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Abstract

In this thesis, the Behrooz File System (BFS) is presented, which provides an in-
memory distributed file system. BFS is a simple design which combines the best of in-
memory and remote file systems. BFS stores data in the main memory of commodity
servers and provides a shared unified file system view over them. BFS utilizes backend
storage to provide persistency and availability. Unlike most existing distributed in-memory
storage systems, BFS supports a general purpose POSIX-like file interface. BFS is built by
grouping multiple servers’ memory together; therefore, if applications and BFS servers are
co-located, BFS is a highly efficient design because this architecture minimizes inter-node
communication. This pattern is common in distributed computing environments and data
analytics applications. A set of microbenchmarks and SPEC SFS 2014 benchmark are
used to evaluate different aspects of BFS, such as throughput, reliability, and scalability.
The evaluation results indicate the simple design of BFS is successful in delivering the
expected performance, while certain workloads reveal limitations of BFS in handling a large
number of files. Addressing these limitations, as well as other potential improvements, are
considered as future work.
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Chapter 1

Introduction

A diskless node is a workstation that provides no local hard disk and employs remote file
systems for booting and storage. Using diskless nodes is not a new trend and is utilized
in several environments. For example, in High Performance Computing (HPC), diskless
nodes (thin clients) are used to provide computing, while storage requirements are served
by a remote file system. In addition, in many large organizations, workstations are used in
a similar fashion, where data and applications are stored remotely and are accessed locally.
Further, in cloud computing using diskless nodes is highly desirable because removing
disks reduces power consumption, space, heat, and noise [37]. In fact, separating storage
concerns from processing concerns has become a predominant trend in most large-scale
applications. For example, it is a common pattern for many applications to store their
data on separate cloud storage systems and focus on the computing.

The origin of Behrooz File System (BFS) goes back to a diskless environment in an
experimental operating system kernel, KOS [12], for many-core computer systems. Sim-
plicity is one of the main design goals in KOS. One way of achieving it is to have no
entrenched dependency on local hard disk; on the other hand, a POSIX-compliant file sys-
tem is required to bootstrap and satisfy applications’ storage needs. Therefore, the choices
are similar to those of diskless node environments including using in-memory or remote
file systems. Using simple in-memory file systems such as Linux tmpfs [39] is reasonable
for bootstrapping the kernel; however, because of lack of a persistency, they cannot ful-
fill storage requirements of applications. Further, although remote file systems such as
GlusterFS [6] or Ceph [46] are attractive options, they are fairly complicated systems de-
pending on a non-trivial software stack. Even a simple NFS client [38] has various software
dependencies. Further, using NFS limits KOS to only NFS server while there are a broad
range of storage systems with superior performance compared to NFS. As a result, the
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BFS project was initiated to combine the best of in-memory and remote file systems. BFS
stores files in main memory, and it uses a persistent network-based backend storage for
persistency. Originally, BFS was conceived to fulfill the storage requirements of an indi-
vidual workstation; however, later the project was expanded to group the main memory of
a collection of workstations to create a large scale storage system backed by a persistent
storage.

BFS’ goal is to completely eliminate the need for disk storage while providing persistent,
low latency, and high throughput file I/O using main memory and network-based backend
storage. In addition, providing a POSIX-compliant interface and feasibility for system
bootstrap are important design goals for BFS. Finally, BFS tries to address these challenges
by a simple, straightforward design and comparable performance to other (more complex)
solutions.

In this thesis, BFS is presented as an endeavour to address the aforementioned goals. In
BFS, data is stored in the main memory of commodity servers. In fact, the main memory
of many servers is aggregated to create a large-scale storage system. In order to provide
persistency, BFS uses backend storage. Backend storage is any type of storage system
that provides persistency guarantees. A backend storage can be a traditional file system
that provides strong consistency, or a modern distributed file system that provides high
availability and scalability. Data is not replicated in BFS due to the scarcity of main
memory; instead, replication is provided by the backend storage system of choice. BFS
scales by adding more nodes with memory and expanding the backend storage. Therefore,
BFS can be built and used by a single node or by a cluster of several nodes. BFS uses main
memory to provide low-latency and high throughput I/O; hence, the intercommunication
between BFS nodes should be fast enough to not significantly increase the latency or
decrease the throughput of the main memory. As a result, BFS is efficient in environments
such as data centers, where fast and low-latency networking is available.

BFS is built by grouping multiple nodes’ memory together and providing a shared uni-
fied file system view over them. If applications and BFS servers are co-located, BFS would
be a highly efficient design because this pattern minimizes inter-node communication. In
fact, in this case BFS performs similar to an in-memory file system since files are mainly
served from the main memory of machines on which applications are running on. This
pattern is very common in distributed computing environments, where each node performs
some computation and produces some data that need to be stored and shared with other
nodes. Examples of such environments include HPC or data analytics, such as Hadoop-
based applications [8]. On the other hand, when applications and BFS servers are not
co-located, BFS is similar to a remote file system. Remote file systems are limited by the
network and remote storage. However, BFS is limited by network and remote nodes’ mem-
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ory and for read operations, and for write operations it is limited by network and remote
storage. Therefore, it is expected for BFS to have a comparable and superior performance
than remote file systems when applications and BFS servers are not co-located. Evaluation
results of BFS using various workloads and benchmarks indicate that the simple design
of BFS is successful in delivering the expected performance. However, certain workloads
such as those with a large number of files reveal important shortcomings in BFS that are
addressed as future work. BFS is publicly available at http://bshafiee.github.io/BFS/.
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Chapter 2

Design

BFS is built by creating a global namespace over the main memory of commodity servers.
BFS uses ZooKeeper [25] to create a global consistent namespace and utilizes different
backend storage systems to permanently store files. BFS provides an interface similar to
the POSIX standard [16] using the FUSE library [5]. BFS employs several techniques
to create a low-overhead communication mechanism between nodes. In the following, an
overview of BFS is presented, followed by a detailed explanation of each part of the system.

2.1 Terminology

In this thesis, BFS server or server refers to any machine that BFS uses to store files.
BFS application or application refers to any program that mounts and uses BFS. BFS
client or client refers to any machine that runs a BFS application but is not a BFS server.
BFS applications can run on BFS clients as well as BFS servers. Note that a BFS client or
server can run several applications that use BFS simultaneously. Finally, a backend storage
is any storage system that is used by BFS to store files permanently.

2.2 System Overview

BFS aggregates the main memory of several machines (BFS servers) together and creates
a global unified namespace among them. BFS uses the ZooKeeper consensus protocol to
create this consistent namespace among participating servers. Different clients can use BFS
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by mounting BFS to a directory just as any regular directory in any UNIX-like system.
Clients can execute on BFS servers or any other machine. In fact, there is no distinct
difference between clients and servers in BFS, except the fact that clients only modify files,
while servers are used to store files as well. One of the BFS servers is known as the Leader
Node. It acts as a regular BFS server with some additional responsibilities explained in
Section 2.4.6.

Figure 2.1 shows a general overview of the BFS architecture. As it can be seen in this
figure, all BFS servers use a global namespace to become aware of files that other servers
are hosting. In addition, servers may communicate to move or manipulate each other’s files.
A BFS application can be running on any of BFS servers or separate machines, such as
C1 in Figure 2.1. Separate clients also use the global namespace to discover existing files.
However, unlike servers, they only read from the global namespace and do not manipulate
it because they do not participate in the BFS as storage servers. Finally, the last type of
communication is the communication between BFS servers and the backend storage. Each
BFS server is directly connected to the backend storage and uses it to permanently store
files.

2.3 BFS Namespace

The BFS namespace is responsible to cohere BFS servers. Using this global namespace,
servers become aware of other servers and their files. In addition, BFS uses this namespace
for other tasks such as automatic node failure/membership detection (Section 2.4.7), leader
election (section 2.4.6), and system statistics. In the following, first a brief review of
different namespace architectures is presented. Then it is discussed how BFS creates its
global namespace using ZooKeeper.

Naming plays a crucial role in computer systems. Names are used to uniquely identify
resources in a computer system and the process of identifying a resource is known as Name
Resolution. Thus, a naming system is required to assign and resolve names. Naming
systems organize names into a namespace. A namespace is a structure that holds a mapping
of names to resources. For example, Domain Name Servers (DNSs) are responsible for
resolving domain/host names to IP addresses in the Internet, and similarly in a file system,
there is a naming service for resolving and assigning names to inode numbers.

There are two main namespace architectures, flat and hierarchical. In a flat archi-
tecture, names are symbols that are interpreted as a single unit, without any internal
structure or relation. In contrast, in a hierarchical architecture, names are tied tightly to
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Figure 2.1: BFS Architecture

the hierarchy used for the names. It is the responsibility of a naming system to define the
structure of the hierarchy, decide how the hierarchy is to be partitioned, and specify how
names in the same partitions are related. Local file systems use a hierarchical namespace
because they are designed to be human-friendly, while most object storage systems use
a flat architecture because they provide an interface for other machines rather than hu-
mans. Similarly, most distributed file systems, which are designed to be used by humans,
use a hierarchical namespace, such as GlusterFS [6], while distributed file systems such as
Openstack Swift [14], which is usually used by other computer systems, use a flat hierarchy.

BFS provides a POSIX-like interface, which is designed for local file systems; thus, BFS
uses a hierarchical namespace, although it might interact with object storage systems in
the backend. For example, when Openstack Swift is used as the backend storage, BFS
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emulates a hierarchical name space using a flat namespace. If a file in BFS has a full
path of “/Dir1/Dir2/File1” it will be stored with the whole path as a single unique name.
However, when GlusterFS is used as the backend, in order to store “File1”, first “Dir1”
and “Dir2” need to be created if they do not exist.

Name resolution is an important part of a naming system. In local file systems, this
functionality is straightforward because the file system stores all mappings of names to
file inode numbers. Conversely, in a shared distributed environment, this is often not as
straightforward. Some distributed file systems, such as early versions of the Google File
System [24], use a central server as the name server; therefore, it is very similar to the
local file systems approach. Although this design has the advantage of simplicity, it can
suffer from drawbacks of having a single point of failure and the scalability concerns of a
single central server. In contrast, some distributed storage systems such as Dynamo [22],
Openstack Swift [14], or Ivy [34] use a symmetric approach in which each node in the
system plays a role in providing the name service. Most of these systems use a DHT-based
technique for lookups and distributing naming data among nodes. Ivy uses the Chord DHT
system [40], whereas Dynamo, Openstack Swift, GlusterFS, and many other distributed
file systems, use a DHT system known as Consistent Hashing [27] . DHT-based systems
do not suffer from a single point of failure and are designed to be scalable; however, they
are much more complex than a central design, and lookups are usually slower compared to
a central design because each lookup request might go through several nodes.

BFS builds its naming system by choosing a hybrid approach. BFS uses a central shared
server that is highly replicated. BFS creates this central shared server using the ZooKeeper
library. ZooKeeper is a consensus protocol for coordinating processes of distributed appli-
cations. Details about ZooKeeper are presented in Appendix A. BFS utilizes the central
namespace of ZooKeeper to store which files each BFS server is hosting. ZooKeeper signifi-
cantly simplifies the name service design of BFS. ZooKeeper acts as a single name server in
BFS, while this single server is highly replicated behind the scenes. Using ZooKeeper helps
BFS achieving simplicity of a central server design without being concerned about having a
single point of failure using replication. Each BFS server has a corresponding directory or
node at ZooKeeper that holds the list of files this BFS server is hosting. Figure 2.2 depicts
how BFS builds its namespace over the ZooKeeper namespace. When a BFS server creates
a new file, it updates the corresponding directory in the ZooKeeper namespace, and this
change is reflected using ZooKeeper watches to all other BFS servers. ZooKeeper watches
are a cheap mechanism to receive timely notifications of changes without requiring polling.
Upon receiving a change notification, a BFS server reads the name data of a changed di-
rectory at ZooKeeper and updates its own namespace information. In addition, when a
BFS server crashes, a watch event is sent to every other server, and all BFS servers realize
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a server has crashed and remove the missing files from their mapping. Similarly, when a
BFS server joins ZooKeeper, a watch event is triggered to all other servers to inform them
about the newly joined server. In this way, each server in BFS has a global view of all files
and servers in the system.

Using watches for propagating changes can introduce a consistency problem when two
applications running on two different BFS servers have their own communication channel.
For instance, consider application A on the first server creates a new file and informs ap-
plication B on the second BFS server through their communication channel. Accordingly,
application B is aware of the newly created file on A while B might not have received the
change notification through ZooKeeper watches yet. This is a violation of the strong con-
sistency semantics of a local UNIX file system; however, as it is explained in Section 2.7.1,
BFS cannot guarantee strong consistency when it is used with a non-consistent backend
storage anyway.

Although using ZooKeeper for building a shared name space in BFS significantly sim-
plifies the design and implementation of BFS; it can become a bottleneck under certain
workloads. For example, consider a scenario in which a single BFS server is creating
and storing a large number of small files. Then, the size of the corresponding directory
significantly increases, which is costly for ZooKeeper to store and replicate. ZooKeeper
is designed to handle small data nodes. In addition, this problem intensifies when the
number of BFS servers with a large number of small files increases; this effect is studied
in Section 4.4, and results indicate that ZooKeeper becomes very slow under many-file
creation/deletion workloads. Possible solutions to alleviate this situation are discussed in
Section 5.

2.4 BFS Internals

In this section it is discussed what interface BFS provides, how BFS stores files, what
granularity BFS uses to store files, and what BFS does in case of failure or new server
membership.

2.4.1 BFS File interface

BFS uses the FUSE library to provide a traditional POSIX-like file interface. The term
POSIX-like is used instead of POSIX-compliant because when BFS is used with a non-
consistent backend storage, BFS cannot provide strong consistency guarantees of the
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POSIX standard. However, as explained in Section 2.7.1, using a consistent backend
storage ensures BFS a POSIX-compliant system. On any BFS server or client, BFS can be
mounted under any regular directory, and applications can create, delete, read, or manip-
ulate files just as they were stored on a local disk. Furthermore, an application that uses
BFS is not able to distinguish whether the files it is accessing are accessed locally or re-
motely. Detailed explanation of BFS consistency guarantees are provided in section 2.7.1.
In addition, some features that usually exist in common POSIX-compliant file systems, are
not available in BFS. Examples of such features includes extended attributes, POSIX file
locking, symbolic links, and hard links.

2.4.2 Data Model

In order to store or retrieve data to/from a file system, a well-defined data model is required.
A data model defines the basic nature of entities stored on a medium. Storage entities can
be structured or unstructured. For example, a byte, a group of bytes known as a block,
or a group of blocks knows as an object are examples of unstructured entities, whereas
a table of a relational database is a structured storage entity. Structured data models
offer convenience and more power to perform data extraction; however, they incur a high
overhead and slowdown upon a storage system compared to unstructured data models.

Data granularity in a data model specifies how big storage entities are. It has been
investigated by different systems with no universal solution. For instance, using a small
granularity increases the size of metadata, while using big granularity can waste storage
and cause fragmentation. Traditional file systems usually choose a block as the storage
granularity, but they expose a byte-level access to the files. This approach has been
successful for many years and is suitable for serving a moderate number of files. On the
contrary, cloud computing workloads usually process a massive number of files, which can
be several orders of magnitude larger than everyday applications’ file size. Traditional file
systems can not scale with such workload characteristics due to the contention in the file
system and massive amount of metadata generated for these huge workloads. To serve
such environments, object level storage are proposed that use a bigger data granularity, an
object (a group of blocks). Despite all the benefits of object storage systems, they are not
a suitable choice for use cases where there are a lot of small I/O operations and demand
for operating at byte-level. Although some object storage systems such SGI OmniStor [17]
and those that are compatible with the Cloud Data Management Interface (CDMI) [2]
have support for byte-level operations, most commercial and widely used object storage
systems, such as Amazon S3 [1], Google cloud storage [7], or Openstack Swift [14], do not
support byte-level operations.
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In conclusion, there is no universal best data model for a file storage system. As
discussed in the previous section, each choice has different pros and cons. Moreover,
considering the simplicity of the exposed interface and interoperability with other systems
in a computer, such as main memory or networking, adds to the complexity of choosing a
data model for a file storage system.

BFS Data Model

BFS interacts with different storage sub-systems of a computer at the same time. BFS
uses memory as the local storage, stores files to a backend storage (block-level or object
storage), and transfers data between nodes using a network connection. In addition, BFS
exposes a POSIX-like interface to applications. Thus, choosing a data model in BFS is
different from regular storage systems.

Figure 2.3 shows the data granularity in BFS interactions with different sub-systems.
BFS interacts with applications using a POSIX-like interface, which operates on byte-level.
Similarly, a BFS server interacts with other BFS servers over the network using the regular
network interface, which is used by a byte-level interface. BFS utilizes an internal block
size to store files in the main memory. Finally, BFS stores data permanently at the backend
storage, which can be a block-level storage such as GlusterFS or an object storage system
such as Openstack Swift.

BFS chooses a block as the granularity for storing files in memory, and when BFS
uses an object storage as the backend, it maps each file to an object. BFS exposes a
byte-level interface, which allows partial reads/writes. On the other hand, most object
storage systems, including Openstack Swift, which BFS uses as a backend storage, do not
support byte-level operations. To handle this situation, BFS performs byte-level operations
on existing files in the memory and updates the whole object in the backend in case of
an update. The main drawback of this approach is that uploading the whole file instead
of affected bytes (in case of modification) to the backend can take significantly longer
than only uploading modified bytes to the backend. One solution to this problem is to
shrink a file to multiple objects that are fixed-size but are bigger than blocks. The main
reason for using blocks as the data granularity for storing files in BFS is simplicity, but
as explained before, the proper size of a block needs to be studied further. In fact, the
choice of granularity affects many design decisions for BFS, such as interactions with the
backend storage, handling overflows (refer to Section 2.4.5), the exposed user interface,
efficiency, and performance of the system. Thus, this topic needs to be studied further and
is considered as future work.
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2.4.3 FUSE Library

BFS uses the FUSE library to provide a POSIX-like interface to applications. File systems
are normally implemented as a part of the operating system kernel. FUSE provides a
mechanism to implement a file system without having to change, compile, or know about
the kernel. Most UNIX-like operating systems use a layer called Virtual File System (VFS)
between file systems and the kernel. The purpose of VFS is to access different file systems
using the same interface. For example, using VFS, Linux users can have the same and
indistinguishable access to different file systems, such as ext3, ext4, NTFS, or any other
type of supported file system. In addition, VFS allows updating a file system without
having to change or update the kernel. In fact, VFS resides between different user space
applications and different file systems as depicted in Figure 2.4.

FUSE also utilizes the VFS facility to provide a file system in user space. FUSE has
two main parts, a kernel module and a user space library called libfuse. libfuse exports
the FUSE API to file system developers in user space, and the kernel module interacts
with VFS and forwards requests and responses to/from libfuse using a character device. A
general overview of the FUSE architecture is presented in Figure 2.5.

In this diagram, a user space file system is registered in FUSE using libfuse. The user
space file system is mounted under “/mountdir” directory, and this file system is accessed
by Process 1 through that directory. All file operation on “/mountdir” are captured by
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VFS and then delivered to the FUSE kernel module. In the next step, the FUSE kernel
module forwards file operations to libfuse and finally to the user space file system process.
For instance, when Process 1 runs the ls command (readdir) against “/mountdir” the
request is captured by a system call to VFS, routed to FUSE kernel module, then to
libfuse, and finally to the registered user space file system. Upon receiving the readdir
request, the user space file system processes the request and sends back the reply through
the same channel. BFS has been implemented as a user space file system by means of the
FUSE library and captures and processes’ file I/O requests as described.

2.4.4 BFS Implementation

Once a file I/O request is delivered to BFS via FUSE, the BFS storage engine processes
the request and serves it if the required file is stored locally, or forwards the request to
the remote server where the requested file is stored. BFS has been implemented in C++
in approximately 12 K lines of code. Figure 2.6 shows a general overview of BFS internal
architecture.

BFS has six main internal sub-systems. File I/O requests from libfuse are received and
pre-processed by the FUSE Callback Handler. In the next step, the request is handed to
the In-Memory Storage Engine that is the central part of the system. If the requested
file is present on the running server, it will be served locally, and results are written
back through the FUSE Handler. Necessary synchronization actions are taken by the
Sync Engine that communicates with the backend storage. For instance, if a write has
happened to a file, the Storage Engine asks the Sync Engine to reflect the changes in
the backend storage. Furthermore, it is important to mention that write request are not
blocked for synchronization with the backend storage, unless a synchronized I/O operation
is requested. For instance, if flush, close, or fsync are called or if the file has been opened
with the O SYNC flag all modification to the file are synchronized with the backend
storage before returning from the FUSE call. Consequently, I/O operations are performed
in an asynchronous manner unless explicitly synchronized I/O is requested.

When a request is received for a file that is not present on the current server, Storage
Engine determines which server is hosting the requested file using the Namespace Handler,
and it sends a request through the Interconnect Handler to that remote server. It is
worthwhile to mention that Namespace Handler caches the mapping and does not send a
query to ZooKeeper each time to look up the host server for a file. Finally, once the result
of a remote request is received by the Interconnect Handler, it hands back the result to
the FUSE Handler and finally back to the application. In addition to the five mentioned
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subsystems in BFS, there is a Leadership Handler module that is discussed in detail in
Section 2.4.6.

2.4.5 Load Balancing

There are two different scenarios in which BFS needs to perform load balancing. First,
BFS can proactively move files from a server that is under heavy load to other servers. For
example, in some distributed applications only a single server is producing data, and the
rest mostly use data. Therefore, the BFS server that hosts the producer, will experience
significant load and contention from readers, whereas those BFS servers that host consumer
applications do not experience any storage load. Therefore, it is beneficial to proactively
split load among different BFS servers. In addition, consider a client creates a file on server
A, and another client repeatedly accesses that file from server B. In this case it would be
beneficial to move that file to server B; as a result, most accesses to the file will happen
locally. At this point, no proactive load balancing mechanism is implemented in BFS;
however, as explained in Section 3, this is one of the main topics to be considered for the
future road map of BFS.

Another scenario for load balancing is to actively move files from a BFS server that has
reached its maximum capacity to other BFS servers. By default BFS writes all the written
data to the local server that hosts the file; hence, when a server reaches its maximum
capacity, BFS needs to find other free servers to continue writing. There are several options
to handle this situation. First, the file that is being written can be moved to another server
with enough free space. Second, some existing files can be moved to other BFS servers to
make free space for the file that is being written. Third, the part of file that is already
hosted on the current server can be kept, and the rest of file can be written on another
free BFS server.

In the first approach, BFS moves the file that is being written to another server. This
approach is implemented in BFS and is used as the default moving policy. Although it
seems this approach is not considering the locality of file accesses, it has the advantage of
simplicity. It is easy to implement this approach because it affects the least number of files
in the system (only moves the current file to another server).

The second approach is inspired by the eviction techniques in cache, where least recently
used files are considered as good candidates for eviction. This approach keeps the locality
of file accesses by moving the files that are accessed the least. However, an important
question is how much free space is required to accommodate the newly written data. For
instance, consider the newly written buffer size is 1 MB, and the host server has reached its
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maximum capacity; therefore, at least 1 MB free space should be made available. If only
1 MB new free space is created, the next write to this file, which is very likely to happen,
will experience the same issue. In the world of programming languages, resizable arrays
also experience this issue. Most programming languages use an exponential approach and
double the size of the array each time maximum capacity is reached. The same semantics
can be used in determining how much free space is required for expanding files as well.
However, another problem with this method happens when there are many small files or
very few massive files. For instance, assume that a BFS server with 20 GB capacity has
become full, and the current file being written is 1 GB. Further, assume this server contains
another 19 GB file. Therefore, the least recently used file is the second 19 GB file and
moving it to another node to make space for 2 GB is considerably inefficient. Similarly,
assume the same BFS server but with thousands of tiny files instead of a single 19 GB
file. As a result, making 2 GB free space requires to move many of these tiny files that is
inefficient compared to moving a single file of the same size (first approach). Due to the
aforementioned issues, this policy has not been implemented in BFS.

In the third approach, only the newly written data is moved to another BFS server, and
existing chunks of the file (as well as other files the server is hosting) are kept at the same
BFS server. In addition, it only moves the newly written data to other servers; thus, it has
the minimum cost of moving compared to the last two approaches. On the other hand, as
explained in Section 2.4.2; this mechanism requires another level of metadata for keeping
track of where each part of a file is hosted. This significantly increases the complexity of
implementation and namespace design. Hence, this technique is not implemented in BFS.

In conclusion, none of the above approaches are perfect, and each has its own pros and
cons. A comprehensive solution might be to use a hybrid approach that could alternate
between different policies and decide based on the situation. As explained in Section 5,
this issue is one of the topics to be considered as future work for BFS.

2.4.6 Leader Node

BFS uses a distributed leader election algorithm by means of ZooKeeper to choose one of
the BFS servers as the leader node. Details of leader election algorithm are provided in [25].
The leader node is same as any other BFS server with two additional responsibilities that
are described in the following paragraphs.

First, the leader node is responsible for handling other BFS servers’ crashes. When
a BFS server crashes, the leader uses the global namespace to determine which files are
missing (files that exist in the backend storage but are not present in any BFS server), then
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it asks a subset of BFS servers to fetch missing files from the backend storage. If the leader
node crashes, another BFS server is chosen as the leader via ZooKeeper. Consequently,
as long as there is one or more servers present, there will be always a leader among BFS
servers.

Second, having a leader is important during the bootstrap process with an existing
backend storage. For instance, consider a situation where BFS is going to run with an
existing backend storage that contains many files. Similar to the failure scenario, the
leader asks different BFS servers to fetch missing files from the backend storage. It is
worthwhile to mention that the leader in both scenarios (failure and bootstrap) assigns
missing files to BFS servers according to their free storage capacity.

2.4.7 Membership and Failure Detection

A crucial task in any distributed systems is to detect and handle new server membership
and failures. As described in the previous section, BFS handles server failures using the
leader node. However, the first issue to address is to detect failures. BFS uses the group
membership facility of ZooKeeper to detect join and departure of servers. As explained in
Section 2.3, each BFS server upon arrival creates a directory in the ZooKeeper namespace,
and ZooKeeper informs existing BFS servers about the arrival of new servers using so-
called watches. BFS servers create so-called Ephemeral nodes in ZooKeeper. An ephemeral
node in ZooKeeper is a directory that will be either deleted explicitly by the system or is
automatically deleted when the session between ZooKeeper and BFS server that created the
ZooKeeper node expires. Once an ephemeral node is deleted other BFS servers are informed
through a watch event. Session expiration might be due to server failure, networking
issues, power outage or any other reason that disconnects a BFS server from ZooKeeper.
More details about how ZooKeeper discovers session departures is provided in the original
paper [25].

2.5 Backend Storage

Backend storage is an important part of BFS design. It is responsible to permanently store
data; in addition, BFS can take advantage of several other features that a backend storage
solution might provide. For instance, BFS does not replicate files for availability because
if replication is required, it can be provided using a replicated backend storage. There are
several distributed object storage solutions that provide a high level of availability through
replication, such as Openstack Swift.
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BFS is designed to be compatible with different types of backend storage. In fact,
BFS is be able to work with any storage solution. BFS uses a middle layer between its
storage engine and backend storage. Therefore, adding support for a new storage solution
is only the matter of implementing the virtual interface of this middle layer. This middle
layer handles how each file in BFS is mapped to a storage entity in the backend. For
instance, the current OpenStack Swift backend plugin maps each file to an object in the
Swift object storage, while the GlusterFS plugin has a file to file mapping. This design
simplifies BFS communication with different backend storage and allows to extend backend
storage support easily. At the time of writing this document, an object-based storage
solution, Openstack Swift, and a block-level storage, GlusterFS are supported in the BFS
as backend storage, and it is easy to add support for other storage solutions as well.

2.6 CAP Properties

The CAP theorem [21] is a widely accepted framework to describe issues in any distributed
system, and how these issues affect each other. Any distributed system’s goal is to provide
all of the following properties at the best level:

Consistency
A total order must exist on all operations as if the operations were completed at a
single instance. For example, in context of a distributed file system, any subsequent
read after a completed write operation must return the value of this (or a more
recent) write operation.

Availability
Each request received by an operating node should receive a response in a described
time frame.

Partition Tolerance
The system is working properly in case of arbitrarily losing many messages sent from
one node to another.

The CAP theorem states that although all of these properties are desirable, a dis-
tributed system can perform well in at most two of these properties simultaneously. As a
result, one of these properties should be relaxed to achieve the other two. For instance,
if consistency promises are relaxed, the system can always reply to requests even if nodes
cannot communicate; however, there is no guarantee that the returned data is consistent.
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BFS can not be directly categorized in terms of the CAP theorem because unlike typi-
cal storage systems, BFS has two different layers of storage. First, the frontend where files
are stored and accessed in the main memory of BFS servers. Second, the backend storage
where files are stored permanently. The BFS frontend only stores a single replica of each
file; thus, it provides strong consistency. In contrast, the lack of replication makes BFS
frontend unavailable in case of server failure or generally network partitioning. On the
other hand, files are stored in the backend storage as well. Therefore, if a highly available
backend storage (e.g. Openstack Swift) is used, BFS provides high availability. However,
AP (Available and Partition-Tolerant) storage sacrifice consistency; as a result, strong con-
sistency promises of BFS frontend are also relaxed in favor of availability. Further, if a
consistent backend storage such as GlusterFS is used, then BFS will provide consistency
with a weaker availability in the case of network partitioning. In conclusion, BFS consis-
tency and availability promises depend on the backend storage that is used. Due to the
importance of consistency in storage systems, a more thorough discussion of consistency
in BFS in different scenarios is presented in the next section.

2.7 Consistency

A consistency model is an agreement between a data store (e.g. a file system) and clients
that use the data store [41]. Normally, a process expects to see the result of the last
write upon a read operation on a file. However, in a distributed system due to the lack of
a global synchronized clock, it is difficult to determine what is considered the last write.
Moreover, due to the possibility of network partitioning, a node might not be aware of writes
happening at other nodes. Therefore, in such systems alternative definitions are required
that essentially narrow the valid results of a read operation. Each of these definitions are
known as a consistency model.

Two important consistency models are sequential and eventual consistency models. In
the sequential consistency model, it is expected that operations on a data store be executed
in the order specified by applications [41]. In other words, this definition means that any
interleaving of operations is valid as long as all applications see the same interleaving of
operations. Eventual consistency is a very simple and relaxed consistency model in which
all replicas of a data item will become the same, if no update happens for a long period
of time [41]. Eventual consistency model usually describes the consistency promises of AP
distributed systems.
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Figure 2.7: Sequential Consistency in BFS

2.7.1 Consistency in BFS

The BFS consistency model is tied to the backend storage. However, more specifically,
BFS consistency guarantees depend on the backend storage, if and only if a node failure
happens. Normally, all operations are performed on a single server’s memory, but when a
server crashes or a network partitioning happens, there will be a temporary unavailability of
missing files until they are recovered from the backend storage. After recovery, the content
of recovered files depends on the consistency model of the backend storage. For instance,
if a consistent backend storage is used, BFS still provides strong consistency guarantees.
Therefore, during a temporary unavailability, BFS does not violate consistency guarantees
and only blocks the requests until the missing files are fully recovered from the backend
storage, which means a weaker form of availability. In fact, if BFS is seen as a distributed
cache over a data store, it is strongly consistent in normal scenarios (without a crash),
which is not the case for CPU cache or file cache; furthermore, after a crash, BFS provides
a weaker availability and the content of recovered files depends on the backend storage.

BFS is sequentially consistent as long as the underlying backend storage is sequentially
consistent. For instance, if the backend storage is not sequentially consistent the client
might see sequentially inconsistent behaviour as well. Consider Figure 2.7, Process 1 writes
the value of a on file x at time t1 and receives acknowledgement from BFS about completion
of the write (flushed write) operation, denoted as W(x)a by P1 at t1, and Process 2
successfully writes b to x at time t2.

At t3 the primary server for x crashes, and the system experiences a temporal unavail-
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ability until t4 for file x. At t5, P4 reads the recently recovered x and receives b as the
value of x. At t6, the underlying node for x crashes again, and the system suffers from
temporal unavailability until t7. Finally at t8, P3 reads x from the underlying server for
x which has finished recovering x from the backend at t7. If BFS backend storage is a
sequentially consistent data store, BFS will return b as the result of a read, and in the case
of a non sequentially consistent backend storage, BFS might return b, a or any write value
before a.

Finally, it is important to remember that the described consistency model for BFS
applies to file modification operations (e.g read or write). As described in Section 2.3,
file creation/deletion are propagated to BFS servers via ZooKeeper watches. ZooKeeper
delivers watches in an asynchronous manner, and this leads to an eventual consistency
model for file creations/deletions.

2.7.2 GlusterFS Consistency Model

GlusterFS is POSIX-compliant, which means it provides a strong consistency model. Glus-
terFS provides strong consistency at the cost of relaxing availability. In other words, if a
network partitioning happens then the partitioned nodes may not have consistent replicas;
therefore, GlusterFS is not able to provide a consistent response. Hence, in order to pre-
serve consistency, it does not provide a response and availability is sacrificed. On the other
hand, newer versions of GlusterFS have support for options that loosen strong consistency
to eventual consistency and preserve availability and partition tolerance.

2.7.3 Openstack Swift Consistency Model

Swift object storage provides eventual consistency, meaning that all replicas will become
consistent, if no updates happens for a long period of time [20]. For example, if an object
is written, Swift replicator starts to gradually update all replicas of that object to the
latest version. Consequently, if a subsequent read happens on the mentioned object before
the replication is finished, it might not necessarily see the latest version of that object.
In terms of the CAP theorem, Swift sacrifices most consistency guarantees in favour of
availability and partition tolerance. This means that even though consistency guarantees
in Swift are highly relaxed, availability and partition tolerance are high.

Normally, Swift does not provide sequential consistency guarantees. Consider Fig-
ure 2.8, data item x is a at the beginning, then two writes are performed on x by P2 and
P3. The result of R2(x) can be any of a, b, or c values (Note that sequential consistency
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Figure 2.8: Sequential Consistency in Swift

has not been violated so far). Assuming R2(x) will return b, if Swift returns anything
other than b or c for R3(x), it will violate sequential consistency rules. In fact, swift might
return a for R3(x) because by default it will return the value of first found replica of x
without considering its version.

Replication in Swift is done using a Quorum-Based protocol [41], meaning that every
read or write operation is served in agreement with a subset of replicas. For example,
imagine each data item is replicated at N nodes in Swift, and agreement of R nodes for
read operations, and W nodes from total of N nodes is required for write operations.
Therefore, if the following condition holds, one can claim strong consistency for Swift [41]:

1. R+W >N (avoids read-write conflict)

2. W >N/2 (avoids write-write conflict)

As a result, Swift can be configured with relevant values for R and W to provide
strong consistency. However, this will adversely affect availability and partition tolerance
characteristics of Swift, and this is the reason that Swift is categorized as an AP data store
in term of the CAP theorem.

2.8 BFS Servers Interconnect

BFS servers use networking to access remote files on other BFS servers. BFS uses main
memory to reduce I/O latency and to increase the read throughput. The networking
between BFS servers should be fast and have low-latency. BFS is targeting environments
where the network latency is small, and links are fast, such as data centers.
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Using reliable sockets (TCP connections) provided by operating systems is the simplest
and the standard way of transferring data between machines in a network. However, there
is a notable overhead in processing each packet by the operating system network stack.
Precisely, there are two main sources of delay in processing of each packet by the operating
system kernel. First, the overhead of copying packets between the kernel and the user
space. Second, the processing overhead of the network stack in the operating system.
One solution to this problem is to use Remote Direct Memory Access (RDMA). RDMA
allows accessing a remote machine’s memory without intervention of its operating system
by offloading the processing stack to the network card hardware. As a result, RDMA is
able to provide high-throughput low-latency networking which is highly desirable in BFS.
However, due to the lack of access to such equipment at the time of developing BFS,
RDMA was not considered.

The third solution is to bypass the kernel network stack overhead. PF RING [15] is a
library capable of exposing the Network Interface Card’s (NIC) buffer to the user space
and manipulates this buffer directly without the involvement of the network stack. Using
PF RING BFS reduces the overhead of the network stack and avoids copying packets
between the kernel and the user space. PF RING is a packet capture library that provides
an Application Programming Interface (API) to read/write directly from userspace to the
NIC’s buffer. Figure 2.9 depicts the architecture and the packet journey in PF RING.
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When a packet arrives, the special PF RING device driver receives the packet in the
DMA buffer. This buffer is shared by user space using memory mapped files. Therefore,
applications can have access to the packets without any copying or overhead involved.

PF RING reduces the overhead of the network stack and avoids copying between the
kernel and user space, but it does not provide reliability guarantees offered by TCP. For
instance, when the NIC’s buffer is full, incoming packets will be dropped, and the applica-
tion will not be able to process them. One of the main responsibilities of TCP is handling
packet loss due to queue overflow at endpoints or routers. In contrast, BFS uses Ethernet
Flow Control, specified in the IEEE 802.1Qbb standard [9], to create a reliable transfer
protocol over raw ethernet. Ethernet Flow Control uses pause frames to stop the sender
from sending more packets. Pause frames are sent before the NIC buffer becomes full.
Pause frames request the sender to not send any packet for a specified period of time.
Ethernet Flow Control is a hop-to-hop protocol which means a NIC can only send a pause
frame to its immediate neighbours. Therefore, in order to create reliable communication
along a path, all nodes should support ethernet flow. In addition, ethernet frames are not
routable; consequently, BFS servers must be in the same broadcast domain to be able to
communicate using PF RING.

PF RING needs customized drivers to be able to deliver packets to the user space
without any copying. Therefore, PF RING is not compatible with all commercial ethernet
cards. In order to address this issue, BFS implements a TCP networking mode as well.
In addition, the TCP mode can be used when BFS servers are not in the same broadcast
domain. BFS networking mode can be configured using a configuration file. In the rest of
this document when BFS uses PF RING, it is referred to as the BFS ZERO mode, and
when TCP is used for network communication, it is referred to as the BFS TCP mode.

2.9 Access Control in BFS

BFS uses libfuse to automatically handle file permission and ownership in the kernel on
each BFS server. Therefore, BFS is not directly involved in handling file permissions and
ownership information. However, ownership information on one BFS server may not be
relevant on other BFS servers. Thus, remote files on each BFS server are created with the
default user ID and group ID of BFS binary. Moreover, BFS does not implement Access
Control Lists (ACLs). These limitation were introduced to make the implementation of
BFS easier, and should be addressed in future releases of BFS.
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Chapter 3

Related Work

As explored in previous chapters, there are different design perspectives that categorize
different file systems. The access model divides file systems into two broad categories of
local versus remote file systems. Local file systems serve data from a local device such
as a disk, while remote file systems use networking to access data from a remote server.
Remote file systems can be further categorized into shared file systems and distributed file
systems. In a shared file system, all applications access and store data from/to a central
file system server, whereas in a distributed file system data is stored and accessed from
multiple servers.

In addition to the access model, the data model is another important design factor that
categorizes file systems. Most traditional file systems, especially the local and shared file
systems choose a flexible block-level data model, while the majority of recent distributed
file systems use an object-level data model or even higher-level structured data models
such as tables.

Finally, the name service design is also an important design decision that classifies file
systems into different groups. Most local and shared file systems use a central architecture,
while a distributed architecture is predominant in distributed file systems. In the rest of this
section, various existing systems are discussed based on the aforementioned perspectives.

Local File Systems

Among different general purpose local file systems, tmpfs [39] is relevant because similar to
BFS it uses main memory to store files. It provides a fully POSIX-compliant file interface
over volatile main memory, and is useful for storing transient or easily recreated files such as
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those that can be found in /tmp in Linux. Further, using non-volatile memory (NVRAM),
persistency can be achieved in memory-based file systems. Many studies such as [30, 19, 28]
try to design local file systems that are optimized for operating such devices. Although
NVRAM devices are still very expensive to use in general workstations; they are becoming
popular for server machines [23]. BFS can also utilize these devices. Using NVRAM allows
BFS to operate with persistency without using any backend storage.

Most local file systems use a block-level data model; however, systems such as OBFS [45]
use a object-based data model. OBFS is a local file system designed to store files as a set of
objects on self-contained Object-Based Storage Devices (OSDs). OBFS stripes files across
OSDs in form of objects, and tries to optimize disk layout to accommodate objects based
on the workload. Evaluation results of OBFS demonstrate outperforming Linux Ext2 and
Ext3 [44] by a factor of two or three, and it provides only slightly lower read performance
and 10%-40% higher write performance than XFS [33].

Shared file Systems

In shared file systems, such as NFS [38] and AFS [26], all clients use remote servers to
access files, and clients do not contribute to the storage. NFS utilizes Remote Procedure
Call (RPC) for communication between clients and servers. The idea of using VFS was
first initiated in NFS (cf. Section 2.4.3). NFS provides strong consistency and operates
on byte-level semantics, it receives file system operations from VFS and forwards them
with RPC to the NFS server side. The server side performs the operations and responses
back to clients via RPC. NFS is a stateless protocol meaning that each RPC has all the
necessary information to complete the call; therefore, crash recovery is very easy in NFS.
For instance, if an RPC fails, a client sends another request until it receives a response
from the server. Similar to NFS, BFS also uses a stateless protocol and failed requests are
repeated until they receive a response from the server.

The main drawback of the NFS design is scalability. The central design of NFS limits
its scalability with a large number of clients. AFS tries to alleviate some of these concerns
by reducing server interactions (through caching mechanisms); however, the fundamental
problem of having a central server design still exists. Some of AFS improvements are added
to later versions of NFS, but due to the predominance of NFS in the marketplace, AFS
has never gained the popularity of NFS.

27



Distributed file systems

There is a large body of work in distributed file systems. Most of these systems are
developed to support reliability and scalability. One big group of these systems are object-
based storage systems such Dynamo [22], Openstack Swift [14], and Cassandra [29]. All
of these object storage systems relax consistency for availability and partition tolerance
because reliability and availability are the most important requirements in environments
they are used. For instance, in the case of Dynamo, any disruption will have a significant
financial consequences [22]. In addition, they use object-based data models because most
of the services that use these storage systems need a whole object access compared to a
partial object access.

Dynamo uses consistent hashing for data partitioning, replication, and creating its
flat namespace. Membership and failure detection are done using a gossip-based protocol.
Dynamo only provides a simple object-based get()/put() interface. This is because services
that Dynamo is built for do not require additional complex operations as the case in
RDBMSs. Dynamo provides availability and scalability by using optimistic replication. In
optimistic replication, changes in data items are propagated in an asynchronous manner
in the background resulting in conflicting replicas. Due to the fact that Dynamo aims to
be always writeable, it resolves conflicts during read operations, which guarantees writes
are never refused. A unique design factor in Dynamo is the conflict resolution mechanism,
which unlike many other data stores is delegated to clients instead of the data store.

Load balancing and the namespace in Dynamo are handled by partitioning data items
over nodes using consistent hashing. Each data item is recognized by an id (using MD5 sum
of its key) and is assigned to a node (coordinator) that is responsible for the corresponding
portion of the hash space. Each data item is replicated at N (a configured parameter) nodes
called preference list, including the coordinator for that data item, and N-1 successor nodes
in the hash space. In contrast, it has been shown [36] that consistent hashing does not
perform optimally in keeping the load variance low. This issue is further explained in
Section 5.

Openstack Swift inherits many of Dynamo design decisions and differs only in small
details such as membership/failure detection or the provided object interface. Membership
and failure detection in Swift are done manually and there is no automatic mechanism to
handle node churn. Further, Swift provides a more comprehensive object interface, whereas
Dynamo only provides a simple get()/put() interface.

Cassandra also shares many similarities with Dynamo. Similar to Dynamo, Cassandra
tries to provide a highly scalable and reliable storage facility. Conversely, it uses a somewhat
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higher-level data model than Dynamo. Cassandra’s data model is not neither object-level,
nor a fully structured data model such as a table in relational databases, instead it supports
dynamic control over the data layout and format. In fact, each table in Cassandra is a
multidimensional map that is indexed by a key. Cassandra’s API is simple and includes
only three methods, insert(), get(), and delete().

Similar to Dynamo, Cassandra uses consistent hashing for partitioning of data across
clusters to serve availability. Cassandra uses different policies such as Rack Aware and
Datacenter Aware to decide where to replicate data items at. Cassandra uses Scuttlebutt, a
very efficient anti-entropy gossip-based mechanism to disseminate membership information
and system related control states. Cassandra uses the so-called φ Accrual Failure Detector
to detect node failures. These detectors are fast, accurate and adjust according to the
server load conditions.

When it comes to latency and performance, Cassandra diverges from Dynamo and
Swift. Cassandra is designed to handle millions of writes per day while Dynamo and
Swift focus on availability even with high write latency. Therefore, Cassandra employs
various techniques to improve the write latency and the throughput. A write in Cassandra
includes a write into a commit log and an update into an in-memory data structure, which
will be performed only after the successful write into the commit log file. Cassandra
can be configured to perform either synchronous or asynchronous writes depending on
applications’ requirements. A read operation first queries the in-memory data structure
before looking into files on disk.

Tachyon [31] and RamCloud [35] are examples of in-memory distributed file systems.
Similar to BFS, these two systems use main memory for storing data. In the following,
similarities and differences of these two systems with BFS are discussed.

Tachyon tackles the problem of slow I/O operations in big data computations. Similar
to BFS, Tachyon uses a block-level data model. Unlike many systems, Tachyon does
not use main memory for keeping hot data (cache behaviour) but instead replicates data
asynchronously after it is written to main memory. Tachyon uses applications’ hints and
so-called linage concept [47] to recompute any loss in data.

Tachyon design is inspired by characteristics of big data workloads, such as determin-
istic computation (applications code is always deterministic), program size vs. data size
(programs are small and replicable). These characteristics make Tachyon a viable sys-
tem, but in the absence of any of these characteristics, Tachyon either fails, or provides
no improvement. Tachyon stores a working set in the main memory and replicates new
data asynchronously and recomputes them in case of loss using the lineage information.
Implementation of Tachyon reported that it can attain write throughput of 300X higher
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than Hadoop File System (HDFS).

Although Tachyon might be a valid and elegant solution for certain workloads, its
limitations do not allow to use it for many applications such as HPC applications. In
addition, Tachyon does not provide a general purpose file system interface and is highly
customized for the Hadoop ecosystem.

Similar to BFS, RAMCloud utilizes main memory to store data. However, unlike
BFS, RAMCloud’s data is entirely kept in main memory. RAMCloud uses replication to
achieve durability. However, this approach is costly because main memory is expensive,
and this increases the amount of required memory depending on the number of replicas. On
the other hand, using DRAM as backup is not very reliable, because a power outage might
take down all machines including backup machines. To address this issue, RAMCloud
utilizes buffered logging that uses both disk and memory for replication. In this approach,
a single copy of an object is kept in the DRAM of a primary server and a copy is also
kept in the DRAM of two (or more) servers temporarily until data is written on the disk.
The important point is that the backup copies are not updated synchronously with the
write operation. Instead, the primary server updates its DRAM and forwards log entries
to the backup servers. This write operation returns as soon as the log entries are written
to the DRAM of backup servers. Finally, backup servers write logs from their DRAM to
disk. Although buffered logging allows read and write at DRAM speed, the overall system
throughput is still limited by the disk bandwidth for writing the log entries. Thus, if a
high write throughput is desirable, then the only way is to keep replicas in DRAM.

Another different design decision in RAMCloud is the data model. RAMCloud proposes
an intermediate approach where the system does not impose structure on data but supports
aggregation and indexing. In this approach, storage entities are objects that can be grouped
and indexed.

Ousterhout et al. [35] claim that due to the low latency of write operations in RAM-
Cloud, keeping strong consistency is possible. However, they do not describe the necessary
details about how consistency is achieved and to what degree it is supported in RAMCloud.
One can clearly see that strong consistency is not provided by RAMCloud. For example, in
the buffered logging mechanism, if the primary node that holds a data item crashes before
its backup server finishes writing to the disk (backup servers also fail to finish the write),
the latest version of that data item is permanently lost while the write operation has al-
ready returned to the client. But it is assumed that data center wide applications usually
do not require strong consistency, and because the latency of operations are extremely low
in RAMCloud, lost data items can be quickly recomputed.

Ceph [46] and GlusterFS [6] are examples of POSIX-compliant distributed file sys-
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tems. Ceph uses an object-based data model and utilizes OSDs. OSDs allows file systems
to read/write arbitrary byte ranges from/to disks without handling the low-level block
allocation details and granularities concerns. However, OSDs are not scalable due to little
or no distribution of metadata. Ceph decouples data and metadata operations. It uses
an object storage cluster for storing data and metadata information; further, it employs a
separate cluster for handling metadata operations such as namespace operations (e.g. file
creation, deletion, or rename). Ceph tries to achieve high scalability and performance by
decoupling data and metadata. BFS is similar to Ceph in the sense that BFS also uses a
separate cluster (ZooKeeper cluster) for handling namespace operations. However, unlike
Ceph, BFS does not devote all metadata operations to a separate cluster. For example,
opening and closing files is handled by BFS servers (storage servers) rather than ZooKeeper
nodes.

Ceph provides a range of different interfaces. Ceph supports a POSIX-compliant in-
terface as well as an object-based REST API. Ceph maps each file to an object and relies
on the fact that OSDs allow byte-level operations without involving in the low-level block
allocations. This is similar to what BFS does, but unlike OSDs, most object storage
systems do not support byte-level operations. Ceph uses similar techniques to those of
consistent hashing for handling the namespace. It hashes individual directories and dy-
namically re-partitions them when they become large. This scheme can be useful in the
current BFS namespace design as well. For instance, it is possible to shrink those direc-
tories at ZooKeeper that pass a threshold. However, a more detailed plan about handling
the namesapce scalability in BFS is provided in Section 5.

Ceph is a CP(Consistent and Partition Tolerant) storage system. This is because
Ceph provides a fully POSIX-compliant interface; therefore, it needs to support strong
consistency. On the contrary, Ceph has support for relaxing consistency promises to gain
availability.

GlusterFS is a popular POSIX-compliant distributed file system. GlusterFS uses a
block-level data model to store files. In fact, GlusterFS is not directly involved in storing
files on disk. GlusterFS piggybacks on the existing local file systems such as ext3,ext4,
or XFS, which is similar to the backend storage in BFS. In fact, GlusterFS is more of a
shared file system than a distributed file system. It is similar to NFS in the sense that
it aggregates the storage of commodity servers with a unified namespace and provides
a remote access protocol to the files. However, GlusterFS shares many distributed file
systems characteristics. For instance, similar to many distributed file systems, GlusterFS
uses a distributed hashing mechanism know as Elastic Hashing to create its namespace.
In fact, GlusterFS does not store any namespace metadata. It maps file names to storage
servers using a hash function. Therefore, using this hash function each GlusterFS server
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can find which server is storing which files. Further, to address the problem of adding and
removing servers, GlusterFS uses a virtualization layer in which file names are mapped to
virtual servers. Virtual servers are assigned to multiple physical servers using a seperate
process. Therefore, in the event of adding/removing servers the hashing algorithm does
not need to be changed, and virtual volumes are reassigned or migrated using a seperate
process.

The main goal of GlusterFS is to integrate easily in different environments. For instance,
GlusterFS provides several interfaces including, a POSIX-compliant file interface through
the FUSE library and the NFS protocol. Further, it supports several language bindings
including a C API that BFS uses to interact with as the backend storage.

As stated in Section 2.7.2, GlusterFS sacrifices availability to provide strong consistency,
but similar to Ceph, GlusterFS can be configured to relax its consistency model to gain
availability in return.

Table 3.1 summarizes storage systems that are discussed in this chapter.
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System Interface
Data

Model Namespace
CAP Membership

Detection

Failure
Detec-

tion
Replication

BFS
POSIX-
Similar

Block
level

ZooKeeper
Depends
on the
backend

Zookeeper
watches

ZooKeeper
Ephemeral
nodes

Using backend

Dynamo API-based
Object-
based

Consistent
Hashing

AP Gossip-based
Timeout
based

Replicated at N
nodes

Cassandra API-base
Structured
object-
based

Consistent
Hashing

AP Gossip-based
φ Failure
detector

Replicated at N
nodes

RAMCloud
Table-
based

Object-
based

Central
index-based

AP Not specified
Not speci-
fied

1 Replica in
DRAM and 2 on
disk

Openstack
Swift

API-based
Object-
based

Consistent
Hashing

AP Manually
Timeout
based

Replicated at N
nodes

Tachyon API-based
Block-
level

Not speci-
fied

Not
speci-
fied

Not specified
Not speci-
fied

Asynchronously

GlusterFS
POSIX-
compliant

Block-
level

Elastic
Hashing

CP Manually Automatic
Replicated at N
nodes

Ceph

POSIX-
compliant
with Ob-
ject API

Object-
level

Consistent
Hashing

CP Automatic Automatic
Replicated at N
nodes

Table 3.1: Summary of different storage systems
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Chapter 4

Evaluation

As explained in Section 1, BFS is a combination of in-memory and remote file systems.
BFS is expected to deliver similar performance to an in-memory file system when data and
applications are co-located, and performs comparable to remote file systems otherwise.
The main purpose of evaluations is to understand whether a simple design such as BFS
is successful in achieving its goals while performing comparable and/or superior to other
more complex solutions. Four groups of experiments are conceived to evaluate BFS. The
first experiment is dedicated to measuring the performance of BFS and understanding if
it delivers the expected performance under different scenarios and if comparable to other
solutions. In the second group of experiments, the reliability and failure tolerance of BFS
is evaluated to find out whether BFS can efficiently recover from failures or not. Further,
the scalability of BFS is measured with various synthetic workloads to determine if BFS
can scale with an increasing number of clients. Finally, individual microbenchmarks are
used to evaluate BFS ZERO mode and measure if it is successful in decreasing the network
latency.

There are many benchmarks that have been developed, either by industry or academia,
to measure different aspects of a file system. However, most of them focus on a single
dimension of a file system and are developed for evaluating a specific file system. In most
cases, researchers choose to use their own ad-hoc benchmark [42]. Table 4.1 shows the
results of a study by Tarasov et al. [42] between 1999-2010 on 168 file system centric
research papers from major computer science conferences reporting how many times each
benchmark had been used.

Unfortunately, it can be seen from this study that there is not a widely accepted
consensus among researchers on file system benchmarks. As a result, it is necessary to
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Benchmark
Benchmark Type Used in papers

I/O On-disk Caching Meta-data Scaling 1999-2007 2009-2010
IOmeter • 2 3
Filebench • ◦ ◦ ◦ • 3 5
IOzone ◦ ◦ • 0 4
Bonnie/Bonnie64/Bonnie++ ◦ ◦ 2 0
Postmark ◦ ◦ ◦ 30 17
Linux compile ◦ ◦ ◦ 6 3
Compile (Apache, openssh, etc.) ◦ ◦ ◦ 38 14
DBench ◦ ◦ ◦ 1 1
SPECsfs ◦ ◦ ◦ • 7 1
Sort ◦ ◦ • 0 5
IOR: I/O Performance Benchmark ◦ ◦ • 0 1
Production workloads ? ? ? ? 2 2
Ad-hoc ? ? ? ? ? 237 67
Trace-based custom ? ? ? ? 7 18
Trace-based standard ? ? ? ? 14 17
BLAST ◦ ◦ 0 2
Flexible FS Benchmark (FFSB) ◦ ◦ ◦ • 0 1
Flexible I/O tester (fio) ◦ ◦ ◦ • 0 1
Andrew ◦ ◦ ◦ 15 1

Table 4.1: Benchmarks Summary. • indicates the benchmark can be used for evaluating
the corresponding file system dimension; ◦ is the same but the benchmark does not isolate
a corresponding dimension; ? is used for traces and production workloads. Taken directly
from [42]

evaluate different aspects of a file system using different techniques, instead of using a
single tool or benchmark.

BFS is a different storage service than regular local or distributed file systems. BFS is a
combination of local in-memory file systems and remote file systems. Therefore, as stated
before, the goal of this chapter is to understand the performance of BFS comprehensively
rather than competing with other file systems. However, in order to put the results in
perspective, it is necessary to report the results of the same experiments with an existing
system as well. As stated in Chapter 3, there are distributed in-memory storage systems
such as Tachyon [31] or RAMCloud [35]; however, Tachyon is specifically designed for the
Hadoop environment and provides a Java API, rather than a general purpose file interface.
Similarly, RAMCloud does not include a POSIX-like file interface and provides a high-level
structured data model. On the other hand, there are many other disk-based distributed
storage systems, such as Dynamo [22], Openstack Swift [14], or Cassandra [29], which
provide an object-based data model rather than files. Finally, POSIX-like distributed file
systems, such as GlusterFS [6], Ceph [46], NFS [38], or Lustre [13] are suitable candidates
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for comparison. GlusterFS is chosen for two reasons. First, it is a widely used system in
industry and is easy to use. Second, BFS includes a GlusterFS backend plugin; therefore,
it is informative to compare BFS with GlusterFS because both systems store their files
permanently in the same backend setup.

4.1 Testbed Environment

All the evaluations of BFS are run in a cluster of 16 machines at the University of Waterloo.
The cluster contains one head node and 15 compute nodes. The configuration of head node
and compute nodes are summarized in Appendix B. One head node and three compute
nodes are used to build the backend storage.

GlusterFS is deployed as the backend storage solution for BFS. GlusterFS provides
three different access methods, FUSE-based file interface, NFS, and a C file API (libgfapi).
BFS uses libgfpai to synchronize data with the backend, and the two other clients (NFS
and FUSE) are used for GlusterFS evaluations. However, in all experiments the result
of the GlusterFS client which performed better is considered as the GlusterFS result. A
GlusterFS volume is initiated on these four nodes using their SATA3 Solid State Disk
(SSD) drives with a total capacity of 1 TB and replication of one. All SSD drives are
formatted using the XFS file system. It is worthwhile to mention that the same GlusterFS
deployment is used for GlusterFS measurements.

In addition to the backend nodes, three other nodes of the cluster are used to create
a ZooKeeper deployment. ZooKeeper is a quorum-based consensus protocol which means
that to tolerate F node failure, it needs 2 × F + 1 nodes. Therefore, this setup is capable
of tolerating one node failure. A failure is considered as a node crash, or any error in
the network that partitions a node from the majority of nodes. The latest version of
ZooKeeper, 3.5.0-alpha is used, and ZooKeeper instances are configured to use SSD drives.

Using four nodes for the backend storage and three nodes for the ZooKeeper deployment
leaves nine nodes for BFS. Each of these nodes has 64 GB of RAM; therefore, theoretically
BFS can have an aggregated capacity of 576 GB. However, BFS is configured to use 90% of
each node memory; leaving the rest to the operating system and/or other running programs.
This gives BFS an aggregated capacity of approximately 520 GB with an approximate
maximum file size of 57 GB.

In all experiments, BFS is used in TCP mode (unless explicitly stated) due to the
lack of support for Mellanox 10 Gb/s ethernet adaptors in the PFRING library. However
thanks to the PFRING community, a research license was acquired for Intel i350 Gb/s
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ethernet adaptors, and the results of comparing BFS in TCP and ZERO mode using Intel
cards are presented in Section 4.5.

4.2 Throughput

A crucial evaluation for a file system is to report the maximum throughput it can deliver.
The main goal of the measurements in this section is to provide an overview of the maximum
read/write throughput that BFS can achieve and compare it against GlusterFS in different
scenarios. Normally, it is expected when application and BFS servers are co-located that
reads are performed at the memory speed similar to an in-memory file system. On the
other hand, when reads are served through remote BFS servers (duel to the lack of space
on a BFS server) they are limited by the network bandwidth and remote servers’ memory.
Further, similar to remote file systems, writes are limited by the network bandwidth and
the backend storage. As a result, it is anticipated to see a range of different throughput
results depending on the usage scenario.

The Iozone [11] benchmark is used to measure the read/write throughput. Iozone is
a popular file system benchmark used to measure a variety of file operations including
meta-data operations and aggregated read/write throughput. All nine nodes in the cluster
are instructed to run BFS with 90% of their available physical memory, and Iozone is run
on one of them.

The workload size is crucial in this experiment. For instance, if the workload size is
less than each server’s capacity, then in the case of BFS, neither writes nor reads are
forwarded to other servers, and reads are all served from local memory. Thus, in order to
cover various scenarios, four different workload sizes are specified, 32 GB (half of a single
server memory), 60 GB (BFS maximum capacity per server), 128 GB (two times of the
BFS maximum available space per server), and finally 256 GB (four times the size of the
BFS maximum available space per server). The following Iozone command is used on one
of the servers and is repeated 10 times for BFS, GlusterFS FUSE, and GlusterFS NFS as
well:

./iozone -c -e -i 0 -i 1 -+n -r 16M -s [SIZE] -t [THREAD]

In this command, SIZE represents the file size, and THREAD determines the number
of concurrent files to be written. For example, for 32 GB, the size is set to 1 GB and the
number of threads to 32 and similarly for other workset sizes. In addition, the -c and -e
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Figure 4.1: Read throughput evaluation

options instruct Iozone to include the time of fsync and close system calls in the measured
time. Figure 4.1 shows the boxplot of read bandwidth for BFS and GlusterFS.

As expected, when the workload fits in the memory of a single server, reads are per-
formed at the rate of memory for BFS; therefore, in this case BFS serves reads as an
in-memory file system. On the other hand, when the total workload size passes the mem-
ory limit of a single server (60 GB), BFS is still faster than GlusterFS because, although
BFS read requests are served through the network (similar to a remote file system), they
are being read from remote servers’ memory, compared to GlusterFS that serves reads
from the backend servers’ disk. In fact, in the case of BFS, remote reads are limited by
the network bandwidth, whereas in GlusterFS they are limited by the network and the

38



backend storage.

One notable point about the workload sizes 128 GB and 256 GB is that some of the
requested files should be served from the memory of the server on which the requested
files are first written; therefore, the read rate should be a mix of memory and network
rate. However, in practice all files are served remotely because of fast concurrent writes
by Iozone. Iozone concurrently writes all the requested files until the capacity of a server
is reached. At this point, BFS starts to move one of the files to another node. Meanwhile,
other concurrent writes trigger moving other files because moving a file is a lengthy process,
and before a file is moved to create free space for other writes, other writes trigger move
for other files. As a result, after reaching the memory limit in this case, almost all read
requests are served remotely due to the current moving policy in BFS, Section 2.4.5.

One question is why at 32 GB, GlusterFS does not use the Linux page-cache at all
while the workload fits in the memory of a single server. GlusterFS avoids using the Linux
page-cache to provide strong consistency. For instance, consider that server A in GlusterFS
opens file F and writes X into it. In addition, assume X has not yet been committed to
the backend storage of GlusterFS. Server A performs a read on F and sees X ; meanwhile,
server B also opens file F and performs a read on it and sees an older version of F (not X ).
Therefore, strong consistency is violated in this example. In order to avoid such consistency
issues, GlusterFS mounts its clients with the direct io flag, which instructs GlusterFS to
bypass the kernel page-cache altogether. Hence, avoiding page-cache in GlusterFS is why
the read throughput is not at the memory speed even when the total file size is less than
the memory capacity of a server.

Figure 4.2 presents the write throughput for BFS and GlusterFS. It is anticipated that
GlusterFS and BFS have a similar write throughput since both are writing to the same
backend storage (GlusterFS server). It can be seen that when the workload fits in the
memory of the server that Iozone is running on, the write throughput of BFS and GlusterFS
are very close. However after 60 GB, the BFS write throughput slightly declines and then
becomes steady. There are two main reasons for this behaviour. First, after passing the
memory limit of a server, writes are routed to remote servers in BFS, and this results in
extra latency. Second, as explained for read throughput, Iozone writes files concurrently,
meaning that once the memory of a server is full, the partially written files start to be
moved to other remote servers, and this has a significant overhead.

In conclusion, although this benchmark is not fully representative of all real scenarios, it
shows how BFS throughput is alternating between an in-memory file system and a remote
file system throughput depending on the scenario. In fact, this experiment confirms the
design and hypothesis of BFS as a combination of in-memory and remote file system.
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Figure 4.2: Write throughput evaluation

4.3 Reliability

BFS is different than in-memory file systems in the sense that it is able to survive failures;
therefore, it is essential to evaluate the reliability of BFS and how efficiently it recovers
from failures. In this section two sets of experiments are described to measure reliability
and recovery overhead of BFS. First the efficiency of fsync system call is measured as the
mechanism to achieve persistent and durable writes. Seconds, the recovery latency of BFS
is measured after a crash has happened.
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4.3.1 fsync Latency Test

In BFS, fsync or synchronized writes flush the in-memory data to a persistent backend
storage and this is what differentiates BFS from an in-memory file system. In fact, the
fsync latency represents the vulnerability window of system since the write are not durable
before they are flushed to the backend storage. It is expected that BFS and GlusterFS
clients have roughly the same fsync latency because they all write to the same backend.
The fsync-tester [4] benchmark is used to measure the latency of fsync system calls in
BFS and GlusterFS clients. The fsync-tester benchmark is a simple tool that writes 1
MB to a pre-allocated file (the same file, the same offset and the same size) and invokes
fsync on that file and measures the time for fsync (write time is calculated separately). It
repeats the same scenario every one second. 1000 data points for BFS, GlusterFS FUSE
and GlusterFS NFS are collected and presented in Figure 4.3. An important observation
from this figure is the high latency of GlusterFS clients compared to BFS. Normally, it is
expected for BFS and GlusterFS clients to have the same latency because they all write
to the same GlusterFS backend server; especially BFS and GlusterFS FUSE clients both
use the FUSE library. In contrast, the BFS latency is approximately three times less than
that of GlusterFS clients. An investigation revealed that the GlusterFS FUSE clients use
a fixed 4 KB block size to flush the write-behind buffer (1 MB by default in GlusterFS)
that results in a significantly high latency. In contrast, BFS uses a big block size of 16 MB.

Similar to the GlusterFS FUSE client, the GlusterFS NFS client also uses a small block
size (a varying block size between 4 KB and 32 KB), but unlike the FUSE client, the NFS
client does not use a write-behind buffer, and it forwards all writes to the backend storage.
As a result, the fsync system call should have a very small latency in the GlusterFS NFS
client because all writes are already transferred to the backend, and there is no buffer to
be flushed. On the other hand, GlusterFS NFS’s daemon in the backend uses a write-
behind cache, and an fsync system call on the client triggers the write-behind buffer on
the backend server to be written to disk, which in turn causes the observed high latency
for the GlusterFS NFS client. Another observation in this graph is the high jitter in the
GlusterFS FUSE client that is unclear in its origin.

4.3.2 Crash Recovery Evaluation

In addition to measuring the efficiency of fsync as the mechanism to achieve reliability and
persistency, it is important to evaluate how efficiently BFS can handle failures. In essence,
there are three elements that might fail in a BFS deployment. First, a BFS server, second,
a ZooKeeper node, and finally, a backend node. ZooKeeper is a highly available and fault
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Figure 4.3: fsync Latency Test

tolerant system; it uses replication and various mechanisms to survive failures. Evaluation
of failure recovery in ZooKeeper is out of the scope of this thesis, but is discussed in the
original ZooKeeper paper [25]. Similarly, the evaluation of backend node failures is omitted
in this thesis because it is a characteristic of the backend storage.

BFS server failure can be a temporary network partitioning, power failure, or any other
reason that isolates a server from the rest of servers. As explained in Section 2.4.7, mem-
bership and failure detection in BFS are done by ZooKeeper watches; therefore, evaluation
of these mechanisms is skipped. The only question left to explore is that how efficiently
BFS recovers after detecting a BFS server failure. An experiment is designed to measure
how fast BFS recovers files that are hosted at the crashed servers. In this experiment, first,
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all nine BFS servers are filled to half of their capacity with random files, and then one,
two and four of these servers are randomly crashed. The elapsed time since the crash time
up to when all missing files are recovered in other servers is measured using crash logs.
This experiment is repeated 10 times, and the violin plot of the recovery time is depicted
in Figure 4.4.
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Figure 4.4: Recovery Time in BFS with a varying number of crashed servers

It can be observed from Figure 4.4 that the recovery time is increasing linearly with an
increasing number of crashed servers. This means that the recovery rate is limited by the
backend storage and the network bandwidth. Therefore, increasing these two limits can
improve the recovery rate in BFS. By dividing recovery time over the size of crashed files
in each case, an average rate of 1500 MB/s is achieved, which is close to the theoretical
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maximum throughput of the backend storage in the experiment setup. Moreover, in all
cases, there is a very small jitter in the recovery time that indicates the only factors which
affect recovery time in BFS are the network and the backend storage bandwidth.

4.4 Scalability

An important aspect of a file system is how it behaves under different workloads with an
increasing number of clients. The SPEC SFS 2014® benchmark [18] is used to study the
average latency of BFS file operations under different workloads with a varying number of
clients. The SPEC SFS 2014 benchmark is the latest version of the Standard Performance
Evaluation Corporation benchmark suite measuring file system throughput and response
times. SPEC SFS facilitates a standard way of comparing performance across different
platforms. SPEC SFS includes four different workloads, which cover a mixture of file
metadata and data oriented operations. The list of file operations covered by SPEC SFS is
shown in Appendix C. Moreover, SPEC SFS supports multiple clients and is a distributed
application that coordinates and conducts testing across all nodes that are used to test a
storage service [18].

SPEC SFS uses Business Metric as the unit of workload. Business metric is an inde-
pendent unit of workload that represents how many instances of the specified workload are
running concurrently. For example, for the DATABASE workload of SPEC SFS, which
represents the typical behaviour of a database, a business metric of three means that three
independent databases are using the underlying file system concurrently [18]. Load scaling
is also achieved by increasing the business metric in SPEC SFS. In fact, the amount of jobs
each load or business metric is performing is fix; however, increasing the business metric
will add more work. For example, if the DATABASE workload performs 16 ops/sec, in-
creasing the business metric to 2 will impose 32 ops/sec on the underlying file system. In
addition, SPEC SFS uses Success Criteria to decide if a workload was successfully per-
formed or not [18]. Success criteria is a latency threshold that defines what percentage of
the committed operations of a workload should have been succeeded for a workload to be
considered successful or failed.

SPEC SFS has four execution phases. The first phase is Validation that tests if all
required I/O operations are supported in the underlying file system. The second phase is
Initialization that writes workload files to the underlying file system. The third phase is
Warm-Up and finally Run phase that performs measurements and reports results back to
the user. BFS uses direct io flag of FUSE to omit Linux kernel page-cache altogether;
therefore, no caching effect is affecting BFS. However, for GlusterFS, all the default mount
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options are used, and no mechanism is employed to stop GlusterFS from using Linux
page-cache.

In all SPEC SFS workloads, the default runtime and warm-up times of 300 seconds
are used. Appendix D contains the detailed configuration file used for running SPEC SFS
2014. Further, the business metric is increased to fill the maximum storage capacity of the
system (500 GB).

4.4.1 Usage Scenarios

Before presenting results of the SPEC benchmark, it is important to discuss different
scenarios in which BFS might be deployed. There are two main scenarios in which an
application might use BFS, balanced versus unbalanced. In order to understand these
scenarios, consider a group of BFS servers and an application running on these servers. In
the first scenario, the application is balanced across these servers (balanced scenario) and
most requests are served from local BFS servers (served from memory). In the second sce-
nario, unbalanced scenario, one of the instances of applications is doing very data intensive
operations while others are not, and this leads to a more remote (served from other BFS
servers through networking) access pattern.

The balanced scenario is the preferred usage scenario for BFS since it includes less re-
mote accesses; however, the choice of BFS usage scenario is inherently tied to the environ-
ment where BFS is used. For example, in the big data computation or HPC environments,
it is very likely that computation nodes are used as storage nodes (BFS servers) as well.
Therefore, these environments naturally fit with the balanced scenario. As a result, for the
SPEC SFS evaluations both scenarios are included.

The simplest way to model this scenarios in the evaluations is to place the workload
generator on a single BFS server for the unbalanced scenario, and use the SPEC SFS
distributed workload generator on multiple BFS servers for the balanced scenario. Similar
to BFS, GlusterFS can also be used in a balanced or unbalanced scenario. However, because
GlusterFS clients do not store anything at individual servers, and all requests are served
directly from the backend storage, GlusterFS in both scenarios performs similarly.

4.4.2 SPEC Workloads

Figure 4.5 presents the results of four different SPEC workloads, DATABASE workload,
which represents the behaviour of a typical database system; Video Data Acquisition
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(VDA) workload, which simulates storing data from a temporary source such as video
surveillance cameras; Virtual Desktop Infrastructure (VDI) workload, which emulates in-
teractions of a hypervisor and a storage system when the virtual machines are running
on ESXi, Hyper-V, KVM and Xen environments; and finally, Software Builds Systems
(SWBUILD) workload, which tries to mimic the behaviour of large software build sys-
tems [18].

In DATABASE, VDA, and VDI workloads, as soon as the workload passes a single
server’s memory capacity, and remote operations are involved, latency significantly in-
creases for BFS. As mentioned in Section 4.4.1, this is on the grounds that all operations
are routed through a single BFS server (unbalanced scenario). For example, for a write
task to finish, it should first be forwarded to the server that is hosting that file (the remote
server), and then once it is written in the memory of the remote server, it will be flushed to
the backend storage. However, even considering this extra one hop routing overhead, BFS
latency in the unbalanced scenario is still comparable to GlusterFS. On the other hand,
in the balanced scenario, increasing the business metric does not affect BFS latency, and
BFS provides a significantly low and steady latency because most requests are served from
the local servers memory.

SWBUILD workload is different form other workloads in the sense that it creates and
modifies a large number of files. This workload is derived from traces of software builds on
hundreds of thousands of files. Usually in build systems, file attributes are first checked and
then if necessary the file is read, compiled and written back as an object file. This workload
has only one build component and launches five processes per business metric. Each
business metric in this workload creates about 600,000 files with a Gaussian distribution
file sizes centered at 16 KB [18].

SWBUILD workload is important for BFS because as mentioned in Section 2.3, using
ZooKeeper as the metadata server can become a bottleneck in case of workloads with many
files. It can be seen from Figure 4.5d that BFS in unbalanced mode can only succeed the
first business metric, and the balanced scenario completes only two business metrics with
a significantly large latency. After two business metrics, the latency passes the success
ratio of the workload, and the benchmark fails. The main reason is that the enormous
number of files significantly increases the size of each BFS server’s metadata directory at
Zookeeper and crashes the ZooKeeper service. Therefore, this is one of the areas in which
BFS needs to improve upon, and detailed plans and discussions are presented in Section 5.
GlusterFS, as well as many other distributed file systems (Openstack Swift, Cassandra, or
Dynamo), use consistent hashing [27] to keep track of which files (objects in case of object
storage) are kept at which servers. As Figure 4.5d shows, GlusterFS scales and performs
well with a large number of files.
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Figure 4.5: SPEC SFS workloads
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SPEC workloads simulate a wide range of real workloads with a varying range of clients.
It can be seen from results of these workloads that BFS latency in unbalanced scenario is
comparable and similar to remote file systems such GlusterFS. This is expected since in
the unbalanced mode, remote access pattern is the dominant access pattern. On the other
hand, the balanced scenario indicates the superior performance of BFS due to having a
dominant local memory access pattern. Finally, the SWBUILD workload strongly shows
the limitations of ZooKeeper in handling large directory nodes which is one of the main
areas for BFS to improve upon as future work.

4.5 BFS ZERO

In this section two different modes of data transfer among nodes, BFS ZERO and BFS TCP
are evaluated. Two sets of experiments are designed to compare the latency and the
throughput of these two transfer modes. It is expected that BFS ZERO provides a lower
latency because it bypasses the regular network stack. In addition, BFS ZERO should
have a higher throughput because of the reduced packet overhead and the lower latency.

4.5.1 Latency comparison

In order to compare the latency of BFS ZERO and BFS TCP, the ioping [10] tool is used.
ioping measures the I/O latency in a similar manner that ping measures the network
latency. It sends read/write requests of a specified size (4 KB by default) at regular
intervals (one second by default) and reports back the latency of the request. In order
to avoid any effect of backend storage, BFS is configured to not use any backend storage.
Therefore, writes and reads are performed entirely in main memory of a server. Moreover,
it is necessary for operations to go through the network and be performed on a remote
server. Therefore, two BFS servers are instructed to run BFS, one with capacity of zero
(server A) and the other one with 90% of the available physical memory (server B). As a
result, any I/O operation performed on server A is forwarded to server B. ioping is run on
server A, with the following command:

ioping -c 1000 -W -s 4k

This command commits 1000 4 KB write requests at server A that will be routed to
server B. The same command is used two times, once using BFS ZERO transfer mode and
once using BFS TCP mode. In addition, an equivalent experiment is performed with the
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network ping command to measure the network latency between server A and B. ping is
performed from server A to B with a 4 KB packet size. It is expected that BFS ZERO and
ping have a similar latency because, although ping requests are served through the regular
operating system network stack, it does not involve copying data between the kernel and
the user space. Consequently, ping has a minimum processing overhead in the network
stack as is the case for BFS ZERO. Figure 4.6 shows the violin plot of requests’ latency
for BFS ZERO, BFS TCP and network ping with the packet size of 4 KB. A violin plot
is similar to a boxplot with an additional overlaid curve that represents the probability
density of data, which is useful to understand how scattered the data is. As expected,
BFS ZERO has a significantly lower latency than BFS TCP and is very similar to ping.
Moreover, it is interesting to see how scattered the latency is in case of BFS TCP, while
BFS ZERO and ping have a latency that is highly centered around the mean of data,
meaning a negligible jitter.

4.5.2 Throughput Comparison

In this experiment, the maximum throughput of BFS ZERO is compared to BFS TCP
using a similar setup to the previous section. Again, the backend storage is disabled to
prevent any external effect. Similar to Section 4.2, Iozone tool is used to measure the
aggregated read/write throughput.

As expected, both BFS ZERO and BFS TCP utilized the link capacity (1 Gbit/s or
1000 Mb/s). However, BFS ZERO has a slightly higher throughput than BFS TCP due
to the reduced packet header. BFS ZERO only adds an eight bytes packet header (plus
the ethernet header that is shared with BFS TCP mode) yielding the following goodput
(application level throughput):

1500(MTU) − 8

1526(EthernetFramesize)
× 1000Mb/Sec = 978Mb/s or 122MB/s

A similar calculation for the theoretical goodput of BFS TCP results in 120 MB/s.
Therefore, it can be seen that both transfer modes provide a roughly similar goodput.
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Chapter 5

Future Work

One of the main limitations of BFS is handling a large number of files. This stems from the
ZooKeeper limitation in updating a large file. Many distributed storage systems such as
Dynamo [22], Cassandra [29], Openstack Swift [14], or GlusterFS [6] use consistent hashing
for organizing a shared namespace. Consistent hashing is a recent type of distributed
hashing technique, which is popular among many P2P and cluster systems. It randomly
divides the hash space to multiple parts that are assigned to different nodes in the system.
Essentially this means that the hash space is divided to a lot more ranges than number of
nodes, which reduces the variance.

The results of the SWBUILD workload in Section 4.4 indicate that the consistent
hashing technique is effective and scalable to millions of files. However, a recent study [36]
shows that although consistent hashing technique works well with a massive number of
files, it is not very successful in keeping a low load variance among nodes. At runtime,
consistent hashing should split the hash space more often to keep a fixed namespace load
variance, but splits are expensive and complicated. The study presents GIGA+ [36] that
solves this issue by using an optimized binary splitting mechanism. Evaluations of this
mechanism indicate far fewer split than consistent hashing, yet lower load variance. As
a future work direction, BFS is going to utilize similar techniques to those of consistent
hashing and GIGA+ to approach scalability issues with a large number of files.

As explained in Section 2.4.5, BFS needs a hybrid and comprehensive mechanism to
actively and proactively cope with the storage load variance problem. Each of the explained
policies in Section 2.4.5 are effective under certain circumstances at the overloaded server,
and none of them can always perform the best. Therefore, to choose the best policy, a
comprehensive moving policy should evaluate the current status of servers as well as the
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load in the system. In addition, the throughput evaluations in Section 4.2 also indicate the
necessity of such a mechanism in BFS. Thus, a proper load balancing mechanism is one of
the important topics that should be included in the future road map of BFS.

The choice of granularity in BFS affects many design decisions. As explained in Sec-
tion 2.4.2, BFS uses a block-level granularity with a file as the storage entity because of
simplicity; however, it might not be the best option. For instance, shrinking a file to mul-
tiple objects allows more efficient handling of overflows. Therefore, one area that needs to
be studied further is the proper data model and granularity in BFS.

Another area that BFS can improve upon is how to react when all BFS servers reach
their maximum capacity. The current implementation just treats this situation as a lack
of space, but there are better ways to handle this situation. For instance, BFS can behave
similar to a distributed cache, and when there is no free space at any server, it can swap
out some existing files (based on a specified policy) in favour of new files. This feature can
significantly improve the usability of BFS when the size of backend storage is massive, and
BFS can not be a true mirror of the backend storage. In addition, although the cost per
gigabyte of main memory has decreased recently, it is still significantly more costly than
magnetic storage. For instance, BFS is a very costly choice for storing large data items
such as images and videos. However, using the mentioned feature, BFS can be used as a
distributed cache layer over a magnetic storage layer and speed up file accesses. Hence,
considering BFS as a distributed file cache is a very promising future goal.

Finally, it is explained in Section 2.8 that RDMA is not utilized in BFS due to the lack
of access to RDMA equipment. However, BFS can highly benefit from RDMA considering
the low-latency and high-throughput networking it provides. In addition, RDMA is a
hardware assisted solution and does not does not have limitations of BFS ZERO mode.
Therefore, it is necessary to add support for RDMA in future releases of BFS.
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Chapter 6

Conclusion

BFS is a simple design which combines the best of in-memory and remote file systems.
BFS is built by grouping multiple servers’ memory together. Using the ZooKeeper library,
BFS provides a unified consistent file system view over the main memory of commodity
servers. BFS uses backend storage to persistently store data and provide availability. BFS
does not replicate data and depends on the backend storage if replication is required.
BFS provides strong consistency as long as there is no crash in the system. After a
crash, BFS consistency guarantees depend on the backend storage. BFS uses the FUSE
library to provide a POSIX-like interface. The term POSIX-like is used instead of POSIX-
compliant because when BFS is used with a non-consistent backend storage, BFS cannot
provide strong consistency guarantees of the POSIX standard. However, using a consistent
backend storage ensures BFS a POSIX-compliant system. Finally, BFS has a pluggable
networking sub-system that supports different transport modes such as TCP and a zero
copying networking mode using the PF RING library. Utilizing the PF RING library to
bypass the regular network stack, allows BFS to achieve low overhead communication
among servers.

Several experiments are designed to understand if a simple design such as BFS is
able to fulfill the storage requirements of diskless nodes while delivering a performance
comparable to existing more complex solutions. In order to put results of BFS evaluations
in perspective, GlusterFS is used for reference. Throughput evaluations of BFS shows that
BFS performs similar to in-memory file systems when the dataset fits in the main memory
of a server and when remote operations are involved BFS delivers a superior/comparable
performance to GlusterFS. In addition, the reliability evaluations of BFS shows that BFS
is very efficient in recovering from failures and is only limited by the backend storage.
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Furthermore, SPEC SFS 2014 is used to measure the scalability and the latency of dif-
ferent file operations. The SPEC benchmark results strongly indicate that using ZooKeeper
to build the namespace limits BFS in handling a large number of files. Moreover, SPEC
evaluations show that BFS is a highly efficient design when applications and BFS servers
are co-located because BFS reads are done at the memory speed, while GlusterFS can not
utilize memory due to consistency. Finally, evaluations of the use of PF RING for commu-
nication (BFS ZERO) among servers versus TCP indicate that BFS ZERO significantly
reduces network latency compared to BFS TCP.

In conclusion, BFS is a highly simple design which provides a superior/comparable
performance compared to other more complex solutions. BFS simple design indicates that
not all the complexity of existing solutions such as GlusterFS is required to satisfy storage
requirements of a diskless environment. However, certain areas in BFS such as handling
large number of files need to be improved upon. BFS is still at an early development
stage, and many revealed shortcomings as well as other improvements are considered to be
studied in future releases.
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Appendix A

ZooKeeper Architecture

ZooKeeper is a service for coordinating processes of distributed applications using a shared
hierarchical namespace. ZooKeeper provides many of distributed applications’ needs, such
as synchronization, failure/membership detection, leader election, and group messaging in a
replicated centralized service. The ZooKeeper service is replicated over a set of machines to
achieve high availability and performance. A client can connect to any of these machines,
and ZooKeeper guarantees a single unified image of service regardless of the server the
client connects to. Moreover, ZooKeeper guarantees atomicity and sequential consistency
of updates issued by a client; meaning all updates either succeed or fail, and they are
applied in the order they are issued by the client. In order to achieve these guarantees
for updates, ZooKeeper uses a leader based atomic broadcast protocol [25]. In addition,
ZooKeeper uses a quorum based schema for updates (majority consensus), and all updates
pass through the leader. However, because a typical workload of ZooKeeper is dominated
by read operations rather than updates, ZooKeeper serves read requests locally from each
server. Figure A.1 depicts an overview of the ZooKeeper architecture; it can be seen that a
client can connect to any of ZooKeeper ensemble servers, and each server can serve clients
read requests locally, whereas all write request should go through the leader node.

Serving read requests locally by each server can lead to strong consistency models.
For instance, Monotonic Reads model states if a client reads a from data item x, any
subsequent read from x should return a or a more recent version of a. Although eventually
all servers in a ZooKeeper ensemble will have the latest version of a data item, there might
be short temporal inconsistency in the result of read operations. This behaviour might
not be desired in every application, and ZooKeeper provides a SYNC read facility that
guarantees to return the latest version of each data item at the cost of a longer read delay.
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Appendix B

Testbed Configuration

• 1x Head node: Supermicro SSG-6047R-E1R36L

◦ 2x Intel E5-2630v2 CPU

◦ 256 GB RAM

◦ 14x 2TB 7200RPM SAS2 hard drives (LSI HBA-connected)

◦ 1x Intel S3700 400 GB SATA3 SSD

◦ 4x Intel i350 gigabit Ethernet ports

◦ 1x Mellanox 40 GbE QSFP port

• 15x Computer nodes: Supermicro SYS-6017R-TDF

◦ 2x Intel E5-2620v2 CPU

◦ 64 GB RAM

◦ 3x 1TB SATA3 hard drives

◦ 1x Intel S3700 200 GB SATA3 SSD

◦ 2x Intel i350 gigabit Ethernet ports

◦ 1x Mellanox 10 GbE SFP port

• All nodes run Debian GNU/Linux 8.0 (jessie) with Linux kernel 3.16.0-4-amd64

Cluster nodes are connected to each other using a Mellanox SX1012 10/40 GbE and a
SSE-G2252 48-port Gigabit switch.
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Appendix C

SPEC SFS 2014 File Operations

Operation Description
read() Read file data sequentially
read file() Read an entire file sequentially
read random() Read file data at random offsets in the files
write() Write file data sequentially
write file() Write an entire file sequentially
write random() Write file data at random offsets in the files
rmw() Read+modify+write file data at random offsets in files
mkdir() Create a directory
unlink() Unlink/remove a file
append() Append to the end of an existing file
lock() Lock a file
unlock() Unlock a file
access() Perform the access() system call on a file
stat() Perform the stat() system call on a file
chmod() Perform the chmod() system call on a file
create() Create a new file
readdir() Perform a readdir() system call on a directory
statfs() Perform the statfs() system call on a file system
copyfile() Copy a file

Table C.1: SPEC SFS 2014 File Operations, Taken directly from [18]
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Appendix D

SPEC SFS 2014 Configuration File

Content of configuration file (sfs rc):

BENCHMARK={SWBUILD|DATABASE|VDA|VDI}

LOAD=2

INCR_LOAD=1

NUM_RUNS=20

CLIENT_MOUNTPOINTS=localhost:/home/behrooz/git/BFS/mountdir

EXEC_PATH=/opt/specsfs/binaries/linux/x64/netmist

USER=behrooz

WARMUP_TIME=300

IPV6_ENABLE=0

PRIME_MON_SCRIPT=

PRIME_MON_ARGS=

NETMIST_LOGS=
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