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Abstract

The goal of a Knowledge Base–supported Question Answering (KB-supported QA) system
is to answer a query natural language by obtaining the answer from a knowledge database,
which stores knowledge in the form of (entity, relation, value) triples. QA systems under-
stand questions by extracting entity and relation pairs. This thesis aims at recognizing
the relation candidates inside a question. We define a multi-label classification problem for
this challenging task. Based on the word2vec representation of words, we propose two con-
volutional neural networks (CNNs) to solve the multi-label classification problem, namely
Parallel CNN and Deep CNN. The Parallel CNN contains four parallel convolutional layers
while Deep CNN contains two serial convolutional layers. The convolutional layers of both
the models capture local semantic features. A max over time pooling layer is placed on
the top of the last convolutional layer to select global semantic features. Fully connected
layers with dropout are used to summarize the features. Our experiments show that these
two models outperform the traditional Support Vector Classification (SVC)–based method
by a large margin. Furthermore, we observe that Deep CNN has better performance than
Parallel CNN, indicating that the deep structure enables much stronger semantic learning
capacity than the wide but shallow network.
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Chapter 1

Introduction

1.1 Background and Motivation

Figure 1.1: KB-supported QA.

Natural language processing (NLP) is the focus of artificial intelligence research and
has many applications: machine translation, named entity recognition (NER), question
answering (QA), etc. The purpose of a QA system is to automatically answer questions
posed by humans in a natural language. Knowledge–Base supported (KB–supported) QA
system obtains answers by querying from a structured knowledge database, which stores
tuples of (entity, relation, value), and generating answers in natural languages according
to the query result, as shown in Figure 1.1. For example, for the question “Who’s the
president of the United States?” the entity is “USA”, the relation is “be–president–of ”,
and the value is “Barack Obama”. Understanding human questions, especially extracting
the entity and relation candidates, is the first and vital step toward implementing the whole
system. Many traditional methods depend on keywords or templates matching. But they
rely heavily on hand–crafted rules, which cannot be scaled up. To leverage human labour
in constructing the keywords or templates, some recent machine learning algorithms have
been proposed to automatically learn features and measure semantic distances between
queries and known domains.
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1.2 Problem Definition

This thesis defines a multi–label classification problem for extracting the relation candidates
from a question. We target a widely used question dataset [15], which is crawled from
WikiAnswer and consists of a set of questions with over 19K relations. We assume that
these open–domain questions have only first–order relations, which we call single–relation
questions, for example, “Who’s the president of the United States?” has a first–order
relation, but “Who’s the wife of the United States’ president?” has a second–order relation.
Single–relation questions are the most commonly observed ones in QA sites [16]. However,
since human expressions or understanding could be ambiguous, each question may have
several relation candidates, for example, “What is the primary duty of judicial branch?”
has relation candidates “be–primary–responsibility–of ”, “be–primary–role–of ”, and “have–
role–of ”. Thus we address the problem as recognizing the relations inside a question in a
multi–label manner.

1.3 Contributions

We explore various deep learning models to solve the proposed multi–label recognition prob-
lem. At the first step, we exploit the widely used word2vec [33] [35] [36] to represent each
word as a 300 dimensional vector, and the whole sentence as a matrix by stacking all the
word vectors. Word2vec converts the semantic relations between words into the distance
of their vectors, for example, word2vec(‘Paris’) - word2vec(‘France’) + word2vec(‘China’)
= word2vec(‘Beijing’).

Based on the matrix representation of each sentence, we propose two kinds of convolu-
tional neural networks (CNNs): Parallel CNN and Deep CNN. Convolutional layers of both
networks can learn phrases, such as “where do . . . live”, and “the population of”. Parallel
CNN is a shallow network but has multiple parallel convolutional layers. Deep CNN, on
the contrary, has multiple serial convolutional layers. Our experiments show that both
Parallel and Deep CNN outperform the traditional Support Vector Classification (SVC)–
based method by a large margin. Furthermore, we observe that Deep CNN has better
performance than Parallel CNN, indicating that the deep structure enables much stronger
semantic learning capacity than the wide but shallow network.
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1.4 Thesis Organization

Section 2 mainly background knowledge of the structures and components of CNNs. Sec-
tion 3 introduces recent research on CNNs for NLP tasks. Section 4 presents the dataset,
tools, and environment used in this work. Section 5 describes our method and shows
experimental results. Section 6 concludes this thesis.
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Chapter 2

Background

2.1 Deep Neural Network

Deep learning has shown powerful feature learning skills and achieved remarkable perfor-
mance in computer vision (CV) [8] [43], speech recognition [11] [21], and natural language
processing (NLP) [9]. Deep neural network is a kind of deep learning method. The dif-
ference between deep neural network (DNN) and shallow artificial neural network (ANN)
is that the former contains multiple hidden layers so that it can learn more complex fea-
tures. It has several variants: convolutional neural network, recurrent neural network, and
recursive neural network. DNNs have forward pass and back propagation. The parameters
of networks are updated according to learning rate, cost function via stochastic gradient
descent during the back propagation. In the following, we briefly introduce the structures
of di↵erent DNNs applied in NLP tasks.

2.1.1 Convolutional Neural Network

Convolutional neural networks (CNNs) learn local features and assume that these features
are not restricted by their absolute positions. In the field of NLP, they are applied in
Part–Of–Speech Tagging (POS), Named Entity Recognition (NER) [9], etc.

Figure 2.1 shows a two–layer CNN. For the green node h0 = f(W

0

@
x0

x1

x2

1

A + b) =

4



Figure 2.1: Convolutional Neural Network. Neurons in CNN are locally connected with
neurons in previous layer. Weights of the same filter are shared across the same layer.

f(w0x0 + w1x1 + w2x2 + b) and for the green node h1 = f(W

0

@
x1

x2

x3

1

A + b) = f(w1x1 +

w2x2 + w3x3 + b). W is shared by the same filter in the same layer.

2.1.2 Recurrent Neural Network

The limitation of convolutional neural network is that they take fixed–sized inputs and pro-
duce fixed–sized outputs. Recurrent neural networks (RNNs) can operate over sequential
input and predict sequential output. They can do one–to–one, one–to–many, many–to–
one, many–to–many jobs. They can be used in machine translation [34] and other NLP
tasks.

Figure 2.2 shows a simple recurrent neural network with three layers: input layer x, hid-
den layer h and output layer y. Horizontal arrows stand for time changing. Input sequence:
x1, x2, . . . , xT

. For each time step t, h
t

= f(W hhh
t�1 +W hxx

t

) and y
t

= g(W hyh
t

), where
W hh, W hx and W hy are parameters shared across time sequence. Hidden layer’s states are
influenced by all the previous inputs. It also has a bidirectional structure to incorporate
both forward and backward inputs. RNN has a vanishing or exploding gradient problem,
as shown in Figure 2.3, while initializing weight matrix to identity matrix [46] and using
ReLU activation function [29] address this problem to a certain degree.
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Figure 2.2: Recurrent Neural Network. RNN takes input sequence. Weights of hidden
units are updated according to current input and previous weights of hidden units at each
time step. Outputs of RNN are calculated according to current hidden units state.

Figure 2.3: Error Surface of a Single Hidden Unit RNN [41].
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2.1.3 Recursive Neural Network

Recursive neural networks (RNNs) have been applied to multiple NLP tasks, such as
sentence classification [47].

Figure 2.4: Recursive Neural Network.

Figure 2.4 shows a simple recursive neural network. Each node takes two children as
inputs. h = f(Wx + b) and y = UTh. For example, for the green node, the parent of

x0 and x1, h01 = f(W

✓
x0

x1

◆
+ b), and for the purple node, the parent of h01 and x2,

h012 = f(W

✓
h01

x2

◆
+ b). In CNNs, weights are shared within the same filter, while in

RNNs, weights are shared across di↵erent layers. Recursive neural networks have di↵erent
composition functions: Matrix–Vector RNNs, Recursive Neural Tensor Networks, Tree
LSTM, etc.

Recursive neural networks require parsers to get the semantic structures of the sen-
tences. Recurrent neural networks are good at dealing with learning time–sequential fea-
tures. Convolutional neural networks have good performances in classification and are used
as models for the task described in this thesis.
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2.2 Motivation and History

Convolutional Neural Networks are inspired by a cat’s visual cortex. Visual cortex contains
a complex arrangement of cells. These cells are responsible for detecting small sub–fields
of the visual field, called receptive fields. The sub–fields are tiled to cover the whole visual
field. These cells act as local filters over the input space and are well–suited to exploit the
strong spatially local correlation present in natural images.

Neocognitron was introduced by Fukushima in 1980 [18] and improved in 1998 by
LeCun, Bottou, Bengio, and Ha↵ner [30]. They proposed the famous LeNet–5 — a con-
volutional neural network. Then it was generalized by Behnke [6], and pre-digested by
Simard and his collaborators in 2003 [45]. Convolutional neural networks perform well on
problems such as recognizing handwritten numbers, but the computational power at that
time limited their ability to solve more complex problems until the rise of e�cient GPU
computing.

2.3 Basic Assumption

The convolutional layer is based on the assumption that features are learned regardless of
their absolute positions. This is reasonable in many cases, for example in image learning,
if detecting a horizontal edge is important at some location in the image, it should also be
useful at other locations.

Convolutional layers focus on learning local features. In natural language processing,
if in the sentence “give me an example of thank you letter” example of has been learned
as a feature, then it should also be recognized in sentence “what is an example of scientific
hypothesis”. But example of may not have any relation with thank you letter or scientific
hypothesis. For example in audio recognition, features of time spans of audio clips are
learned instead of that of the whole input audio.

2.4 Review of Discrete Convolution Definition

Recall the definition of convolution for a 1D signal [12]. The discrete convolution of f and
g is given by:

o[n] = f [n] ⇤ g[n] =
1X

u=�1
f [u]g[n� u] =

1X

u=�1
f [n� u]g[u]. (2.1)

8



This can be extended to 2D as follows:

o[m,n] = f [m,n] ⇤ g[m,n] =
1X

u=�1

1X

v=�1
f [u, v]g[m� u, n� v] (2.2)

2.5 Volumes of Neurons

The neurons in convolutional neural networks are arranged in three dimensions: depth,
width, and height.

If the network is for image classification, images are in size of 3⇥ 32⇥ 32 (three colour
channels, 32 wide, 32 high). The size of input layer is 3⇥ 32⇥ 32. The size of hidden layer
is 12⇥ 16⇥ 16 in which 12 is the number of feature maps and 16 is the width and height
of a feature map. The size of output layer is 10⇥ 1⇥ 1 where 10 is the number of classes
to be learned.

If the network is for sentence classification, a sentence has 34 words and each word is
represented by 300 dimensional vector. The size of input layer is 1⇥ 34⇥ 300. The size of
hidden layer might be 256⇥ 17⇥ 1 where 256 is the number of feature maps. The output
layer has 46⇥ 1⇥ 1 dimensions for 46 class classification.

2.6 Architecture

Three types of layers build up a convolutional neural network: Convolutional Layer, Pooling
Layer, and Fully Connected Layer.

2.6.1 Convolutional Layer

Convolutional layers have attributes shown below:

• Sparse connectivity: makes each neuron focuses on local features.

• Weight shared: increases learning e�ciency by reducing the number of free parame-
ters being learnt.

9



Figure 2.5: Sparse Connectivity.

In Figure 2.5, in layer i, a neuron is connected with contiguous neurons which are the
subset of the neurons in layer i� 1. Connection between two connected neuron represents
convolution of filter (kernel) and input. Each filter has smaller size along width and height
but has the same depth as the input.

Figure 2.6: Shared Weights. Connections with same colour share weights.

10



Each filter learns a feature map. In the forward pass, when applying convolutional
computing, each filter is slid across the width and height and the dot product is computed
between the entries of filter and the corresponding inputs. In Figure 2.6, weights of the
same colour are shared. In the back propagation process, calculating the gradient of a
shared weight is to sum up the gradients of the parameters being shared.

A convolutional layer always has a set of filters. Feature maps learned by di↵erent
filters are stacked along depth dimension.

Figure 2.7: Convolutional Layer [26].
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In Figure 2.7, input has size of d
i

⇥ w
i

⇥ h
i

= 3 ⇥ 5 ⇥ 5. Input is padded with 0s of
width w

p

= 1 and height h
p

= 1. The depth of output (or the number of feature maps to
be learned) d

o

is 2. The size of filter is d
o

⇥ d
f

⇥ w
f

⇥ h
f

= 2 ⇥ 3 ⇥ 3 ⇥ 3. The strides
when filter is slid along width w

s

and height h
s

are both 1. The feature map h
k

, which is
learned by the filter k, is determined by the weights W

k

and bias b
k

as follows:

h
k

= f(W
k

⇤ x+ b
k

) (2.3)

, where f is an activation function which will be introduced in Subsection 2.6.5. The
volume of output should be:

d
o

⇥ (
w

i

� w
f

+ 2w
p

w
s

+ 1)⇥ (
h
i

� h
f

+ 2h
p

h
s

+ 1) (2.4)

The number of parameters to be learned should be:

(w
f

· h
f

· d
f

+ 1) · o
d

(2.5)

i.e., The output has size of 2⇥ 3⇥ 3. The number of parameters to be learned is (3⇥ 3⇥
3 + 1)⇥ 2 = 56.

In regular neural networks, every neuron is fully connected with all neurons in the
previous layer. If the sizes of input and output are the same, the number of parameters of
a fully connected neural network becomes (w

i

·h
i

·d
i

+1)·w
o

·h
o

·d
o

= (7⇥7⇥3+1)⇥3⇥3⇥2 =
2664. The number of parameters in a convolutional neural network is positively correlated
with the size of the filter, while that in a regular neural network is positively correlated
with the size of the input and the output. But the size of filter is much smaller than that
of input and output. The number of parameters in regular neural network is very large
as every layer is fully connected with neighbour layers, which sometimes makes learning
process overfitting.

2.6.2 Pooling Layer

To describe a large matrix, one natural approach to down sample is to aggregate statistics.
Common methods include computing themean value, max value and L2–norm of particular
size. By doing this, the problem of overfitting is addressed to a certain degree.

Figure 2.8 shows an example of a 24 ⇥ 9 matrix doing 3 ⇥ 3 max pooling with stride
three. The depth is one in this example. Pooling only applies to width and height.
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Figure 2.8: Pooling Layer.

The width, height and depth of input are w
i

, h
i

and d
i

. The pooling size is d
p

⇥w
p

⇥h
p

.
Usually let d

p

= d
i

. The stride of pooling has the size of w
s

⇥ h
s

. It is not common to use
zero–padding for Pooling layers. The output should have size:

d
i

⇥ (
w

i

� w
p

w
s

+ 1)⇥ (
h
i

� h
p

h
s

+ 1) (2.6)

In most cases, input is pooled non–overlapping, i.e., w
s

= w
p

and h
s

= h
p

. So the output
has size:

d
i

⇥ w
i

w
p

⇥ h
i

h
p

(2.7)

, which reduces the size of output by 1
wp·hp

.

In the forward pass, indexes are recorded during pooling in order to do back propaga-
tion.

2.6.3 Fully Connected Layer

Convolutional neural networks always have several fully connected layers following convo-
lutional layers. Neurons in fully connected layers have full connections with all neurons in
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the previous layer. The structure of a fully connected layer is same as that of layer in a
regular neural network.

2.6.4 Dropout

Figure 2.9: Dropout.

Dropout is a technique to prevent neural networks from overfitting and approximate a
way to combine exponentially di↵erent neural network architectures [49]. When training
the model, the unit to be dropped out has a probability p to be temporarily removed from
the network, as shown in Figure 2.9. It will be ignored when calculating input and output
both in the forward pass and the back propagation progress. Temporarily means this unit is
only dropped out when training this specific sample. This prevents units from co–adapting
too much. A layer with n units can be seen as 2n possible thinned neural networks. When
testing the model, all units will not be dropped out and their weights will be multiplied
by p. By doing this, 2n networks with the same parameters are combined into one neural
network.

Usually, dropout is applied only to fully connected layers (except the last layer), not to
convolutional layers or pooling layers.
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Figure 2.10: Activation Function Applied to a Neuron.

2.6.5 Activation Function and Cost Function

Without activation functions, a layer neural network can only define linear hypotheses.
Before calculating the output of a neuron, the value is applied a activation function, as
shown in Figure 2.10.

Several activation functions can be applied in neural networks.

• Sigmoid Function

f(z) =
1

1 + exp(�z)
(2.8)

f 0(z) = f(z)(1� f(z)) (2.9)

f : < 7! [0, 1]

• Hyperbolic Tangent (tanh)

f(z) = tanh(z) =
ez � e�z

ez + e�z

(2.10)

f 0(z) = 1� f(z)2 (2.11)

f : < 7! [�1, 1]
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Figure 2.11: Activation Functions. This figure shows sigmoid, tanh and ReLU function.
As seen from the figure, sigmoid’s output range is [0, 1], while tanh’s output range is [�1, 1]
and ReLU’s output range is [0,+1]

• Rectifier (ReLU)
f(z) = max(0, z) (2.12)

f 0(z) =

(
0, z < 0

1, z > 0
(2.13)

f : < 7! [0,+1]

Loss function is also called cost function. For multi–label task, binary cross entropy is
the most common used loss function.

• Binary Cross Entropy

z(t, o) = �(tlog(o) + (1� t)log(1� o)) (2.14)
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2.6.6 Common CNN Architectures

Most common convolutional neural networks follow the pattern below [26]:

Input

! [(Convolutional ! Activation)⇤ ! Pooling?]⇤

! (FC ! Dropout? ! Activation)⇤

! Output

(2.15)

, where “*” indicates that this layer might be repeated multiple times and “?” stands for
optional occurring. Input layer is followed by multiple convolutional and pooling layers,
then is followed by several fully connected layers with dropout.
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Chapter 3

Related Work

Convolutional neural networks have been widely used in POS tagging [43], chunking, NER,
semantic role labeling [10], searching queries and Web documents [44], sentence classifica-
tion [13] [27], semantic modelling [25], relation classification [14], and other NLP tasks.

3.1 Single–Convolutional–Layer CNNs

Figure 3.1: Neural Network for Relation Classification and Framework for Extracting Sen-
tence Level Features [55]. In the right hand figure, WF stands for word features and PF
stands for position features.
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Zeng et al. [55] exploit a neural network to classify questions. Lexical level features
are extracted from word embeddings. Sentence level features are learned by a one layer
convolutional neural network. Then both lexical and sentence level features are fed into a
neural network to predict the relationship of two given nouns in a sentence, as shown in
Figure 3.1. This model is experimented on the SemEval–2010 Task 8 dataset (a question
set with 10 labels [20]).

Figure 3.2: CNN Model [44]. Figure 3.3: CNN Model [51].

Shen et al. [44] and Yih et al. [51] present similar convolutional neural networks. They
both transform word into vector using letter–tri–gram. Then word vectors are fed into a
convolutional layer, followed by a max over–time pooling layer and a fully connected layer
as output layer. Figure 3.2 shows the model for queries and web documents searching [44].
Shen et al. [51] test the model on a question set from a commercial search engine. Yih et
al. use a question dataset, which is the same dataset as in this thesis, and train a model for
relation extraction and another model for entity extraction, as shown in Figure 3.3. The
authors define this problem as a multi–class classification, i.e., given a query returning one
relation each time while returning 150 top–scoring candidates.

Kim [27] trains a network with one convolutional layer followed by a max–over time
pooling, and a fully connected layer with dropout and softmax output layer for sentence
classification, as shown in Figure 3.4. This “one convolutional layer” consists of 3 parallel
convolutional layers with di↵erent filter sizes. The model is trained with two channels –
only the parameters of one channel are updated in training progress. word2vec is input
feature. This model is experimented on: movie reviews with positive/negative labels [40]
(MR), Stanford Sentiment Treebank, (SST–1, which is dataset with movie reviews with
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Figure 3.4: CNN Model for Several Sentence Classification Tasks [27].

very positive, positive, neutral, negative, very negative label [48]), same dataset as SST–1
but only positive/negative labels, sentences with subjective/objective labels [39] (Subj),
Text REtrieval Conference question dataset with 6 labels [32] (TREC), customer reviews
with positive/negative labels [23] (CR), opinion dataset with positive/negative labels [52]
(MPQA).

3.2 Multi–Convolutional–Layer CNNs

Figure 3.5: ARC–II Model [22].

Hu et al. [22] propose a convolutional neural network model for matching sentences. The
authors apply a 1 dimension convolution followed by 1 dimension max pooling, multiple 2
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dimension convolutions and pooling layers, and multiple fully connected layers, as shown
in Figure 3.5. It takes embedding of words in the sentences aligned as input and outputs
matching degree. The approach is tested on sentence completion [31], matching a response
to Weibo, and MSRP dataset [42]

Figure 3.6: DCNN Model for Modeling Sentence [25].

Kalchbrenner et al. [25] design a Dynamic k–Max Pooling Convolutional Neural Net-
work (DCNN) for sentence modelling. The authors apply several wide one–dimensional
convolution layer followed by feature maps folding operation and k–max pooling layer, and
a fully connected layer as output, which is shown as Figure 3.6. K–max pooling is to chose
k highest values among inputs and keep their original orders. This model is tested on
SST–1, SST–2, 6–type question categorization in the TREC dataset, and Twitter senti-
ment prediction task (tweets with positive/negative labels). Compared with Kim’s model,
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DCNN performs better on SST–1 and TREC, while worse on SST–2.

CNNs with only one convolutional layer have good performance on di↵erent tasks.
Kim’s design [27] consists of parallel convolutional layers which is di↵erent from others’.
Some other authors propose deeper CNNs. This thesis proposes a single–layer CNN and
two multi–layer CNNs and compares their performance on di↵erent datasets.
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Chapter 4

Dataset and Environment

4.1 Dataset

This thesis focuses on classifying single–relation questions. Example questions of this
type include: “What is the birthday of Barack Obama?”, “Where does a giant swallowtail
butterfly live?”. Single–relation questions are the most common type of questions observed
in various community QA sites [16]. In a single–relation question, relation and entity are
two elements to be understood. After the relation and the entity are extracted, the answer
can be generated from knowledge base (KB) such as Freebase [2], DBpedia [1], etc.

4.1.1 Data Format

In this thesis, we download the dataset from knowitall.cs.washington.edu/paralex/ [16].
These questions are crawled from WikiAnswer. Typos and grammar errors are very com-
mon in the dataset. “labeled.txt” contains 608,650 examples. Each example is in the
form of (question, query1, query2, . . .), for instance, “what be the di↵erence btw isolation
transformer and step up and step down transformer ? 2 1 755225 1605804 2 1 775854
2464747 2 1 887236 1605804 2 1 890251 1605804 2 0 1503166”. Each query is encoded in
the form 2#ORDER#REL#ENT . #REL represents index of relation constants in the
query which can be looked up in “vocab.txt”, such as 755225 stands for be–function–of.r.
Each question might have several relations. All question–queries list tuples are processed
to generate question–relations list tuples in the form of (question,#REL1,#REL2, . . .).
The example mentioned above becomes “what be the di↵erence btw isolation transformer
and step up and step down transformer ? 755225 775854 887236 890251 1503166”.
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4.1.2 Answerable Queries Coverage

Figure 4.1: The Curve of Coverage of Queries Answerable and Number of Relation.

Figure 4.1 shows the relation between the coverage of answerable queries and the num-
ber of relations. This curve increases steeply before coverage reaches 80% but grows slowly
later. 21 relations cover more than 20% of the queries. But it requires about 16,000 addi-
tional relations to increase the coverage from 80% to 100%. It makes sense that most of
the problems people concern on WikiAnswer are only a small subset of knowledge.

4.2 Tool and Environment

4.2.1 word2vec

Word2vec is a continuous distributed representation of words [33] [35] [36]. A 300 dimen-
sional vectors trained on part of Google News dataset which contains 3 million words and
phrases are used in this experiment.
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4.2.2 NER

NER labels named entities. Stanford NER has three models: a four–class model trained
for CoNLL, a seven–class model trained for MUC and a three–class model trained for
both [17] [19]. Models support both capitalization sensitive and ignored classifiers.

4.2.3 CUDA

In order to run experiments on GPU, CUDA driver and CUDA Toolkit are needed for
Nvidia’s GPU–programming toolchain. CUDA Toolkit is downloaded from developer.nvidia.com,
which contains an nvcc program – a compiler for GPU code.

4.2.4 Python Libraries

• Theano is a Python library that defines, optimizes, and evaluates mathematical ex-
pressions involving multi–dimensional arrays e�ciently and has transparent use of
GPU [5] [7] [28].

• Keras is a Theano–based deep learning Python library [3]. Keras is used as library
to build CNNs.

• scikit–learn is a Python library for machine learning [4]. scikit–learn is for building
a support vector classifier.

4.2.5 Spelling Corrector

Spelling Corrector is a tool to correct typos [38]. It is used to correct spelling errors in
dataset with pre–trained 3 million words and phrases (GoogleNews–vectors–negative3000)
as dictionary. As questions of are crawled from WikiAnswer, dataset contains many typos
and grammar error. Spelling corrector is helpful to remove noises in dataset.

4.2.6 Experiment Environment

All the experiments are tested with the computer with configuration described as follows:

• OS system: Ubuntu 14.04LTS
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• Processer: Intel Core i7–4790K CPU @ 4.00GHz ⇥ 8

• Memory: 16GB 1333 MHz DDR3

• GPU: NVIDIA GeForce GTX TITIAN X

• JDK: 1.8.0 45

• Python: 2.7.6

• NumPy: 1.9.2

• SciPy: 0.15.1

• Theano: 0.7.0

• Keras: 0.1.1
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Chapter 5

Main Results

5.1 Methodologies

5.1.1 Data Processing

Raw Data

Dataset Index #Sentences #Classes Min #Sentences per Class
1 138280 22 8000
2 202002 55 4000
3 261681 120 2000

Table 5.1: Three Datasets. Each subset is chosen from the whole dataset according to
minimum sentences per class. For example, for subset 1, only classes which have more
than 8000 sample sentences will be chosen.

Three datasets were used for experiments. Table 5.1 shows the number of sentences,
classes and the minimum number of sentences per class of each dataset. Each dataset splits
1
10 for test1.

1
Actually, k–fold cross validation is better than conventional validation. The former more properly

estimates model prediction performance. But training a model takes up to 9000s per epoch. 10–fold cross

validation needs 10 times training and testing processes. As the size of dataset is very large, and results of

di↵erent choice of subset to be the test set do not di↵er with each other a lot. So we still use

9
10 as train

set and

1
10 as test set.
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Then sentences were corrected spelling errors using GoogleNews–vectors–negative300 as
a dictionary. All name entities in sentences were replaced by “LOC”, “PER” and “ORG”
with Stanford NER [36] 3 class model trained for both CoNLL and MUC in capitalization
ignored mode.

Sentence Space

As described in Subsection 4.2.1, each word can be represented by a 300D floats vector,
e.g.,a word is a 1 ⇥ 300 vector. A sentence of w words can be represented by a w ⇥ 300
matrix. For convenience, we add a dummy depth dimension to make a sentence a 3D
tensor, as shown in Figure 5.1.

Figure 5.1: Sentence Space. Depth is one, width is the number of words in a sentence, and
height is three hundred which is the dimension of word2vec.

Actually, after using Spelling Corrector to correct typos, there are still many unknown
words in the datasets. Some of them are caused by connecting two words without a space,
like “thechinese”, others are noise, such as “httpwikianswerscomqwhat”. There are three
strategies to assign a vector to unknown words:

• Randomly generate a 300 dimensional vector.

• Assign word2vec with closest edit distance.

• Assign word2vec with closest position distance.
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Position distance of two words is defined as Manhattan distance between their letter–
bigrams vectors. Given a word, after adding word boundary symbols, we divide it into
a sequence of letter–bigrams. For example, ‘word ’ is divided into ‘ˆw ’, ‘wo’,‘or ’,‘rd ’ and
‘d$’, v(word) = (0, . . . , 1, . . . , 1, . . . , 0) where 1s are indexes of ‘ˆw ’, ‘wo’,‘or ’,‘rd ’ and ‘d$’
in the bigrams dictionary.

Since each sentence in the dataset has at most 18 words, it can be represented by a
1 ⇥ 18 ⇥ 300 tensor. Zero paddings are added at the end of a sentence if it has less than
18 words.

Data Padding

Figure 5.2: Padding Zeros.

Words at the margins are considered fewer times than words in the middle. It is unfair
to marginal words. Figure 5.2 shows an example. The convolutional filter has size of
three. The first and the last neurons are convoluted once, while the second and the forth
neurons are convoluted twice. A simple solution is to add dummy words before and after
the sentence, which actually implements wide convolution [25]. In the above example,
after padding two zeros at the beginning and the end, filter weights can reach all range of
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input and each input is convoluted 3 times. The feature map of the narrow convolution is a
subsequence of the feature map of the wide convolution. The input of CNN is a 1⇥26⇥300
tensor.

5.1.2 Multi–Label Classification

Sentence Relations

The old name of Bangkok?

bangkok.r
be–in–in.r

be–last–name–of.r
be–o�cial–name–of.r
be–other–name–for.r

be–real–name–of.r
be–traditional–name–for.r

use–to–be–call.r

What be SSID broadcasting?

be–function–of.r
be–know–as.r

be–purpose–of.r
be–requirement–for.r

function.r
have–function–of.r
have–purpose–of.r

What be the primary duty of
judical(typo: judicial) branch?

be–judicial–branch–of.r
be–primary–of.r

be–primary–responsibility–of.r
be–primary–role–of.r

be–role–of.r
have–role–of.r

Table 5.2: Multi–Label Task for Relation Classification Example.

Given a sample, the output of a multi–class classification task has one dimension, but
multiple possible values, for example, given a picture the model predict it to be a leaf. But
the output of a multi–label classification task has multiple dimensions such as predict it
to be leaf, yellow and autumn. Table 5.2 is an example to show that given one question,
there might be several possible relation candidates.
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Label Space

In supervised learning, training set has a set of examples in the form of (x, y) such that x
is the feature and y is the label. X is the input space while Y is the output space. The
number of label dimensions of each sample is not constant. Sample s1 might have label
y = (y1, y2, y3) while sample s2 might have label y = (y1, y4). But the dimensions of output
space Y is limited. First of all, if the dimensions of Y is N , these labels can be indexed
from 0 to N � 1. Then 8y 2 Y can be represented by an N dimension binary vector like
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) where indexes (i1, . . . , ik) of 1s indicate y = (i1, . . . , ik).

5.1.3 Models

CNN Models Deep CNN Parallel CNN

1st Conv Layer (27, 1, 3, 1)

(512, 1, 2, 300)
(512, 1, 3, 300)
(512, 1, 4, 300)
(512, 1, 5, 300)

2nd Conv Layer (2048, 27, 3, 300) -

Pooling Size (22, 1)

(25, 1)
(24, 1)
(23, 1)
(22, 1)

1st Fully Connected Layer (2048, 256) (2048, 256)
2nd Fully Connected Layer (256, #Classes) (256, #Classes)

Table 5.3: Parameters for CNNs.

Deep CNN

Figure 5.3 shows the structure of Deep CNN. Each sentence tensor is convoluted with a
filter of size 27⇥1⇥3⇥1. The number of feature maps produced by the first convolutional
layer is 27 and the semantic window size is 3. According to Equation 2.4 the output of
this layer has a volume of 27⇥ 24⇥ 300. Then the output of the first convolutional layer
is convoluted with a filter with size of 2048 ⇥ 27 ⇥ 3 ⇥ 300 where 2048 is the number of
feature maps produced by the second convolutional layer, 27 is the depth of input, 3 is
the semantic window size, and 300 is the same as the dimensions of word2vec. The layer
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Figure 5.3: Deep CNN.

produces a 2048 ⇥ 22 ⇥ 1 output. This layer learns local semantic features up to 5 word
wide, which means that it can capture not only feature of consequent 5 words, but also
phases like “take . . . into consideration”, “where do . . . live”. Filters’ strides of these 2
layers are f

s

= 1 and all these convolutional layers utilize ReLU activation function.

Each feature map is a sequential local semantic coding of the sentence. To choose the
most significant global feature of the sentence, each feature map h

k

:

~h
k

= [c1, c2, . . . , c22], (k = 0, 1, . . . , 2048) (5.1)

is applied with a max–over–time pooling along depth [10] as follows:

ĥ
k

= max{c1, c2, . . . , c22}, (k = 0, 1, . . . , 2048) (5.2)

The pooling size is set to be 22 ⇥ 1. According to Equation 2.7, the pooling result has a
size of 2048⇥ 1⇥ 1.

Then the global semantic feature chosen by max–pooling layer is flattened, which is fed
to the following fully connected layer with 0.5 dropout rate and ReLU activation function.
This fully connected layer will take all significant global semantic features into consideration
when producing output.

At last, a fully connected layer with sigmoid activation function is followed as the
output layer.

Appendix A.1 shows implementation for building Deep CNN model.

Binary cross entropy is chosen as the loss function.
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Figure 5.4: Parallel CNN.

Parallel CNN

Parallel CNN is shown in Figure 5.4. It convolutes input with 4 di↵erent size filters
(f0, f1, f2, f3) respectively. Filters strides f

s

= 1. Depth of output d
o

= 512 (i.e., 512
feature maps). These filters have di↵erent widths w

f

= 2, 3, 4, 5. Di↵erent size filters can
learn di↵erent length of phrases. Then all these convolutional layers apply ReLU activation
function. Feature maps (h0, h1, h2, h3) produced by these 4 di↵erent filters have sizes of
(512⇥ 24⇥ 1), (512⇥ 22⇥ 1), (512⇥ 23⇥ 1), and (512⇥ 22⇥ 1). Each feature map hj

k

:

~hj

k

= [c1, c2, . . . , c26�w

j
f+1], (k = 0, 1, . . . , 512; j = 0, 1, 2, 3) (5.3)

is applied with a max–over–time pooling along depth as follows:

ĥj

k

= max{c1, c2, . . . , c26�w

j
f+1}, (k = 0, 1, . . . , 512; j = 0, 1, 2, 3) (5.4)

Pooling sizes are 25⇥1, 24⇥1, 23⇥1, 22⇥1 corresponding to di↵erent sizes of filters. Then
all the feature maps produced by di↵erent filters are concatenated and flattened, which is
a fed to a fully connected layer with 0.5 dropout rate and ReLU activation function.

At last, a fully connected layer with sigmoid activation function is followed as the
output layer.

Appendix A.2 shows implementation for building Parallel CNN model.
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ADADELTA

ADADELTA is a kind of gradient descent learning rate method [54]. It takes each di-
mension’s first order information into consideration when updating learning rate. This
approach has several advantages:

• Dynamic learning rate per dimension.

• Small amount of computation each iteration.

• Hyperparameters chosen do not a↵ect result significantly.

In the experiment, ✏ = 1e�6, ⇢ = 0.95, and ⌘ = 1 are set to be hyperparameters of
ADADELTA, where ✏ is a constant controlling the decay rate and ⌘ is a global learning
rate shared by all dimensions.

5.1.4 Evaluation Metrics

As described in Section 5.1.2, each sample (query) might have several relation candidates.
Label of each sample is converted into an N–dimensional sparse binary vector, where N is
the number of all possible relations.

When evaluating the result, precision, recall and F1 are chosen to be evaluation metrics.

Precision =
TP

TP + FP
(5.5)

Recall =
TP

TP + FN
(5.6)

F1 = 2 · Precision ·Recall

Precision+Recall
(5.7)

, where T stands for true, F for false, P for positive and N for negative. For example,
if the ground truth of a sentence s1 is (y1, y2, y3), and the predicted label is (y1, y4), then
Precision = 1

2 and Recall = 1
3 . F1 score is their harmonic mean F1 =

2
5

There are three methods to calculate average statistic: micro–average, macro–average
and sample–average.

• Micro–average: calculate metrics by counting the total TP, FN and FP globally.
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Dataset Micro–Ave. F1 Macro–Ave. F1 Sample-Ave. F1

Baseline - SVC
1 0.51 0.49 0.37
2 0.43 0.41 0.33
3 0.39 0.34 0.30

Parallel CNN
1 0.68 0.68 0.58
2 0.50 0.45 0.37
3 0.38 0.29 0.27

Deep CNN
1 0.72 0.72 0.64
2 0.64 0.60 0.53
3 0.50 0.44 0.39

Table 5.4: F1 Scores of Di↵erent Models. SVC stands for a linear kernel Support Vector
Classifier.

• Macro–average: calculate metrics of each label and get their average value.

• Sample–average: calculate metrics for each instance and get their average value.

Jackson and Moulinier [24] state “No agreement has been reached . . . on whether one
should prefer micro– or macro–averages in reporting results. Macro–averaging may be
preferred if a classification system is required to perform consistently across all classes
regardless of how densely populated these are. On the other hand, micro–averaging may
be preferred if the density of a class reflects its importance in the end–user system”.
Micro–average and macro–average have di↵erent statistical meanings. Sample–average is
for multi–label classification. So we use all these three strategies in this thesis.

5.2 Experiments and Results

Table 5.4 shows results of di↵erent models. We use a linear kernel Support Vector Classifier
(SVC) as the baseline model. This SVC fits one classifier per class and is handled according
to a one–vs–the–rest scheme, which means for each classifier the class is fitted against all
the other classes. SVC, Parallel CNN and Deep CNN are tested on dataset 1, 2, and 3.
All CNN models are trained with 30 epochs.
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5.2.1 Baseline versus CNNs

Results show that Parallel CNN and Deep CNN perform remarkably well, giving competi-
tive results against SVC, on dataset 1 and dataset 2, while Parallel CNN has similar results
on dataset 3 compared with SVC.

5.2.2 Parallel versus Deep CNN

Deep CNN has better performance than Parallel CNN on dataset 1, 2 and 3. Deep CNN
has two convolutional layers while Parallel CNN has four parallel convolutional layers.
Although the number of feature maps learned by the second convolutional layer in Deep
CNN (2048) is the same as that of the convolutional layer in Parallel CNN, and maximum
length of phrases learned by convolutional filters of both models are five, the multi–layer
CNN is more powerful than the single–layer CNN.

We can either increase the number of convolutional layers or the number of neurons
within each layer to improve the performance by sacrificing training time.

5.2.3 Further Observations

In Deep CNN, the first convolutional layer acts as masks of phrases, which masks “which
predator eat leopard” into “which X eat X”. The second convolutional layer learns phrases.
Table 5.5 shows samples recognized by the filters of the second convolutional layer. Each
filter in the 2nd convolutional layer learns at least one phrase ideally. By stacking feature
maps learned by di↵erent filters, the convolutional layer can recognize large number of
phrases.

Figure 5.5 shows precision against recall at various threshold settings of each class
on dataset 1. A high area under the PR curve (AUC) represents both high recall and
high precision. AUCs range from 0.66 to 0.95. Average AUC is 0.70. Figure 5.6 shows
TP against FP at various threshold settings each class on dataset 1. Receiver operating
characteristic (ROC) is another metric for evaluating the performance of a binary classifier.
ROCs range from 0.90 to 0.99. Average ROC area is 0.97. Closer the curve is to upper
left corner, lower the false negative rate and false positive rate are.

Previous results show that the proposed CNNs have good performance on sentence
classification. Convolution works well on learning local features (phrases) and max pooling
can choose the most significant global feature. As the dataset gets larger, a small CNN is
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Index of Neuron Sentence Samples Outputs of Neuron

105

be the ultimate warrior 5.25173
about the importance of the 4.70589
what the importance of the 4.61927

be the importance of the 4.49637
fact about asteroid ? $ 4.41866

be ther importance of the 4.25051
and the importance of production 4.11493

be the importance of science 3.708
be the importance of mountain 3.69332

be the importance of herbal 3.69251

137

the population of bilous be 5.32066
the population of LOC of 4.36888

the population trend of LOC 4.30513
the population of LOC tx 4.25834
the population of LOC ny 4.18075

the population of LOC LOC 4.14987
the population of LOC beach 4.14069
the population of LOC only 4.12767
the population of LOC be 4.09867

the population o LOC ? 4.08928

283

name of who invent the 4.60916
the people who invent the 3.68543

the person who invent softball 3.63067
what cosmic radiation bombard the 3.51603

ˆ scientist who invent the 3.5001
ˆ 8 who invent the 3.4487
ˆ ˆ who invent the 3.40215

black person who invent the 3.39316
slam dunk who invent the 3.29019

the first pen invent at 3.27618

Table 5.5: Samples Ranking with Descending Scores of Neurons in 2nd convolutional layer.
This result is trained on dataset 1 with Deep CNN. 137th neuron in 2nd convolutional layer
learns features of phrases like the population of. In the table, ˆ and $ stand for blank words
before and after the sentence.
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Figure 5.5: Precision Recall Curves.
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Figure 5.6: Receiver Operating Characteristic Curves.
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no longer capable of learning all the information, thus we need to increase the number of
parameters in the network, so our experiments compared performance of models with dif-
ferent number of parameters. Tradeo↵ between performance and e�ciency was a criterion
in choosing models.
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Chapter 6

Conclusions

6.1 Summary

This thesis defines a multi–label classification problem for extracting the relation candidates
from a question. We propose two deep learning methods, Parallel CNN and Deep CNN, to
predict multiple relation candidates of a question. Parallel CNN consists of four parallel
convolutional layers, while Deep CNN has two stacked convolutional layers. Convolutional
layers of both the models capture local semantic features. A max over time pooling layer is
placed on top of the last convolutional layer to select global semantic features, followed by a
fully connected layer with dropout to summarize the features. Our experiments show that
both Parallel and Deep CNN outperform the traditional Support Vector Classification
(SVC)–based method by a large margin. Furthermore, we observe that Deep CNN has
better performance than Parallel CNN, indicating that the deep structure enables much
stronger semantic learning capacity than the wide but shallow network. Our method lays
a firm foundation for implementing a high performance QA system.

6.2 Future Work

In this work, we chose several hundreds of most frequently appeared relations as our target.
However, the overall dataset contains more than 19,000 relations and many of them are
rarely present. The limitation of our model is that it is impossible to adapt our CNNs
for the 19,000 relations recognition problem by simply adding more output neurons. One
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possible solution could be first hierarchically clustering all the relations, and then using
cascade network classifiers for each cluster.

On the other hand, the word2vec model we used in this work was trained on the
Google News corpus. As shown in [50], the word2vec space trained in social media corpus
is di↵erent from that in carefully edited prose. Thus, we could retrain the word2vec on the
WikiAnswer corpus toward improving our performance.

In summary, we conclude that following steps to complete a KB–supported QA system
are needed:

• Map the relations predicted by the model to those used in the knowledge database,
such as DBpedia or Freebase (o✏ine).

• Recognize the entities with POS tagging, or NER, or other NLP tools.

• Query the database with the entities and mapped relations.

• Retrieve the answer from the database and generate a sentence accordingly.

42



APPENDICES

43



Appendix A

Python Implementation for Building
CNNs

A.1 Deep CNN

def Deep_CNN ():

#Two Convolutional Layers with Pooling Layer

model = Sequential ()

model.add(Convolution2D(27, 1, 3, 1, border_mode=’valid ’, activation=’

relu’))

model.add(Convolution2D(2048 , 27, 3, 300 , border_mode=’valid ’,

activation=’relu’))

model.add(MaxPooling2D(poolsize=(21, 1)))

#Fully Connected Layer with dropout

model.add(Flatten ())

model.add(Dense(2048 , 256 , activation=’relu’))

model.add(Dropout(0.5))

#Fully Connected Layer as output layer

model.add(Dense(256 , len(label_set), activation=’sigmoid ’))

adadelta = Adadelta(lr=1.0, rho=0.95, epsilon=1e-6)

model.compile(loss=’binary_crossentropy ’, class_mode=’multi_label ’,

optimizer=adadelta)
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A.2 Parallel CNN

def Deep_CNN ():

filter_shapes = [[2, 300], [3, 300], [4, 300], [5, 300]]

pool_shapes = [[25, 1], [24, 1], [23, 1], [22, 1]]

#Four Parallel Convolutional Layers with Four Pooling Layers

model = Sequential ()

sub_models = []

for i in range(len(pool_shapes)):

pool_shape = pool_shapes[i]

filter_shape = filter_shapes[i]

sub_model = Sequential ()

sub_model.add(Convolution2D(512 1, filter_shape[0], filter_shape[

1], border_mode=’valid ’,

activation=’relu’))

sub_model.add(MaxPooling2D(poolsize=(pool_shape[0], pool_shape[1]

)))

sub_models.append(sub_model)

model.add(( Merge(sub_models , mode=’concat ’)))

#Fully Connected Layer with dropout

model.add(Flatten ())

model.add(Dense(2048 , 256 , activation=’relu’))

model.add(Dropout(0.5))

#Fully Connected Layer as output layer

model.add(Dense(256 , len(label_set), activation=’sigmoid ’))

adadelta = Adadelta(lr=1.0, rho=0.95, epsilon=1e-6)

model.compile(loss=’binary_crossentropy ’, class_mode=’multi_label ’,

optimizer=adadelta)
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[13] Ćıcero Nogueira dos Santos and Maıra Gatti. Deep convolutional neural networks for
sentiment analysis of short texts. In Proceedings of the 25th International Conference
on Computational Linguistics (COLING), 2014.

[14] Cıcero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. Classifying relations by
ranking with convolutional neural networks. In Proceedings of 53rd Annual Meeting
of the Association for Computational Linguistics, pages 626–634, 2015.

[15] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open
information extraction. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1535–1545. Association for Computational Lin-
guistics, 2011.

[16] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Paraphrase-driven learning for
open question answering. In Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1608–1618, Sofia,
Bulgaria, August 2013. Association for Computational Linguistics.

[17] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-
local information into information extraction systems by gibbs sampling. In Proceed-
ings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL
’05, pages 363–370, Stroudsburg, PA, USA, 2005. Association for Computational Lin-
guistics.

[18] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition una↵ected by shift in position. Biological cybernet-
ics, 36(4):193–202, 1980.

47



[19] The Stanford Natural Language Processing Group. Stanford named entity recognizer
(ner). http://nlp.stanford.edu/software/CRF-NER.shtml.

[20] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid
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