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Abstract

Microgrids are defined as a cluster of loads and micro-resources operating as a single con-

trollable entity that provides both power and heat to its local area. Typically, these rely on

conventional diesel generators, but with recent developments are expected to include more re-

newable energy sources (RESs), battery energy storage systems (BESSs), and plug-in electric

vehicles (PEVs). Both RESs, such as wind and solar, and PEVs can reduce greenhouse gas

(GHG) emissions significantly such as carbon dioxide (CO2) which are released from burning

fuel by generators or conventional vehicles.

Energy management in isolated microgrids is an important task since these have limited gen-

eration capacity and are expected to rely on various uncontrollable resources to match and bal-

ance the demand-supply gap. Moreover, PEVs present a promising solution to GHG emissions

but on the other hand, their increased penetration can impact power system operation, particularly

so in isolated microgrids. Therefore, PEV load management is considered to be a crucial issue.

Similarly, demand response (DR) has the potential to provide significant flexibility in operation

of isolated microgrids with limited generation capacity, by altering the demand and introducing

an elasticity effect.

The present research work examines the impact of uncontrolled and controlled (smart) charg-

ing of PEVs using a comprehensive mathematical optimization model for short-term operation of

the isolated microgrid. This model determines optimal energy management solutions combining

generation from different resources such as diesel generators, wind turbines, solar panels, and

BESSs, and incorporates the DR options as well.

Furthermore, the thesis presents a stochastic optimization model after creating several prob-

abilistic operational scenarios for energy management and smart charging of PEVs in short-term

operation of the isolated microgrid considering fixed and optimal DR options. The proposed

stochastic optimization model studies the impact of wind and solar generation output variabil-

ity as well as the effect of uncertain energy consumption patterns of customers; and also the

stochastic nature of the state of charge (SOC) of the PEV battery at the start of charging.
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Several case and scenario studies considering a modified CIGRE isolated microgrid bench-

mark test system, and using the proposed models are presented and evaluated, to obtain insights

into the effect of smart charging vis-à-vis uncoordinated charging accompanied by DR options

in overall energy management of the isolated microgrid.
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Chapter 1

Introduction

1.1 Motivation

In the recent years, concerns associated with the reliability and efficiency of classic power system

networks and environmental issues that cause climate change, have led power system networks to

undergo substantial transformations. Penetration of renewable energy sources (RESs) has been

rising at a rapid rate due to economic and political reasons. Based on a report by the International

Energy Agency (IEA), by 2035 the renewable resources will account for 31% of the world’s total

energy generation. In Canada and particularly in Ontario, hydro, wind, and solar are the three

major renewable resources that are expected to contribute a major share of the total supply [1].

Moreover, in order to reduce greenhouse gas (GHG) emissions, electricity customers have

been participating in various ways. Under the umbrella of demand side management (DSM),

demand response (DR) is one, wherein, electricity customers can participate in reducing GHG

emissions and enhancing the performance of the electrical grid by reducing the peak demand.

Also, with the use of electric vehicles (EVs) and their penetration level is increasing, can have

a significant impact on reducing GHG. According to the World Wide Fund for Nature (WWF)-

Canada, having 12,000 EVs on the road each year would result in the reduction of 6.7 mega

tonnes of carbon dioxide (CO2) emissions by 2025 [2].
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The system operations are no longer centralized because of the two-way flow of electricity

and information, which has paved the way to characterize the grid as a “smart grid ”. The smart

grid basically incorporates RESs, energy storage systems, DSM strategies, and EVs in a system

that has two-way communication infrastructure, smart meters, etc. [3].

The microgrid is defined as a cluster of loads and micro-resources operating as a single

controllable entity that provides both power and heat to a local area. Microgrids typically have

two modes of operation: grid-connected or isolated mode. The decentralized system operation

adopted in a microgrid can both impose challenges and offer solutions.

The increased penetration of plug-in electric vehicles (PEVs) in a distribution system has

various negative impacts on the grid in terms of system load, power losses, power quality, and

overload conditions [4–6]. Isolated microgrids have limited generation capacity, and introducing

new loads such as charging PEVs might lead to a demand-supply balance problem and conse-

quently blackouts or load shedding. Uncontrolled charging of PEVs would put the system in a

critical situation, while smart charging of PEVs is advantageous for both customers and micro-

grid operators (MGO) [5].

DR strategies, which are defined as changes in electrical usage by demand side sources in

response to changes in price or certain incentives, have the ability to boost system reliability

by modifying load profiles and reducing the peak demand. This can also help the MGO to meet

demand-supply constraints [7,8]. Many benefits can be accrued by both customers and MGOs by

using DR schemes in microgrids. However, it is important to consider the uncertainty associated

with wind speed, solar insolation, and forecasted demand, which is a challenging task in isolated

microgrids.

In view of the above, developing an appropriate scheduling model that coordinates the charg-

ing of PEVs and manages the controllable and uncontrollable resources in isolated microgrids is

the main motivation of this research. The energy management strategy is intended to ensure co-

ordination between diesel generator units, wind turbines, solar panels, and battery energy storage

to achieve economic and efficient operation. As well, the impact of uncertainties on the operation

of the system is needed be examined within the mathematical model framework.
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1.2 Literature Review

In past few years, the penetration of distributed generators (DGs), both diesel and renewable

based, have grown remarkably as also that for energy storage devices.

Jiang et al. [9] studied the energy management of a microgrid in both grid-connected and

islanded modes. A double-layer coordinated control for microgrid management consisting of a

schedule layer and a dispatch layer are proposed to deal with the uncertainties between forecasted

and real-time data. The schedule layer acquires the economic operation of the forecasted data,

while the dispatch layer supplies power based on real-time data to optimize the power flow and

regulate voltage. An optimal power flow (OPF) problem for a microgrid system is proposed [10]

to investigate energy management scheduling while effectively using a battery storage system

after integrating wind energy sources. In [11], the economic load dispatch problem to optimize

the fuel cost during the grid-connected operation mode while guaranteeing stable operation in

the isolated operation mode of a multi-microgrid is examined. The proposed DSM algorithm

utilized fixed and adjustable droop control so that DGs was to ensure a balance between demand

and supply, according to the power-frequency ( f - p) droop characteristics.

The benefits that comes from driving EVs are significant, such as lowering the fuel costs of

the vehicles and mitigating emissions. Therefore, the interaction between driving EVs and the

electric network system has to be studied carefully. The potential impact of PEV charging on dis-

tribution and microgrid systems has been reported in the literature. There are two main scenarios

to charge PEVs, uncontrolled charging and controlled (smart) charging [4,12–14]. Accommodat-

ing PEVs and relying only on uncontrolled charging has been found to be detrimental to electric

power system equipment, such as transformer insulation lifetime and reliability [12, 14, 15]. As

a result, utilities are left with two solutions to avoid negative and undesirable impacts; either

by upgrading the electric power system infrastructure, such as installing new generation units

to meet the excess power demand or by coordinating PEV charging [4, 12–15]. The coordi-

nation of PEV charging is mainly categorized into two possible approaches: centralized and

decentralized [16]. The centralized approach is based on the availability of advanced metering

infrastructure (AMI) that has the capability for two-way communication. On the other hand, the

3



decentralized approach primarily relies on broadcasted signals, for instance, pricing information,

sent to the vehicle owner to achieve a local decision without guaranteeing an action [16].

In [4], the impact of uncoordinated plug-in hybrid electric vehicles (PHEVs) charging on a

residential distribution system has been investigated to optimize the power losses and the grid

load factor with consideration of deterministic and stochastic load profiles. The results illustrated

that uncoordinated charging of PHEVs could lead to a new demand peak, which causes grid

problems.

The hourly integration, coordination, and operation of volatile wind power generation and

EVs in power systems was studied in [13] by a stochastic security constrained unit commitment

model. The objective was set to minimize the expected grid operation cost while considering the

random behavior of large penetration of PEVs as mobile distributed loads and storage devices at

the same time. The concepts of grid to vehicles (G2V) and vehicles to grid (V2G) were studied.

When PEVs are connected to the grid, they will draw energy and store it in their batteries, and

are capable of injecting the energy back to the grid at different times and locations to reduce grid

operation costs and losses.

Sortomme et al. [12] carried out a study of coordinated charging of different penetration of

PHEVs to minimize distribution system losses and load variance, maximize load factor in a bal-

anced radial distribution system. The study showed that applying load factor or load variance as

the objective function instead of system losses would solve the convexity problem and decrease

the computation burden.

Industrial microgrids are gradually taking shape in many countries. Derakhshandeh et al. [14]

proposed a dynamic OPF formulation to schedule the flow of energy in industrial microgrids. PV

generation panels coupled with storage system, PEV charging loads, and generators including

combined heat and power (CHP) units were coordinated, and the flow of energy was intelligently

managed while considering all the related constraints. The intermittent nature of renewable

energy and randomness in the load profile were not considered in this work.

In [17], the problem of coordination between wind and PEVs in a microgrid to optimize

energy dispatch is examined, and deterministic and stochastic scenarios of wind power are pre-
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sented. In order to balance generation and demand while meeting the PEV requirements, three

coordinated energy dispatch methods are proposed, which are: valley searching, interruptible,

and variable-rate dispatching. The variable-rate dispatching method was better in utilizing more

wind energy during the night, mitigating the energy drawing from the grid during the day, and

receiving a high degree of satisfaction regarding to the vehicles owners.

A study in [18] proposes a charging method for EVs to minimize the cost of charging and

realize peak clipping and valley filling. The proposed method was utilized to control and adjust

EV charging power and time in response to Time-of-Use (TOU) price in a regulated market. As

a result, mitigating the peak demand and filling the valley in the demand profile were achieved.

In [19], an estimation of distribution algorithm (EDA) is used to allocate electric energy of

the PHEVs connected to the grid and hence maximize the average battery state of charge (SOC)

level for all PEVs. A probabilistic modeling for various variables such as parking time and initial

SOC were considered.

The integration between EVs and DR with customer choice in a large power system net-

work was investigated in [20]. An approach to manage home area networks is proposed that

permits customers to control their own demand based on comfort indices. The study showed that

maintaining the original peak demand with a large EV penetration could lead to consumer incon-

venience. As a result, utilities have to address this problem by either installing DGs or upgrading

their equipment to accommodate high EV penetration in their electric power network.

As the line losses are proportional to the current squared, a network with low demand would

be more energy efficient. Thus, a reduction in the load would increase the efficiency of the

system while decreasing the peak demand. Hence, DSM plays a vital role in progressing forward

an efficient network. One of the predominant DSM programs is DR. For the most part, DR,

which is classified into two types that direct and indirect programs, is carried out by either utility

companies’ decisions or customers’ choices. DR strategies have the ability to boost system

reliability by modifying the load profile, such as reducing peak demand and shifting energy

consumption to different periods. This can help the MGO to meet demand-supply constraints

[7,8]. Many benefits can be accrued by both customers and the MGO by using DR in microgrids.
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In this section, a review of some of the current research work on DR is presented.

Dietrich et al. [7] proposed two different DR techniques in an isolated system with high

wind integration: demand shifting and peak shaving. The peak shaving approach is cost based,

while demand shifting depends upon elasticity. The objective in [7] is to minimize the total cost

considering the two DR approaches. The authors conclude that DR programs can have savings

up to 30% of the total cost, depending on wind variation. Though [7] studied the operation of a

microgrid in the presence of high wind integration and participant of DR, neither PVs nor battery

energy storage systems (BESSs) and PEVs were included.

A multi-agent approach was proposed in [21] to form an intelligent energy management sys-

tem in microgrids while utilizing DR and distributed energy storage systems in order to mitigate

the peak demand and decrease the cost of electricity to customers. An index of customers’ pri-

orities of load and appliances were included in this study which concluded that customers with a

high-priority index receive energy at a lower cost when they participate in DR.

In Canada, many remote communities are located off-grid and operated as isolated micro-

grids supplied mostly from diesel generators. The load growth in remote areas has raised some

concerns. There are around 300 remote areas across Canada, with a total population of around

200,000 people. There are many concerns regarding the reliability of isolated microgrids as load

increases, and energy management when introducing renewable energy sources such as wind and

PV. In addition, the vital role played by the energy storage systems (ESS) which would improve

the reliability of the system by mitigating the uncertainty of the output power of wind turbines

and solar panels. Thus, ESSs bring a flexibility and robustness to the system though it will add

more complexity to the energy management of the system. A study in [22] investigated placing

renewable energy alternatives in remote communities in northern Ontario, Canada, which would

result in reducing the dependency on diesel generators. As a result, mitigating fuel consumption,

operating costs, and CO2 gas emissions was achieved after a study of six scenarios was presented.

Indeed, the intermittent nature of renewable energy is inevitable so the forecasted data for

wind speed and PV insolation lacks some accuracy. Therefore, there is a need to consider uncer-

tainties in the operations models. Uncertainties of operation in power systems can be categorized
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into outages of generation units and departure from forecasted values [23]. A number of related

research works have been reviewed in this thesis, as follows:

Energy management of various ESSs was considered in [24], such as batteries and water

tanks, considering the randomness of solar insolation and load profiles, in order to reduce the

average energy cost of a smart building and determine the best combination and optimal capac-

ities of storage devices. This problem formulation was solved by a scenario tree method, where

the scenarios generated by Monte Carlo simulation (MCS) are organized in a tree structure to

mitigate the computational time needed.

In order to capture the randomness of a load over time, an adaptive energy consumption

scheduling strategy with online stochastic iterations were proposed in [25]. This strategy was

tested on a distribution system with connected microgrids. A multi-objective function that mini-

mized the cost and peak to average demand ratio was considered.

Dukpa et al. [7] proposed a fuzzy optimization approach to optimally schedule the output

energy of wind turbines while employing ESS for participating in the day-ahead unit commit-

ment problem. The uncertain nature of forecasted wind speed was considered, and the approach

utilized was a Weibull distribution. The authors concluded that ESS helps the system during

high wind energy output and low price by storing the energy. Also, when there is a deficit in

wind energy output, ESS delivers enough energy and acts in away similar to the classic spinning

reserve.

In [26], a resource scheduling problem as a multi-scenario linear optimization problem was

formulated. The idea of using EVs either as loads, sources, or storage devices was studied, and

the V2G impact on minimizing the operating cost and emission was illustrated. Various uncertain

parameters were considered, such as power demand, wind power, solar power, and PEV charging.

A particle swarm optimization (PSO) approach, was applied to achieve successful scheduling for

a tested system.
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1.3 Research Objectives

This main objectives of the research presented in this thesis involves studying the impact of

charging PEVs, DR options, and energy management in an isolated microgrid. The research

objectives are outlined as follows:

• Develop a comprehensive mathematical optimization model for scheduling and operating

isolated microgrids considering the modeling of PEVs, BESSs, and DR options in the

presence of solar and wind energy resources.

• Examine the impact of coordinated vis-à-vis uncoordinated charging of PEVs, and the

impact of DR options on an isolated microgrid operation, considering various operational

cases and scenarios.

• Develop a stochastic optimization model for energy management considering the charging

load of PEVs, and study the impact of uncertainty of different parameters. The uncertainty

of demand, output generation of wind turbines and PV panels, and the initial SOC of a

PEV battery at the start of charging will be examined after developing a comprehensive

modeling framework.

1.4 Thesis Organization

The thesis is organized as follows:

The background of this work is identified in Chapter 2. A general overview of the smart grid

and the various types of EV that are available in the market are provided. The charging levels

that are used to power EVs are discussed as well. Furthermore, the importance of DSM and DR

and their strategies have been explained in detail. Finally, Chapter 2 reviews some uncertainty

handling approaches that are applied in power system operations.
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Chapter 3 shows the mathematical model of the isolated microgrid operation. The mathemat-

ical model includes the formulation of OPF, BESSs, DR, PEVs, and related operating constraints.

Various objectives are applied, and two PEVs charging strategies are adopted. Finally, the results

and analysis of different cases and sceneries are discussed in detail.

Chapter 4 presents four different cases to handle a novel stochastic short-term operations

model of the isolated microgrid considering variable/fixed DR and PEV charging loads. The

stochastic nature of wind and solar generation output as well as the uncertain energy consumption

patterns of customers is investigated; the uncertainty of the SOC of the PEV battery at the start

of charging is included in the stochastic model.

The research work is summarized and conclusions are drawn in Chapter 5. Also, Chapter 5

points out some suggestions for future research on smart microgrids.
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Chapter 2

Background

2.1 Introduction

Chapter 1 presented the motivations, research objectives, and a detailed review of literature per-

taining to the topics related to this research work. Moving forward, this chapter provides a

background review on the subject, the tools, and the models that correlate with the research

objectives. Section 2.2 presents a background on smart grid and microgrids. It is followed in

Section 2.3 by a comprehensive overview of different types of EVs, the charging levels that have

been utilized, and the modeling and the schemes of PEV charging. Section 2.4 discusses vari-

ous strategies of DSM. A brief description of the optimization methods that have been used in

this research work is also included in this section. Finally, tools and approaches that deal with

uncertainties are briefly discussed.

2.2 Smart Grid

The electric grid infrastructure has managed to serve mankind’s needs successfully, unchanged

for almost a century. Nevertheless, as the electric grid infrastructure is unavoidably ageing it
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becomes less efficient. As a result, the need to modernize the grid to be more sustainable, reliable,

affordable, efficient, convertible, environmentally friendly and secure is becoming a clear and a

challenge at the same time [27]. There are various differences between the existing electric

power grids and smart ones. Table 2.1 presents a brief comparison between them [28]. For

these reasons and more, extensive research has been carried out around the world to formulate

a new vision for the future of smart power grid [29]. Smart grid is defined by the European

Table 2.1: Brief Comparison Between Traditional and the Smart Grid

Traditional Grid Smart Grid

Electromechanical Digital & Electromechanical

One-way communication Two-way communication

Centralized generation Centralized & Distributed generation

Few sensors Sensors throughout

Manual monitoring Self-monitoring

Manual restoration Self-healing

Failures and blackouts Adaptive fault clearing and islanding

Limited control Pervasive control

Few customer choices Many customer choices

Technology Platform of Smart Grid (ETP) as a new concept electricity network, from the point of

generation until the point of consumption, that is intelligently capable of exchanging electricity

and information among the components of the electric grid. Furthermore, it has the ability to

monitor and react instantly to any change in the electric grid, beginning from the generation at

power plants and ending with customers’ preferences [30]. There is, however, no universally

accepted and applicable definition of a smart grid. Nevertheless, a smart grid is expected to have

the following features [31]:

1. Improved power reliability,
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2. Accommodation of DG sources,

3. Use of a wide range of RES,

4. Improved resilience against disturbances,

5. Mitigation of the operating cost of utilities,

6. Lower GHG emissions,

7. Self-healing responses to disturbances and better self-management,

8. Introduction of consumer participation,

9. Integration of PHEVs and ESSs.

A smart grid will be equipped with AMI in order to enhance DSM and energy efficiency [31].

In [32], the potential benefits of utilizing smart metering technologies have been highlighted and

a brief summary of the legal framework for controlling metering technology in Europe is pro-

vided. In the U.S.A, the National Institute of Standards and Technology (NIST) has set a frame-

work to coordinate the research on smart grids. This coordination would achieve interoperability

of smart grids [34].

2.2.1 Microgrid

The introduction of smart grids has led to the development of a new grid paradigm referred to as

a microgrid. Basically, large scale of penetration of DG sources has stimulated the development

of microgrids. A microgrid is considered to be the cornerstone of a smart grid system [30].

A microgrid is defined as a cluster of loads and micro-generation technologies, such as micro-

turbines (MT), fuel cells (FC), diesel generators, PV panels, and wind turbines, together with

energy storage devices, such as flywheels, energy capacitors, batteries, and controllable loads,

i.e. EVs, operating as a single controllable entity that provides both power and heat to its local
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Figure 2.1: An Example of the Traditional Power Grid vs Smart Grid [33]

area. Microgrids present a new paradigm of operation of DG units and have the ability to operate

either in grid connected or isolated mode [35]. The key factor that differentiates a microgrid

network from a distribution network is the implementation of control. The microgrid is either

connected to the main grid through a point of common coupling (PCC) or isolated from the main

grid either because it is in a remote area and the microgrid operates in isolation or in case of

faults, disturbances, and natural disasters.

Microgrid Projects

There are many examples of ongoing microgrid projects around the world. A 100 kW capacity

microgrid has been developed and is under research at the Consortium for Electric Reliability
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Technology Solution (CERTS) test bed near Columbus, Ohio, U.S.A. Another example of an

ongoing microgrid projects is Fort Sill in the U.S.A. This huge project has a rating of 0.480 kV,

60 Hz, and total capacity of 630 kW; in addition, it has an energy storage capacity up to 250

kWh, a 30 kW solar PV system, and a 2.5 kW wind turbine. In Bronsbergen Holiday Park,

Netherlands, the first microgrid was built in order to improve the power quality of a residential

area. Solar PV panels have been installed over the roof tops of 108 houses [36].

In Japan, the Aomori microgrid project in Hachinohe was developed to house 150 kW ca-

pacity of weather-dependent generation, such as PV and wind turbines, along with a 510 kW

capacity of controllable digester gas engines, and ± 150 kWh capacity of lead-acid BESS [37].

The pilot project on single phase isolated microgrid in a Greek island of Kythnos is installed

to house a capacity of 10 kWp of PV, 53 kWh of BESS, and a diesel generator that has a nominal

output of 5 kVA. In addition, each house in the isolated island is supplied by 2 kWp of PV system

and 32 kWh of battery storage bank [38].

Battery Energy Storage Systems

BESS is playing an important role in the microgrid operations. Basically, there are two paradigms

of BESS operation, load-following and price-following. Technically, the output power of the

load-following paradigm of BESS responds to any random change in the load profile, such as a

changing balance between generation and demand. The price-following involves buying energy

when the cost is low to charge the battery, and selling the energy later when the cost of energy

is high. Indeed, BESS has the ability to offset the RES fluctuation due to the intermittent nature

of wind and PV [35, 36]. BESS are usually used as a backup to balance the mismatch between

generation and loads; however BESS can do more than that. For instance, it has the capability

to mitigate the effect of intermittency of PV and wind power. When there is a surplus energy

from PV or wind, it will be stored in the BESS and used later, whereas there is a shortage of

energy caused by either PV or wind to supply the demand, the stored energy in the BESS will be

discharged to make up for the deficit [36].
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Essentially, one the main advantages of BESS is its ability to transform the uncontrollability

and unpredictability of the wind and PV sources into controllable and predictable ones [39].

Renewable Energy Sources

There are various types of RES that are considered to be environmentally friendly and provide

free energy. These can be either in a large-scale on-grid projects or small-scale off-grid projects.

Tidal, wave, solar, wind, hydro, geothermal, and biomass energy are examples of RES. In this

thesis, only two types of RES are considered, wind and solar energy, both typically located in

small-scale off-grid projects. In Canada, there are about 300 remote communities that house

200,000 people, and their main source of energy comes from fossil fuel generators. Recently,

wind and solar energy penetration has been increasing in order to reduce the dependency on

fossil fuel, reduce cost, mitigate gas emissions, and harness free and clean energy [22].

Wind Energy

According to the Canadian Wind Energy Association (CANWEA), the lead province in generat-

ing wind power up to December 2014 is Ontario. The installed capacity of wind turbines is more

than 2,400 MW in Ontario, which supplies around 3% of the total provincial demand [40]. The

installed wind turbines are used to harness the energy from wind. Based on the wind speed at a

certain site, the output power that can be generated by wind turbines utilizing the wind turbines’

characteristics are given by the following equations [41]:

PW(v) =



0 0 ≤ v ≤ vc

S (v) vc ≤ v ≤ vr

P Rated
W vc ≤ v ≤ v0

0 v ≥ v0

(2.1)

where the function S (v) can be calculated below 2.2, and depends on the wind speed between

the cut-in and cut-out limits:
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S (v) = P Rated
W ·

[
v − vc

vr − vc

]
(2.2)

where vo, vc, and vr are the cut-out, cut-in, and rated wind speed of a wind turbine, respectively,

and v denotes a measured wind speed at an instant. PW(v) is the output power of a turbine

corresponding to instantaneous wind speed, and P Rated
W (i) denotes the rated output power of a

wind turbine, at bus i.

Solar PV Energy

The rapid development in solar PV energy technology in recent years has reduced the cost of

manufacturing PV panels, and indicates that solar energy will gain a considerable percentage

share of electric power generation in the near future [42]. The output power that can be gener-

ated by PV panels depends on the solar radiation during a day. The equation below can be used

to determine how much power a PV module can generate [43]:

PPV = P Rated
PV · D f ·

(
Rt

Rstandard

)
·
[
1 + ζp (TPV − Tstandard)

]
(2.3)

where D f represents the component de-rating factor, and Rt and Rstandard denote the solar inso-

lation during each hour and under a standard test condition, respectively. Moreover, ζp states

the temperature certification of power, while TPV and Tstandard denote the PV panel temperature

during each hour and under a standard test condition, respectively. Finally, P Rated
PV and PPV rep-

resent the rated capacity of each installed PV array and the actual output power extracted from

PV arrays, respectively.

2.3 Electric Vehicles

The history of EVs goes back to 1834 when the first EV was invented. In the earlier 1900s, EVs

outsold internal combustion engine (ICE) vehicles. After many years of success, however, their
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market share declined due to many reasons. The limitations of battery technology and the lack

of power electronics technologies let ICE vehicles top the market. ICE vehicles offered supe-

rior advantages in terms of speed and driving range, whereas EVs suffered limitations in both

characteristic. EVs almost vanished due to the dominance of gasoline engines since 1930. Nev-

ertheless, when in the early 1970s, there was an energy crisis around the globe due to political

reasons and many countries launched programs to develop EV technologies [44]. Nowadays,

EVs have begun to be driven on the roads, thanks to developments in battery and power electron-

ics technologies. These developments make it possible to close the range and the speed between

ICE vehicles and EVs.

As the world moves forward to reduce environmental emissions, which is a prime factor in

the global warming issue, public interest in using vehicles that have low or zero emissions has

grown substantially [44].

2.3.1 Types of Electric Vehicles

Plug-in Electric Vehicles

A PEV is a type of EV that has no ICE on board, and is called a pure battery EV. These vehicles

have battery packs that propel the electric motors. PEVs are charged by plugging the vehicles

into an electric outlet power source; charging takes from half an hour to eight hours depending

upon the level of charging. Even though PEVs do not emit tailpipe pollutants, the power plants

where the power is produced may emit carbon dioxide or other gas emissions. Based on the USA

Environmental Protection Agency (EPA) standard, PEVs are considered to be zero-emission cars

as their motors do not produce any exhaust. The need for heavy and bulk batteries is one of the

challenges that face PEVs. Also, the driving range of PEVs is only around 80 miles before they

need recharging, while an ICE can go over 300 miles before refiling. Thus, there is a need for

charging stations to charge the PEVs along the roads and highways [45, 46]. Many examples of

PEVs exists, for instance, the Ford Focus, Nissan Leaf, and Tesla Model S.
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Hybrid Electric Vehicles

An HEV is a type of EV that combines the benefits of both gasoline engines and electric motors.

The batteries on board do not need to be plugged into an outlet charger; instead, they charge

from the ICE during driving and regenerative breaking. The latter is a way of capturing the

lost energy during braking and coasting by utilizing the motor as a generator. The energy is

then stored in the batteries. This stored energy can be used later to supply extra power during

acceleration. Furthermore, this extra power provided by the motor brings more benefits, such

improving fuel economy without sacrificing performance, and reducing emissions. The Toyota

Prius is the most-driven HEV [46].

Plug-in Hybrid Electric Vehicles

The PHEV is similar to an HEV, but with larger battery capacity and it has on board both an ICE

and a battery. First, the PHEV is powered by the battery, but when the battery reaches its limits,

the ICE starts operating to replace the electric drive train. The battery used in PHEVs can be

charged in different ways: by plugging it into an outlet electric source at homes or stations, by

the ICE, or through regenerative braking. Fuel cost saving in the PHEV depends on the driving

mileages done by utilizing the battery only. It should be noted that if a PHEV never charges its

battery from the grid, the fuel cost will be the same as for an HEV.

PHEV emissions are expected to be less than HEV ones since the former relies on a battery

for some of the time. PHEVs can be driven for longer range than HEVs, which makes them

suitable for long distance trips. Different companies manufacture different models of PHEVs

available in the market in Canada, for example, the Ford C-MAX Energi, Ford Fusion Energi,

and Toyota Prius Plug-in [45, 46].

2.3.2 Electric Vehicle Charging Levels

Charging of EVs requires an electrical outlet from which cars can draw power. The charging

time needed to charge the batteries of EVs depends upon two factors: the depletion and the
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SOC of the battery. The charging time can vary from 30 minutes to 20 hours depending on the

type of the vehicle and the level of charging. Because charging EVs takes longer than fuelling

conventional cars at gas a station, EV charging stations need to be most accessible where vehicles

park for long hours, such as residential parking areas, workplace parking lots, shopping malls,

and parking garages. Most modern charging equipment and vehicles are following a standard so

drivers need not worry about the compatibility of their cars to connectors and plug receptacles.

At the moment, there are three main charging levels, and one other is under development [44–46].

Level 1

Level 1 charging already exists in homes, which means no installation is needed. Level 1 uses

the standard 110/120 V electrical wall outlet and provides power of up to 1.9 kW. Hence, Level

1 takes about 8−12 hours to charge an EV pack of batteries. EV owners usually plug in their

vehicles to recharge the batteries overnight so that in the morning their vehicles are fully charged

and ready to drive.

Level 2

Level 2 charging is utilized at both residential and commercial buildings. This type of charging

is faster than Level 1, uses a 220/240 V electrical wall socket, and can charge power up to 19.2

kW. The time taken to recharge the battery of an EV is about 3-8 hours. All EV owners in Canada

are expected to have either level 1 or level 2 charging capabilities. In this thesis, the charging

level considered is level 2.

Level 3

Level 3 is also introduced an AC charging, but is different from Level 1 and 2 because it requires

a 3-phase system. The nominal supply voltage of this level is between 208 − 600 V, with a

maximum current of 400 A. This charging level is commonly used by commercial and industrial

customers. It could be installed in homes too, but at a high cost.
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DC Fast Charging Level

The DC fast charging level is mostly used at public charging stations, and has the ability to charge

the battery of EVs in less than 30 minutes. The charger outlet power can go beyond 100 kW,

and is considered a successful step toward minimizing charging times. It should be noted that

DC fast charging level and Level 3 are still under development. Table 2.2 and 2.3 summarizes

the generally accepted outlet standards and the mileage for the charging levels discussed. All the

AC charging levels and DC charging level are summarized in Table 2.2.

Table 2.2: EVs Charging Levels: Outlet Standards [46]

Type Current Range Voltage Power
(A) (V) (kW)

Level 1 AC 12 -16, 1-phase 110/120 1.4 to 1.9
Level 2 AC Up to 80, 1-phase 220/240 Up to 19.2
Level 3 AC Up to 400, 3-phase 208/600
DC Fast Charging DC Up to 200 Up to 600 50 to 150

Table 2.3: EVs Charging Levels: Mileage [46]

Mileage / Charging Time Primary Use
Level 1 2-5 miles / hour of charging Residential Charging
Level 2 10-20 miles / hour of charging Residential and Public Charging
Level 3 60-80 miles / less than 30 minutes Public Charging
DC Fast Charging 60-80 miles / less than 30 minutes Public Charging

2.3.3 Modeling of PEV Charging Load Profile

In order to build a PEV charging load profile, it is essential to have enough data on how far and

how long the cars are driven, and how long and where they are parked all day. Based on the

2001 National Household Travel Survey, vehicles are parked either at workplaces or at homes
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for more than 90% of the time [47]. A study carried out in [20] shows that PEV owners return

home and start charging their PEV batteries at different times according to a normal distribution

function with a mean at hour 18.00 and the variance of 1 hour. The authors in [20] utilized a

Monte Carlo approach to simulate the daily driving distances for each EV, based on data taken

from [47]. Therefore, the status of the SOC of PEV battery is determined by studying the PEV

driving patterns. The beginning time of charging PEVs can be assumed to be consistent with the

distribution of the vehicle’s last trip ending.

2.3.4 PEV Charging Schemes

Charging of PEVs with high penetration would have a significant impact on a distribution sys-

tem. Large unbalance charging would also have a negative effect on the infrastructure such as

transformers. Moreover, it would have a detrimental impact if the charging with large penetration

occurs in isolated microgrids which lack enough generation. Typically, there are two main ways

to charge PEVs: uncoordinated and coordinated (smart) charging.

PEV Control  

Uncoordinated Coordinated  

Random Charging Reactive  

Control  

Proactive 

Scheduling 

Weighted 

Adaptive  
SLM First Fit  

Data  

Rate-Based  
Event-Based 

Figure 2.2: Coordinated and Uncoordinated PEV Solutions [48]
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Uncoordinated Charging

In this strategy, the charging pattern of PEVs is assumed to be random, and the PEVs owners do

not have a smart metering technology. Normally, PEV owners immediately start charging once

they return home in the evening. As a result, the charging load of PEVs will coincide with the

peak demand of the system, which leads to an increase in the demand at the peak hours. This

spike in the demand would affect a system’s stability and security [6].

Coordinated (Smart) Charging

Coordinated or smart charging assumes that PEV owners have a two-way communication infras-

tructure to receive control signals from the MGO. The charging hours of PEVs would be moved

to off-peak hours or shifted to periods when the system is no longer under the threat of security

or stability problems. Smart charging can be done by assuming that PEV owners are willing to

participate in an energy management system, in return for economic incentives.

As seen in Figure 2.2, there are two main strategies to control coordinated charging: proactive

scheduling and reactive control. Proactive scheduling searches for the first available time slot,

first fit, to charge PEVs without violating the peak demand constraints whereas smart load man-

agement (SLM) determines the time slots in which to schedule the charging of PEVs based on

maximizing the system operational performance [49]. The weighted adaptive scheduling strategy

considers more parameters in an algorithm, such as price, charging delay, etc. The other schedul-

ing strategy of charging PEVs is a reactive control protocol, which mainly reacts to a remarkable

unforeseen deviation from the forecasted load profile. This significant deviation leads to grid

problems, which must be avoided [48]. The reactive control technique works perfectly if there

is a real time data interchange between the control panel and sensors; otherwise, the data will be

outdated. Two approaches are proposed to overcome this synchronization issue: data-rate-based

and event-based. The data-rate-based approach introduces a sensitivity parameter while sen-

sors regularly send information to the control panel. When the sensitivity parameter increases,

the probability of sending the information is outdated at the control panel. The latter sends the
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information to the control panel only when there is a change in the sensor measurement [48].

2.4 Demand Side Management and Demand Response

The interconnectivity and flexibility of different programs that facilitate customers to shift their

demand during peak hours, and hence modify their energy consumption patterns and their load

shape, is called DSM. DSM can be categorized into two main activities, DR programs, and en-

ergy efficiency and conservation programs [50]. DSM programs have been primarily utilities

driven in the past, but are moving forward to be customer driven in recent years. DSM is envis-

aged to be a key component of the smart grid.

There are six load shaping techniques commonly refered to in the context of DSM: peak clip-

ping, valley filling, load shifting, strategic conservation, strategic load growth, and flexible load

shape, as shown in Figure 2.3 [51]. Peak clipping and valley filling techniques deal with miti-

gating the difference between the peak and the valley load level. These two techniques involve

direct load control in order to flatten the load profile. The valley filling technique encourages end

users to consume more energy at times when the price of electricity is low. Load shifting, which

is widely utilized in distribution networks, is a technique used to shift the load from peak to off-

peak periods, taking into consideration that the load is not dependant on time. For an overview of

the recently applied DSM approaches in Asia, Europe, the U.S.A, and South America, the work

in [52] could be of interest.

DR refers to a change in the usage of electricity by end-use customers from their normal

consumption pattern, either in response to incentives or to the electricity price [53]. The interac-

tion between the utilities and customers, involving interchanges of both energy and information,

is realized in a smart grid through AMIs, which have two-way communication channels. As a

result, the existence of both smart grid infrastructure and DR programs will mutually strengthen

and help each other [54].

There are two simplest forms of DR. In the first, customers lower their demand during critical

peak hours, but their demand during off-peak and mid-peak hours stays unchanged. Although
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Figure 2.3: Demand SideManagement Techniques

this could cause discomfort to customers, the microgrid operation cost will be decreased. In the

second, customers shift some of their household demand from peak to off-peak hours in response

to high electricity prices. They will bear no loss and incur no cost since the energy consumption

is shifted from one time to another.

DR programs can be categorized into following programs [55]:

1. Incentive Based Programs

(a) Classical

i. Direct Load Control

ii. Interruptible / Curtailable Load Management

(b) Market Based
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i. Ancillary Services Market

ii. Emergency Demand Response Programs

iii. Capacity Market Programs

iv. Demand Bidding Programs

2. Price Based Programs

(a) Time of Use (TOU) Pricing

(b) Critical Peak Pricing

(c) Real Time Pricing

DR programs can profit both customers and utilities, and bring many advantages to the utility,

in its distribution, transmission, generation, or in a microgrid system. DR plays a vital role

by increasing the degrees of system flexibility, and improves the reliability and stability of the

network.

In this thesis, demand shifting and load shedding are the two DR options considered. The

goal of demand shifting is to move demand from peak periods to off-peak periods in order to level

the demand profile and lower the microgrid’s operation cost. Demand shifting would be possible

if there are enough electric devices such as washers, PEVs, dryers that have a delay option. As a

result, the load might be automatically delayed to other hours [7]. The load shedding is modeled

to be in effect only if the total demand each hour exceeds the generation limits, and the system is

not able to supply the demand.

2.5 Optimal Power Flow

In general, the OPF problem is an NLP problem that determines an optimal operating point for

an electric power system in terms of a stated objective function [56]. Optimizing a desired ob-

jective function is subject to a set of equality and inequality constraints. An example of equality
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constraints is the power flow equations representing the correlation between power injections

and voltages. Voltage limits, active and reactive power generation limits, and the flow on trans-

mission lines are also examples of inequality constraints.

Many OPF objective functions can be used. Besides the minimization of generation cost,

which refers to the classical economic dispatch problem, the minimization of the system losses

or voltage deviation are examples of different objectives [57].

A general OPF formulation can be represented as follows :

min
x,u

f (x, u) (2.4)

subject to g(x, u) = 0 (2.5)

h(x, u) ≤ 0 (2.6)

x ∈ X, u ∈ U

The function f (x, u) is minimized and represents the system’s objective and can include, for

example, total losses or generation cost; g(x, u) and h(x, u) represents the vector function of

equality and inequality constraints, respectively [57].

2.6 Uncertainty in Power System Operations

Scheduling the energy in the isolated microgrid operations after including RESs is mostly studied

as a deterministic operation. However, capturing the stochastic nature of RESs, and taking into

account the worst case scenarios becomes a necessity. Typically, the deviation from a forecasted

value is represented as an error, which defines the randomness in a system and has a certain prob-

abilistic distribution. According to [58], a fitting method is used to find the error’s parameters

that follows a standard probability distribution function such as normal distribution.

To generate scenarios for a system, a multi-stage tree model is developed in [58], as shown

in Figure (2.4). The error in probability distribution function can be categorized as either con-
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tinuous or discrete. The first can generate an infinite number of scenarios, which will impose a

computational burden on the system operator, whereas the latter has the capability of discretizing

the error into a finite number of samples [26].

 

Figure 2.4: Two-Stage DecisionModel

The MCS is usually used to generate large number of scenarios such as the demand and the

output generation of wind and PV. A range of uncertainties associated with a likely probabilistic

distribution profile of a given parameter are usually combined in order to find the expected value

of the objective [26].

In case the probability distribution function forcasted error is discretized, the number of sam-

ples that are produced defines how many branches of each stage which at the end create the

scenarios tree model. A general formulation of the optimization problem is described below to

minimize the expected value of an objective function over a determined set of scenarios chosen

in order to represent the range of uncertainty.

min E[ f0(xi, u) ]

min
S∑

i=1

π(xi) f0(xi, u) (2.7)

S∑
i=1

π(xi) = 1 (2.8)

subject to g(xi, u) = 0 (2.9)

h(xi, u) ≤ 0 (2.10)

x ∈ X (2.11)
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where f0 denotes the objective function, g and h are the constraint functions of an optimization

problem, x is the decision vector that should be within the set of X, and u is the vector of spec-

ified stochastic variables [58]. Moreover, π(xi) represents the probability of each scenario that

corresponds to a certain realization of x.

2.7 Summary

This chapter has summarized the background of smart grids and microgrids, and how they have

altered the classic power system network. It has also discussed various types of EVs that have

been on the market, and presented two main schemes for charging PEVs, and their impact on

the microgrid network. DSM, which can boost the reduction of peak demand, and one of its

programs, DR, which is used in this thesis, were discussed. The mathematical model of handling

uncertainty, that is adopted in this thesis is provided, was briefly presented.
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Chapter 3

Optimal Energy Management and Smart
Charging PEVs in Isolated Microgrids

3.1 Introduction

As discussed in Chapters 1 and 2, the increased penetration of PEVs is a major challenge in the

operation of microgrids due to the various negative impacts that are introduced, especially in

isolated microgrids, when PEVs are charging. Thus, a proper scheme for charging PEVs would

limit those impacts, and implementing DSM programs will further improve the performance of

isolated microgrid operation.

This chapter presents a comprehensive mathematical model for short-term operation of an

isolated microgrid. This model is used for optimal energy management combining generation

from different resources such as diesel generators, wind turbines, solar panels, and BESSs and

utilizing smart strategy to coordinate the charging of PEVs. The proposed model utilizes DR

programs as well. Results of several cases and scenarios using the proposed model are analysed,

to obtain insights into the effect of different charging techniques accompanied by DR programs.
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3.2 Mathematical Model

This section presents the mathematical model for an isolated microgrid system operation.

3.2.1 Objective Functions

Various objective functions are combined to study the impact of adding PEV charging loads to

an isolated microgrid, as follows:

Minimize Total Loss:

The benefits from minimizing the power losses of the system are fuel costs savings, reduced

emissions, prevention of line overloads on system equipment, and decreased overall generation

cost.

J1 =
1
2

T∑
t=1

N∑
i=1

N∑
j=1

Gi j

[
V2

i,t + V2
j,t − 2Vi,tV j,t cos(δ j,t − δi,t)

]
(3.1)

In (3.1), t is the index for time, N denotes the total number of buses in the system, and Gi j

represents the conductance of the feeder i − j.

Minimize Total Cost of Operation:

This objective seeks to minimize the total operating cost of an isolated microgrid.

J2 =

N∑
i=1

T∑
t=1

(
aiPg2

i,t + biPgi,t + ci

)
+

N∑
i=1

T∑
t=1

dVar up
i,t Co DR

t +

N∑
i=1

T∑
t=1

P unmet
i,t Co unmet

t (3.2)

The first term of (3.2) represents the operating cost of diesel generators, and the second term in-

dicates the cost of shifting the demand through a payment made to the customers. The coefficient

Co DR
t denotes the incentive paid by the MGO to customers for shifting their demand. The cost

of unmet demand, if the demand cannot be served by the available resources at a certain hour, is

represented by the third term. The coefficient Co unmet
t represents the cost of unmet demand.
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Minimize PEVs Charging Cost:

From the PEV customers' point of view, minimization of the cost associated with PEV charging

is the main objective. This objective can be used by the MGO to study the system impact of

PEV charging, expecting rational behavior of customers, i.e., customers seeking to minimize

their charging costs. In this thesis, it is assumed that PEV customers are equipped with AMIs,

and are subjected to real time pricing or TOU tariffs.

J3 =

M∑
t = t0

P PEV
ev, t Co ch

t (3.3)

In (3.3), ev denotes the buses where PEVs are located, M represents the end hour of the charging

period, when the vehicle batteries reach its full capacity, and Co ch
t is the price of charging the

PEVs.

3.2.2 Isolated Microgrid Operational Constraints

The isolated microgrid system has a variety of small, modular electricity generation resources

and each has its own set of constraints.

Generator Constraints

The active and reactive power generation from DG units is constrained by the units’ upper and

lower limits.

Pg min ≤ Pgi,t ≤ Pg max ∀ i ∈ N, t ∈ T (3.4)

Qg min ≤ Qgi,t ≤ Qg max ∀ i ∈ N, t ∈ T (3.5)

The power output from non-dispatchable sources such as wind and solar are fixed at their fore-

casted values, assuming that the forecast is perfect.
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Battery Energy Storage System Constraints

The BESSs need to consider the maximum power that can be drawn or injected during the charg-

ing and discharging processes [59, 60], as follows:

P BES S ,ch
i, t ≤ P BES S

max X ch
i, t ∀ i ∈ N, t ∈ T (3.6)

P BES S ,dis
i, t ≤ P BES S

max X dis
i, t ∀ i ∈ N, t ∈ T (3.7)

In each charge and discharge state, a certain amount of energy is lost because of the battery’s

internal resistance and energy conversion loss. This lost energy is accounted for by using the

charging and discharging efficiency, as shown below, in the relations pertaining to the BESS

energy stored at time t, E BES S
i, t :

E BES S
i, t+1 = E BES S

i, t + P BES S , ch
i, t η in ∆h ∀ i ∈ N, t ∈ T (3.8)

E BES S
i, t+1 = E BES S

i, t −
P BES S , dis

i, t

η out ∆h ∀ i ∈ N, t ∈ T (3.9)

Equation (3.8) represents the energy balance of a BESS while charging, taking into consideration

the charging efficiency, ηin. Similarly, (3.9) describes the discharging period, taking into account

the discharging efficiency, ηout; ∆h represents the time duration of each period. Furthermore, the

BESS energy stored is constrained by the following conditions:

E BES S
min ≤ E BES S

i, t ≤ E BES S
max ∀ i ∈ N, t ∈ T (3.10)

E BES S
i, t

∣∣∣∣∣
t=0

= E BES S
S ∀ i ∈ N, t ∈ T (3.11)

E BES S
i, t

∣∣∣∣∣
t=T

= E BES S
F ∀ i ∈ N, t ∈ T (3.12)
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E BES S
max and E BES S

min in (3.10) represent, respectively, the maximum and minimum energy that can

be stored in a BESS whereas E BES S
S and E BES S

F in (3.11) and (3.12) respectively are the initial

and final energy status of the batteries.

Finally, the coordination between the charging and discharging to ensure decision variables

is attained, that the batteries do not charge and discharge simultaneously, as per the following

constraints:

X dis
i, t + X ch

i, t ≤ 1 ∀ i ∈ N, t ∈ T (3.13)

PEV Constraints

The charging process of a PEV is limited by various constraints. The energy available in the

battery of a PEV at an interval is given by the battery energy balance relation, as follows [14]:

E PEV
ev,t+1 = E PEV

ev, t + η ch P PEV
ev, t ∆h ∀ ev ∈ N, t ∈ T (3.14)

The PEV battery energy balance shown in (3.14) takes into account the efficiency of the charging

process of the PEV, η ch. The maximum power that can be drawn to charge the batteries of PEVs

is limited by
(
P PEV

max

)
, as given below:

P PEV
ev, t ≤ P PEV

max ∀ ev ∈ N, t ∈ T (3.15)

P PEV
max , in (3.15), is the maximum power that can be drawn from the electric outlets available at

the customer’s house, and depends on the level of charging installed.

As in the case of BESS, the energy stored in the PEV battery is subject to limiting constraints,

as follows:

E PEV
min ≤ E PEV

ev, t ≤ E PEV
max ∀ ev ∈ N, t ∈ T (3.16)

It is assumed that PEV battery energy level will not be allowed to fall below 20% of the total
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battery capacity [14].

The preferred PEV plug-out time constraint ensures that PEV batteries are fully charged

before their preferred plug-out times when drivers leave for work, which in this thesis is assumed

to be at 6 AM, as given below [14]:

E PEV
ev, t = E PEV

max ∀ ev ∈ N, t = h po,t (3.17)

In order to estimate the load profile after PEVs are introduced into the system, the length of

the PEV charging period needs to be calculated as follows:

Cti = N PEV
(
E PEV

max /P
PEV
max

)
(3.18)

For example, from the above equation, if the capacity of a battery is equal 16 kWh, and knowing

that plug-in outlet can charge up to 3.3 kW, the time needed for the PEV battery to become fully

charged has to be at least 4.848 hours, assuming that N PEV is one.

DR Constraints

It is assumed that load shifting operation and its decision variables are determined and controlled

by the MGO, not the end users. Also, the MGO has enough information on the appliances that

are connected to its system, with an option of delaying them automatically; for instance, demand

can be moved from one hour to another.

The variable
(
dP i, t

)
is defined as the new demand at each hour after DR has taken place, and

it can be equal to, more, or less than the base demand
(
Pd i, t

)
, as follows [7]:

dP i, t = Pd i, t + dVar up
i, t − dVar dn

i, t (3.19)

N∑
i=1

T∑
t=1

dVar up
i, t =

N∑
i=1

T∑
t=1

dVar dn
i, t (3.20)
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Balancing the demand variation during the day is defined by (3.20), which prevents the sys-

tem from shifting customers activity to another day.

The maximum and minimum load that can be shifted from one hour to another, which are

limited by the parameters B up and B dn, which quantify the amount of shiftable load at each

hour [7], are given by the following constraints:

0 ≤ dVar up
i, t ≤ B up · Pd i, t (3.21)

0 ≤ dVar dn
i, t ≤ B dn · Pd i, t (3.22)

Demand-Supply Constraints

The power-flow equations for active and reactive power injection at a bus ensure a balance be-

tween the generation and demand at each hour and bus, as follows:

Pg i, t + PW i, t + PV i, t + P BES S ,dis
i, t + P unmet

i, t − P PEV
ev, t − P BES S ,ch

i, t − dP i, t

= V i, t

N∑
j=1

V j,t

[
Gi j cos(θi j,t) + Bi j sin(θi j,t)

]
(3.23)

Qg i, t − Qd i, t = V i, t

N∑
j=1

V j,t

[
Gi j sin(θi j,t) − Bi j cos(θi j,t)

]
(3.24)

The active power balance shown in (3.23) accommodates the power generated by solar pan-

els, wind turbines, discharging of BESSs, and diesel generators and the demand introduced by

charging of BESSs, charging of PEVs, and the forecasted load at each bus and hour. The P unmet
i, t

variable is introduced to reduce the imbalance between the generation and the demand, and adds

a slackness to the system which helps the model arrives at a feasible solution.

The reactive power balance given by (3.24) shows that the reactive power requirements are

met by diesel generators only.
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Network Security Constraints

The voltage level at each bus and hour should be within the maximum and minimum specified

limits, as follows,

Vmin ≤ V i, t ≤ Vmax (3.25)

System Peak Demand Constraint

To improve the isolated microgrid operation, the MGO imposes a PDC based on its total gener-

ation capacity such that the total peak demand at each hour does not exceed a specified limit.

Pd i, t + dVarup
i, t + PPEV

ev, t + P BES S ,ch
i, t + J1,t ≤ PDCt (3.26)

It should be noted that J1,t denotes the losses at hour t.

3.3 Isolated Microgrid System Under Study

3.3.1 Microgrid System Topology

The analysis reported in this chapter is carried out considering the modified CIGRE microgrid

benchmark system [61, 62], which is based upon an European medium-voltage distribution net-

work benchmark. The 15-bus test system single-line diagram, at rated voltage of 10 kV, is shown

in Figure 3.1, which is derived from the diagram presented in [61]. The network has a radial

configuration, and there is no connection to the main grid thereby rendering the microgrid to be

operating in isolated mode [61].

The DG unit at bus 1, functions as the main source of reliable power. The generation re-

sources are confined to four types of distributed energy resources (DERs): diesel generators,

wind turbines, solar PV panels, and BESSs. Details of the diesel generator, parameters, and their

generation capacity are given in Table 3.1. The diesel generator operating cost parameters are
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obtained by assuming a diesel price of 1 $/lt. The system has three diesel generators, with a com-

bined capacity of 6,400 kW, solar PV panels with total capacity of 210 kW, and wind turbines of

1,400 kW
(
Table 3.2

)
. The wind and solar PV output profiles for the isolated microgrid system

are shown in Figure 3.2 [62]. There are three BESS units, each with a capacity of 900 kWh, and

the efficiency of charging and discharging power being 90% [17]. Detailed information about

the CIGRE system, such as its line parameters, i.e., the resistance and reactance of the feeders,

are provided in [60].

Table 3.1: Diesel Generator Data

Unit No. Capacity a b c
kW lt / kWh2 lt / kWh lt

1 2, 500 0.00001 0.224 45.5
2 2, 500 0.00001 0.224 45.5
3 1, 400 0 0.2571 25.5

3.3.2 Load Profiles

There are active and reactive power loads connected at each bus and these loads are either house-

hold or commercial. The 24-hour aggregated load profile at each hour is shown in Figure 3.3 [61],

the peak demand occurs at hour 19, and the active power consumption at that hour is 7, 179 kW.

3.3.3 PEV Requirements

Bus 12 is a residential area, and there are 495 PEVs at this bus which draw charging power.

Each PEV has a plug-in outlet capacity of 3.3 kW [46]. When PEV customers arrive home and

are ready to charge their car batteries, the batteries have an SOC of 20%. The batteries cannot

discharge their entire energy, because doing so, would lead to a reduction in their life span [46].

Table 3.3 presents the data of one type of PEV considered in this thesis [20, 63].
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Figure 3.1: Microgrid Test Based on the CIGRE-IEEE DER BenchmarkMV Network [62]
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Table 3.2: Microgrid DER’s Capacity

Bus DER Type Pmax Unit
1 Diesel Generator 2,500 kW
3 Photovoltaic 20 kW
4 Photovoltaic 20 kW
5 Photovoltaic 30 kW
5 Battery 900 kWh
6 Photovoltaic 30 kW
8 Photovoltaic 30 kW
7 Wind Turbine 1,500 kW
9 Diesel Generator 2,500 kW
9 Photovoltaic 30 kW

10 Photovoltaic 40 kW
10 Battery 900 kWh
11 Photovoltaic 10 kW
14 Battery 900 kWh
15 Diesel Generator 1,400 kW
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Figure 3.2: Wind and PV Output Power Generation Profiles
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Figure 3.3: Active and Reactive Load Profiles

Table 3.3: GM Chevy Volt PEVs in theMarket [63]

Make & Model Battery Size Energy Available All Electric Range Charge Power

GM Chevy Volt 16 kWh 3.2 kWh 40 mi 3.3 kW

When the battery of a PEV starts charging, there is some energy loss, and hence the energy

needed is greater than the stated battery capacity. In this thesis, the PEV has a typical battery

charger efficiency of 85% [20].

3.3.4 Time-of-Use Pricing

The price structure rate for the summer season in Ontario, Canada, is used in this work, as shown

in Figure 3.4. As can be seen, the TOU prices coincide with the typical consumption profile of a

customer in Ontario, and also depends on weather conditions. The TOU tariff has three different

prices levels: on-peak, mid-peak, and off-peak. The peak hours are from 7 AM until 11 AM and

from 5 PM until 7 PM; the mid-peak hours start at 11 AM and last until 5 PM in the evening;
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while the off-peak hours are from 7 PM until 7 AM [64].
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Figure 3.4: Ontario Electricity TOU Price Profile [64]

3.4 Definition of Scenarios and Cases

In order to investigate and evaluate the impact of smart charging of PEVs vis-à-vis uncontrolled

charging in the presence of DR, three different cases and six scenarios have been simulated on

the CIGRE isolated microgrid system.

3.4.1 Base Case

In this case, neither PEVs nor demand shifting are considered; the mathematical model developed

in Section 3.2 is applied on the CIGRE microgrid system with an objective of minimizing the

MGO cost.
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3.4.2 Case 1: Impact of Uncontrolled and Smart Charging of PEVs

This case studies the impact of uncontrolled charging of PEVs in isolated microgrid operation

and how smart charging of PEVs can help to reduce the adverse impacts of uncontrolled charging.

Two scenario
(
S1 and S2

)
are constructed to represents uncontrolled charging, where it is

assumed that all customers start charging their vehicles simultaneously without considering the

system operating constraints, and the MGO has no control on the charging of PEV. The PEVs are

charged in the shortest possible time after plugging in, which is about four and half hours, con-

sidering the efficiency of the battery. It is assumed that the customers are aware of the different

costs of charging at peak hours and off-peak hours, as per the TOU price [64].

Scenario S1: Uncontrolled Charging with No Objective Function or Operating Constraints

This scenario effectively represents the worst case scenario since the PEV charging periods co-

incide with the system peak demand hours. All customers start charging their vehicles simulta-

neously, as soon as they arrive home, at 6 PM.

Scenario S2: Uncontrolled Charging with an Objective Function, No Operating Constraints

This scenario has the objective of minimizing the charging cost of PEVs, J3. It is assumed that

customers are equipped with smart metering equipment and can therefore schedule their PEV

charging so as to minimize their cost, while the MGO has no control on the charging schedules.

Table 3.4 summarizes the scenarios of the first case.

In the smart charging scenarios
(
S3, S4, and S5

)
, the MGO dispatches control signals to its

PEV customers, to start charging, while ensuring that its operational constraints are not violated.

The MGO imposes the PDC (3.26) so as to ensure that no new peaks are created when PEV

charging loads are scheduled.
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Scenario S3: Minimize Total Loss

In this scenario, the MGO sets an objective to minimize the total power losses over 24-hours, as

per (3.1), and determines the optimal schedules for the charging of PEVs.

Scenario S4: Minimize the Total Cost of Operation

In this scenario, the MGO seeks to minimize its total cost of operation over 24-hours, as per

(3.2), to determine the optimal schedule for the charging of PEVs.

Scenario S5: Minimize the PEVs Charging Cost

In this scenario, the MGO determines the optimal charging schedule of PEVs assuming that

customers would seek to minimize their charging cost over 24-hours, as given in (3.3). This

scenario is a ‘smart’ version of scenario S2. A summary of the five scenarios is presented in

Table 3.4.

Table 3.4: Description of Cases and Scenarios

Case-1 Case-2
Uncontrolled Charging Smart Charging Smart Charging with DR

S1 S2 S3 S4 S5 S6
Objective Function No J3 J1 J2 J3 J3

PDC No No Yes Yes Yes No
Voltage Limit No No Yes Yes Yes Yes
Charging Window, t 18 − 22 1 − 6, 18 − 24 1 − 6, 18 − 24
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3.4.3 Case 2: Impact of DR on Smart Charging of PEVs

Scenario S6: Minimize the PEVs Charging Cost with DR

In this Case, the MGO studies the impact of DR on smart charging of PEVs assuming that

customers would seek to minimize their charging cost over 24-hours, as given in (3.3). Therefore,

this similar to scenario S5 of Case-1, except that the MGO has the DR as an option for peak load

management instead of the PDC of (3.26).

According to [7], to quantify the potential demand shifting is a difficult task because there is

not enough studies available. In this study, the maximum amount of shiftable microgrid demand

is varied over a range to examine the impact of DR on microgrid operation, by varying B up and

B dn in (3.21) and (3.22), respectively.

3.5 Results and Analysis

As discussed in the previous section, three cases studies are carried out to examine the operational

aspects of the isolated microgrid considering PEVs and DR. These cases examine the impact of

smart charging vis-à-vis uncontrolled charging of PEVs in isolated microgrids with and without

DRs. When the DR option is considered, the MGO can modify the load profile to cope with

the limitation of generation resources in the system. An incentive of 2 $/kWh is introduced in

the objective function (3.2) to encourage customers to defer their demand, without causing any

inconvenience for them. The cost of unmet energy is assumed to be 3 $/kWh , which is chosen

to be significantly higher than the diesel generators’ operating cost, base electricity market cost,

as well as the DR cost.

3.5.1 Base Case

In the Base Case, the MGO optimally schedules the dispatch of various generation resources

to ensure that the demand of the system is met while satisfying all the operating constraints of
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the the isolated microgrid. Figure 3.6 shows that the isolated microgrid base load profile with

no PEV charging loads, the optimal diesel generation, BESS discharging, and RES schedule as

a consequence of the cost minimization optimization. Observe that the MGO has to discharge

energy from BESS at the peak demand hour
(
hour 19

)
when all the diesel generators operate at

their upper limits and there is very little energy from RES.
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Figure 3.5: Total Generation and Demand Profiles for the Base Case

It should be noted that the PDC of (3.26) is not binding in this case since the peak demand of the

isolated microgrid is always lower than specified limits.

3.5.2 Case 1: Impact of Uncoordinated and Smart Charging of PEVs

In the Base Case, the isolated microgrid has a peak demand of 7,179 kW at hour 19 as shown

in Figure 3.3. In scenario S1, after introducing the PEV charging loads, the peak demand is

increased significantly, by 1,634 kW at hour 19, and consequently there is unmet demand over

four consecutive hours 18−21, as shown in Figure 3.7, implying that the MGO should shed some

load or the transformers will be overloaded, leading to a failure in the system.
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Figure 3.6: The 24-Hour Demand Profile for Scenario S1
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Figure 3.7: The 24-Hour Energy Schedule for Scenario S1

It is to be noted that BESS discharging is now required for several hours. Furthermore, to be

noted that although the PDC of (3.26) is not included in Scenario S1, the microgrid demand

exceeds the limit specified and results in unmet demand for few hours, as seen from Figure 3.6.
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The isolated microgrid has an operating cost of 29,278 $/day when there is no PEV charging

load, when PEVs are considered in Scenario S1, the total cost increases to 41,681 $/day, as

shown in Table 3.5. This high increase in the total cost is mainly because of the large
(
3,492

kWh
)

unmet energy that is introduced by uncoordinated charging of PEVs which coincides with

the peak demand hours.

Table 3.5: Summary Results of Uncontrolled PEVs Charging Scenarios

Uncontrolled Charging

Base Case S1 S2

Total Cost for MGO $/day 29,278 41,681 38,882

Diesel Generators Cost $/day 29,278 31,861 31,601

PEVs Charging Cost $/day 0 657 559

Unmet Energy Cost $/day 0 10,477 7,840

Unmet Energy kWh 0 3,492 2,613

Total Loss kWh 1,962 3,756 3,458

Since Scenario S2 sets to minimize the charging cost of PEVs, customers are aware of the TOU

prices. Accordingly, they shift the beginning of their charging period to hour 19 when the off-

peak TOU price begins, as shown in Figure 3.8. The unmet energy is also shifted to hours 19,

20, and 21, and is decreased by 879 kWh because of the response of customers to the TOU price,

as shown in Figure 3.9. The total PEV charging cost is reduced to 559 $/day compared to 657

$/day since the owners of PEVs try to minimize their charging cost by following the Ontario

TOU prices. Therefore, the total cost of operating the microgrid in Scenario S2 is reduced to

38,882 $/day.

Both the uncontrolled charging scenarios demonstrate that uncoordinated charging is detri-

mental to the system, and the MGO needs to adopt smart charging to charge the PEVs in order

to have a secure and reliable system.
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Figure 3.8: The 24-Hour Demand Profile for Scenario S2
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Figure 3.9: The 24-Hour Energy Schedule for Scenario S2

The different objective functions pertaining to the scenarios considered in smart charging repre-

sent both the MGO's
(
in S3 and S4

)
and the customers'

(
in S5

)
point of view. Smart charging

benefits the system by shifting the charging periods and reducing the peak demand in a way that

benefit both the MGO and customer.
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After Scenarios S1 and S2 have been analyzed and evaluated, it is important to realize the

need to impose the PDC (3.26) on this system, and hence find an optimal solution with no unmet

energy while utilizing all the options available to the MGO, which in this case is the smart

charging option.

The MGO in Scenario S3 optimally schedules the charging of PEV loads when the microgrid

demand is low, in order to reduce the total losses of the system. The PEV charging load is now

distributed across more hours compared to the Scenarios S1 and S2. It is noted from Figure 3.10

that the PEVs start charging during early morning hours, i.e., from midnight to 5 AM, when

the microgrid load is at its lowest level. From Table 3.6, it is noted that the utilization of smart

charging reduces the power losses and hence the power quality of the system is improved. The

loss is significantly reduced in Scenario S3 as compared to Scenarios S1 and S2, and is also

lower than the Base Case, as per the MGO’s objective.
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Figure 3.10: The 24-Hour Demand Profile for Scenario S3

There is no unmet energy in Scenario S3 since the start of PEV charging has been moved from 18

to 24 hours, as noted from Figure 3.11. This scenario results in a fairly flat load profile, without

any new steep peaks at any hour, a result of PEV charging load periods being shifted from peak

to off-peak hours in order to avoid any system overloading.
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Figure 3.11: The 24-Hour Energy Schedule for Scenario S3

In Scenario S4, by coordinating the charging of PEVs, the MGO is able to manage the op-

eration of the isolated microgrid such that its total operating cost is reduced while all operating

constraints are satisfied.

In Scenario S4, the optimal scheduled charging periods of PEVs are similar to those in Scenario

S3 because both the scenarios effectively seek to levelize the load profile
(
Figure 3.12

)
. Never-

theless, the amount of load reduction in S4 is lower than that in any other scenario because of the

cost minimization objective (3.2). It can be noted from Figure 3.13 that smart charging results in

peak demand shaving by scheduling the charging of PEV loads to off-peak hours.
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Table 3.6: Summary Results of Uncontrolled and Smart Charging Scenarios

Uncontrolled Charging Smart Charging

S1 S2 S3 S4 S5

Total Cost for MGO $/day 41,681 38,882 30,970 30,632 31,834

Diesel Generators Cost $/day 31,861 31,601 31,529 31,192 32,393

PEVs Charging Cost $/day 657 559 559 559 559

Unmet Demand Cost $/day 10,477 7,840 0 0 0

Unmet Energy kWh 3,492 2,613 0 0 0

Total Loss kWh 3,756 3,458 1,655 2,077 3,681

Moreover, as shown in Table 3.6, the total loss is relatively close to the Base Case, although it

is greater than Scenario S3 as expected, since the objective is to minimize the total operating cost,

not the loss. Figure 3.12 shows that the total microgrid demand is less than the PDC when the

MGO considers smart charging whereas the total demand violates the PDC when uncoordinated

charging of PEVs is used. The total operating cost for MGO is reduced in this Scenario S4

compared to others scenarios and it yields the optimal choice for both PEVs customers and the

MGO.
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Figure 3.12: The 24-Hour Demand Profile for Scenario S4
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Figure 3.13: The 24-Hour Energy Schedule for Scenario S4

In Scenario S5, the MGO optimally schedules the charging load of PEVs taking into account

all the system limits and assumes that customers behave rationally to minimize their charging

cost. As observed in Figure 3.15, the PEVs charging periods are not similar to those in Scenarios

S3 and S4. The MGO sends a control signal to PEVs owners to start charging while ensuring

that the total system demand satisfies (3.26). It is noted that PEVs start charging at hour 21 and

the charging lasts for 5 hours, until the batteries are fully charged at one o'clock in the morning.
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Figure 3.14: The 24-Hour Demand Profile for Scenario S5
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Figure 3.15: The 24-Hour Energy Schedule for Scenario S5

Since the MGO imposes the PDC (3.26) and smart charging is applied, PEV charging pe-

riods are distributed over the available hours in such a manner that the total microgrid demand

including the charging load can be supplied by generation resources. The total supply during
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the PEV charging hours increases and is close to the original peak demand but still within the

limits. Furthermore, the total demand profile
(
Figure 3.14

)
becomes fairly flat as the some of the

demand activities are shifted from peak to off-peak hours as much as possible.

From a comparison of the results obtained in Scenarios S2 and S5, Table 3.7 shows that

if the MGO considers smart charging of PEVs, the smart charging will result in considerable

decrease in diesel dispatch. The total charging energy of the BESSs in S5 (smart charging) is

7,646 kWh which is 1221 kWh less than the energy consumed in S2 (uncoordinated charging).

Furthermore, The total discharging energy of the BESSs in Scenario S5 is equal to 6,279 kWh,

which is significantly lower than the uncoordinated charging Scenario (S5) owing to the reduced

peak demand by smartly scheduling the PEVs charging.

Table 3.7: Energy Dispatch Comparison Between Scenario S2 and Scenario S5

Diesel Generation BESSs Charging BESSs Discharging Unmet Energy
kWh kWh kWh kWh

S2 118,939 8,867 7,718 2,613
S5 115,885 7,646 6,279 0

Energy
3,054 1,221 1,439 −

Saving

It can be seen from Table 3.7 that the total energy savings accrued from coordinated charging

of PEVs
(
S5

)
for the day is 5,714 kWh, which is significantly high, and this can be projected to

be 2,086 MWh annually.

3.5.3 Case 2: Impact of DR

The demand is influenced by control signals from the MGO and the quantity of demand shifted

depends on the objective function and other operating constraints. The effect of DR on the op-

eration of the isolated microgrid is presented alongside a comparative study of Case-1, Scenario

S2.
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Table 3.8 presents the study results considering various percentages of shiftable demand B up

and B dn of (3.21) and (3.22), respectively. Initially, when the MGO does not apply the DR option(
Scenario S2

)
, there is 2,613 kWh of unmet energy over 24 hours which increases the total cost

for the MGO to be 38,882 $/day. When the DR option is introduced with a transaction cost for

the shifted demand, and B up and B dn is set to 6% both the unmet energy and the total cost for

MGO reduces. The charging periods of PEVs stays the same as in Scenario S2. Since the PEV

charging periods are concentrated at hours 19−23, the system peak demand exceeds the PDC

and the MGO has an unmet energy of 1,470 kWh. The total reduction in the unmet energy over

the scheduling period of 24-hours is 1,143 kWh comapred to Scenario S2, which corresponds to

6% of the shiftable demand
(
1,470 kWh

)
. It should be mentioned that when the demand profile

is exposed to the DR
(
S6

)
, there is a significant cost saving of $685 which also corresponds to

6% of the shiftable demand, as shown in the Table 3.8.

Table 3.8: Summary of Various Percentages of Shiftable Demand

S2 Scenario S6 With Different % of DR

No DR 6% 8% 10% 12% 14% 15% 16% 18% 19%

Total Cost $/day 38,882 38,196 38,080 37,756 37,575 37,491 37,192 36,993 37,358 37,511

Diesel Generators Cost $/day 31,601 31,927 32,190 32,346 32,335 32,598 32,517 32,323 32,564 32,718

PEVs Charging Cost $/day 559 559 559 559 559 559 559 559 559 559

Unmet Energy Cost $/day 7,840 4,409 3,264 2,202 1,031 270 0 0 0 0

DR Cost $/day 0 2,420 3,184 3,767 4,769 5,182 5,234 5,229 5,352 5,352

MGO Cost Saving $/day − 685 803 1,126 1306 1,391 1,742 1,889 1,525 1,371

Unmet Energy kWh 2,613 1,470 1,088 734 344 90 0 0 0 0

Shifted Energy kWh 0 1,210 1,592 1,884 2,385 2,591 2,617 2,615 2,676 2,676

To better demonstrate the impact of DR, various percentage values of B up and B dn are con-

sidered, and it is noted how the total cost for the MGO and the unmet energy changes under

smart charging of PEVs. As the MGO increases the value of B up and B dn, which quantify the

percentage of shiftable load at each hour, the cost savings increases because of the significant
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reduction in unmet energy.

It is to be noted from Table 3.8 that for B up and B dn of 15% or higher, there is no unmet

energy. Figure 3.16 shows that when MGO sets the value of B up and B dn to be 16%, it appears

to be the optimal choice for selecting the amount of the shiftable demand.

35,500

36,000

36,500

37,000

37,500

38,000

38,500

39,000

0 6 8 10 12 14 15 16 18

T
o

ta
l 

C
o

st
 f

o
r 

M
G

O
, 

$
/d

ay
 

Percentage of Demand Response, % 

Figure 3.16: Impact of DR on the Total Cost for theMGO

As can be seen in Figure 3.17, PEVs start charging at hour 19 and the charging lasts for five

hours, until the batteries are fully charged. The charging load profile coincides with the peak

demand hours. The MGO has adopted DR which shifts some of the selected activities from peak

to off-peak hours, as shown in Figure 3.18, in order to make room for the charging of PEVs.

Basically, the total system demand which includes the variable demand
(
dp i, t

)
, the charging of

PEVs
(
P PEV

i, t
)
, and the charging of BESSs

(
P BES S , ch

i, t
)
. Despite the fact that constraint (3.26),

PDC, is not imposed on this case, the total system demand is clearly below the PDC as shown

in Figure 3.17. This case results in a fairly flat load profile, but with the creating of a new peak

as a result of the PEV charging loads. It is clear that applying 16% of the DR has the benefit of

arriving at an optimal solution that does not leave the MGO with unmet energy; hence, there is

no need to install new DGs or shed some load.
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Figure 3.17: Total Demand Profiles with 16% DR
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Figure 3.18: Shiftable Demand with 16% DR

Table 3.9 shows that the MGO can have a total savings of $1,889, for this specific day under

study. The cost saving is achieved when the MGO introduced DR options and the PEVs charging

happens at the peak hours. The MGO ends up with a projected yearly savings of $689,485.
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Table 3.9: Energy Dispatch Cost Comparison of Various Scenarios

Diesel Unmet PEV Shifted Total Cost

Generation Energy Cost Energy Cost Saving

$/day $/day $/day $/day $/day $/day

S2 31,601 7,840 559 0 38,882 −

S5 32,834 0 559 0 31,834 7,048

S6 32,323 0 559 5,229 36,993 1,889

It is also noted from Table 3.9 that when the MGO considers Scenario S5, a significant cost

saving can be achieved to the order of $7,048, for this specific day under study; hence, the yearly

savings when Scenario S5 applied is $2,572,520. This saving is significant considering the scope

and size of isolated microgrid. Therefore, it is recommended that MGO uses smart charging, and

in case there is a charging at the peak hours the DR option is advantageous to the MGO and the

customers.

3.6 Summary and Conclusions

This chapter has presented a comprehensive mathematical model applied on a modified CIGRE

microgrid benchmark considering six different scenarios to address the impact of PEVs and DR

on the energy scheduling. This mathematical model efficiently incorporates and manages various

supply components, such as diesel generators, BESSs, wind turbines, and solar PV panels, and

manages to coordinate the charging load of PEVs in the presence of DR. The proposed model is

also applied to investigate the impact of uncontrolled charging vis-à-vis smart charging of PEVs

and DR. The results successfully demonstrate the effects of PEV charging loads on an isolated

microgrid with and without DR.

The simulation results in this chapter indicates that the smart charging of PEVs can effec-

tively diminish the energy management problems, increase the saving of the MGO, and decrease
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the power losses. Also, it can be concluded from the studied scenarios of Case-1 that uncon-

trolled charging of PEVs can result in violation of microgrid operations constraints and induce

load spikes that cannot be served. In contrast, smart charging is shown to be more efficient in

scheduling the PEV charging loads at appropriate hours and keeping the system within its lim-

its for different objective functions. Furthermore, the simulation results in Case-2 shows that

the DR options can help the MGO effectively eliminate the introduced unmet energy caused by

charging of PEVs at peak hours. In the final analysis, smart charging of PEVs is recommended

for both the MGO and the owners of PEVs in the context of isolated microgrids, and also DR

would benefit the MGO if the PEVs charging occurs at peak hours.
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Chapter 4

A Stochastic Optimization Model For
Energy Management and Smart Charging
of PEVs

4.1 Introduction

In Chapter 3, the impact of uncoordinated and smart PEV charging on isolated microgrid in

the presence of DR is investigated in detail, considering various objective functions to reflect

the perspective of the MGO and PEV owners. As the load profile of the microgrid varies over

time depending on different factors, such as temperature and end-user behavior, it is important to

consider the randomness of energy consumption. Also, with the increased penetration of RESs

such as wind and solar, generally assuming to be an essential part of microgrid systems, there

are some challenges to be dealt with, such as the inherent intermittency and variability of these

resources. This will make the isolated microgrid operation more complicated and the impact of

uncertainties on system operation needs to be investigated.

In this chapter, a novel stochastic short-term operations model of an isolated microgrid con-

sidering DR and PEV charging loads is developed. The proposed stochastic model considers the
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impact of wind and solar generation output variability as well as the effect of uncertain energy

consumption patterns of customers. Moreover, the SOC of the PEV battery at the start of charg-

ing is not the same for all the customers, and accordingly the effect of uncertain initial SOC of

PEV battery is considered in the stochastic model.

4.2 Handling Uncertainty

In order to handle the uncertainty in the proposed stochastic optimization model, the forecast

data X f (t) is typically represented by two components, an expected value of the data Xe(t) and a

forecast error ex(t) as shown below:

X f (t) = Xe(t) + ex(t) (4.1)

The forecast error follows a continuous probabilistic distribution function which can be converted

into a discrete distribution and consequently formulate a set of scenarios. It should be noted that

the number of scenarios grows exponentially with system variables and the scheduling horizon.

A common way to represent the forecast error is by utilizing a normal probability distribution

function. Accordion to [65, 66], the actual demand can vary from forecast load within a small

range and the deviation of load is between ±1% and ±7%. It should be noted that the forecast

distribution can be biased either positively or negatively, or symmetric.

The multi-scenario approach used in [26] to handle uncertainties is modified and applied

in this thesis. Typically, the number of scenarios created is the multiplication of each set of

scenarios; in this thesis, load, wind, solar, and the initial SOC of PEV battery have a set of three

scenarios each. So, the total number of scenarios is calculated as follows:

S = n × m × q × f (4.2)

S is the total number of scenarios created, which is in this thesis, is 81 scenarios; and the n, m,

q, and f represent the discrete sets sizes for load, wind, solar, and the initial SOC of the PEV
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battery, respectively.

The discrete probability distribution sets of the forcasted error for load (δL), wind (δPW), solar

(δPV), and the initial SOC of PEV battery (δ PEV) are represented as follows:

δL =
{
(e1

L, ρ
1
L), (e2

L, ρ
2
L), ........., (en

L, ρ
n
L)
}

(4.3)

δPW =
{
(e1

PW , ρ
1
PW), (e2

PW , ρ
2
PW), ........., (em

PW , ρ
m
PW)

}
(4.4)

δPV =
{
(e1

PV , ρ
1
PV), (e2

PV , ρ
2
PV), ........., (eq

PV , ρ
q
PV)

}
(4.5)

δPEV =
{
(e1

PEV , ρ
1
PEV), (e2

PEV , ρ
2
PEV), ........., (e f

PEV , ρ
f
PEV)

}
(4.6)

The error in each element of a a set, for example e1
L is associated with the probability of that error,

ρ1
L. It should be noted that the summation of all the error states probabilities equals to unity, i.e.,

n∑
a=1

ρa
L =

m∑
a=1

ρa
PW =

q∑
a=1

ρa
PV =

f∑
a=1

ρa
PEV = 1 (4.7)

where a is the state of the load, wind, solar, and the initial SOC of the PEV battery for the

forecasting error.

When solving a stochastic optimization problem, the objective function will be multiplied by

the joint probability of each scenario created, and the summation of joint probabilities for all

scenarios must be equal to unity.

ρs = ρs
L ρ

s
PW ρs

PV ρ
s
PEV (4.8)

S∑
s = 1

ρs = 1 (4.9)
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4.3 Mathematical Model Formulation Under Uncertainty

This section presents a stochastic mathematical model formulation for an isolated microgrid

for short term operation. The model discussed in Chapter 3, and is modified in this chapter to

capture the range of uncertainties in the load, wind and solar generation, and the initial SOC of

PEV batteries.

4.3.1 Objective Functions

Two objective functions developed in Section 3.2 are modified in order to incorporate the un-

certainties of the load, wind, solar, and the initial SOC of the PEV battery, and consequently

study the impact of smart charging of PEVs loads on the isolated microgrid operation, taking

into account the DR option.

Minimize the Total Expected Cost of Operation

The total expected operational cost of the isolated microgrid over a period of 24-hours, is given

below:

E [J1] =

S∑
s=1

ρs

[ N∑
i=1

T∑
t=1

(
aiPg2

i,t,s + biPg i,t,s + ci

)
+

N∑
i=1

T∑
t=1

dVar up
i,t,s Co DR

t +

N∑
i=1

T∑
t=1

P unmet
i,t,s Co unmet

t

]
(4.10)

The first term of (4.10) represents the expected operating cost of diesel generators at each bus,

hour, and scenario, and the second term denotes the expected demand shifting cost at a bus,

hour, and scenario through payment made to the customer. The expected cost of unmet energy,

if the demand cannot be served at each bus, hour, and scenario by the available resources is

represented by the third term. It should be noted that the production cost from wind and solar

generation systems, and the BESS is assumed to be negligible since the MGO operates and owns
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these systems. The coeffcients Co DR
t and Co unmet

t represent the cost associated with shifting the

demand and the cost of unmet energy, respectively.

Minimize the Total Expected Charging Cost of PEVs

This objective seeks to determine the optimal operating decision while considering the cus-

tomers’ prespective of minmizing the charging cost, assuming that customers behave rationally.

E [J2] =

S∑
s=1

ρs

[ M∑
t=1

P PEV
ev,t,s Co ch

t

]
(4.11)

In (4.11), Co ch
t is the tariff rate charged by the MGO from PEV customers.

4.3.2 System Operating Constraints

The stochastic short-term operations model of the isolated microgrid includes a set of constraints.

These constraints were introduced previously in Chapter 3, but for the sake of continuity and

completeness are briefly discussed here. Note that all the variables associated with the constraints

now include the index for scenarios, S, as well.

DG Operating limits

The active and reactive power generation from DG units are constrained by their upper and lower

limits, as given below:

Pg min ≤ Pg i,t,s ≤ Pg max ∀ s ∈ S , i ∈ N, t ∈ T (4.12)

Qg min ≤ Qg i,t,s ≤ Qg max ∀ s ∈ S , i ∈ N, t ∈ T (4.13)
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BESS Constraints

All constraints associated with the BESSs are modified to adopt to the proposed stochastic opti-

mization framework:

P BES S ,ch
i,t,s ≤ P BES S

max X ch
i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.14)

P BES S ,dis
i,t,s ≤ P BES S

max X dis
i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.15)

Equations (4.14) and (4.14) constrain the power that is either absorbed or injected by each BESS

unit, and this power does not exceed the maximum limits.

E BES S
i,t+1,s = E BES S

i,t,s + P BES S , ch
i,t,s η in ∆h ∀ s ∈ S , i ∈ N, t ∈ T (4.16)

E BES S
i,t+1,s = E BES S

i,t,s −
P BES S , dis

i,t,s

η out ∆h ∀ s ∈ S , i ∈ N, t ∈ T (4.17)

Equations (4.16) and (4.17) represent the energy relationship in each BESS taking into account

the energy consumed/injected by the BESS during charging/discharging process, respectively.

E BES S
min ≤ E BES S

i,t,s ≤ E BES S
max ∀ s ∈ S , i ∈ N, t ∈ T (4.18)

The stored energy in the BESS, E BES S
i,t,s , is restricted between the maximum and minimum values,

shown in (4.18).

E BES S
i,t,s

∣∣∣∣∣
t=0

= E BES S
S ∀ s ∈ S , i ∈ N, t ∈ T (4.19)

E BES S
i,t,s

∣∣∣∣∣
t=T

= E BES S
F ∀ s ∈ S , i ∈ N, t ∈ T (4.20)

The stored energy in the BESS has specified initial and final values which represents the available

energy at t = 0 and t = T as shown in (4.19) and (4.20).

Finally, the coordination between the charging and discharging states to ensure appropriate de-
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cision variables are obtained, and that the batteries do not charge and discharge simultaneously,

are ensured by the following constraints:

X dis
i,t,s + X ch

i,t,s ≤ 1 ∀ s ∈ S , i ∈ N, t ∈ T (4.21)

Constraints on PEV Charging Operation

In order to appropriately model the charging load of the PEVs under uncertainty, the introduced

set of constraints in Section 3.2 are re-modeled in this chapter to consider the stochastic nature

of the initial SOC of the PEV battery.

The constraints linked with the battery energy balance of the PEVs, and the limit on power drawn

from the outlet, are presented below, respectively:

E PEV
ev,t+1,s = E PEV

ev,t,s + η ch P PEV
ev,t,s ∆h ∀ s ∈ S , ev ∈ N, t ∈ T (4.22)

P PEV
ev,t,s ≤ P PEV

max ∀ s ∈ S , ev ∈ N, t ∈ T (4.23)

The energy stored in the PEV battery is constrained by upper and lower limits of the battery

storage considering practical aspects of the charging and battery characteristic, as given below:

E PEV
min ≤ E PEV

ev,t,s ≤ E PEV
max ∀ s ∈ S , ev ∈ N, t ∈ T (4.24)

The preferred plug-out time of the PEV batteries is given by the following:

E PEV
ev,t,s = E PEV

max ∀ s ∈ S , ev ∈ N, t = hpo,t,s (4.25)

It should be noted that when a PEV returns to the garage, the remaining energy in the battery of

PEV varies from one customer to another. The stochastic nature of the initial SOC of the PEV
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battery is considered, as per the following constraint:

E BES S
ev,t,s

∣∣∣∣∣
t=0

= E BES S
s ∀ s ∈ S , ev ∈ N, t ∈ T (4.26)

DR Constraints

The DR constraints introduced in Chapter 3 are also modify, the variable demand dP i,t,s is rede-

fined as the demand at each bus, hour, and scenario, and can be equal, more, or less than the base

demand.

dP i,t,s = Pd i,t,s + dVar up
i,t,s − dVar dn

i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.27)

This variable demand dP i,t,s in (4.27) is constrained by the following constraints:

N∑
i

T∑
t

dVar up
i,t,s =

N∑
i

T∑
t

dVar dn
i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.28)

The upward and downward demand variation are limited by the following constraints:

0 ≤ dVar up
i,t,s ≤ B up · Pd i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.29)

0 ≤ dVar dn
i,t,s ≤ B dn · Pd i,t,s ∀ s ∈ S , i ∈ N, t ∈ T (4.30)

Demand-Supply Constraints

The demand-supply balance constraints of the isolated microgrid is modified to adopt to the

stochastic optimization model scenarios, as follows:

Pg i,t,s + PW i,t,s + PV i,t,s + P BES S ,dis
i,t,s + P unmet

i,t,s − P PEV
ev,t,s − P BES S ,ch

i,t,s − dP i,t,s

= V i,t,s

N∑
j=1

V j,t,s

[
Gi j cos(θi j) + Bi j sin(θi j)

]
(4.31)
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Qg i,t,s − Qd i,t,s = V i,t,s

N∑
j=1

V j,t,s

[
Gi j sin(θi j) − Bi j cos(θi j)

]
(4.32)

The remaining model constraints are similar to the ones presented in Section 3.2, except that the

index for scenarios are introduced in there, whenever appropriate.

4.4 System Under Study

The isolated microgrid of CIGRE benchmark that is adopted in Chapter 3 is also considered in

this chapter to carry out the uncertainty analysis. A total of 81 scenarios are considered that

include 3 different discrete probability distributions of the forecasting errors of the load, wind,

solar, and the initial SOC of the PEV battery. All discrete probability distribution functions are

shown in Table 4.1 which are adopted in this chapter [26].

Table 4.1: Discrete Probability Distribution ofWind and Solar Resources, Load, and PEV

S OCev Wind Load Solar

% of deviation Probability % of deviation Probability % of deviation Probability % of deviation Probability

e PEV ρ PEV e PW ρ PW e L ρ L e PV ρ PV

− 20% 0.2 − 5 0.2 − 6 0.1 − 5 0.15

0 0.6 0 0.6 0 0.8 0 0.7

+ 20 0.2 + 5 0.2 + 6 0.1 + 5 0.15

The normal state is defined as the state where the deviation from the forecasted value is zero.

Furthermore, the low state is where the deviation from the forecasted value has a negative value

whereas the high state is defined when the deviation from the foretasted value has a positive

value. Therefore, when the load has a positive deviation, and wind and solar output generation

and the initial SOC of the PEV battery have a negative deviation, it is considered to be the worst

case scenario. On the other hand, when the wind and solar output generation and the initial

SOC of the PEV battery have a positive deviation, and the load has a negative deviation, it is

considered to be the best case scenario.
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The PEV charging load data, such as the plug-in time, the preferred plug-out time, and the

battery capacity of PEV, in this chapter are similar to what are presented in Chapter 3. The

only difference in this chapter is that the initial SOC of PEV battery is varied based on different

scenarios.

4.5 Definition of Cases

In this chapter, the MGO examine the effects of uncertainties on the operational aspects of the

isolated microgrid considering smart charging of PEVs and DR options. Four different cases are

examined, as described below:

4.5.1 Case-1: Neither PEVs nor DR

In this case, neither PEVs nor demand shifting are considered; the stochastic mathematical op-

timization model developed in Section 4.3 is applied on the modified CIGRE microgrid with an

objective of minimizing the total expected cost for the MGO, (4.10). A total of 27 scenarios

are considered to study the impact of uncertainties of the load, solar, and wind on the isolated

microgrid energy scheduling problem.

4.5.2 Case-2: Smart Charging of PEVs

This case examines the impact of smart charging of PEVs on isolated microgrid operation when

a total of 81 scenarios are considered to study the impact of uncertainties of the load, solar, wind,

and the initial SOC of the PEV battery on the isolated microgrid energy scheduling problem. The

two objective functions introduced in (4.10) and (4.11), are used to formulate two sub-cases as

follows:

• Case-2a : The objective is minimization of E [J1].

• Case-2b : The objective is minimization of E [J2].
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The time required to charge the PEVs is different from one uncertainty scenario to another be-

cause the initial SOC of the PEV battery is not the same across scenarios. It is also assumed that

the customers are aware of the different costs of charging at peak hours and off-peak hours, as

per the TOU price [64].

4.5.3 Case-3: Smart Charging of PEVs with Fixed DR

In this Case, the MGO studies the impact of DR while also considering smart charging of PEVs

to minimize its total expected operating cost over 24-hours, as given in (4.10), and denoted by

Case-3a; and that customers seek to minimize their PEV charging cost over 24-hours, as given

in (4.11), denoted by Case-3b; in both sub-cases, the maximum amount of shiftable microgrid

demand B up and B dn is fixed over the 24-hours period at 6% of the demand of the hour (4.29)

and (4.30), respectively.

4.5.4 Case-4: Smart Charging of PEVs with Optimal DR

The MGO seeks to minimize its total expected operating cost over 24-hours, (4.10) denoted by

Case-4a; and the customers seek to minimize their PEV charging cost over 24-hours, (4.11)

denoted by Case-4b. The maximum amount of shiftable microgrid demand B up and B dn are

considered to be optimization variables and determined from the model.

4.6 Results, Analyses, and Discussions

Since the benchmark test system has a critical load profile, the diesel generators will be commit-

ted over all the scheduled time horizon whereas the dispatch of these units will vary from one

scenario to another. The value of the load, wind, solar, and the initial SOC of the PEV battery in

each scenario is attached to a probability of the likelihood of this scenario. GAMS environment
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is used to execute, and solve the considered microgrid benchmark CIGRE system [67]. The

following paragraphs present results of the four cases defined in the previous section.

4.6.1 Case-1: No PEVs, No DR

This case studies the impact of uncertainties
(
load, solar, and wind

)
on the isolated microgrid

energy scheduling problem. The total expected operating cost for the MGO shown in Table 4.2

is 29,383 $/day which is slightly higher than the deterministic case
(
29,278 $/day

)
presented in

the Chapter 3. The expected total loss is increased as well to reach 2010 kWh whereas in the

deterministic case the total loss was 1962 kWh.

Table 4.2: Summary Results of Case-1

Expected
DG Cost

Expected
PEV Cost

Expected
unmet Cost

Expected
Total Cost

Expected
Total Loss

$/day $/day $/day $/day kWh

29,383 − − 29,383 2,010

Since the demand and RES generation are not fixed any more, the BESS units consequently

respond to the variation in the demand and the generation, the total expected operating cost for

the MGO is thus increased. The results of most favourable scenario
(
S9

)
, which has the lowest

demand and highest generation from wind and solar, and the least favourable scenario
(
S19

)
,

where the demand is high while the RESs generation levels are low, are presented in Table 4.3.
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Table 4.3: Summary Results of Different Scenarios in Case-1

S19 S9

Total Cost $/day 31,207 27,603

Charging Energy of BESSs kWh 3,932 603

Discharging Energy of BESSs kWh 4,535 1,839

Total Loss kWh 2,261 1,772

Unmet Energy kWh − −

4.6.2 Case-2: Smart Charging of PEVs

The results obtained in Case-2a and Case-2b are presented in Table 4.4, which considers 81

different scenarios. It should be noted that when uncertainty is taken into account the isolated

microgrid can expect some energy to remain unmet, which is higher in Case-2b when the cus-

tomers seek to minimize their charging cost of the PEVs.

It is noted from Table 4.4 that the MGO suffers in Case-2a and Case-2b a total expected

unmet energy of 10 kWh and 120 kWh for a specific day, respectively, even though it utilizes

smart charging to charge the PEVs.

Table 4.4: Summary Results of Case-2

Expected

DG Cost

Expected

PEV Cost

Expected

DR Cost

Expected

unmet Cost

Expected

Total Cost

Expected

Total Loss

$/day $/day $/day $/day $/day kWh

Case-2a 30,989 419 − 30 30,600 2,623

Case-2b 31,766 419 − 360 31,707 3,893
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4.6.3 Case-3: Smart Charging of PEVs with Fixed DR

In this case, the adoption of DR helps the MGO by shifting the demand from peak to off-peak

hours, and hence reducing the total expected operating cost and the expected unmet energy as

compared to Case-2.

It is noted from Table 4.5 that in Case-3a, the total expected operating cost is reduced to 29,303

$/day compared to the cost in Case-2a of 30,600 $/day. Moreover, it is noted from Table 4.5 that

in Case-3b, the total expected operating cost is reduced to 31,651 $/day compared to the cost

in Case-2b of 31,707 $/day. The total expected loss is reduced as well to 2,422 kWh and 3,765

kWh for a specific day in Case-3a and Case-3b, respectively, when DR is considered compared

to Case-2a and Case-2b.

Table 4.5: Summary Results of Case-3

Expected

DG Cost

Expected

PEV Cost

Expected

DR Cost

Expected

unmet Cost

Expected

Total Cost

Expected

Total Loss

$/day $/day $/day $/day $/day kWh

Case-3a 29,495 419 204 23 29,303 2,422

Case-3b 31,540 419 320 210 31,651 3,765

In Case-3a, the expected total saving cost for the MGO is 1,297 $/day when demand shifting

is applied, while the total expected loss is reduced by 201 kWh for a specific day compared to

Case-2a.

It should be noted that the amount of DR allowed in this case (6% of the demand) is not

enough to eliminate the total expected unmet energy, but it helps decreasing the expected unmet

energy and hence the total expected operating cost for the MGO.
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4.6.4 Case-4: Smart Charging of PEVs with Optimal DR

As seen in Table 4.6, the MGO is now able to provide enough generation to meet all the demand

when implementing the DR, with B up and B dn being chosen optimally by the model. The optimal

values of B up and B dn are obtained as 0.19 and 0.29 for for Case-4a and Case-4b, respectively.

It can be noted from Table 4.6 that the isolated microgrid is no longer has an expected unemet

energy since the MGO sets the value of the variable B up / B dn to be 0.19 for Case-4a and 0.29

for Case-4b .

Table 4.6: Summary Results of Case-4

Expected

DG Cost

Expected

PEV Cost

Expected

DR Cost

Expected

unmet Cost

Expected

Total Cost

Expected

Total Loss

$/day $/day $/day $/day $/day kWh

Case-4a 29,604 419 51 − 29,236 2,358

Case-4b 31,520 419 109 − 31,210 3,681

When the maximum amount of shiftable microgrid demand B up and B dn is optimally deter-

mined, the total expected saving cost for the MGO in Case-4a is 1,364 and 67 $/day compared to

Case-2a and Case-3a, respectively. Furthermore, the total expected loss is decreased in Case-4b

by 212 kWh and 84 kWh compared to Case-2b and Case-3b, respectively

4.7 Summary and Conclusions

This chapter deals with short term energy management of an isolated microgrid considering un-

certainties. Smart charging of PEVs and the presence of DR are taken into account in a stochastic

operation framework modeling. The uncertain parameters considered are load, the output gener-

ation of wind and PV, and the initial SOC of the PEV battery. The effect of PEV smart charging

on the generation scheduling of isolated microgrid is examined. The impact of fixed and optimal

DR
(
B up / B dn

)
on the energy supply balance of the isolated microgrid has been highlighted.
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Chapter 5

Conclusions and Future Work

5.1 Summary

Energy management in isolated microgrids is crucial as they have a limited generation capacity,

some of which are renewable based, and hence intermittent. PEVs are expected to penetrate in

the system and hence expected to have an impact on the operation of isolated microgrids too.

In order to manage the increase in demand due to the charging of PEVs, the smart charging is

a very attractive solution that can significantly improve the operation of the isolated microgrid.

Along with smart charging, the DR options have the ability to shift and reduce the consumption

of customers from peak to off-peak hours, which make the operation of the isolated microgrid

more reliable and efficient.

Chapter 1 presents the motivation behind this research, and it is followed by a literature

review of related works addressing the energy management in isolated microgrids, the PEV

charging approaches and their impact on the operation of isolated microgrids, and the integration

and effect of DR. This chapter lays out the research objectives of this thesis as well.

Chapter 2 presents background review on the subjects, the tools, and the models, that corre-

late with the the research objectives of this thesis. An overview on smart grid and microgrids
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is discussed. The essential components of the microgrid, such as BESS, wind, and solar energy

resources, are discussed. This chapter also reviews several types of EVs that exists in the mar-

ket, and highlights various charging levels of EVs. The background review also examines the

significant contributions of DSM programs such as DR on the operation of the microgrids. The

uncertainty analysis techniques that are applied on various forecasting data have been discussed.

A comprehensive mathematical optimization model for short-term operation of the isolated

microgrid is proposed in Chapter 3. This model is used to determine an optimal energy man-

agement solution combining generation from different resources such as diesel generators, wind

turbines, solar panels, and BESSs, and at the same time utilizing smart charging to coordinate

the PEVs. The model also incorporates DR options. Results of several cases and scenarios using

the proposed model are evaluated, to obtain insights into the effect of smart charging vis-à-vis

uncoordinated charging accompanied by DR options. Variety of cases and scenarios are carried

out on the modified CIGRE isolated microgrid benchmark, and modeled in GAMS environment.

Chapter 4 presents a novel stochastic optimization model for energy management and smart

charging of PEVs in short-term operation of the isolated microgrid considering fixed and optimal

DR options. The proposed stochastic optimization model studies the impact of wind and solar

generation output variability as well as the effect of uncertain energy consumption patterns of

customers; and also the stochastic nature of the SOC of the PEV battery at the start of charging.

This chapter also examines the effect of smart charging of PEVs along with fixed and optimal

values of DR on the operation of isolated microgrid.

5.2 Contributions

The main contributions of this thesis are summarized as follows:

• A comprehensive mathematical optimization model for short-term energy management of

isolated microgrids is developed to examine the impact of uncontrolled and controlled

(smart) PEV charging. Diesel generators, BESS devices, PV panels and wind turbines are

considered for the studies.
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• A detailed model of DR option, which provides significant flexibility in the operation of

the isolated microgrids, as the isolated microgrids have limited generation capacity, by

altering the demand and introducing an elasticity effect, is presented to mitigate the energy

management problems and make the system more reliable and efficient.

• The inherent intermittency and variability of solar and wind output generation along with

the random energy consumption by customers and the initial SOC of the PEV battery are

examined utilizing a novel stochastic optimization model. The proposed problem formu-

lation minimizes the expected operational cost of the isolated microgrid and the expected

PEV charging cost by smartly coordinating the charging of PEV, utilizing two different

model of DR, and dispatching energy output from various source of generation.

5.3 Future Work

Based on the research presented in this thesis, possible future research can be conducted, some

ideas presented below:

• The proposed model presented in this thesis could be extended by applying model predic-

tive control based technique to achieve a optimal real time energy balance.

• The ancillary services that can be achieved by using the notion of V2G support which

basically utilizes the PEVs stored energy in order to supply critical loads at peak hours and

improve some of the system security indices.

• The uncertainty and variability associated with of charging and discharging operations of

EVs are not considered in this thesis and it can be addressed. There are many parameters

of uncertainty that can be taken into account, such as charging time, daily miles driven,

etc. Various types of EVs also can be tested and different levels of EV charging could be

used.
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