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Abstract
Highly pure quantum states play a central role in applications of quantum information sci-

ence, both as initial states for quantum algorithms and as resources for quantum error correction.
Controlled preparation of pure enough quantum states that satisfy the threshold for quantum er-
ror correction remains a challenge, not only for ensemble implementations like nuclear magnetic
resonance (NMR) or electron spin resonance (ESR) but also for other technologies. Heat-bath
algorithmic cooling (HBAC) is a promising method to increase the purity of a set of qubits cou-
pled to a bath. In this thesis, we investigated the achievable polarization of this technique by
analyzing the limit when no more entropy can be extracted from the system. In particular, we
give an analytic form of the maximum polarization achievable for the case when the initial state
is totally mixed, and the corresponding steady state of the whole system. Furthermore, we give
the number of steps needed to get a specific required polarization (the exact number for the two
qubit case and an upper bound for more general cases).
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Chapter 1

Introduction

Quantum information processing brings novel techniques for cooling physical systems by ma-
nipulating entropy at the quantum level [2–6]. Understanding this kind of processes and their
cooling limits is fundamental from both theoretical and experimental points of view. This can
help us to study quantum thermodynamics properties and to discover features of physics at low-
energy states. Furthermore, these methods have extremely important applications in quantum
information science. They constitute a potential solution to purify quantum systems in ensemble
implementations [7–13], which is one of the major challenges in quantum computing.

1.1 Purification of qubits for quantum computing

1.1.1 Quantum computers

Quantum computing exploits the laws of quantum mechanics to process information in ways
that would be impossible by classical computers. Quantum phenomena, such as quantum su-
perposition and entanglement, enable the development of efficient algorithms that considerably
outperform any known classical algorithm. Two of the most important examples are factoring
large numbers [14] and simulating quantum systems. It promises the possibility of dramatic
speed up of computations and simulations.

The physical construction of a quantum computer faces serious challenges. There is a set of
basic criteria required for the implementation of such a device. The most widely accepted criteria
is given by DiVincenzo, which consists of 5 requirements [15]:

1. Well characterized qubits
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2. The ability to initialize qubits to a pure state.

3. Long relevant decoherence times much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit-specific measurement capacity

In this work, we focus on the second requirement, the preparation of highly pure states.

1.1.2 State-Preparation

Controlled preparation of pure enough quantum states is at the core of the practical applications
of quantum information science, from the initialization phase of most quantum algorithms to the
need for a reliable supply of ancilla qubits in quantum error correction.

Finding a scalable way to reach approximate pure states constitutes a challenge in many dif-
ferent quantum computing experimental implementations, especially the ones that rely on an
ensemble of qubits, such asnuclear magnetic resonance (NMR) or electron spin resonance (ESR)
[16]. In some technologies, highly pure states can be achieved through projective measurements,
but in measurement of ensembles such luxury is not possible. In ensemble implementations,
identical copies of a quantum system are manipulated in parallel, and only expectation values of
certain observables are measurable. This restriction, with the fact that in typical ensemble sys-
tems the qubits are highly mixed at room temperature, constitutes an extremely difficult problem.

1.1.3 Heat-Bath Algorithmic Cooling

A potential solution is algorithmic cooling (AC), a protocol based on information theory ideas,
which is designed to purify a set of qubits by removing entropy of a subset of them at the expense
of increasing the entropy of others [17, 18]. An explicit way to implement this protocol in
ensemble quantum computers was given by Schulman et al. [19]. They showed that it is possible
to reach polarization of order unity using only a number of qubits that scale polynomially as a
function of the initial polarization. This scheme was improved by adding contact with a heat-
bath, used to extract entropy from the system [2], a process known as heat-bath algorithmic
cooling (HBAC). Based on this work, many cooling algorithms have been designed [4–6, 20–23].
HBAC is not only of theoretical interest, experiments have already demonstrated an improvement
in polarization using this protocol with a few qubits [7–13], where a few rounds of HBAC were
implemented.
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Through numerical simulations, Moussa [20] and Schulman et al. [5] observed that if the
polarization of the bath (εb) is much smaller than 2−n, where n is the total number of qubits,
the asymptotic polarization reached will be ∼ 2n−2εb. However, when εb is greater than 2−n, a
polarization of order one can be reached.

1.2 Goal and results

Even though HBAC has been already demonstrated in the lab and has been studied through nu-
merical simulations, the cooling limits of these techniques were not completely well understood.
The problem of finding the maximum achievable polarization for a number of qubits n remained
open for the past decade. The purpose of this master project is to study the physical cooling lim-
its of HBAC, and how they can be used to improve state preparation techniques in experimental
implementations.

We investigated the achievable polarization for the case of cooling a qubit using a general
spin l (or n′ qubits, which is a special case of this, for 2l + 1 = 2n

′), and m extra qubits that get
contact with a bath.

The main result of this thesis (see chapter 4) is the analytic expression for the asymptotic
polarization as a function of the number of qubits and as a function of the heat-bath polarization.

We first present the cooling limit conditions; and from this, we find the steady state for max-
imally mixed initial states. Our exact expression reproduce the numerical results, and improve
the previous upper bound found by Schulman et al. [5, 6, 20]. We showed that the asymptotic
polarization goes to 1 doubly exponentially in the number of qubits (or exponential as a function
of the size of the Hilbert space of the system). Finally, with our analysis it becomes easy to find
the number of compression/cooling rounds required to achieve a certain amount of polarization
(we have the exact number for the three qubits case and an upper bound for more general cases).

Our all original contributions are presented in chapter 4, 5 and 6. The results of this work
have been accepted for publication in Physical Review Letters [1]).
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Chapter 2

Background

In this chapter, we provide the background needed to understand the problem of preparing highly
pure states in ensemble implementations. We also show how energy transport and information
processing are two sides of the same coin. In fact, quantum information theory can provide new
interesting ways to cool physical systems by manipulating information at the quantum level [2–
6]. These schemes can reach lower temperatures than the ones obtained by conventional methods
in the laboratory.

2.1 Polarization and temperature of an ensemble of qubits

Consider an ensemble of qubits, i.e. a collection of independent, identical two-level quantum
systems. Let |0〉 and |1〉 be the two levels, with corresponding energy eigenvalues E0 and E1.
When the system is left undisturbed for a long time, in contact with the molecular surround-
ings, it reaches a state of thermal equilibrium with that environment. In thermal equilibrium at
temperature T, the following properties hold [24]:

1. The probability of occupancy of a given energy level |i〉 is given by the Gibbs distri-
bution, nEi(Ei) = exp[−Ei/kT ]/Z, where Z is the partition function (Z = exp[−E0/kT ] +

exp[−E1/kT ]).

2. The coherences between the states are all zero.

Accordingly, the average-density matrix over all members of the ensemble can be written as
follows:

ρ
eq

=

(
n (E0) 0

0 n (E1)

)
=

1

Z

(
exp[−E0/kT ] 0

0 exp[−E1/kT ]

)
. (2.1)
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This density matrix is used to represent the state of any qubit of the ensemble in thermal equi-
librium [24]. In ensemble implementations only expectation values are measurable, there is no
access to individual qubits. Moreover, in most cases the state of the system is highly mixed.

The polarization, also called the bias, εb, is defined as the excess population in the energetically-
favorable |0〉 state,

εb = n (E0)− n (E1) =
e
−E0/kT − e−E1/kT

e
−E0/kT + e

−E1/kT
, (2.2)

εb = tanh

(
E0 − E1

2kT

)
≡ tanh (ε) , (2.3)

where ε ≡ Eδ
kT

, and Eδ is the energy splitting between the two levels, Eδ = (E0 − E1) /2. From
eq.(2.3), cooling the system and increasing its polarization are closely related, especially for a
fixed energy gap (Eδ). The absolute value of the polarization, |εb|, ranges from 0 to 1. In the
limit when the temperature is zero, the polarization is 1.

Then, the density matrix describing the state of qubit of the ensemble in the thermal equilib-
rium can be written, in terms of polarization, as follows:

ρεb =
1

2

(
1 + εb 0

0 1− εb

)
. (2.4)

Some authors, such as Schulman et al. [5, 6], use ε = arctanh (εb) as polarization. The corre-
sponding density matrix of eq.(2.4) in terms of ε is

ρεb =
1

e−ε + eε

(
eε 0

0 e−ε

)
. (2.5)

Note that using this definition also gives the fact that decreasing temperature is the same that
increasing polarization (and conversely) for a fixed energy gap (Eδ). Both definitions, εb and ε,
are very close to each other for small energy gap and high temperature, εb ≈ ε. However, they
differ considerably for low temperatures and big energy gap. The polarization defined as ε goes
to infinity when temperature goes to zero.

2.1.1 Ensemble of qubits in NMR

In the context of NMR quantum information processing [25, 26], the ensemble consists of a
bulk sample of identical molecules, each with n distinguishable nuclear spins. Each molecule is
considered as an individual n-qubit processor.
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The interaction of a spin-1
2

with an external static magnetic field, gives the two eigenstates
required for a qubit. The energy splitting, Zeeman splitting, between those two levels is propor-
tional to the field strength, B, and is much smaller than thermal energy, kT , at room temperature,
where k is the Bolztmann constant. The corresponding polarization, calculated using eq.(2.3), is

εb ≈
µB

2kT
≈ ε, (2.6)

where µ is the magnetic moment of the spin in question. For the case of larger spin, l, the analysis
is similar [24].

For protons at room temperature, in a B = 7T field, the polarization is of the order of
magnitud of 10−5. It has been shown that even with such a low polarization, it is possible to get
computational advantages over classical computation in some cases (for example, for simulating
some physical systems [27], measuring the average fidelity decay [28], among others). However,
for general purposes of quantum computing, purification remains necessary [29].

Different techniques have been implemented to boost the polarization of the nuclear spins in
NMR to solve the initialization problem. Most of these methods are based on pseudo-pure state
(PPS) preparation techniques [30, 31], nevertheless these procedures have an exponential loss of
signal-to-noise with the number of qubits [2]. It is still conceivable that in conjunction with other
methods, the PPS techniques would play a role in initializing scalable ensemble quantum com-
puting. Therefore, finding ways to produce highly polarized states (or at least with a polarization
level where it would be feasible to use PPS) remains indispensable.

2.2 Entropy and Purity

In quantum information theory, the Von Neumann entropy for a quantum system with state ρ is
defined as S(ρ) ≡ −tr(ρlog2ρ). For a diagonal density matrix, that expression is reduced to the
Shannon entropy of the probability distribution given by the diagonal entries of ρ. Then, this can
be written as S(ρ) = −

∑
x λxlogλx, where λx are the eigenvalues of the diagonal density matrix

ρ.

The level of purity of a system with quantum state ρ is commonly measured as Purity :=

Tr (ρ2). The purity goes from 1
d

to 1, i.e. from maximally mixed state to pure state, for states of
dimension d. ρ is a pure state if and only if Tr (ρ2) = 1.

The entropy gives a measurement of the mixedness of a state. Entropy equal to 0 corresponds
to the case when state of the qubit is perfectly known, i.e. a pure state.
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For an ensemble of qubits with polarization εb, the state of each quibit can be considered as
the one given by (2.4), its entropy has the following form:

S(ρεb ) = −1 + εb
2

log2

(
1 + εb

2

)
− 1− εb

2
log2

(
1− εb

2

)
, (2.7)

and the corresponding purity evaluates to

Purity = Tr
(
ρ2
)

=
1

2

(
1 + ε2b

)
. (2.8)

Fig.(2.1) shows the entropy and purity as a function of the polarization of the system. Having
high polarization corresponds to having high purity and low entropy.

Figure 2.1: Entropy and purity of a single qubit as a function of the polarization are shown in
solid-blue line and dashed-pink line, respectively. This illustrates the mapping described between
the polarization, entropy and purity.

2.3 Cooling Methods

The introduced concepts establish a close interrelationship between increasing the polarization,
lowering the temperature, decreasing the entropy, and purifying the system. From this, it is
possible to plan different strategies to purify the qubits in ensemble implementations.

The equation of the polarization, εb = tanh (Eδ/kT ), suggests two obvious methods to purify
the system. The first one is to directly cool the system, i.e. decreasing the temperature of the
system and environment. However, in general this is experimentally hard, considering that the
temperature should be extremely low to obtain high enough polarization. The second approach
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is to increase the energy gap Eδ, but this approach is technological dependent; for example, in
NMR, that would mean increasing the magnetic field (eq.(2.6)); nevertheless, to increase the
magnetic field, at least one order of magnitude, from the typical current values would require a
big technological advancement.

More interesting strategies are obtained if we think in the redistribution of the internal entropy
over all the qubits in the system, which could be possible using the tools of quantum information
processing. This kind of methods are called algorithmic cooling techniques. Remarkably, these
procedures are not technological dependent [2–6], as it is explained in the next section and next
chapter.

2.3.1 Algorithmic Cooling

An internal redistribution of the entropy over all the qubits in the system can be obtained through
quantum logic operations to get a subset of highly-polarized qubits from an initial set of weakly-
polarized ones [2–6]. This carries out a reversible entropy compression process in which the
system results in a separation of cold and hot regions. Schulman and Vazirani [3], presented an
explicit cooling method which recursively applies majority gates, inspired by the Von Neumann’s
ideas of the extraction of fair coin flips from a sequence of biased ones. Their algorithm cooling
method allows purify 1

20
ε2n qubits to a bias of 1− 2n−10, from an initial set of n qubits with po-

larization ε. They proved that the optimal adiabatic compression is achieved with this algorithm;
however, it is impractical with current technology. For room temperature biases (εb ≈ 10−5), ap-
proximately 2x1012 qubits are required to boost the polarization close to 1. The cooling limits of
this method are imposed by the bound Shannon entropy and the preservation of the eigenvalues.

In 2002, Boykin et al.[2] improved the AC idea by adding contact with a heat-bath of partially
polarized qubits, with the goal of pumping entropy out of the original system and sent it into the
heat-bath. This kind of methods are called heat-bath algorithmic cooling, and they can transcend
the previously mentioned shortcomings, as explained in the next section in more detail.

Based on this work, many cooling algorithms have been designed and tested experimentally
[4–6, 20–22]. HBAC is not only of theoretical interest, experiments have already demonstrated
an improvement in polarization using this protocol with a few qubits [7–13], where a few rounds
of HBAC were implemented; and a more realistic implementation has been studied in the pa-
per [23].
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Chapter 3

Heat Bath Algorithmic Cooling

Heat-bath algorithmic cooling (HBAC) purifies qubits by applying alternating rounds of entropy
compression and pumping entropy into a thermal bath of partially polarized qubits. These steps
are explained in detail in this chapter.

The system consists of a string of qubits: one qubit (spin−1/2, also called the target qubit)
which is going to be cooled; one qudit (called the scratch system, which can be a spin−l or a
string of qubits) which aids in the entropy compression; and m reset qubits that can be brought
into thermal contact with a heat-bath of polarization εb. Having the spin−l is equivalent to having
n′ qubits if the dimension of their Hilbert spaces is the same, i.e. if d = 2l + 1 = 2n

′ . We will
also refer to the target qubit and the scratch qudit as the computational qubits (Fig. 3.1).

Figure 3.1: HBAC can cool the target qubit by compressing entropy into m reset qubits and a
d−dimensional spin−l (or a string qubits of Hilbert space of dimension d); then, HBAC pumps
entropy from the qubit system into a heat-bath by refreshing the m reset qubits.

The idea of HBAC is to first re-distribute the entropy among the string of qubits by applying
an entropy compression operation U . This is a reversible unitary process that extracts entropy
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from the computational qubits as much as possible and concentrates entropy in the reset qubits
of the system. This process results in the cooling of the computational qubits while warming the
reset qubits (Fig. 3.2).

Figure 3.2: Entropy compression step. A compression operation U pushes the entropy into
one side of the system. In the figure, the top part represents the string of qubits before the
compression. Dotted lines indicate re-distribution of entropy among all qubits, resulting in the
separation of cold and hot regions as shown in the bottom part.

The second step is to refresh the system using the heat-bath for removing entropy. The heat-
bath is assumed to have infinite heat capacity, such that the action of qubit-bath interaction on
the bath is negligible. There are different ways to couple a quantum system with a bath to extract
entropy from the system. One example is the rethermalization of the reset qubits to the heatbath
temperature, which is equivalent to swapping the reset qubits with qubits of the heat-bath. This
particular refresh procedure is used in the PPA method, as explained in the next section (Fig.
3.3).

Figure 3.3: Example of refresh step, used in the PPA method. The reset qubits are brought into
thermal contact with a heat-bath to pump entropy out from the qubit system. In the figure, two
reset qubits are used as an example.

These reversible compression and refreshing steps are iteratively applied until the target qubit
reaches the desired temperature or until the cooling limit is reached.

The physical requirements for computational and reset qubits are different. A computational

10



qubit should have long relaxation time to remain polarized after being cooled through entropy
compression, and a reset qubit should strongly interact with the bath in order to rapidly relax and
attain the bath temperature.

3.1 The Partner Pairing Algorithm (the PPA) method

For our study, we used a HBAC algorithm called the Partner Pairing Algorithm (PPA), which
was invented by Schulman et al.[5]. This protocol gives the optimal physical cooling in terms of
entropy extraction, under the assumption that the refresh step re-thermalizes the reset qubits to
the heat-bath temperature [5, 6].

In the PPA, the entropy compression operation, U , makes a descending sort of the diago-
nal elements of the system’s density matrix. I.e., this step rearranges the eigenvalues such that
states in increasing lexicographic order have non-increasing probability. Therefore, the prob-
ability amplitude of states starting with 0 (000, 001, etc.) will take the biggest values of the
diagonal elements, while that of states starting with 1 will take the smallest ones. This operation
aims to increase the polarization of the first qubit. The compression can no longer improve the
polarization of the first qubit once the states are already ordered as described above. In this step,

ρ
Compression−−−−−−−→ ρ′ = UρU †. (3.1)

The particular computations required in this step vary in a complex way, since they depend
on the number of qubits, the heat-bath polarization, and the polarization of each qubit of the
system at that moment.

In the refresh step, the m reset qubits are brought into thermal contact with the bath to be
refreshed. This step is equivalent to tracing-over the reset qubits, and replacing them with qubits
from the heat-bath, cooling the qubit system (see Fig. 3.3). This means that the maximum
polarization that the reset qubit are able to obtain in this step is equal to the polarization of the
heat-bath, εb. We also assume that the heat-bath has large heat capacity and that the action of
qubit-bath interaction on the bath temperature is negligible. In this step, the system’s density
matrix changes as follows:

ρ′
Refresh−−−−−→ ρ′′ = Trmqubits (ρ′)⊗ ρ⊗mεb . (3.2)

where ρεb = 1
2

(
1 + εb 0

0 1− εb

)
is the state of a qubit from the bath, and εb is the heat-bath

polarization (some authors, such as Schulman et al. [6], use ε = arctanhεb as polarization).
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The total effect of applying these two steps, an iteration of the PPA method, on a system with
state ρ can be expressed as follows:

ρ→ ρ′′ = Trmqubits
(
UρU †

)
⊗ ρ⊗mεb (3.3)

3.1.1 Illustrative example: PPA for three qubits

In order to illustrate how the PPA method works, here it is applied on a particular system of three
qubits (one reset qubit and two computational qubits). Consider the 3-qubit system initially in a
totally mixed state, ρ0, and the qubits of the heat-bath in a state with polarization εb.

First iteration

First, contact between the reset qubit and the heat-bath is established. Then the compression
operator U permutes the probabilities of the basis states and sorts them in non-increasing order,
as follows:

d(ρ0) =
1

8



1

1

1

1

1

1

1

1


R−→ d(ρ′0) =

1

8



1 + εb

1− εb
1 + εb

1− εb
1 + εb

1− εb
1 + εb

1− εb


C−→ d(ρ′′0) =

1

8



1 + εb

1 + εb

1 + εb

1 + εb

1− εb
1− εb
1− εb
1− εb


, (3.4)

where d(ρ) are the eigenvalues of ρ, and R and C stand for refresh and compression steps,
respectively. This compression is equivalent to swapping the first computational qubit with the
reset qubit. After this iteration, the polarization of the first qubit is increased from 0 to εb.

Analyzing the entries of d(ρ′0), it is possible to know which permutations are required in
order to have states with non-increasing probabilities in the lexicographic order. For this spe-
cific case, the entropy compression operation should swap the states {|001〉, |011〉} for the states
{|100〉, |110〉}. This transformation can be performed by applying the unitary matrix shown in
Fig. 3.4, to obtain the desired state d (ρ1) := d (ρ′′0).
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Figure 3.4: Matrix and circuit symbol representing the unitary operation of the first iteration of
the PPA on three qubits that are initially in a completely mixed state. In the circuit diagram, the
top qubit is the target qubit (denoted T) and the bottom qubit is the reset qubit (denoted R). In
the first iteration, the compression gate swaps the target qubit and the reset qubit.

Second iteration

Upon repeating above two steps again, we effectively swap the second computational qubit
with the reset qubit that is at thermal equilibrium with the bath, as follows:

d(ρ1) := d(ρ′′0)
R−→ d(ρ′1) =

1

8



(1 + εb)
2

1− ε2b
(1 + εb)

2

1− ε2b
1− ε2b

(1− εb)2

1− ε2b
(1− εb)2


C−→ d(ρ′′1) =

1

8



(1 + εb)
2

(1 + εb)
2

1− ε2b
1− ε2b
1− ε2b
1− ε2b

(1− εb)2

(1− εb)2


. (3.5)

The entropy compression operation is performed by applying the unitary matrix shown in
Fig. 3.5.

Figure 3.5: Matrix and circuit symbol representing the unitary operation of the second iteration
of the PPA on three qubits that are initially in a completely mixed state. In this iteration, the
second qubit and the reset qubit are swapped.
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In this iteration, the polarization of the first computational qubit remains the same, while the
polarization of the second qubit is increased from 0 to εb .

Third iteration

If the refresh and compression steps are repeated once more,

d(ρ2) := d(ρ′′1)
R−→ d(ρ′2) =

1

8



(1 + εb)
3

(1 + εb)
2 (1− εb)

(1 + εb)
2 (1− εb)

(1 + εb) (1− εb)2

(1 + εb)
2 (1− εb)

(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1− εb)3


C−→ d(ρ′′2) =

1

8



(1 + εb)
3

(1 + εb)
2 (1− εb)

(1 + εb)
2 (1− εb)

(1 + εb)
2 (1− εb)

(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1 + εb) (1− εb)2

(1− εb)3


. (3.6)

In this iteration, the polarization of the first qubit increases to 1.5εb − 0.5ε3b .

Figure 3.6: Matrix and circuit symbol representing the unitary operation of the third iteration
of the PPA on three qubits that are initially in a completely mixed state. This iteration boosts
the first qubit polarization to 1.5εb − 0.5ε3b . From the second round of HBAC and on, entropy
compressions are the repetition of the second and third iterations.

In the next steps, the required compression gates are alternating applications of the operations
corresponding to second and third iterations.

The evolution of the polarization of the first qubit under the PPA with is εb << 1 shown
in Fig. 3.7. The circuit asymptotically boosts the polarization on the first qubit up to twice the
heat-bath polarization; this limit is discussed in the next section.
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Figure 3.7: Evolution of the target qubit polarization under the PPA method, using a system of
3 qubits, for three values of heat-bath polarization εb. Each iteration consists of a reset and a
compression procedure. Note the asymptotic polarization is 2εb, as expected for εb << 1/2 in
the case of three qubits.

The quantum circuit required to perform the PPA on the three qubits, initially in the totally
mixed state, is showed in the Figure 3.8, just for first five iterations (subsequent iterations are
just the repetition of the second and third iteration).
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Figure 3.8: Quantum circuit for the PPA method on a system of three qubits starting in total
mixed state. In the circuit diagram, the target, the scratch and the reset qubits are denoted T,
S, and R, respectively; the dashed line corresponds to the heat-bath and r stands for the refresh
operation. The figure shows only the first five iterations of the circuit (an iteration consists of
one refresh step plus one compression step), subsequent iterations are just the repetition of the
iterations 1 and 2 (a 3qubit-round).

3.2 Experimental implementation of HBAC

Experiments have already demonstrated an improvement in polarization using HBAC with a few
qubits [7–13, 32], where a few rounds of HBAC were achieved. It was successfully implemented
in liquid state NMR [7–10], solid state NMR [11, 12], quantum optics [33], and ion traps [34].
Furthermore, the possibility to implement HBAC using electron spin resonance (ESR) at high
polarization is currently being studied [13].

In the next subsection, we present a short review of HBAC experiments in liquid state NMR,
in solid state NMR and in ESR.

3.2.1 Experimental HBAC with NMR and ESR

Experimental realization of algorithmic cooling requires high fidelity control and the ability to
reset qubits. Liquid State NMR Quantum Information Processing (LSNMR QIP) has success-
fully demonstrated precise quantum control up to 12 qubits; however, it presents difficulties to
refresh qubits. The only way to reset qubits relies on spin-lattice relaxation, characterized by
the time scale of relaxation time T1. Reset qubits must have very short T1 to rapidly relax and
attain the bath temperature. This short T1 on the reset qubit limits its T2 and the fidelity of con-
trol. Despite these limitations, the first preliminary steps towards full PPA was experimentally
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realized in LSNMR by using protons (1H nuclei) as reset qubits and 13C nuclei as computational
qubits [9, 32]. These experiments showed selective reset operations to polarize all three spin
qubits close to the bath temperature. Nevertheless, the compression step which polarizes a target
qubit colder than the heat bath was not implemented. Meanwhile, Chang et al. implemented
cooling solely by the final compression gate on three fluorines in C2F3BR using LSNMR. Full
implementation of HBAC in LSNMR was accomplished much later in [35].

On the other hand, Solid State NMR (SSNMR) offers a reset step that does not require a
relaxation process in the system of interest by using a network of dipolar coupled spins as a
spin bath. The decoherence rates can be made slow using refocusing techniques, while spin-spin
couplings, which are much larger than in LSNMR, can be exploited to realize faster quantum
gates [25]. Moreover, SSNMR experiments can be operated at low temperature, providing a
higher bath polarization than LSNMR. The first experimental demonstration of HBAC using
SSNMR was done by Baugh et al. in 2005 [11]. They implemented the PPA for three qubits using
a single crystal of malonic acid CH2(COOH)2 as quantum processor at B0 = 7.1T and room
temperature. In 2008, Ryan et al. experimentally demonstrated nine iterations of algorithmic
cooling in the same experimental system (malonic acid) [12]. They achieved a polarization in
the target qubit of 1.69εb, while the corresponding theoretically polarization is 1.94εb. Here,
the experimental error was dominated by two factors, the imperfection of 1H decoupling and a
non-ideal process of spin diffusion in the network of dipolar coupled protons in the bath.

The fundamentals of electron spin resonance (ESR) quantum computing are analogous to
NMR quantum computing, and many of the techniques used for manipulating nuclear spins can
also be applied to control electrons. The combination of electron and nuclear spin resonance in
hyperfine-coupled quantum processors can provide more advantages. One obvious advantage is
that higher gyromagnetic ratio of an electron γe (about 660 times greater than that of proton) leads
to higher polarization. Decoherence and relaxation rates also scale with γ and hence electron T1
relaxation rate is about 3 orders of magnitude larger than that of nuclei. Thus, the electron spin
is an excellent candidate for the reset qubit, which can be refreshed simply by waiting for a
time about 5T1. The anisotropic hyperfine interaction gives an advantage for designing nuclear
quantum gates, since it provides a control handle for fast manipulations of nuclear spins. But,
on the other hand, if the anisotropic hyperfine interaction is strong, it could represent a problem,
since the electron T1 relaxation process induces nuclear polarization decay in the presence of
anisotropic hyperfine interaction. Fortunately, one can choose the crystal orientation to reduce
the anisotropic hyperfine coupling strength so that the nuclear spin decay induced by electron T1
is small enough to allow cooling of a target spin below bath temperature. The control universality
of an electron and a nuclear spin coupled system via anisotropic hyperfine interaction was proved
in [36], and demonstrated experimentally in [37] for a single nuclear spin qubit gate and in [38]
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for a gate involving two nuclear spin qubits.

These experiments were significant milestones towards implementation of HBAC. They demon-
strated high control fidelity to realize HBAC to prepare an ancilla qubit whose polarization
is higher than the cold bath polarization. The control tools are available, but what remains a
challenge is to identify a system with a big enough number of qubits and a heat-bath with low
polarization; or even find a better way to couple the qubits to the heat-bath to remove entropy.
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Chapter 4

Achievable Polarization for Heat-Bath
Algorithmic Cooling

To understand the usefulness of HBAC in experiments, we need to understand the physical limits
of cooling qubits in detail through compression/extraction of entropy. This limit has an important
impact not only for the experimental realization of algorithmic cooling, but it is also very impor-
tant from a microscopic thermodynamics point of view. In this context, the two very interesting
questions are what is the achievable cooling when the initial state is maximally mixed, and how
many iterations of the HBAC-steps would be needed to obtain a certain cooling, i.e. a certain
required value of polarization.

We investigated the achievable polarization by analyzing the limit when no more entropy
can be extracted from the system. In this chapter, we give an analytic form of the maximum
polarization achievable for the case when the initial state of the qubits is totally mixed. Also, we
give the corresponding steady state of the whole system. It is however possible to reach higher
polarization while starting with certain states other than a mixed state, thus our result provides
an achievable polarization. We also give the number of steps needed to get a specific required
polarization.

4.1 Cooling Limit

The cooling limit corresponds to the moment at which it is not possible to continue extracting
entropy from the computational qubit system, i.e. when the state of the qubit system is not
changed by the compression and refresh steps. The system achieves this limit asymptotically,
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converging to a steady state where the following condition holds:

ρ = ρ′′, (4.1)

where ρ′′ is the state of the qubit system after one HBAC iteration on ρ.

The state of the computational qubits, ρcom = Trmqubits (ρ), can be expressed as

diag(ρcom) = (A1, A2, A3, ..., A2d) , (4.2)

where diag(ρ) is the vector of the diagonal elements of ρ. From this and eq.(3.3), ρ′′ will be
described by

diag(ρ′′) = (A1, A2, ..., A2d)⊗
1

2m
(1 + εb, 1− εb)⊗m . (4.3)

In the cooling limit there is no operation that can compress any further the entropy of the
computational qubits, or equivalently, the diagonal elements of ρ′′ are already sorted in decreas-
ing order. This will happen when we have the condition

Ai (1− εb)m ≥ Ai+1 (1 + εb)
m , (4.4)

for i = 1, 2, 3, ..., 2d− 1, (see the next chapter for proof details). When this equation is satisfied,
the entropy of the reset qubits will not increase anymore after compression and thus contact with
the bath will not cool them. Thus, HBAC iterations will not modify the state anymore, leading
to (4.1).

Note that this condition does not imply that there is a single steady state. In fact, it is possible
to find different final states as a function of the initial state of the system. The most interesting
steady state is given when the initial state is totally mixed, since it corresponds to the extreme case
when the initial polarization is zero, and even better, because it is always possible to efficiently
randomized a state experimentally. Therefore, that state can always be asymptotically reached.

4.2 Maximally mixed initial state

If we start with a maximally mixed state, it is possible to show that

Ati (1− εb)m ≤ Ati+1 (1 + εb)
m , (4.5)

for i = 1, 2, 3, ..., 2d − 1, where t labels the number of HBAC iterations. This is true for the
initial step, as Ai = 1

2d
for all i at t = 0, but it turns out that it remains true for all subsequent

iterations.
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It is also possible to show that at each step the polarization of the target qubit never decreases,
while the entropy of the reset qubits always increases beyond the one from the bath at each
entropy compression step. Thus, the reset qubits always pump entropy out of the system into the
bath, converging to a limit.

Comparing eq.(4.4) and eq.(4.5) indicates that the asymptotic state of the computational
qubits can only go towards the equality

A∞i (1− εb)m = A∞i+1 (1 + εb)
m , (4.6)

for all i = 1, 2, 3, ..., 2d− 1.

From (4.6) and the property Tr (ρcom) = 1, it is possible to find all the diagonal elements
of ρcom, which are as follows: A∞i = 1−Q

1−Q2dQ
i−1, where Q =

(
1−εb
1+εb

)m
. This result gives the

exact solution of the steady state of the computational qubits, ρ̃com, for all values of the bath
polarization:

diag (ρ̃com) = A∞1
(
1, Q,Q2, ..., Q2d−1

)
. (4.7)

See the next chapter for details. (A special case of this result was presented in the paper [39], for
d = 2n

′ and m = 1. However, their claim that this is the asymptotic limit for all HBAC methods
is incorrect, as explained in chapter 6).

4.2.1 Asymptotic Polarization

From the steady state (eq. (4.7)), the asymptotic polarization of the target qubit is

ε∞1l =
(1 + εb)

md − (1− εb)md

(1 + εb)
md + (1− εb)md

. (4.8)

The corresponding temperature of the target qubit will be Tsteady = 1
md
Tb

∆Et
∆Er

(d = 2n
′ when

the scratch qudit is a string of n′ qubits), here Tb is the temperature of the bath, and ∆Et and
∆Er are the energy gaps between the two energy levels of the target qubit, and the reset qubits,
respectively. Our results agree with the third law of thermodynamics [40, 41].

For the case of using a string of qubits as the scratch qudit, the maximum achievable polar-

ization of the jth qubit will be ε(j)max = (1+εb)
m2j−1

−(1−εb)m2j−1

(1+εb)
m2j−1

+(1−εb)m2j−1 (numbered from right to left, Fig.
3.1).

In the limit for low bath polarization, εb << 1/md, the achievable asymptotic polarization
is proportional to the dimension of the Hilbert space of the scratch qudit (or n′ qubits), i.e.
ε∞1l ≈ mdεb(= m2n

′
εb). As the value of εb increases beyond 1/md, we observe a transition for
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the asymptotic polarization. This is shown in Fig.4.1, as a function of the bath polarization for
different number of qubits, using eq. (5.31). We can observe the transition noted by [20] and [5]
at εb ∼ 2−n, for m = 1, agreeing with simulations.

In order to see how ε∞1l approaches 1, we use ∆max = 1− ε∞1l , and eq (5.31). Then,

∆max =
2

e
md ln

(
1+εb
1−εb

)
+ 1

=
2

e
m2n′ ln

(
1+εb
1−εb

)
+ 1

. (4.9)

This expression shows that the asymptotic polarization goes to 1 doubly exponentially in the
number of qubits n′ (or exponential as a function of the size of the Hilbert space d). In Fig. 4.1,
we show ε∞1l as a function of εb for different values of d, with m = 1.

Example image

Figure 4.1: Asymptotic achievable polarization for the target qubit. This polarization increases
double exponentially in the number of qubits as the scratch qudit, n′. The dots are located at the
point of ε∞1l which corresponds to the εb = 1

md
, where the transition can be observed, for d = 2,

4, 8, 16, 32, and 64, and m = 1. (For εb smaller than that value, ε∞1l is linear in εb.)

The asymptotic polarization ε∞1l was obtained assuming the system qubits started in the com-
pletely mixed state. The same asymptotic polarization would be obtained if we start with a
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different initial state that nevertheless obeys eq.(4.5). Numerical simulation indicates that this
could also happens with some initial states not obeying eq.(4.5). But we can also find explicit
examples of initial states that lead to asymptotic polarizations that are higher than eq.(5.31). As
any state can be efficiently maximally randomized, it is always possible to reach the polarization
given eq.(5.31) and maybe do better if the initial state is different.

4.2.2 Schulman’s Physical-Limit Theorem

The steady state, eq. (4.7), is consistent with the limits of HBAC given by the theorem of Schul-
man et al. [6]. Their theorem provides an upper bound of the probability of having any basis
state, concluding that no heat-bath method can increase that probability from its initial value,
2−n, to more than min{2−neε2n−1

, 1}. Where ε is related to the polarization of the heat-bath as
εb = tanhε, and n is the total number of qubits (n = n′+ 2: n′+ 1 computational qubits and one
reset qubit).

We improved that theorem by finding the corresponding exact maximum probability, pmax.
pmax is given by the probability of having the basis state |00...0〉 at the cooling limit: pmax =

A1 (1 + εb) /2 (from eq. (4.7) and ρ = ρ̃com ⊗ ρεb). That expression can by written as a function
of n and εb as follows pmax = εb

1−
(

1−εb
1+εb

)2n−1 .

Fig. 4.2 shows both the upper bound proposed by Schulman (dashed lines) and the asymptotic
value obtained here (thick lines), for different values of n. We can see that the bound is very close
to the exact solution for small values of εb, but differ for large values of εb.

4.2.3 Number of steps needed to get ε = ε∞1l − δ

We calculated the number of steps required to get a certain polarization for the three qubit case
(m=1, d=2). For this, we studied the polarization evolution after each step of the PPA method on
the system, starting from the total mixed state. The required quantum circuit to perform the PPA
method is shown in Fig. 3.8.

Consider that the polarization of the first qubit is εt after the tth iteration. Applying two more
iterations, which corresponds to the 3qubit-round in Fig. 3.8, the polarization of the target qubit
increases from εt to εt+2 as follows:

εt+2 = 2abεt + εb, (4.10)

where a = 1+εb
2

and b = 1−εb
2

.
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Figure 4.2: Upper limit of the probability of any basis state for the total n qubit system (n =

n′ + 2: n′ + 1 computational qubits and one reset qubit). The dashed line corresponds to the
Schulman’s upper bound and the thick line to the exact asymptotic probability. Orange for n = 3,
blue for n = 4, and Green for n = 5

Let t starts from 0, then ε0 = εb after the first iteration. From eq.(4.10), the polarization after
applying j 3qubit-rounds can be written as

εt=2j = ε∞1l − qj (ε∞1l − εb) , (4.11)

where q =
1−ε2b

2
. Using (5.31) with d = 2, we have that the corresponding asymptotic polarization

ε∞1l = 2εb
1+ε2b

. From this equation we can find the number of steps needed to get to ε = ε∞1l − δ ,

N(δ, εb) = 2j = 2
log
(

δ
ε∞1l −εb

)
log q

. (4.12)

The upper bound on the number of steps required to get polarization εh,δ < εmax for the cases
of a string of n qubits (n′ = n− 2, m = 1) is

Nupper−bound =

k=[n′/2]∏
k=1

N(δk, εk), (4.13)
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where εmax = (1+εb)
d/2−(1−εb)d/2

(1+εb)
d/2+(1−εb)d/2

; εk := f(εk−1) − δk; εh,δ = εh, with h = [n′/2] (the integer

part of n′/2); f(ε) = 2ε
1+ε2

; N(δ, ε) = 2
log

(
δ

f(εb)−εb

)
logq

; and ε0 = εb. (See the next chapter for more
details.)

Despite the simplicity and periodicity of the three qubits quantum circuit, it is complicated to
generalize this for a bigger number of qubits. First, the entropy compression operation depends
on the state of the system and, thus, is different in each iteration. Second, the number of gates
needed in each iteration grows with the number of qubits.

Fig. 5.1 shows numerical simulations of the number of steps as a function of δrel =
ε∞1l −ε
ε∞1l

=

δ/ε∞1l . The simulations are consistent with the upper bound of the number of steps and with the

Figure 4.3: Number of PPA-iterations that are required to have polarization ε = ε∞1l − δ as a
function of δ/ε∞1l , for d=2, 3, 4, 5, and 6.

exact solution for the case of three qubits.
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Chapter 5

Achievable Polarization Proofs

In this chapter, we explain in detail how to obtain the principal results of the previous chapter.
First, we give the conditions of the cooling limit and the requirements to have a steady state.
Then, we show that these conditions can be reached asymptotically when we start from the
maximally mixed state. We derive the maximum polarization achievable when the initial state
is totally mixed, and the corresponding temperature. Furthermore, we explain how to get the
number of steps needed to have a certain polarization ε∞1l − δ (we give the exact solution for
n = 3, and an upper bound for n > 3).

5.1 Cooling limit

In the cooling limit it is not possible to continue extracting entropy from the computational
qubits. Thus, the corresponding state, ρcom, will not change by applying the compression and
refresh steps of HBAC.

The method to find this steady state is to consider the general form of ρcom, and apply the
two steps of the HBAC method to get ρ′′com. The conditions for the steady state are given by the
equality of these states.

Assume that we start with a system in the totally mixed state. By applying compression and
refresh operations, the state remains diagonal. Thus, the state of the whole qubit system, ρ, can
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be completely described by its diagonal elements,

diag(ρ) =



p1

p2

.

.

.

pD


, (5.1)

where diag(ρ) is the vector of the diagonal elements of ρ, and D is the dimension of the Hilbert
space of the whole string of qubits (D = 2d2m).

Applying HBAC, the state evolves through the following two steps:

Entropy Compression Step: ρ Compress−−−−−→ ρ′ = UρU †. In the PPA, U sorts the diagonal
elements of ρ in decreasing order, giving a ρ′ with diagonal elements

p′1 ≥ p′2 ≥ ... ≥ p′D−1 ≥ p′D. (5.2)

The state of the computational qubits, ρ′com, is given by

diag(ρ′com) = diag(Trm(ρ′)) :=



A1

A2

.

.

.

A2d


, (5.3)

where Trm() is the partial trace operation over the m reset qubits, and Ak =

jk∑
j=jk0

p′j , with

jk0 = (k − 1)2m + 1 and jk = k2m. This, with eq. (5.2), implies that

A1 ≥ A2 ≥ ... ≥ A2d−1 ≥ A2d. (5.4)

Refresh Step: ρ′ Refresh−−−−−→ ρ′′ = Trm (ρ′)⊗ρ⊗mεb , where ρεb = 1
2

(
1 + εb 0

0 1− εb

)
is the state

of a qubit with heat-bath polarization εb.

After these compression and refresh steps, the state of the total qubit system, ρ′′, will be
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described by

diag (ρ′′) =



A1

A2

.

.

.

A2d−1

A2d


⊗ 1

2m

(
1 + εb

1− εb

)⊗m
. (5.5)

In the cooling limit there is no operation that can compress any further the entropy of the
computational qubits, or equivalently, the diagonal elements of ρ′′ are already sorted in decreas-
ing order.

Starting with the simplest case, m=1 (using only one reset qubit), the diag(ρ′′) is as follows
(from eq.(5.5)):

diag (ρ′′) =
1

2



A1 (1 + εb)

A1 (1− εb)
A2 (1 + εb)

A2 (1− εb)
.

.

.

A2d (1 + εb)

A2d (1− εb)


. (5.6)

If the elements of ρ′′ are already sorted, it implies that

Ai(1− εb) ≥ Ai+1(1 + εb), (5.7)

for all i = 1, 2, ..., 2d− 1, which is a condition required for a steady state under the PPA-HBAC.
Note that there are many solutions to this set of equations, and, not surprisingly, many steady
states of HBAC.

Now, we will show that we can reach a steady state if we start from the totally mixed state.

Let Ati be the evolution of Ai after t iterations of the PPA-HBAC, with A0
i = 1

2d
when the

initial state is totally mixed. Interestingly, we have

A0
i (1− εb) ≤ A0

i+1(1 + εb), (5.8)

for all i = 1, 2, ..., 2d− 1. Note that it is a less than equal sign in distinction from (5.7). We will
show that if (5.8) is true at t = 0, it will be true for all future steps t. Moreover, we will also
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show that if (5.8) is obeyed, the rounds of HBAC keep cooling the computational qubits. Thus,
the state of the system reaches asymptotically the condition of (5.7) with the equality.

We will prove that if we have Ati
Ati+1

≤ 1+εb
1−εb

for all i = 1, 2, ..., 2d − 1 at a given moment t,

then after an iteration of HBAC we will have At+1
i

At+1
i+1

≤ 1+εb
1−εb

.

Let ρtcom be the state of the computational qubits after t iterations. Then, the density matrix
of the total qubit system state will be given by ρt = ρtcom ⊗ ρεb , just after a refresh step. Thus,
the total state is as follows:

diag(ρt) =



pt1
pt2
pt3
pt4
pt5
pt6
.

.

.

pt2(2d)−1

pt2(2d)



=
1

2



At1 (1 + εb)

At1 (1− εb)
At2 (1 + εb)

At2 (1− εb)
At3 (1 + εb)

At3 (1− εb)
.

.

.

At2d (1 + εb)

At2d (1− εb)



. (5.9)

The elements of ρt can be written as

pt2i−1 = Ati(1 + εb)/2, and (5.10)

pt2i = Ati(1− εb)/2, (5.11)

for i = 1, 2, ..., 2d.

For the next step, we have to compress ρt to get ρt+1, i.e. we have to sort the diagonal
elements of ρt in decreasing order.

Observe that the elements with factor (1 + εb) (the blue elements in (5.9)) are already in
descending order, since At1 ≥ At2 ≥ ... ≥ At2d. Therefore, during the compression step, these
elements can be moved to different entries of the diagonal matrix from the initial ones, but they
will have the same order among them (because they are already sorted). It is similar for the
elements with factor (1− εb) (the red elements).

Assuming Ati
Ati+1

≤ 1+εb
1−εb

, as we have in the initial state, implies that the blue elements are
going to go up at least one row, except for At1(1+ εb) which stays in the same position. Similarly,
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the red elements are going to go down at least one row, except for At2d(1− εb) which stays in the
same position.

Considering this element movement, we can conclude that the elements of ρt+1 will satisfy
the following inequalities:

Ati−1(1− εb)/2 ≤ p
(t+1)
2i−1 ≤ Ati(1 + εb)/2, and (5.12)

Ati(1− εb)/2 ≤ p
(t+1)
2i ≤ Ati+1(1 + εb)/2, (5.13)

for i = 2, 3, ..., 2d− 1.

The new computational state, ρt+1
com = Trm(ρt+1), will have diagonal elements At+1

i =

p
(t+1)
2i−1 + p

(t+1)
2i . From this and (5.12)-(5.13), we have

(Ati−1 + Ati)(1− εb)/2 ≤ A
(t+1)
i ≤ (Ati + Ati+1)(1 + εb)/2, (5.14)

for i = 2, 3, ..., 2d − 1. For the first and last diagonal elements of ρcom (i = 1 and i = 2d), we
know exactly their corresponding values,

At+1
1 = (At1 + At2)(1 + εb)/2, and (5.15)

At+1
2d = (At2d−1 + At2d)(1− εb)/2. (5.16)

These last three equations imply that A
t+1
i

At+1
i+1

satisfy the following inequality:

At+1
i

At+1
i+1

≤
Ati(1 + εb) + Ati+1(1 + εb)

Ati(1− εb) + Ati+1(1− εb)
=

1 + εb
1− εb

, (5.17)

for all i = 1, 2, ..., 2d− 1, as we claimed.

5.1.1 Increasing purity

We now show that starting in the totally mixed state and applying steps of HBAC, the system
will asymptotically go to a state that satisfies the equality in (5.7). To show this, we will prove
that the target qubit (the spin−1/2) is cooled after each iteration of HBAC, and the reset qubit
keeps extracting entropy from the system (cooling the system) after each iteration. All this drives
asymptotically the initial state to the steady state.

Consider the state of the system after t iterations, (state of the eq. (5.9)). Then, the reduced
density matrix for the target qubit is

diag(ρttarget) =

[
ρt00target

ρt11target

]
, (5.18)
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where ρt00target =
2d∑
i=1

pti =
d∑
i=1

Ati, and ρt11target = 1− ρt00target .

Since the compression step reorders the diagonal elements of ρt in decreasing order, it is clear

that the first 2d elements of the new state, ρt+1, will satisfy
2d∑
i=1

pt+1
i ≥

2d∑
i=1

pti,

=⇒ ρt+1
00target ≥ ρt00target . (5.19)

Therefore, the target qubit is always colder (or remains same) after each iteration of HBAC.

On the other hand, the reset qubit, which has reduced density matrix ρtr when the total system
has state ρt, will be

diag(ρt+1
r ) =

[
ρt+1

00r

ρt+1
11r

]
, (5.20)

where ρt+1
00r =

2d∑
i=1

pt+1
2i−1. This equation, with (5.12) and (5.10), gives

ρt+1
00r =

2d∑
i=1

pt+1
2i−1≤

2d∑
i=1

Ati(1 + εb)/2 = (1 + εb)/2. (5.21)

Therefore, the reset qubit will always be hotter than the bath after the compression step of HBAC
as long as we do not reach the equality. This implies that the reset qubit always extracts entropy
from the total system when it is brought into contact with the heat-bath. The system is cooled in
every iteration of the refresh step, with a smaller and smaller amount of entropy extracted, going
asymptotically the cooling limit.

The two elements above show that, starting from the totally mixed state, we will converge
to the equality of (5.7). At this limit, the steady state of the computational qubits should have
elements which satisfy

A∞i+1

A∞i
=

1− εb
1 + εb

≡ Q. (5.22)

Using (5.22) and Tr(ρcom) = 1, it is possible to find the exact solution of each A∞i :

A∞i =
1−Q

1−Q2d
Qi−1, (5.23)
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and therefore the analytical solution of the steady state of the computational qubits will be

diag (ρ∞com) = A∞1



1

Q

Q2

.

.

.

Q2d−1


. (5.24)

5.1.2 Asymptotic Polarization of the target qubit for one and multiple
reset qubits

Using eq.(5.24), the reduced density matrix of the target qubit in the cooling limit is given by

diag(ρ∞target) = A∞1

d−1∑
i=0

Qi

[
1

Qd

]
=

1

2

[
1 + ε∞1l
1− ε∞1l

]
, (5.25)

where ε∞1l is the asymptotic polarization of the target qubit when we start with the maximally
mixed state.

From this equation we can derive:

ε∞1l =
(1 + εb)

d − (1− εb)d

(1 + εb)
d + (1− εb)d

, (5.26)

where d is the dimension of the Hilbert space of the scratch qudit (d = 2l+ 1 if we use a spin−l,
or d = 2n

′ if we use a string of n′ qubits).

Now, if we generalize to the case m > 1, we have that the state of the m reset qubits is given
by

diag(ρ⊗mεb ) =

(
1 + ε

1− ε

)⊗m
=


(1 + ε)m

.

.

.

(1− ε)m

 , (5.27)

where (1 + εb)
m is the biggest element, and (1− εb)m the smallest one, which correspond to the

first entry and the last entry, respectively. Observe that in general the diagonal elements of ρ⊗mεb
are not in decreasing order.
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From eq. (5.5), ρ′′ is as follows:

diag(ρ′′) =

A1 (1 + εb)
m

.

.

.

A1 (1− εb)m

A2 (1 + εb)
m

.

.

.

A2 (1− εb)m
.
.
.

Ai (1 + εb)
m

.

.

.

Ai (1− εb)m

Ai+1 (1 + εb)
m

.

.

.

Ai+1 (1− εb)m
.
.
.

A2d (1 + εb)
m

.

.

.

A2d (1− εb)m




First, notice that any swap between two elements within the same box (which has the same

factor Ai) will not improve the entropy compression on the computational qubits state. The
reason is once the reset qubits are traced out, the permutation inside the same box contributes to
the sum of the probabilities corresponding to same basis state of the computational qubits that
they contributed before the compression.

Then, we are just interested in permuting elements to a different box from where they were
previously, in particular the biggest element or smallest element of each box (to have the max-
imum entropy compression). At the cooling limit, there is no operation that can improve the
compression, or equivalently, the elements (just taking the largest and smallest of each box) are
already sorted.
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Following the same reasoning to the case when m = 1, the steady state should have elements
which hold:

A∞i (1− εb)m ≥ A∞i+1(1 + εb)
m. (5.28)

Moreover, similarly to the case of m = 1, the inequality Ai
Ai+1

≤ (1+εb)
m

(1−εb)m
cannot be inverted

by applying the steps of HBAC. Therefore, if we start with a totally mixed state (which holds the
last inequality mentioned), the steady state should have elements which hold

A∞i (1− εb)m = A∞i+1(1 + εb)
m. (5.29)

Then, the analytical solution of the steady state of the computational qubits will be

diag (ρ∞com) = A∞1



1

Qm

Q2m

.

.

.

Q(2d−1)m


. (5.30)

Similarly, the maximum achievable polarization using m reset qubits will be

ε∞1l =
(1 + εb)

md − (1− εb)md

(1 + εb)
md + (1− εb)md

. (5.31)

Note that a similar polarization would be obtained if we start with a different initial state
but which obeys eq.(5.8). Numerical simulation indicate that this could also happens with some
initial states not obeying eq.(5.8). Finally, we can give explicit examples of initial states that lead
to an asymptotic polarization higher than eq.(5.31).

5.1.3 Temperature in the cooling limit

The state of the heat-bath in thermal equilibrium, temperature Tb, is given by

ρb =
1

e∆Eb/2kTb + e−∆Eb/2kTb

(
e∆Eb/2kTb 0

0 e−∆Eb/2kTb

)
, where ∆Eb is the energy gap be-

tween the two energy levels of a qubit from the bath.

Then, the heat-bath polarization corresponds to εb = tanh
(

∆Eb

2kTb

)
, or equivalently,

∆Eb
2kTb

=
1

2
log

[
1 + εb
1− εb

]
. (5.32)
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Similarly for the target qubit in the steady state at temperature Tsteady, we will have
∆Et

2kTsteady
=

1

2
log

[
1 + ε∞1l
1− ε∞1l

]
, where ∆Et is the energy gap of the two energy levels of the target qubit. From

this and eq.(5.31), we can obtain the temperature in the cooling limit,

Tsteady =

(
1

md

)
Tb

(
∆Et
∆Eb

)
, (5.33)

d = 2n
′ when the scratch qudit is a string of n′ qubits (n′ + 1 computational qubits).

The PPA-HBAC method is in line with the third law of thermodynamics, which says that “it
is impossible by any procedure, no matter how idealized, to reduce any assembly to absolute zero
temperature in a finite number of operations” [40, 41]. Indeed, the evolution of the state of the
system goes asymptotically to a steady state, which has non zero temperature for a finite number
of qubits. The limit when the temperature is exactly zero corresponds to the case of having an
infinite number of qubits. Since the number of gates needed grows with the number of qubits,
the operations required to achieve temperature zero will be infinite.

Although the algorithm keeps cooling the target qubit at each time, it does so with a smaller
and smaller amount of entropy extracted, asymptotically reaching the steady state of non-zero
temperature. This is in agreement with the third law of thermodynamics.

5.1.4 Polarization of different computational qubits

Consider the case of having a string of n′ qubits as scratch qubit. Let’s label the qubits from right
to left, as it is shown in Fig. 1 in the paper.

We can obtain the polarization of each qubit from the steady state (5.24). We already showed
how to get the polarization of the target qubit. If we trace out the target qubit from the computa-
tional qubits, we can repeat the same calculations to get the polarization of the neighbor qubit in
the string (which is labeled as qubit n′) since this qubit will be now the first from the left.

The state of the computational qubits without the target qubit is

diag(ρ∞t̄arget) = Trtarget(ρ
∞
com) =



A∞1 + A∞d+1

A∞2 + A∞d+2

.

.

.

A∞d + A∞2d


. (5.34)
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Let Bi be the ith element of the diag(ρ∞t̄arget), i.e. Bi = A∞i + A∞d+i. From eq. (5.23),
Bi = A∞1 Q

i−1 + A∞1 Q
d+i−1 = A∞1 (1 + Qd)Qi−1. Thus, Bi = kQi−1, where k = A∞1 (1 + Qd).

Comparing Bi with eq(5.23), we see that this state has the same form of the state eq. (5.24), but
with Hilbert space dimension d/2. Thus, the asymptotic polarization of the n′th qubit is

ε(n
′)

max =
(1 + εb)

md/2 − (1− εb)md/2

(1 + εb)
md/2 + (1− εb)md/2

(5.35)

where d = 2n
′ .

Similarly, we can get the polarization of the (n′−1)th qubit, and so on. Then, the polarization
of the jth qubit will be

ε(j)max =
(1 + εb)

m2j−1

− (1− εb)m2j−1

(1 + εb)
m2j−1

+ (1− εb)m2j−1 . (5.36)

5.2 Number of steps needed to get ε = ε∞1l − δ

5.2.1 Analytical result for a string of three qubits (m=1, d=2).

The quantum circuit required to perform the PPA-HBAC on three qubits initially in the total
mixed state is showed in Fig.3.8. This circuit shows the operations required for the first five
iterations (each iteration consists of a refresh step and an entropy compression step). Subsequent
iterations gates are the alternate repetition of the second and third iterations gates in Fig.3.8. The
application of those two iterations will be referred as a 3qubit-round.

In order to know the effect of one 3qubit-round on the system, consider the state of the
computational qubits at a given moment,

diag(ρtcom) =


At1
At2
At3
At4

 , (5.37)

and the total system as ρt = ρtcom ⊗ ρεb . The polarization of the target qubit, εt, can be obtained

from its reduced density matrix, diag(ρttarget) =

[
At1 + At2
At3 + At4

]
= 1

2

[
1 + εt

1− εt

]

=⇒ εt = 2(At1 + At2)− 1. (5.38)
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In the first iteration of the 3qubit-round, the compression gate swaps the scratch qubit and the
reset qubit. This swap can be performed by applying the unitary matrix shown in Fig.3.1.1, thus

diag(ρt) =
1

2



At1 (1 + εb)

At1 (1− εb)
At2 (1 + εb)

At2 (1− εb)
At3 (1 + εb)

At3 (1− εb)
At4 (1 + εb)

At4 (1− εb)


=⇒ 1

2



At1 (1 + εb)

At2 (1 + εb)

At1 (1− εb)
At2 (1− εb)
At3 (1 + εb)

At4 (1 + εb)

At3 (1− εb)
At4 (1− εb)


. (5.39)

Then, the density matrix of the computational qubits after the first iteration of the 3qubit-
round is

diag(ρt+1
com) =

1

2


(At1 + At2) (1 + εb)

(At1 + At2) (1− εb)
(At3 + At4) (1 + εb)

(At3 + At4) (1− εb)

 . (5.40)

In the second iteration of the 3qubit-round, the compression step is performed by applying
the unitary matrix shown in Fig.3.6. In this step we obtain ρt+2,

diag(ρt+2) =
1

4



(At1 + At2) (1 + εb)
2

(At1 + At2) (1 + εb) (1− εb)
(At1 + At2) (1− εb) (1 + εb)

(At3 + At4) (1 + εb)
2

(At1 + At2) (1− εb)2

(At3 + At4) (1 + εb) (1− εb)
(At3 + At4) (1− εb) (1 + εb)

(At3 + At4) (1− εb)2


. (5.41)

From this state, with the normalization property of the density matrix and (5.38), we can
obtain the new polarization of the target qubit,

εt+2 = 2abεt + εb, (5.42)

where a = 1+εb
2

and b = 1−εb
2

.
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Let t = 0 (just after the iteration 0 which swaps the target qubit and the reset qubit, Fig.3.8),
then the polarization of the target qubit at that moment will be ε0 = εb. From eq.(5.42), we can
get the exact polarization after each 3qubit-round, i.e. every two iterations,

εt=2j =
2εb

1 + ε2b
− qj

(
2εb

1 + ε2b
− ε0

)
, (5.43)

where q =
1−ε2b

2
. From (5.31), the asymptotic polarization for this case is ε∞1l = 2εb

1+ε2b
, thus

eq.(5.43) can be written as
εt=2j = ε∞1l − qj (ε∞1l − εb) . (5.44)

Since q < 1, εt → ε∞1l when we increase j.

We can use (5.44) to know the number of rounds t needed to achieve polarization ε∞1l − δ.
From Eq. (5.44), we have δ = qj (ε∞1l − εb), then the number of rounds required will be

N(δ, εb) := t = 2
log
(

δ
ε∞1l −εb

)
logq

, (5.45)

to get polarization

εδ(εb, δ) := ε∞1l − δ =
2εb

1 + ε2b
− δ. (5.46)

5.2.2 Numerical results

Let δrel =
ε∞1l −ε
ε∞1l

= δ/ε∞1l . Fig.5.1 shows simulations of the number of refresh steps needed to
achieve a polarization ε = ε∞1l (1− δrel) as function of δrel for different values of d. The exact
solution of number of steps needed for the 3 qubit case is consistent with the results from the
simulations.

Figure 5.1: Number of iterations needed to achieve polarization ε = ε∞1l − δ as a function of
δ/ε∞1l , for d=2, 3, 4, 5, and 6.

5.2.3 Upper bound of the number of steps to get a certain polarization,
for n qubits

Consider a string of n′ + 1 computational qubits, numbered as in Fig. 1 in the paper, and one
reset qubit, all starting in totally mixed state. Applying the compression for three qubits, using the
reset qubit and qubit 1 to cool qubit 2, we can increase the polarization of qubit 2 to ε1 = εδ(εb, δ)

in N1 = N(δ, εb) steps, from (5.45) and (5.46).
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After this preparation of qubit 2, we can swap it with qubit 3, and then prepare again qubit 2.
We can apply again the compression for three qubits, but now using qubits 2 and 3 to cool qubit
4. In this case, we will need N2 = N(δ, ε1) ·N1 number of steps to get polarization ε2 = εδ(ε1, δ)

on qubit 4.

We can iterate this idea to use qubit 4 and qubit 5 to cool qubit 6, getting that we need
N3 = N(δ, ε2) ·N2 number of steps to achieve polarization ε3 = εδ(ε2, δ), and so on.

Since this is not the optimal compression (in terms of entropy extraction, under the assump-
tion that the refresh step re-thermalizes the reset qubits to the heat-bath temperature), this num-
ber of iterations gives an upper bound of the optimal number given by PPA. The upper bound

is Nupper−bound =

k=[n′/2]∏
k=1

N(δ, εk), to achieve polarization ε < εmax on the target qubit, where

εmax = ε∞1l = (1+εb)
d/2−(1−εb)d/2

(1+εb)
d/2+(1−εb)d/2

, and ε = εδ(εh−1, δ) with ε0 = εb, and h = [n′/2] (the integer
part of n′/2).
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Chapter 6

State-reset as refresh step

There are different ways to couple the quantum system with a heat-bath to remove entropy,
which can be used in the refresh step of HBAC. In particular, in the PPA method, the refresh step
re-thermalizes the reset qubits to the heat-bath temperature, which is equivalent to swap these
qubits with qubits from the bath. Under this kind of refreshing procedure, it has been proved
that the PPA gives the optimal physical cooling in terms of entropy extraction [5, 6]. However,
we found that there could be other kind of couplings that might give a better polarization than
the one obtained by the PPA. In this chapter, we presented an example of one type of coupling
which can surpass the PPA for the two qubit case. The content of this chapter was presented as
a comment on the paper [39], where the authors claimed to have established “the fundamental
limit of cooling for all HBAC techniques” (italics are ours). We show that this claim is incorrect
by giving a counterexample.

For two qubits (one target qubit, which is going to be cooled, and one reset qubit), starting
in the totally mixed state, the PPA gives a steady state with the qubits at the temperature of
the bath and no polarization gain (above the one from the bath) is observed. The first refresh
step polarizes the reset qubit, then the first PPA entropy compression transfers that polarization
to the target qubit. The reset qubit is then in a fully mixed state and can be re-polarized by
a thermal contact with the heat-bath. It turns out that after these steps, the diagonal terms are
already ordered with non-increasing probability (SORT), such that the PPA does not increase the
polarization anymore. We thus end up with two qubits in a thermal state, the same as the bath.

In a recent paper[42], Jun Li and collaborators studied the efficiency of Liouville space polar-
ization transfer in the presence of a bath and showed cases/experiments where utilizing relaxation
effects does offer an enhancement. In looking at the maximum polarization (or purity), they (re)-
discovered that it is possible to enhance the polarization of one of two qubits beyond the bath
polarization in presence of relaxation and cross relaxation of the quantum system.
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6.1 Nuclear Overhauser Effect

It is possible to enhance the polarization of one spin (qubit) at the expense of a second spin
(qubit) when their coupling to the bath leads to cross relaxation. This effect was discovered by
Overhauser in 1953 [43] and has been observed many times experimentally.

6.1.1 NOE for two qubits

In the limit of low polarization, the expectation of the Z Pauli operator S1
Z (〈S1

z 〉), obeys the
equation (see [44]):

d〈S1
z 〉

dt
= −ρ1(〈S1

z 〉 − 〈S1
z 〉0)− σ(〈S2

z 〉 − 〈S2
z 〉0), (6.1)

where 〈Siz〉0 is the expectation of Siz at equilibrium when the other spin is not driven (not rotated),
ρ1 is the relaxation parameter for the first spin, and σ is the cross relaxation parameter.

It is possible to drive (rotate) the second spin so that on the relevant timescale (related to ρ2

and σ) the expectation of 〈S2
z 〉 ≈ 0. Then the steady state of eq.(6.1) implies that

〈S1
z 〉 = 〈S1

z 〉0 +
σ

ρ1

〈S2
z 〉0. (6.2)

Note that 〈S1
z 〉 corresponds to the polarization of the first qubit, this gives an enhancement com-

pared to what the PPA gives, as long as σ/ρ1 is positive (which happens in nature). One way to
understand the process from an algorithmic point of view is to realize that the cross relaxation
effectively provides a state relaxation/equilibration (“state reset”) between |11〉 and |00〉, with-
out touching the other states, analogous to the qubit reset. This form of reset accompanied by
a rotation of the second qubit can however boost the polarization of the first qubit beyond what
would be obtained by a qubit reset from the bath as in the PPA.

Thus the PPA, at least for two qubits, gives only a lower bound on maximum polarization
achievable for HBAC. It is possible to generalize this idea to enhance the polarization of three
qubits beyond the PPA, and the details will be provided in a forthcoming paper.

We have presented a Heat-Bath Algorithmic Cooling technique that can have a better polar-
ization enhancement than the one obtained by the PPA. As mentioned our paper [1], the polar-
ization achieved using the PPA should instead be interpreted as a lower bound on the maximum
amount of polarization that can be achieved. Its importance is due to the simplicity of the PPA
when the initial state is totally mixed or in an equilibrium thermal state. In this case, it is possible
to get analytical results that describes both the steady state and its polarization from which we
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can determine a variety of properties, e.g. to know how far it is from polarization of one and
explicitly show how much resources are needed. It will be interesting to see if we can generalise
the Overhauser effect and to know what advantages it can give as we increase the number of
qubits.
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Chapter 7

Conclusion

HBAC is a process to purify a number of qubits by removing entropy from them through entropy
compression and cooling, using extra qubits and contact with a bath. We analyzed the cooling
limits of HBAC using the PPA method, which gives the optimal physical cooling in terms of
entropy extraction, under the assumption that the refresh step re-thermalizes the reset qubits with
the heat-bath [5, 6].

We presented the physical conditions for the cooling limit, and from this, we derived the
analytic steady state corresponding to a string of qubits at the cooling limit for the case when the
initial state is totally mixed. The string of qubits consists of one qubit with a number of ancilla
qubits (or a spin-l) and m reset qubits that can be put into contact with a bath with polarization
εb.

We obtained the analytic expression for the maximum polarization achievable starting with
a maximally mixed state, and its corresponding temperature. Furthermore, this amount of polar-
ization can be achieved for other different initial states, as long as they obey the initial conditions
given by eq.(4.5). This result is of fundamental importance not only from the quantum thermo-
dynamics point of view, but it also provides valuable information for experimental applications.
Since it is always possible to efficiently randomized a state, we can think of this asymptotic
polarization as a general achievable bound of polarization.

Our exact expression for the achievable polarization improves the Schulman’s theorem of
the physical limits [5, 6], in which only an polarization upper bound was provided. From our
analysis we can also understand the transition of behavior of the asymptotic polarization at 1/md,
observed by Moussa [20] and Schulman et al. [5]. Below this value, ε∞1l ∼ mdεb, and above it
will reach order unity double exponentially with the number of scratch qubits.

Moreover, we obtained the number of steps required to reach a specific required polarization.
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We got the exact number for the three-qubit case and an upper bound for a general number
of qubits n. This numbers are important in order to understand the usefulness of HBAC in
experimental implementations.

Finally, we presented another way to refresh the system with different form of interaction
with the bath using the NOE effect. This method can improve the polarization obtained by the
PPA. We are currently investigating its corresponding maximum polarization. 1

1This thesis is based on a paper accepted at Physical Review Letters on May 14 2015; it was also presented at
the Institute for Quantum Computing on March 27 2014, and at the he 14th Annual Canadian Summer School on
Quantum Information held at the University of Guelph (June 16-20, 2014). After these presentation we learned of
the paper arXiv:1407.3232 who presented formula (5.31) for the case of m = 1 and d = 2n

′
.
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