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Abstract

The problem of optimal sensor location for the estimation of a linear dispersive wave
equation is considered in this work. A steady-state Kalman filter was used as an optimal
state observer with localized velocity information as the measurement. Since the main
model is a partial differential equation, the states evolve in infinite-dimensional spaces,
and hence an approximation (finite representation) was required to design the observer.
Three different approximation methods were compared - eigenfunctions and finite element
methods using a linear and a high-order polynomial basis. The latter two methods are the
more common choice of approximation schemes for systems with a complex geometry. It
was found that the eigenfunctions perform much better as expected. The finite element
methods require larger matrices to approximate the system with reasonable accuracy and
hence calls for numerical methods to solve the Algebraic Riccati Equation efficiently. The
optimal sensor location was considered for three different noise models - a localized noise,
a more distributed nature of noise and finally an one-dimensional turbulence model. It was
seen that the optimal location tend to be closer to the point where the physical shape of the
noise reaches its maximum. Placing the sensor in the optimal location showed significant
improvement in the estimation process.
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Chapter 1

Introduction

In the field of environmental and geophysical fluid dynamics real time measurements from
a region of interest play a vital role in forecasting. Given that these regions, in most
cases, would involve large spatial scales, measurements spanning the entire region would
be difficult to obtain. For example consider an ocean and the objective of measuring wave
heights that can be used to predict the evolution of wave heights in the entire region. Since
deploying an infinite number of measurement equiment is never feasible and given the high
costs of some sensing equipment (e.g. Acoustic Doppler Current Profilers - ADCPs), as
well as the deployment of such equipment in the field, it is highly desirable to optimize
the amount of information gained from a particular deployment of sensors. In the field
of control theory, one research area that is dedicated towards such an objective is that of
optimal sensor location, where the goal is to find the optimal location of a sensor with
respect to a cost.

The first step in any such work would be to create a mathematical model as accu-
rate as possible to describe the physics that is of interest which in this thesis involves a
one-dimensional shallow water body. A shallow water body will have different parame-
ters associated with it, for instance the wave heights or a three-dimensional velocity at
different locations, temperature or even water quality. The mathematical model should
represent the evolution of one or more of these parameters. The second step would be to
again create a model for the sensor, which represents how and where one or more of these
parameters are measured. Then a cost function with respect to sensor location is defined
and the location of the sensor where this cost would be minimum is searched for. There
are well established optimal estimation techniques with corresponding cost functions like
the H2 and H∞ criteria. The optimal estimation and the corresponding optimal sensor
location problem is mathematically dual to the optimal control and optimal actuator loca-
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Figure 1.1: A National Oceanic and Atmospheric Administration (NOAA) picture of a
buoy deployment which measures various types of quantities

tion problem. These problems have been considered by many researchers for a variety of
different contexts and physical systems; see for example [16, 32, 44, 47, 48] and the review
[18]. A notable technique used for forecasting by the oceanographic and meteorological
communities is data assimilation using Kalman filter, for example [23].

Apart from the steps that were mentioned briefly above, another step that is crucial
in these works is that of approximation of the original system. The original systems are
almost always represented by partial differential equations, for example the wave and the
heat equation. Since in most cases, a closed form solution to such equations are not avail-
able, these infinite-dimensional systems require approximations by a finite-dimensional
system. In [47], for instance, authors used a Galerkin approximation of a system describ-
ing the deflection of a beam, and in [16] and [6] the authors used a Legendre-Galerkin
spectral method. Designing a controller or an observer using approximations hence raises
questions involving accuracy and convergence. In [26, 34, 35] the issue of obtaining the
correct optimal actuator location when approximations are used is addressed. The paper
[9] presents an algorithm suitable for multiple actuator (or sensor) placement in large or-
der systems. In [30], the optimal actuator/sensor problem was considered for the nonlinear
control of the Kuramoto-Sivashinsky equation using a Fourier basis as the discretization.
In [4, 5] combined actuator/sensor location in fluid flow with a H2 criterion was considered
using a polynomial basis for the calculations. Their results indicate that placing the sen-
sor slightly downstream of the disturbance is often optimal. The study of different LQG
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metrics for thermostat placement in a room with an advection-diffusion model [2] suggests
less sensitivity to sensor location in that context.

In this thesis project, the optimal sensor location problem for estimating the state of a
linear, dispersion modified shallow water equations in one spatial dimension is considered.
It is the dual problem of the optimal actuator location, so results and algorithms developed
for an optimal actuator location can be used. In doing so three different approximation
methods are used to approximate the same system – one based on eigenfunctions and the
other two based on finite element methods using a linear and a high order polynomial
basis. For the estimation technique, a continuous time Kalman filter was implemented.
There are two main objectives in this thesis: compute the optimal sensor location for the
model and explain how higher order finite elements would work for such a problem and
provide a detailed analysis of these different approximation methods that can be used.
A crucial factor that has not been yet mentioned is the model of the noise affecting the
physical systems. An optimal sensor location problem is assumed to depend on the noise
characteristics and thus may call for accurate noise models. In this report, two different
noise models will be discussed – one where the effects are locallized and one where it is
more distributed over the entire region. In Chapter 2, the physical system of interest and
its mathematical model is introduced with some important analysis. It is followed by the
introduction of continuous time Kalman filtering in Chapter 3. Chapter 3 will formulate the
main optimal sensor location problem with descriptions of the sensor and noise, followed
by numerical results.
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Chapter 2

Description of the Model

The focus of this work is on the calculating the optimal sensor location for the estimation
of an one dimensional linear dispersive wave equation, which will be derived in this chapter.
From the most general three-dimensional Navier-Stokes equations for incompressible flow,
the model will be derived through common simplifications and reductions, and finally
modified by the inclusion of dispersive and damping effects in surface waves.

2.1 Navier-Stokes Equation

The set of Navier-Stokes equations is the most general model describing fluid flow using
the concept of a continuum and Newton’s second law for the conservation of momentum.
The derivation can be found in [27] and the required equation can be represented as,

ρ0
Dv

Dt
= ∇ · τ +∇Π (2.1)

where v = (v(x, y, z, t), u(x, y, z, t), w(x, y, z, t)) is the three-dimensional velocity and ρ0 is
the fluid density . The two terms on the right hand side correspond to the pressure forces
and body forces, where τ is the stress tensor and Π is the force potential. The operator,

D

Dt
=

∂

∂t
+ v · ∇

is called the material derivative which is the time derivative of a property in a velocity field
(following a fluid particle).
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In Cartesian co-ordinates the stress tensor is a second order tensor with nine compo-
nents. For an incompressible fluid, this tensor can be simplified to give the stress in terms
of a static state and a dynamic state contribution[27, pp.111-113],

τij = −pδij + σij, (2.2)

where p is the pressure, δij is the Kronecker delta and σij is the stress due to viscous forces.
The two indices, i and j, on the stress tensor correspond to the normal of the surface (on
which the force is acting) and the component of the force on that particular surface. For
the static state the stress is only due to isotropic pressure forces which are normal to
the surface and hence contribute to the diagonals of the total stress through the delta
term. The dynamic contribution is given by σij which contribute to both diagonal and
off-diagonal components of the tensor. These stress terms arise due to viscosity affecting
the fluid flow.

Due to the scales considered and the choice of water as the fluid, the viscous terms were
dropped. For the body forces, the buoyancy force due to gravitational acceleration acting
along the z-axis is taken into account. Considering these two forces, (2.1) becomes

ρ0
Dv

Dt
= −∇p− ρ0gk , (2.3)

where gk is the gravitational acceleration. The pressure term in (2.3) can be modified to
absorb the buoyancy the term. Consider the form,

p = p′ + p(z),

where p(z) is given by

p(z) = −ρ0gz

∇p(z) = −ρ0gk.

Therefore,
−∇p = −∇p′ + ρ0gk .

Substituting ∇p in (2.3) and dropping the prime notation gives,

ρ0
Dv

Dt
= −∇p . (2.4)

The incompressibility constraint implies that the mass must be conserved which gives the
continuity equation,

∇ · v = 0 . (2.5)

Equations (2.4) and (2.5) will be required to derive an 1-layer shallow water model in the
following section.
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2.2 Layered Models

The important physics behind the adoption of layered models is stratification in water
bodies. Stratification means the vertical structure of the fluid is governed by the density
variations in vertical direction, where the least dense fluid is at the top or surface. In this
work, the focus is on surface gravity waves in shallow water in a single space dimension.
Therefore, a 1-layer (density) model for water bodies where the depth H and L satisfy the
shallow water assumption, H

L
� 1, will be derived in this section.

2.2.1 One Layer Shallow Water Model

Consider a shallow water region with a constant depth (flat bottom) of H and a free surface
height η(x, y, t). The velocity is denoted by v(x, y, z, t). See Figure 2.2.1 for a schematic of
the model setup. Note the notational difference between v(x, y, z, t), which is a vector and
v(x, y, t) which is the scalar velocity along the x-axis at (x, y, t). It is instructive for readers
to carry out the derivation using the more general 3D model to a standard 2D model for
shallow water and then finally reducing the model to a single dimension for this work. The
3D model is reduced to a 2D model by averaging the velocity over depth which is justified
by the horizontal scales that are considered. Due to the large horizontal scales, the vertical
accelerations can be ignored. This derivation can be found be in [27]. To reduce the model

H

η(x, t)

v(x, t)

z

x

Figure 2.1: Schematic a one layer shallow water model

to two dimensions, integrate the continuity equation to give,∫ H+η

0

wzdz +

∫ H+η

0

(vx + uy)dz = 0 (2.6)
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Let ∇ · v = vx + uy and write (2.6) as

w(·, ·, H + η)− w(·, ·, 0) + (H + η)∇ · v = 0 . (2.7)

Note that the terms on the left hand side are the vertical velocities at the boundaries -
surface and the bottom. It is clear that the vertical velocity is,

w = 0, at z = 0 .

For z = H + η a kinematic boundary condition is imposed which implies the position of a
fluid particle remain unchanged in a frame of reference that is moving with the flow. That
is,

w =
D(H + η)

Dt
=
∂(H + η)

∂t
+ v · ∇(H + η), at z = H + η (2.8)

Recall (2.7) and use the boundary conditions to get,

w(·, ·, H + η)− w(·, ·, 0) + (H + η)∇ · v = 0 (2.9)

∂η

∂t
+ v · ∇(H + η) + (H + η)∇ · v = 0 (2.10)

∂η

∂t
+∇ · ((H + η)v) = 0 . (2.11)

Due to the assumption that horizontal length scales are much larger than the vertical
excursions, the vertical acceleration can be ignored, which gives the hydrostatic pressure
condition. That is,

− 1

ρ0

∂p

∂z
− g

ρ0

= 0 , (2.12)

p = ρ0gh . (2.13)

To average the momentum equation, consider the hydrostatic pressure condition. The
pressure at height z depends on the mass of water above and the atmospheric pressure at
the surface, p0. Therefore,

p(z) = p0 +

∫ η

z

ρ0gdz
′

Therefore horizontal pressure gradients are

∂p

∂x
= ρ0g

∂η

∂x
,

∂p

∂y
= ρ0g

∂η

∂y
. (2.14)
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Substituting (2.14) into the horizontal components of (2.1) gives the shallow water equa-
tions

∂v

∂t
+ v

∂v

∂x
+ u

∂v

∂y
= −g ∂η

∂x
, (2.15)

∂u

∂t
+ v

∂u

∂x
+ u

∂u

∂y
= −g∂η

∂y
, (2.16)

∂η

∂t
+∇ · ((H + η)v) = 0 . (2.17)

2.2.2 Linearization of Shallow Water Equations

The model is now reduced to a single dimension by dropping one of the dimensions. This
simplifies (2.17) to give,

∂η

∂t
+H

∂v

∂x
+ η

∂v

∂x
+ v

∂η

∂x
= 0 ,

where the last two terms correspond to advection. For small amplitude waves, the quadratic
nonlinear terms can be neglected in comparison to the linear term [27]. Thus the equations
simplify to,

∂v

∂t
= −g ∂η

∂x
(2.18)

∂η

∂t
= −H ∂v

∂x
. (2.19)

in a single space dimension.

2.2.3 Dispersive Shallow Water Model

The linearized shallow water equations (2.18-2.19) admit wave-like solutions that are non-
dispersive unlike the full Navier-Stokes model. In order to improve the model, dispersion
can be included. A flow is called dispersive when the speed of the waves depends on the
wavelength [46]. In [12], the assumption of a purely hydrostatic pressure was weakened
and through a perturbation method, a correction to the hydrostatic pressure was obtained,
that models surface wave dispersion reasonably well. In particular they capture the obser-
vations that longer waves propagate faster. The linearized governing equations of the de
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La Fuente’s model [12] are,

∂v

∂t
= −g ∂η

∂x
+
H2

6

∂2

∂x2

(
∂v

∂t

)
(2.20)

∂η

∂t
= −H ∂v

∂x
. (2.21)

2.2.4 Boundary Layer Friction

The linear dispersive wave equations (2.20 -2.21) form a non-dissipative system in contrast
to what observations indicate. An important mechanism that leads to the energy loss of
the system is the friction at the bottom layer and has been studied in [22, 29, 39]. In an
attempt to paramatrize this loss of energy without increasing complexity, a damping term
is added to the model ,

∂v

∂t
= −g ∂η

∂x
+
H2

6

∂2

∂x2

(
∂v

∂t

)
− cdv (2.22)

∂η

∂t
= −H ∂v

∂x
. (2.23)

Here the damping constant, cd, controls the amount of damping. In section 2.3.2 it will be
shown that this system is indeed dissipative.

2.3 State Space Formulation

2.3.1 State-Space

By cross-differentiating the governing equations (2.22) and (2.23) the model can be reduced
to the following single equation,

vtt = c2vxx − cdvt + βvxxtt, x ∈ [0, L] (2.24)

where subscripts denote partial derivatives. The constants, c2 = gH and β = H2

6
, are

positive. The boundary conditions are,

v(0, t) = v(L, t) = 0. (2.25)

9



Writing (2.24) in a first-order descriptor form gives,[
I 0
0 I − βD2

] ˙[v
vt

]
=

[
0 I

c2D2 −cdI

] [
v
vt

]
, (2.26)

where I denotes the identity operator and D(·) = ∂
∂x

(·).
Define the space

H1
0(0, L) = {v ∈ H1(0, L), v(0) = v(L) = 0} .

where H1 is the Sobolev space of functions with weak first derivatives [41]. Define the state
z(t) = [v(·, t) v̇(·, t)] and the state-space Z = H1

0(0, L)× L2(0, L).

The Sobolev space H1 is a Hilbert space with the inner-product [41],

〈z1, z2〉H1 = 〈z1, z2〉+ 〈z′1, z′2〉, z1, z2 ∈ H1

To define an inner-product on H1
0 the above inner-product can be used directly. However,

it can be shown that, for z1, z2 ∈ H1
0, the inner product

〈z′1, z′2〉,

yields an equivalent norm on H1
0.

Proof. It is easy to see that,

||z||H1 = (||z||2 + ||z′||2)
1
2 ≥ c1||z′||,

where c1 = 1. For the reverse inequality, note that

z(x) = z(0) +

∫ x

0

z′(x̂)dx̂

= 0 +

∫ x

0

z′(x̂)dx̂

≤ ||z′||
∫ x

0

1dx̂

= x||z′||

Therefore,
||z||H1 = (||z||2 + ||z′||2)

1
2 ≤ (1 + x2)

1
2 ||z′|| ≤ c2||z′|| ,

where c2 = 1 + L2.
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Therefore, herein the space H1
0 is equipped with the following inner-product

〈z1, z2〉H1
0

= 〈z′1, z′2〉 .

Let z =

(
z1

z2

)
∈ Z and w =

(
w1

w2

)
∈ Z, and define the following inner-product on Z,

〈z, w〉Z = c2〈z1, w1〉H1
0

+ 〈z2, w2〉
= c2〈z′1, w′1〉+ 〈z2, w2〉 ,

which yields the norm

||
(
z1

z2

)
||2Z =

1

c2
||z′1||2 + ||z2||2 .

Define the inverse operator of (I − βD2), T and operator D2 such that,

• T : L2(0, L)→ L2(0, L),D(T ) = L2(0, L),

• D2 : D(D2) ⊂ H1
0(0, L)→ L2(0, L),D(D2) = H2(0, L).

The inverse of (I − βD2) can be calculated considering its Sturm-Liouville form. The
calculation, given in Section A.1, leads to the following bounded operator,

Tv(x) =

∫ L

0

g(x, y)v(y)dy,

where

g(x, y) =
α

2(1− e2α)

{
(eαx − e−αx)(eαy − e2Lαe−αy), 0 ≤ x ≤ y ≤ L
(eαx − e2Lαe−αx)(eαy − e−αy), 0 ≤ y ≤ x ≤ L

with α = 1√
β
.

Using the operator T , the system in (2.26) can now be reformulated as

˙[v
vt

]
=

[
0 I

c2TD2 −cdT

] [
v
vt

]
. (2.27)

Define

A =

[
0 I

c2TD2 −cdT

]
11



with the domain

D(A) = {
(
z1

z2

)
∈ Z, z1 ∈ H2, z2 ∈ H1

0} .

Then a state space formulation of the partial differential equation in (2.24) is

d

dt
z(t) = Az(t). (2.28)

2.3.2 Well-posedness

Definition 2.1. (Well-posed problem, [15, Thm 6.7, Def 6.8]). Let A : D(A) ⊂ X → X
be a closed operator. Then the associated abstract Cauchy problem

d

dt
z(t) = Az(t), t ≥ 0,

z(0) = z0

is well-posed if for every z0 ∈ D(A), there exists a unique solution z(·, z0).

Definition 2.2. (Strongly continuous semigroup [8, Def 2.1.2]). A strongly continuous
(C0) semigroup is an operator-value function T (t) from R+ → Z that satifies:

1. T (t+ s) = T (t)T (s) for t, s ≥ 0 ,

2. T (0) = I,

3. ||T (t)z0 − z0|| → 0 as t→ 0+ ∀z0 ∈ Z .

Definition 2.3. (Dissipative operator, [31]) An operator, A with domainD(A) on a Hilbert
space X is called dissipative if

Re〈Ax, x〉 ≤ 0

.

Theorem 2.3.1 (Lumer-Philips Theorem,[15]). Let A be a linear operator defined on a
linear subspace of D(A) of the Hilbert space X. Then A generates a C0-semigroup if,

1. D(A) is dense in X ,

12



2. A is closed ,

3. A is dissipative .

The operator A : D(A) ⊂ Z → Z is densely defined on Z since H1
0 is dense in L2.

Proof.

Lemma 2.3.2. C∞0 (Ω) is dense in L2(Ω)

Since C(0, L)∞0 ⊂ H1
0(0, L) ⊂ L1

0(0, L), H1
0(0, L) is dense in L1

0(0, L)

Note that the choice of D(A) implies A is closed. The operator A is also dissipative
since

〈Az, z〉Z = 〈
(

z2

c2z′′1 − cdz2

)
,

(
z1

z2

)
〉Z

= c2〈z′2, z′1〉+ 〈c2z′′1 , z2〉+ 〈−cdz2, z2〉
= c2〈z′1, z′2〉 − c2〈z′1, z′2〉 − cd〈z2, z2〉
≤ 0 .

Corollary 2.3.3. ([15, Cor 6.9]) For a closed operator A : D(A) ⊂ X → X, the associated
abstract Cauchy problem is well-posed if and only if A generates a strongly continuous
semigroup.

Thus by Theorem 2.3 and Corollary 2.3.3, the state-space formulation generates a C0

semigroup and is well-posed.

2.4 Eigenfunctions and Stability

Definition 2.4. (Eigenvalues and Eigenvectors) If there exists a scalar λ and a vector[
φ(x) Φ(x)

]
such that

A

[
φ(x)
Φ(x)

]
= λ

[
φ(x)
Φ(x)

]
,

then λ is called the eigenvalue for the eigenvector
[
φ(x) Φ(x)

]T
.
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For simplicity consider the system form given in (2.26) which gives the following eigen-
value problem [

0 I
c2D2 −cdI

] [
φ(x)
Φ(x)

]
= λ

[
I 0
0 I − βD2

] [
φ(x)
Φ(x)

]
[

Φ(x)
c2φ′′(x)− cdΦ(x)

]
=

[
λφ(x)

λ(Φ(x)− βΦ′′(x))

]
(2.29)

Taking Φ(x) = λφ(x) gives,

c2φ′′(x)− cdλφ(x) = λ2φ(x)− βλ2φ′′(x)[
(c2 + βλ2)

d2

dx2
− (cdλ+ λ2)

]
φ(x) = 0 (2.30)

Lemma 2.4.1. The eigenfunctions φ(x) of

Γ =

[
(c2 + βλ2)

d2

dx2
− (cdλ+ λ2)

]
, (2.31)

with the boundary conditions φ(0) = φ(L) = 0 are

φn(x) = sin(mx), m =
kπx

L
,

where k is any natural number.

Proof. Substituting φ(x) in (2.31) gives,

Γ(φ(x)) = −(c2 + βλ2)m2φ(x)− (cdλ+ λ2)φ(x) (2.32)

= −
[
(c2 + βλ2)m2 + (cdλ+ λ2)

]
φ(x) (2.33)

= λ̄φ(x) (2.34)

where λ̄ are the eigenvalues of Γ.

Lemma 2.4.2. The eigenfunctions and the corresponding eigenvalues of A are,[
φ(x)
Φ(x)

]
=

[
sin(mx)
λ sin(mx)

]
, λk = −cd(m)

2
± 1

2
i
√

4m2c(m)2 − cd(m)2 (2.35)
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Proof. To calculate λ, use (2.30) to get,

(c2 + βλ)m2 + (cdλ+ λ2) = 0,

λ2 + cd(m)λ+m2c2(m) = 0,

where,

cd(m) =
cd

1 + βm2
, c(m)2 =

c2

1 + βm2
. (2.36)

Therefore,

λ = −cd(m)

2
± 1

2
i
√

4m2c(m)2 − cd(m)2. (2.37)

It can be conjectured that a finite-dimensional approximation of this system is asymp-
totically stable if cd > 0. However, as k → ∞, R(λ) → 0, which means the infinite-
dimensional system will not be detectable/stabilizable [24]. The results in [33] show that
this can lead to problems in designing controllers using a finite-dimensional approximation,
and the same will be true for estimator design. Apart from this, there can be other affects
of the dispersive and damping terms. A synopsis of three different cases is provided below.

Case 1 β = 0 and cd = 0
This is the undamped non-dispersive wave equation which means all the eigenvalues
are on the stability boundary (imaginary axis). This can be a problem numerically.
In fact, the simulations verified this effect because with a high approximation order
and no damping, the numerical scheme to solve the Algebraic Riccati Equation in
MATLAB fails to be successful.

Case 2 β = 0 and cd > 0
To represent the energy dissipation at the bottom boundary to viscosity, a damping
term was added to the system. The addition of damping shifts the eigenvalues away
from the imaginary axis in the stability region, which helps the numerical schemes
to perform better.

Case 3 β > 0 and cd > 0
Recall the expressions in (2.36) and (2.37),

cd(m) =
cd

1 + βm2
, c(m)2 =

c2

1 + βm2
.
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The presence of the dispersive model causes the speed of a wave to depend on the wave
number (m). In this case the speed decreases with wave number which means the
higher mode waves travel slower. The higher modes are also damped less according
to the expression for cd(k). Moreover, when spatial discretization is carried out to
form the finite-dimensional system, numerical dissipation is often also added to the
system. The numerical dissipation will cause the higher modes to be eliminated
before propagating far enough. Despite all these, however, the dispersive flow should
not bring any additional challenges from a design point of view in finite dimensions.

16



Chapter 3

Approximation Methods

Consider the governing PDE which was derived in Chapter 2,

vtt = c2vxx − cdvt + βvxxtt, x ∈ {Ω = [0, L]}, (3.1)

v(0, x) = v0 vt(0, x) = 0 . (3.2)

Since a closed form solution is not always available (and never available if the nonlinear
terms were retained), this system needs to be approximated. For the purposes of the
present work this is best done by a reduction to a finite-dimensional system. Using the
so–called Method of Lines, this is carried out by firstly assuming a separable solution exists
and secondly by a spatial discretization method where the solution v(x, t) is defined using
a set of functions of the spatial variable, x, which are called the basis functions. This will
lead to a representation of (3.1) by a finite number of ordinary differential equations which
can subsequently be solved by an appropriate time discretization scheme, for instance the
forward and backward Euler methods [14]. Once the time varying coefficients are obtained,
the solution can be reconstructed and appropriate diagnostics (e.g. kinetic energy) can be
obtained. In this chapter, three approximation methods will be discussed and used to
derive a finite-dimensional representation of this equation.

3.1 Galerkin Methods

The standard numerical methods fall into three categories - finite difference methods based
on Taylor series expansion, finite volume methods based on conservation laws and finite
element methods, generally based on the Galerkin approximation [1, 40, 17]. Although,
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finite difference methods are easy to construct, these methods are not ideal for complex
geometries when compared to the more popular finite-volume and finite element methods.
Finite-element methods have the further attraction of a well developed theoretical structure
that allows for rigorous studies of convergence (though we note that both finite difference
and finite volume methods have a rigorous theory as well), and hence a well defined finite-
dimensional system representation that can subsequently employ the techniques of systems
theory with confidence in its validity. In this work, the focus is on approximating the system
by taking the Galerkin form and using three sets of basis functions- two coming from the
standard finite element methods and the other being the set of eigenfunctions- to discretize
the equation.

The Galerkin method finds a solution of the weak form (Galerkin form) of an abstract
problem where the existence of the solution is guaranteed by the Lax-Milgram theory [1,
see p. 118-119]. This problem is conventionally represented by,

a(u, v) = f(v), (3.3)

where a gives a sesquilinear form between u and v, u ⊂ V is a test function for the
weak formulation and v ⊂ V is the solution. The objective then is to find a solution vn
in a subspace Vn ⊂ V . The subscript n denotes the dimension of the subspace where
the computed solution exists. This dimension reduction is carried out by projecting the
functions on a finite-dimensional basis. The difference between v and vn is orthogonal to
the subspace Vn and hence vn is called the optimal solution.

This method is explained in the following sections using a simple example ODE and
then finally extended to construct the approximation of (3.1).

3.2 Approximating an example ODE

Example 3.1. Consider the following ordinary differential equation,

v′′(x) + v(x) = f(x), on Ω = (0, L), x ∈ Ω (3.4)

v(0) = v(L) = 0 . (3.5)

The weak formulation of the problem is,∫ L

0

v′u′dx+

∫ L

0

vudx =

∫ L

0

fudx, (3.6)
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where u ∈ H1
0 is a sample test function. Now the objective of the approximation is to find

a finite-dimensional un ∈ Un, where Un is a subspace of H1
0.

Let {φn = φi ∈ C0(Ω), i = 1, 2, · · · , n} be a set of functions such that the velocity v
can expanded as,

vn =
n∑
i=1

〈v, φi〉φi. (3.7)

Then Φn = {φ1, φ2, ...φN} forms an n - dimensional basis and span{Φn} forms an n -
dimensional subspace of H1

0. An approximate solution vn ∈ span{Φn} for (3.5) can be
given using the generalized Fourier coefficients 〈v, φi〉.

Thus, the projection of (3.5) onto the n-dimensional subspace is,∫ L

0

n∑
i=1

〈v, φi〉φ′i
n∑
i=1

〈u, φi〉φ′idx+

∫ L

0

n∑
i=1

〈v, φi〉φi
n∑
i=1

〈u, φi〉φidx

=

∫ L

0

n∑
i=1

〈f, φi〉φi
n∑
i=1

〈u, φi〉φidx. (3.8)

These integrals can be written in a vector form. For instance,∫ L

0

n∑
i=1

〈v, φi〉φi
n∑
i=1

〈u, φi〉φidx

=

∫ L

0

[
a1 a2 · · · an

]

φ1

φ2
...
φn

 [c1 c2 · · · cn
]

φ1

φ2
...
φn

 dx

=
[
c1 c2 · · · cn

] ∫ L

0


φ1

φ2
...
φn

 [φ1 φ2 · · · φn
]
dx


a1

a2
...
an

 ,
where ai = 〈v, φi〉 and ci = 〈u, φi〉. Define the mass matrix, M ∈ Rn×n, and the stiffness
matrix, K ∈ Rn×n, to be,

M =

∫ L

0


φ1

φ2
...
φn

 [φ1 φ2 · · · φn
]
dx,
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K =

∫ L

0


φ′1
φ′2
...
φ′n

 [φ′1 φ′2 · · · φ′n
]
dx.

Define the vectors,

a = {ai ∈ R, ai = 〈v, φi〉, i = 1...n},
b = {bi ∈ R, bi = 〈f, φi〉, i = 1...n},
c = {ci ∈ R, ci = 〈u, φi〉, i = 1...n}.

Noting that the vector c is a common factor, (3.8) can be simplified and represented
using matrices as,

(K +M)a = Mb, (3.9)

which is a linear system of equations and can be solved for a.

Now continue to work with Example 3.1 in order to compute the mass and stiffness
matrices using finite element methods. Two different bases will be considered; a set of
linear functions and the shape functions based on Legendre polynomials.

The finite element method involves discretizing the spatial domain into a finite number
of elements and constructing a basis on each of these elements in order to approximate the
solution.

To begin with, divide the spatial domain equally into J elements and construct the
Galerkin form for (3.5) over an element∫ xj

xj−1

v′u′dx+

∫ xj

xj−1

vudx =

∫ xj

xj−1

fudx. (3.10)

Now calculate φ of (3.7) from a set of basis functions. These functions are constructed on
a canonical element,

Ie = {ξ : ξ ∈ [−1, 1]},
which can be mapped to [xj, xj−1] by an invertible transformation. Thus the integral in
(3.10) is first mapped to the canonical element using the transformation,

x(ξ) =
1− ξ

2
xj−1 +

1 + ξ

2
xj,
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to give,

2J

L

∫ 1

−1

dv

dξ

du

dξ
dξ +

L

2J

∫ 1

−1

vudξ =
L

2J

∫ 1

−1

fudξ. (3.11)

Note that because of this transformation, the construction of the finite element method
now requires two easy steps:

1. Constructing the local mass and stiffness matrices (m and k) using the particular
choice of basis on the canonical element

2. Using these local matrices to form the global mass and stiffness matrices (M and K)

3.2.1 Mass and Stiffness Matrix from Linear Basis

The linear basis functions are,

φ1 =
1

2
(1− ξ) , φ2 =

1

2
(1 + ξ) . (3.12)

and therefore the approximate solution in each element can be written as,

v̂(ξ) = a1φ1(ξ) + a2φ2(ξ). (3.13)

Substituting (3.13) and the projection of the rest of the functions in (3.11) gives the finite-
dimensional representation,

2J

L

∫ 1

0

[
a1 a2

] [φ′1
φ′2

] [
c1 c2

] [φ′1
φ′2

]
dξ +

L

2J

∫ 1

0

[
a1 a2

] [φ1

φ2

] [
c1 c2

] [φ1

φ2

]
dξ

=
L

2J

∫ 1

0

[
b1 b2

] [φ1

φ2

] [
c1 c2

] [φ1

φ2

]
dξ,

which can be restructured to give

2J

L

[
c1 c2

] ∫ 1

0

[
φ′1
φ′2

] [
φ′1 φ′2

]
dξ

[
a1

a2

]
+

L

2J

[
c1 c2

] ∫ 1

0

[
φ1

φ2

] [
φ1 φ2

]
dξ

[
a1

a2

]
=

L

2J

[
c1 c2

] ∫ 1

0

[
φ1

φ2

] [
φ1 φ2

]
dξ

[
a1

a2

]
.
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The local mass and stiffness matrices are then computed as follows,

m =

∫ 1

0

[
φ1

φ2

] [
φ1 φ2

]
dξ

=

∫ 1

0

[
φ1φ1 φ1φ2

φ2φ1 φ2φ2

]
dξ

=

[
2/3 5/6
5/6 2/3

]
,

k =

∫ 1

0

[
φ′1
φ′2

] [
φ′1 φ′2

]
dξ

=

∫ 1

0

[
φ′1φ

′
1 φ′1φ

′
2

φ′2φ
′
1 φ′2φ

′
2

]
dξ

=

[
1/2 −1/2
−1/2 1/2

]
.

The next step is to use these local matrices to build the global matrices. This will be
carried out in two simpler steps to make things clear. Firstly, place the local mass matrix
in an empty global mass matrix starting from the first element to the last. For simplicity
assume there are two elements spanning [0, L]. The coefficients can be denoted such that
the contributions coming from different elements are distinguished, but ignored here for
neatness. Then,

Ma =


2/3 5/6
5/6 2/3

2/3 5/6
5/6 2/3



a1

a∗2
a∗1
a2

 .

See Figure 3.1 and note the continuity between the elements. Here a∗1 and a∗2 are
essentially the same coefficients. Considering this the global mass matrix with two elements
is given by, 2/3 5/6

5/6 2/3 + 2/3 5/6
5/6 2/3


The stiffness matrix can be constructed following the same steps. Note that the required
boundary conditions are not reflected in these matrices yet. For the zero Dirichlet boundary
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x0 x1 x2 xj−2 xj−1 xj xj+1 xj+2 xN−2 xN−1 xN

φ0 φ1 φj−1 φj φj+1 φN−1 φN

x0 x1 xj xj+1 xN−1 xN

x0 xN

Figure 3.1: A visual representation of the different bases. The finite element methods
increase the degree of freedom by increasing number of elements while the eigenfunction
increase by adding more modes.

conditions, the ‘picture frame’ row and columns of the matrix would be truncated such
that it becomes, 2/3

2/3 + 2/3
2/3

 .
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The terms 2J
L

and L
2J

can be absorbed into these matrices to give,

(K +M)a = Mb.

3.2.2 Mass and Stiffness Matrix from Polynomial Basis

The basis is in this section will be constructed using the first six Legendre polynomials,

P0(x) = 1

P1(x) = x

P2(x) =
3x2 − 1

2

P3(x) =
5x3 − 3x

2

P4(x) =
35x4 − 30x2 + 3

2

P5(x) =
63x5 − 70x3 + 15x

8
,

As before, these functions are restricted to an element by the so-called shape functions,

Ni(ξ) =
Pi(ξ)− Pi−2(ξ)√

2(2i− 1)
, i ≥ 2 . (3.14)

The linear basis functions are also included as the shape functions for the approximation

N−1 =
1

2
(1− ξ) N1 =

1

2
(1 + ξ) .

A canonical element with these shape functions is shown in Figure 3.1. The approximate
solution û of (3.10) over the canonical element can be written as

v̂(ξ) = a−1N−1(ξ) + a1N1(ξ) +
5∑
i=2

aiNi(ξ) (3.15)

and the approximation v̂ for the test function v as

û(ξ) = c−1N−1(ξ) + c1N1(ξ) +
5∑
i=2

ciNi(ξ) . (3.16)
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Similarly to the case of the linear basis, progress from this stage requires two further steps
to complete the construction; compute the local mass and stiffness matrices and extend
these to the global matrices.

However, for the polynomial basis a specific ordering of the basis functions needs to be
set such that the inner products are placed in the matrices using the correct indices. Here
the ordering used is {N−1 N2 N3 N4 N5 N1}, which implies that the approximate solution,
v̂, is given by,

v̂ =
[
a−1 a2 a3 a4 a5 a1

]

N−1

N2

N3

N4

N5

N1

 , (3.17)

over the canonical element. Also, the local mass and stiffness matrices are given by,

m =

∫ 1

−1


N−1

N2

N3

N4

N5

N1


[
N−1 N2 N3 N4 N5 N1

]
dξ,

k =

∫ 1

−1


N ′−1

N ′2
N ′3
N ′4
N ′5
N ′1


[
N ′−1 N ′2 N ′3 N ′4 N ′5 N ′1

]
dξ.

Comparing with the representation introduced in Section 3.1, it can be noted that φ1 =
N−1, φ2 = N2, φ3 = N3, φ4 = N4, φ1 = N5, φ6 = N1, for each element in the finite
element method. Therefore let mij = 〈φi, φj〉 and kij = 〈φ′i, φ′j〉.

For the finite element method using the polynomial basis, the continuity again is pro-
vided by the linear functions. Hence the last step is similar to that of Section 3.2.1.
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Following these steps for a two-element case would give the following mass matrix,

m1,1 m1,2 · · · m1,5 m1,6

m2,1 m2,2 · · · m2,5 m2,6
...

...
. . .

... m1,6

m6,1 m6,2 · · · m6,5 m6,6 +m1,1

m2,1 m2,2 · · · m2,5 m2,6
...

...
. . .

... m1,6

m6,1 m6,2 · · · m6,5 m6,6 +m1,1


The stiffness matrix, K can be constructed by following a similar set of steps.

3.3 Approximating the PDE

The sample ODE (3.5) was approximated to provide a description of the Galerkin approx-
imation using two sets of finite element basis functions. In this section the approximation
of the PDE (3.1) will be derived with reference to these steps.

First construct the weak form by multiplying (3.1) by a test function, u ∈ H1
0 (Ω), and

integrate by parts to give,∫
Ω

vttudx = c2

∫
Ω

vxxudx+ β

∫
Ω

vxxttudx− cd
∫

Ω

vtudx

= −c2

∫
Ω

vxuxdx− β
∫

Ω

vxttuxdx− cd
∫

Ω

vtudx. (3.18)

Let {φi ∈ C0(Ω), i = 1, 2, · · · , n} be a set of functions such that the set Φn =
{φ1, φ2, ...φn} forms an n - dimensional basis and the span{Φn} forms an n - dimensional
subspace of H1

0. A solution vn ∈ span{Φn} for (3.18) can thus be given using the Fourier
coefficients as

vn =
n∑
i=1

〈v, φi〉φi. (3.19)

Recall the definitions of M = {M ∈ Rn×n : Mij = 〈φi, φj〉}, K = {K ∈ Rn×n : Kij =
〈φ′i, φ′j〉} and a = {a ∈ Rn×1 : ai = 〈v, φi〉}.Then a finite-dimensional representation of
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(3.18) is,

äj

∫
Ω

φiφjdx =− c2aj

∫
Ω

φ′iφ
′
j − βäj

∫
Ω

φ′iφ
′
jdx− cdȧj

∫
Ω

φiφjdx

(M + βK)ä =− c2Ka− cdMȧ. (3.20)

It now remains to compute these mass and stiffness matrices using

1. Finite element method with either the linear basis or the 6th order polynomial basis

2. Eigenfunctions of (2.24)

3.3.1 Approximation using Finite Element Method

Note that the construction of mass and stiffness matrices can be computed following the
steps in the ODE example exactly:

1. Divide the domain into J equal elements

2. Transform (3.18) onto the canonical element

3. Compute the local mass and stiffness matrices

4. Use the local mass and stiffness matrices to build the global matrices

3.3.2 Approximation using Eigenfunctions

The approximation using eigenfunctions does not fall in the category of finite-element meth-
ods (though can be thought of as a Galerkin method). To construct the finite-dimensional
approximation using the eigenfunctions, substitute

φj = sin(
πjx

L
)

in (3.20). Since the eigenfunctions are orthogonal, i.e.,

〈φi, φj〉 = 0, if i 6= j ,

the mass and stiffness matrices will be diagonal matrices. Each entry in the diagonal will
simply be Kii = 〈φi, φi〉 and Mii = 〈φ′i, φ′i〉. The use of eigenfunctions is basically a spectral
method approach, which under certain circumstances can lead to high level of accuracy
with even small degree of freedom [7, 43] .
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3.3.3 Results

In this section the finite element methods will be compared with each other to show why two
different order of basis was used for contructing the basis. To validate these comparison, the
partial differential equation was solved. In order to compare these different discretization
methods in computations, the number of degrees of freedom was fixed. For the continuous
Galerkin finite element method, the degree of freedom is n = p × J + 1, where p = 1 for
the linear basis and p = 5 for the polynomial basis, and J is the number of elements. For
the sine basis, it is the number of sine modes. The initial condition was,

v(x, 0) = sech

(
J

2

(
x− J

2

))
vt(x, 0) = 0.

The number of degrees of freedom was set to n = 151 for the finite element methods.
The solution was first computed using the sine basis with a degree of freedom set to 10n
and then the solutions obtained using the finite element methods were compared to this
reference solution. As Figure 3.2 shows, the finite element methods perform almost with
similar accuracy for this initial condition.

However, to demonstrate the advantage using a higher order basis for the finite element
method, consider the following initial conditions,

v(x, 0) = sech

(
J

2

(
x− J

2

))
sin

(
2πx

.5

)
vt(x, 0) = 0.

From Figure 3.3, it is clear that the finite element method with 6th-order polynomial basis
is significantly more accurate than the one with linear basis.

3.4 Summary

In this chapter, three finite-dimensional approximations of the original infinite-dimensional
system was constructed which leads to the following expression

(M + βK)ä = −c2Ka− cdMȧ+Mb. (3.21)
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Figure 3.2: The black line represents the solution obtained using the sine basis and a very
high degree of freedom (n=400). The red and blue lines correspond to solutions obtained
using the finite element methods with linear and 6th-order basis respectively, and n = 151.

Three sets of {M,K} were derived using three different choice of basis Φn,

Φsine
n =


sin(1πx̂)
sin(2πx̂)
sin(3πx̂)

...
sin(nπx̂

 Φlinear
n =


0

1
2
(1 + ξ)

1
2
(1 + ξ)

...
0

 Φ6thorder
n =



0
N2

N3

N4

N5

N1

N2

N3

N4

N5

...

...
N1

N2

N3

N4

N5

0



 1st element

 2nd element


J th element

.
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Figure 3.3: Comparison of solutions obtained using the three methods with a new initial
condition. The black line represents the solution obtained using the sine basis and a very
high degree of freedom. The red and blue lines correspond to solutions obtained using the
finite element method with linear and 6th-order basis respectively, and n = 151.
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Figure 3.4: Mass matrix structure from the three approximation methods.

Write (3.21) in a descriptor form to give,[
I 0
0 M + βK

] ˙[a
at

]
=

[
0 I

−c2K −cdM

] [
a
at

]
. (3.22)
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This is a finite-dimensional approximation of the PDE (Chapter 2, Equation 2.26),[
I 0
0 I − βD2

] ˙[v
vt

]
=

[
0 I

c2D2 −cdI

] [
v
vt

]
. (3.23)

Unlike (3.23), (3.22) can used to design controllers and estimator for the system. Whether
the design in finite dimensions would converge to the infinite-dimensional system is the
subject of many research topics [33, 36]. The convergence of the estimator is investigated
in [20]. In the current work, the focus will be on the comparisons of an estimator designed
using these three approximation methods.
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Chapter 4

Optimal State Estimation

4.1 Linear Time Invariant Systems

Consider the following abstract form of a system in finite dimensions,

ż(t) = Az(t) +Bu(t), z(0) = z0,

y(t) = Cz(t),
(4.1)

on the state space Z with the following description,

• state vector: z ∈ Rn×1

• state matrix: A ∈ Rn×n,

• input matrix: B ∈ Rn×1

• input: u ∈ R1×1

• observation matrix: C ∈ R1×n

• measurement: y ∈ R1×1 .

The solution to the system in (4.1) is [8],

z(t) = z0e
At +

∫ t

0

eA(t−τ)Bu(τ)dτ. (4.2)
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Definition 4.1. The matrix A is Hurwitz when all the eigenvalues of A have negative real
part.

Theorem 4.2. The system in (4.1) is internally stable when A is Hurwitz.

Definition 4.3. The pair is (A,C) detectable if there exists an F ∈ Rn×1 such that,
(A− FC) is Hurwitz.

4.2 Estimation

Definition 4.4. An estimate ẑ(t) of the states z(t) in (4.1) is such that, for any choice of
initial condition ẑ(0)

lim
t→∞
||ẑ(t)− z(t)|| = 0 . (4.3)

If the pair (A,C) is detectable this can be achieved by creating the following auxiliary
system,

˙̂z(t) = Aẑ(t) + F (ŷ − y), ẑ(0) = ẑ0. (4.4)

ŷ = Cẑ (4.5)

The estimator error is,

e(t) = z(t)− ẑ(t), (4.6)

and

ė(t) = ż(t)− ˙̂z(t) (4.7)

= (A− FC)e(t). (4.8)

The error will converge to zero if F is choosen so that (A−FC) is Hurwitz. This shows an
entire class of state estimators which has a special name called the Luenberger Observer.
Some approaches to select F lead to optimization problems, where F minimizes a certain
cost function.

4.3 Steady-State Continuous-Time Kalman Filter

A steady-state continuous-time Kalman filter will be derived in this section. First, a general
formulation is provided and then a model specific formulation is given where the descriptor
form of the original system is used.
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4.3.1 General Formulation

Consider the following linear system,

ż(t) = Az(t) +Gw1(t), z(0) = z0,

y(t) = Cz(t) + w2(t).
(4.9)

Here w1(t) and w2(t) represent the process noise and the measurement noise respectively.
The process noise in this system can be referred to the natural phenomenon which affects
the actual state of the system. Thus, a noise term is included in the governing partial
differential equation which leads to the above representation. Measurement noise refers to
the noise which is present in the sensor measurements and therefore effects the estimation.
The noise elements are assumed to be zero-mean white (uncorrelated) Gaussian random
variables with Q and R being the covariance matrices of respective noise elements. Here,
R is positive definite and Q is positive semi-definite. It can be noted that many naturally
occurring noise processes are in fact uncorrelated, for example blowing wind, and such an
assumption is based on physical basis.

The original discrete-time filter is formulated in [25]. A continuous time Kalman filter
is derived in [42] and [28] which is represented by,

ẋ(t) = Ax(t) + F (t)(y(t)− Cx(t)),

= (A− F (t)C)x(t) + F (t)y(t), x(0) = x0, (4.10)

where F is the Kalman gain given by,

F (t) = P (t)CTR−1, (4.11)

and,

Ṗ (t) = AP (t) + P (t)AT − P (t)CTR−1CP (t) +GQG. (4.12)

The gain F (t) minimizes the following cost functional,

Je =

∫ tf

0

IE[(z − x)T (z − x)]dt. (4.13)

Note that the system in (4.9) is an LTI system with stationary noise, i.e the matrices
A,C,G,Q and R are constants. This implies that under certain conditions a steady state
Kalman filter can be obtained and the Riccati equation in (4.12) becomes,

0 = AP + PAT − PCTR−1CP +GQG. (4.14)
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Theorem 4.5. (([42, Thm 27])) Let CCT = Q. If the pair (A,C) is detectable and the
pair (A,Q) is stabilizable there exists a unique positive semidefinite solution P to (4.14).
This leads to a stabilizing Kalman filter gain, that is the matrix (A − FC) in (4.10) is
Hurwitz.

The Kalman filter is also referred to as the minimum variance filter. The cost minimized
by a steady state Kalman filter is,

Je(z0) = lim
t→∞

IE{(z − x)(z − x)T} , (4.15)

where IE is the expectation. The minimum cost J over all the estimates ẑ is

min
ẑ
Je = P ,

where P is the positive semidefinite solution to (4.14). This cost function will be a subject
of discussion in the next chapter, where the requirement would be to define a scalar cost
function so that an optimal sensor location problem can be formulated.

Example 4.6 (A steady state Kalman filter). The following example is taken from [3,
Chapter 5]. Consider,

ż =

[
a1 0
0 a2

]
z + w (4.16)

y =
[
1 0

]
+ v (4.17)

Q =

[
1 0
0 0

]
(4.18)

R = 1 (4.19)

Note that the eigenvalues of this systems are a1 and a2. If a2 < 0, then (A,C) is detectable
and (A,Q′) is stabillizable. For instance, let a1 = 2 and a2 = −3. Then the positive
semi-definite solution to (4.14) is,

P =

[
2 +
√

5 0
0 0

]
. (4.20)
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The steady state Kalman gain is,

F =

[
2 +
√

5 0
0 0

] [
1
0

]
1

=

[
2 +
√

5
0

]
A− FC =

[
2 0
0 −3

]
−
[
2 +
√

5 0
0 0

]
λ(A− FC) = {−

√
5,−3}

Recall (4.9) and (4.10), and let the error in estimation be ξ̇(t) = ż(t)− ẋ(t). Then,

ξ̇(t) =

[
−
√

5 0
0 −3

]
ξ(t) + f(t),

where f(t) = w(t)− Fv(t). The solution to this ODE can be given as,

ξ(t) = ξ(0)e(A−FC)t + ḟ(t),

where ξ(t)→ ḟ(t), as t→∞ .

The function ḟ(t) is the residual error and depends on the noise characterisitcs w and v,
see [28, pp. 163–165].

4.3.2 Model Specific Formulation

In the previous section, a general formulation of the Kalman filter was provided. Since the
original system for this work is in a descriptor form, and the need to invert matrices during
computations should be avoided, the Kalman filter is now given for a descriptor form of a
dynamical system. Recall from Section 3.4, the approximation of the original system in a
descriptor form, [

I 0
0 M + βK

] ˙[a
at

]
=

[
0 I

−c2K −cdM

] [
a
at

]
. (4.21)

Define,

A1 =

[
I 0
0 M + βK

]
, A2 =

[
0 I

−c2K −cdM

]
, z =

[
a
at

]
.
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Note that the real part of the eigenvalues of the finite-dimensional system are all negative
due to the presence of damping. Thus, there does not exist any unstable modes and
the approximation satisfies the detectability and stabilizability conditions required for the
existence of a steady state filter.

Thus the Algebraic Riccati equation is,

A2PA
T
1 + A1PA

T
2 − A1PC

′R−1CPAT1 +GQGT = 0 (4.22)

and the solution to (4.22) is written as,

P =

[
P1 P3

P3 P4

]
.

Defining F = A1PC
TR−1, the optimal estimator is,

A1
d

dt
ẑ(t) = A2ẑ(t)− F (Cẑ(t)− y(t)) . (4.23)

In this case, F has two components, corresponding to the two components of the state z

F =

[
F1

F2

]
= A1PC

TR−1

=

[
I 0
0 M + βK

] [
P1 P3

P3 P4

] [
C1

C2

]
R−1

=

[
P1C1

[M + βK]P3C1

]
R−1 .
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Chapter 5

Optimal Sensor Location

In this chapter the optimal sensor location problem will be formulated. A description of
the sensor and the noise assumed are provided. Then some simulations are carried out to
show the convergence of the estimator, cost functions with respect to the sensor locations
and other important parameters.

The objective of the optimal sensor location problem is to find the optimal locations
for the sensor with respect to the cost function,

Je(z0) = lim
t→∞

IE{(z − x)(z − x)T} . (5.1)

The solution to the Riccati equation (4.22) depends on the sensor C, which in turn depends
on the sensor location `. For each location there is an associated minimal cost P (`). Note
that P is a symmetric positive definite matrix which represents the error covariance in the
case of Kalman filter. In order to formulate an optimal sensor location problem, a scalar
cost function that is representative of P would be more suitable. If the initial condition
is assumed to be random with zero mean then the nuclear norm, or the trace, of P is an
appropriate cost. See [34] where the dual problem is considered. It is easy to see that the
trace indeed would be an appropriate cost function. Recall the definition of P in (5.1) and
rewrite as

Pij = lim
t→∞

IE[(zi − ẑi)(zj − ẑj)].
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If the expected error is bounded then the trace is,

tr(P ) =
n∑
i=1

Pii

=
n∑
i=1

IE[(zi − ẑi)(zi − ẑi)]

= lim
t→∞

IE

[
n∑
i=1

(zi − ẑi)(zi − ẑi)

]
= lim

t→∞
IE[(z − ẑ)T (z − ẑ)]

= Jc.

Definition 5.1 (Optimal Sensor Location). An optimal sensor location is an element of
the set ` ∈ [0, L] such that Jc(`) is minimal.

5.1 Description of the Sensor

A wide variety of measurement techniques are applied in the field, often with their own set
of technique specific assumptions. For example, while wave height data are of very high
importance for various engineering purposes (e.g. wave stresses on harbour walls), they
are difficult to measure directly [19, 38]. In practice, significant wave height is measured,
which is the average of the highest one-third of waves [38]. Velocity measurements can
also be obtained by direct methods, though modern observational towers often employ
indirect methods such as acoustic Doppler (i.e. ADCPs). In this project, for simplicity,
the following form for the velocity measurement is assumed,

y(t) =

∫ L

0

fl(x)v(x, t)dx, l ∈ [0, L] (5.2)

where fl(x) = sech(15(x − l)) models the sensor. Let Π ∈ Rn be the projection of fl(x)
onto the n dimensional basis Φn. Then, the finite-dimensional sensor is,∫ L

0

fl(x)v(x, t)dx ≈
∫ L

0

(ΠΦn)(aTΦn)dx (5.3)

= Π

(∫ L

0

ΦnΦT
ndx

)
a .
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Recall the definition of the mass matrix,

Mij = 〈φi, φj〉.

Defining C1 = ΠM the sensor matrix is

C =
[
C1 01×n] .

5.1.1 Description of the Noise

The shape and behaviour of the noise assumed in the model is crucial for an optimal sensor
location problem. As such, three different noise models were considered in this project.
The time characteristics of the noise were mentioned in Section 4.3 where the Kalman filter
was formulated. For the spatial characteristics, two different shapes are considered in this
study.

5.1.2 Noise Type I

The first form of the noise considered here is a localized noise and is modelled by the same
function that was used for the sensor,

g(x, t) = d(x)w1(t), (5.4)
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where d(x) = sech(15(x − x0)). This noise is localized at x0 ∈ [0, 5]. Unless mentioned
otherwise, x0 is arbitrarily selected to be 1.5. It is intuitive that the optimal sensor location
for such a noise might be exactly where this disturbance is added. Thus although this is
clearly not a realistic choice, it allows the convenience for a comparison of the computational
methods for locating the optimal sensor location. With this noise the finite-dimensional
representation of the system is,[

I 0
0 M + βK

]
ż(t) =

[
0 I

−c2K −cdM

]
z(t) +

[
0

GM

]
w1(t), (5.5)

y(t) = Cz(t) + w2(t). (5.6)

5.1.3 Noise Type II

As the second noise model a the following function was used,

g(x, t) =
m∑
j=1

bj(t) sin

(
jπx

L

)
, (5.7)

where b = {bi(t), i = 0, 1, 2..m} are the time dependent co–efficients. Each of these co–
efficients is a random variable and are selected such that g(x, t) is a white Gaussian noise.
The variance can be choosen to increase or decrease with mode number. The former would
imply noise in electronic equipments where the noise is greater at higher frequencies while
the latter would be more representative of a turbulence type noise.

Let w1(t) =
[
0 b

]T
. Then, the representation of the system in this case is,[

I 0
0 M + βK

]
ż(t) =

[
0 I

−c2K −cdM

]
z(t) +

[
0 0
0 M

]
w1(t), (5.8)

y(t) = Cz(t) + w2(t). (5.9)

This noise type represents the physical nature of a noise where the disturbance is greater
at higher frequencies.

5.2 Numerical Results

In this section the numerical results are presented for the optimal sensor location problem
in using a Kalman filter for the linear dispersive equation (2.24). Results are shown to
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indicate the convergence of the estimator calculated from the three discretization methods
and also the cost function with respect to sensor locations.

Recall that the cost function which was introduced at the beginning of this chapter
was for a steady state filter and hence it is not a function of time. However, in order to
be practical, it is required that this steady state filter is simulated over time assuming
real-time data. This however requires a function that would be representative of this cost
for a given sensor location. Recall the cost function in (5.1). For simulations, the following
time dependent cost function will be used as well.

Je(`, t) = IE[(z(t)− ẑ(t))T (z(t)− ẑ(t))], (5.10)

For computing the optimal sensor location a naive approach was used where the spatial
domain was discretized with resolution .01 units and a sensor could be placed at each of
these locations. The resulting ARE was solved and the trace of the solution was recorded
and normalized using the maximum of all locations to give the cost with respect to the
sensor location. Then the location corresponding to the minimum value was recorded as
the optimal location.

H 0.05 m
L 5.0 m
g 9.81 ms−2

cd 0.0025 m
c
√
gH ms−1

β H2/6 m2

Table 5.1: Physical Constants

The constants selected were such that a reasonable physical system is represented. As
long as, H

L
<< 1 any H or L should be fine. The value of g is 9.81 ms−2 which is the

gravitational acceleration. The damping constant was selected in an ad–hoc manner such
that the dissipation is not very high, that is the system does not reach a steady–state very
fast.

5.2.1 MATLAB Riccati Solver

Solving the Algebraic Riccati Equation (4.22) is one of the most important steps in obtain-
ing the results. This is the numerical procedure where the structure of the state matrices
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derived from different methods might play an important role. The MATLAB function
CARE was used to solve the ARE. A desktop computer system with a 2.5GHz Intel Core
i5 processor was used for the computations. All the methods yielded residues less than
10−11. The time taken to solve the ARE was almost the same for all the methods, as shown
in Figure 5.2. This is a consequence of the similar sparsity structure shown in Figure 3.4.

5.2.2 Convergence of the Kalman filter

Recall the expression of the gain of the filter in Section 4.3.2, which is rewritten below,

F =

[
F1

F2

]
=

[
P1C1

[M + βK]P3C1

]
R−1 .

In order to show the convergence of the estimator for the different methods with respect
to the degrees of freedom, the Kalman gain can be regarded as a function of the spatial
variable, x. Using the vector of the basis functions Φn this function can be reconstructed
as

H(x) = F1Φn(x) + [M + βK]−1F2Φn(x) .

The relative difference calculated as,

||Hsin(x)−Hfem(x)||
||Hsin(x)||
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Figure 5.2: Time taken to solve ARE in MATLAB
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in the L2-norm between H(x) for the linear basis and the sine basis with n = 101 was
6.77× 10−3. The same for the sine basis and the 6th order polynomial basis with n = 101
was 8.49 × 10−3. This indicates that all three methods yield solutions that converge to
the same Kalman gain. However, Figure 5.3 shows that the estimator with the sine basis
converges much faster than the other two methods. The two finite element methods show
similar rate of convergence with degrees of freedom.

0 1 2 3 4 5
−5

0

5

10

15

20

x

H
(x

)

 

 
n = 51

n = 61

n = 71

n = 81

0 1 2 3 4 5
−5

0

5

10

15

20

x

H
(x

)

 

 
n = 31

n = 41

n = 51

n = 71

0 1 2 3 4 5
−5

0

5

10

15

20

x

H
(x

)

 

 
n = 10

n = 20

n = 30

n = 40

(i)

(ii)

(iii)

Figure 5.3: H(x) on - (i) Sine basis (ii) FEM with linear basis (iii) FEM with 6th Order
basis . (The sensor location was arbitrarily selected to be f2.5 and G = f1.5. The noise
parameters are Q = 10 and R = 0.01. )

From Sections 5.2.2 and 5.2.1 it is clear that the performance of the sine basis is
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Figure 5.4: Normalized cost vs sensor location with increasing number of modes in sine
basis and Noise Type 1. The optimal location is where the cost is minimum (x = 1.5).
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Figure 5.5: Optimal sensor locations with an increasing order of approximation for Noise
Type 1.

marginally better than the finite element methods mainly because appropriate accuracy
levels can be reached with a smaller degree of freedom. However, all the methods do
converge to the same filter.
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Figure 5.6: State Estimation (Noise Type 1)- Solid lines represent true states and dashed
lines represent estimated states. Row 1: Optimal sensor location (` = 1.5), Row 2: Non-
optimal sensor location. (` = 2.5) The noise parameters are Q = 1 and R = .001.

5.2.3 Optimal Sensor Location (Noise Type I)

The numerical results in Figure 5.4 indicate that the cost function is converging to the
true cost function where the minimum point corresponds to the optimal sensor location.
Similar results were obtained for different approximation methods, but convergence was
slower than for the sine basis. All the methods were found to converge to the cost function
where the optimal sensor location is given by ` = 1.5, which co-incides with the location
where noise is added.

The Kalman gain calculated with the sine basis with 20 degrees of freedom was used to
investigate the effect of different sensor locations. For comparison, a set of system states
was derived using the sine basis and n = 40. In Figure 5.6, the estimation results for two
sensor locations are shown. The estimator clearly provides a better estimate of the state
when placed optimally. This is also evident in Figure 5.7.

The estimator is sensitive to the sensor noise variance R. The calculated optimal sensor
locations for different values of R are shown in Figure 5.8. For higher values of the variance
R the cost is less sensitive to the location of the sensor. This may be because with the
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Figure 5.8: Cost function for different values of R and Q = 1 (Noise Type 1). Optimal
sensor location given by ` = 1.5 for all.

same sensor but more noise, it will take more time for the estimated states to converge to
the required states, and local spatial information becomes less important.
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Figure 5.9: Cost functions for Noise Type 2 with increasing degree of freedom

5.2.4 Optimal Sensor Location (Noise Type II)

The optimal sensor location for Noise Type II is a more interesting problem since the noise
is not localized and hence there exists no obvious location to place the sensor. In this
simulation, noise is added to all the state components as shown in (5.8). Then the optimal
sensor location is checked for the estimators designed with increasing degree of freedom
using all the approximation schemes. The assumed true system here is again constructed
using the sine basis and n = 200. The variance of the disturbance in the sensor is R = .0001
implying a good quality sensor for the estimation. Although there exists good and bad
locations. Due to the physical shape of the noise, there does not exist very distinctive
locations where the cost is significantly lower than any other point. See Figure 5.9 where
the cost functions using an increasing number of modes for all the approximation methods
are shown. However, placing the sensor in a good location still improves the estimation
process as shown in Figure 5.10.
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Figure 5.10: State Estimation (Noise Type 2)- Solid lines represent original states and
dashed lines represent estimated states. Row 1: Good sensor location (` = 2.45), Row 2:
Poor sensor location. (` = 2.5).

5.2.5 Optimal Sensor Location (Turbulence as Noise)

With the noise selection in the previous section, the results of optimal sensor location show
that there is significant improvement in the estimation when the sensor is placed optimally.
However, none of the noise model considered is very physical - one is very localized where
the optimal sensor location is intuitive, and the other being very distributed where still an
optimal location is still more efficient.

The following noise model is a step towards a more physical case. The noise model is
taken from [13, Section F] and all the approximation methods are used in this case. First
the optimal sensor location for all the three methods were computed with increasing degree
of freedom and it is shown in Figure 5.13. The turbulence noise model is formulated as
show below. Let,

φ(x) =
1√
2π
e

−x2
2 , Φ(x) =

1

2

[
1 + erf

(
x√
2

)]
,

and

f(x) = 2φ(
x− ζ
κ

)Φ(α
x− ζ
κ

) .
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Figure 5.11: Physical shape of the turubulence type noise model

Then,

d(x) = sin(
2πx

L
)f(x) .

The optimal sensor locations from all the methods converged to the location x = .95 for the
optimal location. Note that the physical shape of the turbulence noise model also reaches
a maximum at x = .95.
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Figure 5.12: Cost vs sensor location for the turbulence noise model using sine basis and
40 modes
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Figure 5.13: Optimal sensor locations with an increasing order of approximation for the
turbulence noise model

All the methods converge to a single location, with the eigenfunctions converging the
fastest in terms of the degree of freedom. This location was selected as the sensor location
for an estimation process with all the methods of approximation. The degree of free-
dom where the finite element method with the polynomial basis converged to the optimal
location was selected as the degree of freedom for all.
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and a non-optimal sensor location for the turbulence noise model
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Chapter 6

Conclusions and Future Work

It was found that for certain descriptions of the physical system there exists certain lo-
cations where placing the sensor would result in a much better estimation. This location
depends on various parameters of the noise model. The noise model consists of the spatial
and transient characteristics, where the spatial structure played a more vital role since the
noise was assumed stationary. Therefore, the more accurate the model of noise is the more
reliable these results are. For a localized noise, the optimal location was always found to
be where the noise is added, while for a distributed case, the optimal location was close to
the center from either side of it. The variances of the process and sensor noise affect the
significance of an optimal sensor location. For example if the sensor quality is bad, then
the local spatial information will become less important and although an optimal sensor
location might exist, it will not show significant improvements in estimation. On the other
hand, if the process noise is very high relative to the sensor noise, then a sensor should be
placed optimally to achieve better performance from the estimator.

In this project, the objective was to compare three discretization methods for the calcu-
lation of an optimal sensor location of a Kalman filter for estimating a linear dispersive wave
equation. A large portion of the project was focused towards comparing the discretization
methods. Although, the availability of eigenfunctions should by itself justify the selection
of this basis, finite element methods become important when the eigenfunctions are not
available. The eigenfunctions are not available for the same model on a complex shaped
lake for instance. That is why these numerical methods were considered for a system where
the eigenfunctions are available. Certainly, the eigenfunctions give better results than the
finite element methods, although the latter were reasonable accurate as well. The major
issue with the finite element methods is that they require large matrices for approximat-
ing the system. MATLAB warnings were issued for few cases while solving the Algebraic
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Riccati Equation using a finite element approximation scheme. This might suggest the use
of better algorithms to solve the ARE.

Finally, the project has many areas where it can be improved. To begin with, an opti-
mization rule to guide the search for a discretized spatial domain for the optimal location
would be very effective. In [10] the authors introduce such an optimization algorithm
for the optimal actuator location problem. Secondly, the main model was constructed
through simplifications, the most crucial of which is the linearization. Athough linearizing
simplifies the problem, the physical system remains non-linear and the discrepancies have
the potential to make the results insignificant in an applicative framework. There exists
well-known estimation techniques for non-linear systems, such as the Extended Kalman
filter [21], the unscented Kalman filter [45] or the sliding-moder observer [11]. This work
is aimed at playing an instructive role towards a more useful construction of this problem.
Another topic, where the problem could be improved is by using the full set of equations
for the surface height and velocity (avoiding step 2.24). This will allow the adoption of
displacement sensors among other type of sensors.
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Appendix A

Technical Background

A.1 The inverse operator in Section 2.3.1

Consider the operator H = I − βD2 with I being the identity operator and D(·) = ∂
∂x

(·).
Let the domain,

D(H) = {v ∈ L2(0, L) | v, dv
dx

are absolutely continuous,

d2v

dx2
∈ L2(0, L) and v(0) = v(L) = 0} .

This operator is in a Sturm-Liouville form. Therefore to obtain L−1, the following steps
are required [37].

Step 1 Solve Hv(x) = v(x) − βv′′(x) = 0 for the boundary conditions separately. Let
α = 1√

β
. The solutions are,

v1(x) =eαx − e−αx, =⇒ v1(0) = 0

v2(x) =eαx − e2Lαe−αx, =⇒ v2(L) = 0.
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Step 2 Calculate the Wronskian,

w(x) =

∣∣∣∣v1 v2

v′1 v′2

∣∣∣∣
=

∣∣∣∣ eαx − e−αx eαx − e2Lαe−αx

αeαx + αe−αx αeαx + αe2Lαe−αx

∣∣∣∣
= αe2αx + αe2Lα − α− αe2Lαe−2αx − αe2αx − α + αe2Lα + αe2Lαe−2αx

= 2αe2Lα − 2α .

Step 3 Construct the associated Green’s function,

H−1v(x) = Tv(x) =

∫ L

0

g(x, y)v(y)dy,

where

g(x, y) =
1

−βw(0)

{
v1(x)v2(y), 0 ≤ x ≤ y ≤ L
v2(x)v1(y), 0 ≤ y ≤ x ≤ L

.

Note that Tv(0) = 0 since,

Tv(0) =

∫ 0

0

v2(x)v1(y)v(y)dy +

∫ L

0

v1(0)v2(y)v(y)dy,

= v1(0)

∫ L

0

v2(y)v(y)dy.

= 0.

Similarly, Tv(L) = 0 since,

Tv(L) =

∫ L

0

v2(x)v1(y)v(y)dy +

∫ L

L

v1(0)v2(y)v(y)dy,

= v2(L)

∫ L

0

v1(y)v(y)dy.

= 0.
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Appendix B

MATLAB Code

This chapter contains some of the MATLAB functions that was written by the author for
the project. The entire software can be found at www.github.com/tawsifkhan.

function [L, basisE]=myKalman(method1,method2)
% This function can be used to simulate a Kalman filter. The two arguments
% method1 and method2 refer to the basis of the estimator and the original
% systems respectively.
% This file will assume Noise Type 2. For Noise Type 1, minor changes are
% needed.
noise = load('noise.mat'); % Load Noise file for simulation
lArray= 2.5;%.5:.05:4.5; % Array of sensor locations/Single location

saveOSL = 0;
saveSIM = 1;

specs= getSpecs; % Problem specifications

tt=0:specs.dt:specs.T; % Time span

switch lower(method1) % This will make sure x-values are same for
% all methods

case {'sine'}, matchN = specs.sineN;
case {'linear'}, matchN = specs.linearN;
case {'poly'}, matchN = specs.polyN;

end

basisE=basisSelect(method1,matchN); % Basis for the estimator
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basisO=basisSelect(method2,matchN); % Basis for the true system

[A1 E,A2 E] = getStateMatrix(method1); % Estimator matrix A = inv(A1)*A2
[A1 O,A2 O] = getStateMatrix(method2); % True matrix A = inv(trueA1)*trueA2

nE = specs.n; % Modes in Estimator
nO = specs.nTrue; % Modes in Original/True

m = size(tt,2);
x = linspace(0,specs.J,matchN+1); % x-values for estimate solution
x = getGaussianPoints(x,matchN); % x-values gaussian points

Zo0= noise.Zo0; % Initial conditions are defined
Ze0= noise.Ze0(1:2*nE); % in the noisefile so that
Zo0 = [Zo0(1:nO); zeros(nO,1)]; % the program can compare different

% methods with similar conditions

G = [zeros(nO,nO) zeros(nO,nO); zeros(nO,nO) basisO.M]; % G matrix
Ge= [zeros(nE,nE) zeros(nE,nE); zeros(nE,nE) basisE.M];

for sL = 1:size(lArray,2) % Search for optimal ...
location
l = lArray(sL);
[C1 E,C2 E] = mySensor2(method1,l); % Estimator matrix C ...

=[C1 C2]
[C1 O,C2 O] = mySensor2(method2,l); % True matric C = ...

[trueC1 trueC2]

% Computing the Q matrix for estimator. The size is smaller than the
% true system noise and hence it needs to be taken care of.
for i=1:nE

Q E(i,i)=noise.QQ(i,i);
Q E(nE+i,nE+i)=noise.QQ(nO+i,nO+i);

end

Q = Ge*(Q E*(Ge'));
R = noise.RR;
S = zeros(nE+nE,1);

sprintf('Solving Riccati Equation')
[X,¬,L,¬] = care(full(A2 E)',[C1 E C2 E]',(Q+Q')/2,R,S,full(A1 E)');
cost(sL) = trace(X);
L = L'; % Kalman gain
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% The following section will solve a finite time kalman filter. It will
% require the m-file named myKalman FT

% options3 = odeset('Mass',A1 E(:));
% P init = cov(noise.Ze0*noise.Ze0');
% P init = reshape(P init,size(A1 E));
% [¬,P] = ode15s(@(t,P) myKalman FT(t,P,full(A1 E),full(A2 E),[C1 E ...

C2 E],Q,R,X),tt,P init);
%
% save('FTvsINFTNONOPT.mat')

end

if saveOSL==1
jj = num2str(specs.n);
filename = strcat('MAY 20 ',jj,'.mat');
save(filename)
return

end

% Construct the ODE for the original system
original = @(t1,Z) A2 O*Z + G*(interp1(tt,[noise.w1]',t1,'spline'))';
options1 = odeset('Mass',A1 O);

sprintf('Solving Original System')
[¬, Z] = ode15s(original,tt,Zo0,options1);
Z = Z';
originalStates = Z(1:nO,:); % Recall velocity-[v(t) dot(v(t)]

% Compute measurements
for i=1:size(tt,2), y(:,i) = C1 O*Z(1:nO,i)+noise.w2(1,i); end

% Construct the ODE for the Estimator
estimator = @(t2,Ze) (A2 E-L*[C1 E C2 E])*Ze+ L*(interp1(tt,y,t2,'spline'));
options2 = odeset('Mass',A1 E);

sprintf('Solving Estimator')
[¬,Ze]= ode15s(estimator,tt,Ze0,options2);
Ze= Ze';
estimatedStates = Ze(1:nE,:);

sprintf('Solving Original System Without Noise')
true = @(t1,ZZ) A2 O*ZZ;%+ GT*(interp1(tt,w1,t1,'spline'))';
options3 = odeset('Mass',A1 O);
[¬,ZZ]= ode15s(true,tt,Zo0,options3);
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ZZ=ZZ';
trueStates = ZZ(1:nO,:);
if saveSIM==1

jj = num2str(specs.n);
filename = strcat('MAY 21 NonOptimal',jj,'.mat');
save(filename)
return

end

% Simulate the estimation
i=0;
for ii=1:size(tt,2)

i=i+1;
[noiseF,x] = reconstructSineTrue(noise.w1(nO+1:end,ii),basisO,matchN);
[vOriginal,x] = reconstructorSelect(originalStates(:,ii),basisO,...

method2,matchN);
[vEstimate,x] = reconstructorSelect(estimatedStates(:,ii),basisE,...

method1,matchN);
[vTrue, xT] = reconstructorSelect(trueStates(:,ii),basisO,...

method2,matchN);

figure(10)
clf
set(gcf, 'color', [1 1 1])
subplot(3,1,1)
plot(x,vTrue,'r-',x,vOriginal,'b-','LineWidth',2)
axis([0 specs.J -.5 .5])
grid on

ylabel('Displacement')
xlabel('x')
subplot(3,1,2)
plot(x,noiseF,'LineWidth',2)
axis([0 specs.J -.5 .5])
grid on
ylabel('Displacement')
xlabel('x')

subplot(3,1,3)
plot(x,vOriginal,'b-',x,vEstimate,'r-','LineWidth',2);
axis([0 specs.J -2 2])
grid on
ylabel('Displacement')
xlabel('x')
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drawnow
end
end
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function [C1, C2]=mySensor2(method,l)

% Returns coloumn vector of C 1x2n of the sensor
% n is the number of modes
% Recall state vector = [v(t) dot{v(t)}]
specs=getSpecs;

actualSensor = @(x) sech(15*(x-l)); %l is location of the sensor.
plotFlag=0 ;

switch lower(method)
case {'sinetrue'}

xg = getGaussianPoints(linspace(0,specs.J,specs.sineTrueN+1)...
,specs.sineTrueN);

basis=getBasisSineTrue(specs.sineTrueN);
coEffs=getCoEffsSineTrue(actualSensor(xg'),basis);

case {'sine'}
sprintf('Projecting Sensor on Sine Basis')
xg = getGaussianPoints(linspace(0,specs.J,specs.sineN+1)...

,specs.sineN);
basis=getBasisSine;
coEffs=getCoEffsSine(actualSensor(xg'),basis);

case {'linear'}
sprintf('Projecting Sensor on Linear Basis')
xg = getGaussianPoints(linspace(0,specs.J,specs.linearN+1)...

,specs.linearN);
basis=getBasisLinear;
coEffs=getCoEffsLinear(actualSensor(xg'),basis);

case {'poly'}
sprintf('Projecting Sensor on Poly Basis')
xg = getGaussianPoints(linspace(0,specs.J,specs.polyN+1)...

,specs.polyN);
basis=getBasisPoly;
coEffs=getCoEffsPoly(actualSensor(xg'),basis);

end

if plotFlag==1
figure(1)
subplot(2,1,2)
[constructedSensor,xSensor]=reconstructorSelect(coEffs,basis,method);
set(gcf,'DefaultLineLineWidth',2,'DefaultTextFontSize',12,...

'DefaultTextFontWeight','normal','DefaultAxesFontSize',12,...
'DefaultAxesFontWeight','normal','color','w');
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hold on
plot(xSensor,constructedSensor,'g')
xlabel('x')
ylabel('f(x)')
axis([0 specs.J -0.5 1.5])
title('Model Sensor')
grid on

end

% Assemble C matrix
sizeCoEffs=size(coEffs,1);
C1=coEffs'*basis.M;
C2=zeros(1,sizeCoEffs);
end
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Below is the program that will generate the basis using the 6th-order polynomial func-
tions. There are two more similar functions generating the sine and linear basis. The
following function was written by Professor Marek Stastna and was modified by the au-
thor.

% Function defines the polynomial basis on a canonical element
% and returns the shape functions, mass and stiffness matrices.

function [basis, kl, ml] = getBasisPoly

specs=getSpecs;
x=linspace(0,specs.J,specs.polyN+1);
xi=[-0.932469514203152 -0.661209386466265 -0.238619186083197 ...

0.238619186083197 0.661209386466265 0.932469514203152];
wts=[0.17132449237910 0.360761573048139 0.467913934572691];
wts=[wts wts(3:-1:1)];
m = length(xi);
% Legendre Polynomials
p0=ones(size(xi));
p1=xi;
p2=(1/(1+1))*((2*1+1)*xi.*p1-1*p0);
p3=(1/(2+1))*((2*2+1)*xi.*p2-2*p1);
p4=(1/(3+1))*((2*3+1)*xi.*p3-3*p2);
p5=(1/(4+1))*((2*4+1)*xi.*p4-4*p3);

% Derivatives using the recursive method
p0p=0;
p1p=1;
p2p=(2*1+1)*p1+p0p;
p3p=(2*2+1)*p2+p1p;
p4p=(2*3+1)*p3+p2p;
p5p=(2*4+1)*p4+p3p;

p0pp=0;
p1pp=0;
p2pp=3;
p3pp=15*xi;
p4pp=0.5*105*xi.*xi-0.5*15;
p5pp=0.5*315*xi.*xi.*xi-0.5*105*xi;

% Shape functions
nm1=0.5*(1-xi);
np1=0.5*(1+xi);
n02=(p2-p0)/sqrt(2*(2*2-1));

65



n03=(p3-p1)/sqrt(2*(2*3-1));
n04=(p4-p2)/sqrt(2*(2*4-1));
n05=(p5-p3)/sqrt(2*(2*5-1));

nm1p=-0.5;
np1p=0.5;
n02p=(p2p-p0p)/sqrt(2*(2*2-1));
n03p=(p3p-p1p)/sqrt(2*(2*3-1));
n04p=(p4p-p2p)/sqrt(2*(2*4-1));
n05p=(p5p-p3p)/sqrt(2*(2*5-1));

nm1pp=0;
np1pp=0;
n02pp=(p2pp-p0pp)/sqrt(2*(2*2-1));
n03pp=(p3pp-p1pp)/sqrt(2*(2*3-1));
n04pp=(p4pp-p2pp)/sqrt(2*(2*4-1));
n05pp=(p5pp-p3pp)/sqrt(2*(2*5-1));

% store the polynomials for a more elegant way of defining the k matrix

myps=zeros(m,6);
mypsp=zeros(m,6);
mypspp=zeros(m,6);

myps(:,1)=nm1;
myps(:,2)=np1;
myps(:,3)=n02;
myps(:,4)=n03;
myps(:,5)=n04;
myps(:,6)=n05;

mypsp(:,1)=nm1p;
mypsp(:,2)=np1p;
mypsp(:,3)=n02p;
mypsp(:,4)=n03p;
mypsp(:,5)=n04p;
mypsp(:,6)=n05p;

mypspp(:,1)=nm1pp;
mypspp(:,2)=np1pp;
mypspp(:,3)=n02pp;
mypspp(:,4)=n03pp;
mypspp(:,5)=n04pp;
mypspp(:,6)=n05pp;
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% Assemble the local matrices
% Set Global Order: nm1 n01 n02 n03 n04 np1
% Map the local matrices to the global matrices

K=(zeros((specs.polyN)*5+1));
M=(zeros((specs.polyN)*5+1));

% gli stores the indices for mapping local to global matrices
for kk=1:specs.polyN, gli(kk,:)=[1+(kk-1)*5, 1+(kk)*5, ...

(kk-1)*5+2:(kk-1)*5+5]; end
for kk=1:specs.polyN

xm=x(kk); xp=x(kk+1); dx=xp-xm; %xvals=xm+(xi+1)*0.5*dx;
% Define the local matrices: kl,ml
for ii=1:6,

for jj=1:6,
kl(ii,jj)=(2/dx)*sum(wts.*(mypsp(:,ii)').*(mypsp(:,jj))');
ml(ii,jj)=(dx/2)*sum(wts.*(myps(:,ii)').*(myps(:,jj))');
i kk=gli(kk,ii); j kk=gli(kk,jj);
K(i kk,j kk)=K(i kk,j kk)+kl(ii,jj);
M(i kk,j kk)=M(i kk,j kk)+ml(ii,jj);
end

end
end
K(1,:) =[1 zeros(1,(specs.polyN)*5)]; K(:,1) =[1 ...

zeros(1,(specs.polyN)*5)]';
K(end,:) =[zeros(1,(specs.polyN)*5) 1]; K(:,end) ...

=[zeros(1,(specs.polyN)*5) 1]';
M(1,:) =[1 zeros(1,(specs.polyN)*5)]; M(:,1) =[1 ...

zeros(1,(specs.polyN)*5)]';
M(end,:) =[zeros(1,(specs.polyN)*5) 1]; M(:,end) ...

=[zeros(1,(specs.polyN)*5) 1]';
K = sparse(K);
M = sparse(M);

basis = struct('elements',specs.polyN,... % Number of Elements
'ps',myps,... % Basis functions
'psp',mypsp,... % Spatial Derivatives
'pspp',mypspp,... % 2nd Spatial Derivatives
'M',M,... % Mass Matrix
'K',K,...
'dx',dx); % Stiffness Matrix

end
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