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Abstract

This dissertation concentrates on the problem of automated synthesis and repair of
fault-tolerant systems. In particular, given the required specification of the system, our
goal is to synthesize a fault-tolerant system, or repair an existing one. We study this
problem for two classes of timed and distributed systems.

In the context of timed systems, we focus on efficient synthesis of fault-tolerant timed
models from their fault-intolerant version. Although the complexity of the synthesis prob-
lem is known to be polynomial time in the size of the time-abstract bisimulation of the
input model, the state of the art lacked synthesis algorithms that can be efficiently imple-
mented. This is in part due to the fact that synthesis is in general a challenging problem
and its complexity is significantly magnified in the context of timed systems. We propose
an algorithm that takes a timed automaton, a set of fault actions, and a set of safety and
bounded-time response properties as input, and utilizes a space-efficient symbolic represen-
tation of the timed automaton (called the zone graph) to synthesize a fault-tolerant timed
automaton as output. The output automaton satisfies strict phased recovery, where it is
guaranteed that the output model behaves similarly to the input model in the absence of
faults and in the presence of faults, fault recovery is achieved in two phases, each satisfying
certain safety and timing constraints.

In the context of distributed systems, we study the problem of synthesizing fault-
tolerant systems from their intolerant versions, when the number of processes is unknown.
To synthesize a distributed fault-tolerant protocol that works for systems with any number
of processes, we use counter abstraction. Using this abstraction, we deal with a finite-state
abstract model to do the synthesis. Applying our proposed algorithm, we successfully
synthesized a fault-tolerant distributed agreement protocol in the presence of Byzantine
fault. Although the synthesis problem is known to be NP-complete in the state space of the
input protocol (due to partial observability of processes) in the non-parameterized setting,
our parameterized algorithm manages to synthesize a solution for a complex problem such
as Byzantine agreement within less than two minutes.

A system may reach a bad state due to wrong initialization or fault occurrence. One
of the well-known types of distributed fault-tolerant systems are self-stabilizing systems.
These are the systems that converge to their legitimate states starting from any state, and
if no fault occurs, stay in legitimate states thereafter. We propose an automated sound and
complete method to synthesize self-stabilizing systems starting from the desired topology
and type of the system. Our proposed method is based on SMT-solving, where the desired
specification of the system is formulated as SMT constraints. We used the Alloy solver to
implement our method, and successfully synthesized some of the well-known self-stabilizing

iii



algorithms. We extend our method to support a type of stabilizing algorithm called ideal-
stabilization, and also the case when the set of legitimate states is not explicitly known.

Quantitative metrics such as recovery time are crucial in self-stabilizing systems when
used in practice (such as in networking applications). One of these metrics is the average
recovery time. Our automated method for synthesizing self-stabilizing systems generate
some solution that respects the desired system specification, but it does not take into ac-
count any quantitative metrics. We study the problem of repairing self-stabilizing systems
(where only removal of transitions is allowed) to satisfy quantitative limitations. The met-
ric under study is average recovery time, which characterizes the performance of stabilizing
programs. We show that the repair problem is NP-complete in the state space of the given
system.
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Chapter 1

Introduction

Dependability is a vital property of many computing systems, especially, embedded safety/
mission-critical systems. Avizienis et al. define dependability by the following attributes [13]:

• Availability: readiness for correct service

• Reliability: continuity of correct service

• Safety: absence of catastrophic consequences on the user(s) and the environment

• Integrity: absence of improper system alteration

• Maintainability: ability for a process to undergo modifications and repairs.

Most systems are exposed to a set of faults, which can have significant impact on the
system’s dependability. We can consider fault as a defect in the system, which may or may
not lead to a system failure (specification violation). For instance, an exception may be
thrown, but the system can catch and handle that, so that the overall system execution
respects the specification. There have been several mechanisms in the literature to attain
the various attributes of dependability, which are categorized in [13] into four major groups
of fault prevention, fault tolerance, fault removal, and fault forecasting. Our focus in this
thesis is to automatically provide fault-tolerance, and we consider any fault that can be
represented as a change of state in the system, which include different types of faults (e.g.,
stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss, etc.), and different
natures of the faults (permanent, transient, or intermittent) [17].

The challenge in designing fault-tolerant systems is that new faults may be introduced
during the systems’ lifecycle due to the change of environment or incomplete specification.
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Designing the system from scratch to make it fault-tolerant for the new faults is a complex
task. Manual revision of the system, on the other hand, needs a round of verification
to ensure that the revised system is indeed fault-tolerant for the new faults, and also all
properties satisfied by the original system, still hold in the revised one. If the verification
does not pass, we should go back to revision, and we may need to repeat this cycle several
times before the system is successfully revised. Therefore, having access to an automated
method for system revision to provide fault-tolerance is highly desirable. Such a method
should be correct by construction, meaning that new cycles of verification-revision is not
required, and hence, the system can be easily revised considering new faults incrementally.
We study the problem of automated revision to provide fault-tolerance for two important
classes of systems; real-time and distributed systems.

Synthesis of fault-tolerant systems incrementally is not desirable in some applications,
as they should be fault-tolerant to any possible fault that takes the system to an arbitrary
state. Such systems are called self-stabilizing and are required in applications, such as
networking or robotics. Automated synthesis of such systems from a set of requirements is
a complex, but highly desirable task. This is due to the fact that an automated synthesis
results in a system that is correct by construction, and verification is no longer required.
Also, there are cases where there does not exist any system satisfying a set of require-
ments. Proof of non-existence for these cases is generally highly complex. Having access
to a complete automated synthesis method, we can automatically reach these impossibility
results, which will save a lot of time and effort from system designers. Automated synthe-
sis of a program from a set of requirements is generally a highly complex and challenging
problem due to the high time and space complexity of its decision procedures. Synthe-
sizing self-stabilizing distributed protocols involves an additional level of complexity, due
to constraints caused by distribution. Examples of such constraints include read-write re-
striction of processes in the shared-memory model, timing models, and symmetry. These
constraints result in combinatorial blowups in the search space of corresponding synthesis
problems. With this motivation, we study automated synthesis of self-stabilizing systems,
starting from a set of requirements.

1.1 Synthesizing Timed Fault-Tolerant Systems

Our first research direction is to design an automated technique for synthesizing fault-
tolerant timed systems from fault-intolerant systems. What makes this problem difficult
is the conflicting nature of time-predictability (as required in real-time systems) and unan-
ticipated time and type of faults. In particular, fault-tolerance requires that the system
should eventually return to its ideal behavior, and its real-time nature needs the recovery
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to be timely. While satisfying both requirements may not be possible, incorporating two-
phase fault recovery [17] enables the system to first recover to a safe or acceptable state
quickly, and then return to its ideal behavior. Also, the intermediate state could be useful
for other purposes, e.g., for logging. For instance, in a traffic signal controller, if the con-
troller detects a fault, all signals should first turn red immediately to prevent catastrophic
consequences (phase 1) before final recovery to normal behavior (phase 2).

The other issue when synthesizing real-time systems is their infinite semantic models
because of the infinity of time. In this research, we propose a time and space-efficient
algorithm that takes as input (1) a fault-intolerant program in terms of a timed automaton,
(2) a set of faults, and (3) specification of phased recovery, and generates as output a fault-
tolerant timed automaton that respects the phased recovery specification in the absence
and presence of faults. Our technique utilizes an abstraction data structure called zone
graphs.

1.2 Synthesizing Untimed Distributed Fault-Tolerant

Systems

The second type of systems we consider is distributed systems. There are two sources
of complexity when dealing with synthesizing distributed systems. First, the time and
space complexity is an obvious issue when dealing with distributed systems. Secondly, we
need to consider classes of transitions or, what we call, group transitions when designing
distributed systems. These classes exist in distributed systems, since each process has only
a partial view of the system. For example, in a system with set of variables {a, b}, consider
a process that can only read the variable a. If this process has a transition that changes
the value of a from 1 to 2, then this transition occurs independent of the value of b. Hence,
this transition is, in fact, an equivalence class, where the value of a changes from 1 to 2
and the value of b can be anything in the domain of b as long as this value remains the
same in the source and target of the transition. We call this equivalence class, a group of
transitions, meaning that if one is removed (or added) from the system, then the entire
group should be removed (or added) as well.

The problem of synthesis of fault-tolerant distributed systems is previously studied
in [21]. In this dissertation, our focus is on parameterized synthesis, where a distributed
fault-tolerant system has n processes, where n is unknown a priori. Our research goal is
to propose an algorithm that takes as input (1) a process template, (2) a set of faults,
and (3) a specification, and generates as output a process template, such that each system
instantiated from that template respects the recovery specification in the absence and
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presence of faults. For tackling this problem, our idea is to use a type of finite abstraction,
called counter abstraction [72], as the underlying data structure for synthesis. We also
prove that our algorithm is sound, meaning that the resulting system is fault-tolerant
when instantiated for any number of processes.

A special type of distributed fault-tolerant systems are self-stabilizing systems, which
have two key features:

• Strong convergence. When a fault occurs in the system and, consequently, reaches
some arbitrary state, the system is guaranteed to recover proper behavior within a
finite number of execution steps.

• Closure. Once the system reaches such good behavior, typically specified in terms
of a set of legitimate states, it remains in this set thereafter in the absence of new
faults.

Self-stabilization has a wide range of application domains, including networking [34] and
robotics [70]. The concept of self-stabilization was first introduced by Dijkstra in the
seminal paper [29], where he proposed three solutions for designing self-stabilizing token
circulation in ring topologies. Twelve years later, in a follow up article [30], he published
the correctness proof, where he states that demonstrating the proof of correctness of self-
stabilization was more complex than he originally anticipated. Indeed, designing correct
self-stabilizing algorithms is a tedious and challenging task, prone to errors. Also, compli-
cations in designing self-stabilizing algorithms arise, when there is no commonly accessible
data store for all processes, and the system state is based on the valuations of variables dis-
tributed among all processes [29]. Thus, it is highly desirable to have access to techniques
that can automatically generate self-stabilizing protocols that are correct by construction.

With this motivation, we focus on the problem of automated synthesis of self-stabilizing
protocols. Based on the input specification and the type of output program, there are
various synthesis techniques. Our technique to synthesize self-stabilizing protocols takes
as input the following specification:

1. A topology that specifies (1) a finite set V of variables allowed to be used in the
protocol and their respective finite domains, (2) the number of processes, and (3)
read-set and write-set of each process; i.e., subsets of V that each process is allowed
to read and write.

2. A set of legitimate states in terms of a Boolean expression over V .
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3. The timing model; i.e., whether the synthesized protocol is synchronous or asyn-
chronous.

4. Symmetry; i.e., whether or not all processes should behave identically.

5. Type of stabilization; i.e., strong convergence guarantees finite-time recovery, while
weak convergence guarantees only the possibility of recovery from any arbitrary state.

Our approach is, in particular, SMT1-based. That is, given the five above input con-
straints, we encode them as a set of SMT constrains. If the SMT instance is satisfiable,
then a witness solution to its satisfiability is a distributed protocol that meets the input
specification. If the instance is not satisfiable, then we are guaranteed that there is no
protocol that satisfies the input specification. To the best of our knowledge, unlike the
work in [21, 35], our approach, is the first sound and complete technique that synthesizes
self-stabilizing algorithms. That is, our approach guarantees synthesizing a protocol that
is correct by construction, if theoretically, there exists one, thanks to the power of ex-
isting constraint solvers. It allows synthesizing protocols with different combinations of
timing models along with symmetry and types of stabilization. In order to demonstrate
the effectiveness of our approach, we conduct a diverse set of case studies for automati-
cally synthesizing well-known protocols from the literature of self-stabilization. These case
studies include Dijkstra’s token ring [29] (for both three and four state machines), maxi-
mal matching [68], weak stabilizing token circulation in anonymous networks [28], and the
three coloring problem [45]. Given different input settings (i.e., in terms of the network
topology, type of stabilization, symmetry, and timing model), we report and analyze the
total time needed for synthesizing these protocols using the constraint solver Alloy [49].

There are cases, where developing a formal predicate for legitimate states (LS ) is not
at all a straightforward task. For instance, the set of legitimate states for Dijkstra’s token
ring algorithm with three-state machines [29] for three processes is the following 2:

(((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
(((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
((x1(s) + 1 mod 3 = x0(s)) ∧ ((x1(s) + 1 mod 3 6= x2(s)))) ∨
((x0(s) + 1 mod 3 6= x1(s)) ∧ (x1(s) + 1 mod 3 6= x0(s)) ∧ (x1(s) + 1 mod 3 = x2(s)))

Developing such a predicate requires huge expertise and insight. Ideally, the designer
should use the basic requirements (unique token and circulation of it) to identify the

1Satisfiability Modulo Theories (SMT) are decision problems for formulas in first-order logic with equal-
ity combined with additional background theories such as arrays, bit-vectors, etc.

2Note that this is just an example to demonstrate the complexity of a predicate for LS .
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desired system, instead of somehow magically producing a complex predicate such as the
one above.

In our next study, we propose an automated approach to synthesize self-stabilizing sys-
tems given (1) the network topology, and (2) the high-level specification of legitimate states
in a fragment of linear temporal logic (LTL). Furthermore, we explore automated synthe-
sis of ideal-stabilizing protocols [69]. These protocols always satisfy their specification, i.e.,
all states are legitimate. They address two drawbacks of self-stabilizing protocols, namely
exhibiting unpredictable behavior during recovery and poor compositional properties. In
the case of self-stabilizing systems, we successfully synthesize Dijkstra’s [29] token ring and
Raymond’s [74] mutual exclusion algorithms without legitimate states as input. We also
synthesize ideal-stabilizing leader election and local mutual exclusion (in a line topology)
protocols.

In out next work, we study the requirements on the performance of self-stabilizing
systems. In other words, our previous work only focuses on synthesis of some solution
that respects only closure and convergence. However, some quantitative metrics such as
recovery time are as crucial as correctness in practice (e.g., in developing stabilizing network
protocols). With this motivation, we study the problem of repairing existing weak/strong-
stabilizing programs under performance constraints. The constraint under investigation
is, in particular, average recovery time. This metric can be measured by giving weights
to states and transitions of a stabilizing program and computing the expected value of
the number of steps that it takes the program to reach a legitimate state. These weights
can be assigned by a uniform distribution (in the simplest case), or by more sophisticated
probability distributions. This technique has been shown to be effective in measuring the
performance of weak-stabilizing programs as well, where not all computations converge [40],
as well as cases where faults hit certain variables or locations more often. In this thesis,
we show that the complexity of repairing an existing weak-stabilizing protocol to obtain
either a weak or strong stabilizing protocol, so that (1) only removal of transitions is
allowed during repair, and (2) the repaired protocol satisfies a certain average recovery
time, is NP-complete.

In summary, our research problem is automated synthesis and repair of fault-tolerant
systems. To evaluate our work, we implement our proposed algorithms for the synthesis of
fault-tolerant systems in different settings and do experiments on several well-known case
studies.
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1.3 Organization of the Document

The rest of this document is organized as follows. In Chapter 2, we present our work
towards automated synthesis of fault-tolerant real-time systems, and Chapter 3 presents
our work on synthesis of self-stabilizing systems. We discuss our complexity results on
repairing self-stabilizing systems in Chapter 4. In Chapter 5, we present our research on
parametrized synthesis of fault-tolerant systems, and in Chapter 6, we discuss the work
related to our research goals. We make concluding remarks, and present a summary of our
future goals for this dissertation in Chapter 7.
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Chapter 2

Synthesis of Fault-Tolerant
Real-Time Systems

2.1 Introduction

Dependability and time-predictability are two vital properties of most embedded (especially,
safety/mission-critical) systems. Consequently, providing fault-tolerance and meeting tim-
ing constraints are two inevitable aspects of dependable real-time embedded systems. How-
ever, these two features have conflicting natures; fault-tolerance deals with unanticipated
time and type of faults, while meeting time constraints requires time predictability. This
conflict makes design and analysis of fault-tolerant real-time systems a tedious and error-
prone task. Hence, it is highly desirable to have access to automated techniques that
can generate fault-tolerant models that meet their timing constraints and are correct by
construction.

In many commonly considered systems, fault recovery has to be achieved in multiple
(possibly ordered) phases, each satisfying certain constraints. In particular, fault-tolerance
requires that the system should eventually return to its ideal behavior, and its real-time
nature needs the recovery to be quick. While satisfying both requirements may not be
possible, having two-phase fault recovery enables the system to first recover to a safe or
acceptable state quickly, and then returns to its ideal behavior. Also, the intermediate
state could be useful for other purposes, e.g., for logging.

In the context of synthesizing timed models with bounded-time phased fault recovery,
assume that when a fault occurs, the system is required to reach a state, where Q holds in
phase 1; and in phase 2, the system execution should get to a state where P is satisfied.
In [17], the authors showed that if Q is not required to be closed in the execution of recovery
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transitions, then synthesizing a timed automaton [4] with 2-phase recovery is NP-complete
in the size of the detailed region graph [4] of the input automaton1. On the contrary, if the
closure of Q is required and, moreover, P ⊆ Q, then the synthesis problem can be solved
in polynomial time. The polynomial-time algorithm presented in [17] to solve the latter
problem is only an evidence for proving the problem complexity and is not an efficient
practical solution with potential for implementation. This is simply because the size of a
region graph grows incredibly huge even for small models. With this motivation, in this
research, we propose a time- and space-efficient algorithm for synthesizing timed automata
that provide 2-phase recovery, where Q is required to be closed and P ⊆ Q, while no new
behaviors are added in the absence of faults.

2.2 Preliminaries

In this section, we present the preliminary concepts on timed automata and specifications.

2.2.1 Timed Automata with Deadlines (TAD) [4,22]

In this research, we adopt the notion of timed automata [4] with deadlines (TAD) [22]
extended by discrete variables.

2.2.1.1 Syntax

Let X = {x1, x2, ..., xm} be a finite set of clock variables that range over real numbers
R≥0 ∪ {−1} 2. The value −1 identifies a disabled clock variable. The set Φ of all clock
constraints over X is inductively defined as follows:

p ::= x ∼ n | p ∧ p | ¬p

where n is a non-negative integer, and ∼∈ {<,≤, >,≥}. Let V be a set of finite-domain
discrete variables. We denote the set of all guards (Boolean expressions) over V by GD.

Definition 1. A timed automaton with deadline is a tuple TAD = (L, l0, V, U,X,E),
where

• L is a finite set of locations

1A detailed region graph is a finite bisimilar representation of a timed automaton.
2We are using continuous time to model variables that evolve over time.
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• l0 ∈ L is the initial location

• V is a finite set of discrete variables

• U is a finite set of update functions

• X is a finite set of clock variables and

• E ⊆ L× U ×GD × Φ× Φ× 2X × 2X × L is a finite set of timed switches.

A timed switch is of the form (l, u, gd, gc, d, (Xres , Xdis), l′), where Xres is a set of clocks to
be reset, Xdis is a set of clock variables being disabled, such that Xres ∩Xdis = {}, gc ∈ Φ
is a clock constraint, and d ∈ Φ is the transition delay, such that d⇒ gc.

3

In Definition 1, delay d determines the urgency of a switch. There are three different
types of delays [22]. Intuitively, when d = gc, the switch is called eager. An enabled eager
switch cannot be delayed and, hence, does not let time progress before its execution. If
d = false, then the switch is lazy, meaning that whenever it gets enabled, its execution can
be delayed by letting time progress. This delay may even result in disabling the transition.
In a delayable switch, d is the falling edge of a right-closed guard gc; i.e., whenever a
delayable switch is enabled, its execution can be delayed as long as the associated guard
remains true.

2.2.1.2 Semantics

In the following, we use vald to denote a function that maps each v ∈ V to a value in
its finite domain Domv, and is called a valuation of discrete variables. Likewise, val c
denotes a clock valuation, which is a function that maps each clock variable x ∈ X to a
value in R≥0 ∪ {−1}. An update function u ∈ U , is a function Domv1 × . . . ×Domv|V | →
Domv1 × . . .×Domv|V | that maps each valuation vald to a valuation val′d. We denote the
fact that a (clock or discrete) valuation val satisfies a guard g by val |= g. Each element of
a tuple denoting a switch e is presented by the name of the element subscripted by e. For
example, ue denotes the update function of the switch e. The semantic model of a TAD is
a tuple SM = (S, s0, T ), where

• S is the state space of the semantic model. Each state is a tuple (l, vald, val c), where
l ∈ L is a location, and vald and val c are discrete and clock valuations, respectively.

3 Note that ⇒ denotes the logical implication.
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• s0 = (l0, (vald)0,
−→
0 ) is the initial state, where l0 is the initial location, (vald)0 is a

valuation in which all discrete variables are initialized to some value in their domains,
and
−→
0 denotes the clock valuation with all clocks being set to zero.

• T is the set of transitions on S. In order to define T , we first identify the clock
valuations from where time can progress from a location l and valuation vald. Let
El be the set of switches originating from l. We define c(l, vald) as the set of clock
valuations:

c(l, vald) = {valc | ¬
∨
e∈El

((valc |= de) ∧ (vald |= (gd)e))}

and is called the time progress condition of location l and valuation vald. For δ ∈ R≥0,
we write val c+ δ to denote val c(x) + δ for every clock variable x ∈ X, if x 6= −1 (i.e.,
time does not advance for disabled clocks). The set T of transitions in the semantic
model is classified as follows:

Immediate Transitions: A transition (l, vald, val c)→
(l′, val ′d, val c[Xres , Xdis ]) exists in T iff there exists a switch (l, u, gd, gc, d, (Xres , Xdis), l′) ∈
E, such that (val c |= gc) ∧ (vald |= gd), where u(vald) = val′d, and val c[Xres , Xdis ] is
the valuation val c, where

– for each x ∈ Xres , we have val c(x) = 0

– for each x ∈ Xdis , we have val c(x) = −1

– the value of other clock variables are unchanged.

The set of immediate transitions is denoted by Timm .

Delay transitions: A transition (l, vald, val c) → (l, vald, val c + δ) exists in T iff
∀t < δ : (val c + t) ∈ c(l, vald). The set of delay transitions in T is denoted by Td.

2.2.1.3 Example

We use the following running example to describe the concepts throughout this chapter.
Consider two processes that execute in mutual exclusion using a shared memory location.
To coordinate, one of the processes is the master process (illustrated in Fig. 2.1). The
automaton has three locations, execution (initial location), cleanup, and waiting, a clock
variable x, and a discrete variable token shared between the processes. The clock constraint
of switches are placed in [] and a switch delay is identified by {}.
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Legend

Fault

Normal

[3 ≤ x ≤ 4]

{x = 4}

execution waiting

cleanup

x := 0

{x = 2}
[1 ≤ x ≤ 2]

token := ¬token

x := 0

[4 ≤ x ≤ 5]

{x = 5}
[1 ≤ x ≤ 2]

{x = 2}

token := ¬token

x := 0

{false}

Figure 2.1: A timed automaton with deadline augmented with one fault switch

The master process stays in execution for 1 to 2 time units. Then, it resets x, toggles
the value of token, and goes to cleanup, where it can spend another 1 to 2 time units for
garbage collection. Changing the value of the shared variable allows the slave process (not
shown here) to start execution. Then, the master process goes to location waiting, where it
waits for the slave process execution to finish. When the value of x is between 3 to 4 time
units, it again toggles the value of token, so that the slave process stops execution, and
reaches location cleanup. In this location, the master process does the garbage collection
for the slave, and also ensures that the slave process has noticed the change in token. The
master process subsequently moves to location execution.

2.2.2 Specification

In this section, we present the notion of specification and what it means for a timed
automaton to satisfy a specification.

Definition 2. A state predicate SP of a semantic model SM = (S, s0, T ) is a subset of S,
where in the corresponding Boolean expression, each clock variable is only compared with
non-negative integers.

In other words, a state predicate must be definable by the syntax of clock constraints
as defined in Subsection 2.2.1.

Definition 3. A computation of a semantic model SM = (S, s0, T ) is a finite or infinite
sequence of states of the form: s = (s0, τ0)→ (s1, τ1)→ . . . iff:
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• for all i ∈ Z≥0 : (si, si+1) ∈ T

• the sequence τ0, τ1, . . . (called the global time), satisfies the following conditions:

– monotonicity: for all i ∈ Z≥0, τi ≤ τi+1

– divergence: if s is infinite, for all t ∈ R≥0, there exists i ∈ Z≥0, such that τi ≥ t

– consistency: for all i ∈ Z≥0, if (si, si+1) is a delay transition in T , such that
si = (l, vald, valc), si+1 = (l, vald, valc + δ), then τi+1 − τi = δ, and if (si, si+1)
is an immediate transition in T , then τi+1 = τi.

Definition 4. A specification is a set of infinite computations that satisfy time-monotonicity
and divergence [46].

Definition 5. A state predicate SP is closed in a set of transitions T , iff

• if an immediate transition in T originates from SP, it terminates in SP

• if a delay transition in T with duration δ originates in state s ∈ SP , then for all
δ′ ≤ δ, a delay transition with duration δ′ that starts in s also terminates in a state
in SP.

Definition 6. Let TAD be a timed automaton with semantic model SM = (S, s0, T ),
SPEC be a specification, and SP be a state predicate of TAD. We write TAD |=SP SPEC
(read TAD satisfies SPEC from SP), iff (1) SP is closed in T , and (2) every computation
of TAD that starts from SP is in SPEC .

The reason for defining satisfaction ‘from’ a state predicate is due to the fact that when
we add fault transitions to a model, the closure of its normal behavior is not ensured. This
notion of normal behavior is captured by a state predicate called the set of legitimate states
defined next.

Definition 7. Let TAD be a timed automaton and LS be a nonempty state predicate of
TAD. We say that LS is a set of legitimate states of TAD iff TAD |=LS SPEC .

Definition 8. Let P and Q be state predicates and δ ∈ R≥0. A bounded response property
is of the form P 7→≤δ Q, and defines computations s = (s0, τ0)→ (s1, τ1)→ . . ., where for
all i ≥ 0, if si ∈ P , then there exists j ≥ i, such that sj ∈ Q and τj − τi ≤ δ.

In this chapter, our notion of specification consists of two parts: (1) a safety specifi-
cation, and (2) a liveness specification [3, 46]. Roughly speaking, our notion of safety is
characterized by a set of unsafe timing independent transitions and a set of bounded-time
response properties.
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Definition 9. A safety specification consists of two parts:

1. Timing-independent Safety: Specified by a set of immediate bad transitions bt. The
specification in which each computation has no bad transitions is denoted by SPEC bt.

2. Timing Constraint: Denoted by SPEC br is the conjunction
∧m
i=1(Pi 7→≤δi Qi).

A bad transition that can be specified by its target state only defines a set of bad states.
In the context of our example, a state in which token = 1 and the model is in location
execution is a bad state. Note that it is not always the case that bad transitions can be
identified by bad states. For example, in traffic signal controller, a bad transition can be a
transition originating from a state where the signal is initially red and becomes yellow in
the target state.

Definition 10. A liveness specification SPEC is a set of computations with this condition:
for each finite computation α, there exists a nonempty suffix β, such that αβ ∈ SPEC .

Following [3] and [46], liveness specification is included in all specifications and, hence,
it is not repeated in the specification representation.

Example. Consider the timed automaton in Fig. 2.1. The timing independent safety
specification for mutual exclusion between the two processes is characterized by:

bt = {(s0, s1) | s1 |= (execution ∧ (token = 1))}
which requires the master process not to be in location execution, when the value of token
is 1. The set of legitimate states of this example is specified using the following expression:

LS ≡ ((execution) ⇒ ((x ≤ 2) ∧ (token = 0))) ∧
((cleanup) ⇒ (((x ≤ 2) ∧ (token = 1)) ∨

((3 ≤ x ≤ 5) ∧ (token = 0))) ∧
((waiting) ⇒ ((1 ≤ x ≤ 4) ∧ (token = 1))

It is straightforward to see that starting from any state in LS , execution of normal switches
of the automaton in Fig. 2.1 results in a state in LS and a transition in SPEC bt will never
execute.

2.3 Timed Automata with Faults and Strict 2-Phase

Fault Recovery

In this section, we present the notions of faults and strict 2-phase fault recovery [17].
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2.3.1 Fault Model

A fault is systematically represented as a transition. Fault representation with a transition
is possible for different types of faults (e.g., stuck-at, crash, fail-stop, timing, performance,
Byzantine, message loss, etc.), nature of the faults (permanent, transient, or intermittent),
or the ability of the program to observe the effects of the faults [17].

Given a semantic model SM = (S, s0, T ), a set F of faults is a subset of all possible
immediate transitions4. In other words, F ⊆ (S × S)imm , where

(S × S)imm = {(l, vald, val c)→ (l′, val ′d, val c[Xres , Xdis ]) |
(l, vald, val c), (l

′, val ′d, val c[Xres , Xdis ]) ∈ S ∧Xdis = ∅}

Similar to the notion of legitimate states for a timed automaton in the absence of faults,
we introduce the notion of fault-span to reason about the behavior of a timed automaton
in the presence of faults.

Definition 11. For a semantic model SM = (S, s0, T ), legitimate states LS, and a set F
of faults, a state predicate FS is a fault-span or F -span of the model SM from LS iff
(1) LS ⊆ FS, and (2) FS is closed in T ∪ F .

Hence, a fault-span is a state predicate up to which (but not beyond which) faults can
perturb the state of a system. In order to distinguish the transitions/switches defined in
the given timed automaton and faults, in the remainder of this chapter, we call the former
normal transitions/switches.

Example. In Figure 2.1, the fault switch introduced in location cleanup, resets clock
variable x at any time. Notice that if x gets reset when x ≤ 2, then this fault starts and
ends within the legitimate states. However, if 3 ≤ x ≤ 5 and x gets reset, then the fault
leads the execution to a state outside the legitimate states. The delay of the fault switch
is set to lazy, since it does not impose any constraints on time progress. Observe that, if
a computation starts from a state in LS where 3 ≤ x ≤ 5 and token = 0, when the fault
occurs, after 1 to 2 time units, the computation goes to waiting and subsequently to cleanup

where token gets toggled (with value 1). The next transition of the computation is a bad
transition, as the model goes to execution location, while token = 1. This clearly violates
the safety specification.

4We note that while delay faults cannot be modeled explicitly due to the semantics of TADs, one can
specify a delay fault by employing an additional location, where the delay occurs.
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2.3.2 Strict 2-phase Fault Recovery

Intuitively, in strict 2-phase recovery [17], when the state of a system is perturbed by faults,
the system is required to either directly return to its legitimate states LS within θ ∈ Z≥0

time units, or, if direct recovery is not feasible, then it should first reach an intermediate
recovery predicate Q within θ ∈ Z≥0 (i.e., phase 1), from where the system reaches LS
within δ ∈ Z≥0 time units (i.e., phase 2).

Definition 12. Let SM = (S, s0, T ) be the semantic model of a timed automaton with
legitimate states LS, Q be a state predicate called intermediate recovery predicate, F be
a set of faults, SPEC be a specification, and θ, δ ∈ Z≥0. The strict 2-phase recovery
specification for SM is SPEC br = (¬LS 7→≤θ Q) ∧ (Q 7→≤δ LS ).

The other types of 2-phase recovery that are outside the scope of this research are
specified by different SPEC br [17]. For example, ordered-strict recovery is specified by
SPEC br = (¬LS 7→≤θ (Q − LS )) ∧ (Q 7→≤δ LS ). In order to define the notion of fault-
tolerance using 2-phase recovery, we first characterize a notion where computations that
can be produced in the presence of faults can be extended, such that they eventually meet
the specification.

Definition 13. A timed automaton TAD with semantic model SM = (S, s0, T ) maintains
SPEC from state predicate SP iff

• SP is closed in T , and

• for every computation prefix α of SM that starts in SP, there exists a computation
suffix β, such that αβ ∈ SPEC .

We say that TAD violates SPEC from SP iff it is not the case that TAD maintains
SPEC from SP.

Concerning Definitions 6 and 13, we note that if a timed automaton satisfies SPEC
from SP , then it maintains SPEC from SP as well. However, the reverse direction does
not always hold. Definition 13 is introduced for computations that TAD cannot produce,
but can be extended to a computation in SPEC by adding recovery computation suffixes.

Definition 14. An automaton TAD with semantic model SM = (S, s0, T ) is F -tolerant
to SPEC from LS iff

1. TAD |=LS SPEC ,
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2. there exists an F -span FS of TAD from LS, st.

• (S, s0, T ∪ F ) maintains SPEC from FS, where SPEC br is as defined in Defi-
nition 12,

• (S, s0, T ∪ F ) satisfies FS 7→<∞ LS from FS.

The last condition is added to handle the case where response properties in SPEC br

are unbounded (since in this case, Definition 13 fails, as it only captures finite prefixes).

Example. Let Q be the set of states in which the automaton stays in waiting long enough to
ensure that nothing bad happens; i.e., Q ≡ (waiting ∧ (x ≥ 5)). The timing-independent
safety property for this automaton in defined in Subsection 2.2.2. The timing constraint
is defined as follows:

SPEC br = (¬LS 7→≤6 Q) ∧ (Q 7→≤2 LS ).

where the response times are chosen arbitrarily. The property SPEC is the union of SPEC bt

and SPEC br.

2.4 Problem Statement

Given are a fault-intolerant timed automaton TAD with semantic model SM = (S, s0, T )
and legitimates states LS , a set F of faults, and specification SPEC , such that TAD |=LS

SPEC . Our goal is to develop an algorithm for synthesizing an automaton TAD ′ with
semantic model SM′ = (S ′, s0, T

′) and legitimate states LS ′ from TAD , such that TAD ′

is F -tolerant to SPEC from LS ′. We require that the algorithm for adding fault tolerance
does not introduce new behaviors to TAD in the absence of faults. To this end, we define
the notion of projection. Intuitively, the projection of transitions T on state predicate SP
includes all immediate transitions that start and end in SP , and the delay transitions that
start in SP and remain in SP continuously.

Definition 15. The projection of a set T of transitions on a state predicate SP is defined
as follows:

T | SP = {(s0, s1) ∈ Timm | s0, s1 ∈ SP} ∪
{(l, vald, val c)→ (l, vald, val c + δ) ∈ Td |
((l, vald, val c) ∈ SP) ∧ (∀ε ∈ R≥0 : ((ε ≤ δ)⇒

(l, vald, val c + ε) ∈ SP))}
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Recall that Timm and Td are the sets of immediate and delay transitions in T , respec-
tively. Using this definition, we clarify our requirement of not adding new behavior to TAD
in the absence of faults. If LS ′ contains a state that is not included in LS , then TAD ′

may have a computation that reaches a state that is not reachable in TAD in the absence
of faults. This may falsify TAD ′ |=LS ′ SPEC and, hence, we require LS ′ ⊆ LS . Likewise,
if T ′ | LS ′ contains a transition that is not included in T | LS ′, then there may exist a
computation in the synthesized model that is not in the original model in the absence of
faults. Hence, we also require (T ′ | LS ′) ⊆ (T | LS ′).

We assume there exists a clock for each bounded response property. The clock is needed
to measure time when the first predicate in the property becomes true. Also, for simplicity
and without loss of generality, we assume when a fault occurs, no fault happens until the
system goes back to LS ′. In [19], the authors present an algorithm based on region graph
that can deal with the case where faults occur in the fault-span as well.

Problem statement. Given a fault-intolerant timed automaton TAD with semantic
model SM = (S, s0, T ), a set F of faults, intermediate predicate Q, where LS ⊆
Q, and specification SPEC , such that TAD |=LS SPEC , our goal is to propose an
algorithm for synthesizing an automaton TAD ′ with SM′ = (S ′, s′0, T

′), and legitimate
states LS ′ from TAD , such that:

1. LS ′ ⊆ LS ,

2. Q is closed in T ′,

3. (T ′ | LS ′) ⊆ (T | LS ′), and

4. TAD ′ is F -tolerant to SPEC from LS ′.

The constraint on closure of Q and LS ⊆ Q are included, because otherwise the prob-
lem becomes NP-complete [17] in the size of time-abstract bisimulation of TAD . In this
research, our focus is on devising a zone-based algorithm for the case where the problem can
be solved in polynomial time in the size of time-abstract bisimulation of TAD . Througout
this chapter, we refer to the input program as the fault-intolerant timed automaton.

2.5 The Synthesis Algorithm

In this section, we present our zone-based algorithm for solving the problem of synthesizing
a fault-tolerant TAD ′ from a given TAD as stated in Section 4.3.
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2.5.1 Zone Graphs

Since the state space of a timed automaton is infinite, in order to formally analyze a timed
automaton, we use an equivalent space-efficient finite symbolic transition system, called a
zone graph [32]. A clock zone ξ is inductively defined as ξ ::= x � n | x − y � n | ξ ∧ ξ ,
where x and y are clock variables, n is a constant integer, and �∈ {<,≤}. As an example,
Fig. 2.2 represents the clock valuations encoded in the zone ξ, where we have two clock
variables x and y.

Let ξ be a clock zone on the set of m clock variables and JξK = { valc ∈ Rm
≥0 | valc |= ξ}.

The operators up and resdis are defined on clock zones as follows:

• up(ξ) = {valc + δ | valc ∈ JξK ∧ δ ∈ R≥0}

• resdis(ξ, (Xres , Xdis)) = {valc[Xres , Xdis ] | valc ∈ JξK}

Observe that operator up has no effect on disabled clock variable. A zone z is a tuple
z = 〈l, vald, JξK〉, where l is a location, vald is a valuation of discrete variables, and ξ is
a clock zone.

Definition 16. Let TAD = (L, l0, V, U,X,E) be a timed automaton. The zone graph of
TAD is defined as a transition system Z(TAD) = (Z, z0, ), where

• Z is the set of zones defined on TAD

• z0 = 〈l0, ( vald)0, up(
−→
0 ) ∩ c(l0, ( vald)0)〉

•  is the relation defined on zones by: 〈l, vald, ξ〉  〈l′, val′d, ξ′〉, if there exists
(l, u, gd, gc, d, (Xres , Xdis), l′) ∈ E, such that vald |= gd, u( vald) = val′d, and ξ′ =
up(resdis(ξ ∧ gc, (Xres , Xdis)) ∩ c(l′, val′d).

Example. Fig. 2.3 shows the zone graph of the automaton in Fig. 2.1.

We use the following zone operators [16,24] in our algorithm:

• and(ξ1, ξ2) returns the conjunction of the constraints in ξ1 and ξ2.

• down(ξ) returns the weakest precondition of ξ with respect to delay, which is the set
of clock assignments that can reach ξ by some delay δ:

down(ξ) = { valc | valc + δ ∈ ξ ∧ δ ∈ R≥0}
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Figure 2.3: Zone graph of the timed automaton in Fig. 2.1

• free(ξ, x) removes all constraints on the clock x:

free(ξ, x) = { valc[x = δ] | valc ∈ ξ ∧ δ ∈ R≥0}

• Pred e(ξ) computes the set of clock valuations that after some delay δ can take switch
e, and reach ξ, and is formally defined as

Pred e(ξ) = { valc | ( valc + δ) |= gc ∧
( valc + δ)[Xres , Xdis ] ∈ ξ ∧
e = (l, u, gd, gc, d, (Xres , Xdis))∧
δ ∈ R≥0}.

2.5.2 Algorithm Sketch

Our zone-based algorithm consists of the following steps (Algorithm 1):
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1. Automaton enhancement: The input model is enhanced with a new location (“sink”),
and a number of switches entering it, which prune computations that violate the
given specification. As a result, the corresponding zone graph will be more efficient.
Also, the model is augmented with two clocks, and delay transitions that can be
utilized for adding 2-phase recovery within specific delays.

2. Zone graph generation: Next, the zone graph of the enhanced input automaton is
generated. We utilize an existing algorithm from the literature of verification for this
step.

3. Adding recovery behavior: To enable 2-phase recovery, we add possible transitions
among the zones of the zone graph. In this step, new zones may be added to the
zone graph.

4. Backward zone generation: For the newly added zones in the last step, we identify the
backward reachable zones to ensure that the new zones do not introduce terminating
computations.

5. Cycle removal: Since adding recovery transitions may create cycles, the algorithm
removes the possible cycles to ensure correct recovery.

6. Zone graph repair: The zone graph is modified, so that it satisfies the safety property
in the presence of faults, and also does not contain any deadlock states.

Finally, one can generate an automaton from the repaired zone graph. We consider this
step as a black box, which gets a zone graph and returns a timed automaton corresponding
to that semantic model.

2.5.3 Algorithm Description

The main algorithm (Algorithm 1) takes a timed automaton TAD , with legitimate states
LS , fault transitions F , and intermediate recovery predicate Q such that LS ⊆ Q as input.
The specification consists of the timing-independent safety specification (the set BT of bad
transitions) and timing constraints (as the recovery time δ and intermediate recovery time
θ).

2.5.3.1 Steps 1, 2: Automaton Enhancement / Zone Graph Generation

Algorithm Zone based Synthesis starts by automaton invoking function Enhance Automaton

(see Function 2). The entire ¬LS is (often) too large and impractical to build and explore.
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Hence, function Enhance Automaton uses a heuristic to build a weak enough fault-span
(rather than considering the entire ¬LS ), such that we generate the zones only reachable
using (1) the program switches, and (2) any possible delay, when the state of the model
is in ¬Q. We exclude Q − LS , since adding delay transitions may violate the closure of
Q. The clocks xf and xq are added to keep track of the time elapsed since a computation
reaches ¬LS and Q, respectively (Line 1). A new location, called sink (Line 2), along
with the added switches leading to sink are used to prune the computations violating the
specification.

Algorithm 1 Zone based Synthesis
Input: A timed automaton TAD , with legitimate states LS , fault switches F , bad transitions BT , intermediate recovery

predicate Q st. LS ⊆ Q, recovery and intermediate recovery times δ and θ.
Output: If successful, a fault-tolerant TAD ′ with legitimate states LS ′.

1: TAD ′′ ← Enhance Automaton(TAD ,LS , F,Q, δ, θ,BT )
2: (Z, z0, )→ Construct Zone Graph (TAD ′′)
3: (Z′, z′0, ),waiting ← Add Trans((Z, z0, ),BT )
4: (Z′, z′0, )← Backward Zones((Z′, z′0, 

′), ,waiting)
5: (Z′, z′0, )← Cycle Removal (Z′, z′0, 

′)
6: nz ← {z0 | ∃z1, z2 . . . zn · (∀j | 0 ≤ j < n : (zj , zj+1) ∈ F ′z) ∧ (zn−1, zn) ∈ BT ′z};
7: Z1 ← Z′ − nz
8: LSz1 ← LS ′z − nz
9: mz ← {(z0, z1) | (z1 ∈ nz ) ∨ (z0, z1) ∈ BT ′z};
10:  ← −mz
11: repeat
12: Z2,LSz2 ← Z1,LSz1;
13: nz ← {z0 | @z1 : (z0, z1) ∈ };
14: Z1 ← Z1 − nz ;
15: LSz1 ← LSz1 − nz ;
16: mz ← {(z0, z1) | z1 ∈ nz};
17:  ← −mz ;
18: nz ′ ← {z0 | (z0, z1) ∈ mz ∩ F z};
19: Z1 ← Z1 − nz ′;
20: LSz1 ← LSz1 − nz ′;
21: if (Z1 = ∅ ∨ LSz1 = ∅) then

print “no fault-tolerant program found”;exit;
22: end if
23: until (Z1 = Z2 ∧ LSz1 = LSz2)
24: TAD ′ ← Construct Automaton((Z1, z0, ),LSz1)
25: return TAD ′

The first set of pruned computations are those violating timing-independent safety
specification in terms of bad states BS (Line 3). Computations reachable from a bad state
can be pruned, and, hence, eager switches E0 are used not to let time progress after we
reach a bad state. The second set of states that can be used to prune the zone graph are
the ones that violate timing constraints of 2-phase recovery:

• A computation cannot stay in ¬LS − Q for more than θ time units. Hence, the set
E1 of switches are added to ensure that every computation that stays more than θ
time units in ¬LS −Q will be pruned (Line 4). Note that switches in E1 are eager.
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Function 2 Enhance Automaton
Input: A timed automaton TAD = (L, l0, V, U,X,E), with legitimate states LS , fault switches F , intermediate recovery

predicate Q, recovery time δ, intermediate recovery time θ, and bad transitions BT
Output: An enhanced automaton TAD ′ = (L′, l0, V, U,X′, E′)

1: X′ ← X ∪ {xf , xq}
2: L′ ← L ∪ {sink}
3: E0 ← {(l, u, gd, true, true, (∅, X′), sink) | ∀ vald |= gd : (l, vald) ∈ BS}
4: E1 ← {(l, u, true, xf = θ, xf = θ, (∅, X′), sink) | l ∈ L}
5: E2 ← {(l, u, true, xq = δ, xq = δ, (∅, X′), sink) | l ∈ L}
6: F ′ ← {(l1, u, gd, φ, false, (r1 ∪ xf , r2), l2) | ∀(l1, u, gd, φ, false, (r1, r2), l2) ∈ F}
7: E3 ← {(l, u, gd, φ ∧ xf ≥ 0, true, (xq , xf ), l) | ∀ vald |= gd : ∀ valc |= φ : (l, vald, valc) ∈ Q− LS}
8: E4 ← (l1, u, gd, gc ∧ (xf < 0), d, (r1, r2), l2) | ∀(l1, u, gd, gc, d, (r1, r2), l2) ∈ E}
9: E5 ← (l1, u, gd, gc ∧ (xf ≥ 0), false, (r1, r2), l2) | ∀(l1, u, gd, gc, d, (r1, r2), l2) ∈ E}
10: E′ ← E ∪ F ′ ∪⋃5

i=0 Ei
11: return TAD ′ = (L′, l0, V, U,X′, E′)

• Similarly, we respect the recovery time δ by adding the switches in E2, which do not
let time progress when the value of xq = δ (Line 5).

Note that all added switches to the sink location disable all clocks. Also, a unique
update function u is used to set the value of discrete variables. This is done to avoid
having multiple sink states with different clock valuations or discrete variables valuations
in the semantic model.

The set F ′ of switches (Line 6) corresponds to the set F of faults, where the urgency
is set to false (as the fault transitions may not be taken in the computation), and with
the clock cf being added to the set of clocks to be reset. E3 are eager switches that are
triggered as soon as a state in Q − LS is reached, where xf is disabled and xq is reset
(Line 7). E4 and E5 are added, so that the switches of the program are lazy when the
computation is not in Q, while they have the specified urgency when the computation in
Q. This way, we allow any possible delay in ¬Q for generating the weak enough fault-span
(Lines 8 and 9).
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Function 3 Add-Trans
Input: A zone graph (Z, z0, ), a set of legitimate zones LSz , intermediate recovery zones Qz , a set of bad transitions BTz

Output: A zone graph (Z′, z′0, 
′), with recovery transitions being added, and a set of new subzones waiting

1: waiting ← ∅
2: Z′ ← Z
3:  ′← 
4: FindZonesRanking (Z, z0, )
5: ConnectZones(Z −Qz , Z)
6: ConnectZones(Qz − LSz , Qz)
7: ConnectZonesRes(Z −Qz , Z)
8: ConnectZonesRes(Qz − LSz , Qz)
9: return (Z′, z′0, 

′),waiting

10: function ConnectZones(Z1, Z2: Set of zones){
11: for all z ∈ Z1, z′ ∈ Z2 st. (z, z′) /∈ ( ∪ BTz) do
12: if (rank(z) <∞) break
13: Let z = (l, ( vald), ξ) and z′ = (l′, ( val′d), ξ′)
14: ξ′′ ← to(ξ, ξ′)
15: if (ξ′′ = ∅) continue
16: con(z) = 1
17: if (ξ′′ = ξ) then
18: rank(z) = rank(z′) + 1
19:  ′← ′ ∪{(z, z′)}
20: else
21: z′′ ← (l, ( vald), ξ′′)
22: waiting ← waiting ∪ {(z′′, z)}
23: Z′ ← Z′ ∪ z′′
24:  ′← ′ ∪ (z′′, z′)
25: end if
26: end for}
27: operator to(ξ1, ξ2: Clock zone) {
28: for all x ∈ X do
29: if ub(ξ1, x) < lb(ξ2, x) then
30: return ∅
31: end if
32: end for
33: return and (ξ1, down(ξ2)) }
34: function ConnectZonesRes(Z1, Z2: Set of zones){
35: for all z ∈ Z1 st. ¬con(z) ∧ loc(z) 6= sink ∧ @z′′′ : (z, z′′′) ∈ ′ , z′ ∈ Z2 st. (z, z′) /∈ BTz do
36: if (rank(z) <∞) break
37: Let z = (l, ( vald), ξ) and z′ = (l′, ( val′d), ξ′)
38: ξ′′ ← tores(ξ, ξ′)
39: if (ξ′′ = ∅) continue
40: if (ξ′′ = ξ) then
41: rank(z) = rank(z′) + 1
42:  ′← ∪ (z, z′)
43: else
44: z′′ ← (l, ( vald), ξ′′)
45: waiting ← waiting ∪ {(z′′, z)}
46: Z′ = Z′ ∪ z′′
47:  ′← ′ ∪ (z′′, z′)
48: end if
49: end for}
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50: operator tores(ξ1, ξ2: Clock zone) {
51: Let X′ = ∅
52: for all x ∈ X do
53: if lb(ξ2, x) = 0 then
54: X′ = X′ ∪ {x}
55: end if
56: end for
57: for all x ∈ X do
58: if x /∈ X′ ∧ ub(x, ξ1) < lb(x, ξ2) then
59: return ∅
60: end if
61: end for
62: ξ3 = and (ξ1, free(down(ξ2), X′))
63: return ξ3
64: }

Function 4 Backward Zones
Input: A zone graph (Z′, z′0, 

′), the original set of transitions  , and a set of pairs of zones waiting.
Output: A zone graph (Z′, z′0, 

′), with newly added zones being traced backward.

1: while waiting 6= ∅ do
2: Let (z0, z1) be a pair in waiting
3: waiting ← waiting − {(z0, z1)}
4: for all z st. (z, z1) ∈ do
5: Let e be the original switch for transition (z, z1)
6: Let (l, ( vald), ξ) = z and (l1, ( vald)1, ξ1) = z1
7: ξ′ ← Prede(ξ1)
8: z′ = (l, ( vald), ξ′)
9: Let waiting0 denote the set of first elements in waiting
10: if (z′ /∈ Z′ ∪ waiting0) then
11: waiting = waiting ∪ (z′, z)
12: end if
13:  ′= ′ ∪ (z′, z0)
14: end for
15: end while
16: return (Z′, z′0, 

′)
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Example. Fig. 2.4 shows the result of applying our algorithm on the running example
(Fig. 2.1). The dashed zones are in ¬LS , and the dashed transitions corresponds to the
fault. Zone 5 is generated by switch E5. Adding this switch lets the states in ¬LS − Q
have any possible delay. Zone 11 is the “sink” zone, which is used to prune computations
leading to violate the specification.
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Figure 2.4: Synthesized zone graph of the timed automaton in Fig. 2.1

2.5.3.2 Step 3: Adding Recovery Paths

After generating the enhanced automaton (Line 1), Algorithm 1 calls Function 3 (Add Trans)
to add recovery transitions (Line 3 of Algorithm 1). In order to reduce the complexity of
this step, our idea is to first find the ranking of each zone in ¬LS−Q (respectively, Q−LS )
based on the length of the shortest path to a zone in Q (respectively, LS ), and then dy-
namically update this ranking during the recovery addition step. As soon as the ranking
of a zone in ¬LS is less than infinity (there is a path for it to LS ), we stop finding a
recovery transition from that zone. Adding recovery transitions in Function 3 is achieved
by applying two strategies: (1) connecting existing zones to each other (Lines 5–6), and (2)
connecting zones by resetting clocks for deadlock zones that cannot get connected using
strategy 1 (Lines 7–8).
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2.5.3.2.1 Strategy 1 After initializations (Lines 1-3 of Function 3), we add recovery
transitions from zones in ¬LS − Q to any possible zone, and also from zones in Q − LS
to any possible zone in Q (Lines 5 and 6, respectively) by calling function ConnectZones

(defined in Lines 10–26). For adding the transitions between zones, one has to ensure that
an added transition respects the clock constraints of source and target zones. To this end,
we introduce the operator to (defined in Lines 27-33) for finding the subset of a zone which
can be connected to another zone. Two conditions for connecting two zones are:

• The upper bound of each clock variable in the first zone should be larger than its
lower bound in the second zone. If this condition does not hold, then there is a time
gap between the two zones.

• The time monotonicity condition should hold between them. For checking this con-
dition, the intersection of the clock valuations that can reach the target zone, and
the source zone is calculated. The result is a subzone of the source zone that can be
connected to the target zone, which can be empty or the original source zone.

If zone z is connected to zone z′, we set the variable con(z) to 1 to remember that a subset
of this zone has been connected to another zone (Line 16). In case a new subzone z′′ is
created (Line 21), since ξ′′ does not include all clock valuations of ξ, we need to ensure that
all incoming computations to z′′ respect time monotonicity. To this end, all new subzones
are added to a waiting set (Line 22), which will be processed in Line 4 of Algorithm 1.
Each member of the waiting list is a tuple with the first element being the new subzone,
and the second being the original zone from which the subzone is formed.

Example. In Fig. 2.4, zone 9 is added when Function 3 attempts to connect zone 5 to
zone 3 in strategy 1. Likewise, zone 6 is added when trying to connect zone 8 to zone 4.
The transition from zone 7 to zone 1 is also added in this step.

2.5.3.2.2 Strategy 2 Next, Function Add Trans handles deadlock zones that could not
be connected to other zones (Lines 7 and 8 of Function 3) by calling function ConnectZones-

Res (Lines 34–49). This strategy is identical to strategy 1, except it uses operator tores
(instead of to). This operator (defined in Lines 50–64) finds a subzone of the first zone that
can be connected to the second zone by resetting a set of clock variables. Again applying
this operator may result in creation of new subzones that are added to the set waiting for
later backward5 zone generation processing.

5The clocks that their lower bound is 0 in the target zone can be reset.
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2.5.3.3 Step 4: Backward Zone Generation

Since addition of recovery transitions in Step 3 may create new subzones (returned in
waiting by Function 3), if all incoming transitions of the original superzone are added to
the new subzone naively, we may introduce terminating computations. This happens when
there are valuations in the predecessor zones of the original zone that cannot reach the
new subzone. As an example, consider three zones ξ1 ::= 1 ≤ x ≤ 5, ξ2 ::= 3 ≤ x ≤ 5,
and ξ3 ::= 1 ≤ x ≤ 4. There is a transition from ξ1 to ξ2. Assume that in Step 3, we
tried to add a transition from ξ2 to ξ3, and as a result, a new zone ξ′2 ::= 3 ≤ x ≤ 4
is generated, and the transition (ξ′2,ξ3) is added. Now, if we add a transition from the
predecessor of ξ2, which is ξ1, to ξ′2, a terminating computation is generated. The problem
arises when the computation is in ξ1, and the clock x has the value 4 < x ≤ 5; it cannot
take the added transition to get to the zone ξ′2 ::= 3 ≤ x ≤ 4, since the clock value should
decrease to make this happen. To address this case, Function 4 (Backward Zones) is invoked
for backward generation of predecessor zones for each new subzone in waiting (called in
Line 4 of Algorithm 1).

In Function 4, for each new zone in waiting , the switches (including faults) leading to
the original zone are considered (Lines 4 and 5), and for each switch, the previous zone
of the new zone using this switch is calculated using the Pred e operator (Line 7). If the
previous zone is not already included in the set of zones nor in the waiting list, it will be
added to waiting (Line 11). Function 4 repeats these steps until all backward reachable
zones are explored and the appropriate transitions leading to the new zone are added
(Line 13).

Example. In this step, zone 6 is traced backward using the switch corresponding to the
transition from zone 5 to zone 8. The result is the added transition from zone 5 to zone 6.
Zone 9 is likewise traced backward using the fault switch (corresponding to the transition
from zone 4 to zone 5), and as a result, the transition from zone 4 to zone 9 is added.

2.5.3.4 Step 5: Removing Cycles

Adding recovery transitions may lead to introducing a cycle in the zone graph, which
violates the bounded response requirement. Thus, the possible added cycles are removed
(Line 5 of Algorithm 1). Observe that our assumption on closure of Q will not allow
any cycles to be formed between Q − LS and ¬LS − Q. Hence, the only possibility of
introducing a cycle is between zones in ¬LS −Q and in Q− LS .

Removing the cycles can be implemented by applying classic graph-theoretic algorithms.
Note that we have the rank of each zone in ¬LS −Q (respectively, Q− LS ) based on the
length of the shortest path to a zone in Q (respectively, LS ). For each transition in ¬LS−Q
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Figure 2.5: An example of cycle removal

(respectively, Q − LS ), if the rank of the source is less than the rank of the target, then
the transition will be removed, as it does not contribute in synthesizing a solution. This
transition removal ensures cycle-freedom in the fault span. As an example, consider a part
of a zone graph shown in Fig. 2.5. Assume that all three zones are in ¬LS , and as shown,
the recovery paths of all three zones ξ1, ξ, and ξ3 are through the outgoing path from ξ3. It
is obvious that the rank of ξ3 is less than the rank of ξ1, and hence, the transition between
them will be removed. By removing this transition, the cycle among these three zones will
be removed as well.

2.5.3.5 Step 6: Zone Graph Repair

In order to ensure that the synthesized zone graph does not violate timing-independent
safety, in Lines 6–10, Algorithm 1 identifies and removes the set of zones/transitions from
where faults alone can lead a computation to a state from where safety can be violated
(since occurrence of faults cannot be prevented). The rest of the algorithm (Lines 11–
23 of Algorithm 1) removes deadlock zones and ensures the closure of legitimate states
in the zone graph using a straightforward fixpoint computations. Finally, in Line 24 of
Algorithm 1, it generates the output automaton out of the repaired zone graph.

Example. Zone 8 and 11 are deadlock zones and, hence, get removed in this step. The
automaton in Fig. 2.6 can be generated out of the repaired zone graph in Fig. 2.4.

Theorem 1. Zone based Synthesis algorithm is sound.

Proof. We show that any output of algorithm Zone based Synthesis is sound. In other
words, it meets the four conditions of the problem statement in Section 4.3. We distinguish
four cases:

1. By construction, LS ′ ⊆ LS trivially holds, as no state is added to LS . LS ′ might
have some states removed compared to LS and those are the ones removed in Step

29



Fault

Normal

Legend

{x = 2}
[1 ≤ x ≤ 2∧
xf < 0]x := 0

{x = 5}
[4 ≤ x ≤ 5∧
xf < 0]

{x = 2}
[1 ≤ x ≤ 2∧
xf < 0]

{x = 2}
[0 ≤ x ≤ 2 ∧ xf < 0]

xf := −1

xf := 0
x := 0

{false}

[3 ≤ x ≤ 4∧
token := ¬token

{x = 4}

xf < 0]

{x = 5}x := 0

{x = 6}
[4 ≤ x ≤ 6 ∧ xf ≥ 0]

token := ¬token

x := 0

[1 ≤ x ≤ 5 ∧ xf ≥ 0]

{x = 5}
[3 ≤ x ≤ 5∧
(xf ≥ 0 ∨ xq ≥ 0)]
xf , xq := −1

waiting

cleanup

execution

Figure 2.6: Repaired automaton of the TAD in Fig. 2.1

6. Also, observe that clock variables xf and xq are disabled in LS and, hence, their
values are irrelevant in LS .

2. Q is closed in T ′. Recall that Q is closed in the original model. The only switches
we add to the automaton in Step1 originating from Q are the ones leading the states
that do not satisfy the safety properties to the sink location. Note that the sink zone
and all its incoming transitions will be removed in Step 6. Finally, in adding recovery
transitions in Step 3, no transition is added from Q to ¬Q.

3. By construction, (T ′ | LS ′) ⊆ (T | LS ′) also trivially holds, as no transition originat-
ing from LS is added.

4. TAD ′ is F -tolerant to SPEC from LS ′. To prove this condition, we distinguish two
cases:

• First, we have to show that TAD ′ |=LS SPEC . By construction, and following
cases 1 and 3, as well as the fact that the algorithm removes all deadlock states,
it follows that the set of computations of TAD ′ is a subset of computations of
TAD ′ in the absence of faults. Hence, we have TAD ′ |=LS ′ SPEC .

• We now need to show that there exists an F -span from where TAD ′ maintains
SPEC in the presence of faults. To this end, notice that if a computation
reaches a state in ¬LS , by construction, no suffix of this computation includes
a transition in BT . Hence, TAD ′ in the presence of faults maintains SPEC bt.
Moreover, any computation that reaches a state in ¬LS is guaranteed to reach
Q and LS within θ and δ time units. This is ensured by Step 1 (by adding
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eager switches that do not let xf and xq exceed the allowed bounds), Step 4 (by
not letting terminating computations being added to the synthesized model),
Step 5 (by removing cycles), and Step 6 (by removing deadlocks and ensuring
the closure of fault-span and LS ). Observe that since all computations are
guaranteed to reach LS , liveness is automatically preserved.

Theorem 2. Zone based Synthesis algorithm is terminating.

Proof. Now, we show that algorithm Zone based Synthesis is terminating. Steps 1 and 2
are clearly terminating, as automaton enhancement has no loops and zone graph generation
for finite set of location is always guaranteed to terminate [16].

In step 3, zones are first ranked based on their shortest path to LS . This is done by a
slightly modified version of Dijkstra’s shortest path algorithm. Then, recovery transitions
are added among the zones, which is, in the worst case, quadratic in the size of the zone
graph, and hence, terminating. In the next step, zones reachable backward from the newly
added zones are calculated. Since only a finite number of backward reachable zones could
be generated, this step is also terminating.

The cycle removal step is done by checking the ranks of the source and target zones of
transitions in ¬LS , and hence, in the worst case, is quadratic in the size of the zone graph.
In the last step, the zone graph is repaired by removing the bad states and deadlocks.
Deadlock removal is done in a loop, which terminates when a fixpoint is reached, or all
zones are removed. It will always reach a fixpoint (if the zone graph does not get empty),
since in each iteration the deadlock zones and their incoming transitions are removed.
Transition removal might make more zones deadlock, which will be removed in the next
iteration. If no new deadlock is formed in an iteration, a fixpoint is reached, and the loop
terminates. Since the zone graph is finite, it will eventually reach a fixpoint, or the zone
graph gets empty.

2.6 Implementation and Experimental Results

We have implemented our algorithm to evaluate the efficiency of our synthesis method.
We leveraged the IF toolset [23] for zone graph generation. IF provides an intermediate
representation for specification of timed automata with urgency. It implements and eval-
uates different semantics of time, and various types of real-time constructs. We use the
intermediate representation syntax to model a timed automaton with faults and automat-
ically add switches to the the input model (Step 1 of Algorithm 1). Then, we utilize the
IF API to generate the zone graph of the enhanced automaton. The generated zone graph
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[1 ≤ xi ≤ 5]
{xi = 5}
sigi = G
yi := 0
sigi := Y

[zj ≤ 1]
{zj = 1}
sigi = R
xi := 0
sigi := G

main

z2 := 0

[∀i.2 ≤ i ≤ signum.zi ≥ 2 ∧ z1 ≤ 1]
{false}
∀i.1 ≤ i ≤ signum.sigi = R

{yi = 2}
sigi = Y
zi := 0
sigi := R

[1 ≤ yi ≤ 2]

Figure 2.7: Automaton for traffic controller i.

is stored in a graph data structure with zones being marked with LS , Q − LS , and ¬Q.
Then, the rest of the algorithm (Steps 2 – 6) are performed on the generated zone graph.
The result is a synthesized zone graph, which can be used to generate the fault-tolerant
timed automaton. To evaluate our algorithm, we conducted two case studies.

2.6.1 Case Study 1: Circular Traffic Controller

The first case study (adopted from [17]) is an automaton for a circular traffic controller
(Fig. 2.7), with signum number of signals. In this automaton, j = (i + 1) mod 2. The
dashed switch is the fault and solid switches are the ones given in the input model. For each
signal, a discrete variable sig i ranges over {R,G, Y }. Also, there are three clock variables
for each signal, xi, yi, and zi, that act as timers to change the signal phase. For instance,
when a signal i is green, then it goes yellow at least after one time unit and at most within
5 time units (i.e., 1 ≤ xi ≤ 5). Such change of phase resets clock yi, which keeps track of
time elapsed since signal i has turned yellow. All signals operate identically. One possible
set of legitimate states for this model is the following predicate:

LS ≡ ∀i ∈ [0, signum).
[(sig i = G) ⇒ ((sig j = R) ∧ (xi ≤ 5) ∧ (zi > 1))] ∧
[(sig i = Y ) ⇒ ((sig j = R) ∧ (yi ≤ 2) ∧ (zi > 1))] ∧
[(sig i = R) ∧ (sig j = R)⇒ ((zi ≤ 1)⊕ (zj ≤ 1))]

where ⊕ denotes the exclusive-or operator. A bad transition is one that reaches a state
where more than one signal is not red:

bt = {(s0, s1) | s1 |= (∃i, j. (i 6= j) ∧ (sigi 6= R) ∧ (sigj 6= R))}
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Table 2.1: Results for traffic controller of 3-11 signals
3 5 7 9 11

Steps 1,2 (sec) 0.02 0.06 0.62 8.92 265.059
Steps 3-6 (sec) 0.02 0.02 0.07 0.10 0.15

Total synthesis time (sec) 0.04 0.08 0.69 9.02 265.209

Zone Graph Generation

of Intolerant Model
0.0 s 2h, 38m > 3h > 3h > 3h

Zone Graph Size

of Enhanced Automaton
47 59 71 83 95

Zone Graph Size

of Intolerant Model
309 1279032 > 106 > 106 > 106

The fault (as can be seen in Fig. 2.7) can reset (for instance) z2, when all z-clocks, except
for z1, are greater than 2, due to a circuit malfunction. We consider the following bounded
response property for this model:

SPEC br = (¬LS 7→≤2 Q) ∧ (Q 7→≤3 LS )

Table 2.1 shows the breakdown of the time spent in different steps of our synthesis
algorithm in the first three rows for 3-11 traffic signals. As expected, synthesis time
increases as we increase the number of traffic signals. However, observe that the bottleneck
of our algorithm turns out to be zone graph generation and not the synthesis steps. Thus,
to better evaluate our algorithm, we compare it with its corresponding verification time.
Notice that zone graph generation of the enhanced automaton (first row) significantly
outperforms zone graph generation time for the original automaton with faults (fourth
row). This is because the fault leads to bad states and a significant number of reachable
zones are eliminated by our pruning switches added in Function 2, and hence, the number
of zones in the zone graph of the enhanced automaton is less than the original zone graph.
Having a smaller zone graph also assists in increasing the efficiency of the next steps of
our algorithm.

2.6.2 Case Study 2: Train Signal Controller

Our second case study is a railway signal controller, consisting of signum signals operating
in a circular manner for controlling m trains (Fig. 2.8). In this automaton, k = (i + 1)
mod 2. Train j is modeled by a discrete variable trj that ranges from 1 to signum, which
shows the location of the train (i.e., the signal ahead of the train). When a train passes
a signal, it changes phase from green or yellow to red. When a signal i + 2 turns red,
its previous signal i + 1, which is also red, turns yellow. Then, if the previous signal i is
yellow, it may turn green. It takes a train 5 time units to travel from one signal to the
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sigi = Y
{yk = 1}
[yk ≤ 1]

sigi := G

sigi := G
sigi = Y
{false}

trj = i

tj := 0
xi := 0

sigi := R

sigi = Y

[tj = 5]
{tj = 5}

trj = i

tj := 0
xi := 0

sigi := R

sigi = G
{tj = 5}
[tj = 5]

sigi = R
yi := 0
sigi := Y

{xk = 5}
[xk ≤ 5]

main

Figure 2.8: Automaton for train signal controller

next. All signals operate identically and, hence, the entire model of the train controller is
the parallel composition of signum timed automata illustrated in Fig. 2.8.

The safety specification of this model requires that no two trains can be in the same
location at the same time:

bt = {(s0, s1) | s1 |= (∃i, j. (i 6= j) ∧ (tri = trj))}

The fault in our case study occurs when the first signal changes phase from yellow to
green due to circuit problems. This fault does not cause the computation to violate the
specification, but it may result in a deadlock computation, where trains cannot proceed
due to deadlocked signals. The bounded response property considered for this model is the
following:

SPEC br = (¬LS 7→≤2 Q) ∧ (Q 7→≤1 LS )

One possible set of legitimate states is the set of states reachable from the initial state,
where no two trains are in the same location, by the switches of the timed automaton
(Fig. 2.8).

Table 2.2 presents the results for 4-6 signals and constant number of two trains. As can
be seen, the bottleneck is mostly in the step for adding transitions among zones. This is
due to the fact that in this model, the fault does not lead the computation to reach bad
states and, hence, our pruning strategy is not necessarily helpful. Comparison between
the number of zones in the original model and the enhanced one shows that there is an
increase in the zone graph size. This is due to adding switches E5 in Function 2, which
let any possible delay in states out of Q. We note that our idea for ranking the zones and
updating the ranks dynamically has significantly made this step more efficient. However,
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Table 2.2: Results for train signal controller
4 5 6

Steps 1,2 (sec) 0.78 1.89 3.38
Step 3 (sec) 9.87 12.95 43.39
Step 4 (sec) 3.16 2.52 9.18
Step 5 (sec) 1.31 1.72 3.67
Step 6 (sec) 2.22 2.56 7.18

Total synthesis time (sec) 17.34 21.64 66.8

Zone Graph Generation

of Intolerant Model
1.0 s 1.0 s 1.0 s

Zone Graph Size

of Enhanced Automaton
893 1424 1942

Zone Graph Size

of Intolerant Model
442 792 1112

we believe that using heuristics, we can still make this step more efficient at the cost of
losing completeness.

Our conclusion is that in that in some case studies (such as our first one), the proposed
algorithm competes with the verification time (model checking of the original model). In
this case study, as the algorithm bottleneck is the zone graph generation time, we can
claim that its scalability is as well as the zone graph generation in the underlying tool (IF
in our case studies). In the case studies that our pruning strategy does not help (such as
our second case study), the bottleneck of the algorithm is mostly in the recovery addition
phase. Our idea for ranking the zones and updating the ranks dynamically has helped
significantly to make this step more efficient.
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Chapter 3

Synthesis of Distributed
Self-Stabilizing Systems

3.1 Introduction

Self-stabilization is a versatile technique for forward fault recovery. A self-stabilizing system
has two key features:

• Strong convergence. When a fault occurs in the system and, consequently, reaches
some arbitrary state, the system is guaranteed to recover proper behavior within a
finite number of execution steps.

• Closure. Once the system reaches such good behavior, typically specified in terms
of a set of legitimate states, it remains in this set thereafter in the absence of new
faults.

Self-stabilization has a wide range of application domains, including networking [34] and
robotics [70]. The concept of self-stabilization was first introduced by Dijkstra in the
seminal paper [29], where he proposed three solutions for designing self-stabilizing token
circulation in ring topologies. Twelve years later, in a follow up article [30], he published
the correctness proof, where he states that demonstrating the proof of correctness of self-
stabilization was more complex than he originally anticipated. Indeed, designing correct
self-stabilizing algorithms is a tedious and challenging task, prone to errors. Also, compli-
cations in designing self-stabilizing algorithms arise, when there is no commonly accessible
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data store for all processes, and the system state is based on the valuations of variables dis-
tributed among all processes [29]. Thus, it is highly desirable to have access to techniques
that can automatically generate self-stabilizing protocols that are correct by construction.

Program synthesis (often called the holy grail of computer science) is an algorithmic
technique that takes as input a logical specification and automatically generates as output
a program that satisfies the specification. Automated synthesis is generally a highly com-
plex and challenging problem due to the high time and space complexity of its decision
procedures. For this reason, synthesis is often used for developing small-sized but intri-
cate components of systems. Synthesizing self-stabilizing distributed protocols involves
an additional level of complexity, due to constraints caused by distribution. Examples of
such constraints include read-write restriction of processes in the shared-memory model,
timing models, and symmetry. These constraints result in combinatorial blowups in the
search space of corresponding synthesis problems. For instance, in [54], the authors show
that adding stabilization behaviors to a non-stabilizing protocol is NP-complete in the
size of the state space, which itself is exponential in the size of variables of the protocol.
Also, Ebnenasir and Farahat [35] propose a heuristic automated method to synthesize self-
stabilizing algorithms, which is an incomplete technique (i.e., it may fail to find a solution
even if there exists one). In bounded synthesis [42], the authors propose a method for
synthesizing synchronous distributed protocols that interact with the environment. While
this method is quite general, it is not clear how it perform in the context of self-stabilizing
protocols.

With this motivation, we focus on the problem of automated synthesis of self-stabilizing
protocols. Based on the input specification and the type of output program, there are
various synthesis techniques. Our technique to synthesize self-stabilizing protocols takes
as input the following specification:

1. A topology that specifies (1) a finite set V of variables allowed to be used in the
protocol and their respective finite domains, (2) the number of processes, and (3)
read-set and write-set of each process; i.e., subsets of V that each process is allowed
to read and write.

2. A set of legitimate states in terms of a Boolean expression over V .

3. The timing model; i.e., whether the synthesized protocol is synchronous or asyn-
chronous.

4. Symmetry; i.e., whether or not all processes should behave identically.

5. Type of stabilization; i.e., strong convergence guarantees finite-time recovery, while
weak convergence guarantees only the possibility of recovery from any arbitrary state.
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Our synthesis approach is based on constraint solving and consists of three steps: (1)
encoding of the synthesis problem as a set of constraints, (2) quantifier elimination, and
(3) complete search over the possible solutions. Our approach is, in particular, SMT1-
based. That is, given the five above input constraints, we encode them as a set of SMT
constrains. We note that quantifier elimination in SMT-solvers even in finite instances is
not completely automated. If the SMT instance is satisfiable, then a witness solution to
its satisfiability is a distributed protocol that meets the input specification. If the instance
is not satisfiable, then we are guaranteed that there is no protocol that satisfies the input
specification. To the best of our knowledge, unlike the work in [21, 35], our approach, is
the first sound and complete technique that synthesizes self-stabilizing algorithms2. That
is, our approach guarantees synthesizing a protocol that is correct by construction, if
theoretically, there exists one, thanks to the power of existing constraint solvers. It allows
synthesizing protocols with different combinations of timing models along with symmetry
and types of stabilization.

Our technique for transforming the input specification into an SMT instance consists
in developing the following two sets of constraints:

• State and transition constraints capture requirements from the input specification
that are concerned with each state and transition of the output protocol. For in-
stance, read-write restrictions constrain transitions of each process; i.e., in all tran-
sitions, a process should only read and write variables that it is allowed to. Timing
models, symmetry, and designation of legitimate states are constraints applied to
states and transitions. Encoding these constraints in an SMT instance is relatively
straightforward.

• Temporal constraints in our work are only concerned with ensuring closure as well as
weak and strong convergence. Our approach to encode weak and strong convergence
in an SMT instance is inspired by bounded synthesis [42]. In bounded synthesis,
temporal logic properties are first transformed into a universal co-Büchi automaton.
This automaton is subsequently used to synthesize the next-state function or relation,
which in turn identifies the set of transitions of each process.

Solving the satisfiability problem for the conjunction of all above state, transition, and
temporal properties results in synthesizing a stabilizing protocol. In order to demonstrate

1Satisfiability Modulo Theories (SMT) are decision problems for formulas in first-order logic with equal-
ity combined with additional background theories such as arrays, bit-vectors, etc.

2In [55], the authors independently develop another sound and complete solution. We discussed this
work in Chapter 6 in detail.
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the effectiveness of our approach, we conduct a diverse set of case studies for automati-
cally synthesizing well-known protocols from the literature of self-stabilization. These case
studies include Dijkstra’s token ring [29] (for both three and four state machines), maxi-
mal matching [68], weak stabilizing token circulation in anonymous networks [28], and the
three coloring problem [45]. Given different input settings (i.e., in terms of the network
topology, type of stabilization, symmetry, and timing model), we report and analyze the
total time needed for synthesizing these protocols using the constraint solver Alloy [49].

The shortcoming of this work is that an explicit description of the set of legitimate
states is needed as an input to the synthesis algorithm. The problem here is developing a
formal predicate for legitimate states is not at all a straightforward task. For instance, the
set of legitimate states for Dijkstra’s token ring algorithm with three-state machines [29]
for three processes is the following:

(((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
(((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
((x1(s) + 1 mod 3 = x0(s)) ∧ ((x1(s) + 1 mod 3 6= x2(s)))) ∨
((x0(s) + 1 mod 3 6= x1(s)) ∧ (x1(s) + 1 mod 3 6= x0(s)) ∧ (x1(s) + 1 mod 3 = x2(s)))

where variable xi belongs to process i, s ∈ LS , and xi(s) denotes the value of xi in state
s. Developing such a predicate requires huge expertise and insight. Ideally, the designer
should use the basic requirements (unique token and circulation of it) to identify the
desired system, instead of somehow magically producing a complex predicate such as the
one above. To the best of our knowledge, there exists no automated sound and complete
method that can synthesize self-stabilizing systems from their high-level specification.

In our next study, we propose an automated approach to synthesize self-stabilizing sys-
tems given (1) the network topology, and (2) the high-level specification of legitimate states
in a fragment of linear temporal logic (LTL). Furthermore, we explore automated synthe-
sis of ideal-stabilizing protocols [69]. These protocols always satisfy their specification, i.e.,
all states are legitimate. They address two drawbacks of self-stabilizing protocols, namely
exhibiting unpredictable behavior during recovery and poor compositional properties.

In order to keep the input specification as implicit as possible, the input LTL formula
may include a set of uninterpreted predicates. In designing ideal-stabilizing systems, the
transition relation of the system and interpretation function of uninterpreted predicates
must be found such that the specification is satisfied in every state. Our synthesis approach
for these problems is also SMT-based. In order to demonstrate the effectiveness of our
approach, we conduct a diverse set of case studies using the constraint solver Alloy [49]. In
the case of self-stabilizing systems, we successfully synthesize Dijkstra’s [29] token ring and
Raymond’s [74] mutual exclusion algorithms without legitimate states as input. We also
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synthesize ideal-stabilizing leader election and local mutual exclusion (in a line topology)
protocols.

3.2 Preliminaries

In this section, we present the preliminary concepts on distributed programs in the shared-
memory model, self-stabilization [31], and concrete/uninterpreted local/global predicates.

3.2.1 Distributed Programs

Throughout this chapter, let V be a finite set of discrete variables, where each variable
v ∈ V has a finite domain Dv. A state is a valuation of all variables; i.e., a mapping from
each variable v ∈ V to a value in its domain Dv. We call the set of all possible states
the state space. A transition in the state space is an ordered pair (s0, s1), where s0 and
s1 are two states. A state predicate is a set of states and a transition predicate is a set of
transitions. We denote the value of a variable v in state s by v(s).

Definition 17. A process π over a set V of variables is a tuple 〈Rπ,Wπ, Tπ〉, where

• Rπ ⊆ V is the read-set of π; i.e., variables that π can read,

• Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and

• Tπ is the transition predicate of process π, such that (s0, s1) ∈ Tπ implies that for
each variable v ∈ V , if v(s0) 6= v(s1), then v ∈ Wπ.

Notice that Definition 17 requires that a process can only change the value of a variable
in its write-set (third condition), but not blindly (second condition). We say that a process
π = 〈Rπ,Wπ, Tπ〉 is enabled in state s0 if there exists a state s1, such that (s0, s1) ∈ Tπ.

Definition 18. A distributed program is a tuple D = 〈ΠD, TD〉, where

• ΠD is a set of processes over a common set V of variables, such that:

– for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩Wπ2 = ∅
– for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following read

restriction holds:

∀s′0, s′1 : ((∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v 6∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s

′
1) ∈ Tπ (3.1)
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π0 π1 π2

Figure 3.1: Example of a maximal matching problem

• TD is a transition predicate.

Intuitively, the read restriction in Definition 18 imposes the constraint that for each process
π, each transition in Tπ depends only on reading the variables that π can read (i.e. Rπ).
Thus, each transition in TD is in fact an equivalence class in TD, which we call a group
of transitions. The key consequence of read restrictions is that during synthesis, if a
transition is included (respectively, excluded) in TD, then its corresponding group must
also be included (respectively, excluded) in TD. Also, notice that TD is defined in an
abstract fashion. In Section 3.4, we will discuss what transitions are included in TD based
on the timing model and symmetry of process in ΠD.

Example 3.2.1. We use the problem of distributed self-stabilizing maximal matching as
a running example to describe the concepts throughout this chapter. In an undirected
graph a maximal matching is a maximal set of edges, in which no two edges share a
common vertex. Consider the graph in Fig. 3.1 and suppose each vertex is a process in
a distributed program. In particular, let V = {match0,match1,match2} be the set of
variables and D = 〈ΠD, TD〉 be a distributed program, where ΠD = {π0, π1, π2}. We also
have Dmatch0 = {1,⊥}, Dmatch1 = {0, 2,⊥}, and Dmatch2 = {1,⊥}. The intuitive meaning
of the domain of each variable is that each process can be either matched to one of its
adjacent processes (i.e., π0 can be matched to π1, π1 can be matched to either π0 or π2,
and π2 can be match to π1) or to no process (i.e., the value ⊥). Each process πi can read
and write variable match i and read the variables of its adjacent processes. For instance,
π0 = 〈Rπ0 ,Wπ0 , Tπ0〉, with Rπ0 = {match0,match1} and Wπ0 = {match0}. Notice that
following Definition 18 and read/write restrictions of π0, (arbitrary) transitions

t1 = ([match0 = match2 =⊥,match1 = 0], [match0 = 1,match1 = 0,match2 =⊥])

t2 = ([match0 =⊥,match1 = 0,match2 = 1], [match0 = match2 = 1,match1 = 0])

have the same effect as far as π0 is concerned (since π0 cannot read match2). This implies
that if t1 is included in the set of transitions of a distributed program, then so should t2.
Otherwise, execution of t1 by π0 will depend on the value of match2, which, of course, π0

cannot read.

Definition 19. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states s =
s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a computation
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reaches a state si, from where there is no state s 6= si, such that (si, s) ∈ TD, then the
computation stutters at si indefinitely. Such a computation is called a terminating compu-
tation.

As an example, in maximal matching, computations may terminate when a matching
between processes is established.

3.2.2 Predicates

Let D = 〈ΠD, TD〉 be a distributed program over a set V of variables. The global state space
of D is the set of all possible global states of D: ΣD =

∏
v∈V Dv. Likewise, for a process

π ∈ ΠD, the local state space of π is the set of all possible local states of π: Σπ =
∏

v∈Rπ Dv.

Definition 20. Let D = 〈ΠD, TD〉 be a distributed program. An interpreted global predicate
is a subset of ΣD and an interpreted local predicate is a subset of Σπ, for some π ∈ Π.

Definition 21. Let D = 〈ΠD, TD〉 be a distributed program. An uninterpreted global pred-
icate up is an uninterpreted Boolean function from the set of all states. An uninterpreted
local predicate lp is an uninterpreted Boolean function from the local state space of π, for
some π ∈ Π. We denote the uninterpreted local predicate for the process π by lpπ.

The interpretation of an uninterpreted global predicate is a Boolean function from the
set of all states:

upI : ΣD 7→ {true, false}
upI represents an interpreted global predicate that includes all states mapped to true.
Similarly, the interpretation of an uninterpreted local predicate for the process π is a
Boolean function:

lpI : Σπ 7→ {true, false}
lpI represents an interpreted local predicate that includes all local states mapped to true.
Throughout this chapter, we use ‘uninterpreted predicate’ to refer to either uninterpreted
global and local predicate, and use global (local) predicate to refer to interpreted global
(local) predicate.

3.2.3 Topology

We now define the notion of topology. Intuitively, a topology specifies only the architectural
structure of a distributed program (without its set of transitions). The reason for defining
topology is that one of the inputs to our synthesis problem is a topology based on which
a distributed program is synthesized as output.
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Definition 22. A topology is a tuple T = 〈VT , |ΠT |, RT ,WT 〉, where

• VT is a finite set of finite-domain discrete variables,

• |ΠT | ∈ N≥1 is the number of processes,

• RT is a mapping {0 . . . |ΠT | − 1} 7→ 2V from a process index to its read-set,

• WT is a mapping {0 . . . |ΠT | − 1} 7→ 2V that maps a process index to its write-set,
such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |ΠT | − 1).

Example 3.2.2. The topology of our matching problem is a tuple 〈V, |ΠT |, RT ,WT 〉, where

• V = {match0,match1,match2}, with domains Dmatch0 = {1,⊥}, Dmatch1 = {0, 2,⊥},
and Dmatch2 = {1,⊥},

• |ΠT | = 3,

• RT (0) = {match0,match1}, RT (1) = {match0,match1,match2},
RT (2) = {match1,match2}, and

• WT (0) = {match0}, WT (1) = {match1}, and WT (2) = {match2}.

Definition 23. A distributed program D = 〈ΠD, TD〉 has topology T = 〈VT , |ΠT |, RT ,WT 〉,
if and only if

• each process π ∈ ΠD is defined over VT

• |ΠD| = |ΠT |

• there is a mapping g : {0 . . . |ΠT | − 1} 7→ ΠD such that

∀i ∈ {0 . . . |ΠT | − 1} :(RT (i) = Rg(i)) ∧ (WT (i) = Wg(i))

3.2.4 Self-Stabilization

Pioneered by Dijkstra [29], a self-stabilizing system is one that always recovers a good be-
havior (typically, expressed in terms of a set of legitimate states), even if it starts execution
from any arbitrary initial state. Such an arbitrary state may be reached due to wrong
initialization or occurrence of transient faults.
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Definition 24. A distributed program D = 〈ΠD, TD〉 is self-stabilizing for a set LS of
legitimate states if and only if the following two conditions hold:

• Strong convergence: In any computation s = s0s1 · · · of D, where s0 is an arbitrary
state of D, there exists i ≥ 0, such that si ∈ LS. That is, the computation-tree logic
(CTL) [36] property3:

SC = A3LS (3.2)

• Closure: For all transitions (s0, s1) ∈ TD, if s0 ∈ LS, then s1 ∈ LS as well. That is,
the CTL property:

CL = LS ⇒ A© LS (3.3)

Notice that the strong convergence property ensures that starting from any state, any
computation will converge to a legitimate state of D within a finite number of steps.
The closure property ensures that starting from any legitimate state, execution of the
program remains within the set of legitimate states. Also, since all states in a self-stabilizing
distributed program are considered as initial states, CTL Formula 3.3 (i.e., closure CL)
is evaluated over all possible states. This is why the formula is not of form A2(LS ⇒
A© LS ).

Example 3.2.3. In our maximal matching problem, the set of legitimate states is:

LS = { [match0(s) = 1,match1(s) = 0,match2(s) =⊥],
[match0(s) =⊥,match1(s) = 2,match2(s) = 1]}

There exist several results on impossibility of distributed self-stabilization (e.g., in to-
ken circulation and leader election in anonymous networks [47]). Thus, less strong forms
of stabilization have been introduced in the literature of distributed computing. One ex-
ample is weak-stabilizing distributed programs [44], where there only exists the possibility
of convergence.

Definition 25. A distributed program D = 〈ΠD, TD〉 is weak-stabilizing for a set LS of
legitimate states if and only if the following two conditions hold:

3In CTL ‘A’ denotes ‘for all computations’, ‘E’ denotes ‘there exists a computation’, ‘3’ denotes
‘eventually’, and © denotes ‘next state’.
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• Weak convergence: For each state s0 in the state space of D, there exists a computa-
tion s = s0s1 · · · of D, where there exists i ≥ 0, such that si ∈ LS. That is, the CTL
property:

WC = E3LS (3.4)

• Closure: As defined in Definition 24.

Notice that unlike strong self-stabilizing programs, in a weak-stabilizing program, there
may exist execution cycles outside the set of legitimate states. In the rest of the chapter,
we use ‘strong self-stabilization’ (respectively, ‘strong convergence’) and ‘self-stabilization’
(respectively, ‘convergence’) interchangeably.

Notation. We denote the fact that a distributed program D satisfies a temporal logic
property ϕ by D |= ϕ. For example, D |= SC means that distributed program D satisfies
strong convergence.

3.3 Ideal-Stabilization

Before giving the definition of ideal-stabilization, we briefly introduce LTLR, which is a
subset of LTL.

3.3.1 Linear Temporal Logic (LTL)

Linear temporal logic (LTL) is a well-known language for specifying temporal properties
of concurrent programs. In this study, we use a fragment of LTL formulation, denoted
LTLR, where nested temporal operators are not allowed.

Definition 26 (LTLR syntax). The set of LTLR properties are formed by one of the
following definitions:

P ::= true | p | up | ¬P | P1 ∧ P2

Q ::= XP | P1 UP2 | ¬Q | Q1 ∧Q2

where p is a predicate, up is an uninterpreted predicate, and X and U are temporal
operators.

Definition 27 (LTLR semantics). Let s = s0s1 · · · be a computation, i be a non-negative
integer, {I} be a set of interpretation functions (one for each uninterpreted predicate), and
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upI ∈ {I} denote the interpretation function for up. The satisfaction relation (denoted |=)
in LTLR is inductively defined as below:

s, i |= true

s, i |= p iff si |= p (si ∈ p)
s, i, upI |= up iff si |= upI (si ∈ upI)

s, i, {I} |= ¬P iff s, i, {I} 6|= P

s, i, {I} |= P1 ∧ P2 iff s, i, {I} |= P1 ∧ s, i, {I} |= P2

s, i, {I} |= XP iff s, i+ 1, {I} |= P

s, i, {I} |= P1 UP2 iff ∃k ≥ i : s, i, {I} |= P2 ∧ ∀j : i ≤ j < k : s, i, {I} |= P1

And, s, {I} |= P iff s, 0, {I} |= P .

We note that FP (‘eventually’ P ) is an abbreviation of true UP . Observe that if up
is an uninterpreted local predicate for the process π, then si |= upI, iff the projection of si
on the read-set of π is a member of upI.

Notation. If there exists an interpretation function for each uninterpreted predicate, such
that all computations of a distributed program D satisfy an LTLR formula P , then we say
that D satisfies P and write D |= P .

Example 3.3.1. Consider the problem of token passing exclusion in a ring topology (i.e.,
token ring), where each process πi has a variable xi with the domain Dxi = {0, 1, 2}. This
problem has two requirements:

Safety The safety requirement for this problem is that in each state, there is exactly one
enabled process (i.e., only one process can execute). To formulate this requirement,
we assume each process πi is associated with a local uninterpreted predicate tk i,
which shows whether πi is enabled. Let LP be the set of all uninterpreted predicates
for a ring of size n, i.e., LP = {tk i | 0 ≤ i < n}. A process πi can execute a
transition, if and only if tk i is true. The LTLR formula, ϕME, expresses the above
requirement for a ring of size n:

ϕME = (∀i ∈ {0 · · ·n− 1} : tk i ⇐⇒ (∀val ∈ {0, 1, 2} : (xi = val)⇒ X (xi 6= val)))

Using the set of uninterpreted predicates, the safety requirement can be expressed
by the following LTLR formula:

ψsafety = ∃i ∈ {0 · · ·n− 1} : (tk i ∧ ∀j 6= i : ¬tk j)
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Fairness This requirement implies that for every process πi and starting from each state,
the computation should reach a state, where πi is enabled. One way to guarantee this
requirement is that processes get enabled in a clockwise order in the ring 4, which
can be formulated as follows:

ψfairenss = ∀i ∈ {0 · · ·n− 1} : (tk i ⇒ X tk (i+1 mod n))

Thus, the requirements of the token ring protocol can be formulated as ψTR = ψsafety ∧
ψfairness. We note that based on Definition 19, since computations are infinite, property
ψTR automatically ensures deadlock-freedom as well.

Example 3.3.2. As another example, consider the problem of local mutual exclusion on
a line topology, where each process πi has a Boolean variable ci. The requirements of this
problem are as follows:

Safety In each state, (i) at least one process is enabled (i.e., deadlock-freedom), and (ii)
no two neighbors are enabled (i.e., mutual exclusion). To formulate this requirement,
we associate each process πi with a local uninterpreted predicate tk i, which is true
when πi is enabled:

ϕME = ∀i ∈ {0 · · ·n− 1} : tk i ⇐⇒ ((ci ⇒ X¬ci) ∧ (¬ci ⇒ X ci))

Thus, LP = {tk i | 0 ≤ i < n} and the safety requirement can be formulated by the
following LTLR formula:

ψsafety = (∃i ∈ {0 · · ·n− 1} : tk i) ∧ (∀i ∈ {0 · · ·n− 2} : ¬(tk i ∧ tk (i+1)))

Fairness Each process πi is eventually enabled: ψfairenss = ∀i ∈ {0 · · ·n− 1} : (F tk i)

The requirements of the local mutual exclusion protocol on a line topology is ψME =
ψsafety ∧ ψfairness.

3.3.2 Formal Characterization of Ideal-Stabilization

In self-stabilizing systems, the program behaviour during recovery is unpredicted and this
is undesirable for some applications. To overcome this limitation, ideal-stabilization is
introduced in [69]. In an ideal stabilizing system, every state is legitimate, and hence,
every computation starting from any state satisfies the system specification.

4Note that this is a sufficient requirement for fairness, but it is not necessary.

47



Definition 28. Let ψ be an LTLR specification and D = 〈ΠD, TD〉 be a distributed program.
We say that D is ideal stabilizing for ψ iff starting from any arbitrary state D |= ψ.

Ideal-stabilization can be defined for an ideal specification, or a non-ideal specification.
An ideal specification is satisfied in every possible computation, and a specification is
non-ideal otherwise. Since ideal-stabilization to non-ideal specifications is more useful in
practice, in this study, we only consider this type of ideal stabilization. To design an ideal
stabilizing system for a non-ideal specification, we should find a transition predicate and an
interpretation function for every uninterpreted predicate (if included in the specification),
such that the system satisfies the specification. Note that there is a specification for every
system to which it ideally stabilizes [69], and that is the specification that includes all
of the system computations. In this thesis, we do the reverse; meaning that getting a
specification SP , we synthesize a distributed system that ideally stabilizes to SP .

3.4 Timing Models and Symmetry in Distributed Pro-

grams

Our synthesis problem takes as input the type of timing model as well as symmetry re-
quirements among processes. These constraints are defined in Subsections 3.4.1 and 3.4.2.

3.4.1 Timing Models

Two commonly-considered timing models in the literature of distributed computing are
synchronous and asynchronous programs [63]. In an asynchronous distributed program,
every transition of the program is a transition of one and only one of its processes.

Definition 29. A distributed program D = 〈ΠD, TD〉 is asynchronous if and only if the
following condition holds:

ASYN = ∀(s0, s1) ∈ TD : ((∃π ∈ ΠD : (s0, s1) ∈ Tπ) ∨
((s0 = s1) ∧ ∀π ∈ ΠD : ∀s : (s0, s) 6∈ Tπ)) (3.5)

Thus, the transition predicate of an asynchronous program is simply the union of tran-
sition predicates of all processes. That is,

TD =
⋃
π∈ΠD

Tπ
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An asynchronous distributed program resembles a system, where process transitions exe-
cute in an interleaving fashion.

In a synchronous distributed program, on the other hand, in every step, all enabled
processes have to take a step simultaneously.

Definition 30. A distributed program D = 〈ΠD, TD〉 is synchronous if and only if the
following condition holds:

SYN =∀(s0, s1) ∈ TD : ∀π ∈ ΠD :

(∃s : ((s0, s) ∈ Tπ) ∧ ∀v ∈ Wπ : v(s1) = v(s)) ∨
(∀s : ((s0, s) 6∈ Tπ) ∧ ∀v ∈ Wπ : v(s0) = v(s1)) (3.6)

In other words, a distributed program is synchronous, if and only if each transition
(s0, s1) ∈ TD is obtained by execution of all enabled processes (the ones that have a
transition starting from s0). Hence, the value of the variables in their write-sets change
in s1 accordingly. Also, for all non-enabled processes, the value of the variables in their
write-sets do not change from s0 to s1.

3.4.2 Symmetry

Symmetry [39] in distributed programs refers to similarity of behavior of different processes.

Definition 31. A distributed program D = 〈ΠD, TD〉 is called symmetric if and only if
for any two distinct processes π, π′ ∈ ΠD, there exists a bijection f : Rπ → Rπ′, such that
the following condition holds:

SYM =∀(s0, s1) ∈ Tπ : ∃(s′0, s′1) ∈ Tπ′ :

(∀v ∈ Rπ : (v(s0) = f(v)(s′0))) ∧ (∀v ∈ Wπ : (v(s1) = f(v)(s′1))) (3.7)

In other words, in a symmetric distributed program, the transitions of a process can be
determined by a simple variable mapping from another process. A distributed program is
called asymmetric if it is not symmetric.

49



3.5 Problem Statement

In this chapter, we propose synthesis solutions for three problems. The goal of the first
problem is to synthesize strong and weak self-stabilizing distributed programs by starting
from the description of its set of legitimate states and the architectural structure of pro-
cesses. In the second and third problems, we get as input the desired system topology, and
two LTLR formulas ϕ and ψ that involve a set LP of uninterpreted predicates. For in-
stance, in Example 3.3.1, ψTR includes safety and fairness, which should hold in the set of
legitimate states, while ϕTR is a general requirement that we specify on every uninterpreted
predicate tk i. The goal of the second and third problems is to synthesize self-stabilizing
and ideal-stabilizing systems, respectively. Note that in ideal-stabilizing systems, all states
are legitimate. In the second problem, we don’t get LS as a set of states (global predicate),
and hence, we refer to this problem as “synthesis of self-stabilizing systems with implicit
LS”. The three problem statements are more formally presented below.

Problem statement 1 (self-stabilization). Given is

1. a topology T = 〈V, |ΠT |, RT ,WT 〉

2. a set LS of legitimate states

3. the specification of the timing model, type of self-stabilization, and symmetry of
the resulting system.

The synthesis algorithm is required to generate as output a distributed program D =
〈ΠD, TD〉, such that, based on the given input specification: (1) D has topology T , (2)
D |= SC ∧CL or D |= WC ∧CL, and (3) TD respects ASYN or SYN , and if symmetry
is required, it also respects SYM .
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Problem statement 2 (self-stabilization with implicit LS). Given is

1. a topology T = 〈V, |ΠT |, RT ,WT 〉;

2. two LTLR formulas ϕ and ψ that involve a set LP of uninterpreted predicates.

3. the specification of the timing model, type of self-stabilization and symmetry of
the resulting system.

The synthesis algorithm is required to identify as output

1. a distributed program D = 〈ΠD, TD〉

2. an interpretation function for every local predicate lp ∈ LP

3. the global state predicate LS

such that (1) D has topology T , (2) D |= ϕ, (3) D |= (LS ⇒ ψ), (4) D is self-stabilizing
for LS (D |= SC ∧ CL or D |= WC ∧ CL), and (5) TD respects ASYN or SYN , and
if symmetry is required, it also respects SYM .

Problem statement 3 (ideal-stabilization). Given is

1. a topology T = 〈V, |ΠT |, RT ,WT 〉

2. two LTLR formulas ϕ and ψ that involve a set LP of uninterpreted predicates.

3. the specification of the timing model and symmetry of the resulting system.

The synthesis algorithm is required to generate as output

1. a distributed program D = 〈ΠD, TD〉

2. an interpretation function for every local predicate lp ∈ LP

such that (1) D has topology T , (2) D |= (ϕ∧ψ), and (3) TD respects ASYN or SYN ,
and if symmetry is required, it also respects SYM .

3.6 SMT-based Synthesis Solution

In this section, we propose a technique that transforms the synthesis problem stated in
Section 3.5 into an SMT solving problem. An SMT instance consists of two parts: (1)
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a set of entity declarations (in terms of sets, relations, and functions), and (2) first-order
modulo-theory constraints on the entities. An SMT-solver takes as input an SMT instance
and determines whether or not the instance is satisfiable; i.e., whether there exists concrete
SMT entities (also called an SMT model) that satisfy the constraints. We transform the
input to our synthesis problem into an SMT instance. If the SMT instance is satisfiable,
then the witness generated by the SMT solver is the answer to our synthesis problem. We
describe the SMT entities obtained in our transformation in Subsection 3.6.1. Constraints
that appear in all SMT instances regardless of the timing model, type of symmetry and
stabilization are presented in Subsection 3.6.2, while constraints depending on these factors
are discussed in Subsection 3.6.4.

3.6.1 SMT Entities

Recall that the inputs to our problem are a topology T = 〈V, |ΠT |, RT ,WT 〉, a set LS of
legitimate states, and the program type. Let D = 〈ΠD, TD〉 denote the distributed program
to be synthesized that has topology T and legitimate states LS . In our SMT instance, we
include:

• A set Dv for each v ∈ V , which contains the elements in the domain of v.

• A set called S, whose cardinality is ∣∣∣∣∏
v∈V

Dv

∣∣∣∣
(i.e., the Cartesian product of all variable domains). This set represents the state
space of the synthesized distributed program. Recall that in a self-stabilizing pro-
gram, any arbitrary state can be an initial state and, hence, we need to include the
entire state space in the SMT instance.

• An uninterpreted function v val for each variable v, v val : S 7→ Dv that maps each
state in the state-space to a valuation of that variable.

• A relation TD that represents the transition relation of the synthesized distributed
program (i.e., TD ⊆ S × S). Obviously, the main challenge in synthesizing D is
identifying TD, since variables (and, hence, states) and read/write-sets of ΠD are
given by topology T .

• An uninterpreted function γ, from each state to a natural number (γ : S 7→ N). We
will discuss this function in detail in Subsection 3.6.4.1.
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• In the case of problem statements 2 and 3: An uninterpreted function lp val for each
uninterpreted predicate lp ∈ LP ; i.e, lp val : S 7→ Boolean.

• In the case of problem statement 1: A Boolean function LS : S 7→ {0, 1}. LS (s) is
true if and only if s is a legitimate state.

• In the case of problem statement 2: An uninterpreted function LS : S 7→ Boolean.

Example 3.6.1. In our maximal matching problem (problem statement 1), the SMT
entities are as follows:

• Dmatch0 = {⊥, 1}, Dmatch1 = {⊥, 0, 2}, Dmatch2 = {⊥, 1}

• set S, where |S| = 12

• match0 val : S 7→ Dmatch0 , match1 val : S 7→ Dmatch1 , match2 val : S 7→ Dmatch2

• TD ⊆ S × S

• γ : S 7→ N

• LS : S 7→ {0, 1}

3.6.2 General Constraints

In this section, we present the constraints that correspond to all problem statements and
appear in all SMT instances regardless of the timing model and type of symmetry and
stabilization.

3.6.2.1 State Distinction

As mentioned, we specify the size of the state space in the model. The first constraint
in our SMT instance stipulates that any two distinct states differ in the value of some
variable:

∀s0, s1 ∈ S : (s0 6= s1) =⇒ (∃v ∈ V : v val(s0) 6= v val(s1)) (3.8)

Example 3.6.2. In our maximal matching problem, the state distinction constraint is:

∀s0, s1 ∈ S : (s0 6= s1) =⇒ (match0 val(s0) 6= match0 val(s1)) ∨
(match1 val(s0) 6= match1 val(s1)) ∨
(match2 val(s0) 6= match2 val(s1))
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3.6.2.2 Read Restrictions

To ensure that D meets the read restrictions given by T , we add the following constraint
for each process index i ∈ {0, . . . , |ΠT | − 1}:

∀s0, s1 ∈ S :
(

(s0, s1) ∈ TD ∧ ∃v ∈ WT (i) : v val(s0) 6= v val(s1)
)

=⇒(
∀s′0, s′1 ∈ S :

(
∀v′ ∈ RT (i) : v′ val(s0) = v′ val(s′0) ∧

∀v′ ∈ WT (i) : v′ val(s1) = v′ val(s′1)
)

=⇒ (s′0, s
′
1) ∈ TD

)
(3.9)

Note that Constraint 3.9 is formulated differently from the definition of read restriction in
Condition 3.1. The reason is that Definition 18 corresponds to an asynchronous system.
To cover both synchronous and asynchronous systems, we formalize read restrictions as
Constraint 3.9, which can be used in addition to Constraint 3.23 to synthesize asynchronous
systems. This will be discussed in Subsection 3.6.4.3.

Example 3.6.3. In our maximal matching problem, the read restriction for process 0 is
the following constraint:

∀s0, s1 ∈ S :
(
(s0, s1) ∈ TD ∧ match0 val(s0) 6= match0 val(s1)

)
=⇒

∀s′0, s′1 ∈ S :
(
match0 val(s0) = match0 val(s

′
0) ∧

match1 val(s0) = match1 val(s
′
0) ∧

match0 val(s1) = match0 val(s
′
1)
)

=⇒ (s′0, s
′
1) ∈ TD

3.6.3 General Constraints for Problem Statements 1 & 2

In this section, we present the general constraints (independent of timing model and type
of symmetry and stabilization) that are added in the case of problem statements 1 and 2
(synthesizing a self-stabilizing system).

3.6.3.1 Constraints for Behavior of the Synthesized Program in the Absence
of Faults

In the case of synthesizing a self-stabilizing system, our synthesis problem can also take
as input a set of actions that the synthesized program must include inside the legitimate
states. This constraint is beneficial in cases where the behavior of a self-stabilizing protocol
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in the absence of faults is already known and/or is important to preserve. Given a set of
transitions that start in LS , denoted by TLS , Constraint 3.10 is added to the SMT instance:

(∀(s, s′) ∈ TLS : (s, s′) ∈ Tp) ∧
(∀(s, s′) ∈ Tp : LS (s) ∧ LS (s′) =⇒ (s, s′) ∈ TLS ) (3.10)

While the first conjunct ensures that the synthesized model includes all transitions in TLS ,
the second conjunct guarantees that no new behavior is added in the fault-free scenarios.
Notice that the constraint can be easily changed to synthesize a model, where the set of
transitions in LS is a nonempty subset of TLS .

3.6.3.2 Closure (CL)

The formulation of the CL constraint in our SMT instance is as follows:

∀s, s′ ∈ S : (LS (s) ∧ (s, s′) ∈ TD) =⇒ LS (s′) (3.11)

3.6.4 Program-specific Constraints

We now present the model constraints that depend on the specific timing model, type of
symmetry, and stabilization (i.e., strong and weak-stabilization, asynchronous and sym-
metric programs).

3.6.4.1 Strong Convergence (SC )

Our formulation of the SMT constraints for SC is an adaptation of the concept of bounded
synthesis [42]. Inspired by bounded model checking techniques [26], the goal of bounded
synthesis is to synthesize an implementation that realizes a set of linear-time temporal
logic (LTL ) properties, where the size of the implementation is bounded (in terms of the
number of states). We emphasize that although strong convergence (Constraint 3.2) is
stated in CTL, it can also be stated by an equivalent LTLproperty:

D |= A3LS ⇔ D |= 3LS

for any distributed program D. One difficulty with bounded model checking and synthesis
is to make an estimate on the size of reachable states of the program under inspection.
This difficulty is not an issue in the context of synthesizing self-stabilizing systems, since
it is assumed that any arbitrary state is either reachable or can be an initial state. Hence,
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q0 q1
LS

¬LS true

Q = {q0, q1}, Q0 = {q0}, ∆ = {(q0, q0), (q0, q1), (q1, q1)}, G(q0, q0) = {¬LS}, G(q0, q1) =
{LS}, G(q1, q1) = {true}

Figure 3.2: Universal co-Büchi automaton for strong convergence ϕ = 3LS .

the bound will be equal to the size of the state space; i.e., the size is a priori known by
the input topology. The bounded synthesis technique for synthesizing a state-transition
system from a set of LTL properties consists in two steps [42]:

• Step 1: Translation to universal co-Büchi automaton. First, we transform
each LTL property ϕ into a universal co-Büchi automaton Bϕ using the method
in [61]. Roughly speaking, a universal co-Büchi automaton [42, 61] is a tuple Bϕ =
〈Q,Q0,∆, G〉, where Q is a set of states, Q0 ⊆ Q is the set of initial states, ∆ ⊆ Q×Q
is a set of transitions, and G maps each transition in ∆ to propositional conditions.
Each state could be accepting (depicted by a circle), or rejecting (depicted by a
double-circle). In particular, Fig. 3.2 shows the universal co-Büchi automaton for
the strong convergence property SC = 3LS . This property is, in fact, the only
property for which we use bounded synthesis.

Let ST = 〈S, S0, TD〉 be a state-transition system, where S is a set of states, S0 ⊆ S
is the set of initial states, and TD ⊆ S × S is a set of transitions. We say that Bϕ

accepts ST if and only if on every infinite path of ST running on Bϕ, there are
only finitely many visits to the set of rejecting states in Bϕ [61]. For instance, if a
state-transition system is self-stabilizing for the set LS of legitimate states, all its
infinite paths visit a state in ¬LS only finitely many times. Hence, the automaton
in Fig. 3.2 accepts such a system.

• Step 2: SMT encoding. In this step, the conditions for the co-Büchi automaton
to satisfy a state-transition system are formulated as a set of SMT constraints. To this

4Observe that the ‘run graph of ST on Bϕ’ is a subset of the cross product of the automata Bϕ and ST ,
with the initial state (q0, s0), such that for each transition ((q, s), (q′, s′)), three conditions hold; (q, q′) ∈ ∆,
(s, s′) ∈ TD, and G(q, q′)(s) evaluates to true. Bϕ accepts ST , if every infinite path in the corresponding
run graph, starting from the initial state, only encounters finitely many rejecting states of Bϕ.
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end, we utilize the technique proposed in [42] for developing an annotation function
λ : Q× S 7→ N ∪ {⊥}, such that the following three conditions hold:

∀q0 ∈ Q0 : ∀s0 ∈ S0 : λ(q0, s0) ∈ N (3.12)

If (1) λ(q, s) 6= ⊥ for some q ∈ Q and s ∈ S, (2) there exists q′ ∈ Q such that q′ is
an accepting state and (q, q′) ∈ ∆ with the condition g ∈ G, and (3) g is satisfied in
the state s, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) 6=⊥ ∧ λ(q′, s′) ≥ λ(q, s)) (3.13)

and if q′ is a rejecting state in the co-Büchi automaton, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) 6=⊥ ∧ λ(q′, s′) > λ(q, s)) (3.14)

It is shown in [42] that the acceptance of a finite-state state-transition system by a universal
co-Büchi automaton is equivalent to the existence of an annotation function λ. The natural
number assigned to (q, s) by λ is meant to represent the maximum number of rejecting
states that occur on some path of Bϕ × ST that reaches (q, s) (i.e., when running the
state-transition system ST on the universal co-Büchi automaton Bϕ).

To ensure that the synthesized distributed program D = 〈ΠD, TD〉 satisfies strong con-
vergence, we use the bounded synthesis technique explained above. In the first step, we
construct the universal co-Büchi automaton for the LTLproperty 3LS (see Fig. 3.2). The
annotation constraints for the transitions in TD with the set of states S for the automaton
in Fig. 3.2 are as follows:

∀s ∈ S : λ(q0, s) 6=⊥ (3.15)

∀s, s′ ∈ S : (λ(q0, s) 6=⊥ ∧LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) 6=⊥ ∧ λ(q1, s
′) ≥ λ(q0, s)) (3.16)

∀s, s′ ∈ S : (λ(q1, s) 6=⊥ ∧ true ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) 6=⊥ ∧ λ(q1, s
′) ≥ λ(q1, s)) (3.17)

∀s, s′ ∈ S : (λ(q0, s) 6=⊥ ∧ ¬LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q0, s

′) 6=⊥ ∧ λ(q0, s
′) > λ(q0, s)) (3.18)

Notice that Constraint 3.15 is obtained from Constraint 3.12 (since in a self-stabilizing sys-
tem, every state can be an initial state). Similarly, Constraints 3.16 and 3.17 are instances
of Constraint 3.13 for transitions (q0, q1) and (q1, q1), respectively. Also, Constraint 3.18
is an instance of Constraint 3.14 for transition (q0, q0) (see Fig 3.2). We now claim that
Constraints 3.16 and 3.17 can be eliminated.
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Lemma 1. There always exists a non-trivial annotation function λ, which evaluates Con-
straints 3.16 and 3.17 as true.

Proof. We show that we can always find an annotation function that satisfies Constraints 3.16
and 3.17 without violating the other constraints. To this end, assume that there is an an-
notation that satisfies all properties except for the Constraint 3.16. Hence, we have:

∃s, s′ ∈ S : LS (s) ∧ (s, s′) ∈ TD ∧ (λ(q1, s
′) =⊥ ∨ λ(q1, s

′) < λ(q0, s))

We can simply assign λ(q0, s) to λ(q1, s
′), without violating Constraints 3.15 and 3.18.

This assignment can be done in a fixpoint iteration, until no more violation exists. We
can develop a similar proof for Constraint 3.17. Intuitively, for each state s, we assign to
λ(q1, s), the maximum number assigned to λ(q1, s

′), for every state s′ in any path reaching
s.

Following Lemma 1, since Constraints 3.16 and 3.17 can be removed from the SMT
instance, all constraints involving λ will have q0 as their first argument. This observation
results in replacing λ by a simpler annotation function γ as follows:

• Function γ takes only one argument, since the state of the co-Buchi automaton is
always q0.

• Due to Constraint 3.15, the value ⊥ is irrelevant in the range of the annotation
functions. Hence, we define our annotation function as:

γ : S 7→ N (3.19)

As a result, one can simplify Constraints 3.15-3.18 as follows:

∀s, s′ ∈ S : ¬LS (s) ∧ (s, s′) ∈ TD =⇒ γ(s′) > γ(s) (3.20)

The intuition behind Constraints 3.19 and 3.20 can be understood easily. If we can
assign a natural number to each state, such that along each outgoing transition from a
state in ¬LS , the number is strictly increasing, then the path from each state in ¬LS
should finally reach LS or get stuck in a state, since the size of state space is finite. Also,
there can not be any loops whose states are all in ¬LS , as imposed by the annotation
function.

Finally, the following constraint ensures that there is no deadlock state in ¬LS :

∀s ∈ S : ¬LS (s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD (3.21)
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3.6.4.2 Weak Convergence (WC )

To synthesize a weak self-stabilizing system, the SMT instance should encode property
WC = ∃3LS rather than SC . Notice that WC is not an LTL property and, hence,
cannot be transformed into an SMT constraint using the 2-step approach introduced in
Subsection 3.6.4.1. To this end, we refine the constraints developed for strong convergence
as follows. Since in weak convergence, for each state in ¬LS , a path should exist to a state
in LS , we utilize the following constraint:

∀s ∈ S : ¬LS (s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD ∧ γ(s′) > γ(s) (3.22)

where γ is the annotation Function 3.19. It is straightforward to prove using induction
that if a transition system satisfies Constraint 3.22, then for each state in ¬LS , there exists
a path to a state in LS .

3.6.4.3 Constraints for an Asynchronous System

The transition relation obtained using the constraints introduced in the previous Subsection
does not impose any requirements on which process can execute in each state. In fact,
since TD encodes a next-state function, all processes that can execute a local transition
while respecting the read-write restrictions would take a step. Such a program stipulates
a synchronous program, where all processes execute a local transition at the same time
(if there exists one). To synthesize an asynchronous distributed program, instead of a
transition function TD, we introduce a transition relation Ti for each process index i ∈
{0, . . . , |ΠT | − 1} TD = T0 ∪ · · · ∪ T|ΠT |−1), and add the following constraint for each
transition relation:

∀(s0, s1) ∈ Ti : ∀v /∈ WT (i) : v val(s0) = v val(s1) (3.23)

Constraint 3.23 ensures that in each relation Ti, only process πi can execute. By introducing
|ΠT | transition relations, we consider all possible interleaving of processes execution.

Example 3.6.4. To synthesize an asynchronous version of our maximal matching example,
we define three relations T0, T1, and T2 and add a constraint for each to the SMT instance.
For example, the constraint for T0 is:

∀(s0, s1) ∈ T0 : (match1 val(s0) = match1 val(s1)) ∧
(match2 val(s0) = match2 val(s1))
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3.6.4.4 Constraints for Symmetric Systems

To synthesize a symmetric distributed program, processes should have a symmetric topol-
ogy as well, meaning that the number of read variables and write variables, as well as their
domains, should be similar in all processes (see Constraint 3.7). Let us assume that the size
of the read-set and write-set of all processes are |Rp| and |Wp|, respectively. Also, assume
Rp and Wp to be a set of variables with the same domains as the read-set and write-set of
each process. We define an uninterpreted relation Tp that represents how processes execute
in a symmetric distributed program:

Tp ⊆ (
∏

(v∈Rp)

Dv)× (
∏

(v∈Wp)

Dv) (3.24)

Let
V val : S 7→

∏
v∈V

Dv

be the set of all state valuations for the variables in V for a given state. We define a
function

f : N 7→ V val

that gets a process index and maps it to the valuation function of all variables in the
read-set of the process. Likewise, we define a function

g : N 7→ V val

which does a similar task for the variables in the write-set of each process. We add
Constraint 3.25 for each process index i ∈ {0, . . . , |ΠT | − 1} to ensure that all processes
act symmetrically:

∀s0, s1 ∈ S : ((s0, s1) ∈ Ti ⇐⇒ (f(i)(s0), g(i)(s1)) ∈ Tp) (3.25)

Note that synthesis of symmetric systems does not need the read restriction constraints.
The reason is that the next value of write variables of a process π is specified by a relation
(Tp) based on the values of read variables of the process π. We should also mention that
Constraint 3.25 corresponds to an asynchronous system. The constraint could be easily
rewritten for a synchronous system, where there is only one transition relation.

Example 3.6.5. In order to synthesize a symmetric program for our matching problem,
we assume there are four processes π0, π1, π2, and π3 on a ring, and that all domains
are similar and equal to {l, s, r}, meaning that a process can be matched to its left or
right neighbor, or to itself (no matching). Thus, we define the uninterpreted relation
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Tp ⊆ {l, s, r}×{l, s, r}×{l, s, r}×{l, s, r}. Function f maps each process to the values of
matching of its right neighbor, itself, and left neighbor, and function g maps each process
to value of the only variable in the write-set. For each process, we add an instance of
Constraint 3.25 to the SMT instance. For example, for process π0, the following constraint
is added to the SMT instance:

∀s0, s1 ∈S : (s0, s1) ∈ T0 ⇐⇒
((match4 val(s0),match0 val(s0),match1 val(s0)),match0 val(s1)) ∈ Tp

3.6.5 Constraints for Problem Statements 2 & 3

In this section, we present the constraints that are added in the case of problem statements
2 and 3.

3.6.5.1 Local Predicates Constraints

Let LP be the set of uninterpreted predicates used in formulas ϕ and ψ. For each uninter-
preted local predicate lpπ, we need to ensure that its interpretation function is a function
of the variables in the read-set of π. To guarantee this requirement, for each lpπ ∈ LP , we
add the following constraint to the SMT instance:

∀s, s′ ∈ S : (∀v ∈ Rπ : (v(s) = v(s′)) =⇒ (lpπ(s) = lpπ(s′))

Example 3.6.6. As an example, in Example 3.3.1, we add the following constraint for
process π1:

∀s, s′ ∈ S : (x0(s) = x0(s′)) ∧ (x1(s) = x1(s′)) ∧ (x2(s) = x2(s′)) =⇒ (tk 1(s) = tk 1(s′))

Before presenting the rest of constraints, we present the formulation of an LTLR for-
mula as an SMT constraint. We use this formulation to encode the ψ and ϕ formulas
(given as input) as ψSMT and ϕSMT , and add them to the SMT instance (as discussed in
Sections 3.6.5.3 and 3.6.5.4).

3.6.5.2 SMT Formulation of an LTLR Formula

An LTLR formula consists of a set of predicates, logical operators, and temporal operators.
Formulation of predicates and logical operators is straightforward in an SMT instance.
Below, we discuss the formulation of the two temporal operators:
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3.6.5.2.1 SMT formulation of X Operator: A formula of the form XP is trans-
lated to an SMT constraint as below:

∀s, s′ ∈ S : (s, s′) ∈ TD =⇒ P (s′) (3.26)

3.6.5.2.2 SMT formulation of U Operator: Inspired by bounded synthesis [42], for
each formula of the form P UQ, we define an uninterpreted function γi : S 7→ N and add
the following constraints to the set of SMT constraints:

∀s, s′ ∈ S : ¬Q(s) ∧ (s, s′) ∈ TD =⇒ (P (s) ∧ γi(s
′) > γi(s)) (3.27)

∀s ∈ S : ¬Q(s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD (3.28)

The intuition behind Constraints 3.27 and 3.28 can be understood easily. If we can
assign a natural number to each state, such that along each outgoing transition from a
state in ¬Q, the number is strictly increasing, then the path from each state in ¬Q should
finally reach Q or get stuck in a state, since the size of state space is finite. Also, there
cannot be any loops whose states are all in ¬Q, as imposed by the annotation function.
Finally, Constraint 3.28 ensures that there is no deadlock state in ¬Q states.

3.6.5.3 Synthesis of Self-Stabilizing Systems with Implicit LS

In this section, we present the constraints specific to Problem Statement 1. As mentioned
in Section 3.5, one of the inputs in problem statement 2 is an LTLR formula, ϕ describing
the role of uninterpreted predicates. Considering ϕSMT to be the SMT formulation of ϕ,
we add the following SMT constraint to the SMT instance:

∀s ∈ S : ϕSMT (3.29)

Another input to our problem is the LTLR formula, ψ that includes requirements, which
should hold in the set of legitimate states. We formulate this formula as an SMT constraint
using the method discussed in 3.6.5.2.2. Considering ψSMT to be the SMT formulation of
the ψ formula, we add the following SMT constraint to the SMT instance:

∀s ∈ S : LS (s) =⇒ ψSMT (3.30)

Example 3.6.7. Continuing with Example 3.3.1, we add the following constraints to
encode ϕTR:

∀s ∈ S : ∀i ∈ {0 · · ·n− 1} : tk i(s) ⇐⇒ (∀s′ ∈ S : (s, s′) ∈ TD ⇒ xi(s) 6= xi(s
′))
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The other requirements of the token ring problem are ψsafety and ψfairness, which should
hold in the set of legitimate states. To guarantee them, the following SMT constraints are
added to the SMT instance:

∀s ∈ S : LS (s) =⇒ (∃i ∈ {0 · · ·n− 1} : (tk i(s) ∧ ∀j 6= i : ¬tk j(s)))

∀s ∈ S : LS (s) =⇒ ∀i ∈ {0 · · ·n− 1} : (tk i(s) ∧ (s, s′) ∈ TD)⇒ tk (i+1 mod n)(s
′)

3.6.5.4 Synthesis of Ideal-Stabilizing Systems

We now present the constraints specific to problem statement 3. The only such constraints
is related to the two LTLR formulas ϕ and ψ. To this end, we add the following to tour
SMT instance:

∀s ∈ S : ϕSMT ∧ ψSMT (3.31)

Example 3.6.8. For Example 3.3.2, to ensure ϕME and ψME we add the following con-
straint to the SMT instance:

∀s ∈ S : ∀i ∈ {0 · · ·n− 1} : tk i(s) ⇐⇒ (∀s′ ∈ S : (s, s′) ∈ TD ⇒ ci(s) 6= ci(s
′))

ϕME is guaranteed by adding the following two constraints to the SMT instance:

∀s, s′ ∈ S : ∀i ∈ {0, . . . , |ΠT | − 1} : ¬tk i(s) ∧ (s, s′) ∈ TD =⇒ γi(s
′) > γi(s)

∀s ∈ S : ∀i ∈ {0, . . . , |ΠT | − 1} : ¬tk i(s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD

Note that adding two constraints to an SMT instance is equivalent to adding their con-
junction.

3.7 Case Studies and Experimental Results

We evaluate our synthesis method using several case studies from well-known distributed
self-stabilizing problems. We consider cases where synthesis succeeds and cases where
synthesis fails to find a solution for the given topology. Failure of synthesis is normally due
to impossibility of self-stabilization for certain problems. We emphasize that although our
case studies deal with synthesizing a small number of processes (due to high complexity of
synthesis), having access to a solution for a small number of processes can give key insights
to designers of self- or ideal-stabilizing protocols to generalize the protocol for any number
of processes. For example, our method can be applied in cases where there exists a cut-off
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point [51]. We should also mention that the maximum number of processes in the system
we could synthesize differs from problem to problem. This number solely depends on the
complexity of the input specification and, hence, the SMT instance. That means there is
no fixed maximum number of processes that this method can handle. We note that the
size of the SMT instance grows linearly with the number of processes for each case study.
This is because the number of entities (i.e., variables, relations, etc) and constraints (e.g.,
read-write restrictions as well as temporal) grow linearly in the number of processes. Note
that concrete states do not appear in an SMT instance. As described in Section 3.6, we
only include a set S of state whose size is known.

We used the Alloy [49] model finder tool for our experiments. Alloy solver performs
the relational reasoning over quantifiers, which means that we did not have to unroll
quantifiers over their domains. All experiments in this section are run on a machine with
Intel Core i5 2.6 GHz processor with 8GB of RAM. We conducted experiments using Z3 5

and Yices 6 SMT solvers as well. The main reason that we used Alloy is that it simply
shows better performance than Z3 and Yices in the majority of our case studies. While the
reason is unknown to us, we believe it can be due to the fact that our problem is to find a
transition relation that satisfies the constraints of a self-stabilizing system and Alloy seems
to work better for relational models. Unfortunately, the internals of off-the-shelf SMT
solvers remain a mystery, as such solvers use many heuristics and even randomizations,
which we cannot explain their internals. We note that since our synthesis method and its
implementation in Alloy is deterministic, we do not replicate experiments for statistical
confidence7.

3.7.1 Case Studies for Problem Statement 1

In this section, we present the case studies we have conducted for our solution to problem
statement 1.

3.7.1.1 Maximal Matching

Our first case study is our running example, distributed self-stabilizing maximal match-
ing [48,68,76]. Recall that each process maintains a match variable with domain of all its
neighbors and an additional value ⊥ that indicates the process is not matched to any of its

5http://research.microsoft.com/en-us/um/redmond/projects/z3/
6http://yices.csl.sri.com
7The reader can access the Alloy models at http://www.cas.mcmaster.ca/borzoo/Publications/

15/TAAS/Alloy.zip.
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neighbors. The set of legitimate states is the disjunction of all possible maximal matchings
on the given topology. As an example, for the graph shown in Fig. 3.1, we have:

(match0(s) = 1 ∧ match1(s) = 0 ∧ match2(s) =⊥) ∨
(match0(s) =⊥ ∧match1(s) = 2 ∧ match2(s) = 1)

Table 3.1 presents our results for different sizes of line and star topologies. Obviously, such
topologies are inherently asymmetric. As expected, by increasing the number of processes,
synthesis time also increases. Another observation is that synthesizing a solution for the
star topology is in general faster than the line topology. This is because a protocol that
intends to solve maximal matching for the star topology deals with a significantly smaller
problem space. This is due to the fact that in a star topology, regardless of the size of
the network, processes can only match to the process in the center. Also, synthesizing a
weak-stabilizing protocol is faster than a self-stabilizing protocol, as the former has more
relaxed constraints. The synthesized model (represented as guarded commands) for the
case of 3 processes, with line topology, strong self-stabilization, and asynchronous timing
model is as follows:

π0 : match0 = ⊥ ∧ match1 = 0 → match0 := 1

match0 = 1 ∧ match1 = 2 → match0 := ⊥
π1 : match0 = ⊥ ∧ match1 = ⊥ ∧ match2 = 1 → match1 := 2

match0 = ⊥ ∧ match1 = 2 ∧ match2 = ⊥ → match1 := 0

match0 = 1 ∧ match1 = ⊥ ∧ match2 = ⊥ → match1 := 0

match0 = 1 ∧ match1 = ⊥ ∧ match2 = 1 → match1 := 0

match0 = 1 ∧ match1 = 2 ∧ match2 = ⊥ → match1 := ⊥
π2 : match1 = ⊥ ∧ match2 = ⊥ → match2 := 1

match1 = 0 ∧ match2 = 1 → match2 := ⊥

The synthesized model is depicted in Fig. 3.3.

3.7.1.2 Dijkstra’s Token Ring with Three-State Machines

In the token ring problem, a set of processes are placed on a ring network. Each process
has a so-called privilege (token), which is a Boolean function of its neighbors’ and its own
states. When this function is true, the process has the privilege.

Dijkstra [29] proposed three solutions for the token ring problem. In the three-state
token ring, each process πi maintains a variable xi with domain {0, 1, 2}. The read-set of a
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Figure 3.3: Synthesized model of maximal matching for line topology of size 3.

Topology # of Processes Self-Stabilization Timing Model Time (sec)

line 3 strong asynchronous 0.16
line 3 strong synchronous 0.44
line 4 strong synchronous 5.18
line 4 weak synchronous 3.29
line 5 weak synchronous 340.62
star 4 strong asynchronous 2.95
star 4 weak asynchronous 2.93
star 5 strong asynchronous 53.75
star 5 weak asynchronous 41.80

Table 3.1: Results for synthesizing maximal matching for line and star topologies.

process is its own and its neighbors’ variables, and its write-set contains its own variable.
As an example, for process π1, RT (1) = {x0, x1, x2} and WT (1) = {x1}. Token possession
is formulated using the conditions on a machine and its neighbors [29]. Briefly, in a state
s, process π0 (called the bottom process) has the token, when x0(s) + 1 mod 3 = x1(s),
process π(|ΠT |−1) (called the top process) has the token, when (x0(s) = x(|ΠT |−2)(s)) ∧
(x(|ΠT |−2)(s) + 1 mod 3 6= x(|ΠT |−1)(s)), and any other process πi owns the token, when
either xi(s)+1 mod 3 equals to the x-value of its left or right process (i.e., xi−1 or xi+ 1).
The set of legitimate states are those in which exactly one process has the token. For
example, for a ring of size three, the set of legitimate states is formulated by the following
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expression:

(((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
(((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 6= x2(s)))) ∨
((x1(s) + 1 mod 3 = x0(s)) ∧ ((x1(s) + 1 mod 3 6= x2(s)))) ∨
((x0(s) + 1 mod 3 6= x1(s)) ∧ (x1(s) + 1 mod 3 6= x0(s)) ∧ (x1(s) + 1 mod 3 = x2(s)))

Table 3.2 presents the result for synthesizing solutions for the three-state version. Ob-
viously, symmetry is not studied, because the top and bottom processes do not behave
similar to other processes. We note that the synthesized strong stabilizing programs using
our technique are identical to Dijkstra’s solution in [29]. Also, notice that the time needed
to synthesize weak and strong stabilizing solutions for the same number of process is al-
most identical. This is due to the fact that the search space for solving the corresponding
SMT instances are of the same complexity. We have also synthesized of a model given the
fault-free scenario (i.e., transitions that start in LS ) in Dijkstra’s solution. The constraint
for transitions that start in LS are as follows:

∀s ∈ S : ((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 6= x2(s))) =⇒
(s, s(x0←(x0−1) mod 3)) ∈ Tπ0

∀s ∈ S : ¬((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 6= x2(s))) =⇒
@s′ ∈ S : (s, s′) ∈ Tπ0

∀s ∈ S : ((x1(s) + 1 mod 3 = x0(s)) ∧ ((x1(s) + 1 mod 3 6= x2(s)))) =⇒
(s, s(x1←x0)) ∈ Tπ1

∀s ∈ S : ((x0(s) + 1 mod 3 6= x1(s)) ∧ (x1(s) + 1 mod 3 6= x0(s))∧
(x1(s) + 1 mod 3 = x2(s))) =⇒ (s, s(x1←x2)) ∈ Tπ1

∀s ∈ S : ¬(((x1(s) + 1 mod 3 = x0(s)) ∧ ((x1(s) + 1 mod 3 6= x2(s)))) ∨
((x0(s) + 1 mod 3 6= x1(s)) ∧ (x1(s) + 1 mod 3 6= x0(s))∧
(x1(s) + 1 mod 3 = x2(s)))) =⇒ @s′ ∈ S : (s, s′) ∈ Tπ1

∀s ∈ S : ((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 6= x2(s))) =⇒
(s, s(x2←(x1+1) mod 3)) ∈ Tπ2

∀s ∈ S : ¬((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 6= x2(s))) =⇒
@s′ ∈ S : (s, s′) ∈ Tπ2

where← denotes the assignment operator, and the subscript for the state s represents the
state obtained by the given assignments in s. This constraint stipulates the behavior of
the protocol in the absence of faults (i.e., in each state, only one process can execute and
each process eventually get the chance to execute; mutual exclusion and non-starvation).
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# of Proc. Self-Stabilization Timing Model Symmetry LS actions Time (sec)

3 strong asynchronous asymmetric 1.26
3 strong asynchronous asymmetric X 4.68
3 weak asynchronous asymmetric 1.06
4 strong asynchronous asymmetric 63.02
4 strong asynchronous asymmetric X 225.54
4 weak asynchronous asymmetric 62.13

Table 3.2: Results for synthesizing three-state token ring

Comparing the results with and without given LS transition shows that the synthesis
time increases when adding the constraints for the transitions inside the legitimate states.
This may not be always the case, since adding constraints in some SMT solvers can limit
the search space. In the case of given LS actions with strong self-stabilization, we can
synthesize Dijkstra’s protocol with the following actions [29]:

π0 : ((x0 + 1) mod 3 = x1) → x0 := (x0 − 1) mod 3

π1 : ((x1 + 1) mod 3 = x0) → x1 := x0

((x1 + 1) mod 3 = x2) → x1 := x2

π2 : (x1 = x0) ∧ ((x1 + 1) mod 3 6= x2) → x2 := (x1 + 1) mod 3

3.7.1.3 Dijkstra’s Token Ring with Four-State Machines

In this Subsection, we consider Dijkstra’s four-state machine solution for token ring [29].
Each process πi has two Boolean variables; xi and upi, where up0 = true and up(|ΠT |−1) =
false. Process π0 is called the bottom and process π(|ΠT |−1) is called the top process. The
read-set and write-set of a process is similar to the three-state case in Section 3.7.1.2.
Token possession is defined based on the variables of a process and its neighbors. Briefly,
in a state, say s, the bottom process has the token, if (x0(s) = x1(s)) ∧ (¬up1(s)), the
top process has the token, if x(|ΠT |−1)(s) 6= x(|ΠT |−2)(s), and the condition for any other
process πi is (xi(s) 6= x(i−1)(s)) ∨ (xi(s) = x(i+1)(s)∧ upi(s)∧¬up(i+1)(s)). The legitimate
states are those where exactly one process has the token. For example, for a ring of three
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processes, LS is the defined by the following expression:

((x0(s) = x1(s)) ∧ ¬up1(s) ∧ (x2(s) = x1(s))) ∨
((x0(s) = x1(s)) ∧ up1(s) ∧ (x2(s) 6= x1(s))) ∨
(¬up1(s) ∧ (x0(s) 6= x1(s)) ∧ (x2(s) = x1(s))) ∨
(up1(s) ∧ (x0(s) = x1(s)) ∧ (x2(s) = x1(s)))

Our results on token ring with four-state machines are presented in Table 3.3. The table
includes synthesis time when LS actions in Dijkstra’s solution are given as input. Similar
to the previous case study, the synthesis time has increased by adding the constraints for
the LS actions. The constraints for transitions that start in LS are as follows:

∀s ∈ S : ((x0(s) = x1(s)) ∧ ¬up1(s) ∧ (x2(s) = x1(s))) =⇒ (s, s(x0←¬x0)) ∈ Tπ0
∀s ∈ S : ¬((x0(s) = x1(s)) ∧ ¬up1(s) ∧ (x2(s) = x1(s))) =⇒ @s′ ∈ S : (s, s′) ∈ Tπ0
∀s ∈ S : (¬up1(s) ∧ (x0(s) 6= x1(s)) ∧ (x2(s) = x1(s))) =⇒ (s, s(x1←¬x1,up1←true)) ∈ Tπ1
∀s ∈ S : (up1(s) ∧ (x0(s) = x1(s)) ∧ (x2(s) = x1(s))) =⇒ (s, s(up1←false)) ∈ Tπ1
∀s ∈ S : ¬((¬up1(s) ∧ (x0(s) 6= x1(s)) ∧ (x2(s) = x1(s)))∨

(up1(s) ∧ (x0(s) = x1(s)) ∧ (x2(s) = x1(s)))) =⇒ @s′ ∈ S : (s, s′) ∈ Tπ1
∀s ∈ S : ((x0(s) = x1(s)) ∧ up1(s) ∧ (x2(s) 6= x1(s))) =⇒ (s, s(x2←¬x2)) ∈ Tπ2
∀s ∈ S : ¬((x0(s) = x1(s)) ∧ up1(s) ∧ (x2(s) 6= x1(s))) =⇒ @s′ ∈ S : (s, s′) ∈ Tπ2

In the case of given LS actions with strong self-stabilization, we can synthesize Dijkstra’s
protocol with the following actions [29]:

π0 : (x0 = x1) ∧ ¬up1 → x0 := ¬x0

π1 : (x1 6= x0) → x1 := ¬x1 ; up1 := true

(x1 = x2) ∧ up1 ∧ ¬up2 → up1 := false

π2 : (x2 6= x1) → x2 := ¬x2

3.7.1.4 Token Circulation in Anonymous Networks

Token circulation in a unidirectional ring is one of the most studied self-stabilizing prob-
lems. Herman [47] showed that there is no non-probabilistic self-stabilizing algorithm for
this problem in an anonymous network. In [28], Devismes et. al. proposed a weak self-
stabilizing solution for this problem. We assume a similar topology to the one used in [28].

69



# of Proc. Self-Stabilization Timing Model Symmetry LS actions Time (sec)

3 strong asynchronous asymmetric 0.86
3 strong asynchronous asymmetric X 44.71
3 weak asynchronous asymmetric 0.33
4 strong asynchronous asymmetric 30.32
4 strong asynchronous asymmetric X 51.79
4 weak asynchronous asymmetric 29.16

Table 3.3: Results for synthesizing four-state token ring

In a ring of size |ΠT |, each process πi has a variable dt i with the domain {0, . . . ,m(|ΠT |)−1},
where m(|ΠT |) is the smallest integer not dividing |ΠT |. The read-set of a process is its own
variable and the variable of its left neighbor, and its write-set contains its own variable. A
process holds a token, if and only if dt i 6= dtl + 1 mod m(|ΠT |), where dtl represents the
variable of the left neighbor. A legitimate state is one where exactly one process has the
token. For example, for a ring of size 3, LS can be formulated by the following expression:

( ¬(dt0(s) = dt2(s) + 1 mod 2) ∧ (dt1(s) = dt0(s) + 1 mod 2)

∧ (dt2(s) = dt1(s) + 1 mod 2) ) ∨
( ¬(dt1(s) = dt0(s) + 1 mod 2) ∧ (dt0(s) = dt2(s) + 1 mod 2)

∧ (dt2(s) = dt1(s) + 1 mod 2) ) ∨
( ¬(dt2(s) = dt1(s) + 1 mod 2) ∧ (dt0(s) = dt2(s) + 1 mod 2)

∧ (dt1(s) = dt0(s) + 1 mod 2) )

As can be seen in Table 3.4, for 3 processes, synthesizing a symmetric algorithm for strong
self-stabilization is possible. However, For 4 and 5 processes, Alloy returns “unsatisfiable”,
which shows the impossibility of strong self-stabilizing for these topologies. For 4 and 5
processes, our method synthesized the same weak-stabilizing algorithm as the one proposed
in [28], with the following action:

(dt 6= dt l + 1 mod m(|ΠT )) → dt := (dt l + 1 mod m(|ΠT ))

Using the “next instance” feature of Alloy, we could also synthesize another protocol for 4
processes in less than 3 seconds. We note that the size of the state space for 5 processes is
less than the size for 4 process, as m(|ΠT |) is 3 for 4, while it equals 2 for 5 processes. This
is the reason why the synthesis time has decreased from 4 to 5 processes. Also, unlike the
previous case study, synthesizing an asymmetric program in an anonymous network is not
reasonable, because otherwise the network would lose its anonymity.
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong asynchronous symmetric 1.59
4 weak asynchronous symmetric 114.56
5 weak asynchronous symmetric 10.83

Table 3.4: Results for synthesizing token circulation in anonymous networks

3.7.1.5 Maximal Matching on Rings

Another case study is the maximal matching problem for ring topologies [45]. This is a
special case of the case study in Section 3.7.1.1, where the topology allows synthesizing
symmetric solutions. The match variable for each process has domain {l, r, s}, where values
l and r represent matching with left and right processes, respectively, and value s shows
that the process is self-matched. For example, the set of legitimate states for a ring of size
3 is defined by the following predicate:

(match0(s) = r ∧ match1(s) = l ∧ match2(s) = s) ∨
(match0(s) = s ∧ match1(s) = r ∧ match2(s) = l) ∨
(match0(s) = l ∧ match1(s) = s ∧ match2(s) = r)

Table 3.5 shows the results of our experiments. Note that although the topology is
symmetric, the synthesized protocol can be symmetric or asymmetric. We observe that
synthesizing an asymmetric protocol is faster than a symmetric protocol, since for the
latter, the SMT-solver has to search deeper in the state space to rule out asymmetric
solutions. In other words, there exist more asymmetric protocols for the given input. One
of the synthesized models for strong self-stabilization with asynchronous timing model in
the symmetric case that works for both 3 and 4 processes is as follows (The model is
represented by the set of actions for each process, and match l and matchr refer to the
variables of the left and right processes of the process, respectively):
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong asynchronous symmetric 1.53
3 weak asynchronous symmetric 1.85
4 strong synchronous asymmetric 106.6
4 strong synchronous symmetric 139.35
4 strong asynchronous symmetric 83.19
4 weak asynchronous symmetric 64.13
4 weak asynchronous asymmetric 42.29

Table 3.5: Results for synthesizing the maximal matching problem on a ring

(match = l) ∧ (match l = l) ∧ (matchr = l) → match := r

(match = l) ∧ (match l = l) ∧ (matchr 6= l) → match := s

(match = r) ∧ (match l = l) ∧ (matchr = s) → match := s

(match = r) ∧ (match l = r) → match := l

(match = r) ∧ (match l = s) ∧ (matchr = s) → match := l

(match = s) ∧ (match l 6= r) ∧ (matchr = l) → match := r

(match = s) ∧ (match l = s) ∧ (matchr 6= l) → match := l

(3.32)

Note that since the synthesized model is symmetric, we have similar set of actions for all
processes, and hence, the process indexes are not specified for individual actions.

3.7.1.6 The Three-Coloring Problem

In the three coloring problem [45], we have a set of processes connected in a ring topology.
Each process πi has a variable ci, with the domain {0, 1, 2}. Each value of the variable
ci represents a distinct color. A process can read and write its own variable. It can also
read, but not write the variables of its left and right processes. For example, in a ring of
four processes, the read-set and write-set of π0 are RT (0) = {c3, c0, c2} and WT (0) = {c0},
respectively. The set of legitimate states is those where each process has a color different
from its left and right neighbors. Thus, for a ring of four processes, LS is defined by the
following predicate:

¬(c0(s) = c1(s) ∨ c1(s) = c2(s) ∨ c2(s) = c3(s) ∨ c3(s) = c0(s))
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong synchronous asymmetric 0.56
3 strong asynchronous asymmetric 0.93
3 weak synchronous asymmetric 0.55
3 weak asynchronous symmetric 1.33
4 strong synchronous asymmetric 78.71
4 weak synchronous asymmetric 96.32
4 strong asynchronous asymmetric 35.09
4 strong asynchronous symmetric 60.35

Table 3.6: Results for synthesizing three-coloring

Our synthesis results for the three coloring problem are reported in Table 3.6. The
results in this case study and the previous ones show that synthesizing asynchronous sys-
tems are generally faster compared to the synchronous ones, although we cannot claim if
this is always the case. One of the synthesized models for strong self-stabilization with
asynchronous timing model in the symmetric case that works for both 3 and 4 processes
is as follows (The model is represented by the set of actions for each process, and cl and
cr refer to the variables of the left and right processes of the process, respectively):

(c = 1) ∧ (cl = 1) ∧ (cr 6= 0) → c := 0

(c = 1) ∧ (cl = 1) ∧ (cr = 0) → c := 2

(c = 2) ∧ (cl 6= 0) ∧ (cr = 2) → c := 0

(c = 2) ∧ (cl = 0) ∧ (cr = 2) → c := 1

(c = 0) ∧ (cl = 0) ∧ (cr = 1) → c := 2

(c = 0) ∧ (cl = 0) ∧ (cr 6= 1) → c := 1

3.7.1.7 One-bit Maximal Matching

One-bit maximal matching is a special case of maximal matching on a ring, where each
process has only one Boolean variable xi. Each process can read and write its own variable.
It can also read, but not write the variables of its neighbors. A state is in LS , if and only
if the following predicate holds for each process πi:

(x(i−1) ∧ ¬xi) ∨ (¬x(i−1) ∧ ¬xi ∧ x(i+1)) ∨ (¬x(i−1) ∧ xi ∧ ¬x(i+1))
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong asynchronous asymmetric 0.61
3 weak asynchronous asymmetric 0.15
4 strong asynchronous asymmetric 0.92
4 weak asynchronous asymmetric 2.58
5 strong asynchronous asymmetric 7.33
5 weak asynchronous asymmetric 8.95

Table 3.7: Results for synthesizing one-bit maximal matching

Note that in the first clause, πi is matched to its left neighbor, in the second clause, it is
matched to itself, and in the last one, it is matched to its right neighbor. Our synthesis
results for this problem are reported in Table 3.7. The actions for the synthesized strong
self-stabilizing model in the case of 3 processes with asynchronous timing model are as
follows:

π0 : x0 ∧ ¬x1 ∧ x2 → x0 := ¬x0

¬x0 ∧ ¬x1 ∧ ¬x2 → x0 := ¬x0

π1 : x0 ∧ x1 ∧ ¬x2 → x1 := ¬x1

π2 : x0 ∧ x1 ∧ x2 → x2 := ¬x2

¬x0 ∧ x1 ∧ x2 → x2 := ¬x2

3.7.1.8 The Issue of Completeness

In order to demonstrate the issue of completeness, we focus on synthesizing a program that
the approach in [35] is not able to handle, but our approach can.

In the simplified four-state token ring problem [55], there is a set of processes connected
in a ring topology. Each process has two Boolean variables {ti, xi}. Each process can read
and write its own variables. It can also read, but not write the variables of its left neighbor.
Process π0 is said to have a token, when t(|ΠT |−1) = t0. For each process πi, when i 6= 0,
the token condition is t(i−1) 6= ti. The set of legitimate states are those, where exactly one
process has a token. For example, for a ring of three processes, the set legitimate of states
can be represented by the following predicate:

(t2 = t0 ∧ t0 = t1 ∧ t1 = t2) ∨ (t2 6= t0 ∧ t0 6= t1 ∧ t1 = t2) ∨ (t2 6= t0 ∧ t0 = t1 ∧ t1 6= t2)

We have successfully synthesized a strong self-stabilizing model for the case of three pro-
cesses with asynchronous timing model in 36.72 sec. One of the models we have synthesized
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# of Processes Self-Stabilization Timing Model Symmetry Time (sec)

3 strong asynchronous asymmetric 4.21
3 weak asynchronous asymmetric 1.91
4 strong asynchronous asymmetric 71.19
4 weak asynchronous asymmetric 73.55
4 strong asynchronous symmetric 178.6

Table 3.8: Results for synthesizing Dijkstra’s three-state token ring.

is the one presented in [55], with the following actions:

π0 : ¬t2 ∧ ¬t0 → t0 := true

t2 ∧ ¬x2 ∧ t0 → t0 := false; x0 := ¬x0

t2 ∧ x2 ∧ t0 ∧ x0 → t0 := false;

πi(i 6= 0) : ¬t(i−1) ∧ ti → ti := false; xi := ¬xi
t(i−1) ∧ x(i−1) ∧ ¬ti → ti := true

t(i−1) ∧ ¬x(i−1) ∧ (¬ti ∨ xi) → ti := true xi := false

3.7.2 Case Studies for Problem Statement 2

In this section, we present the case studies we have conducted for our solution to problem
statement 2.

3.7.2.1 Self-stabilizing Token Ring

Synthesizing a self-stabilizing system for Example 3.3.1 leads to automatically obtaining
Dijkstra [29] three-state algorithm in a bi-directional ring. Each process πi maintains a
variable xi with domain {0, 1, 2}. The read-set of a process is its own and its neighbors’
variables, and its write-set contains its own variable. For example, in case of four processes
for π1, RT (1) = {x0, x1, x2} and WT (1) = {x1}. Token possession and mutual exclusion
constraints follow Example 3.3.1. Table 3.8 presents our results for different input settings.
In the case of symmetric, we synthesizes protocols with symmetric middle (not top nor
bottom) processes.

We present one of the solutions we found for the token ring problem in ring of three
processes. First, we present the interpretation functions for the uninterpreted local predi-
cates.
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tk 0 ↔ x0 = x2

tk 1 ↔ x1 6= x0

tk 2 ↔ x2 6= x1

Next, we present the synthesized transition relations for each process:

π0 : (x0 = x2) → x0 := (x0 + 1) mod 3

π1 : (x1 6= x0) → x1 := x0

π1 : (x2 6= x1) → x2 := x1

Note that our synthesized solution is similar to Dijkstra’s k-state solution, although our
topology is similar to the topology for Dijkstra’s three-state solution. We could not syn-
thesize the three-state solution, as in this protocol, the token does not always circulate in
one direction (it changes its circulation direction), but we have this constraint in ψfairenss,
as presented in Example 3.3.1.

3.7.2.2 Mutual Exclusion in a Tree

In the second case study, the processes form a directed rooted tree, and the goal is to
design a self-stabilizing protocol, where at each state of LS , one and only one process is
enabled. Each process πj has a variable hj with domain {i | πi is a neighbor of πj}∪{j}.
If hj = j, then πj has the token. Otherwise, hj contains the process id of one of the
process’s neighbors. The holder variable forms a directed path from any process in the
tree to the process currently holding the token. The problem specification is the following:

Safety We assume each process πi is associated with an uninterpreted local predicate tk i,
which shows whether πi is enabled. Thus, mutual exclusion is the following formula:

ψsafety = ∃i ∈ {0 · · ·n− 1} : (tk i ∧ ∀j 6= i : ¬tk j)

Fairness Each process πi is eventually enabled:

ψfairenss = ∀i ∈ {0 · · ·n− 1} : (F tk i)

The formula, ψR given as input is ψR = ψsafety ∧ ψfairenss
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# of Processes Self-Stabilization Timing Model Time (sec)

3 strong synchronous 0.84
4 strong synchronous 16.07
4 weak synchronous 26.8

Table 3.9: Results for synthesizing mutual exclusion on tree (Raymond’s algorithm).

Using the above specification, we synthesized a self-stabilizing systems, which resembles
Raymond’s mutual exclusion algorithm on a tree [74]. Table 3.9 shows the experimental
results.

We present one of our solutions for token circulation on tree, where there is a root with
two leaves. The interpretation functions for the uninterpreted local predicates is as follows:

∀i : tk i ↔ hi = i

Another part of the solution is the transition relation. Assume π0 to be the root
process, and π1 and π2 to be the two leaves of the tree. Hence, the variable domains
are Dh0 = {0, 1, 2}, Dh1 = {0, 1}, and Dh2 = {0, 2}. Below, each state is represented as
(h0, h1, h2), and we use s to show that the process is pointing to itself, and p to represent
that a process is pointing to its parent.

(2, p, p)→ (1, s, s)

(s, s, p)→ (2, p, s)

(s, s, s)→ (2, p, s)

(2, s, p)→ (1, p, s)

(2, s, s)→ (s, p, p)

(1, p, p)→ (1, s, p)

(1, p, s)→ (1, s, p)

(1, s, p)→ (s, p, p)

(1, s, s)→ (s, p, p)

(s, p, s)→ (1, p, s)

(2, p, s)→ (1, s, p)

(1, s, p)→ (s, p, p)

(s, p, p)→ (2, p, s)
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3.7.3 Case Studies for Problem Statement 3

In this section, we present the case studies we have conducted for our solution to problem
statement 3.

3.7.3.1 Leader Election

In leader election, a set of processes choose a leader among themselves. Normally, each
process has a subset of states in which it is distinguished as the leader. In a legitimate state,
exactly one process is in its leader state subset, whereas the states of all other processes
are outside the corresponding subset.

We consider line and tree topologies, where each process has a variable ci, with the
domain of two or three values. To synthesize an ideal-stabilizing system for the problem
of leader election, we associate an uninterpreted local predicate li for each process πi,
whose value shows whether or not the process is in its leader state. Based on the required
specification, in each state of the system, there is one and only one process πi, for which
li = true. More formally, the following LTLR specification should hold for a system of n
processes:

ψsafety = ∃i ∈ {0 · · ·n− 1} : (li ∧ ∀j 6= i : ¬lj)
The results for this case study are presented in Table 3.9. In the topology column, the
structure of the processes along with the domain of variables is reported. In the case of 4
processes on a line topology and tree/2-state, no solution is found. The time we report in
the table for these cases are the time needed to report unsatisfiability by Alloy.

We present the solution for the case of three processes on a line, where each process
πi has a Boolean variable ci. Since the only specification for this problem is state-based
(safety), there is no constraint on the transition relations, and hence, we only present the
interpretation function for each uninterpreted local predicate li.

l0 = (c0 ∧ ¬c1)

l1 = (¬c0 ∧ ¬c1) ∨ (c1 ∧ ¬c2)

l2 = (c1 ∧ c2)

3.7.3.2 Local Mutual Exclusion

Our next case study is local mutual exclusion, as discussed in Example 3.3.2. We consider
a line topology in which each process πi has a Boolean variable ci. The results for this case
study are presented in Table 3.11.
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# of Proc. Timing Model Topology Time (sec)

3 asynchronous line/2-state 0.034
4 asynchronous line/2-state 0.73
4 asynchronous line/3-state 115.21
4 asynchronous tree/2-state 0.63
4 asynchronous tree/3-state 12.39

Table 3.10: Results for synthesizing ideal stabilizing leader election.

# of Proc. Timing Model Symmetry Time (sec)

3 asynchronous asymmetric 0.75
4 asynchronous asymmetric 24.44

Table 3.11: Results for synthesizing ideal stabilizing local mutual exclusion.

The solution we present for the local mutual exclusion problem corresponds to the case
of four processes on a ring. Note that for each process πi, when tk i is true, the transition
Ti changes the value of ci. Hence, having the interpretation functions of tk i, the definition
of transitions Ti are determined as well. Below, we present the interpretation functions of
the uninterpreted local predicates tk i.

tk 0 = (c0 ∧ c1) ∨ (¬c0 ∧ ¬c1)

tk 1 = (¬c0 ∧ c1 ∧ c2) ∨ (c0 ∧ ¬c1 ∧ ¬c2)

tk 2 = (¬c1 ∧ c2 ∧ ¬c3) ∨ (c1 ∧ ¬c2 ∧ c3)

tk 3 = (c2 ∧ c3) ∨ (¬c2 ∧ ¬c3)

79



Chapter 4

Synthesizing Self-stabilizing
Protocols under Average Recovery
Time Constraints

4.1 Introduction

In the past few years, there has been an active area of research on synthesizing stabilizing
programs automatically from their formal specification. These efforts range over com-
plexity analysis [54] to efficient synthesis heuristics design [35] as well as less efficient but
complete techniques, as our approach introduced in Chapter 3. However, none of these
techniques take into account requirements on the performance (e.g., maximum or average
convergence time) of the generated program. In other words, the existing approaches only
synthesize some solution that respects only closure and convergence. We argue that this
is a serious shortcoming, as some quantitative metrics such as recovery time are as crucial
as correctness in practice (e.g., in developing stabilizing network protocols). Furthermore,
it is common knowledge that designing correct distributed stabilizing programs is a chal-
lenging task and prone to errors. Adding recovery time constraints to the design process
makes it even more daunting.

With this motivation, we study the problem of repairing weak/strong-stabilizing pro-
grams under performance constraints. The constraint under investigation is, in particular,
average recovery time. Following the work in [40,41], we argue that average recovery time
is a more descriptive metric than the traditional asymptotic complexity measure (e.g., the
big O notation for the number of rounds) to characterize the performance of stabilizing pro-
grams. Average recovery time can be measured by giving weights to states and transitions
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of a stabilizing program and computing the expected value of the number of steps that it
takes the program to reach a legitimate state. These weights can be assigned by a uniform
distribution (in the simplest case), or by more sophisticated probability distributions. This
technique has been shown to be effective in measuring the performance of weak-stabilizing
programs as well, where not all computations converge [40], as well as cases where faults
hit certain variables or locations more often. In this chapter, we show that the complexity
of repairing an existing weak-stabilizing protocol to obtain either a weak or strong stabi-
lizing protocol, so that (1) only removal of transitions is allowed during repair, and (2) the
repaired protocol satisfies a certain average recovery time, is NP-complete.

4.2 Average Recovery Time of Stabilizing Programs

As discussed in Chapter 3, a self-stabilizing program is one that starting from any arbi-
trary initial state reaches a legitimate state in a finite number of steps. Such an arbitrary
state may be reached due to wrong initialization, or occurrence of transient faults. Upon
reaching a legitimate state, the system is guaranteed to remain in such states thereafter
in the absence of faults. Design and proof of correctness of self-stabilizing algorithms can
be very tedious or in some cases impossible, such as token circulation and leader election
in anonymous networks [47]. Thus, weaker forms of stabilization were introduced in the
literature. Convergence is a strong property since it should be satisfied in all computations.
This property is weakened in weak-stabilizing distributed programs [44], where the exis-
tence of a converging computation or possibility of convergence suffices. The computation
existence condition in weak convergence, unlike strong convergence, allows for execution
cycles outside the set of legitimate states.

Let us call the number of steps that a stabilizing program takes to reach a legitimate
state the recovery time (or convergence time).

Definition 32. Let σ = s0s1 · · · be a computation of a stabilizing program that starts from
initial state s0 and reaches a legitimate state in LS. The recovery time of σ is the following:

RT (σs0 ) = min{j | sj ∈ LS},

where sj is the jth state in σ.

Since this metric depends both on the initial state of the program and the computation
that reaches a legitimate state, we are interested in calculating the average recovery time of
stabilizing programs. Following the techniques introduced in [40, 41], such average can be
computed through statistical expected value of recovery time from different initial states
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and through various computations. Thus, we need to calculate the expected recovery time
defined in Definition 32 for all initial states s0 ∈ Σ and take the probabilistic average of
them accounting for the impact of different recovery computations and different starting
points.

Calculating the expected value of a discrete random variable requires valid probabilities
for the occurrence of the elements in its domain. Here, we take recovery time, RT , as
a discrete random variable with domain DRT = [0,∞). Our final goal is to find the
probability of RT having a specific value i which requires probability values for transitions.
Yet, the transition relation of a distributed program as defined in Definition 18 lacks
probability distribution. Without loss of generality, we assume a uniform distribution over
the set of outgoing transitions of each state in the state space. Such assumption, basically,
makes the transition system of distributed programs a Markov chain. On that account,
one can define the probability of a computation in a distributed program as follows.

Definition 33. Given a distributed program D = 〈ΠD,TD〉 with state space Σ, the proba-
bility of a computation σ = s0s1 · · · is computed by the following formula:

µ(σs0 ) =
∞∏
i=0

P(si, si+1) (4.1)

where P : Σ× Σ→ [0, 1] is the transition probability function such that for all s ∈ Σ:

• ∑
s′∈S

P(s, s′) = 1, (4.2)

• Given T (s) = {(s, s′) | ∃s′ ∈ Σ : (s, s′) ∈ TD}, the set of outgoing transitions of state
s, a uniform probability distribution over the transitions can be obtained by:

P(s, s′) =
1

|T (s)| (4.3)

Equation 4.3 assigns equal probability to all transitions originating from a state. We
emphasize that this uniform probability distribution was introduced only to permit com-
puting weighted average for recovery time. If, however, the distribution over the transition
relation was known (e.g., for probabilistic programs or particular schedulers in which pro-
cesses work in a random fashion with specific probability distribution), Equation 4.3 could
be modified trivially while satisfying Equation 4.2.
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Notation 1. Let ðcs,n denote all converging computations originating from state s with
recovery time n. That is,

ðcs,n = {σs | RT (σs) = n}.

For a computation σ starting from state s ∈ Σ, the probability of the event “σ having
recovery time equal to n” can be calculated as follows:

P(RT (σs) = n) =
∑

σs∈ðcs,n

µ(σs) (4.4)

In Equation 4.4, the probability of the computations with recovery time n starting from s
are added together because they are disjoint events. In other words, two distinct computa-
tions cannot happen at the same time, so the probability of their union is the sum of their
individual probabilities. We have now built the necessary background to demonstrate how
to compute the expected recovery time of a stabilizing program.

The expected recovery time of a stabilizing program starting from state s ∈ Σ is the
following:

ERT (s) = E[RT (σs)] =
∞∑
i=0

(i× P(RT (σs) = i))

Finally, we take the average of the expected recovery time values computed for all initial
states in the state space. The reason behind this is to consider the fact that stabilizing
programs may start executing from any arbitrary state. The average recovery time of a
stabilizing system D with state space Σ and initial state distribution ιinit is obtained by
the following formula:

AvgRT (D,Σ) =
∑
s∈S

ιinit(s).ERT (s) (4.5)

where ιinit : Σ→ [0, 1] is a probability distribution function such that∑
s∈Σ

ιinit(s) = 1.

Recall that a stabilizing program can reach any state due to the occurrence of transient
faults. The appearance of this state (as the initial state) can follow a specific probability
distribution. In cases where this distribution is not given, we decidedly assume uniform
distribution; i.e., ιinit(s) = 1

|S| for all s ∈ Σ. Otherwise, ιinit(s) can be any real value in

[0, 1] provided that it meets the condition in Equation 4.5. We stress that all definitions
and computations presented in this section are valid for weak-stabilizing programs as well
as self-stabilizing programs.
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4.3 Problem Statement

In this section, we formally state the problem of repairing stabilizing programs whose
average average recovery time is expected to be below a certain value. Given an existing
stabilizing program and a real value ert , a repair algorithm generates another stabilizing
program whose average recovery time is below ert . Moreover, the algorithm is required
to preserve all properties of the input program. The latter can be achieved by allowing
merely removing transitions from the original program. That is, we do not allow for adding
transitions to avoid introducing new behavior to the program. Since the new transition
set of the repaired program will be a subset of the set of transitions of the input program,
the set of computations in the new program will be a subset of the set of computations
of the original one as well. Hence, any universal property satisfied by the input program
(even during convergence) will be satisfied by the repaired program as well. Formally, the
decision problem we study is as follows:

Instance. A weak-stabilizing program D = 〈ΠD, TD〉, and a real number ert .

Repair decision problem. Does there exist a stabilizing program D′ = 〈ΠD, T ′D〉,
such that:

• T ′D ⊆ TD, where T ′D 6= ∅, and

• AvgRT (D′) ≤ ert .

4.4 Complexity of Weak/Strong Repair

To prove that the complexity of the strong-stabilizing repair problem is NP-complete, we
present a polynomial-time reduction from the 3-SAT problem.

The 3SAT problem. For an input set of propositional variables V = {v1, . . . , vN} and a
propositional logic formula P (v1, ..., vN) = Y1 ∧ · · · ∧ YM , the 3-SAT decision problem asks
whether there exists an assignment of truth values to the input variables such that

• P (v1, . . . , vN) = true,

• ∀v ∈ V : v = true or v = false.

where,
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• ∀ 1 ≤ j ≤M,Yj is a disjunction of three literals,

• A literal is v or ¬v, where v ∈ V .

Proof. To prove the NP-completeness, we show that the problem is in NP and it is NP-hard.

Proof of membership to NP
A problem is in NP, if given a solution, we can verify its correctness in polynomial time.
For our problem, given a system D′ = 〈ΠD, T ′D〉 as a solution, we should verify the following
two conditions:

1. It is stabilizing.

2. AvgRT (D′) ≤ ert

In order to prove that a program is stabilizing, we should verify strong convergence and
closure. This verification can be achieved through simple graph exploration algorithms,
such as BFS. Such algorithms have polynomial-time complexity in the number of states.
Calculation of expected recovery time, which in essence is reachability analysis in Markov
chains (discussed in Section 4.2) can be solved in polynomial time as well [14].

Proof of NP-hardness
We now present a mapping from an instance of 3-SAT to an instance of our problem,
namely, a distributed stabilizing program D = 〈ΠD, TD〉, with the following specifications:

ert = ((10M + 144N)/(64(M + 3N)))

Variables.
V = {x, y, k, z, t, b, c}

where the domain of c is [1, (M + 3N)] and the rest are Boolean variables.

Processes. We declare two processes πl and πg.

Read/write restrictions.

Rπl = {x, y, k, c}
Wπl = {x, k}
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Yj v1i v2i v3i v4i v5i v6i v7i v8i v9i v10i v11i v12i v13i v14i v15i v16i v17i v18i v19i v20i
x F F T T F F F T T F T F F F F T T T F F T
y F T T T T T F F T T T T T T T T T F F T T
k F F F F T T T F F T F T F T T F F F T T F
z F T T T T F F F F F F T F F F F T T T T T
t F T T T T T T T T T T F F F F F F F F F F
b F T T T T T T T F F T T T T T T T T T F F
c cYj

c1vi c1vi c3vi c3vi c3vi c3vi c3vi c3vi c3vi c3vi c3vi c2vi c2vi c3vi c3vi c3vi c3vi c3vi c3vi c3vi

Table 4.1: Valuation of variables in the Yj state and vi gadget

Process πg can read all variables declared in the synthesis problem, and write all, except
for the variables in the write-set of πl. Hence,

Rπg = {x, y, k, z, t, b, c}
Wπg = {y, z, t, b, c}

States. The state space of our instance is set of all valuation of variables. For each 3-SAT
formula, we specify the set of non-legitimate states. All other states are assumed to be in
LS . For each variable vi, 1 ≤ i ≤ N , in the 3-SAT instance, there are 20 non-legitimate
states labeled by v1

i , · · · , v20
i in the synthesis instance (see Fig. 4.1). These states, along

with the transitions among them (described later), are called gadget vi. All gadgets have
identical structure.

Furthermore, for each clause Yj, 1 ≤ j ≤ M , there is one state in the set of non-
legitimate states, with the same name. All other states are considered as legitimate states.
Table 4.1 shows the value assignments of the variables in states of each gadget vi. We note
that there are three values of the variable c in each gadget, c1

vi
, c2

vi
, and c3

vi
, which vary

among different gadgets and Yj states (that is why the domain of c has M + 3N values).

For example, Fig. 4.1 shows gadget vi, and the states for two clauses Y1 and Y2, where
Y1 contains vi and Y2 includes ¬vi. We assume that for each variable vi, there exists at
least one clause including literal vi and at least one clause containing literal ¬vi.

Transition relation. The transitions between the states of each vi gadget are the
following (see Fig. 4.1 for an example):
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Tπg = {(v2
i , v

3
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3
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2
i ), (v

4
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5
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5
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6
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i ,LS 2)} ∪
{(Yj, v1

i ) | vi is a literal in Yj} ∪
{(Yj, v12

i ) | ¬vi is a literal in Yj}

There is also a self-loop in every state of LS . The transitions marked by X, ×, ♣, � in
Fig. 4.1 correspond to process πl. In particular, we define TX and T× as follows, and use
them later in the proof:
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Figure 4.1: Gadget vi in self-stabilizing instance
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Figure 4.2: Self-stabilizing instance for formula P = (v1 ∨ v2 ∨ ¬v3) ∧ (¬v1 ∨ ¬v2 ∨ v3).

Moreover, for process πg, we include the transition from Yj to v1
i (respectively, v12

i ), if vi
(respectively, ¬vi) exists in clause Yj of the 3-SAT problem. Given the value assignments
in Table 4.1, it is straightforward to determine the group of each transition. In particular,
the transitions marked with the same symbol in Fig. 4.1 belong to one group. Note that
since we include c in the read-set of πl, there is no grouping between the transitions of πl
in different gadgets. Also, since πg can read all variables, there is no grouping between the
transitions of πg. Hence, there is no grouping among transitions of different gadgets.

Now, we show that a 3-SAT problem has a solution, if and only if we can find a solution
for the mapped synthesis problem. From now on we refer to the mapped synthesis problem
as SP1.

• (⇒) First, we show that if the given 3-SAT instance is satisfiable, then there exists a
strong stabilizing revision of the given program with an average recovery time within
the given bound. Since the 3-SAT formula is satisfiable, there exists an assignment of
truth values to all variables v1, · · · , vN , such that each Y1, · · · , YM , is true. We now
derive a program D′ from SP1 with the required expected recovery time, obtained by
removing a subset of the transitions from D. For each variable vi assigned to true in
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the solution of the 3-SAT instance, the following transitions are removed from gadget
vi (as highlighted in Fig. 4.1):

T× ∪ {(v2
i , v

1
i ), (v

3
i , v

2
i ), (v

6
i , v

5
i ), (v

7
i , v

6
i ), (v

8
i , v

7
i ),

(v10
i , v

16
i ), (v12

i , v
13
i ), (v13

i , v
14
i ), (v16

i , v
17
i ), (v17

i , v
18
i ),

(v18
i , v

19
i )} ∪

{(v1
i , Yj) | 1 ≤ j ≤M} ∪ {(Yj, v12
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Similarly, if vi is assigned to false, then the following transitions are omitted:
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i )} ∪
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i ) | 1 ≤ j ≤M} ∪ {(v12

i , Yj) | 1 ≤ j ≤M}

Due to the symmetrical structure of each gadget, omitting these transitions has the
same effect on average recovery time as removing the ones for when the variable is
assigned to true.

Now, we show that the resulting synthesized program is strong stabilizing, and respect
the required average recovery time ert :

– (Closure) The closure property of the original stabilizing program is preserved,
since no new transitions were added in the synthesis procedure.

– (Strong Convergence) The transition removal does not violate the convergence of
any of the states v1

i , · · · , v20
i (Fig. 4.2). For the Yj states, since the corresponding

3-SAT instance is satisfiable, each Yj includes a vi, assigned to true, or a ¬vi,
assigned to false. In the former case, Yj has a convergence path through v1

i , and
in the latter, it is reachable to LS through v12

i . Also, there is no loop among
states in ¬LS in the synthesized program (Fig. 4.2).

– (Average recovery time) The average recovery time of the resulting program is
((10M + 144N)/(64(M + 3N))), which is equal to the bound specified in the
synthesis problem (ert). We calculate the average recovery time of the resulting
program using the methods introduced in Section 4.2. Note that since there are
6 Boolean variables and a variable with domain M + 3N in SP1, (64(M + 3N))
is the total number of states in the state space.

• (⇐) Next, we prove that if there exists a solution for SP1, then the given 3-SAT
formula is satisfiable by presenting a valid truth assignment derived from the solution
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of SP1. For each vi, if the X transitions are preserved in its associated gadget, vi is
assigned to true. But, if the × transitions are maintained, it is assigned to false.

Now, we prove that a variable vi cannot be assigned to both true and false at the
same time (both X and × transitions preserved). In the solution for SP1, for each
vi, either the X or × transitions should remain in their corresponding gadgets. The
reason behind this is that if both groups of transitions are removed, the states below
v4
i and v15

i in the gadget (except for v9
i and v20

i ) cannot converge to LS . However, after
removing only one group of transitions, each state Yj will either converge through a
path with X transitions (implying vi = true), or a path with × transitions (implying
vi = false). From Fig. 4.2 is obvious that the rest of the states also converge to LS .

On the other hand, both groups of transitions cannot exist simultaneously. If they
do so, the recovery time of the solution will exceed the given bound ert because we
chose ert to be equal to the average recovery time of the program when either X or ×
transitions are removed (Fig. 4.2), while if both groups of transitions exist, average
recovery time will be higher due to the loops in the transition system of the program.
The other reason is that having both sets of transitions, there will be a loop in ¬LS ,
which violates the strong convergence.

Note that our requirement on the average recovery time leads to having a strong
self-stabilizing solution. Hence, this proof works for repairing both weak and strong
self-stabilizing protocols.
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Chapter 5

Parameterized Synthesis of
Fault-Tolerant Distributed Systems

5.1 Introduction

Kulkarni and Arora in [56] show that the problem of adding masking fault-tolerance 1 to
distributed programs is NP-complete in the size of the input program’s state space. A
set of polynomial-time heuristics are introduced in [57] for the problem of adding masking
fault-tolerance to distributed programs. The time and space complexity of the problem
is high due to the two reason: 1) high space complexity of distributed system, and 2)
read restriction of processes due to their partial visibility from the system’s global state.
Later, a more efficient symbolic heuristic is introduced in [21] for a similar problem. But
still the algorithm can synthesize a fault-tolerant distributed system for a fixed number of
processes. It is desirable to have an approach to synthesize fault-tolerant protocols that
works for systems with any number of processes.

With this motivation, we propose an automated parameterized method for synthesiz-
ing masking fault-tolerant distributed protocols from their fault-intolerant version. Such
protocols are parameterized by the number of processes. Our synthesis algorithm utilizes
counter abstraction to construct a finite representation of the state space. Then, it performs
fixpoint calculations to compute and exclude states that violate the safety specification in
the presence of faults. To guarantee liveness, our algorithm ensures deadlock freedom
and augments the input intolerant protocol with safe recovery paths. We demonstrate
the effectiveness of our algorithm by synthesizing a fault-tolerant distributed agreement

1A masking fault-tolerant protocol is one that ensures constant satisfaction of safety and liveness spec-
ifications even in the presence of faults.
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protocol in the presence of Byzantine fault. Although the synthesis problem is known
to be NP-complete in the state space of the input protocol (due to partial observability
of processes) in the non-parameterized setting, our parameterized algorithm manages to
synthesize a solution for a complex problem such as Byzantine agreement within less than
two minutes.

5.2 Preliminaries

In this section, we present the preliminary concepts on distributed programs in the shared-
memory model, fault-tolerance, and counter abstraction.

5.2.1 Parameterized Distributed Programs

Before defining parameterized distributed programs, we need to introduce the notion of a
process template. A process template is a tuple 〈V,G〉, where V is a finite set of control
variables and G is a finite set of guarded commands — to be defined later — that specify
the behavior of a process instantiated from the process template. We also use guards to
model faults.

5.2.1.1 Variables.

The set of control variables V in a process template has two disjoint subsets: (1) a finite
set V ` of local variables; (2) a finite set V s of shared variables. Each variable v ∈ V ` ∪ V s

has a finite domain Dv, and a set of initial values Iv ⊆ Dv. Intuitively, a process created
from the process template can read and write any subset of V ` in one atomic step; it can
also read the shared variables of other processes created from this template in one atomic
step.

5.2.1.2 Guarded Commands.

Let I be a set of index variables that range over natural numbers. The special index
variable id ∈ I points to the process evaluating a guard.

First, define conditions as follows:

• Index conditions j = a and j = k, where j, k ∈ I are index variables, and a ∈ N is a
constant index.

93



• Variable conditions x[j] = d and x[a] = d, where x ∈ V ` ∪ V s is a control variable,
d ∈ Dx is a value from x’s domain, and a ∈ N and j ∈ I are an index variable and a
constant index respectively.

Having introduced conditions, we define guards as g, ¬g, g ∧ g′ and g ∨ g′, where each
of g, g′ is either an index condition, or a variable condition. Commands are expressions
x[id] := d and x[id] := y[a], if x, y ∈ V are control variables with Dx = Dy, and a ∈ N and
d ∈ Dx. A guarded command is an expression φ → w1; . . . ;wc, if φ is a basic guard, and
w1, . . . , wc are commands that assign values to pairwise different variables.

To distinguish the commands that introduce faults from normal commands, we need
additional definitions. We say that a variable condition accesses an external variable x ∈ V ,
if the condition is either of the form x[j] = d and j ∈ I \ {id}, or of the form x[a] = d. We
call a guard φ normal, if all its variable conditions access only external variables from V s .

5.2.1.3 Parameterized Distributed Programs

Having a process template P = 〈V,G〉, we can instantiate a process πk (k is called the
index of the process) by instantiating the set of control variables Vk from V , and the set
of guarded commands Gk by replacing the index variable id with index k.

As the guards can refer to the variables of processes different from id by using a constant
index, we identify the maximal index K that appears in index and variables conditions as
well as in statements. That is, for every j = a, x[b], occurring in the guards and actions,
it holds that K ≥ a and K ≥ b.

Given a process template P and a number N ≥ K, one can construct a distributed
program PN by instantiating N processes with indices in IN = {1, . . . , N}. Each control
variable v ∈ V can then be thought as a vector of size N , where v[k] is the variables instan-
tiated in the process instance with index k. We, thus, have to deal with a parameterized
family of programs D = {PN}N≥K , where each instance has a fixed number of processes.
Informally, all but the first K processes behave similarly. Formal semantics of a distributed
program PN is captured below as a system instance.

Example. We use an algorithm for solving the problem of Byzantine agreement (denoted
BA) as a running example to describe the concepts throughout this chapter (see pseudo
code 5). This problem consists of a fixed general process (i.e., π1) and a parameterized set
of N − 1 lieutenant processes.

Variables. The shared vector d has N control variables, with domain Dd[i] = {0, 1,⊥},
for all i ∈ IN . Each lieutenant process πi, 2 ≤ i ≤ N , is associated with variable d[i] (i.e.,
lieutenant i can write into d[i]) and the general is associated with d[1]. Moreover, each
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Function 5 Process Template of Byzantine Agreement

1: Template variables V ` = {b, f}, V s = {d}, V = V ` ∪ V s :

b, f : Boolean; init b = false, f = false

d : {0, 1,⊥}; init d = ⊥

2: Template guards G:

(id = 1) ∧ d[id] = ⊥ → d[id] := choose from{0, 1}, f [1] := true;

(d[1] 6= ⊥) ∧ (d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id]→ d[id] := d[1];

(d[1] 6= ⊥) ∧ (d[id] 6= ⊥) ∧ ¬f [id] ∧ ¬b[id]→ f [id] := true;

process has the following local variables: (1) a Boolean variable f which shows whether
or not the decision of the process is finalized, and (2) a Boolean variable b which shows
whether or not the process is Byzantine (i.e., faulty).

Behavior. As can be seen in pseudo code 5, the general process (π1), changes its decision
to 0 or 1 arbitrarily, if its decision is ⊥ (guarded commend labeled by g). As soon as the
general process has a decision different from ⊥, lieutenants can start execution. If it is
undecided (i.e., its d variable equals ⊥), and its finalization and Byzantine bits are both
false, it may copy the decision of the general (guarded commend labeled by l1). After
copying the decision of the general, if the process Byzantine bit is still false, it may change
its finalization bit to true (guarded commend labeled by l2). Note that we assume that
any system instance initializes with d[k] = ⊥, f [k] = false, and b[k] = false, for all k ∈ IN .

Atomic Propositions. In order to specify behavior of parameterized distributed pro-
grams, we have to introduce atomic propositions that specify the values of the variables
of some processes or all processes. We also should be able to specify the values of the
variables of the fixed processes with indices up to K. To this end, similarly to [53], if φ is
a guard with no index variables but j and φ′ is a guard using only constant indices, the
following three expressions are atomic propositions:

[∀j. φ] and [∃j. φ] and [φ′]

In the sequel, we denote the set of atomic propositions with respect to the set of variables V
by AP .
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5.2.1.4 System Instance

To define a system instance formally, we first introduce the notions of N -state valuation
and of an index valuation.

Definition 34. Given a number of processes N , an N -state valuation σ is a function
V × IN →

⋃
v∈V Dv with the restriction that for each v ∈ V and j ∈ IN , it holds that

σ(v, j) ∈ Dv. We also define an index valuation as a partial function ι : I 9 {1, . . . , N}.

For convenience, we also extend an N -state valuation σ on N, i.e., for d, a ∈ N, σ(d, a) =
d. As usual, we define substitution σ[e/(x, a)] as an N -state valuation σ′ such that σ′(y, b)
is σ(e), if y = x and b = a, and σ(y, b) otherwise. Similarly, we define substitution ι[a/j]
for j ∈ I and a ∈ IN .

Given a basic guard φ, a number N ∈ N, an N -state valuation σ, and an index valuation
ι, we define σ, ι |= φ in a natural way, that is, for each x ∈ V , j, k ∈ I, and a ∈ N:

• σ, ι |= j = a if and only if ι(j) = a.

• σ, ι |= j = k if and only if ι(j) = ι(k).

• σ, ι |= x[j] = d if and only if σ(x, ι(j)) = d.

• The cases of ¬φ′, φ′ ∧ φ′′, and φ′ ∨ φ′′ are defined as usual, e.g., σ, ι |= ¬φ′ and
σ, ι |= φ′ ∧ φ′′ if and only if σ, ι 6|= φ′ and σ, ι |= φ′ and σ, ι |= φ′′ respectively.

Given a quantified guard ∃j1 . . . ∃jm∀k. φ, a number N ∈ N, an N -state valuation
σ, and an index valuation ι, we say that σ, ι |= ∃j1 . . . ∃jm∀k. φ if and only if there
exist indices a1, . . . , am ∈ IN such that for all values b ∈ IN it holds σ, ι′ |= φ for ι′ =
ι[a1/j1, . . . , am/jm, b/k].

Definition 35. Given a process template P = 〈V,G〉 and number of processes N ∈ N, a
system instance PN is a labelled transition system (ΣN , IN ,∆N , λN) defined as follows:

• The set of global states ΣN is the set of all N-state valuations.

• The set of initial states IN ⊆ ΣN that contains all global states σ ∈ ΣN satisfying
∀v ∈ V. ∀j ∈ IN . σ(v, j) ∈ Iv.

• The transition relation ∆N ⊆ ΣN × ΣN . A pair (σ, σ′) ∈ ∆N if and only if there is
a process index a ∈ IN and a guarded command φ → x1[id] := e1; . . . ;xm[id] := em
from G such that: The guard is satisfied when id = a, that is, σ, {id 7→ a} |= φ; Only
x1, . . . , xm change, that is, σ′ = σ[σ(e1, a)/(x1, a), . . . , σ(em, a)/(xm, a)].
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• The labelling function λN : ΣN → 2AP . An atomic proposition [∀id. φ] belongs to
λN(σ) if and only if for all i ∈ IN , it holds that σ, {id 7→ i} |= φ. The case of [∃id. φ]

is defined similarly. Finally, when φ is using only constant process indices, it holds
[φ] ∈ λN(σ) if and only if σ, {} |= φ.

5.2.2 Specification

We consider two categories of properties in a system specification: (1) state-based, and
(2) transition-based. The state-based properties are those that can be specified based on
the variables valuation in a state. Transition-based properties, on the other hand, are
those that put a constraint on the transitions of the system (source and target states of
transitions). Let V ′ be the set of variables, where each variable x′ is a primed copy of
variable x from V . Then a transition-based property is a guard over the variables V , V ′,
and index variable id.

Example. As an example, the safety specification in the Byzantine agreement problem
includes the following two state-based requirements:

• Validity, which means that if the general process is non-Byzantine, then the final
decision of any non-Byzantine non-general process should be the same the decision
of the general process.

• Agreement, which means that any two non-Byzantine non-general processes should
finalize to the same decision.

More formally, the above specifications can be written as follows:

([¬b[1] ∧ d[1] = 0]→ [∀j .¬b[j] ∧ f [j]→ d[j] = 0]

∧ ([¬b[1] ∧ d[1] = 1]→ [∀j .¬b[j] ∧ f [j]→ d[j] = 1]) (SPEC 1)

(([∃i . ¬b[i] ∧ f [i] ∧ d[i] = 1]→ [¬∃j .¬b[j] ∧ f [j] ∧ d[j] = 0])

∧ ([∃i . ¬b[i] ∧ f [i] ∧ d[i] = 0]→ [¬∃j .¬b[j] ∧ f [j] ∧ d[j] = 1])) (SPEC 2)

The following transition-baaed property prevents a non-general process with a finalized
decision from changing its decision value or the finalization bit later:

∀j . (f [j] ∧ d[j] = 1→ (f ′[j] ∧ d′[j] = 1)) ∧ (f [j] ∧ d[j] = 0→ (f ′[j] ∧ d′[j] = 0))
(SPEC 3)

Byzantine agreement has to satisfy the specifications SPEC 1, SPEC 2, and SPEC 3.
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5.2.3 Fault-Tolerance

Definition 36. Let PN = (ΣN , IN ,∆N , λN) be a distributed program, and SPEC be an
LTL property. A Boolean formula LS is called the legitimate states of PN from SPEC ,
if (1) LS is closed in PN , (2) PN |= (LS → SPEC ), and (3) there is no deadlocked
computation starting from LS.

Example. As an example, the legitimate states in the Byzantine agreement problem
could be specified by the following predicate:

(¬b[1] → (∀j .¬b[j]→ (d[j] = ⊥ ∨ d[j] = d[1])) ∧
(∀j .¬b[j] ∧ d[j] = ⊥ → ¬f [j])) ∧

(b[1] → (∀j . d[j] = 0) ∨ (∀j . d[j] = 1))

A process template with fault is a tuple PF = 〈V,G, F 〉, where F is a set of guarded
commands that specify the faults that may occur in the process execution. Hence, syn-
tactically, a fault can be represented as a guarded command, where guards do not have to
be normal. As introduced in Section 5.2.1, in a normal guarded command, the guard can
only be on local variables, or the shared vector. However, in a fault guarded command,
we don’t have this constraint. Semantically, a system instance with N processes of the
process template PF = 〈V,G, F 〉 is PN

F = (ΣN , IN ,∆N ∪∆F , λN), where ∆F ⊆ Σ×Σ. We
emphasize that fault representation with a transition is possible for different types of faults
(stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss, etc.), nature of
the faults (permanent, transient, or intermittent), or the ability of the program to observe
the effects of the faults [17].

Example. As an example, pseudo code 6 is the process template of the BA example with
two faults. If there exists no faulty process, the first fault action can change the Byzantine
bit of the process to true. When the Byzantine bit of a process is true, it can change its
decision and (or) finalization bits freely to any value in their domains. As can be seen,
the first guarded command is not normal, as the Byzantine bits are not part of the shared
vector of the system. The reason for checking the Byzantine bit of other processes before
going Byzantine is that we assume at each point of system execution, at most one process
can be faulty.

Definition 37. A computation ∆ is called finitely-faulty, if it has the following condition:
∃n ≥ 0 .∀i ≥ n . (si, si+1) ∈ ∆ \∆F .
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Function 6 Byzantine Agreement with Fault

1: Template variables V ` = {b, f}, V s = {d}, V = V ` ∪ V s :

b, f : Boolean; init b = false, f = false

d : {0, 1,⊥}; init d = ⊥

2: Template guards G:

(id = 1) ∧ d[id] = ⊥ → d[id] := choose from{0, 1}, f [1] := true;

(d[1] 6= ⊥) ∧ (d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] → d[id] := d[1];

(d[1] 6= ⊥) ∧ (d[id] 6= ⊥) ∧ ¬f [id] ∧ ¬b[id] → f [id] := true;

3: Faults F :

∀k .¬b[k] → b[id] := 1;

b[id] → d[id] := 0/1/⊥, f [id] := true/false;

As a finitely-faulty computation has finitely many transitions from the set of faults,
which is required to ensure recovery in the synthesized fault-tolerant system.

We can now define what it means for a distributed program to be fault-tolerant. When
a fault occurs, the system execution might go out of its legitimate states, and the sys-
tem specification might be also violated. Intuitively, a fault-tolerant distributed program
satisfies the system specifications in the absence and presence of faults, and also, returns
to its set of legitimate states in a finite number of steps. A more formal definition for
fault-tolerance is given next.

Definition 38. Consider |= to denote satisfaction relation, and |=ff to denote satisfaction
on finitely-faulty computations. A distributed program PN with legitimate states LS, and
specification SPEC is fault-tolerant to the faults F , if and only if the following LTL
properties hold:

1. PN |= G [(LS → GLS ) ∧ (LS → SPEC )]

2. PN
F |=ff LS → G SPEC

3. PN
F |=ff LS → GFLS

The first condition guarantees LS to be closed in PN , and also every state in LS to satisfy
the specification SPEC . The second condition requires any computation starting from LS
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to satisfy SPEC . Finally, the last one ensures any system execution, starting from LS , to
be in LS infinitely often. Note that a fault action might lead the system execution to a
state outside LS . This condition requires the system to get back to the set of legitimate
states in a finite number of states. Note that in the second and third conditions, PN

F is
used, which means that the computations in the conditions may include fault transitions
(∆F ) in addition to the system transitions (∆).

5.3 Problem Statement

Problem statement. Given is a process template PF = 〈V,G, F 〉, a constant K, a
specification SPEC , and an atomic proposition LS , such that for every N ≥ K, and
PN = (ΣN , IN ,∆N , λN), PN |= G [(LS → GLS ) ∧ (LS → SPEC )]. Our goal is to
propose an algorithm for synthesizing a process template P ′, and legitimate states LS ′

from P , such that for every N ≥ K:

1. The set I′N is not empty in P ′N .

2. For every LTL formula β, such that PN |= β: P ′N |= β, and

3. P ′NF is F -tolerant to SPEC from LS ′.

Hence, the input to our problem is a process template including a set of faults, such that
in the absence of faults, it satisfies its specification. Our goal is to synthesize a process
template from that such that for every instance of the synthesized template, it is fault-
tolerant, and it also satisfies all the LTL properties that were already satisfied by the
instances from the original template.

5.4 Parameterized Solution

In this section, we present our solution for synthesizing parameterized fault-tolerant dis-
tributed systems. The synthesis problem is known to be NP-complete for the concrete
case [20]. For parameterized synthesis of fault-tolerant distributed systems, we propose a
heuristic inspired by the algorithm introduced in [21] for the concrete case. For handling
the parameterized case, we use an abstraction called counter abstraction, as introduced
in Section 5.4.1. Another concept we need to introduce for algorithm description is read
restriction, which we present in Section 5.4.2.
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5.4.1 Counter Abstraction

In this section, we define {0, 1,∞}-counter abstraction very much in the spirit of [72].

Definition 39. Given a set of variables V , a local state valuation is a function ρ : V →⋃
Dv |v∈V with the restriction that for all v ∈ V , ρ(v) ∈ Dv.

With PV we denote the set of local state evaluations defined with respect to V . As
we consider finite sets of variables over finite domains, set PV is finite. Further, given a
system instance with N processes, we define function # : ΣN×PV → N0; for every σ ∈ ΣN

and every ρ ∈ PV , the value #(σ, ρ) equals to cardinality of the set {i | K < i ≤ N,∀x ∈
V. ρ(x) = σ(x, i)}.

First, we introduce two sets of variables: set A = {x[a] | x ∈ V, a ∈ IK}; set B =
{κρ | ρ ∈ PV }, where Dκρ = {0, 1, 2}. Set A keeps K copies of the process variables that
correspond to the variables of the first K processes. Each variable κρ from B plays the role
of an abstract counter, whose values reflect the number of processes with their variables
evaluated to ρ as follows: value 0 for zero processes; value 1 for exactly one process; value
2 for more than one process. Finally, we define VC = A ∪ B and an abstract state as a
valuation σ̂ : VC →

⋃
v∈VC Dv with the restriction that for every v ∈ VC , σ̂(v) ∈ Dv. We

denote the set of all such valuations with ΣC .

To define the transition system of the counter abstraction, we introduce a parameterized
abstraction function:

Definition 40. Given the number of processes N ≥ K, we define state abstraction αN as
a function ΣN → ΣC that for every σ ∈ ΣN , returns an abstract state σ̂ ∈ ΣC that satisfies
the following properties:

• For every x ∈ V and every index i ∈ IK, it holds σ̂(x[i]) = σ(x, i).

• For every local state ρ ∈ PV , the following holds

σ̂(κρ) =


0, if #(σ, ρ) = 0

1, if #(σ, ρ) = 1

2, if #(σ, ρ) ≥ 2

Having defined state abstraction, we define a {0, 1,∞}-counter abstraction.
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Definition 41. Let (V, P ) be a process template. A transition system C = (ΣC , IC ,∆C , λC)
is a counter abstraction of the parameterized family {PN}N≥K, if it satisfies the following
conditions:

• As defined above, ΣC is the set of all abstract states.

• The set of initial states IC ⊆ ΣC contains an abstract state σ̂ ∈ ΣC if and only if
for every variable x ∈ V it holds that the counter of each local state ρ ∈ PV with
ρ(x) 6∈ Ix is set to zero, i.e., σ̂(κρ) = 0, and each fixed process i ≤ K respects the
initial values, i.e., σ̂(x[i]) ∈ Ix.

• (σ̂, σ̂′) ∈ ∆C if and only if there exists size N ≥ K and global states σ, σ′ ∈ ΣN such
that σ̂ = αN(σ), σ̂′ = αN(σ′), and (σ, σ′) ∈ ∆N .

• p ∈ λC(σ̂) if and only if there exists size N ≥ K and a global state σ ∈ ΣN with
p ∈ λC(σ).

5.4.2 Read Restriction

Read-set and write-set. Consider {π1, · · · , πN} to be the set of processes in a system
instance with N processes. The read-set of each process πi, where 1 ≤ i ≤ N (denoted
Rπi) is the set of all variables the process can read. Thus, Rπi = V l

πi
∪ V s .The write-set of

a process π (denoted Wπi) is the set of variables a process is allowed to write into. Thus,
Wπi = V l

πi
∪ V s

πi
. Notice that the write-set of a variable is a subset of its read-set (i.e.,

Wπi ⊆ Rπi), and hence, a process cannot write into a variable blindly.

Example. As an example, in a system instance with N processes of our BA example, the
read-set of each process πi is Rπi = {d, f [i], b[i]}, and its write-set is Wπi = {d[i], f [i], b[i]}.

Read restriction is a constraint on the transition relation of distributed systems with
shared memory model, and is imposed due to the fact that each process can read only a
part of the system state.

Definition 42. For a distributed system PN = (ΣN , IN ,∆N , λN), the read restriction is
defined as follows:

∀ (s1, s
′
1) ∈ ∆N .∃ 1 ≤ j ≤ N . ∃v ∈ Wπj . s1(v) 6= s′1(v) ⇒

∀ s2, s
′
2 ∈ ΣN . (∀v 6∈ Wπj : (v(s1) = v(s′1) ∧ v(s2) = v(s′2)))

∧(∀v ∈ Rπj : (v(s1) = v(s2) ∧ v(s′1) = v(s′2)))

=⇒ (s2, s
′
2) ∈ ∆N (5.1)
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In other words, read-restriction ensures that the action of each process does not depend on
the variables it cannot read. If two states are the same, except for the values of variables
not in the read-set of a process, and the process has a transition starting from one of these
states, it should have similar transition starting from the other one, as well.

Example. Consider a BA system instance, P 3, with one general and two non-general
processes (N = 3). Following Definition 42 and considering read/write restrictions of π2,
(an arbitrary) transition t1:

([d = {0,⊥, 0}, b = {0, 0, 1}, f = {1, 0, 1}],
[d = {0, 0, 0}, b = {0, 0, 1}, f = {1, 0, 1}])

and transition t2:

([d = {0,⊥, 0}, b = {0, 0, 1}, f = {1, 0, 0}],
[d = {0, 1, 0}, b = {0, 0, 1}, f = {1, 0, 0}])

have the same effect as far as π2 is concerned (since π2 cannot read f [3]). This implies
that if t1 is included in the set of transitions of a distributed program, then so should t2.
Otherwise, execution of t1 by π2 will depend on the value of f [2], which, of course, π2

cannot read.

Read restriction in abstract model. In a model in counter abstraction, the read
restriction is different. The reason is that each state is determined based on the abstract
number of processes in each local state, and hence, the exact information on the read-set
of each process is not available. Before defining read restriction in counter abstraction, we
need to have the definition of the abstract number of processes with some variable valuation.
For a variable v ∈ V and some valuation val ∈ Dv, the set of local states with variable v
valued val is denoted by P(v=val)

V . More formally, P(v=val)
V = {ρ ∈ PV | ρ(v) = val}. For a

set A with domain 0 ≤ i ≤ 2, the abstract sum of the elements in A is defined as below:

Σ̂(A) =


0, if

∑
i∈A

i = 0

1, if
∑
i∈A

i = 1

2, if
∑
i∈A

i ≥ 2

We define the abstract number of a variable v ∈ V with value val in an abstract state
σ̂ ∈ ΣC as follows:

num(σ̂, v, val) =
∑̂

ρ∈P(v=val)
V

σ̂(κρ)
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Having the above definitions, we say that two abstract states σ̂1 and σ̂2 are abstractly
similar (σ̂1 ≈ σ̂2), if and only if the following condition holds:

σ̂1 ≈ σ̂2 ⇐⇒ (∀ v ∈ V s .∀val ∈ Dv . (num(σ̂1, v, val) = num(σ̂2, v, val)))

In other words, two abstract states are abstractly similar, if for each shared variable v ∈ V s

and each value val ∈ Dv, the abstract number of the variables v with value val is the same
in both abstract states.

Definition 43. An abstract state σ̂1 is an increment of an abstract state σ̂2 with respect
to the local state ρ, and is represented by inc(σ̂1, σ̂2, ρ), if and only if: σ̂1(kρ) = σ̂2(kρ) =
2 ∨ σ̂2(kρ) = σ̂1(kρ) + 1. An abstract state σ̂1 is a decrement of an abstract state
σ̂2 with respect to the local state ρ, and is represented by dec(σ̂1, σ̂2, ρ), if and only if:
inc(σ̂2, σ̂1, ρ).

Having the above definitions, we can define the read restriction constraint in counter
abstraction as in equations 5.2 and 5.3:

∀ (σ̂1, σ̂
′
1) ∈ ∆C .∀ σ̂2, σ̂

′
2 ∈ ΣC . (σ̂1 ≈ σ̂2 ∧

(∀v ∈ V s .∀ 1 ≤ i ≤ K . σ̂1(v[k]) = σ̂′1(v[k]) ∧ σ̂2(v[k]) = σ̂′2(v[k])) ∧
(∃ρ1, ρ2 ∈ PV . (inc(σ̂1, σ̂

′
1, ρ1) ∧ dec(σ̂1, σ̂

′
1, ρ2)) ∧ (inc(σ̂2, σ̂

′
2, ρ1) ∧ dec(σ̂2, σ̂

′
2, ρ2))))∧

(∀ρ ∈ PV . (ρ 6= ρ1 ∧ ρ 6= ρ2)⇒ (σ̂1(kρ) = σ̂′1(kρ) ∧ σ̂2(kρ) = σ̂′2(kρ)))

=⇒ (σ̂2, σ̂
′
2) ∈ ∆C (5.2)

∀ (σ̂1, σ̂
′
1) ∈ ∆C .∀ σ̂2, σ̂

′
2 ∈ ΣC . (σ̂1 ≈ σ̂2 ∧(

(∃v ∈ V s .∃ 1 ≤ i ≤ K . σ̂1(v[k]) 6= σ̂′1(v[k]) ∧ σ̂2(v[k]) 6= σ̂′2(v[k]) ∧

(∀w ∈ V s .∀ 1 ≤ j ≤ K . (w 6= v ∨ j 6= i)⇒ σ̂1(v[k]) = σ̂2(v[k]) ∧ σ̂2(v[k]) = σ̂′2(v[k]))
)
∧

(∀ρ ∈ PV . σ̂2(kρ) = σ̂′2(kρ)))

=⇒ (σ̂2, σ̂
′
2) ∈ ∆C (5.3)

In equation 5.2, the read restriction is imposed, where a process with index greater
than K is executing, while equation 5.2 guarantees read restriction for the case a process
with index less than K is executing. Note that we are considering asynchronous systems,
and hence, in each step, only one process can take an action. In equation 5.2, the abstract
number of a local state is decreasing in both transitions, and the abstract number of another
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is increasing, while the number of all other local states, as well as the variables of fixed
processes do not change. In equation 5.3, a fixed process changes the value of one of its
variables, and the number of all local states remain unchanged. In both cases, the two
sources are pairwise abstractly similar.

Example. As an example, in the counter abstraction model of our BA example, a local
state is a function ρ : {d, f, b} 7→ {true, false, 0, 1,⊥}. Considering the domain of each
variable, there are 12 possible local states (|PV | = 12). We represent an abstract state
σ̂ by a tuple t, consisting of a 12 values tuple t′, and two values, dg and bg. dg and bg
corresponds to the decision and Byzantine bits of the general process, and each element in
t′ corresponds to σ̂(κρ), for some ρ ∈ PV . For a local state ρ, where ρ(d) = d1, ρ(f) = f1,
and ρ(b) = b1, (d1× 4) + (f1× 2) + b1 is the index of σ̂(κρ) in t′. For example, the abstract
number of the processes in the local state [0, 1, 1] is represented in t′[3]. Considering this
notation, the transition from the state [{0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0}, dg = 1, bg = 0] to the
state [{0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0}, dg = 1, bg = 0], and the transition from the state
[{0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0}, dg = 1, bg = 0] to [{0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0}, dg = 1, bg = 0]
are in the same group. The action corresponding to both transitions corresponds to a
non-general process in the local state [2, 0, 0], changing its decision to 1 (going to the local
state [1, 0, 0]). The set of shared variables, V s , includes the decision bits of all processes.
The abstract number of non-generals with decision 0, decision 1, and decision 2 are the
same in the source/destination of both transitions (their cardinality is 0,1,2 in the sources
and 0,2,2 in the destinations, respectively), as well as the decision of the general process
(it is 1 in both transitions).

5.4.3 Algorithm

Algorithm Sketch. We are given a process template PF = 〈V,G, F 〉, a constant K,
a specification SPEC , and an atomic proposition LS . The goal of our algorithm is to
synthesize a process template P ′, and legitimate states LS ′ from P , such that for every
N ≥ K, the set I ′N is not empty in P ′N , all LTL properties satisfied by P num are also
satisfied by P ′num , and P ′NF is F -tolerant to SPEC from LS ′. The algorithm consists of six
steps (Algorithm 7).

In the first step, an abstraction of the parameterized system is generated using the
counter abstraction method [72]. In the second step, the unreachable states are removed
from the state-space. In Step 3, we check the state-space to identify the states where
state-based safety specification is violated, and also the ones from where faults alone lead
the execution to the state-based specification violation. Those states are removed from the
state-space. In Step 4, we resolve deadlock states by adding recovery transitions to the
model. The unresolved deadlock states are then removed in Step 5. Finally, in Step 6, we
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Function 7 Parameterized Synthesis

Input: A counter abstraction C = (ΣC , IC ,∆C , λC), a specification SPEC , and a set LS
of legitimate states.

Output: If successful, a counter abstraction C ′ = (Σ′C , (IC)′,∆′C , λ
′
C), and legitimate

states LS ′.
1: LS ′ = LS
2: Σ′C = ΣC

3: ∆′C = ∆C

4: repeat
5: LS ′′ = LS ′

6: repeat
7: ∆′′C = ∆′C
8: repeat
9: Σ′′C = Σ′C

10: Σ′C = = remove unreachable (Σ′C ,∆
′
C)

11: Σ′C = remove fte (Σ′C ,∆
′
C , fte)

12: Σ′C = remove badstate (Σ′C ,∆
′
C)

13: until Σ′′C = Σ′C
14: add recovery (Σ′C ,∆

′
C)

15: (fte, ofd) = remove deadlock (Σ′C ,∆
′
C , fte, ofd)

16: until ∆′′C = ∆′C
17: LS ′ = construct LS (LS ′, ofd)
18: until LS ′′ = LS ′

19: (IC)′ = {σ | σ ∈ Σ′C ∧ σ ∈ IC}
20: return (Σ′C , (IC)′,∆′C , λ

′
C)

ensure that the invariant is closed in the synthesized program. We repeat steps 2-3, 2-5,
and 2-6 until a fixpoint is reached, which means no more progress is possible. We represent
the fixpoint computation by nested repeat-until loops in algorithm 7.

5.4.3.1 Step 1

In the first step, the abstract model C = (ΣC , IC ,∆C , λC) is generated from the fault-
intolerant parameterized system. After generating the abstract model, we put a flag,
remove, for each state and transition (initially set as false) that shows whether it has been
removed during the synthesis or not. If we need to put the state or transition back, we
simply change the value of remove to false. After generating the counter abstraction C,
we call algorithm 7 on C, SPEC , and LS .
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5.4.3.2 Step 2

In line 10 of Algorithm 7, a function named remove unreachable is called to identify and
remove the unreachable states of the model. An unreachable state is the one with no
incoming transitions. For removing the unreachable states, we simply put their remove
flags to true. The outgoing transitions from unreachable states are not removed to keep
the maximum reachability in the model. Initially, this step might not change anything,
but after removing transitions in the next steps of the algorithm, there will be unreachable
states that should be removed by this step.

5.4.3.3 Step 3

In lines 11 and 12 of Algorithm 7, a set of states become unreachable. These states consist
of:

• fte, failed to eliminate states, which are identified in Step 5. We will explain more
about them later in this section.

• Bad states, which are the states that violate the state-based safety specification.

In order to remove bad states, we should make them unreachable, so that no system
computation can reach them and violate the specification. Moreover, if a bad state is
reachable only by faults, those states should also become unreachable, since we don’t have
control over the execution of faults.

5.4.3.4 Step 4

We don’t allow deadlock states in the synthesized program. For abstract states out of LS,
being deadlocked means violation of fault-tolerance, and for abstract states inside LS, being
deadlocked means violating the second requirement of our problem statement. Hence, we
don’t want any deadlock states in our synthesized program. In this algorithm, deadlock
states are resolved by either adding recovery paths (this step) or deadlock state elimination
(next step).

In this step, we identify deadlock states outside LS, and for each, try to resolve it
by adding a recovery transition to a state inside LS. We could add a recovery transition
(σ̂1, σ̂2), if the following conditions hold:
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1. the asynchronous condition:

(∃j ∈ IK .∃x ∈ V : σ̂1(x[j]) 6= σ̂2(x[j]) ∧
(∀i ∈ IK .∀y ∈ V : (i 6= j ∨ y 6= x)→ σ̂1(y[i]) = σ̂2(y[i])) ∧ (∀ρ ∈ PV : σ̂1(κρ) = σ̂2(κρ))) ∨
(∀i ∈ IK .∀x ∈ V : σ̂1(x[i]) = σ̂2(x[i])) ∧ (∃ρ1, ρ2 ∈ PV : inc(σ̂1, σ̂2, ρ1) ∧ dec(σ̂1, σ̂2, ρ2)) ∧
(∀ρ ∈ PV : ρ 6= ρ1 ∧ ρ 6= ρ2 → σ̂1(κρ) = σ̂2(κρ))

This condition is required, since we are synthesizing an asynchronous system, and
hence, there could be only one process that is changing from one local state to
another. Based on the above condition, either a fixed process changes its local state,
and all other processes remain unchanged, or all fixed processes are unchanged, and
a parameterized process changes its local state. The latter is identified by changing
the cardinality of one or two local states.

2. (σ̂1, σ̂2) |= ψ

This condition is required, as the synthesized program should satisfy the given spec-
ification.

3. It does not create a bad cycle in the system.

Based on the first condition, when a parameterized process is taking an action, either
there is a local state which cardinality is decreasing by one, and one local state which
cardinality is increasing by one, or there is one local state decreasing (increasing) by one,
and at least one unchanged local state with cardinality 2. When two local states are
changing, we could find out which action is being taken by a process, and check it with
the transition-based specification (second condition). If only one local state changes, then
the local states with value 2 are the candidates for the other changing state. For each
candidate, we check the corresponding action to see if it satisfies the second condition. If
it does, then it could be a candidate to be checked for third condition.

Fault-tolerance is violated (third condition in Definition 38) if there exists a cycle
outside the set of legitimate states. In counter abstraction, not all cycles will lead to loops
in the corresponding instances.

Definition 44. A bad cycle in a counter abstraction is a cycle consisting of only abstract
states in ¬LS, with the condition that there exists a system instance for which the bad cycle
is instantiated to a cycle.

Below, we first give a brief introduction to justice properties [72] and then explain how we
have used them in detecting bad cycles in our synthesis problem.
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Definition 45. Justice requirements are a set J = {J1, · · · , Jk}, such that each Ji ∈ J
is an assertion to ensure that each computation visits infinitely many Ji-states (states
satisfying Ji).

Definition 46. Let ϕ be an assertion over the abstract state variables. We say that ϕ
suppresses the justice requirement J , if for every two states σ1 and σ2 in a system instance
with N processes, such that (σ1, σ2) ∈ ∆N , and both abstract states αN(σ1) and αN(σ2)
satisfy ϕ, then σ1 |= ¬J implies σ2 |= ¬J .

Definition 47. An assertion ϕ is called justice suppressing if, for every state σ such that
αN(σ) satisfies φ, there exists a justice requirement J such that σ |= ¬J and ϕ suppresses
J .

It is shown in [72] that if we can find justice suppressing properties, we can safely add
their negations to the set of justice properties (without violating the soundness of checking
properties). In [72], a set of guidelines are presented to find justice suppressing properties
in counter abstractions. As an example, one of the guidelines is as follows:

G1. If the system instance has the justice requirement ¬(π[i] = l), then the assertion
kl = 1 is a justice suppressing property.

As an example, assume each local state ρ in BA is shown by a triple [d, f, b], where
d, f , and b are the variables for decision, finalization, and Byzantine bit respectively.
We can find a justice suppressing property for BA, using the above guideline. In BA,
¬(π[i] = [1, 0, 0]) is a justice requirement, as each non-Byzantine process with a decision 1
should have a chance to finalize, unless it gets Byzantine. Hence, a process can not stay in
that state infinitely often. Having this justice requirement for system instances, one justice
suppressing property for the Byzantine agreement counter abstraction is k[1,0,0] = 1, and
hence, ¬(k[1,0,0] = 1) is a justice property for the counter abstraction of BA.

Using the guidelines in [72], we can find a set of justice suppressing properties for the
system under study. For each added transition, if the first two conditions are satisfied, we
check if it is syntactically forming a new cycle in counter abstraction. If so, we check the
abstract states in the cycle with our justice properties. If there exists a property for which
all states in the new cycle do not satisfy it, we can safely add the transition. We mark each
added transition with the decreasing and increasing indices, so at the end we can modify
the guarded commands of the original program by adding the new transitions (actions) to
them.

5.4.3.5 Step 5

In this step, the deadlock states that could not be resolved using the previous step, are
removed. This is done by making the deadlock states unreachable. There are two types of
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transitions reaching a state; program transitions, and faults. If the state is reachable by a
fault, we should backtrack, and make the source of the fault unreachable. The reason is
that we cannot avoid a fault from happening. Such states are added to the list of “failed
to eliminate” states (fte). If the source of the fault is in LS , it is added to the ofd list (to
be removed in the next step), and if not, it is added to the set of deadlock states to be
removed in the next rounds of this step. To remove a state from the set of deadlock states,
all incoming transitions to each deadlock state, along with the transitions in its group, are
removed from the counter abstraction. If this removal makes a new deadlock state (called
nds) in the counter abstraction, we put all the transitions back to the model, and add nds
to the set of deadlock states to be removed in the next rounds of this step.

5.4.3.6 Step 6

In this step, we make the states in ofd unreachable. If this removal leads to creating new
deadlock states in LS , we make them unreachable as well to ensure the satisfaction of all
LTL properties satisfied by the original program. If all initial states get removed in this
step, the algorithm will terminate with failure.

5.5 Proof of Soundness

To prove the soundness of our algorithm, we show that all the requirements in our problem
statement are satisfied by the algorithm.

1. The first condition requires that the set of initial states is not empty. This is guaran-
teed, as IN ⊆ LS , and legitimate states can be removed in Step 6 of the algorithm. In
this step, we check for the emptiness of the set of initial states, and it that happens,
the algorithm returns with failure.

2. The second condition guarantees that all LTL formulas satisfied by the original
system in the absence of faults are also satisfied by the synthesized system. This
is true, since no state nor transition is added to LS in the synthesis. Also, no new
deadlock states are added to the model.

3. The last condition is that the resulting system is F -tolerant. We show the satisfaction
of this requirement by showing that each condition in the definition of fault-tolerance
is respected:
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• LS in the resulting system is closed due to the fact that no behaviour is added
to LS , and also the last step of the algorithm. Every state in LS also satisfies
ψ, since no state is added to LS , and the original program satisfies ψ.

• Every computation starting from LS , and taking program transitions or faults
satisfies the specification ψ. This is correct since the original program satisfies
ψ, and no state is added to the system. Hence, all state-based properties are
preserved. The transition-based properties are also preserved, since when adding
each recovery transition, the corresponding action is checked with respect to the
that property. We should prove that if no prohibited transition is added in the
abstract level, then no prohibited transition is added in any of the concrete
models as well. We can prove that by proof by contradiction. Assume that
there exists a prohibited transition in a concrete model. Then, there should
exists at least one corresponding prohibited transition in the abstract model,
and we know that no prohibited transition is added in the abstract level. Hence,
the condition is satisfied.

• The last condition guarantees convergence to LS , starting from any state in LS ,
and taking any transition in program transitions or faults. This is also satisfied,
since there are finite number of states in the state-space of the program, and
none of states in ¬LS are deadlocked. Since there is no cycle in ¬LS either, all
computations starting from a state in ¬LS eventually get to LS .

5.6 Case Study and Experimental Results

We have applied our algorithm on parameterized Byzantine agreement problem as pre-
sented in Section 5.2.1.3. Our experiment is run on a machine with Intel Core i5 2.6 GHz
processor with 8GB of RAM, and the synthesis time is 72 seconds. Below we present the
added and removed transitions after applying our synthesis method:

Added transitions:

(d[1] = 1) ∧ (d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] ∧ (∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0)∧
¬(∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)→ d[id] := 0 ∧ f [id] := true/false

(d[1] = 0) ∧ (d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] ∧ (∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)∧
(@i . d[i] = 0)→ d[id] := 1 ∧ f [id] := true
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(d[1] = 0) ∧ (d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] ∧ (∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)∧
¬(∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0)→ d[id] := 1

(d[id] = 1) ∧ ¬f [id] ∧ ¬b[id] ∧ (@i . i 6= id ∧ d[j] = 1)∧[(
∃i, j . d[i] = 0 ∧ d[j] = ⊥ ∧ (d[1] = 0)

)
∨(

(∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0) ∧ ¬(∃i, j . i 6= j ∧ d[i] = ⊥ ∧ d[j] = ⊥)
)]

→ d[id] := 0 ∧ f [id] := true

(d[id] = 1) ∧ ¬f [id] ∧ ¬b[id] ∧ (@i . i 6= id ∧ d[j] = 1)∧[(
∃i, j . d[i] = 0 ∧ d[j] = ⊥ ∧ @k . (k 6= i ∧ k 6= j ∧ (d[k] = 0 ∨ d[k] = ⊥)) ∧ (d[1] = 0)

)
∨(

∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0
)]
→ d[id] := 0

(d[id] = 0) ∧ ¬f [id] ∧ ¬b[id] ∧ (d[1] = 1) ∧ (@i . i 6= id ∧ d[j] = 0)∧
(∃i, j . d[i] = 1 ∧ d[j] = ⊥)→ d[id] := 1 ∧ f [id] := true

(d[id] = 0) ∧ ¬f [id] ∧ ¬b[id] ∧ (d[1] = 1) ∧ (@i . i 6= id ∧ d[j] = 0) ∧ (∃i . d[j] = ⊥)∧
¬(∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)→ d[id] := 1

(d[id] = 0) ∧ ¬f [id] ∧ ¬b[id] ∧ (@i . i 6= id ∧ d[j] = 0) ∧ ¬(∃i, j . i 6= j ∧ d[i] = ⊥ ∧ d[j] = ⊥)∧
(∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)→ d[id] := 1 ∧ f [id] := true/false

(d[id] = 0) ∧ ¬f [id] ∧ ¬b[id]∧[(
(d[1] = 0) ∧ (∃i . i 6= id ∧ d[i] = 0) ∧ (∃i . d[i] = 1 ∧ @j . j 6= i ∧ d[j] = 1)

)
∨(

(d[1] = 1) ∧ (@i . i 6= id ∧ d[i] = 0) ∧ (∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)
)
∨(

(d[1] = 1) ∧ (@i . i 6= id ∧ d[i] = 0) ∧ (∃i, j . i 6= j ∧ d[i] = ⊥ ∧ d[j] = ⊥) ∧ (@i . d[i] = 1)
)]

→ d[id] := ⊥

(d[id] = 1) ∧ ¬f [id] ∧ ¬b[id] ∧ (d[1] = 0) ∧ (@i . d[i] = 0) ∧ (@i . i 6= id ∧ d[i] = 1)∧
(∃i, j . i 6= j ∧ d[i] = ⊥ ∧ d[j] = ⊥)→ d[id] := ⊥

Removed transitions:

(d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] ∧ (d[1] = 0) ∧ ¬(∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0)∧
(∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)→ d[id] := 0
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(d[id] = ⊥) ∧ ¬f [id] ∧ ¬b[id] ∧ (d[1] = 1) ∧ (∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0)∧
¬(∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1)→ d[id] := 1

(d[id] = 0) ∧ ¬f [id] ∧ ¬b[id] ∧
[(
∃i . d[i] = ⊥

)
∨(

(@i . i 6= id ∧ d[i] = 0) ∧ (∃i, j . i 6= j ∧ d[i] = 1 ∧ d[j] = 1) ∧ (@i . d[i] = ⊥)
)
∨(

(∃i . i 6= id ∧ d[i] = 0) ∧ (∃i . d[i] = 1 ∧ @j . j 6= i ∧ d[j] = 1) ∧ (@i . d[i] = ⊥) ∧ d[1] = 1
)]

→ f [id] := true

(d[id] = 1) ∧ ¬f [id] ∧ ¬b[id] ∧
[(

(@i . i 6= id ∧ d[i] = 1) ∧ (∃i . d[i] = ⊥)
)
∨(

(∃i . d[i] = 0 ∧ @j . j 6= i ∧ d[j] = 0) ∧ (∃i . i 6= id ∧ d[i] = 1)
)
∨(

(∃i, j . i 6= j ∧ d[i] = 0 ∧ d[j] = 0) ∧ (@i . i 6= id ∧ d[i] = 1) ∧ (@i . d[i] = ⊥)
)
∨(

(@i . d[i] = 0) ∧ (∃i . i 6= id ∧ d[i] = 1) ∧ (∃i, j . i 6= j ∧ d[i] = ⊥ ∧ d[j] = ⊥) ∧ d[1] = 0
)]

→ f [id] := true
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Chapter 6

Related Work

In this chapter, we review the literature related to the research in this dissertation. We
are focusing on synthesis in two contexts; (1) adding specifications to an abstract model,
(2) designing correct programs from specification.

6.1 Comprehensive Synthesis

In comprehensive synthesis, the input is a specification given in terms of a temporal prop-
erty, and the goal is to synthesize a model that satisfies the given specification. Our work
in synthesizing self-stabilizing systems is in nature close to these approaches.

Concurrent programs can be divided into two parts; (1) synchronization part that en-
sures the relative timing of processes execution, and (2) functional part that are the program
computations and data manipulations. As an example, in a mutual exclusion program, the
part that ensures the mutual exclusion between sections of code is the synchronization part,
and the code that is being mutually exclusive is the functional part [67]. Most existing
work in comprehensive synthesis are concerned with the synchronization part of concur-
rent programs. The reason for considering synchronization part in synthesis is that it is an
intricate yet manageable task, since it needs attention to lots of details, but most of them
do not need insight into lots of mathematical theories [67].

The seminal work in this area is the one by Emerson and Clark presented in [37]. In
this work, the goal is to synthesize a synchronization skeleton from a given CTL formula. A
synchronization skeleton is defined as an abstraction of the program where any detail irrel-
evant to synchronization is suppressed. The synthesis is based on the bounded finite model
property, which asserts that if a formula in an appropriate propositional temporal logic is
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satisfiable, there exits a finite state model satisfying it, and the model size is bounded by
a function of the length of the formula. A tableau-based decision procedure is proposed
in [37] that takes a CTL formula f0; if unsatisfiable, returns “NO, f0 is unsatisfiable”, and
if satisfiable, returns “YES, f0 is satisfiable”, along with a finite model satisfying f0. The
procedure starts by building a tableau from the CTL formula, which is a finite directed
AND/OR graph. In each step, an unreduced AND-node or OR-node is reduced. The steps
continues as long as possible. If the root is removed, the CTL formula is not satisfiable.
Otherwise, the remaining unreduced nodes are unraveled to a finite model.

Manna and Wolper in [67] propose a method to synthesize the synchronization part
of communing processes from propositional linear temporal logic (PTL). In this work,
concurrent computations are abstracted into sequences of events, and described using PTL.
A tableau-based decision procedure is then used to synthesize the synchronization part of
processes from the specification in PTL. The major distinction of this work and the one
presented by Emerson and Clark in [37] is the underlying logic. The other difference is
that the work in [37] focuses on the shared-memory model for concurrent programs, while
in [67], the communication among processes are done through a synchronizer process, using
the message-passing method.

The two approaches mentioned above suffer from state explosion problem. The reason
is that the number of states for a concurrent system grows exponentially with the increase
in the number of processes. In [10], Attie and Emerson propose an extension to these
approaches to synthesize a concurrent system with K similar processes, where K is an
arbitrarily large number. The idea is to reduce the problem of synthesizing a system
with K similar processes to the problem of constructing the product of a pair of sequential
processes, which is called a pair-system. They prove that two properties of the pair-systems
are preserved by the K-processes systems: (1) a propositional invariant, and (2) a temporal
leads-to property (if condition 1 is true, then condition 2 will be eventually true, as well).
The other correctness properties such as liveness are not considered in this paper.

The methods proposed in [37] and [67] synthesize systems with computation models
that are often unrealistic; a highly centralized topology in [67], and access to the global
information about the system state in [37]. In [12], Attie and Emerson propose a method to
synthesize a concurrent model in shared memory model, where operations are only atomic
reads or atomic writes of a single variable. The proposed approach is to first synthesize a
program with multiple assignment operations. Then, the operations are decomposed into
sequences of atomic read/write operations. After decomposition, the program is checked
to ensure that it still satisfies the given specification.

Comprehensive synthesis is also studied in the context of real-time systems. In [5], a
method was introduced to synthesize timed automata from real-time temporal logic MITL
formula. In [64], a simpler approach is proposed for the same goal.
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6.2 Automated Synthesis of Fault-Tolerance

The formal characterization of notion of faults and fault-tolerance are first introduced by
Arora and Gouda in [7]. Based on this formalization, the faults that a program is subject
to can be systematically represented by a transition predicate. Representation of faults as
transitions is possible for different types of faults (e.g., stuck-at, crash, fail-stop, timing,
performance, Byzantine, etc.), nature of the faults (permanent, transient, or intermittent),
or the ability of the program to observe the effects of the faults [17]. Examples of different
types of faults (e.g., fail-stop, Byzantine, state corruption, message loss, etc) modeled in a
transition system are presented in [21]. Using the fault and fault-tolerance characterization
in [7], there has been a series of work on adding fault-tolerance to various types of systems
with different levels of fault-tolerance, which we present in this chapter for two categories
of untimed and real-time systems.

6.2.1 Synthesis of Fault-Tolerant Untimed Systems

Automated synthesis of fault-tolerance is pioneered by Attie, Arora, and Emerson in [11].
Their approach is mainly based on the comprehensive synthesis method in [37]. Given is a
program specification in CTL, a fault specification, a problem-fault coupling specification,
which is also a CTL formula, and a level of fault-tolerance. The algorithm starts by finding
the finite model using the tableau-based approach proposed in [37]. Then, the fault actions
are added to the synthesized model to find the new reachable states. After that, recovery
transitions to the program invariant are added, and at the end, the augmented global
state-transition diagram is pruned to find each process.

In a series of papers [56–60], automatic addition of fault-tolerance to fault-intolerant
untimed programs is studied, where the problem requirement is that no new behaviors are
added to the original program in the absence of faults. Note that since a fault-intolerant
program is given as input, these methods can be used to add fault-tolerance incrementally.
However, such reuse is not feasible in comprehensive synthesis, since for each new specifica-
tion, the synthesis procedure should be performed from scratch. Similar weakness is valid
for the work in [11], as it is based on comprehensive synthesis. This line of work is pioneered
by Kulkarni and Arora in [56]. In this paper, the authors introduce polynomial-time sound
and complete algorithms for adding all levels of fault-tolerance (failsafe, nonmasking, and
masking) to centralized programs. They also show that the problem of adding masking
fault-tolerance to distributed programs is NP-complete in the size of the input program’s
state space. A set of polynomial-time heuristics are introduced in [57] for the problem
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of adding masking fault-tolerance 1 to distributed programs. Later, a more efficient sym-
bolic heuristic is introduced in [21] for a similar problem. The other work in synthesis
of fault-tolerant distributed systems is the one presented in [33]. In this work, the fault-
tolerance specification is given as a CTL∗ formula, and the goal is to determine whether
a fault-tolerant implementation exists for that specification in a fully connected topology
(each pair of processes is connected by a communication link). If the answer is “yes”, it
automatically generates the system. They also prove that the problem of fault-tolerant
synthesis from CTL∗ specifications for a fully connected topology is 2EXPTIME-complete.

The other line of research is to enhance the level of fault-tolerance in a program. In [58],
the authors propose an algorithm that takes a nonmasking fault-tolerant program, and
enhances its level of fault-tolerance to masking. This requires to add safety in the presence
of fault, and preserve recovery to the legitimate states. The problem is studied for both
centralized and distributed systems. The algorithm proposed for the centralized case is
sound and complete, whereas the one for distributed systems in only claimed to be sound.

6.2.2 Synthesis of Fault-Tolerant Real-Time Systems

In [18], the notion of faults and fault-tolerance introduced in [7] are extended in the context
of real-time systems. The authors also introduce various levels of fault-tolerance for real-
time systems in the presence of faults, which include nonmasking, failsafe, and masking.
For failsafe and masking fault-tolerance, they introduce two additional levels, namely soft
and hard, based on satisfaction of timing constraints in the presence of faults. In particular,
both soft and hard fault-tolerant programs are required to satisfy their timing constraints
in the absence of faults. However, in the presence faults, a soft fault-tolerant program is not
needed to satisfy its timing constraints, while it is a requirement in a hard fault-tolerant
program.

Bonakdarpour and Kulkarni in [17] introduce the notion of 2-phase fault recovery. Fault-
tolerance requires that the system should eventually return to its ideal behavior, and the
real-time nature of the system under study needs the recovery to be timely, and satisfying
both requirements may not be possible. The idea in [17] is to enable the system to first
recover to a safe or acceptable state quickly, and then return to its ideal behavior (2-phase
fault recovery). For instance, in a traffic signal controller, if the controller detects a fault,
all signals should first turn red immediately to prevent catastrophic consequences (phase
1) before final recovery to normal behavior (phase 2). The complexity of adding different
levels of fault-tolerance is studied in [17], where the synthesis problem we are interested in,

1A masking fault-tolerant protocol is one that ensures constant satisfaction of safety and liveness spec-
ifications even in the presence of faults.
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is shown to be polynomial in the size of the time-abstract bisimulation of the input model.
The algorithm in [17] for solving this problem is just proposed for the purpose of showing
complexity, and it is essentially impractical due to the use of region graphs as the semantic
model for timed automata.

6.3 Synthesis of Self-Stabilizing Systems

The concept of self-stabilization was first introduced by Dijkstra in the seminal paper [29],
where he proposed three solutions for designing self-stabilizing token circulation in ring
topologies. Twelve years later, in a follow up article [30], he published the correctness
proof, where he states that demonstrating the proof of correctness of self-stabilization
was more complex than he originally anticipated. Indeed, designing correct self-stabilizing
algorithms is a tedious and challenging task, prone to errors. Also, complications in de-
signing self-stabilizing algorithms arise, when there is no commonly accessible data store
for all processes, and the system state is based on the valuations of variables distributed
among all processes [29]. Thus, it is highly desirable to have access to techniques that can
automatically generate self-stabilizing protocols that are correct by construction.

In [54], the authors show that adding strong convergence is NP-complete in the size of
the state space, which itself is exponential in the size of variables of the protocol. Ebne-
nasir and Farahat [35] also proposed an automated method to synthesize self-stabilizing
algorithms. Our work is different in that the method in [35] is not complete for strong
self-stabilization. This means that if it cannot find a solution, it does not necessarily im-
ply that there does not exist one. However, in our method, if the SMT-solver declares
“unsatisfiability”, it means that no self-stabilizing algorithm that satisfies the given in-
put constraints exists. Also, using our approach, one can synthesize synchronous and
asynchronous programs, while the method in [35] synthesizes asynchronous systems only.
Finally, our method is based on the constantly-evolving technique of SMT solving. We
expect our technique to become more efficient as more efficient SMT solvers emerge.

The synthesis technique introduced in [55] uses a backtracking-based synthesis algo-
rithm. It is complete and shows better scalability than our SMT-based technique. Having
said that, SMT-solvers provide us with enormous power and allow us to push the bound-
aries of synthesis to cases where the description of the set of legitimate states is not given
explicitly. Our results show that synthesis of self-stabilizing protocols using such implicit
descriptions is indeed possible using SMT-solvers. The other limitation in [55] is that it
needs the set of actions on the underlying variables in the legitimate states. This is not
required in our approach, although if a developer prefers to specify the set of actions in LS ,
our synthesis method allows that using the constraint presented in Section 3.6.3.1. This
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limitation makes it impossible to synthesize protocols that are live in the legitimate states
and whose behavior is too complicated for superposition to capture such as Dijkstra’s token
ring, while our approach has no limitation on that.

In [1], the authors propose a constraint-based automated addition of self-stabilization
to hierarchical programs. To deal with transient faults, their technique adds recovery ac-
tions while ensuring interference freedom among the recovery actions added for satisfying
different constraints. This method can successfully synthesize stabilizing Raymond’s mu-
tual exclusion algorithm [74] and stabilizing diffusing computation [8]. This is another
instance of a heuristic that works only a class of protocols, namely, hierarchical distributed
algorithms.

Gascón and Tiwari [43] propose a method to synthesize Dijkstra’s four-state token ring
protocol. The solution is based on solving the ∀∃ game for 32ϕ (i.e., ‘eventually always’)
properties using a QBF-solver, as 32ϕ essentially expresses strong self-stabilization. The
authors suggest that since synthesizing a protocol for 32ϕ properties is difficult, they
replace 32ϕ with Xc2ϕ (i.e., always within c steps). They further simplify 2ϕ to ϕ ∧Xϕ.
Due to the bound on c and replacement of 2ϕ with ϕ ∧ Xϕ, the synthesized solution may
not be sound. Thus, they verify it. This loop iterates until verification is positive. In our
approach, synthesis is achieved in one shot.

6.4 Controller Synthesis

Controller synthesis is in spirit close to our work in adding fault-tolerance to systems. A
Discrete Event System (DES) is a dynamic system that evolves according to the occurrence
of physical events. Controller synthesis for DES is pioneered by Ramadge and Wonham
in [73]. The discrete controller synthesis is formulated as the problem of getting two lan-
guages U and D, where U is called the plant system, and D is the desired system. The goal
is to synthesize a language C, such that U∩C ⊆ D. Considering U to be the fault-intolerant
program, D be the desired specification, and C be the subset of program transitions that
satisfy the specification, we can see that controller synthesis can solve a similar problem to
that in synthesizing fault-tolerant systems. There are a number of differences between our
work and controller synthesis; first, there is no method of adding recovery transitions, as
used in our algorithm, in controller synthesis; second, the computation model considered
in controller synthesis is prioritized synchronization, whereas the model in our synthesis
work on distributed fault-tolerant systems is based on interleaving. Finally, we model dis-
tribution by specifying read/write restrictions, whereas decentralized plants are modeled
through partial observability.
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Maler, et al. [66] propose an algorithm for synthesizing timed automata formulated by
the notion of timed games. The idea is to define a predecessor function that finds the con-
figurations from which the automaton can be forced to the desirable set of configurations,
and the algorithm is a fixed-point iteration of this function. In [9], a similar problem is
tackled, with the difference that the controller has the option of doing nothing and let the
time pass, in addition to choosing among actions. An on-the-fly algorithm on synthesiz-
ing timed models using zone graphs is proposed in [25], which is implemented in the tool
UPPAAL-TIGA [15]. The algorithm is a symbolic extension of the algorithm suggested
by Liu and Smolka [62]. The main idea of this work is (1) to use a combination of forward
algorithm, and backward propagation, which helps the algorithm to terminate as soon as
a winning strategy is identified, and (2) to use zone graph as the underlying structure of
the algorithm. We use similar ideas in the area of fault-recovery for timed models. The
distinction of our work with these work (and also with [65]) is handling bounded response
properties and, more importantly, adding recovery paths that the original model does not
contain.

In bounded synthesis [42], given is a set of LTL properties, which are translated to
a universal co-Büchi automaton, and then a set of SMT constraints are derived from the
automaton. Our work in synthesis of self-stabilizing systems is inspired by this idea for
finding the SMT constraints for convergence. For distribution and timing models, we use a
different approach from bounded synthesis, as they are not temporal properties. The other
difference is that the main idea in bounded synthesis is to put a bound on the number of
states in the resulting state-transition systems, and then increasing the bound if a solution
is not found. In our work, since the purpose is to synthesize a self-stabilizing system, the
bound is the number of all possible states, derived from the given topology.

6.5 Game Theory

Game theory is another research line that is close to the automated synthesis of fault-
recovery. In game-theoretic approaches [71], the synthesis of controllers and reactive pro-
grams are considered as a two-player game between the program and the environment [77].
The interaction of the program and the environment is through a set of interface vari-
ables. Hence, the environment is only allowed to change the value of interface variables,
while in the synthesis of fault-recovery, faults can change the value of any variable. The
other difference is that in a two-player game model, the set of states from where the first
player (program) can make a move is disjoint from the set of states from where those that
the second player can move from [78], while in our work, faults can occur in any state of
the system. Similar to discrete controller synthesis, the other distinction of our work with
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game theoretic approaches is that the latter do not address the issue of addition of recovery.
Also, in game theory, the notion of distribution is modeled by partial observability.

6.6 Parameterized Synthesis

There is extensive research on parameterized systems in the context of verification. Pa-
rameterized verification is known to be undecidable [6], although it can be decided for
some restricted cases [27, 38]. Parametrized model checking of fault-tolerant distributed
systems is studied in [52]. In this paper, fault-tolerant distributed systems are considered
as message-passing systems of n processes, out of which at most t may be faulty. To verify
these systems and avoid state explosion problem, PIA counter abstraction is used, and as
a result, the parameterized problem is reduced to finite-state model checking. In counter
abstraction, a counter is associate to each local state that stores how many processes are in
the corresponding state. A global state is the union of all these counters. In PIA counter
abstraction, the domain of each counter is a set of intervals, which is selected based on
the system we want to model check. We use similar idea in synthesis of fault-tolerant
distributed systems. The abstraction we use is {0, 1,∞}-counter abstraction [72], in which
the domain of each variable could be zero, one, or two, where two represents all values
more than one.

In [50], the problem of synthesis of a reactive system from a parameterized tempo-
ral logical specification is studied. The problem is known to be undecidable for system
topologies in which processes are incomparable with respect to their information about the
environment. In [50], the problem is restricted to topologies with identical processes, and
the considered specifications are in LTL-X. This problem is still undecidable, and hence,
bounded synthesis [42], which is a semi-decision procedure is used to tackle it. Using this
approach, a simple parameterized arbiter is synthesized in reasonable time.
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Chapter 7

Conclusion

In this chapter, we present a summary of our contributions in this thesis, as well as some
of the related open problems and future research directions.

7.1 Summary

To summarize, we have done research in two directions: (1) synthesis of fault-tolerant
real-time systems, and (2) synthesis and repair of distributed fault-tolerant systems. In
our first research direction, we focused on synthesizing fault-tolerant timed models from
their intolerant version. The type of fault-tolerance under investigation is strict 2-phase
recovery, where upon occurrence of faults, the system is expected to recover in two phases,
each satisfying certain constraints. Our contribution is a synthesis algorithm that adds
2-phase strict fault recovery to a given timed model, while not adding new behaviors in
the absence of faults. The latter is ensured with the fact that our algorithm adds no
transition originating from a legitimate state of the input model. We used an space-
efficient representation of timed models, known as the zone graph. To our knowledge, this
is the first instance of such an algorithm. Our experiments showed that the proposed
algorithm can compete with model checking, where the synthesis time is proportional to
the corresponding verification time (zone graph generation time for the input model using
the IF toolset). Note that synthesis is a significantly more complex problem compared to
mode checking (i.e. satisfiability vs. verification).

The other type of systems we focused on are distributed systems. Synthesis of dis-
tributed fault-tolerant systems is studied in [21]. One of the major shortcomings of the
algorithm proposed in [21] is the time complexity. Hence, using the proposed algorithm,
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a system with a bounded number of processes can be synthesized and, thus, the solution
cannot be generalized to any number of processes. Our goal was to propose an automated
parameterized method for synthesizing masking fault-tolerant distributed protocols from
their fault-intolerant version. Such protocols are parameterized by the number of processes.

We have designed a synthesis algorithm that utilizes counter abstraction [72] to con-
struct a finite representation of the state space. Then, it performs fixpoint calculations to
compute and exclude states that violate the safety specification in the presence of faults.
To guarantee liveness, our algorithm ensures deadlock freedom and augments the input in-
tolerant protocol with safe recovery paths, while ensuring that no cycle is added outside of
legitimate states. In counter abstraction, not every cycle is a real cycle, which can violate
the liveness specifications. Hence, to find out if an added recovery transition is actually
forming a cycle outside the legitimate states, we use justice properties as introduced in [72].
We use the guidelines presented in [72] to find justice properties for our case studies, and
use them to distinguish cycles violating recovery to the legitimate states. We demonstrate
the effectiveness of our algorithm by synthesizing a fault-tolerant distributed agreement
protocol in the presence of Byzantine fault. Although the synthesis problem is known
to be NP-complete in the state space of the input protocol (due to partial observability
of processes) in the non-parameterized setting, our parameterized algorithm manages to
synthesize a solution for a complex problem such as Byzantine agreement within less than
two minutes.

Self-stabilizing systems are a well-known type of distributed fault-tolerant systems, in
which, the system converges to its set of legitimate states, starting from any state (due
to wrong initialization or fault occurrence). We proposed an automated technique for
synthesis of finite-sized self-stabilizing algorithms using SMT-solvers. The first benefit
of our technique is that it is sound and complete; i.e., it generates distributed programs
that are correct by construction and, hence, no proof of correctness is required, and if it
fails to find a solution, we are guaranteed that there does not exist one. The latter is
due to the fact that all quantifiers range over finite domains and, hence, finite memory
is needed for process implementations. This assumptions basically ensures decidability of
the problem under investigation. Secondly, our method is fully automated and can save
huge effort from designers, specially when there is no solution for the problem. Third, the
underlying technique is based on SMT-solving, which is a fast evolving area, and hence,
by introducing more efficient SMT-solvers, we expect better results from our proposed
method. We have also extended our approach to support cases where the legitimate states
is not explicitly given as a set of states, and also synthesis of ideal-stabilizing systems. We
reported highly encouraging results of experiments on a diverse set of case studies on some
of the well-known problems in self-stabilization.

When synthesizing self-stabilizing systems, what may be of interest to the user is the
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average recovery time of the system, which is the expected number of steps the system
takes before reaching its set of legitimate states. We focused on automated repair of
self-stabilizing systems under recovery time constraints. Our investigation shows that the
computational complexity of the problem is NP-complete in the size of the input program
state space. This result is shown by a reduction from the 3-SAT problem to our synthesis
problem.

7.2 Future Work

In this section, we present some future research directions in the context of synthesiz-
ing fault-tolerant systems (Section 7.2.1) and synthesizing self-stabilizing systems (Sec-
tion 7.2.2).

7.2.1 Open Problems Related to Synthesis of Fault-Tolerant Sys-
tems

Synthesis of Fault-Tolerant Real-Time Systems. In the context of synthesizing
fault-tolerant real-time systems, an open problem is to investigate a method for improving
the efficiency of our proposed synthesis method. As discussed in Section 2.6, a possible
bottleneck of our method is on the step of adding recovery transitions. Our idea of ranking
the zones and updating the ranks dynamically has significant effect on the efficiency of
this step. But we believe that this phase may still be improved by introducing heuristics
for edge selection. Note that applying heuristics can help the efficiency of the method
in adding recovery transitions in the cost of losing completeness in this step. The other
research direction is to consider other cases of synthesizing fault-tolerant real-time systems
with 2-phase fault recovery, which are known to be NP-complete in the size of the detailed
region graph of the input automaton [17]. The goal is to propose an efficient heuristic for
synthesis in these cases using zone graphs, and conduct experiments to see if the synthesis
can work efficiently in practice, despite the high complexity in theory.

Parameterized Synthesis of Fault-Tolerant Distributed Systems. In the context
of parameterized synthesis of fault-tolerant distributed systems, one research direction is
to investigate the complexity of the problem. Although we have proposed a heuristic for
solving the problem, the complexity of synthesizing a distributed fault-tolerant system that
works for any number of processes is unknown to us.

Other Research Directions. Another open problem in the context of synthesizing fault-
tolerant systems is to investigate the synthesis of the most general version of the Byzantine
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generals problem where multiple faults can occur. The problem cannot be solved using the
method proposed in [21]. One can investigate both parameterized and non-parameterized
cases for solving this problem. Another research direction is to investigate the possibility
of using SMT-solvers in synthesis of fault-tolerant systems to improve the efficiency of
methods. It could be done by either using an SMT-based approach for the whole process,
or to find the bottleneck steps of heuristics and see if SMT-solvers can help in those steps.

7.2.2 Open Problems Related to Synthesis of Self-Stabilizing Sys-
tems

Synthesis of Self-Stabilzing Systems Inductive synthesis is the process of generating a
system from input-output examples. For each input-output example, the system is refined,
until convergence is reached. The examples used for debugging can be negative or positive.
The negative ones can be counter-examples found during checking the correctness of the
program. A future research direction is to investigate the technique of counter-example
guided inductive synthesis (CEGIS) [75] along with our SMT-based method for synthesizing
self-stabilizing systems. That may be an interesting solution to the problem of scaling the
synthesis process for larger number of processes.

The other research direction is to design an algorithm to synthesize parameterized self-
stabilizing systems using SMT-solvers. We believe that using the abstraction methods,
such as counter abstraction, we are able to automatically synthesize parameterized self-
stabilizing systems.

Another research direction related to our SMT-based synthesis approach is to use SMT-
solvers other than Alloy, such as Z3 or Yices, and see if there are cases where these solvers
work better than Alloy. One way to improve the efficiency while working with these solvers
is to unroll all quantifiers. This leads to having very big SMT instances, but it may help
the efficiency of finding a solution significantly.

Repair of Self-Stabilzing Systems Following our NP-completeness results on repairing
self-stabilizing systems, one future research direction is to investigate if there exists any
heuristic with constant approximation ratio for repairing self-stabilizing systems under
recovery time constraints, and if there exists none, provide an impossibility proof.

A heuristic is proposed in [2] to synthesize self-stabilizing systems under average re-
covery time constraints. One research direction is to investigate if there exists any better
heuristic that works more efficiently in practice. The other research direction is to propose
heuristics for synthesis and repair of self-stabilizing systems under average recovery time
constraints in the parameterized case. More formally, given a parameterized self-stabilizing
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system, how we can repair the protocol such that the average recovery time of the resulting
system is less than a specific number, when instantiated for any number of processes.
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