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Abstract

Web search and other online resources serve an integral role in how people learn and
use feature-rich software (e.g., Adobe Photoshop) on a daily basis. Users depend on
web resources both as a first line of technical support, and as a means for coping with
system complexity. For example, people rely on web resources to learn new tasks, to
troubleshoot problems, or to remind themselves of key task details.

When users rely on web resources to support their work, their interactions are distributed
over three user environments: (1) the search engine, (2) retrieved documents, and (3)
the application’s user interface. As users interact with these environments, their actions
generate a rich set of signals that characterize how the population thinks about and
uses software systems “in the wild,” on a day-to-day basis. This dissertation presents
three works that successively connect and associate signals and artifacts across these
environments, thereby generating novel insights about users and their tasks, and enabling
powerful new end-user tools and services. These three projects are as follows:

Characterizing usability through search (CUTS): The CUTS system demonstrates
that aggregate logs of web search queries can be leveraged to identify common tasks
and potential usability problems faced by the users of any publicly available interactive
system. For example, in 2011 I examined query data for the Firefox web browser. Auto-
mated analysis uncovered approximately 150 variations of the query “Firefox how to get
the menu bar back”, with queries issued once every 32 minutes on average. Notably, this
analysis did not depend on direct access to query logs. Instead, query suggestions services
and online advertising valuations were leveraged to approximate aggregate query data.
Nevertheless, these data proved to be timely, to have a high degree of ecological validity,
and to be arguably less prone to self-selection bias than data gathered via traditional
usability methods.

Query-feature graphs (QF-Graphs): Query-feature graphs are structures that map
high-level descriptions of a user’s goals to the specific features and commands relevant to
achieving those goals in software. QF-graphs address an important instance of the more
general vocabulary mismatch problem. For example, users of the GIMP photo manip-
ulation software often want to “make a picture black and white”, and fail to recognize
the relevance of the applicable commands, which include: “desaturate”, and “channel
mixer”. The key insights for building QF-graphs are that: (1) queries concisely express
the user’s goal in the user’s own words, and (2) retrieved tutorials likely include both
query terms, as well as terminology from the application’s interface (e.g., the names of
commands). QF-graphs are generated by mining these co-occurrences across thousands
of query-tutorial pairings.

InterTwine: InterTwine explores interaction possibilities that arise when software ap-
plications, web search, and online support materials are directly integrated into a single
productivity system. With InterTwine, actions in the web browser directly impact how
information is presented in a software application, and vice versa. For example, when
a user opens a web tutorial in their browser, the application’s menus and tooltips are
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updated to highlight the commands mentioned therein. These embellishments are de-
signed to help users orient themselves after switching between the web browser and the
application. InterTwine also augments web search results to include details of past appli-
cation use. Search snippets gain before and after pictures and other metadata detailing
how the user’s personal work document evolved the last time they visited the page. This
feature was motivated by the observation that existing mechanisms (e.g., highlighting
visited links) are often insufficient for recalling which resources were previously helpful
vs. unhelpful for accomplishing a task.

Finally, the dissertation concludes with a discussion of the advantages, limitations and
challenges of this research, and presents an outline for future work.
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Chapter 1

Introduction

When faced with a new task to accomplish, or problem to troubleshoot, users of interac-
tive systems must often navigate the Gulf of Execution, a conceptual barrier that Donald
Norman defines as “the gulf between the user’s goals and the way they must be specified
to the system” [97]. For example, users wishing to draw a circle in the GNU Image Ma-
nipulation Program (GIMP), must correctly translate this goal into a pair of lower-level
actions: First, they must make an elliptical selection with GIMP’s “Ellipse Select” tool.
Then they may either invoke the “Stroke Selection” command to create an outlined circle,
or they may employ the “Bucket Fill” tool to create a filled circle. In either case, what
appears to be a simple task (drawing a circle) actually involves numerous discrete steps
bearing little resemblance to the original expression of the goal – the Gulf of Execution
is particularly difficult to negotiate in this instance.

For many people, web search and online resources play an integral role in helping
to bridge gulfs of execution. Here, three steps define a common strategy (Figure 1.1,
foreground): First, users issue a web search query describing their goal in their own
words (e.g., [gimp draw a circle]). Next, users review the tutorials and online instructional
material retrieved by the search engine. These documents detail the sequence of steps
needed to perform the task. Finally, users must manually carry out the instructions
by manipulating mechanisms in the system’s user interface. Importantly, as users gain
experience with the application, they often continue to rely on these external resources,
having learned the path across the bridge (i.e., learning where to retrieve relevant task-
specific information), rather than committing specific low-level application operations to
memory [16, 77, 116]. This strategy results in frequent and repeated crossings of the web-
mediated execution bridge by a broad set of users, across a range of skills and experience
levels.

Notably, the three steps across the web-mediated bridge largely mirror those origi-
nally described in Norman’s original writings [97] defining the Gulf of Execution in 1986.
Specifically, Norman’s execution bridge (Figure 1.1, background) involves: forming in-
tentions, specifying action sequences, then executing those sequences in the system’s
user interface. In reconciling these two execution bridges, one notices that, in this con-

1



GULF OF
EXECUTION

GOAL

SYSTEM
INTERFACE

S
E

A
R

C
H

WEB
TUTORIALS IN

TER
FAC

E

M
EC

H
AN

ISM

WEB-MEDIATED BRIDGE (THIS DISSERTATION)

NORMAN ET AL. (1986)

Figure 1.1: This figure, adapted from [97], depicts the Gulf of Execution. Users of interactive
systems face the Gulf of Execution when they have a goal in mind, but are unsure (or cannot
recall) which concrete low-level operations of the user interface will accomplish their task.
Web search and online tutorials often serve an integral role in assisting users to bridge this
gulf. Here, the 3 steps across the web-mediated bridge (foreground) mirror the three steps
originally proposed by Donald Norman in [97] (background).

text, search queries express intentions, and online materials contain action specifications.
Thus, in contrast to Norman’s execution bridge where intention formation and action
specification are entirely cognitive processes, each step across the web-mediated execu-
tion bridge is mediated by an interactive system. Namely, users interact with the web
search engine, the retrieved document, and the application itself. Recognizing how these
systems relate to one another, and collectively to the Gulf of Execution, reveals two highly
significant and untapped opportunities for human-computer interaction (HCI) research.
These opportunities are detailed below:

Web query logs, and online artifacts, afford novel opportunities for re-
searchers and practitioners to better understand the day-to-day work
practices of a feature-rich application’s user base. User actions across the
web-mediated execution bridge can often be directly observed, and are already rou-
tinely logged and aggregated to support existing business practices and end-user
functionality. For example, logs of search queries and page visits are routinely main-
tained to support personalized search [12, 120], or for advertising purposes [59].
Likewise, feature-rich software is often instrumented to help developers detect and
remediate software bugs, as well as to measure user engagement [36]. Contextualiz-
ing these interaction logs as trails over the execution bridge affords opportunities to
study hundreds of thousands of real-world, in situ, examples of users forming goals,
then taking actions to accomplish those goals in feature-rich software. I argue that
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these data allow researches and practitioners to study users and their work practices
at a level of detail, scale, and ecological validity unprecedented in HCI research.

User goals (expressed as search queries) and action specifications (ex-
pressed in tutorials) can be reasoned about and acted upon automatically
in software, enabling novel end-user tools and services. Consider again the
opening example of drawing a circle in the GIMP software application. Techniques
described in Chapter 3 allow one to estimate that people searched Google with
queries similar to [how to draw a circle in gimp] nearly 10,000 times between Octo-
ber 2009 and August 2010 – or about once every hour on average1. In each of these
thousands of cases, users explicitly stated their intention to use GIMP to draw a
circle. And, they did so by typing text into a computer interface (i.e., web search).
However, the GIMP software was never afforded an opportunity to respond to the
users’ clear statements of intent. Likewise, the search provider was never made aware
of the actions ultimately taken by users to address their queries. I consider these
to be missed opportunities. In particular, web search engines, online resources, and
feature-rich desktop software exist today as separate entities that function indepen-
dently from one another, requiring additional work from the user to manually link
information across these three environments. I show that, by forming tighter inte-
grations between each of the three steps across the web-mediated execution bridge,
one can offer a range of novel end-user tools and services.

With this framing in mind, I now present the central thesis of this dissertation.

1.1 Thesis Statement

The remainder of this dissertation is structured around the following thesis statement:

Web search and online resources (e.g., tutorials) serve an important role in
supporting the work practices of the users of feature-rich software systems.
Analysis of online interaction logs and artifacts (e.g., web query logs, or a
corpus of tutorials) leads to novel and significant insights about a system’s
users, their tasks, and the breakdowns they experience on a daily basis. These
interaction logs and artifacts can be leveraged, in an automated fashion, to
support novel end-user tools and services that more directly integrate web
search and online tutorials with feature-rich software.

To defend this thesis statement, this dissertation presents a series of discrete research
endeavours, with each project exploring a different facet of the above claim. The re-
mainder of this chapter briefly describes these projects, contextualizing each via the
web-mediated execution bridge, as outlined in the next section.

1The query terms “gimp”, “draw” and “circle” co-occurred in queries accounting for an estimated 9729
Google searches performed between October 2009 and August 2010.
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Figure 1.2: The three projects discussed in this thesis successively integrate adjacent steps
along the web-mediated execution bridge which crosses the Gulf of Execution.

1.2 Specific Research Projects

This dissertation details three research projects2 that successively connect the three steps
across the web-mediated execution bridge (Figure 1.2). The journey begins in Chapter
3, which presents CUTS (Characterizing Usability through Search), a system that lever-
ages web query data to characterize the day-to-day tasks and needs of a system’s user
population (Figure 1.2, left). These query data are then paired with a corpus of rele-
vant web tutorials in Chapter 4, to create Query-feature graphs. Query-feature graphs
are structures that help to addresses gulfs of execution exacerbated by the vocabulary
problem [53], discussed in more detail below. Finally, Chapter 5 describes InterTwine,
a system that explores opportunities that arise when web search, online resources, and
software systems work together as a single coherent productivity system, uniting all three
steps across the execution bridge (Figure 1.2, right). I describe each these systems in the
sections that follow.

1.2.1 CUTS: Characterizing Usability Through Search
(Chapter 3)

Occupying the first step across the web-mediated execution bridge, Chapter 3 argues that
aggregates of web search engine query logs can be leveraged to identify common tasks
and potential usability problems faced by the users of any publicly available interactive
system. This potential is demonstrated through a system entitled CUTS (Characteriz-
ing Usability through Search), an automated process for harvesting, ordering, labelling,
filtering, and grouping search queries to understand the day-to-day tasks and needs of a
user base.

Rather than depending on direct access to query log data, which are not generally
publicly available, CUTS leverages query autocompletion services (e.g., Google Suggest)

2Appendix A details a 4th related, but ancillary, research project.
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Figure 1.3: Google auto-complete suggestions for the prefix“gimp dr”. Leveraging its query
logs, Google correctly predicts my interest in using GIMP to draw a circle. The remaining 9
suggestions are other tasks for which GIMP users have often sought instructions in the past.
(Retrieved May, 2015)

and online advertising valuations (e.g., Google AdWords) as proxies for query log ag-
gregates. An example illustrates this potential: Consider again the goal of drawing a
circle with the GIMP raster graphics editor. Simply typing the word “gimp” followed by
the two characters “dr” into Google Search is sufficient for the search engine to surmise
the task (Figure 1.3). This feat is possible because other users have encountered this
specific gulf of execution in the past, and have leveraged web search to bridge the gap.
By the same argument, the remaining suggestions depicted in figure 1.3 reveal 9 other
goals, or specific execution gulfs, that users bridge with the help of web search and online
documentation.

One direct application of CUTS is to identify potential usability problems in an ap-
plication, and to provide a means of ranking issues according to the number of users
impacted by these problems. For example, Chapter 3 reports that users of the Firefox
web browser collectively sought information about recovering a missing menu bar (e.g.,
querying: [firefox how to get the menu bar back ]) about once every 32 minutes on aver-
age in the period beginning October 2009, and ending in August 2010. The nature and
frequency of this search topic suggested the existence of a software defect in the version
of Firefox available at the time – why were users losing access to this important com-
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ponent of Firefox’s user interface? An inspection of the Firefox user interface revealed
that a poor design choice likely accounted for the high volume of web search on this
topic. Chapter 3 describes this case study in more detail. This example demonstrates
how CUTS can be leveraged to direct and target more costly HCI evaluation techniques,
such as inspection by expert evaluators. The benefit of using the results of CUTS is that
data are derived from the search behaviours of thousands, if not millions, of users.

Returning to the thesis statement of this dissertation, CUTS demonstrates that anal-
yses of web search queries can lead to novel and significant insights about a feature-rich
application’s users, their tasks, and the breakdowns they experience on a daily basis.
The claimed contributions of this work include:

• a methodology for approximating query data using publicly available interfaces

• a taxonomy characterizing the topics and likely intents of software-related search
queries

• an automated method for distilling software-related query data into a ranked list
of popular user tasks and breakdowns

• a series of case studies demonstrating the types of insights that can be generated
from CUTS

1.2.2 Query-Feature Graphs (Chapter 4)

Chapter 4 presents query-feature graphs (QF-graphs), structures that map high-level
descriptions of a user’s goals to the specific features and commands relevant to achieving
those goals in software (Figure 1.4). QF-graphs are motivated by the observation that
there is often a discrepancy between the way users conceptualize and articulate their
needs, as revealed by their search queries, and the (rather terse) technical vocabulary of
the interactive system. This scenario is a modern instance of the of the more general
vocabulary mismatch problem detailed in [53]. Vocabulary problems widen the Gulf
of Execution, making it harder for users to map their goals to low-level actions in the
software. For example, users of the GIMP photo manipulation software often want to
[make a picture black and white]. Since GIMP has no command named “black and white,”
users who wish to achieve this effect must learn that commands such as “desaturate,”
“grayscale” or “channel mixer” will yield the desired effect. Indeed, none of these task-
relevant commands shares any words in common with the user’s search query.

The key insight for building QF-graphs is that, when retrieved using a search query,
online tutorials serve as Rosetta stones for interaction: When a tutorial is retrieved
through web search, it necessarily shares terms in common with the search query, and
is thus likely expressed “in the user’s language” (i.e., using terminology familiar to the
user). Likewise, tutorials must also mention the specific names of commands, tools, and
preferences necessary to accomplish the task in the application. As such, Query-feature
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Search Queries System Features

...

Figure 1.4: Query-feature graphs are weighted bipartite graphs with nodes representing
queries on one side, and nodes representing system terminology on the other. These graphs
pair tasks, as naturally expressed as user search queries, with relevant commands, features and
settings in a system’s user interface. This pairing enables a number of compelling end-user
tools and services, many of which are discussed in Chapter 4. To construct Query-feature
graphs, one leverages the co-occurrences of system commands and query keywords expressed
in tutorials.

graphs are constructed automatically from mining the co-occurrences of query terms and
software commands mentioned in relevant tutorials. In the context of the web-mediated
execution bridge, query-feature graphs form connections between the first and second
steps (Figure 1.2, center).

Query-feature graphs enable a wide variety of tools and services, three of which are
explored in this dissertation: (1) a search-driven interface in which users type the task
they wish to accomplish, and the interface assembles a list of the most relevant com-
mands for the task; (2) command tooltips that leverage query data to display how a user
community typically uses the tool in practice; and, (3) app-to-app analogy search, which
provides a mapping between the tools necessary to perform a task in one interface and
the equivalent tools in a second (e.g., Firefox’s “New Private Window” command can be
matched with comparable commands in other systems, such as Chrome’s “New Incognito
Tab”).

Returning to the thesis statement of this dissertation, Chapter 4 demonstrates how
information mined from search logs and online tutorials can be linked, using automated
means, with the goal of learning a mapping between query terms and specific features
of the software application. This mapping is instrumental in enabling a range of novel
interactions (e.g., dynamic tooltips) that are designed to help users perform tasks in
feature-rich software. Specific contributions claimed in this chapter include:
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• the introduction and definition of query-feature graphs, structures that map high-
level terminology to low-level features in complex software

• an automated method for constructing query-feature graphs from aggregate logs of
web search data, paired with a corpus of online tutorials

• three example uses or applications of query feature graphs

1.2.3 InterTwine (Chapter 5)

Finally, Chapter 5 presents InterTwine, a research project integrating all three steps
across the execution bridge (Figure 1.2, right). InterTwine explores the possibilities that
arise when software applications, web search, and online support materials are directly
integrated into a single productivity system. With InterTwine, actions in the web browser
directly impact how information is presented in a software application, and vice versa. For
example, when a user opens a web tutorial in their browser, the application’s menus and
tooltips are updated to highlight the commands mentioned therein (Figure 1.5). These
embellishments are designed to help users orient themselves after switching between the
web browser and the application. InterTwine also augments web search results to include
details of past application use. Search snippets gain before and after pictures and other
metadata detailing how the user’s personal work document evolved the last time they
visited the page. This feature was motivated by the observation that existing mechanisms
(e.g., highlighting visited links) are often insufficient for directing users to resources that
they previously found helpful for accomplishing a task.

Each of InterTwine’s aforementioned features represents an exploration of a broader
concept I refer to as interapplication information scent. Information foraging theory
posits that people make use of information scent to guide their selection and use of infor-
mation resources within “patches,” or collections, of information [21]. When using the
web, information scent is provided by elements such as a search engine’s autocomplete
service, the short page snippets shown in search results, or previously visited links ren-
dered in a different color. In desktop software, menu hierarchies, command names, tool
icons, and tooltips all provide feedforward mechanisms that can be considered forms of
information scent that assist users in finding relevant functionality. While these separate
systems each provide useful forms of information scent to guide the pursuit of desired
information, they largely function independently of one another: the activities in one
environment have no effect on the presentation of information in the next, forcing the
user to manually link information patches as they move through each step across the
web-mediated execution bridge. InterTwine links the separate information patches by
arranging for the browser and the application to maintain, and to regularly query, a
shared log of user interactions and events. In essence, browsing histories and document
editing histories, are synchronized and merged.

In the context of the thesis statement of this dissertation, InterTwine observes actions
across all three steps of the web-mediated bridge, and leverages these observations in an
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Figure 1.5: One of InterTwine’s features includes embellishing an application’s menu items
with beacons (star icons) when those items are mentioned on the web page a user is reading
in their browser. Likewise, menu tooltips gain snippets describing the context in which each
menu item is mentioned in the web page.

automated means to enable feedforward mechanisms and information scent cues designed
to facilitate users in performing their work. Specific contributions claimed in this chapter
include:

• a formative study that informed the need for, and design of, mechanisms that
provide interapplication information scent

• defining the concepts of a shared interapplication history and interapplication in-
formation scent

• demonstration of three types of interapplication information scent: application
bridges, history snippets, and history digests

• implementation of a system that ties together the separate information spaces of a
web browser (i.e., Firefox) and a feature-rich application (i.e., GIMP)
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1.3 Thesis Outline and Terminology

The remainder of this dissertation is structured as follows: The document begins by
presenting related work, then details each of the three aforementioned projects in turn.
As noted above, CUTS is presented in Chapter 3, Query-feature graphs are presented in
Chapter 4, and InterTwine is presented in Chapter 5. The dissertation concludes with
a general discussion of the challenges and limitations of the techniques proposed in this
document, followed by an outline for future work. However, before continuing forward,
it is worthwhile to step back, and more precisely define some terminology that is used
throughout this dissertation.

goal (or task) – In the context of interactive systems, Donald Norman defines
a goal as “the state (of the system) the person wishes to achieve” [96, p. 37]. A
goal becomes a task when users contemplate, or begin taking actions, in service of
achieving a goal. In this dissertation, the distinction between tasks and goals is
rarely meaningful, and the terms are used interchangeably.

online resource – The term online resource broadly refers to any primarily text-
based web page that a user may consult for the purpose of achieving a goal or
performing a task in software. Such resources include: user manuals, online tutorials,
answers posted to question answer websites, forum posting, and other materials of
a similar instructional nature. For the purposes of this dissertation, I exclude online
instructional videos – though video tutorials are discussed in the discussion and
future-work chapters (Chapters 6 and 7, respectively).

feature (of software) – The term software feature is used to refer generally to
elements or functionality of a software application with which users may interact.
This includes, but is not necessarily limited to: tools, commands, settings, dialogs,
and other interactive elements.

feature-rich application – The term feature-rich application refers to any software
application or interface whose features, as defined above, number in the hundreds
or thousands. Adobe Photoshop, Microsoft Word, GIMP, and AutoCAD are all
examples of feature-rich applications.

web-mediated (execution) bridge – The web-mediated bridge (Figure 1.1, fore-
ground) refers to the process of leveraging web search and online resources in service
of accomplishing a task in a feature-rich software application. The three steps across
the web-mediated bridge include: (1) issuing a search query that describes a user’s
goal, (2) reviewing online resources and online instructional material detailing the
sequence of steps needed to perform the task, and (3) carrying out the instructions
by manipulating mechanisms in the system’s user interface.

(raw) query log – A raw search query log, or simply a query log, refers to a
chronological record of all search queries issued, by all users, to a web search engine.

10



At a minimum, each query log entry contains a timestamp, the text of the user’s
search query, and a unique identifier attributing the query to a distinct individual
(or computer).

aggregate query log – The term aggregate query log refers to a type of query log
that serves as a ledger, totalling the number of occurrences of each search query
issued to the web search engine.

The aforementioned definitions and terminology are used throughout the remainder of
this dissertation, which begins with a review of related work next in Chapter 2.
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Chapter 2

Background

When people rely on web resources to support their work in feature-rich software, their
interactions are distributed between the search engine, the retrieved documents, and the
user interface of the feature-rich application itself. Together, these three environments
create a rich research space affording many opportunities to study and effect how work
gets done with feature-rich software. In this chapter, I review existing research that falls
within or around this space.

The discussion of related work begins in section 2.1 with a review characterizing the
extent to which people leverage online resources to support complex computer-mediated
tasks. Mirroring chapter 3, section 2.2 reviews work that derives insights about peo-
ple and tasks through static analysis of query logs, and other online artefacts (e.g., a
corpus of customer reviews). Mirroring chapters 4 and 5, section 2.3 reviews existing
research systems that form connections between environments, leveraging online actions
and materials to improve interactions with the software. The chapter concludes with a
discussion of the set of open problems addressed in this dissertation.

2.1 Searching and re-finding

The introduction of this document made an important claim: Users of feature-rich soft-
ware often adapt to ubiquitous access to web search by adopting a strategy of learning
where to find procedural information rather than learning the specific operational de-
tails necessary to directly perform their tasks. In other words, users learn to retrace
their paths across the web-mediated execution bridge. This section begins by review-
ing research that directly argues for this main effect, then discusses work demonstrating
how this behaviour is manifest in various computer-mediated tasks including systems
administration, software development, and work with a feature-rich raster graphics ap-
plication. The section concludes by discussing some strategies people employ to re-access
previously visited resources – a task that becomes necessary when users learn to rely on
these external resources.
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2.1.1 Search as external memory

In a 2011 paper published in the journal Science [116], Sparrow et al. performed a series
of experiments investigating how people adapt in response to having convenient and
ubiquitous access to information (i.e., a reliable Internet connection and web search). In
a series of experiments, the authors found that: (1) when faced with a gap in knowledge,
people are primed to think about web search; (2) when people believe that information
will continue to be available in the future, they perform worse at recalling its details; and
(3) in those same situations, participants perform better at recalling the locations where
the necessary information can be accessed. From these findings, the authors conclude:

The Internet has become a primary form of external or transactive memory,
where information is stored collectively outside ourselves. [116]

Here, transactive memory refers to the phenomena where individuals in a group (e.g.,
a family or a group of co-workers) leverage one another as external memory stores or
memory aids, thus serving to benefit from each other’s individual expertise [125]. In
these environments, people quickly learn who knows what, and to which information one
must personally attend. Sparrow argues that transactive memory provides the theoretical
framework for characterizing the processes that underly people’s increasing reliance on
web search and online resources:

Relying on our computers and the information stored on the Internet for
memory depends on several of the same transactive memory processes that
underlie social information-sharing in general. (...) Just as we learn through
transactive memory who knows what in our families and offices, we are learn-
ing what the computer “knows”. (...) We have become dependent on them
to the same degree we are dependent on all the knowledge we gain from our
friends and co-workers. [116]

Given this general effect, the next section characterizes how dependence on online
resources is manifest in various computer-mediated tasks.

2.1.2 Search for supporting programming, and systems admin-
istration tasks

Recent work in HCI has explored the extent to which knowledge workers leverage online
resources to support their work practices. In 2004, Barret et al. performed a series of
observational field studies of system administrators in their places of work [10]. The
researchers reported that general-purpose web search was the primary tool used by ad-
ministrators on a day-to-day basis.
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Software developers also make extensive use of online resources in their day-to-day
activities. For example, Goldman and Miller studied patterns of web use by programmers
[58], and found that 23% of websites visited while users were authoring code were directly
related to the software project they were developing. Likewise, when Brandt et al. [16]
tasked experienced student-programmers with developing a web chat application, the
researchers noted that participants spent 19% of their time conducting online research.
In Brandt’s study, use of online material was frequent and brief, with half of all web
sessions lasting 47 seconds or less. Notably, many participants explicitly reported using
search as an alternative to memorizing programming details, with one participant noting
that they had retrieved the same database connection code hundreds of times previously
for past projects. This echoes the aforementioned findings of Sparrow’s study on web
search and external memory, and foreshadows comments made by participants who took
part in the iterative design and evaluation of the InterTwine system, as described in
Chapter 5.

Building on the work of Brandt et al., Meredith Ringel Morris and I examined the role
of web search in answering programming questions on popular programming question-
answer websites such as Stack Overflow and MSDN Forums [50]. In this work, we ex-
amined the web browsing logs of 120 users who had recently answered Stack Overflow
questions, and found that 56% of these users performed relevant online research prior to
posting their answers. This proportion was replicated in a second study, which solicited
survey responses from users of MSDN Forums who had recently answered questions on
this website. Again, 52% of the 107 developers surveyed reported that they had relied
on web resources when composing their solutions. Additionally, in 70% of uses, respon-
dents reported that they employed web search to retrieve material they already hand in
mind and had previously relied upon. These results suggest that professional software
developers often rely on the ability to re-find relevant online documentation rather than
on committing technical details to memory.

2.1.3 Search for supporting use of feature-rich applications

The work outlined in the previous section reflects strategies adopted by professional
software developers and systems administrators. This thesis considers these web-centric
strategies in the more general context of supporting use of any feature-rich software.
Here, too, research suggests that users often adapt a strategy that relies on finding and
re-finding helpful web resources. In 2013, Ben Lafreniere et al. conducted a labora-
tory study evaluating the effectiveness of Workflows [77, 79], a task-centric interface to
the GIMP image manipulation software. A key component of their system is that the
task-specific adaptations enabled by Workflows resemble tutorials, and are indexed and
retrieved through a built-in search field displayed prominently in the interface (Figure
2.1). The researchers compared their system to that of an unmodified installation of
GIMP, paired with a web browser open to the Google search engine. Sixteen partici-
pants were asked to perform tasks with each system, and then to return two weeks later
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Figure 2.1: A screenshot of Lafreniere et al.’s Workflows system, a task-centric interface to
the GIMP image manipulation software. In Workflows, task-specific adaptations are retrieved
using a built-in search interface. (Reproduced with permission from [77])

to repeat the experiment. Relevant to this dissertation, the researcher’s observed key-
word learning in both experiment conditions. Specifically, participants were significantly
faster at retrieving relevant resources in the second experiment session, with five partic-
ipants explicitly attributing task successes to their abilities to recall keywords from the
first session performed two weeks earlier. The authors hypothesize that keywords are
more memorable than low-level operational procedures because keywords bear a closer
resemblance to how one describes their task or goal in their own words. Consequently,
the authors propose that keyword learning is better able to scale as applications become
more complex.

In summary, work by Sparrow et al. strongly suggests that, when people have ubiq-
uitous access to the Internet, they adapt a strategy of recalling where information can be
found rather than memorizing specific details of the information itself. This is consistent
with observations of how developers, system administrators, and users of feature-rich
creative software utilize web resources to manage task complexity. An important impli-
cation of this web-centric strategy is that people must revisit online information when
faced with repeating a task in the future. I now review research examining how web
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content is revisited, and discuss the role of web search in this second-order process.

2.1.4 Re-visitation and re-finding

Developers and users of feature-rich applications leverage online resources to support
their work. Often this requires them to revisit material that they previously found to
be useful. This concept of information re-visitation has received considerable attention
in previous research (e.g., see [2] for a good review). In particular, Obendorf et al.
examined browsing logs for 25 users, and reported that re-finding was the most common
strategy for returning to previously accessed information [98]. Re-finding is the act of
using general-purpose web search to locate online information that has been previously
visited. Notably, Obendorf reported that bookmarks, browsing history, and manual entry
of URLs accounted for very few instances of re-access. Similar findings were reported by
Aula et al., who examined the re-visitation strategies employed by expert web users [6]. It
is therefore unsurprising that re-finding queries account for a large portion of web search
traffic: Teevan et al. performed an analysis of one year of Yahoo!s search query logs, and
found that 40% of all queries could be classified as attempts by users to re-find previously
accessed information [119]. These results were corroborated and extended by Sanderson
and Dumais, who examined a log of 3.3 million queries, and found that slightly more than
50% of all searches could be accounted for by users repeating previously issued queries
[111]. In the context of this dissertation, this tendency towards re-finding, together with
the strategic use of online resources as a form of external memory, suggest sustained use
of the web-mediated execution bridge in supporting tasks performed with feature-rich
software. The remainder of this chapter examines the implications of this sustained use
of web search and online instructional materials.

2.2 Learning about People from Static Analysis of

Web Search Logs and Web Documents

When people rely on web search and online resources to support their use of feature-rich
software, it follows that their tasks are reflected in the web search queries they issue,
and in the documents they retrieve. In this section, I review research that demonstrates
the types of insights about people, tasks, and products that can be gained from static
analysis of web query logs, and other online content (e.g., product reviews, bug reporting
forums, etc.)

2.2.1 Using Query Logs to Learn about Real-World Phenomena

In [106], Matthew Richardson describes web query logs as resembling surveys “sent to
millions of people asking them to, every day, write down what they were interested in,
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thinking about, planning, and doing.” This section reviews research that demonstrates
how query log analysis can be used to model a wide range of real-world phenomena.
Chapter 3 then extends these ideas to the field of human-computer interaction, demon-
strating that aggregates of the logs of web search queries can be used to infer common
tasks and breakdowns experienced by the users of any publicly available product.

Recent work has demonstrated the value of query logs for investigating matters of
public health. For example, Ginsberg et al., demonstrated how query data can be used
to estimate the prevalence of influenza in a population [56]. White et al. developed
methods to detect adverse drug interactions by monitoring a population’s medication
and symptom-related search queries [129, 128]. West et al. [127] leveraged search data
to investigate the association between dietary sodium, inferred from analyses of recipes
retrieved by users, and the rates of hospital admissions for congestive heart failure. Paul
et al. demonstrated that query logs can be used to model the typical progression of
breast cancer [99] and prostate cancer [100]. Finally, working with Ryen White and Eric
Horvitz, I demonstrated that it is possible to estimate population-level birth statistics by
detecting queries issued by expectant mothers in search logs, then aligning their long-term
query histories with the 40 gestational weeks of pregnancy [52].

In addition to epidemiology, web search logs have also been used to measure a number
of economic metrics including: consumer confidence, claims of unemployment, automobile
demand, vacation destinations, and inflation (See [23] for a good review). These uses of
query data are examples of the more general problem of nowcasting. Nowcasting can be
defined as predicting the present state of the world from indirect measures, in cases where
direct methods of measurement exhibit long lag or delays. Query log analysis can also
be used to predict the future behaviors of a population, as far as weeks in advance. For
example, Goel et al. [57] demonstrated that query analysis can be used to predict: the
opening weekend box office revenue of theatrical movies, the first month sales of video
games, and a song’s trajectory on the Billboard Hot 100 music chart.

To summarize, past work has demonstrated that query log analysis can be used to
model a wide range of real-world phenomena. Chapter 3 extends this list of phenomena
to include issues of concern for human-computer interaction research. In this latter case,
search queries ultimately direct people to relevant web documents, and these documents
can be studied to learn about users, tasks and breakdowns. The next section examines
the types of usability information that can be mined from online documents.

2.2.2 Using Online Documents to Learn about Systems and
Tasks

Thus far, the discussion has focused on learning about people through query log analysis.
The documents that users ultimately retrieve provide another lens to learn about people
and their tasks. This section outlines relevant research in this space, and describes
the types of interactive system-related information that can be mined from these online
resources.
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2.2.3 Mining usability data from web pages

Since publishing my work on characterizing application usability through search (Chapter
3), a number of researchers have sought to gather similar information by analyzing other
online datasets. In 2012, Andrew Ko developed Frictionary, a system which extracts
and organizes issues reported on software support forums [75]. Frictionary parses fo-
rum postings using a probabilistic grammar, and then identifies common problems using
template matching and normalization techniques similar to those outlined in Chapter 3.
Once data has been mined, the system provides data visualizations and faceted browsing
facilities that can be accessed by developers and designers. The system was populated
using data for the Firefox web browser, and was presented to the Firefox support lead,
and to Firefox’s principal designer. Participants felt that the tool was impressive, and
could help prioritize efforts, but suffered from imperfect topic extraction.

In 2013, Hedegaard and Grue Simonsen characterized the types of usability infor-
mation contained in online reviews of software applications and video games [61]. The
authors began by segmenting reviews into sentences, and then manually categorized each
sentence according to the types of usability information contained therein. Here, the au-
thors considered 4 competing sets of usability criteria, giving a total of 24 individual (and
often over-lapping) dimensions of usability. The authors found that reviews do indeed
contain considerable usability information, and that these data can be manually labeled
with a high degree of agreement between raters. This motivated an automated approach.
To automate the labeling process, the authors trained a SVM classifier for each of the 24
dimensions, using a one vs. rest strategy. The effectiveness of the classifiers varied from
dimension to dimension, but 14 of the classifiers achieved F1 scores of 0.50 or higher. The
authors concluded that their technique could determine if users were “preoccupied” with
certain usability dimensions (e.g., learnability), but that the SVM classifiers rendered it
difficult to determine which specific features of the product itself were relevant to a given
dimension.

More generally, there has been considerable work in the area of opinion mining and
sentiment analysis in the context of online reviews (e.g., [64]). Indeed, several survey
papers now describe this research space [88, 118, 123]. As with the work by Hedegaard
et al., past re-search in this space often encountered challenges when trying to identify
the product features, or specific reasons, that give rise to a positive or negative review.
To address this problem directly, Kim and Hovy, developed a maximum entropy classifier
to extract the detailed pros and cons mentioned in online product and restaurant reviews
[74]. Likewise, Yatani et al. [131, 132] preformed sentiment analysis on adjective-noun
pairs extracted from online restaurant reviews, allowing their Review Spotlight tool to
report the positive and negative characteristics of a venue (e.g., “best sushi”, “long wait”,
etc.). In an evaluation, the researcher found that the data and visuals of Review Spotlight
allowed users to quickly form detailed opinions of restaurants, enabling them to make
restaurant selections much more quickly than when using a more traditional set of patron
reviews.

To summarize, past work has demonstrated that online documents, such as postings
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to support forums and product review websites, do contain information about the us-
ability of interactive systems, and in some cases these data can be extracted through
automated means. Identifying the product features that give rise to a positive or nega-
tive sentiments can be a challenge, though specific phrase templates (e.g., adjective-noun
pairs) can be of value. In Chapter 3, similar phrase-based templates are used to catego-
rize product-related search queries, with the goal of identifying searches that are related
to troubleshooting problems, or retrieving instructions or tutorials. The types of task-
related information that can be extracted from online tutorials is reviewed in the section
that follows.

2.2.4 Mining task details from tutorials

The previous section outlined the types of data that can be mined from online reviews,
support forums, and other dynamic web resources. There has also been considerable
interest in examining software tutorials, manuals, and static reference material. Here, the
primary interest is in extracting the procedural details described therein. Such procedural
details have numerous applications including task modeling [17], software automation
[14, 84, 101], machine-guided help [85], and interface search (chapters 4 and 5).

When mining procedural information from tutorials, a natural first step is to extract
the names of all tools, commands, menu items or interface widgets mentioned therein. In
this document, I refer to this problem as named widget recognition – a domain-specific
instance of the more general named entity recognition problem of natural language pro-
cessing. Numerous research papers [84, 85, 101], including the work presented in appendix
A of this dissertation, demonstrate that such elements can be reliably extracted from web
documents. Here, my co-authors and I demonstrated that these entities can be detected
with an accuracy of 95% using a naive Bayes classifier, with carefully chosen features that
reflect common conventions employed by tutorial authors (e.g., using the sequence -> to
denote a menu item, as in “File -> Save”). More recently, researchers have achieved
accuracies as high as 97% using conditional random fields [84, 101]. Unfortunately, the
parameters of these operations are much harder to extract, with past work achieving F1
scores as low as 0.36 [84]. For example, a recognizer might detect mentions of a system’s
“Gaussian Blur” tool, but is unlikely to be able to correctly associate the operation with
any mentions of the blur Radius, a key parameter which may or may not be mentioned
in a tutorial’s text.

Beyond simply extracting commands and parameters from text, there has been some
research seeking to recover higher-level task details from written material. In 2002,
Brasser and Linden strived to automatically extract full task models from written sce-
narios [17]. The authors manually crafted a natural language grammar, which was im-
plemented as a 25-state augmented transition network. Unfortunately, the hand-built
grammar did not perform particularly well, achieving an accuracy of 48% for detecting
entities mentioned in text. More recently, Branavan et al. [14] demonstrated the poten-
tial for reinforcement learning approaches for interpreting natural language instructions.
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In contrast to previous work using supervised learning, Branavan et al.’s system learned
how to interpret instructions by repeatedly testing hypotheses within a virtual machine.
This approach has the advantage of being able to interpret some high-level instructions
that lack details of the specific low-level operations needed to perform the action in the
interface. The authors reported that their method was able to correctly interpret 62% of
the high-level actions in their dataset.

Despite steady progress, numerous challenges remain, preventing complete and accu-
rate machine interpretation of written instructions. Consider for example, the tutorial
excerpt:

Place it (an object) underneath the original text, as if it were a reflection [40]

The correct interpretation of this instruction requires: (a) coreference resolution, to
determine to which object the pronoun “it” refers; (b) spatial reasoning, to determine
approximately where the item is to be placed; and (c) an understanding of the purpose
clause “as if it were a reflection” to further constrain the final placement. In this case,
three challenges arise from a single tutorial sentence. When examining full tutorials,
these and other challenges quickly accumulate. To this end, my work in [51] presents
a roadmap for the research challenges that must be tackled for more complete machine
understanding of instructional materials for interactive systems.

In summary, past work detailed in sections 2.2.3 and 2.2.4 have sought to leverage
online documents to learn about products and interactive systems. Online support re-
quests and reviews are an obvious first choice for analysis, and past work has achieved
limited success in extracting usability data from these sources. Web tutorials are an-
other common target for analysis, with many researchers seeking to extract procedural
information from these documents. In both cases, automated efforts are stymied by the
imprecise nature of written language, with work in this space progressing in lockstep with
advancements in more general natural language processing.

2.3 Interactions and Interventions

By recognizing that people rely on search and on web resources to support their use of
technology, human-computer interaction researchers can learn a great deal about users,
tasks and breakdowns; but, they can also develop new interactions and interventions
that optimize the use of online materials. The remainder of this chapter reviews research
investigating how search and online materials can be integrated into client software and
vice versa. Chapters 4 and 5 of this dissertation develop these ideas further.

2.3.1 Integrating (local) search into feature-rich software

Local search is becoming a popular method of finding documents, settings, and other
functionality, in modern feature-rich applications. For example, in all modern operating
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systems, users are able to enter a few keywords into a search field to launch applications
and load documents. In particular, the Mac OS X operating system offers a search field in
the system-wide help menu that provides users with a means of searching and executing
commands found in the top few levels of any application’s menuing system. A similar
system is now available in the Chrome web browser, the Ubuntu Unity heads-up display
(HUD), and in the Windows operating system. Similarly, programs like Quicksilver [115],
and Ubiquity [76] allow keyword search to be used to both issue commands and to specify
command parameters in a range of applications and usage scenarios.

Notably, in many of the aforementioned examples, the search services are locally
hosted on the user’s machine. This limits the extent to which user behavioural data
[3, 12] can be used to refine and improve search results, and limits opportunities for
performing the types of log analyses described in 2.2.1 as well as in chapters 3 and 4.
These limitations are dissipating: In December 2014, the online version of Microsoft
Word [54] incorporated a search bar which, as with previous systems, searches over the
elements of the application’s user interface. However, Word Online is distinguished from
past systems by its use of the centrally-hosted Bing.com search engine to derive search
results. In this dissertation’s discussion (Chapter 6), I elaborate on the potential of these
types of web-scale integrations of search technologies and interactive systems.

2.3.2 Integrating web resources into feature-rich software

In addition to search, researchers have begun to explore how best to incorporate more
general online resources into feature-rich software systems. Several research projects
[60, 58, 15] have sought to directly support programmers’ tendencies to refer to online
material while writing code. For example, HyperSource [60] helps developers document
and track the origin of the code they copy and paste from websites, by automatically
embedding referenced URLs directly into the project code. Codetrail [58] is similar to
HyperSource, but associates websites with project code through purely automated means
– it compares a developer’s recently written code to pages in their web browsing history,
forming associations when similarities are identified. Blueprint [15] is a system that takes
these ideas one step further by integrating web search directly into a software development
environment (IDE). Here, web searches can be executed within the source code editor
using an interaction technique similar to the code-completion services of modern IDEs.
Blueprint facilitates the process of adapting retrieved code listings to a user’s project,
and maintains the association between these two entities. Finally, my past work with
CiteHistory [50], also enhances a developer’s ability to leverage their search and browser
history, albeit in service of the specific task of adding citations to Q&A forum posts.

Moving beyond tools for software developers, the AdaptableGIMP and Workflows
projects [78, 77, 79] demonstrate how web resources can be leveraged within a feature-
rich client application. The AdaptableGIMP [78] comprises two components: (1) an
online wiki where users can create task-specific tool pallets (a.k.a., “task sets”) for the
GIMP image manipulation program, and (2) a version of the GIMP client application
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that can load these customizations, together with their task-specific tips and instruc-
tions. The Workflows project is an evolution of AdapableGIMP. Workflows organizes
the task-specific tools into small instructional documents that resemble tutorials, which
then are embedded directly in the system’s user interface. In both AdapatableGIMP
and Workflows, users retrieve task-specific customizations by querying a built-in search
service. The Workflows system was extensively evaluated, and Lafreniere et al. re-
ported that incorporating workflows into GIMP’s user interface substantially improved
user performance compared to a classical web browser / web tutorial baseline. As such,
AdaptableGIMP, and in particular Workflows, demonstrates one vision of how search,
and instructional materials can be integrated into an application to support users in their
daily tasks.

2.3.3 Integrating application context and functionality into web
resources

The previous section described how web resources can be incorporated into desktop
applications. It is also possible to do the reverse: to move application context and
components into web services. For example, Michael Ekstrand et al. [42] explored how
web search engines might leverage contextual cues provided by client software in order
to provide more relevant search results. The authors modified a vector graphics drawing
application (Inkscape) to communicate with a web search engine. The search engine was
then able to incorporate various details of the user’s session into its rankings (e.g., user
queries are expanded to include mentions of the last 5 Inkscape commands issued, and
the type of Inkscape object currently selected). Here, search results were generated using
an ensemble method, which involved issuing a large number of queries to the Google
search engine. Unfortunately, the ensemble approach failed to significantly outperform
the unmodified version of Google in all test scenarios explored by the researchers.

While Ekstrand’s work demonstrates how application context can be leveraged in an
online environment, other work has examined how application functionality can be em-
bedded in an online environment. For instance, Laput et al. [84] developed tutorial-based
applications, which are specially crafted web documents that directly control feature-rich
software applications (e.g., Photoshop). Here the concept is to use the tutorial as an al-
ternative interface to the software application, allowing users to issue commands, modify
parameters, and review results, all within the context of a web document. In this sys-
tem, the feature-rich application is hosted in a remote virtual machine, and is (in many
cases), invisible to the user. While these tutorials need to be specially authored to enable
interactivity, the authors present tools to semi-automate the process of adapting existing
online materials to versions supported by their system.

Finally, Lafreniere et al.’s community enhanced tutorials take this concept one step
further, by directly embedding a full photo manipulation application directly into web
tutorials. Here, the photo editor’s entire UI appears alongside the tutorial material [81].
The colocation of the application with the tutorial allows the system to fully record a
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reader’s actions across both, in a manner comparable to InterTwine’s shared interaction
history (described in Chapter 5). In particular, the system detects and logs any deviations
between the user’s actions and the steps described in the original tutorial instructions.
These variations can then be echoed back to the community as alternative methods for
completing each tutorial step. The authors conducted a user study of this system, and
found that this setup was especially beneficial in cases where the original tutorial was of
low quality, or when a user’s chosen work document differed significantly from that of
the original tutorial instance. This work clearly demonstrates the value that arises when
a system is aware of a user’s actions in both the web and application contexts.

2.4 Summary

In this chapter I detailed related research which argues that people – even experts –
leverage online resources to support their computer-mediated tasks. This strategic use
of search serves as a mechanism to cope with the ever-increasing complexity of our in-
teractive systems. As a consequence of this behaviour, the query logs of major search
providers serve as centralized repositories cataloguing the day-to-day tasks and interests
of a user population. While query logs have demonstrable ecological validity and utility
in characterizing, monitoring and predicting many real-world phenomena, to the best of
my knowledge they have not been directly applied to characterizing how people interact
with feature-rich software. To this end, Chapter 3 details how analysis of aggregate query
log data can be used to characterize the day-to-day tasks and needs of a system’s user
community. Importantly, this in-situ data is vast in scale and in scope, and is arguably
less prone to self-selection bias compared to other data sources.

Past work has also attempted to garner similar insights through analysis of written
documents such as forum postings, product reviews, and instructional material – though
these efforts have been stymied by imperfect topic extraction, and other challenges arising
from the need to do extensive natural language processing on these longer documents.
The systems described in Chapters 4 and 5 sidestep this problem by leveraging behaviour
data to contextualize the contents of these written documents. For example, the QF-
Graphs described in Chapters 4 derive value from written tutorials by pairing them with
the search queries that a user might issue to access those documents. Likewise, Chapter
5 pairs tutorials with the commands issued while accessing the documents on previous
occasions.

Finally, this chapter reviewed other work which has combined or integrated web search
or online documents with feature-rich software. Here, two general strategies have been
employed: In the first, feature rich software is updated to leverage online material. In
the second, online material is updated to leverage context and functionality provided
by feature-rich software. The final project described in this dissertation, InterTwine,
demonstrates a system where such enhancements are bidirectional – where online re-
sources influence the software’s user interface, and vice versa. InterTwine is presented in
detail in Chapter 5.
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The next chapter begins the journey across the web-mediated execution bridge by
exploring the types of insights about users and tasks that can be derived from logs of
web search queries.
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Chapter 3

CUTS: Characterizing Usability
Through Search
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Figure 3.1: In this chapter I investigate the first step across the Gulf of Execution via
the web-mediated execution bridge: i.e., Search. I demonstrate that aggregate logs of web
search queries can be leveraged to identify common tasks and potential usability problems
faced by the users of any publicly available interactive system. To assist with the collection
and analyses of these data, I introduce CUTS (Characterizing Usability through Search), an
automated system for gathering, labelling and filtering queries for the purpose of identifying
common tasks and issues encountered by a system’s users. Portions of this chapter were first
published in [48].

When users leverage online resources to bridge the Gulf of Execution, their journeys
begin with the formation and issuance of web search queries. Given this behavior, search
engine query logs serve as centralized repositories cataloguing the day-to-day tasks and
needs of the user base of any publicly available interactive system. This chapter describes
a method for approximating web search query logs, with the intention of enumerating
common tasks, and identifying potential usability problems in these feature-rich applica-
tions. Here the goal is to transform such data into forms that usefully complement and
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Figure 3.2: The top 10 suggestions provided by Google Suggest for the phrase “firefox how
to”. (Retrieved September 2010)

augment data collected via traditional usability methods (e.g., cognitive walkthroughs
[103], or heuristic evaluations [94]).

An example serves to illustrate the general strategy taken in this chapter. Consider
Google Suggest, the query auto-completion service that provides query completion sug-
gestions for a given input. In 2010, given the phrase “firefox how to”, Google Suggest
produced the list of 10 suggested completions depicted in Figure 3.2. As will be shown
later, these suggestions represent an N-best list for predicting the most likely completion
of the query. Here, query popularity is a key feature for constructing such lists.

From the list of top 10 Firefox “how to” suggestions (Figure 3.2), it is immediately
clear that users have a number of privacy and security concerns, as evidenced by their
desire to clear their cache, history, and cookies. However, the eighth item (“firefox how
to get menu bar back”) is particularly interesting. An inspection of the Firefox user
interface (version 3.6 on Windows), reveals that the top-level menu bar is easily hidden
by deactivating the “Menu bar” item in Firefox’s “View → Toolbars” sub-menu (Figure
3.3, left). However, once this action is taken, it is not easily reversed: The top-level
menuing system is now hidden, removing the very means the user would employ to
attempt to re-instate this important UI widget (Figure 3.3, right). What is noteworthy
about this example is that it quickly moved from data derived from query logs to a
testable hypothesis regarding the usability of the software.

The contributions in this chapter lie in expanding this manual process to the auto-
mated one shown in Figure 3.4. This automated process is referred to as CUTS (charac-
terizing usability through search). CUTS automates the harvesting, ordering, labeling,
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Figure 3.3: In Firefox 3.6 for Windows, the application’s main menu can be hidden by
disabling the View -> Toolbars -> Menu toggle option. Once this action is taken, it is not
easily reversed – users must know to use the keyboard shortcut Alt+V to reaccess this menu
option.

filtering, and grouping of search queries, with the ultimate goal of allowing its operators
to better understand the common tasks and needs of a user base. Importantly, like raw
query logs, the data produced by CUTS are timely, have a high degree of ecological va-
lidity, and are arguably much less prone to self-selection bias than traditional means of
collecting data from users.

While seemingly straightforward, automating this process requires overcoming a num-
ber of challenges: Raw query logs are not made publicly available; there is a need to
automatically determine query intent for the purposes of labeling and filtering queries
(for example, to distinguish troubleshooting queries from those seeking to download the
application); and differently phrased queries on the same topic should be reduced to
a common canonical form. The specific contributions of this chapter, outlined below,
address these challenges.

To address the problems of obtaining and ranking search queries, this chapter demon-
strates how publicly available query suggestion services (e.g., Google Suggest) and web-
based tools for advertisers can be employed to create reasonable approximations of raw
query logs.

This chapter also introduces two new query taxonomies to address the need to label
and filter queries. The first extends previous search query taxonomies to include cat-
egories relevant to interactive systems. For example, this new taxonomy differentiates
between queries issued to troubleshoot a problem and those seeking a tutorial. The
second taxonomy considers how a query is phrased. As will be shown, how a query is
phrased closely corresponds to the categories of the specialized taxonomy. CUTS ex-
ploits the relationship between these two classification schemes to ascribe query intent
from query phrasing.
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Figure 3.4: An overview of CUTS. Steps 1-2 are easily performed with access to raw query
logs, but otherwise require approximation techniques. Step 3 utilizes CUTS’ domain-specific
query taxonomy specialized for interactive systems.

Finally, common questions or issues are often expressed using a number of different
query phrasings. To cope with this variability, this chapter introduces a transformation
that enables minor differences between queries to be ignored.

The rest of this chapter is structured as follows. I first describe a method for har-
vesting and ranking search queries using publicly available services. I then introduce two
complementary query taxonomies, and present heuristics that can be used to label and
filter search queries. The final step of the process, grouping queries, is discussed, and
a set of strategies are introduced to assist with this process. I then present a series of
examples illustrating the overall utility of this approach. This chapter concludes with a
discussion of the limitations of the technique.

3.1 Query harvesting

The core of the CUTS process lies in the analysis of search query logs. Unfortunately,
actual search query logs are almost never released publicly by search providers. When
access to raw query logs is not possible, search queries can be harvested using publicly
accessible interfaces: Modern search engines provide indirect and privacy-preserving ac-
cess to their logs through their query completion suggestion services [9]. This section
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describes a process for systematically harvesting queries related to a particular interac-
tive system using these services. This section also provides evidence that the results of
this method can be considered a representative sampling of the raw query logs.

3.1.1 Harvesting from auto-completion services

Query completion suggestion services operate as if backed by a prefix tree [9]. When
viewed in this way, the characters making up a partially entered query define a path
through the tree starting at the root, passing through numerous nodes. Each node
contains a listing of popular queries whose prefix matches the path taken thus far (Figure
3.5). Query completion services follow the paths prescribed by partially entered queries,
and return the suggestions listed at the ends of these paths.

Given the tree-like structure of these services, a standard depth-first or breadth-first
tree traversal can be performed by expanding partial queries one character at a time,
starting with the name of the system under investigation (Figure 3.6). A leaf (or external
node) is reached when the completion service returns no suggestions for the given prefix.

Mining additional queries

Some search providers, such as Google, vary their query suggestions depending on the
position of the caret in the search query input box (Figure 3.7). More specifically, Google
provides a list of the top 10 completions that either begin or end with the phrases on the
left or right side of the cursor. Given this behaviour, the whole tree traversal procedure
can be repeated to uncover query suggestions that end with a particular suffix, providing
a more complete sampling of the query logs.

By executing a systematic search of the query completion tree, many queries can be
collected for a given topic. For example, on June 19th, 2010, a systematic search recorded
74,795 unique queries incorporating the term “Firefox” in Google Suggest’s query auto-
completion database. Similar results were obtained for other systems for which data was
collected (Table 3.1).

3.1.2 Representativeness and timeliness of auto-completions

In harvesting these queries, the working assumptions are that (1) query completion ser-
vices are derived from the raw query logs, (2) a given query’s prevalence in these logs will
have some bearing on its ranking in the list of suggestions, and (3), the suggested com-
pletions are timely. “Timely” query completion services assign more weight to queries
performed within a recent window of time. The following subsections briefly provide
evidence that these assumptions are sufficiently valid for the intended purposes.
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Figure 3.5: Query completion suggestion services operate as if backed by a prefix tree.
A standard depth-first or breadth-first tree traversal can be performed by expanding partial
queries one character at a time.
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firefox,

firefox a, firefox aa, firefox aaa, ...
...
firefox z, firefox za, firefox zaa, ...

Figure 3.6: Input sequence representing a depth-first traversal of Google Suggest’s prefix
tree rooted at “firefox”.

Figure 3.7: The Google Suggest auto-completion service varies its suggestions based on the
caret position, enabling additional suggestions to be mined.

Representativeness of query completion suggestions

In the case of Google, some information about their query suggestion service has been
published [30]. Specifically, Google’s documentation notes that “All of the queries shown
in (Google) Suggest have been typed previously by other Google users”. Google also states:

Our algorithms use a wide range of information to predict the queries users
are most likely to want to see. For example, Google Suggest uses data about
the overall popularity of various searches to help rank the refinements it offers.
[32]

When mining data from Google Suggest, CUTS issues queries from a computer re-
served for the purpose of the study (i.e., a system with no prior history of web search), and
the system’s cookies and browser state are cleared between each request. These steps are
designed to bias the auto-completion service towards relying on search query popularity
rather than on a user’s query history, or on other forms of search personalization.
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Application Description # of Query Suggestions

iPhone A smartphone platform 476,462
Ubuntu A Linux distribution 122,242
Photoshop An image editor 119,791
Firefox A web browser 74,795
Chrome A web browser 45,499
Safari A web browser 38,207
Kindle An eBook reader 21,621
Gimp An image editor 14,569
Nook An eBook reader 8,985
Audacity An audio editor 6,517
Kobo An eBook reader 2,680
Inkscape A vector graphics editor 2,501

Table 3.1: Number of unique query suggestions provided by Google for various interactive
systems.

Timeliness of query suggestions

To identify trends and new issues as they arise, it is desirable that query suggestion ser-
vices emphasize recent searches over those performed in the more distant past. To study
the timeliness of Google’s query suggestion service, I monitored the query completion sug-
gestions for a range of products and software applications for a period of approximately
three months (June 2010 through August 2010, inclusive). Suggestions were sampled on
Monday, Wednesday, and Friday of each week during this timeframe. An analysis of the
collected data reveals that Google updates its auto-completion database approximately
once every 14 days. These results indicate that Google is actively maintaining its query
suggestion database.

Knowing the frequency with which these services are updated is advantageous, but is
not sufficient for determining the extent to which current search trends are represented
in query suggestions. To investigate this question, one can examine when a noteworthy
event begins to appear in query suggestions. A prime candidate for exploring this question
is provided by the release of the iPhone 4 on June 24th, 2010. Almost immediately, there
were media reports of significant signal degradation when the phone was held in a certain
way [55]. The first evidence of this issue was spotted in the query suggestions on July
14th, 2010. On this date, the partial query “iphone d” resulted in Google suggesting
[iphone death grip], while “iphone a” yielded [iphone antenna], and “iphone how to h”
yielded [iphone how to hold ]. None of these queries appear in the suggestions sampled
on previous dates. This corresponds to a lag of about 20 days, suggesting that the query
completion services place sufficient weight on recent queries.
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3.2 Estimating query volumes

After harvesting queries, the next step is to estimate how frequently each is searched (i.e.,
its search volume). When queries are sampled from query suggestion services, detailed
query volume information is not made available (current services do not indicate how
often each search is performed). Missing data can be substituted in two ways. First, one
can complement the data set with data collected from advertising and market research
tools, such as the Google AdWords Keyword Tool [31]. Second, one can examine the
structure of the synthesized prefix tree to obtain a partial ordering of the queries not
covered by the advertising and market research tools. I describe each technique in turn.

3.2.1 Using marketing tools to gather ground-truth

Google provides a set of tools that can be directly applied to the problem of ranking
queries. For this research, I leveraged the Google AdWords Keyword Tool [31], which is
intended to help marketers valuate keywords for advertising purposes. Prior to September
2014, the AdWords Keyword Tool could be configured to report the average monthly
search volume for any exact phrase [34], making it possible to directly gather the ground-
truth search volumes of many query suggestions. Here, an exact phrase match occurred
when the specified input (i.e., the query auto-completion suggestion) exactly matched
search queries in Google’s query logs, without any additional words before or after the
input phrase.

The data collected for this dissertation were gathered in 2010 and adhere to the afore-
mentioned exact match criteria. At the time of this writing (2015), the exact matching
option has been replaced with close variant matching [34]. Close variant matching re-
sembles exact matching, but allows terms to vary slightly from the input criteria. Such
variations include: “misspellings, singular and plural forms, acronyms, stemmings, ab-
breviations, and accents.” [29] Should this research be replicated in today’s environment,
additional steps would be required to avoid double counting queries.

While many queries can be directly ranked using the Google AdWords tool, not
all queries can be ranked in this way; in 2010, Google AdWords provided no data for
queries whose monthly search volume was below a threshold of 12 queries per month.
This threshold was reached well before the list of query suggestions was exhausted. For
example, on June 19th, 2010, I harvested 74,795 unique query suggestions for the Firefox
web browser. However, Google AdWords provided search volume data for only 15,057 of
those queries. In short, the search volume of about 80% of the Firefox queries fell below
the threshold reported by AdWords. Accordingly, one must employ another means of
ranking the remaining queries, as described next.
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3.2.2 Estimating search volumes for long tail queries

A means of estimating the query volumes of long tail queries (those not described in
the AdWords data set) is desired. A considerable amount of prior work has investigated
search query logs, and it has often been reported that search query volumes follow a
heavy-tailed (Zipf-like) inverse-power law relationship [112, 69, 68, 43, 9] with the most
popular search queries occurring exponentially more frequently than less popular queries.
This relationship can be described mathematically as:

v = αr−k (3.1)

where v is the search volume of a query q, r is the rank of the query q when queries are
sorted in descending order by popularity, and both α and k are model parameters. This
relationship can be expressed as a linear function in the log-log space, as follows:

log(v) = log(α)− k ∗ log(r) (3.2)

The data returned from the Google AdWords tool is roughly consistent with this
trend (Figure 3.8). Using the AdWords data for a given interactive system, one can
recover the parameters log(α) and k using linear regression. In practice, query volumes
often exhibit the king effect [82], where the first 2 or 3 queries appear as outliers to the
general trend. As such, I use the Theil-Sen [108] estimator of robust linear regression to
deal with these and other outliers.

Once the parameters are recovered, one can extrapolate the query volumes of long-tail
queries, for which AdWords provides no data. To do this, one needs to approximately
rank long-tail queries by popularity. While query suggestion services do not return the
frequency with which each suggested query is performed, I have argued that they operate
by returning the most popular queries for a given input. One can use this behaviour to
derive a partial ordering of the query suggestions. The key insight is this: It is suspected
that the 10 query suggestions returned for a given prefix are more popular than all other
queries later harvested that also begin with that same prefix. An example illustrates this
point:

In 2010, the suggestion “firefox menu bar missing” appeared in Google’s top 10
suggestions for the prefix “firefox m”. Thus, one can infer that the “firefox menu
bar missing” query is more popular than the 2362 other suggestions occurring in
the data set that also share the prefix of “firefox m”. I write that this query has
2362 subordinates in order to convey this relationship, and rank long-tail queries
in descending order by these values. This provides only a partial ordering because
one can only perform comparisons of a node with its ancestors and descendants
in the prefix tree. Nevertheless, a search volume-based ranking will be crudely
approximated [9]. Once a ranking is estimated, equation 3.2 can be used to estimate
average monthly search volume (Figure 3.8, green dots).
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Figure 3.8: Search volumes for individual queries follows a heavy-tailed (Zipf-like) inverse-
power law relationship. This relationship manifests as a straight line when both axes are
represented on logarithmic scales. This figure presents data pertaining to queries about the
Firefox web browser. Advertising data (blue) is used to learn the parameters of a line of
best fit (red), which is then leveraged to extrapolate the search volumes of long tail queries
(green).
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These first two steps of harvesting and ranking queries provide a suitable, privacy-
preserving, publicly accessible replacement for raw query logs. In the remainder of the
chapter, the technique assumes only that one has access to a ranked list of search queries
relating to the interactive system of interest.

3.3 Query classification and filtering

Given a list of queries, the next step is to automatically classify queries according to
the likely intent of the individual performing the search (for example, to distinguish
troubleshooting queries from those seeking to download the application). Once labeled,
query logs can then be filtered to select entries that are potentially related to user tasks
and usability issues.

Before queries can be automatically labeled and filtered, one must first understand
the range of system-related queries that users submit to search engines. While previous
work has developed a number of taxonomies for general classification of search queries
(e.g., to distinguish between navigational and information-seeking queries) [18, 71, 107],
I found these taxonomies too broad for the intended purposes. Instead, a classification
scheme specialized for the domain of interactive systems is needed. Additionally, one
needs to understand what features of a query can be used to support automatic labeling.

In this section, I address both of these needs: I introduce a domain-specific taxonomy
of query intent specialized for interactive systems, and a second classification scheme that
describes how a query is phrased. As I will show, in this domain, query phrasing is strongly
related to query intent. Based on the aforementioned intent-phrasing relationship, I
present a set of heuristic templates for automating the process of labeling and selecting
queries of interest.

3.3.1 Domain-specific query intent taxonomy

Following the basic methods of grounded theory [117], I developed the query taxonomy by
performing open coding on 200 randomly sampled queries regarding the use of software
applications. From this initial coding, I identified a set of common, higher-level themes,
which led to the taxonomy. The resultant taxonomy includes six separate classes of
interactive system queries, synthesized from the perspective of query intent:

• Operation Instruction
Would the query be used to find instructions for performing a specific operation or
task?

• Troubleshooting
Would the query be used for troubleshooting a bug or error condition?
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• Reference
Would the query be used to find non-task specific reference material? (e.g., a list
of keyboard shortcuts)

• Download
Would the query be used to acquire, download, or install something?

• General Information
Would the query be used to find product reviews, comparisons, or other general
information?

• Off-topic
Is the query unrelated to the software / product?

3.3.2 Query phrasing classification scheme

In parallel with developing the former taxonomy, I also developed a classification scheme
that describes how individual queries are phrased. The motivation for developing this
scheme arose during the open coding sessions: For lengthier queries, it appeared that
how a query was phrased was very much related to the intent of the user. As I will show,
there is indeed a relationship.

Based on the open coding of the queries, the following high-level categories of query
phrasing were identified:

• Noun phrase (e.g., gimp brushes)

• Imperative statement (e.g., gimp rotate text)

• Question (e.g., how to draw a line in gimp)

• Statement of fact (e.g., gimp won’t start)

• Present participle (e.g., rotating text in gimp)

• Other

In the next section, I show that raters are able to achieve a high degree of inter-
rater agreement when using the intent and phrasing taxonomies to label search queries.
This agreement lends support to the overall utility of the taxonomies as instruments for
labeling search queries.

3.3.3 Inter-rater reliability of the classification schemes

To establish the inter-rater reliability of these two classification schemes, two researchers
applied both schemes to a set of 195 queries sampled from the GIMP and Firefox datasets.
The GIMP and Firefox datasets were collected from Google Suggest on May 23rd, 2010
and June 19th, 2010 respectively. Selection of the 195 sample queries proceeded as follows:
For each application, the top 50 queries (by search volume) were selected, followed by
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Query Source κ intent κ phrasing

Firefox, top 50 0.74 (substantial) 0.80 (substantial)
Firefox, random 50 0.86 (near perfect) 0.80 (substantial)
GIMP, top 47 0.66 (substantial) 0.72 (substantial)
GIMP, random 48 0.66 (substantial) 0.81 (near perfect)

Table 3.2: Inter-rater reliability for each of the four sample sets.

an additional 50 randomly selected queries. The resulting set of 200 samples shared 5
queries in common with the set used for the initial open coding and were thus excluded
from the validation process.

In labeling this data set, an overall inter-rater reliability rate of κ intent = 0.76 was
achieved for query intent, and κ phrasing = 0.79 was achieved for query phrasing, using
the Cohen’s kappa measure of rater agreement. Inter-rater reliability across the 4 sources
of queries is listed in Table 3.2. The observed agreements are considered to be substantial
[83].

Before describing how the query phrasing classification scheme can be used to iden-
tify query intent, I first show how queries are distributed across these two classification
schemes. These query distributions lend additional arguments for the overall utility of
this approach.

3.3.4 Characterizing query data

The classifications of the 195 labeled queries are summarized in Table 3.3. The categories
of interest for usability analysis coincide with the first two listed in the table and the
taxonomy: “Operating Instruction”, and “Troubleshooting”. In the sample, about half
of all query suggestions fall within categories that are of interest to HCI researchers and
practitioners, demonstrating the overall richness of query logs when studying interactive
systems.

3.3.5 Relationship between query phrasing and intent

If one compares how a query is labeled in each scheme, one finds that how a query is
phrased can be highly indicative of a query’s likely intent. These findings are summarized
in Table 3.4. For example, in the sample set, if a query is phrased as an imperative
statement, there is a 90% likelihood that the query is seeking operating instructions. A
similar likelihood (87%) applies if the query is phrased as a question. Finally, if a query is
phrased as a statement of fact, then it is almost certainly being used for troubleshooting.
These relationships provide a set of strategies for automating the labeling of queries,
which I describe next.
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Rater 1 Rater 2
Query Intent Freq. % Freq. %

Opr. Instr. 84 43% 80 41%
Troubleshooting 15 8% 17 9%
Reference 21 11% 19 10%
Download 55 28% 62 32%
General 12 6% 12 6%
Off topic 8 4% 5 2%

Table 3.3: Frequencies of query intent labels for the 195 randomly selected GIMP and Firefox
queries harvested from Google Suggest.
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Opr. Inst. 0.30 (38) 0.90 (28) 0.87 (13) 1.00 (5)
Troubleshooting 0.05 (6) 1.00 (9)
Reference 0.14 (18) 0.03 (1) 0.13 (2)
Download 0.42 (53) 0.07 (2)
General: 0.09 (12)
Off topic 1.00 (8)

Table 3.4: Probability of query intent given its phrasing type based on the labels assigned
by rater 1. Raw frequencies are listed in parentheses. Similar values are achieved using the
labels assigned by rater 2.

3.3.6 Heuristics for automating query labeling

In the previous section, a relationship between query phrasing and intent was described by
examining labels that were manually assigned to queries by a pair of human raters. Au-
tomating the CUTS process requires mechanization of the query labeling step. Through
further inspection of the data, I have found that certain keywords or patterns are highly
indicative of each of the different phrasing types. For example, queries containing the
phrase “how to” indicate questions. Once a query’s phrasing has been established, one
can then infer its intent using Table 3.4. Here I focus on queries phrased as questions, im-
perative statements, and statements of fact because these phrasing types reliably indicate
searches for instructions or troubleshooting information.

A partial list of phrasing patterns is presented in Table 3.5. These patterns were
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Labels Pattern Example Query
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how to in SystemName how to delete history in firefox
SystemName how to firefox how to clear cache

can SystemName can firefox block websites
does SystemName does firefox have private browsing

Im
p
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use SystemName use firefox for windows update
make SystemName make firefox default browser

SystemName set firefox set default zoom
create in SystemName create a new profile in firefox

SystemName create firefox create pdf
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SystemName is / isn’t firefox is starting slow
SystemName can / can’t firefox can’t add bookmarks

SystemName will / won’t firefox won’t open pdf
SystemName does / doesn’t firefox doesn’t play sound

SystemName has / hasn’t firefox has no address bar

Table 3.5: Filtering templates for labeling the phrasing and likely intent of queries.

generated through a manual inspection of labeled data, and serve as basic heuristics for
labeling different types of queries.

Many queries will not match any pattern, and will thus go unlabeled at this stage
of processing. In the next section, I describe a technique for grouping related queries.
When queries are grouped, labels for the individual queries are extended to the group,
increasing the coverage of the labeling.

3.4 Grouping similar queries

The final step in CUTS is to reduce the variability with which queries are expressed in
the data set. In query logs, common questions or issues are expressed using a number
of different query phrasings. As an example, GIMP users may search “how to draw a
circle in gimp”, or they may simply type “gimp draw circle”. Given this variability, it
is desirable that similar queries be grouped, and their weights or rankings combined, in
order to better estimate the prevalence of a given issue.

To group similar queries, one transforms queries to a canonical form where incon-
sequential differences are ignored (e.g., see Table 3.6). This transformation applies the
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“firefox lost toolbar”

lost my toolbar firefox firefox toolbars lost
lost firefox toolbar firefox lost my toolbar
lost all toolbars in firefox firefox lost all toolbars
lost toolbar in firefox firefox lost toolbar
lost my toolbar in firefox lost my firefox toolbar
firefox toolbar lost

Table 3.6: 11 distinct queries which share the canonical representation “firefox lost toolbar”.

following rules:

• Convert inflected word forms to common word lemmas. Use the WordNet lexi-
cal database [91] to perform this transformation (e.g., “deleting cookies” becomes
“delete cookie”)

• Remove all instances of stop words (such as “and”, “the”, “to”, “but”, etc.)

• Remove words devoid of alphabetic letters (e.g., “3.6.10”, and other non-English
strings)

• Sort the query terms alphabetically.

Using this technique, it is possible to achieve a modest reduction in the size of the
data set. As an example, the Firefox data set of 74,795 unique queries is represented by
39,435 canonical query groups (53% of the original size). A group’s cardinality (number
of distinct query phrasings) is also related to the popularity of the group’s overall topic
or concern; compared to less popular topics, those experiencing high search volume yield
logs that contain a more complete sampling of the alternative phrasings with which
those queries can be expressed. Consequently, those high-volume queries tend to form
groups of higher cardinality. To illustrate this point, Table 3.7 lists the cardinality of the
canonical groups associated with the top 10 “firefox how to” queries already mentioned
in the introduction. All but the last of these queries fall within the top 99.6th percentile
of group sizes, thus reinforcing the popularity of these concerns.

3.5 Final output of CUTS

The output of CUTS is a categorized and ranked list of query groups relating to the
system under investigation. A sample of this output, for the Firefox application, is
presented in Table 3.8. The final ranking of groups is determined by summing the actual
or predicted search volumes of each group’s member queries, and then sorting those
groups accordingly.
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“Firefox how to” ... Canonical Form Cardinality of group

clear cache cache clear 110
delete cookies cookie delete 60
clear cookies clear cookie 44
enable java enable java 41
export bookmark bookmark export 40
enable cookies cookie enable 32
clear history clear history 30
block websites block website 29
get menu bar back back bar get menu 16
clear browsing history browse clear history 5

Table 3.7: Canonical groups associated with the top 10 “firefox how to” queries.

Groups Containing Groups Containing
Opr. Instr. Queries Troubleshooting Queries

cache clear not respond
clear cookie not open pdf
cookie delete slow
block website crash
cookie enable mode safe
proxy check not spell
delete history constant crash
speed up lag
bookmark remove not password remember
... ...

Table 3.8: Query groups, related to Firefox, output after query harvesting, ranking, labeling,
filtering and grouping.

3.6 Examples and Case Studies

In this section, I apply the technique to a number of different interactive systems. The
goal here is to demonstrate the wide range of insights that can be gained using this
approach. I structure this section by showing how issues related to language, desired
functionality, and poor affordances can all be detected using this technique.
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3.6.1 The Vocabulary Problem (i.e., “Speak the user’s lan-
guage”)

Query logs provide an excellent view of the vocabulary and terminology with which users
conceive their use of interactive systems. However, this terminology does not always
match that which is used by their systems. When such discrepancies arise, the associ-
ated systems can be considered to be in violation of Jakob Nielsen’s “Speak the User’s
Language” usability heuristic [94], or as suffering from the vocabulary problem [53]. I
provide two examples of this problem that I identified using the technique.

Black and white, but not grayscale

On May 23rd, 2010, I harvested 14,559 queries relating to the GIMP raster graphics editor.
Analysis of the GIMP data set reveals 70 distinct queries inquiring how to convert a color
image to black and white (Table 3.9). Together these queries are searched an estimated
560 times per month, or about once every 78 minutes on average.

Inspecting GIMP’s interface (version 2.6) reveals that there are at least three alter-
native methods for converting a color image to “black and white”. These methods are
labeled as “grayscale”, “desaturate”, and “channel mixer”. Such technical terms may not
be familiar to a sizeable portion of GIMP’s user base, as evidenced by the vocabulary
used in the harvested queries. This issue of vocabulary mismatch is revisited in the next
chapter.

Clip, but not crop

Inkscape is an open source vector graphics editor similar to Adobe’s Illustrator program.
On May 22nd, 2010, I harvested 2,501 queries relating to Inkscape. Interestingly, the
8th highest volume query was [inkscape crop], with an average of 480 searches performed
each month. However, being a vector graphics application, Inkscape does not have a
“cropping” tool; cropping is specific to raster graphics. The equivalent operation for
vector graphics is to “clip”. This very popular query suggests that new Inkscape users
are relying on Google to translate knowledge from one domain (i.e., raster graphics) to
another domain (i.e., vector graphics). This behaviour closely resembles similar behaviour
exhibited by programmers’ use of Google [16]. Recognizing this issue, Inkscape could
provide a “crop” command or a help entry that assists users in setting the clipping
region of their document.

3.6.2 Desired functionality

In addition to identifying potential usability issues related to terminology, I found query
log analysis to be an excellent source for discovering desired functionality.
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Monthly Monthly
Query Searches Query Searches

gimp convert to black and white 91 gimp image black and white 3
gimp black and white 91 gimp convert color to black and white 3
gimp black and white conversion 58 gimp help black and white 3
black and white gimp 28 gimp convert image to black and white 3
gimp color to black and white 22 make image black and white gimp 3
gimp make black and white 16 how to make a photo black and white in gimp 3
how to make a picture black and white in gimp 12 gimp turn image black and white 3
how to make an image black and white in gimp 12 gimp tutorials black and white 3
gimp make image black and white 9 how to make black and white in gimp 2
convert to black and white gimp 9 gimp channel mixer black and white 2
gimp how to make black and white 8 gimp making image black and white 2
gimp black white 8 gimp converting to black and white 2
gimp black and white background 7 gimp make a photo black and white 2
gimp black white filter 7 gimp focal black and white 2
gimp colour to black and white 7 how to make image black and white in gimp 2
gimp change color to black and white 6 gimp make an image black and white 2
gimp save as black and white 6 gimp black and white image 2
gimp black and white photo 6 gimp and black and white 2
gimp tutorial black and white 6 gimp black and white effect 2
gimp black and white only 5 gimp black white conversion 2
gimp black and white filter 5 gimp black and white tutorial 2
how to black and white gimp 5 gimp picture black and white 2
gimp invert black and white 5 gimp black and white plugin 2
gimp to black and white 5 gimp turn black and white 2
gimp black and white layer 5 gimp black and white with colour 2
gimp image to black and white 5 gimp convert photo to black and white 2
gimp change to black and white 5 make black and white in gimp 2
gimp how to make an image black and white 5 color to black and white gimp 2
gimp convert black and white 4 gimp change white to black 2
gimp make picture black and white 4 gimp only black and white 2
gimp layer black and white 4 convert image to black and white gimp 2
gimp how to black and white 4 gimp change picture to black and white 2
gimp make layer black and white 4 gimp true black and white 2
how to make pictures black and white in gimp 4 make an image black and white in gimp 2
gimp change image to black and white 4 gimp color image to black and white 2

Table 3.9: 70 distinct variations of the query “gimp convert to black and white”, together
with their estimated average monthly search traffic. In total, it is estimated that this task is
queried 560 times a month on average, or about once every 78 minutes.

Blocking unwanted calls

One popular class of queries related to Apple’s iPhone product inquires about the pos-
sibility of selectively blocking unwanted calls from specific telephone numbers. In 2010,
when the data was collected, this feature was not supported by the device, and users
searched for information on performing this task at least 5,800 times a month (or once
every 7.5 minutes). A workaround popular in the user community was to associate a
silent audio clip as the ringtone of unwanted telephone numbers. That this issue was so
popular suggests users would have been well-served if provided with a sanctioned means
of achieving this same behaviour. Such a sanction means arrived in In September 2013,
with the 7th major version of the iPhone operating system (iOS 7).
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Changing screen savers

Another example of identifying desired functionality emerged when analyzing the searches
specific to Amazon’s Kindle eBook reader. Specifically, query log analysis revealed 89
distinct phrasings of the query [how to change your kindle screensaver ]. In 2010, the
Kindle device shipped with a few dozen stock images that were displayed by the device
when not in use. However, these images could not be customized by the end user. Again,
the popularity of these searches suggested that such a feature would be welcomed. In
2011, the Kindle’s manufacturer, Amazon, leveraged the non-customizable screensaver
to display advertisements to users.

Drawing shapes in GIMP

Finally, an analysis of the GIMP query data set reveals many queries related to drawing
primitive shapes: Roughly 130 unique queries inquire about drawing various types of
lines, 80 unique queries inquire about drawing circles, 40 queries inquire about drawing
rectangles, 20 queries inquire about drawing squares, and 14 queries inquire about draw-
ing ellipses. Moreover, the suggestions [gimp how to draw a line], appears in the top
10 suggestions for the prefix “gimp how to”, and the Google AdWords tool reports that
the query [gimp draw circle] is performed an average of once an hour, each and every
day. These queries are noteworthy because GIMP provides no explicit tools for drawing
simple shapes. Dedicated tools for these functions would likely find great use by GIMP
users.

3.6.3 Ubuntu Linux case study

As a final case study of the types of problems that can be uncovered using query log
analyses, I consider how developers of the Ubuntu Linux operating system responded
when presented with data and analyses mined from CUTS. In October 2010, I presented
the CUTS system at the Ubuntu Developer Summit (UDS 11.04). A number of potential
issues relating to Ubuntu were discussed in this venue, including those enumerated in
Table 3.10. When presenting these findings, audience members were very enthusiastic,
and responded by filing bug reports, while seated in the audience, as I was delivering the
presentation (e.g., Figure 3.10). I discuss two of the examples I presented in the sections
that follow.

Poor discoverability of desktop features

One of the chief advantages of leveraging query data is that, unlike other forms of soft-
ware instrumentation [4], it can reveal potential usability problems arising from poor
discoverability of system features. For example, in examining data mined via CUTS, it
was discovered that users asked [ubuntu where is the trash] in about 120 different ways,
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Example Query Frequency of Searches

ubuntu sound not working 15 minutes
ubuntu login as root 30 minutes
how to tell what version of ubuntu 60 minutes
ubuntu where is the trash 1.2 hours
ubuntu enable dvd playback 1.4 hours
how to mount ntfs in ubuntu 1.4 hours
ubuntu disable touchpad while typing 4.6 hours
ubuntu volume control missing 4.7 hours
ubuntu 32 or 64 bit how to tell 10 hours

Table 3.10: A listing of the potential usability problems, as enumerated using CUTS, pre-
sented to Ubuntu developers at the Ubuntu Developer Summit in 2010.

on average once every 72 minutes. These queries included requests for instructions on
placing the a trashcan icon on Ubuntu’s desktop (e.g., [ubuntu add trash to desktop]).
Inspection of the Ubuntu’s desktop interface revealed that there was already a trashcan
icon on the desktop, but its placement and size might cause it to go unnoticed by Ubuntu
users (Figure 3.9). To this end, CUTS provides concrete numbers describing just how
frequently people fail to find the icon during day-to-day use.

Ubuntu’s “authentication failure”

For reasons of security, Ubuntu disables the “root” superuser account by default, requir-
ing users to issue the “sudo” command to gain superuser privileges. The root account
has otherwise been present and used in UNIX and UNIX-like systems for decades.

While Ubuntu’s policy is arguably a positive change for security, the operating system
may not be adequately communicating this policy to new users: Attempts to log in as
the root user (in Ubuntu version 10.04) simply result in an “authentication failure” error
message. An analysis of the queries related to Ubuntu reveals nearly 130 distinct query
phrasings all asking about how to access the root user account. In 2010, the specific
query [ubuntu login as root ] was performed 720 times a month, or about once an hour.
Similarly, a search for the error message [su authentication failure ubuntu] occurs about
once every 7 hours. These findings suggest that users would be well served by a more
helpful or detailed error message which could communicate the proper course of action
when attempting to login as the root user.

When details of this authentication issue were presented to developers at the Ubuntu
Developer Summit, audience members responded by immediately filing the bug report
#667509 (Figure 3.10) entitled “su’s “authentication failure” error should help users
discover sudo” [19]. This suggests that CUTS can reveal, or can emphasize the severity
of, usability problems that developers may otherwise fail to notice or appreciate. I expand
on these possibilities, and on the role of CUTS, in the sections that follow.
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Figure 3.9: The desktop interface of Ubuntu 9.10. Analysis of query data pertaining to
Ubuntu reveals that many users fail to notice the trashcan in the bottom right corner of the
screen (inset and enlarged in this screenshot).

3.7 Discussion

In this section, I more broadly discuss issues related to using query logs to understand
the needs of users of interactive systems. I begin by comparing the output of CUTS to
manually curated “frequently asked questions” (i.e., FAQs). I then discuss how query log
analysis can factor into existing usability practices, and I enumerate various issues that
may affect the rankings produced by this method.

3.7.1 Comparing CUTS’ output to published FAQs

CUTS reveals search queries that are frequently performed by a system’s users. As such,
its output is directly comparable to lists of frequently asked questions (FAQs) commonly
provided as documentation for many software applications. However, standard FAQs
are curated by individuals, and require continual maintenance and individual judgement
regarding inclusion of content. Accordingly, I expect CUTS to more accurately represent
the needs of the user base over time. A comparison of CUTS results with the GIMP
FAQ lends support to this notion.
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Figure 3.10: Ubuntu bug report filed in response to my presentation of CUTS data to
developers attending the Ubuntu Developer Summit in 2011 (UDS ‘11). This web page was
retrieved on May 21st 2015, from [19].
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The GIMP FAQ1 contains 25 questions/answers in the section entitled “Using GIMP.”
Sixteen of these issues overlap the top issues found using CUTS. The FAQ issues that
don’t overlap with CUTS results tend to be quite specialized (e.g., “How do I configure
X server to do global gamma correction?”). Since GIMP’s user base primarily consists of
casual users who perform relatively simple tasks [80], very few users will benefit from the
answers to these specialized questions. In contrast, CUTS reveals a more representative
set of questions related to the simple tasks users have been found to perform (e.g., “gimp
how to convert to black and white”).

3.7.2 Integrating query log analysis in usability practices

Throughout the chapter, I have been careful to note that query logs can be used to
identify potential usability problems of interactive systems. While a query may suggest
that users are experiencing difficulties with a particular aspect of the system, further
details and context are required before one can conclude the nature and severity of a
potential issue. This additional information can be obtained using standard evaluation
techniques involving users or expert evaluators. Since many methods (e.g., cognitive
walkthrough) require representative tasks to be identified for evaluative purposes, CUTS
can assist by supplying a ranked list of common tasks and needs.

A ranked list of common queries can also be used to assign importance to existing lists
of known usability issues. The benefit of using the results of CUTS is that this ranking
is derived from the search behaviour of thousands, if not millions, of users. Software
producers with limited resources, including volunteer-driven open source products, could
thus benefit from this additional means of prioritizing efforts to address known and newly
discovered usability problems.

3.7.3 Factors that may impact or compromise query ranking

To effectively use query analysis, it is important to understand and consider the various
factors that can impact the weighting and ranking that such analysis produces. In this
section, I discuss various effects that influence how often various searches are performed.

User search behaviours and query reformulation

A growing body of research (e.g., [7, 65]) examines user search behaviour. One of the
practices observed is that people reformulate their queries when search results do not
match their expectations or needs. As an example, a user might start with queries
consisting of a few words, and then pose more detailed questions as they fail to find
relevant documents in the search results [7]. As a result of this query reformulation
strategy, it is conceivable that the analysis proposed in this chapter artificially inflates

1http://www.gimp.org/docs/userfaq.html
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the importance of issues which are difficult to search for online (e.g., issues where relevant
information is scarce). This issue is an artifact of the use of aggregate data, and can be
correctly accounted for when session-level query logs are available.

Products with generic names

A number of products have relatively generic names (e.g., Microsoft “Word”, etc.), which
can cause many irrelevant or off-topic queries to appear in query logs. A similar problem
is encountered by products whose names are now synonymous with a class of operations
or applications. For example, an altered digital image is often described as being “Pho-
toshopped,” regardless of which software application was used for image manipulation.

In these problematic cases, I have found the described filtering techniques (e.g., “how
to in photoshop”) are often enough to filter out the less desirable, off-topic queries.

I also suspect that it is possible to differentiate between the uses of a word by analyzing
the results that search engines return for those queries. Search engines are designed to
return relevant documents, and often refine their relevance rankings by observing which
pages users visit after performing searches [8]. The query-document associations recorded
by search engines provide a wealth of information that can further guide analysis of query
logs. I revisit this topic in Chapter 4.

3.7.4 Impact of system popularity

In the interest of preserving user privacy, query auto-completion services are unlikely
to suggest queries unless those queries have been performed many times, and by many
different individuals. As such, the quantity of data available for analysis by CUTS is
related to the popularity of the interactive system being studied. In the extreme case,
CUTS cannot be used to study systems that are not publicly available (e.g., custom
software solutions, prototypes, beta software, etc).

3.8 Conclusion

When faced with difficulties or questions relating to the use of interactive systems, many
people routinely turn to Internet search engines as a first line of support. In this chapter,
I have introduced CUTS: characterizing usability through search. This process takes
the name of an interactive system as input and outputs a ranked and categorized list of
common tasks and potential issues that users encounter with that system. These data
are assembled by sampling from the query logs of top-tier Internet search engines using
public interfaces. Importantly, the results of this process have a high degree of ecological
validity, and can directly inform more formal evaluation methods by suggesting particular
tasks or issues to study.
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In the context of the Gulf of Execution, web search and CUTS represent the first step
across the web-mediated execution bridge. In the next chapter, Chapter 4, I examine
opportunities that arise when one considers the second step of the journey: i.e., retrieval
of relevant online web documents and instructional materials.
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Chapter 4

Query-Feature Graphs
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Figure 4.1: This chapter introduces query-feature graphs – structures that address an im-
portant instance of the vocabulary problem [53]. Query-feature graphs are constructed by
mining the co-ocurrences of commands and query keywords appearing in the texts of online
tutorials. In this sense, query-feature graphs connect the first two steps of the web-mediated
bridge that crosses the Gulf of Execution. Portions of this chapter were first published in [49].

The techniques and datasets presented in the previous chapter afford a first detailed
view of the types of web searches users issue when starting their journeys across the
Gulf of Execution. In examining these popular queries, a common theme emerges: Users
often employ web search to overcome the vocabulary problem [53], an issue that arises
when users conceptualize and articulate their needs in ways that do not match the (rather
terse) vocabulary of the interactive system. Furnas et al. describe the problem as follows:

People use a surprisingly great variety of words to refer to the same thing. In
fact, the data show that no single access word, however well chosen, can be
expected to cover more than a small proportion of users attempts. (...) In cur-
rent computer systems, the vocabulary problem is largely ignored. Designers
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decide on the terms to be used, and, as heavy users, grow to find these terms
obvious and natural. Other users are simply required to learn the systems
words [53].

As an example of the vocabulary problem arising in a modern feature-rich appli-
cation1, consider again the search [gimp black and white], a commonly executed query
used to learn how to simulate the effect of black and white film using the GIMP raster
graphics editor. Since GIMP has no command named “black and white,” as discussed in
Chapter 3, users who wish to achieve this effect must learn that commands such as “de-
saturate,” “grayscale,” or “channel mixer” will yield the desired effect. Indeed, searching
for the phrase [gimp black and white] returns web pages describing the use of these very
commands. In essence, these web pages serve as “Rosetta Stones” between users’ con-
ceptualizations of tasks, as expressed by search queries, and the actual tools necessary
to accomplish those tasks.

Inspired by this manual process, this chapter presents a system that automatically
combines a corpus of common search queries, and a corpus of web tutorials retrieved
from those searches, to uncover relationships between users’ vocabularies and the rele-
vant system components. These pairings are represented in what I call a query-feature
graph (Figure 4.2), or QF-graph (where “feature” in this context refers to elements in an
interactive system). Once formed, a QF-graph can provide the foundation for a range of
novel interaction techniques. In this chapter, I illustrate its potential by outlining three
possible interaction techniques:

• a search-driven interface in which users type the task they wish to accomplish, and
the interface assembles a list of the most relevant commands for the task

• dynamic and ever-evolving tooltips that display tasks which reflect how the user
community uses a given command

• app-to-app analogy search, which provides a mapping between the tools necessary
to perform a task in one interface and the equivalent tools in a second interface

Collectively, the QF-graph, its mode of construction, the validation of the technique
using real-world data, and the example uses of the QF-graph constitute the primary
contributions of this chapter. In the grander context of the web-mediated execution
bridge, QF-graphs unite the first two steps across the Gulf of Execution.

In the remainder of this chapter, I define the query-feature graph and describe its
automated construction in more detail, then presents the results of an evaluation that
assesses the quality of the query-feature associations expressed in QF-graphs. I describe
three novel interaction techniques enabled by a QF-graph, then conclude with a discussion
of the approach’s limitations and directions for future research.

1Furna et al’s characterization of the vocabulary problem was originally published in 1987; however, the
data characterizing common web search queries suggest that the interaction challenges arising from the
vocabulary problem persist to this day.
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Figure 4.2: Query-feature graphs pair tasks, as naturally expressed in user search queries,
with relevant system features.

4.1 The query-feature graph

The query-feature graph directly associates user search queries with relevant system
features (commands, menu items, dialogs, preferences, etc.) via an undirected weighted
bipartite graph. Formally, the query-feature graph, G = ({Q,F} , E), is composed of the
following components:

• Graph Vertices:

Q = {qi ; 1 ≤ i ≤ N}

Where Q is a set of distinct search queries pertaining to the use of a given
interactive system.

F = {fj ; 1 ≤ j ≤M}

Where F is a set of features (e.g., commands, menu items or other inter-
face components present in the system).

• Graph Edges:

E = {(qi, fj, wij) ; qi ∈ Q, fj ∈ F,wij ∈ R}
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Where E is a set of 3-tuples, each representing a weighted edge from a query
vertex to a feature vertex. Each weight, wij, expresses the strength of the
association.

QF-graph are created by first enumerating the relevant search queries and system
features that populate the vertex setsQ and F , respectively. Associations between queries
and features are then established using techniques from question-answering research,
which leverage co-occurrences of query terms and mentions of system features in relevant
online tutorials. I describe each of these steps in detail below.

4.1.1 Enumerating relevant search queries (Populating Q)

Assembling a meaningful set of queries, Q, is the first challenge in creating a QF-graph.
An obvious way to populate this set, then, is to sample the search query logs of web
search providers, looking for queries mentioning the interactive system. However, search
query logs are not made publicly available. To approximate search query logs, I leverage
the CUTS procedure described in chapter 3. CUTS leverages query auto-completion
services (e.g., “Google Suggest”) to sample popular queries from the logs of top-tier
search engines. For publicly available software applications, this technique has been
demonstrated to reveal tens or hundreds of thousands of queries for a given system.

4.1.2 Enumerating system features (Populating F )

To enumerate the features, F , of a system, I employ a variety of techniques ranging
from manual enumeration (e.g., with the Amazon Kindle), to extracting all strings con-
tained within a system’s string tables, which are used for language localization (e.g.,
with Chrome). For feature-rich applications, there are typically hundreds of commands.
When strings are extracted from string tables, there are often thousands of strings, many
of which represent ancillary text such as error messages and the text of tooltips or other
contextual help. Section 4.2.3 discusses some of the challenges posed by these ancillary
strings. Table 4.1 lists the five interactive systems used as examples throughout the rest
of this chapter together with the mechanism used to enumerate features.

4.1.3 Associating Queries with Features (Populating E)

Associating queries with features is the final step in constructing a QF-graph. In this
section, I present the specific challenges inherent in this final step, then describe the use
of the question-answering approach, QAP [24], to establish query-feature relationships.
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System Description of Feature Vertex Set F

Kindle 210 commands discovered through
manual exploration of the interface.

GIMP 830 commands enumerated by the
ingimp [122] project.

Inkscape 1785 strings extracted from Inkscape’s
primary en-US string table.

Firefox 583 strings extracted from the interface markup (XUL) files
used to layout Firefox’s UI.

Chrome 3088 strings extracted from Chrome’s
(Chromium) primary en-US string table.

Table 4.1: The five interactive systems for which QF-graphs were generated, along with a
description of the data sources used to populate each graph’s feature vertex set.

Challenges

The goal of a QF-graph is to associate the text of queries with the text representing
software features. However, both queries [69, 70] and software features typically consist
of only a few words, limiting the range of approaches that can be used to establish
associations. Specifically, simplistic term-matching approaches such as the vector space
model of information retrieval [110] cannot be readily applied: In the vector space model,
the similarity of two phrases depends on the set of terms that the two phrases have in
common. If the phrases share few words, then their similarity score is low. In this case,
the use of term overlap is further confounded by the fact that many queries are task or
goal-related and tend to have few words in common with any particular feature of the
system.

In order to address the issue of term sparsity, one can simply emulate existing search
practices: Each search query can be submitted to a search engine, the relevant web pages
can be retrieved, and the commands, actions or tools mentioned within the web pages
can be identified. This process enables the creation of associations between search queries
and related system functionality.

The strategy of using document retrieval to enrich or expand the set of terms asso-
ciated with a short phrase is not new. Specifically, Bernstein et al. employed document
retrieval to help cluster short Twitter messages [13], and Shen et al. used document
retrieval to help classify search queries [113, 114]. However, while this approach has been
found to be very effective in these latter contexts, in the context of pairing search queries
with specific elements of an interface, this technique breaks down when the resulting
documents are multi-topical. For example, a query to learn how to perform a particular
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task with an application can yield web pages on user forums, frequently asked question
(FAQ) pages, or blogs, all of which are inherently multi-topical documents that can ref-
erence a wide range of system features in the same document. The challenge, then, is to
determine which portion of a document is most relevant to a given search query.

To address this problem of multi-topical documents, one can repeat the basic search
process within each document, identifying and retrieving short passages that are most
relevant to the original query. These passages can then be processed to identify features
mentioned therein.

This pipeline of retrieving relevant documents, retrieving relevant passages, then iden-
tifying a set of mentioned system commands or features, is essentially the same as that
employed by many question answering (QA) services (e.g., see [121]). As such, I em-
ployed the QAP (Question Answering Passage) algorithm originally described by Clarke
et al. [24] to discover associations between queries and system functionality. I briefly
describe QAP in the next section. Interested readers are directed to [24] and [25] for a
more thorough treatment of the QAP algorithm.

An Overview of QAP

QAP proceeds in three distinct steps: 1) retrieve short document passages relevant to
the user’s question or query, 2) identify potential answers in those passages, and 3) rank
potential answers across numerous pages and passages so that a final summary can be
presented to the user.

Step 1: Passage Retrieval
The first step of QAP is to retrieve passages relevant to the user’s query. QAP employs a
cover-density ranking approach that treats all document substrings that both begin and
end with a query keyword as potential passages. The details of this cover-density ranking
are described in [24] and [25]. Notably, the ranking weighs the number of query key-
words contained within each substring against the substring’s length. Favourable ranks
are assigned to short substrings that contain many query keywords. Once substrings are
scored, longer fixed-length passages are extracted by expanding each substring about its
midpoint. I elected to extract passages consisting of 300 words after early experiments
suggested that this value was effective for the types of web pages and documents avail-
able for analysis (forums, blogs, etc.). The original QAP paper, [24], utilized passages
consisting of 200 words.

The original QAP papers employed cover-density ranking over all documents in the
corpus. In the QA literature, it is more common to first limit the search space by creating
a short list of documents that are potentially relevant to the original question or search
query [121]. Passage retrieval is then employed over this smaller set of documents. This
first step is accomplished by simply using Google’s public search API [33] to retrieve the
top 8 documents for each query. Whether using the original QAP formulation, or this
modification, each document contributes only its highest scoring passage to the next step
of the process.

57



Step 2: Answer Extraction
The second step of QAP is to identify potential answers mentioned within the top k scor-
ing passages. In this chapter k = 8. In the original QAP work, each query was analyzed
to determine the form of its expected answer. Depending on the question, answers might
take the form of dates, proper names, cities, numbers etc. Such answers can be detected
using a named entity recognizer, or by matching a passage’s phrases against lists of po-
tential answers. In the context of QF-graphs, document phrases are matched verbatim
against the features enumerated in the QF-graph’s vertex set F . Since developing query-
feature graphs in 2011, more sophisticated methods of detecting commands mentioned
in documents have been developed. Specifically, named entity recognition methods have
been adapted to address this need [84, 47, 101]. See Appendix A for more details.

Step 3: Ranking Answers
The final step of QAP is to rank the potential answers that were identified in passages.
To do this, QAP exploits the built-in redundancy of the web: The web is a large corpus,
and the answer to any question is likely to be found in many documents. As such, QAP
ranks answers using the following measure:

score(q, f) = nq,f × log
(
|D|
df

)
(4.1)

Here, nq,f represents the number of passages returned for query q in which the feature
f is mentioned. Similarly, df is the number of distinct documents in the corpus in which
the feature’s corresponding phrase f occurs, and |D| is the number of documents in the
corpus overall. The term |D|/df is just the familiar inverse-document frequency (idf)
of the system feature f . The idf statistic is computed from the corpus of web pages
relating to the interactive system under investigation. Depending on the interactive
system, this corpus consists of tens or hundreds of thousands of web documents collected
using standard web crawling practices.

Using QAP to generate edges

At the heart of the QAP question answering algorithm is the function score(q, f), given by
equation 4.1 above. This function assigns a numeric score to the tuple (q, f), expressing
the strength of the association between the query q and system feature f . This score
provides a means for weighting the edges in the QF-graph. Specifically, G’s edges are
defined as follows:

E = { (qi, fj, wij); qi ∈ Q, fj ∈ F, (4.2)

wij = score(qi, fj) }

Additionally, notice that QAP accepts any sequence of words as input. As such, the
QF-graph can be actively updated as new searches are performed. This is accomplished
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by simply appending new queries to the query vertex set Q, and executing QAP to
establish each new query’s associations with the fixed set of system features F .

In theory, this method should establish reasonable connections between user queries
and specific elements in the user interface. The next section presents results of my
analysis examining the quality of these connections.

4.2 Evaluation

To evaluate the quality of a QF-graph, I employed a variety of metrics. Some of these
metrics are standardized and are used throughout information retrieval literature. An-
other, I developed specifically for this particular problem domain. Since results are often
difficult to interpret on their own, I compare QAP results to those achieved when using
a more basic term-matching approach for associating queries with features (specifically,
cosine similarity ranking using the standard vector space model [110] with tf-idf weight-
ing).

4.2.1 Experiment Setup

The QF-graphs produced by the techniques described in this chapter were evaluated
using the following high-level steps. First, a set of test queries is chosen. Second, for
each test query, QAP’s results are recorded. Finally, the relevance of each result is judged
by an expert. Since I have already covered how QF-graphs are generated, I describe the
first and last steps of this process.

Selecting test queries

For this experiment, 20 queries were randomly selected from the query-feature graphs
pertaining to each of the five interactive systems listed in Table 4.1. Because queries were
selected from the query-feature graphs (which itself was built using queries harvested via
CUTS), the queries represent real-world searches performed by users.

Judging relevance

Many queries describe a goal or a task that the user would like to perform. One would like
to know which system features are relevant to the query, but one would also like to know
which sets of features are sufficient for completing the task implied by the search. To
accommodate both needs, solutions for each test query were manually crafted. A solution
is a collection of relevant commands or system features that “solves” or accomplishes the
goal implied by the query. As an example, there are two solution sets for the query
[firefox how to clear cookies ]:
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1. Clear Recent History, Cookies, Clear Now

2. Preferences, Privacy, Show Cookies,
Remove All Cookies

A system feature is said to be relevant to a query if the feature appears in any of the
query’s solutions. Similarly, one says that a set of features, S, covers a solution when S
contains references to all system features required to implement that solution. By this
definition, the full set of features F covers all solutions, and the empty set ∅ covers no
solutions.

Given a selection of test queries and their associated solutions, it is possible to employ
a number of metrics to measure the quality of the QAP query-feature associations. I
describe these metrics next.

4.2.2 Performance Metrics

Four search-quality metrics were employed to assess the QF-graphs: Mean precision at
1, percent correct at 10, mean average precision, and mean precision at *. Each of these
metrics is described below.

• Mean precision at 1
Mean precision at 1, denoted P@1, is a standard information retrieval metric [124]
that measures the proportion of test queries whose top-ranking QAP result is judged
to be relevant.

• Percent correct at 10
The percent correct at 10 measure (%C@10) is another simple metric that measures
the proportion of test queries for which at least one correct solution is covered by
the query’s top-10 QAP results.

• Mean average precision
Mean average precision (MAP) is a widely used information retrieval metric that
averages the precision of a set of search results, measured at various levels of re-
call (see [124] for more details). It is generally described as a measure of the area
underneath the precision-recall (or, receiver operating characteristic) curve. MAP
scores range from 0 to 1, with higher scores indicating better results.

• Mean precision at *
In question answering literature, one standard measure of performance is mean re-
ciprocal rank (MRR) [121]. A query’s reciprocal rank is simply the multiplicative
inverse of the rank corresponding to the first correct answer in the queries’ list of
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results. The mean reciprocal rank metric is the average of the reciprocal ranks of
all test queries.

In the domain of feature-rich applications, many queries cannot be “answered”
by a single result, but rather are “covered” by a set of results that combine to
form a correct solution. As such, I developed a metric similar in spirit to MRR,
described below, which I refer to as mean precision at *.

For each query q, let r∗ be the smallest integer such that q’s top r∗ ranking QAP
results cover one complete solution for the query. Precision at r∗, denoted Prec∗(q),
is the proportion of the top r∗ results that are judged to be relevant to the query.
P∗ is the arithmetic mean of these Prec∗(q) scores across all test queries.

Importantly, the P∗ measure is equivalent to MRR in cases where the query’s
solution is covered by a single command or system feature.

4.2.3 Experiment Results

Results from applying these four metrics to the experimental QF-graphs are listed in
Table 4.2. On average, 77% percent of the test queries were “answered” (or covered) by
the top-10 results returned by QAP. Moreover, the first QAP result was relevant to the
query in 63% of test cases.

Regarding individual applications, results for GIMP are quite good in part because
it was possible to obtain a very accurate list of GIMP’s commands, but also because
GIMP command names are sufficiently technical to not conflict with everyday language,
making it easier to identify commands mentioned in web pages. Similarly, results for
Firefox are superior to those of Chrome because Firefox’s interface markup language
(XUL) allowed the easy identification of strings associated with menu items, buttons
and other command-related UI components. Conversely, neither Chrome nor Inkspace’s
localization databases provide this information. As a result, the Chrome and Inkscape
QF feature-sets are much larger and contain a broader set of strings (which explains
why table 4.1 lists nearly six times as many strings from Chrome as it does for Firefox).
While most of these spurious strings rarely occur in search queries or web documents,
some strings (e.g., Chrome’s “And then click”) are sufficiently common to introduce
errors.

To provide further context for interpreting these results, and to measure the impact
of QAP, I repeated the experiment using a typical implementation of the vector space
model to match query phrases to system features. This approach is similar to those
employed in existing interface search tools (e.g., Mac OS X’s help menu search), and
ranks query-feature associations by averaging the importance weights of the words that
both the query and system feature have in common. A word’s importance weight is
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System P@1 P∗ MAP %C@10

GIMP 0.800 0.725 0.467 90%
Firefox 0.750 0.601 0.496 75%
Chrome 0.500 0.598 0.382 75%
Inkscape 0.500 0.536 0.264 70%
Kindle 0.600 0.633 0.458 75%
Overall 0.630 0.619 0.413 77%

Table 4.2: Performance when using QAP for discovering query-feature associations for five
different interactive systems.

System P@1 P∗ MAP %C@10

GIMP 0.450 0.302 0.132 30%
Firefox 0.500 0.501 0.264 70%
Chrome 0.050 0.197 0.074 45%
Inkscape 0.150 0.160 0.081 35%
Kindle 0.400 0.384 0.124 50%
Overall 0.310 0.309 0.135 46%

Table 4.3: Performance when using the vector space model for discovering query-feature
associations.

simply its inverse document frequency, described previously. Results from these trials
are listed in Table 4.3. Again, the results for Chrome and Inkscape are worse than for
the other three applications, and all are substantially worse than those obtained using
query-feature graphs. As noted earlier, the Chrome and Inkscape string tables contain
spurious strings (e.g., the text of error dialogs, etc.). These much longer strings are
favoured by cosine similarity ranking, and the vector space model, because their longer
lengths increase the chances of the string and the query having terms in common.

In all cases, with all metrics, QAP’s results are superior to those obtained when using
simple term matching (the standard vector space model).

From these experiments I conclude that, for a given query, the top-10 query-feature
associations discovered by QAP are reasonable, and, in every case, the results obtained
using QAP are better than those produced by more typical implementations of interface
search. Finally, these experiments establish a baseline with which future research can be
compared, and improvements measured.
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4.3 Applications

QF-graphs can serve as the computational back-end for a number of novel interface mech-
anisms. In this section, I describe how the QF-graph can improve search-driven interac-
tion, support dynamic tooltips, and enable application-to-application analogy search. I
use example data from actual QF-graphs to illustrate the utility of QF-graphs in these
hypothetical interface mechanisms.

4.3.1 Search-driven Interaction

The concept of search-driven interaction is simple: The user types in a few keywords and
the system returns a ranked list of relevant system commands and interface components.
This style of interaction can be useful when an application’s features number in the
hundreds or thousands [95].

QF-graphs provide a direct means of supporting search-driven interaction. When the
user enters a query, the QF-graph is consulted to retrieve relevant system features. If
the QF-graph does not contain an entry for the query, QAP can be used to provide this
information on demand.

To illustrate the potential of this approach, the following examples demonstrate search
results obtained using QF-graphs for three different interactive systems. For each exam-
ple, I provide the top five results returned from querying the QF-graph. The queries
themselves were drawn from the corpora of queries produced by CUTS, and thus repre-
sent frequently issued queries by users.

Query: “gimp convert to black and white”
As noted in Chapter 3, this query is issued by users who would like to convert color
digital images to images that consists only of shades of gray. This effect is most easily
achieved using GIMP’s, grayscale or desaturate commands, but can also be accomplished
by manipulating options in the channel mixer tool, or by decomposing the image in order
to extract its Luminosity or Value channels (in HSL or HSV color spaces, respectively).

QF-graph search results:
• Channel mixer
• Grayscale
• Desaturate
• Channels
• Decompose

Query: “how to get the kindle to read to you”
In this case, the user would like to enable the text-to-speech feature of the Amazon
Kindle. In 2011, at the time of data collection, this task was accomplished by pressing
the Aa hardware button, then navigating to the Text-to-speech section of the dialog, and
finally selecting the turn on command.
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QF-graph search results:
• Aa
• Text to speech
• Turn on
• Web browser
• Down (directional keypad)

Query: “change download location firefox”
Here, a user of the Firefox web browser would like to change the location to which Firefox
saves downloaded files. This can be achieved by opening Firefox’s general preferences
and entering a different value in a text field titled “Save files to.” Alternatively, the user
can check the radio button titled “Always ask me where to save files.”

QF-graph search results:
• Save files to
• Always ask me where to save files
• Always ask
• Location
• Save

Importantly, each of these three queries represent tasks or goals, as commonly ex-
pressed by users, and do not mention any system commands by name. Nevertheless, the
QF-graph returns results directly relevant to the goals implied by the queries, demon-
strating the utility and robustness of the approach.

4.3.2 Dynamic tooltips

The features represented in a QF-graph can also be “queried” to determine the set of
search queries associated with a given command, menu item, or option. This capability
motivates dynamic tooltips.

Dynamic tooltips extend standard tooltips or balloon help by proactively describing
the range of tasks that utilize the command or interface component currently in focus.
These task descriptions are derived from QF-graphs, which are themselves derived from
real-world user search queries and from web content, such as FAQs, forums, tutorials,
and blog posts. As a result, these tooltips dynamically track and reflect current use of the
software by the community. Moreover, these queries serve a similar role as anchor text
in web-based information retrieval, providing a large set of concise descriptions of how
a command is used in practice. Figure 4.3 provides an example of the contents such a
dynamic tooltip could display for GIMP’s “ellipse select” command (where the contents
are derived from GIMP’s actual QF-graph).

To generate the contents of a dynamic tooltip, the system first determines which
queries are associated with a given system feature f . The set of related queries Qf is
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Figure 4.3: A mockup of a dynamic tooltip for GIMP’s “Ellipse Select” command. The list
of related searches is derived from GIMP’s QF-graph, as are the pairs of commands associated
with each search query.

simply the set of vertices neighbouring f in the QF-graph. As an example, Table 4.4
provides a partial list of the queries neighbouring the “ellipse select” command in GIMP’s
query-feature graph.

An exhaustive examination of these queries (in this case, numbering over 750), reveals
references to a variety of tasks other than drawing circles or ellipses (e.g., writing text
along a circle, or correcting red eye). However, while there may exist numerous queries,
many of these queries refer to the same topic, as can be seen in the partial list of queries
associated with “ellipse select” shown in Table 4.4. In other words, there is considerable
redundancy in Qf .

By removing redundancy in the set Qf , one can more concisely express the variety of
tasks in which the command f is involved. In order to remove redundancy in Qf , one can
repeatedly remove queries q whose query-feature edge weight is less than that of some
equivalent query, p ∈ Qf . Two queries, q and p, are considered equivalent if they share
4 of their top-5 search results. Applying this procedure to the set of queries related to
GIMP’s “ellipse select” tool yields the queries listed previously in Figure 4.3.

The queries listed in a dynamic tooltip can also be augmented with an additional
list of related commands. Specifically, the top two features associated with each query
(excluding the command for which the tooltip is generated) can be displayed to provide
more context about the tools necessary to complete the task represented by the query.
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Rank Query

1 gimp draw circle
2 draw a circle in gimp
3 drawing a circle in gimp
4 gimp drawing circle
5 gimp tutorial circle
6 draw ellipse gimp
7 gimp ellipse draw
...

Table 4.4: A partial list of queries neighbouring GIMP’s “ellipse select” command.

As an example, the dynamic tooltip for the “ellipse select” tool in Figure 4.3 lists an
example query, “gimp text on circle”, along with two additional commands: “text along
path” and the “text tool”. Both of these latter commands can be used in conjunction
with “ellipse select” to print text along the circumference of a circle. This specific use
of QF-graphs is similar in spirit to the user and item-based command recommendations
discussed by Matejka et al. in [90]. However, the recommendations generated from QF-
graphs are likely to be more task-specific and task-focused since they derive from web
pages and tutorials describing specific tasks.

4.3.3 App-to-App Analogy Search

Within a given domain, competing applications often provide similar functionality, but
use different naming conventions or vocabularies for those features. As an example, in the
domain of web browsers, Firefox’s “private browsing” feature is equivalent to Chrome’s
“Incognito” mode (both modes limit the amount of information tracked and exchanged
when browsing the web). Despite these different branding of this common feature, users
issue similar queries when searching for these capabilities (since queries typically express
a high-level goal). As an example, Figure 4.4 depicts a set of Google auto-complete
suggestions for the prefix “privacy mode”. Note that the suggestions list many of the
most popular browsers (Firefox, Chrome, Internet Explorer / IE, and Safari) despite
none of these browsers offering a command, menu item or option named “privacy mode”.
These similarities in user queries make it possible to associate queries in one application
to queries in a second, comparable application.

Linking queries from two different applications serves to connect the QF-graphs of the
two applications (Figure 4.5). Once connected, the paired graphs enable analogy search,
or the ability to directly relate the commands of one application to similar commands in
the second application.

As a demonstration of this concept, the results of applying analogy search to the
aforementioned private browsing example are listed below. As can be seen, analogy search
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Figure 4.4: Google auto-complete suggestions for the prefix “privacy mode”. The sug-
gestions list many of the most popular browsers despite none of these browsers offering a
command named “privacy mode”. This example serves to highlight that people often use
similar terminology to express concepts, making it possible to link functionality across dis-
parate applications.

is able to correctly associate Firefox’s “start private browsing” command to Chrome’s
“new incognito window” command.

Analogy: Chrome commands similar to Firefox’s
“Start Private Browsing” command:

Results:
• New incognito window
• Incognito
• Session
• And then click

Analogy search begins by identifying the top 10 queries in Firefox’s QF-graph related
to the “Start Private Browsing” command. For each query, a term frequency inverse
document frequency (tf-idf) vector is created, as is standard in the vector space model
of information retrieval [110]. A weighted sum of the 10 query vectors is then computed
in order to synthesize a single feature vector for the “Start Private Browsing” command.
Weights in the summation correspond to the query-feature edge weights in the QF graph.
This amalgamation of queries into a communal feature vector helps to mitigate the term
sparsity problem, as previously discussed in section 4.1.3. Once the feature vector is com-
puted, an identical process is performed for each of Chrome’s commands. The similarity
between pairs of commands is then computed as the dot product of the two vectors, and
the highest scoring Chrome commands are listed in the search results.

As a further example of the effectiveness of app-to-app analogy search, consider two
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Figure 4.5: App-to-app analogy search relates features found in one application to similar
features found in other applications. To accomplish this, the QF-graphs of two applications
are joined together by using the standard vector space model to identify similar queries.

somewhat different applications: GIMP and Inkscape. GIMP is a raster graphics editor,
while Inkscape is a vector graphics editor. Importantly, GIMP and Inkscape both edit
images, but do so using vastly different metaphors and data (namely, pixels vs. vectors).

As an example of how these applications differ, GIMP allows users to crop an image
using a “crop” tool. To achieve a similar effect in Inkscape, users must first select objects
of interest, then either set the “clipping region,” or “fit the page to the selection.” Despite
these marked differences, app-to-app analogy search is able to correctly associate GIMP’s
crop tool with the appropriate Inkscape commands.

Analogy: Inkscape commands similar to GIMP’s
“crop” command:

Results:
• Crop marks
• Select all in all layers
• Select
• Fit page to selection
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Finally, it is also possible to use analogy search to identify related commands within
the same application. The following example illustrates this point:

Analogy: GIMP commands similar to GIMP’s
“stretch contrast” command:

Results:
• White Balance
• Auto (Levels)
• Stretch Contrast
• Colors

In the above example, analogy search correctly inferred that GIMP’s “stretch con-
trast”, “white balance” and “auto levels” commands are related in that they are often
used in conjunction (or in place of) one another, in order to enhance a digital photograph.
(In this case, each of these commands is used to manipulate an image’s histogram.)

4.4 Discussion

I conclude the discussion of QF-graphs by considering some of their limitations, challenges
in automatically creating query-feature associations, and directions for future work.

4.4.1 “Feature” ambiguity in web documents

In this chapter, I identified system features referenced within web pages by simply search-
ing those web pages for instances of phrases matching the names of commands, menus,
and other interface components. This approach works rather well for commands with
technical names (e.g., “unsharp mask”), or for longer phrases (“Always check to see if
Firefox is the default browser on startup”). Such phrases are unlikely to appear acciden-
tally in documents. However, for short command names, or for commands with common
names (e.g., “Delete”, “Save”), there is considerable ambiguity, and it is difficult to de-
cide if the document is referencing a command, or if the phrase is simply part of the
document’s prose. In this chapter, the QAP scoring function (equation 4.1) addresses
the problem by exploiting the redundancy afforded by multiple relevant passages, all the
while using inverse document frequency to reduce the impact of common phrases. In
other words, the scoring function requires that a feature with a common name appear in
many relevant passages in order to achieve a high score.

Appendix A explores more sophisticated means of identifying references to system
features in tutorials and forum postings. Authors often specify the full paths of commands
in their text. As an example, rather than simply writing “grayscale”, many authors
write “Image→Mode→Grayscale” when referring to GIMP’s grayscale command. In the
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latter case, it is clear that the terms “Image”, “Mode” and “Grayscale” are references to
interface components. Identifying these types of patterns increases the confidence that
the use of a word actually refers to an element in the system. Likewise, tutorial authors
often capitalize command names, and may style commands differently than surrounding
text. Each of these informal conventions can be used as a machine learning feature for
detecting commands mentioned in instructional material.

4.4.2 Exploiting temporal associations

Additionally, just as search queries are often task-related, so too are the documents they
retrieve. As such, many documents specify sequences of commands that must be executed
in a particular order to achieve a desired outcome. These command sequences are not
reflected in the current QF-graph, nor in the search results returned by QAP. This can be
disconcerting when the order of commands returned does not match the order in which
those commands should be executed. As an example, consider the query “how to draw a
circle in gimp”. Depending on the strengths of the query-feature associations, the system
may return a ranked list of commands where “stroke selection” appears before “ellipse
select” (where both commands must be used to draw a circle in GIMP since it provides
no tools for drawing geometric primitives).

In the future, I would like to extract command sequences from documents, and use
this sequencing information to improve the range of possible applications of QF-graphs.
As an example, it would be beneficial if search-driven interaction could return sequences
of actions rather than individual commands. Similarly, the availability of sequencing
information could allow the recommendations made by dynamic tooltips to automatically
update as the user progresses through a given task.

4.5 Conclusion

In this chapter, I presented QF-graphs, and demonstrated how they can be constructed
automatically from logs of search queries, web pages, and localization data. While it is
conceivable that QF-graphs can be constructed using alternative means or data sources,
the approach outlined in this chapter confers a number of advantages. Specifically, by
drawing from query logs and web pages, one ensures that QF-graphs graph can be con-
tinuously updated as system usage patterns change. Moreover, a completely automated
approach ensures that data from thousands of users can be considered when associating
queries with system features.

This chapter also outlined how QF-graphs can be used to advance search-driven in-
teraction, while paving the way for new interaction techniques such as dynamic tooltips
and application-to-application analogy search. Collectively, these mechanisms help to
bridge the Gulf of Execution in cases where users are able to articulate their goals as
search queries, but are unsure of how to accomplish those goals in an interactive system.
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4.6 Addendum

In the time between the first publication of Query-feature graphs [49] in 2011, and the
preparation of this dissertation in 2015, Query-feature graphs have been leveraged and
extended by other researchers in a number of significant ways [72, 1]. First, Khan lever-
aged query-feature graphs as the foundation of a command recommendation system [72].
In developing their recommender system, Khan et al. undertook additional steps to: (1)
cull queries that did not clearly specify a task (e.g., “gimp 2.6 fonts”), and (2) to resolve
minor mismatches in the feature names used in the original research (e.g., differences
between GIMP 2.6 and GIMP 2.8.6). This suggests that there is a need to consider how
to address issues that arise when online documentation (and models trained thereon)
diverge from the terminology expressed in a user interface, as a result of iteration and
evolution of the software over time, or between localities. This issue is detailed and
discussed in Chapter 6.

Additionally, in 2014, Eytan Adar et al. presented the CommandSpace system
which is similar in spirt to Query-feature graphs, but leverages deep learning to jointly
model system features and user vocabulary [1]. As with query-feature graphs, Com-
mandSpace is trained on a corpus of web tutorials, and allows users to map from
keyword searches to system commands and vice versa. Notably, Adar et al. compared
the performance of CommandSpace to that of Query-feature graphs, and found that
their approach leveraging deep learning significantly outperformed those generated using
QAP – the method I employed to construct Query-feature graphs for this dissertation.
To this end, I consider Adar et al.’s work to be the new state-of-the art in this space,
and should serve as the starting-point going forward.
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Chapter 5

InterTwine
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Figure 5.1: This chapter introduces InterTwine, a system that integrates all three steps
across the web-mediated execution bridge. With InterTwine, actions in the web browser
directly impact how information is presented in a software application, and vice versa. Portions
of this chapter were first published in [46].

A central tenant of this dissertation is that people rely on web search and web doc-
uments to help bridge the Gulf of Execution when using feature-rich software. Users
access web materials both as a first line of technical support, and as means for coping
with the software’s complexity [16, 77, 116]. This tightly coupled use of web-based infor-
mation with desktop software suggests that it is worthwhile to consider these separate
systems—the search engine, online documents, and the desktop application—as parts of
a single system for performing work.

This chapter integrates all three steps across the web-mediated execution bridge to
address the processes of finding and re-finding task-specific information when using desk-
top software. In this context, information foraging theory provides a useful framework
for considering these practices [102]. Information foraging posits that people make use
of information scent to guide their selection and use of information resources within
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Figure 5.2: InterTwine links web browsers with feature-rich software applications to create
interapplication information scent. Specifically, InterTwine modifies application tooltips to
describe how they are mentioned on the web page currently open in the browser (a). Likewise,
InterTwine extends web search snippets with details of how work documents evolved when that
web page was last accessed (c). Finally, InterTwine maintains an interactive interapplication
event history to facilitate re-finding past actions and relevant pages (b).

“patches,” or collections, of information [21]. When using the web, information scent is
provided by elements such as a search engine’s autocomplete service, the short page snip-
pets shown in search results, or previously visited links rendered in a different color. In
desktop software, menu hierarchies, command names, tool icons, and tooltips all provide
affordances that can be considered forms of information scent that assist users in finding
relevant functionality.

While these separate systems each provide useful forms of information scent to guide
the pursuit of desired information, they largely function independently of one another:
the activities in one application have no effect on the presentation of information in the
other, forcing the user to manually link information patches between the two applications.
For example, desktop software generally has no awareness of when the user turns to the
web to learn how to complete a task with the software. Thus, when the user finds
relevant information on the web, they must manually connect that information with the
affordances and cues provided by the desktop software. This motivates the development
of mechanisms that more effectively link these distinct systems, to ease the processes of
finding and re-finding information within and across applications.

This chapter describes InterTwine, a system that introduces the concept of interappli-
cation information scent. Interapplication information scent links the separate informa-
tion patches of the web browser and desktop software, injecting novel forms of information
scent into both applications to facilitate the finding and re-finding of information. For
example, InterTwine embellishes a desktop application’s menus with markers (what I call
“beacons”) for menu items described in the currently open, front-most browser window
or tab (Figure 1a). The current implementation explores these concepts in the context
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of the Firefox web browser and the GNU Image Manipulation Program (GIMP).

InterTwine is composed of three conceptual entities: 1) a shared, interapplication
history produced by recording actions in the web browser and desktop application, 2)
mechanisms to identify information likely to be of relevance from this shared history, and
3) novel interface mechanisms that introduce context-aware, interapplication information
scent synthesized from this shared history.

This system demonstrates three different classes of interapplication information scent:
application bridges, history snippets, and history digests.

Application bridges are information scent cues that link information in the currently
open web page with the relevant features of the desktop application. The previously
mentioned menu beacons are an example of application bridges. InterTwine also bridges
applications by injecting relevant snippets from the open web document into the tooltips
of the desktop application. Together, these bridges help users establish and maintain
a shared information context across application spaces, easing the process of locating
information referenced in one application in the other application.

History snippets are a form of information scent that communicate the context sur-
rounding the past use of a command or web page. InterTwine provides history snippets
by embellishing tooltips with a paged display that lists the commands and web pages
leading up to, and following, previous invocations of the command. This context helps
people re-trace past steps at a glance, and re-access relevant web content.

History digests provide context-dependent summaries of how the desktop application
was used with respect to a given web page. InterTwine presents these history digests by
augmenting Google search results with summaries that include before and after screen-
shots of the related application document, and the commands invoked in the desktop
application when that web page was open. Warnings are presented to the user for pages
in which operations were performed but later abandoned (suggesting the page may not
have been that useful for the task). This shared information scent helps users more
effectively locate web pages previously found to be useful.

Collectively, this chapter makes the following contributions:

1. I present results from a formative study that informed the need for, and design of,
mechanisms that provide interapplication information scent

2. I introduce the concepts of a shared, interapplication history and interapplica-
tion information scent, and demonstrate three types of interapplication information
scent: application bridges, history snippets, and history digests

3. I demonstrate these concepts within InterTwine, a system that ties together the
separate information spaces of Firefox and GIMP

4. I validate these concepts via the results obtained from the formative study
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In the remainder of this chapter I present the details of the formative study, then
describe the InterTwine prototype, and the types and instances of interapplication in-
formation scents it provides. I then describe a strategy for constructing interapplication
history. Finally, I report how participants of the formative study and iterative design
process responded to the final version of the software, and discuss future directions for
research.

5.1 Formative Study

To guide development of InterTwine, I conducted a formative study to: 1) understand
the breakdowns that occur when online resources are used to support work in feature-rich
applications, and 2) collect feedback on early designs of InterTwine. Eleven individuals
(six male, five female, mean age of 26), with varying levels of experience with image
editing software, participated in this study. Participants received a $10 Amazon gift
card as remuneration for participating in the formative study.

Each session was divided into two parts. In the first part of the session, participants
were asked to perform a pair of tasks (described below) using unmodified versions of
GIMP 2.8 and Firefox 26. This afforded an opportunity to observe, firsthand, how
people find, follow, and re-find online materials when performing tasks in a feature-rich
application.

In the second half of each session, participants performed the exact same tasks again,
but using the experimental interface designs. These designs ranged from sketches to fully
implemented prototypes. For non-functional prototypes, I explained how they functioned
and asked users for feedback on their utility to complete the tasks they just performed.
For functional prototypes, participants were asked to think aloud as they used the pro-
totypes to complete the same tasks again. Whenever possible, the prototypes were pop-
ulated with data generated in the first half of each session, thus giving participants a
chance to evaluate designs with “live” data. Designs were iterated after each interview,
to continually evolve the prototype.

Two tasks, whose solutions are non-trivial in GIMP, were chosen for study. One
task was to place a thick black border around a sample of large text (i.e., outlining the
text). The other task was to modify a color photo so that the background was black and
white (i.e., selective desaturation). In all cases, tasks were presented as pairs of before
and after pictures without any descriptive text. The order of presentation of tasks was
counterbalanced across participants. Prior to performing the first task, participants were
strongly advised to seek online materials for assistance.

Participants’ actions were captured by event logging software, screen capture software,
and an audio recording device.
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5.1.1 Summary of Study Results and Implications for Design

The study found that participants initially experienced trouble locating commands men-
tioned in the web-based tutorials when switching back to GIMP. Participants also had
difficulty recalling their previous actions, both online (e.g., search queries, as in [119]),
as well as in the application (e.g., commands and procedures).

While I expected participants would encounter some of these issues, they occurred
more frequently and with greater severity than expected. For example, I observed par-
ticipants identify promising commands mentioned in tutorials, and then almost imme-
diately forget the identity, location, and details of those commands when switching into
the desktop application. This difficulty was observed even when tutorials explicitly and
unambiguously mentioned the locations of commands in the interface. In all of these
situations, participants typically adopted a strategy of systematically exploring an ap-
plication’s menus and tooltips in the hope of recognizing their target.

These results suggest there is value in linking the separate information spaces of
the web browser and desktop application, to make finding information presented in one
application easier to locate in the other application. The difficulty in recalling past actions
also suggests the value of mechanisms that assist in re-finding task-specific information
at a later time. These results directly led to the development of application bridges and
history snippets in InterTwine.

The iterative design process also revealed that participants were enthusiastic about
seeing previously edited GIMP work documents associated with relevant web pages in
web search result snippets. However, they expressed disinterest when presented with
fine-grained details of errors, dead-ends, or unsuccessful sequences. Accordingly, history
digests summarizing past activities were developed. Digests included indications of which
web pages appeared to have had no effect on advancing the solution.

Participants were also asked how they would feel if non-relevant web pages were
wrongly associated with GIMP work documents (e.g., linking a work document to a
news article that was coincidentally open in the web browser). Participants commented
that such errors were easy to spot from the snippets provided, and could be safely ignored,
but posited that a high frequency of errors would quickly eliminate any such system’s
advantages over the status quo. As such, InterTwine takes several measures to ensure
the relevance of any associations made between web pages and GIMP documents.

Finally, when presented with a shared history depicting the use of both applications,
the participants expressed a desire to see the full history, without omissions. Early
designs revealed only the most important commands or web pages, and were generally
disliked, as were designs that presented browsing and procedural details in separate
locations. Accordingly, InterTwine includes a shared history that shows all activity in
both applications.

I now describe InterTwine’s design in detail.
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5.2 InterTwine

InterTwine is composed of three conceptual parts: a shared interapplication history,
mechanisms to identify potentially relevant information from that history, and interap-
plication information scent that helps users link the separate information spaces of the
web browser and desktop application.

Individual parts were implemented via a plugin-in for the Firefox web browser, a mod-
ified version of the GIMP image manipulation system, and a shared datastore and asso-
ciated shared history service that mediates communication between Firefox and GIMP.

While the shared history service serves a key role in the system, it operates auto-
matically in the background, and is not directly accessed by the user; users access its
capabilities through the various interface components described below.

InterTwine modifies GIMP by adding an interapplication history transcript, by em-
bellishing its menu items with beacons, and by adding history snippets to tooltips. In
Firefox, InterTwine augments Google search result pages with history digests. I describe
each of these components in turn.

5.2.1 Interapplication History Transcript

The foundation of the InterTwine system is an interapplication interaction history. While
these data are used to derive many of InterTwine’s other features, users can also directly
view and interact with this history.

The current implementation depicts this shared history in a pane that adopts the
metaphor of a chat program. When an action is performed in an application, a “speech
bubble” is produced representing that action (Figure 5.3). Entries contributed by GIMP
appear on the right. Entries contributed by Firefox appear on the left. This metaphor
was chosen to make it easier to visually parse the histories, and to establish a common
visual design that can be used in other parts of the interface.

All items displayed in the transcript are interactive. Clicking on a GIMP command
bubble causes the command to be invoked, and clicking on a web page bubble causes the
web page to open in Firefox and the web browser to come to the foreground.

The transcript can also be searched. InterTwine’s transcripts are indexed by com-
mand names, command tooltips, file names, web page titles, internet search queries, web
page body text, dates, and times. This extensive coverage is designed to allow users to
index into the transcript using almost any detail recalled about a previous session, and
addresses the goal of helping users re-find information.

Finally, embracing the notion of a chat system, users can directly add to this transcript
by typing at the chat prompt (Figure 5.4). When users begin typing at the prompt, their
input is automatically completed with the names of GIMP commands, as well as the titles
of web pages in the browsing history. Selecting an item from the list of suggestions causes
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Figure 5.3: InterTwine adopts the metaphor of a chat program to communicate interappli-
cation event history. When users issue commands in GIMP, the commands appear as speech
bubbles on the right-hand side. When users visit pages in Firefox, the pages appear as speech
bubbles on the left-hand size.

the command to be performed, or the website to be opened and brought to the foreground.
This capability draws some inspiration from Hendy et al.’s graphical enhanced keyboard
accelerators [62].

As with all InterTwine features, autocompletion makes extensive use of the inter-
application history and the current state of both applications when determining what
suggestions to provide, as well as their order. As an example, if a web page is open in the
user’s browser, then the suggested commands are embellished with one style of beacon
(i.e., marker) if they are mentioned in that web page, and another style of beacon if they
were previously used the last time that web page was open (as seen in Figure 5.4).
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Figure 5.4: A “chat prompt” is located directly below InterTwine’s events transcript. From
this prompt, users can execute GIMP operations or visit web pages by typing commands.
The prompt autocompletes the input, allowing users to issue commands with only a few key
presses. Auto-completion suggestions are prioritized and contextualized based on the current
context. Context cues include: the page the user is visiting, the document the user is editing,
and the set of commands the user has recently issued.

5.2.2 Interapplication Information Scent in Menus and Tooltips

InterTwine modifies the presentation of GIMP menus and tooltips to provide interappli-
cation information scent. This information scent is informed by the shared history and
the currently visible web page.

InterTwine embellishes menu items with a hollow star icon (a beacon), to communi-
cate that a given menu item is mentioned on the web page the user currently has open
in the browser (Figure 5.5). These menu items’ tooltips are also augmented to present
web page excerpts that mention the given menu item. These beacons and excerpts are
designed to increase the information scent of relevant menu items, and help bridge the
separate information spaces of the web page and the desktop software.

InterTwine’s menu items are further enhanced based on their history of use. Specifi-
cally, if users have previously visited a web page and issued a command with that page
open, then InterTwine displays a filled star icon next to the menu item to indicate past
relevance. Furthermore, the item’s tooltip contains excerpts of the interapplication his-
tory transcript detailing its context of use (Figure 5.6). In cases where the menu item
has been used in multiple contexts, users can page through a slideshow of these excerpts
using the left and right arrow keys. Finally, at any time, users can press the F1 key to
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Figure 5.5: InterTwine embellishes menu items with beacons (star icons) when those items
are mentioned by name in the currently visible web page. Likewise, menu tooltips gain snippets
describing the context in which each menu item is mentioned in the web page.

scroll the full interapplication history (described above) to the corresponding time when
the command was used.

5.2.3 Interapplication Information Scent in Web Search Results

In Firefox, InterTwine modifies the Google search results page by enriching the standard
search result snippets with details extracted from the interapplication history.

In situations where a search result item has been previously visited, InterTwine re-
trieves details of the past visit, and generates a summary (or digest) of this information
for review (Figure 5.7). These digests include two screenshots of GIMP’s canvas: one
taken when the user first accessed the search result, the other taken when leaving the
target web page. These images serve as a visual summary of the work that was done
when previously visiting the page.

The snippet also details how long the page was previously open, as well as the number
of GIMP operations performed while the page was focused in the browser. Two different
counts are presented: the total number of operations performed, and the number of
operations ultimately saved to the work document. These counts differ when commands
are undone, or when the user closes a document without saving or exporting a result. In
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Figure 5.6: When revisiting a web page, InterTwine places additional beacons (filled-stars)
next to commands that were used before in the context of the web document. In these cases,
the tooltips gain excerpts from the interapplication history, describing their earlier context of
use.

extreme cases where all commands are abandoned, the snippets instead present a warning
(Figure 5.8).

Finally, users can optionally click a hyperlink in the snippet to reveal the context in
which the page was previously accessed. As with tooltips, these details are presented as
excerpts from the interapplication history.

5.3 Implementation

InterTwine’s implementation consists of three components that interoperate on a user’s
local machine: a modified version of the GIMP image manipulation system, a plugin-in for
the Firefox web browser, and a local coordination service that mediates communication
between Firefox and GIMP. I describe each of these in turn.

InterTwine requires two distinct sets of modifications to GIMP. First, GIMP must
be instrumented to record a user’s low-level interactions with the software, as well as to
record screenshots of the user’s work document as it evolves over time. GIMP must also
be modified to display the interapplication history transcript, as well as custom menu
items and tooltips. InterTwine implements the transcript and the custom tooltips by
embedding a Webkit browser directly into the GIMP application. As such, InterTwine’s
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Figure 5.7: InterTwine modifies Google search result snippets when web pages have been
previously visited. Here, InterTwine presents history summaries, which include screenshots
of how the user’s document evolved when previously reading the page. Additionally, the
summaries present statistics describing the time spent, and the number of commands issued.

Figure 5.8: InterTwine’s history summaries present warnings to users in cases where earlier
page visits failed to result in commands being invoked, or in cases where command invocations
were ultimately abandoned by the user (e.g., commands that were undone or unsaved).

tooltips and transcripts are themselves implemented in HTML and JavaScript. This
architecture was especially useful during the formative study, allowing the quick iteration
of InterTwine’s designs.

As with the modifications to GIMP, InterTwine’s Firefox plug-in serves two roles.
First, it instruments the browser to track a user’s actions online. Second, it modifies the
presentation of the interface (i.e., Google search results). In both cases, these actions
are achieved by injecting custom JavaScript code into the pages a user visits online.
Instrumentation is achieved by coercing visited web pages to signal interface events (e.g.,
page loads, scrolling, etc.) by making an asynchronous request to InterTwine’s local
service.

Finally, InterTwine’s local coordination service consists of a lightweight web server
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running in the background of the user’s machine. This service both collects instrumen-
tation data from GIMP and Firefox, and generates content for the GIMP transcript and
tooltips, as well as the Google search result snippets. Additionally, this service processes
the instrumentation data to generate the interapplication history. Next, I describe a
method of generating and refining the interapplication history.

5.3.1 Creating and Refining Shared Histories

In the formative study, users made extensive use of tabbed browsing, and followed hyper-
links by opening each in a new tab. Once opened, tabs were rarely closed before the end
of each session. Instead, participants returned to earlier pages by switching tabs rather
than by relying on the browser’s backward and forward buttons.

Two users were also observed adopting a strategy of “pre-fetching” search results by
opening promising links in new tabs prior to visiting any individual result. In these cases,
it was common to retrieve pages that were never actually consulted.

Finally, when participants leveraged online resources to perform unfamiliar tasks, they
often continued to explore and experiment with the application’s interface, sampling the
application’s capabilities and undoing many commands.

All of these practices complicate the process of producing a meaningful, shared in-
terapplication history: By the time users complete a task, the histories and interactions
logs are extremely noisy, with relevant commands and web pages hidden in a sea of dead-
ends and failed experiments. Accordingly, further processing and filtering of the shared
interapplication history was found to be necessary.

In an effort to improve upon the näıve approach to creating a shared history, Inter-
Twine gathers additional interaction details not present in standard browsing histories.
In particular, InterTwine records which browser tabs are visible at any given moment,
providing an indication of relevance for each tab. Likewise, InterTwine records interac-
tion events that occur on web pages (e.g., page scroll events), and uses these events to
estimate the degree to which a page is being utilized. Specifically, application commands
are attributed to web pages only if the web pages mention the name of the application
(“GIMP”) in their body text, and if the application commands occur within 5 minutes
of a web page interaction event.

Additionally, InterTwine tracks the outcome of each command, noting if the command
is ever undone, and if not, whether the application document is ever saved (indicating
that the work in that document was deemed useful). These data are then reflected in
the history digests shown with Google search results: digests display whether a visited
web page previously contributed any commands that were still intact when the work
document was saved.
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5.4 Feedback on Final Design

To evaluate the final design of InterTwine, participants from the initial formative study
were invited to return 15 days after their initial session. In addition to collecting feedback
on how the design had improved (or regressed), this final session afforded an opportunity
to observe breakdowns that occur when people repeat tasks several weeks apart, providing
a way to validate the system’s core purpose (i.e., to assist in re-finding information).
Five participants responded to the invitation, and returning participants received an
additional $10 Amazon gift card as remuneration.

In this return session, participants were asked to perform one of the original tasks.
Since each participant experienced a different prototype in the formative study, and
because early prototypes were not always functional, it was not possible to carry forward
a participant’s earlier interapplication history. Instead, participants were greeted with
a fresh installation of GIMP, Firefox, and InterTwine. As with the formative study,
minimal instructions were provided. Tasks were presented as pairs of before and after
pictures without descriptive text, and participants were advised to seek online materials.
InterTwine’s features were discussed as they were discovered, and participants were asked
for their interpretations before correct use was demonstrated.

5.4.1 Results

At the onset of this final session, all five participants felt they remembered enough about
the task to complete it without consulting the web. However, when the time came to
actually perform the task, none were able to complete the task without consulting web
resources. When asked about this discrepancy, one participant explained:

“I think my dependence on the Internet is pretty high. I’m sure I could have
[completed the task], but sometimes I doubt myself and think I’ll do this faster
with Google” P2

After participants visited a few web pages, I called attention to InterTwine’s interap-
plication history, and provided a brief overview of InterTwine’s other features. Partici-
pants were then asked to continue the task, and to provide feedback as they worked.

Participants were generally positive about InterTwine’s individual features. For ex-
ample, P1, P3 and P5 were very enthusiastic about InterTwine’s menu and tooltip en-
hancements. P3 had the following to say about these features:

“You don’t have to guess anymore. When you read something and you think
yeah, OK, and [then]... I mean, I was powering through this pretty quick,
because I thought I knew how to do it. But if you are on a web page and you
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go up there and... [in] the two seconds you actually read something versus
going to do it, you forget what’s going on, and then boom, it’s right there
[referring to InterTwine’s beacons] ” P3

Likewise, participants P2, P3 and P4 explicitly mentioned finding the shared history
to be a useful tool. P2 reported this feature as the single most significant improve-
ment from the prototypes discussed in the formative design process. P3 was especially
enthusiastic about the shared history’s command prompt, stating:

“I’m just thinking like for an advanced user, someone who has been using it
for a while, just having the quick keys [command prompt] down here rather
than going through all that, that’s kind of nice... Yeah, so once you get handy
with that I can see it being really, really powerful.” P3

All five participants felt that the historical digests, added to Google search results,
were especially useful. This was not unexpected, as 10 of the 11 original formative design
participants responded enthusiastically to prototypes with this feature. On this topic,
P5 noted:

“I like where it says how long you’ve been on the web page and what [you]
did. It will tell me I saw this web page quickly and I didn’t like it so I X’ed
out of there.” P5

Finally, P2 noted that InterTwine’s features were compelling enough to switch image
editors:

“My image editor of choice is Paint because it’s really simple... I do have
Paint.NET on my computer, but I don’t use it. But with this sort of input,
I would be more likely to use GIMP, because it would help me do some more
advanced things that would be difficult to figure out otherwise.” P2

5.4.2 Areas for Improvement

While participant feedback was very positive, participants offered suggestions for im-
provements. For example, despite being very enthusiastic about the menu beacons, P3
initially failed to notice them at all. When the beacons were pointed out by the re-
searcher, the participant explained that the beacons looked like menu text, and he was
not sufficiently familiar with GIMP to know if they were something new. This sug-
gests the need to refine the presentation of these markers, so that their designs better
communicate their purpose.
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Likewise, P5 noted that she found the features of InterTwine’s shared history (e.g.,
search and auto-complete) to be complex, and worried that she would not “use it to its
full potential.” However, P5 felt that the excerpts of the history, presented in the tooltips
and search results page, were acceptable.

Finally, both P1 and P2 requested a mechanism for manually managing the history. In
particular, they expressed interest in the ability to rate pages and command sequences,
as well as the ability to hide or delete items with poor ratings. I feel that these are
excellent feature requests, and that manual management of interapplication history is a
compelling design dimension to explore in the future.

A final encouraging sign that InterTwine is offering features that are generalizable,
and of value, is that participants offered numerous suggestions for other applications that
could benefit from the same interactions. For instance, P5 suggested InterTwine could
be applied to SPSS, Minitab, and other statistics packages to help users recall how to
perform various statistical tests. Likewise, P1 commented that an InterTwine-like system
would be useful when using geographic information systems. Finally, P2 stated:

”I’m just thinking like, even writing an essay, like if you had your documents
up like in Mendeley or whatever, you can know you wrote this with this docu-
ment open, and you know what to cite. I’m just thinking of other applications.
It seems... I’m just astounded, this is really cool.” P2

5.5 Discussion & Future Work

InterTwine represents one targeted exploration of the notion of interapplication infor-
mation scent. The types of interaction mechanisms chosen in this research were largely
determined by following the most salient leads uncovered in the formative study. In this
section, I discuss other promising research trajectories, and other possible application
domains.

5.5.1 Community Aggregation

InterTwine operates entirely on one’s own personal computer, leveraging only personal
browsing history and interaction logs. One noteworthy finding from the formative study
was that participants were almost entirely unconcerned with sharing their interaction
details with a central service like Google (10 of 11 participants had few or no concerns).
Given this, one could imagine aggregating a community’s interapplication histories, en-
abling a number of additional applications.

One compelling use of this aggregated data would be to improve indexing of web-
based tutorials. For example, a search engine could use this information to influence
the ranking of search results, steering users away from tutorials that frequently result in
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abandoned commands. Likewise, since interapplication history does not depend on page
text, these data could be used to index non-textual tutorials such as screencasts and video
demonstrations. For example, a search engine could index tutorial videos using the names
of the application commands and tools that users typically invoke while visiting each
video. Users could then search for video demonstrations by naming commands of interest.
With additional instrumentation of the web browser, video timestamps could be extracted
and synchronized with application command invocations, allowing search engines to index
into videos, and enabling capabilities similar to those described in [73, 81, 77]. Beyond
indexing web documents and videos, aggregate data could also be applied to command
recommendation systems (e.g., [90]), and related projects (e.g.,[48, 89]).

5.5.2 Interapplication Information Scent in Other Domains

InterTwine creates interapplication information scent between a web browser and a
feature-rich raster graphics application. Other application pairings are possible—including
ones that do not involve a web browser. As an example, a video editing application
might notice coordinated use of audio editing software, and could adapt by highlighting
the menu commands necessary to insert a new audio track into the video. Likewise,
an operating system’s file browser might visually modify folder icons in cases where the
user has a terminal open in those directories, presenting a persistent visual trail as the
user navigates the command shell through the file system. Finally, after using graphical
user interface design software, such as QT Creator, programming environments could
highlight lines of code related to objects recently worked with in the interface designer.

5.5.3 Fading Information Scent

In the current implementation, interapplication information scent is generated from the
past history and current context of both applications. These information scents persist
as long as the relevant context is present. However, it is possible that this context (espe-
cially from the shared history) could result in too much information scent accumulating,
reducing the effectiveness of the concept.

To deal with this problem, interapplication information scent could fade out over time,
similar in spirit to Baudisch et. al’s [11] phosphor effects in the interface. For example,
menu beacons could begin to fade after a web page has been open for 20 minutes. In
general, I have not considered the possibility of incorporating hysteresis into the relevance
models, but this capability may be especially useful for some of the mechanisms proposed
above (such as the trails left through the file system as the user browses directories).
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5.6 Conclusion

Online resources play an integral role in people’s strategies for dealing with the com-
plexities of feature-rich applications. However, applications and web browsers currently
function as separate isolated entities, unaware of how activities in one application may
relate to activities in the other.

In this chapter, I introduced InterTwine, a system that bridges these two application
domains through the constructs of interapplication history and interapplication informa-
tion scent. I demonstrated three classes of tools to provide interapplication information
scent: application bridges, history snippets, and history digests. Together, these mecha-
nisms help users find and re-find task-relevant commands and resources.

A formative study spanning two sessions reveals that InterTwine’s features resonate
with users and suggest their overall utility. Though InterTwine’s current implementation
is tied to GIMP and the Firefox web browser, I believe the ideas presented in this chapter
can be generalized to other feature-rich applications. This sentiment is shared by many
of those who took part in the participatory design process, as evidenced by their many
enthusiastic suggestions for which applications to work on next.
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Chapter 6

Challenges and Limitations
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Figure 6.1: In this chapter I explore some of the meta-issues and challenges that arise when
conducting the types of research championed in this dissertation.

The preceding chapters presented details of CUTS, Query-feature graphs, and Inter-
Twine – three projects aimed at studying and supporting users as they leverage online
resources to bridge the Gulf of Execution. These projects and approaches are subject to
their own unique considerations and limitations, many of which have been discussed in
their respective chapters. In this chapter I discuss some of the meta-issues which impact
this style of research in general.

6.1 Model Cannibalization

An ideal outcome for this dissertation would be for the ideas presented therein to influence
or to be incorporated into the software systems that people engage with on a daily basis.
However, widespread adoption (e.g., commercialization) of these ideas introduces new
complications. In particular, services and interactions described in this dissertation have
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the potential to change how users employ web search, or how people otherwise engage
with online materials. For example, Chapter 4 describes how query data, together with a
corpus of tutorials, can be used to enhance the tooltips within a feature-rich application.
In the ideal case, these tooltips would address many common questions posed by users,
thus diminishing the user’s need to search online for this information. Unfortunately,
query-feature graphs, the models on which these tooltips are based, depend on users
issuing such queries in the first place. Addressing this model cannibalization problem,
where use of a model alters the behaviours on which the model is based (thus diminishing
its value), remains a topic for future work. Paths forward likely require investigating
methods for adapting existing models in response to changing behaviours, and this likely
requires relying more heavily on the types of behavioural data produced by systems like
InterTwine.

6.2 Impact of Media Coverage

In addition to model cannibalization, external factors can also diminish the long-term
representativeness of models derived in part, or in whole, from query data. In particular,
issues arising from media coverage are well-known to researchers who leverage query data
to model real-world phenomena [26, 20]. As an example, the model used by Google Flu
Trends over-predicted, by 200%, the incidence of influenza during the 2012-2013 North
American flu season. This error was ultimately attributed to increased media coverage
of a notably bad flu season [20].

In the context of feature-rich interactive systems, media coverage of a system’s fea-
tures, bugs, or vulnerabilities, can create challenges to the systems and techniques pro-
posed in this dissertation. As an example, Apple’s iPhone 4 suffered from a design defect
in which holding the phone in a particular manner caused a loss of reception (as reported
in Chapter 3). This defect was widely reported in the media, increasing public awareness
to the problem. This is illustrated by the Google Trends tool [35], which can be used to
visualize changes in interest over time for such queries such as [iphone antenna] (Figure
6.2). As is illustrated in Figure 6.2, this increased level of interest in the iPhone’s antenna
is represented by a large spike in query volume at a time corresponding to the iPhone 4’s
release in June 2010. However, a similar spike in interest in antennas is observed for other
smartphones in circulation at that time. For example, Figure 6.3 characterizes interest
in the query [droid antenna], in reference to the Motorola Droid line of smartphones.
Since the Motorola phones did not suffer from the same antenna issue as the iPhone,
and because Motorola user are unlikely to have experienced the antenna problems first-
hand, this increase in search traffic is likely a spillover effect from media coverage of the
iPhone’s defect. Likewise, Figure 6.2 reveals that the level of interest in the iPhone’s
antenna has remained elevated, compared to pre-2010 levels, despite significant improve-
ments to antenna design that have occurred since the iPhone 4’s release. This example
serves to illustrate that media coverage directly impacts the search behaviours of a popu-
lation. Adapting models and techniques to be robust against such media-induced spikes
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in interest is an active area of research [27].

Figure 6.2: Query volume over time for the phrase “iphone antenna”. A clear spike is visible
midway between 2010 and 2011. This corresponds to media coverage detailing the antenna
problems encountered by users of the iPhone 4. Since 2010, interest in iPhone antennas has
remained elevated compared to pre-2010 levels.

Figure 6.3: Query volume over time for the phrase “droid antenna” (in reference to Mo-
torola’s Droid line of smartphones). As with the iPhone, interest in the Droid’s antenna
spikes in June 2010. However, unlike the iPhone, Motorola Droid devices did not suffer from
systematic failures of their antennas. As such, this increased level of search activity is likely
a side effect of the media coverage discussing the iPhone’s antenna problems.

6.3 Video & Pictorial Tutorials

The challenges discussed above impact the availability and the representativeness of
query data. There also exist challenges in the continued use of web tutorial content to
contextualize user behavioural data. Namely, the increasing prevalence and popularity
of online video tutorials poses additional challenges to the techniques described in this
dissertation, which depend on the ability to parse and process tutorials as written text.
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Video tutorials, or tutorials relying on images to communicate important processes, are
effectively opaque to text-based analyses. One path forward is to more strongly rely on
behavioural data (e.g., via application instrumentation). For example, one may not need
to parse a video tutorial if it is known what commands users issue while watching such
videos. I elaborate on this possibility in the next chapter, which discusses future work.

Beyond leveraging behavioural data, existing research has investigated the feasibil-
ity of extracting task-relevant information directly from video content. For example,
Juho Kim et al. demonstrated the possibility of using crowdsourcing platforms such as
Mechanical Turk to extract step-by-step instructions detailed in a broad range of video
tutorials [73]. Likewise, Pongnumkul et al.’s Pause-and-Play system leverages template
matching to recognize tool activations in tutorial videos depicting use of the Photoshop
raster graphics editor [104]. Finally, Dixon and Fogarty’s Prefab system [41] could con-
ceivably be leveraged for a similar purpose, or to detect other forms of interaction with
user interface widgets. Adapting the work described in this dissertation to leverage these
approaches remains a topic for future work.

6.4 Issues of privacy

Finally, any research involving the use of query logs or other behavioural data is subject
to concerns about data privacy. With the exception of Chapter 5, which involved a
laboratory study and informed consent, the work presented in this dissertation leverages
data available on the public Internet. Namely, Chapter 3 leverages query auto-completion
suggestions, and Chapter 4 pairs these data with the texts of online tutorials. I do not
anticipate any threats to privacy arising from the work presented in this document.

That being said, many of the proposals for future work, here and in the next chapter,
involve the bulk collection of user behaviour data. If one moves in this direction, one must
take additional steps to ensure that they are acting as good stewards of this potentially
sensitive information. I believe InterTwine serves as a useful model for how to proceed. In
InterTwine, the recording of online behaviour is supported through a value proposition,
and by adhering to certain guaranteed limitations on the data collection. Regarding the
value proposition, InterTwine provides useful tools and services (e.g., menu beacons, and
expanded search snippets) in exchange for the collection of certain types of behavioural
data. I believe such exchanges of consideration are an important aspect of these classes
of systems. Likewise, InterTwine is careful to gather behavioral data only when it is
relevant to the services being provided. For example, browsing events are logged to
InterTwine’s shared history only when the visited websites mention the word “gimp” in
their document text. With these safeguards in place, and with full disclosure of the types
and uses of data being collected, I believe it is acceptable to move forward with larger
scale deployments of the ideas proposed in this dissertation.
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6.5 Conclusion

In this chapter I discussed some of the limitations and considerations that help to con-
textualize the work presented in this dissertation, and I discussed some of the challenges
one might face when moving this research forward. However, I believe that meeting these
challenges is a worthy venture: This dissertation has already enumerated many of the
advantages of integrating the steps across the web-mediated execution bridge, and I be-
lieve there remain a large number of compelling opportunities to be explored. I discuss
these opportunities in the next chapter.
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Chapter 7

Opportunities and Future Directions
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Figure 7.1: This chapter explores potential avenues of future work, with a particular focus
on the opportunities afforded from the aggregation and integration, over many users, of
fine-grained behavioural data across all three steps of the web-mediated execution bridge.

The previous chapter explored the challenges and limitations of the techniques pro-
posed in this dissertation. However, advancing this research affords profound oppor-
tunities that cannot be overlooked. The web-mediated execution bridge establishes an
environment where users express their tasks and goals directly to a computer system, in
their own words, but in ways that can be reasoned about in software. In this chapter,
I discuss some of the opportunities that arise from this direct line of communication
between users and computer systems. I begin by exploring the possibilities that emerge
when these types of integrations are deployed at larger scales. I then contemplate a
world where web search serves an even larger role in our interactions with feature-rich
technology. Finally, I discuss how the techniques proposed in this dissertation might be
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applied in broader contexts beyond the use of feature-rich software.

7.1 Large-scale Integrations and Deployments

Ultimately, the original research presented in this dissertation concluded with InterTwine,
a system which is privileged in that it can observe users’ complete journeys across the
Gulf of Execution. However, a chief limitation of InterTwine is that, unlike the work
presented in Chapters 3 and 4, the data available to InterTwine is local to the user’s
machine, and is limited to considering the actions previously performed by a single user.
In this section I explore possibilities that emerge when these types of integrations are
deployed at larger scales. I begin by discussing the feasibility of these types of large-scale
deployments and data collection efforts.

7.1.1 Feasibility of Large-Scale Deployments

In this section I argue that the time of this writing is an ideal moment in history for
pursuing the ideas presented in this dissertation on a broad scale. Integrations between
web search, web documents and feature-rich applications are now more straightforward
than ever before. Consider, for example, that Microsoft maintains a search engine (i.e.,
Bing.com), produces a web browser (i.e., Internet Explore), hosts instructional content
(e.g., [38, 39]), produces a range of feature-rich software applications (e.g., Microsoft Of-
fice), and thus is well-positioned to integrate all steps across the web-mediated execution
bridge on a massive scale. Similar arguments can be made about Google, or about Adobe
Systems1. As noted in Chapter 2, Microsoft has already begun to move in this direction,
having directly integrated Bing.com web search into their operating system and their
suite of online office products (Figure 7.2). Now is the time to consider how best to
leverage the opportunities afforded by these large-scale integrations.

7.1.2 Improving InterTwine

One of the chief limitations of InterTwine is that the system’s interaction histories are
locally maintained by a user’s computer, and thus are limited to describing the actions
of an individual. A direct consequence of this limitation is that several InterTwine fea-
tures can operate only when the user revisits a document. InterTwine’s enhanced search
snippets, for example, are subject to this limitation. Deploying InterTwine-like integra-
tions at web scale would allow search engines to bootstrap the creation of these snippets,
deriving the necessary details from records of how the documents were previously used
by other members of the community in the past.

1While Adobe does not maintain a search engine or a web browser, it does produce a set of extremely
popular web browser plugins (e.g, Flash) that, like InterTwine, could enable such integrations.
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Figure 7.2: Screenshot of the Microsoft Word Online user interface [37] – a web-based imple-
mentation of Microsoft’s popular word processing software. In late 2014, Microsoft integrated
Bing.com web search directly into the application’s menuing system. This integration is both
well-aligned, and entirely compatible, with the work described in this dissertation (much of
which was originally published in 2011-2012).

7.1.3 Implicit Feedback for Ranking Tutorials

In a similar vein to bootstrapping the creation of the enhanced search snippets, web-scale
deployment of InterTwine-like systems could enable new forms of implicit feedback [3] for
improving the ranking of search results. For example, if a particular tutorial is frequently
associated with many “Undo” operations, or instances where work is abandoned without
saving, then a search provider might consider penalizing this document in future search
results. Here, it is important to contextualize user behaviour with the search queries
users are issuing. For example, a tutorial describing how to convert an image’s color
mode to grayscale is likely to be of value to those searching [how to make a picture black
and white], but would provide misleading 2 information to those seeking instructions
on achieving selective desaturation – a popular post-processing effect often described as
[black and white with one color ]. Thus, the observation of frequent “Undo” operations
associated with the latter search query should not adversely effect the document’s ranking
for the former query.

2Grayscale images lack the color channels necessary to produce the desired effect.
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Timestamp Menu Label Command Tooltip

01:13:49 Open... Open an image file
01:13:56 Other (75%) Set a custom zoom factor
01:14:26 Intelligent Scissors Select shapes using intelligent edge-fitting
01:14:50 Invert Invert the selection
01:14:56 Feather... Blur the selection border so that it fades out smoothly
01:15:01 Desaturate... Turn colors into shades of gray
01:15:08 Save As... Save this image with a different name
01:15:48 Quit Quit the GNU Image Manipulation Program

Table 7.1: A partial listing of data collected by InterTwine during a session in which a
user was tasked with selectively desaturating the background of an image. In addition to
timestamps and menu labels, this table lists the tooltips associated with operations performed
during the session. I argue that the collection of tooltips can be read as a transcript, and
can be used to index video tutorials in cases where it is known that a user is watching such
content while performing tasks in the application.

7.1.4 Indexing Video and Pictorial Tutorials

Continuing the theme of leveraging application context and activity to impact the gener-
ation and presentation of web search results, large-scale deployments of InterTwine-like
systems enable compelling possibilities for the indexing, analysis, and interpretation of
video tutorials. Specifically, a search engine could index video tutorials by treating the
list of commands and actions invoked by the user as a form of transcript. For example,
Table 7.1 lists the menu labels and tooltips, as captured by InterTwine, for a sequence
of commands that achieve the previously-mentioned selective desaturation effect in the
GIMP software. As can be seen from this example, the list of tooltips reads almost as
if it were a descriptive transcript of actions performed in the video tutorial. Since video
tutorials often are consumed through web browsers, these types of command sequences
and tooltip transcripts are easily associated with online video content using a tool such
as InterTwine.

7.1.5 Interpreting and Contextualizing Instrumentation Data

Large-scale deployments of InterTwine-like systems could also enrich the types of usabil-
ity data that can be extracted from software instrumentation efforts. HCI research has a
long history of studying logs of low-level interface events, with the goal of gaining insights
into a system’s usability [63, 67]. While past work was successful in characterizing ap-
plication usage in aggregate (e.g., average number of commands known by users), early
techniques were largely unsuccessful in yielding fine-grained insights about a system’s
usability. Recent successes in this space (e.g., [5, 4]) result from the incorporation of
additional context to facilitate the interpretation of low-level events. Notably, Akers et
al. demonstrated that low-level backtracking events (e.g., occurrences the “Undo” com-
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mand) can be used as indicators of potential usability problems in feature-rich software.
However, correct interpretation of these events depends on access to short video clips
detailing the contexts in which these commands were invoked. I hypothesize that web
search and web browsing logs could similarly be used to provide the context needed to
interpret these indicative low-level actions.

Likewise, Hurst et al. demonstrated that mousing events (e.g., dwelling, or the failure
to issue a command after opening a menu) can be leveraged to determine when users are
struggling to find commands in the menus of a GUI [66]. Pairing these data with records
of user search queries might provide a means of determining the functionality users are
seeking but failing to find. For example, if one observes a user of the GIMP software
opening the “Color” menu, then failing to issue a command, and finally searching online
for [how to make a photo black and white in gimp], then one might surmise that the user
expected to locate the desired functionality in the aforementioned menu3.

7.1.6 Longitudinal Studies of Software Learning

I am also very excited about the possibilities that arise when systems such as InterTwine
are deployed and studied over longer timeframes. As suggested by Matthew Richardson
in [106], longitudinal behaviour data (query data in particular), enables researchers to
answer questions that would be difficult or impossible to otherwise address. In the context
of this dissertation, one compelling use of longitudinal data could be to explore temporal
patterns in the information needs of a system’s user population. Specifically, one might
ask: Can query log data characterize a user’s transition from novice to expert?

In this vein, Ryen White, Eric Horvitz and I recently developed techniques to explore
temporal patterns in the information seeking habits of new and expectant parents (Figure
7.3). We found that information needs evolve over time, sometimes very rapidly, but
that the sequence and timing of concerns is nonetheless predictable, unfolding almost
as if following a script or a schema. One wonders if the techniques developed for that
work can be applied or adapted to produce a similar set of models and visualizations for
queries pertaining to use of an interactive system. For example, one might investigate
the types of queries users issue in the first, fifth, or fifteenth week following the release
of a major update to a software product.

7.2 Search-driven Interaction

It is also worthwhile to consider one extreme point in the design space over the types
of integrations proposed in this dissertation. In this section I consider a future in which

3GIMP’s “Color” menu does contain the “Desaturate” command, but users frequently fail to recognize
this command’s relevance to the task of converting an image to black an white, as detailed in Chapters
3 and 4).
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Figure 7.3: Histograms of query bigrams over 40 weeks of gestation. Time-dependent
query volumes of each bigram (left) are displayed by gestational week for searchers who self-
identified as pregnant (n=13,030 searchers). In this figure, reproduced from [52], each bar
represents the proportion of searchers who searched at least once for the bigram of interest
in the corresponding gestational week. In the context of this dissertation, I ask: Can similar
visualizations be generated to characterize temporal patterns in how people learn software?
For example, what queries do people ask in the first week following the adoption of a new
piece of technology?

web search becomes a primary means of interacting with feature-rich software. This ex-
ploration is motivated by the following observation: In the late nineteen-nineties, when
the web was still nascent, search was often paired with portals or directories organizing
popular web content into a series of topic categories (Figure 7.4, left). These directo-
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Figure 7.4: The evolution of the Yahoo! search page between December 1998 (left), and
May 2015 (right). Early versions of the Yahoo! search page featured a directory of popular
web content categorized by topic. As users became more comfortable with web search, and
as the web increased in scale, this directory listing has not survived to modern instantiations
of the Yahoo! search web page.

ries can be thought of as a taxonomy of web pages, and represent one particular way
of organizing this information space. As the web became more expansive, and as users
became more familiar with web search, the portals and directories were outmoded by
search (Figure 7.4, right). This scenario is directly comparable to the present-day orga-
nization of feature-rich software (Figure 7.5), where features are carefully organized into
the tree-like structures of a system’s menuing system. Now that search is being incorpo-
rated into feature-rich software, I ask if the same evolution will occur in user interfaces
(Figure 7.6), as was seen with web portals? And, if so, what interaction challenges may
arise?

Likely, one of the first challenges that one would encounter, should search replace the
standard GUI, would be one of discoverability. One of the tenets of good usability is
to favour recognition over recall by making “objects, actions, and options visible” [93].
One advantage of standard GUIs is that users can navigate menus, windows and tabs to
discover the functionality afforded by a feature-rich system. An interactive system where
functionality is accessed only through queries would be at a disadvantage in this regard.
However, query autocompletion services, and command recommendation systems similar
to [90], could alleviate much of this concern.

As one ventures further into this region of the design space, it is likely that other, more
significant, challenges will emerge. But, if such an evolution is fraught with challenges
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Figure 7.5: A screenshot of Microsoft Word, version 2011, for the Macintosh operating
system. In this interface, functionality is neatly organized into hierarchical menus, representing
a categorization or taxonomy of system functionality.

and pitfalls, why pursue this direction in the first place? One of the primary motivating
factors, for pursing such an extreme, is that computation is increasingly moving onto
mobile and wearable devices such as smart phones and smart watches. Screen real-estate
for displaying standard GUI widgets is at a premium, and query or natural language-
based interactions are becoming a primary means of interacting with these devices (e.g.,
users of Apple’s smart watch can issue spoken commands to access much of the device’s
[28] functionality). As computation increasingly moves off of our desktop computers and
onto our mobile devices, query-based interactions will likely play a more significant role
in how people get work done. This sentiment is well supported by Donald Norman, who
has written about the role of search as a means of interacting with complex software:

GUIs work well when the number of alternative items or actions is small.
When the number of items reaches the level typical of today’s complex operat-
ing systems, applications and the information spaces of the Internet, the GUI
does not scale well. (...) What is to replace the GUI? Ah yes, journalists are
constantly asking me that question. Well the answer is simple, and its already
here: search [95]

To this end, I believe the ideas presented in this dissertation will only increase in
relevance over time, and I look forward to a future where our interactions with feature-
rich software benefit from the same types of advances that have propelled web search to
its present status as an indispensable tool for navigating the complexities of our modern
information-rich lifestyles.

101



Figure 7.6: A hypothetical future version of the Microsoft Word interface, where standard
GUI components are replaced with a search bar. This evolution mirrors that of the Yahoo!
search result page, depicted in Figure 7.4.

7.3 Integrations in other domains

In the introduction to this dissertation, the Gulf of Execution was described as a situation
where a user has a goal in mind, can express that goal in words, but struggles to determine
the correct sequence of steps needed to reach his or her objective. The web-mediated
execution bridge then established a framework in which both the user’s goal and the
user’s subsequent actions can be observed and reasoned about by a computer system.
While this dissertation has focused entirely on goals and actions related to the use of
feature-rich software, the web-mediated execution bridge need not be limited to this
domain. People routinely express their personal goals as search queries, while leveraging
technologies and sensors to track their day-today activities in the real world. As such, it
is becoming increasingly feasible to contemplate the web-mediated execution bridge, and
the types of analyses and integrations described in this dissertation, in contexts much
broader than outlined thus far.

One example of this broader context is afforded by the personal informatics, or quan-
tified self, movement. Li et al. define personal informatics systems as “those that help
people collect personally relevant information for the purpose of self-reflection and gain-
ing self-knowledge” [86]. For instance, one may wear an on-body sensor such as the
Fitbit [45] with the goal of tracking one’s sleep patterns and optimizing one’s chances
for a restful sleep. However, it can be difficult for people to interpret the low-level data
that is output from such devices [86, 22]. I hypothesize that pairing these data with
a synchronized record of web search could provide quantified selfers with the context
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needed to better interpret their data, perhaps relating their sleep patterns to activities
or stressors encountered throughout the day. Web query logs are ideal data sources in
these contexts because, as noted by Matthew Richardson, they often resemble surveys in
which users are asked “to, every day, write down what they were interested in, thinking
about, planning, and doing.” [106].

Likewise, when personal successes (or failures) are achieved, it may be possible to
relate these positive (or negative) outcomes to strategies employed by users – especially
if users have accessed online how-to content, or have sought advice from an online forum
or social network. To this end, existing work has already demonstrated how analyses
of Twitter data can be used to both detect those who have attempted to quit smok-
ing, and their eventual successes or failures [92]. Likewise, in the space of web search,
work has demonstrated that query logs can be used to both detect one’s interest in di-
eting, and to monitor one’s subsequent caloric intake over the ensuing weeks or months
[127]. In each of these cases, I believe that the web-mediated execution bridge provides a
common framework for characterizing the uses of web search, and for contemplating the
development of tools that could help users achieve their personal goals.

7.4 Conclusion

In this chapter I characterized some potential directions for future research, including:
exploring opportunities that arise should systems such as InterTwine ever be deployed at
web-scale, contemplating future interactive systems where search is a primary means of
getting work done, and discussing the applicability of the web-mediated execution bridge
in contexts beyond the use of feature-rich software. In all cases, I believe that search will
become an even more essential component in our interactions with technology, and with
the world in general. I hope that this dissertation can serve as a foundation for research
moving forward in this space.
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Chapter 8

Summary and Conclusion

Web search, online tutorials, and other online resources, serve an integral role in how
people learn and use feature-rich software systems on a daily basis. Users depend on web
resources for initial instruction, as a first line of technical support, and as a strategy for
coping with the complexities of feature-rich systems (e.g., by leveraging web resources
as an external memory store that can be accessed at will [116]). When users rely on
web resources to support their use of complex software, the act of querying a search
engine signals that the user has a goal in mind, that they are able to express their goal
in their own words, but that they are unsure (or cannot recall) which concrete low-level
operations will accomplish their goal in the software application. These low-level plans
and action sequences are enumerated in the online resources retrieved from search (e.g.,
web tutorials), and are translated by the user into actions performed within the software
itself. In other words, users are leveraging online resources to bridge Donald Norman’s
Gulf of Execution [96].

When leveraging online resources to bridge the Gulf of Execution, each step of the
journey is mediated by a user interface (UI), namely the UIs of: the web search engine,
the retrieved document, and the application itself. Actions in these three environments
constitute steps across what I have termed the web-mediated execution bridge. Con-
textualizing user interactions with respect to the web-mediated bridge, and developing
methods to form or enhance connections between each of these environments, affords
new opportunities to learn about users, and enables the development of new end-user
tools and services. In order of appearance, the opportunities explored in this dissertation
include:

Characterizing Usability through Search (Chapter 3)
In Chapter 3, I argued that query logs of web search engines serve as centralized
repositories cataloguing the day-to-day needs of a system’s user base, offering insights
that are unprecedented in HCI research both in scale and in ecological validity. To
accomplish this, I described how aggregates of query logs can be approximated using
data made available by query-autocompletion services as well as advertising tools.
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Using these data, I developed an automated system for gathering, labelling and
filtering queries for the purpose of identifying common tasks and issues encountered
by a system’s user base on a day-to-day basis. I presented several examples and case
studies demonstrating how these data could be used to detect potential usability
defects, and to contextualize these defects with real-world incidence rates. In this
sense, CUTS indirectly helps to close the Gulf of Execution by directing developer
attention towards problem areas, ideally resulting in improvements going forward.

Query-Feature Graphs (Chapter 4)
In Chapter 4, I presented an automated system that leverages search queries and
relevant web tutorials to construct query-feature graphs, structures that map from
technical terminology in an application’s interface (e.g., GIMP’s “desaturate” tool)
to words, phrases, and concepts familiar to the user (e.g., “make black and white”).
Query-feature graphs effectively link the first two steps across the web-mediated ex-
ecution bridge, and enable a number of compelling applications including: interface
search, intelligent tooltips, and application-to-application analogy search. In this
same chapter, I assessed the quality of Query-feature graph associations, which were
discovered automatically using methods from question-answering literature. To this
end, I reported that the question-answering approach significantly outperformed a
baseline cosine similarity-based approach – the latter of which is in common use
among existing implementations of interface search.

InterTwine (Chapter 5)
Finally, Chapter 5 presents a system which integrates all three steps across the
web-mediated execution bridge, enabling a feature rich application to respond to
actions performed on the web, and enabling web resources (e.g., search engine result
pages) to respond to actions performed in the feature-rich software. In this chapter,
I explored one concept afforded by this bidirectional communication: Namely, inter-
application information scent. To this end, InterTwine augments web search results
by listing software commands used when previously viewing a webpage, and high-
lights menu items in desktop applications when those items are mentioned in online
tutorials retrieved by the user. Feedback from an initial set of users revealed that
InterTwine’s features were both welcomed and appreciated, and users expressed an
interest in achieving similar integrations with other feature-rich software technologies
they use on a daily basis.

As human-computer interaction researchers, system designers, and user experience
practitioners, it is time that we begin considering software applications, web search, and
online support materials as individual parts of a larger holistic system to be studied,
designed and evaluated in concert. As this dissertation has shown, these integrations
result in novel insights about users, and in tools that greatly expand and enhance user
capabilities.
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Appendix A
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Figure A.1: This appendix describes an approach to named command recognition – a
domain-specific instance of the more general named-entity recognition problem. The goal of
a named command recognizer is to detect commands or system features that are mentioned
in tutorials downloaded from the Internet. Portions of this chapter were first published in
[47].

The Internet contains a wealth of reference material, tutorials, and other documen-
tation related to the use of interactive systems. Written for the benefit of users, this
documentation is expressed in natural language. However, from the perspective of a
software system, this documentation is opaque and unactionable.

Recently, the CHI community has demonstrated interest in the problem of automatic
identification of references to user interface components within online documentation.
For example, Chapter 4 describes query-feature graphs, structures which leverage web
tutorials to pair high-level search terms with the corresponding features of a user interfcae.
Likewise, work by Ekstrand et al. demonstrates how a custom search engine can extract
commands mentioned in software tutorials, so that those commands can be listed in the
snippets presented as part of enhanced search result pages [42]. Similarly, InterTwine,
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presented in Chapter 5, extracts commands mentioned in online tutorials to enable a
form on interapplication information scent. Also closely related is work by Lau et al.
[85], which has demonstrated the possibility of extracting action-target-value triples from
how-to instructions, with the goal of advancing machine-guided help systems.

The problem of identifying user interface elements mentioned within instructional
documentation is a domain-specific instance of named entity recognition. In the context
of technical documentation, we are interested in the problem of extracting named entities
that refer to interface components, such as commands, menu items, dialogs, settings, and
tools within the interface.

In this chapter, we introduce a named-entity recognizer for detecting user interface
elements mentioned within HTML documents. We call this specific problem named
command recognition. In the following sections, we enumerate the specific challenges
for this problem, then discuss how certain informal conventions in tutorial writing can
be leveraged to better detect named entities in this context. From these conventions,
we derive a set of features and a general classification strategy that leads to accurate
recognition of user interface elements referenced within text.

A.1 Challenges and Recognition Strategies

Web-based tutorials and documentation use natural language to describe how to per-
form specific tasks with interactive applications. To be clear and unambiguous, authors
typically refer to user interface elements by their given, visible names (i.e., captions or la-
bels) [85, 48]. For example, an author may write that the user should invoke the “Undo”
command from the “Edit” menu.

Given this practice, an obvious strategy to named widget recognition is to simply
search the documentation for strings matching known widget labels. This tact requires
a complete list of widget captions, but numerous, reliable approaches exist for automat-
ically enumerating and extracting the captions of widgets in both web [87] and desktop
[48, 105] applications. We refer to this overall strategy as the baseline approach to
named widget recognition. This baseline approach has been employed in the past by the
enhanced search results work by Ekstrand et al. in [42].

While simple and straightforward, the baseline strategy is prone to error. Consider,
for example, a tutorial describing various options for converting a colour image to black
and white with the GIMP raster graphs software1. In the full tutorial, approximately
170 distinct phrases match the labels or captions of components found in the GIMP user
interface. However, upon inspection of the tutorial, only approximately 50 phrases are
actual references to GIMP operations, making the false positive rate of this approach
greater than 70%. An excerpt from this tutorial is listed in Figure A.2, with all matches
outlined with rectangles and false positives crossed out.

1http://www.gimp.org/tutorials/Color2BW/
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Figure A.2: An excerpt from a tutorial describing how to convert a colour image to black
and white using GIMP 1. Substrings matching the names of GIMP commands are outlined in
rectangles. False positive matches are crossed out.

Online documentation also often includes its own set of menus, menu items, and
controls for navigating and interacting with the website. These documentation widgets
can also generate false matches when employing the baseline approach.

In the following sections, we identify a number of cues that can be employed to
improve upon this baseline accuracy.

A.1.1 Leveraging Prior Beliefs

In the previous example, the term “desaturate” can be found in the first sentence (Figure
A.2). This term is highly technical, and rarely occurs in more general writing. Without
additional evidence, we would expect that the use of this term refers to GIMP’s “Desat-
urate” command. Conversely, in the second sentence, we encounter the term “image”.
This term is very generic, and occurs in many contexts beyond GIMP tutorials. Without
additional evidence, we assume that it represents a false detection. Thus, by estimating
how often a phrase refers to a widget in a given corpus, it is possible to correctly label
many named widget references without any further consideration of the context in which
the matches occur.

A.1.2 Leveraging Informal Conventions

In sentence 3 of Figure A.2, the term “Image” twice refers to actual, named widgets.
In such situations, further evidence is needed to overcome the prior expectation that
generic phrases do not represent commands. This additional evidence is provided by
informal conventions that are often employed in tutorial writing. For example, command
names are often capitalized, and are occasionally styled to appear differently than the
surrounding text (in this case, with a bold weighting). Special punctuation is also often
employed to specify menu hierarchies (e.g., “->” in “File->Open”). The use (or lack of
use) of these conventions can also factor into the classification of terms.
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A.1.3 Leveraging Page Context

Page context can provide additional evidence to help correctly identify named widgets
in cases where the online documentation contains links and website navigation with
names matching those of the software it is documenting (e.g., “Help”, “About”, etc.).
Specifically, matches that occur in regions of the page that resemble site navigation reduce
the confidence that the matching term directly references a user interface widget.

Given this foundation, we now describe a feature set and a general classification
framework that enables accurate recognition of named widgets.

A.2 Classification Framework

Identifying UI components referenced in web documentation is a three step process. First,
the document is examined for substrings matching the names of known interface compo-
nents or commands (the baseline approach described above) to yield a set of candidate
matches. In the second step of the process, a set of features is extracted from the context
of every candidate match (where the features are derived from the cues and informal
conventions discussed above). In the final step, a classifier determines which substring
matches are indeed references to widgets.

A.2.1 Feature Extraction

To more correctly classify candidate named widgets, we employ the following set of
features.

Capitalization

Recognizing the tendency for authors to capitalize references to commands, our classifier
employs two related capitalization features: 1) Whether a candidate match’s first token
is capitalized, and 2) the total number of capitalized tokens within the match sequence.
For example, “Save Selection to File” has three of its four tokens capitalized, including
the first.

Next and Previous Tokens

The next and previous tokens features record the tokens immediately preceding and fol-
lowing the candidate named widget. These features are designed to model common
phrases in which named widgets appear (e.g., “the File menu”). They also model con-
ventions for describing menu hierarchies, such as the use of “>” or “->”.

109



Next and Previous Candidates

Given a candidate match, the next candidate and previous candidate features record
the candidate matches found before and after the current match. All tokens occurring
between candidate matches are ignored. These features are designed to recognize and
leverage common command sequences (e.g., “Copy and Paste”) as well as parent-child
relationships expressed in menus (e.g., “Edit > Paste As > New Layer”).

Element Occupancy Ratio and Element Type

In web-based tutorials, references to interface elements are often expressed with some
styling that makes the text visually distinct from the surrounding text. The element
occupancy ratio feature models these markup differences as follows. First, we identify
the HTML element directly enclosing the candidate match. We then compute the ratio
between the number of tokens making up the candidate and the total number of tokens
enclosed by the HTML element. For example, the word “pencil” exhibits a 1 : 4 ratio
in the phrase “<p>Select the pencil tool</p>”, but a 1: 1 ratio in the phrase
“Select the <b>pencil</b> tool”. In addition to the element occupancy ratio, we
extract a feature recording the type of the enclosing element.

Text-to-Tag Ratio and Location (wrt. the Start of the Page)

Tutorial content, and hence named widgets, often make up the “main content” of the
enclosing HTML document (as opposed to secondary content such as navigation, headers,
and advertisements). In the information extraction literature, the text-to-tag ratio has
been found to be a good feature for discriminating between main and secondary content
[126]. Specifically, main content is typified by regions of the HTML document containing
many text tokens, but few HTML tags. These regions are said to have a high text-to-tag
ratio. Similarly, main article content is often found in the central region of an HTML
file, somewhere between header content and footer content. Thus, we use the location of
the match within the HTML document to help rule out candidates that are likely part
of a tutorial’s site navigation.

Notably absent from this list of 10 features is any representation of our prior beliefs
regarding the likelihood that a candidate match represents a named entity. Prior be-
liefs are those held before considering evidence (i.e., features), and are modelled by the
classifier directly. We describe the classifier next.

A.2.2 A Naive Bayes Classifier with Witten-Bell Smoothing

The features outlined above are compatible with many modern text classification and
information extraction techniques. In this work, we elected to construct a recognizer
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that employs naive Bayes classification. While potentially less effective than more com-
plex techniques (e.g., [44]), naive Bayes classifiers have nonetheless proven to be effective
general purpose classifiers, and are certainly sufficient for demonstrating the feasibility of
named-widget recognition. Moreover, naive Bayes classifiers confer a number of unique
advantages. First, the number of parameters in a naive Bayes model scales linearly
with the number of features and classes [109]. As a result, comparatively less training
data is required to produce an effective classifier. Additionally, the “naive” indepen-
dence assumption affords the ability to independently learn the feature distributions,
thus enabling efficient training in the types of distributed systems typical of existing web
indexing platforms.

In order to classify commands, we employ a separate binary naive Bayes classifier
for each UI component we would like to recognize. When classifying a candidate match,
we invoke only the classifier corresponding to that named component. For example,
substrings matching the text “File” invoke the classifier corresponding to the system’s
File menu.

By treating commands separately rather than collectively via a single class or clas-
sifier, we ensure that the framework is able to directly model the subtle differences in
context in which named entities are expected to occur (e.g., enabling the classifier to
learn menu structures). Unfortunately, the strategy aggravates the problem of sparse
data, and the training data may not include mentions of every available widget. To
overcome the sparse data problem, we use Witten-Bell smoothing [130]. Witten-Bell
smoothing uses the training data to estimate the likelihood of novel events. It then uses
this estimate, together with a more general “backoff” model, to redistribute probability
mass, thus filling in missing information. In our case, the backoff model is constructed
by pooling the training data for all named entities into a single “generic widget” class.
As a concrete example, suppose that the training data does not include any examples
of the “Cut” command. With Witten-Bell smoothing, we can use what we know about
commands in general to predict how references to the “Cut” command might appear in
text.

A.3 Evaluation

To evaluate the accuracy of the classification framework, we trained classifiers for each of
the software applications listed in Table A.1. In the following sections, we describe how
the necessary training data was collected, how the classifiers were evaluated, and report
the results of the evaluation.

A.3.1 Generating Training Data

In the course of conducting previous research with query-feature graphs (Chapter 4), we
had previously amassed a corpus of thousands of web documents pertaining to each of the
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GIMP Inkscape Thunderbird Total
Classifier:

True Positives 598 405 445 1448
True Negatives 2040 2668 4215 8923
False Positives 53 91 71 215
False Negatives 133 181 164 478

Precision 0.92 0.82 0.86 0.87
Recall 0.82 0.69 0.73 0.75
F1 score 0.87 0.75 0.79 0.81
Accuracy 93.4% 91.9% 95.2% 93.7%

Baseline:
F1 score 0.41 0.30 0.22 0.30
Accuracy 25.9% 17.5% 12.4% 17.4%

Table A.1: Evaluation results characterizing the performance of the proposed classification
framework. For comparison, the final two rows of the table present performance characteristics
of the baseline method.

software applications listed in Table A.1. These corpora were collected using standard
web crawling procedures. To generate training data for a particular application, we
randomly sampled 35 documents from the associated document collection. We then
identified candidate matches within each document, and manually labeled each as either
referring to a command or not. Since terminology varies in generality from application to
application (e.g., the names of commands in GIMP tend to be technical), and because we
sampled an equal number of pages for each application, the number of labeled examples
in each training set differ.

A.3.2 Evaluation and Results

In order to measure the accuracy of the classifiers, we employed leave-one-out validation
on a per-page basis: in each round, the classifier is trained with items found in all but
one of the web documents, and is evaluated using the withheld document. We report the
results of this experiment in Table A.1. To provide a point of comparison, the table also
presents the accuracy achieved when using only the baseline approach.

The results suggest that the classification framework performs well. The tested clas-
sifiers are able to accurately label an average of 93.7% of all candidate named entities,
surpassing the baseline accuracy by a wide margin. Viewed as a retrieval problem, the
classifier returns an average of 75% of all actual named widgets (i.e., recall), with an
average true-positive rate of 87% (i.e., precision). This yields an overall F1 score of 0.81.

To verify the classifiers were modelling the phenomena as expected, we manually
inspected the conditional probability tables making up the various naive Bayes classifiers.
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Feature Set F1 score

Next and Previous Candidate Matches 0.78
Next and Previous Tokens 0.63
Capitalization 0.63
Text-to-Tag Ratio / Location 0.59
Element Occupancy Ratio / Element Type 0.50
No features (i.e., using the prior distribution directly) 0.50

Table A.2: Classification performance when using only the features named in the leftmost
column.

Through this inspection, we found that the classifiers were indeed modelling various
structural aspects of the target interface. For example, our approach automatically learns
that the most likely token to follow a reference to GIMP’s “Fuzzy Select” command is
the word “tool”, which is expected since “Fuzzy Select” is a tool that appears in GIMP’s
toolbox. Similarly, the words “window” or “dialog” are the most likely tokens to follow
references to GIMP’s “Channels” window.

Finally, to determine the relative importance of the various features employed by
the classifier, we re-ran the experiment with classifiers employing various subsets of the
available features. For example, we found that classifiers employing only the “Next
and Previous Candidates” features achieve an overall F1 score of 0.78 across the three
applications. Similarly, the classifiers utilizing only the “Capitalization” features achieve
an overall F1 score of 0.63. The difference between these scores reflects the relative
importance of the associated features. Of all features, “Element Occupancy Ratio” and
“Element Type” were the least effective (F1 score of 0.50), providing less inferential
leverage than we would have liked. These features can likely be left out of future classifiers
without much detrimental effect. A summary of the F1 scores for the various feature sets
is listed in Table A.2.

A.4 Discussion and Future Work

In this chapter, we have demonstrated a system that draws upon informal practices in
tutorial writing to detect references to named widgets in online documentation. The re-
sulting named widget recognizer provides the foundation for a number of new interaction
possibilities, including: (1) new means of indexing and searching tutorials, (2) the ability
for users to invoke commands directly from within tutorial text, and (3) the creation of
summaries that highlight important steps in long tutorials (i.e., generating “Quick Start”
guides).

As with any complex system, there are a number of limitations of our recognizer
worthy of further discussion.
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First, our recognizer compares online documentation against a list of known wid-
gets, and disambiguates between meaningful references and spurious/coincidental string
matches. Our recognizer is both trained and evaluated using automatically generated
lists of all strings in a user interface (e.g., captions, labels, tooltips, etc.). A limitation
of this approach is that it does not consider cases where online documentation refers to
a widget using alternative text (e.g. “click the ‘No’ button” when the button is actually
labeled “Cancel”). Consideration of such novel synonyms can be expected to lower the
recall scores as compared to the results reported in Table A.1. This situation can be
partially ameliorated by adding common synonyms to the list of widget names, but a
more general solution for detecting novel synonyms remains a topic of future work.

Additionally, our system cannot disambiguate between distinct widgets that share a
common name. For instance, in the GIMP 2.6 interface, both a menu and a panel share
the caption “Layers”. Fortunately, this does not significantly impact the applicability
of the proposed technique to applications such as improved tutorial indexing or tutorial
summarization. Moreover, we can often rely on the user to differentiate between mul-
tiple possible interpretations. In the future, we hope to leverage additional context to
automatically disambiguate between identically named widgets.

Despite the aforementioned considerations, the proposed recognizer can be immedi-
ately applied to existing research, including: query-feature graphs, presented in Chapter
4; InterTwine, presented in Chapter 5; the work of Lau et al. [85]; and, the work of
Ekstrand et al. [42].

A.5 Addendum

In the time between the first publication [47] of this work in 2012, and the preparation
of this dissertation in 2015, Laput et al., improved upon our results by leveraging Condi-
tional Random Fields (CRFs) rather than Naive Bayes classifiers. In their work [84], the
authors trained on 400 tutorials, rather than on 35, and achieved F1 scores of 0.98 and
0.97 for detecting Photoshop tools and menu items respectively. This can be compared
to the results presented in this Chapter, which achieve an F1 score of 0.87 for detecting
mentions of GIMP commands in general. While we cannot rule out the impact of train-
ing on an order of magnitude more data, we consider CRFs to be the state-of-the-art in
named command recognition going forward.
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