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Abstract 

The motivation of this thesis is to find the reason why protein-protein interaction 

networks present a unique degree distribution pattern, where the majority of the 

proteins are sparsely connected, while densely-connected proteins also exist.  

Since the degree distribution pattern of protein-protein interaction networks arises 

through a long-time evolutionary process of gene duplication, we introduce the model 

of random duplication graph to depict protein-protein networks mathematically. 

Specifically, we intend to derive the degree distribution function of protein-protein 

interaction networks by modeling protein-protein interaction networks as a special 

case of random duplication graph. 

The random duplication graph model mimics the gene duplication process. In a 

random duplication graph, one vertex is chosen uniformly at random to duplicate at 

every timestep 𝑡, and all the edges of the original vertex are preserved by the new 

vertex. We derive the expected degree distribution function of the model from the 

probability master function. Furthermore, we learn from the Erdös-Rényi random 

graph model that the degree distribution function does not necessarily converge in a 

single random duplication graph. In consequences, we define the 𝑛-fold of random 

duplication graphs, a combination of 𝑛 independent random duplication graphs, 

under which we are able to prove that the degree distribution function converges. 

Furthermore, we model the protein-protein interaction networks as a special case 

of random duplication graph with sparse initial graph, and the degree distribution 

function of protein-protein interaction networks is derived. We compare this degree 

distribution function with degree distribution data of reconstructed protein-protein 

interaction networks, and we show that this degree distribution function indeed 

resembles the degree distribution pattern in protein-protein interaction networks.  
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Our model gives a theoretical analysis of the self-organization process of protein-

protein interaction networks. Moreover, we have shown that it is the gene duplication 

process combined with the sparsely-connected initial condition that leads to the 

unique degree distribution pattern in protein-protein interaction networks. We can 

make a further prediction based on our analysis—as the gene duplication process 

proceeds, the percentage of densely-connected proteins will be higher. 
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Chapter 1  

 

Introduction 

 

1.1 Problems and Motivations 

Protein-protein interaction network is the map of protein-protein interactions in a 

living organism. In the network, proteins are represented as vertices, and protein-

protein interactions are represented as edges. An edge exists between two proteins if 

they can interact with each other.  

   To understand how cells and organisms are developed, a comprehensive analysis 

of the protein-protein interaction networks is of pivotal importance. In this regard, 

understanding the degree distribution pattern of protein-protein interaction networks 

has been a major interest for system biologists. 

As we can see from the degree distribution data of reconstructed protein-protein 

interaction networks, those networks present a unique degree distribution pattern: the 

degree distribution function of the networks is monotonically decreasing, the majority 

of proteins are sparsely connected, but densely-connected proteins also exist.  

It is our major interest to understand how this unique degree distribution pattern 

comes into being. 
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Figure 1.1: Degree distribution data of the reconstructed protein-protein interaction network of Drosophila 

melanogaster [2], through which we can see the unique degree distribution pattern. 

   Degree distribution pattern of protein-protein interaction networks is a direct 

result of the networks’ self-organization process. The formation of the protein-protein 

interaction networks is a self-organization process, during which new proteins join the 

system over a long time period. In this process, new proteins are brought by gene 

duplication, a major mechanism through which new proteins are generated during 

molecular evolution.  

   Duplicated genes produce identical proteins that interact with the same set of 

protein partners. Therefore, each protein in contact with a duplicated protein gains an 

extra linkage. We suspect that the gene duplication process is the reason why protein-

protein interaction networks present such unique degree distribution pattern. 

Mathematically, the self-organization process of gene duplication can be modeled 

with random duplication graph, in which the gene duplication process is represented 

by random vertex duplication.  
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Figure 1.2: An example of random duplication graph. 

   Degree distribution function, ℙ(𝑘), is defined as the percentage of proteins with 

𝑘 connections in the whole network [1]. The degree distribution function reveals the 

degree distribution pattern explicitly. In this thesis, we try to understand the degree 

distribution pattern of protein-protein interaction networks by studying the degree 

distribution function. 

   We are interested in the degree distribution function of the random duplication 

graph model. We hope to find the cause of the unique degree distribution pattern of 

protein-protein interaction networks, with the help of our random duplication graph 

model. Also, we intend to derive the degree distribution function of protein-protein 

interaction networks with the help of the random duplication graph model. 

 

1.2 Contributions 

 During our review of the Erdös-Rényi random graph model. We find that the 

degree distribution function of Erdös-Rényi random graph model is 

mistakenly derived. Previous researches used to assume that the degree 

distribution function, ℙ(𝑘), is equivalent to the probability that a randomly 
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chosen vertex has degree 𝑘. However, we point out that this claim is 

fallacious. As a result, the degree distribution function of the Erdös-Rényi 

random graph model is still unknown. 

 The random duplication graph model is studied thoroughly. We derive the 

expected value of the degree distribution function through the probability 

master function. Similar to the case of Erdös-Rényi random graph model, it is 

difficult to discuss the convergence of degree distribution function of a single 

random duplication graph. So we define the 𝑛-fold of random duplication 

graphs, a combination of 𝑛 independent random duplication graphs, under 

which we prove that the degree distribution function converges. 

 We model protein-protein interaction networks as a special case of the random 

duplication graph where the initial graph is sparse. The degree distribution 

function of protein-protein interaction networks is derived with the help of the 

random duplication graph model, and compared to degree distribution data of 

various reconstructed protein-protein interaction networks. The degree 

distribution function indeed resembles the degree distribution pattern in 

protein-protein interaction networks. Therefore, we show that it is the gene 

duplication process combined with the sparsely-connected initial condition 

that leads to the unique degree distribution pattern in protein-protein 

interaction networks. 

 

1.3 Thesis Outline 

This thesis is organized as follows, 

   In Chapter 2, we give a review of the preliminaries network biology and complex 

networks. As the prerequisite knowledge for this thesis, we introduce the study of 
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earlier random graph models: the Erdös-Rényi random graph model, and the 

Barabási-Albert Model. In particular, we discuss the study of the degree distribution 

function of Erdös-Rényi random graph model. We point out that the degree 

distribution function of the model was mistakenly derived in previous researches, 

since the assumption that the degree distribution function, ℙ(𝑘), is equivalent to the 

probability that a randomly chosen vertex has degree 𝑘 is fallacious. 

   In Chapter 3, we present the model of random duplication graph. We derive the 

expected degree distribution function of random duplication graph from the 

probability master function. Additionally, we propose the 𝑛-fold of random 

duplication graphs, a combination of 𝑛 independent random duplication graphs, 

under which we are able to prove that the degree distribution function converges in 

probability as 𝑛 → ∞.  

   In Chapter 4, we modeled protein-protein interaction networks as a special case of 

a random duplication graph where the initial graph is sparse, giving the degree 

distribution function of protein-protein interaction networks. Also, the properties of 

the acquired degree distribution function of protein-protein interaction network is 

analyzed, allowing us to predict the behavior of protein-protein interaction networks. 

We also give a comparison between our degree distribution function and degree 

distribution data of reconstructed protein-protein interaction networks, showing that 

our degree distribution function is valid. 

   Finally, we conclude this thesis and propose the possible future work to be done in 

Chapter 5. 
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Chapter 2  

 

Preliminaries of Complex Networks and 

Network Biology 

 

2.1 Erdös-Rényi Random Graph Model 

In this section we introduce Erdös-Rényi random graph model. This model, proposed 

by Erdös and Rényi in 1959 [5], is the earliest study in random networks. 

 

2.1.1 Definition and Properties of Erdös-Rényi Random Graph Model 

The Erdös-Rényi random graph depicts a random graph 𝐺(𝑛, 𝑝) with 𝑛 given 

vertices {𝑣1, 𝑣2, ⋯ 𝑣𝑛}, and each pair of vertices connects with probability 𝑝, 

independent of every other pair of vertices. 

To give a clear visualization of the Erdös-Rényi random graph and Poisson 

distribution, a realization of Erdös-Rényi random graph 𝐺(100, 0.1) is given in 

Figure 2.1, and Figure 2.2 shows the degree distribution function of the Erdös-Rényi 

random graph 𝐺(100, 0.1). 
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Figure 2.1: A realization of Erdös-Rényi random graph 𝐺(100, 0.1). 

 

Figure 2.2: The degree distribution function of the Erdös-Rényi random graph 𝐺(100, 0.1). 

   Our goal here is to find the degree distribution function of Erdös-Rényi random 

graph model. To discuss this, we need the formal definition of the degree distribution 

function.  
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Definition 2.1.1. The degree distribution function ℙ(𝑘), is defined as the number of 

degree-𝑘 vertices divided by the total number of vertices for every 𝑘. Let 𝐹(𝑘) be 

the number of degree-𝑘 vertices, and let 𝑛 be the total number of vertices, 

ℙ(𝑘) =
𝐹(𝑘)

𝑛
 (2.1) 

   The degree distribution function depicts important topological features, and the 

study of degree distribution function has been a major aspect in the study of random 

graphs. 

It was stated in various papers that the degree distribution function of Erdös-Rényi 

random graph, ℙ(𝑘), is equivalent to the probability that a randomly chosen vertex 

has degree 𝑘 [1][3][4][6].  

   Furthermore, we hereby derive the degree distribution of a randomly chosen 

vertex in the Erdös-Rényi random graph model, or the probability that a randomly 

chosen vertex has degree 𝑘. 

Theorem 2.1.1. In Erdös-Rényi random graph model, the degree distribution of a 

randomly chosen vertex follows a Poisson distribution, given the condition that 𝑝 is 

small, and 𝑛 is large. 

𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) =
𝑒−𝜆𝜆𝑘

𝑘!
 (2.2) 

where 𝜆 = (𝑛 − 1)𝑝. 

   Proof. For ∀𝑛, the probability that a randomly chosen vertex has degree 𝑘 is 

written as 

𝑃𝑟𝑜𝑏𝑛,𝑝({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) = (
𝑛 − 1
𝑘
)𝑝𝑘(1 − 𝑝)𝑛−1−𝑘 (2.3) 

   The expected degree of a randomly chosen vertex, 𝜆, is  
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𝜆 ≡ (𝑛 − 1)𝑝 (2.4) 

   Considering the degree distribution as a function of the expected number of 

degrees, 𝜆, we replace 𝑝 with 𝜆. Equation 2.2 becomes 

𝑃𝑟𝑜𝑏𝑛,𝜆({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) = (
𝑛 − 1
𝑘
)(

𝜆

𝑛 − 1
)
𝑘

(1 −
𝜆

𝑛 − 1
)
𝑛−1−𝑘

 (2.5) 

   Letting the number of vertices 𝑛 be sufficiently large, the degree distribution of a 

randomly chosen vertex then approaches 

            𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) (2.6) 

          = lim
𝑛→∞

𝑃𝑟𝑜𝑏𝑛,𝜆({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) (2.7) 

          = lim
𝑛→∞

(
𝑛 − 1
𝑘
) (

𝜆

𝑛−1
)
𝑘
(1 −

𝜆

𝑛−1
)
𝑛−1−𝑘

 (2.8) 

          = lim
𝑛→∞

(𝑛−1)(𝑛−2)⋯(𝑛−𝑘)

𝑘!

𝜆𝑘

(𝑛−1)𝑘
(1 −

𝜆

𝑛−1
)
𝑛−1

(1 −
𝜆

𝑛−1
)
−𝑘

 (2.9) 

          = lim
𝑛→∞

(𝑛−1)(𝑛−2)⋯(𝑛−𝑘)

(𝑛−1)𝑘
𝜆𝑘

𝑘!
(1 −

𝜆

𝑛−1
)
𝑛−1

(1 −
𝜆

𝑛−1
)
−𝑘

 (2.10) 

          = 1 ∙
𝜆𝑘

𝑘!
∙ 𝑒−𝜆 ∙ 1 (2.11) 

          =
𝑒−𝜆𝜆𝑘

𝑘!
 (2.12) 

and this completes the proof of Theorem 2.1.1.                              □ 

   Figure 2.3 shows the probability mass function of Poisson distribution with 

constant 𝜆 = 10. 
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Figure 2.3: Poisson probability mass function. 

   If we accept the claim that the degree distribution function is equivalent to the 

probability that a randomly chosen vertex has degree 𝑘, the degree distribution 

function of the Erdös-Rényi random graph model will follow a Poisson distribution. 

In other terms, when 𝑝 is small, and as 𝑛 → ∞, 

ℙ(𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!
 (2.13) 

 

2.1.2 Degree Distribution of Erdös-Renyi Random Graph Model 

   Based on the claim that the degree distribution function follows a Poisson 

distribution, Barabási and Albert gave a summary of the degree distribution pattern of 

Erdös-Rényi random graph [1]. Since the degree distribution of Erdös-Rényi random 

graph follows a Poisson distribution, the Erdös-Rényi random graph presents a feature 

of decentralization. Most vertices have approximately the same degree (close to the 

average degree 𝜆). The tail (high 𝑘 region) of the degree distribution function 
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decreases exponentially, indicating that high-degree vertices are extremely rare. The 

number of low-degree vertices is small as well.  

   By comparing Figure 2.2 and Figure 2.3, we can see that the degree distribution 

function of the Erdös-Renyi random graph model is indeed similar to the Poisson 

distribution. In consequences, verifying Barabási and Albert’s analysis of degree 

distribution pattern. 

   However, we question the claim that the degree distribution function is equivalent 

to the probability that a randomly chosen vertex has degree 𝑘. 

   In a matter of fact, if the degree distribution function of some random graph is 

given as ℙ(𝑘), it implies that the probability that a randomly chosen vertex has 

degree 𝑘 is ℙ(𝑘). On the contrary, if 𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) is 

given, it does not necessarily imply that degree distribution function ℙ(𝑘) is equal to 

the probability that a randomly chosen vertex has degree 𝑘. 

   A simple example is given here to support this argument. Suppose some random 

graph reaches 3 distinct final states {𝐺1, 𝐺2, 𝐺3} with probability 𝑝1, 𝑝2 and 𝑝3 

respectively, and each of the final state has a distinct degree distribution function 

{ℙ1(𝑘), ℙ2(𝑘), ℙ3(𝑘)}. Then the probability that a randomly chosen vertex has degree 

𝑘 is written as 

𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) = 𝑝1 ∙ ℙ
1(𝑘) + 𝑝2 ∙ ℙ

2(𝑘) + 𝑝3 ∙ ℙ
3(𝑘) (2.14) 

   In this case, if we are given 𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}), the degree 

distribution function of the resulting random graph is still unknown. In fact, there will 

be 3 different possible degree distribution functions of the resulting random graph. 

   To give a clearer explanation of this argument, we take a closer look into the 

Erdös-Rényi random graph model. We notice that the degree distribution function of 

an Erdös-Rényi random graph of size 𝑛 can be written as 
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ℙ(𝑘) =
𝐹(𝑘)

𝑛
=
∑ 𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]
𝑛
𝑖=1

𝑛
 (2.15) 

where 𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘] being the indicator random variable. 

   It is obvious that 𝔼[𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]] = 𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}), 

since all vertices are created equally.  

   If we want ℙ(𝑘) to be equivalent to 𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}), it is 

necessary to have 

∑ 𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]
𝑛
𝑖=1

𝑛

𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
→          𝔼[𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]]    𝑎𝑠 𝑛 → ∞ (2.16) 

   We can see that Equation 2.16 is in fact the result of weak law of large numbers. 

   To ensure that the weak law of large number holds, the condition that 

{𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]} are independent random variables is sufficient. However, they are 

not independent. Consider an Erdös-Rényi random graph with size 𝑛, the probability 

that some vertex 𝑣𝑖 has degree 𝑛 − 1 is 

𝑃𝑟𝑜𝑏({𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖  ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 − 1}) = 𝑝
𝑛−1 (2.17) 

   However, given the condition that some vertex 𝑣𝑖 already has degree 𝑛 − 1, the 

conditional probability that some other vertex 𝑣𝑗  has degree 𝑛 − 1 is 

𝑃𝑟𝑜𝑏({𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑗  ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 − 1}|{𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖  ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 − 1}) = 𝑝
𝑛−2 (2.18) 

   Thus we can see that {𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]} are not independent random variables. 

   The weak law of large numbers can still hold for dependent random variables in 

some cases. Although there is no known necessary condition for the weak law of large 

numbers for dependent random variables to hold [7], the best known sufficient 

condition is the Bernstein’s Theorem. However, {𝟏[𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘]} do not satisfy the 

sufficient conditions given by Bernstein’s Theorem either [8]. 
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   To sum up, it is not likely that the convergence in Equation 2.16 will hold. Thus, 

the claim that degree distribution function of Erdös-Rényi random graph model 

follows a Poisson distribution, ℙ(𝑘) = 𝑒−𝜆𝜆𝑘

𝑘!
, is fallacious. The behavior and degree 

distribution function of Erdös-Rényi random graph model need further study. 

 

2.2 Complex Networks 

Contemporary science has pointed out that systems in various disciplines ranging 

from molecular biology to computer science are composed of non-identical elements 

[9][10][11]. These systems have a particular topology feature: they form rather 

complex networks, whose vertices are the elements of the systems, and edges are the 

connections between the elements. For example, animals possess huge neural 

networks, whose vertices represent neurons, and edges represent the axon-dendrite 

connections between neurons. Also, living systems form huge protein-protein 

interaction networks, where vertices represent proteins, and edges represent the 

chemical interactions between proteins. Besides, complex networks present in social 

science and computer science. In a social network, vertices represent people, and 

edges represent the social interactions among people. In World Wide Web, vertices are 

HTML documents, and edges represent the links between HTML documents. Due to 

their large size and complexity, the topology of those complex networks remains 

largely unknown. 

   Driven by the automation of data acquisition, topological information of complex 

networks are become more and more available. Figure 2.4 shows the visualization of 

a small portion of the social network in Facebook, where vertices stand for users, and 

edges stand for the friendship relationships between users [12]. Figure 2.5 depicts the 
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degree distribution of the Facebook New Orleans network of 63,731 users and 

817,035 friendships [13]. 

 

Figure 2.4: Social Network in Facebook. 

 

Figure 2.5: Degree distribution of the social network above. 

   From the Facebook social network, we can see that complex networks present a 

unique degree distribution pattern: the degree distribution function is monotonically 

decreasing, the majority of the vertices have relatively low degree, but high-degree 
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vertices also exist. The networks present some level of local clustering, where vertices 

are densely connected in small groups, but overall the network is still decentralized. 

 

2.3 Scale-free Networks and Barabási-Albert Model 

The Barabási-Albert model is considered a breakthrough in the study of complex 

networks. It is the first model depicting the self-organization process of certain real-

world complex networks, and it explains why complex networks present unique 

degree distribution pattern. The degree distribution of Barabási-Albert model follows 

a scale-free distribution, so networks under the Barabási-Albert model are called 

scale-free networks. 

 

2.3.1 Definition and Degree Distribution of Barabási-Albert Model 

Traditionally, complex networks have been modeled using the Erdös-Rényi random 

graph model. But as we can see from acquired topological data of complex networks, 

the Erdös-Rényi random graph model cannot reveal the unique degree distribution 

pattern of complex networks. 

   In 1999, Barabási and Albert reported a model of self-organizing process of 

complex networks, namely the Barabási-Albert model [13]. 

   Barabási and Albert pointed out that two generic aspects of real-world complex 

networks are absent in the Erdös-Rényi random graph model. First, the Erdös-Rényi 

random graphs are composed of a fixed number of vertices. On the contrary, real 

world complex networks are formed by continuous addition of new vertices to the 

network. For instance, in a social network, new members are introduced throughout 

the lifetime of the network, increasing the size of the size of the network. In World 
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Wide Web, the size grows exponentially in time by addition of new web pages. 

Second, Erdös-Rényi random graph model assumes that the probability that two 

vertices are connected is uniformly random. On the contrary, most real-life complex 

networks exhibit the behavior of preferential attachment, i.e. newly added vertices 

have a higher probability to be linked to a high-degree existing vertex than to a low-

degree vertex. For example, in a social network, newly introduced members are more 

likely to be friend to those who are already popular in the social group, i.e. those who 

already have a lot of friends. In World Wide Web, if a webpage is already popular, it is 

more likely that it will be referred by newly created webpages, thus gaining more 

connections. 

   The Barabási-Albert model is built based on the two observations above. To depict 

the self-organization behavior of the network, scale-free networks are built from a 

small initial network with 𝑛0 vertices. At every timestep, a new vertex with 𝑚 

(𝑚 ≤ 𝑛0) edges is added to the network. The new vertex is linked to 𝑚 different 

vertices that already exist in the network. To depict the preferential attachment 

behavior, it is assumed that the probability 𝑃𝑟𝑜𝑏({𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}) that a 

new vertex will be connected to existing vertex 𝑖 depends on the degree 𝑘𝑖 of 

vertex 𝑖, such that 𝑃𝑟𝑜𝑏({𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}) = 𝑘𝑖 ∑ 𝑘𝑗𝑗⁄ . After 𝑡 time steps, 

the model leads to a random network with 𝑛 = 𝑡 + 𝑛0 vertices and 𝑚𝑡 edges. 

   Simulation result with 𝑚 = 𝑛0 = 5 shows that the network under Barabási-

Albert model evolves into an invariant state with degree distribution following a 

scale-free distribution with a constant 𝛾 = 2.9 ± 0.1. More precisely,  

ℙ(𝑘) = 𝑐𝑘−2.9±0.1 (2.19) 
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Figure 2.6: Simulation result of the degree distribution function of Barabási-Albert model, reused from [14] with 

permission. 

   The scale-free distribution is compared to degree distribution data from many real 

life complex networks. It is shown that the scale-free distribution function can indeed 

depict the degree distribution pattern of real-life complex networks [14][15][16].  

   In consequences, the Barabási-Albert model successfully reveals that the unique 

degree distribution pattern of various complex networks is a result of the preferential 

attachment behavior during these networks’ self-organization process. 
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Figure 2.7: Degree distribution of some real-world complex networks. (A) Facebook New Orleans social network 

with 63,731 vertices; (B) World wide web with 325,729 vertices; (C) Power grid network with 4,941 vertices. 

Reused from [14] with permission. 

 

2.3.2 Mean Field Theory for Barabási-Albert Model 

To show that Barabási-Albert model results in a scale-free distribution, a mean-field 

method is developed to predict the growth dynamics of the Barabási-Albert model [4]. 
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   Recall that the Barabási-Albert model is a self-organization process with the 

behaviors of growth and preferential attachment. More precisely, the Barabási-Albert 

model starts with a small amount of 𝑛0 vertices, at every timestep one new vertex 

with 𝑚 (𝑚 ≤ 𝑛0) edges is introduced to the network. The new vertex is linked to 𝑚 

different vertices that already exist in the network. When choosing the links of the 

new vertex, the probability 𝑃𝑟𝑜𝑏({𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}) that a new vertex will 

be connected to existing vertex 𝑖 depends on the degree 𝑘𝑖 of vertex 𝑖, such that 

𝑃𝑟𝑜𝑏({𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}) =
𝑘𝑖
∑ 𝑘𝑗𝑗

 (2.20) 

   As a result, after 𝑡 timesteps, the Barabási-Albert model produce a random 

network with 𝑛 = 𝑡 + 𝑛0 vertices and 𝑚𝑡 edges.  

   Figure 2.8 shows an example of the self-organization process of Barabási-Albert 

model with 𝑛0 = 5 and 𝑚 = 5. 

 

Figure 2.8: An example of the self-organization process of the Barabási-Albert model. 

   Assume that 𝑘 is continuous, then the probability that a new vertex will be 

connected to existing vertex 𝑖 becomes a continuous function of 𝑘𝑖. As a result, we 

have the following partial differential equation of the degree of vertex 𝑖. 

𝜕𝑘𝑖
𝜕𝑡
= 𝐶 ∙ 𝑃𝑟𝑜𝑏({𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖}) = 𝐶

𝑘𝑖

∑ 𝑘𝑗
𝑛0+𝑡−1
𝑗=1

 (2.21) 
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   Since the amount of edges at time 𝑡 is 𝑚𝑡, we obtain that ∑ 𝑘𝑗
𝑛0+𝑡−1
𝑗=1 = 2𝑚𝑡. Also, 

since 𝑚 new edges are introduced at each timestep, we obtain that 𝐶 = 𝑚. As a 

result, Equation 2.21 becomes 

𝜕𝑘𝑖
𝜕𝑡
=
𝑘𝑖
2𝑡

 (2.22) 

   Take into consideration that vertex 𝑖 is introduced to the network at time 𝑡𝑖 with 

initial degree 𝑘𝑖(𝑡𝑖) = 𝑚, the solution to Equation 2.22 is derived. 

𝑘𝑖(𝑡) = 𝑚 (
𝑡

𝑡𝑖
)
0.5

 (2.23) 

   Also, the probability that vertex 𝑖 has a degree 𝑘𝑖(𝑡) that is smaller than some 

𝑘, i.e. 𝑃𝑟𝑜𝑏(𝑘𝑖(𝑡) < 𝑘), is written as follows. 

𝑃𝑟𝑜𝑏(𝑘𝑖(𝑡) < 𝑘) = 𝑃𝑟𝑜𝑏 (𝑚 (
𝑡

𝑡𝑖
)
0.5

< 𝑘) = 𝑃𝑟𝑜𝑏 (𝑡𝑖 >
𝑚2𝑡

𝑘2
) (2.24) 

   Take into account that all vertices are introduced to the network at equal time 

intervals, the introduction time 𝑡𝑖 follows a uniform distribution. 

𝑃𝑟𝑜𝑏(𝑡𝑖 = 𝑐) =
1

𝑛0 + 𝑡
    𝑓𝑜𝑟 ∀𝑐 ≤ 𝑡 (2.25) 

   Combining Equation 2.24 and Equation 2.25, we obtain that  

𝑃𝑟𝑜𝑏 (𝑡𝑖 >
𝑚2𝑡

𝑘2
) = 1 − 𝑃𝑟𝑜𝑏 (𝑡𝑖 ≤

𝑚2𝑡

𝑘2
) = 1 −

𝑚2𝑡

𝑘2(𝑡 + 𝑛0)
 (2.26) 

   Equation 2.26 is also the cumulative distribution function of some randomly 

chosen vertex 𝑖, i.e., the probability that a randomly chosen vertex 𝑖 has degree 

𝑘𝑖(𝑡) that is smaller than 𝑘. 

𝑃𝑟𝑜𝑏(𝑘𝑖(𝑡) < 𝑘) = 1 −
𝑚2𝑡

𝑘2(𝑡 + 𝑛0)
 (2.27) 
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   The probability density function of 𝑘𝑖(𝑡), i.e. the degree distribution function of 

some randomly chosen vertex 𝑖, is derived by taking the derivative of the cumulative 

distribution function. 

𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) =
𝜕𝑃𝑟𝑜𝑏(𝑘𝑖(𝑡) < k)

𝜕𝑘
=
2𝑚2𝑡

𝑛0 + 𝑡

1

𝑘3
 (2.28) 

   This indicates that the degree distribution function of some randomly chosen 

vertex 𝑖 follows a scale-free distribution. 

𝑃𝑟𝑜𝑏({𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑜𝑠𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 ℎ𝑎𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑘}) = 𝑐𝑘−3 (2.30) 

   With this result, Barabási and Albert claimed that the Barabási-Albert model result 

in a scale-free distribution with constant 𝛾 = 3, such that 

ℙ(𝑘) = 𝑐𝑘−3 (2.31) 

   However, the soundness of this claim is questionable. 

   The theory of Barabási-Albert model bares several weaknesses. First, the mean 

field theory for Barabási-Albert model is not a rigorous proof, the method of using a 

continuous distribution to approach a discrete distribution is questionable, and the 

validity of Equation 2.21 is unknown. Furthermore, even if the mean field theory is 

correct, the result from the mean field theory could just predict the probability that a 

randomly chosen vertex has degree 𝑘, which is not necessarily the degree distribution 

function of Barabási-Albert model. Additionally, not all complex networks follows the 

self-organization process of preferential attachment, leaving the Barabási-Albert 

model only suitable for a number of specific networks. 

   Nevertheless, the Barabási-Albert model is still recognized as a breakthrough in 

the theory of complex networks. First, it explains why complex networks present the 

special degree distribution pattern where most of the vertices have relatively low 
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degree, but high-degree vertices exist. Second, it introduces the scale-free degree 

distribution function which is valuable for understanding complex networks. 

 

2.4 Network Biology and Protein-Protein Interaction 

Networks 

Network biology is the study of complex networks in biological organisms. Every 

biological organism forms a large number of complex networks [17]. For instance, 

neural network is a series interconnected neurons, lined by synapses between axon 

terminals and dendrites of neurons. Gene regulatory network is a collection of DNA 

segments which interact with each other indirectly through their RNA and protein 

expression products to govern the gene expression levels. Among those biological 

complex networks, protein-protein interaction network is our major focus. 

   Protein-protein interactions are the physical contacts among proteins due to 

certain biochemical events. Multiple protein components organized by their protein-

protein interactions form up the biological machines that carry out diverse essential 

biochemical processes. Thus, it is instrumental to understand protein-protein 

interactions in analyzing cellular functions. 

   Protein-protein interaction network is the map of protein-protein interactions in a 

given organism. In the network, proteins are represented as vertices, and an edge 

exists between two proteins if they can interact with each other. As systems biology 

advances, development of genome-scale protein-protein interaction networks became 

possible. To understand how cells and organisms are developed, a comprehensive 

analysis of the protein-protein interaction networks is of pivotal importance. In this 

regard, understanding the degree distribution pattern of protein-protein interaction 

networks has been a major interest for system biologists. 



 

23 

 

   The protein-protein interaction networks falls into the category of complex 

networks due to various reasons.  

   First, protein-protein interaction networks have a relatively large scale. For 

instance, the published protein-protein interaction network of yeast Saccharomyces 

cerevisiae consists of 2,018 proteins and 2930 interactions. And the genome-scale 

protein-protein interaction networks of Drosophila melanogaster consists of 7,048 

proteins and 20,405 interactions.  

   Also, the elements (proteins) in protein-protein interaction networks are non-

identical, which is a key feature of complex networks.  

   Figure 2.9 shows a visualization of the protein-protein interaction network of 

Drosophila melanogaster [18]. From the visualization we can see that the 

reconstructed protein-protein interaction network presents the features of complex 

networks: the size is relatively large, and the network is composed of non-identical 

elements. 
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Figure 2.9: A graphical visualization of the protein-protein interaction network of Drosophila Melanogaster, reused 

from [18] with permission. 

   However, the Barabási-Albert model is not suitable for protein-protein interaction 

networks, since the self-organization process of protein-protein networks does not 

follow the preferential attachment property. As a result, we devise the random 

duplication graph model in an attempt to find out the reason why protein-protein 

interaction networks present such unique degree distribution pattern. 
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Chapter 3  

 

Definition and Degree Distribution 

Function of Random Duplication Graph 

Model 

 

3.1 Definition of Random Duplication Graph Model 

We hereby give the formal mathematical definition of random duplication graph 

model.  

   The first thing we need to define is the initial graph. The initial graph, 𝐺(𝑡0), is 

an undirected graph with 𝑡0 vertices, (for simplicity let 𝑡0 ≥ 2).  

   Next we define the rule of random vertex duplication. At each discrete time step 

𝑡 ≥ 𝑡0, one vertex is chosen uniformly at random to duplicate itself, and all the 

existing edges of the chosen vertex are preserved by the new vertex. Since the 

duplicating vertex is chosen uniformly at random, the probability for any vertex to 

duplicate at time 𝑡 is 1/𝑡. 

   The random duplication graph at time 𝑡, 𝐺(𝑡), is the result of the random vertex 

duplication self-organization process, with some initial graph 𝐺(𝑡0) as the initial 

state. As we can see, since exact one vertex is created during one timestep of the self-

organization process, 𝐺(𝑡) contains 𝑡 vertices. 
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Figure 3.1: An example of the random vertex duplication process. 

   In Chapter 2, we learned that it is fallacious to assume that the degree distribution 

function ℙ(𝑘) is equivalent to the probability that a randomly chosen vertex has 

degree 𝑘. Therefore, here we try to derive the degree distribution function through its 

definition.  

   We define 𝐹𝑡(𝑘) as the number of vertices with 𝑘 connections at time 𝑡. Since 

there are 𝑡 vertices at time 𝑡, the degree distribution function at time t is written as 

ℙ𝑡(𝑘) = 𝐹𝑡(𝑘)/𝑡. The information about the initial graph 𝐺(𝑡0) is given as 

{𝐹𝑡0(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡0 − 1} (obviously the maximum possible degree at time 𝑡 is 𝑡 −

1). We are interested in the resulting degree distribution function of this self-

organization process. More precisely, we are interested in {𝔼[ℙ𝑡(𝑘)]}, the expected 

value of resulting degree distribution function of 𝐺(𝑡), in terms of the information 

about initial graph, {𝐹𝑡0(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡0 − 1}.  

   The reason why we only consider undirected graph in our model is because in the 

protein-protein interaction network, the connections between proteins are mutual. Two 

proteins being connected means that those two proteins can interact with each other.  
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   The random vertex duplication mimics the duplication of genes. Gene duplication 

is defined as any duplication of a region of DNA that contains a gene. It is a major 

mechanism through which new proteins are generated during molecular evolution. 

Figure 3.2 illustrates the schematic of the process of a duplication event. We can see 

that after the duplication, two identical pieces of DNA fragments exist in the 

chromosome. If the duplicated area contains a gene, we expect to see an identical 

gene is introduced into the biological organism. These two genes will mutate 

independently from each other, over generations of the organism, becoming two 

different genes, providing different biological functions to the organism, which is 

called neofunctionalization. Although the two genes are different due to their 

independent mutation, they came from the same source. Thus they possess similar 

structure, making them interact the same set of other proteins. [19] This is the reason 

why after random vertex duplication, the edges of the duplicated vertex are copied as 

well. Since gene duplication is a purely random event, the duplicating vertex is 

chosen uniformly at random. 

  

Figure 3.2: The schematic of gene duplication process. 
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3.2 Properties of Random Duplication Graph Model 

To determine the degree distribution function of the random duplication graph 𝐺(𝑡), 

we analyzed the self-organization process of random vertex duplication. It is observed 

that the change of 𝐹𝑡(𝑘), the number of vertices with 𝑘 connections at time 𝑡, 

comes from three events. The event {𝑠𝑜𝑚𝑒 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘 𝑣𝑒𝑟𝑡𝑒𝑥 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑} will introduce a 

new vertex with degree 𝑘. Also, the event {𝑠𝑜𝑚𝑒 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘 𝑣𝑒𝑟𝑡𝑒𝑥’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑} 

will change this existing degree-𝑘 vertex to a degree-(𝑘 +  1) vertex. Similarly, the 

event {𝑠𝑜𝑚𝑒 𝑑𝑒𝑔𝑟𝑒𝑒– (𝑘 −  1) 𝑣𝑒𝑟𝑡𝑒𝑥’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑} will change this existing degree-

(𝑘 − 1) vertex to a degree-𝑘 vertex. Since for the existing vertices, the maximum 

possible degree change is 1, there is no other source of additional degree-𝑘 vertices. 

Take Figure 3.3 as an example, the duplication of vertex 4 produces vertex 5. Vertex 4 

is a degree-1 vertex itself, as well as a neighbor of a degree-3 vertex. As a result, 

duplication of vertex 4 causes the creation of a new degree-1 vertex (vertex 5). Also, 

vertex 1 is changed from a degree-3 vertex to a degree-4 vertex. 

 

Figure 3.3: Vertex 4 duplicates to produce vertex 5. Vertex 4 is a degree-1 vertex itself, as well as a neighbor of a 

degree-3 vertex. As a result, duplication of vertex 4 causes the creation of a new degree-1 vertex (vertex 5). Also, 

vertex 1 is changed from a degree-3 vertex to a degree-4 vertex. 
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Theorem 3.2.1. The probability master function of random duplication graph model, 

or the relationship between 𝐺(𝑡 + 1) and 𝐺(𝑡) is given by  

𝔼[𝐹𝑡+1(𝑘)|{𝐹𝑡(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡 − 1}] = 𝐹𝑡(𝑘) +
1

𝑡
𝐹𝑡(𝑘) −

𝑘

𝑡
𝐹𝑡(𝑘) +

𝑘 − 1

𝑡
𝐹𝑡(𝑘 − 1) (3.1) 

   Proof. Let us define some auxiliary random variables for convenience. 

   Define 𝜃𝑡(𝑘) = {
1
0
  
  𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑜 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑠 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , i.e. the indicator 

random variable of event  {𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑜 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑠 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘}. Note that 𝜃𝑡 

is also the indicator random variable of event  {𝑡ℎ𝑒 𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 + 1 𝑖𝑠 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘}. 

   Define 𝜆𝑡(𝑘) as the number of degree-𝑘 vertices at time 𝑡 that has the 

duplicating vertex as their neighbor. These degree-𝑘 vertices will be converted to 

degree-(𝑘 + 1) vertices at time 𝑡 + 1. 

   Define 𝜇𝑡(𝑘) as the number of degree-(𝑘 − 1) vertices at time 𝑡 that has the 

duplicating vertex as their neighbor. These degree-(𝑘 − 1) vertices will be converted 

to degree-𝑘 vertices at time 𝑡 + 1. 

   As a result, we could see that 

𝐹𝑡+1(𝑘) = 𝐹𝑡(𝑘) + 𝜃𝑡(𝑘) − 𝜆𝑡(𝑘) + 𝜇𝑡(𝑘) (3.2) 

and 

                  𝔼[𝐹𝑡+1(𝑘)|{𝐹𝑡(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡 − 1}] (3.3) 

                = 𝐹𝑡(𝑘) + 𝔼[𝜃𝑡(𝑘)|{𝐹𝑡(𝑖)}] − 𝔼[𝜆𝑡(𝑘)|{𝐹𝑡(𝑖)}] + 𝔼[𝜇𝑡(𝑘)|{𝐹𝑡(𝑖)}] (3.4) 

   Also, probability of the event  {𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑐ℎ𝑜𝑠𝑒𝑛 𝑡𝑜 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑠 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘} is 

𝐹𝑡(𝑘)/𝑡, since the selection of the duplicating vertex is uniformly at random. As a 

result, we obtain that 
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𝔼[𝜃𝑡(𝑘)|{𝐹𝑡(𝑖)}] =
𝐹𝑡(𝑘)

𝑡
 (3.5) 

   It is easily noted that 𝜆𝑡(𝑘) is not binomial distributed, making it harder to 

compute 𝔼[𝜆𝑡(𝑘)|{𝐹𝑡(𝑖)}]. We observe that there are total 𝑘 ∙ 𝐹𝑡(𝑘) neighbors of 

degree-𝑘 vertices, since each degree-𝑘 vertex has 𝑘 neighbors. However, some of 

the neighbors are shared by multiple degree-𝑘 vertices.  

   We assume that vertex 𝑣1 is the neighbor of 𝑚1 degree-𝑘 vertices, vertex 𝑣2 is 

the neighbor of 𝑚2 degree-𝑘 vertices, …, vertex 𝑣𝑗  is the neighbor of 𝑚𝑗 degree-𝑘 

vertices. In consequence, 𝑘 ∙ 𝐹𝑡(𝑘) − 𝑚1 −𝑚2 −⋯−𝑚𝑗 vertices are the neighbor 

of only one degree-𝑘 vertices separately. 

   As a result, we obtain that 

𝔼[𝜆𝑡(𝑘)|{𝐹𝑡(𝑖)}] = 1 ∙
𝑘 ∙ 𝐹𝑡(𝑘) − 𝑚1 −𝑚2 −⋯−𝑚𝑗

𝑡
+ 𝑚1 ∙

1

𝑡
+ 𝑚2 ∙

1

𝑡
+ ⋯+𝑚𝑗 ∙

1

𝑡
=
𝑘

𝑡
𝐹𝑡(𝑘) (3.6) 

   Although the expected value of 𝜆𝑡(𝑘) resembles the expected value of a binomial 

distributed random variable, it is important to notice that 𝜆𝑡(𝑘) is not binomial 

distributed, since the events {𝑠𝑜𝑚𝑒 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘 𝑣𝑒𝑟𝑡𝑒𝑥’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑} and 

{𝑠𝑜𝑚𝑒 𝑜𝑡ℎ𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒– 𝑘 𝑣𝑒𝑟𝑡𝑒𝑥’𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑} are not independent. 

   Similarly, we have the following result for 𝔼[𝜇𝑡(𝑘)|{𝐹𝑡(𝑖)}]. 

𝔼[𝜇𝑡(𝑘)|{𝐹𝑡(𝑖)}] =
(𝑘 − 1)𝐹𝑡(𝑘 − 1)

𝑡
 (3.7) 

   To sum up, the relationship between 𝐺(𝑡 + 1) and 𝐺(𝑡) is derived as follows. 

𝔼[𝐹𝑡+1(𝑘)|{𝐹𝑡(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡 − 1}] = 𝐹𝑡(𝑘) +
1

𝑡
𝐹𝑡(𝑘) −

𝑘

𝑡
𝐹𝑡(𝑘) +

𝑘 − 1

𝑡
𝐹𝑡(𝑘 − 1) (3.8) 

and this completes the proof of Theorem 3.2.1.                              □ 
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   Equation 3.8 can be solved exactly by writing out each term on the right hand side 

in terms of earlier time steps. 

Corollary 3.2.1. The solution to Equation 3.8 in terms of information about the initial 

graph, {𝐹𝑡0(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡0 − 1}, is given by 

𝔼[𝐹𝑡(𝑘)] = ∑
(
𝑘 − 1
𝑗 − 1

) (
𝑡 − 𝑘
𝑡0 − 𝑗

)

(
𝑡 − 1
𝑡0 − 1

)

𝑚𝑖𝑛{𝑘;𝑡0−1}

𝑗=𝑚𝑎𝑥{𝑘−𝑡+𝑡0;1}

𝐹𝑡0(𝑗) (3.9) 

   Proof. Write out the right hand side of Equation 3.8 in terms of earlier time steps, 

we obtain that 

           𝔼[𝐹𝑡+1(𝑘)] (3.10) 

         = 𝔼[𝐹𝑡(𝑘)] +
1

𝑡
𝔼[𝐹𝑡(𝑘)] −

𝑘

𝑡
𝔼[𝐹𝑡(𝑘)] +

𝑘−1

𝑡
𝔼[𝐹𝑡(𝑘 − 1)] (3.11) 

         =
𝑡+1−𝑘

𝑡
𝔼[𝐹𝑡(𝑘)] +

𝑘−1

𝑡
𝔼[𝐹𝑡(𝑘 − 1)] (3.12) 

         =
𝑡+1−𝑘

𝑡
[
𝑡−𝑘

𝑡−1
𝔼[𝐹𝑡−1(𝑘)] +

𝑘−1

𝑡−1
𝔼[𝐹𝑡−1(𝑘 − 1)]] 

(3.13) 

            +
𝑘−1

𝑡
[
𝑡+1−𝑘

𝑡−1
𝔼[𝐹𝑡−1(𝑘 − 1)] +

𝑘−2

𝑡−1
𝔼[𝐹𝑡−1(𝑘 − 2)]] 

         =
(𝑡+1−𝑘)(𝑡−𝑘)

𝑡(𝑡−1)
𝔼[𝐹𝑡−1(𝑘)]  + 2

(𝑡+1−𝑘)(𝑘−1)

𝑡(𝑡−1)
𝔼[𝐹𝑡−1(𝑘 − 1)] 

(3.14) 

            +
(𝑘−1)(𝑘−2)

𝑡(𝑡−1)
𝔼[𝐹𝑡−1(𝑘 − 2)] 

         =
(𝑡+1−𝑘)(𝑡−𝑘)(𝑡−1−𝑘)

𝑡(𝑡−1)(𝑡−2)
𝔼[𝐹𝑡−2(𝑘)] + 3

(𝑡+1−𝑘)(𝑘−1)(𝑘−2)

𝑡(𝑡−1)(𝑡−2)
𝔼[𝐹𝑡−2(𝑘 − 1)] 

(3.15) 

            +3
(𝑡+1−𝑘)(𝑘−1)(𝑘−2)

𝑡(𝑡−1)(𝑡−2)
𝔼[𝐹𝑡−2(𝑘 − 2)] +

(𝑘−1)(𝑘−1)(𝑘−3)

𝑡(𝑡−1)(𝑡−2)
𝔼[𝐹𝑡−2(𝑘 − 3)] 

         = ⋯ (3.16) 

         = ∑
[(𝑘−1)(𝑘−2)…(𝑘−𝑖)][(𝑡+1−𝑘)(𝑡−𝑘)…(𝑡0+𝑖−𝑘+1)]

𝑡(𝑡−1)(𝑡−2)…(𝑡0+1)𝑡0
(
𝑡 + 1 − 𝑡0

𝑖
) 𝔼[𝐹𝑡0(𝑘 − 𝑖)]

min{𝑡+1−𝑡0;𝑘−1}

𝑖=max{0;𝑘−𝑡0+1}
 (3.17) 
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   Since we are interested in the moment at time 𝑡, we adjust Equation 3.17 from 

time 𝑡 + 1 to time 𝑡, we obtain that 

           𝔼[𝐹𝑡(𝑘)] (3.18) 

         = ∑
[(𝑘−1)(𝑘−2)…(𝑘−𝑖)][(𝑡−𝑘)(𝑡−𝑘−1)…(𝑡0+𝑖−𝑘+1)]

(𝑡−1)(𝑡−2)…(𝑡0+1)𝑡0
(
𝑡 − 𝑡0
𝑖
) 𝔼[𝐹𝑡0(𝑘 − 𝑖)]

min{𝑡−𝑡0;𝑘−1}

𝑖=max{0;𝑘−𝑡0+1}
 (3.19) 

   Replacing 𝑘 − 𝑖 with a single variable 𝑗, we obtain a simpler solution of 

𝔼[𝐹𝑡(𝑘)] in terms of {𝐹𝑡0(𝑖)    𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑡0– 1}. 

           𝔼[𝐹𝑡(𝑘)] (3.20) 

         = ∑
[(𝑘−1)(𝑘−2)…𝑗][(𝑡−𝑘)(𝑡−𝑘−1)…(𝑡0−𝑗+1)]

(𝑡−1)(𝑡−2)…(𝑡0+1)𝑡0

min{𝑘;𝑡0−1}

𝑗=max{𝑘−𝑡+𝑡0; 1}
𝐹𝑡0(𝑗) (3.21) 

         = ∑

(𝑘−1)!

(𝑗−1)!
−
(𝑡−𝑘)!

(𝑡0−𝑗)!

(𝑡−1)!

(𝑡0−1)!

𝑗
(𝑡−𝑡0)!

(𝑘−𝑗)!(𝑡−𝑡0−𝑘+𝑗)!
𝐹𝑡0(𝑗) (3.22) 

         = ∑
(𝑘−1)!(𝑡−𝑘)!(𝑡−𝑡0)!(𝑡0−1)!

(𝑗−1)!(𝑡0−𝑗)!(𝑡−1)!(𝑘−𝑗)!(𝑡−𝑡0−𝑘+𝑗)!
𝑗  𝐹𝑡0(𝑗) (3.23) 

         = ∑
(
𝑘−1
𝑗−1

)(
𝑡−𝑘
𝑡0−𝑗

)

(
𝑡−1
𝑡0−1

)

𝑚𝑖𝑛{𝑘;𝑡0−1}

𝑗=𝑚𝑎𝑥{𝑘−𝑡+𝑡0;1}
𝐹𝑡0(𝑗) (3.24) 

thus completing the proof of Corollary 3.2.1.                                □ 

   Furthermore, the expected value of the degree distribution function 𝔼[ℙ𝑡(𝑘)], is a 

direct result by dividing 𝔼[𝐹𝑡(𝑘)] with the total number of vertices 𝑡. 

𝔼[ℙ𝑡(𝑘)] =
1

𝑡
∑

(
𝑘 − 1
𝑗 − 1

) (
𝑡 − 𝑘
𝑡0 − 𝑗

)

(
𝑡 − 1
𝑡0 − 1

)

𝑚𝑖𝑛{𝑘;𝑡0−1}

𝑗=𝑚𝑎𝑥{𝑘−𝑡+𝑡0;1}

𝐹𝑡0(𝑗) (3.25) 
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3.3 𝑁-fold of Random Duplication Graphs and 

Convergence of Degree Distribution Function 

As we can see from the case of Erdös-Rényi random graph model in Chapter 2, it is 

difficult for us to discuss the convergence of degree distribution function of a single 

random duplication graph, since a single random duplication graph could result in 

multiple possible degree distribution functions. In consequences, we seek out for 

other conditions under which we can discuss the convergence of the degree 

distribution function. 

   To discuss the convergence of the degree distribution function, we need to give 

the formal definition first. As we can see, {ℙ(𝑘)} are a series of random variables, 

the convergence of degree distribution function means that the series of random 

variables, {ℙ(𝑘)}, converges simultaneously to their expected values, {𝔼[ℙ(𝑘)]}. To 

guarantee that, we simply require that the supremum of |ℙ(𝑘) − 𝔼[ℙ(𝑘)]| converges 

to 0 in probability. In mathematical terms, the definition of convergence of degree 

distribution function is given below. 

Definition 3.3.1. The degree distribution function ℙ(𝑘), converges to its expected 

value 𝔼[ℙ(𝑘)] if and only if 

sup
𝑘
{|ℙ(𝑘) − 𝔼[ℙ(𝑘)]|}

𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
→          0 (3.26) 

   Now we define the 𝑛-fold of random duplication graphs, under which we can 

discuss the convergence of degree distribution function. 

   Consider some graph 𝐺∗(𝑡) composed of 𝑛 subgraphs {𝐺1(𝑡), 𝐺2(𝑡),⋯𝐺𝑛(𝑡)}. Each 

of the 𝑛 subgraphs itself is a random duplication graph, with an identical subgraph 

𝐺(𝑡0). During the self-organization process of random duplication, each subgraph 

evolves independently. 𝐺∗(𝑡) is named the 𝑛-fold of random duplication graphs. 
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   An example is given below to illustrate the model of 𝑛-fold of random 

duplication graphs.  

   Suppose we start from the initial graph 𝐺(4) in Figure 3.4. 

 

Figure 3.4: The initial graph G(4). 

   At the initial time 𝑡0 = 4, we construct the 9-fold of random duplication graphs, 

𝐺∗(4), with 9 identical copies of this initial graph 𝐺(4). 

 

Figure 3.5: The 9-fold of random duplication graphs at time 4, G*(4). 
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   After the initial time 𝑡0 = 4, these 9 subgraphs evolves independently according 

to the rule of random vertex duplication, resulting in 𝐺∗(5), the 9-fold of random 

duplication graphs at time 5. 

 

Figure 3.6: The 9-fold of random duplication graphs at time 5, G*(5). 

   The 𝑛-fold of random duplication graph could still depict very well the behavior 

of protein-protein interaction networks. In a matter of fact, the 𝑛-fold of random 

duplication graphs is just a partitioned random duplication graph model. 

   We define some random variables for our convenience. At time 𝑡, the number of 

degree 𝑘 vertices of subgraph 𝑖, 𝐺𝑖(𝑡), is denoted as 𝐹𝑡
𝑖(𝑘), the degree distribution 

function of subgraph 𝑖, 𝐺𝑖(𝑡), is denoted as ℙ𝑡
𝑖(𝑘). By definition,  

ℙ𝑡
𝑖 (𝑘) =

𝐹𝑡
𝑖(𝑘)

𝑡
 (3.27) 
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   With the help of these auxiliary random variables, we hereby give the formal 

definition of the degree distribution function of the 𝑛-fold of random duplication 

graphs 𝐺∗(𝑡). 

Definition 3.3.2. The degree distribution function of the 𝑛-fold of random duplication 

graphs 𝐺∗(𝑡) at time t is denoted as ℙ𝑡
∗(𝑘), and written as 

ℙ𝑡
∗(𝑘) =

∑ 𝐹𝑡
𝑖(𝑘)𝑛

𝑖=1

𝑛𝑡
=
∑ ℙ𝑡

𝑖(𝑘)𝑛
𝑖=1

𝑛
 (3.28) 

   Now we prove that the degree distribution function of the 𝑛-fold of random 

duplication graphs, ℙ𝑡
∗(𝑘), converges to the expected value in Equation 3.25. 

Theorem 3.3.1. The degree distribution function of the 𝑛-fold of random duplication 

graphs converges in probability as 𝑛 → ∞. More precisely, for ∀𝑡 and ∀𝜀,  

lim
𝑛→∞

𝑃𝑟𝑜𝑏 (sup
𝑘
{|ℙ𝑡

∗(𝑘) − 𝔼[ℙ𝑡(𝑘)]|} > 𝜀) = 0 (3.29) 

   Proof. According to the weak law of large numbers for independent and 

identically distributed random variables, for ∀𝑡, ∀𝑛, and ∀𝜀, 

lim
𝑛→∞

𝑃𝑟𝑜𝑏 (|
∑ ℙ𝑡

𝑖(𝑘)𝑛
𝑖=1

𝑛
− 𝔼[ℙ𝑡(𝑘)]| > 𝜀) = 0 (3.30) 

lim
𝑛→∞

𝑃𝑟𝑜𝑏(|ℙ𝑡
∗(𝑘) − 𝔼[ℙ𝑡(𝑘)]| > 𝜀) = 0 (3.31) 

   That is, for ∀𝑡, ∀𝜀, and ∀𝜉, and for every 𝑘, ∃𝑁𝑘 such that if 𝑛 > 𝑁𝑘, 

𝑃𝑟𝑜𝑏(|ℙ𝑡
∗(𝑘) − 𝔼[ℙ𝑡(𝑘)]| > 𝜀) < 𝜉 (3.32) 

   Let 𝑁 = 𝑚𝑎𝑥
𝑘
{𝑁𝑘}, for ∀𝑡, ∀𝜀, and ∀𝜉, if 𝑛 > 𝑁, 

𝑃𝑟𝑜𝑏 (sup
𝑘
{|ℙ𝑡

∗(𝑘) − 𝔼[ℙ𝑡(𝑘)]|} > 𝜀) < 𝜉 (3.33) 

   For ∀𝑡 and ∀𝜀, 
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lim
𝑛→∞

𝑃𝑟𝑜𝑏 (sup
𝑘
{|ℙ𝑡

∗(𝑘) − 𝔼[ℙ𝑡(𝑘)]|} > 𝜀) = 0 (3.34) 

thus completing the proof of Theorem 3.3.1.                                □ 

   This theorem indicates that if we start from some initial graph 𝐺(𝑡0), with high 

probability as 𝑛 → ∞, the 𝑛-fold of random duplication graphs will present a degree 

distribution function of Equation 3.25, such that 

ℙ𝑡(𝑘)
𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
→          

1

𝑡
∑

(
𝑘 − 1
𝑗 − 1

) (
𝑡 − 𝑘
𝑡0 − 𝑗

)

(
𝑡 − 1
𝑡0 − 1

)

𝑚𝑖𝑛{𝑘;𝑡0−1}

𝑗=𝑚𝑎𝑥{𝑘−𝑡+𝑡0;1}

𝐹𝑡0(𝑗)    𝑎𝑠 𝑛 → ∞ (3.35) 
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Chapter 4  

 

Protein-Protein Interaction Networks as a 

Special Case of Random Duplication 

Graph 

 

4.1 Degree Distribution Function of Protein-Protein 

Interaction Networks 

This model of random duplication graph explicitly depicts the self-organization 

process of protein-protein interaction networks.  

   In our model of protein-protein interaction networks, proteins are represented as 

vertices, protein-protein interactions are represented by edges, and gene duplications 

are represented as random vertex duplication. 

   Since duplicated genes produce identical proteins that interact with the exact same 

protein partners, all the edges are copied during random vertex duplication. 

Consequently, we can model protein-protein interaction networks as a special case of 

random duplication graph. 

   We take a valid assumption that, at the beginning of the gene duplication process, 

proteins are sparsely connected. As a result, in 𝐺(𝑡0), we let 𝐹𝑡0(1) = 𝑡0 and 𝐹𝑡0(𝑖) = 0 

for ∀𝑖 ∈ [2, 𝑡0 − 1], i.e., each protein only has one connection. This assumption 

complies with the situation of the beginning of the biological evolution—a few 

different proteins gathered together, not a lot of connections were formed. 
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Figure 4.1: An example of the sparsely connected initial graph. 

   Based on this specific initial condition, solution to 𝔼[ℙ𝑡(𝑘)] is derived by 

leaving only the term 𝑗 = 1. 

𝔼[ℙ𝑡(𝑘)] =
𝑡0
𝑡

(
𝑡 − 𝑘
𝑡0 − 1

)

(
𝑡 − 1
𝑡0 − 1

)
    𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑡 − 𝑡0 + 1 (4.1) 

   To get a simpler expression of the degree distribution function, an upper bound 

and a lower bound are found for 𝔼[ℙ𝑡(𝑘)]. 

Corollary 4.1.1. An upper bound and a lower bound exist for 𝔼[ℙ𝑡(𝑘)]. 

𝑡0
𝑡
(
𝑡 − 𝑘 − 𝑡0 + 2

𝑡 − 1
)
𝑡0−2

≤ 𝔼[ℙ𝑡(𝑘)] ≤
𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 𝑡0 + 1
)
𝑡0−2

    𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑡 − 𝑡0 + 1 (4.2) 

   Proof. For 1 ≤ 𝑘 ≤ 𝑡 − 𝑡0 + 1, 

                      𝔼[ℙ𝑡(𝑘)] (4.3) 

                    =
𝑡0

𝑡

(
𝑡−𝑘
𝑡0−1

)

(
𝑡−1
𝑡0−1

)
 (4.4) 
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                    =
𝑡0

𝑡

(𝑡−𝑘)(𝑡−𝑘−1)⋯(𝑡−𝑘−𝑡0+2)

(𝑡−1)(𝑡−2)⋯(𝑡−𝑡0+1)
 (4.5) 

   It is easy to see from Equation 4.5 that 

𝑡0
𝑡
(
𝑡 − 𝑘 − 𝑡0 + 2

𝑡 − 1
)
𝑡0−2

≤ 𝔼[ℙ𝑡(𝑘)] ≤
𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 𝑡0 + 1
)
𝑡0−2

    𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑡 − 𝑡0 + 1 (4.6) 

thus completing the proof of Corollary 4.1.1.                               □ 

   Furthermore, these two bounds are asymptotically tight as 𝑡 → ∞. 

lim
𝑡→∞

𝑡0
𝑡
(
𝑡 − 𝑘 − 𝑡0 + 2

𝑡 − 1
)
𝑡0−2

= lim
𝑡→∞

𝔼[ℙ𝑡(𝑘)] = lim
𝑡→∞

𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 𝑡0 + 1
)
𝑡0−2

    𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑡 − 𝑡0 + 1 (4.7) 

   With the help of these bounds, a simple approximation to 𝔼[ℙ𝑡(𝑘)] is obtained. 

𝔼[ℙ𝑡(𝑘)]~𝑐
𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 1
)
𝑡0−2

    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐, 𝑎𝑠 𝑛 → ∞ (4.8) 

   This approximation is sound because this approximation lies within the upper and 

lower bounds of 𝔼[ℙ𝑡(𝑘)], and the bounds are asymptotically tight. In mathematical 

terms, we have the following results between the approximation and the bounds. 

𝑡0
𝑡
(
𝑡 − 𝑘 − 𝑡0 + 2

𝑡 − 1
)
𝑡0−2

≤
𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 1
)
𝑡0−2

≤
𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 𝑡0 + 1
)
𝑡0−2

 (4.9) 

lim
𝑡→∞

𝑡0
𝑡
(
𝑡 − 𝑘 − 𝑡0 + 2

𝑡 − 1
)
𝑡0−2

= lim
𝑡→∞

𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 1
)
𝑡0−2

= lim
𝑡→∞

𝑡0
𝑡
(
𝑡 − 𝑘

𝑡 − 𝑡0 + 1
)
𝑡0−2

 (4.10) 

   Figure 4.2 shows a comparison between 𝔼[ℙ𝑡(𝑘)], the bounds, and the 

approximation, with parameters 𝑡0 = 25 and 𝑡 = 200. It is shown that 𝔼[ℙ𝑡(𝑘)] is 

well approximated by Equation 4.8. 
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Figure 4.2: (A) The comparison between the degree distribution function, the bounds, and the approximation; (B) 

The comparison in log-log plot. 

   Replace the 𝑡0 − 2 with a single parameter 𝑡1, we propose a simple degree 

distribution function for protein-protein interaction networks, modeled as a special 

case of random duplication graph with a sparse initial graph. 

𝔼[ℙ𝑡(𝑘)]~𝑐 (
𝑡 − 𝑘

𝑡 − 1
)
𝑡1

    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 (4.11) 

   Note that Equation 4.11 is only the expected value of the degree distribution 

function, the convergence ℙ𝑡(𝑘) → 𝔼[ℙ𝑡(𝑘)] is only valid under the 𝑛-fold. 

   In summary, we present our model of protein-protein interaction networks. We 

start from a sparsely connected initial graph, and devise a graph that contains n such 

subgraphs. As time advances, let the 𝑛 subgraphs evolves independently according 

to the rule of random vertex duplication. The resulting graph is our model of protein-

protein interaction network. Our model of protein-protein interaction networks is 

shown in Figure 4.3. 
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Figure 4.3: Our model of protein-protein interaction networks. We start from 𝑛 identical sparsely-connected 

initial graph, and let the 𝑛 subgraphs evolve independently according to the rule of random vertex duplication. 

In addition, the degree distribution function of the protein-protein interaction 

networks is given in Equation 4.12. 

ℙ𝑡
∗~𝑐 (

𝑡 − 𝑘

𝑡 − 1
)
𝑡1

    𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 (4.12) 

As a result, we have hereby derived the degree distribution function of protein-

protein interaction networks. Two parameters, 𝑡1 and 𝑡, stand for the initial scale of 

the network, and the timesteps taken during the self-organization process respectively. 

 

4.2 The Behaviors of the Degree Distribution Function 

In this section we explore the behaviors of protein-protein interaction networks with 

the help of our degree distribution function in Equation 4.12. 

   First, Figure 4.4 shows the degree distribution function with parameters 𝑡1 = 27 

and 𝑡 = 200. It is shown that our degree distribution function can indeed illustrate 

the degree distribution pattern of protein-protein interaction networks, where most 

vertices have relatively low degree, while high-degree vertices exist.  
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Figure 4.4: (A) Our degree distribution function with parameters 𝑡1 = 27 and 𝑡 = 200; (B) Log-log plot. 

   Furthermore, Figure 4.5 shows the comparison between the degree distribution 

functions in Equation 4.12 at time 𝑡 = 200 and 𝑡 = 400 (with 𝑡1 = 27).  

   We can see that as time 𝑡 increases from 200 to 400, the percentage of high-

degree vertices becomes larger.  

   We can make an important prediction based on the behavior of the degree 

distribution function—as the gene duplication process proceeds, the percentage of 

densely-connected proteins is higher. In other words, in ancient living organisms, the 

degree distribution pattern of their protein-protein interaction networks should be 

similar to the case 𝑡 = 200 in Fig. 8. Whereas in modern living organisms, the 

pattern should be similar to the case 𝑡 = 400. 
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Figure 4.5: (A) The degree distribution function at time 𝑡 = 200 and 𝑡 = 400 respectively; (B) Log-log plot. 

   In addition, the two parameters, 𝑡1 and 𝑡, in Equation 4.11 can be used to predict 

the initial scale of the network, and the timesteps taken during the self-organization 

process respectively. 

 

4.3 Comparison with Degree Distribution Data 

   First, the degree distribution data of the protein-protein interaction network of 

Drosophila Melanogaster can be fitted by our degree distribution function with 

parameters 𝑡1 = 2600, and 𝑡 = 7048. The 𝑟2 of the fit is greater than 0.96.  
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Figure 4.6: (A) Comparison between the degree distribution data of the protein-protein interaction network of 

Drosophila Melanogaster and our degree distribution function; (B) Log-log plot. 

Next, we compare our degree distribution function with the degree distribution 

data of the protein-protein interaction network of Saccharomyces cerevisiae [20].  

The parameters  𝑡1 = 410, and 𝑡 = 2999 provide the best fit, where  𝑟2 is 

greater than 0.97. 

 

Figure 4.7: (A) Comparison between the degree distribution data of the protein-protein interaction network of 

Saccharomyces cerevisiae and our degree distribution function; (B) Log-log plot. 
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Then, we compare our degree distribution function with the degree distribution 

data of partial human protein-protein interaction network [21]. The parameters  𝑡1 =

3000, and 𝑡 = 4825 provide the best fit, where  𝑟2 is greater than 0.96. 

 

Figure 4.8: (A) Comparison between the degree distribution data of partial human protein-protein interaction 

network and our degree distribution function; (B) Log-log plot. 

As we can see, the degree distribution data can be fitted adequately by our degree 

distribution function. Our degree distribution function indeed resembles the degree 

distribution pattern of protein-protein interaction networks, thus we can conclude that 

we have devised an appropriate model for protein-protein interaction networks. 

Furthermore, we have shown that it is the gene duplication process combined with the 

sparsely-connected initial condition that leads to the unique degree distribution pattern 

in protein-protein interaction networks. 
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Chapter 5  

 

Conclusions and Future Work 

 

5.1 Conclusions 

Motivated by explaining the degree distribution pattern of protein-protein interaction 

networks, we try to model protein-protein interaction networks as random duplication 

graphs. We are particular interested in explaining why protein-protein interaction 

networks present a unique degree distribution pattern that most of the proteins are 

sparsely connected, while densely-connected proteins also exist. We intend to use 

random duplication graph model to find out the cause to such degree distribution 

pattern. 

   To find an approach of our research, we give a review of early models of complex 

networks, especially the Erdös-Rényi random graph model. We find that the previous 

approach to derive the degree distribution function of Erdös-Rényi random graph 

model is wrong. Also, it occurs to us that it is difficult to discuss the convergence of 

degree distribution function of a single Erdös-Rényi random graph. 

   When it comes to the random duplication graph model, we derive the expected 

degree distribution function through the probability master function. Instead of 

discussing the convergence of degree distribution function of a single random 

duplication graph, we propose the 𝑛-fold of random duplication graphs, a 

combination of 𝑛 independent random duplication graphs, under which we are able 

to prove the convergence of the degree distribution function. 
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   Furthermore, we model the protein-protein interaction networks as a special case 

of random duplication graph with sparse initial graph. The degree distribution 

function of protein-protein interaction networks is derived under this model, and 

compared with degree distribution data of reconstructed protein-protein interaction 

networks. It is shown that our degree distribution function can provide a good fit with 

the degree distribution data. Moreover, we have shown that it is the gene duplication 

process combined with the sparsely-connected initial condition that leads to the 

unique degree distribution pattern in protein-protein interaction networks. One further 

prediction can be made based on our analysis—the longer the gene duplication 

process is, the more densely-connected proteins will be found in the protein-protein 

interaction network. 

 

5.2 Future Work 

During our review of the Erdös-Rényi random graph model, we find that the previous 

approach to derive the degree distribution function is fallacious. In a matter of fact, 

we cannot prove if Erdös-Rényi random graph model has a single converging degree 

distribution function or not, indicating that the Erdös-Rényi random graph model 

could result in multiple final states with different degree distribution function. 

   If we were to prove that Erdös-Rényi random graph model has a single 

converging degree distribution function, we would have to prove a stronger version of 

weak law of large numbers for dependent random variables. The weak law of large 

numbers we need must provide better conditions than the Bernstein’s Theorem. 

Furthermore, much work remains to be done in the necessary and sufficient 

conditions for the weak law of large numbers of dependent random variables to hold.  
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   If we were to accept the claim that the degree distribution function of Erdös-Rényi 

random graph model does not converge, it would be necessary to study the behavior 

of the degree distribution function beyond the law of large numbers. In this case, the 

Erdös-Rényi random graph model will result in multiple different degree distribution 

functions, we hope to understand what the probability distribution of the degree 

distribution function will be. 

   In addition, we need to study the Barabási-Albert model more rigorously. Till 

today there is no proof that Barabási-Albert model results in a scale-free distribution 

function. Similarly, the convergence of degree distribution function of the Barabási-

Albert model need to be discussed. 

   When it comes to the random duplication graph model, we hope to invest into the 

behavior of the degree distribution function of a single random duplication graph, 

instead of the 𝑛-fold random duplication graphs, similar to the case of Erdös-Rényi 

random graph model. 
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Letter of Copyright Permission 

 

Figure 2.6 and Figure 2.7 are reused from [14], with copyright permission granted by 

AARS. 

Figure 2.9 is reused from [18], with copyright permission granted by Cell Press. The 

Copyright License ID is 3675100171806.   
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