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Abstract

Motivated by recent research to automate radiotherapy, this thesis looks into feedback

control problems where the feedback sensor imposes considerable time delay. The use

of an asymptotic estimator is considered as a method to compensate for the time delay.

Properties and parameterizations of asymptotic estimators are analyzed. It is shown that

if such a delay compensation scheme is adopted, a separation principle holds, which allows

for independent design of the feedback controller and the time delay compensator. The

radiotherapy problem is used as a case study to show how asymptotic estimators may be

designed, exploiting the separation principle. Lastly, the thesis considers multivariable

versions of asymptotic estimators.
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Chapter 1

Introduction

1.1 Sensor Time Delay

Sensors detect signals or stimuli and generate measurable outputs. Sensors may be me-

chanical, electrical, or chemical and are used to detect various physical quantities such as

motion, level, pressure, temperature, or flow [2]. In feedback control, sensors are mandatory

to measure the desired regulated parameters and supply the information to the controller.

Sensor characteristics and performance can play an important role in determining the

achievable control system performance [3].

Sensor time delay or sensor lag is the delay in the change of the sensor output with

respect to a corresponding change in the measured quantity [2]. Certain sensors used in

control applications have considerable delays. Examples include an oxygen sensor in [4]

and an ultrasonic distance sensor in [5]. When the sensor time delay is significant, it must

be considered explicitly in the design process of the control system. This is precisely the

case that arises in recent work where image feedback is used to automate radiotherapy.

1.2 Automating Radiotherapy

This work is motivated by a control engineering problem in which radiotherapy, for the

treatment of cancer using external high-energy x-ray beams, is automated [6, 7, 8, 9]. In

1
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Figure 1.1: (a) Traditional radiotherapy; (b) Radiotherapy with tumor-tracking capability

[6, 7].
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external radiotherapy, radiation (usually in the form of x-rays) is generated by a machine.

A device known as a collimator is used to shape the radiation beam into a desired profile,

and to direct the beam to a desired location on the patient’s body (Figure 1.1(a)). For

many tumors (especially abdominal tumors, e.g., prostate cancer), patient breathing causes

the tumor to move significantly. To compensate for such motion, typically the area of

irradiation is enlarged by a “safety margin” to guarantee that the tumor is actually targeted

by the x-ray beam. The unfortunate result is that the healthy tissues surrounding the tumor

are also irradiated and this leads to (typically harmful) side-effects.

In [6, 7], it is proposed that feedforward and feedback control be used to adjust the col-

limator in real time so that the x-ray beam tracks the position of the tumor (Figure 1.1(b)).

An x-ray imager is used to observe movement of the tumor as well as the movement of the

leafs to provide feedback to the collimator leaf controller. With this scheme, the “safety

margins” can be made smaller, resulting in fewer side effects. Other attempts to integrate

imaging and radiation delivery are reported in [10, 11, 12].

Figure 1.2 shows a simplified block diagram of the scheme proposed in [6, 7]. Al-

though the problem is inherently multivariable, for simplicity we consider only one degree

of freedom for tumor movement and the control of only one collimator leaf. (A multi-leaf

collimator is made up many opposing independently moving slats of metal called leaves.)

In the diagram, q[k] is the breathing flow rate of the patient. We assume the existence of

a model relating q[k] to the tumor position (ytumor[k]); this model has a linear dynamic

component, Mbreathing[z], and an unknown bias component, wtumor[k]. The image process-

ing dynamics are modeled as a pure time delay. The collimator leaf is also modelled by a

linear dynamic component, Mleaf [z], and an unknown bias component, wleaf [k].

As reported in [6, 7], the x-ray image processing time is significant and cannot be

ignored. As shown in Figure 1.2, observers are implemented to generate tumor and leaf

position estimates to feed the collimator leaf controller. This use of the observer-based

sensor time delay compensation scheme is discussed in the next section.
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1.3 Sensor Time Delay Compensation

The authors of [7] study the two systems in Figure 1.3. In Figure 1.3(a), it is assumed

that a controller, C, has been designed so that the feedback system with the plant P ,

which does not have a sensor time delay, exhibits good closed-loop performance. Then it is

imagined that a sensor time delay, H[z] = 1/zn, is introduced; consequently, an observer-

based estimator is incorporated into the feedback system, as shown in Figure 1.3(b), to

compensate for the time delay. The main result in [7] is that a separation principle holds,

in the sense that

• the set of closed-loop poles of the system in Figure 1.3(b) equals the union of the set

of closed-loop poles of the unity-feedback system in Figure 1.3(a), the set of poles of

H, and the set of poles of the observer; and

• the closed-loop transfer functions from r to y are identical in the two block diagrams,

implying that the observer-based estimator really does “cancel out” the sensor time

delay.

This separation theory in [7] is similar in spirit to the more familiar separation principle

associated with constant-gain state-feedback. Figure 1.4(a) shows the usual state feedback

control where the poles of the closed-loop system are given by the eigenvalues of the

matrix (A + BK). Figure 1.4(b) shows the observer-based state-feedback design where

the observer generates an estimate of the state. The closed-loop poles are given by the

union of eig(A + BK) and eig(A + LC). The constant state-feedback control gain K can

be designed separately from the observer gain L. It can also be shown that the closed-

loop transfer function from r to y is the same in both the plain state-feedback design and

the observer-based state-feedback design. Separation principles have also been reported in

other control schemes [13, 14, 15].

Although a separation principle holds, the sensor time delay in Figure 1.3(b) can sig-

nificantly degrade the closed-loop performance using other measures of performance (e.g.,

disturbance rejection or closed-loop sensitivity). Performance limitation results along these

lines are reported in [16, 17].

In [1], the observer-based estimation scheme in Figure 1.3(b) is extended to the general

(linear) asymptotic estimator scheme shown in Figure 2.1 (see page 10). In this scheme,
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which includes all observer-based estimators as a special case, G1 and G2 are arbitrary

transfer functions subject only to the condition that ŷ asymptotically approach y. Paper

[1] parameterizes all such estimators and looks at performance limitations associated with

estimation. The paper does not, however, go one step further and consider what happens

when the feedback loop is closed with the general estimator, as shown in Figure 3.1(b) (see

page 21).

The general asymptotic estimator can be considered a special case of the “linear ob-

servers” reported in [18], where the “observer” estimates a linear functional of the plant

state vector. Other “observers” for discrete-time time-delays systems are reported in

[19, 20].

1.4 Overview of Thesis

This thesis aims to look further into the properties of the asymptotic estimators and to

consider the implications when a general asymptotic estimator is used as in Figure 3.1(b)

(see page 21). Chapter 2 reviews, and extends, the properties of the asymptotic estimators

formulated in [1]. Chapter 3 states and proves that a separation principle still holds when a

general asymptotic estimator is used. Chapter 4 considers some design strategies exploiting

the results in Chapter 2 and 3, and applies the strategies to the radiotherapy control

problem. Chapter 5 extends some of the results in previous chapters to multivariable

systems. Chapter 6 suggests future directions out of this work. Appendix A contains some

mathematical background that is essential to the understanding of the thesis. Appendix

B contains a number of lemmas that are used in the proofs in the main text.

In terms of notation, R[z] denotes all the rational transfer functions, S denotes the set

of all stable proper transfer functions, M(R[z]) denotes matrices with entries in R[z], and

M(S) denotes matrices with entries in S. The transfer function from α to β is denoted by

Tαβ, but when confusion may arise, superscripts are used to distinguish block diagrams,

e.g., T a
ry refers to the transfer function from r to y in Figure 3.1(a). Throughout the thesis,

a discrete-time framework is assumed.



Chapter 2

Asymptotic Estimators

Asymptotic estimators with the structure shown in Figure 2.1 are studied in [1]. An

asymptotic estimator is defined to be a pair of proper transfer functions (G1, G2) such

that, for d = w = 0,

lim
k→∞

(ŷ[k] − y[k]) = 0 ∀u,∀ initial conditions. (2.1)

Several ways of characterizing all asymptotic estimators are provided in [1]. This chapter

aims to extend the results in [1]. We first review the parameterizations of asymptotic

estimators outlined in [1], then we introduce two additional parameterizations. Lastly, we

study a special class of asymptotic estimators that rejects step disturbances. Most material

in this chapter, except Section 2.2, also appears in [21].

2.1 Parameterizations of Asymptotic Estimators in

[1]

The following theorem characterizes all asymptotic estimators in Figure 2.1:

Theorem 2.1 [1] Consider the estimation scheme in Figure 2.1 with d = w = 0. Let

p1, . . . , pm denote the unstable poles of P , if any exist. Perform a coprime factorization of

the system PH over S, i.e., find N,M,X, Y ∈ S such that

PH =
N

M
, NX + MY = 1.

9
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Estimator

d

P [z] yu

G2[z]

ŷ

H[z]

w

G1[z]
yd

Figure 2.1: Asymptotic estimator compensates for the delay H and predicts the signal y

[1].

Define the following four sets:

A := {(G1, G2) : (2.1) is satisfied} (2.2)

B := {(G1, G2) : G1 ∈ S, G2 ∈ S, Tuŷ = Tuy} (2.3)

C := {(G1, G2) : G1∈S with G1[pi]=
1

H[pi]
,

i=1, . . . ,m, and G2 = (1 − G1H)P} (2.4)

D := {(G1, G2) : G1 = PMX + QM and

G2 = PMY − QN for Q ∈ S}. (2.5)

Then, A = B = C = D. �

In [1], the authors only consider the case when H[z] is a pure time delay. Actually, the

parameterizations still apply when H[z] is extended to include any proper stable transfer

function that does not have zeros coinciding with the unstable poles of P [z]. (However,

the class of H[z] for which Theorem 2.1 holds cannot be extended any further. To see this,

suppose p is an unstable pole of P [z] that is also a zero of H[z]. According to (2.3), G1

and G2 should be stable and G2 + G1HP = P . If G1 is stable, then G1[p] < ∞. But

G2[p] = (1 − G1[p]H[p])P [p] = P [p].
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Therefore G2 is not stable and thus an asymptotic estimator does not exist.)

Note also that parameterization C in (2.4) applies only if the unstable poles of P are

distinct; this constraint was not mentioned in [1].

2.2 Extension to the Repeated Pole Case

This section aims to address the deficiency of parameterization C in (2.4) above by propos-

ing a parameterization that correctly accounts for repeated unstable plant poles.

Let p1, . . . , pm denote the unstable poles of P , with multiplicities r1, . . . , rm respectively.

The condition G1[pi] = 1
H[pi]

in (2.4) now becomes

for i = 1, . . . ,m,

for j = 0, . . . , ri − 1,

dj

dzj
G1[z]

∣

∣

∣

∣

z=pi

=
dj

dzj

1

H[z]

∣

∣

∣

∣

z=pi

. (2.6)

That is, Theorem 2.1 is extended as follows:

Theorem 2.2 Define

A := {(G1, G2) : (2.1) is satisfied}

B := {(G1, G2) : G1 ∈ S, G2 ∈ S, Tuŷ = Tuy}

C′ := {(G1, G2) : G1 ∈ S and satisfies (2.6) and G2 = (1 − G1H)P}

D := {(G1, G2) : G1 = PMX + QM and G2 = PMY − QN for Q ∈ S}.

Then A = B = C′ = D. �

Proof: The proof that A = B = D provided in [1] is correct in the repeated pole

case. Hence we show that B = C′. First we prove B ⊆ C′. The condition Tuŷ = Tuy implies

G2 = (1−G1H)P . The stability of G2 implies that (1−G1H) has zeros at p1, . . . , pm with
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multiplicities r1, . . . , rm, which means

for i = 1, . . . ,m,

for j = 0, . . . , ri − 1,

dj

dzj
(1 − G1[z]H[z])

∣

∣

∣

∣

z=pi

= 0 (by (A.1))

or

for i = 1, . . . ,m,

G1[pi]H[pi] = 1 and

dj

dzj
G1[z]H[z]

∣

∣

∣

∣

z=pi

= 0, for j = 1, . . . , ri − 1. (2.7)

By Lemma B.1, (2.7) implies (2.6). Therefore B ⊆ C′.

Now we prove C′ ⊆ B. The condition G2 = (1−G1H)P implies Tuŷ = Tuy. By Lemma

B.1, (2.6) implies (2.7); by (A.1), (2.7) implies that (1−G1H) has zeros at p1, . . . , pm with

multiplicities r1, . . . , rm. Therefore G2 = (1 − G1H)P is stable. Therefore C′ ⊆ B. �

Example 2.1 Suppose

P [z] =
1

(z − 2)2
, H[z] =

1

z
.

Then condition (2.6) requires that

G1[2] =
1

H[z]

∣

∣

∣

∣

z=2

= 2, (2.8)

G′

1[2] = −
H ′[z]

(H[z])2

∣

∣

∣

∣

z=2

= −
−1/z2

1/z2

∣

∣

∣

∣

z=2

= 1. (2.9)

We can take G1 of the form

G1[z] =
az + b

z − 1
2

,

which is a member of S with two parameters, a and b. Forcing conditions (2.8) and (2.9)

leads to

G1[z] =
7
2
z − 4

z − 1
2

,
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and also

G2[z] = (1 − G1[z]H[z])P [z] =
1

z(z − 1
2
)
,

which is also a member of S, as required by (2.3).

�

2.3 Alternative Q-Parameterization

Parameterization D in (2.5) is correct, but has the disadvantage that the expressions

for G1 and G2 contain P , which is possibly unstable. Here we present an alternative

parameterization involving only stable terms:

Theorem 2.3 [21] Let

P =
NP

MP

, H =
NH

MH

(2.10)

where NP ,MP ∈ S are coprime and NH ,MH ∈ S are coprime. By the assumption that

H[z] does not have zeros coinciding with unstable poles of P [z], NHNP , MHMP are coprime

in S and therefore there exist X,Y ∈ S such that

NHNP X + MHMP Y = 1. (2.11)

The following two sets are equal to set B (and therefore sets A, C ′, and D) in Theorem 2.2:

E := {(G1, G2) : G1 ∈ S, G2 ∈ S, G2 = (1 − G1H)P}, (2.12)

F := {(G1, G2) : G1 = MHNP X + MHMP Q and

G2 = MHNP Y − NHNP Q for Q ∈ S}. (2.13)

�

Proof: First, it is not difficult to see that E = B since G2 = (1−G1H)P is equivalent

to Tuŷ = Tuy. Second, we show F ⊆ E . Choose (G1, G2) ∈ F . Clearly G1, G2 ∈ S.
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Moreover,

(1 − G1H)P =

(

1 − (MHNP X + MHMP Q)
NH

MH

)

NP

MP

(by (2.10), (2.13))

= (1 − NHNP X − NHMP Q)
NP

MP

= (MHMP Y − NHMP Q)
NP

MP

(by (2.11))

= MHNP Y − NHNP Q

= G2, (by (2.13))

and therefore (G1, G2) ∈ E . Finally, show E ⊆ F by choosing (G1, G2) ∈ E . Let

Q0 :=
G1 − MHNP X

MHMP

. (2.14)

Then

Q0 =
1

MHMP

(
1

H
−

G2

PH
− MHNP X) (by (2.12))

=
1

MHMP

(
MH

NH

−
G2MHMP

NHNP

− MHNP X) (by (2.10))

=
1

NHNP MP

(NP (1 − NHNP X) − G2MP )

=
1

NHNP MP

(NP MHMP Y − G2MP ) (by (2.11))

=
1

NHNP

(NP MHY − G2). (2.15)

Therefore

Q0 = (NHNP X + MHMP Y )Q0 (by (2.11))

= (NP MHY − G2)X + (G1 − MHNP X)Y (by (2.14), (2.15))

= −G2X + G1Y ∈ S.

The last step is to recognize from (2.14) and (2.15) that

G1 = MHNP X + MHMP Q0

G2 = MHNP Y − NHNP Q0,

so (G1, G2) ∈ F . �
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Example 2.2 Suppose

P [z] =
1

(z − 2)2
, H[z] =

1

z
.

Coprime factorizations of P [z] and H[z] can be performed such that

NP [z] =
1

(z − 1
2
)2

, MP [z] =
(z − 2)2

(z − 1
2
)2

, NH [z] =
1

z
, MH [z] = 1.

Then X[z] and Y [z] are found to be

X[z] =
32.1(z − 1.68)

(z − 1
2
)2

, Y [z] =
(z + 2.24)(z2 − 0.238z + 6.03)

z(z − 1
2
)2

.

By (2.13), the set of asymptotic estimators for P [z] and H[z] is given by

{(G1, G2) : G1[z] =
32.1(z − 1.68)

(z − 1
2
)4

+
(z − 2)2

(z − 1
2
)2

Q[z],

G2[z] =
(z + 2.24)(z2 − 0.238z + 6.03)

z(z − 1
2
)4

+
1

z(z − 1
2
)2

Q[z], for Q[z] ∈ S}.

�

2.4 “Sensitivity” Functions of Asymptotic Estimators

It is convenient to introduce “sensitivity” and “complementary sensitivity” functions for

the estimator in Figure 2.1:

SE := 1 − G1H

TE := G1H.

Note that SE + TE = 1. The transfer functions SE and TE are related to the performance

of the asymptotic estimator. Specifically, define the estimation error e := ŷ − y in Figure

2.1. Then the disturbance rejection of the estimator is

Tde = G1H − 1 = −SE (2.16)
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and the sensor noise rejection of the estimator is

Twe = G1H = TE.

Using the parameterization F in Theorem 2.3, SE and TE can be expressed in terms of Q:

SE = MHMP Y − NHMP Q

TE = NHNP X + NHMP Q.

The functions SE and TE will be used in Chapter 4, when design strategies are considered.

2.5 Special Classes of Asymptotic Estimators

A subset of asymptotic estimators that is of particular interest to us is those that achieve

perfect steady-state rejection of step disturbances. It turns out that a parameterization

for this subset exists. Indeed, for an asymptotic estimator to achieve asymptotic rejection

of step disturbances, (2.16) and parameterization E (in (2.12)) imply that

lim
z→1

Tde[z] = lim
z→1

(G1[z]H[z] − 1) = lim
z→1

−G2[z]

P [z]
= 0. (2.17)

The last equality in (2.17) implies that P [z] must have a pole at 1 or G2[z] must have a

zero at 1. The parameterizations introduced below characterize the subset of asymptotic

estimators for which G2[z] has a zero at 1:

Theorem 2.4 [21] Assume that P [z] does not have a pole or zero at 1. Define I[z] = z−1

and let
1

I
=

NI

MI

(2.18)

where NI ,MI ∈ S are coprime. Assume that NHNP NI , MHMP MI are coprime in S. Then

there exist X,Y ∈ S such that

NHNP NIX + MHMP MIY = 1, (2.19)
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and the following two equal sets both characterize the subset of asymptotic estimators that

achieve perfect steady-state step disturbance rejection:

EI := {(G1, G2) : G1 ∈ S, G2 ∈ S, G2 = (1 − G1H)P,

MI divides G2 in S} (2.20)

FI := {(G1, G2) : G1 = MHNP NIX + MHMP MIQ and

G2 = MHNP MIY − NHNP MIQ for Q ∈ S}. (2.21)

�

Proof: First, we show FI ⊆ EI . Choose (G1, G2) ∈ FI . Clearly G1, G2 ∈ S. Moreover,

(1 − G1H)P =

(

1 − (MHNP NIX + MHMP MIQ)
NH

MH

)

NP

MP

(by (2.10), (2.21))

= (1 − NHNP NIX − NHMP MIQ)
NP

MP

= (MHMP MIY − NHMP MIQ)
NP

MP

(by (2.19))

= MHNP MIY − NHNP MIQ

= G2. (by (2.21))

Since MI also divides G2 in S, (G1, G2) ∈ EI .

As for EI ⊆ FI , observe that G2

MI
∈ S since MI divides G2 in S. Let

Q0 :=
G1 − MHNP NIX

MHMP MI

. (2.22)

Then

Q0 =
1

MHMP MI

(
1

H
−

G2

PH
− MHNP NIX) (by (2.20))

=
1

MHMP MI

(
MH

NH

−
G2MHMP

NHNP

− MHNP NIX) (by (2.10))

=
1

NHNP MP MI

(NP (1 − NHNP NIX) − G2MP )

=
1

NHNP MP MI

(NP MHMP MIY − G2MP ) (by (2.19))

=
1

NHNP NI

(MHNP NIY −
G2

MI

NI). (2.23)
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Therefore

Q0 = (NHNP NIX + MHMP MIY )Q0 (by (2.19))

= (MHNP NIY −
G2

MI

NI)X + (G1 − MHNP NIX)Y (by (2.22), (2.23))

= −(
G2

MI

)NIX + G1Y ∈ S.

The next step is to recognize from (2.22) and (2.23) that

G1 = MHNP NIX + MHMP MIQ0

G2 = MHNP MIY − NHNP MIQ0,

so (G1, G2) ∈ FI . Finally, EI is the subset of E that achieve perfect steady-state step

disturbance rejection since EI captures all the members of E that have (z − 1) in the

numerator of G2. �

Note that Theorem 2.4 can be easily generalized to other types of disturbances. For

example, the subset of asymptotic estimators that obtain perfect asymptotic rejection of

ramp disturbances is characterized by EI and FI using I[z] = (z−1)2 instead of I[z] = z−1.

Using parameterization FI , SE and TE can be expressed in terms of Q:

SE = 1 − G1H = MHMP MIY − NHMP MIQ (2.24)

TE = G1H = NHNP NIX + NHMP MIQ. (2.25)

Example 2.3 Suppose

P [z] =
1

(z − 2)2
, H[z] =

1

z
, I[z] = z − 1.

Coprime factorizations of P , H, and 1
I

can be performed such that

NP [z] =
1

(z − 1
2
)2

, MP [z] =
(z − 2)2

(z − 1
2
)2

, NH [z] =
1

z
, MH [z] = 1, NI [z] =

1

z − 1
2

, MI [z] =
z − 1

z − 1
2

.

Then X[z] and Y [z] are found to be

X[z] =
79.8(z − 1)(z − 1.71)

(z − 1
2
)3

, Y [z] =
(z2 + 3.64z + 5.39)(z2 − 1.64z + 6.34)

z(z − 1
2
)3

.
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By (2.21), the set of asymptotic estimators for P [z] and H[z] that reject step disturbance

is given by

{(G1, G2) : G1[z] =
79.8(z − 1)(z − 1.71)

(z − 1
2
)6

+
(z − 1)(z − 2)2

(z − 1
2
)3

Q[z],

G2[z] =
(z − 1)(z2 + 3.64z + 5.39)(z2 − 1.64z + 6.34)

z(z − 1
2
)6

+
z − 1

z(z − 1
2
)3

Q[z], for Q[z] ∈ S}.

�



Chapter 3

Separation Principle

The purpose of this section is to show that a separation principle exists when an asymptotic

estimator is put into a feedback control loop involving a sensor time delay. With this

separation principle, we can design the feedback controller and the asymptotic estimator

independently, as explained in Chapter 4. The 1-DOF result of the separation principle

also appears in [21].

To prove the separation principle, we need to be able to characterize the closed-loop

poles of an interconnected system. A theorem proved in [22] relates the poles of an inter-

connected system to the system determinant ∆ used in Mason’s Gain Rule. Recall that,

for an arbitrary block diagram with n blocks, the system determinant ∆ is defined to be

∆ = 1 −
∑

i

F1i +
∑

j

F2j −
∑

k

F3k + · · · ,

where F1i are the loop gains, F2j are the products of two nontouching loop gains, F3k are

products of three nontouching loop gains, and so on. Denote the transfer functions of the

individual n blocks in the interconnected system by Gi[z], i = 1, 2, . . . , n, and let pi(z)

denote the characteristic polynomial of Gi[z] (i.e., the denominator polynomial). Then the

closed-loop poles can be computed as follows:

Theorem 3.1 [22] The poles of a linear time-invariant interconnected system with scalar

20
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ŷ

C

H

G2

G1

d

(b)

P
u

w

r
−

Figure 3.1: (a) Basic 1-DOF control loop with plant P and controller C; (b) feedback

control with the sensor time delay and asymptotic estimator in place.

signals are the roots of the polynomial

pc(z) := ∆[z] ·
n
∏

i=1

pi(z).

�

3.1 The 1-DOF (Degree-of-Freedom) Result

For the system in Figure 3.1(b), what properties constitute a separation principle? We will

say that a separation principle holds if the following two conditions hold:

• the set of poles of the system in Figure 3.1(b) equals the union of the poles of H, the

poles of G1, the poles of G2, and the set of poles of the system in Figure 3.1(a); and
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• the transfer function from r to y is the same for the system in Figure 3.1(b) as it is

for the system in Figure 3.1(a).

The following theorem shows that the separation principle holds for any asymptotic esti-

mator (G1, G2):

Theorem 3.2 [21] Consider the system in Figure 3.1(b). Assume that PC is not identi-

cally zero and that C stabilizes P in the sense that the feedback system in Figure 3.1(a)

is stable. Then:

(a) The separation principle holds if and only if G1 and G2 satisfy

G2 = (1 − G1H)P. (3.1)

(b) A necessary and sufficient condition for the system in Figure 3.1(b) to be stable and

for the separation principle to hold is that (G1, G2) be an asymptotic estimator.

�

Proof: The transfer function from r to y in Figure 3.1(a) is

T a
ry =

PC

1 + PC
(3.2)

and the transfer function from r to y in Figure 3.1(b) is

T b
ry =

PC

1 + CG2 + CG1HP
. (3.3)

Let pC(z), pP (z), p1(z), p2(z), pH(z) denote the characteristic polynomials of C[z], P [z],

G1[z], G2[z], H[z] respectively. By Theorem 3.1, the characteristic polynomial of the

closed-loop system in Figure 3.1(a) is

pa
c = (1 + PC)pCpP , (3.4)

and that of the closed-loop system in Figure 3.1(b) is

pb
c = (1 + CG2 + CG1HP )pCpP p1p2pH . (3.5)
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To prove sufficiency in (a), assume G2 = (1 − G1H)P . Then (3.3) simplifies to (3.2)

and (3.5) simplifies to pb
c = pa

cp1p2pH , showing that the separation principle holds. To

prove necessity in (a), assume that the separation principle holds, i.e., T a
ry = T b

ry and

pb
c = pa

cp1p2pH . Equating (3.2) and (3.3) yields (3.1).

To prove (b), recall parameterization E in (2.12) which states that (G1, G2) is an asymp-

totic estimator if and only if G1 and G2 are both stable and G2 = (1−G1H)P , or, equiva-

lently (by part (a)), G1 and G2 are both stable and the separation principle holds. Since H

and the system in Figure 3.1(a) are both stable, equivalent conditions are that the system

in Figure 3.1(b) is stable and the separation principle holds. �

Example 3.1 Suppose

P [z] =
1

(z − 2)2
, H[z] =

1

z
.

It is easy to show that

C[z] =
13.5(z − 1.625)

z2 + 2z + 5.5

stabilizes P [z] in a unity-feedback loop (Figure 3.1(a)), and results in the following char-

acteristic polynomial

pa
c(z) =

(

1 +
1

(z − 2)2

13.5(z − 1.625)

z2 + 2z + 5.5

)

(z − 2)2(z2 + 2z + 5.5) (by (3.4))

= (z −
1

2
)4,

and tracking transfer function

T a
ry[z] =

13.5(z − 1.625)

(z − 0.5)4
. (by (3.2))

In Example 2.1, we computed an asymptotic estimator for P [z] and H[z]:

G1[z] =
7
2
z − 4

z − 1
2

, G2[z] =
1

z(z − 1
2
)
.
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By (3.5), we obtain

pb
c(z) =

(

1 +
13.5(z − 1.625)

z2 + 2z + 5.5

1

z(z − 1
2
)

+
13.5(z − 1.625)

z2 + 2z + 5.5

7
2
z − 4

z − 1
2

1

z

1

(z − 2)2

)

· (z2 + 2z + 5.5)(z − 2)2(z −
1

2
)z(z −

1

2
)z

= (z −
1

2
)4(z −

1

2
)z(z −

1

2
)z

= pa
c(z)p1(z)p2(z)pH(z),

as suggested by Theorem 3.2. Moreover, by (3.3) we obtain

T b
ry[z] =

1
(z−2)2

13.5(z−1.625)
z2+2z+5.5

1 + 13.5(z−1.625)
z2+2z+5.5

1
z(z− 1

2
)
+ 13.5(z−1.625)

z2+2z+5.5

7

2
z−4

z− 1

2

1
z

1
(z−2)2

=
13.5(z − 1.625)

(z − 0.5)4
= T a

ry[z].

Consequently, the separation principle holds. Suppose (G1, G2) is not an asymptotic esti-

mator but still satisfies (3.1), for example,

G1[z] = 1, G2[z] = (1 − G1[z]H[z])P [z] =
z − 1

z(z − 2)2
.

In this case, G2[z] is unstable and therefore (G1, G2) is not an asymptotic estimator. Then

we get from (3.5)

pb
c(z) =

(

1 +
13.5(z − 1.625)

z2 + 2z + 5.5

z − 1

z(z − 2)2
+

13.5(z − 1.625)

z2 + 2z + 5.5

1

z

1

(z − 2)2

)

· (z2 + 2z + 5.5)(z − 2)2z(z − 2)2z

= (z −
1

2
)4z(z − 2)2z

= pa
c(z)p1(z)p2(z)pH(z).

The separation principle still holds, as per Theorem 3.2(a). However, Theorem 3.2(b) tells

us that the closed-loop will not be stable since (G1, G2) is not an asymptotic estimator.

�

In the next subsection we show that this separation principle result also applies when

a more general 2-DOF control scheme is used.
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Figure 3.2: (a) 2-DOF control loop with plant P and controller (Cr, Cy); (b) feedback

control with the sensor time delay and asymptotic estimator in place.

3.2 The 2-DOF Result

The 2-DOF controller can be considered a two-input-one-output block such that the control

signal is generated as follows:

U [z] = Cr[z]R[z] + Cy[z](Y [z] + W [z])

where U [z], R[z], Y [z],W [z] are Z-transforms of u[k], r[k], y[k], w[k] respectively. Note that

the 1-DOF controller is a special case of the 2-DOF controller, with Cy = −Cr. The separa-

tion principle for the 2-DOF configuration is the same as that of the 1-DOF configuration,

except in the two conditions listed in the beginning of Section 3.1, references to Figure 3.1

are replaced by references to Figure 3.2. The 2-DOF version of Theorem 3.2 is as follows:
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Theorem 3.3 Consider the system in Figure 3.2(b). Assume that PCrCy is not identically

zero and that (Cr, Cy) stabilizes P in the sense that the feedback system in Figure 3.2(a)

is stable. Then:

(a) The separation principle holds if and only if G1 and G2 satisfy

G2 = (1 − G1H)P.

(b) A necessary and sufficient condition for the system in Figure 3.2(b) to be stable and

for the separation principle to hold is that (G1, G2) be an asymptotic estimator.

�

Proof: The transfer function from r to y in Figure 3.2(a) is

T a
ry =

PCr

1 − PCy

(3.6)

and the transfer function from r to y in Figure 3.2(b) is

T b
ry =

PCr

1 − CyG2 − CyG1HP
. (3.7)

Let pC(z), pP (z), p1(z), p2(z), pH(z) denote the characteristic polynomials of (Cr[z], Cy[z]),

P [z], G1[z], G2[z], H[z] respectively. By Theorem 3.1, the characteristic polynomial of the

closed-loop system in Figure 3.2(a) is

pa
c = (1 − PCy)pCpP , (3.8)

and that of the closed-loop system in Figure 3.2(b) is

pb
c = (1 − CyG2 − CyG1HP )pCp1p2pH . (3.9)

To prove sufficiency in (a), assume G2 = (1 − G1H)P . Then (3.7) simplifies to (3.6)

and (3.9) simplifies to pb
c = pa

cp1p2pH , showing that the separation principle holds. To

prove necessity in (a), assume that the separation principle holds, i.e., T a
ry = T b

ry and

pb
c = pa

cp1p2pH . Equating (3.6) and (3.7) yields (3.1).
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To prove (b), recall parameterization E in (2.12) which states that (G1, G2) is an asymp-

totic estimator if and only if G1 and G2 are both stable and G2 = (1−G1H)P , or, equiva-

lently (by part (a)), G1 and G2 are both stable and the separation principle holds. Since H

and the system in Figure 3.2(a) are both stable, equivalent conditions are that the system

in Figure 3.2(b) is stable and the separation principle holds. �



Chapter 4

Design Strategies

The previous chapter shows that a separation principle exists when an asymptotic esti-

mator is put into a feedback control loop involving a sensor time delay. This separation

principle implies that we can design the feedback controller and the asymptotic estimator

independently. This chapter aims to outline strategies to design the asymptotic estimator.

The first goals are stability and tracking. The next step involves addressing additional

closed-loop properties such as disturbance rejection. Then we will apply the design strate-

gies to the radiotherapy problem. The material in this chapter also appears in [21].

4.1 Design for Stability and Tracking

Assume that C has been designed so that tracking performance in Figure 3.1(a) is good.

Now consider Figure 3.1(b), where a sensor time delay has been included. By Theo-

rem 3.2(b), using any asymptotic estimator (G1, G2) in Figure 3.1(b) will guarantee closed-

loop stability and recover the good tracking performance (as measured by the transfer

function from r to y) of Figure 3.1(a). It is emphasized that the designer is free to choose

any Q ∈ S in parameterization F (in (2.13))to obtain an asymptotic estimator. A valid

choice, for example, is Q = 0, i.e.,

G1 = MHNP X, G2 = MHNP Y.

28
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If it is desired that the asymptotic estimator asymptotically reject step disturbances, then

parameterization FI (in (2.21)) can be used instead of parameterization F .

Even though any asymptotic estimator recovers tracking performance, according to

Theorem 3.2 the poles of G1 and G2 are among the poles of the closed-loop system in

Figure 3.1(b). Hence, there exist some closed-loop transfer functions in Figure 3.1(b) that

the poles of G1 and G2 affect. Hence, there is motivation to place the poles of G1 and G2 in

certain “nice” locations to get good settling time, damping, etc. Pole placement can be done

by choosing coprime factorizations of P,H, I so that the poles of NP ,MP , NH ,MH , NI ,MI

all lie in the “nice” region. Similarly, X,Y can be chosen as such. The example presented

in Section 4.3.1 takes this approach.

4.2 Design for Additional Closed-Loop Properties

Instead of simply placing the poles of G1 and G2 in “nice” locations, it is reasonable to

exploit the extra degree of freedom associated with the asymptotic estimator to satisfy

some additional specifications. Here we focus on disturbance rejection and sensor noise

rejection. The disturbance rejection of the combined system in Figure 3.1(b) is given by

T b
dy =

1 + CG2

1 + PC
=

1

1 + PC
+

PC

1 + PC
(1 − G1H)

= T a
dy − T a

wySE (4.1)

while the sensor noise rejection is given by

T b
wy =

−PC

1 + PC
G1H = T a

wyTE. (4.2)

Based on (4.1) and (4.2), the designer may consider a sequential or a parallel approach to

design the controller C and the asymptotic estimator (G1, G2). In the sequential approach,

the controller C may be designed first to attain certain T a
dy and T a

wy. Then the asymptotic

estimator (G1, G2) is designed to achieve acceptable T b
dy and T b

wy, taking T a
dy and T a

wy into

account. The sequence may be reversed to design (G1, G2) first.

In the parallel approach, the controller C and the asymptotic estimator (G1, G2) are

designed independently from each other, without taking the other into account. A design
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strategy based on the parallel approach is as follows: choose C so that |T a
dy| and |T a

wy| satisfy

the desired performance goals for disturbance rejection and sensor noise rejection, and

design separately the asymptotic estimator so that |SE| ≈ 0 and |TE| ≈ 1. Designing the

asymptotic estimator this way implies, from (4.1) and (4.2), |T b
dy| ≈ |T a

dy| and |T b
wy| ≈ |T a

wy|.

In practice, the asymptotic estimator can be designed by solving the mixed-sensitivity

problem
∥

∥

∥

∥

∥

[

W1SE

TE

]∥

∥

∥

∥

∥

∞

< 1, (4.3)

where W1 describes the relative weighting of frequencies that are significant for disturbance

rejection. This approach is pursued in Section 4.3.2.

4.3 Example

Now we apply the above strategies to the radiotherapy control problem. Simplified models

of the components in the feedback loop of Figure 1.2 are as follows [7]: the sampling period

is 0.3 seconds, the collimator leaf model is Mleaf [z] = 2.851
z−0.0498

(i.e., a first-order system with

a time constant of 0.1 seconds), and Mdelay2[z] = 1
z

models the image processing delay. Note

that Mleaf [z] equals P [z] in Figure 3.1(b) and Mdelay2[z] equals H[z].

4.3.1 Design for Stability and Tracking

The paper [7] introduces the controller

C[z]=0.4
(z−0.4)

(z − 1)

(z2− 2 cos(π/10)(0.7)z+0.72)

(z2 − 2 cos(π/10)z + 1)
, (4.4)

which stabilizes P in Figure 3.1(a), has a pole at 1 (guaranteeing asymptotic step rejection),

and has poles on the unit circle (guaranteeing perfect asymptotic tracking at discrete-time

frequency π/10, corresponding to a 1/6 Hz breathing rate). Let’s now consider the design

of the asymptotic estimator in Figure 3.1(b). According to the discussion in Section 4.1, the

separation principle implies that any asymptotic estimator guarantees stability of the com-

bined system and recovers the tracking performance of the 1-DOF system in Figure 3.1(a).
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Suppose we would like to place all the poles of G1, G2 at z = 0.5. We can choose

NP [z] =
2.851

z − 0.5
, MP [z] =

z − 0.0498

z − 0.5
,

NH [z] =
1

z − 0.5
, MH [z] =

z

z − 0.5
,

X[z] =
−0.15087(z − 0.1453)

(z − 0.5)2
, Y [z] =

z2 − 1.95z + 1.403

(z − 0.5)2
.

With Q = 0, we obtain, from parameterization F in (2.13), the asymptotic estimator

G1[z] =
−0.43014z(z − 0.1453)

(z − 0.5)4

G2[z] =
2.851z(z2 − 1.95z + 1.403)

(z − 0.5)4
,

which guarantees closed-loop stability and T b
ry = T a

ry.

4.3.2 Design for Additional Closed-Loop Properties

Here we adopt the parallel approach mentioned in Section 4.2. We continue to use C[z] in

(4.4) as the controller. As for the asymptotic estimator, rather than placing the poles of

G1 and G2 somewhat arbitrarily at z = 0.5, let’s instead design (G1, G2) with the following

goals in mind:

1. asymptotic rejection of step disturbances,

2. attenuation of disturbances up to 1/6 Hz (the nominal breathing rate)1, and

3. no more than 5% worsening of sensor noise performance compared to Figure 3.1(a).

These goals are translated into the requirements

1. I[z] = z − 1 (to guarantee SE[1] = 0),

2. ‖W1SE‖∞ ≤ 1, and

1In the radiotherapy problem, only step disturbances are expected. This design goal is not very relevant,

but is added to illustrate the method.
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Figure 4.1: The asymptotic estimator in (4.5) is designed to place the poles (denoted by

crosses) in the desired region: to the left of s = −1 and inside a disk of radius 60.

3. ‖TE‖∞ ≤ 1.05,

where W1 is a first-order low-pass filter with cut-off frequency at 1/6 Hz. Substitute (2.24)

and (2.25) into (4.3) to get the following mixed-sensitivity problem:
∥

∥

∥

∥

∥

[

W1(MHMP MIY − NHMP MIQ)

NHNP NIX + NHMP MIQ

]∥

∥

∥

∥

∥

∞

< 1.05.

The methods in [23] (conveniently implemented in the “hinfmax” Matlab routine) were

used to solve this problem. To get good settling time and reasonable bandwidth, the poles

(when mapped to the s-plane) were restricted to lie to the left of s = −1 and inside a disk

of radius 60 (see Figure 4.1). The resulting asymptotic estimator is

G1[z] =
1.01(z + 0.752)(z − 0.733)(z − 0.532)(z − 0.0504)(z + 0.000232)

(z + 0.746)(z − 0.731)(z − 0.539)3(z − 0.0498)

·
(z2 − 1.08z + 0.293)

(z + 0.0101)
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Figure 4.2: Response of the system in Figure 3.1(b) to a unit step disturbance, showing

perfect steady-state rejection and good settling time.

G2[z] =
−7.96 × 10−9(z − 3.58 × 108)(z − 1)(z − 0.738)(z + 0.749)(z − 0.0504)

(z + 0.746)(z − 0.731)(z − 0.0504)(z − 0.0492)(z + 0.0101)

·
(z + 0.000233)(z2 − 1.08z + 0.289)

(z − 5.95 × 10−6)(z2 − 1.08z + 0.290)
. (4.5)

Figure 4.2 and Figure 4.3 show that the asymptotic estimator achieves satisfactory

transient and frequency responses for the combined system in Figure 3.1(b).
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Figure 4.3: Frequency responses: |T a
dy| (dot), |SE| (dashed), |T b

dy| (solid), |T a
dy|+ |T a

wy||SE|

(dash-dot), showing |T b
dy| ≤ |T a

dy| + |T a
wy||SE| as predicted by (4.1).



Chapter 5

Multivariable Extensions

The results presented in the previous chapters apply to SISO systems. The chapter extends

some of the SISO results to MIMO systems.

5.1 Parameterizations of Asymptotic Estimators

This section develops the MIMO version of the parameterizations in Theorems 2.1 and 2.2.

In the MIMO setting, an asymptotic estimator is defined to be a pair of proper transfer

matrices (G1, G2) such that, for d = w = 0,

lim
k→∞

(ŷ[k] − y[k]) = 0 ∀u,∀ initial conditions. (5.1)

Parameterizations A and B are basically the same as their SISO counterparts:

Lemma 5.1 The following sets are equal

A := {(G1, G2) : (5.1) is satisfied} (5.2)

B := {(G1, G2) : G1 ∈ M(S), G2 ∈ M(S), Tuŷ = Tuy} (5.3)

�

Proof: See Section B.2 for details. �

Parameterizations C and D are more complicated and are addressed below.

35
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5.1.1 Parameterization with Interpolation Constraints

Section 2.2 has shown a parameterization that involves interpolation constraints on G1

(and its derivatives) at the unstable poles of P . This section extends the concept to

MIMO systems.

Definition 5.1 [24] For a pole of P [z] ∈ M(R[z]), a, its multiplicity is the minimum

integer r such that (z − a)rP [z] is analytic at a. �

If rij is the multiplicity of a for the ij-entry of P [z], then r = maxi,j rij. Note that this

definition of pole multiplicity is different from the one based on the Smith-Macmillan form.

Let the poles of P [z] be a1, . . . , am with multiplicities r1, . . . rm as defined by Defini-

tion 5.1. Now, G1[z] being stable implies that G1[z] is analytic at ai, for i = 1, . . . ,m.

Thus we can obtain a (matrix) Taylor expansion of G1[z] at ai:

G1[z] =
∞
∑

j=0

gi
j(z − ai)

j,

where gi
j = 1

j!
dj

dzj G1[z]
∣

∣

∣

z=ai

(obtained via entry-by-entry differentiation). Similarly, H[z] is

assumed to be stable and thus we can obtain a (matrix) Taylor expansion of H[z] at ai:

H[z] =
∞
∑

j=0

hi
j(z − ai)

j,

where hi
j = 1

j!
dj

dzj H[z]
∣

∣

∣

z=ai

. Finally, since ai is a pole of P [z] with multiplicity ri, we can

obtain a (matrix) Laurent expansion of P [z] at ai:

P [z] =
∞
∑

j=−ri

pi
j(z − ai)

j,

where pi
j = 1

(j+ri)!
dj+ri

dzj+ri
[(z − ai)

riP [z]]
∣

∣

∣

z=ai

.

One can observe that product of two (matrix) polynomials can be represented by the

product of two Toeplitz matrices [24, 25]. For example, we may express the negative
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Laurent coefficients of V [z] := H[z]P [z] at ai by












hi
0 hi

1 · · · hi
ri−1

hi
0 · · · hi

ri−2

. . .
...

hi
0

























pi
−ri

pi
−ri+1 · · · pi

−1

pi
−ri

· · · pi
−2

. . .
...

pi
−ri













=













v−ri
v−ri+1 · · · v−1

v−ri
· · · v−2

. . .
...

v−ri













, (5.4)

where V [z] =
∑

∞

j=−ri
vi

j(z − ai)
j. Because of the structure of the Toeplitz matrices, the

first row or the last column contains all the information of a polynomial. Therefore (5.4)

can also be expressed in the following two forms:

[

hi
0 hi

1 · · · hi
ri−1

]













pi
−ri

pi
−ri+1 · · · pi

−1

pi
−ri

· · · pi
−2

. . .
...

pi
−ri













=
[

v−ri
v−ri+1 · · · v−1

]

,













hi
0 hi

1 · · · hi
ri−1

hi
0 · · · hi

ri−2

. . .
...

hi
0



















pi
−1
...

pi
−ri






=







v−1

...

v−ri






.

For G2[z] = P [z] − G1[z]H[z]P [z] to be analytic at ai, the negative coefficients of the

Laurent series of F [z] := G1[z]H[z]P [z] should match those of P [z], i.e., fk = pk, for

k = −1,−2, . . . ,−ri, which means that












gi
0 gi

1 · · · gi
ri−1

gi
0 · · · gi

ri−2

. . .
...

gi
0

























hi
0 hi

1 · · · hi
ri−1

hi
0 · · · hi

ri−2

. . .
...

hi
0



















pi
−1
...

pi
−ri






=







pi
−1
...

pi
−ri






(5.5)

or

[

gi
0 · · · gi

ri−1

]













hi
0 hi

1 · · · hi
ri−1

hi
0 · · · hi

ri−2

. . .
...

hi
0

























pi
−ri

pi
−ri+1 · · · pi

−1

pi
−ri

· · · pi
−2

. . .
...

pi
−ri













=
[

pi
−ri

· · · pi
−1

]

.

(5.6)
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From the above discussions, we can conclude the following:

Lemma 5.2 The following two sets are equal:

B := {(G1, G2) : G1 ∈ M(S), G2 ∈ M(S), Tuŷ = Tuy}

C := {(G1, G2) : G1 ∈ M(S), (5.5) or (5.6) is satisfied, G2 = (I − G1H)P}. (5.7)

�

Example 5.1 Suppose

P [z] =





1
(z−2)2

1
z− 1

2

1
z− 1

2

1
z−2



 , H[z] =

[

1
z

0

0 1
z

]

.

According to Definition 5.1, P [z] has one unstable pole, 2, with multiplicity of 2. We can

obtain the following Laurent and Taylor coefficients:

p−2 =

[

1 0

0 0

]

, p−1 =

[

0 0

0 1

]

, h0 =

[

1
2

0

0 1
2

]

, h1 =

[

−1
4

0

0 −1
4

]

.

Therefore (5.6) becomes

[

g0 g1

]











1
2

0 −1
4

0

0 1
2

0 −1
4

0 0 1
2

0

0 0 0 1
2





















1 0 0 0

0 0 0 1

0 0 1 0

0 0 0 0











=

[

1 0 0 0

0 0 0 1

]

,

where one possible (non-unique) solution is

g0 =

[

2 0

0 2

]

, g1 =

[

1 0

0 0

]

. (5.8)

One G1[z] that satisfies (5.8) is

G1[z] =

[ 7

2
z−4

z− 1

2

0

0 2

]

,
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and the corresponding G2[z] is given by

G2[z] = (I − G1[z]H[z])P [z] =





1
z(z− 1

2
)

(z−2)2

z(z− 1

2
)

−2
z− 1

2

1
z



 ,

which is a member of M(S), as required by (5.3).

�

Simplification of (5.6) is possible when further assumptions are made, for example p−ri

is invertible.

The authors of [25] provide techniques that can be used to derive, from condition (5.5),

a Q-parameterization of G1. This Q-parameterization is equivalent to that obtained using

coprime factorization methods, as presented in the next subsection.

5.1.2 Q-Parameterization

Let P [z] = (AP , BP , CP , DP ), H[z] = (AH , BH , CH , DH) be minimal realizations. Assume

that the following realization of H[z]P [z] is stabilizable and detectable:

H[z]P [z] = (A,B,C,D)

=

([

AP 0

BHCP AH

]

,

[

BP

BHDP

]

,
[

DHCP CH

]

,
[

DHDP

]

)

.

Therefore there exist K,L such that A + BK and A + LC are Hurwitz.

A doubly coprime factorization of H[z]P [z] is given by [26]

H[z]P [z] = N [z]M−1[z] = M̃−1[z]Ñ [z] (5.9)

where

M [z] = (A + BK,B,K, I), N [z] = (A + BK,B,C + DK,D),

M̃ [z] = (A + LC,L,C, I), Ñ [z] = (A + LC,B + LD,C,D).
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Since A+BK and A+LC are Hurwitz, N [z], M [z], M̃ [z], Ñ [z] are all members of M(S).

Moreover,

Y [z] = (A + LC,B + LD,−K, I), X[z] = (A + LC,L,K, 0),

Ỹ [z] = (A + BK,−L,C + DK, I), X̃[z] = (A + BK,L,K, 0)

satisfy the Bezout identity,
[

Y [z] X[z]

−Ñ [z] M̃ [z]

][

M [z] −X̃[z]

N [z] Ỹ [z]

]

=

[

I 0

0 I

]

. (5.10)

Likewise, Y [z], X[z], Ỹ [z], X̃[z] are all members of M(S).

With the above definitions, we can state the following Q-parameterization of all asymp-

totic estimators:

Lemma 5.3 The following sets are equal:

B := {(G1, G2) : G1 ∈ M(S), G2 ∈ M(S), Tuŷ = Tuy}

D := {(G1, G2) : G1 = PMX + QM̃ and G2 = PMY − QÑ for Q ∈ M(S)}. (5.11)

�

Proof: See Section B.3 for details. �

5.1.3 Main Result

Putting together the above lemmas, we arrive at the main result:

Theorem 5.1 The following four sets are equal:

A := {(G1, G2) : (5.1) is satisfied}

B := {(G1, G2) : G1 ∈ M(S), G2 ∈ M(S), Tuŷ = Tuy}

C := {(G1, G2) : G1 ∈ M(S), (5.6) is satisfied, G2 = (I − G1H)P}

D := {(G1, G2) : G1 = PMX + QM̃ and G2 = PMY − QÑ for Q ∈ M(S)}.

�

Proof: The results follow from Lemmas 5.1, 5.2, and 5.3. �
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5.2 Separation Principle

The MIMO version of the separation principle is similar to the SISO version. Namely, for

the separation principle to hold in Figure 3.1(b), two conditions must hold:

1. the set of poles of the system in Figure 3.1(b) equals the union of the poles of H, the

poles of G1, the poles of G2, and the set of poles of the system in Figure 3.1(a); and

2. the transfer function (matrix) from r to y is the same for the system in Figure 3.1(b)

as it is for the system in Figure 3.1(a).

Theorem 5.3 below shows that the separation principle holds for any MIMO asymptotic

estimator (G1, G2). The proof requires the MIMO version of Theorem 3.1:

Theorem 5.2 [22] Let Gi[z], i = 1, 2, . . . , n denote the transfer function matrices of the

n plants of an interconnected system. Let pi(z) denote the characteristic polynomial of

Gi[z]. The system interconnection matrix W [z] is defined such that

Wij =



















−I, i = j

Gi, i 6= j, and Gj’s output is an input to Gi

0, i 6= j, and Gj’s output is not an input to Gi

.

Then the poles of a linear time-invariant interconnected system with vector signals are the

roots of the polynomial

pc(z) := det(W [z])
n
∏

i=1

pi(z).

�

We can now state the MIMO version of Theorem 3.2. Note that the sufficiency result

is identical to the SISO case, but the necessity result is stated only under additional

assumptions.

Theorem 5.3 Consider the system in Figure 3.1(b). Assume that C stabilizes P in the

sense that the feedback system in Figure 3.1(a) is stable. Then:
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(a) The separation principle holds if G1 and G2 satisfy

G2 = (I − G1H)P. (5.12)

(b) If (G1, G2) is an asymptotic estimator (according to Theorem 5.1), then the system

in Figure 3.1(b) is stable and the separation principle holds.

(c) If P is square, and PC has full normal rank1, then

(i) if the separation principle holds, then G1 and G2 satisfy (5.12);

(ii) if the system in Figure 3.1(b) is stable and the separation principle holds, then

(G1, G2) is an asymptotic estimator.

�

Proof:

By Theorem 5.2, the characteristic polynomial of the closed-loop system in Figure 3.1(a)

is

pa
c = det(W a)pCpP (5.13)

where

det(W a) =

∣

∣

∣

∣

∣

−I −C

P −I

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−I − CP 0

P −I

∣

∣

∣

∣

∣

= (−1)ka|I + CP |,

where ka is an integer constant. By Theorem 5.2, the characteristic polynomial of the

closed-loop system in Figure 3.1(b) is

pb
c = det(W b)pCpP pHp1p2 (5.14)

1Normal rank of a matrix G[z] is the rank for “almost all” values of z.
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where det(W b)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−I 0 0 C C

P −I 0 0 0

0 H −I 0 0

−G2 0 0 −I 0

0 0 −G1 0 −I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−I 0 −CG1 C 0

P −I 0 0 0

0 H −I 0 0

−G2 0 0 −I 0

0 0 −G1 0 −I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

by adding C times block-row 5

to block-row 1

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−I − CG2 0 −CG1 0 0

P −I 0 0 0

0 H −I 0 0

−G2 0 0 −I 0

0 0 −G1 0 −I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

by adding C times block-row 4

to block-row 1

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−I − CG2 −CG1H 0 0 0

P −I 0 0 0

0 H −I 0 0

−G2 0 0 −I 0

0 0 −G1 0 −I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

by adding −CG1 times block-

row 3 to block-row 1

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−I − CG2 − CG1HP 0 0 0 0

P −I 0 0 0

0 H −I 0 0

−G2 0 0 −I 0

0 0 −G1 0 −I

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

by adding −CG1H times block-

row 2 to block-row 1

)

= (−1)kb |I + C(G2 + G1HP )|,

where kb is an integer constant. When G2 + G1HP = P , we have

det(W b) = (−1)kb−ka det(W a) and so
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pb
c = (−1)kb−kapa

cpHp1p2, (5.15)

which establishes condition 1 of the separation principle.

The transfer function from r to y in Figure 3.1(a) is

T a
ry = P [I + CP ]−1C (5.16)

and the transfer function from r to y in Figure 3.1(b) is

T b
ry = P [I + C(G2 + G1HP )]−1C (5.17)

When G2 + G1HP = P , then T b
ry = T a

ry, which establishes condition 2 of the separation

principle. So we have established part (a) of the Theorem.

If (G1, G2) is an asymptotic estimator, Theorem 5.1 guarantees that (5.12) is satisfied

and thus the separation principle holds according to (a). Since the separation principle

holds, the closed-loop characteristic polynomial is given by (5.15). Since (G1, G2) is an

asymptotic estimator, G1, G2 are stable. Therefore the closed-loop is stable since C stabi-

lizes P and since H is stable. So we have established part (b) of the Theorem.

All that remains is to prove (c). If P is square, C is square also. Then PC having

full normal rank implies that both P and C also have full normal rank. Therefore we can

invert both P and C. Now assume that the separation principle holds. Hence, T b
ry = T a

ry,

i.e., P [I + C(G2 + G1HP )]−1C = P [I + CP ]−1C. We can use the facts that P and C

are invertible to conclude that G2 + G1HP = P . This proves (c)(i). Now assume that,

in addition to the separation principle holding, the system in Fig 3.1(b) is stable. This

additional assumption implies, from (5.15), that G1 and G2 are stable. Hence, G1 and G2

are stable and satisfy G2 + G1HP = P ; from Theorem 5.1, we conclude that (G1, G2) is

an asymptotic estimator. This proves (c)(ii). �

5.3 Relating Closed-Loop Properties to Asymptotic

Estimator Properties

The “sensitivity” functions discussed in Section 2.4 can be extended to MIMO asymptotic

estimators. The “sensitivity” and “complementary sensitivity” functions for the estimator
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in Figure 3.1(b) are defined as:

SE := I − G1H

TE := G1H.

Note that SE + TE = I. The transfer functions SE and TE are related to the performance

of the asymptotic estimator. Specifically, define the estimation error e := ŷ − y. Then the

disturbance rejection of the estimator is

Tde = G1H − I = −SE

and the sensor noise rejection of the estimator is

Twe = G1H = TE.

Section 4.2 relates the closed-loop disturbance rejection and sensor noise rejection to

the “sensitivity” functions of the SISO asymptotic estimator. We are going to see that

similar results are available for MIMO systems.

The disturbance rejection of the 1-DOF system in Figure 3.1(a) is given by

T a
dy = (I + PC)−1,

while the disturbance rejection of the combined system in Figure 3.1(b) is given by

T b
dy = I − P (I + CG2 + CG1HP )−1CG1H.

With G2 = (I − G1H)P , we have

T b
dy = I − P (I + CP )−1CG1H

= I − (I + PC)−1PCG1H

= (I + PC)−1(I + PC − PCG1H)

= (I + PC)−1 + [(I + PC)−1PC](I − G1H)

= T a
dy − T a

wySE,

which is the same as (4.1) for the SISO case.
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We obtain similar MIMO extension for sensor noise rejection. The sensor noise rejection

of the 1-DOF system in Figure 3.1(a) is given by

T a
wy = −(I + PC)−1PC.

while the sensor noise rejection of the combined system in Figure 3.1(b) is given by

T b
wy = −P (I + CG2 + CG1HP )−1CG1H.

With G2 = (I − G1H)P , we have

T b
wy = −P (I + CP )−1CG1H

= −(I + PC)−1PCG1H

= T a
wyTE

which is the same as (4.2) for the SISO case.



Chapter 6

Conclusions

In this thesis we have considered feedback control systems that have sensor time delays.

The focus has been on the use of an asymptotic estimator to compensate for the time delay,

and the main result is that a separation principle holds. We then suggested two design

strategies that exploit the separation principle. Lastly we extended some of SISO results

to MIMO systems.

The following areas warrant further investigations:

• One area of future work is to investigate the robustness of the compensation scheme

with respect to plant uncertainty. When the plant diverges from the model used in

designing the asymptotic estimator, how will various control performance metrics be

affected?

• Another area of future work is to utilize the Q-parameterization of the MIMO asymp-

totic estimators to compute performance limitations associated with sensor time delay

compensation. The authors of [1] have used the “Model Matching” method [27] in

conjunction with the Q-parameterization of the SISO asymptotic estimators to derive

SISO performance limitations.

• Yet another area worth looking into is performance limitations under constraints on

pole locations. Good pole locations result in good closed-loop behavior including

good transient responses. It is worth knowing whether there are tradeoffs between
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pole assignments and other performance metrics in the presence of sensor time de-

lay. In the SISO case, [1, 16, 17] demonstrate tradeoffs between bandwidth and

disturbance rejection in the presence of sensor time delay.

• The mixed-sensitivity approach is adopted in Section 4.2 to design asymptotic es-

timators with desirable SE and TE. Admittedly, the mixed-sensitivity approach is

sub-optimal, especially in the MIMO case. It is desirable to consider alternatives to

the mixed-sensitivity approach.

• Theorem 2.4 outlines a parameterization of SISO asymptotic estimators that reject

step disturbance. We have not yet come up with a parameterization for MIMO

asymptotic estimators.



Appendix A

Mathematical Background

This chapter contains results that are used in the proofs found in the thesis.

A.1 Rings

Definition A.1 [26] A ring is a set R, together with two binary operations + and · on R

satisfying the following axioms. For all a, b, c,∈ R,

1. (a + b) + c = a + (b + c).

2. a + b = b + a.

3. there exists 0 ∈ R such that a + 0 = a.

4. there exists (−a) ∈ R such that a + (−a) = 0.

5. (a · b) · c = a · (b · c).

6. a · (b + c) = a · b + a · c and (a + b) · c = a · b + a · c.

�

A ring R is called a commutative ring if

a · b = b · a for all a, b ∈ R.

A ring R is said to have an identity if there exists 1 ∈ R such that

1 · a = a · 1 = a.

49
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Under the above definitions, S, the set of all proper stable transfer functions, is a commu-

tative ring with identity.

For a, b ∈ R, we say a divides b, if there is an element c ∈ R such that b = ca.

Two members of S, N,M , are coprime if and only if they have no common zeros in

|z| ≥ 1, and at least one of them has relative degree zero.

Two members of S, N,M , are coprime if and only if there exist X,Y ∈ S such that

NX + MY = 1 [26, 28].

Let G[z] be a proper transfer function, and (A,B,C,D) a stabilizable and detectable

state space realization of G[z]. Therefore there exists real matrices K,L such that A+BK

and A + LC are Hurwitz. Then [28]

G[z] =
N [z]

M [z]
, N [z] and M [z] are coprime in S,

where

M [z] = (A + BK,B,K, 1), N [z] = (A + BK,B,C + DK,D)

X[z] = (A + LC,L,K, 0), Y [z] = (A + LC,B + LD,−K, 1)

satisfy

N [z]X[z] + M [z]Y [z] = 1.

Matrices with entries in S, M(S), form a ring, though not a commutative ring since

matrix multiplication is not commutative. One way to obtain coprime factorization of a

proper transfer matrix G[z] over M(S) is given in Section 5.1.2.

A.2 Calculus

Claim: Suppose f [z] ∈ R[z] is analytic at b. Then f [z] has a zero at b with multiplicity at

least r (r ≥ 1) if and only if

dj

dzj
f [z]

∣

∣

∣

∣

z=b

= 0, for j = 0, . . . , r − 1. (A.1)

Proof: (⇒): f [z] can be expressed as

f [z] = (z − b)rg[z]
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where g[z] does not have a pole at b. Clearly f [b] = 0. And for j = 1, . . . , r − 1,

dj

dzj
f [z]

∣

∣

∣

∣

z=b

=

j
∑

k=0

(

j

k

)[

dj−k

dzj−k
(z − b)r

]

z=b

g(k)[b]

=

j
∑

k=0

(

j

k

)[

r!

(r − j + k)!
(z − b)r−j+k

]

z=b

g(k)[b]

= 0.

So (A.1) holds.

(⇐): Suppose f [z] has a zero at b with multiplicity m < r. So we can write f [z] as

f [z] = (z − b)mg[z] (A.2)

where b is neither a pole nor zero of g[z] (so g[b] 6= 0). From (A.2), we get

dm

dzm
f [z]

∣

∣

∣

∣

z=b

=
m
∑

k=0

(

m

k

)[

dm−k

dzm−k
(z − b)m

]

z=b

g(k)[b]

=
m
∑

k=0

(

m

k

)[

m!

(m − (m − k))!
(z − b)m−(m−k)

]

z=b

g(k)[b]

=
m
∑

k=0

(

m

k

)[

m!

k!
(z − b)k

]

z=b

g(k)[b]

=

(

m

0

)[

m!

0!
(z − b)0

]

z=b

g[b] +
m
∑

k=1

(

m

k

)[

m!

k!
(z − b)k

]

z=b

g(k)[b]

= m!g[b] + 0

6= 0,

which means (A.1) is false.

�

A.3 Linear Algebra

The equality (I + AB)−1A = A(I + BA)−1 holds for any matrices A and B (assuming

compatible dimensions and the inverses exist).
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When A,B are square, det(AB) = det(A) det(B).

When A,B are square, det

[

A 0

C B

]

= det A det B.

A.4 Linear System Theory

Let G1[z] = (A1, B1, C1, D1) and G2[z] = (A2, B2, C2, D2). One realization for G2[z]G1[z]

is
([

A1 0

B2C1 A2

]

,

[

B1

B2D1

]

,
[

D2C1 C2

]

,
[

D2D1

]

)

. (A.3)

One realization for G1[z] + G2[z] is
([

A1 0

0 A2

]

,

[

B1

B2

]

,
[

C1 C2

]

,
[

D1 + D2

]

)

.

Given any state space realization (A,B,C,D), there always exists state transformation,

T , such that

TAT−1 =











Aco 0 A13 0

A21 Acō A23 A24

0 0 Ac̄o 0

0 0 A43 Ac̄ō











, TB =











Bco

Bcō

0

0











,

CT−1 =
[

Cco 0 Cc̄o 0
]

.

The transfer function of (A,B,C,D) is given by

G[z] = C(zI − A)−1B + D

= CT−1(zI − TAT−1)−1TB + D

= Cco(zI − Aco)
−1Bco + D.

The poles of G[z] are the eigenvalues of Aco, the controllable and observable modes of A.

The characteristic polynomial of a proper rational matrix G[z] is the least common

denominator of all minors of G[z]. Suppose G[z] can be factored into a left coprime

polynomial matrix fraction [29]:

G[z] = M−1[z]N [z].
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Then the characteristic polynomial of G[z] is det(M [z]).



Appendix B

Technical Lemmas

B.1 Lemma B.1 for Proving Theorem 2.2

Lemma B.1 Let p1, . . . , pm denote the unstable poles of P , with multiplicities r1, . . . , rm

respectively. Then

for i = 1, . . . ,m,

for j = 0, . . . , ri − 1,

dj

dzj
G1[z]

∣

∣

∣

∣

z=pi

=
dj

dzj

1

H[z]

∣

∣

∣

∣

z=pi

(2.6)

is equivalent to

for i = 1, . . . ,m,

G1[pi]H[pi] = 1 and

dj

dzj
G1[z]H[z]

∣

∣

∣

∣

z=pi

= 0, for j = 1, . . . , ri − 1. (2.7)

�

Proof: G1[pi]H[pi] = 1 is trivially equivalent to G1[pi] = 1
H[pi]

.
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Let J [z] = 1
H[z]

.

(⇒) For j = 1, . . . , ri − 1,

dj

dzj
G1[z]H[z]

∣

∣

∣

∣

z=pi

=

j
∑

k=0

(

j

k

)

G
(j−k)
1 [pi]H

(k)[pi]

=

j
∑

k=0

(

j

k

)

J (j−k)[pi]H
(k)[pi] (by (2.6))

=
dj

dzj
J [z]H[z]

∣

∣

∣

∣

z=pi

=
dj

dzj
1

∣

∣

∣

∣

z=pi

= 0.

(⇐) For j = 1, . . . , ri − 1,

0 =
dj

dzj
J [z]H[z] =

j
∑

k=0

(

j

k

)

J (j−k)[z]H(k)[z]

= J (j)[z]H[z] +

j
∑

k=1

(

j

k

)

J (j−k)[z]H(k)[z]

or J (j)[z] =
1

H[z]

[

−

j
∑

k=1

(

j

k

)

J (j−k)[z]H(k)[z]

]

. (B.1)

We are going to prove by induction. First prove (2.7) implies (2.6) for j = 1:

0 =
d

dz
G1[z]H[z]

∣

∣

∣

∣

z=pi

(by (2.7))

= G
(1)
1 [pi]H[pi] + G1[pi]H

(1)[pi]

= G
(1)
1 [pi]H[pi] +

1

H[pi]
H(1)[pi]

⇒ G
(1)
1 [pi] = −

H(1)[pi]

H[pi]2
=

d

dz

1

H[z]

∣

∣

∣

∣

z=pi

= J (1)[pi].

Therefore (2.6) is true for j = 1. Now assume (2.6) is true for j = 1, . . . , l where l < ri −1,

i.e.,

G
(j)
1 [pi] = J (j)[pi], for j = 1, . . . , l. (B.2)
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We are to prove that (2.6) is true for j = l + 1. We have

0 =
d(l+1)

dz(l+1)
G1[z]H[z]

∣

∣

∣

∣

z=pi

(by (2.7))

=
l+1
∑

k=0

(

l + 1

k

)

G
(l+1−k)
1 [pi]H

(k)[pi]

= G
(l+1)
1 [pi]H[pi] +

l+1
∑

k=1

(

l + 1

k

)

G
(l+1−k)
1 [pi]H

(k)[pi]

or

G
(l+1)
1 [pi] =

1

H[pi]

[

−

l+1
∑

k=1

(

l + 1

k

)

G
(l+1−k)
1 [pi]H

(k)[pi]

]

=
1

H[pi]

[

−
l+1
∑

k=1

(

l + 1

k

)

J (l+1−k)[pi]H
(k)[pi]

]

(by (B.2))

= J (l+1)[pi]. (by (B.1))

Therefore (2.6) is true for j = l + 1. �

B.2 Proof of Lemma 5.1 – Equivalence of Parameter-

izations A and B

This proof is very similar to the corresponding SISO proof in [1]. The difference lies with

Lemma B.2, given below, which proves a MIMO result that has been proven only for the

SISO case in [1].

(B ⊆ A): Fix (G1, G2) ∈ B. Introduce minimal state-space realizations for each element

in Figure 2.1: P [z] = (AP , BP , CP , DP ) (with initial state xP0), H[z] = (AH , BH , CH , DH)

(with initial state xH0), G1[z] = (A1, B1, C1, D1) (with initial state x10), and G2[z] =

(A2, B2, C2, D2) (with initial state x20).
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Taking into the effects of the initial states, we can write

y[k] = Z−1{P [z]U [z] + CP (zI − AP )−1xP0}

ŷ[k] = Z−1{(G2[z] + G1[z]H[z]P [z])U [z]

+ C2(zI − A2)
−1x20 + C1(zI − A1)

−1x10

+ G1[z]CH(zI − AH)−1xH0 + G1[z]H[z]CP (zI − AP )−1xP0},

implying

e[k] = ŷ[k] − y[k]

= Z−1{(G2[z] + G1[z]H[z]P [z] − P [z])U [z]

+ C2(zI − A2)
−1x20 + C1(zI − A1)

−1x10

+ G1[z]CH(zI − AH)−1xH0 + (G1[z]H[z] − I)CP (zI − AP )−1xP0}. (B.3)

By assumption, G2[z] + G1[z]H[z]P [z] = P [z] and A1, A2, AH are all stable. Since G1[z]

is stable, G1[z]CH(zI − AH)−1 is stable. The following lemma shows that (G1[z]H[z] −

I)CP (zI − AP )−1 is also stable.

Lemma B.2 Assume H[z] is stable. If G1[z] ∈ M(S), G2[z] ∈ M(S), G2[z] = P [z] −

G1[z]H[z]P [z], then V [z] = (G1[z]H[z] − I)CP (zI − AP )−1 is stable. �

Proof: Let P [z] = (AP , BP , CP , DP ), H[z] = (AH , BH , CH , DH), and G1[z] =

(A1, B1, C1, D1), all minimal realizations. A state-space realization of G2[z] = P [z] −

G1[z]H[z]P [z] is

(A2, B2, C2, D2) =













AP 0 0

BHCP AH 0

DHCP B1CH A1






,







BP

BHDP

B1DHDP






,

[

CP − D1DHCP −D1CH −C1

]

,
[

DP − D1DHDP

]






. (B.4)

Since A2 is block-diagonal and AH , A1 are Hurwitz, all the unstable modes of A2 come from

AP and are in fact the unstable poles of P [z]. Let p be any unstable pole of P [z]. The
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stability of G2[z] implies that all the poles of G2[z] are stable and so are the controllable and

observable modes of A2. Therefore p must be among the uncontrollable or unobservable

modes of A2. Since (AP , BP , CP , DP ) is assumed to be minimal, (AP , BP ) is controllable

or
[

AP − pI BP

]

has full rank. So

[

A2 − pI B2

]

=







AP − pI 0 0 BP

BHCP AH − pI 0 BHDP

DHCP B1CH A1 − pI B1DHDP







has full rank since p is not a mode of the Hurwitz AH or A1.
[

A2 − pI B2

]

has full rank

implies that p is among the controllable modes of A2. Therefore we can conclude that p

must be among the unobservable modes of A2 and so

[

A2 − pI

C2

]

=











AP − pI 0 0

BHCP AH − pI 0

DHCP B1CH A1 − pI

CP − D1DHCP −D1CH −C1











does not have full rank.

A state-space realization of V [z] = (G1[z]H[z] − I)CP (zI − AP )−1 is

(AV , BV , CV , DV ) =













AP 0 0

BHCP AH 0

DHCP B1CH A1






,







I

BHDP

B1DHDP






,

[

CP − D1DHCP −D1CH −C1

]

,
[

DP − D1DHDP

]






.

which is identical to (B.4), except with BP replaced by I. So we can also conclude p is

also an unobservable mode of AV . Hence, all the unstable modes of AV are unobservable

and so V [z] is stable. �

We conclude that each term in (B.3) is stable. Thus for any xP0, xH0, x10, x20, and

any signal u, e[k] → 0 as k → ∞. Hence (G1, G2) ∈ A.

(A ⊆ B): Fix (G1, G2) ∈ A. The expression (B.3) for e[k] still holds. Since for any

xP0, xH0, x10, x20, and any signal u, e[k] → 0 as k → ∞, the following must be true:
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• G2[z] + G1[z]H[z]P [z] = P [z] (to set the coefficient of U [z] in (B.3) zero),

• G1[z] is stable (to ensure the coefficient of x10 in (B.3) stable),

• G2[z] is stable (to ensure the coefficient of x20 in (B.3) stable).

These three conclusions imply that (G1, G2) ∈ B. �

B.3 Proof of Lemma 5.3 – Equivalence of Parameter-

izations B and D

The following lemma is needed:

Lemma B.3 P [z]M [z] is stable. �

Proof: One realization of P [z]M [z] is

(APM , BPM , CPM , DPM) =

([

A + BK 0

BP K AP

]

,

[

B

BP

]

,
[

DP K CP

]

, DP

)

(by (A.3))

=













AP + BP K1 BP K2 0

BHCP + BHDP K1 AH + BHDP K2 0

BP K1 BP K2 AP






,







BP

BHDP

BP






,
[

DP K1 DP K2 CP

]

, DP







where K =
[

K1 K2

]

. We can apply the state-transformation

T =







I 0 0

0 I 0

−I 0 I












with T−1 =







I 0 0

0 I 0

I 0 I













to obtain a new realization

(TAPMT−1, TBPM , CPMT−1, DPM)
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where

TAPMT−1 = T







AP + BP K1 BP K2 0

BHCP + BHDP K1 AH + BHDP K2 0

BP K1 BP K2 AP






T−1

=







AP + BP K1 BP K2 0

BHCP + BHDP K1 AH + BHDP K2 0

−AP 0 AP






T−1

=







AP + BP K1 BP K2 0

BHCP + BHDP K1 AH + BHDP K2 0

0 0 AP






=

[

A + BK 0

0 AP

]

,

TBPM = T







BP

BHDP

BP






=







BP

BHDP

0






=

[

B

0

]

,

CPMT−1 =
[

DP K1 DP K2 CP

]

T−1 =
[

DP K1 + CP DP K2 CP

]

=
[

DP K +
[

CP 0
]

CP

]

.

Therefore we have

P [z]M [z] = CPMT−1(zI − TAPMT−1)−1TBPM + DPM

=
[

DP K +
[

CP 0
]

CP

]

[

zI − (A + BK) 0

0 zI − AP

]

−1 [

B

0

]

+ DP

=
[

DP K +
[

CP 0
]

CP

]

[

(zI − (A + BK))−1 0

0 (zI − AP )−1

][

B

0

]

+ DP

=
[

DP K +
[

CP 0
]]

(zI − (A + BK))−1B + DP

∈ M(S)

since A + BK is Hurwitz. �

The machinery is now in place to prove Lemma 5.3:
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(D ⊆ B): Fix (G1, G2) ∈ D. By Lemma B.3, PM ∈ M(S). Therefore G1 ∈ M(S) and

G2 ∈ M(S). Moreover

Tuŷ = G2 + G1HP

= PMY − QÑ + (PMX + QM̃)HP (by (5.11))

= PMY − QÑ + PMXHP + QM̃HP

= PMY − QÑ + PMXNM−1 + QM̃M̃−1Ñ (by (5.9))

= PM(Y M + XN)M−1

= PMIM−1 = P (by (5.10))

= Tuy.

Therefore (G1, G2) ∈ B

(B ⊆ D) [30]: Fix (G1, G2) ∈ B. Let

Q =
[

G2 G1

]

[

−X̃

Ỹ

]

. (B.5)

So Q ∈ M(S). From

G2 + G1HP = P,

we can see that

G2 + G1NM−1 = P (by (5.9))

or G2M + G1N = PM. (B.6)

Therefore combining (B.5) and (B.6), we have

[

PM Q
]

=
[

G2 G1

]

[

M −X̃

N Ỹ

]
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and so

[

G2 G1

]

=
[

PM Q
]

[

M −X̃

N Ỹ

]

−1

=
[

PM Q
]

[

Y X

−Ñ M̃

]

(by (5.10))

=
[

PMY − QÑ PMX + QM̃
]

.

Hence (G1, G2) ∈ D.

�



Bibliography

[1] D. E. Davison and D. Gaudette, “Tumor-tracking in radiotherapy: Parameterization

of a sensor time delay compensators and associated performance limitations,” in Con-

ference on Control Applications. Toronto: IEEE, Aug. 2005.

[2] P. Elgar, Sensors for Measurement and Control. Essex: Addison Wesley Longman,

1998.

[3] D. S. Bernstein, “Sensor performance specifications,” IEEE Control Syst. Mag.,

vol. 21, no. 4, pp. 9–18, Aug. 2001.

[4] S. B. Choi and J. K. Hedrick, “An observer-based controller design method for im-

proving air/fuel characteristics of spark ignition engines,” IEEE Trans. Contr. Syst.

Technol., vol. 6, no. 3, pp. 325–334, May 1998.

[5] N. A. M. Hootsmans, S. Dubowsky, and P. Z. Mo, “The experimental performance

of a mobile manipulator control algorithm,” in Proceedings 1992 IEEE International

Conference on Robotics and Automation, Nice, France, May 1992, pp. 1948–1954.

[6] D. E. Davison and E. S. Hwang, “Automating radiotherapy cancer treatment: Use of

multirate observer-based control,” in Proceedings of the American Control Conference.

Denver, CO: AACC, June 2003.

[7] D. E. Davison, E. S. Hwang, and X. Li, “Generalization of the separation principle

beyond constant-gain state-feedback control,” in Proceedings of the American Control

Conference. Denver, CO: AACC, June 2003.

63



Bibliography 64

[8] J. Stewart and D. E. Davison, “Conformal radiotherapy cancer treatment with mul-

tileaf collimators: Improving performance with real-time feedback,” in Conference on

Control Applications. Toronto: IEEE, Aug. 2005.

[9] ——, “Dose control in radiotherapy cancer treatment: Improving dose coverage with

estimation and feedback,” in American Control Conference, Minneapolis, June 2006.

[10] K. G. A. Gilhuijs, P. J. H. van de Cen, and M. van Herk, “Automatic three-dimensional

inspection of patient setup in radiation therapy using portal images, simulator images,

and computed tomography,” Medical Physics, vol. 23, pp. 389–399, 1996.

[11] Y. Seppenwoolde, H. Shirato, K. Kitamura, et al., “Precise and real-time measure-

ment of 3D tumor motion in lung due to breathing and heartbeat, measured during

radiotherapy,” Int. J. Radiation Oncology Biol. Phys., vol. 53, pp. 822–834, 2002.

[12] D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-

beam computed tomography for image-guided radiation therapy,” Int. J. Radiation

Oncology Biol. Phys., vol. 53, pp. 1337–1349, 2002.

[13] M. Grimble, “Separation principle for multivariable control: A continuous-time poly-

nomial systems approach,” IEE Proceedings–Control Theory and Applications, vol.

146, pp. 457–469, Sept. 1999.

[14] A. Atassi and H. Khalil, “A separation principle for the control of a class of nonlinear

systems,” IEEE Transactions on Automatic Control, vol. 46, pp. 742–746, May 2001.

[15] W. Bencze and G. Franklin, “A separation principle for hybrid control system design,”

IEEE Control Systems Magazine, vol. 15, pp. 80–84, Apr. 1995.

[16] D. E. Davison and R. Tonita, “Performance limitations in control systems with sensor

time delays,” in IFAC World Congress. Prague: IFAC, July 2005.

[17] D. Gaudette and D. E. Davison, “Performance limitations imposed by sensor time

delays in a general 2-DOF control scheme,” in American Control Conference, Min-

neapolis, June 2006.



Bibliography 65

[18] X. Ding, L. Guo, and P. M. Frank, “Parameterization of linear observers and its

application to observer design,” IEEE Trans. Automat. Contr., vol. AC-39, no. 8, pp.

1648–1652, Aug. 1994.

[19] H. Trinh and M. Aldeen, “A memoryless state observer for discrete time-delay sys-

tems,” IEEE Trans. Automat. Contr., vol. AC-42, no. 11, pp. 1572–1577, Nov. 1997.

[20] M. Darouach, “Linear functional observers for systems with delays in state variables:

The discrete-time case,” IEEE Trans. Automat. Contr., vol. AC-50, no. 2, pp. 228–233,

Feb. 2005.

[21] W. W. Kwok and D. E. Davison, “A separation principle associated with sensor time

delay compensation in feedback control,” submitted to Conference on Control Appli-

cations. Munich: IEEE, Oct. 2006.

[22] Q.-G. Wang, T.-H. Lee, and J.-B. He, “Internal stability of interconnected systems,”

IEEE Trans. Automat. Contr., vol. AC-44, no. 3, pp. 593–596, Mar. 1999.

[23] M. Chilali and P. Gahinet, “H∞ design with pole placement constraints: An LMI

approach,” IEEE Trans. Automat. Contr., vol. AC-41, no. 3, pp. 358–367, Mar. 1996.

[24] J. Kamali, “Pole placement design: An interpolation theoretic approach,” Ph.D. the-

sis, Electrical Engineering Department, Stanford University, 1996.

[25] J. Kamali and G. Franklin, “Pole placement design: An interpolation theoretic ap-

proach,” in Proceedings of the 35th Conference on Decision and Control. Kobe,

Japan: IEEE, Dec. 1996, pp. 2014–2019.

[26] M. Vidyasagar, Control System Synthesis: A Factorization Approach, ser. MIT Press

Series in Signal Processing, Optimization, and Control. Cambridge, MA: MIT Press,

1985.

[27] B. A. Francis, A Course in H∞ Control Theory. New York: Springer-Verlag, 1987.

[28] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. New

York, NY: Macmillan, 1992, ch. 5.



Bibliography 66

[29] C.-T. Chen, Linear System Theory and Design. New York: Holt, Rinehart and

Winston, 1984.

[30] X. Ding and P. M. Frank, “Fault detection via factorization approach,” Syst. Contr.

Lett., vol. 14, pp. 431–436, 1990.


	Introduction
	Sensor Time Delay
	Automating Radiotherapy
	Sensor Time Delay Compensation
	Overview of Thesis

	Asymptotic Estimators
	Parameterizations of Asymptotic Estimators in DavGau05
	Extension to the Repeated Pole Case
	Alternative Q-Parameterization
	``Sensitivity'' Functions of Asymptotic Estimators
	Special Classes of Asymptotic Estimators

	Separation Principle
	The 1-DOF Result
	The 2-DOF Result

	Design Strategies
	Design for Stability and Tracking
	Design for Additional Closed-Loop Properties
	Example
	Design for Stability and Tracking
	Design for Additional Closed-Loop Properties


	Multivariable Extensions
	Parameterizations of Asymptotic Estimators
	Parameterization with Interpolation Constraints
	Q-Parameterization
	Main Result

	Separation Principle
	Relating Closed-Loop Properties to Asymptotic Estimator Properties

	Conclusions
	Mathematical Background
	Rings
	Calculus
	Linear Algebra
	Linear System Theory

	Technical Lemmas
	Lemma B.1 for Proving Theorem 2.2
	Proof of Lemma 5.1 -- Equivalence of Parameterizations A and B
	Proof of Lemma 5.3 -- Equivalence of Parameterizations B and D


