
Single Input Multiple Output Media

Based Modulation

by

Kartik Vamaraju

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Masters of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Kartik Vamaraju 2015



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Modulation is traditionally based on the idea that signal constellations should be de-
terministically constructed and known by the transmitter and receiver. Communication
involves the transmitter randomly selecting from this known �nite constellation. This is
an example of Source Based Modulation (SBM). Media Based Modulation (MBM) is a
departure from this paradigm. Tunable mirrors at the transmitter are used to establish
independent channel realizations, the selection of which is used to encode information.

The main topic of this thesis is communication involving a Single-Input Multiple-
Output (SIMO) MBM system communicating over a static Rayleigh fading channel when
there is perfect Channel State Information (CSI) at the receiver. Simulation results are
presented to demonstrate various aspects of MBM system performance that are di�erent
from comparable SBM systems communicating over an Additive White Gaussian Noise
(AWGN) channel. The application of channel coding to MBM is then discussed and simu-
lation results involving the application of a Single Parity Check (SPC) symbol code applied
to an MBM system are presented. The geometry of MBM constellations has a signi�cant
impact on coding gain, and consequently the coding gains with MBM are di�erent then
with SBM. Finally, a novel algorithm is developed to solve the Maximum Likelihood (ML)
symbol detection algorithm for MBM using ideas from sphere decoding. Various methods
of improving computation speed at a cost of introducing approximation error are also pre-
sented. An approximate ML symbol detection algorithm is presented in which the search
radius is determined by the L∞ norm and the optimal candidate selection is determined
by the L2 norm. Simulation results demonstrate the reduction in search e�ort by using the
approximate algorithm.
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Chapter 1

Introduction

In this chapter, the idea of Media Based Modulation is motivated and relevant background
information is presented. An outline of the topics discussed in subsequent chapters is also
provided.

1.1 Overview

Consider a digital communication system in which a single transmitting antenna sends
information over an Additive White Gaussian Noise (AWGN) channel to a receiver with
Q receiving antennas. If Q = 1, the system is Single-Input Single-Output (SISO) and
if Q > 1, the system is Single-Input Multiple-Output (SIMO). The SIMO case can be
described by the following equation:

Y[t] = 1X[t] + N[t], (1.1)

where 1 is a column vector with each entry being 1, X[t] is a transmitted information value
selected from a �nite alphabet, N[t] is an additive white Gaussian noise vector, N (0, σ2

nI)
and Y[t] is the noisy vector observed by the receiver. It is assumed that the information
symbols are all equally likely to be sent.

The random value X[t] is the result of modulation, which is the process of mapping
a �nite alphabet of information symbols into a constellation of vectors that are de�ned
with respect to a basis of time-domain signals. The constellation of vectors is known by
both the transmitter and receiver, and the scheme can be further categorized as Source-
Based Modulation (SBM)[1] when the design of the constellation set is determined entirely
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by the transmitter. The transmitter uses modulation to construct a time-domain signal
to send over the channel and the receiver demodulates the received signal to construct
a noisy observation vector. At this level of abstraction, the details of the time-domain
signals and the modulation and demodulation process are represented only by the choice
of constellation vectors and the addition of noise.

When the vector Y[t] is received, Maximum Likelihood (ML) symbol detection is used
to estimate which symbol the transmitter most likely sent. The presence of noise from
the channel introduces a non-zero probability that the receiver makes an incorrect decision
based on the observed vector. The primary goal of the communication system is to maxi-
mize the rate at which information can be sent from the transmitter to the receiver while
minimizing the probability that information is transferred incorrectly.

It is known that in order to achiveve the capacity bound, that is to maximize the amount
of information transferred during the communication process, 1X[t] should be statistically
equivalent to a Gaussian random vector. Unfortunately, this is easier said than done[2].

At �rst glance, this could be accomplished simply by using microwave engineering to
directly construct a constellation set that behaves like a set of Gaussian random vectors.
However, the microwave engineering required for this strategy is usually infeasible. A
second approach is to use a simple geometric construction for the constellation and to
transmit each constellation vector with a probability such that over the �nite alphabet
the behavior appears Gaussian. By appropriately selecting the transmission probability
and incorporating coding, it is possible to arbitrarily approach the capacity bound[3]. A
third approach is to use coding to establish Gaussian codebooks, which exhibit the same
potential for achieving capacity as Gaussian random vectors for an AWGN channel in the
limit as the number of transmitted vectors approach in�nity[4].

Wireless communication systems involving a single transmitting antenna and Q receiv-
ing antennas usually satisfy the more general equation:

Y[t] = H[t]X[t] + N[t], (1.2)

where the channel H[t] is a random vector that represents the interaction of the time
domain electromagnetic waveform with the environment. If it is assumed that the channel
exhibits static Rayleigh fading (SRF), then H[t] is constant for a �xed time interval, is
stationary for all time and contains i. i. d. circularly complex Gaussian entries withN (0, 1).
This fading model can be considered a piecewise continuous approximation to slow fading
over a small time-interval.

In Media Based Modulation (MBM), tunable mirrors are used to change the electro-
magnetic properties of the signal X[t] as it leaves the transmitter[1]. Small perturbations

2



in the near �eld of the transmitter can result in noticeable, independent changes in the
channel H. Multiple i. i. d. realizations of H can be established by controlling the con�g-
urations of the tunable mirrors. It is therefore possible to encode information by selecting
which channel realization is used at a particular time.

This method of modifying the channel or embedding information in channel selection
is di�erent from prior work. See the references in [1] for more details. The closest exist-
ing modulation scheme to MBM is Generalized Spatial Modulation (GSM), which involves
transmitting information symbols using subsets of multiple transmitting antennas[5]. How-
ever, all of the transmitting antennas in GSM send information over a single channel real-
ization whereas MBM involves sending information by selecting from multiple independent
channel realizations.

Also, if X[t] = 1, then all the information is carried in the selection of H, which is a
Gaussian random vector. Therefore, it is expected that MBM can achieve the capacity of
the AWGN channel model without requiring the use of coding. Indeed, it can be shown that
the capacity of MBM over an SRF channel is equivalent to that of an AWGN channel[6].

This thesis investigates issues that arise with SIMO wireless communication systems as
a result of using MBM instead of SBM. It is assumed that the MBM system communicates
over an SRF channel. In particular, the following issues are discussed:

• Unlike constellations used in SBM, constellations used in MBM are at least partially
random. The simulated performance of MBM constellations is discussed in Chapter 2.
Performance in the context of this thesis usually refers to the Symbol Error Rate
(SER) of a system as a function of the constellation size, the number of receiving
antennas and the quantity Eb

N0
measured in dB.

• When coding is considered, the geometry of MBM constellations results in fundamen-
tally di�erent behavior from the classical results expected from SBM. The impact of
this geometry on coding is discussed in Chapter 3.

• It is necessary to develop new algorithms to solve the ML symbol detection problem
in MBM due to the inherent randomness of the MBM constellations and the reality
that both the constellation size and Q are potentially large. This is discussed in
Chapter 4.

Moving forward, one obvious question is how the use of MBM changes when multiple
transmitting antennas are used. In SBM, there are nontrivial opportunities to improve com-
munication system performance that are introduced speci�cally through the use of multiple
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antennas. Consider for example, the use of space-time coding[7] to improve performance
in Multi-Input Multi-Output (MIMO) systems or the leveraging of the structure of MIMO
channels to improve the quality of channel estimation for time-varying environments[8].
The scope of this thesis is restricted to SIMO systems, and hence the majority of the
topics introduced by using MIMO systems are left for future research. The issue of multi-
user communication and interference management is also beyond the scope of this thesis,
however it is unlikely that MBM will introduce any complications beyond what is already
present with SBM.

MBM represents a paradigm shift in the theory of modulation for wireless communi-
cation. By using MBM, it is possible to signi�cantly outperform the SBM systems that
are currently being used. As shown in subsequent chapters, the performance of MBM con-
stellations constructed using a SRF channel with respect to error rate, the e�ectiveness of
coding and the expected complexity of the ML symbol detection problem all vary strongly
with the number of antennas Q. From a system design perspective, there are signi�cant
di�erences between operating in the low dimensional regime (Q < 4) and the high dimen-
sional regime Q > 8, and 4 ≤ Q ≤ 8 appears to provide a reasonable range for current
practical applications.
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Chapter 2

MBM Performance

This chapter presents theoretical and simulated results to characterize MBM systems and
to compare them to SBM systems under similar conditions.

2.1 Background

The performance of an SIMO wireless communication system can be characterized by using
simulation to estimate the received data error rate as a function of transmission power,
noise and the number of receiving antennas. In general, the decoder structure used at the
receiver has a noticeable impact on the error rate. However in this chapter no coding is
used and the channel is memoryless, so there is no advantage to using any technique that
di�ers from ML symbol detection.

One common parameter in the performance analysis of communication systems is the
Signal to Noise Ratio (SNR), which is the ratio of the average signal energy Es to the noise

power σ2
n. Let Eb be the average energy per bit of the signal constellation and N0 = σ2

n

2

by convention. The de�nition of SNR (or equivalently Eb

N0
) in SBM remains unchanged

regardless of whether the transmitter or receiver is used as a reference. In practice, the
SNR is usually calculated with respect to the receiver since that is where the SNR is
usually measured. In MBM however the choice of reference makes a di�erence and it is
assumed that SNR measurements are always made with respect to the transmitter. Adding
additional antennas at the receiver does not change the amount of transmitted signal
power and hence does not impact the calculation of Eb

N0
. When transmitting information

by changing the channel realization, it is more practical to de�ne SNR at the transmitter,

5



since at a given time di�erent realizations will cause di�erent levels of received signal energy
at the receiver even if the average transmission energy is constant.

2.2 Simulation Results

Simulation results are shown below to characterize the error rate as a function of Eb

N0

of various MBM systems communicating over an SRF with perfect CSI at the receiver.
Symbol Error Rate (SER) rather than Bit Error Rate (BER) is shown since the relationship
between the two is a�ected by bit labeling, which in this case is random. Unlike SBM,
it is not feasible to implement any form of Gray labeling to minimize the BER since the
transmitter does not know the constellation structure.

The MBM constellations are constructed by �xing an SBM constellation and multi-
plying the set of constellation vectors by di�erent independent channel realizations of an
SRF channel. The SER is calculated for multiple di�erent blocks of P2n symbols, each of
which contains M symbols for each constellation vector and each block corresponds to a
di�erent channel realization. The average SER over many blocks and su�ciently large M
characterizes the expected SER for communication over a block Rayleigh fading channel
with stationary statistics. Since the channel is memoryless and stationary over the block
interval, the order in which information symbols are sent within a block is irrelevant and an
accurate SER can be found using ML symbol detection. The SER is an ensemble average
over many di�erent realizations, and in this characterization there is no notion of outages.

Consider two comparable SBM and MBM systems. The SBM system transmits infor-
mation using a constellation C1 that involves 2N = 256 equally spaced rectangular constel-
lation vectors. Each constellation vector has 2 dimensions which are generated from the
set:

xi = ±1,±3, . . . ,±(
√

2N − 1), (2.1)

multiplied by a normalization factor
√

3
(2N−1) per dimension to account for the total average

energy of the signal set. The set is extended to include Q receiving antennas according to
the SRF channel Equation 1.2, where the total number of dimensions received is K = 2Q.

The MBM system transmits information using a constellation C2 that is constructed
from 256 independent realizations of an SRF channel. The receiver uses ML symbol detec-
tion to search amongst the constellation vectors to determine which constellation vector
was most likely sent in both the SBM and MBM systems. The SER of the SBM system
with C1 and Q receiving antennas communicating over an AWGN channel and an SRF
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channel is shown in Figure 2.1. The SER of the MBM system with C2 and Q receiving
antennas communicating over an SRF channel is shown in Figure 2.2. A comparison of the
SER for the SBM and MBM systems with Q = 4 and Q = 8 receiving antennas is shown
in Figure 2.3.
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Figure 2.1 demonstrates the fact that SRF signi�cantly degrades the performance of an
SBM system compared to when an AWGN channel is used. The presence of fading changes
the geometry of the SBM constellations and a system with few receiving antennas is not
necessarily comparable to a system with many receiving antennas.

As shown in Figure 2.2, fading statistics also result in this performance scaling property
in MBM. An MBM system with at least 4 receiving antennas can exceed the performance
of the comparable SBM system even if the SBM system is communicating over an AWGN
channel When the systems are compared in Figure 2.3. It is therefore of signi�cant interest
to consider MBM systems with at least 4 receiving antennas in order to capture the majority
of the potential performance advantages.

To show how the SER changes with constellation size, the average SER for an MBM
system with a 65536 symbol constellation with 65536 channel realizations respectively, one
transmitting antenna and Q receiving antennas is shown Figure 2.4 and a comparison of
the 65536 and 256 symbol MBM systems is shown in Figure 2.5.
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As the number of receiving antennas increases, the energy loss experienced when dou-
bling the number of bits/antenna in the constellation decreases, indicating that there is
an opportunity to use larger constellation sizes with MBM without signi�cant energy loss
compared to SBM when su�cient receiving antennas are present.

Note that for an MBM system that encodes all of its information in the selection of
channel realization, the components of each constellation vector are independent. This im-
plies that the pairwise di�erences between the constellation vectors are also independent.
Therefore, as the number of dimensions increases, the probability that any two constel-
lation vectors will be close together approaches zero. The independence of the distances
results is one of the primary properties that distinguishes SBM constellations from MBM
constellations. The fact that this distance is large when many receiving antennas are used
is responsible for MBM achieving the capacity of an AWGN channel.
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Chapter 3

Coding

This chapter presents results relating channel coding to MBM. Simulation results for a
simple Single Parity Check symbol code applied to MBM are presented.

3.1 Background

Channel coding is used to reduce error rates and provide energy gains at a cost of reduced
communication rate. It is particularly important in scenarios where the channel statis-
tics would normally prevent the reliable transmission of information[9]. In the context of
wireless communication, channel coding is either designed independent of the modulation
scheme or in conjunction with it. For example, many block and convolutional codes are
designed assuming that the constellation size is 2 even though the actual constellation size
may be much larger. Trellis Coded Modulation (TCM)[10][11][12] on the other hand relies
on set partitioning and the explicit structure of the constellation to achieve coding gains.

SIMO MBM has several features that complicate the design and analysis of codes. In
particular:

• The behavior of MBM depends strongly on the number of receiving antennas. This
dependence is fundamentally di�erent from SBM systems transmitting over an AWGN
channel and complicates the use of common channel models used in conjunction with
coding such as the Binary Symmetric Channel (BSC) or Discrete Memoryless Chan-
nel (DMC).
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• The transmitter does not know the geometry of the constellation a priori. As such
set partitioning and TCM is completely infeasible. Moreover, the exact transition
probability is not known either for the purposes of code design and at best only a
statistical model is known.

Together these features signi�cantly limit the possibilities of the code designer, despite
the desire to design codes speci�cally for MBM constellations. With this in mind, the
simplest way to establish a base level of performance for coding with MBM is to design
and implement a symbol code that does not account for the geometry of the constellation
and compare its performance against a comparable SBM system. It might be expected that
since the code does not take into account constellation structure, its coding gain would
be roughly the same with SBM and MBM. Simulation results for a Single Parity Check
(SPC) symbol code applied to an MBM system are shown in Section 3.2. These results
demonstrate that the coding gains with MBM can be dramatically di�erent than with SBM
despite the generic nature of the code design.

3.2 Single Parity Check Symbol Code

Suppose a transmitter using MBM sends a block of M information symbols to a receiver
with Q receiving antennas, and henceK = 2Q receiving dimensions. The sequence of infor-
mation symbols in the block is i1, i2, · · · , iM . The constellation size is 2N . The transmission
of the block can be expressed in matrix form by the equation:

C =
(
ci1 , ci2 , · · · , ciM

)
=


ci11 ci21 · · · ciM1
ci12 ci22 · · · ciM2
...

...
. . .

...

ci1K ci2K · · · ciMK

 (3.1)

where C is the block of constellation vectors that is sent, Cim is the constellation vector
corresponding to information symbol im for 1 ≤ m ≤ 2N , and cimk is the component of the
constellation vector Cim along dimension 1 ≤ k ≤ K.

Consider a Single Parity Check (SPC) symbol code with block sizeM . The transmitter
sends M − 1 information symbols and selects the last information symbol such that:

M∑
m=1

im modulo 2N = 0. (3.2)
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Ideally, the receiver would use a trellis based decoder to realize ML sequence detection.
To reduce the complexity of this decoder, the receiver could instead use the following
linear-complexity soft-decision decoder:

1. Perform ML symbol detection on each symbol. Check if the parity of the received
block is 0. If true, then assume the block is correct.

2. If the parity is nonzero, assume exactly 1 error has occurred. For each symbol within
the block, determine the correction candidate such that the block parity is 0 and
store the minimum distance associated with this candidate. Select the replacement
candidate that has the minimum distance among theM candidates. Replace the ML
candidate with the selected replacement and then assume the block is correct.

It can be shown that the probability of multiple errors occurring in a single block
is negligible in the limit as the symbol error rate approaches 0. This implies that this
suboptimal decoder will closely approximate the optimal decoder performance when the
uncoded symbol error rate is su�ciently low, which occurs when Eb

N0
is su�ciently high.

The SPC code can correct 1 error per block reliably. Suppose an error event E occurs
after the decoder has attempted error correction. In this case, suppose in and im are sent
and i′n and i′m are received for n 6= m. This corresponds to error events En and Em. The
decoder attempts to perform error correction by selecting some index ik and modifying it
to i′k such that the parity check is satis�ed.

If k 6= n and k 6= m, then the following relation holds:

((in − i′n) + (im − i′m) = (i′k − ik)) modulo 2N . (3.3)

The Euclidean distances ‖cil−ci′l‖2 for some l = n,m, k depends on the speci�c messages
il and i′l, not the di�erence modulo 2N between the messages. Since the constellation
consists of arbitrarily labeled vectors rather than Gray labeled vectors, restricting the
di�erence (il− i′l) modulo 2N does not constrain ‖cil − ci

′
l‖2 when 1 ≤ il ≤ 2N is arbitrary.

Consequently, the Euclidean distance corresponding to error event E consists of the sum
of at least two independent Euclidean distances corresponding to error events En and Em.
Recall that the coding gain for an arbitrary code is a function of the total distance between
codewords.

Consider an error event in which message in is mistakenly decoded as message i′n and
the constellation has only a single dimension for simplicity. For a �xed set of channel
realizations, each of the constellation values have a Gaussian distribution with N (0, Es)
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due to the fading statistics of a static Rayleigh fading channel. The distance between two
Gaussian random variables would follow a Gaussian distribution with N (0, 2Es). Since this
distance is random, the probability of the error event is a function of this random distance
and is also random. The probability of error for the two constellation values would be:

P (En) =
1

2
erfc

(√
Es
No

X

)
, (3.4)

where X is a Half-Normal random variable with unit variance.

The average probability of error for the constellation is:

E[P (En)] =

√
2

2
√
π

∫ ∞
0

erfc

(√
Es
No

x

)
e
−x2

2 dx

=
1

2
−
√

2

2
√
π

∫ ∞
0

erf

(√
Es
No

x

)
e
−x2

2 dx

=

√
2

π
tan−1

(√
No

2Es

)

≈ O

((
No

Es

) 1
2

)
, (3.5)

(3.6)

where the last equality is obtained using an integral table[13] and the approximation is
obtained using a power series expansion of tan−1.

In MBM, the constellation vectors have independent components. For a SIMO MBM
system with Q antennas and K = 2Q dimensions, the average probability of error for two
constellation vectors is about:

E[P (En)] = O

((
No

Es

)Q)
. (3.7)

Since an error event after applying the code involves the sum of at least two independent
errors, the average probability of error after decoding is:

E[P (En,Em)] = O

((
No

Es

)2Q
)

= O

((
Es
No

)−2Q)
. (3.8)
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This implies that as a result of applying the code, there is an average diversity gain
of at least 2 due to the independence of the pairwise distances in the MBM constellation
structure. An SIMO MBM system has a diversity gain of Q without the application of
the code. Note that the assumption that the error event E consists of 2 independent
errors En and Em is only valid if Eb

No
is su�ciently high, but the multiplexing gain of Q is

always present independent of Eb

No
due to the nature of SIMO MBM. If a symbol code that

corrects p errors is used with MBM, the code would result in a diversity gain of p + 1 if
any uncorrected error events have the same independence property as the SPC code.

Simulation results involving an SBM system using constellation C1 consisting of 256
equally spaced rectangular constellation vectors with Q receiving antennas, a block size
of M and the suboptimal decoder communicating over an AWGN channel is shown in
Figure 3.1. Simulation results involving an MBM system using constellation C2 consisting
of 256 di�erent channel realizations of a SRF channel with Q receiving antennas, a block
size of M and the suboptimal decoder are shown in Figure 3.2 and Figure 3.3.
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Figure 3.1: SER vs Eb

N0
for an SBM system using a 256 symbol rectangular constellation,

K receiving antennas and an SPC symbol code with block size P communicating over an
AWGN channel.

Simulation results involving an MBM system using a constellation constructed from
65536 di�erent channel realizations of an SRF channel with K receiving antennas, a block
size of P and the suboptimal decoder are shown in Figure 3.4 and Figure 3.5.
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Figure 3.2: SER vs Eb

N0
for an MBM system using 256 realizations of an SRF channel,

K = 1 or K = 2 receiving antennas and an SPC symbol code with block size P .
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Figure 3.3: SER vs Eb

N0
for an MBM system using 256 realizations of an SRF channel,

K = 4 or K = 8 receiving antennas and an SPC symbol code with block size P .

18



0 10 20 30 40 50 60 70
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

Eb

N0
(dB)

S
y
m
b
ol

E
rr
or

R
at
e

K = 1

uncoded
P = 2
P = 4
P = 8
P = 16
P = 32

0 5 10 15 20 25 30 35

10−5

10−4

10−3

10−2

10−1

100

Eb

N0
(dB)

S
y
m
b
ol

E
rr
or

R
at
e

K = 2

uncoded
P = 2
P = 4
P = 8
P = 16
P = 32

Figure 3.4: SER vs Eb

N0
for an MBM system using 65536 realizations of an SRF channel,

K = 1 or K = 2 receiving antennas and an SPC symbol code with block size P .
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Figure 3.5: SER vs Eb

N0
for an MBM system using 65536 realizations of an SRF channel,

K = 4 or K = 8 receiving antennas and an SPC symbol code with block size P .
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Coding gains are a function of the uncoded symbol error rate and the number of anten-
nas. In MBM, the less antennas that are used, the greater the potential energy gains due to
coding, regardless of the uncoded symbol error rate. As shown in Figure 3.1, the expected
coding gain when an SBM system communicates over an AWGN channel is about 2 − 3
dB regardless of the number of antennas. With MBM and < 4 antennas the coding gains
are noticeably greater than 3 dB. In the regime when the number of antennas is ≥ 8, the
coding gains are similar to what would be expected with an SBM system communicating
over an AWGN channel operating in the same regime of low uncoded symbol error rate.
This is true for a 256 symbol MBM system and a 65536 symbol MBM system. The primary
reasons for the di�erence in coding gains between MBM and SBM for this code are the fact
that for MBM this code produces a diversity gain of at least 2 and that the incorporation
of fading statistics into the constellation structure causes coding gains to depend on the
number of antennas.
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Chapter 4

ML Symbol Detection

This chapter presents an algorithm design that solves the Maximum Likelihood symbol
detection problem for MBM constellations. Simulation results characterizing the algorithm
performance are presented, as well as modi�cations that potentially improve performance
at a cost of introducing a probability of incorrect decisions.

4.1 Background

Suppose a transmitter sends a constellation vector x with K = 2Q real dimensions from a
constellation set X of size 2N over an AWGN channel to the receiver, which observers the
vector y. The ML decision problem is to solve:

arg max
i

P (xi = x |y) . (4.1)

Analysis of this equation for an AWGN channel leads to the minimum distance rule, which
states that the constellation vector that should be selected is the solution to the equation:

arg min
i

(
L2(y − xi)

2 = ‖y − xi‖2
)
. (4.2)

It is assumed a priori that all vectors are equally likely to be transmitted and that there is
no memory involved in the communication due to the channel, coding or the source data.

This minimization problem is equivalent to the Nearest Neighbor Search (NNS) problem
in computer science, which is of fundamental importance in areas such as computational
geometry.
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When considering algorithm design, it is necessary to specify any computational con-
straints or requirements relevant to solving the problem. Consider the following block
fading scenario:

• The transmitter sends training symbols for channel estimation and at the end of the
training period the receiver has perfect knowledge of the channel.

• For a �xed and known block size, the transmitter sends a block of constellation
vectors to the receiver and the receiver then solves the algorithmic tasks involved
with ML decision making.

Any e�ort spent on preprocessing based on the channel matrix would be amortized
over the block size, and any preprocessing based on the constellation would be performed
once on initialization and amortized over many blocks. The objective of the algorithm
design problem is to solve the ML symbol detection problem in a manner that minimizes
the query complexity per symbol without requiring signi�cant amounts of preprocessing.

The brute force solution to this problem is to calculate the Euclidean distance be-
tween the observed vector and all the constellation vectors in order to �nd the vector that
minimizes the Euclidean distance, thereby spending O(Q2N) e�ort per symbol with no pre-
processing overhead. This approach is usually impractical to implement if the constellation
size or the number of dimensions is large. In SBM, the constellation set X can be designed
a priori to exhibit algebraic structure and it is common to assume that X is a lattice. A
lattice is an algebraic structure in which all the elements of the lattice can be expressed
as a linear combination of basis vectors that are in RQ where the coe�cients used in the
linear combination are all integers. All lattices can be fully described by a generator matrix
G, which for this purpose is assumed to be known by the receiver. If the constellation is a
lattice, then the ML symbol detection problem would be equivalent to the lattice decoding
problem, which is of relevance to a variety of �elds other than communication.

One main issue with lattice decoding is the fact that in general the problem is considered
NP-Hard[14]. The worst-case di�culty of the problem varies depending on the particular
SNR value of interest[15]. The average di�culty of the problem for various constellation
sizes, �xed SNR ranges and a small number of antennas is polynomial however[16], implying
that for many practical scenarios e�cient lattice decoding algorithms will be much more
computationally e�cient than the worst-case analysis suggests.

At a high level, most approaches to solve the lattice decoding problem involves three
main steps[17][18][19]:
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• Left preprocessing, which involves performing a matrix decomposition matrix on H
in order to simplify later calculation. Matrix decomposition is a computationally
expensive procedure in general and usually involves O(Q2) or O(Q3) depending on
the particular algorithm. This is considered negligible because it depends only on
dimensionality Q (which in practice is < 16), is independent of the constellation size,
and is amortized over the block size.

• Right preprocessing, which involves transforming the generator matrixG into a lower
dimensional matrix in a manner that preserves the optimality of the ML symbol
detection problem in the lower dimensional space. This is done in practice by using
algorithms such as LLL[20][21], which is polynomial time and would only need to be
performed once initially as the constellation is known and �xed for all blocks.

• The actual solving of the lattice decoding problem can be viewed as searching over
a tree for a leaf[17]. The branching nature of the tree is an consequence of working
with lattices, and the fact that the tree has depth is due to the recursive nature of
norm calculation. The majority of algorithms employ either Breadth First Search
(BFS) or Depth First Search (DFS) to traverse the tree, and various heuristics are
employed by exploiting algebra or number theory to dynamically reduce the size of
the search space.

Alternative algorithms also exist that either solve the lattice decoding problem exactly[22]
or produce approximate solutions[23].

The main challenge introduced by MBM is that the constellation is not a lattice. Even
if the MBM system consists of an extension of an SBM system in which the underlying
SBM constellation that is a lattice, the resulting constellation will at best be a union
of di�erent lattices, each with a di�erent basis due to the di�erent channel realizations.
Lattice decoding algorithms with similar approaches to GSM[24][25] could be applied to
this scenario, but this strategy in general is not applicable for all MBM constellations.
Furthermore, in MBM it is advantageous to work with many receiving antennas (> 8),
a constellation size that is large (> 256) and a low Eb

N0
which is the among the most

computationally di�cult regimes to handle.

The randomness inherent in MBM constellations is such that lattice decoding algo-
rithms that rely on algebraic structure are not feasible. Right preprocessing, or any tech-
nique that relies on information about the constellation, must be recalculated once per
block and left preprocessing must be calculated once per channel realization. This causes
the computational e�ort due to preprocessing to be fundamentally higher in an MBM con-
text than what would be expected in SBM, and is especially problematic in the scenario
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where the dimensionality and constellation size are large, which is of primary interest in
MBM. There are at least three approaches to solve the ML symbol detection problem in
this case:

• Design a tree-like data structure to represent the constellation[26][27]. Solving the
ML symbol detection problem would then be equivalent to traversing the data struc-
ture and would therefore result in a small query complexity. Generally, this approach
requires signi�cant preprocessing e�ort to design the data structure and even if the
e�ort is amortized over the block size it may remain too substantial to implement in
a real-time communications setting.

• Use clustering (like [28]) or quantization based methods (like [29]) to partition the
constellation set into groups of di�erent vectors and search only over a particular
group or set of groups. This usually only approximately solves the problem, but
can be done with su�ciently low preprocessing computation to be implementable in
practice.

• Apply search to identify possible candidate solutions and ultimately search less than
the constellation size to �nd the optimal solution. Compared to brute force search,
this approach reduces query complexity on average by reducing the number of points
searched at a cost of increased preprocessing overhead. The query complexity may
vary depending on the observed vector as well.

An algorithm design to solve the ML symbol decoding problem for MBM constellations
based on searching a list of feasible candidates is presented in Chapter 4.2. The logic of the
algorithm is inspired primarily from the search based algorithms used for lattice decoding.
The algorithmic e�ciency increases when the constellation size increases, but drops when
the number of receiving antennas increases. The �curse of dimensionality� that results from
high dimensionality is a fundamental issue in the NNS problem[30] and there is no known
algorithm design that does not su�er from this to some extent regardless of the solution
tactic used if the optimality of the �nal solution must be guaranteed. Modi�cations that
can improve the algorithm speed at a cost of allowing erroneous solutions are presented in
Chapter 4.3.

4.2 Exact ML Symbol Detection Algorithm

Suppose the transmitter sends a constellation vector xi, where 1 ≤ i ≤ 2L to a receiver with
Q antennas. The receiver is assumed to know the coordinates of the MBM constellation
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set. The goal of the ML symbol detector is to �nd:

arg min
i

(
L2(y − xi)

2 = ‖y − xi‖2
)
, (4.3)

where y = xi + n is the received vector and n ∈ RK is an additive white noise vector with
i. i. d. Gaussian entries, N (0, σ2

n). The jth component of vector y is denoted y(j).

In order to solve Equation 4.3, the brute force method would be to evaluate all the
constellation vectors and select the one that minimizes Dl. The two main factors impacting
query complexity are:

1. The number of candidates that are searched to �nd the optimal solution.

2. The amount of computation done to evaluate a candidate.

The �rst factor can be reduced by taking a sphere decoding approach, which involves
de�ning a radius R and solving:

arg min
i

(
L2(y − xi)

2 ≤ R2
)
. (4.4)

If R2 is su�ciently large, then the solution of Equation 4.4 will be the same as the
solution of Equation 4.3. By solving for the optimal solution within the sphere instead of
simply the optimal solution, it is possible to use the following equation as a termination
condition for the search process:

L2(y − xi)
2 ≤ R2

K∑
j=1

(y(j) − x(j)i )2 ≤ R2

(y(j) − x(j)i )2 ≤ R2 for each component j

−R ≤ y(j) − x(j)i ≤ R

y(j) −R ≤ x
(j)
i ≤ y(j) +R. (4.5)

The second factor can be reduced by noting that all Lpp norms including L∞ can be
evaluated recursively when working with vectors. In particular, if a candidate xi is within
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the search radius R, then the following equation must be true:

L2(y − xi)
2 ≤ R2

K∑
j=1

(y(j) − x(j)i )2 ≤ R2

p∑
j=1

(y(j) − x(j)i )2 ≤ R2 ∀ 1 ≤ p ≤ K. (4.6)

In other words, a constellation vector can be rejected from further evaluation if any of
the partial sums are outside the sphere. This property is related to the Depth First Search
(DFS) algorithm for trees in the context of lattice decoding[17] and reduces the amount of
work required to evaluate candidates when the number of dimensions is large.

Intuitively, since the goal is to �nd the constellation vector that is closest to the received
vector, a third method to reduce the query complexity would be to search constellation
vectors that appear to be in the neighborhood of the received vector with respect to one or
more dimensions and use Equation 4.5 as the termination condition. Since the constellation
vectors are randomly distributed, this would be done by creating sorted lists for each of the
dimensions of the constellation and using a binary search to identify the candidates that
are in the neighborhood of the received vector. The work required to create sorted lists
will amortize over the block size, thereby becoming negligible if the block size is su�ciently
large.

It is simpler to search a neighborhood in one list than multiple lists. Since each list
corresponds to a particular dimension, it is necessary to determine which dimension should
be selected when given the received vector. Suppose the following assumptions are true
about the constellation vectors:

1. All the set of all the entries of all the constellation vectors represent a realization of
an i. i. d. set of random variables with E[X] = 0.

2. If the random variable used to generate the constellation vector entries is X, then
P (a−R ≤ X ≤ a+R) < P (b−R ≤ x ≤ b+R) for all |a| < |b| and any �xed positive
constant R (i.e. the further away from the origin a component is, the less likely the
component is to occur). This property is satis�ed when X is Gaussian.

Using only the �rst assumption, there is no advantage to selecting one dimension over
another a priori. The second assumption implies that when considering only one dimension,
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the number of candidates that need to be searched on average is minimized when the search
radius is centered at a value with maximum absolute value. Therefore the dimensions
should be evaluated in the order of decreasing absolute magnitude of the received vector
and the list corresponding to the absolute largest component of the received vector should
be used to specify the search candidates. Since the choice of search dimension is not known
a priori, K di�erent sorted lists would need to be generated at the start of the block so
that the appropriate list can be used when an information symbol is received. This would
result in O(KN2N) e�ort at the start of a block for sorting.

The proposed exact ML symbol detection algorithm is described below. It is assumed
for simplicity that the received vector is in the convex hull of the constellation vectors. It
is straightforward to extend the presented algorithm to handle the scenario in which the
received vector is not on the convex hull of the constellation vectors.

1. Process the constellation by constructing an array of labels for each of the K di-
mensions that correspond to the set constellation vectors if they had been sorted
by increasing value along each dimension. This is done once before any observation
vectors are received.

2. Select one of the arrays as the list of candidates by sorting the received vector com-
ponents in order of decreasing absolute value. The list of candidates corresponds
the the largest absolute value component of the received vector. The order of the
sorted components de�nes the order in which the components of subsequent vector
operations will be evaluated.

3. De�ne the initial search location by performing a binary search on the list of can-
didates. The goal of the search is to �nd the index in the array such that the
appropriate component of the received vector could be inserted into that index posi-
tion while maintaining the sorted order of the entries. The one dimensional distance
between the received vector and the �rst constellation vector is the left search limit,
and the di�erence between the received vector and the last constellation vector is the
right search limit. The maximum of these two limits de�nes the search radius dmin.

4. Begin searching candidates until all the candidates within the search radius have
been evaluated. Each candidate is evaluated by the following process:

(a) Lift the candidate into the original K dimensional space and calculate the Eu-
clidean distance between the candidate and the received vector according to
Equation 4.6. If the candidate is within the K-dimensional sphere speci�ed by

27



radius dmin, then update dmin to the new radius and reduce the left and right
search limits accordingly. Note that since the candidate vectors have i. i. d.
components, this lifting operation from a one dimensional component to its K
dimensional counterpart is a one-to-one operation with high probability. This is
a departure from lattice decoding, in which the regularity of the lattice results
in a tree-like search process.

(b) If dmin was updated, then record the fact that evaluated candidate must be the
current best candidate.

5. The search process terminates when there are no candidates within the search radius
that have not already been evaluated. The current best candidate becomes the
optimal candidate, as it is the only candidate within theK dimensional sphere de�ned
with radius dmin. Return the best candidate to terminate the algorithm.

For reference, code for a sample implementation of this algorithm written in the Julia
programming language is shown in Appendix A.

The following remarks can be made about the proposed algorithm:

1. The average computational complexity is a function of Eb

N0
due to its e�ect on the

search radius size.

2. One advantage of evaluating dimensions in order of decreasing received vector abso-
lute magnitude is that it usually produces a good quality ordering of partial sums
for the depth �rst search. Di�erent orderings of dimensions can lead to a noticeable
speed reduction.

To characterize the e�ciency of the algorithm, histograms involving an MBM constel-
lation constructed using 256 realizations of an SRF channel, Q receiving antennas and
transmission at Eb

N0
= 0 dB are shown in Figure 4.1 and Figure 4.2. Figure 4.1 shows the

relative proportion of the constellation that is searched before the algorithm terminates
with an optimal solution. Figure 4.2 shows the number of add/multiply/comparisons op-
erations, excluding the sorting done during preprocessing that the algorithm performs
relative to what would be done when using brute force ML symbol detection. Brute force
ML symbol detection involves about (3K + 1)2N operations.
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Figure 4.1: Histogram of the number of candidates searched by the exact ML symbol
detection algorithm when an MBM constellation constructed using 256 realizations of an
SRF channel is used with Q receiving antennas and transmission at Eb

N0
= 0 dB.
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Adding receiving antennas causes more candidates to be searched on average since
Euclidean distance is additive. The relative amount of computational e�ort decreases when
the number of receiving antennas increases since the computational savings obtained from
recursively evaluating the norm becomes more apparent. Together these factors result in a
net increase in computational e�ciency as the number of dimensions approaches in�nity.

A histogram involving an MBM constellation constructed using 65536 realizations of an
SRF channel, Q receiving antennas and transmission at Eb

N0
= 0 dB are shown in Figure 4.3.
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Figure 4.3: Histogram of the number of candidates searched by the exact ML symbol
detection algorithm when an MBM constellation constructed using 65536 realizations of
an SRF channel is used with Q receiving antennas and transmission at Eb

N0
= 0 dB.

The e�ciency of the algorithm relative to brute force search improves when the con-
stellation size increases, as shown when Figure 4.1 and Figure 4.3 are compared. The
di�erence in e�ciency increases as the number of receiving antennas increases.

Suppose the receiver had access to an oracle which could verify whether a candidate
solution is ML optimal. The algorithm produces a list of candidates to search and the search
terminates once the oracle concludes the ML solution has been found. The total number of
candidates searched with the oracle never exceeds the total number of candidates searched
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without the oracle. A histogram showing the average minimum number of candidates that
must be searched by the exact ML symbol detection algorithm using the previous MBM
system as Figure 4.1 is shown in Figure 4.4.
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Figure 4.4: Histogram of the minimum number of candidates searched with the presence
of an oracle by the exact ML symbol detection algorithm when an MBM constellation
constructed using 256 realizations of an SRF channel is used with Q receiving antennas
and transmission at Eb

N0
= 0 dB.

Comparing Figure 4.1 and Figure 4.4, the exact ML symbol detection algorithm is
searching more candidates than necessary when more dimensions are added in order to
verify that a candidate solution is correct. Since the list of candidates is being selected
based on the maximum absolute magnitude of the received vector, it is increasingly likely for
the optimal candidate to be found earlier in the search process as the number of dimensions
increases and is su�ciently large. This is due to fact that the number of points searched
in the neighborhood of a value reduces as the absolute magnitude of the value increases
and the sorting process causes this value to increase as the dimensionality increases. While
there is little that can be done while retaining optimality, this fact justi�es the use of
several di�erent strategies for approximate ML symbol detection.
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4.3 Approximate ML Symbol Detection Algorithm

The ML symbol detection involves minimizing L2
2(y−xi) for all i where L2 is the Euclidean

norm. The number of candidates searched is based on the size of the optimal search radius,
which if a correct decision is made has an expected size of:

E[L2(y − x)] = E[L2(n)] =
√

2σn
Γ(Q+ 1

2
)

Γ(Q)
∝
√
Q, (4.7)

where Q is the number of receiving antennas. This is a major source of ine�ciency when
Q is large.

Consider an algorithm that minimizes:

L∞(y − xi) = max
1≤j≤K

|y(j) − x(j)i |,

for all i, where L∞ is the in�nity norm. As Eb

N0
→ ∞, the error rate will approach zero

regardless of whether the Euclidean or in�nity norm is used, implying that there will not
be any steady-state error rate due to the use of the in�nity norm. Note that if a correct
decision is made, it can be shown that:

lim
Q→∞

E[L∞(y − xi)] <
√

2σ2
n ln(Q)). (4.8)

Since both features of the exact algorithm that minimize the L2 norm are also applicable
for the L∞, the logic of the exact ML symbol detection algorithm can be easily adapted to
�nd the candidate that minimizes L∞(y−xi) with no signi�cant change in implementation
complexity. If the L∞ norm is used to de�ne the search radius and the L2 norm is used to
select the optimal candidate, then the number of candidates searched by the algorithm will
be signi�cantly smaller when Q is large compared to the exact algorithm. This will also
introduce approximation error since the new L∞ search radius may be too small, resulting
in suboptimal candidate selection.

More speci�cally, when a candidate is visited, the L2 norm is used to determine if it is
a better candidate then the current best solution. If so, the corresponding L∞ norm for
this new optimal candidate is calculated and compared against the current search radius,
and the search radius is adjusted accordingly. Since the radius update only occurs when a
new current best candidate is found, the overhead of calculating the L∞ norm is reduced
compared to calculating the L∞ norm for every candidate that is searched.
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Figure 4.5: SER vs Eb

N0
for an MBM system using 256 independent realizations of an SRF

channel and Q receiving antennas using the exact or approximate ML symbol detection
algorithm.

Consider an MBM system with Q receiving antennas that uses a constellation that
is constructed using 256 realizations of an SRF channel. The SER for this MBM system
using the exact ML symbol detection algorithm and the approximate ML symbol detection
algorithm is shown in Figure 4.5. Histograms for a �xed Eb

N0
= 0 dB showing the number

of computations relative to brute force search excluding preprocessing performed by the
algorithm and the proportion of the constellation that is searched are shown in Figure 4.6
and Figure 4.7 respectively. Recall that brute force ML symbol detection involves about
(3(K) + 1)2N operations.
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Figure 4.7: Histogram of the number of candidates searched by the approximate ML symbol
detection algorithm when an MBM constellation constructed using 256 realizations of an
SRF channel is used with Q receiving antennas and transmission at Eb

N0
= 0 dB.
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When comparing Figure 4.1 and Figure 4.7, the approximate algorithm searches no-
ticeably less candidates when the number of receiving antennas is su�ciently high. The
di�erence in the number of candidates searched only increases as the number of receiving
antennas increases. Unfortunately, this reduction in computational e�ort is partially o�set
by the complexity of updating the radius selection increasing due to the L∞ norm calcula-
tion, which increases as the number of receiving antennas increases. As a result, the main
the computational savings introduced in this exact algorithm are only obvious when the
number of receiving antennas is su�ciently high. For a �xed Eb

N0
and in the limit as both

the constellation size and number of receiving antennas approach in�nity, the approximate
ML symbol detection algorithm will search an increasingly small percentage of the con-
stellation and relative to the brute force search will save an increasingly greater amount
of computational e�ort. Note that although the percentage of the constellation searched
decreases, the quantity of candidates searched increases. As Eb

N0
increases, the number

of candidates that must be searched will decrease, resulting in substantial computational
savings.

Based on Figure 4.5, the amount of additional Eb

N0
required for the approximate ML

symbol detection algorithm to achieve the same symbol error rate as the optimal ML symbol
detection algorithm is approximately constant in dB for the evaluated MBM constellation,
assuming Eb

N0
is su�ciently high and ≥ 4 receiving antennas are used. Unfortunately, as the

number of receiving antennas increases, so does this energy loss. Note that since the list
of candidates being searched and the ordering of candidates within the list is the same for
both the approximate and optimal algorithms, they di�er on only how many candidates
along the list are evaluated. The constant factor energy loss is therefore because the ML
solution is sometimes outside the reduced search radius.

To mitigate this issue, one solution is to multiply the L∞ search radius by a multiplica-
tive factor β > 1. For example, if β = 1.2, then the energy loss when using 32 receiving
antennas is about < 1.5 dB with the MBM system that involves 256 realizations of an
SRF channel and the overall computational time due to the increased number of search
candidates is also about 20% higher. By using the β factor, it is possible to directly trade
a reduction in energy loss for an increase in computational e�ort. Depending on the con-
stellation size, number of receiving antennas and amount of energy loss that is acceptable,
the use of a small β value can allow for an arbitrarily accurate approximation to the ML
symbol detection algorithm with less computational e�ort.

To understand the computational complexity of the optimal and approximate ML sym-
bol detection algorithms, it is helpful to consider the size of the search radius as a function
of the number of receiving antennas, Q. The search process consists of searching candidates
along a one dimensional list in a neighborhood around a received component. Since the
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noise is Gaussian and the received component is selected from maximizing the absolute
value of a vector, the average value of this received component will grow at least as fast
as O(

√
Q). The average size of the search radius for the exact algorithm is also at least as

fast as approximately O(
√
Q). The average size of the search radius for the approximate

algorithm is approximately O(
√

log(Q)). In light of the energy loss that results from using

the approximate algorithm, it can be argued that an O(
√

log(Q)) search radius is most
likely too small to accurately solve the ML symbol detection problem when Q is large. In
contrast, a search radius that is O(

√
Q) is most likely too large, indicating that an optimal

search radius would most likely lie within these two bounds.

For reference, code for a sample implementation of the approximate ML symbol detec-
tion algorithm is shown in Appendix A.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

An SIMO MBM system communicating over an SRF is equivalent to SIMO SBM system
communicating over an AWGN channel with the appropriate constellation. With that
in mind, this thesis compared comumunication with SIMO MBM systems over an SRF
channel to SIMO SBM systems over an AWGN channel and presented the following results:

• Generally, MBM constellations constructed from an SRF channel outperform SBM
constellations communicating over an AWGN channel if enough receiving antennas
are used. The energy gains introduced by MBM are substantial relative to compara-
ble SBM systems. MBM also faciilitates the use of signi�cantly higher constellation
sizes than what is used in SBM without signi�cant energy loss. The geometric prop-
erties of MBM over an AWGN channel are fundamentally di�erent than that of SBM
constellations and they result in di�erent performance scaling properties both in
theory and in simulation.

• Existing coding schemes which are designed and analyzed for SBM constellations
perform di�erently with MBM due to di�erences in constellation geometry. The
coding gains expected with MBM systems can be signi�cantly greater than the coding
gains expected with SBM systems mainly because the constellation geometry can
cause additional diversity gains due to coding.

• The random nature of MBM constellations prevents the use of many existing ML
symbol detection algorithms. Using ideas from sphere decoding, it is possible to
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implement an exact ML symbol detection algorithm that usually results in at least
a factor of 5 reduction in query complexity for MBM constellations if Eb

N0
> 0 dB,

the constellation size is > 256 and the number of receiving antennas is < 8. There is
algorithmic ine�ciency when the number of receiving antennas is high. To combat
this issue, an approximate ML symbol detection was presented that could improve
search e�ciency at a cost of a constant factor energy loss.

• When working with < 4 antennas, the energy gains resulting from coding or from
adding antennas is substantial. Moreover, the proposed optimal ML symbol detection
algorithm is near optimal in this regime due to the low dimensionality. When working
with > 8 antennas, the energy gain in MBM due to adding antennas is approximately
equal to what would be expected in SBM. The proposed optimal ML symbol detection
is also ine�cient in high dimensions, but due to the nature of the geometry of the
problem there are opportunities to resolve this issue if optimality is sacri�ced.

If su�cient receiving antennas are used, MBM has the potential to signi�cantly out-
perform SBM both in communication speed and reliability.

5.2 Future Work

There are several major issues that need to be investigated in future work:

• The channel estimation problem in MBM is complicated by the fact that only one
realization can be observed at a given time during the training process. This funda-
mentally degrades the e�ectiveness of the training process and will result in higher
estimation error. The complete characterization of this fact and the design of esti-
mation algorithms that can mitigate this issue is necessary for the use of MBM in
practical situations.

• In this thesis, MBM was always used in conjunction with an SRF channel. If the
channel is assumed to exhibit slow or fast fading, it is not clear how this will impact
the average performance. Taking into account estimation error and the re-sending of
training symbols, there may ultimately be signi�cant reductions in rate when using
MBM relative to SBM.

• Given the di�erences between SIMO SBM and SIMO MBM, it is clear that adding
antennas in MBM is fundamentally di�erent than in SBM. Extending the results
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to the MIMO scenario, and in particular determining how space-time coding should
be applied to MBM is another future direction. Given the performance gains that
MIMO SBM systems have relative to SISO SBM systems, there is a high probability
that MIMO MBM will also have opportunities for substantial performance gains.

• The impact of channel coding on MBM was investigated only in a preliminary man-
ner. While the results are most likely applicable to block codes, it is not obvious
if they will extend to more sophisticated coding schemes. Even without leveraging
the properties of MIMO systems, the issue of how best to design a code knowing the
constellation is Gaussian has not been thoroughly investigated.

• At the level of abstraction discussed in this thesis, bandwidth and communication
rate is only indirectly addressed. In practice, changing realizations at the transmitter
will result in switching overhead that will cause bandwidth expansion. The investi-
gation of how signi�cant these e�ects are, how they can be mitigated if mitigation
is necessary at all and how these second-order e�ects degrade performance is also an
open question.

• There can be substantial challenges when working with large constellation sizes both
in terms of RF complexity and channel estimation. More elegent approaches to realize
MIMO-MBM with large constellations is an area for future research.
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Appendix A

Supplementary Code

A.1 Code for Exact ML Symbol Detection Algorithm

The following is sample code written in the Julia programming language to implement the
exact ML symbol detection algorithm described in Chapter 4.

% idata = input observation vector
% csize = constellation size
% dimr = number of receiving dimensions
% ctablep = table containing the sorted lists of the constellation vectors generated during preprocessing
% dtmp = array used during temporary calculation
% osymbol = symbol index that will be returned as an output
% oval = corresponding minimum distance value that will be returned as an output

% isort = Insertion Sort function that returns the permutation of indices required to sort the input
% from least to greatest

function exactmlsymdetect(idata::Array{Float64, 1}, iconst::Array{Float64, 2}, csize::Int64, dimr::Int64,
ctablep::Array{Int64, 2}, dtmp::Array{Float64, 1}, osymbol::Int64, oval::Float64)

const q = dimr - 1

% Calculate -(abs(idata))
for m = 1:dimr

if (idata[m] <= 0.0)
dtmp[m] = idata[m]

else
dtmp[m] = -idata[m]

end
end

% Sort the temporary array to determine the order in which dimensions should be evaluated
yperm = isort(dtmp, dimr)

% Use binary search to find the position in the appropriate list of candidates to start the search
low = 1
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high = csize
tmp = idata[yperm[1]]

if (iconst[ctablep[high, yperm[1]], yperm[1]] <= tmp)
low = csize

else
while (low < (high - 1))

mid = div((low + high), 2)

if (tmp <= iconst[ctablep[mid, yperm[1]], yperm[1]])
high = mid

else
low = mid

end
end

end

if (low < csize)
k = low

else
k = csize - 1

end
t = k + 1

% Initialize the bounds
lbd = idata[yperm[1]] - iconst[ctablep[1, yperm[1]], yperm[1]]
rbd = iconst[ctablep[csize, yperm[1]], yperm[1]] - idata[yperm[1]]

dmin = Inf
dleft = 0.0
dright = 0.0

% Explicitly check the edge cases and search them first
if (lbd < 0)

didx = ctablep[k, yperm[1]]
dleft = iconst[didx, yperm[1]] - idata[yperm[1]]
dmin = dleft^2
for l = 2:dimr

dmin += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
end
osymbol = didx
rd = sqrt(dmin)
if (rd < rbd)

rbd = rd
end
lbd = dleft
if (rd < lbd)

lbd = rd
end
k -= 1

else
if (rbd < 0)

didx = ctablep[t, yperm[1]]
dright = (idata[yperm[1]] - iconst[didx, yperm[1]])
dmin = dright^2
for l = 2:dimr

dmin += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
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end
osymbol = didx
rd = sqrt(dmin)
rbd = dright
if (rd < rbd)

rbd = rd
end
if (rd < lbd)

lbd = rd
end
t += 1

end
end

% Search candidates one at a time from the left and right directions
while ((dleft <= lbd) && (dright <= rbd) && (0 < k) && (t <= csize))

didx = ctablep[k, yperm[1]]
dleft = idata[yperm[1]] - iconst[didx, yperm[1]]
dtable = dleft^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

dmin = dtable
osymbol = didx
rd = sqrt(dmin)
if (rd < rbd)

rbd = rd
end
if (rd < lbd)

lbd = rd
end

end
end
k -= 1

didx = ctablep[t, yperm[1]]
dright = (iconst[didx, yperm[1]] - idata[yperm[1]])
dtable = dright^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

45



dmin = dtable
osymbol = didx
rd = sqrt(dmin)
if (rd < rbd)

rbd = rd
end
if (rd < lbd)

lbd = rd
end

end
end
t += 1

end

% The loop terminates when either the left or right bound has been reached.
% The remaining bound must be searched explicitly.

while ((dleft <= lbd) && (0 < k))
didx = ctablep[k, yperm[1]]
dleft = idata[yperm[1]] - iconst[didx, yperm[1]]
dtable = dleft^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

dmin = dtable
osymbol = didx
rd = sqrt(dmin)
if (rd < lbd)

lbd = rd
end

end
end
k -= 1

end

while ((dright <= rbd) && (t <= csize))
didx = ctablep[t, yperm[1]]
dright = (iconst[didx, yperm[1]] - idata[yperm[1]])
dtable = dright^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
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if (dtable <= dmin)
dmin = dtable
osymbol = didx
rd = sqrt(dmin)
if (rd < rbd)

rbd = rd
end

end
end
t += 1

end
osymbol -= 1
oval = dmin

return (osymbol, oval)
end

A.2 Code for Approximate ML Symbol Detection Al-

gorithm

The following is sample code written in the Julia programming language to implement the
approximate ML symbol detection algorithm described in Chapter 4.

% idata = input observation vector
% csize = constellation size
% dimr = number of receiving dimensions
% ctablep = table containing the sorted lists of the constellation vectors generated during preprocessing
% dtmp = array used during temporary calculation
% osymbol = symbol index that will be returned as an output
% oval = corresponding minimum distance value that will be returned as an output

% isort = Insertion Sort function that returns the permutation of indices required to sort the input
% from least to greatest

function approxmlsymdetect(idata::Array{Float64, 1}, iconst::Array{Float64, 2}, csize::Int64, dimr::Int64,
ctablep::Array{Int64, 2}, dtmp::Array{Float64, 1}, osymbol::Int64, oval::Float64)

const q = dimr - 1
const beta = 1.2

% Calculate -(abs(idata))
for m = 1:dimr

if (idata[m] <= 0.0)
dtmp[m] = idata[m]

else
dtmp[m] = -idata[m]

end
end

% Sort the temporary array to determine the order in which dimensions should be evaluated
yperm = isort(dtmp, dimr)
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% Use binary search to find the position in the appropriate list of candidates to start the search
low = 1
high = csize
tmp = idata[yperm[1]]

if (iconst[ctablep[high, yperm[1]], yperm[1]] <= tmp)
low = csize

else
while (low < (high - 1))

mid = div((low + high), 2)

if (tmp <= iconst[ctablep[mid, yperm[1]], yperm[1]])
high = mid

else
low = mid

end
end

end

if (low < csize)
k = low

else
k = csize - 1

end
t = k + 1

% Initialize the bounds
lbd = idata[yperm[1]] - iconst[ctablep[1, yperm[1]], yperm[1]]
rbd = iconst[ctablep[csize, yperm[1]], yperm[1]] - idata[yperm[1]]

dmin = Inf
dmax = max(lbd, rbd)
dleft = 0.0
dright = 0.0

% Explicitly check the edge cases and search them first
if (lbd < 0)

didx = ctablep[k, yperm[1]]
dleft = iconst[didx, yperm[1]] - idata[yperm[1]]
dmin = dleft^2
for l = 2:dimr

dmin += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
end
osymbol = didx

curmax = dleft
lbd = dleft
for l = 2:dimr

dcur = abs(iconst[didx, yperm[l]] - idata[yperm[l]])
if (curmax < dcur)

curmax = dcur
end
if (curmax > dmax)

break
end

end
curmax *= beta
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if (curmax < rbd)
dmax = curmax
rbd = dmax

end
k -= 1

else
if (rbd < 0)

didx = ctablep[t, yperm[1]]
dright = (idata[yperm[1]] - iconst[didx, yperm[1]])
dmin = dright^2
for l = 2:dimr

dmin += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
end
osymbol = didx
curmax = dright
rbd = dright
for l = 2:dimr

dcur = abs(idata[yperm[l]] - iconst[didx, yperm[l]])
if (curmax < dcur)

curmax = dcur
end
if (curmax > dmax)

break
end

end
curmax *= beta
if (curmax < lbd)

dmax = curmax
lbd = dmax

end
t += 1

end
end

% Search candidates one at a time from the left and right directions
while ((dleft <= lbd) && (dright <= rbd) && (0 < k) && (t <= csize))

didx = ctablep[k, yperm[1]]
dleft = idata[yperm[1]] - iconst[didx, yperm[1]]
dtable = dleft^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

dmin = dtable
osymbol = didx
curmax = dleft
for l = 2:dimr

dcur = abs(idatayperm[l]] - iconst[didx, yperm[l]])
if (curmax < dcur)

curmax = dcur
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end
if (curmax > dmax)

break
end

end
curmax *= beta
if (curmax < dmax)

dmax = curmax
if (dmax < lbd)

lbd = dmax
end
if (dmax < rbd)

rbd = dmax
end

end
end

end
k -= 1

didx = ctablep[t, yperm[1]]
dright = (iconst[didx, yperm[1]] - idata[yperm[1]])
dtable = dright^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

dmin = dtable
osymbol = didx
curmax = dright
for l = 2:dimr

dcur = abs(idata[yperm[l]] - iconst[didx, yperm[l]])
if (curmax < dcur)

curmax = dcur
end
if (curmax > dmax)

break
end

end
curmax *= beta
if (curmax < dmax)

dmax = curmax
if (dmax < lbd)

lbd = dmax
end
if (dmax < rbd)

rbd = dmax
end

end
end

end
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t += 1
end

% The loop terminates when either the left or right bound has been reached.
% The remaining bound must be searched explicitly.

while ((dleft <= lbd) && (0 < k))
didx = ctablep[k, yperm[1]]
dleft = idata[yperm[1]] - iconst[didx, yperm[1]]
dtable = dleft^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
if (dtable <= dmin)

dmin = dtable
osymbol = didx
curmax = dleft
for l = 2:dimr

dcur = abs(idata[yperm[l]] - iconst[didx, yperm[l]])
if (curmax < dcur)

curmax = dcur
end
if (curmax > dmax)

break
end

end
curmax *= beta
if (curmax < lbd)

dmax = curmax
lbd = dmax

end
end

end
k -= 1

end

while ((dright <= rbd) && (t <= csize))
didx = ctablep[t, yperm[1]]
dright = (iconst[didx, yperm[1]] - idata[yperm[1]])
dtable = dright^2
for l = 2:q

dtable += (idata[yperm[l]] - iconst[didx, yperm[l]])^2
if (dmin < dtable)

dtable = 0.0
break

end
end

if (dtable > 0.0)
dtable += (idata[yperm[dimr]] - iconst[didx, yperm[dimr]])^2
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if (dtable <= dmin)
dmin = dtable
osymbol = didx
curmax = dright
for l = 2:dimr

dcur = abs(idata[yperm[l]] - iconst[didx, yperm[l]])
if (curmax < dcur)

curmax = dcur
end
if (curmax > dmax)

break
end

end
curmax *= beta
if (curmax < rbd)

dmax = curmax
rbd = dmax

end
end

end
t += 1

end
osymbol -= 1
oval = dmin

return (osymbol, oval)
end
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