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Abstract

Many defect prediction techniques are proposed to improve software reliability. Change
classification predicts defects at the change level, where a change is a collection of the
modifications to one file in a commit. In this thesis, we conduct the first study of applying
change classification in practice and share the lessons we learned.

We identify two issues in the prediction process, both of which contribute to the low
prediction performance. First, the data are imbalanced—there are much fewer buggy
changes than clean changes. Second, the commonly used cross-validation approach is
inappropriate for evaluating the performance of change classification. To address these
challenges, we apply and adapt online change classification to evaluate the prediction and
use resampling, updatable classification techniques as well as remove the testing-related
changes to improve the classification performance.

We perform the improved change classification techniques on one proprietary and six
open source projects. Our results show that resampling and updatable classification tech-
niques improve the precision of change classification by 12.2–89.5% or 6.4–34.8 percentage
points (pp.) on the seven projects. Additionally, removing testing-related changes improves
F1 by 62.2–3411.1% or 19.4–61.4 pp. on the six open source projects with a comparable
value of precision achieved.

Furthermore, we integrate change classification in the development process of the pro-
prietary project. We have learned the following lessons: 1 ) new solutions are needed to
convince developers to use and believe prediction results, and prediction results need to be
actionable, 2 ) new and improved classification algorithms are needed to explain the pre-
diction results, and insensible and unactionable explanations need to be filtered or refined,
and 3 ) new techniques are needed to improve the relatively low precision.
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Chapter 1

Introduction

Software bugs exist all along the process of software development and may cause severe
consequences. There are many ways to find bugs, such as code review, static or dynamic
analysis, etc. Software defect prediction is also one of these techniques. It leverages
information such as code complexity, code authors and software development history to
predict code areas that potentially contain defects [5, 18, 21, 23, 31, 37, 39, 40, 64–66]. Code
areas that contain defects are also referred to as buggy code areas. Defect prediction
techniques typically predict defects in a component [9, 18, 40, 41], a file [5, 33, 37, 39], a
method [17], or a change [21,31,32,47]. A change is the committed code in a single file [31].
Following the prior work [31], we refer to change level prediction as change classification.

Compared to file level prediction, the application of change level prediction has its
benefits and challenges. Change classification [26, 31, 32, 47] can predict whether a change
is buggy at the time of the commit, allowing developers to act on the prediction results
as soon as a commit is made. In addition, since a change is typically smaller than a file,
developers have much less code to examine in order to identify defects. However, for the
same reason, it is more difficult to predict on changes accurately.

A recent study [35] reports the experience and lessons learned of predicting buggy
files at Google. To the best of our knowledge, there are no published case studies of the
application of change classification on a proprietary code base in industry. In this thesis,
we apply change classification on a proprietary code base at Cisco and share the experience
and lessons learned.

Achieving high prediction precision is important for the adoption of change classification
in practice. If a developer finds that many predicted buggy changes contain no real bugs,
i.e., the changes are clean, developers are likely to consider this tool as useless and thus
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ignore all prediction results. We apply change classification techniques [26] on one of
Cisco’s code bases and adapt them for integration in practice. We find that the precision
is only 18.5%, which is significantly lower than the reported precisions on open source
projects [26,31]. We have identified the following main reasons.

Irrespective of proprietary or open source, the data sets are imbalanced. In other words,
there are much more clean changes than buggy changes. The six evaluated open source
projects, Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene, and Jackrabbit, have buggy
rates of 14.7–37.4%; and the buggy rate of the proprietary project is below 14% (Table 4.2
in Chapter 4). Classifying imbalanced data is an open challenge in the machine learning
community [13, 45, 56]. Thus, solutions to address the imbalanced data challenge should
improve the performance, e.g., precision and recall (Section 4.1), of change classification
on both proprietary and open source projects.

K-fold cross-validation is commonly used to evaluate software defect prediction [5,18,26,
31,32,66]. Specifically, k-fold cross-validation randomly divides a data set into k partitions
(k > 1) and uses (k − 1) partitions to train the prediction model and the remaining 1
partition as the test set to evaluate the model.

However, cross-validation is inappropriate for estimating the performance of change
classification because the data points, i.e., changes, follow a certain order in time. Ran-
domly partitioning the data set may cause a model to use future knowledge that should
not be known at the time of prediction to predict changes in the past. For example, cross-
validation may use information regarding a change committed in 2014 to predict whether
a change committed in 2012 is buggy or clean. This scenario would not be a real case
in practice, because at the time of prediction, which is typically soon after the change is
committed in 2012 for earlier detection of bugs, the change committed in 2014 is nonexis-
tent yet. Using cross-validation could also cause the data to be labeled ahead by currently
unknown data. Section 2.2 provides the details of these problems.

In practice, we need a new approach to correctly reflect the real prediction scenario.
In other words, at time t when a change c is committed, the information used to classify c
or any change before c should be information known until time t only. We call this model
as time sensitive change classification. To test the impact of cross-validation, we applied
both 10-fold cross-validation and time sensitive change classification on seven projects (one
proprietary and six open source). We found that the precision of time sensitive change
classification is only 18.5–59.9%, while the precision of cross-validation is 55.5–72.0% for
the same data (details in Chapter 4). The results suggest that cross-validation presents a
false impression of higher precisions of change classification techniques.

In summary, this thesis makes the following contributions:
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• We apply and adapt time sensitive change classification and online change classi-
fication, both addressing the existing improper setup of change classification with
cross-validation.

• We leverage resampling techniques to address the imbalanced data challenge, apply
updatable classification algorithms, and remove testing-related changes to improve
classification performance as well. These techniques have improved the precision of
time sensitive change classification by 12.2–89.5% or 6.4–34.8 percentage points (pp.)
on the one proprietary project and six open source projects. If a technique improves
the precision from a to b, the technique improves the precision by ((b − a)/a)% or
(b− a) pp. Removing testing-related changes improves F1 by 62.2–3411.1% or 19.4–
61.4 pp. on the six open source projects while achieving a comparable precision.

• We conduct the first case study of integrating change classification in the development
process of the proprietary project. In addition to the prediction results (whether
a change is buggy or not), we generate and improve explanations from prediction
models and present them to Cisco developers. Explanations were lacking in previous
studies [35, 44], which makes it hard for developers to act on the prediction [35].

We conduct a qualitative study for the effectiveness of change classification by indus-
trial integration and a quantitative study for the accuracy and helpfulness of explanations
generated. Through the studies, we have learned three main lessons: 1) since change
classification is relatively new to developers, we need new solutions to convince developers
to use and believe prediction results and make prediction results actionable; 2) new and
improved classification algorithms for explaining the prediction results are needed, and
insensible and unactionable explanations need to be filtered or refined; and 3) even with
the improved approaches, the prediction precision is still relatively low, suggesting that
new techniques are needed to improve the precision.

The thesis is organized as follows: Chapter 2 introduces the background of software
defect prediction, the problem of existing change classification experimental setup, and the
related work. Chapter 3 describes our approaches to address the issues and to improve
the performance. The results and discussions are in Chapter 4. Chapter 5 concludes the
thesis.
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Chapter 2

Background

This chapter provides the background and related work of online change classification.
Section 2.1 illustrates the process of software defect prediction. Then Section 2.2 demon-
strates the problem of using cross-validation for evaluating change classification in practice.
Section 2.3 explains the existing research work in software defect prediction.

2.1 Software Change Classification

Online change classification has the same process as general defect prediction. Figure 2.1
shows the process of change classification [26, 31], which consists of the following steps:
1) labeling each change as buggy or clean to indicate whether the change contains bugs;
2) extracting the features to represent the changes; 3) using the features and labels to
construct a prediction model; 4) extracting the features for new changes and applying the
model to predict their labels. In this section, we first describe the labeling process of the
changes following previous work [12,26,52] and then the features that are used to represent
the software changes for prediction are introduced.

2.1.1 Labeling Buggy and Clean Changes

The labeling process uses data from the Version Control Systems (VCS) and Bug Tracking
Systems (BTS). We follow the same approach used in previous work [12, 26, 52]. A line
that is deleted or changed by a bug-fixing change is a faulty line, i.e., a bug. A bug-fixing
change is a change that fixes bugs. The most recent change that introduced the faulty line
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Figure 2.1: Process of Change Classification. A check mark annotates a clean change, and
a cross mark annotates a buggy change.

is considered a buggy change. If a project’s BTS is not well maintained and linked, we
consider changes whose commit messages contain the word “fix” bug-fixing changes. If a
project’s BTS is well maintained and linked, we consider changes whose commit messages
contain a bug report ID bug-fixing changes. Manually verified bug reports are available
for Lucene and Jackrabbit [24], which are used in our study for extracting more accurate
bug-fixing changes. The blaming or annotating feature of the VCS is used to find the most
recent changes that modified the faulty line, which are the buggy changes. We consider
the remaining changes as clean changes.

2.1.2 Extracting Features

Features are statistical information used to represent the changes for prediction. The types
of features used in this thesis are the same as in previous work [26]: metadata, bag-of-words,
and characteristic vectors.

Metadata Metadata describes the changes at an abstract level. It includes change size,
file age, the author of a change, etc. We use all the meta-features from previous work [26],
e.g., commit time and full path. In addition, we add the following features: the added line
count per change, the deleted line count per change, the changed line count per change,
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the added chunk count per change, the deleted chunk count per change, and the changed
chunk count per change. These added features aim to strengthen the existing statistical
part of the prediction model.

Bag-of-words Bag-of-words is a commonly used feature in the machine learning com-
munity [34, 51]. The bag-of-words feature has several forms of representation. In this
thesis, we use it as a vector of the count of occurrences of each word in the text. We use
the snowBall stemmer [46] to group words of the same root and Weka [20] to obtain the
bag-of-words features from both the commit messages and the source code.

Characteristic Vectors Abstract Syntax Tree (AST) is a tree based representation for
a program’s abstract syntactic structure. The feature of characteristic vectors counts the
number of the node type in the AST representation of code. Deckard [25] is used to obtain
the characteristic vector features. It first extracts the AST for each function, then uses
post-order traversal to count all the nodes, finally we add the values of each node for all
the functions in this file together.

Two characteristic vectors are generated: one is for the file before the change, the other
is for the file after the change. We obtain a change characteristic vector by subtracting
the characteristic vector before the change from the characteristic vector after the change.
The change characteristic vector and the characteristic vector after the change are used as
our features.

2.2 False High Precisions from Cross-Validation

Cross-validation is a commonly used method to evaluate the prediction models [5, 18, 26,
29, 31, 32]. The process of 10-fold cross-validation is to 1) separate the dataset into 10
partitions randomly; 2) use 1 partition as the test set and the other 9 partitions as the
training set; 3) repeat step 2) with a different partition as the test set until all the data
have a predicted label; 4) compute the evaluation results through comparison between the
predicted labels and the actual labels of the data. This process reduces the bias in the
error estimation of classification.

Using cross-validation to evaluate change classification has two problems (Figure 2.2).
Changes C1–C10 are committed chronologically, where C1 is the oldest and C10 is the
most recent. Dots denote buggy changes, and circles denote clean changes. An arrow links
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Figure 2.2: Illustrating Problems of Using Cross-Validation to Evaluate Change Classifi-
cation. Dots are buggy changes, while circles are clean changes.

a buggy change and the corresponding change that fixes the buggy change. For example,
C4 fixes the bug(s) in C3; therefore, C3 is a buggy change.

First, cross-validation will use future data for prediction. In this example, 10-fold cross-
validation will make each change the test set in each iteration. For example, it will use
C2–C10 to predict whether C1 is buggy or not, which does not match a real-world usage
scenario where we typically want to make the prediction at the time when C1 is committed
and by then C2–C10 are not available yet.

Second, cross-validation labels changes improperly. Using cross-validation, the labels
of changes from previous work [26, 31, 32] will be as shown in Figure 2.2. For example,
C5 will be labeled buggy. However, in practice, when we predict whether C6 is buggy, we
would only have information at time tpredict. Therefore, C5 should be clean at time tpredict
because C7 was nonexistent at that time. It is not appropriate to consider C5 buggy when
we predict the label of C6 at time tpredict, because we would not know that C5 is buggy at
time tpredict.

Due to these issues, it is unclear whether precisions obtained from cross-validation are
accurate estimates of precisions of defect prediction in practice. Our experiments show
that cross-validation provides misleadingly high precision (Section 3.1).

2.3 Related Work

Researchers have contributed many work in software defect prediction and change classifi-
cation. This section first discusses the time sensitive concept brought into software defect
prediction at different levels. After that, the features and classifiers used by other research
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work are discussed. Other techniques to address the imbalanced data issue are presented
next. Since we are the first one to apply change classification in practice, we also discuss
other work about integrating defect prediction in industry in the end of this section.

Time Sensitive Concept Time sensitive and online machine learning [36] has been
used to predict the evolution size of software [23]. Previous work [44] uses models built
from previous software releases to predict on later releases. BugCache [33] uses the online
concept to build a cache for predicting software defects. These work predict bugs at file
level whereas this thesis applies with the online machine learning concept to build models
to predict buggy changes. In addition, Shuo Wang et al. propose an online imbalance
framework [61] first and apply it on software bug detection [60]. Note that the online
learning in their work means the continuous learning process, while in this thesis online
change classification is short for balanced online time sensitive change classification, which
is an improved version of time sensitive change classification(Chapter 3.

Features In this thesis, software programs are represented by three types of features,
bag-of-words, metadata and characteristic vectors. Paper [49] categorizes the represen-
tatives of the software into three types: the structural information of the software [26],
the modifications made to the software [18, 26, 33], and the development information [26],
e.g., dependencies, code churn, repositories etc. The three types of features cover all the
three categories. There are still other work using different features. For example, Andrew
Meneely et al. use the relationship between developers and files, i.e., developer network,
to predict program failures [39]. Using more advanced and explainable features remain our
future work.

Classifiers Software defect prediction uses a variety of machine learning algorithms, such
as code base ensemble learning [54], Naive Bayes [26], compressed C4.5 [58], ADTree [26],
neural network [2], cost-sensitive boosting neural network [63], dictionary learning [27].
Another paper [37] also uses “change classification” as their eclipse plugin tool’s name.
They use Support Vector Machine (SVM) as the classification algorithm to conduct file-
level defect prediction when new modifications are made to the software. We use the
same term “change classification” but as a different meaning. This thesis applies ADTree,
resampling, and updatable classification techniques to address the specific challenges of
applying change classification in practice.
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Imbalanced Data As mentioned in Chapter 1, addressing imbalanced data issue is
an open challenge. Many techniques are proposed, i.e., oversampling [57], undersam-
pling [62], SMOTE [6], SMOTEBoost [7], negative correlation learning [59], cost-sensitive
learning [63], data cleansing [19], and coding based ensemble learning [54]. We apply four
of the resampling techniques to address the data imbalance issue. More novel resampling
techniques remain the future work. Although previous work have applied resampling in
software defect prediction at other level [7,45,57,62], to the best of our knowledge, we are
the first to apply resampling and updatable classification techniques to change classifica-
tion.

General Defect Prediction in Industry Several studies examine how well file-level
defect prediction performs in practice and what developer-desired characteristics for pre-
diction tools are [35, 43, 44, 50]. In a short paper [4], Weyuker, Ostrand, and Bell reflect
on how to measure the impact of file level prediction in practice and suggest possible ap-
proaches. This thesis applies change classification instead of file classification in practice.
In addition, we provide developers explanations of the prediction results, which was lacking
in these studies.
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Chapter 3

Proposed Models and Applied
Techniques for Change Classification

This chapter contains the information of our approaches to address the incorrect setup
of existing change classification techniques and the imbalanced data issue. It describes
time sensitive change classification (Section 3.1), followed by its improved version—online
change classification (Section 3.2). Section 3.3 and 3.4 present two approaches to improve
the performance of online change classification. Section 3.5 shows the approach to mitigate
the negative impact brought by testing-related changes. The final section (Section 3.6)
introduces the process of our case study for integrating change classification in practice.

3.1 Time Sensitive Change Classification

Time sensitive change classification uses information, known at time t only, to classify
change c that is committed at t. For example, in Figure 2.2, time sensitive change classifi-
cation predicts at time tpredict for the change C6, i.e., the test set. The changes committed
before C6 are the training set, i.e., C1-C5, which is used to build models.

However, this method has three limitations. First, in practice, we prefer to predict
as soon as changes are committed so that we can examine them to identify bugs earlier.
Therefore, the time period of the test set is often short, e.g., a few days or months. However,
bugs typically take years to be discovered and fixed [8,11,30]. Therefore, at the prediction
time tpredict, many buggy changes in the training set, especially the changes committed
close to time tpredict, would not have been found and fixed yet. Therefore, many of these
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Figure 3.1: Online Change Classification.

changes in the training set, e.g., C5, will be labeled clean, indicating that the buggy
rate in the training set, i.e., 1/5, will be lower than the typical buggy rate, i.e., 2/5, of
a project. With fewer buggy changes, the classification algorithm may fail to learn an
accurate model for the test set. In addition, the “mislabelled” clean changes become the
noise data, meaning they carry the characters for buggy changes but are labeled as clean.
This situation increases the noise rate for the training set, which makes it difficult for the
prediction model to have a good performance.

Second, the performance of time sensitive change classification depends on the particu-
lar training set. For example, if we pick a time period that is right before a release deadline
for evaluation, the changes from this time period may not be representative of the changes
from other periods of time. Thus, the prediction performance of this time period may not
be representative of the performance of the following normal time period.

Third, if the changes in the test set are committed over a long period of time, many
development characteristics, such as the development tasks, the developer experience, and
the programming styles, may be different from those of the training set. Therefore, the
training set may be too old to build accurate prediction models for the test set.

3.2 Online Change Classification

Considering the three challenges, we developed a new approach, Balanced Online Time
Sensitive Change Classification, online change classification in short. Online change clas-
sification is an improved version of time sensitive change classification.

To address the first challenge, we make the training set more balanced in time sensitive
models. Specifically, we leave a gap between the training set and the test set (Figure 3.1),
which allows more time for buggy changes in the training set to be discovered and fixed. For
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example, the time period between time T2 and time T4 is a gap. This way, the training
set will be more balanced, i.e., the training set will have a higher buggy rate which is
consistent with the buggy rate in the test set. A reasonable setup is to make the sum of
the gap and the test set, e.g., the duration from time T2 to T5, close to typical bug-fixing
time—the time from a bug is introduced until it is fixed. Our results show that using a
gap of 0.2 year yields an average 14.4 pp. improvement on precision for Jackrabbit and
15.5 pp. for PostgreSQL with 1.0 year’s gap.

To address the second and third challenges, we make change classification online, which
applies multiple runs of time sensitive change classification. In this way, online change clas-
sification performs prediction on multiple test sets to minimize the bias from a particular
test set. Correspondingly, the training set is continuously updated with new data when
starting a new prediction. For each run, we add to the training set in the previous run
the data immediately following the training set. The performance is the weighted average
performance of these runs. Since the training set is constantly updated, the training set
is more likely to have similar characteristics as the test set for constructing more accurate
models.

Figure 3.1 illustrates the process of online change classification. Two runs are illus-
trated. The second run combines the training set in the first run and the data from time
T2 and T3 (i.e., changes from T1 to T3) to form the training set for the second run. In this
thesis, for simplicity, the duration from T2 to T3 (the time period to update the training
set) is the same as the duration from T4 to T5, which is the duration of each test set.
However, this duration can be other values for generality. The gap for the second run is
T3 to T5. More recent changes (between T5 and T6) form the test set for the second run.
The new prediction time is T6; thus, changes in the new training set will be labeled using
information available at time T6.

3.3 Resampling

As discussed in Chapter 1, data for change classification are typically imbalanced, i.e., the
buggy changes are much fewer than the clean changes. The clean changes are referred to
as the majority class and the buggy changes are called the minority class. For software
with a lower buggy rate, it is harder for classification algorithms to learn the patterns of
the buggy changes.

We apply two established approaches to improve the prediction performance on im-
balanced data—resampling techniques [6] and updatable classification techniques [1, 3, 10,
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16, 28, 38, 48]. This section describes resampling techniques; and Section 3.4 describes the
updatable classification techniques.

Resampling is an effective way to mitigate the effects of imbalanced data in change
classification [45, 62]. Different algorithms are used to change the distribution between
the majority class and the minority class. Two main categories of resampling techniques
are oversampling and undersampling. Oversampling creates more buggy changes; whereas
undersampling eliminates clean changes.

We use four types of resampling techniques to predict for the imbalanced data: sim-
ple duplicate, SMOTE, spread subsample, and resampling with/without replacement [20].
Simple duplicate and SMOTE are oversampling techniques, while spread subsample is an
undersampling technique. Resampling with/without replacement can achieve both. We
tune the parameters as illustrated in Section 4.1 and reserve the parameters that contribute
to the highest precision.

Simple Duplicate randomly copies instances in the minority class to make the two
classes have the same number of instances. Due to the randomness, we run this method
five times and calculate the average performance.

SMOTE first selects instances from the minority class and finds k nearest neighbors for
each instance, where k is a given number. It then creates new instances using the selected
instances and their neighbors.

Spread Subsample eliminates instances in the majority class until the ratio of majority
instances over minority instances is equal to a given ratio. Weight is a property of the
instance that reflects the level of impact this instance has on its class. Spread subsample
also updates the weight of each instance to maintain the overall weight of the two classes.

Resampling with/without Replacement randomly picks instances for either elim-
inating or duplicating until the buggy rate reaches a given value. The instances may
be used multiple times for resampling with replacement whereas for resampling without
replacement the instances are used only once.
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3.4 Updatable Classification

Updatable classification algorithms update the training set incrementally to take advantage
of the feedback from each run. Our online change classification updates the training set with
the test set but does not benefit from the feedback from the learning process. Therefore,
we apply the updatable models benefit from the feedback in each run.

We experiment with the following common updatable learning algorithms: Bayes [28],
IBK [1], KStar [10], LogitBoost [16], LWL [3,14], NNge [38], and SPegasos [48]. We select
these algorithms them because they are based on various basic types of machine learning
algorithms, including Naive Bayes, instance-based learning, SVM, and boosting.

Bayes and LWL are based on Naive Bayes—probability learning techniques. IBK,
KStar, and NNge are generally based on instance learning: they find the nearest neighbors
for each instance, and all the instances are stored in the learning space in the first place.
SPegasos is the algorithm that reflects the learning space into a high-dimensional space,
which belongs to SVM category. LogitBoost combines logistic regression and boosting
categories, which is a type of boosting learning—learning and correcting the prediction
model at the same time.

3.5 Non Testing-related Change Classification

For the evaluated projects, the source code files contain testing code—the code that sets
up and executes test cases—as well. While it is important to find bugs in testing code,
developers often want to focus on predicting bugs in non-testing code, because testing code
is often not shipped with software releases, thus not affecting customers.

In addition, we find that testing code is often modified due to functionality changes
instead of bug fixes. Thus, if we label the testing-related changes as buggy, these reported
buggy changes may be noises and could negatively affect the performance of change classi-
fication. Therefore, mitigating the negative impact from these testing-related changes is a
potential way to improve the performance of change classification. We conduct a new set
of experiments by removing all testing-related changes and applying online change clas-
sification on the obtained datasets. To identify testing-related changes, we use a simple
heuristic that searches for changes whose full path contain the word “test”. The results
are discussed in Section 4.2.
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3.6 A Case Study of Change Classification Industrial

Integration

We deploy online change classification in the software development process of the evaluated
project at Cisco. The goal is to understand how to generate and present explanations of
the prediction results to developers and how to improve the performance of online change
classification for its adoption in software development. To achieve this goal better, we
conduct a qualitative study in the case study. A quantitative one is conducted on historical
data in Section 4.2.

In addition to predicting on each change as it is committed, it is also beneficial to
predict on the changes committed in recent years since bugs typically take years to be
discovered and fixed [11,30]. The recently committed changes may be buggy but have not
been detected and fixed yet. Therefore, we apply our prediction models on the changes of
the proprietary software made in the last year.

Before a developer makes a commit, the developer sends the diffs to Review Board,
i.e., a new review request is created in Review Board. Review Board is the platform for
peer reviews before developers actually commit to the code base. The status of a review
request is open, submitted, or discarded. An open review request means the commit is not
committed to the repository yet and is still in the review stage; a submitted review request
means this request has passed the review stage and the change has been committed to
the repository; and a discarded review request is a request that has been abandoned after
code review. Discarded reviews are not in the software repository; therefore, we do not use
them in our experiments. We predict on open review requests to discover buggy changes
before their code review has been completed and predict on submitted review requests to
discover committed buggy changes.

Change classification is integrated after a developer submits a review request of a commit
to Review Board (Figure 3.2). Then our change classification tool automatically obtains
the diff file—Patches in Figure 3.2—of this commit and extracts all the features for
this commit. Next, it builds a model from this developer’s recent changes. This model
predicts labels of the changes in the commit. If a change is predicted buggy, our tool
automatically generates an explanation of why this change is predicted buggy based on
the model; then, our tool pushes the explainable results to Review Board. Review Board
notifies the developer of the results. After examining the suggestions provided by change
classification, the developer submits the feedback as whether the suggestion is taken or
rejected as well as the corresponding reason.
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Figure 3.2: The Integration of Change Classification in the Code Review Process.

To increase the possibility of a positive adoption experience, we select developers on
whose changes our tool can predict accurately. Specifically, we first build independent
models for each developer who has made at least 100 buggy changes in this project. Among
them, we select seven developers whose model(s) built by either resampling techniques
or updatable classification could achieve 100% precision on the test sets (Table 4.7 in
Chapter 4) for this case study. The test sets contain older changes that have been fixed
so that we can compare the predicted labels with the actual labels of changes to measure
precision. As a small case study, we start with 30 most recent review requests of each
selected developer. If a developer has made fewer than 30 review requests, all of the
developer’s review requests are selected for this case study. Totally we have 1674 changes
of 319 review requests for the field trial.

Since it is easier for developers to examine relatively small changes, we only reported
the changes with 50 or fewer lines, to the developers. Totally we have predicted 96 small
buggy changes of 39 review requests from the seven developers for the field trial. In our
pilot study, we create four review requests regarding 11 changes from one developer and
four reviewers.

The above process was considered intrusive in a production environment when inte-
grated with Review Board. Later we opt for a less intrusive option: emailing prediction
results to the developers who are interested in trying out change classification. We have
emailed the prediction results of 85 changes to the remaining six developers. We also have
enlisted the predictions in a file and verified their validity with a few developers in an of-
fline process. Due to the relatively small scale of the case study, we focus on discussing our
qualitative instead of quantitative results. We share the experience learned in conducting
this case study in Chapter 4.3.
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Chapter 4

Evaluation

This chapter provides the steps of setting up the experiments, tuning the parameters, and
the results from all the experiments, the lessons we learned from the case study. In the
end of this chapter, discussion of the limitations is presented.

4.1 Experimental Setup

This section first introduces the overall information of the seven projects we evaluated on.
Then the process for selecting the time parameters for online change classification and
tuning the parameters for the classification algorithms is explained. Besides, the metrics
for the evaluation of online change classification are also discussed.

4.1.1 Evaluated Projects

We evaluate the change classification techniques on one proprietary project from Cisco and
six open source projects, i.e., Linux, PostgreSQL, Xorg, Eclipse, Lucene, and Jackrabbit.
For Xorg and Eclipse, only data from a subdirectory is used, i.e., Xserver and JDT core
respectively. Table 4.1 show the overall information of these evaluated projects. The
features retrieved are from the source code files1 only.

1The files with these extensions are included: .java, .c, .cpp, .cc, .cp, .cxx, .c++, .h, .hpp, .hh, .hp,
.hxx and .h++.
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Table 4.1: Evaluated Projects.
Project Language LOC First Date Last Date # of Changes
Proprietary C >10M 2003-xx-xx 2014-xx-xx >100K
Linux C 7.3M 2005-04-16 2010-11-21 429K
PostgreSQL C 289K 1996-07-09 2011-01-25 89K
Xorg C 1.1M 1999-11-19 2012-06-28 46K
Eclipse Java 1.5M 2001-06-05 2012-07-24 73K
Lucene Java 828K 2010-03-17 2013-01-16 76K
Jackrabbit Java 589K 2004-09-13 2013-01-14 61K

Note: Language is the programming language used for the project. LOC is lines of
code. First Date is the date of the first commit of a project, while Last Date is the
date of the latest commit. # of Changes is the total number of changes for each
project through listed history.

4.1.2 Data Selection

We select changes in the middle of the software history of a project because the character-
istics of a project may be unstable at the beginning of its history [22,31]. The most recent
changes are excluded because buggy changes in them would not have been found and fixed
yet. Note that this is for evaluation only. In practice, we predict on the latest changes so
that developers can find bugs in them earlier, which is the experiment that we conducted
in our case study (Section 3.6).

The specific time parameters used in online change classification are Start-Gap, Gap,
End-Gap, and Update-Time.

1. Start-Gap is the time period at the beginning of a project where changes are excluded
from our experiments.

2. Gap, e.g., T2–T4 or T3–T5 in Figure 3.1, is the time period between the training
set and the test set. Adding such a gap allows enough time for buggy changes in the
training set to be discovered by the prediction time (Section 3.2).

3. End-Gap is the time period at the end of a project’s data collection when changes
are excluded from our experiments. Typically it is the average time that it takes to
discover and fix a bug, i.e., the average bug-fixing time.

4. Update-Time, e.g., T2–T3, in Figure 3.1, is the time period used to update the
training set in the previous run to build a new model for this run.
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Table 4.2: Parameters Settings for the Evaluated Projects.
Project SG Gap EG UT # of ExpCh ExpBR TrSize TSize NR
Proprietary 5.0 x.xx x.x 365 >20,000 <14.0% >5,000 >10,000 3
Linux 3.0 0.03 2.3 8 10,443 22.8% 1,608 6,864 4
PostgreSQL 7.0 0.20 5.9 60 10,810 27.4% 1,232 6,824 7
Xorg 5.2 0.40 5.0 100 10,956 14.7% 1,756 6,710 6
Eclipse 5.0 0.10 6.2 40 9,190 20.5% 1,367 6,974 6
Lucene 0.5 0.10 1.5 30 11,106 23.6% 1,194 9,333 8
Jackrabbit 3.0 0.20 3.3 60 13,069 37.4% 1,118 8,887 10

Note: SG is the Start-Gap. EG is the End-Gap. UT is Update-Time. The unit for the Start-
Gap, Gap, and End-Gap is year, and the unit for the Update-Time is day. # of ExpCh is
the number of changes used for the experiment, i.e., all changes excluding the changes during
Start-Gap and End-Gap. ExpBR is the ratio of the buggy changes in the experimental changes.
TrSize is the average size of training sets in all runs, while TSize is the total number of test
instances in all runs combined. NR is the number of runs for each project.

Different time parameters are used for different projects due to their data variance,
e.g., length of development history and average bug-fixing time. Initially, we follow the
previous paper [26] for Start-Gaps, which are three years for most projects. To ensure
enough runs of experiments, the average test set size is smaller than one fourth of the
total count of experimental changes in each project. In addition, we set the quotient of
the total experimental change count of each project divided by the number of runs as the
upper bound of average training set size. Gap is the difference between average bug-fixing
time and test set time period for each project. Update-Time is the same as the test set
duration. Given the constraints, our tool automatically determines the number of runs for
each project based on the data’s suitability, i.e., the buggy rate in both the training set
and the test set for a run should be above 0%. End-Gap is set depending on the number
of runs. If the data sets cannot be determined by one run of the tool, i.e., the parameters
or the data sets generated do not satisfy the constraints, the tool will add 1 month to the
Start-Gap and try to find the desired data sets again.

The specific time parameters for the projects are shown in columns “SG” to “UT” of
Table 4.2. The remaining columns show the number of changes in our data sets. Certain
information of the proprietary project is kept vague for confidentiality. Column “# of
ExpCh” is the number of changes used for the experiment, i.e., all changes excluding
the changes during Start-Gap and End-Gap. All these experimental changes are used
for 10-fold cross-validation. Column “ExpBR” is the ratio of the buggy changes in the
experimental changes. For our online change classification, we collect data for the multiple
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runs from the experimental changes as described above. “TrSize” is the average size of
training sets in all runs while“TSize” is the total number of test instances in all runs
combined. “NR” is the number of runs for each project.

We conduct an additional experiment on selected top developers because the overall
precision of online change classification is low. We want to show that we can achieve higher
precision on top developers, following previous work [26]: building individual models for
each developer can help improve the performance of change classification.

We rank developers by the total number of bugs in their commit history. We pick the
top 10 of the developers on the list; then we select the developers whose changes allow for
at least two runs and the precision of the first run is higher than 60%.

4.1.3 Classification Algorithms and Experiments

We use alternating decision tree (ADTree [15]) in Weka [20] as the classification algorithm
since it performs best in previous work [26]. In a decision tree, one leaf shows the rule
of the decision and one branch represents one decision. The path from the root to one
leaf represents the learning process of the learning algorithm. One instance can satisfy
multiple paths, and the final classification decision is made on the sum of all the nodes
in all the satisfied paths. Our basic experiment setup uses ADTree for its simplicity, easy
implementation, and good performance from previous work [26, 65, 66]. ADTree has two
parameters: one is the maximum iteration time, and the other determines the number of
paths to search for building the tree. We tune the maximum iteration time of ADTree the
same way as previous work [26] and finally we set 10 as the maximum iteration time. We
set the default value, i.e., -3, for the second parameter to search all possible paths to find
the best model so that the model has a bigger chance to have a better performance.

After we obtain all the preliminary results from the above setting, we apply the resam-
pling and the updatable classification techniques (Chapter 3). We use Weka [20] for all
the resampling and updatable classification techniques except the simple duplicate method
because Weka does not have an implementation of it.

We experiment with following parameter values of the classification approaches. We
report the highest precision for each project, as high precision is crucial for adoption.
The number of nearest neighbors in SMOTE ranges from 2 to 10. The percentage of
the minority class duplications is within the range (50, 80, 100, 200, 300, 400, 500). For
spread subsample, we select the best among all the ratio between the two classes varying
from 1:1–10:1. As such, whether to adjust the total weight of the classes depends on the
results. For the resampling with/without replacement method, all the combinations of
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with/without replacement and original/uniform distribution of input data are used. The
output percentage of the sample size is in the same range as the SMOTE range list. For
resampling without replacement, since Weka’s implementation only allows undersampling,
only 80 is used as the output percentage.

The tuning process for choosing the updatable classification algorithm we use is to
randomly sample 100 instances from the training set with similar buggy rate (within 1%)
of the original dataset. Then we run 10-fold cross-validation on the sampled data and
choose the parameters that have the best results.

After tuning, the updatable classification algorithms choose the following values for
different parameters: for the Bayes, we do not use uniform input distribution. Both IBK
and LWL are set to use the linear nearest neighbor search algorithm; and IBK chooses one
nearest neighbor. The global blending percentage in the KStar is set to 20%. The default
settings (10 iterations, no internal cross-validation, and reweighting for boosting) are used
for LogitBoost. NNge has two parameters: the number of attempts of generalization and
the number of folders for computing the mutual information. For SPegasos, the hinge loss
function is used, the regularization constant is set to 0.0001, and the epochs is set to 500.

4.1.4 Evaluation Metrics

There are four commonly used metrics in change classification to measure the results [40,
49]. They are 1) accuracy, the percentage of correctly predicted changes in all the changes;
2) precision, the percentage of correctly predicted buggy changes in all the changes which
are predicted buggy; 3) recall, the percentage of correctly predicted buggy changes in all
the changes which are real buggy; and 4) F1-score, F1 in short, the harmonic mean of the
precision and recall.

However, accuracy is not suitable for evaluation when data are imbalanced. For exam-
ple, when the buggy rate is 10% for a test set, if the model predicts all the changes in the
test set as clean, it still achieves an accuracy of 90%. The value cannot reflect the actual
ability of the model to discover the buggy changes. Therefore, we only report precision,
recall, and F1 as the evaluation metrics.

4.2 Results

This section presents the experimental results. It is a real challenge in the research area
that the prediction result can have both a high precision value and high recall value. We

21



focus on discussing the improvement on precision because a high prediction precision is
crucial for the adoption of change classification in practice as explained in Chapter 1.

We answer the following research questions (RQ):

RQ1: Does cross-validation produce false higher precisions? Table 4.3 shows
that the precisions of the basic online change classification are 18.5–59.9% on the seven
evaluated proprietary and open source projects. The precisions using cross-validation are
55.5–72.0%, which are much higher than those of basic online change classification, the one
applicable in practice. The gap on precision is 7.6–37.0 percentage points (pp.) with an
average of 18.4 pp. The gap on F1 is 4.4–46.7 pp., with an average of 26.6 pp. The results
show that cross-validation provides false higher precisions and F1s.

RQ2: What is the effect of resampling and updatable classification on classifi-
cation performance? Table 4.3 shows that the precisions of online change classification
with resampling techniques are 33.3–73.7%. Compared to the basic online change classifica-
tion (“Baseline” in Table 4.3), resampling techniques increase the precision by 12.2–89.5%,
which is 6.4–34.8 pp. (13.2 pp. on average). As described in Chapter 1, if a precision is
raised from a to b, the precision is improved by ((b−a)/a)% or (b−a) pp. The precisions of
online change classification with updatable classification are 30.9–59.7%. Updatable clas-
sification improves the precision of the baseline by 8.4–67.0% which is 3.8–17.3 pp. (10.6
pp. on average) for four projects. For the other three projects, it reduces the precision by
3.4 pp. on average.

Recall that we select the highest precision among all runs with different parameters
because we favor higher precision over higher recall. The trade-off between precision and
recall is well understood: while one increases precision, one might sacrifice recall [31]. F1
is the balanced measure of precision and recall. If one prefers a higher F1, one can select
the highest F1 among all runs instead. Therefore, we have also obtained the performance
results by selecting the highest F1 of all runs for the three techniques—the basic online
change classification, resampling, and updatable classification (Table 4.4). These results
show that resampling increases F1 by 2.2–417.2% over the basic online change classifica-
tion which is 0.5–30.5 pp., 13.9 pp. on average, for all seven projects; while updatable
classification improves F1 by 21.1–370.2%, which is 4.4–27.0 pp., 11.9 pp. on average, for
all seven projects.

In summary, online change classification with resampling improves the precision of the
basic online change classification, while updatable classification only improves precision
under certain circumstances.
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Table 4.3: Results of the Evaluated Projects with the Best Precision Selected.
Project Model Precision Recall F1

Proprietary

Cross-Validation 55.5% 12.3% 20.1%
Baseline 18.5% 13.6% 15.7%
Resampling 33.3% 7.1% 11.7%
Updatable Classification 30.9% 31.1% 31.0%

Linux

Cross-Validation 59.0% 49.0% 54.0%
Baseline 38.9% 4.0% 7.3%
Resampling 73.7% 0.9% 1.8%
Updatable Classification 47.9% 3.0% 5.6%

PostgreSQL

Cross-Validation 65.0% 58.0% 61.0%
Baseline 57.4% 30.9% 40.2%
Resampling 67.3% 9.6% 16.8%
Updatable Classification 50.8% 46.7% 48.7%

Xorg

Cross-Validation 69.0% 62.0% 65.0%
Baseline 42.4% 15.6% 22.8%
Resampling 49.1% 6.3% 11.1%
Updatable Classification 59.7% 7.5% 13.4%

Eclipse

Cross-Validation 59.0% 48.0% 53.0%
Baseline 45.1% 17.2% 24.9%
Resampling 57.6% 9.1% 15.7%
Updatable Classification 48.9% 11.9% 19.1%

Lucene

Cross-Validation 58.0% 46.0% 51.0%
Baseline 46.2% 21.7% 29.5%
Resampling 52.6% 15.8% 24.3%
Updatable Classification 43.9% 31.5% 36.7%

Jackrabbit

Cross-Validation 72.0% 72.0% 72.0%
Baseline 59.9% 41.7% 49.2%
Resampling 67.2% 21.3% 32.3%
Updatable Classification 58.6% 58.7% 58.6%

Note: The highest metric value among the three flavours of online change clas-
sification are bolded. The results are chosen from different algorithms based on
highest precision.

RQ3: Do testing-related changes have a negative impact on the performance
of online change classification? The results are presented in Table 4.5. From the
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Table 4.4: Results of the Evaluated Projects with the Best F1 Selected.
Project Model Precision Recall F1

Commercial
Baseline 18.5% 13.6% 15.7%
Resampling 30.9% 31.1% 31.1%
Updatable Classification 16.8% 28.0% 20.1%

Linux
Baseline 38.9% 4.0% 7.3%
Resampling 28.90% 54.36% 37.75%
Updatable Classification 23.93% 60.72% 34.33%

PostgreSQL
Baseline 57.4% 30.9% 40.2%
Resampling 52.7% 68.5% 59.6%
Updatable Classification 50.1% 54.7% 52.3%

Xorg
Baseline 42.4% 15.6% 22.8%
Resampling 47.4% 15.5% 23.3%
Updatable Classification 36.6% 27.4% 34.91%

Eclipse
Baseline 45.1% 17.2% 24.9%
Resampling 35.0% 46.1% 39.8%
Updatable Classification 36.6% 33.4% 34.9%

Lucene
Baseline 46.2% 21.7% 29.5%
Resampling 33.9% 40.5% 36.9%
Updatable Classification 43.9% 31.5% 36.7%

Jackrabbit
Baseline 59.9% 41.7% 49.2%
Resampling 58.6% 58.7% 58.6%
Updatable Classification 52.7% 68.5% 59.6%

Note: The highest metric value among the three flavours of online change classification
are bolded. The results are chosen from different algorithms based on highest F1.

results, a comparable performance on precision can be achieved on non testing-related
changes. Additionally, removing testing-related files improves the recall of online change
classification and leads to a significant improvement of F1. Predicting on the non-testing
source code not only provides a focus for defects that developers care but also helps improve
the performance of online change classification.

RQ4: What classification performance can we achieve on more predictable
developers? Despite the improvement on precision, the overall precisions of all time
sensitive change classification techniques are still low. Previous work—personalized defect
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Table 4.5: Results of Non Testing-related Prediction.
Project Total # T-Related Rate T-Related P R F1

Linux 10,443 27(0.3%)
Yes 73.7% 0.9% 1.8%
No 73.6% 55.4% 63.2%

Postgresql 10,810 157(1.5%)
Yes 67.3% 9.6% 16.8%
No 64.4% 37.2% 47.2%

Xorg 10,443 51(0.5%)
Yes 59.7% 7.5% 13.4%
No 61.6% 22.4% 32.8%

Eclipse 13,069 2,722(20.8%)
Yes 57.6% 9.1% 15.7%
No 67.9% 57.8% 62.4%

Lucene 8,360 4,009(48.0%)
Yes 52.6% 15.8% 24.3%
No 75.2% 78.1% 76.7%

Jackrabbit 11,106 3,991(35.9%)
Yes 67.2% 21.3% 32.3%
No 54.7% 50.4% 52.4%

Note: Total # means the total count of changes in the experiment. T-Related Rate means
the total count of testing-related changes in the experiment. Rate means the percentage of
testing-related changes in all changes. T-Related means whether the results are from the
datasets that contain testing-related changes or not. Yes means datasets contain testing-
related changes, otherwise not. The results listed here are selected from results generated
by different classifiers with the highest precision, resampling techniques, and updatable
classification techniques. P means precision, while R represents recall.

Table 4.6: Results of Top Developers’ Models.
Project # of Devs Precision Recall F1
Proprietary 5 75.0% 11.8% 20.3%
Linux 2 85.7% 54.5% 66.7%
PostgreSQL 3 73.2% 16.5% 26.9%
Xorg 2 100.0% 12.3% 22.0%
Eclipse 3 70.2% 7.9% 14.2%
Lucene 3 78.5% 10.1% 17.9%
Jackrabbit 4 78.5% 21.8% 34.1%

Note: # of Devs is the count of selected developers in this
project.

prediction [26]—shows that some developers may be more predictable than others, i.e.,
we may achieve higher prediction performance on some developers. Therefore, we select
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Table 4.7: Results of the Selected Developers’ Models for Case Study.
Developer Technique Precision Recall F1
1 Resampling 100.0% 100.0% 100.0%
2 Updatable 100.0% 5.9% 11.1%
3 Resampling 100.0% 50.0% 66.7%
4 Resampling 100.0% 33.3% 50.0%
5 Resampling 100.0% 50.0% 66.7%
6 Updatable 100.0% 6.7% 12.5%
7 Resampling 100.0% 6.7% 12.5%

top developers according to the standards described in Section 4.1, perform time sensitive
change classification on those more predictable developers, and choose the best results
for each developer. Table 4.6 shows the weighted average performance of those more
predictable developers (Section 4.1). In practice, we can focus on predicting the changes
from these developers to increase the chance of successful adoption of change classification
in the software development process.

The result demonstrates that with better data selection, we can achieve higher precision
than the basic techniques. The weighted average precisions are 70.2–100.0% for the more
predictable developers from the seven evaluated projects, which are much higher than the
overall precisions. This situation also indicates ensuring the quality of data is essential for
the performance of change classification.

As discussed in Section 3.6, we apply online change classification techniques on the
latest changes of the proprietary project in our case study. To find more predictable
developers, we build prediction models for more developers in the proprietary project and
select seven developers on whose changes we can achieve 100% precision (Section 3.6). The
test sets contain 79–490 changes for these seven developers. Table 4.7 shows the prediction
performance of the seven selected developers. Although the recalls are low, the precisions
are high, which is crucial for the case study. Our results and lessons of this case study are
discussed in the following section.

RQ5: How accurate are the explanations and are they helpful for developers?
As in Section 4.3, the performance of online change classification on historical data can
help researchers have a better understanding of online change classification. The funda-
mental assumption of the case study is that explanations generated from the classification
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algorithm are accurate. Here we discuss the experiments on historical data to show the
statistical accuracy and helpfulness of the explanations.

We compare the explanations generated by online change classification and the cor-
responding bug descriptions in BTS. BTS has all the information connecting the buggy
changes to the changes that fix these bugs. Online change classification collects a set of
predicted buggy changes and generates the explanations. Due to the refinement of the
explanations (removing all the explanations generated from non-code metrics, etc. in Sec-
tion 4.3), the explanations contain only source code related features. Thus it is reasonable
to consider an explanation accurate if the explanation contains at least one word used in
the bug descriptions from BTS. Among the accurate explanations, we would like to check
whether it is helpful for developers to find the root causes of bugs. We consider the ex-
planation helpful if the explanation contains the words with semantic meaning in the bug
root cause description.

Specifically, we generate a set of experiments from the most recent accurate data set
during 2010–2012. We use the data from 2010–2011 as the training set and the data in 2012
as the test set. Online change classification is applied on these datasets and has achieved
33.8% precision, 36.5% recall, and 35.1% F1 score with the NNge algorithm (one of the
updatable classification algorithms (Section 3.4)). In total, we obtain 119 changes as real
buggy found by online change classification. After manual verification, we counted 90 out
of 119 true buggy changes whose generated explanations are related to the bug root causes
recorded in BTS; and out of the 90 buggy changes, 62 changes are easier for developers to
find when they are presented with the explanations.

4.3 Lessons Learned

This section provides the general lessons we learned from the case study of change classifi-
cation integration in software development. The lessons are either from the experience of
implementation or the feedback from the developers.

Developers need to be convinced and prediction results need to be actionable:
Compared to software testing and bug detection tools, change classification tools are newer
to most developers. Therefore, one open challenge is to convince developers to use pre-
diction results from change classification. Developers are more likely to use prediction
results if they believe the results and can act on the results, i.e., the results are action-
able. Through our interaction with developers, we identified three possible directions to
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address this challenge: 1) presenting an explanation so that developers can understand
and believe the prediction, 2) showing the prediction precision on historical data and how
it could have helped developers find the bugs they missed not having had the prediction,
and 3) integrating prediction results with test suites to prioritize test cases, e.g., upon the
prediction of a buggy change, test cases related to the change are executed automatically.
We have experimented with 1 ) and partial explored 2 ) in our case study (Section 4.2),
and the experience and lessons learned are in the following two subsections. The rest of
2 ), 3 ), and possible combinations of them remain future work.

Interpretable and accurate models are needed: Both previous work [26] and our
experiments show that ADTree generally outperforms other classification algorithms such
as the traditional decision tree (J48) and Naive Bayes. The ADTree algorithm assigns
each feature a weight and adds up the weights of all features that a change satisfies. If this
sum of weights is over a threshold, a change is predicted buggy. However, the weights are
typically non-integers. For example, if a change contains a modulo operator (%), then it
may receive a weight of 0.13 according to an ADTree model. Developers would find such
numbers confusing and unjustified. On the other hand, J48 models are more interpretable.
A J48 model may show that 50 out of the 50 changes in the past that contain a modulo
operator are buggy. Developers find this J48 explanation more understandable in our case
study.

Since ADTree achieves a higher precision, we use the predictions from ADTree. For
explanations, we obtain the X-out-of-Y numbers from ADTree models. X-out-of-Y means
Y changes in the training data satisfy the above rules, and X out of them contain real
bugs. Since this is not part of the ADTree implementation in Weka, we extend the imple-
mentation with this interpretation functionality. Then we use the J48 model to generate
more interpretable explanations. An example of our prediction results is:

This change is predicted buggy with a

confidence of 100%. The possible reasons are:

> The change contains 1 or fewer "len".

> The change contains 1 or fewer "error".

> The change contains 1 or more "function-name".

> The change contains 1 or more semicolons(;).

>> 35 out of 35 changes satisfying the above

conditions contain bugs.

> The change contains 3 or fewer "char".

> The change contains 1 or more "variable-name".
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>> 320 out of 407 changes satisfying the above

conditions contain bugs.

The function and variable names are kept anonymous for confidentiality. The bug in
this change has been fixed, and this explanation points directly to the bug causes: the
variable “variable-name” and function “function-name”. The developers misused the
function “function-name”, which is a library function widely used outside the studied
proprietary project. The variable suggests that the program misbehaves under the context
“variable-name”. The variable name is specific to the target project, indicating that cross-
project prediction models may have difficulty producing this explanation or predicting this
buggy change, and project-specific prediction models are needed. Since the function name
is generic, a cross-project prediction model may be able to identify a bug pattern across
projects to predict this buggy change.

The results and experience suggest that interpretable models are crucial for the adoption
of change classification. There is little work on building accurate and interpretable models
for software defect prediction. Additionally, from RQ5 (Section 4.2), the tool has achieved
75.6% accuracy in generating reasonable explanations for the changes we examined and the
explanations help the developers find 68.9% bugs more easily. These numbers are not good
enough for adoption in industry. New and improved techniques that are both interpretable
and accurate for software defect prediction are needed.

Explanations need to be filtered and refined: The classification algorithms use a
statistical approach to build models. These algorithms are unaware whether a feature or
an explanation from its model has a semantic meaning. For example, the explanation
that “the change contains 1.5 or more modulo operators (%)” makes little sense since the
number of modulo operators must be an integer. A better explanation is needed. Therefore,
we change such numbers to integers in our explanation. The refined explanation becomes
“the change contains 2 or more modulo operators (%)”.

In addition, many explanations are non-code metrics, which are unactionable. Assume
every Friday is an internal release deadline and developers code under more pressure, thus
introducing more bugs. However, the explanation that “the change was committed on
Friday” does not help developers: it provides little for developers to act on the change based
on this explanation. In contrast, code metric related explanations are more actionable. For
example, if the explanation is “the change contains a modulo operator” allows developers
to double check whether the modulo operator has been used properly.

Complex features are less useful for explanations because they may be difficult for
developers who are non-conversant with the features to understand. For example, we do
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not present characteristic vectors to developers. We would like to explore more approaches
to make complex features easier for developers to understand in the future.

Imbalanced defect data requires new solutions to improve prediction precision
and recall Software typically has imbalanced data for defect prediction. Although we
can achieve reasonable precisions for selected developers, the overall precision is still low.
Therefore, we need new solutions including new algorithms and new features to improve
the precision and recall of change classification.

4.4 Threats

Evaluated Projects We evaluate the change classification models on seven projects,
which may not represent all software. We mitigate this threat by selecting projects of
different functionalities (operating systems, servers, and desktop applications) that are
developed in different programming languages (C and Java) with different development
paradigms (proprietary and open source). Only one proprietary project is used for ex-
periments. One project may not be able to present the general case of all proprietary
projects.

Labeling Following previous work [52], the labeling process is automatically completed
with the annotating or blaming function in VCS. It is known that this process can in-
troduce noise [11, 26, 32]. The noise in the data can potentially harm the performance
of the tool. Manually inspection of the process shows reasonable precision and recall on
open source projects [26]. The precision and recall of the proprietary software are much
higher. Previous work [32] shows that this noise level is acceptable. Existing classification
techniques can tolerate a reasonable amount of noise. One way to deal with this is to more
accurately label the changes, the only way available currently is to manually verify the
labels. Although BTS is combined for a commercial software, some noise is introduced to
the model by these collections.

Data Selection Our experiments use parameters and thresholds to choose a better
model. Different parameter and threshold values may produce different results. We would
like to study the impact of these design choices in the future.
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Case Study We only select developers with 100% precision for the case study, assuming
that data from a developer with higher precision in his/her model are more predictable. We
choose the models with a high precision because too many false positives would be counter-
productive for adoption. This limits the possibility for more developers to participate in the
field trial. Therefore, the feedback from the developers may not be representative. Since
we rule out the developers with lower precisions, there is a big chance we also exclude
the developers whose data are experiment-able. For instance, data from a developer with
80% precision can also be predictable. Extending our case study to more developers and
reducing the impact of confirmation bias [67] remain as our future work. In addition,
because we use keyword matching in the quantitative study for the explanations, the
explanations can only point to the bugs whose bug causes are explained explicitly by the
existing words in the source code; in other words, it cannot infer from the information
provided by the features. Further more, even though the features after refinement are
all representative for only source code, we didn’t get the feedback from developers. The
definitions of the explanation accuracy and helpfulness may not match what developers
require. A future work to get detailed developers’ objective feedback is necessary.
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Chapter 5

Conclusions and Future Work

In this chapter, we conclude the work we’ve done first. Then we outline and explain the
future directions for this work.

5.1 Conclusions

In this thesis, we apply and adapt online change classification to address the incorrect eval-
uation presented by cross-validation, and apply the resampling techniques and updatable
classification to improve the performance. Our evaluation on one proprietary and six open
source projects shows that both resampling techniques and updatable classification im-
prove the precision by 12.2–89.5% or 6.4–34.8 percentage points. Removing testing-related
changes can improve F1 by 62.2–3411.1% or 19.4–61.4 pp. while achieving a comparable
precision.

Our case study and experiments show that new approaches to convince developers to
use prediction results are needed. In addition, interpretable prediction models are needed
for software defect prediction, and new techniques are needed to improve the prediction
precision for wider adoption in industry.

5.2 Future Research Directions

In the future, we would like to study the impact of our data selection, conduct a larger
study on more developers, and propose new techniques to improve the precision of change
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classification, e.g., using features from BTS. Furthermore, we would like to explore other
approaches of integrating change classification, e.g., for test case prioritization, risk man-
agement, quality control, process improvement, and project planning, where the prediction
results are presented to various stakeholders such as developers, managers and QAs. The
following paragraphs have some detailed discussions about some directions.

Mixed Features Features used by existing techniques include structural features (e.g.,
characteristic vectors), semantic features (e.g., bag-of-words), and contextual features (e.g.,
n-gram model [53, 55]). These features can only represent one type of the information of
the software. In this thesis, although two types of the features (structural features and
semantic features) are used to train the prediction model, the link between the structural
information and the semantic information for the software is missing.

There are two promising ways to deal with this situation. One way is to use a type
of features not only representing the structural information of the software but also the
semantical meaning of the software. A recent work [42] proposes a graph-based structure
to store both structural and semantic information from code. Regardless of the efficiency
of this proposed model, the graph can be used as the features for better software rep-
resentation. The other way is to find an approach to restoring the relationship between
the structure-based features and context-based features instead of simply using them as
separate features. Currently, this method does not have any existing work yet.

Semi-supervised Learning Recall that we exclude the data during the time period we
set as Gap. However, the instances during the gap can still have valuable information for
the prediction model. For example, the changes that are buggy during the gap can be
included in the training set. In this way, not only is the buggy rate of the training set
increased, but also more recent development information is included.

In addition, the other changes in the gap can also help better distinguish the buggy
class from the clean class when they are left unlabeled. Applying semi-supervised learning
may be a promising solution to leverage those unlabeled data. Semi-supervised algorithms
take advantage of both labeled and unlabeled data. Thus, we can leave the data during
the gap as unlabeled to utilize the useful information provided by the data during the gap.

Test Case Prioritization Through software defect prediction results, we could calculate
the fault density of a file. We define fault density as the number of predicted buggy changes
this file contains during the test set time period. We use the fault density as a factor that
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affects the fault-prone level of the source code area. The files have a ranking with their
fault density. This information can be used for QA or testing team to focus on test cases
that execute code areas with a high fault density. Such information may also help managers
and developers allocate resources for software development and risk management.
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