our experiment,
30 days after its beginning—of the curve in Figure 5.4. We also note that in Figure 5.5 the
number of guards a client is serviced by, and can hence potentially be compromised by, is
much larger when guard rotation is in effect. Furthermore, Figure 5.9 indicates that all
schemes expose clients to fewer guards when guard rotation is not enabled. As mitigation
of the above, we could increase the minimum and maximum durations of guard rotation
from the current 30–60 days and see a reduction in both metrics, since the frequency of
rotation events would decrease.

In order to reason about rotation durations and pick better ones we plot in Figure 5.11
the CDF of guard longevity for Apr–Nov 2011. We note that only about 9% of guards
remained part of the Tor network for the entire 8-month duration of our experiments.
Also, the distribution is skewed towards shorter-lived routers with the median at 57.125
days. The current rotation period is between 30–60 days which means that the majority
of guards undergo guard rotation. Since most guards are not long lived and leave the
network of their own accord, guard rotation occurring as frequently as it currently does is
both unnecessary and undesirable. We would prefer to target only those guards that are
truly longer lived and thus are the cause for our concern, and ignore those that simply do

136

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

C
D

F

Days

Guard longevity

Figure 5.11: Guard longevity during Apr–Nov 2011.

not exist long enough to be worried about. Unfortunately, there is not an upward inflection
point, apart from the two small ones at the extreme end of the time slice, which would
indicate that longer-lived guards stand apart from the others and thus can be dealt with
using a more appropriate rotation duration.

Perhaps as an alternative for longer-lived, and potentially more-utilized guards, Tor
ought to adjust their probabilities of being selected according to how long they have been
part of the network, in addition to their bandwidths. Indeed, we are now seeing that these
alternatives are being explored and implemented by the Tor community. [Din14]

Tor with one guard. Intuitively, it seems that one guard ought to provide the best
security but that perhaps performance would suffer. We revisit the results in Section 5.4
to evaluate this intuition. From a circuit compromise perspective, we see in Figure 5.6 that
Tor with one guard offers the least likelihood of compromised guard lists. We also note
that fewer guards participate in an end user’s guard list in that case (Figure 5.8). However,
from a performance perspective we note in Figure 5.10 that compared to Tor with three
guards, Tor with one guard suffers from 60% worse performance 50% of the time but is
better 50% of the time where it provides 25% more average guard list bandwidth. This
outcome can be explained with guard lists that have a combination of slow and fast guards,

137

which causes the average to be lower than the fastest guard. In the case of Tor with only
one guard, when a fast guard is selected, the client can expect to receive fast service,
provided that the middle and exit nodes are not slow. It is important to note, however,
that Tor with one guard is superior to the other schemes evaluated in Section 5.4 when the
bandwidths are already at acceptable levels, whereas it provides far slower performance at
the lower ends of the bandwidth spectrum. As we mentioned above, due to the effort to
raise the minimum bandwidth for relays these performance issues can be mitigated.

Hence, the number of guards is a parameter that needs careful adjustment: our present
results suggest that too few may lead to performance degradation, while more can have
unnecessary security implications. Indeed, an optimal solution seems to be a single guard
where all guards are required to have a higher minimum bandwidth. This idea has been
taken up by the Tor community; see Section 5.7.

5.6 Related Work

Entry guards were first proposed by Wright et al. [WALS03] (there called “helper nodes”) to
mitigate the threat of the predecessor attack [WALS02] in low-latency anonymity networks.
In the predecessor attack, an adversary who deploys relays into the anonymity network can
passively link possible senders with possible receivers. If clients choose their paths through
the anonymity network by uniformly random selection, the predecessor attack predicts that
an adversary that controls c out of n nodes has the expectation of successfully observing
a given client after c/n rounds; the same adversary has a (c − 1)/(n − 1) probability of
observing the corresponding destination server and a (c/n)((c− 1)/(n− 1)) probability of
linking the two. To eliminate the predecessor attack, Wright et al. propose that the first
node in a path be fixed. Clients who have the misfortune of choosing a malicious entry
node are guaranteed to have a compromised first hop, while all other clients are protected
from this threat.

Entry guards for modern onion routing networks (like Tor) were proposed by Øverlier
and Syverson [ØS06]. Since Tor does not choose circuits with uniform selection over the
available nodes (but instead, in proportion to each node’s bandwidth capacity), the details
of the analysis of the predecessor attack are more complicated. However, Øverlier and
Syverson found that an adversary who artificially inflates his perceived bandwidth capacity
will be selected more often and can launch a powerful predecessor attack. To mitigate this
threat, they propose that Tor clients choose a small, fixed number of Tor relays to always
use as entry points into the anonymity network.

138

Extending Øverlier and Syverson’s predecessor attack, Bauer et al. [BMG+07] showed
that an adversary who controls a large number of nodes can launch a Sybil attack that
has the effect of replacing all non-malicious entry guards with malicious ones (potentially
all running on the same machine). The attack works by deploying enough malicious nodes
that advertise high bandwidth and uptimes to effectively raise the criteria for the guard
flag so that only malicious nodes can be used as entry guards. This attack was dangerously
easy to launch, due to the fact that Tor’s authoritative directory authorities relied solely on
self-reported (and potentially inflated) bandwidth and uptime claims. In part due to this
attack, the directory authorities now track each router’s bandwidth and uptime [BM07a,
Per09], and ensure that no one can launch too many malicious nodes from the same machine
(or network) [BM07b].

Borisov et al. [BDMT07] describe the effects of entry guards on the selective denial of
service (DoS) attack. They argue that while the selective DoS attack will never be effective
on a client that uses honest entry guards, the attack becomes more powerful when a client
uses malicious entry guards. The authors also suggest that the choice of three entry guards
results in the highest number of compromised circuits, and they suggest fixing both the
entry and exit ORs as suggested by Wright et al. [WALS02].

Abbott et al. [ALLP07] describe a browser-based attack on Tor where a malicious exit
injects a signal generator to the user’s traffic. A malicious entry guard is required to
perform traffic analysis on its clients’ circuits to identify if a circuit carries the injected
signal. If such a circuit is identified, then the attacker is able to link the client to its
destination. A strong point of this attack is that it does not require both entry and exit
to compromise a circuit at the same time, as it only requires that a malicious entry guard
detect a specific signal encoded by a malicious web service. The authors argue that using
three entry guards helps to protect clients that use honest entry guards. However, the
attack becomes more effective for unlucky clients who use malicious entry guards.

Since its initial proposal for Tor, the entry guard design has become more sophisticated,
including the many minute details described in Section 5.2. However, to date, there has
been no thorough investigation into the security and performance implications of Tor’s
entry guard design. This work serves to fill this gap.

The major next step is to use the results presented here coupled with further COGS-
driven analysis to answer the final question posed by Dingledine [Din11b]: how should Tor
assign guard flags to find the right balance between assigning the flag to as many relays
as possible (for diversity) and minimizing the chance that a client will use the adversary’s
relay as a guard?

A related research problem currently under way is the Tor client model. We noted in
Section 5.3 that it is unclear how to model the Tor client base and the adversary’s insertion

139

strategy. We have presented results where the adversary arrives after all clients have picked
their guards, and no client leaves the Tor network or joins it. Counterintuitive properties—
like those in Figure 5.7 where increasing guard list size actually reduces compromise rates—
may not hold for other conditions. We need better models that accurately reflect user and
adversary behavior in the Tor network in order to properly resolve these questions.

We are also presently considering alternative guard selection algorithms that have de-
sirable properties. As an example of one possible direction, we note that in Section 5.5 the
consensus bandwidth weightings currently utilized to control the guard selection process
could be augmented with an age-related weighting that would affect the probabilities of a
guard’s selection. Also being examined, and closely related, is Tor’s “weighted-fractional-
uptime” metric—a component in ensuring that the guard flag is given to a relay with little
churn—which could be replaced with an alternative calculation that better predicts relay
churn behavior. Another example is a trust-based [ØS06] guard selection scheme such that
clients pick guards according to how much they trust them. One final example is to inves-
tigate the condition that guards are only added to a client’s guard list when fewer than
two online guards remain in the list; further analysis is required to learn how this strategy
may interact with various guard selection algorithms.

5.7 Impact

Our contributions have spurred the Tor research and development communities to replicate
and verify our results [BPW13, JWJ+13] and to consider how to adopt our recommenda-
tions [Din13a, Din13b]. To assess the implications, Kadianakis [Kad14] and Hopper [Hop14]
investigated the performance impact of limiting clients to a single guard and conclude that
by raising the bandwidth requirements for guard relays to 2 Mb/s the likelihood of de-
graded performance would be reduced. Incorporating the findings above, Dingledine et
al. [DHKM14] presented a more formal security and performance analysis to assess the
implications of adopting our recommendations. Their findings were in favor of adoption
and thus the authors also produced an implementation proposal [KHM14] for the Tor
development community as a reference document.

Since 2014, the guard rotation period has been increased from 2–3 months to 9–10
months and the default guard count has been decreased from three to one. [Mat14] The
minimum bandwidth requirement has been extended to all types of relays and the Tor
project now officially encourages at least 2 Mb/s to new relay operators. [Tor14] Figure 5.12
shows a timeline of these developments.

140

2012

2013

2014

Original Blog Post [Din11b]

COGS [EBA+12]

Supports compromise results [BPW13]

Supports attack assumptions [JWJ+13]

Implications explored [Kad14, Hop14]
Tor implementation proposal [KHM14]

Recommendations accepted by community [DHKM14]
Recommendations implemented in Tor [Mat14, Tor14]

Figure 5.12: Timeline of subsequent research and developments to the Tor network due to
COGS.

5.8 Conclusion

We constructed COGS, a flexible simulation framework, and used it to investigate open
research questions relating to Tor’s entry guard design.

We now tie the results of our investigation to the questions posed in Section 5.1, and
see how much progress has been made and what remains to be answered.

141

We found that adversarial bandwidth is directly related to client compromise rates
and that this is an unavoidable effect of favoring higher-bandwidth relays—recall that
this is a design choice for the sake of better performance. What is interesting is that,
as seen in Figure 5.2, bandwidth and compromise rates are not linearly related. While
more research is required to establish the exact relationship, it is clear that performance-
enhancing measures have led to higher client compromise rates in this regard.

We found that users achieve greater security if they reduce the number of entry guards
they use. They can further improve their security by eliminating or reducing the process
of guard rotation. However, we also found that the security improvements through the
reduction of guards and guard rotation come at the expense of performance degradation.
We also found that natural churn, while inherent in the network and a source of compro-
mise, works to amplify the compromise rate, but is not a dominating factor in the present
Tor network.

From the perspective of CRS strategies we see that obfuscated values coupled with
rate limiting is a viable strategy but one that requires careful thought and care when
it comes to picking security parameters. Taking all of our findings about parameters
together we find in general that if a suitable alternative to guard rotation can be found
and smaller guard lists used, then the security of Tor’s users will increase significantly while
the impact to performance for clients with slower-than-average guards will degrade only
slightly. The risks could be further mitigated by making the guard flag more selective and
thus removing low-bandwidth guards, which would raise the average guard bandwidth for
all clients. These recommendations have been accepted by the Tor community and have
been implemented in the live network.

142

Chapter 6

Conclusion

6.1 Progress on Thesis

Our thesis suggests that better CRS designs can come from more formal and empirically
driven analysis.

We provide support for this by first carrying out a systematization of the CRS space
that exposed gaps and problem areas. The most glaring of these gaps was the lack of
research into the censor’s decision function. We fill it by introducing a game-theoretic
framework, supported by theory and simulation. It allows us to analyze the censorship
game and shows how CRS designers can manipulate the base rate and cause the adoption
of favorable censor behaviors.

We also present two frameworks for collecting empirical data on CRS networks. The
first, PrivEx, provides a privacy-preserving general-purpose data-collection system for ag-
gregate statistics. We use it to learn the base rate of CRS activity on the Tor network.
The second, COGS, provides a data-driven simulator and we use it to empirically analyze
rate limiting and obfuscating strategies as implemented by Tor’s routing algorithm. We
discovered suboptimal parameter settings and provided recommendations that have been
since been accepted and adopted into the live Tor network.

6.2 Limitations

There are two main limitations of this work and the applicability of the frameworks we
propose. The first concerns the need for empirical data and the second the scope of our

143

models and analysis.
Empirically driven CRS designs are contingent on the availability of data. There are

two reasons there may be a paucity of data in the frameworks we propose. The first, as
we noted in Section 3.5, is that certain parameters may be unobservable by their inherent
nature. We worked our way around this problem by using properties we can observe as a
means of inferring information about these hidden parameters. The predictive power of our
models would be greater if we had access to the actual empirically collected values. The
second, which is the raison d’être for PrivEx, is that collection of data in the censorship
resistance field, due to the risks associated with it, is still not universally acceptable by
either the designers of CRSs or their user bases. Here, even though the data is observable
and hence a source of empirical evidence and useful for our models, the community has not
come to a consensus about what is safe to collect and what is not. Until this consensus is
reached, the value to be gained from our frameworks will be limited to what we can learn
from partial and ad-hoc deployments, thus also limiting the progress of empirically driven
CRS designs.

Our models, and consequently the analysis, limits its scope to the technological realities
of the censorship and CRS landscape as recorded in the literature to date. In order to distill
the common features and systematize the field we focus on the censorship apparatus’ error
rates and the base rate of circumvention traffic. We use these as the basis for the analysis
of the CRS strategies and the techniques that are employed. This is a useful abstraction,
which yields the insights in Chapter 2 and Chapter 3; however, this perspective only
provides a partial view of censor and CRS dynamics. The first reason is that there may
be other parameters that are also relevant and that may yield further insights that our
frameworks presently fail to model. The second reason is that the area of censorship and
its resistance is concerned with more than the technological realities of the censorship
apparatus and CRS techniques. Indeed, censorship and the struggle against it are human
endeavors, which the social and political sciences can better reason about and provide the
missing context to the purely technical treatment given in this thesis.

6.3 Future Work

We have described a number of avenues of context-specific future work in each of the
preceding chapters. We now consolidate these avenues and provide a high-level research
agenda that we believe are worth pursuing.

A major goal of this thesis is to help produce better CRS designs through a principled
approach. It would be useful to understand the extent to which combining previous ap-

144

proaches to CRS design is feasible, and its limitations. Another related avenue is to explore
whether certain designs can be avoided, such as the use of CRS-agnostic infrastructure.
We proposed diffusion as a general idea, and it would be fruitful to see how it can be
realized in a manner that is both better from a security and performance perspective as
well as practical from the deployment perspective.

We explored the role of error rates and circumvention traffic volume as the basis of
our analyses. As we pointed out above, this is a limitation of our work; it would be
interesting to explore other parameters and how these can be modeled and consolidated
within the frameworks we have proposed. These parameters should influence the security
and performance properties that we have defined or the equilibria points that we identify.
Extending the analysis to incorporate temporal dynamics would also be interesting since
it would reveal how the strategy and technology space evolves.

Another avenue is to apply the kind of game-theoretic analysis performed in Chapter 3
to the strategies we identified in Chapter 2. The aim would be to see 1) if there are
relationships that exist between the strategies and 2) to see how—perhaps along with
temporal modeling—they can be combined together and if any meta-strategies emerge.

Finally, there is a dearth of empirical data that CRS research can leverage, and this
partly stems from the limitations we have mentioned above. To study and overcome these
limitations we propose the following related avenues of research:

1. Discovering and describing the CRS participant threat models as they relate to the
information leaked by gathered statistics.

2. Identify the set of statistics that are key to learning about the important security
and performance characteristics of a CRS. Here the set should be as small as possible
while yielding the greatest amount of information, either directly or being derived
from it.

3. Identify use-cases and investigate the level of granularity that is necessary to achieve
useful statistics for each.

4. Explore topologies of the statistics collection system, such as centralized or laissez-
faire for example. A central model allows more control while the other allows more
autonomy for the collector and perhaps a more realistic model since we can be sure
that statistics are being collected even today without any central oversight.

5. Engage the community and build consensus on 1) the whole idea of persistent and
pervasive statistics collection and 2) what the procedure is for (research or otherwise)
deploying data-collection systems on the Tor network.

145

By making progress on these fronts, and coupled with the frameworks we have proposed,
we believe that empirically driven CRS designs will be more likely to be successful.

In summary, the contributions of this thesis, which are based on formal and empirical
analysis frameworks, have led to a better understanding of CRS designs and the arms
race between the censor and circumventor. We are mindful of the limitations of our work
and propose that with continued research effort we will provide further insights about
upgrading, building, and deploying CRSs in the future.

146

References

[AAH13] Simurgh Aryan, Homa Aryan, and J. Alex Halderman. Internet Censorship in Iran:
A First Look. In Proceedings of the USENIX Workshop on Free and Open Commu-
nications on the Internet. USENIX, 2013.

[AB10] Tansu Alpcan and Tamer Başar. Network Security: A Decision and Game-Theoretic
Approach. Cambridge University Press, 2010.

[ABEG13] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. The Path Less
Travelled: Overcoming Tor’s Bottlenecks with Traffic Splitting. In Proceedings of
the 13th Privacy Enhancing Technologies Symposium, pages 143–163. Springer, July
2013.

[ALLP07] Timothy G. Abbott, Katherine J. Lai, Michael R. Lieberman, and Eric C. Price.
Browser-based Attacks on Tor. In Proceedings of the 7th International Conference
on Privacy Enhancing Technologies, pages 184–199. Springer-Verlag, 2007.

[AM06] Ross Anderson and Tyler Moore. The Economics of Information Security. Science,
314(5799):610–613, 2006.

[AMNO07] Ross Anderson, Tyler Moore, Shishir Nagaraja, and Andy Ozment. Incentives and
Information Security. Algorithmic Game Theory, pages 633–649, 2007.

[And96] Ross Anderson. The Eternity Service. In Proceedings of Pragocrypt, 1996.

[Ano13] Anonymizer Inc. Anonymizer. https://www.anonymizer.com/index.html, 2013.
Retrieved May 2015.

[Aum59] Robert J Aumann. Acceptable Points in General Cooperative n-Person Games.
Contributions to the Theory of Games, 4:287–324, 1959.

[Bac97] Adam Back. Usenet Eternity. Phrack Magazine, http://www.cypherspace.org/
eternity/phrack.html, 1997. Retrieved May 2015.

147

https://www.anonymizer.com/index.html
http://www.cypherspace.org/eternity/phrack.html
http://www.cypherspace.org/eternity/phrack.html

[BCK12] Richard Barnes, Alissa Cooper, and Olaf Kolkman. Technical Considerations for In-
ternet Service Filtering. IETF-Draft, http://tools.ietf.org/html/draft-iab-
filtering-considerations-01, 2012.

[BDG+13] Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santiago
Zanella-Béguelin. Verified Computational Differential Privacy with Applications to
Smart Metering. In 26th IEEE Computer Security Foundations Symposium, pages
287–301, 2013.

[BDMT07] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of Service
or Denial of Security? In Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 92–102. ACM, 2007.

[Ben94] Josh Benaloh. Dense Probabilistic Encryption. In Proceedings of the Workshop on
Selected Areas in Cryptography, pages 120–128, 1994.

[BF13] Sam Burnett and Nick Feamster. Making Sense of Internet Censorship: A New
Frontier for Internet Measurement. ACM SIGCOMM Computer Communication
Review, 43(3):84–89, July 2013.

[BFJ+12] Robert M. Bond, Christopher J. Fariss, Jason J. Jones, Adam D.I. Kramer, Cameron
Marlow, Jamie E. Settle, and James H. Fowler. A 61-Million-Person Experiment in
Social Influence and Political Mobilization. Nature, 489(7415):295–298, 2012.

[BFK00] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A System for
Anonymous and Unobservable Internet Access. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, July
2000.

[BFV10] Sam Burnett, Nick Feamster, and Santosh Vempala. Chipping Away at Censorship
Firewalls with User-Generated Content. In Proceedings of the 19th USENIX Security
Symposium, 2010.

[BHS14] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. CloudTransport: Using
Cloud Storage for Censorship-Resistant Networking. In Proceedings of 14th Privacy
Enhancing Technologies Symposium. Springer, 2014.

[BM07a] Kevin Bauer and Damon McCoy. Tor specification proposal 107: Uptime San-
ity Checking. https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:
/proposals/107-uptime-sanity-checking.txt, March 2007.

[BM07b] Kevin Bauer and Damon McCoy. Tor Specification Proposal 109: No More
Than One Server per IP Address. https://gitweb.torproject.org/torspec.
git/blob_plain/HEAD:/proposals/109-no-sharing-ips.txt, March 2007.

148

http://tools.ietf.org/html/draft-iab-filtering-considerations-01
http://tools.ietf.org/html/draft-iab-filtering-considerations-01
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/107-uptime-sanity-checking.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/107-uptime-sanity-checking.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/109-no-sharing-ips.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/proposals/109-no-sharing-ips.txt

[BMG+07] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.
Low-Resource Routing Attacks against Tor. In Proceedings of the Workshop on
Privacy in the Electronic Society, pages 11–20, October 2007.

[BNO08] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed Private Data Analysis:
Simultaneously Solving How and What. In Advances in Cryptology–CRYPTO 2008,
pages 451–468. Springer, 2008.

[BPW13] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for Tor
Hidden Services: Detection, Measurement, Deanonymization. In Proceedings of the
2013 IEEE Symposium on Security and Privacy, May 2013.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.
SEPIA: Privacy-preserving Aggregation of Multi-domain Network Events and Statis-
tics. In 19th USENIX Security Symposium, August 2010.

[Cha81] David L. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[CMW06] Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring the Great
Firewall of China. In George Danezis and Philippe Golle, editors, Proceedings of the
Sixth Workshop on Privacy Enhancing Technologies, pages 20–35. Springer, June
2006.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval System. In Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

[DA04] George Danezis and Ross Anderson. The Economics of Censorship Resistance. Pro-
ceedings of the 3rd Annual Workship on Economics and Information Security, 2004.

[Dan04] George Danezis. The Traffic Analysis of Continuous-Time Mixes. In Proceedings of
Privacy Enhancing Technologies workshop, volume 3424 of LNCS, pages 35–50, May
2004.

[DB15] Eva Dou and Alistair Barr. U.S. Cloud Providers Face Backlash From China’s
Censors. The Wall Street Journal, http://www.wsj.com/articles/u-s-cloud-
providers-face-backlash-from-chinas-censors-1426541126, 2015. Retrieved
May 2015.

[DCRS13] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Protocol
Misidentification Made Easy with Format-Transforming Encryption. In Proceedings
of the 20th ACM conference on Computer and Communications Security, November
2013.

149

http://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126
http://www.wsj.com/articles/u-s-cloud-providers-face-backlash-from-chinas-censors-1426541126

[DCS15] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette: A Pro-
grammable Network Traffic Obfuscation System. In Proceedings of the 24th USENIX
Security Symposium, pages 367–382. USENIX Association, August 2015.

[DHKM14] Roger Dingledine, Nicholas Hopper, George Kadianakis, and Nick Mathewson. One
Fast Guard for Life (or 9 Months). In 7th Workshop on Hot Topics in Privacy
Enhancing Technologies, 2014.

[Din11a] Roger Dingledine. Iran blocks Tor; Tor Releases Same-Day Fix. Tor Blog, https:
//blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix,
September 2011. Retrieved May 2015.

[Din11b] Roger Dingledine. Research Problem: Better Guard Rotation Parameters. Tor
Blog, https://blog.torproject.org/blog/research-problem-better-guard-
rotation-parameters, August 2011. Retrieved May 2015.

[Din11c] Roger Dingledine. Research Problems: Ten Ways to Discover Tor Bridges.
Tor Blog, https://blog.torproject.org/blog/research-problems-ten-ways-
discover-tor-bridges, October 2011. Retrieved May 2015.

[Din12] Roger Dingledine. Obfsproxy: The Next Step in the Censorship Arms Race. Tor
Blog, https://blog.torproject.org/blog/obfsproxy-next-step-censorship-
arms-race, February 2012. Retrieved May 2015.

[Din13a] Roger Dingledine. Brainstorm Tradeoffs from Moving to 2 (or Even 1) Guards. Tor
Bug Tracker https://trac.torproject.org/projects/tor/ticket/9273, July
2013. Retrieved June 2015.

[Din13b] Roger Dingledine. Raise our Guard Rotation Period, if Appropriate. Ticket on Tor
Bug Tracker https://trac.torproject.org/projects/tor/ticket/8240, Febru-
ary 2013. Retrieved June 2015.

[Din14] Roger Dingledine. Load Balance Right when we have Higher Guard Rotation Pe-
riods. Ticket on Tor Bug Tracker https://trac.torproject.org/projects/tor/
ticket/9321, July 2014. Retrieved June 2015.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our Data, Ourselves: Privacy via Distributed Noise Generation. In Advances
in Cryptology-EUROCRYPT 2006, pages 486–503. Springer, 2006.

[DM06a] Roger Dingledine and Nick Mathewson. Design of a Blocking-Resistant Anonymity
System. Technical Report 2006-1, The Tor Project, November 2006.

[DM06b] Roger Dingledine and Nick Mathewson. Tor Directory Protocol, Version
3. https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=
dir-spec.txt, January 2006. Retrieved May 2015.

150

https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/research-problem-better-guard-rotation-parameters
https://blog.torproject.org/blog/research-problem-better-guard-rotation-parameters
https://blog.torproject.org/blog/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/blog/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/blog/obfsproxy-next-step- censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step- censorship-arms-race
https://trac.torproject.org/projects/tor/ticket/9273
https://trac.torproject.org/projects/tor/ticket/8240
https://trac.torproject.org/projects/tor/ticket/9321
https://trac.torproject.org/projects/tor/ticket/9321
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=dir-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=dir-spec.txt

[DMS04a] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[DMS04b] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th conference on USENIX Security
Symposium-Volume 13, pages 303–320. USENIX Association, 2004.

[DRV10] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and Differential
Privacy. In 51st IEEE Symposium on Foundations of Computer Science, pages
51–60. IEEE, 2010.

[DS08] George Danezis and Paul Syverson. Bridging and Fingerprinting: Epistemic Attacks
on Route Selection. In Nikita Borisov and Ian Goldberg, editors, Proceedings of the
Eighth International Symposium on Privacy Enhancing Technologies, pages 133–150.
Springer, July 2008.

[DSA+11] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy, Marco
Chiesa, Michele Russo, and Antonio Pescapé. Analysis of Country-wide Internet
Outages Caused by Censorship. In Proceedings of the 2011 ACM SIGCOMM Con-
ference on Internet Measurement Conference, pages 1–18. ACM, 2011.

[DSD04] Claudia Diaz, Len Sassaman, and Evelyne Dewitte. Comparison between Two Prac-
tical Mix Designs. In Proceedings of the 9th European Symposium on Research in
Computer Security, pages 141–159. Springer, 2004.

[Dwo06] Cynthia Dwork. Differential Privacy. In Automata, languages and programming,
pages 1–12. Springer, 2006.

[EBA+12] Tariq Elahi, Kevin Bauer, Mashael AlSabah, Roger Dingledine, and Ian Goldberg.
Changing of the Guards: A Framework for Understanding and Improving Entry
Guard Selection in Tor. In Proceedings of the 2012 ACM Workshop on Privacy in
the Electronic Society, pages 43–54. ACM, 2012.

[EDG14] Tariq Elahi, George Danezis, and Ian Goldberg. PrivEx: Private Collection of
Traffic Statistics for Anonymous Communication Networks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages
1068–1079. ACM, 2014.

[ES09] Matthew Edman and Paul F. Syverson. AS-awareness in Tor Path Selection. In
Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, Proceedings of the
2009 ACM Conference on Computer and Communications Security, pages 380–389.
ACM, 2009.

151

[EW11] Nahed Eltantawy and Julie Wiest. The Arab Spring | Social Media in the Egyptian
Revolution: Reconsidering Resource Mobilization Theory. International Journal of
Communication, 5(0), 2011.

[FA12] Arturo Filasto and Jacob Applebaum. OONI: Open Observatory of Network Inter-
ference. In Proceedings of the USENIX Workshop on Free and Open Communications
on the Internet. USENIX, 2012.

[FBH+02] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. Infranet: Circumventing Web Censorship and Surveillance. In Proceedings
of the 11th USENIX Security Symposium, August 2002.

[FBW+03] Nick Feamster, Magdalena Balazinska, Winston Wang, Hari Balakrishnan, and
David Karger. Thwarting Web Censorship with Untrusted Messenger Delivery. In
Roger Dingledine, editor, Proceedings of Privacy Enhancing Technologies workshop,
pages 125–140. Springer-Verlag, LNCS 2760, March 2003.

[FHE+12] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phil Porras, and Dan Boneh. Evading Censorship with Browser-Based Proxies. In
Proceedings of the 12th Privacy Enhancing Technologies Symposium. Springer, July
2012.

[Fis05] Ken Fisher. The Death of SuprNova.org. Ars Technica, http://arstechnica.com/
staff/2005/12/2153/, December 2005. Retreived Nov 2012.

[FLH+15] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-
resistant Communication through Domain Fronting. Proceedings on Privacy En-
hancing Technologies, 2015(2):46–64, June 2015.

[FNB13] David Fifield, Gabi Nakibly, and Dan Boneh. OSS: Using Online Scanning Ser-
vices for Censorship Circumvention. In Proceedings of the 13th Privacy Enhancing
Technologies Symposium, July 2013.

[GMPS13] Vipul Goyal, Ilya Mironov, Omkant Pandey, and Amit Sahai. Accuracy-Privacy
Tradeoffs for Two-Party Differentially Private Protocols. In Advances in Cryptology–
CRYPTO 2013, pages 298–315. Springer, 2013.

[goa11] goagent. GoAgent. Pseudonymously, https://github.com/goagent/goagent, July
2011. Retrieved May 2015.

[Goo15] Dan Goodin. Massive denial-of-service attack on GitHub tied to Chinese gov-
ernment. Ars Technica, http://arstechnica.com/security/2015/03/massive-
denial-of-service-attack-on-github-tied-to-chinese-government/, March
2015. Retrieved May 2015.

152

http://arstechnica.com/staff/2005/12/2153/
http://arstechnica.com/staff/2005/12/2153/
https://github.com/goagent/goagent
http://arstechnica.com/security/2015/03/massive-denial-of-service-attack-on-github-tied-to-chinese-government/
http://arstechnica.com/security/2015/03/massive-denial-of-service-attack-on-github-tied-to-chinese-government/

[GSH13] John Geddes, Max Schuchard, and Nicholas Hopper. Cover Your ACKs: Pitfalls
of Covert Channel Censorship Circumvention. In Proceedings of the 20th ACM
conference on Computer and Communications Security, 2013.

[GW98] Ian Goldberg and David Wagner. TAZ Servers and the Rewebber Network: Enabling
Anonymous Publishing on the World Wide Web. First Monday, 3(4), August 1998.

[HBS13] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The Parrot is Dead:
Observing Unobservable Network Communication. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, May 2013.

[HNCB11] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar, and Nikita Borisov.
Cirripede: Circumvention Infrastructure using Router Redirection with Plausible
Deniability. In Proceedings of the 18th ACM conference on Computer and Commu-
nications Security, October 2011.

[HNGJ15] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and Rob Johnson. Games Without
Frontiers: Investigating Video Games as a Covert Channel. http://arxiv.org/
pdf/1503.05904v2.pdf, 2015. Retrieved May 2015.

[Hop14] Nick Hopper. Implications of Switching to a Single Guard Node: Some Conclusions.
Post to [tor-dev] mailing list https://lists.torproject.org/pipermail/tor-
dev/2014-March/006563.html, March 2014. Retrieved June 2015.

[HR12] Moritz Hardt and Aaron Roth. Beating Randomized Response on Incoherent Ma-
trices. In 44th Symposium on Theory of Computing, pages 1255–1268. ACM, 2012.

[HRBS12] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and Andrew Singer. IP over
Voice-over-IP for Censorship Circumvention. arXiv preprint arXiv:1207.2683, 2012.

[Hsu00] Stephen Hsu. TriangleBoy. http://www.webrant.com/safeweb_site/html/www/
tboy_whitepaper.html, 2000. Retrieved May 2015.

[HWS14] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. No Direction Home:
The True Cost of Routing Around Decoys. In Network and Distributed System
Security. The Internet Society, 2014.

[ICA12] ICANN Security and Stability Advisory Committee. Impacts of Content Blocking via
the Domain Name System. http://www.icann.org/en/groups/ssac/documents/
sac-056-en.pdf, October 2012. ICANN SSAC security advisory.

[ifi13a] ifinity0. Complete Specification for Generalised PT Composition. Pseudonymously,
https://trac.torproject.org/projects/tor/ticket/10061, October 2013. Re-
trieved May 2015.

153

http://arxiv.org/pdf/1503.05904v2.pdf
http://arxiv.org/pdf/1503.05904v2.pdf
https://lists.torproject.org/pipermail/tor-dev/2014-March/006563.html
https://lists.torproject.org/pipermail/tor-dev/2014-March/006563.html
http://www.webrant.com/safeweb_site/html/www/ tboy_whitepaper.html
http://www.webrant.com/safeweb_site/html/www/ tboy_whitepaper.html
http://www.icann.org/en/groups/ssac/documents/sac-056-en.pdf
http://www.icann.org/en/groups/ssac/documents/sac-056-en.pdf
https://trac.torproject.org/projects/tor/ticket/10061

[ifi13b] ifinity0. Composing Pluggable Transports. Pseudonymously, https://github.com/
infinity0/tor-notes/blob/master/pt-compose.rst, October 2013. Retrieved
May 2015.

[IKV12] Luca Invernizzi, Christopher Kruegel, and Giovanni Vigna. Message in a Bottle:
Sailing Past Censorship. In Privacy Enhancing Technologies Symposium, 2012.

[JACF11] Nicholas Jones, Matvey Arye, Jacopo Cesareo, and Michael J. Freedman. Hiding
Amongst the Clouds: A Proposal for Cloud-based Onion Routing. In Proceedings of
the USENIX Workshop on Free and Open Communications on the Internet, August
2011.

[JBF+14] Ben Jones, Sam Burnett, Nick Feamster, Sean Donovan, Sarthak Grover, Sathya
Gunasekaran, and Karim Habak. Facade: High-Throughput, Deniable Censorship
Circumvention Using Web Search. In Proceedings of the USENIX Workshop on Free
and Open Communications on the Internet. USENIX, 2014.

[JK12] Marek Jawurek and Florian Kerschbaum. Fault-tolerant privacy-preserving statis-
tics. In 12th Privacy Enhancing Technologies Symposium, pages 221–238. Springer,
2012.

[Jon13] JonDo Inc. JonDonym. http://anonymous-proxy-servers.net/, 2013. Retrieved
May 2015.

[jra03] jrandom. Invisible Internet Project (I2P) Project Overview. Pseudonymously,
https://geti2p.net/_static/pdf/i2p_philosophy.pdf, August 2003. Retrieved
May 2015.

[JWJ+13] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users
Get Routed: Traffic Correlation on Tor by Realistic Adversaries. In Proceedings of
the 20th ACM conference on Computer and Communications Security, November
2013.

[Kad14] George Kadianakis. Implications of Switching to a Single Guard Node: Some Conclu-
sions. Post to [tor-dev] mailing list https://lists.torproject.org/pipermail/
tor-dev/2014-March/006458.html, March 2014. Retrieved June 2015.

[KDK11] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-Friendly Aggrega-
tion for the Smart-Grid. In 11th Privacy Enhancing Technologies Symposium, pages
175–191. Springer, 2011.

[KEJ+11] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer,
David P. Mankins, and W. Timothy Strayer. Decoy Routing: Toward Unblockable
Internet Communication. In Proceedings of the USENIX Workshop on Free and
Open Communications on the Internet, August 2011.

154

https://github.com/infinity0/tor-notes/blob/master/pt-compose.rst
https://github.com/infinity0/tor-notes/blob/master/pt-compose.rst
http://anonymous-proxy-servers.net/
https://geti2p.net/_static/pdf/i2p_philosophy.pdf
https://lists.torproject.org/pipermail/tor-dev/2014-March/006458.html
https://lists.torproject.org/pipermail/tor-dev/2014-March/006458.html

[KH04] Stefan Köpsell and Ulf Hillig. How to Achieve Blocking Resistance for Existing
Systems Enabling Anonymous Web Surfing. In Proceedings of the Workshop on
Privacy in the Electronic Society, October 2004.

[KHM14] George Kadianakis, Nick Hopper, and Nick Mathewson. The Move to a Single Guard
Node. Tor Proposal #236 https://gitweb.torproject.org/torspec.git/tree/
proposals/236-single-guard-node.txt, March 2014. Retrieved June 2015.

[KNRS13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. Analyzing Graphs with Node Differential Privacy. In Theory of Cryptography,
pages 457–476. Springer, 2013.

[KSM14] Sheharbano Khattak, Laurent Simon, and Steven J. Murdoch. Systemization of
Pluggable Transports for Censorship Resistance. http://arxiv.org/pdf/1412.
7448v1.pdf, 2014. Retrieved May 2015.

[Lew09] Andrew Lewman. Tor Partially Blocked in China. Tor Blog, https://blog.
torproject.org/blog/tor-partially-blocked-china, September 2009. Re-
trieved May 2015.

[Lew11] Andrew Lewman. New Blocking Activity from Iran. Tor Blog, https://blog.
torproject.org/blog/new-blocking-activity-iran, January 2011. Retrieved
May 2015.

[Lew12] Andrew Lewman. Iran Partially Blocks Encrypted Network Traffic. Tor Blog,
https://blog.torproject.org/blog/iran-partially-blocks-encrypted-
network-traffic, February 2012. Retrieved May 2015.

[Lew14] Andrew Lewman. Thoughts and Concerns about Operation Onymous. Tor
Blog, https://blog.torproject.org/blog/thoughts-and-concerns-about-
operation-onymous, November 2014. Retrieved May 2015.

[Lip10] Helger Lipmaa. On the CCA1-Security of Elgamal and Damgård’s Elgamal. In
Inscrypt 2010, pages 18–35. Springer, 2010.

[LM11] Kirill Levchenko and Damon McCoy. Proximax: Fighting Censorship With an
Adaptive System for Distribution of Open Proxies. In Proceedings of Financial
Cryptography and Data Security, February 2011.

[LMP+12] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod Yegneswaran, Zachary Weinberg,
Jeroen Massar, William Allen Simpson, Paul Vixie, and Dan Boneh. Bootstrapping
Communications into an Anti-Censorship System. In Proceedings of the USENIX
Workshop on Free and Open Communications on the Internet, August 2012.

155

https://gitweb.torproject.org/torspec.git/tree/proposals/236-single-guard-node.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/236-single-guard-node.txt
http://arxiv.org/pdf/1412.7448v1.pdf
http://arxiv.org/pdf/1412.7448v1.pdf
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/new-blocking-activity-iran
https://blog.torproject.org/blog/new-blocking-activity-iran
https://blog.torproject.org/blog/iran-partially-blocks-encrypted-network-traffic
https://blog.torproject.org/blog/iran-partially-blocks-encrypted-network-traffic
https://blog.torproject.org/blog/thoughts-and-concerns-about-operation-onymous
https://blog.torproject.org/blog/thoughts-and-concerns-about-operation-onymous

[Loe09] Karsten Loesing. Measuring the Tor Network. https://research.torproject.
org/techreports/directory-requests-2009-06-25.pdf, 2009. Retrieved May
2015.

[LSH14] Shuai Li, Mike Schliep, and Nick Hopper. Facet: Streaming over Videoconferencing
for Censorship Circumvention. In Proceedings of the Workshop on Privacy in the
Electronic Society, November 2014.

[mar12] martin. China listening in on Skype - Microsoft assumes you approve. Pseudony-
mously, https://en.greatfire.org/blog/2012/dec/china-listening-skype-
microsoft-assumes-you-approve, December 2012. Retrieved May 2015.

[Mat14] Nick Mathewson. Changes in version 0.2.4.23 - 2014-07-28. https://gitweb.
torproject.org/tor.git/plain/ChangeLog, July 2014. Retrieved June 2015.

[MBG+08] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.
Shining Light in Dark Places: Understanding the Tor Network. In 8th Privacy
Enhancing Technologies Symposium, pages 63–76. Springer, 2008.

[McP08] Danny McPherson. When Hijacking the Internet. https://asert.arbornetworks.
com/when-hijacking-the-internet/, November 2008. Retrieved May 2015.

[MD05] Steven J. Murdoch and George Danezis. Low-Cost Traffic Analysis of Tor. In 2005
IEEE Symposium on Security and Privacy. IEEE, May 2005.

[Mir12] Ilya Mironov. On Significance of the Least Significant Bits for Differential Privacy. In
2012 ACM Conference on Computer and Communications Security, pages 650–661.
ACM, 2012.

[MLDG12] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Gold-
berg. SkypeMorph: Protocol Obfuscation for Tor Bridges. In Proceedings of the
19th ACM conference on Computer and Communications Security, October 2012.

[MMBY14] Jeroen Massar, Ian Mason, Linda Briesemeister, and Vinod Yegneswaran. JumpBox–
A Seamless Browser Proxy for Tor Pluggable Transports. Security and Privacy in
Communication Networks. Springer, pages 116–134, 2014.

[MMP+10] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,
and Salil Vadhan. The Limits of Two-party Differential Privacy. In 51st IEEE
Symposium on Foundations of Computer Science, pages 81–90. IEEE, 2010.

[MPRV09] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational
Differential Privacy. In Advances in Cryptology-CRYPTO 2009, pages 126–142.
Springer, 2009.

156

https://research.torproject.org/techreports/directory-requests-2009-06-25.pdf
https://research.torproject.org/techreports/directory-requests-2009-06-25.pdf
https://en.greatfire.org/blog/2012/dec/china-listening-skype-microsoft-assumes-you-approve
https://en.greatfire.org/blog/2012/dec/china-listening-skype-microsoft-assumes-you-approve
https://gitweb.torproject.org/tor.git/plain/ChangeLog
https://gitweb.torproject.org/tor.git/plain/ChangeLog
https://asert.arbornetworks.com/when-hijacking-the-internet/
https://asert.arbornetworks.com/when-hijacking-the-internet/

[MW08] Steven J. Murdoch and Robert N. M. Watson. Metrics for Security and Perfor-
mance in Low-Latency Anonymity Networks. In Nikita Borisov and Ian Goldberg,
editors, Proceedings of the Eighth International Symposium on Privacy Enhancing
Technologies, pages 115–132. Springer, July 2008.

[MWD+15] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ronald Deibert, and Vern Paxson. China’s
Great Cannon. https://citizenlab.org/2015/04/chinas-great-cannon/, 2015.
Retrieved May 2015.

[MZ07] Steven J. Murdoch and Piotr Zieliński. Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries. In Nikita Borisov and Philippe Golle, editors, Pro-
ceedings of the Seventh Workshop on Privacy Enhancing Technologies. Springer,
June 2007.

[MZA+13] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Bacşar, and
Jean-Pierre Hubaux. Game Theory meets Network Security and Privacy. ACM
Computing Surveys, 45(3):25, 2013.

[Nab13] Zubair Nabi. The Anatomy of Web Censorship in Pakistan. In Proceedings of the
USENIX Workshop on Free and Open Communications on the Internet. USENIX,
2013.

[NFS14] Abhinav Narain, Nick Feamster, and Alex C Snoeren. Deniable Liaisons. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 525–536. ACM, 2014.

[ØS06] Lasse Øverlier and Paul Syverson. Locating Hidden Servers. In Symposium on
Security and Privacy, pages 100–114. IEEE, May 2006.

[Pau13] Paul Farrell. History of 5-Eyes – Explainer. The Guardian, http://www.
theguardian.com/world/2013/dec/02/history-of-5-eyes-explainer, Decem-
ber 2013. Retrieved May 2015.

[Per09] Mike Perry. TorFlow: Tor Network Analysis. https://research.torproject.org/
techreports/torflow-2009-08-07.pdf, August 2009. Retrieved May 2015.

[Pol78] John M Pollard. Monte Carlo Methods for Index Computation (mod p). Mathemat-
ics of computation, 32(143):918–924, 1978.

[Pou13] Kevin Poulsen. Edward Snowden’s Email Provider Shuts Down Amid Secret Court
Battle. http://www.wired.com/2013/08/lavabit-snowden/, 2013. Retrieved May
2015.

[Psi] Psiphon Inc. Psiphon. https://psiphon.ca. Retrieved May 2015.

157

https://citizenlab.org/2015/04/chinas-great-cannon/
http://www.theguardian.com/world/2013/dec/02/history-of-5-eyes-explainer
http://www.theguardian.com/world/2013/dec/02/history-of-5-eyes-explainer
https://research.torproject.org/techreports/torflow-2009-08-07.pdf
https://research.torproject.org/techreports/torflow-2009-08-07.pdf
http://www.wired.com/2013/08/lavabit-snowden/
https://psiphon.ca

[RES+10] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,
and Qishi Wu. A Survey of Game Theory as Applied to Network Security. In 2010
43rd Hawaii International Conference on System Sciences, pages 1–10. IEEE, 2010.

[Rif15] Roseann Rife. Opinion: The Chilling Reality of China’s Cyberwar on Free
Speech. CNN (U.S. Edition), http://www.cnn.com/2015/03/24/opinions/china-
internet-dissent-roseann-rife/, March 2015. Retrieved June 2015.

[San14] Sandvine. Global Internet Phenomena Report. https://www.sandvine.com/
downloads/general/global-internet-phenomena/2014/2h-2014-global-
internet-phenomena-report.pdf, November 2014. Retrieved May 2015.

[SCL+12] Will Scott, Raymond Cheng, Jinyang Li, Arvind Krishnamurthy, and Thomas An-
derson. Blocking-Resistant Network Services using Unblock. http://unblock.cs.
washington.edu/unblock.pdf, October 2012. Retrieved May 2015.

[SCR+11] Elaine Shi, T-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and Dawn Song.
Privacy-Preserving Aggregation of Time-Series Data. In Network and Distributed
System Security Symposium, 2011.

[Ser02] Andrei Serjantov. Anonymizing Censorship Resistant Systems. In Proceedings of
the 1st International Peer To Peer Systems Workshop, March 2002.

[SGTH12] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. Rout-
ing Around Decoys. In Computer and Communications Security. ACM, 2012.

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera. In Prococeedings
of the Symposium on Pure Math, volume 20, pages 415–440, 1971.

[Sin07] Ryan Singel. Encrypted E-Mail Company Hushmail Spills to Feds. http://www.
wired.com/threatlevel/2007/11/encrypted-e-mai/, 2007. Retrieved May 2015.

[SJP+11] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengartner.
BridgeSPA: Improving Tor Bridges with Single Packet Authorization. In Proceedings
of the Workshop on Privacy in the Electronic Society. ACM, October 2011.

[Sog11] Chris Soghoian. Enforced Community Standards for Research on Users of the Tor
Anonymity Network. In 2nd Workshop on Ethics in Computer Security Research,
pages 146–153, 2011.

[TAPT14] Micheal Carl Tschantz, Sadia Afroz, Vern Paxson, and JD Tygar. On Modeling the
Costs of Censorship. arXiv preprint arXiv:1409.3211, 2014.

[Tor10a] The Tor Project. Tor Mertics Portal: Network, Advertised Bandwidth Distribution.
https://metrics.torproject.org/network.html, 2010. Retrieved May 2015.

158

http://www.cnn.com/2015/03/24/opinions/china-internet-dissent-roseann-rife/
http://www.cnn.com/2015/03/24/opinions/china-internet-dissent-roseann-rife/
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2014/2h-2014-global-internet-phenomena-report.pdf
http://unblock.cs.washington.edu/unblock.pdf
http://unblock.cs.washington.edu/unblock.pdf
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
https://metrics.torproject.org/network.html

[Tor10b] The Tor Project. Tor Mertics Portal: Users. https://metrics.torproject.org/
users.html, 2010. Retrieved May 2015.

[Tor13] Yeganeh Torbati. Iranians Face New Internet Curbs Before Presidential Elec-
tion. Reuters, http://www.reuters.com/article/2013/05/21/net-us-iran-
election-internet-idUSBRE94K0ID20130521, May 2013. Retrieved May 2015.

[Tor14] The Tor Project. Configuring a Tor Relay. https://www.torproject.org/docs/
tor-doc-relay.html.en, July 2014. Retrieved June 2015.

[TS14] Henry Tan and Micah Sherr. Censorship Resistance as a Side-Effect. In Bruce
Christianson, James Malcolm, Vashek Matyáš, Petr Švenda, Frank Stajano, and
Jonathan Anderson, editors, Security Protocols XXII, volume 8809 of Lecture Notes
in Computer Science, pages 221–226. Springer International Publishing, 2014.

[VK15] Paul Vines and Tadayoshi Kohno. Rook: Using Video Games as a Low-Bandwidth
Censorship Resistant Communication Platform. http://homes.cs.washington.
edu/~yoshi/papers/tech-report-rook.pdf, 2015. Retrieved May 2015.

[WALS02] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An Analysis
of the Degradation of Anonymous Protocols. In Proceedings of the Network and
Distributed Security Symposium. IEEE, February 2002.

[WALS03] Matthew Wright, Micah Adler, Brian N. Levine, and Clay Shields. Defending Anony-
mous Communications Against Passive Logging Attacks. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 28–41, 2003.

[WGN+12] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita
Borisov. CensorSpoofer: Asymmetric Communication using IP Spoofing for
Censorship-Resistant Web Browsing. In Proceedings of the 19th ACM conference
on Computer and Communications Security, October 2012.

[Wil11] Brandon Wiley. Dust: A Blocking-Resistant Internet Transport Protocol. http:
//blanu.net/Dust.pdf, 2011. Retrieved May 2015.

[Wil12] Tim Wilde. Knock Knock Knockin’ on Bridges’ Doors. Tor Blog, https://blog.
torproject.org/blog/knock-knock-knockin-bridges-doors, January 2012. Re-
trieved June 2015.

[Win13] Philipp Winter. Towards a Tor Censorship Analysis Tool. https://blog.
torproject.org/category/tags/measurement, 2013. Retrieved May 2015.

[WLBH13] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J. Hopper. rBridge: User Rep-
utation based Tor Bridge Distribution with Privacy Preservation. In Network and
Distributed System Security. The Internet Society, 2013.

159

https://metrics.torproject.org/users.html
https://metrics.torproject.org/users.html
http://www.reuters.com/article/2013/05/21/net-us-iran-election-internet-idUSBRE94K0ID20130521
http://www.reuters.com/article/2013/05/21/net-us-iran-election-internet-idUSBRE94K0ID20130521
https://www.torproject.org/docs/tor-doc-relay.html.en
https://www.torproject.org/docs/tor-doc-relay.html.en
http://homes.cs.washington.edu/~yoshi/papers/tech-report-rook.pdf
http://homes.cs.washington.edu/~yoshi/papers/tech-report-rook.pdf
http://blanu.net/Dust.pdf
http://blanu.net/Dust.pdf
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/blog/knock-knock-knockin-bridges-doors
https://blog.torproject.org/category/tags/measurement
https://blog.torproject.org/category/tags/measurement

[WM01] Marc Waldman and David Mazières. Tangler: A Censorship-Resistant Publishing
System based on Document Entanglements. In Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, pages 126–135, November 2001.

[WPF13] Philipp Winter, Tobias Pulls, and Juergen Fuss. ScrambleSuit: A Polymorphic
Network Protocol to Circumvent Censorship. In Proceedings of the Workshop on
Privacy in the Electronic Society. ACM, November 2013.

[WRC00] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A Robust, Tamper-
Evident, Censorship-Resistant and Source-Anonymous Web Publishing System. In
Proceedings of the 9th USENIX Security Symposium, pages 59–72, August 2000.

[WSH14] Eric Wustrow, Collen M. Swanson, and J. Alex Halderman. TapDance: End-to-
Middle Anticensorship Without Flow Blocking. In Proceedings of the 23rd USENIX
conference on Security Symposium, pages 159–174. USENIX Association, 2014.

[WWGH11] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. Telex: An-
ticensorship in the Network Infrastructure. In Proceedings of the 20th USENIX
Security Symposium, August 2011.

[WWY+12] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven
Cheung, Frank Wang, and Dan Boneh. StegoTorus: A Camouflage Proxy for the
Tor Anonymity System. In Proceedings of the 19th ACM conference on Computer
and Communications Security, October 2012.

[WYH09] S. Wolchok, R. Yao, and J. Alex Halderman. Analysis of the Green Dam censorware
system. Computer Science and Engineering Division, University of Michigan, 18,
2009.

[ZHCB13] Wenxuan Zhoun, Amir Houmansadr, Matthew Caesar, and Nikita Borisov. SWEET:
Serving the Web by Exploiting Email Tunnels. HotPETS, 2013.

[ZPP+13] Tao Zhu, David Phipps, Adam Pridgen, Jedidiah R. Crandall, and Dan S. Wallach.
The Velocity of Censorship: High-Fidelity Detection of Microblog Post Deletions.
In Proceedings of the 22nd USENIX Security Symposium. USENIX, 2013.

160

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions

	A Systematization of Internet Censorship and Resistance
	CRS Users and Use Cases
	Internet Censorship
	A Model of Censorship Apparatus
	General Censor Threat Model
	General Censor Goals

	Censorship Resistance
	Censorship Resistance Components

	Attack Surfaces
	CRS Information
	Dissemination channel
	Data channel
	Overt and Covert Destinations
	CRS Client

	Desired CRS Design Goals
	Censorship Resistance Strategies
	Exposure Phase
	Detection Phase
	Response Phase

	Attack Mitigation and Remaining Gaps
	CRS Information and the Dissemination Channel
	Data Channel
	Overt and Covert Destinations
	CRS Client
	Mitigation Summary and Trends

	Revisiting Use Cases—Security and QoS
	Revisiting Collateral Damage
	Conclusions

	Game-Theoretic Approaches to CRS Design
	Introduction
	Censorship Games
	A Simple Censor Model
	Step 1: Single Round, No Apparatus
	Step 2: Multiple Rounds, No Apparatus
	Step 3: Multiple Rounds, With an Apparatus

	More Realistic Censor Models
	Strategy Simulator
	Parameter Analysis

	Closing the Loop
	Methodology
	Censor Equivalence Classes

	Related Work
	Conclusion

	Privacy-preserving Collection of CRS Statistics
	Introduction
	Background
	Threat Model
	The PrivEx Schemes
	PrivEx based on Secret Sharing
	PrivEx based on Distributed Decryption
	PrivEx Scheme Comparison
	Calculating and Applying Noise

	Security Analysis
	Resistance to Attacks
	Correlation Attack with Auxiliary Information
	Security Proof for PrivEx-D2 Variant

	Implementation
	Computational Overhead
	Communication Overhead

	Real-World Deployment
	Related Work
	Future Work
	Conclusion

	An Analysis of Path Selection Security in Tor
	Introduction
	Background
	Tor Overview
	Entry Guard Relays

	COGS Framework
	Measurements and Evaluation
	Natural Churn
	Guard Rotation
	Guard List Size
	Available Bandwidth

	Discussion
	Related Work
	Impact
	Conclusion

	Conclusion
	Progress on Thesis
	Limitations
	Future Work

	References

