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Abstract

It has been observed by S. Rayan that the complex projective surfaces that potentially
admit non-trivial examples of semistable co-Higgs bundles must be found at the lower end
of the Enriques-Kodaira classification. Motivated by this remark, we study the geometry
of these objects (in the rank 2 case) over Hirzebruch surfaces, giving special emphasis to
P1 × P1. Two main topics can be identified throughout the dissertation: non-emptiness of
the moduli spaces of rank 2 semistable co-Higgs bundles over Hirzebruch surfaces, and the
description of these moduli spaces over P1 × P1.

The existence problem consists in determining for which pairs of Chern classes (c1, c2)
there exists a non-trivial semistable rank 2 co-Higgs bundle with Chern classes c1 and
c2. We approach this problem from two different perspectives. On one hand, we restrict
ourselves to certain natural choices of c1 and give necessary and sufficient conditions on c2

that guarantee the existence of non-trivial semistable co-Higgs bundles with these Chern
classes; we do this for arbitrary polarizations when c2 ≤ 2. On the other hand, for arbitrary
c1, we also provide necessary and sufficient conditions on c2 that ensure the existence of non-
trivial semistable co-Higgs bundles; however, we only do this for the standard polarization.

As for the description of the moduli spaces Mco(c1, c2) of rank 2 semistable co-Higgs
bundles over P1 × P1, we restrict ourselves to the standard polarization. We then discuss
how to use the spectral construction and the Hitchin correspondence to understand generic
rank 2 semistable co-Higgs bundles. Furthermore, we give an explicit description of the
moduli spaces when c2 = 0, 1 for certain choices of c1. Finally, we explore the first order
deformations of points in the moduli space Mco(c1, c2).
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Chapter 1

Introduction

A Higgs bundle on a complex projective manifold X is a pair (E,Φ) consisting of a holo-
morphic vector bundle E over X together with a Higgs field Φ: E → E⊗T∨ taking values
in the holomorphic cotangent bundle T∨ of X such that Φ ∧ Φ ∈ H0(EndE ⊗ ∧2T∨) is
identically zero. Higgs bundles were introduced almost 30 years ago by Hitchin in [19]
and by Simpson in his PhD dissertation [30]. These objects have several interesting ap-
plications to both physics and mathematics, and have been extensively studied by many
other authors, including Bradlow, Garćıa-Prada, Gothen, Wentworth; see for instance
[7, 8, 14, 15, 16, 20, 31, 32, 35]. Co-Higgs bundles, on the other hand, are holomorphic
vector bundles E paired with Higgs fields Φ: E → E⊗T taking values in the holomorphic
tangent bundle T of X, instead of its holomorphic cotangent bundle T∨, and satisfying the
same integrability condition Φ ∧ Φ = 0 ∈ H0(EndE ⊗ ∧2T ). Their study is fairly recent.
They first appeared in the work of Gualtieri [17], and were further studied by Hitchin in
[22, 23] and Rayan in [27, 28, 29]. As Rayan pertinently points out in his PhD disserta-
tion [27], the study of co-Higgs bundles goes beyond idle curiosity, as these objects appear
naturally in geometry; for example, in generalized complex geometry and in the theory of
twisted quiver bundles.

In the realm of generalized complex geometry, as introduced by Hitchin in [21] and
developed by Gualtieri in [17], co-Higgs bundles emerge as generalized holomorphic vector
bundles over complex manifolds (regarded as generalized complex manifolds). Indeed,
as defined by Gualtieri in [17], a generalized holomorphic bundle on a complex manifold
(regarded as a generalized complex manifold) is a smooth vector bundle E together with
a differential operator D̄ : C∞ → C∞(E ⊗ T̄∨ ⊕ T ) such that D̄(fs) = ∂̄fs + fD̄s for
any smooth function f and smooth section s, and D̄2 = 0 ∈ C∞(EndE ⊗ ∧2(T̄∨ ⊕ T )).
A consecuence of the definition is that D̄ can be written as D̄ = ∂̄ + Φ, for an operator
∂̄ : C∞(E)→ C∞(E ⊗ T̄∨) and a linear operator Φ : C∞(E)→ C∞(E ⊗ T ) satisfying:

1. ∂̄2 = 0 ∈ C∞(EndE ⊗ ∧2T̄∨),

2. ∂̄Φ = 0 ∈ C∞(EndE ⊗ T ⊗ T̄∨) and

3. Φ ∧ Φ = 0 ∈ C∞(EndE ⊗ ∧2T ).

Condition (1) means that E is a holomorphic vector bundle, condition (2) says that Φ is a
holomorphic section of EndE ⊗ T and condition (3) implies that Φ is integrable. Hence,
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the generalized holomorphic structure of E yields naturally the structure of a co-Higgs
bundle.

Co-Higgs bundles, just as Higgs bundles, also fit in the realm of twisted quiver bundles
as developed by Álvarez-Cónsul and Garćıa-Prada in [1]. A quiver Q consists of a set Q0 of
vertices v, v′, . . . and a set Q1 of arrows a : v → v connecting the vertices. Given a quiver
and a compact Kähler manifold, a quiver bundle is defined by assigning a holomorphic
vector bundle Ev to a finite number of vertices, and a homomorphism Φa : Ev → E ′v to
a finite number of arrows. If a collection of holomorphic vector bundles Ma parametrized
by the set of arrows is fixed, and the morphisms Φa are twisted by the corresponding
bundles Ma, Φa : Ev ⊗Ma → E ′v, a twisted quiver bundle is obtained. Thus, a co-Higgs
bundle can be thought of as a quiver bundle formed by one vertex and one arrow (with the
homomorphism satisfying the integrability condition) whose head and tail coincide, and
the twisting bundle is the holomorphic cotangent bundle T∨.

Co-Higgs bundles come with a natural stability condition, analogous to the one discov-
ered by Hitchin in [19] for Higgs bundles, which allows the study of their moduli spaces.
Rayan has already given a complete characterization of (rank 2) semistable co-Higgs bun-
dles over Riemann surfaces, but very little is known about these objects in higher dimen-
sions. In his PhD dissertation [27] and in [28, 29], Rayan makes a thorough investigation of
semistable rank 2 co-Higgs bundles over the Riemann sphere and constructs some examples
over the projective plane. He also proves a non-existence result for non-trivial (i.e., non-
zero Higgs field) stable co-Higgs bundles over K3 and general type surfaces, suggesting that
some of the interesting examples must be found at the lower end of the Enriques–Kodaira
classification of (compact) complex surfaces. Motivated by this fact, in this dissertation,
we investigate rank 2 semistable co-Higgs bundles over Hirzebruch surfaces.

We organize this thesis as follows. Chapter 2 can be thought of as a foundational
chapter in the sense that we introduce most of the concepts that will play a central role in
the rest of this document. We begin by recalling the notion of slope stability for bundles
(in the sense of Mumford–Takemoto) and review some useful properties of stable bundles.
As this dissertation is concerned with Hirzebruch surfaces, we also introduce them here
and recall some of their properties. We then conclude the chapter with the introduction
of co-Higgs bundles and their appropriate Hitchin-type stability condition. Some basic
properties of co-Higgs bundles, that are immediate generalizations of the analogous results
for stable bundles, are also included. Finally, we offer a brief review of some known facts
of semistable co-Higgs bundles over curves and surfaces.

In Chapter 3, we explore the existence of rank 2 semistable co-Higgs bundles over
Hirzebruch surfaces in two directions. On the one hand, while considering arbitrary po-
larizations, we reduce the first Chern class c1 of the bundles by tensoring them with an
appropriate line bundle (Lemma 3.1), and give necessary conditions on their second Chern
class c2 in order to ensure the existence of non-trivial semistable co-Higgs pairs of rank 2
(Theorem 3.3). More precisely, let Fn denote the n-th Hirzebruch surface, and let F and
C0 denote the two classes of divisors that freely generate Pic(Fn) (here F denotes a general
fibre of the ruling and C0 the negative section). Any rank 2 vector bundle E over Fn has,
aside from the Chern classes that determine its topological type, two numerical invariants,
dE and rE, which are used to express E as an extension in a canonical way (see Section
2.2.2 for the definition of these invariants). By making use of stability and these numerical
invariants, we prove:

2



Theorem A. Let H be an ample divisor and let E be a rank 2 vector bundle over Fn.
Suppose (E,Φ) is H-semistable.

1. If c1(E) = 0, then c2(E) ≥ 0. Furthermore, when equality holds, E is an extension
of line bundles.

2. If c1(E) = −F , then c2(E) ≥ 0. Furthermore, when equality holds, E is an extension
of line bundles.

3. If c1(E) = −C0, then c2(E) ≥ −n
2
. Furthermore, when equality holds, E is an

extension of line bundles, and if dE 6= 0, then c2(E) > 0.

4. If c1(E) = −C0−F , then c2(E) ≥ −n−1
2

. Furthermore, when equality holds, E is an
extension of line bundles, and if dE 6= 0, then c2(E) > 0.

Then, we constructively show that the necessary conditions described above are also
sufficient. While for c2 ≤ 1 we do so by carefully analyzing the ample cone of Fn (Theorems
3.8 and 3.9), for c2 ≥ 2 we only work with the standard polarization H = C0 + (n + 1)F
(Theorem 3.13).

On the other hand, by again fixing the standard polarizationH (which naturally extends
the notion of degree from P1 to Hirzebruch surfaces), we give necessary and sufficient
conditions on the second Chern class of the bundle in order to guarantee the existence
of non-trivial (i.e., non-zero Higgs field) semistable co-Higgs bundles of rank 2 (Theorem
3.15). Indeed, if we letMco

H (c1, c2) denote the moduli space of rank 2 H-semistable co-Higgs
bundles over Fn with fixed Chern classes c1 and c2, we prove:

Theorem B. Let c1 = αC0 + βF and c2 = γ. Fix the standard polarization H = C0 +
(n + 1)F . Then, the moduli space Mco

H (c1, c2) is non-empty (and moreover it contains a
non-trivial co-Higgs pair) if and only if one of the following holds:

1. α and β are both even and 4γ ≥ α(2β − nα);

2. α is even, β is odd and 4γ ≥ α(2β − nα);

3. α is odd, β is even and 4γ ≥ 2αβ − n(1 + α2);

4. α and β are both odd and 4γ ≥ 2(αβ − 2)− n(1 + α2).

In Chapter 4, we specialize to the 0-th Hirzebruch surface, P1 × P1, and fix the polar-
ization H = C0 + F . In this setting, we describe some of the moduli spaces of semistable
rank 2 co-Higgs bundles for fixed values of c1 and c2 over it. Two important tools in con-
structing examples of semistable co-Higgs pairs or in understanding their moduli spaces
are spectral covers and deformation theory. In this chapter we cover both. In fact, we
divide the chapter into three main sections.

The first section is devoted to spectral covers and the Hitchin correspondence. Given
a rank 2 co-Higgs bundle over the complex projective manifold X, we can associate to it
a spectral manifold, which is a double cover of X naturally living in the total space of
its tangent bundle. By the work of Hitchin and Simpson, it is well known that, under
certain genericity conditions, one can construct rank 2 stable co-Higgs pairs over X in the
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following fashion: Take any rank 1 torsion-free coherent sheaf F over the spectral cover
of X and push it down to obtain the underlying bundle of the co-Higgs pair, take also
the push down of the multiplication map associated to F to obtain the Higgs field (one
would of course need to check that the integrability condition is satisfied). In the P1 × P1

setting, we show that the generic elements in the moduli space are such that the underlying
bundles are not decomposable (Proposition 4.4). Finally, in certain non-generic cases, we
are able to describe the spectral covers as trivial elliptic fibrations over P1; in these cases,
the fibres of the Hitchin map do contain co-Higgs pairs with decomposable underlying
bundles (Proposition 4.5).

In the second section, we explicitly construct some moduli spaces Mco(c1, c2). For
c2 = 0, there are only three possibilities for the reduced first Chern classes: c1 = 0,−F
and −C0. For the case where c1 = −F (or −C0), we have a complete description of the
moduli space (Theorem 4.8):

Theorem C. The moduli spaceMco(−F, 0) of rank 2 stable co-Higgs bundles over P1×P1

with first Chern class −F and second Chern class 0 is a 6-dimensional smooth variety
isomorphic to the moduli space Mco

P1(−1) of rank 2 stable co-Higgs bundles of degree −1
over P1 (the latter is described in [28, Section 7]).

For c1 = 0, we were not able to give such an explicit description. Nonetheless, we show
that there are only three underlying bundles that admit semistable Higgs fields: O ⊕ O,
O(1, 0) ⊕ O(−1, 0) and O(0, 1) ⊕ O(0,−1). Also, we fully describe the Higgs fields that
make O ⊕ O strictly semistable, and in Proposition 4.11 we prove that the Higgs fields
of points inMco(0, 0) with underlying bundle O(1, 0)⊕O(−1, 0) (O(0, 1)⊕O(0,−1)) are
naturally parametrized by H0(O(4, 0)) (H0(O(0, 4)), respectively).

For c2 = 1, we consider the case c1 = −F . We first show that any underlying bundle in
the moduli space Mco

H (−F, 1) is an extension of O(−1, 1) by O(0,−1) (Proposition 4.15).
Then, for the sake of being explicit, we describe all the Higgs fields that these bundles
admit. Finally, we give an explicit description of the moduli space in Theorem 4.23 (see
also Propositon 4.21):

Theorem D. The moduli space Mco
H (−F, 1) is a 7-dimensional algebraic variety whose

singular locus are the points (E, 0) for any non-trivial extension E of O(−1, 1) by O(0,−1).

In the third section, we focus on the deformation theory of rank 2 semistable co-Higgs
bundles over P1 × P1. After reviewing the general theory, adapted by Rayan from the
existing deformation theory for Higgs bundles, we explore the deformation theory for the
co-Higgs bundles in the moduli spaces analyzed in the second section of this chapter.

In Chapter 5, we briefly outline some of the possible directions in which one can take
this work.

Finally, we include two appendices in which we discuss further some of the underlying
bundles of semistable co-Higgs pairs. In Appendix A, we focus on decomposable bundles.
First, we describe all the decomposable stable underlying bundles (and their Higgs fields)
with c1 = 0 or −F , and c2 = 1 over any Hirzebruch surface. Then, we describe all the
decomposable underlying bundles of stable co-Higgs pairs over P1 × P1 for reduced first
Chern classes and c2 ≥ 2. In Appendix B, we consider semistable co-Higgs pairs with
c1 = 0,−C0,−C0 − F and c2 = 1 over P1 × P1. Since in Chapter 4, when c2 = 1, we only
considered c1 = −F when describing the moduli spaces, here we determine the underlying
bundles for the other cases.
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Chapter 2

Stability, Hirzebruch surfaces and
co-Higgs bundles

We begin this chapter by recalling some basic facts about stability of holomorphic vector
bundles over complex projective manifolds. However, we quickly specialize to the case of
rank 2 vector bundles over surfaces, which is what we are interested in for this dissertation.
Then, we briefly introduce Hirzebruch surfaces, and give some important facts about vector
bundles over them. We conclude the chapter with a section on co-Higgs bundles, where we
formally introduce the concept and lay the foundation for the remainder of this thesis.

2.1 The Notion of Stability

Stability of bundles has been an interesting topic of study for many years; one apparent
reason being that, under many circumstances, these objects form sufficiently “nice” moduli
spaces. In this section, we recall the definition of stability in the Mumford–Takemoto sense
(or slope stability), and review, without proofs, some basic properties of stable bundles.
Although a lot can be said about stable bundles and their properties, we try only to
introduce those ideas that later in the chapter will be generalized to co-Higgs bundles or
that will be used in subsequent chapters. Many of these facts and their proofs can be found
in [9, 13, 24], to name a few. We rely heavily on Friedman’s book [13, Chapter 4], and
follow his presentation quite closely.

Throughout this section we let X denote a complex projective manifold of dimension
d. Whenever we say “vector bundle”, we mean holomorphic vector bundle, and we make
no distinction between locally free sheaves and vector bundles.

Let H be an ample divisor on X. Then, for any torsion-free coherent sheaf V over X,
we define the degree of V with respect to H as:

degH(V ) = c1(V ) ·Hd−1.

Note that, whereas the Chern classes are topological invariants of the sheaves, the degree
is defined only up to the choice of H.
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Definition 2.1. Let V be a torsion-free coherent sheaf over X. The H-slope of V is given
by

µH(V ) =
degH(V )

rk(V )
.

When H is understood, we omit the subscript, and simply say the slope of V , which we
denote by µ(V ).

The following property, which follows almost immediately from the definition of slope
and the Whitney product formula (see [13, Chapter 4, Lemma 2]), is an important one to
keep in mind.

Lemma 2.2. Suppose that
0→ V1 → V → V2 → 0

is an exact sequence of nonzero torsion-free coherent sheaves on X and H is an ample
divisor on X. Let µ = µH . Then

min(µ(V1), µ(V2)) ≤ µ(V ) ≤ max(µ(V1), µ(V2)),

and equality holds at either end if and only if µ(V1) = µ(V2) = µ(V ).

As we have mentioned before, in this thesis, we are mainly concerned with rank 2 vector
bundles, so the following lemma is an important one to keep in mind.

Lemma 2.3. Suppose E = L1 ⊕ L2 is a decomposable rank 2 vector bundle over X, and
H is an ample divisor on X. Then

µH(E) =
µH(L1) + µH(L2)

2
.

Proof. We have that

µH(E) =
c1(E) ·H

2
=

(c1(L1) + c1(L2)) ·H
2

=
µH(L1) + µH(L2)

2
,

and so the slope of E is the average of the slopes of L1 and L2.

The next lemma relates the slope of a torsion free sheaf with the slopes of its subsheaves.
We will mainly focus on the moreover part of the lemma.

Lemma 2.4. Suppose that W is a subsheaf of the torsion-free coherent sheaf V , with
rkW = rkV . Then µ(W ) ≤ µ(V ). Moreover, if W and V are vector bundles, then either
µ(W ) < µ(V ) or W = V .

Recall that by a sub-bundle of a vector bundle V over X we mean a subsheaf which is
a vector bundle. When V is of rank 2, the non-zero proper sub-bundles are called sub-line
bundles.

We are now ready to define the notion of stability.

6



Definition 2.5. Let V be a torsion-free coherent sheaf over X. We say that V is H-stable
(respectively, H-semistable) if, for all nonzero proper coherent subsheaves W of V , we have
that

µH(W ) < µH(V ) (2.1)

(respectively ≤). We call V unstable if it is not semistable, and strictly semistable if it is
semistable but not stable. Finally, a nonzero proper subsheaf W of V is destabilizing if
µH(W ) ≥ µH(V ).

Remark 2.6. There are several things to point out. Some of them follow immediately
from the definition, and some are a bit more elaborate (or follow from well known facts
about sheaves). For details see either [13, Chapter 4] or [27, Chapter 1].

1. Line bundles are always stable.

2. Recall that if X is a surface, two divisors D1 and D2 are numerically equivalent if
(D1 −D2) · E = 0 for all divisors E. If H is numerically equivalent to H ′, then the
notion of H-stability is equivalent to H ′-stability. Indeed, if H and H ′ are numerically
equivalent, µH(V ) = µH′(V ) for any V . Thus, we consider stability up to a choice of
numerical equivalence class. In addition, a choice of a numerical equivalence class of
an ample divisor H is often referred to as a choice of polarization.

3. When checking inequality (2.1) it is enough to consider subsheaves W such that the
quotient V/W is torsion free.

4. If X is a curve, the slope of V is independent of the choice of H (as µH(V ) = c1(V )),
and so stability does not depend on the choice of polarization. Furthermore, there is
no need to check inequality (2.1) for all nonzero proper subsheaves of V ; checking it
for proper sub-bundles is enough.

5. If X is a surface and E is a vector bundle of rank 2, we can simplify the criterion for
the stability of E. Indeed, it is enough to check inequality (2.1) for proper sub-line
bundles of E. The main idea is that, given any proper subsheaf W of E, its double
dual (W∨)∨, which is locally free, only differs from it at finitely many points, and
thus they have the same slope. Thus, for any proper subsheaf of E, it is possible to
construct a sub-line bundle of E with the same slope.

We have the following useful property.

Lemma 2.7. Let V be a torsion-free coherent sheaf over X. The following are equivalent:

(i) V is stable (semistable).

(ii) There exists a line bundle L such that V ⊗ L is stable (semistable).

(iii) For all line bundles L, V ⊗ L is stable (semistable).

Thus, stability of a rank r vector bundle V does not change when we tensor it by a line
bundle L, but recall that its Chern classes do. In fact, we have that:

ck(V ⊗ L) =
k∑
i=0

(
r − i
k − i

)
ci(V ) · c1(L)k−i. (2.2)

See, for example, [24, Section 1.2].
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Lemma 2.8. Let
0→ V1 → V → V2 → 0

be an exact sequence of torsion-free coherent sheaves, with µ(V1) = µ(V ) = µ(V2). Then
V is not stable. Moreover, V is semistable if and only if V1 and V2 are semistable. In
particular, if V1 and V2 both have rank 1, then V is strictly semistable.

Before we specialize to rank 2 vector bundles, let us give one more interesting fact
about stable torsion-free coherent sheaves; for a proof, see [13, Chapter 4, Propostion 7
and Corollary 8].

Proposition 2.9. If V is a stable torsion-free coherent sheaf, then V is simple, i.e., the
only endomorphisms of V are scalar multiples of the identity:

H0(X,EndV ) = {λ · IdV : λ ∈ C}.

2.1.1 Unstable and strictly semistable rank 2 bundles

We now turn our attention to vector bundles of rank 2. The following two propositions
and their corollaries help us to better understand the structure of unstable and strictly
semistable bundles, and will be used repeatedly in subsequent chapters. Again, the propo-
sitions and their proofs can be found in [13, Chapter 4].

Proposition 2.10. Suppose that E is an unstable rank 2 bundle over X. Then there exists
a unique sub-line bundle G of E with torsion-free quotient such that µ(G) > µ(E). Indeed,
if L is a sub-line bundle of E such that µ(L) ≥ µ(E), then L is a subsheaf of G and
µ(L) ≤ µ(G), with equality if and only if L = G.

Corollary 2.11. Let E = L1 ⊕ L2 be a decomposable unstable rank 2 bundle over X, and
let µ = µH . Then either µ(L1) > µ(E) or µ(L2) > µ(E). Hence, it is always one of the
summands of E that makes it into an unstable bundle.

Proof. Since we know that the slope of E is the average of the slopes of L1 and L2 (see
Lemma 2.3), we have that either both L1 and L2 have the same slope as E, or one of them
has slope strictly larger than the slope of E (and consequently, the other one has slope
strictly smaller than the slope of E). In the latter case, the result is obvious. However, when
µ(E) = µ(L1) = µ(L2), by Lemma 2.8, it follows that E is semistable, which contradicts
the assumption, and thus it cannot happen.

Proposition 2.12. Let E be a strictly semistable rank 2 bundle. Then exactly one of the
following holds:

1. There is a unique sub-line bundle L of E with µ(L) = µ(E). The quotient E/L is
necessarily torsion-free, and E is given canonically as an extension

0→ L→ E → L′ ⊗ IZ → 0,

where Z is a codimension 2 locally complete intersection in X or it is empty.
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2. There are exactly two distinct sub-line bundles L1 and L2 with µ(L1) = µ(L2) = µ(E).
In this case E = L1 ⊕ L2.

3. E = L ⊕ L and there are infinitely many sub-line bundles with slope µ(E), exactly
corresponding to the choice of a line in H0(E ⊗ L∨).

More precisely, the following holds: Suppose that E is an arbitrary rank 2 vector bundle
which is given as an extension

0→ L1 → E → L2 ⊗ IZ → 0

with µ(L1) = µ(E). Then E is semistable and either L1 is the unique destabilizing sub-line
bundle of E with torsion-free quotient or Z = ∅ and E = L1⊕L2, i.e., the extension splits.

Lemma 2.13. Let E = L1 ⊕ L2 be a decomposable rank 2 bundle over X. Then, E is
strictly semistable if and only if µ(E) = µ(L1). Moreover, if E is strictly semistable, then
for every sub-line bundle G of E such that µ(G) = µ(E), we have that either G ∼= L1 or
G ∼= L2.

Proof. If E is strictly semistable, Lemma 2.3 clearly implies that µ(E) = µ(L1) = µ(L2).
For the converse direction, note that if µ(E) = µ(L1), then µ(L2) = µ(E) as well. Now,
the strict semistability of E follows by applying the “in particular” clause of Lemma 2.8.

For the “moreover” part of the statement, assume that E is strictly semistable and let
G be a sub-line bundle of E. Then, 0 6= H0(G∨ ⊗ E) = H0(G∨ ⊗ L1) ⊕ H0(G∨ ⊗ L2). So
either H0(G∨ ⊗ L1) 6= 0 or H0(G∨ ⊗ L2) 6= 0. In the former case, G∨ ⊗ L1 must be equal
to OX(D) for some effective divisor D, but then 0 = µ(L1) − µ(G) = µ(OX(D)), and so
D = 0, implying G ∼= L1. In the second case, a similar argument shows that G ∼= L2.

2.1.2 Different Polarizations, Walls and Chambers

The notions of walls and chambers provide the right framework to answer the question:
Given two ample divisors H1 and H2, when does there exist a vector bundle which is H1-
stable but is not H2-stable? Walls and chambers have been studied by Friedmann and Qin,
among others, and [4, 25, 26] together with [13, Chapter 4] are useful references. In [26],
Qin presents the theory for complex projective manifolds of arbitrary dimension; however,
we let X be a complex projective surface. Also, E continues to represent a rank 2 vector
bundle over X.

Let CCCX denote the ample cone of X and let c1 and c2 be fixed Chern classes. Recall
that Num(X) is the subgroup of divisors of X that are numerically equivalent to zero, and
recall further that CCCX is open and convex in Num(X)⊗ R. An element ζ ∈ Num(X)⊗ R
is called a class of type (c1, c2) if it is the numerical equivalence class of (2D− c1) for some
divisor D, and satisfies the condition −(4c2 − c2

1) ≤ ζ2 < 0. For such ζ, we define the wall

W ζ = CCCX ∩ {x ∈ Num(X)⊗ R : x · ζ = 0}.

Walls W ζ corresponding to classes ζ of type (c1, c2) are called walls of type (c1, c2). Note
that distinct numerical equivalence classes may yield the same wall.
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Let W(c1, c2) be the union of W ζ , where ζ runs over all classes of type (c1, c2). A
chamber of type (c1, c2) is a connected component of the set CCCX\W(c1, c2). Note that
every chamber has an upper and a lower wall. A chamber C is said to be below or above a
wall W ζ if ζ ·H < 0, respectively ζ ·H > 0, for any H ∈ C.

Now that we have introduced the appropriate definitions, we can give the following
two propositions (see [13, Chapter 4]), which are key to answering the question posed
at the beginning of this subsection. Whereas here we simply present the statements for
completeness purposes, we provide further insight on their content when we introduce their
analogous versions for co-Higgs bundles in Section 2.3.

Proposition 2.14. Let H1 and H2 be two polarizations. Let E be an H1-stable rank 2
bundle. Then, E is not H2-stable if and only if there exists a sub-line bundle OX(D) of E
such that

H1 · (2D − c1(E)) < 0 ≤ H2 · (2D − c1(E))

and
−(4c2(E)− c1(E)2) ≤ (2D − c1(E))2 < 0.

Moreover, OX(D) is the unique sub-line bundle of E with torsion free quotient with the
above properties. Finally, E is strictly semistable with respect to an ample divisor which is
a convex combination of H1 and H2.

Proposition 2.15. Suppose that H1 and H2 are two ample divisors, and that W ζ is the
unique wall of type (c1, c2) separating H1 and H2, and assume further that ζ ·H1 < 0 < ζ ·H2.
Suppose that E is such that c1(E) = c1, c2(E) = c2, and that it is given by a non-split
exact sequence

0→ OX(D)→ E → OX(c1 −D)⊗ IZ → 0,

where ζ = 2D − c1. Then E is H1-stable and H2-unstable.

2.2 Hirzebruch Surfaces

As the title of this dissertation suggests and as we mentioned in the introduction, we will
focus our study of co-Higgs bundles on Hirzebruch surfaces. In this section we give a very
short introduction to this type of surfaces and present the properties of its (rank 1 and 2)
vector bundles that will be relevant to our study. Some good references for the subject are
[9, Chapter 5, Section 5], [13, Chapter 5] and [18, Chapter 5, Section 2].

Hirzebruch surfaces are ruled surfaces where the base curve is P1. In particular, Hirze-
bruch surfaces are rational and have Kodaira dimension −∞. Even though Hirzebruch
surfaces can be obtained by a sequence of blow-ups and blow-downs from the complex pro-
jective plane, we do not take this approach. Instead, we define them as the projectivization
of a rank 2 vector bundle over P1. More precisely, we define the n-th Hirzebruch surface,
Fn, as:

Fn = P(OP1 ⊕OP1(−n))
π→ P1,

where n ≥ 0.

Recall that, by the Birkhoff–Grothendieck theorem, all vector bundles over P1 are
decomposable. Thus, if we choose any rank 2 vector bundle on P1, it will be of the form
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OP1(a) ⊕ OP1(b); nonetheless, the choice of the rank 2 bundle for the definition of Fn
is justified by the following proposition. For a proof of this fact, see for example [18,
Chapter 5, Section 2].

Proposition 2.16. If E1 and E2 are two vector bundles of rank 2 on P1, then P(E1) and
P(E2) are isomorphic as ruled surfaces over P1 if and only if there is a line bundle L on
P1 such that E1 = E2 ⊗ L.

We denote by C0 the negative section of π : Fn → P1, i.e., C2
0 = −n, and by F a general

fibre of π. These two divisors freely generate Pic(Fn) (which, in this case, is isomorphic
to Num(Fn)). A divisor aC0 + bF on Fn is ample (equivalently, very ample) if and only if
a > 0 and b > an (see [18, Chapter 5]).

From now on, we let O(aC0 + bF ) denote the line bundle over Fn corresponding to
the divisor aC0 + bF . The tangent bundle T of a Hirzebruch surface Fn is the rank 2
decomposable bundle

T = O(2F )⊕O(2C0 + nF ).

Lemma 2.17. Let D be a divisor on Fn, and suppose that D · F = m ≥ 0. Then π∗O(D)
is a vector bundle of rank m+ 1 on P1. Moreover, π∗O = OP1.

Lemma 2.18. Let D be a divisor on Fn, and assume that D ·F ≥ 0. Then Riπ∗O(D) = 0
for i > 0; and for all i,

Hi(Fn;O(D)) ∼= Hi(P1, π∗O(D)).

2.2.1 Cohomology

In this section, we compute the cohomology of line bundles over Fn, which will be useful for
our study. We will compute the cohomology by taking the push-forward or higher direct
image (as appropriate) of line bundles on Fn to P1, and then using the Leray spectral
sequence. In order to do so, first note that at a point p ∈ P1,

[Riπ∗(O(aC0))]p ∼= Hi(P1,OP1(a)).

Then, it is clear that:

1. π∗O(aC0) is a vector bundle of rank a+1 over P1 when a ≥ 0, and it is zero otherwise.

2. R1π∗(O(aC0)) is a vector bundle or rank −(a + 1) over P1 when a ≤ −2, and it is
zero otherwise.

3. Riπ∗O(aC0) = 0 for all a when i ≥ 2.

Now, when a ≥ 0, in order to see which rank a + 1 bundle we obtain by pushing forward
O(aC0), recall that π∗O(aC0) = Sa(OP1 ⊕OP1(−n)), where Sa(OP1 ⊕OP1(−n)) is the a-th
symmetric product of the bundle OP1 ⊕ OP1(−n) (see [18, Chapter 3, Section 8]). Then,
since

Sa(OP1 ⊕OP1(−n)) = ⊕aj=0OP1(−jn),
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we obtain that

π∗O(aC0) =

{
⊕aj=0OP1(−jn), if a ≥ 0,

0, otherwise.

On the other hand, recall that for a ≤ −2 (see [18, Chapter 3, Section 8]),

R1π∗O(aC0) = [π∗O(−(a+ 2)C0)]⊗OP1(n).

Then, since −(a + 2) ≥ 0, by the previous result, we get that π∗O(−(a + 2)C0) =

⊕−(a+2)
j=0 OP1(−jn), and thus

R1π∗O(aC0) =

{
⊕−(a+2)
j=0 OP1((1 + j)n), if a ≤ −2,

0, otherwise.

Finally, to obtain the cohomology we use the Leray spectral sequence and the projection
formula. Hence,

H0(Fn,O(aC0 + bF )) =


⊕aj=0 H0(P1,OP1(b− jn)), if a ≥ 0,

0, otherwise,
(2.3)

H1(Fn,O(aC0 + bF )) =


⊕aj=0 H0(P1,OP1(jn− b− 2)), if a ≥ 0,

0, if a = −1,

⊕−(a+2)
j=0 H0(P1,OP1(b+ (1 + j)n), otherwise,

(2.4)

and

H2(Fn,O(aC0 + bF )) =

 ⊕
−(a+2)
j=0 H0(P1,OP1(−(b+ (1 + j)n+ 2)), if a ≤ −2,

0, otherwise.

(2.5)

We will often be interested in knowing when there are no non-zero global sections on a
line bundle O(aC0 + bF ). From (2.3), it is obvious that

H0(Fn,O(aC0 + bF )) = 0 if and only if a < 0 or b < 0.

Even though everything described above is obviously valid for the 0-th Hirzebruch
surface, P1×P1, in this case computing the cohomology follows from more standard results
(the Künneth formula and Serre duality). For convenience of the reader we do this below.
However, before doing so, let us introduce the standard notation for line bundles over
P1 × P1. The line bundle O(aC0 + bF ) corresponds to

O(b, a) := pr∗1OP1(b)⊗ pr∗2OP1(a),

where pri denotes the projection from P1 × P1 onto the i-th copy of P1.
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Remark 2.19. Let O(a, b) (note the change on the roles of a and b) be a line bundle over
P1 × P1. The Künneth formula gives us a relation between the cohomology groups of two
topological spaces and their product space. In particular,

H0(P1 × P1,O(a, b)) = H0(P1,O(a))⊗ H0(P1,O(b)).

It then follows that

H0(P1 × P1,O(a, b)) = 0 if and only if a < 0 or b < 0.

We also get that

H1(P1×P1,O(a, b)) = (H0(P1,OP1(a))⊗H1(P1,OP1(b)))⊕(H0(P1,OP1(b))⊗H1(P1,OP1(a))).

Now, we can see that H1(P1 × P1,O(a, b)) vanishes if and only if a < 0 and b < 0, or
a ≥ −1 and b ≥ −1. Finally, we can use Serre duality to obtain

H2(P1 × P1,O(a, b)) = [H0(P1 × P1,O(−(a+ 2),−(b+ 2)))]∨,

and so this vanishes if and only if a ≥ −1 or b ≥ −1.

From now on, unless otherwise specified, the notation Hi(F), where F is a coherent
torsion-free sheaf over Fn, will stand for Hi(Fn;F).

2.2.2 On the existence of stable rank 2 bundles over Fn

In this section we present some of the results that Aprodu, Br̂ınzănescu and Marchitan
conveniently gathered and summarized in [4], but for more details we refer the reader to
[2, 3, 5, 9].

A rank 2 bundle E over Fn is always an extension of the form

0→ L1 → E → L2 ⊗ IZ → 0,

where Z is a finite set of points in Fn. Recall that the Chern classes of E are given by

c1(E) = c1(L1) + c1(L2),
c2(E) = c1(L1) · c1(L2) + `(Z),

where `(Z) = |Z|. Besides the Chern classes, which determine the topological type of E,
there are two numerical invariants describing it as an extension in a canonical manner. Let
us recall these invariants and some of their properties.

The first invariant dE is defined by the splitting type on the general fibre F : if E|F ∼=
OP1(d) ⊕ OP1(d′) with d ≥ d′, then dE = d. The second invariant rE is obtained from
a push-forward as follows. Note that the bundle π∗(E(−dC0)) is either of rank one or
two, according to whether d > d′ or d = d′, respectively. If d > d′, we put rE = r =
deg(π∗(E(−dC0))). If d = d′, then π∗(E(−dC0)) = OP1(r)⊕OP1(s) with r ≥ s and we put
rE = r.

Then, a rank 2 vector bundle E with numerical invariants d and r can be expressed as
an extension

0→ O(dC0 + rF )→ E → O(d′C0 + r′F )⊗ IZ → 0, (2.6)

where Z is a finite set of points in Fn. This extension is unique if either d > d′ or d = d′

and s < r, where s is the extra invariant described above.
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Remark 2.20. Note that the length of Z depends only on the Chern classes c1, c2 and on
the invariants d and r, hence it could be denoted by `(c1, c2, d, r). If c1 = αC0 + βF , then

`(c1, c2, d, r) = c2 + α(dn− r)− βd+ 2dr − d2n.

These numerical invariants help us to better understand rank 2 bundles over Hirzebruch
surfaces. Indeed, let

M(c1, c2, d, r) = {E → Fn : c1(E) = c1, c2(E) = c2, dE = d, rE = r}/ ∼,

where ∼ denotes the equivalence relation of vector bundle isomorphism, be the set of rank
2 bundles with fixed Chern classes c1 and c2, and fixed numerical invariants d and r. The
following theorem tells us when this moduli space is non-empty.

Theorem 2.21. Put c1 = αC0 + βF . The set M(c1, c2, d, r) is non-empty if and only if
` := `(c1, c2, d, r) ≥ 0 and one of the following conditions is satisfied:

1. 2d > α, or

2. 2d = α, β − 2r ≤ `.

Taking a little detour, but still talking about rank 2 bundles over Fn, we present the
following lemma which will be useful in subsequent chapters.

Lemma 2.22. Let E be a decomposable rank 2 bundle over Fn. If L is a sub-line bundle
of E = G1 ⊕G2, then

deg(L) ≤ max{deg(G1), deg(G2)}.

Proof. Let H = h1C0 + h2F be any ample divisor on Fn and, without loss of generality,
assume that degH(G1) ≤ degH(G2). Now, letG1 = O(a1C0+b1F ) andG2 = O(a2C0+b2F ).
For L = O(aC0 + bF ) to be a possible sub-line bundle of E, it must be the case that
H0(Hom(L,E)) 6= 0. As such, either a ≤ a1 and b ≤ b1, or a ≤ a2 and b ≤ b2. Then,

degH(L) = a(h2 − nh1) + bh1

≤ a2(h2 − nh1) + b2h1

= degH(G2).

Thus, degH(L) ≤ max{degH(G1), degH(G2)}.

Now, since in this thesis we are concerned with stability of bundles, given a rank 2
bundle E, it seems natural to ask when does there exist an ample divisor H on Fn such
that E is H-stable. The following theorem answers that.

Theorem 2.23. For E ∈ M(c1, c2, d, r), let c1 = αC0 + βF . Then, there exists an ample
divisor H on Fn such that E is H-stable if and only if 2r < β and the extension (2.6)
is non-trivial. In this case, we have that if 2d > α, then E is stable with respect to the
chamber below the wall W ζ, where ζ = (2d− α)C0 + (2r − β)F .
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Let us now discuss the existence of stable bundles on Fn for fixed n ≥ 0. All of these
results appear in [4]. Fix Chern classes c1 and c2 with 4c2 − c2

1 ≥ 0. It can be shown
that when equality holds, there is no stable rank 2 bundle over Fn; hence we may assume
4c2 − c2

1 > 0. For any chamber C of type (c1, c2), let MC(c1, c2) denote the moduli space
of stable bundles over Fn with respect to a polarization H ∈ C and with Chern classes c1

and c2. Note that, by Proposition 2.15, this is well-defined; i.e., it does not depend on the
choice of polarization H ∈ C. The first result is the following:

Proposition 2.24. Assume n 6= 0. Let C be any chamber of type (c1, c2) different from CF ,
the chamber containing the class of F on the boundary. Then, the moduli space MC(c1, c2)
is non-empty.

For a polarization H ∈ CF , the definition of r and the necessary and sufficient conditions
for the non-emptiness of M(c1, c2, d, r), appearing in Theorem 2.21, yield

Proposition 2.25. The moduli space MCF (c1, c2) is non-empty if and only if α is even
and the intersection [β/2− (c2 − c2

1/4)/2, β/2) ∩ Z is non-empty, where c1 = αC0 + βF .

When n = 0, C0 defines the other axis [C0] of the boundary of the ample cone. Denote
by CC0 the chamber that has the [C0]-axis on its boundary.

Proposition 2.26. If n = 0, then MCC0
(c1, c2) is non-empty if and only if β is even and

the intersection [α/2− (c2 − c2
1/4)/2, α/2) ∩ Z is non-empty, where c1 = αC0 + βF .

For polarizations H lying on walls, we have

Proposition 2.27. Suppose n 6= 0. Let H = aC0 + bF be an ample divisor lying on
some non-empty wall W of type (c1, c2). Assume that either ζ · F ≥ 2 for all numerical
equivalence classes ζ which represent the wall W and are such that ζ · F ≥ 0, or that
4c2 − c2

1 > 2b/a− n. Then MH(c1, c2) is non-empty.

2.3 Co-Higgs Bundles

We are now ready to formally introduce co-Higgs bundles. In this section we give the basic
definitions and properties of (semistable) co-Higgs bundles (some of which are analogous to
those presented in the first section of this chapter) over complex projective manifolds. We
then talk about known results about semistable co-Higgs bundles over curves and surfaces.

Let us begin with the definition.

Definition 2.28. If X is a complex projective manifold with tangent bundle T , then a
co-Higgs bundle or a co-Higgs pair on X is a vector bundle V → X together with a map
Φ ∈ H0(X; EndV ⊗T ) for which Φ∧Φ ∈ H0(X; EndV ⊗∧2T ) is identically zero. We refer
to such a Φ as a Higgs field of V .

Note that the integrability condition, Φ∧Φ = 0, is trivial when X is a curve. However,
it plays a central role in higher dimensions.
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Remark 2.29. It is worth mentioning how the wedge, −∧−, is computed. It acts as the
commutator in elements of EndV and as the usual wedge in elements of T . For instance,
when X is a surface, and Ψ,Φ ∈ H0(EndV ⊗ T ), if we work locally, Ψ = Ψ1∂1 + Ψ2∂2 and
Φ = Φ1∂1 + Φ2∂2, so that

Ψ ∧ Φ = [Ψ1,Φ2]∂1 ∧ ∂2 + [Ψ2,Φ1]∂2 ∧ ∂1

= ([Ψ1,Φ2]− [Ψ2,Φ1])∂1 ∧ ∂2.

A morphism of co-Higgs bundles (V,Φ) and (V ′,Φ′) is a commutative diagram

V

Φ
��

ψ // V ′

Φ′

��
V ⊗ T ψ⊗Id // V ′ ⊗ T

in which ψ : V → V ′ is a homomorphism of vector bundles. The pairs (V,Φ) and (V ′,Φ′)
are said to be isomorphic if ψ is an isomorphism of vector bundles. In particular, (V,Φ)
and (V,Φ′) are isomorphic if and only if there exists an automorphism ψ of V such that
ψ ◦ Φ ◦ ψ−1 = Φ′.

Co-Higgs bundles come with a natural stability condition analogous to the one discov-
ered by Hitchin in the setting of Higgs bundles (see [20]), generalizing Mumford–Takemoto
stability for vector bundles.

Definition 2.30. Fix a polarization H ∈ CCCX . A co-Higgs bundle (V,Φ) on a complex
projective manifold X is stable (respectively, semistable) if

µH(W ) < µH(V ) (2.7)

(respectively, ≤) for each non-zero proper subsheafW of V that is Φ-invariant; i.e., Φ(W ) ⊆
W ⊗ T .

Note that the usual notion of (semi)stability can be recovered by setting Φ = 0. More
precisely, V is stable if and only if (V, 0) is a stable co-Higgs pair. By a non-trivial co-Higgs
pair, we mean that Φ is non-zero. Also, when V is fixed, we refer to Φ as (semi)stable
whenever the pair (V,Φ) is (semi)stable.

Given any Φ ∈ H0(X,EndV ⊗ T ), the trace-free part of Φ is defined as

Φ0 := Φ−
(

TrΦ

rk(V )

)
Id ∈ H0(End0 V ⊗ T ).

It is immediate to check that (V,Φ) is (semi)stable if and only if (V,Φ0) is (semi)stable.
Hence, from now on, whenever we have a co-Higgs pair (V,Φ), Φ is assumed to be trace-
free. Furthermore, when we say “Higgs field” we really mean “trace-free Higgs field”, but,
for economy, we omit the word ”trace-free”.

As before, we have that tensoring a (semi)stable co-Higgs bundle by a line bundle does
not affect (semi)stability.
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Lemma 2.31. The co-Higgs bundle (V,Φ) is (semi)stable if and only if (V ⊗ L,Φ⊗ IdL)
is (semi)stable for any line bundle L over X.

Proof. It suffices to show the forward implication. Let (V,Φ) be a stable co-Higgs bundle,
and let L be any line bundle over X. The case where (V,Φ) is strictly semistable can
be done in a similar fashion. Towards a contradiction, assume that there exists W , a Φ-
invariant sub-sheaf of V ⊗ L, such that µ(W ) ≥ µ(V ⊗ L). If this is the case, then it is
clear that W ⊗ L∨ is a Φ-invariant subsheaf of V :

Φ(W ⊗ L∨) = (Φ⊗ IdL)(W )⊗ L∨

⊆ W ⊗ L∨ ⊗ T.

Furthermore,

µ(W ⊗ L∨) = µ(W )− µ(L)

≥ µ(V ⊗ L)− µ(L)

= µ(V ) + µ(L)− µ(L)

= µ(V ),

contradicting the stability of (V,Φ). Hence (V ⊗ L,Φ) is a stable co-Higgs bundle.

We also have the following lemma:

Lemma 2.32. Let W be a sub-bundle of V and

S := {ϕ ∈ H0(X; Hom(W,V ⊗ T )) | ϕ = Φ|W for some Φ ∈ H0(X; EndV ⊗ T )}.

Moreover, let ι : H0(X; Hom(W,W ⊗T ))→ H0(X; Hom(W,V ⊗T )) be the map induced by
the inclusion ι : W → V . If S ⊆ Im(ι), then W is Φ-invariant for any Φ ∈ H0(X; EndV ⊗
T ).

Proof. Take Φ ∈ H0(X; EndV ⊗ T ) and consider Φ|W , which is an element of S. Since
S ⊆ Im(ι), we must have that Φ|W = ι(ψ) for some ψ ∈ H0(X; Hom(W,W ⊗ T )). Hence
W is Φ-invariant.

For the most part, in what follows, the above lemma will be used in situations where we
actually have that ι : H0(X; Hom(W,W⊗T ))→ H0(X; Hom(W,V ⊗T )) is an isomorphism.

We now discuss Proposition 2.14 in the setting of co-Higgs bundles. Even though
Proposition 2.14 is about stable bundles, a very similar result holds for semistable ones.
Here we present both statements, though we only prove the semistable case (as the proofs
are identical), and we say what these statements mean in terms of preserving the notion
of (semi)stability within chambers.
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Proposition 2.33. Let X be a complex projective surface and let E be a rank 2 bundle
over X. Let H1 and H2 be two polarizations. Let (E,Φ) be an H1-semistable co-Higgs
bundle. Then, (E,Φ) is not H2-semistable if and only if there exists a Φ-invariant sub-line
bundle OX(D) of E such that

H1 · (2D − c1(E)) ≤ 0 < H2 · (2D − c1(E))

and
−(4c2(E)− c1(E)2) ≤ (2D − c1(E))2 < 0.

Proof. Suppose there exists such a Φ-invariant sub-line bundle OX(D). We have that

µH2(OX(D))− µH2(E) =
(2D − c1(E)) ·H2

2
> 0.

Thus (E,Φ) is not H2-semistable.

For the converse, assume that (E,Φ) is not H2-semistable. Then, there exists a Φ-
invariant sub-line bundle OX(D) of E such that

H2 · (2D − c1(E)) > 0.

Since OX(D) is Φ-invariant and (E,Φ) is H1-semistable, we have that

H1 · (2D − c1(E)) ≤ 0.

We can find a convex combination H := αH1 + (1−α)H2 such that H · (2D− c1(E)) = 0;
i.e., take

α =
(2D − c1(E)) ·H2

(2D − c1(E)) · (H2 −H1)
.

By the Hodge index theorem (see [13, Chapter 1, Theorem 11]) (2D − c1(E))2 ≤ 0 with
equality if and only if 2D − c1(E) is numerically equivalent to zero. However,

(2D − c1(E)) ·H2 > 0,

and thus, (2D − c1(E))2 < 0.

For the inequality −(4c2(E) − c1(E)2) ≤ (2D − c1(E))2, note that there is an exact
sequence

0→ OX(D)→ E → OX(c1(E)−D)⊗ IZ → 0,

where Z is a finite set of points of X. Thus,

c2(E) = −D2 +D · c1(E) + `(Z) ≥ −D2 +D · c1(E),

and so
(2D − c1(E))2 = 4D2 − 4D · c1(E) + c1(E)2 ≥ −(4c2(E)− c1(E)2).

Note that, taking the wall of type (c1, c2), W ζ , corresponding to ζ = 2D − c1(E), we
have that ζ · H1 ≤ 0 and ζ · H2 > 0, and so either H1 lies on the wall or H1 and H2 are
not in the same chamber. Therefore, we have the following:
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Corollary 2.34. In any chamber of type (c1, c2) and its upper wall, C ∪W+, the notion of
H-semistability for co-Higgs bundles is independent of the choice of polarization H.

One can analogously prove:

Proposition 2.35. Let X be a complex projective surface and let E be a rank 2 bundle
over X. Let H1 and H2 be two polarizations. Let (E,Φ) be an H1-stable co-Higgs bundle.
Then, (E,Φ) is not H2-stable if and only if there exists a Φ-invariant sub-line bundle O(D)
of E such that

H1 · (2D − c1(E)) < 0 ≤ H2 · (2D − c1(E))

and
−(4c2(E)− c1(E)2) ≤ (2D − c1(E))2 < 0.

Again, note that, taking the wall of type (c1, c2), W ζ , corresponding to ζ = 2D−c1(E),
we have that ζ ·H1 < 0 and ζ ·H2 ≥ 0, and so H1 and H2 are not in the same chamber.
Therefore, we have the following:

Corollary 2.36. In any chamber of type (c1, c2), C, the notion of H-stability for co-Higgs
bundles is independent of the choice of polarization H.

Since we will be working with moduli spaces of semistable co-Higgs bundles, we need
to determine when two pairs in the moduli space represent the same object. Semistable
co-Higgs pairs, as semistable vector bundles, are subject to S-equivalence. We introduce
this notion next.

If (V,Φ) is strictly semistable, we can find a Φ-invariant proper sub-bundle U of V for
which µ(U) = µ(V ) and µ(G) < µ(V ) for all Φ-invariant subsheaves U ( G ( V . Clearly,
(U,Φ) is semistable (by abuse of notation, we use the symbol Φ to denote the restriction
of Φ to U). Moreover, (V/U,Φ) is stable (again, by abuse of notation, we use the symbol
Φ to denote the quotient Higgs field). Indeed, any proper Φ-invariant subsheaf of V/U has
the form G/U for some Φ-invariant sheaf U ( G ( V , and so

µ(G/U) =
degG− degU

rkG− rkU
=
µ(G) rk(G)− µ(U) rk(U)

rkG− rkU
< µ(U) = µ(V/U),

where in the inequality we use µ(G) < µ(U). If we let Vm = V , Vm−1 = U and continue
this process, which terminates eventually, we obtain what is known as a Jordan-Hölder
filtration of (V,Φ):

0 = V0 ⊂ · · · ⊂ Vm = V

for some m. Here (Vj,Φ) is semistable for 1 ≤ i ≤ m−1, (Vj/Vj−1,Φ) is stable, and µ(Vj) =
µ(Vj/Vj−1) = µ(V ) for 1 ≤ j ≤ m. In these pairs, Φ always denotes the appropriate
quotient Higgs field. While this filtration is not unique, the isomorphism class of the
following object is:

gr(V,Φ) :=
m⊕
j=1

(Vj/Vj−1,Φ).

This object is called the associated graded object of (V,Φ). Then, two semistable pairs
(V,Φ) and (V ′,Φ′) are said to be S-equivalent whenever their graded objects are isomorphic
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as co-Higgs bundles, i.e., gr(V,Φ) ∼= gr(V ′,Φ′). If a pair is stable, then the underlying
bundle has the trivial Jordan-Hölder filtration consisting of itself and the zero bundle, and
so the isomorphism class of the graded object is nothing more than the isomorphism class
of the original pair.

When working with decomposable rank 2 vector bundles, the following lemma is an
important one to keep in mind.

Lemma 2.37. Let E = G1 ⊕G2 be a decomposable rank 2 bundle over X, and let (E,Φ)

be strictly semistable with Φ =

(
A B
C −A

)
∈ H0(End0E ⊗ T ). If G1 is Φ-invariant, then

gr (E,Φ) =

(
E,

(
A 0
0 −A

))
.

Proof. Since (E,Φ) is strictly semistable and G1 is Φ-invariant, µ(G1) = µ(E) (see Lemma
2.13). Then, it is clear that a Jordan-Hölder filtration of E is:

0 ⊂ G1 ⊂ E.

We simply note that, by Lemma 2.4, any Φ-invariant G such that G1 ( G ( E must
satisfy µ(G) < µ(E). Hence

gr(E,Φ) = (G1,Φ1)⊕ (G2,Φ2),

with Φ1 = A and Φ2 = −A.

We conclude this section with the following useful lemma.

Lemma 2.38. Let E = G1⊕G2 be a decomposable rank 2 bundle over X. If µ(G1) > µ(E)
and H0(G∨1 ⊗G2⊗ T ) 6= 0, then there exists a Higgs field Φ such that (E,Φ) is semistable.
Moreover, any Higgs field with non-zero (2, 1)-entry makes (E,Φ) into a semistable pair.

Proof. Note that having µ(G1) > µ(E) implies that E is unstable, with G1 being the unique
sub-line bundle that destabilizes E. Any Higgs field is an element of H0(End0E⊗T ) which
is integrable. In particular,

Φ =

(
A B
C −A

)
,

with A ∈ H0(T ), B ∈ H0(G1⊗G∨2⊗T ) and C ∈ H0(G∨1⊗G2⊗T ). Since H0(G∨1⊗G2⊗T ) 6= 0,
there exists Φ with non-zero C. In that case, we have that G1 is not Φ-invariant, and so
(E,Φ) is semistable.

2.3.1 Semistable co-Higgs bundles over curves

Everything presented here is due to Rayan and can be found in [27, 28]. The first thing to
note is that the study of semistable co-Higgs bundles over curves reduces to the study of
semistable co-Higgs bundles on P1. This is since for g = 1, semistable co-Higgs bundles are
simply semistable Higgs bundles; and this have been studied extensively by Franco, Garćıa-
Prada and Newstead in [11, 12]. Furthermore, for g > 1, semistable co-Higgs bundles are
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simply semistable bundles (as in this case there are no non-zero Higgs fields). Hence, we
only focus on P1. Since any rank 2 vector bundle over P1 can be tensored by an appropriate
line bundle to make it into a bundle of degree either 0 or −1, when studying semistable
co-Higgs bundles, one needs only to consider the even (degree 0) and the odd (degree −1)
cases.

First of all, Rayan proves that in the even case there are only two underlying bundles
that yield semistable co-Higgs pairs: OP1 ⊕ OP1 and OP1(1) ⊕ OP1(−1); while in the odd
case, there is only one bundle to consider: OP1 ⊕OP1(−1).

In the odd degree case, where the notion of semistability and stability coincide, Rayan
gives an explicit description of the moduli space as a six-dimensional subvariety of

Tot(OP1(2))× H0(P1,O(4)),

which is a universal elliptic curve (see [28, Section 7]).

Even though an explicit description is not as obvious in the even degree case, Rayan
still describes the fibres of the Hitchin map (we will define this in Chapter 4). For details
see [28, Section 8].

2.3.2 Semistable co-Higgs bundles over surfaces

As we mentioned in the introduction, not much is known about semistable co-Higgs bundles
over surfaces. In this subsection, we present a very brief summary of Rayan’s work over
surfaces and, at the end, we also lay the foundation for our subsequent work on Hirzebruch
surfaces. Details about Rayan’s work can be found in [27, 29].

Non-Existence Results

The existence of non-trivial semistable co-Higgs bundles of rank 2 seems to be skewed to
the non-positive end of the Kodaira spectrum, as the following theorem suggests.

Theorem 2.39. [29, Section 4] Let X be a surface of general type or birational to a K3
surface. Then, if (E,Φ) is a stable, trace-free rank 2 co-Higgs bundle on X with c1(E) = 0,
we must have that Φ = 0.

A key ingredient in the proof of this theorem is the fact that forX as above, H0(X, S2(T ))
vanishes. Thus, the existence of stable rank 2 co-Higgs bundles is tied to the availability of
holomorphic sections of S2(T ). Both on the projective plane and on Hirzebruch surfaces,
there are plenty.

Co-Higgs bundles over P2

It is well known that P1 × P1 is a double cover of P2, and so one can construct rank 2
vector bundles over P2 by pushing down line bundles over P1×P1. Rank 2 bundles over P2

obtained in this fashion are known as Schwarzenberger bundles. In [29], Rayan investigates
co-Higgs bundles over P2, for which the underlying bundles are Schwarzenberger. Indeed,
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these turn out to naturally be co-Higgs bundles with Higgs fields also descending from the
double cover. The locus of an element ρ ∈ H0(P2,OP2(2)) defines a non-singular conic as
well as a double cover of P2 by P1×P1 branched over the conic. If one allows the branched
conic to vary, Rayan shows that the resulting moduli spaces of Schwarzenberger semistable
co-Higgs bundles over P2 are 8-dimensional. Then, as an application of the deformation
theory of co-Higgs bundles (which we will discuss in Chapter 4), Rayan also shows that
starting with a non-trivial Schwarzenberger co-Higgs pair, nearby deformations are again
Schwarzenberger. Hence, semistable Schwarzenberger co-Higgs bundles are rigid.

Co-Higgs bundles over Hirzebruch surfaces

From now on, we will be studying semistable (trace-free) rank 2 co-Higgs bundles over
Hirzebruch surfaces and their moduli spaces. In the next chapter, we will talk about the
existence of these objects, but for now let us investigate what the integrability condition
implies in this case.

Let E be a rank 2 bundle over Fn. Since the tangent bundle of Fn is decomposable
(T = O(2F ) ⊕ O(2C0 + nF )), it is clear that any Φ ∈ H0(End0E ⊗ T ) is of the form
Φ = Φ1 + Φ2 with Φ1 ∈ H0(End0E(2F )) and Φ2 ∈ H0(End0E(2C0 + nF )). Working
locally on an open set, where End0E and T are trivial, we can write

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where Ai, Bi, Ci are complex valued functions for i = 1, 2. Also, on this open set,

Φ ∧ Φ = 2[Φ1,Φ2],

so we can locally write

Φ ∧ Φ = 2

(
B1C2 − C1B2 2(A1B2 −B1A2)

2(C1A2 − A1C2) −(B1C2 − C1B2)

)
.

Thus, we see that Φ is an (integrable) Higgs field if and only if, in each local trivialization,
we have that

B1C2 = C1B2

A1B2 = B1A2

C1A2 = A1C2. (2.8)

Let us finish this chapter with a remark on what the integrability of Φ entails geomet-
rically (in terms of eigenspaces). To do this, we will need the following basic lemma from
linear algebra.

Lemma 2.40. Suppose M1 is an n × n complex matrix with distinct eigenvalues. If M2

is such that [M1,M2] = 0, then M1 and M2 have the same eigenvectors. Moreover, if M2

has distinct eigenvalues, then M1 and M2 have the same eigenspaces.
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Proof. Let λ be an eigenvalue of M1 and v 6= 0 be in the eigenspace corresponding to λ.
Then, we have that

000 = 000v

= [M1,M2]v

= M1M2v −M2M1v

= M1(M2v)− λ(M2v),

and so M1(M2v) = λ(M2v). This implies that M2v is an element of the eigenspace corre-
sponding to λ, and so it can be written as a complex multiple of v. Hence M2v = λ′v, and
the result follows.

Remark 2.41. We have seen that the integrability of Φ is equivalent to [Φ1,Φ2] = 0. Thus,
from the above lemma, for those points of Fn where Φ1 and Φ2 have distinct eigenvalues,
we must have that Φ1 and Φ2 share the same eigenspaces.
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Chapter 3

Existence of semistable rank 2
co-Higgs bundles over Hirzebruch
surfaces

This chapter is devoted to the existence of semistable rank 2 co-Higgs bundles over Hirze-
bruch surfaces. Given a Hirzebruch surface, Fn, if one fixes the standard polarization
H = C0 + (n + 1)F , it is possible to give a complete answer to the question: For which
values of c1 and c2 are the moduli spaces of semistable rank 2 co-Higgs bundles over Fn
non-empty? (See Theorem 3.15). On the other hand, if a polarization is not fixed, but we
instead reduce the first Chern class by tensoring by a line bundle, it is also possible to give
necessary and sufficient conditions for the existence of semistable rank 2 co-Higgs bundles
over Fn for c2 ≤ 1.

3.1 Normalizing the first Chern class and bounding

the second Chern class

Recall that, by Lemma 2.31, semistability of co-Higgs bundles is preserved after tensoring
by a line bundle. Thus, the following lemma will be useful to, in many circumstances,
simplify our study.

Lemma 3.1. Let E be a rank 2 vector bundle over Fn. Then there is a line bundle L such
that c1(E ⊗ L) = 0 or c1(E ⊗ L) = −F or c1(E ⊗ L) = −C0 or c1(E) = −C0 − F .

Proof. Let c1(E) = αC0 + βF . There are four cases to consider:

(i) If both α and β are even, consider the line bundle

L = O
(
−
(α

2

)
C0 −

(
β

2

)
F

)
,

so that c1(E ⊗ L) = 0 (see equation (2.2)).
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(ii) If α is even and β is odd, consider the line bundle

L = O
(
−
(α

2

)
C0 −

(
1 + β

2

)
F

)
,

so that c1(E ⊗ L) = −F .

(iii) If α is odd and β is even, consider the line bundle

L = O
(
−
(

1 + α

2

)
C0 −

(
β

2

)
F

)
,

so that c1(E ⊗ L) = −C0.

(iv) If both α and β are odd, consider the line bundle

L = O
(
−
(

1 + α

2

)
C0 −

(
1 + β

2

)
F

)
,

so that c1(E ⊗ L) = −C0 − F .

When we work with a rank 2 vector bundle E over Fn, and we tensor it by a line bundle
to obtain one of the first Chern classes 0,−C0,−F or −C0 − F , which from now on will
be referred to as reduced classes, we also modify its second Chern class. That is,

c2(E ⊗ L) = c2(E) + c1(E) · c1(L) + c1(L)2, (3.1)

(see equation (2.2)), and so we have:

Corollary 3.2. Let E be a rank 2 vector bundle over Fn with c1(E) = αC0 + βF and
c2(E) = γ. Then, for any line bundle L such that c1(E ⊗ L) is a reduced class, we have

1. If c1(E ⊗ L) = 0, then c2(E ⊗ L) = γ + α(nα−2β)
4

.

2. If c1(E ⊗ L) = −F , then c2(E ⊗ L) = γ + α(nα−2β)
4

.

3. If c1(E ⊗ L) = −C0, then c2(E ⊗ L) = γ + α(nα−2β)−n
4

.

4. If c1(E ⊗ L) = −C0 − F , then c2(E ⊗ L) = γ + α(nα−2β)+2−n
4

.

Proof. This follows immediately from a direct computation using Lemma 3.1 and equa-
tion (3.1).

Let us now work with the reduced classes, and give necessary conditions on c2 in order to
have a semistable co-Higgs pair. Recall that for any rank 2 vector bundle E, the numerical
invariant dE was introduced in Section 2.2.2.

Theorem 3.3. Let H be an ample divisor and let E be a rank 2 vector bundle over Fn.
Suppose (E,Φ) is H-semistable.
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1. If c1(E) = 0, then c2(E) ≥ 0. Furthermore, when equality holds, E is an extension
of line bundles.

2. If c1(E) = −F , then c2(E) ≥ 0. Furthermore, when equality holds, E is an extension
of line bundles.

3. If c1(E) = −C0, then c2(E) ≥ −n
2
. Furthermore, when equality holds, E is an

extension of line bundles, and if dE 6= 0 , then c2(E) > 0.

4. If c1(E) = −C0−F , then c2(E) ≥ −n−1
2

. Furthermore, when equality holds, E is an
extension of line bundles, and if dE 6= 0, then c2(E) > 0.

Proof. Let c1(E) = αC0 + βF , where (α, β) ∈ {(0, 0), (−1, 0), (0,−1), (−1,−1)}. Hence,
by (2.6), E fits into an exact sequence of the form

0→ O(dC0 + rF )→ E → O((α− d)C0 + (β − r)F )⊗ IZ → 0, (3.2)

where Z is a finite set of points in Fn. Then, c2(E) = d(nd+ β − 2r − nα) + rα + `(Z).

Let us now work by cases:

(i) (α, β) = (0, 0): Since E|F ∼= OP1(d) ⊕ OP1(−d), we have that d ≥ 0. In this case,
c2(E) = d(nd − 2r) + `(Z). Towards a contradiction, assume that c2(E) < 0, or
c2(E) = 0 and `(Z) > 0. We then have that d > 0 and d(nd− 2r) < 0.

(ii) (α, β) = (0,−1): As in case (i), d ≥ 0, but now c2(E) = d(nd − 1 − 2r) + `(Z).
Towards a contradiction, assume that c2(E) < 0, or c2(E) = 0 and `(Z) > 0. We
then have that d > 0 and d(nd− 1− 2r) < 0.

(iii) (α, β) = (−1, 0): Since E|F ∼= OP1(d)⊕OP1(−1− d), we have that d ≥ −1− d, and
so d ≥ 0. In this case, c2(E) = d(nd+ n− 2r)− r + `(Z). Towards a contradiction,
assume that either c2(E) < −n

2
, or c2(E) = −n

2
and `(Z) > 0. We then have that:

If d = 0, then 2r − n > 0, and if d > 0, then r > 0.

(iv) (α, β) = (−1,−1): As in case (iii), d ≥ 0, but now c2(E) = d(nd−1−2r+n)−r+`(Z).
Towards a contradiction, assume that either c2(E) < −n−1

2
, or c2(E) = −n−1

2
and

`(Z) > 0. We then have that: If d = 0, then 2r+ 1−n > 0, and if d > 0, then r ≥ 0.

Now, since T = O(2F )⊕O(2C0 + nF ), by plugging in the corresponding values of (α, β),
using (2.3) and the corresponding bounds on d and r described in (i) to (iv) above, one
can easily check that, in all four cases,

H0(O((α− 2d)C0 + (β − 2r)F )⊗ T ⊗ IZ) = H0(O((α− 2d)C0 + (β − 2r + 2)F )⊗ IZ)

⊕ H0(O((α− 2d+ 2)C0 + (β − 2r + n)F )⊗ IZ)

= 0.

By tensoring (3.2) with O(dC0 + rF )∨ ⊗ T and passing to the long exact sequence in
cohomology, we get

0→ H0(T )→ H0(O(dC0+rF )∨⊗E⊗T )→ H0(O((α−2d)C0+(β−2r)F )⊗T⊗IZ)→ . . . .
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However, since H0(O((α − 2d)C0 + (β − 2r)F ) ⊗ T ⊗ IZ) = 0 we get that H0(T ) =
H0(O(dC0 + rF )∨ ⊗ E ⊗ T ), which, by Lemma 2.32, implies that O(dC0 + rF ) is Φ-
invariant for any Φ ∈ H0(End0E ⊗ T ). Furthermore, let H = h1C0 + h2F , and note that
µH(O(dC0 + rF )) = h1(r − nd) + h2d, while

µH(E) = h1

(
β − αn

2

)
+ h2

(α
2

)
.

Thus, we have that

µH(O(dC0 + rF ))− µH(E) = h1

(
r − nd+

αn− β
2

)
+ h2

(
d− α

2

)
≥ h1

(
r − nd+

αn− β
2

)
+ (nh1 + 1)

(
d− α

2

)
= h1

(
r − β

2

)
+
(
d− α

2

)
,

which in all four cases, is a strictly positive number. This contradicts H-semistability of
(E,Φ), and the result follows.

3.2 Walls and Chambers for c2 ≤ 1

Given c1 and c2, we have seen that the concept of semistability for co-Higgs bundles is
independent of the choice of polarization within chambers and their upper walls of type
(c1, c2) (see Proposition 2.33 and Corollary 2.34). Hence, in order to have a more pragmatic
approach to dealing with arbitrary polarizations, it would be useful to better understand
the ample cone CCCFn . In this section we do so for the reduced first Chern classes and for
c2 ≤ 1.

Keeping the same notation as in subsection 2.1.2, a class ζ of type (c1, c2) is said to be
normalized if ζ ·F ≥ 0. From now on we work with normalized ζ. Let c1 = αC0 + βF and
c2 = γ. Moreover, let ζ = ζ1C0 + ζ2F be a normalized class of type (c1, c2). We make the
following remarks:

Remark 3.4.

1. Since ζ is normalized, we must have ζ1 ≥ 0.

2. Since ζ has to be in the same numerical equivalence class as 2D − c1(E) for some
divisor D = d1C0 + d2F , we have, in particular, that

(ζ − (2D − c1(E))) · C0 = (ζ − (2D − c1(E))) · F = 0.

Since
ζ − (2D − c1(E)) = ((ζ1 + α− 2d1)C0 + (ζ2 + β − 2d2)F ),

this implies that ζ1 = 2d1 − α and ζ2 = n(ζ1 + α− 2d1)− β + 2d2. Thus, we get the
following table
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c1 ζ1 ζ2

0 even even
−C0 odd even
−F even odd

−C0 − F odd odd

3. Recall that x = x1C0 + x2F ∈ CCCFn if and only if x1 > 0 and x2 > nx1. Hence, if the
wall

W ζ = {x ∈ CCCFn : x · ζ = 0}

is non-empty, we must have ζ2 ≤ 0.

4. Since ζ satisfies −(4c2 − c2
1) ≤ ζ2 < 0, we have

−(4γ + α2n− 2αβ) ≤ −ζ2
1n+ 2ζ1ζ2 < 0.

Thus, we obtain the following tables.

For c2(E) ≤ 0, we get

c1

0 0 ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−C0 −n ≤ −(4γ + n) ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−F 0 ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−C0 − F −n+ 2 ≤ −(4γ + n− 2) ≤ −ζ2
1n+ 2ζ1ζ2 < 0

For c2(E) = 1, we get

c1

0 −4 ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−C0 −4− n ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−F −4 ≤ −ζ2
1n+ 2ζ1ζ2 < 0

−C0 − F −n− 2 ≤ −ζ2
1n+ 2ζ1ζ2 < 0

With this is mind, we can now prove the following two propositions.

Proposition 3.5. Let c1 be one of the reduced classes, and let c2 ≤ 0. Then the ample cone
CCCFn has only one chamber of type (c1, c2). In particular, to study semistability of co-Higgs
bundles in this case, it suffices to consider the standard polarization H = C0 + (n+ 1)F .

Proof. We will prove that, in this case, there are no walls and, by Proposition 2.33 and
its corollary, it will follow that we may consider any polarization. It immediately follows
from Remark 3.4 that there are no values of ζ1, ζ2 satisfying the conditions, except when
c1 = −C0. In this case, the only possible values for ζ1 and ζ2 are ζ1 = 1 and ζ2 = 0.
However, ζ = C0 describes the wall W ζ given by the boundary of the ample cone containing
C0 + nF . Hence, there are no walls and the result follows.

Proposition 3.6. Let c1 be one of the reduced classes, and let c2 = 1. Then, in the cases
where c1 = 0, or c1 = −F and n 6= 0, there is only one chamber of type (c1, 1) in CCCFn.
Otherwise, there are exactly two chambers of type (c1, 1).
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Proof. Again, from Remark 3.4, we see that when c1 = 0, there is only one solution to the
inequality when n = 1, given by ζ1 = 2 and ζ2 = 0, but this solution describes the wall W ζ

that is the boundary containing C0 + F . Hence, there are no walls. When c1(E) = −F
and n 6= 0, we see there are no values of ζ1, ζ2 that satisfy the conditions, and so there are
again no walls. Now, when c1 = −F and n = 0, ζ1 = 2 and ζ2 = −1 satisfy the conditions,
and so we get the wall

W ζ = {x1C0 + x2F ∈ CCCFn : x1 = 2x2},

yielding two chambers. When c1(E) = −C0, the only possible values for ζ1, ζ2 satisfying the
conditions are ζ1 = 1 and ζ2 = 0,−2. However, note that ζ = C0 describes the boundary
of the ample cone containing C0 + nF , so we only need to take ζ = C0 − 2F into account.
This ζ describes the wall

W ζ = {x1C0 + x2F ∈ CCCFn : x2 = (n+ 2)x1},

and so there are two chambers. Finally, when c1 = −C0 − F , the only possible values for
ζ1, ζ2 satisfying the conditions are ζ1 = 1 and ζ2 = −1. This ζ describes the wall

W ζ = {x1C0 + x2F ∈ CCCFn : x2 = (n+ 1)x1},

and so there are again exactly two chambers.

Note that we could continue to play the same game for larger values of c2; however,
even for n = 0 (which is the simplest case to consider), this becomes an arduous task. Fix
n = 0 and c1 = −F for the moment; it is clear that, every time c2 increases, the number
of walls increases as well (as it will always include the previous ones). Hence, for example,
for c2 = 3 we obtain three walls of type (−F, 3), for c2 = 4 we obtain four walls of type
(−F, 4), for c2 = 5 we obtain six walls of type (−F, 5), for c2 = 6, we obtain eight walls of
type (−F, 6), and so on. However, there is no obvious pattern to predict how many walls
we will get for an arbitrary value of c2, as this depends on the divisibility of the number
4c2. For this reason, this approach does not provide a strategic way of dealing with the
problem. Nonetheless, using the results of Propositions 3.5 and 3.6, as well as Theorem 3.3,
the following section deals with non-emptiness results for the moduli spaces, for arbitrary
polarizations, where c1 is one of the reduced classes and c2 ≤ 1. After that, we fix the
standard polarization and work with arbitrary c1 and c2.

3.3 Non-emptiness of Moduli Spaces

This section is divided into two parts. While in the first one we discuss the existence of
semistable co-Higgs pairs for reduced first Chern classes, in the second one we work with
arbitrary c1. For most of part one, we will work with arbitrary polarizations; however,
we fix the standard polarization for the second part. From now on, we will denote the
moduli space of rank 2 H-semistable co-Higgs bundles with fixed Chern classes c1 and c2

by Mco
H (c1, c2).

For a decomposable bundle E, let us give the general shape of an element in H0(End0E⊗
T ). We do so in the following remark, so that we can later refer to it.
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Remark 3.7. Let E = O(a1C0 + b1F )⊕O(a2C0 + b2F ) be a decomposable rank 2 bundle
over Fn, and recall that T = O(2F )⊕O(2C0 +nF ). Then, any element of H0(End0E⊗T )
is of the form Φ = Φ1 +Φ2, with Φ1 ∈ H0(End0E⊗O(2F )) and Φ2 ∈ H0(End0E⊗O(2C0 +
nF )). More explicitly,

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O((a1−a2)C0 +(2+ b1− b2)F )), C1 ∈ H0(O((a2−a1)C0 +
(2 + b2− b1)F )) and A2 ∈ H0(O(2C0 +nF )), B2 ∈ H0(O((2 +a1−a2)C0 + (n+ b1− b2)F )),
C2 ∈ H0(O((2 + a2 − a1)C0 + (n+ b2 − b1)F )).

3.3.1 Non-emptiness for reduced first Chern class

In this section, we work only with reduced first Chern classes. We will show that the
necessary conditions imposed on c2 to guarantee the existence of semistable co-Higgs pairs
in Mco

H (c1, c2) presented in Theorem 3.3 are indeed sufficient.

Second Chern class c2 ≤ 0.

Theorem 3.8. Let H be any polarization. Suppose that c1 is a reduced first Chern class
and that c2 ≤ 0. Then, Mco

H (c1, c2) is non-empty if and only if c2 satisfies the following
conditions:

1. c2 = 0 when c1 = 0,−F .

2. −n
2
≤ c2 ≤ 0 when c1 = −C0.

3. − (n−1)
2
≤ c2 ≤ 0 when c1 = −C0 − F .

In fact,Mco
H (c1, c2) contains non-trivial stable co-Higgs pairs (with decomposable underlying

bundle) in all three cases.

Proof. The forward direction follows from Theorem 3.3. For the converse, recall that, by
Propostion 3.5, there is only one chamber, and so it suffices to work with the standard
polarization H = C0 + (n+ 1)F . We consider each case separately.

Case 1. (a) Suppose c1 = 0 and c2 = 0. Take, for example, E = O(F ) ⊕O(−F ) together
with a Higgs field of the form

Φ = Φ1 =

(
A1 B1

C1 −A1

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(4F )) and non-zero C1 ∈ H0(O). The only destabilizing
sub-line bundle of E is O(F ) (see Proposition 2.10). It follows that (E,Φ) is H-stable, as
C1 6= 0, and so O(F ) is not Φ-invariant. Thus, (E,Φ) ∈Mco

H (0, 0).
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Case 1. (b) Suppose c1 = −F and c2 = 0. Take E = O ⊕O(−F ) and a Higgs field of the
form

Φ = Φ1 =

(
A1 B1

C1 −A1

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(3F )) and non-zero C1 ∈ H0(O(F )). The only destabi-
lizing sub-line bundle of E is O (see Proposition 2.10). It follows that (E,Φ) is H-stable,
as C1 6= 0, and so O is not Φ-invariant. Thus, (E,Φ) ∈Mco

H (−F, 0).

Case 2. Suppose c1 = −C0 and −n
2
≤ c2 ≤ 0. Let γ = c2 and consider E = O(−γF ) ⊕

O(−C0 + γF ). Following the notation of Remark 3.7, any element of H0(End0E ⊗ T ) has
the form

Φ = Φ1 + Φ2 =

(
A1 B1

0 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(C0 + (2 − 2γ)F )) and A2 ∈ H0(O(2C0 + nF )), B2 ∈
H0(O(3C0 + (n− 2γ)F )) and C2 ∈ H0(O(C0 + (n+ 2γ)F )). Any non-zero C2 (which exists
since n + 2γ ≥ 0) will not leave O(−γF ) Φ-invariant (by Proposition 2.10, this is the
only destabilizing sub-line bundle of E). Taking the integrability condition into account,
equations (2.8) imply that A1 = B1 = 0, and so E together with any Higgs field Φ = Φ2

with non-zero C2 yields a stable pair.

Case 3. Suppose c1 = −C0 − F and − (n−1)
2
≤ c2 ≤ 0. Let γ = c2 and consider E =

O(−γF )⊕O(−C0 + (γ − 1)F ). Again, following the notation of Remark 3.7, any element
of H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

0 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(C0 + (3 − 2γ)F )) and A2 ∈ H0(O(2C0 + nF )), B2 ∈
H0(O(3C0 +(n+1−2γ)F )) and C2 ∈ H0(O(C0 +(n−1+2γ)F )). Any non-zero C2 (which
exists since 2γ + n − 1 ≥ 0) would not leave O(−γF ) Φ-invariant (by Proposition 2.10,
this is the only destabilizing sub-line bundle of E). Taking the integrability condition into
account, equations (2.8) imply that A1 = B1 = 0, and so E together with any Higgs field
Φ = Φ2 with non-zero C2 yields a stable pair.

Second Chern class c2 = 1.

Theorem 3.9. Let H be any polarization. Suppose that c1 is a reduced first Chern class
and that c2 = 1. Then, the moduli space Mco

H (c1, 1) is non-empty and contains non-trivial
semistable pairs. Moreover, in each of the following cases, there is a non-trivial stable
co-Higgs pair.

1. For c1 = 0, whenever n is odd.

2. For c1 = −F , whenever H does not lie on a wall.

3. For c1 = −C0, whenever H does not lie on a wall, or n ≥ 2.

4. For c1 = −C0 − F , whenever H does not lie on a wall, or n ≥ 1.
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Proof. By Proposition 3.6, in each case, there are at most two chambers of type (c1, 1) to
consider. Whenever there is a wall, we use the notation C+, C− to denote the chambers
above and below the wall, respectively. C+ corresponds to the chamber CF containing F on
the boundary, and C− corresponds to the chamber containing C0 + nF on the boundary.
We treat each reduced first Chern class separately.

Case 1. Suppose c1 = 0. We know, by Proposition 3.6, that we may pick any polarization,
and so we fix H = C0 + (n + 1)F . Consider a bundle E with numerical invariants d = 0,
r = 0 (and with c1 = 0 and c2 = 1). Note that such a bundle exists by Theorem 2.21, and
fits into an exact sequence of the form:

0→ O → E → Ix → 0, (3.3)

with x a point in Fn. We show that E is semistable and that it admits non-trivial Higgs
fields. The fact that E is semistable follows immediately since any possible sub-line bundle
of E has slope at most 0 (and O is indeed a sub-line bundle of E). To see that any such
E admits non-trivial Higgs fields, we prove that H0(End0E(2F )) is non-zero. To see this,
note that we can take the dual sequence of (3.3), tensor it by E(2F ) and pass to the long
exact sequence in cohomology to get

0 → H0(E(2F )) → H0(EndE(2F )) → H0(E(2F )⊗ Ix) → . . .

Hence, it is enough to show that h0(E(2F )) ≥ 4, as then h0(EndE(2F )) ≥ 4 as well, and
so h0(End0E(2F )) = h0(EndE(2F ))− h0(O(2F )) ≥ 1. To see that h0(E(2F )) ≥ 4, start
by tensoring (3.3) by O(2F ) to get

0 → H0(O(2F )) → H0(E(2F )) → H0(Ix(2F )) → H1(O(2F )) → . . .

One can easily see that h0(O(2F )) = 3, h1(O(2F )) = 0 and that h0(Ix(2F )) = 2, and so
h0(E(2F )) = 5.

For the moreover part, assume n is odd and consider the bundle O
(
C0 +

(
n−1

2

)
F
)
⊕

O
(
−C0 −

(
n−1

2

)
F
)

together with a Higgs field of the form

Φ = Φ2 =

(
A2 B2

C2 −A2

)
,

with A2 ∈ H0(O(2C0 +nF )), B2 ∈ H0(O(4C0 + (2n− 1)F )) and non-zero C2 ∈ H0(O(C0 +
F )). In Proposition A.1 we show that such a co-Higgs pair is indeed stable.

Case 2. (a) Suppose c1 = −F and n 6= 0. We know, by Proposition 3.6, that there is only
one chamber, and so we work with the standard polarization H = C0 + (n+ 1)F . Consider
the bundle E = O(−C0)⊕O(C0 − F ) together with a Higgs field of the form

Φ = Φ2 =

(
A2 B2

0 −A2

)
,

with A2 ∈ H0(O(2C0)) and non-zero B2 ∈ H0(O(F )). It is easy to verify that (E,Φ) is
H-stable, as O(C0 − F ) is not Φ-invariant.

Case 2. (b) Suppose c1 = −F and n = 0. We know, by Proposition 3.6, that there are
exactly two chambers. The bundle E = O(−C0)⊕O(C0 − F ) admits Higgs fields Φ+ and
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Φ− such that (E,Φ+) ∈ Mco
C+(−F, 1) is stable, and (E,Φ−) ∈ Mco

C−(−F, 1) is also stable.
Indeed, take

Φ+ =

(
A1 0
C1 −A1

)
,

with A1 ∈ H0(O(2F )) and non-zero C1 ∈ H0(O(2C0 + 2F )). One can easily check that
(E,Φ+) is (3C0 + F )-stable, where 3C0 + F ∈ C+, as O(−C0) is not Φ+-invariant (by
picking non-zero C1). Now, take

Φ− =

(
A2 B2

0 −A2

)
,

with A2 ∈ H0(O(2C0)) and non-zero B2 ∈ H0(O(F )). Again, it is easy to verify that
(E,Φ−) is (C0 + F )-stable, where C0 + F ∈ C−, as O(C0 − F ) is not Φ−-invariant.

Now, if we pick a polarization lying on a wall, 2C0 + F say, any co-Higgs pair with
underlying bundle E, which is of the form (E,Φ+) or (E,Φ−), is strictly (2C0 + F )-
semistable. This follows since both O(−C0) and O(C0−F ) have the same (2C0 +F )-slope
as E (namely −1), and one of them will necessarily be invariant under the Higgs field.

Case 3. Suppose c1 = −C0. We know, by Proposition 3.6, that there are exactly two
chambers. The bundle E = O(−F ) ⊕ O(−C0 + F ) admits Higgs fields Φ+ and Φ− such
that (E,Φ+) ∈ Mco

C+(−C0, 1) is stable, and (E,Φ−) ∈ Mco
C−(−C0, 1) is stable as well.

Indeed, take

Φ+ =

(
A2 B2

C2 −A2

)
,

with A2 ∈ H0(O(2C0+nF )), B2 ∈ H0(O(3C0+(n−2)F )) and non-zero C2 ∈ H0(O(C0+(n+
2)F )). One can easily check that (E,Φ+) is (C0+(n+3)F )-stable, where C0+(n+3)F ∈ C+,
as O(−F ) is not Φ+-invariant (by picking non-zero C2). Now, take

Φ− =

(
A1 B1

0 −A1

)
,

with A1 ∈ H0(O(2F )) and non-zero B1 ∈ H0(O(C0)). Again, it is easy to verify that
(E,Φ−) is (C0 + (n + 1)F )-stable, where C0 + (n + 1)F ∈ C−, as O(−C0 + F ) is not
Φ−-invariant.

Now, if we pick a polarization lying on a wall, C0 + (n + 2)F say, any possible co-
Higgs pair with underlying bundle E, which is of the form (E,Φ+) or (E,Φ−), is strictly
(C0 + (n+ 2)F )-semistable, unless n ≥ 2. As both O(−F ) and O(−C0 +F ) have the same
(C0 + (n + 2)F )-slope as E (namely, −1). When n ≥ 2, the pairs (E,Φ+) will not leave
these two sub-line bundles invariant, as long as we pick non-zero B2 and C2.

Case 4. Suppose c1 = −C0 − F . We know, by Proposition 3.6, that there are exactly two
chambers. The bundle E = O(−C0) ⊕ O(−F ) admits Higgs fields Φ+ and Φ− such that
(E,Φ+) ∈ Mco

C+(−C0 − F, 1) is stable, and (E,Φ−) ∈ Mco
C−(−C0 − F, 1) is stable as well.

Indeed, take

Φ+ =

(
A2 B2

C2 −A2

)
,
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with A2 ∈ H0(O(2C0+nF )), non-zero B2 ∈ H0(O(C0+(n+1)F )) and C2 ∈ H0(O(3C0+(n−
1)F )). One can easily check that (E,Φ+) is (C0+(n+2)F )-stable, where C0+(n+2)F ∈ C+,
as O(−F ) is not Φ+-invariant (by picking non-zero B2). Now, take

Φ− =

(
A1 0
C1 −A1

)
,

with A1 ∈ H0(O(2F )) and non-zero C1 ∈ H0(O(C0 + F )). Again, it is easy to verify
that (E,Φ−) is (2C0 + (2n + 1)F )-stable, where 2C0 + (2n + 1)F ∈ C−, as O(−C0) is not
Φ−-invariant.

Now, if we pick a polarization lying on a wall, C0 + (n + 1)F say, any possible co-
Higgs pair with underlying bundle E, which is of the form (E,Φ+) or (E,Φ−), is strictly
(C0 + (n + 1)F )-semistable, unless n ≥ 1. This is as both O(−C0) and O(−F ) have the
same (C0 + (n + 1)F )-slope as E (namely −1). When n ≥ 1, the pairs (E,Φ−) will not
leave these two sub-line bundles invariant, as long as we pick non-zero B2 and C2.

Second Chern class c2 ≥ 2.

As we had mentioned before, as c2 becomes larger, it becomes increasingly difficult to work
with walls and chambers, and thus we do not attempt to approach this problem in general.
However, we can characterize the non-emptiness of the moduli spacesMco

H (c1, c2), when H
is the standard polarization.

We show that whenever the moduli spaceMco
H (c1, c2) is non-empty, it actually contains

a stable bundle E, which we can equip with the zero Higgs field in order to yield a stable co-
Higgs pair. However, we want to be able to exhibit non-trivial co-Higgs bundles, showing
that these objects do constitute an enlargement of the class of semistable bundles. Note
that we have already dealt with this issue in the proof of Proposition 3.9, and in that case,
it was fairly straightforward to show that the bundles in question had non-trivial Higgs
fields. In general, if E is in an exact sequence of the form

0→ L1 → E → L2 ⊗ IZ → 0, (3.4)

and we want to prove that it admits non-zero Higgs fields Φ ∈ H0(End0E ⊗ T ), it suffices
to show that H0(End0E(2F )) 6= 0 or H0(End0E(2C0 + nF )) 6= 0 (since T = O(2F ) ⊕
O(2C0 + nF )). We prove that H0(End0E(2F )) 6= 0. Taking the dual of (3.4), tensoring
it by E(2F ) and passing to the long exact sequence in cohomology, it is clear that, if one
can prove that H0(L∨2 ⊗ E(2F )) ≥ 4 as in Proposition 3.9, the result follows. However, in
general, this is too strong of a condition and we can prove that a much simpler condition
suffices to guarantee that H0(End0E(2F )) 6= 0. We first recall a basic fact about modules
that will be used in Proposition 3.11.

Lemma 3.10. Let
0→ A

ι−→ B1 ⊕B2
p−→ C

be an exact sequence of R-modules. If A 6= 0 and p|B2 is injective, then B1 6= 0.

Proposition 3.11. Let E be a rank 2 vector bundle over Fn that fits into the exact sequence

0→ L1
ι−→ E

p−→ L2 ⊗ IZ → 0. (3.5)

If H0(L∨2 ⊗ E(2F )) 6= 0, then H0(End0E(2F )) 6= 0.
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Proof. Start by taking the dual of the exact sequence (3.5), tensor it by E(2F ) and pass
to the exact sequence in cohomology to get

0→ H0(L∨2 ⊗ E(2F ))→ H0(EndE(2F ))→ H0(L∨1 ⊗ E(2F )⊗ IZ)→ . . .

The map H0(EndE ⊗O(2F ))→ H0(L∨1 ⊗ E ⊗ IZ ⊗O(2F )) is the induced one from

ε⊗ IdO(2F ) : EndE ⊗O(2F )→ (L∨1 ⊗ E ⊗ IZ)⊗O(2F ),

where ε takes h to h ◦ ι. Writing EndE = End0E ⊕O, and noting that IdE generates O
in EndE, we get that the map induced by ε ⊗ IdO(2F ), restricted to H0(O ⊗ O(2F )), is
injective. By Lemma 3.10, H0(End0E(2F )) 6= 0, as desired.

We now prove that the bundles that will serve as examples of underlying bundles for
the non-trivial co-Higgs pairs in Theorem 3.13 are indeed stable.

Lemma 3.12. Let E be such that it either fits into the exact sequence

0→ O(−F )→ E → IZ → 0,

with `(Z) ≥ 1, or
0→ O(−F )→ E → O(−C0 + F )⊗ IZ → 0,

with `(Z) ≥ 1. Then E is stable.

Proof. In the first case, we prove that E is stable by showing that, if there is a non-zero
map O(aC0 + bF )→ E, then

µ(O(aC0 + bF )) = a+ b < −1

2
= µ(E).

We have

0→ O(−aC0 − (b+ 1)F )→ E(−aC0 − bF )→ IZ(−aC0 − bF )→ 0,

and
0→ IZ(−aC0 − bF )→ O(−aC0 − bF )→ O/IZ → 0.

First note that if a > 0 or b > 0, then H0(O(−aC0−(b+1)F )) = 0 and H0(IZ(−aC0−bF )) =
0 since H0(O(−aC0 − bF )) = 0, in which case H0(E(−aC0 − bF )) = 0. We thus assume
a, b ≤ 0. But then

µ(O(aC0 + bF )) ≤ −1 < µ(E),

unless a = b = 0. Moreover, if a = b = 0, then H0(O(−F )) = H0(IZ) = 0, so that H0(E) =
0, implying that there are no non-zero maps O → E. Consequently, if H0(E(−aC0−bF )) 6=
0, then µ(O(aC0 + bF )) < µ(E).

Similarly, in the second case, one can show that if µ(O(aC0 + bF )) = a + b ≥ 0, then
H0(E(−aC0 − bF )) = 0; otherwise we have

µ(O(aC0 + bF )) ≤ −1 < µ(E),

so E is in fact stable.

35



We can now prove:

Theorem 3.13. Let H be the standard polarization. Suppose that c1 is a reduced first
Chern class and that c2 ≥ 2. Then, the moduli space Mco

H (c1, c2) is non-empty and it
contains non-trivial stable co-Higgs pairs.

Proof. To see that Mco
H (0, c2) 6= ∅, consider a rank-2 vector bundle E with c1(E) = 0,

c2(E) ≥ 2, and numerical invariants d = r = 0 (such a bundle exists by Theorem 2.21).
We can write E as

0→ O → E → IZ → 0

with `(Z) = c2. Since µ(E) = µ(O) = 0, E is semistable (see the “more precisely” clause
of Proposition 2.12). Thus, it suffices to show that H0(End0E(2F )) 6= 0. This follows from
Proposition 3.11, as H0(E(2F )) 6= 0.

To see that Mco
H (−F, c2) 6= ∅, consider a rank-2 vector bundle E with c1(E) = −F ,

c2(E) ≥ 2, and numerical invariants d = 0, r = −1 (such a bundle exists by Theorem
2.21). We can write E as

0→ O(−F )→ E → IZ → 0

with `(Z) = c2. We proved in Lemma 3.12 that such an E is stable. Thus, it suffices to
show that H0(End0E(2F )) 6= 0. This follows from Proposition 3.11, as H0(E(2F )) 6= 0.

To see that Mco
H (−C0, c2) 6= ∅, consider a rank-2 vector bundle E with c1(E) = −C0,

c2(E) ≥ 2, and numerical invariants d = 0, r = −1 (such a bundle exists by Theorem
2.21). We can write E as

0→ O(−F )→ E → O(−C0 + F )⊗ IZ → 0

with `(Z) = c2 − 1. Again, we proved in Lemma 3.12 that such an E is stable. Thus,
it suffices to show that H0(End0E(2F )) 6= 0. This follows from Proposition 3.11, as
H0(E(2F )) 6= 0.

Finally, to see that Mco
H (−C0 − F, c2) 6= ∅, consider a rank-2 vector bundle E with

c1(E) = −C0−F , c2(E) ≥ 2, and numerical invariants d = 0, r = −1 (such a bundle exists
by Theorem 2.21). We can write E as

0→ O(−F )→ E → O(−C0)⊗ IZ → 0

with `(Z) = c2(E) − 1. Since µ(E) = µ(O(−F )) = −1, E is semistable (see the “more
precisely” clause of Proposition 2.12). Thus, it suffices to show that H0(End0E(2F )) 6= 0.
This follows from Proposition 3.11, as H0(E(2F )) 6= 0.

3.3.2 Non-emptiness for arbitrary first Chern class

In this section, we work with arbitrary first Chern class c1. For the standard polarization,
we give a complete characterization of when Mco

H (c1, c2) is non-empty. Before doing so,
let us fix the second Chern class to be 0. Then, one can say something about the non-
emptiness of the moduli spaceMco

H (c1, 0) for arbitrary H. The next proposition addresses
this, by giving necessary conditions for the existence of stable co-Higgs bundles.
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Proposition 3.14. Let H be any polarization and c2 = 0. Then Mco
H (c1, 0) is non-empty

if c1 satisfies one of the following three conditions:

1. c1 ·H > 0, and 2F − c1 ≥ 0 or 2C0 + nF − c1 ≥ 0.

2. c1 ·H < 0, and 2F + c1 ≥ 0 or 2C0 + nF + c1 ≥ 0.

3. c1 ·H = 0, and −2C0 − nF ≤ c1 ≤ 2C0 + nF .

Moreover, if any of the above holds, we can, in fact, find a non-trivial stable co-Higgs pair.

Proof. Let c1 = αC0+βF and consider E = O⊕O(αC0+βF ). Any element of H0(End0E⊗
T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(2F − c1)), C1 ∈ H0(O(2F + c1)) and A2 ∈ H0(O(2C0 +
nF )), B2 ∈ H0(O(2C0 + nF − c1)), C2 ∈ H0(O(2C0 + nF + c1)). In the first case, the
condition c1 · H > 0 yields that O(αC0 + βF ) is the destabilizing sub-line bundle of E.
Moreover, since either 2F − c1 or 2C0 + nF − c1 is effective, we get that either B1 or B2

is non-zero (possibly both), and so it is possible to choose Φ such that it is integrable and
O(αC0 + βF ) is not Φ-invariant. Hence, at least one of the pairs (E,Φ1) or (E,Φ2) is
stable.

In the second case, the condition c1 ·H < 0 yields that O is the destabilizing sub-line
bundle of E. This time, since either 2F + c1 or 2C0 + nF + c1 is effective, we get that
either C1 or C2 is non-zero (possibly both), and so it is possible to choose Φ such that it
is integrable and O is not Φ-invariant. Hence, at least one of the pairs (E,Φ1) or (E,Φ2)
is stable.

Finally, in the third case, the condition c1 · H = 0 tells us that µ(E) = µ(O) =
µ(O(αC0 + βF )) = 0. Consequently, E is semistable by Lemma 2.22. Moreover, O and
O(αC0 +βF ) are the only sub-line bundles of E of slope 0 (see Proposition 2.12). We need
a Higgs field Φ such that these two are not Φ-invariant. The condition −2C0− nF ≤ c1 ≤
2C0 + nF assures that we can pick Φ = Φ2 such that B2 and C2 are non-zero, so that O
and O(αC0 + βF ) are not Φ-invariant. Hence (E,Φ2) is stable.

We now fix H to be the standard polarization C0 + (n + 1)F , and give necessary and
sufficient conditions on c2 in order to guarantee that Mco

H (c1, c2) is non-empty.

Theorem 3.15. Let c1 = αC0 + βF and c2 = γ. Fix the standard polarization H =
C0 + (n+ 1)F . Then, the moduli space Mco

H (c1, c2) is non-empty (and moreover it contains
a non-trivial co-Higgs pair) if and only if one of the following holds:

1. α and β are both even and 4γ ≥ α(2β − nα);

2. α is even, β is odd and 4γ ≥ α(2β − nα);

3. α is odd, β is even and 4γ ≥ 2αβ − n(1 + α2);
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4. α and β are both odd and 4γ ≥ 2(αβ − 2)− n(1 + α2).

Proof. For the forward direction, take E ∈Mco
H (c1, c2) and tensor it by the appropriate line

bundle L, so that its first Chern class is one of the reduced ones (see the proof of Lemma
3.1). Then Corollary 3.2 tells us how the second Chern class changes after tensoring E by
L. We can then apply Theorem 3.3 to obtain the desired result. The converse follows from
the results in this section on the existence of semistable co-Higgs bundles with one of the
reduced classes, see Theorems 3.8, 3.9 and 3.13.

We finish the chapter by showing that not every stable bundle E admits a non-zero
Higgs field. We exhibit this phenomenon for vector bundles over P1 × P1 with first Chern
class −F . We work with the standard polarization H = C0 + F .

First, note that if d > 0, r ≤ −1− d, and c2 + d(1 + 2r) > 0, then M(−F, c2, d, r) 6= ∅
by Theorem 2.21. Moreover, by Theorem 2.23, every E ∈ M(−F, c2, d, r) is stable, as
(2dC0 + (2r + 1)F ) · (C0 + F ) < 0. We now have:

Proposition 3.16. Suppose that d > 1, r ≤ −1− d and c2 ≥ 3− d(1 + 2r), or that d = 1,
r ≤ −2 and c2 ≥ −4r − 1. If E ∈M(−F, c2, d, r), then E has no non-trivial Higgs fields.

In order to prove the above proposition, we first show the following technical lemmas.

Lemma 3.17. Let Z be a finite set of points in P1 × P1. Then

H0(IZ(2, 0)) = H0(IZ(0, 2)) = C3−`(Z),

with the convention that Cq = 0 whenever q ≤ 0. Also,

H1(IZ(2, 0)) = H1(IZ(0, 2)) = C`(Z)−3.

Proof. Start by tensoring the exact sequence

0→ IZ → O → OZ → 0

by O(2, 0), and pass to the long exact sequence in cohomology

0 → H0(IZ(2, 0)) → H0(O(2, 0)) → H0(OZ)
→ H1(IZ(2, 0)) → H1(O(2, 0)) → H1(OZ)
→ H2(IZ(2, 0)) → H2(O(2, 0)) → H2(OZ) → 0.

Now note that OZ is a skyscraper sheaf supported at Z, and so H0(OZ) ∼= C`(Z) and
H1(OZ) = H2(OZ) = 0. Also H0(O(2, 0)) ∼= C3 and H1(O(2, 0)) = H2(O(2, 0)) = 0, so we
have

0→ H0(IZ(2, 0))→ C3 → C`(Z) → H1(IZ(2, 0))→ 0.

Since we can interpret elements of H0(IZ(2, 0)) as homogeneous polynomials of degree 2
that vanish at `(Z) points, it is clear that H0(IZ(2, 0)) ∼= C3−`(Z), and as a consequence of
exactness we get that H1(IZ(2, 0)) ∼= C`(Z)−3.

The proof that H0(IZ(0, 2)) ∼= C3−`(Z) and H1(IZ(0, 2)) ∼= C`(Z)−3 is identical; just
replace O(2, 0) by O(0, 2) above.
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Lemma 3.18. Let d > 0, r ≤ −1−d, and c2 ≥ 3−d(1+2r). For every E ∈M(−F, c2, d, r),
we have that H0(End0E(2, 0)) = 0. If furthermore d = 1 and c2 ≥ −4r − 1, or if d > 1,
then H0(End0E(0, 2)) = 0.

Proof. Recall that E fits into an exact sequence of the form

0→ O(r, d)→ E → IZ(−r − 1,−d)→ 0, (3.6)

with `(Z) = c2 + d(1 + 2r) ≥ 3. By taking the dual of (3.6), tensoring it with E(2, 0), and
passing to the long exact sequence in cohomology, we get:

0→ H0(E(r + 3, d))→ H0(EndE(2, 0))→ H0(E(−r + 2,−d)⊗ IZ)→ . . .

Let us show that h0(E(r+3, d)) = 0 and h0(E(−r+2,−d)⊗IZ) ≤ 3, as such h0(EndE(2, 0)) ≤
3, and so H0(End0E(2, 0)) = 0.

To show that H0(E(r + 3, d)) = 0, tensor (3.6) with O(r + 3, d) to get

0→ H0(O(2r + 3, 2d))→ H0(E(r + 3, d))→ H0(IZ(2, 0))→ . . .

Now, h0(O(2r + 3, 2d)) = 0 as 2r + 3 ≤ −1, and H0(O(2, 0) ⊗ IZ) = 0 by Lemma 3.17.
Hence H0(E(r + 3, d)) = 0.

To see that h0(E(−r + 2,−d)⊗ IZ) ≤ 3, start by tensoring (3.6) by O(−r + 2,−d) to
get:

0→ H0(O(2, 0))→ H0(E(−r + 2,−d))→ H0(IZ(−2r − 1,−2d))→ . . .

Since −2d < 0, we have that h0(IZ(−2r − 1,−2d)) = 0, and so h0(E(−r + 2,−d)) =
h0(O(2, 0)) = 3. Now tensor

0→ IZ → O → OZ → 0 (3.7)

by E(−r + 2,−d), and pass to the exact sequence in cohomology to get

0→ H0(E(−r + 2,−d)⊗ IZ)→ H0(E(−r + 2,−d))→ H0(E(−r + 2,−d)⊗OZ)→ . . .

From here it is clear that h0(E(−r + 2,−d)⊗ IZ) ≤ 3, and so H0(End0E(2, 0)) = 0.

We now show that if d = 1 and c2 ≥ −4r − 1, or d > 1, then H0(End0E(0, 2)) = 0.
Taking the dual of (3.6), and tensoring it by E(0, 2) we get:

0→ H0(E(r + 1, d+ 2))→ H0(EndE(0, 2))→ H0(E(−r,−d+ 2)⊗ IZ)→ . . . (3.8)

This time h0(E(r+1, d+2)) = 0 and h0(E(−r,−d+2)⊗IZ) ≤ 3, giving us h0(EndE(0, 2)) ≤
3 and H0(End0E(0, 2)) = 0. Let us prove it.

To show that h0(E(r + 1, d+ 2)) = 0, tensor (3.6) with O(r + 1, d+ 2) to get

0→ H0(O(2r + 1, 2d+ 2))→ H0(E(r + 1, d+ 2))→ H0(IZ(0, 2))→ . . .

Now, h0(O(2r + 1, 2d + 2)) = 0 as 2r + 1 ≤ −3, and H0(IZ(0, 2)) = 0 by Lemma 3.17.
Hence, h0(E(r + 1, d+ 2)) = 0.
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To see that h0(E(−r,−d + 2) ⊗ IZ) ≤ 3, start by tensoring (3.6) with O(−r,−d + 2)
to get:

0→ H0(O(0, 2))→ H0(E(−r,−d+ 2))→ H0(O(−2r − 1,−2d+ 2)⊗ IZ)→ . . .

If d > 1, then −2d+ 2 < 0 and h0(IZ(−2r − 1,−2d+ 2)) = 0. Thus h0(E(−r,−d+ 2)) =
h0(O(0, 2)) = 3. If d = 1 and c2 ≥ −4r− 1, then `(Z) + 2r ≥ 0. Moreover, using a similar
argument to the one of the proof of Lemma 3.17, we have h0(IZ(−2r−1, 0)) = −2r−`(Z).
Thus

h0(E(−r,−d+2)) = h0(E(−r, 1)) = h0(O(0, 2))+h0(O(−2r−1, 0)⊗IZ) = 3−2r−`(Z) ≤ 3,

since one can show, again using a similar argument to that of Lemma 3.17, that h0(O(−2r−
1, 0)⊗ IZ) = −2r− `(Z). Finally, tensor the exact sequence (3.7) by E(−r,−d+ 2) to get

0→ H0(E(−r,−d+ 2)⊗ IZ)→ H0(E(−r,−d+ 2))→ H0(E(−r,−d+ 2)⊗ IZ)→ . . .

From here it is clear that h0(E(−r,−d+ 2)⊗ IZ) ≤ 3 in both cases.

Proposition 3.16 now follows immediately from Lemma 3.18, since

H0(End0E ⊗ T ) = H0(End0E(2, 0))⊕ H0(End0E(0, 2)).
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Chapter 4

Moduli Spaces of rank 2 semistable
co-Higgs bundles over P1 × P1

In this chapter, we work only over the 0-th Hirzebruch surface, P1 × P1 pr1−−→ P1. We also
fix the standard polarization H = C0 + F . After giving a brief review of what spectral
curves are and how the Hitchin map is defined for co-Higgs bundles over P1, we discuss
the analogous notions in the P1 × P1 setting. We then move on to the description of the
moduli spaces of rank 2 semistable co-Higgs bundles for c2 = 0 (and any of the reduced
classes for c1). In the case of c2 = 1, we also give an example (when c1 = −F ) of how the
moduli spaceMco

H (−F, 1) looks like. In this case, a technical obstacle in giving an explicit
description of the moduli space is obtaining the Higgs fields for non-trivial extensions of a
line bundle by another line bundle (which are not decomposable). Though the idea of how
to achieve this is straightforward, the execution is computationally heavy. We finish the
chapter with a section on deformation theory, where we apply this tool to points in the
moduli spaces described in the present chapter.

4.1 Spectral correspondence and Hitchin map

4.1.1 A brief review of spectral curves over P1

In this section, we briefly recall the notions of spectral curve and the Hitchin correspondence
over P1. We let Mco

P1(2) be the moduli space of rank 2 semistable co-Higgs bundles over
P1.

The Hitchin map is given by

H : Mco
P1(2) → H0(P1, T 2)

(E,Φ) 7→ char Φ,

where char Φ is the characteristic polynomial of Φ. Recall that, in this case, T = OP1(2),
and so T 2 = OP1(4). Since we are assuming that Φ is trace-free,

char Φ = η2(y) + det Φ,
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where η is the tautological section of the pullback of OP1(2) to its own total space, and
y ranges in Tot(OP1(2)). Thus, we can identify char Φ with det Φ ∈ H0(P1,OP1(4)). This
map is surjective and proper.

Now let ρ ∈ H0(P1,OP1(4)) be a generic section and fix (E,Φ) ∈ H−1(ρ). The spectral
curve Xρ associated to char Φ = ρ is a smooth subvariety of Tot(OP1(2)) given by the
equation

η2(y) + det Φ(π(y)) = 0.

Since ρ is irreducible, by genericity, Xρ is an irreducible curve. Furthermore, it is a double
cover of P1. To see this, first equip Xρ with the projection

π : Xρ → P1

induced from the projection π : OP1(2)→ P1. Note that if p ∈ P1, then

π−1(p) = {b ∈ Tot(OP1(2)) : char Φ(p)(b) = 0},

and so π−1(p) are the eigenvalues of Φ(p). Since ρ was choosen to be generic, this implies
that π : Xρ → P1 is indeed a 2-sheeted branched covering. The ramification of the spectral
curve occurs at finitely many points, where Φ has repeated eigenvalues. These are precisely
the 4 points in P1 where ρ vanishes. By the Riemann-Hurwitz formula, the genus of Xρ

is one, hence an elliptic curve. It follows from more general arguments presented in both
[6, 10] that, for generic ρ ∈ H0(P1,OP1(4)), the fibre H−1(ρ) is isomorphic to Pic(Xρ)
(which is again an elliptic curve). This is the Hitchin correspondence and, more precisely,
it works as follows:

Given any line bundle L → Xρ, the push-forward π∗L yields a rank 2 bundle E over
P1. Moreover, the push-forward of the multiplication map

−⊗ η : L→ L⊗ π∗OP1(2)

is a Higgs field for E with char Φ = ρ. Because Xρ is irreducible, this Higgs field leaves
no sub-line bundle of E invariant, and thus (E,Φ) is trivially stable. In other words,
(E,Φ) ∈ H−1(ρ).

Conversely, one can associate to any (E, φ) ∈ H−1(ρ) a line bundle over Xρ as follows:
First consider the pull-back of both π∗E, which is a rank 2 bundle over Xρ, and π∗Φ :
π∗E → π∗E ⊗OP1(2). The eigenline bundle Le is defined as the kernel of the map

π∗Φ− η Id : π∗E → π∗(E ⊗OP1(2))

tensored by R, where R is the ramification divisor of Xρ. This is the desired element in
Pic(Xρ) that we wish to push-forward. Indeed, the restriction of π∗Φ to Le is precisely the
multiplication map, and so applying the above construction to (Le, π

∗Φ) yields the pair
(E,Φ) we started with.

To conclude this section we review the results of Rayan in [27, 29] that address this
spectral correspondence in the case of rank 2 vector bundles of degree 0 and −1 over P1.

Let ρ be a generic section of OP1(4) and (E,Φ) ∈ H−1(ρ). If degE = −1, as we
mentioned in Section 2.3.1, E = OP1 ⊕ OP1(−1). By Grothendieck–Riemann–Roch, the
line bundles L over the spectral curve Xρ that correspond to OP1 ⊕ OP1(−1) under the
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Hitchin correspondence have degree 1. To determine the corresponding Higgs field, one has
to look at the point p ∈ Xρ where all the elements of H0(Xρ, L) vanish (because H0(Xρ, L)
is one-dimensional in this case). If p is a ramification point, the Higgs field can be expressed
as (

0 a1 + a2z + a3z
2 + a4z

3

z 0

)
,

where z is a coordinate on P1 centered at z0 := π(p) and ρ = −z(a1 + a2z + a3z
2 + a4z

3).
If p is unramified, then there are two possibilities, either p = (z0,

√
a0), in which case Φ

has the form ( √
a0 a1 + a2z + a3z

2 + a4z
3

z −√a0

)
,

or p = (z0,−
√
a0), in which case Φ has the form( √

a0 a1 + a2z + a3z
2 + a4z

3

z −√a0

)
.

Finally, if E has degree 0, we have seen in Section 2.3.1 that E is either OP1 ⊕OP1 or
OP1(1)⊕OP1(−1). In this case, pushing down the degree 2 line bundle π∗OP1(1) over Xρ

yields OP1(1)⊕OP1(−1) with Higgs field(
0 −ρ
1 0

)
,

which is stable. Moreover, pushing down any other line bundle of degree 2 on Xρ yields a
stable co-Higgs pair with underlying bundle OP1 ⊕OP1 .

4.1.2 Spectral surfaces over P1 × P1

In this section, we present spectral surfaces over P1 × P1 and discuss the Hitchin corre-
spondence in this setting.

The Hitchin map H that goes from the moduli space of semistable rank 2 co-Higgs
bundles over P1×P1,Mco(2), to the global sections of S2(T ) = O(4, 0)⊕O(2, 2)⊕O(0, 4)
is defined as follows:

H : Mco(2) → H0(S2(T ))
(E,Φ) 7→ char Φ.

Here we are again identifying char Φ with det Φ ∈ H0(S2(T )), as char Φ = η2(y) + det Φ
(since Φ is trace-free). Recall that η denotes the tautological section of the pullback of T to
its own total space. Explicitly, the Hitchin map is given as follows: Let (E,Φ) ∈ Mco(2),
then working on an open set U , we can write

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1, B1, C1 ∈ H0(U ,O(2, 0)) and A2, B2, C2 ∈ H0(U ,O(0, 2)). Then

H(E,Φ) = (det Φ1,−2A1A2 − 2B1C2, det Φ2) ∈ H0(O(4, 0)⊕O(2, 2)⊕O(0, 4)).

We first note that the Hitchin map is not surjective. Indeed, if H(E,Φ) = (ρ1, ρ1,2, ρ2),
then by the above equation and the integrability of Φ, we see that ρ2

1,2 = 4ρ1ρ2, and so H
is clearly not onto.
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Definition 4.1. Let (E,Φ) ∈ Mco(2). The spectral surface Sρ associated to ρ = char Φ,
is given by those points y ∈ Tot(T ) such that

char Φ(y) = η2(y) + det Φ(θ(y)) = 0,

where θ : Tot(T )→ P1 × P1. We equip Sρ with the restriction θ|Sρ .

The equations of Sρ can be written as follows: if y = (y1, y2) ∈ Tot(T ) and ρ =
(ρ1, ρ1,2, ρ2), then the spectral surface is given by

η2
1(y1) + ρ1 = 0
η2

2(y2) + ρ2 = 0
2η1(y1)η2(y2) + ρ1,2 = 0,

(4.1)

where η1 and η2 are the tautological sections of the pullback of O(2, 0) and O(0, 2), respec-
tively, to their own total spaces.

Note that multiplying the first equation by η2
2(y2), and using the second equation and

the fact that ρ2
1,2 = 4ρ1ρ2, yields

0 = (η2
1(y1) + ρ1)η2

2(y2)

= η2
1(y1)η2

2(y2)− ρ1ρ2

= (η1(y1)η2(y2) + ρ1,2/2)(η1(y1)η2(y2)− ρ1,2/2).

Thus the first two equations yield a reducible surface in Tot(T ). Clearly, as the third
equation appears as one of the factors above, it cuts out a 2-dimensional subvariety of this
surface.

Analogous to the case of curves, the elements of Sρ lying above a point in P1 × P1 are
pairs where the first entry is an eigenvalue of Φ1, and the second entry is an eigenvalue of
Φ2. Moreover, we claim that for generic ρ, Sρ is a double cover of P1 × P1. To see this,
let λ1

i and λ2
i be the eigenvalues of Φi at an unramified point p ∈ P1 × P1. Recall that,

since Φ is integrable, by Remark 2.41, Φ1 and Φ2 have the same eigenspaces, and so we
assume that the eigenspace of λj1 is equal to the eigenspace of λj2 for j = 1, 2. We now
check that the third equation of Sρ is equivalent to (λi1, λ

j
2) ∈ Sρ if and only if i = j. In

other words, the points of Sρ, at unramified points of P1 × P1, are pairs of eigenvalues of
Φ1 and Φ2 sharing the same eigenspace. First note that since Φ1 and Φ2 commute, λj1 and
λj2 sharing the same eigenspaces is equivalent to λj1λ

j
2 being an eigenvalue of Φ1Φ2, and so

it must satisfy the characteristic polynomial char Φ1Φ2:

η2
1(λj1)η2

2(λj2)− tr(Φ1Φ2)η1(λj1)η2(λj2) + det(Φ1Φ2) = 0.

After some algebraic manipulation, the above equation reduces to

2η1(λj1)η2(λj2) + ρ1,2 = 0,

which is precisely saying that (λj1, λ
j
2) satisfies the third equation. We can thus conclude

that the points in Sρ lying above p ∈ P1 × P1 are (λ1
1, λ

1
2) and (λ2

1, λ
2
2), showing that Sρ is

indeed a double cover of P1 × P1.
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Remark 4.2. 1. Let ρ be generic. Unlike the curves case, in order to get a Hitchin
correspondence, one needs to push-forward rank 1 torsion free sheaves over Sρ instead
of only elements of Pic(Sρ) (see [33, 34]).

2. All of the above discussion also holds for an arbitrary Hirzebruch surface Fn after
replacing O(2, 0)⊕O(0, 2) by O(2F )⊕O(2C0 + nF ).

3. One can show that, for generic ρ, Sρ consists of two isomorphic copies of P1×P1 that
intersect in four points.

Now, we aim to show that, the underlying bundle of the generic elements of Mco(2)
are indecomposable.

Lemma 4.3. Let E = L1 ⊕ L2 be a decomposable rank 2 vector bundle over P1 × P1.

1. Suppse µ(L1) > µ(L2). If (E,Φ = Φ1+Φ2) is a semistable co-Higgs pair, then Φ1 = 0
or Φ2 = 0.

2. Suppose µ(L1) = µ(L2). Then, either det Φ1 is non-generic in H0(O(4, 0)) or det Φ2

is non-generic in H0(O(0, 4)).

Proof. Let L1 = O(a1, b1) and L2 = O(a2, b2). Then, any element of H0(End0E ⊗ T ) is of
the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(a1 − a2 + 2, b1 − b2), C1 ∈ H0(O(a2 − a1 + 2, b2 − b1))
and A2 ∈ H0(O(0, 2)), B2 ∈ H0(O(a1 − a2, b1 − b2 + 2)), C2 ∈ H0(O(a2 − a1, b2 − b1 + 2)).

1. Suppose µ(L1) > µ(L2). We have two cases to consider. If a1 > a2, then any element
in H0(End0E ⊗ T ) is such that C2 = 0. If we were to have a Higgs field Φ for E such that
(E,Φ) is semistable, then C1 must not be identically zero, for otherwise it would leave L1

invariant, contradicting semistability. The integrability condition, equations (2.8), implies
that A2 = B2 = 0. Hence, Φ = Φ1 with non-zero C1. Similarly, if b1 > b2, we get that
Φ = Φ2 with non-zero C2.

2. Suppose µ(L1) = µ(L2). It is enough to consider the following three cases:

(i) If a1 > a2 and b2 > b1, then any element in H0(End0E ⊗ T ) is such that B1 = 0
and C2 = 0. Then det Φ1 = −A2

1 and det Φ2 = −A2
2, so they are non-generic in

H0(O(4, 0)) and H0(O(0, 4)), respectively.

(ii) If a2 > a1 and b1 > b2, then any element in H0(End0E ⊗ T ) is such that C1 = 0
and B2 = 0. Then det Φ1 = −A2

1 and det Φ2 = −A2
2, so they are non-generic in

H0(O(4, 0)) and H0(O(0, 4)), respectively.

(iii) If a1 = a2 and b1 = b2, then any element in H0(End0E⊗T ) is such that A1, B1, C1 are
elements of H0(O(2, 0)) and A2, B2, C2 are elements of H0(O(0, 2)). Note that we may
assume that at least one entry in either Φ1 or Φ2 is non-zero, for otherwise the result
follows. Without loss of generality let us assume that A2 6= 0. By the integrability
condition, equations (2.8) imply that if A2 6= 0, we can pick a point p2 ∈ P1 , which
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is not a zero of A2, evaluating both A1B2 = B1A2 and C1A2 = A1C2 on p = (z1, p2),
we get B1 = uA1 and C1 = vA1 for u, v ∈ C. Hence, det Φ1 = −(1 + uv)A2

1, which is
non-generic in H0(O(4, 0)).

Proposition 4.4. If ρ is generic, then H−1(ρ) does not contain co-Higgs pairs where the
underlying bundle is decomposable. In particular, for (E,Φ) ∈ Mco(2) generic, E is not
decomposable.

Proof. Let ρ be generic and assume that H−1(ρ) contains a pair with decomposable under-
lying bundle. Then, by Lemma 4.3 (1.), either ρ = (ρ1, 0, 0) or ρ = (0, 0, ρ2), or, by Lemma
4.3 (2.), ρ = (ρ1, ρ1,2, ρ2) with either ρ1 or ρ2 non-generic. Hence, ρ is not generic.

Let us now discuss spectral surfaces in the case where either Φ1 or Φ2 is zero. We will
be interested in the cases when ρ = (ρ1, 0, 0) or (0, 0, ρ2) ∈ H0(S2(T )), where ρ1 and ρ2 are
generic in H0(O(4, 0)) and H0(O(0, 4)), respectively.

When ρ = (ρ1, 0, 0), and ρ1 is generic, any Higgs field Φ of a co-Higgs pair in the fibre
of the Hitchin map above ρ must have the form Φ = Φ1. To see this, let Φ be a Higgs
field such that det Φ = ρ. Since det Φ2 = 0, we have that λ = 0 is an eigenvalue of Φ2

of algebraic multiplicity 2. Also, above all points where det Φ1 6= 0, we have a basis of
eigenvectors for Φ1. By the integrability of Φ and Remark 2.41, this is also a basis of
eigenvectors of Φ2. Hence, Φ2 is diagonalizable and thus the zero matrix at all such points.
Hence, Φ2 = 0. Moreover, in this case, the equations of the spectral surface reduce to{

η2
1(y1) + det Φ1 = 0

η2
2(y2) = 0.

(4.2)

Hence,
Sρ = Xρ1 × P1,

whereXρ1 is the spectral curve associated to ρ1 (we view ρ1 as an element of H0(P1,OP1(4))),
which we have seen is an elliptic curve (see Section 4.1.1). Also, the projection θ : Sρ →
P1 × P1 is given by (π, IdP1), where π : Xρ → P1.

Similar observations can be made when ρ = (0, 0, ρ2) is generic (in particular Sρ =
P1 ×Xρ2). Consequently, in both of these cases, we have a Hitchin correspondence on the
spectral surface coming from the correspondence on the spectral curve. More precisely,

Proposition 4.5. Suppose ρ = (ρ1, 0, 0) ∈ H0(S2(T )) with ρ1 generic. Then, there is a
Hitchin correspondence between the line bundles of Sρ and the elements (E,Φ) of Mco(2)
with underlying bundle of the form E = O(a,m) ⊕ O(b,m) and Φ = Φ1 ∈ H0(End0E ⊗
O(2, 0)).

Proof. Let M be a line bundle over Sρ, then M is of the form Pr∗1 L⊗Pr∗2OP1(m) (see [18,
Chapter 3, Section 12]), where L is a line bundle over Xρ and m ∈ Z, and Pr1,Pr2 are the
projections of Sρ to Xρ and P1, respectively. From the commutative diagram

Sρ = Xρ × P1

Pr1
��

(π,IdP1 )
// P1 × P1

pr1
��

Xρ
π // P1
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we see that (π, IdP1)∗(Pr∗1(L)) = pr∗1(π∗(L)) = O(a, 0)⊕O(b, 0) for some a, b ∈ Z such that
π∗(L) = OP1(a)⊕OP1(b). Similarly, from the commutative diagram

Sρ = Xρ × P1

Pr2
��

(π,IdP1 )
// P1 × P1

pr2
��

P1
IdP1 // P1

we see that (π, IdP1)∗(Pr∗2(OP1(m))) = pr∗2(IdP1 ∗(OP1(m))) = O(0,m). Therefore, θ∗M =
O(a,m)⊕O(b,m). Moreover, since the multiplication of elements in M by elements in Sρ
maps to M ⊗O(2, 0), the push-forward of −⊗ η yields a Higgs field Φ with Φ = Φ1. The
Higgs field Φ1 is the pullback of the Higgs field obtained by pushing-down the multiplication
map of L.

On the other hand, if we start with something of the form O(a,m) ⊕O(b,m), to find
the corresponding line bundle over Sρ we first find the line bundle L over Xρ corresponding
to (OP1(a)⊕OP1(b),Φ1). Then we tensor the pullback of the latter with Pr∗2OP1(m).

Remark 4.6. A similar result holds when ρ is of the form (0, 0, ρ2) with ρ2 generic.

We will discuss some examples of this nature in the following sections. See Remarks
4.9, 4.13 and 4.24.

4.2 The Moduli Spaces Mco(c1, c2)

We fix the standard polarization H = C0 + F , and let Mco(c1, c2) denote Mco
H (c1, c2). In

this section, we consider only the reduced first Chern classes.

4.2.1 Second Chern Class c2 = 0

Throughout this subsection, we let E denote a rank 2 vector bundle over P1 × P1 and
assume c2 = 0. By Lemma 3.1, we may assume that c1 is 0, −F or −C0, and throughout
this section we do so. Indeed, we assume that c1 is either 0 or −F , since the case where
c1 = −C0 is symmetric to the case c1 = −F , in the sense that one simply interchanges the
roles of the first and second copies of P1. By Proposition 3.5, we know that in this case
there is only one chamber, and so having fixed H = C0 + F does not actually impact the
results of this subsection, as any other ample divisor would yield the exact same results.
Recall that, in this case, by Theorem 3.3, any semistable co-Higgs pair (E,Φ) is such
that E is an extension of line bundles. Moreover, we can prove that, in this case, E is
decomposable.

First Chern class c1 = −F

We now analyze further the case c1 = −F . Recall that in this case the notions of semista-
bility and stability coincide. We begin by describing the possible co-Higgs pairs appearing
in the moduli space.
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Proposition 4.7. Suppose that c1(E) = −F and c2(E) = 0. If (E,Φ) is a stable co-Higgs
pair, then E = O ⊕O(−1, 0). Moreover, Φ is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

0 −A2

)
,

with A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(3, 0)), C1 ∈ H0(O(1, 0)) and A2 ∈ H0(O(0, 2)), B2 ∈
H0(O(1, 2)).

Proof. By Theorem 3.3, E is an extension of line bundles. Let us first show that E is in
fact decomposable. We know that E fits into an exact sequence of the form

0→ O(a, b)→ E → O(−1− a,−b)→ 0,

and 0 = c2(E) = −b(1+2a). Thus b = 0. A non-trivial extension corresponds to an element
of H1(O(2a+1, 0)) = H1(P1;OP1(2a+1)), and so it is the pullback to P1×P1 of a non-trivial
extension V of OP1(−a − 1) by OP1(a) over P1. Since bundles over P1 are decomposable,
V = OP1(c)⊕OP1(c′), for some integers c and c′, and E = pr∗1 V = O(c, 0)⊕O(c′, 0).

Then, the underlying bundle of a stable co-Higgs pair (E,Φ) with c1(E) = −F and
c2(E) = 0 is of the form E = O(a, 0)⊕O(−a− 1, 0). Let us show that a can only take the
values −1 or 0. Any element Φ ∈ H0(End0E ⊗ T ) has the form

Φ =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(2a + 3, 0)), C1 ∈ H0(O(1 − 2a, 0)), and A2 ∈
H0(O(0, 2)), B2 ∈ H0(O(2a+ 1, 2)), C2 ∈ H0(O(−1− 2a, 2)). If a ≥ 1, then C1 = C2 = 0,
and O(a, 0) is Φ-invariant. However, µ(O(a, 0)) > µ(E), which contradicts stability. A
similar argument, but interchanging the roles of the Ci’s for the Bi’s, and of O(a, 0) for
O(−1− a, 0), shows that a > −2. Hence, a = 0,−1 and thus E = O ⊕O(−1, 0).

Let us now determine which Φ’s yield stable pairs (E,Φ). Any element in H0(End0E⊗
T ) is of the form:

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

0 −A2

)
,

with A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(3, 0)), C1 ∈ H0(O(1, 0)) and A2 ∈ H0(O(0, 2)), B2 ∈
H0(O(1, 2)). Note that, if Φ were a Higgs field of E, then C1 must be non-zero, as oth-
erwise it would leave O invariant, contradicting stability. Also, taking into account the
integrability condition, equations (2.8) imply that A2 = B2 = 0. Therefore, any possible
Higgs field of E is of the form Φ = Φ1 ∈ H0(End0E ⊗ O(2, 0)), with Φ1 as above, and
non-zero C1. Now, the fact that (E,Φ) is indeed stable for any of these Higgs fields follows
from Lemma 2.38.

Given Proposition 4.7, we now discuss the isomorphism classes of pairs (O⊕O(−1, 0),Φ)
with Φ as above. Recall that (E,Φ) is isomorphic to (E,Φ′) when there exists an automor-
phism Ψ of E such that Φ′ = Ψ ◦ Φ ◦ Ψ−1. Now, an automorphism Ψ of E can be chosen
of the form

Ψ =

(
1 P
0 Q

)
∈ H0(EndE),
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where P and Q are global sections of O(1, 0) and O, respectively; moreover, Q 6= 0. Hence,

Ψ ◦ Φ ◦Ψ−1 =

(
A1 + PC1 −Q−1(2A1P −B1 − C1P )
QC1 −(A1 + PC1)

)
.

Since C1 ∈ H0(O(1, 0)), we can locally write C1 = α(z1 − p). Then, A1 = A1(p) + (z1 −
p)[A′1(p) + A′′1(p)(z1 − p)]. It is not hard to see that, by choosing P = −α−1[A′1(p) +
A′′1(p)(z1 − p)] and Q = α−1, we have a representative of the conjugacy class of Φ of the
form (

A1(p) B′1
z1 − p −A1(p)

)
,

where B′1 ∈ H0(O(3, 0)).

It follows from the above discussion that every Higgs field of a stable co-Higgs pair is
the pullback of a Higgs field of the bundle OP1 ⊕ OP1(−1) over P1. Furthermore, every
stable co-Higgs pair of degree −1 over P1 (see [27]) gives rise, by taking pullbacks, to a
stable co-Higgs pair over P1 × P1 of this form. Let us state these facts as:

Theorem 4.8. The moduli spaceMco(−F, 0) of rank 2 stable co-Higgs bundles over P1×P1

with first Chern class −F and second Chern class 0 is a 6-dimensional smooth variety
isomorphic to the moduli space Mco

P1(−1) of rank 2 stable co-Higgs bundles of degree −1
over P1.

Proof. First recall that in [27], Rayan proved that Mco
P1(−1) is a 6-dimensional smooth

variety given by

V := {(y, ρ) ∈ Tot(OP1(2))× H0(P1;OP1(4)) : η2 = ρ(π(y))},

where π : Tot(OP1(2)) → P1 is the natural projection, and η is the tautological section of
the pullback of OP1(2) to its own total space.

Now, consider the map

f : Mco
P1(−1) → Mco(−F, 0)

(V, ϕ) 7→ ((pr1)∗V, (pr1)∗ϕ).

We only check that this map is well-defined; the fact that it is an isomorphism is immediate.
Since the only underlying bundle of a stable co-Higgs pair living inMco

P1(−1) is OP1(−1)⊕
OP1 , and since (pr1)∗(OP1(−1)⊕OP1) = O(−1, 0)⊕O, this map is simply given by f(ϕ) =
(pr1)∗(ϕ). Suppose ϕ′ = ψ ◦ ϕ ◦ ψ−1, where ψ ∈ Aut(OP1(−1)⊕OP1). Then

f(ϕ′) = f(ψ ◦ ϕ ◦ ψ−1) = (pr1)∗(ψ ◦ ϕ ◦ ψ−1) = (pr1)∗(ψ) ◦ (pr1)∗(ϕ) ◦ (pr1)∗(ψ)−1,

where (pr1)∗(ψ) ∈ Aut((pr1)∗(OP1(−1) ⊕ OP1)). Thus f(ϕ′) and f(ϕ) are indeed in the
same conjugacy class.

Remark 4.9. Note that, in this case, the spectral correspondence is as follows. We have
seen in Section 4.1.2 that for ρ = (ρ1, 0, 0) with ρ1 ∈ H0(O(4, 0)) generic, the spectral
surface Sρ is an elliptic fibration Xρ1 × P1, with the spectral correspondence coming from
that of the elliptic curve Xρ1 . Thus, if M is a line bundle over Sρ corresponding to
O ⊕ O(−1, 0) ∈ H−1(ρ), we must have that M = Pr∗1(L) ⊗ Pr∗2(O(m)), where L is a line
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bundle over Xρ1 and O(m) is a line bundle over P1. Moreover, L corresponds to a co-
Higgs bundle (OP1 ⊕ OP1(−1), φ), and so L has degree 1 (see [28, Section 8]). Note that
m = 0. Therefore, the line bundles over Sρ that are in correspondence with co-Higgs pairs
(O ⊕ O(−1, 0),Φ) ∈ H−1(ρ) are those of the form Pr∗1(L) with L being a degree 1 line
bundle over Xρ. The Higgs fields are obtained by pulling-back the Higgs fields obtained
from L in the P1 case (just as we discussed in Section 4.1.2).

First Chern class c1 = 0

We now focus on the case c1 = 0. In this case, we no longer have a single underlying
bundle; nonetheless, there are only three possibilities.

Proposition 4.10. Suppose that c1(E) = 0 and c2(E) = 0. If (E,Φ) is a semistable
co-Higgs pair, then E = O ⊕O or O(0, 1)⊕O(0,−1) or O(1, 0)⊕O(−1, 0).

Proof. It follows from Theorem 3.3 that E is an extension of line bundles. As in the
proof of Propostion 4.7, one can easily check that E is decomposable and of the form
E = O(a, 0) ⊕ O(−a, 0) or E = O(0, b) ⊕ O(0,−b). Without loss of generality, we now
assume that E = O(a, 0) ⊕ O(−a, 0), as the other case is analogous. Let us show that a
can only take the values −1, 0 or 1. Any Higgs field Φ ∈ H0(End0E ⊗ T ) has the form:

Φ =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(2a + 2, 0)), C1 ∈ H0(O(2 − 2a, 0)), and A2 ∈
H0(O(0, 2)), B2 ∈ H0(O(2a, 2)), C2 ∈ H0(O(−2a, 2)). If a ≥ 2, then C1 = C2 = 0,
and so O(a, 0) would be Φ-invariant. However, µ(O(a, 0)) > µ(E), which contradicts sta-
bility. A similar argument, but interchanging the roles of the Ci’s for the Bi’s, and of
O(a, 0) for O(−a, 0), shows that a > −2. The result follows.

We first consider E = O⊕O, which is a strictly semistable bundle. It would be desirable
to describe all the possible Higgs fields that E admits. However, we do not yet know the
shape of the Higgs fields Φ for which (E,Φ) is stable; i.e., those Φ’s for which no copy of
O inside E is Φ-invariant. We do, however, describe those Higgs fields which are strictly
semistable. We remind the reader that, in the moduli spaces Mco(c1, c2), two objects are
identified if they are S-equivalent (see Section 2.3).

Any element of H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
with A1, B1, C1 ∈ H0(O(2, 0)) and A2, B2, C2 ∈ H0(O(0, 2)).

We now need to consider the Φ’s as above, which are integrable; i.e., the Φ′s that
satisfy equations (2.8). Furthermore, we focus our attention in those Higgs fields which
make (E,Φ) into a strictly semistable co-Higgs bundle.
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A pair (E,Φ) is strictly semistable if and only if there is a Φ-invariant copy of O in E.
This is equivalent to the existence of a non-zero v ∈ H0(E) such that Φ(v) = v⊗λ1 +v⊗λ2,
where λ1 ∈ H0(O(2, 0)) and λ2 ∈ H0(O(0, 2)). Writing Φ as

Φ = (M0 +M1z1 +M2z
2
1) + (N0 +N1z2 +N2z

2
2),

where the Mi’s and the Ni’s are 2 × 2 complex valued matrices, we see that Φ(v) =
v⊗λ1 + v⊗λ2 if and only if v is a common eigenvector of the Mi’s and Ni’s (note that, in
this case, the coefficients of λ1, λ2 are the eigenvalues of the Mi’s and the Ni’s, respectively).
If this is the case, by a change of basis, we may assume that the Mi’s and Ni’s are upper
triangular. Therefore, (E,Φ) is strictly semistable if and only if Φ is upper triangular and
its matrix coefficients admit a common eigenvector. In this case, by Lemma 2.37, we have
that

gr(E,Φ) =

(
E,

(
A1 0
0 −A1

)
+

(
A2 0
0 −A2

))
.

Note that two graded objects gr(E,Φ) and gr(E,Φ′) are isomorphic if and only if A1+A2 =

±(A′1 + A′2). Indeed, two matrices

(
A 0
0 −A

)
and

(
B 0
0 −B

)
live in the same S-

equivalence class, that is (
A 0
0 −A

)
= Ψ

(
B 0
0 −B

)
Ψ−1,

if and only if A = ±B. Therefore, a set of representatives for the S-equivalence classes of
strictly semistable pairs, with underlying bundle E, is given by{(

A 0
0 −A

)
: A ∈ H0(T )

}
/ ∼

where ∼ is defined by A ∼ B if and only if A = ±B.

On the other hand, note that for the bundle E = O(1, 0) ⊕ O(−1, 0), any element of
H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

0 −A2

)
with A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(4, 0)), C1 ∈ H0(O) and A2 ∈ H0(O(0, 2)) and B2 ∈
H0(O(2, 2)). Note that, if Φ were a Higgs field of E, then C1 must be non-zero, as otherwise
it would leave O(1, 0) invariant, contradicting stability. Also, taking into account the
integrability condition, equations (2.8) imply that A2 = B2 = 0. Therefore, any possible
Higgs field of E is of the form Φ = Φ1 ∈ H0(End0E ⊗ O(2, 0)), with Φ1 as above, and
non-zero C1.

Now, we observe that (E,Φ) is in fact co-Higgs stable for any Φ as above. Note that
the sub-line bundles of E are of the form O(r, s) with r ≤ 1 and s ≤ 0 or r ≤ −1 and
s ≤ 0. As such, the only sub-line bundles that could potentially contradict stability are O
and O(1, 0). However, any degree zero sub-line bundle of E; that is, any copy of O in E,
is contained in O(1, 0); and so, since the latter is not Φ-invariant, the result follows.
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We now claim that a set of representatives for the isomorphism classes (recall that in
this case S-equivalence reduces to co-Higgs isomorphism) is given by{(

0 B
1 0

)
: B ∈ H0(O(4, 0))

}
.

Indeed, given any Higgs field Φ as described above, letting

Ψ =

(
1 −A1

0 1

)
we get

ΨΦΨ−1 =

(
0 B1 − A2

1

1 0

)
.

Similarly, for the bundle E = O(0, 1) ⊕ O(0,−1), a set of representatives for the
isomorphism class is {(

0 B
1 0

)
: B ∈ H0(O(0, 4))

}
.

Following the description of [28, Section 8] for the case of curves, we now show that
we can view the set of stable co-Higgs bundles, in Mco(0, 0), with underlying bundle
O(1, 0)⊕O(−1, 0) or O(0, 1)⊕O(0,−1) as sections of certain maps, as follows:

Consider the maps

h1 : Mco(0, 0) → H0(O(4, 0))
(E,Φ = Φ1 + Φ2) 7→ det Φ1

and
h2 : Mco(0, 0) → H0(O(0, 4))

(E,Φ = Φ1 + Φ2) 7→ det Φ2.

Define
Q1 : H0(O(4, 0)) → Mco(0, 0)

ρ 7→
(
O(1, 0)⊕O(−1, 0),Φ1 =

(
0 −ρ
1 0

))
and

Q2 : H0(O(0, 4)) → Mco(0, 0)

ρ 7→
(
O(0, 1)⊕O(0,−1),Φ2 =

(
0 −ρ
1 0

))
.

Clearly, Qi is a section of hi for i = 1, 2. Moreover, by the above discussion, we have:

Proposition 4.11. The images of the sections Q1, Q2 in Mco(0, 0) are precisely the set of
stable co-Higgs bundles with underlying bundle O(1, 0)⊕O(−1, 0) and O(0, 1)⊕O(0,−1),
respectively.

Remark 4.12. Note that every point in Mco(0, 0) with underlying bundle O(1, 0) ⊕
O(−1, 0) or O(0, 1) ⊕ O(0,−1) is the pullback from P1 to P1 × P1 of a stable co-Higgs
pair with underlying bundle OP1(1) ⊕OP1(−1) with respect to the first or second projec-
tions, respectively. Similarly, any point in Mco(0, 0) with underlying bundle O ⊕ O can
be obtained from a stable co-Higgs bundle (OP1 ⊕ OP1 , φ) over P1 by taking the pullback
of φ with respect to the two projections; i.e., (O ⊕O, pr∗1 φ+ pr∗2 φ).
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Remark 4.13. Let us now discuss the spectral correspondence. Again, for ρ = (ρ1, 0, 0),
where ρ1 ∈ H0(O(4, 0)) is generic, we have that Sρ = Xρ1 ×P1. In this case, pushing-down
the line bundle M = Pr∗1(π∗OP1(1)) yields the bundle O(1, 0)⊕O(−1, 0). Since the degree 2
bundle π∗OP1(1) is the unique line bundle over Xρ1 which corresponds to OP1(1)⊕OP1(−1),
the line bundle M is the unique line bundle over Sρ that corresponds to O(1, 0)⊕O(−1, 0)
with Higgs field

Φ = Φ1 =

(
0 −ρ1

1 0

)
.

This follows again from the discussion in Section 4.1.2. Similar observations can be made
when ρ = (0, 0, ρ2), where ρ2 ∈ H0(O(0, 4)) is generic. Clearly, in this case, the correspon-
dence yields the underlying bundle O(0, 1)⊕O(0,−1) and Higgs fields of the form

Φ = Φ2 =

(
0 −ρ2

1 0

)
.

Finally, pushing-down any line bundle M over Sρi (for i = 1, 2) of the form Pr∗i (L), where
L is any other degree 2 bundle over Xρi corresponds to a Higgs field of the form Φ = Φi

which makes O ⊕O into a stable pair.

4.2.2 Second Chern Class c2 = 1

We now turn our attention to co-Higgs pairs (E,Φ) over P1×P1 with c1 = −F and c2 = 1.
Once again, recall that, in this case, stability and semistability are identical notions. In
studying the possible underlying bundles for stable co-Higgs pairs (E,Φ), we will show
that E is an extension of O(−1, 1) by O(0,−1).

We begin by proving a technical lemma.

Lemma 4.14. Let x be a point in P1 × P1 and suppose that c2(E) = 1. If E fits into the
exact sequence

0→ O ι−→ E
p−→ O(−1, 0)⊗ Ix → 0, (4.3)

then O is Φ-invariant for any Φ ∈ H0(End0E ⊗ T ).

Proof. First note that since Ext1(O(−1, 0) ⊗ Ix,O) ∼= H0(Ox) ∼= C, up to isomorphism,
there is a unique E that fits into (4.3). Now, tensoring (4.3) with T and passing to the
long exact sequence in cohomology, we get

0→ H0(T )
ι−→ H0(E ⊗ T )

p−→ H0(O(−1, 0)⊗ Ix ⊗ T )→ 0,

where we also denote by ι and p the induced map ι⊗ IdT and p⊗ IdT , respectively. Note
that Im(ι) = Ker(p). Moreover, using Grothendieck–Riemann–Roch [18, Appendix A], one
can check that π∗(Ix) = OP1(−1). Therefore,

H0(O(−1, 0)⊗ Ix ⊗ T ) = H0(P1 × P1; Ix(1, 0))
= H0(P1; π∗(Ix(1, 0)))
= H0(P1;OP1(1)⊗ π∗(Ix))
= H0(P1;OP1),
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so the non-zero elements of H0(O(−1, 0)⊗ Ix ⊗ T ) are nowhere vanishing.

With this in mind, we now claim that if

S = {ϕ ∈ H0(Hom(O, E ⊗ T ) | ϕ = Φ|O,Φ ∈ H0(End0E ⊗ T )},

S ⊆ Im(ι), implying that O is Φ-invariant for any Φ ∈ H0(End0E ⊗ T ), by Lemma 2.32.
Indeed, let ϕ ∈ S so that ϕ = Φ ◦ ι for some Φ ∈ H0(End0E ⊗ T ). Then,

p(ϕ) = p ◦ Φ ◦ ι,

which vanishes at x since ι does (otherwise the quotient E/ι(O) would be locally free).
Hence, p(ϕ) = 0 because non-zero elements of H0(O(−1, 0))⊗Ix⊗T are nowhere vanishing,
proving that ϕ ∈ Ker(p) = Im(ι).

We are now ready to prove that the only possible underlying bundles for stable co-Higgs
pairs are extensions of O(−1, 1) by O(0,−1).

Proposition 4.15. Let (E,Φ) be a stable co-Higgs pair such that c1(E) = −F and c2(E) =
1. Then E is an extension of O(−1, 1) by O(0,−1).

Proof. Let E have invariants d and r. Then we know that E fits into an exact sequence of
the form

0→ O(r, d)→ E → O(−1− r,−d)⊗ IZ → 0, (4.4)

with `(Z) = 1 + d(2r+ 1) ≥ 0. Now, for such a rank-2 vector bundle to exist, we know by
Theorem 2.21 that one of the following two conditions must be satisfied.

1. d ≥ 1, or

2. d = 0 and r ≥ −1.

In case (1), we consider two subcases:

(i) r ≥ 0. By tensoring (4.4) with O(r, d)∨⊗T , and passing to the long exact sequence
in cohomology, we get

0→ H0(T )→ H0(E(−r,−d)⊗ T )→ H0(O(−1− 2r,−2d)⊗ T ⊗ IZ)→ 0,

where H0(O(−1− 2r,−2d)⊗ T ⊗ IZ) = 0, and so, by Lemma 2.32, O(r, d) is Φ-invariant
for any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. This contradicts stability, and thus
this case cannot happen.

(ii) r ≤ −1. If either r < −1, or d > 1 and r = −1, then `(Z) < 0, which is impossible.
Hence d = 1 and r = −1, so that `(Z) = 0, and therefore E is an extension of O(0,−1)
by O(−1, 1). However, H1(O(−1, 2)) = 0, implying that E = O(−1, 1)⊕O(0,−1).

In case (2) we consider three subcases:

(i) r ≥ 1. By the exact same argument as above, one can check that O(r, d) is Φ-
invariant for any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. Hence this case cannot
happen.
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(ii) r = 0. In this case, E fits into an exact sequence of the form

0→ O → E → O(−1, 0)⊗ Ix → 0,

and so, by Lemma 4.14, O is Φ-invariant for any Φ ∈ H0(EndE⊗T ), and thus destabilizing.
Again, this case cannot happen.

(iii) r = −1. In this case, E fits into an exact sequence of the form

0→ O(−1, 0)→ E → Ix → 0.

Now, since Ext1(Ix,O(−1, 0)) = H0(Ox) = C, there is a unique bundle, up to isomorphism,
that fits into this exact sequence. Hence, E is completely determined by the invariants
d = 0 and r = −1, up to isomorphism. On the other hand, any non-trivial extension E ′ of
O(−1, 1) by O(0,−1) has invariants d = 0 and r = −1. Indeed, the restriction of E ′ to the
generic fibre is a non-trivial extension of OP1(1) by OP1(−1) over P1, so d = 0. Moreover,
pushing down the extension

0→ O(−1, 1)→ E ′ → O(0,−1)→ 0

to P1, we obtain

(pr1)∗(E) = (pr1)∗(O(−1, 1)) = OP1(−1)⊕OP1(−1).

Thus, r = −1. Hence, E ∼= E ′ and E is a non-trivial extension ofO(−1, 1) byO(0,−1).

As before, now that we know the possible underlying bundles for stable co-Higgs pairs,
we can check whether they admit (non-trivial) Higgs fields.

We start by working with the trivial extension E = O(0,−1)⊕O(−1, 1). In this case,
any element of H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 0
C1 −A1

)
+

(
A2 B2

0 −A2

)
,

with A1 ∈ H0(O(2, 0)), C1 ∈ H0(O(1, 2)), and A2 ∈ H0(O(0, 2)), B2 ∈ H0(O(1, 0)). Note
that B2 cannot be identically zero, for otherwise it would leave O(−1, 1) invariant, con-
tradicting stability. Again, taking into account the integrability condition, equations (2.8)
imply that A1 = C1 = 0. Therefore, any possible Higgs field of E is of the form

Φ = Φ2 ∈ H0(End0(0, 2)),

with Φ2 as above and B2 not identically zero. The fact that (E,Φ) is indeed co-Higgs
stable for these Higgs fields follows from Lemma 2.38.

Now, note that an automorphism ψ of E = O(0,−1)⊕O(−1, 1) can be chosen of the
form

ψ =

(
1 0
0 P

)
∈ H0(EndE),

where P is a non-zero global section of O. We then have that

ψ ◦ Φ ◦ ψ−1 =

(
A2 P−1B2

0 −A2

)
.
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Since B2 ∈ H0(O(1, 0)), we can locally write B2 = α(z1 − p), so by choosing P = α−1, we
have a representative of the conjugacy class of Φ of the form

Φ =

(
A2 z1 − p
0 −A2

)
. (4.5)

We now turn our attention to the non-trivial extensions

0→ O(0,−1)→ E → O(−1, 1)→ 0. (4.6)

These, as they are stable bundles with respect to the standard polarization, admit the zero
Higgs field. They nonetheless also admit non-zero Higgs fields. To prove this, we do the
following:

(i) Check that h0(End0E ⊗ T ) 6= 0.

(ii) Check which elements of H0(End0E ⊗ T ) satisfy the integrability condition.

A direct computation gives (i):

Lemma 4.16. If E is a non-trivial extension of O(−1, 1) by O(0,−1), then h0(End0E(2, 0)) =
6 and h0(End0E(0, 2)) = 5. In particular,

h0(End0E ⊗ T ) = 11.

Proof. The non-trivial extension E is given by a class in H1(O(1,−2)) = H0(P1,OP1(1))⊕
H1(P1,OP1(−2)), which vanishes at a single point x0 in the first factor of P1×P1. Therefore,

E|Fx =

{
OP1 ⊕OP1 if x 6= x0

OP1(−1)⊕OP1(1) if x = x0

where Fx = (pr1)−1(x).

Now, in order to compute the dimension of H0(End0E(2, 0)), take the dual sequence
of (4.6), tensor it by E ⊗O(2, 0), and then push-forward it to the first copy of P1, we are
left with:

0→ (pr1)∗ EndE(2, 0)→ (pr1)∗E(2, 1)→ R1(pr1)∗E(3,−1)→ R1(pr1)∗ EndE(2, 0)→ 0.

Note that both R1(pr1)∗E(3,−1) and R1(pr1)∗ EndE(2, 0) are skyscraper sheaves sup-
ported at x0. Hence, (pr1)∗ EndE(2, 0) ∼= (pr1)∗E(2, 1), and so we get that H0(EndE(2, 0)) =
H0(E(2, 1)). Now, tensoring (4.6) by O(2, 1) and passing to the long exact sequence in co-
homology, we get

0→ H0(O(2, 0))→ H0(E(2, 1))→ H0(O(1, 2))→ 0.

Hence, h0(E(2, 1)) = h0(O(2, 0))+h0(O(1, 2)) = 9, and so h0(EndE(2, 0)) = 9. Finally,
since EndE(2, 0) = End0E(2, 0)⊕O(2, 0), we get that h0(End0E(2, 0)) = 6.
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Now, in order to compute the dimension of H0(End0E(0, 2)), take the dual sequence
of (4.6) and tensor it by E(0, 2) to get:

0→ H0(E(1, 1))→ H0(EndE(0, 2))→ H0(E(0, 3))→ H1(E(1, 1))→ · · · (4.7)

In order to compute hi(E(1, 1)), tensor (4.6) by O(1, 1) and pass to the long exact
sequence in cohomology:

0→ H0(O(1, 0))→ H0(E(1, 1))→ H0(O(0, 2))→ 0.

Hence h0(E(1, 1)) = h0(O(1, 0)) + h0(O(0, 2)) = 5 and h1(E(1, 1)) = 0.

Now to compute h0(E(0, 3)), tensor (4.6) by O(0, 3) and pass to the long exact sequence
in cohomology

0→ H0(O(0, 2))→ H0(E(0, 3))→ 0

Hence h0(E(0, 3)) = h0(O(0, 2)) = 3. It now follows, from (4.7), that

h0(EndE(0, 2)) = h0(E(1, 1)) + h0(E(0, 3)) = 8.

Finally, we have that h0(End0E(0, 2)) = h0(EndE(0, 2))− h0(O(0, 2)) = 5. Therefore,

h0(End0E ⊗ T ) = h0(End0E(2, 0)) + h0(End0(0, 2)) = 11

.

Let us now determine which elements of H0(End0E⊗T ) satisfy the integrability condi-
tion. We begin by giving a local description of H0(End0E ⊗ T ). In order to do so, we will
need to explicitly know the transition functions of End0E⊗T , and so we will explain how
to obtain the transition functions, gEnd0E

ij , of End0E from the transition functions, gEij , of
E. Obtaining the transition functions of End0E ⊗ T from those of End0E is immediate.
We fix the standard open cover of P1 × P1:

V1 = U1
0 × U2

0

V2 = U1
0 × U2

∞
V3 = U1

∞ × U2
0

V4 = U1
∞ × U2

∞,

where U i0 is the affine open subset of the i-th copy of P1 that does not contain the point
at infinity, and U i∞ is the affine open subset of the i-th copy of P1 that does not contain
zero. Let us work on the intersection Vij := Vi ∩ Vj. Given the trivializations ϕi, ϕj of
E, we know we can obtain (local) frames {e1, e2}, {f1, f2} by pulling back the standard
basis of C2 under the maps ϕi, ϕj, respectively. Furthermore, we may obtain dual frames
{e∗1, e∗2} and {f ∗1 , f ∗2} for E∨, which also correspond to the pullbacks of the standard basis
of C2 under ϕ∗i = (ϕ−1

i )T and ϕ∗j = (ϕ−1
j )T , respectively. It is clear then that both

E = {e1⊗ e∗1, e1⊗ e∗2, e2⊗ e∗1, e2⊗ e∗2} and F = {f1⊗ f ∗1 , f1⊗ f ∗2 , f2⊗ f ∗1 , f2⊗ f ∗2} are frames
for EndE over Vi and Vj, respectively. Furthermore, EndE = End0E⊕O. Hence, we may
obtain another frame for EndE over Vi, E ′ = {e1⊗e∗1−e2⊗e∗2, e1⊗e∗2, e2⊗e∗1, e1⊗e∗1+e2⊗e∗2},
where the first three elements form a frame for End0E over Vi, and the last one forms a
frame for O. Similarly, we get F ′ = {f1⊗ f ∗1 − f2⊗ f ∗2 , f1⊗ f ∗2 , f2⊗ f ∗1 , f1⊗ f ∗1 + f2⊗ f ∗2},
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where the first three elements form a frame for End0E over Vj, and the last one forms a
frame for O. Hence, gEnd0E

ij will be the restriction to End0E of the change of basis matrix
from F to E . By linear algebra, we know that

gEnd0 E⊕O
ij = PEg

EndE
ij PF ,

where PE is the change of basis matrix from E to E ′, and PF is the change of basis matrix

from F ′ to F . Hence, if we let gEij =

(
G11 G12

G21 G22

)
be the transition function of E on Vij,

then the transition function of EndE on Vij is given by

gEndE
ij =

1

detgEij


G11G22 −G11G21 G12G22 −G12G21

−G11G12 G11G11 −G12G12 G12G11

G21G22 −G21G21 G22G22 −G22G21

−G21G12 G21G11 −G22G12 G22G11

 ,

and so the transition function for End0E on Vij is the matrix

gEnd0 E
ij =

1

detgEij

 G11G22 +G21G12 −G11G21 G12G22

−2G11G12 G11G11 −G12G12

2G21G22 −G21G21 G22G22

 .

In particular, if we let (uz1 + v)z−1
2 be the (non-zero) element in H1(O(1,−2)) that de-

termines the (non-trivial) extension E, then we know that in V12 and V13 the transition
functions of E are given by

gE12 =

(
z−1

2 (uz1 + v)
0 z2

)
,

and

gE13 =

(
1 0
0 z−1

1

)
.

Thus, letting g
(2,0)
ij and g

(0,2)
ij denote the transition functions of End0E(2, 0) and End0E(0, 2),

respectively, we have that

g
(2,0)
12 =

 1 0 uz1z2 + vz2

−2(uz1z
−1
2 + vz−1

2 ) z−2
2 −(uz1 + v)2

0 0 z2
2



g
(2,0)
13 =

 z2
1 0 0
0 z3

1 0
0 0 z1



g
(0,2)
12 =

 z2
2 0 uz1z

3
2 + vz3

2

−2(uz1z2 + vz2) 1 −(uz1 + v)2z2
2

0 0 z4
2



g
(0,2)
13 =

 1 0 0
0 z1 0
0 0 z−1

1

 .
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Note that the above transition functions are 3 × 3 matrices; thus, for this purpose, we
will treat the trace-free sections Φ1 and Φ2 as 3 × 1 vectors. Let Φi

j, (j = 1, 2) be the
trivialization of Φj on Vi.

We will work on the open set V1. In order to describe Φ1
1 ∈ H0(End0E(2, 0)), let

Φ1
1 =


∑
i,j≥0

a1
ijz

i
1z
j
2∑

i,j≥0

b1
ijz

i
1z
j
2∑

i,j≥0

c1
ijz

i
1z
j
2

 .

Using the fact that Φ1
1 = g

(2,0)
13 Φ3

1, a straightforward computation shows that a1
ij = 0 for

i > 2, b1
ij = 0 for i > 3 and c1

ij = 0 for i > 1. Similarly, using the fact that Φ1
1 = g

(2,0)
12 Φ2

1

we get that a1
ij = 0 for j > 1, b1

ij = 0 for j > 0 and c1
ij = 0 for j > 2. Furthermore, we get

that

a1
00 = 1

2
vc1

01

a1
01 = vc1

02

a1
10 = u

2
c1

01

a1
11 = uc1

02 + vc1
12

a1
20 = u

2
c1

11

a1
21 = uc1

12

b1
00 = −v2c1

02

b1
10 = −(v2c1

12 + 2uvc1
02)

b1
20 = −(u2c1

02 + 2uvc1
12)

b1
30 = −u2c1

12,

and so

Φ1
1 =

(
A1 B1

C1 −A1

)
, (4.8)

where

A1 = 1
2
vc1

01 + vc1
02z2 + u

2
c1

01z1 + (uc1
02 + vc1

12)z1z2 + u
2
c1

11z
2
1 + uc1

12z
2
1z2,

B1 = −v2c1
02 − (v2c1

12 + 2uvc1
02)z1 − (u2c1

02 + 2uvc1
12)z2

1 − u2c1
12z

3
1 ,

C1 = c1
00 + c1

01z2 + c1
02z

2
2 + c1

10z1 + c1
11z1z2 + c1

12z1z
2
2 .

(4.9)

Remark 4.17. Note that the above equations imply that, in Φ1, A1 and B1 depend on
C1. In particular, if C1 is zero, then A1 = B1 = 0 and Φ = 0.

We will now describe Φ1
2 ∈ H0(End0E(0, 2)). As before, let

Φ1
2 =


∑
i,j≥0

a2
ijz

i
1z
j
2∑

i,j≥0

b2
ijz

i
1z
j
2∑

i,j≥0

c2
ijz

i
1z
j
2

 .
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Using the fact that Φ1
2 = g

(0,2)
13 Φ3

2, again, a straightforward computation shows that a2
ij = 0

for i > 0, b2
ij = 0 for i > 1 and c2

ij = 0 for all i, j. Similarly, using the fact that Φ1
2 = g

(0,2)
12 Φ2

2,
we get that a2

ij = 0 for j > 2 and b2
ij = 0 for j > 1. Furthermore, we get that

b2
01 = −2va2

02

b2
11 = −2ua2

02

and so

Φ1
2 =

(
A2 B2

0 −A2

)
, (4.10)

where
A2 = a2

00 + a2
01z2 + a2

02z
2
2 ,

B2 = b2
00 + b2

10z1 − 2(uz1 + v)a2
02z2.

(4.11)

For the following lemma we use the notation described above.

Lemma 4.18. Let Φ ∈ H0(End0E⊗T ) be integrable. If C1 = 0, then Φ = Φ2. Otherwise,
Φ = Φ1.

Proof. It suffices to prove the lemma on the open set V1. Indeed, in any other standard open
set, the Higgs field is a conjugation (by the transition functions of E) of its trivialization
on V1. Recall that, since Φ is integrable, it satisfies equations (2.8). Now, it is clear that if
C1 = 0, then A1 = B1 = 0 (this follows simply by the shape of A1, B1, C1, see (4.9)), and
so Φ = Φ2. On the other hand, if C1 6= 0, then A2 = B2 = 0 (this follows from equations
(2.8)), and so Φ = Φ2.

We now aim to give a geometric description of the moduli space Mco(−F, 1) of rank
2 stable co-Higgs bundles with first Chern class −F and second Chern class 1. We have
seen that if (E,Φ) ∈ Mco(−F, 1), then E is an extension of O(−1, 1) by O(0,−1). Such
extensions are parametrized (up to strong isomorphism) by H1(O(1,−2)) = C2, and have
transition functions on V12 given by(

g12 uz1 + v
0 g′12

)
,

for (u, v) ∈ C2. We will use the convenient notation E = Eu,v.

Lemma 4.19. Let E and E ′ be extensions of O(−1, 1) by O(0,−1). If E and E ′ are
isomorphic as vector bundles, then E and E ′ are weakly isomorphic extensions.

Proof. Let E = Eu,v and E ′ = Eu′,v′ . Also, let p = uz1 +v and p′ = u′z1 +v′. Now, suppose
α ∈ P1 is a zero of p. We have that for each z ∈ P1, E|{z}×P1

∼= E ′|{z}×P1 . Since the only

extensions of O(1) by O(−1) over P1 are the split one OP1(−1) ⊕OP1(1) and OP1 ⊕OP1 ,
we have that

E|{z}×P1
=

{
OP1 ⊕OP1 if z 6= α
OP1(−1)⊕OP1(1) if z = α.

Since the same can be said of E ′|{z}×P1
and p′, we have that p and p′ have exactly the same

zeroes. Hence, E and E ′ are weakly isomorphic.
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Remark 4.20. Recall that, up to weak isomorphism, non-trivial extensions of O(−1, 1)
by O(0,−1) are parametrized by P(H1(O(1,−2))) = P1.

Let X0 := {(E,Φ) ∈ Mco(−F, 1) : E is the trivial extension}. By (4.5), we have that
X0 = P1 × C3. Now, let us fix a non-trivial extension Eu,v, and let Xu,v be the set of
elements in Mco(−F, 1) with underlying bundle Eu,v. By (4.8), (4.9), (4.10), (4.11) and
Lemma 4.18, we get that

Xu,v = {(x̄, ȳ) ∈ C6 × C5; xiyj = 0, 1 ≤ i ≤ 6 and 1 ≤ j ≤ 5}.

Since Xu,v is the union of the two subspaces x̄ = 0 and ȳ = 0, dimXu,v = 6. It follows
that:

Proposition 4.21. The space S = S0 ∪ S1 ∪ S2, where

S0 = {((u, v), (p, w̄), (x̄, ȳ)) ∈ C2 × P1 × C3 × C6 × C5 : u = v = x̄ = ȳ = 0},
S1 = {((u, v), (p, w̄), (x̄, ȳ)) ∈ C2 × P1 × C3 × C6 × C5 : (u, v) 6= (0, 0), p = w̄ = ȳ = 0},
S2 = {((u, v), (p, w̄), (x̄, ȳ)) ∈ C2 × P1 × C3 × C6 × C5 : (u, v) 6= (0, 0), p = w̄ = x̄ = 0},

parametrizes rank 2 stable co-Higgs bundles with first Chern class −F and second Chern
class 1.

Remark 4.22. Note that S0 = X0 parametrizes the points of the form (O(0,−1) ⊕
O(−1, 1),Φ), S1 the points (E,Φ1) and S2 the points (E,Φ2), where E is a non-trivial
extension.

By Lemma 4.19, it is clear that the moduli spaceMco(−F, 1) is the quotient of S by a
C∗ action of weight 1 on (u, v) ∈ C2. Hence we have

Theorem 4.23. Mco(−F, 1) is a 7-dimensional algebraic variety whose singular locus are
the points (E, 0) for any non-trivial extension E.

Finally, before moving on to the next section, let us say a word about the spectral
correspondence in this setting.

Remark 4.24. The first thing to note is that, in this case, we will indeed have to push-
forward rank 1 torsion-free sheaves which are not locally free in order to get a correspon-
dence. This follows immediately from Proposition 4.5 and Remark 4.6 by observing that
any possible underlying bundle of a co-Higgs stable pair is an extension of O(−1, 1) by
O(0,−1).

For ρ = (ρ1, 0, 0) with ρ1 ∈ H0 = (O(4, 0)) generic, we have seen that the spectral
surface is of the form Sρ = Xρ1 × P1, and recall that θ = (π, IdP1) : Sρ → P1 × P1, where
π is the 2-sheeted covering map Xρ1 → P1. Let L be a rank 1 torsion-free coherent sheaf
over Sρ with c1(L) = αXρ1 + βP1, where we are abusing notation and identifying Xρ1 and
P1 with the generators of H2(Sρ,Z), and c2 = γXρ1 × P1 (again, by abuse of notation,
Xρ1 × P1 is being identified with the generator of H4(Sρ,Z)). We let

m = Xρ1 ·Xρ1 and n = Xρ1 · P1.
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We now apply Grothendieck–Riemann–Roch (see [18, Appendix A, Theorem 5.3]) in order
to find the values of α, β and γ:

ch(θ∗(L)) · Td(P1 × P1) = θ∗(ch(L) · Td(Xρ1 × P1)), (4.12)

where
ch(θ∗(L)) = 2− F − P1 × P1

Td(P1 × P1) = 1 + (C0 + F ) + P1 × P1

ch(L) = 1 + (αXρ1 + βP1) + (αβ − γ)Xρ1 × P1

Td(Xρ1 × P1) = 1 +Xρ1 .

Then, the left hand side of 4.12 becomes 2+2C0 +F , and before pushing-forward the right
hand side becomes 1 + (α+ 1)Xρ1 + βP1 + (αβ+αm+ βn− γ+ β)Xρ1 ×P1. Finally, since
Xρ1 is a double cover of P1, pushing-down ch(L) · Td(Xρ1 × P1) under θ, we get

2 + (α + 1)F + 2βC0 + (αβ + αm+ βn− γ)P1 × P1.

Thus, equating both sides, (4.12) yields α = 0, β = 1 and γ = n. Hence, pushing-forward
any rank 1 torsion-free coherent sheaf L over Sρ with c1(L) = P1 and c2(L) = Xρ1 · P1

yields a stable co-Higgs pair with the underlying bundle a non-trivial extension of O(−1, 1)
by O(0,−1), and Higgs field of the form Φ = Φ1, as described before.

Similarly, one can show that for ρ = (0, 0, ρ2) with ρ2 ∈ H0(O(0, 4)) generic, pushing-
down a rank 1 torsion-free coherent sheaf L over Sρ = P1 × Xρ2 with c1(L) = P1 and
c2(L) = Xρ2 · P1 yields a stable co-Higgs pair with underlying a non-trivial extension of
O(−1, 1) by O(0,−1) with Higgs field of the form Φ = Φ2, as described before.

4.3 Hypercohomology and Deformation Theory

A useful tool in better understanding the moduli spacesMco(c1, c2) of co-Higgs semistable
pairs (E,Φ) on P1 × P1 is the study of their behaviour under infinitesimal deformations.
The deformation theory of co-Higgs bundles is discussed, by Rayan, for curves and surfaces
in [27, Chapter 2], and for arbitrary complex projective manifolds in [29]; more details can
be found there. In what follows, we will only outline the methodology and recall some
important facts for the case of surfaces.

The main idea is to obtain the hypercohomology H• for a given semistable pair (E,Φ) ∈
Mco(c1, c2), paying special attention to H1, as this can be interpreted as the Zariski tangent
space to the local moduli space at (E,Φ). In order to obtain the hypercohomology H• for
(E,Φ), note that a double complex arises in a natural way (from the fact that Φ ∧Φ = 0)
by taking as the horizontal map

0→ End0E
−∧Φ−−→ End0E ⊗ T

−∧Φ−−→ End0E ⊗ ∧2T → 0,

where − ∧ Φ acts as the commutator on End0E and as the usual wedge on T . We use
this wedge as the horizontal map in the above complex. We take as the vertical map the
Čech coboundary operator δ. More precisely, the integrability of Φ implies that the wedge
map − ∧ Φ is a differential, and so we can define cohomology groups for End0E ⊗ ∧iT ,
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relative to it. These two define the hypercohomology spaces for (E,Φ). The operation
− ∧ Φ commutes with the Čech coboundary δ, making

(C•(End0E ⊗ ∧•T );D = δ + (− ∧ Φ))

into a first quadrant double complex. A spectral sequence is defined by choosing the 0-th
page to be

(Ep,q0 = Cq(End0E ⊗ ∧pT ); d0 = δ).

Note that Ep,q0 = 0 for p > 2. Then proceed by setting:

(i) Ep,q1 = Hq
d0

(Ep,•0 ) = Hq(End0E ⊗ ∧pT ). Note that, for any surface, Ep,q1 = 0 for p or
q > 2, and for the cases we are considering here, we actually have Ep,q1 = 0 for p > 2
or q ≥ 2. Thus, we make this assumption throughout this section.

(ii) d1 = − ∧ Φ : Ep,q1 → Ep+1,q
1 for 0 ≤ p ≤ 1, 0 ≤ q ≤ 1. For the other possible values of

p, d1 is clearly the zero map.

(iii) Ep,q2 = Hp
d1

(E•,q1 ) for 0 ≤ p ≤ 2, 0 ≤ q ≤ 1.

(iv) d2 : E0,1
2 → E2,0

2 is given by d2(Ψ) = θ ∧ Φ, where θ ∈ C0(End0E ⊗ T ) is a solution
of the equation Ψ ∧ Φ− δθ = 0 ∈ C1(End0E ⊗ T ).

It is the 2-nd page that encodes the hypercohomology of the double complex. For
instance

H0 ∼= E0,0
2 and H3 ∼= E2,1

2 .

Moreover, provided that H2(End0E ⊗ ∧iT )) = 0 for i = 0, 1, 2 (which we are assuming),
we have that

0→ E1,0
2 → H1 → E0,1

2
d2−→ E2,0

2 → H2 → E1,1
2 → 0.

Thus, if the d2 map is zero, we obtain

H1 ∼= E1,0
2 ⊕ E

0,1
2 and H2 ∼= E2,0

2 ⊕ E
1,1
2 .

Remark 4.25. (See [27, Section 2.2]). It is important to mention that E1,0
2 parametrizes

the first order deformations of Φ, while E0,1
2 parametrizes the first order deformations of E

compatible with Φ. As such, in the case where d2 = 0, H1 = E1,0
2 ⊕ E

0,1
2 provides valuable

information regarding the deformations of (E,Φ).

Given that all the information we need in order to obtain the hypercohomology H• of
a co-Higgs semistable pair (E,Φ) can be extracted from the second page of the spectral
sequence, let us explicitly write Ep,q2 for p = 0, 1, 2, and q = 0, 1, so that in the future we

63



can simply use the symbol Ep,q2 instead of the actual definition.

E0,0
2 = Ker{d1 : H0(End0E)→ H0(End0E ⊗ T )}

E1,0
2 = Ker{d1:H0(End0E⊗T )→H0(End0E⊗∧2T )}

Im{d1:H0(End0E)→H0(End0E⊗T )}

E2,0
2 = H0(End0E⊗∧2T )

Im{d1:H0(End0E⊗T )→H0(End0E⊗∧2T )}

E0,1
2 = Ker{d1 : H1(End0E)→ H1(End0E ⊗ T )}

E1,1
2 = Ker{d1:H1(End0E⊗T )→H1(End0E⊗∧2T )}

Im{d1:H1(End0E)→H1(End0E⊗T )}

E2,1
2 = H1(End0E⊗∧2T )

Im{d1:H1(End0E⊗T )→H1(End0E⊗∧2T )}

In what follows, we consider deformations of semistable co-Higgs bundles in the moduli
spaces Mco(c1, c2) previously discussed in this chapter. Once we have fixed (E,Φ) ∈
Mco(c1, c2), we will proceed as follows:

1. Verify that the condition H2(End0E ⊗ ∧iT )) = 0 for i = 0, 1, 2 is satisfied.

2. Obtain Ep,q2 for p = 0, 1, 2, and q = 0, 1.

3. Verify that the d2 map is indeed the zero map.

4. Interpret the results in terms of the deformation theory discussed above.

4.3.1 Deformations of points in Mco(−F, 0)

Proposition 4.26. Let (E,Φ) ∈Mco(−F, 0). Then,

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

Moreover, H1 = E1,0
2 ⊕ E

0,1
2 with E1,0

2 = C6 and E0,1
2 = 0.

Interpretation. Since E0,1
2 = 0, the bundle cannot be deformed. This is expected as

O ⊕ O(−1, 0) is the only possible underlying bundle in this moduli space. On the other
hand, since E1,0

2 = C6 we see that it is possible to deform the Higgs field into any other
stable Higgs field in the 6-parameter family described in Section 4.2.1.

Proof. Recall that, in this case, the only underlying bundle of co-Higgs pairs inMco(−F, 0)
is E = O ⊕O(−1, 0), and any Higgs field Φ yielding a stable pair is of the form

Φ = Φ1 =

(
A1 B1

C1 −A1

)
,

with A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(3, 0)) and non-zero C1 ∈ H0(O(1, 0)). Fix a Higgs field
Φ. Using the facts that
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1. End0(E) = O ⊕O(1, 0)⊕O(−1, 0),

2. End0(E)⊗ T = O(2, 0)⊕O(3, 0)⊕O(1, 0)⊕O(0, 2)⊕O(1, 2)⊕O(−1, 2),

3. End0(E)⊗ ∧2T = O(2, 2)⊕O(3, 2)⊕O(1, 2),

and Remark 2.19, we get H1(End0E⊗∧iT ) = H2(End0E⊗∧iT ) = 0 for i = 0, 1, 2. Hence,
Ep,12 = 0 for p = 0, 1, 2, and the d2 map is zero. Now, for

Ψ =

(
α β
0 −α

)
∈ H0(End0E),

we have

d1(Ψ) =

(
βC1 2(αB1 − βA1)
−2αC1 −βC1

)
;

since C1 is non-zero, we have that Ψ is in the kernel of d1 if and only if Ψ is zero. Thus,

E0,0
2 = Ker{d1 : H0(End0E)→ H0(End0E ⊗ T )} = 0,

and
Im{d1 : H0(End0E)→ H0(End0E ⊗ T )} = H0(End0E) = C3.

On the other hand, if

Ψ = Ψ1 + Ψ2 =

(
α1 β1

γ1 −α1

)
+

(
α2 β2

0 −α2

)
∈ H0(End0E ⊗ T ),

then by Remark 2.29

d1(Ψ) = −[Ψ2,Φ1] =

(
β2C1 2(α2B1 − β2A1)
−2α2C1 −β2C1

)
.

Again, since C1 is not identically zero, Ψ is in the kernel of the d1 map if and only if
α2 = β2 = 0 if and only if Ψ2 = 0. Thus

Ker{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(2, 0)) = C9.

Hence E1,0
2 = C6. Also,

Im{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(0, 2)) = C9,

and thus E2,0
2 = C18. Therefore, the hypercohomology is

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

65



4.3.2 Deformations of points in Mco(0, 0)

Proposition 4.27. Let (E,Φ) ∈Mco
H (0, 0).

1. If E = O ⊕O, then E0,1
2 = 0 and H1 = E1,0

2 .

(a) If Φ = 0, then

H0 = C3 H1 = C18 H2 = C27 H3 = 0.

(b) If Φ 6= 0, then

H0 = C H1 = C10 H2 = C21 H3 = 0.

2. If E = O(1, 0)⊕O(−1, 0), then

H0 = 0 H1 = C6 H2 = C21 H3 = 0.

Moreover, H1 = E1,0
2 ⊕E

0,1
2 with E1,0

2 = C5 and E0,1
2 = H1(End0E) = C. By symmetry,

the same result holds for E = O(0, 1)⊕O(0,−1).

Interpretation. In (1), E0,1
2 = 0 and so, the bundle O ⊕ O cannot be deformed into

any other bundle living in this moduli space. When Φ = 0, we obtain that the point
(O⊕O, 0) ∈Mco(0, 0) is a singular point (as the dimension ofMco(0, 0) is strictly smaller
than the dimension of E1,0

2 ). When Φ 6= 0, we see that a strictly semistable pair (O⊕O,Φ)
can be deformed into a stable pair (O ⊕ O,Φ′). Indeed, in Section 4.2.1, we saw that
the possible Higgs fields Φ which make (O ⊕O,Φ) strictly semistable form a 6-parameter
family, and here H1 = C10.

In (2), E0,1
2 = H1(End0E) = C and so, we can deform the pair (O(1, 0)⊕O(−1, 0),Φ)

into a pair of the form (O⊕O,Φ′). On the other hand, since E1,0
2 = C5, we can deform the

Higgs field of (O(1, 0)⊕O(−1, 0),Φ) into any other stable Higgs field in the 5-parameter
family described in Section 4.2.1.

Proof. As we know from Corollary 4.10, there are three underlying bundles in this moduli
space, namely O ⊕ O, O(1, 0) ⊕ O(−1, 0) and O(0, 1) ⊕ O(0,−1). Let us now work by
cases.

Case 1. Consider E = O⊕O. Since we do not have an explicit description of the stable co-
Higgs bundles of the form (O⊕O,Φ) (see section 4.2.1), we will only consider deformations
of points (O ⊕O,Φ) that are strictly semistable. Using the fact that

(i) End0(E) = O ⊕O ⊕O,

(ii) End0(E)⊗ T = O(2, 0)⊕O(2, 0)⊕O(2, 0)⊕O(0, 2)⊕O(0, 2)⊕O(0, 2),

(iii) End0(E)⊗ ∧2T = O(2, 2)⊕O(2, 2)⊕O(2, 2),
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and Remark 2.19, we get H1(End0E⊗∧iT ) = H2(End0E⊗∧iT ) = 0 for i = 0, 1, 2. Hence,
we have that Ep,12 = 0 for p = 0, 1, 2, and so the d2 map is clearly zero.

For Φ = 0, it is immediate that E0,0
2 = H0(End0E) = C3. Also, E1,0

2 = H0(End0E⊗T ) =
C18, and E2,0

2 = H0(End0E ⊗ ∧2T ) = C27. Hence, in this case, the hypercohomology is

H0 = C3 H1 = C18 H2 = C27 H3 = 0.

When Φ 6= 0, we have

E0,0
2 =

{(
α 0
0 −α

)
: α ∈ H0(O)

}
= C.

Now, by the rank-nullity Theorem, we have that

Im{d1 : H0(End0E)→ H0(End0E ⊗ T )} = C2.

On the other hand, writing

Φ = Φ1 + Φ2 =

(
A1 0
0 −A1

)
+

(
A2 0
0 −A2

)
,

for any

Ψ = Ψ1 + Ψ2 =

(
α1 β1

γ1 −α1

)
+

(
α2 β2

γ2 −α2

)
∈ H0(End0E ⊗ T )

we have

d1(Ψ) = [Ψ1,Φ2] + [Ψ2,Φ1] =

(
0 −2β1A2 + 2β2A1

2γ1A2 − 2γ2A1 0

)
.

Therefore, Ψ is in the kernel of d1 if and only if γ1A2 = γ2A1 and β1A2 = β2A1. Since
A1 and A2 are not both zero, Ker{d1 : H0(End0E ⊗ T ) → H0(End0E ⊗ ∧T )} = C12

and E1,0
2 = C10. Moreover, Im{d1 : H0(End0E ⊗ T ) → H0(End0E ⊗ ∧2T )} = C6. Thus,

E2,0
2 = C21 and the hypercohomology is

H0 = C H1 = C10 H2 = C21 H3 = 0.

Case 2. Consider E = O(1, 0)⊕O(−1, 0) with a fixed Higgs field Φ. We have that

(i) End0(E) = O ⊕O(2, 0)⊕O(−2, 0),

(ii) End0(E)⊗ T = O(2, 0)⊕O(2, 2)⊕O(−2, 2)⊕O(0, 2)⊕O(0, 4)⊕O(0, 0),

(iii) End0(E)⊗ ∧2T = O(2, 2)⊕O(4, 2)⊕O(0, 2).

By Remark 2.19, H2(End0E ⊗ ∧iT ) = 0 for i = 0, 1, 2. From Section 4.2.1, we know
we can take a representative Higgs field of the form

Φ = Φ1 =

(
0 B
1 0

)
,
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where B ∈ H0(O(4, 0)). It then follows that, for

Ψ =

(
α β
0 −α1

)
∈ H0(End0E),

we have

d1(Ψ) = [Ψ,Φ] =

(
β 2αB
−2α −β

)
.

Thus, we see that E0,0
2 = 0 and Im{d1 : H0(End0E)→ H0(End0E ⊗ T )} = H0(End0E) =

C4. For

Ψ = Ψ1 + Ψ2 =

(
α1 β1

γ1 −α1

)
+

(
α2 β2

0 −α2

)
∈ H0(End0E ⊗ T ),

we have

d1(Ψ) = −[Ψ2,Φ1] =

(
−β2 −2α2B
2α2 β2

)
.

This time, Ψ is in the kernel of d1 if and only if α2 = β2 = 0 if and only if Ψ2 = 0.
Thus, Ker{d1 : H0(End0E ⊗ T ) → H0(End0E ⊗ ∧2T )} = H0(End0E(2, 0)) = C9, and
so E1,0

2 = C5. We also have that Im{d1 : H0(End0E ⊗ T ) → H0(End0E ⊗ ∧2T )} =
H0(End0E(0, 2)) = C9. Since H0(End0E ⊗ ∧2T ) = C27, we get E2,0

2 = C18.

Now, note that any Ψ ∈ H1(End0E) has the form

Ψ =

(
0 0
γ 0

)
with γ ∈ H1(O(−2, 0)). Applying the d1 map, we get

d1(Ψ) = [Ψ,Φ1] =

(
−Bγ 0

0 Bγ

)
+

(
0 0
0 0

)
,

where Bγ ∈ H1(O(2, 0)) = 0. The map d1 : H1(End0E) → H1(End0E ⊗ T ) is thus zero,
implying that E0,1

2 = H1(End0E) = C and Im{d1 : H1(End0E) → H1(End0E ⊗ T )} = 0.
Moreover, since H1(End0E ⊗ ∧2T ) = 0, E1,1

2 = H1(End0E ⊗ T ) = C3 and E2,1
2 = 0.

We now check that the d2 map is zero. Let Ψ ∈ E0,1
2 = H1(End0E). Since Φ =

Φ1 ∈ H0(End0E(2, 0)), the image of the map d1 : H1(End0E) → H1(End0E ⊗ T ) lies in
H1(End0E(2, 0)) and can pick θ = θ1 ∈ C0(End0E(2, 0)) such that Ψ ∧ Φ − δθ = 0 ∈
C1(End0E ⊗ T ). We then see that

d2(Ψ) = θ ∧ Φ = θ1 ∧ Φ1 = 0,

as desired. Hence, the hypercohomology is

H0 = 0 H1 = C6 H2 = C21 H3 = 0.
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4.3.3 Deformations of points in Mco(−F, 1)

Proposition 4.28. Let (E,Φ) ∈Mco(−F, 1).

1. If E = O(0,−1)⊕O(−1, 1), then

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

Moreover, H1 = E1,0
2 ⊕ E

0,1
2 with E1,0

2 = C4 and E0,1
2 = C2.

2. If E is a non-trivial extension of O(−1, 1) by O(0,−1), then H1 = E1,0
2 ⊕ E

0,1
2 and

E0,1
2 = H1(End0E) = C. Moreover,

(a) if Φ = 0, then E1,0
2 = C11 and

H0 = 0 H1 = C12 H2 = C24 H3 = 0.

(b) if Φ = Φ2 6= 0, then E1,0
2 = C5 and

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

(c) if Φ = Φ1 6= 0, then E1,0
2 = C6 and

H0 = 0 H1 = C7 H2 = C19 H3 = 0.

Interpretation. In (1), E0,1
2 = H1(End0E) = C2 and so, the pair (O(0,−1)⊕O(−1, 1),Φ)

can be deformed into a pair of the form (Ẽ, Φ̃) for any non-trivial extension Ẽ of O(−1, 1)
by O(0,−1). Since E1,0

2 = C4, then we can deform the Higgs field into any other stable
Higgs field in the 4-parameter family described in Section 4.2.2.

In (2), E0,1
2 = C and so, we see that it is possible to deform the bundle E into any other

extension of O(−1, 1) by O(0,−1) (up to weak isomorphism). When Φ = 0, the fact that
E1,0

2 = C11 confirms that this points are indeed singular points, as the moduli space has
dimension 7. When Φ = Φ2 6= 0, E1,0

2 = C5. Thus, we can deform the Higgs field into any
other stable Higgs field in the 5-parameter family described in Section 4.2.2. Finally, when
Φ = Φ1 6= 0, E1,0

2 = C6. Thus, we can deform the Higgs field into any other stable Higgs
field in the 6-parameter family described in Section 4.2.2.

Proof. As we saw in Section 4.2.2, in this case, every underlying bundle is an extension of
O(−1, 1) by O(0,−1). We work by cases.

Case 1. Consider the trivial extension, E = O(0,−1) ⊕O(−1, 1), with a fixed Higgs field
Φ. We have that

(i) End0(E) = O ⊕O(1,−2)⊕O(−1, 2),

(ii) End0(E)⊗ T = O(2, 0)⊕O(3,−2)⊕O(1, 2)⊕O(0, 2)⊕O(1, 0)⊕O(−1, 4),

(iii) End0(E)⊗ ∧2T = O(2, 2)⊕O(3, 0)⊕O(1, 4).
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By Remark 2.19, H2(End0E ⊗ ∧iT ) = 0 for i = 0, 1, 2. From Section 4.2.2, we know a
Higgs field of E is of the form

Φ = Φ2 =

(
A2 B2

0 −A2

)
,

with A2 ∈ H0(O(0, 2)) and non-zero B2 ∈ H0(O(1, 0)). It then follows that, for

Ψ =

(
α 0
0 −α

)
∈ H0(End0E),

we have

d1(Ψ) = [Ψ,Φ] =

(
0 2αB2

0 0

)
.

Since B2 is non-zero, we see that E0,0
2 = 0 and

Im{d1 : H0(End0E)→ H0(End0E ⊗ T )} ∼= C.

For

Ψ = Ψ1 + Ψ2 =

(
α1 0
γ1 −α1

)
+

(
α2 β2

0 −α2

)
∈ H0(End0E ⊗ T ),

we have

d1(Ψ) = [Ψ1,Φ2] =

(
−γ1B2 2α1B2

2γ1A2 γ1B2

)
.

Again, since B2 is non-zero, Ψ is in the kernel of d1 if and only if Ψ1 = 0. Thus, Ker{d1 :
H0(End0E ⊗ T ) → H0(End0E ⊗ ∧2T )} = H0(End0E(0, 2)) ∼= C5, and so E1,0

2
∼= C4. We

also have that

Im{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(0, 2)) = C9.

Since H0(EndE ⊗ ∧2T ) ∼= C23, we get that E2,0
2
∼= C14.

Now, note that any Ψ ∈ H1(End0E) has the form

Ψ =

(
0 γ
0 0

)
,

with γ ∈ H1(O(1,−2)). Applying the d1 map, we get

d1(Ψ) = [Ψ,Φ2] =

(
0 0
0 0

)
+

(
0 −2γA2

0 0

)
,

with 2A2γ ∈ H1(O(1, 0)) = 0. The map d1 : H1(End0E) → H1(End0E ⊗ T ) is thus the
zero map, implying that E0,1

2 = H1(End0E) = C2 and

Im{d1 : H1(End0E)→ H1(End0E ⊗ T )} = 0.

Moreover, since H1(End0E ⊗ ∧2T ) = 0, we get that E1,1
2
∼= H1(End0E ⊗ T ) ∼= C4, and

E2,1
2 = 0.

We now check that the d2 map is zero. Let Ψ ∈ E0,1
2 = H1(End0E). Since Φ =

Φ2 ∈ H0(End0E(0, 2)), the image of the map d1 : H1(End0E) → H1(End0E ⊗ T ) lies in
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H1(End0E(0, 2)) and we can pick θ = θ2 ∈ C0(End0E(0, 2)) such that Ψ ∧ Φ − δθ = 0 ∈
C1(End0E ⊗ T ). We then see that

d2(Ψ) = θ ∧ Φ = θ2 ∧ Φ2 = 0,

as desired. Hence, the hypercohomology is

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

Case 2. Consider E to be a non-trivial extension of O(−1, 1) by O(0,−1). Using the fact
that E is simple (since it is stable), and calculations similar to those of Lemma 4.16, we
get

h0(End0E) = 0 h1(End0E) = 1 h2(End0E) = 0

h0(End0E ⊗ T ) = 11 h1(End0E ⊗ T ) = 1 h2(End0E ⊗ T ) = 0

h0(End0E ⊗ ∧2T ) = 23 h1(End0E ⊗ ∧2T ) = 0 h2(End0E ⊗ ∧2T ) = 0

Note that E0,0
2 = 0 and E1,0

2 = Ker{d1 : H0(End0E ⊗ T ) → H0(End0E ⊗ ∧2T )} in all
three subcases because h0(End0E) = 0. Moreover, E0,1

2 = H1(End0E) = C again in all
three cases. Indeed, E0,1

2 = Ker{d1 : H1(End0E) → H1(End0E ⊗ T )} with h1(End0E) =
h1(End0E ⊗ T ) = 1. However, E0,1

2 6= 0, since otherwise (E,Φ) would not admit defor-
mations, contradicting the description of the Higgs fields of the non-trivial extensions of
O(1,−1) by O(0,−1) in Section 4.2.2. Thus,

E0,1
2 = H1(End0E) = C

and d1 : H1(End0E)→ H1(End0E ⊗ T ) is the zero map. This implies, in particular, that
the d2 is zero as well. To see this, let Ψ ∈ E1,0

2
∼= H1(End0E). Since

Im{d1 : H1(End0E)→ H1(End0E ⊗ T )} = 0,

Ψ ∧ Φ = 0 ∈ C1(End0E ⊗ T ), and so we can pick θ = 0, implying that

d2(Ψ) = θ ∧ Φ = 0.

To compute E1,0
2 , E2,0

2 , E1,1
2 and E2,1

2 , we look at cases.

First we work with the case Φ = 0. It is clear then that the d1 map is zero. Therefore,
E1,0

2
∼= H0(End0E⊗T ) ∼= C11 and E2,0

2 = H0(End0E⊗∧2T ) ∼= C23. We also have that E1,1
2
∼=

H1(End0E ⊗ T ) ∼= C and E0,1
2 = H1(End0E ⊗ ∧2T ) = 0. Hence, the hypercohomology is

H0 = 0 H1 = C12 H2 = C24 H3 = 0.

We now work with the case where Φ = Φ2 6= 0. Referring to Lemma 4.18,

Φ = Φ2 =

(
A2 B2

0 −A2

)
.

For

Ψ = Ψ1 + Ψ2 =

(
α1 β1

γ1 −α1

)
+

(
α2 β2

0 −α2

)
∈ H0(End0E ⊗ T ),
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we have

d1(Ψ) = [Ψ1,Φ2] =

(
−γ1B2 2(α1B2 − β1A2)
2γ1A2 γ1B2

)
.

Since Φ is non-zero, we have that Ψ is in the kernel of d1 if and only if γ1 = 0 if and only
if Ψ1 = 0 by Remark 4.17. Thus,

E1,0
2 = Ker{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(0, 2)) = C5

and

Im{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(2, 0)) = C6.

Hence, since H0(EndE ⊗ ∧2T ) ∼= C23, we get E2,0
2
∼= C17. Note that h0(End0E(2, 0)) and

h0(End0E(0, 2)) were computed in Lemma 4.16.

Now, since Φ ∈ H0(End0E(0, 2)), for any Ψ ∈ H1(End0E), we have that d1(Ψ) ∈
H1(End0E(0, 2)) = 0. Thus, E0,1

2
∼= H1(End0E) ∼= C. Furthermore, since H1(End0E ⊗

∧2T ) = 0, we obtain E1,1
2
∼= H1(End0E ⊗ T ) ∼= C and E2,1

2 = 0.

Hence, the hypercohomology is

H0 = 0 H1 = C6 H2 = C18 H3 = 0.

Finally, we work with the case where Φ = Φ1 6= 0. Referring to Lemma 4.18,

Φ = Φ1 =

(
A1 B1

C1 −A1

)
with C1 non-zero.

For

Ψ = Ψ1 + Ψ2 =

(
α1 β1

γ1 −α1

)
+

(
α2 β2

0 −α2

)
∈ H0(End0E ⊗ T ),

we have

d1(Ψ) = −[Ψ2,Φ1] =

(
−β2C1 2(β2A1 − α2B1)
2α2C1 β2C1

)
.

Since C1 is non-zero, we have that Ψ is in the kernel of d1 if and only if α2 = β2 = 0 if and
only if Ψ2 = 0. Thus,

E1,0
2
∼= Ker{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(2, 0)) ∼= C6

and

Im{d1 : H0(End0E ⊗ T )→ H0(End0E ⊗ ∧2T )} = H0(End0E(0, 2)) = C5.

Since H0(EndE ⊗ ∧2T ) ∼= C23, we get E2,0
2
∼= C18. Hence, the hypercohomology is

H0 = 0 H1 = C7 H2 = C19 H3 = 0.
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Chapter 5

Outlook

In this brief chapter, we present some possible directions in which the ideas in this thesis
can be taken further.

Even though in this thesis we addressed the existence problem of semistable rank 2
co-Higgs bundles over Hirzebruch surfaces quite thoroughly, we only offered descriptions
of the moduli spaces Mco(c1, c2) of rank 2 semistable co-Higgs bundles over P1 × P1, for
certain values of c1 and c2, and with respect to the standard polarization. The approach
we took was the following: We picked certain choices of c1 and c2 for which Mco(c1, c2)
was non-empty. Then, in each case, we determined the underlying bundles of semistable
co-Higgs pairs inMco(c1, c2). Finally, we gave an explicit description of the corresponding
Higgs fields, making sure to properly identify isomorphic co-Higgs pairs in the moduli
space. Given the exhaustive nature of our analysis, we were only able to fully carry it out
for low values of c2.

To study the moduli spaces Mco(c1, c2) for other values of c1 and c2, we propose fur-
ther exploiting the spectral correspondence. One can attempt to obtain new examples of
semistable co-Higgs pairs over P1×P1 by pushing down rank 1 torsion-free sheaves over the
spectral covers and their associated multiplication maps. One, of course, needs to check if
the resulting Higgs fields satisfy the integrability condition, a non-trivial task. In order to
do this, one needs to understand several features of these spectral surfaces: their tangent
bundle, their Picard group and their intersection pairing, to name a few. A similar ap-
proach can be followed for abitrary Hirzebruch surfaces. In this setting, the first question
to address is what type of surfaces arise as spectral covers. This seems to be a relevant
problem to consider in a future project.

Another natural question to ask is whether some of the techniques we applied to Hirze-
bruch surfaces can be generalized to other types of manifolds. We expect that similar
techniques to the ones presented in Chapters 3 and 4 can be used to study moduli spaces
of semistable co-Higgs bundles over ruled surfaces. Indeed, many of the arguments pre-
sented in this dissertation rely more on the fact that the fibres of the Hirzebruch surfaces
are copies of P1 rather than on the fact that the base of the fibration is P1. However, some
technical difficulties may arise for general ruled surfaces. For instance, even though rank
2 vector bundles over a ruled surface can still be expressed canonically in terms of certain
numerical invariants (see [9, Section 5.5]), these are not as easy to work with.

Finally, in this thesis, we only studied co-Higgs bundles of rank 2. The case of co-Higgs
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bundles of higher rank should be explored. Moreover, it would be interesting to determine
what type of structures moduli spaces of co-Higgs bundles admit. For example, the moduli
spaces we described over P1 × P1 for c2 = 0 and 1 are algebraic varieties. Is this always
the case for co-Higgs bundles over an algebraic surface? What other structures does the
moduli spaces inherit from the surface? These are just a few pertinent questions to be
undertaken.
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Appendix A

Semistable decomposable co-Higgs
bundles

A.1 The case of Hirzebruch surfaces

In the following proposition, working with an arbitrary polarization, we describe all the
possible decomposable stable co-Higgs bundles with c2 = 1, and c1 = 0 or −F .

Proposition A.1. Let H be an arbitrary polarization, and c2 = 1.

1. Suppose c1 = 0. Only when n is odd there are decomposable stable co-Higgs bundles
in Mco

H (0, 1). Furthermore, these are
(
O
(
C0 +

(
n−1

2

)
F
)
⊕O

(
−C0 −

(
n−1

2

)
F
)
,Φ
)

with

Φ = Φ2 =

(
A2 B2

C2 −A2

)
∈ H0(End0E(2C0 + nF )),

and non-zero C2.

2. Suppose c1 = −F . Only when n is even there are decomposable stable co-Higgs bun-
dles inMco

H (−F, 1). Furthermore, these are
(
O
(
C0 +

(
n
2
− 1
)
F
)
⊕O

(
−C0 −

(
n
2

)
F
)
,Φ
)

with

Φ = Φ2 =

(
A2 B2

C2 −A2

)
∈ H0(End0E(2C0 + nF )),

and non-zero C2.

Proof.

1. Since E is decomposable with c1 = 0 and c2 = 1, then E = O(aC0 +bF )⊕O(−aC0−bF )
and 1 = c2 = a(an − 2b), so that a = 1 and b = n−1

2
or a = −1 and b = −n−1

2
, hence n

has to be odd. As there is only one chamber of type (0, 1), pick the standard polarization
H = C0 + (n + 1)F , and note that µH(E) = 0, while µH

(
O
(
C0 +

(
n−1

2

)
F
))

= n+1
2
> 0.

Hence O
(
C0 +

(
n−1

2

)
F
)

is the destabilizing sub-line bundle of E. Finally, any element of
H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,
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with A1 ∈ H0(O(2F )), B1 ∈ H0(O(2C0 + (n + 1)F )) and A2 ∈ H0(O(2C0 + nF )), B2 ∈
H0(O(4C0+(2n−1)F )), C2 ∈ H0(O(C0+F )) (see Remark 3.7). Any non-zero C2 would not
leave O

(
C0 +

(
n−1

2

)
F
)

Φ-invariant, and so taking the integrability condition into account,
equations (2.8) imply that A1 = C1 = 0, and so the result follows.

2. The case n = 0 was considered in Theorem 3.9, so consider n > 0. Since E is decom-
posable with c1 = −F and c2 = 1, then E = O(aC0 + bF ) ⊕ O(−aC0 − (b + 1)F ) and
1 = c2 = a(an− 2b− 1), so that a = 1 and b = n

2
− 1 or a = −1 and b = −n

2
, hence n has

to be even. As there is only one chamber of type (−F, 1), pick the standard polarization
H = C0 + (n+ 1)F , and note that µH(E) = −1

2
, while µH

(
O
(
C0 +

(
n
2
− 1
)
F
))

= n
2
> 0.

Hence O
(
C0 +

(
n
2
− 1
)
F
)

is the destabilizing sub-line bundle of E. Finally, any element
of H0(End0E ⊗ T ) is of the form

Φ = Φ1 + Φ2 =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

with A1 ∈ H0(O(2F )), B1 ∈ H0(O(2C0 + (n + 1)F )) and A2 ∈ H0(O(2C0 + nF )), B2 ∈
H0(O(4C0 + (2n − 1)F )), C2 ∈ H0(O(F )) (see Remark 3.7). Any non-zero C2 would
not leave O

(
C0 +

(
n
2
− 1
)
F
)

Φ-invariant, and so taking the integrability condition into
account, equations (2.8) imply that A1 = C1 = 0, and so the result follows.

A.2 The case of P1 × P1

We now turn our attention to the 0-th Hirzebruch surface, P1 × P1. We fix the standard
polarization H = C0 + F and only work with the reduced first Chern classes: 0,−F,−C0

and −C0 − F . Note that, with respect to H, the reduced classes 0 and −C0 − F yield
bundles of even degree, while the reduced classes −F and −C0 yield bundles of odd degree.
Therefore, in the latter case, it is impossible to have strictly semistable bundles, and so
the concepts of stability and semistability coincide.

In Chapter 4, we discussed the moduli spaces Mco(c1, c2) when c2 = 0, 1, so here we
only focus on c2 ≥ 2.

Proposition A.2. Let c1 = 0 and c2 ≥ 2. Let E be a decomposable, rank 2 vector
bundle over P1 × P1. If (E,Φ) is a semistable co-Higgs bundle, then E is of the form
O(a,−a)⊕O(−a, a) for a ≥ 1.

Proof. Let E = O(a, b) ⊕ O(−a,−b), then c2(E) = −2ab ≥ 2. Note that a and b must
have opposite signs and that they both have absolute value strictly positive. Without loss
of generality, assume that a > 0. Any Higgs field Φ ∈ H0(End0E ⊗ T ) has the form:

Φ =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(2a + 2, 2b)), C1 ∈ H0(O(2 − 2a,−2b)), and A2 ∈
H0(O(0, 2)), B2 ∈ H0(O(2a, 2b+ 2)), C2 ∈ H0(O(−2a, 2− 2b)) satisfy equations 2.8.

Note that since we are assuming a > 0, C2 = 0 and, unless a = 1, C1 = 0 as well. We
now show that b = −a. Towards a contradiction, assume that b > −a or b < −a. In the
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former case, C1 = 0 since if a = 1, then b > −1, but this is impossible. This leaves O(a, b)
Φ-invariant, contradicting semistability. In the latter case, B1 = B2 = 0, as b < −a ≤ −1,
leaving O(−a,−b) Φ-invariant, again contradicting stability.

Proposition A.3. Let c1 = −F or −C0, and let c2 ≥ 2. Then, there are no semistable
decomposable rank 2 co-Higgs bundles over P1 × P1.

Proof. We will only deal with the case c1(E) = −F . The proof for c1(E) = −C0 is
analogous. Let E = O(a, b) ⊕ O(−1 − a,−b), then c2(E) = −b(2a + 1) ≥ 2. Any Higgs
field Φ ∈ H0(End0E ⊗ T ) has the form:

Φ =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(2a + 3, 2b)), C1 ∈ H0(O(1 − 2a,−2b)), and A2 ∈
H0(O(0, 2)), B2 ∈ H0(O(2a + 1, 2b + 2)), C2 ∈ H0(O(−1 − 2a, 2 − 2b)), satisfy equations
(2.8).

We start by showing that a can only take the values −1 or 0. Indeed, if a ≥ 1, then
C1 = C2 = 0, and so O(a, b) would be Φ-invariant. By stability, this would yield b ≤ −2.
However, the latter implies that B1 = B2 = 0, and so O(a, b) and O(−1 − a,−b) would
both be Φ-invariant, contradicting stability (since at least one of the two would have non-
negative slope). A similar argument, but now interchanging the roles of the Ci’s for the
Bi’s, and of O(a, b) for O(−1− a,−b), shows that a > −2.

Note that a = 0 implies that b ≤ −2, and a = −1 implies that b ≥ 2, but this is
impossible. Indeed, for the bundle O(0, b)⊕O(−1,−b), if b ≤ −2, then B1 = B2 = 0, and
so O(−1,−b) is Φ-invariant, contradicting stability. Similarly, for the bundle O(−1, b) ⊕
O(0, b), if b ≥ 2, then C1 = C2 = 0, and so O(−1, b) is Φ-invariant, contradicting stability.
Hence, there are no stable decomposable rank 2 co-Higgs bundles with c2 ≥ 2.

Hence, it follows that:

Corollary A.4. Suppose that E is decomposable and (E,Φ) is a semistable co-Higgs pair.
If c1(E) = −F , then there are only two possibilities for E:

1. O(0, 0)⊕O(−1, 0) and

2. O(0,−1)⊕O(−1, 1).

On the other hand, if c1(E) = −C0, then there are also only two possibilities for E:

1. O(0, 0)⊕O(0,−1) and

2. O(−1, 0)⊕O(1,−1).

Proposition A.5. Let c1 = −C0 − F and c2 ≥ 2. Let E be a decomposable rank 2 vector
bundle over P1 × P1. If (E,Φ) is a semistable co-Higgs bundle, then E is of the form
O(a,−a− 1)⊕O(−a− 1, a) for a ≥ 1.
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Proof. Let E = O(a, b)⊕O(−a− 1,−b− 1), then c2(E) = −2ab− a− b ≥ 2. Any Higgs
field Φ ∈ H0(End0E ⊗ T ) has the form:

Φ =

(
A1 B1

C1 −A1

)
+

(
A2 B2

C2 −A2

)
,

where A1 ∈ H0(O(2, 0)), B1 ∈ H0(O(2a + 3, 2b + 1)), C1 ∈ H0(O(1 − 2a,−2b − 1)), and
A2 ∈ H0(O(0, 2)), B2 ∈ H0(O(2a−1, 2b+3)), C2 ∈ H0(O(−2a−1, 1−2b)), satisfy equations
(2.8).

We now show that b = −a − 1. Towards a contradiction, assume that b > −a − 1 or
b < −a − 1. In the former case, by considering the three possibilities a > 0, a = 0 and
a < 0, one can show that C1 = C2 = 0, leaving O(a, b) Φ-invariant, contradicting stability.
In the latter case, again, by considering the three possibilities a > 0, a = 0 and a < 0, one
can show that B1 = B2 = 0, leaving O(−a − 1,−b − 1) Φ-invariant, again contradicting
stability.
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Appendix B

Underlying Bundles of semistable
co-Higgs pairs in the case of c2 = 1

In this appendix, for the fixed standard polarization H = C0 +F , we give a full description
of the possible underlying bundles of a co-Higgs semistable pair over P1×P1 with reduced
first Chern class and second Chern class 1. In Section 4.2.2 we saw that for the case
c1 = −F , any possible underlying bundle of a semistable co-Higgs pair is an extension of
O(−1, 1) by O(0,−1). Here, we discuss the cases where c1 = 0,−C0 and −C0 − F . In the
case of c1 = 0, we will see that there are no underlying bundles which are extensions of
line bundles, and in fact, up to weak isomorphism, any underlying bundle of a semistable
co-Higgs pair is an extension of the form

0→ O → E → Ix → 0,

where x ∈ P1 × P1. In the case of c1 = −C0, we will show that any possible underlying
bundle is an extension of O(1,−1) by O(−1, 0). Thus, this case is completely analogous
to the case of c1 = −F ; however, some of the proofs that rely on the use of the numerical
invariants of the bundle (which, in turn, depend on the Chern classes) vary, and so we
present those arguments here. Finally, in the case of c1 = −C0−F , we will prove that the
only possible underlying bundle of a semistable co-Higgs pair is O(−1, 0) ⊕ O(0,−1). In
what follows, we offer no comment on the description of the Higgs fields in any of these
cases. Nonetheless let us remark that in all these cases there exist non-trivial Higgs fields.
Moreover, the Higgs fields in the case of c1 = −C0 are analogous to those of the case of
c1 = −F (with the roles of the first and second copy of P1 interchanged, as usual), the
Higgs fields for the case c1 = −C0 − F are easy to describe, as the underlying bundle is
decomposable, and the Higgs fields for the case c1 = 0 can be obtained using a similar
technique as the one used for c1 = −F , but this is tedious and require some work.

B.1 First Chern class c1 = 0

Let us start by showing that in this case there are no extensions of line bundles.

Lemma B.1. Let E be rank 2 bundle over P1 × P1 with c1(E) = 0 and c2(E) = 1. Then
E is not an extension of line bundles.
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Proof. Towards a contradiction, assume that E is an extension of line bundles; i.e., it fits
into an exact sequence of the form

0→ O(a, b)→ E → O(−a,−b)→ 0,

with 1 = c2(E) = −2ab, but this is impossible as both a and b are integers.

Now that we have seen that there are no possible underlying bundles which are ex-
tensions of line bundles, but we know (see Proposition 3.9) nonetheless that there are
non-trivial semistable co-Higgs pairs with c1 = 0 and c2 = 1, we investigate which form
the underlying bundles take.

Proposition B.2. Suppose c1(E) = 0 and c2(E) = 1. If (E,Φ) is a semistable co-Higgs
pair, then E is an extension of the form

0→ O → E → Ix → 0,

where x ∈ P1 × P1, which is unique up to weak isomorphism.

Proof. Let E have invariants d and r, then we know that E fits into an exact sequence of
the form

0→ O(r, d)→ E → O(−r,−d)⊗ IZ → 0, (B.1)

with `(Z) = 1 + 2rd > 0 (as we have seen that E cannot be an extension of line bundles).
Now, for such a rank 2 vector bundle to exist, we know by Theorem 2.21 that one of the
following two conditions must be satisfied.

1. d ≥ 1, or

2. d = 0 and r ≥ 0.

In case (1) we consider two subcases:

(i) r ≥ 0. By tensoring (B.1) with O(−r,−d) ⊗ T , and passing to the long exact
sequence in cohomology, we get

0→ H0(T )→ H0(E(−r,−d)⊗ T )→ H0(O(−2r,−2d)⊗ T ⊗ IZ)→ 0,

where H0(O(−2r,−2d) ⊗ T ⊗ IZ) = 0, and so, by Lemma 2.32, O(r, d) is Φ-invariant for
any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. This contradicts semistability, and so it
cannot happen.

(ii) r ≤ −1. This yields `(Z) < 0, which is impossible.

In case (2) we again consider two subcases:

(i) r ≥ 1. By the exact same argument as above, one can check that O(r, d) is Φ-
invariant for any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. Hence this case cannot
happen.

(ii) r = 0. In this case E fits into an exact sequence of the form

0→ O → E → Ix → 0,

where x ∈ P1 × P1. Note that Ext1(Ix, O) = C, and so, up to weak isomorphism, there
is a unique bundle that fits into this exact sequence. Finally, note that this is a strictly
semistable bundle (and we have seen in Proposition 3.9 that it admits non-trivial Higgs
fields).
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B.2 First Chern class c1 = −C0

Using an identical argument to that presented in Section 4.2.2, one can prove an analogous
result for Lemma 4.14. For convenience, let us write the statement below:

Lemma B.3. Let x be a point in P1 × P1 and suppose that c2(E) = 1. If E fits into the
exact sequence

0→ O → E → O(0,−1)⊗ Ix → 0,

then O is Φ-invariant for any Φ ∈ H0(End0E ⊗ T ).

We can now prove the following proposition:

Proposition B.4. Let (E,Φ) be a stable co-Higgs pair such that c1(E) = −C0 and c2(E) =
1. Then E is an extension of O(1,−1) by O(−1, 0).

Proof. Let E have invariants d and r, then we know that E fits into an exact sequence of
the form

0→ O(r, d)→ E → O(−r,−1− d)⊗ IZ → 0, (B.2)

with `(Z) = 1 + r(2d + 1) ≥ 0. Now, for such a rank 2 vector bundle to exist, we know
by Theorem 2.21 that d ≥ 0. If r ≤ −2, or r = −1 and d > 0, then `(Z) < 0, which is
impossible, so r ≥ −1. If r > 0, or r = 0 and d > 0, by tensoring (B.2) with O(−r,−d)⊗T ,
and passing to the long exact sequence in cohomology, we get

0→ H0(T )→ H0(E(−r,−d)⊗ T )→ H0(O(−2r,−1− 2d)⊗ T ⊗ IZ)→ 0,

and moreover H0(O(−2r,−1 − 2d) ⊗ T ⊗ IZ) = 0, and so, by Lemma 2.32, O(r, d) is Φ-
invariant for any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. Hence, none of these cases
can happen. As such, we have that either (i) r = 0 and d = 0 or (ii) r = −1 and d = 0. In
(i) we have that, by Lemma B.3, O is Φ-invariant for any Φ ∈ H0(End0E ⊗ T ), and thus
destabilizing. Again, this case cannot happen. Finally, in (ii) we get that `(Z) = 0, and
so E is an extension of line bundles.

An analogous argument to that of Proposition 4.15 shows that if E is an extension of
line bundles, then it has to be an extension of O(1,−1) by O(−1, 0). This concludes the
proof.

B.3 First Chern class c1 = −C0 − F

In the same spirit as Proposition B.4 we have:

Proposition B.5. Let (E,Φ) be a semistable co-Higgs pair such that c1(E) = −C0 − F
and c2(E) = 1. Then E = O(−1, 0)⊕O(0,−1).

Proof. Let E have invariants d and r, then we know that E fits into an exact sequence of
the form

0→ O(r, d)→ E → O(−1− r,−1− d)⊗ IZ → 0, (B.3)
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with `(Z) = 1 + d+ r + 2dr ≥ 0. Now, for such a rank 2 vector bundle to exist, we know
by Theorem 2.21 that d ≥ 0. If r ≤ −2, or r = −1 and d > 0, then `(Z) < 0, which is
impossible, so r ≥ −1. If r ≥ 0, by tensoring (B.3) with O(−r,−d) ⊗ T , and passing to
the long exact sequence in cohomology, we get

0→ H0(T )→ H0(E(−r,−d)⊗ T )→ H0(O(−1− 2r,−1− 2d)⊗ T ⊗ IZ)→ 0,

and moreover H0(O(−1 − 2r,−1 − 2d) ⊗ T ⊗ IZ) = 0, and so, by Lemma 2.32, O(r, d)
is Φ-invariant for any Φ ∈ H0(End0E ⊗ T ), and thus destabilizing. Hence, none of these
cases can happen. As such, we have that r = −1 and d = 0. Then, `(Z) = 0, and so E is
an extension of line bundles.

Finally, E fits into an exact sequence of the form

0→ O(a, b)→ E → O(−1− a,−1− b)→ 0, (B.4)

where 1 = c2(E) = −a − b − 2ab. Consequently, either a = −1 and b = 0 or a = 0 and
b = −1. In the first case, we have that E = O(−1, 0)⊕O(0,−1) as H1(O(−1, 1)) = 0. In
the second case, we have that O(0,−1)⊕O(−1, 0) as H1(O(1,−1)) = 0.
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