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Abstract  

                            

   The analysis of electromyographic (EMG) signals detected during muscle contraction 

provides important information to aid in the diagnosis and characterization of 

neuromuscular disorders.  One important analysis measures neuromuscular jitter, which 

is the variability of the time intervals between two muscle fibre potentials (MFPs) 

belonging to the same motor unit over a set of discharges. Conventionally, neuromuscular 

jitter is measured using single fibre (SF) EMG techniques, which can identify individual 

MFPs by using a SF needle electrode.  However, SF electrodes are expensive, very 

sensitive to needle movement and not easy to operate in practise.  

 A method is studied in this thesis for automatically measuring neuromuscular jitter in 

motor unit potentials (MUP), it measures jitter using routine EMG techniques, which 

detect MUPs using a concentric needle (CN) electrode.  The method is based on the 

detection of near MFP contributions, which correspond to individual muscle fibre 

contributions to MUPs, and the identification of individual MFP pairs.  The method was 

evaluated using simulated EMG data.  After an EMG signal is decomposed into MUP 

trains, a second-order differentiator, McGill filter, is applied to detect near MFP 

contributions to MUPs.  Then, using nearest neighbour clustering and minimum spanning 

tree algorithms, the sets of available filtered MUPs can be selected and individual MFPs 

can be identified according to the features of their shapes.  Finally, individual MFP pairs 

are selected and neuromuscular jitter is measured.  

 Using the McGill filter, near MFP contributions to detected CN MUPs can be 

consistently detected across an ensemble of successive firings of a motor unit.  The 

method is an extension of the work Sheng Ma, compared to previous works, more 

efficient algorithms are used which have demonstrated acceptable performance, and 

which can consistently measure neuromuscular jitter in a variety of EMG signals.   
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Chapter1 Background knowledge of neuromuscular 

electrophysiology and EMG signals  

1.1 Introduction 

The study of electromyographic (EMG) signals is a study of the electrical properties and 

activities of muscle tissue.  EMG signals are detected by placing an electrode into, or 

over a muscle and detecting the extracellular voltages produced by the electrical activity 

of the muscle fibres.  In various types of examination, these signals will either be induced 

voluntarily by the patient, induced by stimulating the nerve supplying the muscle, or 

induced by moving the needle electrode.  For this work, we restrict our interest to activity 

detected during voluntary contraction of a muscle by a patient attempting to keep the 

force of contraction as constant as possible. 

The analysis of EMG signals detected during muscle contraction provides important 

information to aid in the diagnosis and characterization of neuromuscular disorders.  

Clinical electromyography is the study of the function of the neuromuscular system 

through the analysis of EMG signals.  In general, the characteristics of EMG signals are 

dependent on a number of factors, including the anatomical and physiological properties 

of the related neuromuscular system, the level of muscle contraction, the type of 

electrode used and the location of the electrode relative to the contracting muscle fibres.  

Clinical electromyography developed into a useful technique for clinical examination 

after the introduction of the concentric needle electrode by Adrian and Bronk in 1929 [1]. 

 Traditionally, the analysis of clinical EMG signals has been performed by human 

experts.  This work requires a good deal of skill and experience, and is quite time-

consuming.  It relies heavily on the ability of an electromyographer to detect visually and 

acoustically specific characteristics of an EMG signal.  The number of applications using 

computers and modern signal processing technologies for the analysis of EMG signals 

are growing rapidly.  Presently, interest has been focused on the ability to analyze EMG 

signals automatically and quantitatively. 
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 This chapter briefly describes neuromuscular physiology and the generation of EMG 

signals.  Also, some basic concepts and characteristics of EMG signals are presented.  

The configurations of a few kinds of needle electrodes are briefly introduced.  

 

1.2 Neuromuscular Physiology  

        Skeletal muscle is composed of a large number of individual parallel, cylindrical 

muscle cells, which are called muscle fibres.  The muscle fibre is a multinucleated cell 

with a diameter from 10 to 100 micrometers (µm), and a length from a few millimeters to 

several centimeters (up to 30 cm) [1] (see Figure 1.1).  Each muscle fiber contains 

myofibrils that are long slender arrays of contractile proteins that align along the length 

of the cell such that the cell appears striped.  They are organized into a bundle by 

connective tissue, and are attached to the bones by tendons.  When the muscle fibres are 

activated, the muscle contracts and generates force.  EMG signals are acquired from 

skeletal muscle.  

      The tissues of both the muscular and nervous systems are composed of ‘excitable 

cells’.  All cells are surrounded by a cellular membrane, which controls the relative 

concentration of various species of ions inside and outside the cell body.  The 

concentration of several ions is quite different on one side of the membrane than on the 

other.  This results in an electrical charge difference.  When the electrical signal from the 

nerve arrives at the muscle fibre, the fibre membrane is excited (called depolarization). 

An action potential is then generated and propagates along the membrane, and 

electrochemical interactions, which result in muscle fibre contraction, take place. 
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Figure 1.1: General Structure of skeleton muscle [33]  

    In normal skeletal muscle, fibres never contract by themselves.  Instead, individual 

muscle fibres are organized into motor units, the fundamental functional units of the 

neuromuscular system.  A motor unit consists of an alpha motoneuron and all the muscle 

fibres it innervates.  The body of a motoneuron is located in the anterior horn of the 

spinal chord, and the motoneuron has an axon that extends all the way to the muscle 

fibres.  Before it reaches the muscle fibres, it splits into many branches called axon 

terminals.  These axon terminals terminate on the muscle fibres.  The zone where the 

axon terminals and muscle fibres contact is called the endplate or neuromuscular junction 

(NMJ).  There is normally only one junction per fibre, and it is usually located near the 

middle of the muscle fibre (see Figure 1.2) [1]. 
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Figure 1.2: Diagram of a motor unit [1] 

 

Each discharge of a motoneuron produces a propagating action potential.  When the 

action potential reaches the NMJ, a new action potential is initiated in the muscle fibre 

membrane and the muscle fibre is activated.  This action potential is then propagated over 

the excitable membrane of the muscle fibre in both directions towards the ends of the 

fibre and forms a potential field in the extracellular tissue around the muscle fibre.  

Therefore, muscle fibre potentials (MFPs) can be detected using a suitable electrode.  The 

action potential propagating along a muscle fibre initiates its mechanical contraction.  All 

fibres in one motor unit are activated at almost the same time but activity among different 

units is normally independent [2].  The superposition of the MFPs of all the fibres in a 

motor unit forms a motor unit potential (MUP).  The repetitive discharge (firing) of a 

given motor unit creates a train of potentials known as a motor unit potential train 

(MUPT).  An electromyographic (EMG) signal results from the detection of the electrical 

activity of all active motor units.  In the following two sections the generation and 

characteristics of MFPs, MUPs, MUPTs and EMG signals will be discussed in more 

detail. 

     The sizes of motor units vary widely, and depend on both the number of muscle fibres 

in the unit and the diameter of individual fibres.  A small motor unit may have fewer than 

10 muscle fibres.  This type of motor unit is responsible for very fine movements needed 
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for precise control, such as darting movements of the eyes.  A large motor unit may have 

as many as several thousand muscle fibres. Such a motor unit is responsible for gross 

movements, such as contraction of the legs or the maintenance of posture [1].  The fibres 

of a specific motor unit are randomly distributed throughout a specific (approximately 

circular) muscle area, termed the motor unit territory (2-15 mm in diameter) [3].  The 

territories of a muscle’s motor units are randomly distributed throughout the area of the 

muscle.  Therefore, motor unit territories are intermingled or overlap, and muscle fibres 

belonging to one motor unit are not closely packed together, but are scattered over a 

small area of the muscle and intermingle with fibres belonging to other motor units (see 

figure 1.3).  An area of 5-10 mm in diameter might contain muscle fibres from 15-30 

motor units [3].  However, all of the muscle fibres in a motor unit are of the same 

biochemical and physiologic type (i.e., same twitch and fatigue characteristics), and are 

categorized according to their histochemical and contractile characteristics [1].  

 

 

 

Figure 1.3: Cross-section of part of a muscle [4] 

  

 A motor unit can be electrically re-excited even if its fibres are not yet relaxed 

mechanically.  The result of this phenomenon is to increase the force contributed by a 

motor unit to the total force produced by the muscle.  The muscle force depends on two 

factors, the number of active motor units and the frequency of motor unit activation. 
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1.3 Muscle Fiber Potential (MFP) 

As previously mentioned, motoneurons and muscle fibres are excitable cells, i.e., they 

have the ability to generate a propagating transmembrane action potential after they are 

activated.  The action potential is an all-or-none response to a stimulus.  It is a transient 

change in the voltage across the membrane, and is propagated by the excitable cell.  Once 

initiated by a sufficient stimulus, action potentials propagate along nerve and muscle 

fibres without decrement.  Local currents flowing from the depolarized region stimulate 

the adjacent inactive region so that the action potential is propagated. 

 In a neuromuscular system, each discharge of an alpha motoneuron produces a 

propagating action potential across its axonal membrane.  The propagating action 

potential travels along the axon terminals, and reaches the endplates to initiate an action 

potential on the muscle fibre membrane at each endplate (i.e., the NMJ is the initiation 

point of a propagating action potential in a muscle fibre).  The action potential then 

propagates along the muscle fibre membrane in both directions towards the two ends of 

the muscle fibre, and triggers the coordinated contraction of the muscle fibre. 

 The propagation of an action potential along the muscle fibre also creates an electric 

field in the vicinity of the muscle fibre.  This electric field can be detected using suitable 

electrodes located in this field.  The acquired voltage waveform is known as a MFP. A 

MFP is a fundamental component of a detected EMG signal.  In fact, an EMG signal 

results from contributions of electrical activity from all of the active muscle fibres. 

 A MFP waveform is typically a triphasic voltage waveform [3].  When the action 

potential propagates along the fibre toward the detection electrode, the first phase is 

created.  Following that, the second phase is formed as the action potential begins to 

propagate away from the electrode.  The second phase is a reversal of the first one, and 

usually contains the main peak of the MFP waveform.  It is relatively brief and smooth.  

The third phase is a decaying phase after the second as the action potential continues to 

move away from the electrode, and is a reversal of the second phase (see Figure 1.4).  
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Figure 1.4: Typical MFP waveform 

 The shape and amplitude of a MFP are associated with muscle physiological 

properties and detection electrode characteristics.  The duration of a MFP usually ranges 

from 2 to 6ms [3].  The waveform characteristics of the MFP depend on the diameter and 

length of the muscle fibre, the speed with which it conducts action potentials (i.e., the 

fibre’s conduction velocity), the distance between the active muscle fibre and the 

detection site, and the configuration of the detection electrodes [6]. Larger diameter fibres 

create larger MFP amplitudes.   

        Slower conduction velocity and longer fibre length result in longer duration MFPs.  

The location of the detection site relative to the muscle fibre and its NMJ determine the 

maximum amplitude and initial value of the MFP, respectively.  The magnitude and high 

frequency content of a MFP decrease as the distance between the fibre and the detection 

surface of the electrode increases (see Figure 1.5 (a) (b)).  The peak-to-peak amplitude 

decreases by approximately 75% if the electrode is moved 100 µm from the surface of a 

fibre [6].  The magnitude also decreases as the detection area of the electrode increases 

[2] (see Figure 1.6). 



 

 8

     (a)             (b) 

Figure 1.5: The effect of distance on the amplitude and the frequency content.                            

(a): Amplitude and frequency content versus distance [1]. (b): MFP size versus distance [6]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Amplitude versus electrode type and distance [7] 

(SF = single fibre, CN = concentric, MN = monopolar needle, MAC = macro) 
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1.4 MUP Train and EMG Signal 
 

The excitation of a muscle fibre is not isolated, and is controlled by the motor unit.  

During muscle contraction, all the fibres in a motor unit discharge roughly at the same 

time.  For conventional clinical detection, MUPs are usually recorded by using the CN 

(Concentric Needle) electrode.  A MUP is created by the summation of the spatially and 

temporally dispersed action potentials of the individual muscle fibres of the motor unit 

[1] (i.e. a MUP is the linear superposition of the individual MFPs of the fibres of the 

motor unit).  Figure 1.7 represents the generation of a MUP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Schematic representation of the generation of a MUP [1] 

 The MUP can be expressed in a quantitative way [10]:   

MFP1 
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iijj s-tMFPtMUP
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= τ  

where: 

MUPj(t) is the voltage waveform detected when the j
th
 motor unit fires; 

MFPij(t) is the detected waveform resulting from an action potential propagating along the 

i
th
 fiber belonging to the j

th
 motor unit; 

Nj is the number of fibers belonging to the j
th
 motor unit; 

t expresses the certain detection moment; 

τi is the temporal delay of MFPij(t) at the detection site;  

si is a random binary variable.   

      Each si value can be randomly selected for each firing of each motor unit, and 

represent neuromuscular junction function that has a value of 1 if the i
th

 fiber fires 

and 0 if the i
th

 fiber is blocked (i.e. does not fire). 

 τi represents the conduction delay.  It is the temporal offset, and is associated with 

the location of the NMJ and the conduction velocity of the muscle fibre [10].  Its 

value fluctuates with each MU discharge. In normal muscle, assuming a constant 

detection configuration, the waveforms of the MUPs are usually quite constant 

across multiple MU discharges.  Therefore, MUP shape information can be used to 

identify the MUPs created by the same motor unit. However, biological abnormality 

can cause variability of MUP shape.  If the delays of the MFPs vary (τi changed with 

each MU discharge), the MUP waveforms will vary.  In addition, possible changes 

in the position of the electrode relative to the muscle fibres (MFPi changed) and the 

possibility of a particular fibre failing to fire (block; si = 0) can also cause stochastic 

biological variability of a MUP waveform.  Although the number of fibres within a 

motor unit (Nj) can theoretically determine the size of the MUP, the size of the MUP 

is often dependent on the location and diameter of the closet few fibres because 

MFP size decreases as the distance to the detection electrode increases [11].  



 

 11

 

 

Figure 1.8: Definition of MUP features [11] 

 

 The waveform of most MUPs consists of at least three sub-components, which are 

an initial component, a main spike and a terminal component.  It may also contain 

satellite potentials in some pathological MUPs.  Features of a MUP can be described by 

the amplitude, rise time, duration, number of turns and phases (see Figure 1.8).  Other 

morphological features include MUP variability and fibre density, etc. [11].  MUP 

variability is characterized by jitter and jiggle [12].  In the following chapter, jitter will be 

described in detail. 

 Individual MUPs can be isolated only during weak muscle contractions when one or 

a few motor units are active.  During strong contractions, the MUPs activited are so 

numerous that the EMG signal acquired becomes a noise-like “interference pattern” [3]. 

 The repetitive firing of a motor unit produces a sequence of MUPs.  The collection 

of MUPs generated by one motor unit is known as a motor unit potential train (MUPT). 

Motor units repeatedly discharge (fire) in order to maintain or increase the force output of 

a muscle.  The time interval between successive discharges is called an inter-discharge 

interval (IDI).  In a MUPT, MUPs are positioned and separated by their IDIs.  The 

discharges of a motor unit are repetitive but not periodic.  The variation range of IDIs is 

normally from 20 to 200ms [2].  A MUPT can be is mathematically expressed as [30]: 
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where: 

MUPTk(t) is the MUPT of the k
th
 motor unit; 

MUPik(t) is the MUP generated during the i
th
 firing of the k

th
 motor unit; 

Nk is the number of times the k
th
 motor unit fires;and 

δki is the ith firing time of the kth
 motor unit. 

 

If the occurrence times of MUPs in a MUPT are marked by delta impulses and the MUPs 

are represented by a filter whose impulse response is h(t), then the impulses are passed 

through the filter and the output will be the MUPT.  Like this, the MUPT can be modeled 

as a sequence of delta impulses [1] (see Figure 1.9). 

 

 

 

 

 

 

 

 

 

Figure 1.9: Model for a motor unit potential train [1] 

 

 During the voluntary contraction of a muscle, the superposition of the MUPTs of all 

active motor units results in a composite EMG signal.  It is the spatial and temporal sum 

of potential contributions from all excited muscle fibres.  So, the composite EMG signal 

can be expressed by the summation of MUPTs of all recruited motor units. 
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where: 

MUPTm(t) is the m
th
 MUPT; 

Nm is the number of active motor units; 

n(t) is the background instrumentation noise. 

 

Figure 1.10 represents the physiological and mathematical model for the composition of a 

detected EMG signal.  The actual composition of an EMG signal is associated with the 

detection site and the configuration of the electrode.  Using an electrode with a very small 

detection surface, such as a SF electrode, EMG signals may primarily be the record of the 

electrical activity of only one or a few of the closet fibres.  Clinically, however, EMG 

signals are usually detected using a CN electrode, and consist of the electrical activity of 

many fibres from various motor units.  
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Figure 1.10: Model for the composition of an EMG signal [1] 
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1.5 Needle Electrodes 
 

Depending on the various kinds of electrodes, the acquired EMG signals can be classified 

into micro signals and macro signals.  Micro signals are detected by using indwelling 

electrodes which have small, selective detection surfaces, such as single fibre (SF) needle 

electrodes, concentric needle (CN) electrodes, monopolar needle (MN) electrodes and 

fine-wire electrodes.  Micro signals can describe the electrical activity of individual 

motor units.  Macro signals are acquired by using surface or indwelling macro or conmac 

electrodes.  Macro signals are usually used to detect EMG signals over a large spatial 

extent, and may help determine the size of the motor unit [6].  This thesis only deals with 

micro signals acquired by needle electrodes.  The characteristics of the three kinds of 

needle electrodes can be described as follows. 

The SF electrode is a specially constructed needle electrode for recording SF EMG 

signals.  It is highly selective and primarily reflects the activities of only those muscle 

fibres within the immediate vicinity of the detection surface.  Therefore, it can selectively 

detect potentials produced by individual muscle fibres.  The selectivity results from the 

small leading-off detection surface, 25 µm in diameter, which is exposed at a port on the 

side of the needle cannula located 7.5 mm from the tip [6].  When the SF electrode is 

randomly inserted in the muscle, it usually primarily records the electrical activity of one 

(in 70%) or sometimes two muscle fibres (about 25%) belonging to the same motor unit 

at one detection site [13].   

The main spike of the single MFP is relatively brief (See Figure 1.5).  It has a shorter 

duration (mean: 0.470ms; range: 0.265 to 0.8 ms), faster rise time (often less than 0.150 

ms; range: 0.067 to 0.200 ms), and considerably higher amplitude than those detected 

using conventional CN electrodes [3].  For example, the mean amplitude of a single MFP 

is 5.6 mV, and range from 0.7 to 25.2 mV [3]. 

CN electrodes were the first to be introduced and are the most commonly used in routine 

EMG examination.  A CN electrode consists of an outer needle cannula and a central wire 

called the core.  The core is insulated from the outer cannula.  The tip of the CN electrode 
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needle is ground to an angle of 15
o
, exposing an elliptical detection surface of the core, 

with a major axis of 580 µm and a minor axis of 150 µm with an area of 0.07 mm
2 

[6].  

The outer diameter of the cannula is 0.45-0.55mm, and is used as the reference electrode.  

The difference between the potentials detected by the core and the cannula is the CN 

MUP.  

The primary advantage of CN electrodes is that they are remarkably durable, disposable 

and widely used.  Observations made with them are very reproducible.  MUPs recorded 

during minimal voluntary contraction with CN electrodes primarily represent the 

summated electrical activity of all muscle fibres in the active motor units within 

approximately 1 mm of the electrode tip.  The steep decline in the peak-to-peak 

amplitude of the detected potentials with distance from the electrode means that only 

those muscle fibres within approximately 0.5 mm of the electrode make significant 

contributions to the detected MUPs.  Because the width of most motor unit territories can 

be as wide as 5 to 10 mm or more, the majority of muscle fibres belonging to a motor unit 

may make very little contribution to the peak-to-peak amplitude of the MUPs due to their 

relatively large distance from the electrode [3].  Actually, the spike components of the CN 

MUPs (acquired by a CN electrode) are produced predominantly by the closest 2-12 

muscle fibres [14]. 

MN electrodes are made from stainless steel wire (0.3 to 0.5 mm in diameter) sharpened 

at the tip.  The electrode is insulated except at the tip, the bare tip extending back 25 to 

50µm or more.  The exposed conical detection surface area of MN electrodes is 

approximately 0.24 mm
2
.  A surface or subcutaneous electrode is often used to serve as 

the reference [3]. 

One of the advantages of MN electrodes is their larger detection area that may result in 

the detection of larger MUPs because the electrode is closer to a larger number of fibres 

from the same motor unit.  However, temporal overlap of MUPs detected using MN 

electrodes occurs more frequently than when using CN or SF electrodes. 

In most muscle, the duration of MUPs detected by CN or MN electrodes are several times 

longer than the duration of individual MFPs [3].  The duration also depends on the 
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bandwidth of the recording system.  Most electrodes that are used in detecting EMG 

signals may be usually considered to be a high-pass filter.  The characteristics of the high-

pass filter can attenuate the MFP contributions of more distant fibres in relation to the 

contributions of the muscle fibres in the immediate vicinity of the electrode.  This reduces 

the effective detection area of the electrode and makes the electrode more useful for 

detecting the electrical activity of individual fibres [1].  The comparison of the effective 

detection areas of SF, CN and MN electrodes are illustrated in Figure 1.11. 

 

  

 

 

 

 

Figure 1.11: Comparison of the detection areas of a SF, CN and MN electrode [6] 

 

With respect to detected MUPs, the relative properties of the SF, CN and MN electrode 

have been studied.  For the MN electrode with a maximum 90% sensitivity of the 

amplitude, (i.e. the distance at which the amplitudes of MFPs fall to 10% of the 

maximum recorded at the detection surface.) the recording radius is approximately 425 

µm, and encompasses approximately 60 fibres.  The 90% sensitivity radius for a CN 

electrode is 280 µm and encompasses about 12 fibres.  The 90% sensitivity radius for SF 

electrode is 110 µm and encompasses only 1-3 fibres.  In addition, the radii of the 99% 

amplitude sensitivity are 1900 µm for a MN electrode, 830 µm for a CN electrode and 

320 µm for a SF electrode, respectively (see Figure 1.12) [7].  

 

A: SF electrode; B: CN electrode; C: MN electrode 
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Figure 1.12: Comparison of 90% (inside circle) and 99% (outside circle) sensitivity 

isopotentials for CN, MN and SF electrodes. (A): CN electrode (1A: top; 2A: front; 3A: 

side views). (B): SF electrode (1B: top; 2B: front; 3B: side views). (C): MN electrode 

(side view). Muscle fibres from a single motor unit are 50 µm in diameter and their 

distribution pattern has been duplicated several times for illustration purposes. [7] 

 

 

The MUPs detected with a CN electrode during slight voluntary muscle contraction are 

usually primarily generated by several muscle fibres.  These MUPs can be considered as 

the composite potential of several individual MFPs.  These MFP contributions are 

primarily of relatively high frequency content and are created by the relatively few fibres 

closest to the electrode.  The shapes of the MUPs are also determined by the occurrence 

time of the MFPs due to the different locations of the NMJs and the different propagation 

velocities of the different muscle fibres [10].  Consequently, CN MUP waveforms have 

more turns, phases, amplitude changes, and are more complicated than SF MUP 

(acquired by using a SF electrode) waveforms (see Figure 1.13).  It is also harder to 

isolate individual MFP contributions from these CN MUPs. 
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Figure 1.14: Various shapes of CN MUPs 

 

Since its introduction, the CN electrode has found wide application in the clinical 

diagnosis of neuromuscular diseases.  It can usually provide a reasonable balance of 

sensitivity and selectivity for detecting MUPs, and it is convenient to use [7].  The MN 

electrode is less convenient for the examiner because of the need for a separate surface 

reference electrode.  In addition, due to the larger conical detection surface, the MUPs 

detected by MN electrodes have greater amplitude and complexity (larger number of 

phases and turns) compared to MUPs detected by CN electrodes. However, there is no 

significant difference in mean MUP durations [14].  

 

 

1.6 The Decomposition of EMG Signals 
 

The shape, size, complexity and stability of MUPs can provide information related to the 

morphology and physiology of the motor unit.  In the practical setting, the raw signals 

acquired by detection electrodes are always composite EMG signals.  To assess functions 
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of a neuromuscular system, some characteristics of MUP waveforms have to be measured 

in a quantitative way in order to get a more faithful representation of the events occurring 

within the muscle.  Therefore, composite EMG signals have to be decomposed into 

isolated MUPs of individual motor units.  Decomposition of the EMG signal is the 

procedure by which an EMG signal is separated into its constituent MUPTs . 

An automated decomposition and quantitative EMG signal analysis system (DQEMG) 

has been developed at the University of Waterloo.  The DQEMG system consists of 

signal acquisition, MUP detection, MUP clustering and supervised classification, and 

estimation of MUP templates as well as the measurement and analysis of MUP 

parameters.  

During signal acquisition, an acquired EMG signal is amplified and filtered.  The signal 

is then digitized, and sampled at a rate of 31.25 kHz.  After MUP detection, clustering 

and supervised classification, the raw EMG signal has been decomposed into the isolated 

MUPs and MUPTs.  MUP templates for every MUPT are then estimated.  Finally, 

characteristic parameters, such as duration, amplitude, rise-time, number of phases and 

number of turns, etc., are measured for each MUP template, and motor unit firing 

behaviour is analyzed.  In addition, other morphological features, such as fibre density, 

neuromuscular jitter and jiggle, are also tentatively measured.  The first step of automated 

jitter measurement will be based on the result of EMG signal decomposition, this will be 

further discussed in Charpter 2. 
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Chapter 2 Neuromuscular Jitter and Measurement 

 2.1 Overview 
  

Jitter is a measurement of the variation of the time intervals between pairs of MFP 

contributions to MUPs.  The jitter phenomenon was originally studied by Ekstedt (1964) 

using SF EMG signals[17].  The measurement and analysis of the jitter is especially 

useful for evaluation of neuromuscular junction dysfunction.  It is a sensitive clinical test 

for detecting a mild defect of neuromuscular transmission [17].  The individual action 

potentials of the different muscle fibres of a MU are separated in time from each other 

because of different NMJ delays and propagation velocities along different nerve 

branches and muscle fibres.  However, the conduction velocities for individual muscle 

fibres and nerve branches are relatively fixed.  Therefore, the time separation variations 

of MFP contributions mainly result from the random process of AcH released at each 

individual neuromuscular junction [16].  This random process makes the time of 

initiation of every individual MFP a random variable, and leads to the variable time 

intervals between the MFPs of a MUP. The variability of the time intervals between two 

MFPs generated by two muscle fibres of the same motor unit is referred to as 

neuromuscular jitter [25]. 

  Traditionally, the jitter measurement has been implemented using SF MUPs 

detected using SF electrodes, which are primarily composed of contributions from one or 

just a few MFPs.  However, SF electrodes are expensive, and very sensitive to needle 

movement.  Therefore, it is necessary for physicians to have good dexterity and for 

subjects to cooperate in order to obtain useful SF EMG data.  It would be advantageous if 

jitter could be measured using more economical and convenient CN electrodes [18], 

which is the major topic of this thesis.  

 This chapter describes the origin and influencing factors of neuromuscular jitter.  It 

also presents the traditional methods of jitter measurement and calculation.  In the last 

section, the concept of near individual MFP contributions is introduced. 
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2.2 Neuromuscular Jitter and Factors that Affect Jitter 

Jitter is due to variable transmission times at the NMJ and, to a minor degree, variation in 

action potential propagation velocities along nerve and muscle fibres [17].  Therefore, 

neuromuscular jitter is primarily a measurement of the variability of NMJ transmission 

time.  When two muscle fibres from the same motor unit are sufficiently close to an 

electrode detection surface that significant potentials can be detected from each of them, 

an individual MFP pair can be obtained.  However, if the two potentials are so 

simultaneous in their time of initiation as to interfere with each other, a composite 

potential will be produced such that the individual MFP pair cannot be detected.  Only 

when the two MFPs are sufficiently separated in time so as not to interfere with each 

other, can a potential pair can be detected.  Such a potential pair will always occur 

together at consecutive MU discharges.  If the occurrence of the first potential of the pair 

is used as a time reference, the second potential in the pair for each discharge occurs at a 

somewhat different time interval.  The time interval between the two potentials of a pair 

is the inter-potential interval (IPI) (see Figure 2.1).  The variability of the IPIs is the jitter. 

 The IPI depends on the difference in propagation times of the action potentials from 

the nerve branches to the detection site of the electrode.  A motorneuron axon splits into 

axon terminals, and ends at the NMJs of the two muscle fibres (See Figure 2.1).  Close to 

the branching point the nerve action potentials of the two axon terminals are 

simultaneous, but the propagation velocities in the two axon terminals or the length of the 

two axon terminals may be different; the synaptic delay of the two NMJs may be also 

different; the distances between the NMJs on the two muscle fibres and the detection site 

of the electrode may be unequal; the conduction velocity of the two muscle fibres may be 

also different.  The combination of all these factors results in the IPI.  The variability of 

the IPIs across a number of MU firings results in neuromuscular jitter.  

 Normally IPIs vary only slightly from one MU discharge to the next.  Jitter is 

increased in neuromuscular disorders, such as myasthenia gravis that impairs NMJ 

transmission.  In cases of severe disturbance of NMJ transmission, individual MFPs may 

occasionally be missing.  This phenomenon is denoted as blocking.  Particularly, as jitter 

increases, blocking of one or more potentials will occur, and indicates failure of NMJ 
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transmission [33].  For abnormal neuromuscular jitter, some researches have shown that 

variability in the propagation velocity in both the axon terminals and the muscle fibres is 

probably not an important factor; the difference in length of the axon terminals and the 

muscle fibres is also not an important contribution to jitter.  Ekstedt [7] considered that 

the variability in the synaptic delay of the NMJs was the most important factor.  For 

example, an increase of the jitter can be obtained by injection of D-tubocurarine, which 

only affects NMJ transmission.  However, disease and pathological changes in the axon 

terminals or muscle fibres (such as muscular ischemia and dystrophy) may also cause 

increased jitter [17]. 

  Change of temperature can also affect the jitter.  Jitter increases when the muscle 

temperature is lowered and decreases slightly at warming.  Nonetheless, slight muscle 

activity does not influence the jitter in a normal muscle.  In addition, firing rate has only a 

little or no effect on jitter in a normal NMJ.  For an abnormal NMJ, the firing rate has a 

variable effect on jitter.  Furthermore, there is a significant difference in the mean jitter 

values in different muscles [24].  
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Figure 2.1: Schematic representation of jitter detection, two muscle fibres and electrode. 

A, B and C show MFP pairs raster with increasing jitter value, with the first MFP being 

time reference, we can get jitter from the time variability of second MFP. [2] 

  

 

2.3 Traditional Methods for Measuring Jitter 

Traditionally SF EMG data are used to measure neuromuscular jitter.  SF EMG signals 

can be acquired using SF electrodes.  Because the size of the detection surface of a SF 

electrode is small , it can be considered a single detection point.  The amplitude of signals 

detected by this surface falls off rapidly as the distance between the electrode and the 

signal source increases.  Therefore, the significant high frequency energy content of the 

signals is mainly contributed by a small number of fibres located close to the detection 

NMJ 

NMJ 
Electrode 

Fibre 1 

Fibre 2 
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surface of the SF electrode.  In addition, using a high-pass filter with a 500 Hz low-pass 

cut-off frequency can further increase the selectivity of the detection because MFPs from 

distant fibres usually contain relatively more low-frequency components than MFPs from 

fibres closer to the electrode detection surface [19].  Therefore, the MUPs detected using 

a SF electrode should be individual MFPs, which can be verified by the shape of the 

MUPs.  If peak components of detected MUPs have a stable shape and no bifurcation 

across an ensemble of repeated discharges of the motor unit, these peaks can be 

considered as representing individual MFPs (i.e., created by single fibre contributions).  

 Detection of individual MFPs requires that the subject maintains a minimal level of 

muscle contraction so that the electrode does not move during detection.  The muscle 

contraction can be created in two ways: voluntary contraction and electrical stimulation.  

 Usually, SF EMG data collected during slight voluntary contraction of the muscle 

are used for measuring neuromuscular jitter.  During voluntary contraction, the electrode 

is inserted into the muscle near the NMJ zone and positioned to detect two or more stable 

and clear individual MFP peaks from the same motor unit.  The electrode position can be 

slightly adjusted in order to obtain the best detection site, where each potential peak to be 

used for the jitter measurement has a sharp rising phase and adequate amplitude.  

However, it is not necessary to position the electrode for maximum amplitude.  In fact, at 

most sites within a muscle, the SF electrode is usually positioned so that detected MUPs 

have amplitudes greater than 200 µV and rise times less than 300µs, since potentials 

greater than 200 µV arise from muscle fibres within 300 µm of the detection surface.  

Clear individual MFPs detected using a SF electrode should be smooth, biphasic or 

triphasic and stable across a set of MU discharges [16].  A constant detection position 

has to be maintained while at least 50 discharges are collected.  The IPIs are often 

measured between the baseline intersections of the steep positive-negative deflections of 

the MFP pairs.  In addition, jitter should be detected from 20 different MFP pairs [20].  

The time resolution of the detection system should be 10 µs or better [21]. 

     Electrical stimulation techniques can be used for subjects who have difficulty 

maintaining constant voluntary contraction of the muscle.  The stimulation is delivered at 

2-10 Hz, where 10 Hz is usually used to approximate physiologic activation rates.  The 
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stimulation intensity is adjusted to produce a slight twitch of the muscle.  The electrode is 

inserted into the twitching portion of the muscle and positioned to detect clearly defined 

individual MFPs.  The jitter measured between the stimuli and individual MFPs when 

further increasing the stimulation intensity does not decrease the measured jitter [20]. 

 Individual MFPs elicited by nerve stimulation have jitter greater than MFPs elicited 

by direct muscle fibre stimulation.  Some jitter may be introduced by variations in the 

intensity of the stimulus that reaches the individual motorneuron, especially when surface 

stimulation is used.  Expertise is required to avoid misinterpretation when increased jitter 

is seen during axonal stimulation.  The advantages of the electrical stimulation include 

perfect control of discharge rate and little need for subject cooperation.  The additional 

discomfort of electrical stimulation is minimal and compared to voluntary contraction it 

may be preferred by some subjects [22]. 

 In comparison to other EMG techniques MUPs detected using a SF electrode have 

less interference from adjacent fibres of other MUs during slight voluntary contraction.  

The SF EMG technique is the most sensitive electrophysiological method for diagnosing 

myasthenia gravis by measuring neuromuscular jitter.  It can be of great value in 

demonstrating or excluding abnormalities in patients with mild or questionable muscle 

and neuronal diseases that are not apparent by other EMG techniques.  SF EMG is also 

utilized in the investigation of a gamut of neuromuscular disorders as well as in the 

measurement of fibre propagation velocity and muscle fibre density.  

  

  

2.4 Jitter Calculation Methods and Reference Values 

2.4.1 Calculation Methods 

Jitter is a measurement of the variation of the time intervals between pairs of MFP 

contributions to MUPs.  The most common way of expressing variability is to use 

standard deviation (SD).  The IPIs, however, may slowly increase or decrease because of 

electrode movement, or changes in action potential propagation velocities, or other 
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factors.  If the variation is expressed as the standard deviation of a series of intervals, the 

SD may not be an accurate measure of jitter in this case.  To minimize the influence of 

such slow variations, the jitter is expressed as the mean value of consecutive differences 

(MCD) of successive IPIs by the following formula [23]: 
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where:  

IPIi is the i
th

 inter-potential interval, or the stimulus-response interval when 

stimulation is used. 

 MCD has the advantage of being more easily calculated than the standard deviation. 

In normal individuals, the jitter values are about 25 µs [24]. 

 In certain situations, the IPI may be influenced by the preceding inter-discharge 

interval (IDI), which may introduce an additional variation due to changes in the velocity 

of action potential propagation alongin the muscle fibres [20]. When jitter is measured 

during voluntary contraction, the effect of variable firing rates can be minimized by 

sorting the IPIs according to the length of the preceding IDI, and then calculating the 

mean of the consecutive IPI differences in the new sequence.  The result is called the 

mean of sorted-data difference (MSD).  If the ratio of MCD/MSD is greater than 1.25, 

then the variations in the firing rate have contributed to the jitter, and the jitter value 

should be represented by MSD.  Otherwise, MCD is used to express the jitter value, i.e., 

    If  MCD : MSD <= 1.25, Jitter value =  MCD; 

    If MCD : MSD > 1.25, Jitter value = MSD; 

  It is suggested that jitter values that are greater than 150 µs should be excluded in 

order to avoid a few individual jitter values affecting the mean MCD value [23].  Jitter 

measurement summaries should include: 
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i. The mean or median value of the MCD value (In normal muscle, the mean 

and median MCD values are the same.); 

ii. The percentage of the blocking;and 

iii. The percentage of the abnormal pairs or NMJs. 

 During axonal stimulation, the MCD value measured is less than that measured 

during voluntary contraction of the same muscle because the jitter measured during 

axonal stimulation comes from only a single NMJ.  In this case, the mean MCD value 

should be expressed by the following formula [20]:  

Mean MCD (axonal stimulation) = Mean MCD (voluntary activation) / 2  

 In the calculation of jitter, the operator may select the interesting signal segments 

and exclude undesired signals according to the quality of the acquired signals.  For each 

jitter analysis, 50 to 100 consecutive discharges should be recorded for each MFP pair.  

The jitter values of at least 20 different MFP pairs should be calculated for each subject 

[20].  

 In addition, there may be some variation in the jitter measured by different operators 

using different equipment.  There are greater differences across different operators using 

the same equipment than across the same operator using different equipment.  Selection 

of the detection position of the electrode and the epoch to analyze has more effect on the 

jitter results than does the equipment [20]. 

2.4.2 Reference Values 

Normal jitter values vary with different NMJs in a muscle, with different muscles and 

with age, ranging from 10 to 50 µs [24].  With increased age, there is a slight increase in 

jitter in normal subjects.  In addition, the IPI should be smaller than 4 ms and greater than 

150 µs [24].  For long IPI values, particularly if the firing rate is irregular, the MSD 

calculation method does not completely compensate for the effects of action potential 

propagation velocity variations so that erroneously high jitter values may be obtained 

[20]. 
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 A jitter value of 5 µs or less is rarely obtained in SF EMG signals acquired by 

voluntary contraction in normal muscles and is more often measured in myopathic 

muscle.  MCD values of 4 µs or less obtained during stimulation SF EMG indicate that 

the muscle fibre is being directly stimulated; these values should not be used for 

assessment of neuromuscular transmission [20]. 

 The jitter is abnormal if either of the following criteria is met [20]: 

i. The mean (or median) jitter exceeds the upper limit for the muscle. 

ii. More than 10% of the pairs or NMJs have increased jitter.  

2.5 Detecting Neuromuscular Jitter in MUPs 

It is standard technique to use SF EMG data to evaluate NMJ function, but it is also 

possible to acquire individual MFPs using conventional CN electrodes.  Attempts have 

been made to use conventional CN MUPs to measure and analyze neuromuscular jitter 

[25].  

 

2.5.1 Using Filtered MUPs 

For measuring neuromuscular jitter during voluntary contraction, at least two individual 

MFPs created by fibres in the same motor unit must be found.  The larger the number of 

potentials, the easier it is to obtain potential pairs.  Therefore, it would be advantageous 

to use a CN electrode to detect MUPs.  CN electrodes, however, have a larger detection 

area than the SF electrode.  The detected MUPs are therefore more often the 

superposition of individual MFPs, and the jitter seen may be a composite potential jitter.  

But some research has shown that apparent individual MFPs can be detected and 

estimates of the stability of MUPs can be obtained by using conventional CN electrodes 

and suitable filtering techniques.  

 Ertas [25] applied a CN electrode with a 2 kHz to 10 kHz bandpass filter to measure 

neuromuscular jitter in the extensor digitorum communis and orbicularis oculi muscles.  

He found that the potentials detected using a CN electrode resemble those detected using 
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a SF electrode with a 500 Hz to 10 kHz bandpass filter and that the results of the jitter 

measurement are highly comparable during voluntary contraction and electrical 

stimulation.  However, when using a 500 Hz low-pass cut-off filter for CN electrodes, 

many of the detected potentials look wider than those detected using a SF electrode and 

superimposition occurs very frequently because of the larger detection area of the CN 

electrode compared to the SF electrode.  Increasing the low-pass cut-off frequency from 

500 Hz to 2 kHz can reduce the contributions of the low-frequency components of the 

action potentials of more distant muscle fibres.  Although superposition of CN MUPs is 

more common than that of SF MUPs, the limitation of the superposition of individual 

MUPs can be eliminated to a great extent by discarding superimposed waveforms.  

Finally, Ertas concluded that the sensitivity of the CN electrode is almost equal to that of 

the SF electrode in detecting pathology.  This means that using a CN electrode for 

neuromuscular jitter analysis may be an alternative to the SF electrode.  CN electrodes 

give modestly higher numbers of potentials than SF electrodes and therefore require a 

lower contraction level.  In addition, they  are easier to operate, and  much cheaper. 

 Buchman [26] measured neuromuscular jitter with standard SF EMG data 

techniques, except that a MN electrode was substituted for a SF electrode.  He concluded 

that using MN EMG data for determining jitter studies is reproducible, can distinguish 

between normal subjects and those suffering from myasthenia gravis, and is more 

comfortable than using SF electrodes. 

 In fact, no matter what electrode type, only fibres in front of the detection surface 

contribute significant MFPs to MUPs.  Although the number of fibres providing 

significant contributions to MUPs detected by a CN electrode is larger than those 

detected by a SF electrode, when only considering significant high frequency 

contributions, the difference in the number of fibres providing significant contributions is 

not very large because MFP amplitude, high frequency content and energy quickly 

decrease as the radial distance between the fibres and the electrode surface increases.  

Consequently, in high-passed-filtered CN MUPs, peaks for which the shape remains 

stable and which do not bifurcate across an ensemble of repeated discharges can be 

considered as individual muscle fibre contributions to the detected MUPs, and may be 
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therefore used for jitter measurements.  However, for clinical use, data obtained using 

filtered CN MUPs must be compared with reference data based on CN MUPs and should 

not be compared with SF MUP based reference data.  As with SF EMG data, to be 

confident that the individual MFP pairs are being considered, the peaks tracked 

throughout the ensemble of MUPs must be stable and not bifurcate.  

2.5.2 Using MUP Acceleration 

The accuracy of jitter measurements, whether based on CN or SF EMG data, depends on 

the extent to which significant individual fibre contributions can be correctly detected, 

i.e. the ability to detect individual MFPs in MUPs.  Stashuk [28] proposed that using the 

MUP peak acceleration method detects significant individual MFP contributions to 

MUPs.  Significant MFP contributions were represented by the detected peaks, with 

sufficient amplitude in the MUP accelerations, which were calculated using second-order 

difference equations.  It was assumed that the detected peaks were created by 

contributions from individual fibres close to the detection surface of the electrode. 

 To quantitatively determine significant MFP contributions, simulation techniques 

were used and significant peaks in the MUP acceleration were defined using the MUP 

acceleration threshold.  Based on the quantitative detection results, Stashuk concluded 

that analysing MUP acceleration is a powerful technique for detecting significant 

individual fibre contributions to MUPs and the significant peaks within the MUP 

accelerations can strongly correspond to individual fibre activity and may be useful for 

measuring neuromuscular jitter and fibre density [18]. 

2.6 Near MFP Contributions 

Because the high frequency components and amplitudes of MFPs decrease quickly as the 

distance between the detection surface of the electrode and the muscle fibres increases, 

MFPs created by distant fibres have only very small contributions to the composite 

MUPs detected.  The contributions are possibly smaller than those of the extraneous 

noise, and thus they will provide no useful information.  Therefore, these MFPs provide 

no significant potential contributions to MUPs, and are usually referred to distant MFPs.  
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To measure neuromuscular jitter in MUPs, significant, i.e. near, MFP contributions have 

to be detected. 

 Ertas [25] considered only potentials with a stable shape, a rise time of less than 0.3 

ms and an amplitude of more than 200 µV as near MFP contributions when he used 

filtered MUPs detected by CN electrodes to measure neuromuscular jitter. 

 Stashuk [18] defined detected peaks within the MUP acceleration, whose amplitude 

was greater than an expected threshold, as near MFP contributions when he used MUP 

acceleration to detect individual fibre contributions to MUPs. 

 In this thesis, near MFP contributions are defined as all expected MFP contributions 

that are created by fibres close to the detection surface of an electrode.  Expected 

individual MFPs should have a relatively sharp waveform, relatively large amplitude and, 

short duration.  They usually are composed of relatively high frequency components.  

Detected significant peaks that signify significant MFP contributions should have a stable 

shape with no bifurcation, a steep rise phase, and adequate amplitude across an ensemble 

of detected MUPs.  

 To measure neuromuscular jitter in MUPs, near MFP contributions have to be 

correctly identified.  Depending on the frequency characteristics of near MFPs, suitable 

filtering techniques can be used to detect near MFP contributions.  To prevent phase 

distortion, any filter used should have a linear or zero phase-shift in order to make the 

location of the detected peaks corresponding with that of the near MFP contributions.  

The filter should have good sensitivity for recognizing the character of the rapid rise time 

of near MFPs, and good selectivity for the designed frequency band.  In addition, the 

chosen filter should be computationally efficient.  The next chapter deals with detecting 

near MFP contributions using MUP acceleration in detail. 
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Chapter 3 Detecting Near Individual MFP 

Contributions to MUPs 

3.1 Introduction 

To measure neuromuscular jitter in MUPs, individual MFP contributions need to be 

detected in a quantitative way.  The accuracy of a neuromuscular jitter measurement is 

dependent on the extent to which individual fibre contributions can be correctly detected.  

Detection of near MFP contributions should satisfy the following conditions: 

a)  Detected near MFP contributions should be created by corresponding near 

muscle fibres. 

b)  The maximal number of the near MFP contributions should be detected; and 

c)  As many as possible distant MFP contributions should be excluded. 

 In addition, detection results must be correctly evaluated.  However, the exact 

MFP compositions of MUPs cannot be directly studied in actual muscles because biopsy 

data from specific MUs is not available.  It is therefore impossible to exactly determine 

the MFP composition of real MUP data.  Using simulated MUPs is a convenient, 

convincing and quantitative means of studying the features of composite MUPs and 

evaluating detection accuracy.  It can help analyze the correlation between detected MFP 

contributions and the composition of the corresponding MUPs, and determine the 

reliability with which fibre contributions can be successfully detected.  Therefore, MUPs 

with known MFP compositions have to be acquired in order to determine the accuracy of 

a detection technique.  Consequently, it is necessary to develop simulated MUP data to 

help study the relationship between individual MFPs and composite MUPs. 

 As described in Chapter 1, MFP contributions to a MUP can be calculated based 

on the sizes and positions, relative to the detection electrode, of the muscle fibres of the 

MU.  Based on the distribution of muscle fibres among the motor units of a muscle and 

their MFP contributions, MUPs can be calculated by adding MFPs for each MU.  Then, 

according to each MU’s firing times, MUPTs can be generated.  Finally, simulated EMG 

signals are produced by superimposing the MUPTs of active MUs.  
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 In this thesis, an EMG simulation system was used, which has been developed at 

the University of Waterloo by Dr. Dan Stashuk and his students.  The system consists of 

four models: a muscle model, a MU recruitment and firing time model, a MFP and MUP 

model and a composite EMG signal model [27].  The muscle model defines the MU and 

muscle fibre distributions.  The MU recruitment and firing time model determines which 

MUs of a muscle are active at a specific contraction level, and simulates firing times of 

the individual active MUs.  In the MFP and MUP model, a line source volume conductor 

model is used to create MFPs and MUPs.  MUPTs are produced using the firing times of 

the MUs.  Finally, using the composite EMG signal model a simulated EMG signal is 

produced. 

 The simulated signals closely resemble real EMG signals at the most detailed 

level.  The simulation system considers not only specific features of a muscle but also 

electrode configurations.  Simulated EMG signals provide a basis for the quantitative 

assessment of MFP contributions to MUPs, and help improve the understanding of 

relationships between signal characteristics and detection parameters.  

          In real clinical settings, each MUP acquired using CN electrodes may consist of 

many (up to 50) individual MFP contributions [15].  However, a considerable portion of 

them are created by fibres that are relatively distant from the detection surface of the 

electrode, and would be defined as distant MFP contributions.  To detect near MFP 

contributions, distant MFP contributions have to be minimized.  As previously 

mentioned, distant MFP contributions relative to near MFP contributions usually consist 

of lower frequency components.  Consequently, distant MFP contributions can be 

essentially removed by suitable filtering techniques, and thus near MFP contributions 

may be better detected. 

 To quantitatively determine the accuracy of detecting individual fibre 

contributions, MUPs of known MFP composition have to be available.  By using 

simulated MUPs composed of specific known MFP contributions, the performance of 

filters can be analysed and compared, and the ability to identify near MFP contributions 

can be evaluated.  According to specified evaluation criteria, filters can be developed, and 
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an optimal detection algorithm, which can most accurately detect near MFP 

contributions, can be determined. 

     

3.2 Muscle Model     

In order to simulate an EMG signal a model of the structure of a muscle is needed.  The 

simulation algorithms accomplish this  in several stages: muscle and motor unit territory 

diameter calculation; MU territory center location; fiber layout and assignment; and 

assignment of neuromuscular junction locations.  They not only considers mathematical 

representations of overall statistical and spectral properties of detected EMG signals, but 

also individual MUP shapes, electrode and muscle configurations and MU firing times. 

 

 

Figure 3.1 [34]  Location of MU relative to needle electrode for one MU. Note that there 

is only one MU displayed here for simplification.  Usually only fibres close to the centre 

of the needle tip will have significant contributions to a MUP, other fibres even close to 

cannula, are distant from the needle tip and their contribution to a MUP is usually small. 
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 The muscle model can generate a population of muscle fibres of known size, 

position and motor unit membership, which is used to calculate the individual MFP 

contributions to composite MUPs and EMG signals.  By using the muscle model, 

expected MFP contributions can be determined, and near and distant MFP contributions 

can be quantitatively defined. 

3.3 Simulated MUPs 

After the muscle model was defined, considering a specific detection electrode 

configuration, a simulated MUP was created for each of the active motor units.  In this 

thesis, only SF and CN electrodes were considered.  The detection surface of a CN 

electrode is elliptical with a major axis of 580 µm and a minor axis of 150 µm.    Its 

major axis is aligned with the x-axis (the bottom of the detection area) and its minor axis 

was aligned parallel with the z-axis (the fibre direction).  Only fibres in front of the 

detection surface were considered to contribute MFPs to MUPs.  As presented in Chapter 

2, however, the amplitudes of MFPs decrease quickly as the distances between the 

detection surface and the muscle fibres increase so that distant MFPs provide no 

significant potential contributions to MUPs.  Therefore, it was useful to set up an 

arbitrary demarcation value to define an uptake area, and only fibres within the uptake 

area provided MFP contributions to MUPs.  Therefore, MFPs that provided contributions 

to a MUP were created by fibres that belonged to the same MU, were in front of the 

detection surface and within the uptake area. Figure 3.2 illustrates an example for 

detecting expected MFP contributions to a MUP. 
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Figure 3.2 a: An active motor unit within the detection area. It contains 50 muscle fibres 

(marked by +), and 8 muscle fibres (marked by ∗) are within the uptake area of the 

electrode. These fibres are the expected fibres, and contribute MFPs to the composite 

MUP. The centre thick line represents the major axis of the electrode. The area enclosed 

by the thin line is the defined uptake area of the electrode.[8] 
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Figure 3.2 b: 8 MFPs generated by the 8 fibres described in Figure 3.2 a [8]. 
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Figure 3.2 c: The composite MUP created by the summation of the MFPs described in                   

Figure 3.2 b [8]. 

 

       Each MFP was generated based on the line source volume conductor model.  The 

line source model assumes that the muscle fibre is straight and cylindrical, and that the 

extra cellular medium is infinite with cylindrical anisotropy [9].  Based on the line source 

model, the action potential originates at the endplate and propagates along the axially 

directed fibres with a constant velocity, which is linearly related to the fibre diameter 

[14].  Figure 3.2 b demonstrates the expected MFP contributions from the active motor 

unit illustrated in Figure 3.2 a.  In the simulation system, MFPs were simulated with a 

sampling rate of 937.5 kHz over an interval of 65.536 ms, so the simulated MFPs have a 

time resolution of about 1.067 µs.  

 A MUP is the summation of the expected MFPs contributed by fibres belonging to 

the same MU.  Figure 3.2 c demonstrates a composite MUP from the MFP contributions 

shown in Figure 3.2 b.  

3.4 MFP Library 

In order to obtain MUPs composed of specific known MFPs, libraries of MFPs were 

established.  Simulated EMG signals were created independently by the simulation 
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system for both CN and SF electrode.  Except for the jitter value and the noise level, the 

same simulation parameters were used for creating the EMG signals.  The important 

parameters were set as follows: 5.0% to 50% MVC contraction level, 100 motor units in 

muscle, max adoption distance 150 µm, needle position 15 mm from NMJ, signal to 

noise ratio 25, respectively.  

 The simulator was run several times and there were a total 50 active motor units 

in the simulated EMG signals.  Therefore, 50 independent MUPs were created with more 

than 1000 distant and near, CN and SF MFPs.  From these MFPs, 8 MFP libraries were 

established based on each different needle type and different acceleration thresholds.  

Namely Near25_CN, Near40_CN, Near25_SF, Near40_SF, Dist25_CN, Dist40_CN, 

Dist25_SF, Dist40_SF.  In addition, 4 more, Dist5_CN, Dist10_CN, Dist5_SF and 

Dist10_SF, libraries were created to simulate distance fibre contributions. The number in 

the name means the acceleration threshold (kV/s
2
) used to generate these libraries, it’s the 

second derivative of the MFP signal and describes the sharpness of signal.  For example 

Near25_CN represents a CN MFP library with maximum second derivative value larger 

than 25 kV/s
2
, Dist25_SF means a SF MFP library with maximum second derivative 

value less than 25 kV/s
2
.  The assumption here is that near MFP contributions contain 

more high frequency signal components so they are sharper than distant ones.  The 

amplitude of MFPs could also be used to define near and distant fibre firing, but since it 

ranges from several µV to up to 1000 µV for different size of common fibres, it was only 

used as a reference value.  Compared to previous work [8], which used amplitude to 

define near and distance fibre contributions, the peak acceleration method gives more 

accurate results.  This will be discussed in detail in chapter 4. 

 In the MFPs generated randomly by the simulation system, the maximum and 

minimum amplitudes of the Near25_CN MFPs  are 291 µV, 93.6 µV respectively.  The 

maximum and minimum amplitudes of the Near40_CN MFPs are 291 µV, 76.1 µV 

respectively.  The MFP with the maximum amplitude should originate from the fibre 

located closest to the core of the detection electrode, and can be considered an MFP on 

the 100% isopotential, and the MFP with the minimum amplitude is generated by athe 
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fibre very close to the edge of the design uptake radius (500 µm).  Complete Max and 

Min values for different fibre libraries are listed below (Table 3.1).  

 

 

 

                           Table 3.1: Max and Min values of CN and SF MFP libraries. 

 

 Based on the 25 and 40 kV/s
2 

threshold for the peak acceleration of near MFPs, 

the MFP library was divided into 2 sub-libraries: the near MFP library with derivative 

value above threshold and the distant MFP library with values below threshold.  The near 

MFPs can provide contributions that should be able to be consistently detected in a 

composite MUP.  The distant MFPs provide contributions to MUPs, which are not 

expected to be able to be consistently detected and resemble interference or noise.  There 

are 102 MFPs in the near40 MFP library and 173 MFPs in the near25 MFP library.  

Because of the large number of distant MFPs, 200 MFPs were randomly chosen to put 

into each library.  Using the concepts of near and distant MFP contributions the MFP 

contributions which can be expected to be detected in MUPs can be determined.  Using 

the MFP libraries, specific MUP sets were generated to do further study, details are 

discussed in Chapter 4. 

 

 

 

 

 

 

 

CN near 40 near 25 dist 40 dist 25

max (mv) 0.291 0.291 0.109 0.0808

min (mv) 0.0936 0.0761 0.038 0.038

SF near 40 near 25 dist 40 dist 25

max (mv) 0.4025 0.4025 0.1377 0.1121

min (mv) 0.0769 0.0645 0.0395 0.0395
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Figure 3.3: Sample wave forms from MFP libraries; the two larger ones are SF MFPs and 

the two smaller ones are CN MFPs.  Generally SF MFPs are larger and sharper than CN 

MFPs so they are more easily  detected. 
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3.5 Frequency Spectrum Analysis of Individual MFPs 

and MUPs  

Features of the frequency spectrum of EMG signals have been researched for a long time. 

But most researchers focus on investigating the correlation between neuromuscular 

features and the frequency spectrum of corresponding EMG signals.  It has been 

established that the frequency spectrum of a normal EMG signal acquired using needle 

electrodes usually has a range of main power components from 10 to 2000 Hz, and its 

largest peak is around 100 Hz [28].  This result indicates that an EMG signal contains 

more low frequency content than high frequency content.   These results can be used for 

near MFP detection.  To detect near MFP contributions, the frequency spectra of the 

individual MFPs has to be analyzed. 

 As presented in section 3.4, the objective is to distinguish between near and 

distant MFP contributions with  sharpness thresholds of 25 or 45 kV/s
2
 respectively.  

Visually analyzing frequency spectra estimates of simulated MFPs with various 

amplitudes, it was found that their frequency spectra have very similar shapes at low 

frequencies and that their primary difference is at high frequencies (see Figure 3.4).  The 

peak of their spectrum estimates was between 500 Hz and 1100 Hz.  Moreover, the 

greater the amplitude of a MFP, the larger its spectral density, the higher the frequency of 

the position of its spectral peak and the slower the declination of its spectral density as 

frequency increases.  

 



 

 43

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

(A)  [ms]

[m
V

]

Two individual MFPs

0 5000 10000 15000
-140

-120

-100

-80

-60

-40

-20

0
Spectral estimates for the two MFPs shown above figure

(C)  [Hz]

[d
B

]

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

(B)  [ms]

[m
V

]

Two individual MFPs

0 5000 10000 15000
-140

-120

-100

-80

-60

-40

-20

0
Spectral estimates for the two MFPs shown above figure

(D)  [Hz]

[d
B

]

 

Figure 3.4  Individual MFPs and their spectral estimates[8] 

(A): The amplitude of the MFPs represented by the dotted and solid line is 500 µV and 

200 µV, respectively. (C) is their corresponding spectral estimates.  (B): The amplitude 

of the MFPs represented by the dotted and solid line is 170 µV and 140 µV, respectively. 

(D) is their corresponding spectral estimates.   

 

 From previous work on analyzing frequency spectra of real and simulated 

individual MUPs, it was found that the features of their spectral estimates were similar to 

those of the individual MFPs.  The bandwidth below 2000 Hz always contained the 

dominant spectral energy with the largest peak.  Between 2000 Hz and 3500 Hz, the 

spectral density was relatively low.  Over 3500 Hz, the spectral density and its changes 

were small. 

 Therefore, for an individual MUP, the large peak of the spectral density means 

that there are lots of MFP contributions in the low frequency bandwidth (below 2000 Hz). 
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These contributions may contain mostly distant MFP contributions with relatively low 

frequency components.  In the high frequency zone (3500 Hz to 10 kHz), there is a low 

and approximately constant spectral density, so individual MFP contributions to the 

MUPs in this frequency range are few and most of the energy comes from noise (the 

spectral density of individual MFPs is relatively low and rapidly falls off over 3500 Hz).  

Therefore, the meaningful frequency section, which can be used to detect near MFP 

contributions, should be between 2000 Hz and 3500 Hz.  This relatively high frequency 

range contains energy, which mainly comes from near MFP contributions, because most 

of the energy of distant MFP contributions is not in this bandwidth.  Therefore, using 

suitable bandpass filters can reduce unwanted spectral components such that near MFP 

contributions can be detected.  Reasonable high and low pass cut-off frequencies of such 

filters should be 2000 Hz and 3500 Hz respectively. 

3.6 Choice of the Filters 

Based on previous work and current industry practice, several filters were chosen for near 

MFP detection.  To correctly detect individual MFP contributions, the filters used 

required a linear phase response to assure that the detected contributions accurately 

represented the temporal locations of the corresponding MFP contributions.  The ability 

of a filter to detect near MFP contributions in MUPs was evaluated using the following 

criteria: 

a) The sharpness and amplitude of detected significant peaks (which represent near 

MFP contributions). 

b) Supression of false peaks  generated by the filter, distant MFP contributions and 

noise. 

c) Adaptability and temporal resolution of filter (in order to accommodate 

biological variations of MUPs). 

d) Time required to complete MFP detection  (must be clinically reasonable 1 – 5 

s).  
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3.6.1 Zero-phase Butterworth Filters  

The Butterworth filter is a typical classical IIR filter.  Its magnitude response is smooth 

over the complete bandwidth.  Based on the passband width requirements, zero-phase 

bandpass Butterworth filters were designed by using MATLAB software, and used to 

detect near MFP contributions in MUPs. 
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Figure 3.5: Using a 2-order zero-phase Buttereworth bandpass filter (2000Hz to 3500Hz) 

MFP contributions in MUPs are detected. (Mark ‘∗’ represents the peak locations of near 

MFP contributions.  In (C) and (D), the first big peaks are false peaks.) [8] 

 

 Through a series of simulation experiments, it was found that it is difficult to use 

the bandpass Butterworth filter with a suitable bandwidth and order to identify near MFP 

contributions in MUPs.  In general, there were too many false peaks in the filtered MUPs.  

A wider bandwith can be used to reduce the ringing effect, but the time resolution suffers.  
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Figure 3.5 provides two examples for detecting MFP contributions in simulated MUPs by 

using a 2
nd

-order zero-phase bandpass Butterworth filter. 

 

3.6.2 The McGill Filter 

Stashuk [18] used MUP acceleration to detect near MFP contributions to MUPs. He 

defined a near MFP contribution as one with the peak MUP acceleration above an 

expected threshold.  MUP accelerations were achieved by calculating a second-order 

difference equation.  The difference equation was derived from a difference filter used by 

McGill [32], so it is named the McGill filter in this thesis.  The McGill filter is a second-

order differentiator, a symmetric FIR filter.  Its equation is as follows: 

 

where: Xn is the sampled data of the original signals; 

Yn is the data of the filtered MUP. 

 

 The McGill filter is convenient to implement, and has good temporal resolution 

resulting from the short sampling data length used.  From the time-domain point of view, 

it computes approximations of the second-order derivative of the input signal.  It can 

therefore accentuate the rapid rising edges of the MUPs, and convert them into narrow 

spikes.  Since near MFPs usually have a sharp peak, use of the McGill filter may be 

efficient for detecting their contributions in MUPs.  From the frequency-domain point of 

view, the McGill filter is a bandpass filter.  It suppresses high-frequency noise and low-

frequency background activity, such as distant MFP contributions and noise.  Figure 3.9 

is the magnitude response of the McGill filter.  As can be seen, the McGill filter is a 

multiband bandpass filter for a 31.25 kHz sampling rate.  For the first passband, the cut-

off frequencies are 2000 Hz and 4250 Hz, and the centre frequency is 3150 Hz.  

However, the other two high frequency passbands are not desired as they make the filter 

more sensitive for high frequency noise.  
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Figure 3.6 a: The magnitude response of the McGill filter.  The first passband is from 

2000 Hz to 4250 Hz, and the centre frequency is 3150 Hz.[8] 

 

3.6.3 Acceleration filter 

One previous work [8] proposed another filter derived from the McGill filter.  Based on 

the least-squares criteria and a passband requirement of 2000 Hz – 3500 Hz, a 2
nd

-order 

differentiator was designed as follows: 

 

      Yn = – 0.2158*Xn  – 0.15207*(Xn+1 + Xn-1) – 0.04439*(Xn+2 + Xn-2) 

+ 0.042743*(Xn+3 + Xn-3) + 0.088353*(Xn+4 + Xn-4) + 0.10395*(Xn+5 + Xn-5) 

+ 0.075737*(Xn+6 + Xn-6) + 0.017537*(Xn+7 + Xn-7) – 0.015467*(Xn+8 + Xn-8) 

– 0.012167*(Xn+9 + Xn-9) + 0.003664*(Xn+10 + Xn-10) 

 

 

 This 2
nd

-order differentiator is named the Acceleration filter.  Figure 3.11 shows 

its magnitude response.  Its cut-off frequencies are 2000 Hz and 4100 Hz, and the centre 

frequency is 3050 Hz.  The passband requirement of 2000 Hz – 3500 Hz can be 

approximately satisfied and it has a minimum data length for the corresponding filter 

order.  Compared with the 1
st
-order differentiator, it has a similar frequency response, but 

the data length of the 2
nd

-order differentiator is longer.  The Acceleration filter also has a 

shift between the locations of the detected peaks and the locations of the corresponding 

contributing MFP peaks (See Figure 3.6b). 
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                      Figure 3.6b The magnitude response of the Acceleration filter. The 

passband is from 2000 Hz to 4100 Hz, and the centre frequency is 3050 Hz. [8]  

3.7 Identifying Features of Near MFP Contributions 

To clearly identify near MFP contributions in MUPs, a filter must have a good ability to 

accurately differentiate between significant and false peaks.  In some sense, this is 

difficult because the definition of near MFP contribution is in itself somewhat arbitrary.  

In previous work [8] an amplitude threshold was defined to distinguish near and distant 

MFP contributions.  In section 3.4, for instance, near MFP contributions were defined as 

all the expected MFPs that have 25 and 40 kV/s
2
.  According to this definition, we set up 

a near MFP and distant MFP library. However, the individual MFPs may contain different 

frequency content, and the sharpness of their peaks may be different.  To detect near MFP 

contributions as accurately as possible, reasonable detection parameters and thresholds 

have to be defined. The proposed method is to use CN EMG to get as good as, or close 

to, jitter estimate performance as does traditional SF EMG, so an analysis on both CN and 

SF MFP libraries was performed. 

 Based on the analysis of the peak features of the filtered MUPs, three detection 

parameters: amplitude, sharpness and slope ratio, were used.  In addition, the locations of 

the detected peaks were also used to help confirm the correctness of the detection results.  

Here, the amplitude refers to the magnitude of the detected peaks.  The sharpness relates 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency Scale [Sampling rate = 31250 Hz]

[M
a
g
n
it
u
d
e
 S

c
a
le

]

Magnitude Response of Acceleration Filter



 

 49

to how sharp the peak is, and is defined as the minimum of the slope of the rising and 

falling edges.  The slope ratio is the ratio of the falling slope to rising slope, it describes 

the symmetry of the filtered spike.  The slope was defined as the amplitude variation per 

unit time.  However, n fact, the amplitude variation per unit time is actually not often 

consistent.  To measure the sharpness feature as accurately as possible, the slope was 

calculated by an algorithm, generally if the rise and fall amplitudes of a spike are close to 

the same value then the slope is calculated using all of the spike data, if not only data 

close to the peak of the spike is used to calculate the slope ratio. 

 After the three detection parameters were defined, all individual MFPs from the 

near and distant MFP libraries were used to claculate these parameters in order to identify 

the features of near MFP contributions.  In addition, the shift of the detected peaks and 

the ratio of the amplitude of the maximum false peak to the amplitude of the smallest true 

peak, called the false-to-true peak ratio, were also analysed.  Table 3.2 shows the results 

from the analysis of two near and distant MFPs libraries using the McGill filter. 

  

McGill filter and 

25CN_lib 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 102.7 23.5 19.3 

Max 321.8 42.2 57.6 

 

Amplitude 

[µV] Min 43.6 11.8 9.21 

Mean 0.731 0.125 0.051 

Max 2.771 0.257 0.18 

 

Sharpness 

[µV/µs] Min 0.263 0.051 0.02 

Mean 1.416 1.59 0.35 

Max 1.672 2.03 0.42 

 

Slope ratio 

Min 1.085 1.24 0.30 

Mean -12.1 -12 

Max -10 -12 

Shift 

[Sampling 

unit] Min -13 -15 

 

Mean 21.3 

Max 29.9 

False-to-

true peak 

ratio (%) Min 

  

11.9 
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Table 3.2a: The results from analyzing all 173 near and 185 distant MFP contributions 

using the McGill filter on the 25CN_LIB MFP library. 

 

 

McGill filter and 

40CN_lib 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 143.3 28.2 25.2 

Max 307.2 67.2 57.6 

 

Amplitude 

[µV] Min 67.3 11.8 13.1 

Mean 1.094 0.157 0.068 

Max 2.771 0.446 0.18 

 

Sharpness 

[µV/µs] Min 0.384 0.051 0.03 

Mean 1.371 1.57 0.35 

Max 1.595 2.03 0.42 

 

Slope ratio 

Min 1.085 1.24 0.30 

Mean -11.6 -13.4 

Max -10 -11 

Shift 

[Sampling 

unit] Min -13 -15 

 

Mean 18.7 

Max 24.5 

False-to-

true peak 

ratio (%) Min 

  

11.9 

 

 

Table 3.2b: The results from analyzing all 103 near and 185 distant MFP contributions 

using the McGill filter on the 40CN_LI B MFP library. 

      To have a better understanding of the Table 3.2 data, we plot them in the following 

figures, “*” represents near MFP data; “+” represents distant MFP data and “o” 

represents false peak data generated by the filter. 
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Figure 3.7a   Amplitudes of peaks in Table 3.2, though we can see most near (significant) 

peaks are much bigger than false and distant peaks, some of them are overlapped.  So it is 

difficult to use amplitude only to distinguish true and false peaks. 
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Figure 3.7b Sharpness of peaks in Table 3.2, we can separate near and false peaks easily 

using a sharpness threshold, and maybe also near and distant peaks. 
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Figure 3.7c  Slope ratio of peaks in Table 3.2, though near and distant MFP data are 

mixed together, we can easily separate false peaks by using a slope ratio threshold.  

 Examining Table 3.2 and Figure 3.7, we found that near and distant MFP 

contributions can be differentiated using slope ratio and sharpness.  Compared with the 

distant and false MFP contributions, the near ones usually have large sharpness and better 

symmetry, which is measured by the slope ratio.  The chosen thresholds should be able to 

exclude almost all distant MFP contributions, and only remove a few near MFP 

contributions.  Since we want no false peaks and can tolerate some distant MFPs, we 

chose the mean value as the detection threshold.  Amplitude was only used as a reference 

value because its value overlapped with false and true peaks.  Although the McGill filter 

has a mean false-to-true peak ratio of 24.5%, the amplitude of a large false peak may be 

larger than that of a small true peak.  Fortunately, the problem of false peaks can be 

solved using the slope ratio.  All near peaks have a relatively high slope ratio, which 
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means that peaks of near and distant MFP contributions usually have steeper falling edges 

than their rising edges.  However, the case for false peaks is just the reverse.  The 

positions of the positive peaks of the filtered MUPs are used to represent the temporal 

locations of the MFP contributions.  However, the temporal locations of the positive 

peaks correspond with the starting points of the rising edges of MFP contributions, not 

with their peaks.  In addition, distant MFP contributions often have a greater shift than 

near MFP contributions. Therefore, a shift was considered when we analysed the 

accuracy of the detection results.  

 

Accel filter and 

25CN_lib 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 102.7 23.8 19.6 

Max 321.8 43.5 58.5 

 

Amplitude 

[µV] Min 43.6 11.9 9.29 

Mean 0.744 0.127 0.052 

Max 2.764 0.267 0.188 

 

Sharpness 

[µV/µs] Min 0.235 0.052 0.021 

Mean 1.395 1.58 0.34 

Max 1.704 1.95 0.44 

 

Slope ratio 

Min 1.119 1.16 0.28 

Mean -10.5 -12 

Max -12 -14 

Shift 

[Sampling 

unit] Min -8 -10 

 

Mean 21.1 

Max 29.8 

False-to-

true peak 

ratio (%) Min 

  

11.8 

 

Table 3.3 a: The results from analyzing all near and distant MFP contributions using the 

Acceleration filter on the 25CN_LIB MFP library. 
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Accel filter and 

40CN_lib 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 146.3 28.8 25.6 

Max 321.8 67.6 58.5 

 

Amplitude 

[µV] Min 69.3 11.9 13.3 

Mean 1.1 0.162 0.069 

Max 2.76 0.444 0.188 

 

Sharpness 

[µV/µs] Min 0.46 0.052 0.032 

Mean 1.36 1.56 0.34 

Max 1.7 1.95 0.44 

 

Slope ratio 

Min 1.12 1.16 0.28 

Mean -10 -11.9 

Max -8 -10 

Shift 

[Sampling 

unit] Min -12 -14 

 

Mean 15.6 

Max 24.3 

False-to-

true peak 

ratio (%) Min 

  

11.8 

 

Table 3.3 b: The results from analysing all near and distant MFP contributions using the 

Acceleration filter on the 40CN_LIB MFP library. 

 Table 3.3 show results from analyzing the individual MFPs using the Acceleration 

filter.  Similar to the McGill filter results, the detection thresholds for the Acceleration 

and Slope filters can be determined based on Table 3.3 a and b.  Referring to Table 3.2 

and 3.3, there are very similar features between the detection results of the McGill and 

Acceleration filters.  For the Acceleration filter, the thresholds of its detection parameters 

are basically the same as those of the McGill filter, and the thresholds of the sharpness 

and slope ratio can also be chosen around the mean distant MFP values.   

     Below are data generated from different bandwidth Butterworth filters, we tried the 

same bandwidth as that of the McGill filter and other currently widely used bandwidths. 
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ButterWorth filter 

and 25CN_lib 

2k~3.5k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 12.1 1.48 10.8 

Max 48.4 4.99 42.2 

 

Amplitude 

[µV] Min 3.8 0 3.45 

Mean 0.123 0.141 0.113 

Max 0.492 0.2053 0.453 

 

Sharpness 

[µV/µs] Min 0.037 0.0 0.036 

Mean 0.785 0.487 0.34 

Max 1.336 0.94 0.44 

 

Slope ratio 

Min 0.643 0 0.28 

Mean -4.2 -2.2 

Max -2 -0 

Shift 

[Sampling 

unit] Min -17 -6 

 

Mean 1.3 

Max 1.69 

False-to-

true peak 

ratio (%) Min 

  

0.61 

 

Table 3.4 a: The results from analysing all near and distant MFP contributions using the 

2khz to 3.5khz band pass Butterworth filter on the 25CN_LIB MFP library.  We can see 

false peaks created by the filter have almost the same amplitude, sharpness and slope 

ratio values as peaks created by real MFPs, so we can not use this bandwidth to detect 

near fibre contributions. 
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ButterWorth filter 

and 40CN_lib 

2k~3.5k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 18.2 2.08 16.4 

Max 48.4 7.86 42.2 

 

Amplitude 

[µV] Min 6.96 0 6.07 

Mean 0.188 0.02 0.172 

Max 0.492 0.07 0.453 

 

Sharpness 

[µV/µs] Min 0.065 0.0 0.061 

Mean 0.809 0.533 1.26 

Max 1.336 0.94 1.63 

 

Slope ratio 

Min 0.643 0 0.61 

Mean -4.7 -2.4 

Max -2 -0 

Shift 

[Sampling 

unit] Min -17 -6 

 

Mean 0.89 

Max 0.96 

False-to-

true peak 

ratio (%) Min 

  

0.83 

Table 3.4 b: The results from analyzing all near and distant MFP contributions using the 

2khz to 3.5khz band pass Butterworth filter on the 40CN_LIB MFP library, are the same 

as above, false peaks created by the filter have almost the same amplitude, sharpness and 

slope ratio values as peaks created by real MFPs, so we can not use this bandwidth to 

detect near fibre contributions. 
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Butterworth filter 

and 25CN_lib 

2k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 13.3 2.66 8.2 

Max 50.4 6.69 28.5 

 

Amplitude 

[µV] Min 4.7 0 2.66 

Mean 0.091 0.018 0.055 

Max 0.367 0.046 0.198 

 

Sharpness 

[µV/µs] Min 0.031 0.0 0.016 

Mean 0.589 0.608 2.49 

Max 0.708 0.848 3.22 

 

Slope ratio 

Min 0.468 0 1.39 

Mean -2.8 -2.5 

Max -2 -0 

Shift 

[Sampling 

unit] Min -4 -5 

 

Mean 0.58 

Max 0.93 

False-to-

true peak 

ratio (%) Min 

  

0.4 

Table 3.4 c: The results from analyzing all near and distant MFP contributions using the 

2khz to 10khz band pass Butterworth filter on the 25CN_LIB MFP library.  The 

sharpness and slope ratio values can be used to separate false peaks from those created by 

near MFP contributions. 
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ButterWorth filter 

and 40CN_lib 

2k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 19.2 2.08 12.4 

Max 50.4 7.86 28.5 

 

Amplitude 

[µV] Min 8.42 0 4.61 

Mean 0.133 0.02 0.085 

Max 0.367 0.07 0.198 

 

Sharpness 

[µV/µs] Min 0.055 0.0 0.029 

Mean 0.557 0.533 2.54 

Max 0.68 0.94 3.22 

 

Slope ratio 

Min 0.468 0 1.39 

Mean -2.8 -2.4 

Max -2 -0 

Shift 

[Sampling 

unit] Min -4 -6 

 

Mean 0.63 

Max 0.93 

False-to-

true peak 

ratio (%) Min 

  

0.50 

 

Table 3.4 d: The results from analyzing all near and distant MFP contributions using the 

2khz to 10khz band pass Butterworth filter on the 40CN_LIB MFP library. 
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Butterworth filter 

and 25CN_lib 

500~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks detected 

with near MFP 

contributions from 

the near MFP library 

Mean 94 36.5 7.0 

Max 221.5 55.5              13.6 

 

Amplitude 

[µV] Min 53.3 23.1 3.6 

Mean 0.365 0.135 0.01 

Max 0.985 0.237 0.02 

 

Sharpness 

[µV/µs] Min 0.185 0.077 0.005 

Mean 0.564 0.583 2.78 

Max 0.7 0.689 3.10 

 

Slope ratio 

Min 0.473 0.496 2.52 

Mean -0.18 -0.25 

Max -0 -0 

Shift 

[Sampling 

unit] Min -1 -1 

 

Mean 0.07 

Max 0.1 

False-to-

true peak 

ratio (%) Min 

  

0.05 

Table 3.4 e: The results from analyzing all near and distant MFP contributions using the 

500hz to 10khz band pass Butterworth filter on the 25CN_LIB MFP library.  
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Butterworth filter 

and 40CN_lib 

500~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks detected 

with near MFP 

contributions from 

the near MFP library 

Mean 121 40.9 8.7 

Max 221.4 77.1 13.6 

 

Amplitude 

[µV] Min 69.5 23.1 5.47 

Mean 0.475 0.153 0.0129 

Max 0.985 0.307 0.02 

 

Sharpness 

[µV/µs] Min 0.26 0.077 0.008 

Mean 0.551 0.583 2.84 

Max 0.631 0.7 3.10 

 

Slope ratio 

Min 0.473 0.496 2.60 

Mean -0.19 -0.24 

Max -0 -0 

Shift 

[Sampling 

unit] Min -1 -1 

 

Mean 0.07 

Max 0.1 

False-to-

true peak 

ratio (%) Min 

  

0.05 

Table 3.4f: The results from analyzing all near and distant MFP contributions using the 

500hz to 10khz cut band ButterWorth filter on 40CN_LIB MFP library. 

 We applied different band pass Butterworth filters to Near and Distant MFP 

libraries in Table 3.4.  The reason is that the Butterworth filter is currently widely used 

for SF EMG signal analysis.  So we needed to compare the result with our method to 

show if it gets better results.  Like the McGill and Acceleration filters, using differences 

in amplitude, sharpness and symmetry near and distant MFP contributions can be 

identified.  For the Butterworth filer, we need to use a 500 to 10k or 2k to 10k band pass 

to reduce the ringing effect, so we can apply this filter in MFP detection. 

          In order to compare SF filtered data, we also applied different filters to SF libraries. 

Table 3.5 shows the data. 
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McGill filter and 25 

SF_lib 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 116.7 24.9 22.5 

Max 591.3 69.7 79 

 

Amplitude 

[µV] Min 27.1 11.5 7.6 

Mean 0.867 0.133 0.061 

Max 5.55 0.466 0.253 

 

Sharpness 

[µV/µs] Min 0.143 0.049 0.017 

Mean 1.41 1.59 0.35 

Max 1.784 2.04 0.42 

 

Slope ratio 

Min 1.03 1.29 0.29 

Mean -12. -13.7 

Max -9 -12 

Shift 

[Sampling 

unit] Min -14 -16 

 

Mean 22.7 

Max 34.7 

False-to-

true peak 

ratio (%) Min 

  

9.4 

Table 3.5 a: The results from analyzing all near and distant MFP contributions using   the 

McGill filter on 25 SF_LIB MFP library.  Statistically the filtered data show more 

sharpness and symmetry than the CN_LIB library data. 
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McGill filter and 40 

SF_lib 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 157 29.8 27.9 

Max 591.3 100.8 79 

 

Amplitude 

[µV] Min 37.7 11.5 10.1 

Mean 1.214 0.167 0.077 

Max 5.553 0.661 0.253 

 

Sharpness 

[µV/µs] Min 0.214 0.049 0.024 

Mean 1.39 1.57 0.35 

Max 1.635 2.04 0.41 

 

Slope ratio 

Min 1.03 1.24 0.29 

Mean -11.7 -13.5 

Max -9 -12 

Shift 

[Sampling 

unit] Min -14 -16 

 

Mean 20.4 

Max 30.5 

False-to-

true peak 

ratio (%) Min 

  

9.4 

Table 3.5 b: The results from analyzing all near and distant MFP contributions using   the 

McGill filter on the 40 SF_LIB MFP library. 
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ButterWorth filter 

and 25 SF_lib 

500~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 105.8 38.9 7.8 

Max 337.8 79.8              21.8 

 

Amplitude 

[µV] Min 42.2 22.7 3.6 

Mean 0.418 0.145 0.011 

Max 1.398 0.302 0.033 

 

Sharpness 

[µV/µs] Min 0.154 0.075 0.005 

Mean 0.558 0.595 2.85 

Max 0.713 0.668 3.33 

 

Slope ratio 

Min 0.443 0.496 2.56 

Mean -0.24 -0.26 

Max -0 -0 

Shift 

[Sampling 

unit] Min -1 -1 

 

Mean 7.6 

Max 10.5 

False-to-

true peak 

ratio (%) Min 

  

4.9 

Table 3.5 c: The results from analyzing all near and distant MFP contributions using the 

500hz to 10khz band pass Butterworth filter on the 25 SF_LIB MFP library. 
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Butterworth filter 

and 40 SF_lib 

500~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 130.5 43.6 9.3 

Max 337.8 10.4 21.7 

 

Amplitude 

[µV] Min 52.5 22.8 4.15 

Mean 0.519 0.163 0.014 

Max 1.398 0.426 0.033 

 

Sharpness 

[µV/µs] Min 0.197 0.075 0.006 

Mean 0.548 0.59 2.89 

Max 0.708 0.713 3.33 

 

Slope ratio 

Min 0.443 0.479 2.58 

Mean -0.2 -0.26 

Max -0 -0 

Shift 

[Sampling 

unit] Min -1 -1 

 

Mean 7.3 

Max 10.5 

False-to-

true peak 

ratio (%) Min 

  

4.9 

Table 3.5 d: The results from analyzing all near and distant MFP contributions using the 

500hz to 10khz band pass Butterworth filter on the 40 SF_LIB MFP library. 
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Butterworth filter 

and 25 SF_lib 

1k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 58.4 17.1 14.4 

Max 224 39.9              54.4 

 

Amplitude 

[µV] Min 18.1 7.9 4.3 

Mean 0.311 0.088 0.05 

Max 1.22 0.21 0.187 

 

Sharpness 

[µV/µs] Min 0.089 0.036 0.015 

Mean 0.668 0.681 2.55 

Max 0.795 0.845 3.6 

 

Slope ratio 

Min 0.54 0.56 2.02 

Mean -1.07 -1.2 

Max -0 -0 

Shift 

[Sampling 

unit] Min -2 -2 

 

Mean 24.3 

Max 40.4 

False-to-

true peak 

ratio (%) Min 

  

18.6 

Table 3.5 e: The results from analyzing all near and distant MFP contributions using the 

1khz to 10khz band pass Butterworth filter on the 25 SF_LIB MFP library. 
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Butterworth filter 

and 40 SF_lib 

1k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 74.5 19.7 18.7 

Max 224 57.1 54.3 

 

Amplitude 

[µV] Min 23.9 7.9 5.6 

Mean 0.398 0.102 0.064 

Max 1.224 0.31 0.187 

 

Sharpness 

[µV/µs] Min 0.12 0.036 0.019 

Mean 0.657 0.682 2.59 

Max 0.783 0.845 3.6 

 

Slope ratio 

Min 0.54 0.56 2.05 

Mean -1 -1.2 

Max -0 -0 

Shift 

[Sampling 

unit] Min -2 -2 

 

Mean 24.7 

Max 40.5 

False-to-

true peak 

ratio (%) Min 

  

19.5 

Table 3.5 f: The results from analyzing all near and distant MFP contributions using the 

1khz to 10khz band pass Butterworth filter on the 40 SF_LIB MFP library. 
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Butterworth filter 

and 25 SF_lib 

2k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 15.7 2.8 9.8 

Max 83.7 8.7              63.4 

 

Amplitude 

[µV] Min 3.0 0 0 

Mean 0.11 0.019 0.066 

Max 0.59 0.059 0.439 

 

Sharpness 

[µV/µs] Min 0.019 0.0 0 

Mean 0.644 0.601 2.28 

Max 3.45 0.816 3.8 

 

Slope ratio 

Min 0.40 0.0 0 

Mean -3.1 -2.4 

Max -2 -0 

Shift 

[Sampling 

unit] Min -17 -4 

 

Mean 0.54 

Max 99.6 

False-to-

true peak 

ratio (%) Min 

  

0 

Table 3.5 g: The results from analyzing all near and distant MFP contributions using the 

2khz to 10khz band pass Butterworth filter on the 25 SF_LIB MFP library. 
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Butterworth filter 

and 40 SF_lib 

2k~10k 

 

Peaks representing 

near MFP 

contributions from 

the near MFP library 

Peaks representing 

distant MFP 

contributions from 

the distant MFP 

library 

False peaks created 

from near MFP 

contributions from 

the near MFP library 

Mean 21.3 3.5 13.9 

Max 83.7 14.2 63.4 

 

Amplitude 

[µV] Min 4.3 0 2.14 

Mean 0.15 0.024 0.095 

Max 0.59 0.106 0.439 

 

Sharpness 

[µV/µs] Min 0.027 0.0 0.012 

Mean 0.653 0.607 2.37 

Max 3.45 0.817 3.82 

 

Slope ratio 

Min 0.4 0.0 0.47 

Mean -3 -2.5 

Max -2 -0 

Shift 

[Sampling 

unit] Min -17 -4 

 

Mean 60 

Max 99.6 

False-to-

true peak 

ratio (%) Min 

  

41.6 

Table 3.5 h: The results from analyzing all near and distant MFP contributions using the 

2khz to 10khz band pass Butterworth filter on the 40 SF_LIB MFP library. 

  When filtered using the same filter, the CN and SF filtered data,  had similar  

statistical characteristics, except that the SF data had somewhat larger amplitude and 

sharpness.  In general, using the McGill, Acceleration or the wider bandwidth 

Butterworth filter, near and distant MFP contributions can be differentiated using 

differences in the slope ratio and sharpness of the detected peaks.  True and false peaks 

can be identified by their distinct slope ratio and amplitude.  The amount of temporal 

shift of the detected peaks may help us decide the correspondence between the detected 

MFP contributions and the locations of the expected MFP contributions.  Therefore, by 

using suitable thresholds for the detection parameters, near MFP contributions can be 

detected.  

3.8 Detecting Near MFP Contributions in MUPs 

3.8.1 Determining Detection Thresholds Using Simulated MUPs 

These filters were then applied to the created MUP libraries to determine optimised 

feature value thresholds for the detection of individual MFP contributions.  Accurately 
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measuring neuromuscular jitter is dependent on the ability to consistently and accurately 

detect individual MFP contributions.   

 The thresholds of the three detection parameters, amplitude, sharpness and slope 

ratio, were decided by considering the false and missed detection rates.  The optimal 

thresholds should generate a minimum false and missed detection rate.  Actually, it is 

almost impossible that no false and no missed peaks occur in an actual detection.  But 

either or both of them should be as small as possible.  For measuring neuromuscular 

jitter, false peaks are more unfavourable than missed peaks.  So when adjusting the 

thresholds, if a decrease of false detection rate lead to an increase in missed detection 

rate, a low false detection rate was considered first.  For an acceptable false detection 

rate, when the ratio of missed detection rate increase to false detection rate decrease was 

more than 1, the false detection rate was fixed and the corresponding thresholds that have 

the minimum missed detection rate were defined as the optimal thresholds.  Table 3.6 

shows the optimal detection parameters for using the McGill and Acceleration filters and 

the Butterworth filter for detecting near MFP contributions.   

 

  McGill/Accel       Butterworth         

Threshold sharpness peak Symmetry Symmetry sharpness peak Symmetry     

CN 0.078 0.004 low 0.5 high 0.7 0.06 0.004 low 0.5 high 0.7 cut 1.2 

SF 0.078 0.004 low 0.3 high 0.4 0.06 0.004 low 0.3  high 0.4 cut 1.5 

Table 3.6: MFP contribution detection thresholds for the McGill, Acceleration and 

Butterworth filers. 

The logic of using high and low symmetric value here is, if we have a peak that is very 

sharp, then we can use the low level of symmetric threshold. If a peak is not very sharp, 

but if we use several data points close to the peak top to calculate the sharpness again and 

this sharpness satisfy the sharpness threshold, then it must also satisfy the high level of 

symmetric threshold.   Table 3.6 shows the optimal detection thresholds for the different 

filters. When analyzing the detection results, usually we have two types of error rates: 

false and missed detection rates.  In our case, most false peaks were not generated by the 

filters, but instead were often the result of a ‘large’ distant MFP or a superposition of 

distant MFPs.  Missed peaks occurred for various reasons.  Most of them came from 
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temporal overlap of near MFP contributions.  In fact, every detection filter had a 

minimum time resolution.  When two or more MFP contributions were so close that their 

peak intervals were shorter than the time resolution of the filter, one or more near MFP 

contributions was missed.  In addition, false peaks may also caused near MFP 

contributions to be missed.  If a near MFP contribution with relatively small amplitude 

followed another MFP contribution with large amplitude, then the false peak that 

appeared in the tail of the detected large MFP contribution sometimes covered the 

detected contribution of the following small MFP and caused the small contribution to be 

missed.   

 Effects of noise are complicated.  High levels of noise can lead to both false and 

missed peaks. Therefore, a narrow passband bandwidth for the detection filters was 

chosen in order to reduce noise to the maximum extent.  In addition, increasing the levels 

of the detection thresholds was the major means for reducing the effects of noise. 

However, this lead to an increase of the missed detection rate while decreasing the false 

detection rate.  

 Compared with the McGill filter, the Acceleration had similar results with regard 

to false and missed peaks.  In addition, the detection thresholds for the Acceleration filter 

were determined by the same method.  In general, the threshold combinations that 

resulted in a small false detection rate and a relatively small missed detection rate are 

expected to be optimal for measuring neuromuscular jitter.  A major limitation in the 

ability to detect fibre contributions is the temporal overlap of individual MFPs.  

Temporasl overlap results in some near MFP contributions being missed so that any 

detection scheme will underestimate the true number of contributions.  Although 

temporal overlap can be identified to some extent by analysing the stability of a peak 

shape across an ensemble of detected individual contributions, it is a difficult task to 

automatically detect such temporally close MFP contributions.  In addition, overlap also 

makes the analysis more difficult. 

3.9 Discussion of Filter Chosen 
Using SF EMG data to measure neuromuscular jitter and fibre density is the current 

clinical standard technique.  SF MUPs are acquired using the combination of a SF 
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electrode and a band pass filter with cut-off frequencies of 500 Hz and 10 kHz, and 

usually consist of one or a few individual MFPs. In fact, the accuracy of jitter and fibre 

density measurements is dependent on the extent to which individual MFP contributions 

can be correctly detected.  So far, the performance of using the McGill filter to detect 

near MFP contributions in CN MUPs has been analyzed.  However, it was also necessary 

to evaluate the performance of the McGill filter using SF MUPs, and to compare the 

detection results with the clinical standard technique.  Therefore, contrast experiments 

were implemented between the Acceleration filter and the bandpass Butterworth filter 

with cut-off frequencies of 500 Hz and 10 kHz using simulated CN and SF MUPs.  

 Simulated CN and SF MUPs were established by the same conditions, except for 

using different electrodes.  Here we first used the different filters to detect near MFP 

contributions with one MUP composed of two MFPs, near MFP contributions were 

defined as detected peaks with a stable shape.  We show the results intuitively in a plot 

and then statistically.  The detection results were evaluated using the same criteria 

presented in section 3.8.  Figures 3.8, 3.9 and 3.10 show examples of MUPs, composed 

of two MFP contributions with different time shifts, processed  by different filters. 
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Figure 3.8: Example of detecting near MFP contributions to CN MUPs.  On the left are 

raw CN MUPs composed of two MFPs with different time shifts, in the middle near MFP 

contributions are detected using a Butterworth bandpass filter, and on the left are the 

results of McGill  filtering and MFP detection.   

We can see the McGill filter has better time resolution than the Butterworth filter.   Under 

the same conditions with a 300 µs time shift the McGill Filter allows  the two MFP 

contributions to be detected, while the Butterworth filter requires a time shift of  400 µs 

before both MFP contributions can be detected. 

 

 

 Figure 3.9: Example for detecting near MFP contributions to SF MUPs.  On the 

left are raw SF MUPs composed of two MFP contributions with different time shifts, in 

the middle near MFP contributions are detected using Butterworth bandpass filter, and on 

the left results using the McGill filter are shown. 
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Figure 3.10: Example for detecting near MFP contributions to SF and CN MUPs using 

the McGill filter.  On the left are raw SF MUPs composed of two MFP contributions with 

different time shifts and the McGill filtered MFP detection result, and on the left are CN 

MUPs composed of the corresponding MFP contributions and McGill filtered MFP 

detection results. 

 Compared with the conventional technique, the McGill filter has a better detection 

ability as shown in Figures 3.8, 3.9 and 3.10.  In fact, it works very well not only for SF 

MUPs but also for CN MUPs.  

     In order to get a more accurate estimate of how well these filters work,  MUPs were 

generated with two near MFP contributions randomly selected from the MFP libraries.  

The selected MFPs were combined with  a fixed amount of time shift between them to 

create each MUP and  the created MUPs were processed by the different filters and the 

MFP detection routines were applied to  obtain statistical data.  Tables 3.7 and 3.8 display 

the results. 
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time shift 
(micro-
sec) Accel 25 Accel 40 McGill 25 McGill 40 ButtW 25 ButtW 40 

250 28.3 44.8 29.2 47 5.5 8.9 

300 63.7 85 72.5 87.3 15.5 27.4 

350 81.5 90.9 84 89.2 31.1 52 

400 89.5 91.9 90.3 93.8 56.1 69.5 

450 96.6 98.7 95.3 98.1 65.4 74.6 

500 98.8 99.8 99.5 100 73.6 78.1 

550 100 100 100   80.9 86.1 

600         87.4 95.3 

650         94.3 99 

700         98.4 100 

750         99.7   

800         100   

 

 

Table 3.7: MFP detection accuracies for 1000 CN MUPs, composed of two randomly 

selected MFPs  with fixed time shifts using different filtering and selecting from different 

MFP libraries. 

We can see that for both the 25CN and 40 CN libraries, the Acceleration and McGill 

filter out performed the Butterworth filter.  At first it was expected that the Acceleration 

filter would have better performance than the McGill filter, but statistically this was not 

the case.  Tthe computation cost of the Acceleration filter is much higher than McGill 

filter, so we  chose the Butterworth and McGill filters for further study. 
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time shift McGill  SF 25lib McGill SF 40lib Butterworth SF 25lib Butterworth SF 40lib 

  same Random Same random same random same random 

250 35.3 44.7 55.8 54.6 0 2.7 0 6.4 

300 84.4 74 94.1 81.5 11.6 11.1 19.6 18.5 

350 100 83.8 100 83.7 45.1 37.8 67.7 51.1 

400   88.8   89.1 84.97 63.2 93.14 67.9 

450   92.7   95.8 100 74.1 100 77.7 

500   98.2   98.8   86.2   89.6 

550   99.7   99.1   94.3   95.1 

600   100   100   95.7   98.5 

650           99.2   99.6 

700           99.9   99.9 

750           100   100 

Table 3.8: MFP detection accuracies for 1000 SF MUPs, composed of two randomly 

selected MFPs with fixed time shifts using different filtering and selecting from different 

MFP libraries.  

We can see that for both the 25SF and 40SF library, the McGill filter out performed the 

Butterworth filter.  The “same” column using the same SF MFP twice to remove different 

MFP overlap, so we can have a no overlap estimate. 

McGill correct FALSE miss avg IPI   correct FALSE Miss avg IPI 

SF      0 89.7 4.7 6.6 524 CN       0 86.3 5.2 8.5 519 

  89.9 4.9 6.2 525   86.9 5 8.1 514 

  89.1 5.1 6.8 528   85.8 4.9 9.3 516 

2.5 86.5 7.1 6.4 522 2.5 87.6 5.7 6.7 520 

  87.3 7.6 5.1 515   86.3 5.7 8 511 

  88.7 6.1 5.2 524   85.2 6.7 8.1 516 

5 84.6 9.3 6.1 522 5 85.5 7.4 7.1 520 

  83.9 10.7 5.4 541   84.7 7.6 7.7 508 

  85.4 9.2 5.4 522   84.7 7.9 7.4 522 

   Table 3.9: MFP detection accuracies for 1000 CN MUPs, composed of two randomly 

selected MFPs with fixed time shifts and three distant MFP contributions using McGill 

filtering.   

 

      The rate at which the correct number of MFP contributions is reported as well as the 

rate at which extra or missed contributions were detected.  The average interval between 

the two near MFP contributions or the inter-potential-interval (IPI) is also reported. 

        In this section, detection thresholds were determined and the detection results were 

analysed and discussed.  Three filters were applied to detect near MFP contributions to 
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MUPs.  Based on analyzing simulated MUPs it can be concluded that the McGill, 

Acceleration and Butterworth filters are all powerful techniques for detecting major fibre 

contributions to MUPs, and are able to consistently detect near MFP contributions in 

MUPs.  Accurate detection of near MFP contributions establishes the essential conditions 

for measuring neuromuscular jitter discussed in the next chapter. 

 Comparing the McGill, Acceleration and Butterworth filters, it can be concluded 

that they all have very similar detection results.  For the McGill and Acceleration filters, 

their characteristics are also essentially alike and the major difference between them is 

merely that the Acceleration filter has a better ability to inhibit high frequency noise.  The 

Acceleration and McGill filters have similar time resolutions.  But the computation cost 

of the Acceleration filer is much greater than the McGill filer.  Therefore, the McGill 

filter was chosen as the tool of detecting individual MFP contributions for measuring 

neuromuscular jitter. 

        And also we can see that by applying these filters to CN and SF signals we get very 

close result. Usually SF signals are more easily to detect, so the correct rates are a little 

bit higher than CN. 
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Chapter 4  A Method for  Neuromuscular Jitter 

Measurement 

4.1 Introduction 
In previous chapters we have discussed the definition of neuromuscular jitter and 

technology that can be used to detect MFP contributions for the measurement of   

neuromuscular jitter.  However, to measure jitter in MUPs, not only MFPs, but individual 

MFP pairs have to be found.  Furthermore, due to the superposition of MUPs from 

different MUs, detected MFP contributions to a detected MUP waveform may not have 

been created by a single MU.  Therefore, a method to remove these overlapped signals is 

required.  Moreover, due to biological variations and noise interference, the waveform of 

each MUP belonging to a MUPT is not exactly identical.  Therefore, the detection results 

across the MUPs of a MUPT may contain false or missed individual MUP contributions.  

Typical features of detected contributions from different MUPs in the same MUPT 

therefore have to be found in order to exclude incorrect detection results.  In addition, 

measurement of jitter should be with respect to a specific fibre pair, but often more than 

two near MFP contributions may be detected.  Consequently, specific individual MFP 

pairs have to be identified in order to measure their IPIs across a set of firings of a MU.  

This chapter deals with the steps of how to identify specific individual MFP pairs in a 

series of filtered MUPs and results under different filters. 

 With regard to the measurement of jitter, blocking is also an important factor. 

Blocking is referred to as a particular fibre failing to fire at some time during a train of 

MU discharges.  Blocking represents a failure of the NMJ, and is very important for 

clinical interpretation of jitter measurements.  As jitter increases, blocking may occur.  In 

particular, blocking almost always occurs when MCD values exceed 100 µs [33].  

Normal jitter values range between 10 and 50 µs, and a time resolution of at least 1 µs is 

usually expected.  However, MUP data used in this research were sampled at 31.25 kHz, 

and thus the sampling time interval is 32 µs.  Consequently, a suitable interpolation 

technique must be applied in order to obtain more accurate measurement results and to 

satisfy the time resolution requirement. 
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 For evaluating the accuracy of the jitter measurement techniques, simulated EMG 

signals and MUP data with known jitter values were implemented.  Different jitter 

measurement results using the same method with CN and SF MUPs, with McGill and 

Butterworth filtering were compared.  Finally, the measurement techniques were 

evaluated and relevant problems are discussed.  

 Based on expected jitter values, simulated MUPTs with a signal-to-noise ratio of 

20 dB were randomly created.  Individual MFP pairs were identified in these MUPTs 

using nearest neighbour clustering and minimum spanning tree algorithms, jitter and 

blocking was measured for every MUPT whose MUPs contain available individual MFP 

pairs and errors in the measurements were calculated.  In addition, the developed 

algorithm was verified using four types of simulated EMG signals built randomly.  

             There are four major sections in this jitter measurement method and each one 

contains a number of steps: 

1. Select isolated MUPs. 

 

 

 

 

 

 

 

 

 

 

 

Read data of decomposed EMG signal of one MUP train. 

Determine the typical inter discharge interval of filtered MUPs 

Estimate amplitude of baseline noise and determine the isolated MUP 

detection threshold. 

Align filtered MUPs using occurrence time of the first significant peak  

Calculate distance between any two filtered MUPs and sort their similarity 

using nearest neighbour clustering and minimum spanning tree algorithms  
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2. Select individual MFPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is there a typical class? 
No 

Exit 

Exclude superimposed MUPs and build the preliminary set of available 

filtered MUPs 

Yes 

Determine the typical number, average occurrence time and acceleration 

value of peaks 

Exclude MFP contributions with bifurcation 

Is typical number of peaks 

contributions > 1 ? 

Exit 

No 

Yes 

Exclude MUPs without typical peak shapes and build the set of available filtered 

MUPs with typical features of individual MFP contributions 

Calculate distance between peaks and sort their similarity using the minimum 

spanning tree algorithm 

Is the size of the set of individual 

MFP contributions > 1 ? 

No 

Exit 
Yes 
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3. Select pairs of individual MFPs. 

  

 

4. Calculate jitter and blocking. 

  

 

  

4.2 Selecting Isolated MUPs  

For the ideal circumstance, all results for detecting individual MFP contributions in 

different MUPs of the same MUPT should be exactly consistent, and individual MFP 

pairs can be simply identified according to the occurrence order of the corresponding 

detected contributions in the filtered MUPs.  In fact, however, the detected results usually 

vary.  For instance, superposition of individual MUPs from different MUs may generate 

more individual MFP contributions, and strong noise may lead to false or missed MFP 

contributions.  Figure 4.1 shows the result of classification of a MUP train.  We can’t use 

all MUPs here to measure jitter because of superpositions. 

 

 

Is number of the isolated filtered 

MUPs >= 50 ? 

No 

Exit 

Yes 

Continue 

Identify pairs of individual MFPs by the occurrence order of the corresponding 

MFP contributions in the set of isolated filtered MUPs 

Calculate jitter for each unique pair of individual MFP contributions 
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                  Figure 4.1: EMG Signal decomposition result: one MUP train. 

 The minimum spanning tree (MST) was used to select isolated MUPs, there are 

commonly two MST algorithms: Prim's algorithm and Kruskal's algorithm.  Kruskal's 

algorithm was choosen.  The basic step is to sort all the distances between any two MUPs 

in one MUP train and choose the first thirty to fifty most similar MUPs to calculate the 

mean and variance of the inter-MUP distances.  Based on experimental tests, if the 

distance is bigger than 2.4 to 2.9 times the variance plus the mean value, we mark the 

MUP as not isolated (i.e. as a superimposed waveform).  The threshold selected  

dynamically adjusts with the amount of jitter. As the jitter increases the variance of the 

distances will also increase, so the threshold will be higher.  This gives better results then 

a fixed threshold algorithm.  When the MST code is implemented in MatLab, it takes 

about 30 minutes to process a normal contraction.  The code was then optimized and 

implemented in C++ and now takes only 30 seconds to process the same contraction data.  

Figure 4.2 shows the sorted distance in one MUP train and a certain thresold can be set to 

select isolated MUPs.  

      To reduce the effect of jitter, seven distances are calculated by shifting the second 

filtered MUP for each similarity measurement and the minimum distance is selected.  

Using the nearest neighbour clustering and MST tree algorithms the similarity of the 
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filtered MUPs are sorted based on their distances.  The detection thresholds of 

superimposed MUPs are determined based on the mean and standard deviation of the 

distances.  The typical class, the biggest MUP group with similar shape, can then be 

found and most of the superimposed MUPs can be excluded.  Using the typical class, the 

preliminary set of the available filtered MUPs is set up. 

 

Figure 4.2: Distance between two MUPs in one MUP train.  If the distance is greater than 

a ceterain thershold, the MUP is assumed to be superimposed and won’t be used to 

calculate jitter. 

Figure 4.3 (a) and (b) shows the result of applying the MST algorithm to a MUP train. 

This figure demonstrates that superimposed MUPs have been successfully seperated from 

isolated MUPs. 
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Figure 4.3 a:  Isolated MUPs that can be further processed to calculate jitter. 

 

Figure 4.3 b:  Superimposed MUPs excluded from jitter measurement calculations. 

   Table 4.1 shows the results of using the mean distance plus 2.4 times the variance as the 

threshold for selecting isolated MUPs, for different jitter values.  
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jitter50   
# of superimposed 
 MUPs included 

# of Isolated MUPs 
missed 

Total #  
of  Errors 

Error  
Rate % 

train1 189 0 9 9 4.8 

train2 272 1 15 16 5.9 

train3 153 0 12 12 7.8 

train4 122 0 9 9 7.4 

train5 170 0 7 8 4.7 

           

jitter100   
# of superimposed 
MUPs included  

# of Isolated MUPs 
missed  

Total #  
of  Errors 

Error  
Rate % 

train1 172 0 10 10 5.8 

train2 265 1 13 14 5.3 

train3 125 0 9 9 7.2 

train4 132 0 7 7 5.3 

train5 156 0 10 10 6.4 

           

jitter150   
# of superimposed 
MUPs included  

# of Isolated MUPs 
missed  

Total #  
of  Errors 

Error  
Rate % 

train1 150 0 10 10 6.7 

train2 220 0 13 13 5.9 

train3 125 0 12 12 9.6 

train4 153 0 13 13 8.5 

train5 202 1 13 14 6.9 

Table 4.1: Use of the MST and threshold method to select isolated MUPs; by excluding 

less than 10% of the isolated MUPs we can get very low inclusion of superimposed 

MUPs for further jitter measurement. 

 

4.3  Choosing MFPs for Jitter Calculation   

     This MST method can also be applied to MFPs to exclude bifurcated MFPs.  Detected 

MFP contributions may not result from individual MFPs due to the superposition of 

individual MFPs from the same MU.  Particularly, this may be more serious for detected 

MUPs with high jitter.  Therefore, the shapes of detected individual MFP contributions 

have to be analysed and the detected peaks from individual MFPs should be stable, 

smooth and have no bifurcation across the ensemble of MUPs of a MUPT.  Finally, if 

individual MFPs can be identified, MFP pairs can be selected and neuromuscular jitter 

measured. 

 To reduce the effect of noise, the amplitude of the baseline noise was estimated in 

order to determine detection thresholds for peaks and near MFP contributions.  According 
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to the typical occurrence time of pre-detected contributions, the significant detection 

range of filtered MUPs, which is used to compare similarity between any two MUPs, can 

be determined.  To accurately measure similarity, the first positive peaks in every filtered 

MUP are aligned at the same position.   

 The typical number, average occurrence time and amplitude of near MFP 

contributions are determined based on the preliminary set of available filtered MUPs.  

The typical number is the number of detected contributions that appear most frequently in 

the set.  Average occurrence time and amplitude are then calculated based on initial 

estimates of jitter and amplitude variability.  Here, the average occurrence times are 

determined in two steps.  First, the mean and standard deviation of every contribution’s 

occurrence time are calculated using the available filtered MUPs with the typical number 

of detected contributions.  If the deviation is greater than 128 µs, the detected 

contributions with occurrence times greater than 1.65 standard deviations away from the 

mean (about 10% probability) are excluded.  The mean of every contribution’s 

occurrence time is then recalculated and the results are thought of as the average 

occurrence time of the corresponding contributions.  Independent of any measured 

standard deviation, if any contribution’s occurrence time is farther than 320 µs from the 

corresponding average occurrence time, the detected contribution is excluded.  If the 

amplitude of a detected contribution is greater than 1.5 times or smaller than half the 

average amplitude, the contribution is also discarded.  In addition, for accurately 

measuring jitter and blocking, the detected contributions are also excluded in the 

following two cases.  First, if the average amplitude of the detected contributions is 

around the detection threshold, the contribution is excluded in order to prevent noise 

interference.  Second, if the average interval between two detected contributions is within 

480 µs and the average amplitude of the second one is smaller than that of the first one, 

the second one is also discarded in order to prevent errors from the effect of false peaks. 

 The MUPs selected for jitter measurement should contain contributions with 

occurrence times and amplitudes similar to the average occurrence time and amplitude of 

the corresponding contributions.  If the typical number of the detected contributions is 

two or more and the number of the available MUPs is greater than fifty, it is possible to 
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use the available filtered MUPs to measure neuromuscular jitter.  However, features of 

the detected peaks that represent near MFP contributions should be analysed further to 

assure that the detected contributions are in fact created by individual MFPs. The MST 

algorithm is used again to measure the similarity between any two peaks within each 

corresponding detected MFP contribution.  Here, to reduce the effect of noise and low 

sampling rate, three distances are calculated by shifting one of the peaks and the 

minimum distance is used to represent the similarity between any two peaks.  For each 

contribution, if there is only a typical class, then the detected contributions can be 

considered as individual MFP contributions.  Otherwise, the detected peaks have 

bifurcation and the corresponding contributions may result from superposition of more 

than one individual MFP and are not used for jitter measurement.  After individual MFP 

contributions are identified, peaks that are away from the typical shape are discarded and 

the corresponding MUPs are also excluded in order to assure the accuracy of the jitter 

measurement (distortion of the peak usually results from the superposition of MUPs or 

the effect of large noise).  Finally, the remaining MUPs are the filtered MUPs available 

for jitter measurement and their number should be greater than fifty. 

 After the available filtered MUPs are obtained, the individual MFPs are marked 

simply by their occurrence order, and individual MFP pairs are selected by their 

occurrence order number. Examples of selecting MFP pairs were shown bellow. 
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Figure 4.4:  Example of a pair of MFP contributions. 

 Based on the average occurrence times and amplitudes of individual MFP 

contributions, blocking is identified and percent blocking is calculated.  Based on the 

jitter value and the average occurrence time of the corresponding contribution, the 

positive peak is searched for in every filtered MUP.  If no matched positive peak is found, 

a blocking is identified.  The percent blocking is calculated by the ratio of the number of 

detected blockings to the total number of the filtered MUPs. 

4.4 Measuring Neuromuscular Jitter in MUPs 

     Jitter measurement requires time resolution of approximately 1 µs.  To meet the 

requirement of neuromuscular jitter measurement, an interpolation technique is used for 

available MUP data, which are sampled using a sampling rate of 31.25 kHz, a time 

resolution of 32 µs.  Figure 4.6 illustrates an example of the necessity of interpolation – 

Cubic spline [8].  The left figure shows a waveform with a high sampling rate (937.5 

kHz), and the * represents the expected occurrence time of the peak.  In the right figure, 

the same waveform, sampled with a sampling rate of 31.25 kHz is plotted using a solid 

line, and the dotted line represents the interpolated result.  Compared to the peak’ 
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occurrence time without interpolation (marked by ‘o’), the occurrence time of the 

interpolated peak (marked by ‘∗’) clearly has a smaller error.  
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0.091

0.0915

0.092

0.0925
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Waveform (sampling rate = 937.5 kHz)

[ms]
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V

]

4.35 4.4 4.45

0.0905

0.091

0.0915

0.092
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Waveform with interpolation (sampling rate = 31.25 kHz)

(32 point interpolation between two sampling points)   [ms]

[u
V

]

 

Figure 4.4: An example of the necessity for interpolation.  In the left figure, the waveform 

was sampled at 937.5 kHz, and the maximum possible error of occurrence time of the 

peak (marked by *) is only 0.535 µs.  In the right figure, the solid line represents the 

waveform sampled at 31.25 kHz, and its top (marked by ‘o’) may have an error of up to 

16 µs.  The dotted line is the result of a 32-point interpolation between the two sampling 

points around the peak, and the error of the interpolated top (marked by ‘*’) is reduced to 

an average 0.57 µs. [8] 

 Compared with other interpolation methods, the Cubic spline is implemented 

easily and the interpolation results are satisfactory.  

         After pairs of individual MFP pairs are identified, neuromuscular jitter is calculated 

using the MCD statistic. The application of interpolation can assure sufficient temporal 

measurement precision.  To calculate the jitter of a MFP pair, at least 50 MUPs are 

required [20].  Jitter measurements were made using synthetic MUPTs, that modelled 

signals detected using CN and SF electrodes during voluntary muscle contraction.  The 

use of Butterworth and McGill filtering were also compared.  Jitter values were 

calculated in all MUPTs that contained individual MFP contributions.  In addition, 

percent blocking was also measured. 
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4.5 Jitter measurement with simulated EMG 
         To verify the validity of the algorithm, jitter measurements were implemented using 

simulated EMG signals.  Four simulated EMG signals were created based on an expected 

jitter value and a signal-to-noise ratio of 20dB.  For each signal, detection using a CN 

electrode and a 5% MVC level of contraction were simulated.  The expected jitter values 

were 25µs, 50µs, 75µs and 150µs.  They represent normal, critical, abnormal and 

seriously abnormal jitter, respectively.  The expected percent blocking was zero for all 

simulated signals.  It should be indicated that, except for the specific requirements, the 

simulated EMG signals were created randomly.  Each simulated EMG signal was 

decomposed into MUPTs.  Near MFP contributions to the MUPs were then detected and 

individual MFP pairs were identified in each MUPT.  Finally, neuromuscular jitter and 

percent blocking were measured in the MUPTs containing individual MFP pairs.  Tables 

4.2 to 4.5 indicate the constitution of the four simulated EMG signals and the results of 

the identification of individual MFP pairs and measurement of neuromuscular jitter, 

respectively.  Trains with less than 100 MUPs were excluded from jitter calculation. 

EMG name: run025 Expected jitter value = 25 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 175 180 157 163 

Number of near MFP contributions 2 2 3 1 

Number of available filtered MUPs 150 154 138  

Number of available MFP pairs 1 1 3 0 

Measured jitter [µs]: MCD 24 µs 26 µs 19/23/23 

µs 

 

 

Table 4.2: The constitution of the first simulated EMG signal and the results of MFP pair 

identification and jitter measurement. 

 

EMG name: run050 Expected jitter value = 50µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 193 185 191 174 

Number of near MFP contributions 1 2 2 4 

Number of available filtered MUPs  162 172 153 

Number of available MFP pairs   1 1 1 

Measured jitter [µs]: MCD   52 µs 48 µs 47 µs 
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Table 4.3: The constitution of the second simulated EMG signal and the results of MFP 

pair identification and jitter measurement. 

 

EMG name: run075 Expected jitter value = 75 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 183 165 175 179 

Number of near MFP contributions 2 0 3 2 

Number of available filtered MUPs 161   149 153 

Number of available MFP pairs 1    3 1 

Measured jitter [µs]: MCD  74 µs   68/73/72 

µs 

73 µs 

 

Table 4.4: The constitution of the third simulated EMG signal and the results of MFP pair 

identification and jitter measurement 

 

EMG name: run150 Expected jitter value = 150 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 169 176 191 178 

Number of near MFP contributions 2 1 1 3 

Number of available filtered MUPs 148 157 162 148 

Number of available MFP pairs  1     1 

Measured jitter [µs]:  MCD12 134  µs   123 µs 

 

Table 4.5: The constitution of the fourth simulated EMG signal and the results of MFP 

pair identification and jitter measurement. 

 

 As shown in Tables 4.2 and 4.5, there are certain differences between some 

measurement results and the expected jitter values.  These may result from differences 

between the actual and modelled or expected jitter values.  In general, based on the 

studies of simulated EMG signals, it can be concluded that the results of the jitter 

measurements can essentially represent the expected jitter values and that the 

measurement errors are acceptable.  We applied the same set of data and same method, 

only exchanged the McGill filter with a Butterworth filter.  We only get one set of results 

from this analysis, which is listed below: 

 

EMG name: run025 Expected jitter value = 25 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 
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Number of MUPs 140   147 163 

Number of near MFP contributions 1   2 1 

Number of available filtered MUPs     120  

Number of available MFP pairs     1   

Measured jitter [µs]: MCD     25 µs  

 

Table 4.6: The result of using a Butterworth filter for jitter measurement. It shows it is 

very difficult to find MFP pairs under Butterworth filtered data. 

           The method was also applied to SF EMG data and test results show it works well. 

 

EMG name: runSF025 Expected jitter value = 25 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 134 178 157 163 

Number of near MFP contributions 2 2 2 1 

Number of available filtered MUPs   155 138  

Number of available MFP pairs   1 1   

Measured jitter [µs]: MCD   26 µs 27 µs  

 

 

EMG name: runSF050 Expected jitter value = 50µs 

Number of trains: 5 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 168 175 170 171 

Number of near MFP contributions 2 1 2 2 

Number of available filtered MUPs 143  162 156 

Number of available MFP pairs  1  1 1 

Measured jitter [µs]: MCD  54  50 µs 52 µs 

 

 

EMG name: runSF075 Expected jitter value = 75 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 160 146 167 159 

Number of near MFP contributions 2 1 2 2 

Number of available filtered MUPs 146   160 143 

Number of available MFP pairs 1    1 1 

Measured jitter [µs]: MCD  76 µs   75 µs 78 µs 
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EMG name: run150 Expected jitter value = 150 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 176 156 161 172 

Number of near MFP contributions 2 1 2 3 

Number of available filtered MUPs 149   134 153 

Number of available MFP pairs  1   0  1 

Measured jitter [µs]:  MCD12 154  µs   157 µs 

 

Table 4.7: The constitution of simulated SF EMG signals and the results of MFP pair 

identification and jitter measurement. 

 

        To have a better understanding of the method, we also applied a Butterworth filter to 

the same set of data and the results are listed below: 

EMG name: runSF050 Expected jitter value = 50µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 149 172 155 170 

Number of near MFP contributions 2 1 2 2 

Number of available filtered MUPs 134   145 153 

Number of available MFP pairs  0  1 0 

Measured jitter [µs]: MCD    51 µs  

 

 

EMG name: runSF075 Expected jitter value = 75 µs 

Number of trains: 4 MUPT1 MUPT2 MUPT3 MUPT4 

Number of MUPs 160 146 167 155 

Number of near MFP contributions 1 1 1 2 

Number of available filtered MUPs      145 

Number of available MFP pairs        1 

Measured jitter [µs]: MCD        76 µs 

 

Table 4.8: The constitution of simulated SF EMG signals and the results of MFP pair 

identification and jitter measurement using a Butterworth filter.  Though it is difficult to 

find MFP pairs using Butterworth filtered data, the jitter values are close to when using 

McGill filter.     

     There were 24 groups of SF and CN data generated to compare the different results 

when using the McGill and Butterworth filter.  Out of 57 CN MUAP trains we can get 49 
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MFP pairs to calculate jitter values when using McGill filer, while when using a 

Butterworth filter we only get eight pairs.  With SF EMG data, out of 57 SF MUAP trains 

we can get 40 MFP pairs to calculate jitter, but with Butterworth filtered data we only get 

six MFP pairs.  Though the result of jitter values using traditional the Butterworth filter 

are close to the McGill filtered results, it is much more efficient to use McGill filtered 

data. 

   4.6 Discussion 

In general, the proposed algorithm demonstrated an acceptable performance, which was 

more efficient and accurate than previous works, and which can consistently measure 

jitter in a variety of EMG signals.  So far, the performance of the measurement algorithm 

has been examined using simulated CN and SF MUPs. We also compared the same 

method but using a Butterworth filter instead of the McGill filter.  Though it is hard to get 

MFP pairs to measure jitter using Butterworth filtered data, the jitter value results are 

close to McGill filtered data results.  The ability to measure jitter and the measurement 

accuracy were quantitatively evaluated using synthetic MUPTs and four simulated EMG 

signals with various expected jitter values.  In general, the measurement results are close 

to the expected jitter values, the measurement errors are acceptable, and can reflect 

individual neuromuscular jitter information. 

 The measurement error mainly results from the effect of noise.  In particular, if a 

MFP pair is composed of a large MFP and a relatively small one (close to the detection 

threshold), the noise level may be relatively high and the small MFP contributions may 

be covered by noise so that occurrence times of the corresponding contributions are 

changed or even missed.  Similarly, large measurement errors and false or missed 

blockings may appear.  In addition, errors of interpolation can also contribute to 

measurement errors, and overlap of individual MFPs can cause specific near MFP 

contributions to be missed so that some false blockings may be identified. 

 To assure the accuracy of jitter measurements, IPIs should be above 400 µs in 

each MFP pair.  Because neuromuscular jitter is usually measured in about 20 fibre pairs 

in each muscle investigated it is very convenient and advantageous to measure jitter using 
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CN MUPs.  Using the McGill filter gave good time resolution and it is more 

computational efficient than the Acceleration filter.  The more efficient use of the MST 

algorithm will shorten jitter measurement time so it will be more practical in clinical use 

and may be able to provide more real data to further improve the method.   
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Chapter 5  Conclusions and Recommendations 

Based on the results from simulated EMG signals presented in the previous chapter, the 

automated jitter measurement algorithm has good performance and can correctly 

represent individual neuromuscular jitter information.  By analysing MUP acceleration, 

choosing suitable filters and choosing suitable acceleration thresholds, near MFP 

contributions can be detected.  This was tested for both SF and CN signals.  In addition, 

by constantly detecting significant MFP contributions in MUP trains, MFP pairs can be 

chosen to calculate neuromuscular jitter.  Instead of the traditional way of manually 

choosing MUPs for jitter calculation, all the process steps are automated with adaptive 

algorithms and thresholds.  To automatically isolate MUPs in a MUPT, nearest neighbour 

clustering and minimum spanning tree algorithms were used.  With the set of the 

available filtered MUPs individual MFP contributions could be identified and specific 

MFP pairs could be selected for jitter calculation. 

     One limitation for the method is the temporal overlap of MFPs, these results show 300 

µs is the minimum time resolution required and with more than 400us better results are 

expected.  Due to superposition of MFPs, some near MFP contributions may be missed 

so that the detection scheme will underestimate the true number of the contributions to a 

certain extent.  However, the missed contributions usually do not affect the measurement 

of neuromuscular jitter. 

      The proposed algorithm can consistently measure jitter in a variety of EMG signals. 

Because measuring jitter using CN MUPs can acquire more individual MFP pairs than 

using SF EMG from fewer EMG signals, it could be adapted to a real clinic setting. 

     Further improvements and evaluation of the performance of the measurement 

algorithm is needed when trying to apply it to real EMG signal analysis.  By comparing 

the measurement results from CN MUPs with SF MUPs for similar real subjects, 

parameters for thresholds should be adjusted to get more accurate results.  
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