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A B S T R A C T

We introduce a new formulation for the tree-level S-matrix in theories of massless
particles. Sitting at the core of this formulation are the scattering equations, which
yield a map from the kinematics of a scattering process to the moduli space of
punctured Riemann spheres. The formula for an amplitude is constructed by an
integration of a certain rational function over this moduli space, which is localized
by the scattering equations. We provide a detailed analysis of the solutions to these
equations and introduce this new formulation. After presenting some illustrative
examples we show how to apply this formulation to the construction of closed
formulas for actual amplitudes in various theories, using only a limited set of building
blocks. Examples are amplitudes in Einstein gravity, Yang–Mills, Dirac–Born–Infeld,
the U(N) non-linear sigma model, and a special Galileon theory. The consistency of
these formulas is checked by systematically studying locality and unitarity. In the end
we discuss the implication of this formulation to the Kawai–Lewellen–Tye relations
among amplitudes.
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1
I N T R O D U C T I O N

1.1 the s-matrix in quantum field theories

One of the main purposes of quantum field theories is to provide a quantitative
explanation of the nature of elementary particles. A crucial physical observable in
this study is the S-matrix, which underlies the computation of both cross-sections
and decay rates that particle experiments measure. Intuitively, a scattering process
in particle experiments is idealized to the interaction of a set of particles prepared
in the infinite past, whose product is a certain set of particles to be detected in the
infinite future. An element in the S-matrix, called a scattering amplitude, is a complex-
valued function of the kinematics of the scattering process, whose norm squares to
the probability for this process to happen.

1.1.1 Fields and Particles

In modern language what we call particles are excitations of quantum fields, ob-
tained by quantizing classical fields. Classically a field is described by a function of
space-time, valued in a certain target space, and its dynamics is dictated by a given
Lagrangian density L (or Hamiltonian density H). This target space is normally a
certain representation space of the product of the Lorentz group with possibly some
additional compact group encoding internal symmetries. For instance, a scalar field
φ(x) is valued in R or C, while a vector field Aµ(x) is a real field with a Lorentz index.
When non-trivial internal symmetries are present, the field may carry additional
indices associated to it, which are then called the flavor indices. Typical examples of
internal symmetries are U(N), SU(N), SO(N), etc.

The notion of a particle is most clear in the context of free fields, where the Lagrangian
density is quadratic in the field variables. In the simplest case, for a free real massless
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scalar field we have (we choose the signature for the Minkowski metric ηµν such that
the component η00 = −1)

Lscalar := −1
2

∂µφ ∂µφ . (1.1)

The typical example of a gauge field, the photon field, is given by

Lphoton := −1
4

Fµν Fµν , Fµν := ∂µ Aν − ∂ν Aµ , (1.2)

which is characterized by its invariance under the gauge transformation

Aµ(x) −→ Aµ(x)− ∂µ Λ(x) , (1.3)

for any function Λ(x).

The equations of motion for free fields are linear in the field variables, and after Fourier
transformation they turn into one equation for each Fourier mode, resembling that of
a single harmonic oscillator (SHO). So it is convenient to express the classical solutions
of the fields in terms of a Fourier expansion. In D dimensions, for example, the
general solution of the real scalar in (1.1) is (denote xµ = (t,~x))

φ(x) =
∫ dD−1~k

(2 π)D−1
1√
2 E~k

(
a~k e−i E~k t+i~k·~x + a†

~k
ei E~k t−i~k·~x

)
, (1.4)

with kµ kµ = −E2
~k
+~k2 = 0, which is called the (massless) on-shell condition. To solve the

photon field (1.2) we need to fix the gauge redundancy (1.3) first. A convenient choice
is the Lorentz gauge ∂µ Aµ = 0, with which the solution is

Aµ(x) =
∫ dD−1~k

(2 π)D−1
1√
2 E~k

D−2

∑
I=1

(
aI,~k ε

µ

I,~k
e−i E~k t+i~k·~x + a†

I,~k
ε

µ †
I,~k

ei E~k t−i~k·~x
)

, (1.5)

where the polarization vector ε
µ

I,~k
satisfies kµ ε

µ

I,~k
= 0 for any I,~k. Note that in addition

the gauge redundancy (1.3) identifies ε
µ

I,~k
∼ ε

µ

I,~k
+ ` kµ (for arbitrary constant `). These

two conditions indicate that the polarization vector only possesses D− 2 degrees of
freedom. A convenient choice is to pick D− 2 ε’s that are transverse to kµ and are
orthonormal, and we label them by an index I. Hence in the classical solutions (1.4)
and (1.5), the a’s are numbers that we can freely choose.

From classical fields to quantum fields, one promotes the a’s and a†’s to annihilation
and creation operators and imposes the canonical quantization condition (in analogy
with that of the SHO), e.g., for the scalar field we have

[a~k, a†
~l
] = (2 π)D−1 δD−1(~k−~l) . (1.6)

A similar procedure can be done for the gauge fields by properly implementing
the gauge fixing condition; see, e.g., Section 8.3 of [1]. Then starting with the free
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theory vacuum |0〉 one applies the creation operators and builds up eigenstates of
the Hamiltonian H =

∫
dD−1~xH, which form a basis for the Hilbert space of the free

theory. A generic eigenstate thus has the form

|ψ~k1,~k2,...,~km
〉 := a†

~k1
a†
~k2
· · · a†

~k
|0〉 (1.7)

in the scalar theory (note the operators above commute with each other, which is
consistent with the statistics of bosons) and

|ψµ1,µ2,...,µm

I1,~k1 I2,~k2,...,Im,~km
〉 := ε

µ1
I1

ε
µ2
I2
· · · εµm

Im
a†

I1,~k1
a†

I2,~k2
· · · a†

Im,~K |0〉 (1.8)

in the gauge theory. Such an eigenstate is interpreted as the state of m on-shell
particles, each of which is specified by its corresponding momentum, together with
possibly additional indices for its polarization (if not a scalar) and possibly even more
indices for the internal symmetries.

1.1.2 Interactions and the S-Matrix

Several theories that are relevant for the description of nature, such as Quantum
Electrodynamics (QED), admit perturbative expansion. The Hamiltonian H for such
theories can be decomposed into two parts

H = H0 + Hint , (1.9)

where H0 is identical to the Hamiltonian of a free theory and Hint collects the remaining
terms. These terms are in general of order higher than two in the number of field
variables, and depend on a set of small parameters (the couplings) such that they
vanish as the parameters are taken to zero.

We define the scattering states, the in-state |ψin〉 and the out-state |ψout〉, by∣∣ψin〉 := lim
t→−∞

ei H t e−i H0 t ∣∣ψin
0
〉

,
∣∣ψout〉 := lim

t→+∞
ei H t e−i H0 t ∣∣ψout

0
〉

, (1.10)

for some eigenstates |ψin
0 〉 and |ψout

0 〉 of H0. An element of the S-matrix measures the
transition amplitude from the in-state to the out-state

〈ψout|ψin〉 = lim
t1→−∞
t2→+∞

〈ψout
0 |U(t2, t1)|ψin

0 〉 , (1.11)

where

U(t2, t1) := ei H0 t2 e−i H (t2−t1) e−i H0 t1 = T
{

e−i
∫ t1

t2
dτ Hint(τ)

}
. (1.12)
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In the above T denotes the time-ordering operator. Hence the precise definition for
the S-matrix, which we denote by S, is

S := lim
t1→−∞
t2→+∞

U(t2, t1) . (1.13)

An element of the S-matrix is specified by an in-state and an out-state, both of which ac-
quire the interpretation of a collection of free on-shell particles.

Obviously the S-matrix contains a trivial identity 1 (corresponding to the case when
no interaction occurs at all), and we decompose it as

S = 1 + i T. (1.14)

It is the matrix T that we are interested in, which encodes all the information on
the interactions. When the in-state and the out-state is specified, we denote its
corresponding element asMn(ψin

0 → ψout
0 ) := 〈ψout

0 |T|ψin
0 〉, where n counts the total

number of particles in the scattering, i.e., the number of particles in |ψin
0 〉 plus the

number of those in |ψout
0 〉. Although not manifest in the definition (1.13), the S-matrix

enjoys the so-called crossing symmetry: any particle in the in-state with momentum
kµ can be equally regarded as its anti-particle in the out-state with momentum −kµ

and vice versa, without changing the corresponding element in the S-matrix. Hence
without loss of generality one can assume that all the particles in a scattering process to
be in either the in-state or the out-state (consequently these particles together are called
external particles or external states). Note that the S-matrix is translation invariant, which
implies momentum conservation after a Fourier transformation, and so a generic
scattering amplitude comes in the form of a distribution

Mn({k, ε}) = Mn({k, ε}) (2 π i)D δD( D

∑
a=1

kµ
a
)

, (1.15)

where kµ
a denotes the momentum of the ath particle and the delta functions encode

the constraint from momentum conservation. The quantity Mn({k, ε}) is purely
a function of the kinematics data (i.e., momenta and possibly polarizations of the
particles). We call Mn the scattering amplitude (or simply amplitude), and Mn the
(momentum-conservation) stripped amplitude. It is for the latter that we are going to
introduce a novel formulation in this thesis.
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1.1.3 Computation of the Scattering Amplitudes

With Hint small, in perturbation theory we expand (1.11) into Dyson series

〈ψout
0 |S|ψin

0 〉 = 〈ψout
0 |

∞

∑
m=0

(−i)m

m!

∫ +∞

−∞
dτ1 · · · dτm T {Hint(τ1) · · ·Hint(τm)}|ψin

0 〉 . (1.16)

Using the field expansion as in (1.1) and (1.2), Hint is nothing but a combination of
creation and annihilation operators in the free theory (dressed with wave functions),
and so the standard computing procedure is to apply Wick contraction to the creation
and annihilation operators and the external states in all possible ways and then sum
them up. This gives rise to an elegant diagrammatic interpretation: each term in Hint

is treated as a vertex, and each Wick contraction between an annihilation operator and
a creation operator (or between an annihilation/creation operator and an in/out-state)
is treated as an edge. These are the famous Feynman diagrams. With these, each vertex
comes with an expression that can be easily read off from Hint and each internal edge
is attached by the propagator resulting from the Wick contraction. Momenta flow
along the edges and respect momentum conservation at each vertex. For every given
diagram one multiplies these together and integrate out the momenta flowing inside
the diagram, and then the scattering amplitude at each order in the series (1.16) is
obtained by summing over all connected amputated diagrams1.

As an illustrative example, in the massless scalar–QED theory with the following
Lagrangian density (here the scalar has to be complex)

Lscalar–QED := −Dµφ∗Dµφ− 1
4

Fµν Fµν , Dµ := ∂µ + i e Aµ , (1.17)

let us consider the amplitude for the scattering of a pair of scalar and anti-scalar (1,2)
into another pair of scalar and anti-scalar (3,4). At the lowest non-trivial order there
are two contributing diagrams

φ∗4 φ3

φ1 φ∗2

γ

φ∗4 φ3

φ1 φ∗2

γ

Again we choose the Lorentz gauge ∂µ Aµ = 0 in reading off the Feynman rules from
the Lagrangian (1.17). In this gauge, the interaction term needed in this computation

1 In principle Wick contraction may produce other types of diagrams, but they are either not interesting for
the given scattering process or are responsible for renormalization, and can be systematically eliminated.
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is ie(∂µφ∗ φ− φ∗ ∂µφ)Aµ, which gives rise to the vertex ie(p− q)µ, where pµ and qµ

are the momenta flowing in each of the two scalar lines (assuming both out-going). In
addition, the only propagator involved is the photon propagator i ηµν

p2 . So their total
contribution is

−e2 (k1 − k2) · (k4 − k3)

s1,2
− e2 (k3 − k2) · (k4 − k1)

s2,3
, (1.18)

where sa,b := −(ka + kb)
2 denotes the Mandelstam variables, and from now on we use

the center dot to denote contraction of Lorentz indices.

In the above example both diagrams have the topology of a tree. We call the summation
of Feynman diagrams of this topology the tree-level amplitude, which contributes to the
entire amplitude at the lowest order in terms of the couplings, which is associated to
the classical process in the scattering. In addition to these there are also diagrams with
the topology of loops, which are responsible for quantum corrections. The summation
of diagrams with g loops is called a g-loop amplitude. It is easy to observe that for
fixed external states, the more loops the higher the order of the couplings is. Hence
the perturbative calculation of the amplitude for a given scattering process is equally
organized by the number of loops g

Mn =
∞

∑
g=0

M(g)
n . (1.19)

In actual computation, one normally organizes elements of the S-matrix by both the
number of particles n (called multiplicity) and the number of loops g.

In this thesis we focus on tree-level amplitudes, and so we will suppress the super-
scripts and simply use Mn to denote a tree-level amplitude.

1.2 the s-matrix program

It appears the computation of amplitudes by Feynman diagrams is not a hard task:
the method is conceptually simple, and the Feynman rules are easily read from Hint.
However, this computation becomes impractical immediately when going beyond the
simplest cases (that is why standard QFT textbooks rarely discuss scattering among
more than four particles). The main sources of complexity are as follows [2]: (i) In
general the number of diagrams grows rapidly with the multiplicity. (ii) A single
interaction vertex may have a complicated appearance, e.g., the quartic gluon self-
interaction. (iii) The number of kinematic variables grows fast with the multiplicity as
well, allowing for arbitrarily complicated expressions.
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Given the above facts, it might sound surprising that there exist theories in which,
despite of the complexity of detailed computations, the final results for certain ampli-
tudes turn out to be extremely simple. Perhaps the most remarkable example is the
Parke–Taylor formula for the so-called MHV amplitudes in the Yang–Mills theory in
four dimensions (amplitudes with two negative helicity gluons and arbitrary number
of positive ones) [3]

MMHV
n = tr(T I1 T I2 · · · T In)

〈ij〉4
〈12〉 〈23〉 · · · 〈n1〉 + (permutations) , (1.20)

by the use of the spin-helicity formalism in parametrizing the 4d kinematics2. This is
an indication of the existence of formulations alternative to Feynman diagrams, which
lead to the results as in (1.20) directly.

The Lagrangian formulation also has a typical disadvantage that for a single theory
the Lagrangian is not unique: two Lagrangians may appear very different (and thus
different Feynman rules), but they are related by a non-trivial field re-definition and
thus lead to the same S-matrix.

After all, a tree-level scattering amplitude is no more than a rational function of the
kinematic variables. When regarding the kinematic variables to be complex, it is a
meromorphic function with only simple poles, due to the locality of the S-matrix
(which we will explain in Section 1.2.3) [5]. In addition, the residue at each pole
acquires a physical interpretation. Hence it is possible that we can determine tree-level
amplitudes straightforwardly.

In the rest of this section we review the general properties of scattering amplitudes
that are relevant to this program. Along the way we set up some of the notations for
later chapters.

1.2.1 Particle Contents and Symmetries

When talking about a scattering process, the very first thing to keep in mind is the type
of the external particles. As discussed before the notion of particles is independent of
the detailed contents of interactions.

In fact, a systematic classification of one-particle states is available even before the
introduction of quantum fields, by studying irreducible representations of the inho-

2 In this thesis we are interested in a formulation in generic spacetime dimensions. We suggest interested
readers to [2, 4] for a thorough review of techniques in four dimensions and of the Parke–Taylor formula
(1.20).
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mogeneous Lorentz group [1]. The idea is roughly as follows. Firstly, any one-particle
state is labeled by its on-shell momentum kµ. In the case of massless particles dis-
cussed in this thesis it means kµ kµ = 0. Upon this, one classify representations of
the little group, which is the subgroup of the Lorentz group that leaves kµ invari-
ant.

Scalars are in the trivial representation of the little group. Photon/Gluons or gravitons
transform non-trivially. In order to describe them in a local formulation, we need to
start from Lorentz vectors εµ and tensors εµν, even though they are not the proper
representations. The problem is that they have extra degrees of freedom, and the way
to solve this is to identify

εµ ∼ εµ + ` kµ , and εµν ∼ εµν + ξµ kν + kµ ξν , (1.21)

with arbitrary constant ` and ξµ.

The amplitude has to transform according to its external particles under the Lorentz
group. So when a particle a is a photon/gluon or graviton the amplitude has to be
linear in its polarization

Mn = ε
µ
a Gµ (photon/gluon) , or Mn = ε

µν
a Gµν (graviton) , (1.22)

with G whatever remaining part of the amplitude that is independent of ε
µ
a . Moreover,

the identification (1.21) indicates

Mn
∣∣
ε

µ
a 7→kµ

a
= kµ

a Gµ = 0 . (1.23)

for photons/gluons (gauge invariance), and

Mn
∣∣
ε

µν
a 7→ξµ kν

a+kµ
a ξν = (ξµ kν

a + kµ
a ξν) Gµν = 0 , (1.24)

for gravitons (diffeomorphism invariance).

In addition to the above constraints, very often an amplitude has to be invariant
under certain discrete symmetries. In the case of bosons, the amplitude has to be
invariant under the exchange of labels for any two particles of the same type, and in
the case of fermions it has to pick up a minus sign. This is a direct consequence of
the statistics of the external particles, which is obvious in (1.7) and (1.8). Especially,
any amplitude whose external states are of the same type of bosons must be fully
permutation invariant.
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1.2.2 Color Decomposition and Partial Amplitudes

Scattering amplitudes can be decomposed into smaller pieces in the presence of a
non-trivial internal symmetry or gauge redundancy. A particle carries a flavor index
for the former and a color index for the latter. In this thesis we focus on the case
when the corresponding flavor/color group is U(N) and the particles transform in the
adjoint representation. In this situation interaction vertices are normally dressed with
a flavor/color factor that consists of the structure constants

f Ia,Ib,Ic :=
1√
2 i

tr(T Ia T Ib T Ic)− 1√
2 i

tr(T Ia T Ic T Ib) , (1.25)

where T are the generators of the corresponding algebra. Hence the scattering
amplitude also contains a flavor/color factor.

However, it is usually more practical to apply (1.25) and use the generators T I . The
advantage is that for U(N) there is an additional identity

∑
I
(T I)i

j̄ (T
I)k

l̄ = δi
l̄ δk

j̄ , (1.26)

which provides a way to glue flavor/color traces

∑
Ia

tr(· · · T Ib T Ia) tr(T Ia T Ic · · · ) = tr(· · · T Ib T Ic · · · ) . (1.27)

In a theory of a single type of particle (e.g., pure Yang–Mills) this leads to the
consequence that a tree-level amplitude can be decomposed into a summation where
in each term the flavor/color factor forms a single trace

Mn = ∑
α∈Sn/Zn

tr(T Iα(1) T Iα(2) · · · T Iα(n)) Mn[α] . (1.28)

Hence for each ordering α we have a corresponding quantity Mn[α], which is called
the (color-ordered) partial amplitude.

To illustrate this decomposition, let us look at the scalar–QCD

Lscalar–QCD := −(DµΦ)∗I (DµΦ)I − 1
4

FI
µν Fµν,I , Fµν := [Dµ,Dν] , (1.29)

which is the non-Abelian version of the scalar–QED (1.17). To calculate the amplitude
for the same four-scalar scattering, the only change is that the cubic vertex is now
dressed by a structure constant, which induces the following color factors for each of
the two diagrams

∑
Ia

f I1,I2,Ia f Ia,I3,I4 , ∑
Ia

f I2,I3,Ia f Ia,I4,I1 . (1.30)

9



Hence the full amplitude is decomposed to

e2
(

tr(1234)
s2 + t2 + u2

st
− tr(1243)

t− u
s
− tr(1324)

s− u
t

)
, (1.31)

where we abbreviate tr(abcd) := tr(T Ia T Ib T Ic T Id), and s = s1,2, t = s1,4, u = s1,3 are the
usual Mandelstam variables.

More generally, if a theory involves several types of particles and certain parti-
cles do not carry the flavor/color indices (such as Yang–Mills coupled to grav-
ity), then in the above decomposition the flavor/color factor may contain several
traces.

1.2.3 Locality and Unitarity

By definition (1.13) the S-matrix S is a unitary operator, satisfying

S† S = 1 . (1.32)

Using the decomposition (1.14) we obtain the relation

−i (T− T†) = T† T . (1.33)

To extract a specific entry, we specify two states |Ψin
0 〉 and |Ψout

0 〉. Since the RHS of
(1.33) is a product, we can insert a complete set of intermediate states (which are
eigenstates of H0), which yields

=(〈Ψout
0 |T|Ψin

0 〉) = ∑
m

(
m

∏
i=1

∫ dDki

(2 π)D δ(+)(k2
i )

)
〈Ψout

0 |T†|m〉 〈m|T|Ψin
0 〉 , (1.34)

where |m〉 denotes an m-particle state, and the delta constraint δ+(k2
i ) = δ+(ki,µkµ

i )

restricts kµ
i on the future light cone. This is called the optical theorem. The physical

reason why we can insert a complete set of intermediate states is as follows. Imagine
that the interaction in a scattering process occurs in two steps, each of which happens
in a localized area in the Minkowski space far from the other, then the virtual particles
propagated in between approximate to real particles, as long as wave packets are
properly defined to separate them sufficiently apart that there is no other intermediate
interaction. Then interpreted in the momentum space they form an eigenstate in the
Hilbert space of H0. Hence the ability in doing this is due to the fact that the theory
we are considering involves local interactions only.

10



Recall the definitionMn = 〈Ψout
0 |T|Ψin

0 〉. Due to the crossing symmetry as discussed
in Section 1.1.2, let us move all the external particles to the out-state and define the
momenta to be all out-going, then (1.34) takes the form

=(Mn) = ∑
m

(
m

∏
i=1

∫ dD pi

(2 π)D δ(+)(p2
i )

)
MnL+mMnR+m , (1.35)

where nL counts the number of particles in |Ψout
0 〉 and nR counts the number of

particles in |Ψin
0 〉, and n = nL + nR. Let us denote P2 := (∑a∈ψin

0
ka)2 as the Mandelstam

variable associated to all the particles in |Ψin
0 〉. Then the LHS of (1.35) just computes

the discontinuity ofMn(P2) when regarding P2 as a complex variable. Pictorially we
can express (1.35) as

=

 Mn

 = MnL+1 MnR+1 + MnL+2 MnR+2 + · · · .

(1.36)

The first term corresponds to propagating one intermediate on-shell particle (or in-
ternal particle). It is normally absent from the standard textbooks, because a generic
kinematics configuration for the LHS excludes the contribution from this term. How-
ever, it does exist if the kinematics becomes singular, i.e., P2 → 0. When we restrict to
the tree level, this is the only contribution from the RHS since as shown in (1.36) all
the other terms necessarily form loops. Note that each amplitudeM is defined to be
dressed with the delta constraint of momentum conservation as in (1.15), and so the
integration over the phase space is localized in this term. Explicitly, if we assume ψin

0

consists of particles labeled by {1, 2, . . . , nR}, then this term is∫ dD p
2 π

δ(+)(p2) MnL+1 (2π)DδD(knR+1 + · · ·+ kn−1 + kn + p)

×MnR+1 (2π)DδD(k1 + k2 + · · ·+ knR − p)

=δ(+)(P2)
(

MnL+1
∣∣

pµ→Pµ

) (
MnR+1

∣∣
pµ→Pµ

)
(2π)DδD(k1 + k2 + · · ·+ kn).

(1.37)

Note that

δ(+)(P2) = = 1
P2 − iε

, (1.38)

with ε an infinitesimal number. Comparing the LHS of (1.36), this means that Mn must
contain a pole in P2, as long as neither MnL+1 nor MnR+1 vanishes (which can happen
due to symmetries of the theory, as we will see in later chapters). And furthermore,
the residue at this pole factorizes into two parts, each of which looks like an amplitude.
Explicitly we have

Mn = MnL+1
1

P2 MnR+1 +O(1) (1.39)
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as P2 → 0. And so we call P2 a factorization channel. This relation was written by
assuming that the internal particle is a scalar. When it is in a non-trivial representation
of the little group (e.g., a photon/gluon or graviton), then we also need to sum over
its polarizations εI

Mn = ∑
εI

MnL+1(εI)
1

P2 MnR+1(εI) +O(1) . (1.40)

From (1.39) and (1.40) we see that a tree-level amplitude contains only simple poles,
and the residue upon each simple pole factorizes into two small amplitudes. In the
study of the S-matrix, the former is usually referred to as locality, and the latter as
unitarity.

1.3 the scattering equations and the chy representation

In this thesis we introduce a general formulation (CHY representation) for tree-level
amplitudes in theories of massless particles, which I developed together with Freddy
Cachazo and Song He over the past two years [6–9]. This new formulation was largely
motivated by encoding locality and unitarity in an auxiliary punctured Riemann
sphere instead of the traditional Feynman diagrams.

To be precise, the CHY representation for a general n-point amplitude of massless
particles is realized by an integral over the moduli space of n-punctured Riemann
spheres M0,n

Mn =
∫ n

∏
a=1

′
dσa

n

∏
a=1

′
δ
( n

∑
b=1
b 6=a

ka · kb

σa − σb

)
In({k, ε, σ}) =:

∫
dµn In , (1.41)

where the σ’s are holomorphic coordinates specifying the locations of the punctures,
and the integrand In is some rational function of the kinematics data and the σ’s [6].
The delta constraints impose the scattering equations [10, 11]

n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , ∀a . (1.42)

The primes in (1.41) indicate that there are redundancies in both the variables and
the constraints. To make the integral well-defined, for each product one has to delete
three labels and compensate by a factor, i.e., ∏′a := σa′,b′σb′,c′σc′,a′ ∏a 6=a′,b′,c′ (we denote
σa,b := σa − σb), which is independent of the choice of {a′, b′, c′}.
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Since the number of variables and that of the contraints are the same, in actual
computation the integral (1.41) is fully localized by the scattering equations (1.42),
reducing to a summation over points in M0,n. These discrete solutions to the scattering
equations possess a nice feature that they capture the information of factorization
channels by exploring boundaries of M0,n where the n-punctured sphere degenerates
accordingly, which is a crucial fact underlying the self-consistency of a general CHY
representation. The origin of the scattering equations and properties of their solutions
are going to be discussed in full detail in Chapter 2.

Note that in this formulation (1.41) the only thing that depends on the amplitude
under study is the integrand In({k, ε, σ}). Since the entire formula has to be invariant
under any SL(2, C) transformation acting on the σ’s, the integrand In has to tranform
in an appropriate way. As long as this criterion is satisfied, one can make any proposal
for In and test whether the resulting formula yields expressions that are physically
sensible (especially, whether they are indeed local and unitary). As will be discussed
in Chapter 3, it turns out there exist a special class of integrands that possess certain
correspondence to scalar Feynman diagrams, i.e., there is a systematic way to translate
one such integrand to a diagram and vice versa.

In a large variety of theories of massless bosons, we can obtain a single compact
formula for every element of the corresponding S-matrix at the tree level (in this
case we say the formula is closed). In addition, the integrands in all these formulas
are built out of several simple building blocks that are constructed naturally by the
consideration of the general constraints on an amplitude as discussed in the previous
section.

Here let us summarize what these building blocks are. Firstly there is the so-called
Parke–Taylor factor, depending on a planar ordering α

Cn[α] :=
1

σα(1),α(2) σα(2),α(3) · · · σα(n),α(1)
, (1.43)

which is natural for the partial amplitudes after color decomposition. When a formula
for the full amplitude is needed, we can simply substitute it by

Cn := ∑
α∈Sn/Zn

tr(T Iα(1) T Iα(2) · · · T Iα(n))Cn[α] . (1.44)

The other building blocks are all permutation invariant quantities, which come in the
form of a Pfaffian of some anti-symmetric matrix. These are

PfXn , PfXn , Pf′An , Pf′Ψn , Pf′Π . (1.45)
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Here both Xn and An have size n× n, defined as

(Xn)a,b :=

 δIa ,Ib
σa−σb

, a 6= b

0 , a = b ,
(An)a,b :=


ka·kb

σa−σb
, a 6= b

0 , a = b ,
(1.46)

where Ia, Ib are the flavor/color indices. The matrix Xn is obtained from Xn just by
identifying all the flavor/color indices δI,J ≡ 1. The matrix Ψn is of size 2n× 2n with
the block structure

Ψn :=

(
An −CT

n

Cn Bn

)
, (1.47)

where the block An is the same as that in (1.46), while Bn and Cn depend on the
polarization vectors εµ, defined by

(Bn)a,b :=


εb·εb

σa−σb
, a 6= b

0 , a = b ,
(Cn)a,b :=


εa·kb

σa−σb
, a 6= b

−∑c 6=a(Cn)a,c , a = b .
(1.48)

And finally the matrix Π is obtained by applying a “squeezing” operation on the
matrix Ψn. Since a generic Π matrix has a more complicated structure, we leave its
definition to the detailed discussion in Chapter 5. Note that the matrices An, Ψn and
Π all have corank two on the support of the scattering equations, their Pfaffian vanish,
and so the appropriate quantity associated with them is a reduced Pfaffian (denoted
by a prime), which is to be defined in Chapter 4.

With these building blocks, the theories for which we have discovered closed formulas
together with the corresponding integrands are listed in Table 1. In this table, we use

Table 1: List of Theories with Their Corresponding Integrands

Theory Integrand Section

Einstein gravity Pf′Ψn Pf′Ψn 4.5
Yang–Mills Cn Pf′Ψn 4.4.1

Φ3 flavored in U(N)×U(Ñ) Cn Cn 4.2.1
Einstein–Maxwell Pf[Xn]γ Pf′[Ψn]:γ̂ Pf′Ψn 5.1.3

Einstein–Yang–Mills Ctr1 · · · Ctrt Pf′Π(h; tr1 . . . , trt)Pf′Ψn 5.2
Yang–Mills–Scalar Cn Pf[Xn]s Pf′[Ψn]:ŝ 5.1.1

generalized Yang–Mills–Scalar Cn Ctr1 · · · Ctrt Pf′Π(g; tr1 . . . , trt) 5.2.4
Born–Infeld Pf′Ψn (Pf′An)2

4.4.3
Dirac–Born–Infeld Pf[Xn]s Pf′[Ψn]:ŝ (Pf′An)2

5.1.2
extended Dirac–Born–Infeld Ctr1 · · · Ctrt Pf′Π(γ; tr1 . . . , trt) (Pf′An)2

5.2.5
U(N) non-linear sigma model Cn (Pf′An)2

4.2.3
special Galileon (Pf′An)4

4.2.6
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[· · · ] to denote a minor of the matrix, and details about the notation is explained in
Chapter 5. We include a third column showing the sections where the corresponding
theory is explained.

Using the previously defined building blocks, we are going to first construct all
possible integrands for scalar amplitudes in Chapter 4. Most of them already give
rise to closed formulas for some of the theories listed in Table 1. For those that
do not form a closed formula, additional types of particles are involved in the
same theory. The way we extend them to a closed formula for the entire theory is
to introduce in Chapter 5 three operations that act on the matrices: the standard
compactification, the “squeezing”, and a “generalized compactification” [9]. By
exhausting the application of these operations, we find out closed formulas for several
other theories as well. In particular, with these operations, all the formulas in Table 1

can be regarded as descending from that for the amplitudes in pure gravity. The
explicit connections among them are summarized at the end of Chapter 5. It would
be interesting to understand better whether the latter two operations acquire some
physical interpretation.

A fact that we need to point out here is that some of these formulas still remain as
conjectures. Nevertheless, all of them have passed abundant non-trivial checks, both
numerically and analytically. On the one hand, most of the checks are performed
by comparing the results of these formulas with the corresponding results from the
usual Feynman diagram computations, with random kinematics data and in arbitrary
spacetime dimensions. These are summarized in Table 4. On the other hand, the
general CHY formulation provides a very convenient way to study behavior of the
amplitudes both in soft limits and in a generic factorization channel. Detailed analysis
in these two limits provides a strong all-multiplicity check of consistency of these
formulas with locality and unitarity. In Chapter 6, we first study the behavior of these
formulas in the single soft limits. There we only focus on the leading order, aimed at
explaining the universality of Weinberg’s soft theorems [12] from the view of the CHY
representaion. Then we describe a systematic procedure for the study of factorization
limits and explain how an on-shell internal particle emerges in this formulation. By
applying similar analysis to the two soft particle emissions, for several classes of
amplitudes we also discover several new soft theorems up to subleading orders for
the emission of two soft particles [13].

Another elegant feature that is universal to the CHY representation is related to
the Kawai–Lewellen–Tye (KLT) relations [14, 15]. In their original form in the field
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theory context, these relations connect a gravity amplitude to the “product” of two
Yang–Mills amplitudes

MGR
n = ∑

α,β∈Sn−3

MYM
n [1, α, n− 1, n]Kn[α|β] MYM

n [1, β, n, n− 1] , (1.49)

where the so-called KLT momentum kernel Kn[α|β] is an (n− 3)!× (n− 3)! matrix
purely depending on the Mandelstam variables [16]. When expressed in terms of the
CHY representation, we are going to show in Chapter 7 that (1.49) is equivalent to a
theorem called KLT orthogonality [11, 17], which states that

∑
α,β∈Sn−3

C(i)
n [1, α, n− 1, n]Kn[α|β]C(j)

n [1, β, n, n− 1] = δi,j (det′Φn)
(i) , (1.50)

where the superscript “(i)” means to evaluate on the ith solution to the scattering
equations (1.42), and the factor det′Φn is the Jacobian arising from the localized inte-
gration (1.41), which will be discussed in full detail later in Chapter 7. An important
consequence of the KLT orthogonality is that the KLT relations are not something spe-
cial to gravity and YM: one can consider the KLT construction from partial amplitudes
in any theories what acquire similar color decomposition [7].

In Chapter 8 we end this thesis by commenting on several interesting directions for
future explorations on the CHY representation.

Before going on to the detailed discussions on the scattering equations and the CHY
representation, we would like to point out that the scattering equations have made an
appearance in various contexts in previous literature [18–23]. While this thesis only
focus on the tree-level S-matrix for massless bosons, there have also been explorations
in connecting this to ambi-twistor strings [24–34] and ordinary string theory [35, 36],
and extending this formulation to loop levels [24, 27, 31, 37] and to massive particles
[38–40]. We are going to comment on these further in Chapter 8.

16



1.4 my previous papers relevant to this thesis
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2
S C AT T E R I N G E Q U AT I O N S

In this chapter we introduce one of the main subjects of this thesis, the scattering
equations [10, 11]

n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , ∀a ∈ {1, 2, . . . , n} , (2.1)

and discuss in detail properties of their solutions.

2.1 the auxiliary riemann sphere

All possible configurations of the kinematics associated to a scattering among n
massless particles in D dimensions form a space that we call the kinematic space,
defined as

KD,n := {(kµ
1 , kµ

2 , . . . , kµ
n)|

n

∑
a=1

kµ
a = 0, k2

1 = k2
2 = · · · = k2

n = 0}/SO(1, D− 1) . (2.2)

Since we need Lorentz invariant quantities, it is convenient to introduce the Mandel-
stam variables sa1,a2,...,ar := (ka1 + ka2 + · · ·+ kar)

2, and use an independent subset of
them as the coordinates of Kn,D.

The equation sa1,a2,...,ar = 0 carves out a subspace of Kn,D. Since sa1,a2,...,ar = 0 cor-
responds to a kinematic configuration that is singular (in the sense that the am-
plitude diverges), we call this subspace a codimension-1 singularity of the ampli-
tude.

In general we can set a sequence of Mandelstam variables to zero, which leads to
singularities of higher codimensions. Let us denote a generic Mandelstam variable as
sa1,a2,...,ar := (ka1 + ka2 + · · ·+ kar)

2. Then for example, setting s1,2 = s1,2,3 = 0 yields a
codimension-2 singularity, and setting s1,2 = s3,4 = s1,2,3,4 = 0 yields a codimension-3
singularity. In comparison, e.g., s1,2 = s2,3 = 0 is not physically interesting because
the amplitude behaves ambiguously when approaching this kinematics configuration
(in this case we say these two factorization channels are inconsistent), so we exclude
such points from the singularities. Obviously the highest codimension of a singularity
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is n− 3. This is a qualitative characterization of the unitarity of a generic scattering
amplitude. Hence we see the structure of the kinematic singularities is complicated,
which is one of the main reason why it is in general hard to find out a closed expression
or formula for amplitudes to all multiplicities in a given theory.

To avoid this difficulty, a practical strategy is to introduce an auxiliary object that
characterizes the singularities of KD,n in a cleaner way. To be precise, we look for
a certain space whose singularity structure is well understood and easy to analyze,
together with a map from KD,n to this new space such that (at best) singularities (of the
amplitude) are mapped to singularities (in the auxiliary space).

For this purpose, let us consider a Riemann sphere CP1 and mark out n distinct
points (or punctures) on it. The moduli space of all such n-punctured Riemann
spheres is known as M0,n. It is an n− 3 dimensional complex space, and can be nicely
parametrized by a set of n holomorphic variables {σ1, σ2, . . . , σn} quotienting out the
SL(2, C) transformations, i.e.,

{σ1, σ2, . . . , σn} ∼ {ψ(σ1), ψ(σ2), . . . , ψ(σn)} , (2.3)

where

ψ(σ) :=
α σ + β

γ σ + δ
, α, β, γ, δ ∈ C, α δ− β γ = 1 . (2.4)

Here σa specifies the location of the ath point on the Riemann sphere. These coordinates
controls the shape of the punctured Riemann sphere. Due to the presence of the
SL(2, C) redundancy, one can fix any three variables at distinct points on the complex
plane C and leave the rest free, which forms an open patch of M0,n; and M0,n is
covered by the union of all such patches.

M0,n has boundaries. Let us consider a set of labels S ⊂ {1, 2, . . . , n} of size at least
two and denote its complement as S̄. A codimension-1 boundary corresponds to
the region where the original punctured Riemann sphere Σ0,n degenerates into two
generic Riemann spheres Σ0,|S|+1 and Σ0,|S̄|+1, the former containing points in S and
the latter those in S̄, and the two spheres are glued at a point that is distinct from the
original n points on each sphere

Σ0,n
degenerates−−−−−−−−→ Σ0,|S|+1 Σ0,|S̄|+1 . (2.5)

Here |S| denotes the cardinality of S. With the original coordinates, we can make
different choices of three variables to fix in order to see either of the two new Riemann
spheres. In one choice, if we fix variables for two points in S and one point in S̄, then
σc − σd → 0 ∀c, d ∈ S̄, i.e., they all pinch at the gluing point as seen on Σ|S|+1. In
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another choice, if we fix variables for one point in S and two points in S̄, then similarly
σa − σb → 0 ∀a, b ∈ S.

Hence the total complex degrees of freedom left over is (|S| − 1) + (|S̄| − 1) = n− 4,
justifying that this boundary has codimension one. Upon this, one can further explore
codimension-1 boundaries of either of the two new Riemann spheres, which leads
to a codimension-2 boundary of M0,n, and the picture thus attached is a set of three
Riemann spheres glued together. This procedure can be iterated until one reaches
a codimension-(n − 3) boundary, where each of the n − 2 new Riemann spheres
contains exactly three punctures, counting the gluing points.

Now assume that whenever we see a punctured Riemann sphere we literally associate
it to a generic scattering amplitude, by identifying the ath external particle to the ath

marked point. Recall the term in (1.36) that is implemented as a tree-level factorization
(1.39) or (1.40)

Mn
factorizes−−−−−−−→ MnL+1 MnR+1 . (2.6)

Comparing (2.6) with (2.5), we observe a strong correspondence between the two
sides: factorization of amplitudes can be unambiguously mapped to degeneration
of Riemann spheres. Moreover, when two factorization channels are inconsistent
with each other, there is no way to let the Riemann sphere to degenerate twice,
each corresponding to one of the channels. This means the moduli space M0,n of n-
punctured Riemann spheres already captures all the qualitative requirement of locality
and unitarity, i.e., of how an amplitude should factorize.

Therefore, we propose to choose the auxiliary space to be M0,n, the moduli space of
n-punctured Riemann spheres. What is still missing is a map

ϕ : KD,n −→M0,n , (2.7)

that fulfills the above correspondence between n-point amplitudes and n-punctured
Riemann spheres in a quantitative way. This is achieved by the scattering equations
that we are going to introduce in the next section. Note that so far our discussion
depends neither on specific theories nor on the types of external particles, hence we
expect that this map is going to be universal.
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2.2 construction

As discussed in the introduction, every scattering process is specified by a set of
kinematics data, which consist of the momentum kµ

a and possibly the polarization εa

(depending on the representation) for each external particle a. When we draw the
correspondence between an n-point amplitude and an n-punctured sphere, we should
associate each kµ

a and ε
µ
a locally to the marked point a.

Let us make this precise. Since we have a Riemann sphere CP1, natural objects that
we can construct upon it are functions and more generally differential forms. Recall
the constraints from momentum conservation

n

∑
a=1

kµ
a = 0 , ∀µ . (2.8)

We define a Lorentz-vector-valued meromorphic form ωµ on CP1, such that it only
possess a simple pole on each marked point a, with the corresponding residue
specified by kµ

a , i.e.,

kµ
a =

1
2 π i

∮
|z−σa|=ε

ωµ , ∀a ∈ {1, 2, . . . , n} . (2.9)

Then the momentum conservation (2.8) implies that ωµ has no pole at z = ∞. Once
we specify a point in M0,n by fixing the σ’s, we find a unique solution for ωµ satisfying
(2.9), which is

ωµ = dz
n

∑
a=1

kµ
a

z− σa
. (2.10)

One can explicitly check that there is no pole at z = ∞.

Due to our purpose in finding the map (2.7), {σa} cannot be independent of {ka}, and
so ωµ has to be constrained. In order to find it out, we first contract ωµ with itself to
produce a quadratic differential

Q = ωµ ωµ = dz2 ∑
1≤a<b≤n

2 ka · kb

(z− σa) (z− σb)
. (2.11)

In the second equality above we applied massless on-shell conditions ka · ka = 0 (∀a),
so that explicitly there are still only simple poles.

Let us study this quantity in the simplest examples to acquire some intuition. When
n = 3, we have k1 · k2 = k1 · k3 = k2 · k3 = 0, which means Q ≡ 0. Next we
move to n = 4 which is the first non-trivial case. Here we can choose to fix three
punctures, say {σ1, σ2, σ3} = {0, 1, ∞}. Recalling our desired correspondence between
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the amplitude and the Riemann sphere discussed in the previous section, σ4 has to
satisfy

σ4 → 0 when k1 · k4 → 0 ,

σ4 → 1 when k1 · k3 → 0 ,

σ4 → ∞ when k1 · k2 → 0 .

(2.12)

Since we are studying tree-level amplitudes, the simplest thing to try is to impose σ4

as a rational function of the kinematic variables, which leads to a unique solution (up
to momentum conservation)

σ4 = − k1 · k4

k1 · k2
. (2.13)

Remarkably, when we plug the solution (2.13) back into (2.11), again we find

Q = 2 dz2
(

k1 · k2

z (z− 1)
+

k1 · k4

z (z− σ4)
+

k2 · k4

(z− 1) (z− σ4)

)
≡ 0 . (2.14)

This leads to the proposal that for any multiplicity n

Q(z) ≡ 0 . (2.15)

Note that Q/dz is again a meromorphic form with only a simple pole at each σa, then
the constraint (2.15) is equivalent to

1
4 π i

∮
|z−σa|

Q
dz

=
n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , a ∈ {1, 2, . . . , n} , (2.16)

which we name as the scattering equations1.

Since these equations are obtained from the form ωµ on CP1, it is natural to expect that
they provide a genuine map from KD,n to M0,n. To further confirm this, we explicitly
show that (2.16) are covariant under any SL(2, C) transformation

n

∑
b=1
b 6=a

ka · kb

ψ(σa)− ψ(σb)
=

n

∑
b=1
b 6=a

ka · kb

σa − σb
(γ σa + δ) (γ σb + δ)

= (γ σa + δ)2
n

∑
b=1
b 6=a

ka · kb

σa − σb
− (γ σa + δ) γ

n

∑
b=1
b 6=a

ka · kb ,
(2.17)

where the second term vanishes due to momentum conservation and the fact that
particle a is massless on-shell k2

a = 0. Hence any solution to the scattering equations
indeed specifies a set of n points on CP1.

1 Here we choose to normalize in order to remove the trivial overall constant.

22



Although there are in total n equations, since before imposing the constraint (2.15)
Q has n− 3 complex degrees of freedom, we would expect only n− 3 independent
equations. Indeed, the following identities

n

∑
a=1

σm
a

n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , m = 0, 1, 2 , (2.18)

hold for generic values of σ’s. Among these three identities, the one for m = 0 is valid
merely by anti-symmetry. In addition, we have

n

∑
a=1

σa

n

∑
b=1
b 6=a

ka · kb

σa − σb
=

1
2

n

∑
a,b=1
a 6=b

ka · kb = 0 (2.19)

by momentum conservation and on-shell conditions, and
n

∑
a=1

σ2
a

n

∑
b=1
b 6=a

ka · kb

σa − σb
=

n

∑
a=1

σa

n

∑
b=1
b 6=a

ka · kb +
n

∑
a,b=1
a 6=b

σa σb ka · kb

σa − σb
= 0 (2.20)

due to the same reasons as the previous two.

2.3 counting the number of solutions

Since the number of independent scattering equations is n − 3, which is identical
to the dimension of M0,n, there are only a finite number of solutions for any given
kinematics data {ka}. It turns out that the total number of solutions is always (n− 3)!.
As the first example, we have already seen exactly one solution (2.13) at n = 4 in the
previous section (when n = 3 there are no equations).

A physical way to understand this counting, as described in [11], is by exploring
a single soft limit, i.e., by taking one of the momentum to zero while preserving
momentum conservation. Suppose we already know the counting for a generic
(n− 1)-particle scattering is (n− 4)!. Starting from the kinematics for an n-particle
scattering, we can continuously change kµ

n so that it approaches zero. In the kµ
n → 0

limit, the nth scattering equation decouples, while the remaining n − 1 equations
become the scattering equations for an (n− 1)-particle scattering and so there are
(n− 4)! solutions for {σ1, σ2, . . . , σn−1}. When we slightly turn on kµ

n, since an integer
cannot jump during a continuous change this number counting remains the same.
Now take the nth equation and evaluate {σ1, σ2, . . . , σn−1} on one of the (n − 4)!
solutions, this equation becomes a polynomial equation of degree n− 3 for σn. So in
total we obtain (n− 3)! solutions for {σ1, σ2, . . . , σn}. Due to the same reason, as we
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deform the kinematics data back to their original value, this number (n− 3)! stays the
same.

The above proof also provides an algorithm in solving the scattering equations for
large n, when it becomes hard to solve them directly.

In fact, after fixing the SL(2, C) redundancy by setting, say {σ1, σ2, σn} = {∞, , σ∗, 0}
(where σ∗ is some fixed non-zero number), one can show that the scattering equations
(2.16) are equivalent to the following n− 3 polynomial equations [38]

∑
Si⊂{2,3,...,n−1}

s{1}∪S σS = 0 , i ∈ {1, 2, . . . , n− 3} , (2.21)

where Si denote a subset of size i and the summation is over all such subsets, and sS :=

∑a<b∈S ka · kb and σS := ∏a∈S σa. Obviously, each of these equations are multi-linear in
each σa, and the total degrees go from 1 to n− 3. Since these equations are independent,
the counting (n− 3)! is a direct consequence of Bézout’s theorem. The polynomial
equations (2.21) are also easier to solve as compared to the original form (2.16). But
as we will see in the next section, the original form (2.1)

n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , ∀a ∈ {1, 2, . . . , n} , (2.22)

manifestly has a physical meaning, which makes it easier to analyse properties of
amplitudes.

2.4 various limits

In this section we analyze the behavior of the solutions in different limits of the
kinematics data, with the purpose of providing a detailed description of how scattering
equations encodes locality and unitarity. This serves as the first step in the consistency
checks of various formulas we are going to construct in the next two chapters, which
will be discussed in Chapter 6.

2.4.1 Soft Limits

In the previous section we used a single soft limit to argue about the total number of
solutions to the scattering equations. Here we investigate how the solutions behave in
such limit. We are going to consider two types of soft limits: the single soft limit, and
the double soft limit.
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In the single soft limit, we fix the convention of always taking the momentum for
the last particle to be soft. More precisely, we introduce a small parameter τ and let
kµ

n = τ pµ with a certain fixed null vector pµ, and we choose values for the other null
momenta which satisfy the momentum conservation

kµ
1 + kµ

2 + · · ·+ kµ
n−1 + τ pµ = 0 , (2.23)

and stay finite in the τ → 0 limit.

As discussed before, when τ = 0 the system reduces to that for a generic (n− 1)-
particle scattering, and so each of the (n− 4)! solutions for {σ1, σ2, . . . , σn−1} is non-
degenerate. Staying in the neighborhood of τ = 0 this continues to be true. Let us
pick up the nth scattering equation

τ
n−1

∑
b=1

p · kb

σn − σb
= 0 . (2.24)

Since p · kb is generically finite for any b, if we assume that |σn − σb∗ | ∼ τ for some
b∗, it contradicts the above equation as we send τ → 0. This means that in the
single soft limit, all the (n − 3)! solutions are non-degenerate, i.e., |σa − σb| ∼ τ0

∀a, b.

For the double soft limit, we consider the situation when two soft particles are
simultaneously emitted (say, the last two particles). In other words, we assume
kµ

n−1 = τ pµ and kµ
n = τ qµ, with the null vectors pµ and qµ fixed, hence they are

controled by the same scale. Again we choose values for the remaining null momenta
to satisfy the momentum conservation

kµ
1 + kµ

2 + · · ·+ kµ
n−2 + τ (pµ + qµ) = 0 , (2.25)

which stay finite in the τ → 0 limit.

The situation is more interesting in this case. When τ = 0 the system reduces to
that for a generic (n− 2)-particle scattering and the solutions for {σ1 σ2, . . . , σn−2} are
therefore non-degenerate. Now let us focus on the neighborhood of τ = 0. To make
the structure explicit, let us re-define

σn−1 = ρ− ξ

2
, σn = ρ +

ξ

2
, (2.26)
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i.e., ρ is the center position and ξ the difference of σn and σn−1. With these new
variables, we take the summation and the difference of the (n− 1)th and nth scattering
equations, which yields

n−2

∑
b=1

(
p · kb

ρ− ξ
2 − σb

+
q · kb

ρ + ξ
2 − σb

)
= 0 , (2.27)

n−2

∑
b=1

(
p · kb

ρ− ξ
2 − σb

− q · kb

ρ + ξ
2 − σb

)
− 2 τ p · q

ξ
= 0 . (2.28)

We consider the second equation above as constraining the variables ξ. Obviously,
while there exist solutions for ξ that stay finite as τ → 0, there also exist solutions
where ξ ∼ τ (degenerate). For the latter case, we can perturbatively expand ξ and by
(2.28) find a unique solution, which at the leading order is

ξ = τ

(
1

2 p · q
n−2

∑
b=1

kb · (p− q)
ρ− σb

)−1

+O(τ2) . (2.29)

With this solution for ξ, we can also perturbatively expand ρ = ρ0 +O(τ), and the
leading term is solved by the leading part of (2.27), i.e.,

n−2

∑
b=1

kb · (p + q)
ρ0 − σb

= 0 , (2.30)

which is equivalent to a degree-(n− 4) polynomial for ρ0 (naively it is of degree n− 3,
but the leading coefficient is of order τ and thus should be neglected).

As a consequence, we see that in the double soft limit, (n − 4)! of the solutions
become degenerate, where |σn−1 − σn| ∼ τ. The other (n − 4)! (n − 4) solutions
remain non-degenerate.

In analogy, one can define triple soft limit and so on as well. There in general the
solutions will fall into several types according to the pattern how the punctured
Riemann sphere degenerates. However, the double soft limit singles out among all
these higher order soft limits, because there exist soft theorems for the double soft
limit in certain classes of theories, and there we are going to see that the degenerate
solutions play a crucial role in deriving these theorems. Details are presented in
Chapter 6.
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2.4.2 Factorization Channels

Now let us have a look at a generic factorization channel. Without lost of generality,
we explore the channel defined by

k2
I := (k1 + k2 + · · ·+ knL)

2 −→ 0 , (2.31)

with 2 ≤ nL ≤ n− 2, and we denote L = {1, 2, . . . , nL} and R its complement, with
nR = n− nL.

For convenience in studying the behavior of the solutions in this limit, we introduce a
new variable ζ and re-define the σ’s as

σa =


ζ
ua

, a ∈ L ,
va
ζ , a ∈ R .

(2.32)

Recall that we always fix three variables to get rid of the SL(2, C) redundancy. Now we
have altogether n + 1 variables so that we need to fix one more. A good choice is to fix
two u’s and two v’s, say {u1, u2, vn−1, vn}. Hence in this case we regard ζ as a variable
to be solved together with the rest by the scattering equations.

With this set-up, our expectation is that in the limit (2.31) there will be solutions
in which ζ → 0 so that all the points in L pinch together and the Riemann sphere
degenerates in the desired manner. For this purpose we can first assume that ζ is small
and check that there indeed exist such solutions at the end.

We first study the scattering equations labeled by a ∈ R, and expand it with respect to
ζ up to the sub-leading order

ζ
nL

∑
b=1

ka · kb

va
+ ζ

n

∑
b=nL+1

b 6=a

ka · kb

va − vb
+ ζ3

nL

∑
b=1

ka · kb

v2
a ub

+O(ζ5) = 0 . (2.33)

Next we multiply this ath equation by va
ζ and sum over all a ∈ R. Applying momentum

conservation we obtain

−1
2

k2
I + ζ2 ∑

a∈R
b∈L

ka · kb

va ub
+O(ζ4) = 0 . (2.34)

From the above equation we explicitly observe that the solutions fall into two types.
The first type, ζ2 ∼ k2

I , are exactly the degenerate solutions that we were looking
for.

There are also a second type of solutions where ζ remains finite and the Riemann
sphere remains non-degenerate in the limit. At first sight this seems to cause problems,
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because, as we discussed at the beginning of this chapter, we want a map that
maps kinematic singularities to the corresponding degenerate Riemann spheres.
However, recall that the factorization of the original amplitude is a phenomenon
only at the leading order. Hence it does not cause any issue if the contributions
from these non-degenerate solutions are at most sub-leading in the factorization
limit.

If fact, the extra non-degenerate solutions have to exist, by the counting of solutions
to the scattering equations. At the leading order the n-point amplitude factorize into
a left part and a right part, each of which is again an amplitude. Correspondingly we
should expect that at the leading order the scattering equations reduce to two sets, one
for the left amplitude and the other for the right one. Then obviously the total number
of degenerate solutions has to be (nL − 2)!(nR − 2)!. However, this number is always
smaller than (n− 3)!, which means that there are some remaining solutions from the
original system and that they have to be non-degenerate.

Now the remaining task is to verify that indeed the original equations reduce to those
for the left and the right amplitudes. First let us look back at the equations (2.33) but
this time only keep the leading order, which becomes

ζ

(
ka · k IR

va − 0
+

n

∑
b∈R\{a}

ka · kb

va − vb

)
+O(ζ3) = 0 , (2.35)

where kµ
IR

:= ∑b∈L kµ
b . In the above, we intentionally write out the “0” in the de-

nominator of the first term, so that the leading part has exactly the appearance of
the scattering equations for the right amplitude, with external particles labeled by
R ∪ {IR}, where IR denotes the gluing point on the right Riemann sphere. Note that
the location of point IR is already fixed at vIR = 0. This is allowed because previously
we only fixed vn−1 and vn. One may also worry that we have not yet obtained the
scattering equation labeled by IR, but this is fine since only nR − 2 of the equations
are independent.

Next we inspect the original scattering equations labeled by a ∈ L. To the leading
order they become

− ∑
b∈L\{a}

ua ub

ζ

ka · kb

ua − ub
+O(ζ) = −u2

a
ζ

(
∑

b∈L\{a}

ka · kb

ua − ub
+

ka · k IL

ua − 0

)
+O(ζ) = 0 , (2.36)

where kµ
IL

:= −kµ
IR

, and so we use IL to denote the gluing point on the left Rie-
mann sphere. Again, the leading terms become the scattering equations for the left
amplitude, with the fixing uIL = 0.

28



From the discussions by now, we see that the scattering equations (2.16) provide a
map from KD,n to M0,n for any D and n that quantitatively fulfills the correspondence
(2.7) between the two spaces. In all cases the map is 1 to (n− 3)!, and so for whatever
formula for the amplitudes that we construct with this map, we should expect the
amplitudes only receive contribution from these (n− 3)! discrete points in M0,n. The
explicit construction is our task in the next chapter.
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3
G E N E R A L F O R M U L AT I O N

In this chapter we introduce the other main subject of this thesis, the Cachazo–He–
Yuan (CHY) representaion of tree-level amplitudes for massless particles, using the
scattering equations that we introduced in the previous chapter.

From the previous discussion, we associate M0,n to an n-particle scattering. Since this
M0,n is merely an auxiliary space, in constructing a formula for scattering amplitudes
it is natural to consider certain top differential form in M0,n and integrate it over
the entire space. Moreover, since the M0,n was introduced to keep track of locality
and unitarity, we want the integral to be further localized by the scattering equations.
Hence a natural proposal is∫ n

∏
a=1

dσa

n

∏
a=1

δ
( n

∑
b=1
b 6=a

ka · kb

σa − σb

)
I({k, ε, σ}) , (3.1)

where the integrand I({k, ε, σ}) is some function of the kinematics data {k, ε} and the
σ’s.

However, (3.1) is problematic due to the redundancies in both the variables and the
delta constraints. Firstly, it is standard to define an invariant measure by replacing

dσ1 ∧ dσ2 ∧ · · · ∧ dσn 7−→ θn(a′, b′, c′)
∣∣∣∣ 1 1 1

σa′ σb′ σc′
σ2

a′ σ2
b′ σ2

c′

∣∣∣∣ dσ1 ∧ dσ2 ∧ · · · ∧ dσn︸ ︷︷ ︸
deleting dσa′ ,dσb′ ,dσc′

, (3.2)

where θn(a′, b′, c′) is a sign from re-arranging the wedge product in bringing dσa′ ∧
dσb′ ∧ dσc′ to the front, i.e., it is the signature of the permutation (a′, b′, c′, 1, 2, . . . , n)
where the “. . .” excludes {a′, b′, c′}. Secondly, recalling the form of the three linear
relations (2.18), it is obvious that we need to delete three delta constraints and pay by
a Jacobian in the similar form as that in (3.2). So the problem in (3.1) is fixed by the
replacement

n

∏
a=1
−→

n

∏
a=1

′
:= θn(a′, b′, c′)(σa′ − σb′) (σb′ − σc′) (σc′ − σa′) ∏

a∈{1,2,...,n}\{a′,b′,c′}
, (3.3)
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for arbitrary {a′, b′, c′} (the choices for the two parts can be different). And we make
the following proposal for amplitudes stripped off momentum conservation delta
functions [6, 11]

Mn =
∫ n

∏
a=1

′
dσa

n

∏
a=1

′
δ
( n

∑
b=1
b 6=a

ka · kb

σa − σb

)
In({k, ε, σ}) =:

∫
dµn In . (3.4)

In the above, we introduced a notation for the part other than In for later convenience,
and with a slight abuse of terminology we name dµn as the measure.

As a result of the previous section, the integration in (3.4) is actually localized to
(n− 3)! points in M0,n. So equivalently we have

Mn =
(n−3)!

∑
i=1

In({k, ε, σ})
Jn({k, σ})

∣∣∣
ith solution

, (3.5)

where Jn({k, σ}) is the Jacobian from both the redundancy fixing and solving the
delta constraints. In calculating this Jacobian, we encounter a matrix Φn of size n× n,
defined as

(Φn)a,b :=


ka·kb

(σa−σb)2 , a 6= b ,

−∑n
c=1
c 6=a

(Φn)a,c , a = b .
(3.6)

Then the Jacobian in (3.5) is

Jn({k, σ}) = det′Φn :=
det[Φn]

â′,b̂′,ĉ′

â′′,b̂′′,ĉ′′

σa′,b′ σb′,c′ σc′,a′ σa′′,b′′ σb′′,c′′ σc′′,a′′
, (3.7)

where we abbreviate σa,b := σa − σb, and [Φn]
â′,b̂′,ĉ′

â′′,b̂′′,ĉ′′
denotes the minor of Φn obtained

by deleting the rows labeled by {a′, b′, c′} and the columns labeled by {a′′, b′′, c′′}.

Note that on the support of the scattering equations det Φn = 0 as the matrix Φn

has corank 3, with its kernel spanned by the vectors (σm
1 , σm

2 , . . . , σm
n )T for m = 0, 1, 2.

Thus the Jacobian Jn as defined in (3.7) is a natural invariant quantity associated to Φn,
and we call it the reduced determinant of Φn, denoted as det′Φn.

Since we are considering tree-level amplitudes only, it is natural to expect that the
function In({k, ε, σ}) is rational. But we cannot use an arbitrary rational function for
In: the formula (3.4) has to be invariant under any SL(2, C) transformation acting on
σ’s, since the Riemann sphere is auxiliary. To see what this implies on I, note that the
measure dµn under the transformation (2.4) behaves as

dµn
ψ∈SL(2,C)−−−−−−−→ dµn

n

∏
a=1

(γ σa + δ)−4 . (3.8)
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So for whatever integrand In we choose, it has to satisfy

In
ψ∈SL(2,C)−−−−−−−→ In

n

∏
a=1

(γ σa + δ)4 . (3.9)

In the rest of this chapter we present simple examples followed by a neat correspon-
dence between a special class of integrands with the trivalent diagams of massless
scalars. The aim is to provide some intuition about how the formulation introduced
above works. Readers who are eager to see the construction of closed formulas for am-
plitudes in various theories can go directly to the next chapter.

3.1 illustrative examples

Let us start by considering the case that In = In({σ}) depends on the σ’s only. Recall
(3.9), the easiest way to construct a candidate for In is to use simple expressions which
transform covariantly by themselves. The simplest expression of this kind is (σa − σb)

for some label a and b

(σa − σb)
ψ∈SL(2,C)−−−−−−−→ (σa − σb)

(γ σa + δ) (γ σb + δ)
. (3.10)

So it is sufficient to construct an In purely by factors of this form, as long as for any
label a the total number of times that it appears in the denominator minus that in
the numerator is 4. In this chapter we only consider examples which have a trivial
numerator 1.

3.1.1 n = 3

When n = 3, with the restrictions imposed before the integrand is uniquely fixed to
be I3 = σ−2

1,2 σ−2
2,3 σ−2

3,1 . Since there is no constraints from the scattering equations in this
case, we have∫

dµ3 I3 =
(σ1,2 σ2,3 σ3,1)

2

σ2
1,2 σ2

2,3 σ2
3,1

= 1 . (3.11)

3.1.2 n = 4

When n = 4, we already obtained the unique solution in (2.13), and so let us stick
to the same convention. Explicitly, we fix {σ1, σ2, σ3} = {0, 1, ∞}, and we have the
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solution σ4 = − k1·k4
k1·k2

. Suppose in the delta constraints we delete those labeled by
{2, 3, 4}, then the Jacobian is

J4 =
k1 · k4

σ1,2 σ2
2,3 σ3,1 σ3,4 σ4,2 σ2

1,4
. (3.12)

In the first example, we choose the integrand to be

I4 =
1

(σ1,2 σ2,3 σ3,4 σ4,1) (σ1,2 σ2,4 σ4,3 σ3,1)
. (3.13)

One can check this produces the result∫
dµ4 I4 = − σ4

k1 · k4
=

2
s1,2

, (3.14)

where s1,2 = (k1 + k2)2 = 2 k1 · k2 denotes the usual Mandelstam variable. We see up to
a constant factor we obtain a single (massless) scalar propagator.

In the second example, we choose an integrand with a cyclic symmetry

I4 =
1

(σ1,2 σ2,3 σ3,4 σ4,1)2 . (3.15)

Following similar calculations we obtain∫
dµ4 I4 =

σ4 − 1
k1 · k4

= −2
(

1
s1,2

+
1

s1,4

)
, (3.16)

which looks like a summation of two four-point scalar diagrams.

3.1.3 n = 5

When n = 5, although in solving the scattering equations here we will encounter
a quadratic equation, the calculation can still be done analytically. But due to its
lengthy appearance we will not write out the detailed intermediate steps. Instead, we
summarize the result for several types of integrands as follows:

Table 2: Five-Point Examples

Integrand Result

1
(σ1,2 σ2,3 σ3,4 σ4,5 σ5,1)(σ1,2 σ2,4 σ4,5 σ5,3 σ3,1)

− 4
s1,2 s4,5

1
(σ1,2 σ2,3 σ3,4 σ4,5 σ5,1)(σ1,2 σ2,5 σ5,4 σ4,3 σ3,1)

4
s1,2

(
1

s3,4
+ 1

s4,5

)
1

(σ1,2 σ2,3 σ3,4 σ4,5 σ5,1)2 4
(

1
s1,2 s4,5

+ 1
s2,3 s5,1

+ 1
s3,4 s1,2

+ 1
s4,5 s2,3

+ 1
s5,1 s3,4

)
1

(σ1,2 σ2,3 σ3,4 σ4,5 σ5,1)(σ1,3 σ3,5 σ5,2 σ2,4 σ4,1)
0
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3.2 an integrand-diagram correspondence

In the previous section we intentionally listed out examples that share several common
features. Firstly, the integrands were all written as a product of two parts. In particular,
one easily see that each of the two transforms covariantly under SL(2, C) but picks
up a factor ∏n

a=1(γ σa + δ)2 (instead of a power 4), and so in a sense they are “half-
integrands”. Secondly, all the results obtained from the integration, if not vanish, can
be interpreted as a sum of trivalent diagrams of massless scalars.

In fact this continues to be true for arbitrary higher n, which gives rise to a correspon-
dence between a special class of integrands and the trivalent massless scalar diagrams.
Let us first introduce an object which generalizes the above “half-integrands”. For a
given ordering of α the n labels, we define

Cn[α] :=
1

σα(1),α(2) σα(2),α(3) · · · σα(n−1),α(n)
. (3.17)

This is named as the Parke–Taylor factor, due to the reason that it appeared for the first
time in [41] in a twistor string formulation that leads to the Parke–Taylor formula
(1.20). The special class of integrands is then constructed by

In[α|β] := Cn[α]Cn[β] (3.18)

for two given orderings α and β. We call the formula mn[α|β] :=
∫

dµn In[α|β] the dou-
ble partial amplitude [7], whose meaning will become clear in Section 4.2.1.

In addition, note that any tree diagram can always be embedded on a plane, by which
its external points acquire an induced planar ordering α. In this case we call this tree
diagram α-ordered. Obviously a single tree diagram can assume several different
planar orderings.

Given these definitions, we have the following theorem that translates any integrand
of the special class of the trivalent diagrams:

Proposition 3.2.1. The function mn[α|β] computes the sum of all trivalent massless scalar
diagrams that can be regarded both as α-ordered and as β-ordered, where each diagram’s
contribution is given by the product of its propagators.

More explicitly, let T [α] denote the set of all α-ordered trivalent diagrams and T [β]
that of the β-ordered ones. Then (up to an overall sign)

mn[α|β] = 2n−3 ∑
g∈T [α]∩T [β]

∏
e∈Eg

1
se

, (3.19)
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where se := P2
e with Pµ

e being the momentum flowing along the edge e in the set Eg

of all edges in the trivalent diagram g. In particular, whenever T [α] ∩ T [β] = ∅ then
mn[α|β] = 0. Moreover, for any single diagram, there exist two orderings α and β

such that it is identical to mn[α|β] (although the choice of such α and β is usually
highly non-unique). More detailed explanations about this proposition, including the
determination of the overall sign as well as an efficient algorithm to compute mn[α|β],
can be found in [7].

This leads to the fact that in principle any amplitude of massless particles acquires
a formula of the form (3.4). The explicit procedure is to write out the expression in
terms of Feynman diagrams, and translate the denominator in each diagram to certain
integrand of the form (3.18), i.e., (“F.D.”: Feynamn diagrams)

Mn = ∑
g∈F.D.

Ng({k, ε})
∏e∈Eg

se
= ∑

g∈F.D.

Ng({k, ε})
2|Eg|

∫
dµn Cn[αg]Cn[βg] , (3.20)

where Eg denotes the set of propagators in the diagram g, with
∣∣Eg
∣∣ its cardinality,

and Ng denotes the numerator. Since Ng only depends on the kinematics data, we can
pull the integration out and obtain

Mn =
∫

dµn

(
∑

g∈F.D.

Ng({k, ε})
2|Eg| Cn[αg]Cn[βg]

)
. (3.21)

The expression (3.21) looks merely as an alternative way of talking about Feynman
diagrams and one may wonder what do we really gain from doing this translation. It
turns out that for many interesting theories (3.21) unexpectedly simplifies to a simple
and compact expression, which reveals interesting structures that can be directly
generalized to any multiplicities. This is nowhere to be expected from the Feynman
diagrams.

However, this is not the strategy that we are going to take in finding out the suitable
integrand for amplitudes in a given theory. Instead, we are going to propose a set
of compact building blocks (as we did in defining Cn[α]) and use them to build up
integrands, which we will further identify with certain class of amplitudes to all
multiplicities and find what theory they describe.

In fact, as we are going to see in later chapters, a formula obtained in this way is often
closed by itself, as it produces all possible tree-level amplitudes in a given theory and
no new particle contents are observed in the study of a generic factorization channel.
In this case we call the resulting formula the CHY representation of the corresponding
theory.
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4
A M P L I T U D E S W I T H O N E T Y P E O F B O S O N

In this chapter we construct formulas for amplitudes in theories of bosons. As usual,
by “boson” we refer to particles of spin zero (scalars), one (photons/gluons), or
two (gravitons). Some of the formulas are so far conjectures, but all of them have
undergone explicit comparison either with known formulas or with Feynman diagram
computations, and have passed analytic checks regarding locality and unitarity. These
formulas are valid in arbitrary dimensions as long as the corresponding theory is
allowed.

In the following we first focus on scalar amplitudes only, and then introduce new
building blocks needed for building up amplitudes of photons/gluons and gravitons.
We identify the corresponding theories along the discussion.

4.1 building blocks for scalars

We first introduce the necessary building blocks for scalar amplitudes. We already
have one at hand, the Parke–Taylor factor, as defined in (3.17)

Cn[α] :=
1

σα(1) α(2) σα(2),α(3) · · · σα(n),α(1)
. (4.1)

As commented before, this factor is natural for representing partial amplitudes in
theories with non-trivial flavor/color groups. To obtain the building block for the full
amplitude, we dress it with the trace of the group generators accordingly, and sum
over all inequivalent orderings, i.e.,

Cn := ∑
α∈Sn/Zn

tr(Tα(1)Tα(2) · · · Tα(n))Cn(α) . (4.2)

Apart from this, we have two other building blocks which are fully permutation
invariant. Let us first define two n × n anti-symmetric matrices in terms of their
entries

(Xn)a,b :=

 1
σa−σb

, a 6= b ,

0 , a = b ,
(An)a,b :=


ka·kb

σa−σb
, a 6= b ,

0 , a = b .
(4.3)
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A natural invariant quantity associated to a matrix is its determinant (we could also
study traces but here it is trivially zero). Due to anti-symmetry, the determinant be-
comes a perfect square and so we define a second building block

PfXn =
√

det Xn . (4.4)

Here we only consider even n, because for odd n the determinant of an anti-symmetric
matrix is trivially zero. An operationally more convenient way to define a Pfaffian is
by summing over all perfect matchings (P.M.), i.e., all possible decompositions of the n
labels into pairs. Explicitly,

PfXn := ∑
α∈P.M.

sgn(α) (Xn)α(1),α(2) (Xn)α(3),α(4) · · · (Xn)α(n−1),α(n) , (4.5)

where

sgn(α) :=

+1 , α ∈ even permutations ,

−1 , α ∈ odd permutations .
(4.6)

When scalars are flavored in U(1)m, each will carry a flavor index Ia, but the only
flavor structure that can appear in an amplitude is the flavor contraction δIa,Ib . In this
case, we modify the matrix Xn to

(Xn)a,b :=

 δIa ,Ib
σa−σb

, a 6= b ,

0 , a = b ,
(4.7)

and use PfXn instead.

We have not defined a similar quantity PfAn for the matrix An. The reason is that
when using An in any formulas the σ’s therein are to be evaluated on the solutions
to the scattering equations. On these equations the matrix An possesses a kernel of
dimension 2, which is spanned by the vectors

(σm
1 , σm

2 , . . . , σm
n )T m = 0, 1 . (4.8)

While the case with m = 0 is a direct consequence of the scattering equations, the case
with m = 1 is explicitly

n

∑
b=1
b 6=a

ka · kb σb

σa − σb
= σa

n

∑
b=1
b 6=a

ka · kb

σa − σb
−

n

∑
b=1
b 6=a

ka · kb = 0 . (4.9)

Due to this non-trivial kernel we have PfAn = 0. In this case, we define the third
building block to be

Pf′An := − (−1)a+b

σa − σb
Pf[A]â,b̂ , (4.10)
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which we call the reduced Pfaffian of An. In the above, [A]â,b̂ denotes the minor of An

obtained by deleting the two rows and two columns labeled by a and b. This quantity
is independent of the choice of {a, b}. To understand why it is so, let us compare two
matrices [A]â,b̂ and [A]â,ĉ. In the first matrix we add all other rows to the cth row (and
do the same to the column), and in the second matrix we do the same but to the bth row
and column instead. Then by scattering equations we observe that the cth row/column
of [A]â,b̂ is σa−σc

σa−σb
times the bth row/column of [A]â,ĉ.

Recalling the requirement on the integrand as discussed in (3.9), the reason that
we can use these building blocks is that they transform covariantly under SL(2, C).
Explicitly, we have

Cn[α]
ψ∈SL(2,C)−−−−−−−→ Cn[α]

n

∏
a=1

(γ σa + δ)2 , (4.11)

and

(Pf)
ψ∈SL(2,C)−−−−−−−→ (Pf)

n

∏
a=1

(γ σa + δ) , where (Pf) ∈ {PfXn, PfXn, Pf′An} , (4.12)

which is due to the multi-linearity of the Pfaffian in the entries of the matrix.

4.2 scalar amplitudes

By comparing the behaviors under SL(2, C) transformations of the building blocks
Cn[α], PfXn, PfXn and Pf′An (4.11) and (4.12) with that required on the entire integrand
(3.9), we can make different products of them to construct proper integrands. Explicitly,
these combinations are

Cn[α]Cn[β] , Cn[α]PfXn Pf′An , Cn[α] (Pf′An)
2 ,

(PfXn)
2 (Pf′An)

2 , PfXn (Pf′An)
3 , (Pf′An)

4 .
(4.13)

In the following we discuss case by case.

4.2.1 The φ3 Theory

In the first case, we consider the integrands obtained by two copies of Cn’s

IΦ3

n [α|β] := Cn[α]Cn[β] , (4.14)

which have already been defined in the previous chapter. Recall the result of an
IΦ3

n [α|β] is the summation of trivalent massless scalar diagrams which are both α-
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ordered and β-ordered. Due to the presence of two copies of orderings, we may
expect that this integrand computes the expression obtained from the full amplitude
by decomposing certain flavor structure twice. This is why we call the integral
mn[α|β] =

∫
dµn IΨ3

n [α|β] the double partial amplitude. Indeed, the integrand for the
full amplitude can be written as

IΦ3

n := Cn Cn , (4.15)

and the corresponding theory is a scalar theory with a cubic self-interaction vertex,
and the scalars therein has a flavor group of the form U(N)×U(Ñ) [7]. Explicitly,
the Lagrangian is

LΦ3
:= −1

2
∂µΦI, Ĩ ∂µΦI, Ĩ − λ

3!
f I,J,K f̃ Ĩ, J̃,K̃ ΦI, Ĩ ΦJ, J̃ ΦK,K̃ . (4.16)

In fact, we can use the same building block to construct an integrand for the φ3 theory
without any flavor structure [42]. It is well-known that any amplitude in this theory is
merely a summation of all trivalent diagrams. To achieve this, note that the integrand
C2

n[α] leads to the summation of all diagrams that are α-ordered, then we just need to
sum up all orderings to obtain the summation of all diagrams, only at the cost of an
overall constant due to over counting. So we have

Iφ3
:=

1
2n−2 ∑

α∈Sn

C2
n[α] , (4.17)

corresponding to the Lagrangian

Lφ3
:= −1

2
∂µφ ∂µφ− λ

3!
φ3 . (4.18)

4.2.2 Scalar Amplitudes in a Yang–Mills–Scalar Theory

Next we fix one and only one factor to be Cn[α], so as to consider normal partial
amplitudes with the planar ordering α. In the remaining part of the integrand we
are allowed to insert two copies of Pfaffians previously introduced. First of all, for
the combination In := Cn[α] (PfXn)2 (or with Xn), explicit calculation at four points
shows that the result contains double poles, i.e.,∫

dµ4 Cn[1234] (PfXn)
2 =

(s2 + s t + t2)2

s2 t2 u
, (4.19)

where s = s1,2, t = s1,4 and u = s1,3. This situation is excluded as it violates locality.
Then with the building blocks at hand we are left with two choices.
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The first choice is

Igauged scalar:scalar
n [α] := Cn[α]PfXn Pf′An . (4.20)

This integrand corresponds to scalar amplitudes in a gauged massless scalar theory.
The full Lagrangian for this theory is

Lgauged scalar := −1
2

trc(DµΦ DµΦ)− 1
4

trc(Fµν Fµν) . (4.21)

This is a special case (only a single flavor) of the more general case

IYMS:scalar
n [α] := Cn[α]PfXn Pf′An , (4.22)

which describes the scalar amplitudes in a gauged massless scalar theory with a
quartic scalar self-interaction vertex that descends from the compactification of a pure
Yang–Mills theory [9]. To emphasize its Yang–Mills origin we name it as Yang–Mills–
Scalar (YMS). Explicitly, the corresponding Lagrangian is

LYMS := −1
2

trc(DµΦI DµΦI)− 1
4

trc(Fµν Fµν)− g2

4
trc

(
[ΦI , ΦJ ]2

)
, (4.23)

where we use the subscript “c” to indicate that the trace is associated to the color
group.

Here we provide some intuition for the above identification. First of all, due to
the presence of Pf′An in the integrand, any amplitude of odd number of particles
has to vanish. In particular this means any cubic scalar self-coupling can be elimi-
nated.

Next let us have a look at the four-point amplitudes with the canonical ordering in
the general case (with X4). If we assume that the flavor indices satisfy I1 = I3 and
I2 = I4, we have∫

dµ4
1

σ1,2 σ2,3 σ3,4 σ4,1

−1
σ1,3 σ2,4

Pf′A4 = −1 . (4.24)

This is the first indication that there has to be a quartic scalar vertex and that this
vertex does not involve any derivatives. In addition, if we assume that the flavor
indices satisfy I1 = I2 and I3 = I4, we have∫

dµ4
1

σ1,2 σ2,3 σ3,4 σ4,1

1
σ1,2 σ3,4

Pf′A4 = − s1,3

s1,2
. (4.25)

Obviously this amplitude has to receive contribution from a trivalent diagram. Since
there cannot be a three-point scalar vertex and the mass dimension of the expression is
[M]0, the three-point vertices therein have to involve one derivative and the propagator
has to be that for a vector particle. At higher points, in general the mass dimension of
the result produced by this integrand at n points is [M]−

n−2
2 , by which we see there
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cannot exist any higher-point scalar self-interaction vertices, nor any higher point
vertices of scalars coupled to vectors.

Detailed structure of the Lagrangian (4.23) can be verified by comparing results of
Feyman diagrams and the result of the formula up to sufficient high points, which
we will summarize in Table 4. Besides, the possible appearance of the gluon in a
general factorization channel can be explicitly confirmed, which will be postponed
to Chapter 6. When (4.23) is confirmed, the validity of the Lagrangian (4.21) is
guaranteed by identifying all the flavor indices.

4.2.3 The U(N) Non-Linear Sigma Model

The second choice with a factor Cn[α] is

INLSM
n [α] := Cn[α] (Pf′An)

2 . (4.26)

This describes a pure scalar theory with a non-trivial flavor group, the U(N) non-linear
sigma model (NLSM) [9, 43–45]. The usual form of the Lagrangian for this theory is
defined with an N × N unitary matrix U (i.e., U† U = 1)

LNLSM := − 1
2 λ2 trf(∂µU† ∂µU) , (4.27)

where λ is a dimensionful real coupling. However, in order to draw direct connection
with the result from the above integrand, we do a field re-definition

U =
1 + i λ Φ
1− i λ Φ

, (4.28)

such that Φ is a Hermitian matrix. Using the relations

∂µ
1

1∓ i λ Φ
= ± 1

1∓ i λ Φ
(i λ ∂µΦ)

1
1∓ i λ Φ

, (4.29)

the Lagrangian (4.27) becomes

LNLSM := −1
2

trf

(
1

1 + λ2 Φ2 ∂µΦ
1

1 + λ2 Φ2 ∂µΦ
)

, (4.30)

where the rational factors are to be understood in terms of Taylor expansions.

In fact, even before knowing anything about the Lagrangian, by studying a generic fac-
torization channel one can confirm that the integrand (4.26) by itself leads to a closed
formula for all amplitudes in certain theory, because of the following:

1. The internal particle observed in the factorization is always a scalar.
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2. Whenever the formula factorizes at the leading order, the integrand in the two
factorized pieces are both of the same type as original integrand (4.26).

This will be discussed in more detail in Chapter 6.

For a theory with scalars only, it is relatively easy to simply work out the Lagrangian
from the amplitudes. As a first step, from (4.26) we know that the mass dimension of
an n-point amplitude should be [M]2. So at each order of multiplicity, one can always
make an ansatz of at most a finite number of contact terms with the correct mass
dimension (in this case the contact terms always have exactly two derivatives). The
coefficient in front of each contact term is then determined by comparing Feynman
diagrams and the result produced by (4.26). As is expected, in general there will be
many redundancies among the coefficients and one is allowed to arbitrarily fix them
without changing the physics. For (4.26), a clever choice of fixing leads to a closed
expression for the form of the interaction vertices, which is

Vn := (−1)
n
2−1 i λn−2

2

n
2−1

∑
l=0

n

∑
a=1

ka · ka+2 l+1 . (4.31)

These are exactly the vertices produced by the Lagrangian (4.30) [46].

4.2.4 Scalar Amplitudes in an Einstein–Maxwell–Scalar Theory

Next we consider integrands constructed exactly by four Pfaffians, which are permu-
tation invariant. Again we may worry that a sufficient high power of PfXn violates
locality, as was exemplified in (4.19). A quick computation at four points excludes
(PfXn)4 and (PfXn)3 Pf′An, and so we are left with three choices.

The first choice is

IEMS:scalar
n := (PfXn)

2 (Pf′An)
2 . (4.32)

In a generic factorization channel we may find the internal particle to be a rank-
2 tensor. This describes the scalar amplitudes in a theory of scalars coupled to
gravity [13]. As will be clear in the discussions in Section 5.1.3 this theory comes
naturally from the compactification of gravity. More generally the theory also involves
photons.
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4.2.5 The Scalar Sector of the Dirac–Born–Infeld Theory

The second choice is

IDBI:scalar
n := PfXn (Pf′An)

3 . (4.33)

This gives rise to a closed formula for all amplitudes in the scalar sector of the Dirac–
Born–Infeld theory (DBI) [9] (For a review, see [47]). Restricting to this sector, the
Lagrangian takes the explicit form

LDBI:scalar := `−2
√

1− `2 ∂µφ ∂µφ− `−2 , (4.34)

which is to be understood in terms of Taylor expansion.

This Lagrangian can be worked out from the amplitudes in similar way as that
discussed in the case of NLSM. Again the general study of factorizations does not
reveal any other internal state. According to (4.33), the mass dimension of an n-point
amplitude is [M]n, hence at each order of multiplicity the contact terms have one
derivative associated to one leg on average. The simplest ansatz is to assume that in
the Lagrangian the scalar field φ always enter in the form ∂φ. With this ansatz, one
can work out the interaction terms order by order

− `2

2!

( (∂φ)2

2

)2
− 3 `4

3!

( (∂φ)2

2

)3
− 15 `5

4!

( (∂φ)2

2

)4
− · · · , (4.35)

which together with the kinetic term 1
2 (∂φ)2 turns out to re-sum into (4.34). While

(4.33) by itself forms a closed formula, as we will see in the next chapter, we can ex-
tended to a closed formula for amplitudes in the full DBI theory.

4.2.6 A Special Galileon Theory

The third choice is to use Pf′An only

IsGal
n := (Pf′An)

4 . (4.36)

As with NLSM and the scalar sector of DBI, one can first confirm that this integrand
again yields a closed formula for a pure scalar theory. However, an n-particle ampli-
tude in this theory has an even higher mass dimension, which is [M]2n−2. While in
principal one can still make an ansatz and try to determine the coefficients therein,
this soon becomes impractical at higher points due to the huge amount of redundan-
cies.
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Luckily, the recent effort in classifying scalar theories by behaviors of amplitudes
in soft limits reveals a special case of Galileon theory (sGal) [48, 49] whose order of
vanishing in a soft limit is enhanced as compared to that of the generic Galileon theory
[50, 51]. This order of vanishing is the same as what is predicted by the integrand
(4.36) in studying this limit. In addition, the mass dimension discussed above matches
that of a Galileon amplitude. By further explicit checks between the Feynamn diagram
computations and the results of (4.36), it turns out this special Galileon theory is
exactly described by (4.36).

We provide a brief review of the general Galileon theory and comment on the unique-
ness of this special one from that point of view in Section 4.A at the end of this
chapter. And here we merely summarize the Lagrangian for this special Galileon
theory [49]

LsGal := −(∂φ)2
∞

∑
m=0

(−1)m ∂µ1 ∂ν1 φ · · · ∂µ2m ∂ν2m φ εµ1···µ2mρ2m+1···ρD εν1···ν2mρ2m+1···ρD

2 (D− 2m)! (2 m + 1)!
.

(4.37)

4.3 a building block with polarization vectors

We now consider building blocks for amplitudes of bosons with spin higher than
zero. The first case of this type is amplitudes of photons or gluons, where to each
particle we associate a polarization vector εµ. From Feynman diagram computation
of Yang-Mills amplitudes, it is known that the final answer definitely has to involve
terms with factors of the form ε · k as well as ε · ε. Since these factors can nowhere be
produced from the integration, we have to insert them explicitly somewhere in a new
building block.

The correct building block for our purpose turns out to be a reduced Pfaffian. But now
it is the reduced Pfaffian of a 2n× 2n anti-symmetric matrix Ψn instead [6]. Explicitly,
this matrix has a block structure

Ψn :=

(
An −(Cn)T

Cn Bn

)
, (4.38)

where each n× n block is defined in terms entries as

An :=


ka·kb

σa−σb
,

0 ,
Bn :=


εa·εb

σa−σb
,

0 ,
Cn :=


εa·kb

σa−σb
, a 6= b ,

−∑n
c=1
c 6=a

(Cn)a,c , a = b .
(4.39)
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So this An block here is exactly the same as the matrix An we defined in (4.3). Let
us set up some notations here for later convenience. Due to the block structure
(4.38) of Ψn, we divide the range of its indices into two blocks as well, running as
{1, 2, . . . , n : 1, 2, . . . , n}. When a label a belongs to the first block, in the corresponding
row/column we see the vector kµ

a (expect for the diagonal entries in Cn), and when it
belongs to the second block, we see the vector ε

µ
a . When we refer to a minor of Ψn, we

either denote it as, e.g., [Ψn]a,b:c, meaning that it is obtained by extracting rows and
columns labeled by {a, b} in the first block, and {c} in the second block, or denote it
as, e.g., [Ψn]â,b̂:ĉ, meaning to delete rather than to extract.

Similar to the matrix An, on the support of the scattering equations the matrix Ψn also
has a two-dimensional kernel, spanned by the vectors

(σm
1 , σm

2 , . . . , σm
n : 0, 0, . . . , 0︸ ︷︷ ︸

n

)T , (4.40)

and so an invariant quantity associated to this matrix is

Pf′Ψn := − (−1)a+b

σa − σb
Pf[Ψn]â,b̂: , (4.41)

which we take as a new building block.

Some explanations is in order about why this quantity is natural. (i) Under a
generic SL(2, C) transformation each entry of the matrix transforms as (Ψn)a,b →
(Ψn)a,b(γσa + δ)(γσb + δ). While this is obvious for most entries, the entries (Cn)a,a

are a bit non-trivial

(Cn)a,a
ψ∈SL(2,C)−−−−−−−→(γ σa + δ)

n

∑
b=1
b 6=a

εa · kb

σa − σb
(γ σb + δ)

=(γ σa + δ)2
n

∑
b=1
b 6=a

εa · kb

σa − σb
− (γ σa + δ) γ

n

∑
b=1
b 6=a

εa · kb ,
(4.42)

where the second term vanishes due to momentum conservation and that εa · ka = 0.
Then we conclude that Pf′Ψn transforms covariantly under SL(2, C)

Pf′Ψn
ψ∈SL(2,C)−−−−−−−→ Pf′Ψn

n

∏
a=1

(γ σa + δ)2 , (4.43)

which is the same as that of the Parke–Taylor factor. (ii) By the definition of Pfaffian
in terms of perfect matchings (4.5), Pf′Ψn is obviously multi-linear in each εa, which
is required by the external vector particles. (iii) Gauge invariance of amplitudes
in theories involving photons/gluons requires that whenever we substitute an ε

µ
a

by the corresponding momentum kµ
a the expression has to vanish. We see that if

we use this building block in such amplitudes this is straightforwardly achieved by
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Pf′Ψn itself, because after the substitution the rows/columns labeled by a in both
the first and the second block are exactly proportional to each other, which forces
Pf′Ψn = 0.

4.4 photon/gluon amplitudes

Now we go on to the integrands for amplitudes of photons/gluons, in which case we
need exactly one copy of Pf′Ψn. There are three choices here.

4.4.1 The pure Yang–Mills Theory

Firstly, we have

IYM
n [α] := Cn[α]Pf′Ψn . (4.44)

This is the integrand for partial amplitudes in the pure Yang–Mills theory (YM).

The validity of this integrand was first checked both analytically and numerically in
explicit cases in [6]. In the same paper the correct behavior in a general factorization
channel was also confirmed. Later on a proof by Britto–Cachazo–Feng–Witten (BCFW)
recursion relations [52] was given in [42].

4.4.2 Photon Amplitudes in an Einstein–Maxwell Theory

Secondly, we have

IEM
n := PfXn Pf′An Pf′Ψn . (4.45)

This is the integrand for photon amplitudes in the Einstein–Maxwell theory (EM),
which is obtained by compactifying gravity on a circle RD → RD−1 × S1. More
generally we can study

IEM
n := PfXn Pf′An Pf′Ψn (4.46)

instead, where the photons acquire several flavors, obtained by the compactification
RD → RD−m × Sm for some integer m > 1.
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4.4.3 The Born–Infeld Theory

Finally, we also have

IBI
n := (Pf′An)

2 Pf′Ψn . (4.47)

This yields one more closed formula, for amplitudes in the photon sector of DBI, or gen-
erally referred to as Born–Infeld theory (BI). Its explicit Lagrangian is

LBI := `−2
√
−det(ηµν + ` Fµν)− `−2 , (4.48)

where ηµν denotes the Minkowski flat metric. The closedness is again confirmed by
the study of factorization.

4.5 gravity amplitudes

Finally let us consider gravity amplitudes. Since in perturbative gravity the gravitons
are identified to spin-2 particles, in the amplitudes we need to associate to each
graviton a polarization tensor εµν, which is traceless symmetric. It is convenient to start
with a tensor which is identical to a direct product of two polarization vectors εµν =

εµ ε̃ν. For scattering among these states, the simplest guess is

In := Pf′Ψn({k, ε, σ})Pf′Ψn({k, ε̃, σ}) . (4.49)

Recall that each reduced Pfaffian is multilinear in the polarization vectors, and so we
can directly bring them out, i.e.,

Pf′Ψn({k, ε, σ}) = (Pf′Ψn)
µ1µ2···µn({k, σ}) ε1,µ1 ε2,µ2 · · · εn,µn . (4.50)

Then for scattering among generic states we can simply generalize (4.49) to

IGR
n := (Pf′Ψn)

µ1µ2···µn (Pf′Ψn)
ν1ν2···νn ε1,µ1ν1 ε2,µ2ν2 · · · εn,µnνn . (4.51)

This turns out to produce a closed formula for amplitudes in Einstein gravity (GR)
[6, 42]. Note that in the form (4.51) we are not forced to restrict to traceless symmetric
tensors, and so more generally we also allow other irreducible components of a rank-2
tensor, i.e., the B-fields and the dilatons. But to simplify notation, later on we will
only work with the form (4.49).

In Chapter 7 we are going to argue about the validity of this formula by relations
between amplitudes in pure Yang–Mills and those in gravity.
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4.a a brief review of the general galileon theory

A general Galileon theory is a theory of a real scalar φ with higher derivative interac-
tions [51], equipped with a non-linearly realized Galileon symmetry

δφ = a + b · x , (4.52)

where a and bµ are parameters in the transformation, and xµ denotes the space-time
coordinates. Arising from various infrared modifications of gravity (see, e.g., [50, 53]),
this theory has been of primary interest in cosmology over the recent years. It can
also be viewed as Wess-Zumino terms in a particular spontaneously broken spacetime
symmetry [54].

In a form commonly used in the literature, the most general Lagrangian for the
Galileon is written as

LGal := − (∂φ)2

2

∞

∑
m=0

gm

(D−m)!
∂µ1 ∂ν1 φ · · · ∂µm ∂νm φ εµ1µ2···µmρm+1···ρD εν1ν2···νmρm+1···ρD ,

(4.53)

where ε denotes the Levi-Civita tensor in D space-time dimensions. So for a fixed
D the summation terminates at m = D. For any multiplicity in the field φ we have
exactly one coupling to be freely tuned. Since this is a massless scalar with higher
derivative interaction, one can verify that the three-point amplitude always vanishes
no matter what value g1 assumes. Hence changing g1 does not really change the
physics, but nonetheless we can leave it to be generic.

In the special Galileon theory that the formula (4.36) describes, only g1 and g2 are
free parameters, but gm = gm(g1, g2) are determined to be certain functions for all
m ≥ 2. In a single soft limit, while a generic Galileon amplitude vanishes at the
order τ2, amplitudes in this special theory is vanishes at τ3, which indicates that it
should possess certain extra global symmetry so as to allow for additional cancellation
between Feynman diagrams [48]. As was realized in [49], this is the unique Galileon
whose global symmetry is enhanced to the second order

δφ = sµν (xµ + β ∂µφ) (xν + β ∂νφ) + sµν α ∂µφ ∂νφ , (4.54)

with α and β some constants and sµν a constant traceless symmetry tensor. Especially,
if we set g1 = 0, then for a fixed α we have the solution

gm =


(−α)

m
2

(m+1)! , even m ,

0 , odd m .
(4.55)
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5
T H E O R I E S W I T H S E V E R A L B O S O N S

In the previous chapter we built integrands for amplitudes that involve a single
type of particles (at most with non-trivial flavor or color structure). While most of
the integrands there give rise to closed formulas in certain theories, there are two
cases which are incomplete because the study of factorizations reveals new particles.
These cases are identified as a Yang–Mills–Scalar theory and an Einstein–Maxwell–
(Scalar) theory. Furthermore, we also found integrands for two theories which
form different sectors of the same more general theory, i.e., the Dirac–Born–Infeld
theory.

In generic amplitudes in all these theories we observe particles with different spins.
The task of this chapter is to find out closed formulas for each of them. As a by-
product, we also discover a closed formula for a theory which seems to be new.
Differing from the previous discussions, here we do not construct new building blocks
straightforwardly. Instead, we are going to introduce three operations that act on the
existing building block Pf′Ψn: the standard compactification, the “squeezing”, and a
generalized compactification, which lead to new integrands that produce physically
sensible results [9].

Due to the presence of different types of particles, in any amplitude under study we
denote the set of graviton labels by “h”, the set of photons as “γ”, the set of gluons as
“g”, and finally the set of scalars as “s”.

5.1 compactification

The first operation we introduce has a natural physical interpretation: compactification.
In the context of scattering amplitudes, which are on-shell, this is fulfilled by restricting
momenta and polarization vectors.

To be precise, let us consider compactification from D-dimensional spacetime to
d-dimensional spacetime, and define m = D − d. We denote the momenta and
polarizations in D dimensions by KM and EM respectively, and those in d dimensions
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by kµ and εµ. Since the momenta are fully restricted to d dimensions, for every
a ∈ {1, 2, . . . , n} we have

KM
a = (kµ

a | 0, 0, . . . , 0︸ ︷︷ ︸
m

) =: (kµ
a |~0) . (5.1)

For each polarization vector, however, we can make two choices. If it is also restricted
to the d-dimensional external spacetime, then

EM
a = (ε

µ
a | 0, 0, . . . , 0︸ ︷︷ ︸

m

) =: (εµ
a |~0) . (5.2)

If it is restricted to the internal space, we denote it as eI and

EM
a = (0, 0, . . . , 0︸ ︷︷ ︸

d

|eI
a) =: (~0|eI

a) . (5.3)

In this case, it is convenient to further choose the polarization vector to be in an
orthonormal basis of the m-dimensional internal space so as to assign a flavor index
Ia to particle a, i.e., eI

a := δIa,I .

As a result, we always have Ka · Kb = ka · kb, while the other Lorentz products reduce
to

Ka · Eb =

ka · εb , Eb external ,

0 , Eb internal ,
Ea · Eb =


εa · εb , both external ,

δIa,Ib , both internal ,

0 , else .

(5.4)

For a photon or gluon amplitude, depending on whether we compactify an external
state or not, we choose the corresponding polarization vector to be either internal or
external.

For a graviton amplitude, we usually start from εµν = εµ ε̃ν with the two polarization
vectors distinguished. Then we can either choose to compactify one of them so as to
obtain a photon (with a flavor index), or to compactify both so as to obtain a scalar
(with two flavor indices).

5.1.1 A Yang–Mills–Scalar Theory

In the simplest case, we consider compactifying the pure Yang–Mills theory, which
yields a certain theory of massless scalars coupled to Yang–Mills. For a given scattering,
the gluons set and the scalar set are explicitly defined as

g := {a ∈ {1, 2, . . . , n}|EM
a = (ε

µ
a ,~0)} , s := {a ∈ {1, 2, . . . , n}|EM

a = (~0, eI
a)} . (5.5)
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Recall the integrand for Yang–Mills amplitudes IYM
n [α] = Cn[α]Pf′Ψn. The only change

imposed by the compactification is in the matrix Ψn, which becomes

b ∈ g b ∈ s b ∈ g b ∈ s

a ∈ g


(An)ab (An)ab (−CT
n )ab 0


a ∈ s (An)a,b (An)a,b (−CT

n )a,b 0

a ∈ g (Cn)a,b (Cn)a,b (Bn)a,b 0

a ∈ s 0 0 0 (Xn)a,b

, (5.6)

where the horizontal and vertical solid lines are to distinguish the original four blocks
as shown in the definition of Ψn (4.38), and the dashed lines separate the scalar labels
from the gluon labels. Entries at the bottom-right corner are exactly identical to those
in the matrix Xn defined in (4.7), i.e., (Xn)a,b = δIa ,Ib

σa,b
(1− δa,b). Hence the building

block Pf′Ψn factorizes into

Pf′Ψn = Pf[Xn]:s Pf′[Ψn]:ŝ , (5.7)

where as before [Xn]:s denotes the minor of Xn obtained by extracting rows and
columns with scalar labels in the second block. Also, [Ψn]:ŝ = [Ψn]g,s:g denotes the
minor of Ψn obtained by deleting rows and columns with scalar labels in the second
block, i.e.,

b ∈ g b ∈ s b ∈ g

a ∈ g


(An)a,b (An)a,b (−CT
n )a,b

a ∈ s (An)a,b (An)a,b (−CT
n )a,b

a ∈ g (Cn)a,b (Cn)a,b (Bn)a,b

. (5.8)

As a consequence, compactification of the pure Yang–Mills theory yields the Yang–
Mill-Scalar theory (YMS), in which the most general amplitude is computed from the
integrand

IYMS
n [α] := Cn[α]Pf[Xn]:s Pf′[Ψn]:ŝ . (5.9)

As shown in (4.23) the Lagrangian of this theory is

LYMS := −1
2

trc(DµΦI DµΦI)− 1
4

trc(Fµν Fµν)− g2

4
trc

(
[ΦI , ΦJ ]2

)
, (5.10)

Note that we are free to choose the sets g and s as long as g ∩ s = ∅ and g ∪ s =

{1, 2, . . . , n}. In particular either of them can be an empty set. When s = ∅ this goes
back to the integrand for YM amplitudes but in d dimensions. In the other limit when
g = ∅, since

Pf′[Ψn]{1,2,...,n}: = Pf′An , (5.11)
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we observe that this reduces to the scalar integrand we found in (4.22)

IYMS:scalar
n [α] = Cn[α]PfXn Pf′An . (5.12)

Furthermore, in a generic factorization channel we do not observe any amplitudes
with integrands of a different type. Hence the integrand (5.9) is the closed com-
pletion of (4.22). The full Lagrangian is easily worked out from the standard
compactification of the pure Yang–Mills theory, which is exactly that shown in
(4.23).

In the above discussion we assumed a generic m > 1. When m = 1 the inter-
nal space is one-dimensional and so all flavor indices are identified, in which case
the matrix Xn reduces to Xn, and in the Lagrangian the quartic scalar vertex van-
ishes.

5.1.2 The Dirac–Born–Infeld Theory

Next we have a look at the compactification of the Born–Infeld theory, which, when
viewed from the integrand, is a close analogue of the pure Yang–Mills theory. Recall
the integrands for these two theories

IYM
n [α] = Cn[α]Pf′Ψn , IBI

n = (Pf′An)
2 Pf′Ψn . (5.13)

The only difference is in the part which does not depend on any polarization vectors.
And so the discussion is exactly the same as that in the previous subsection. Hence
the integrand for a general amplitude in DBI is given as

IDBI
n := Pf[Xn]:s Pf′[Ψn]:ŝ (Pf′An)

2 , (5.14)

and we denote the photon set γ as the complement of s in {1, 2, . . . , n}. When s = ∅
this returns to the closed formula for the photon sector (4.47), i.e., the BI amplitudes
in d dimensions, and when γ = ∅ this reduces to the closed formula for the scalar
sector in (4.33)

IDBI:scalar
n = PfXn (Pf′An)

3 . (5.15)

Again by the standard compactification, it is well-known that the Lagrangian for DBI
is

LDBI := `−2
√
−det

(
ηµν + `2 ∂µφ ∂νφ + ` Fµν

)
− `−2 . (5.16)
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5.1.3 An Einstein–Maxwell–(Scalar) Theory

Finally, we study the compactification of gravity. As commented in Section 4.5,
we consider the perturbative gravity that also involves the B-field an the dilaton,
and so we represent the external state of an amplitude by εµν = εµ ε̃ν. Recall
the integrand IGR

n = Pf′Ψn({E})Pf′Ψn({Ẽ}). Since we have two copies of Pf′Ψn,
we can choose to compactify the polarization vectors in either of them indepen-
dently.

Firstly, let us leave all E ’s to be external, while restricting a subset of the Ẽ ’s to the
internal space, whose corresponding particles thus become photons. Similar to the case
in YMS and DBI discussed before, the resulting integrand is

IEM
n := Pf[Xn]:γ Pf′[Ψn]:γ̂({ε̃})Pf′Ψn({ε}) , (5.17)

which, as expected, describes a theory of photons coupled to gravity, obtained by com-
pactifying gravity, or we call it Einstein–Maxwell (EM). The extreme case when h = ∅
reduces to the photon amplitudes we obtained in Section 4.4.2

IEM:photon
n = PfXn Pf′An Pf′Ψn . (5.18)

Staring from the integrand for Einstein–Maxwell (5.17), we can to a further compacti-
fication on the polarization vectors in the the other copy of Pf′Ψn. However, here we
cannot restrict arbitrary E ’s to be internal, as it may lead to results that violate locality.
Instead, we can only do it for particles which are already photons. This final result is
thus

IEMS
n := Pf[Xn]:γ,s Pf′[Ψn]h,γ,s:h({ε̃})Pf[Xn]:s Pf′[Ψn]h,γ,s:h,γ({ε}) , (5.19)

in which h∩ γ = h∩ s = γ∩ s = ∅ and h∪ γ∪ s = {1, 2, . . . , n}. We call this theory
Einstein–Maxwell–Scalar (EMS). In particular, when h = γ = ∅, this reduces to the
integrand for the scalar amplitudes considered in Section 4.2.4

IEMS:scalar
n = (PfXn)

2 (Pf′An)
2 . (5.20)

5.2 the squeezing procedure

In the previous section we use the standard compactification to complete the analysis
in theories with several types of bosons that were found in the study of scalar
amplitudes in Chapter 4, i.e., YMS, DBI, and EMS.
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It is then natural to wonder that, since we have a closed formula for Einstein–Maxwell,
do we have something similar for its natural non-Abelian version, i.e., Yang–Mills
coupled to gravity? The answer is yes. In this chapter we are going to illustrate the
procedure in detail in the case of Einstein–Yang–Mills (EYM). In short, one can take
two points of views. In one we conjecture a natural generalization of the integrand for
Einstein–Maxwell, while in the other we design a new operation on the matrix Ψn in
the integrand for gravity that leads to an equivalent expression. The same analysis can
then be applied to other integrands which contain a factor Pf′Ψn, which leads to closed
formulas for theories that we have not discussed previously.

5.2.1 An Einstein–Yang–Mills Theory: First Approach

In the first approach to the Einstein–Yang–Mills theory we start with the Einstein–
Maxwell theory where the photons are flavored in U(1)m. To make the structure
explicit, let us consider an n-point amplitude in EM with 2t photons. We expand the
factor Pf′[Xn]γ explicitly, and the integrand reads

IEM
n = ∑

{a,b}∈P.M.(γ)
δIa1 ,Ib1 · · · δIat ,Ibt

(
sgn({a, b})

σa1,b1 · · · σat,bt

Pf′[Ψn]:γ̂({ε̃})Pf′Ψn({ε})
)

, (5.21)

where {a, b} := (a1, b1, a2, b2, · · · , at, bt) denotes a permutation of the set of photon
labels γ, and [Ψn]:γ̂ = [Ψ]h,γ:h.

Note that since EM is Abelian, in the above integrand the flavor structure only enter
in the form of δIa,Ib . The key observation that leads to its corresponding non-Abelian
version is that this Kronecker delta can be identified with the usual normalization
condition of the generators in the non-Abelian group U(N), i.e.,

tr(T Ia T Ib) = δIa,Ib . (5.22)

When we regard these generators as those in the color group in a Yang–Mills theory,
the flavor indices are to be understood as the color indices therein. This means we
can think of the photons in such amplitudes as gluons, such that the original flavor
structure (for 2 t photons)

δIa1 ,Ib1 δIa2 ,Ib2 · · · δIat ,Ibt (5.23)

in (5.21) is the color structure in an EYM amplitude

tr(T Ia1 T Ib1 ) tr(T Ia2 T Ib2 ) · · · tr(T Iat T Ibt ) (5.24)

where we have in total t traces and each trace involves exactly two gluons. Then then
summand in (5.21) for a given perfect matching is actually identical to this special
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class of partial amplitudes in EYM. From the Feynman diagram point of view this is
easy to understand: as the form of the color structure (5.24) excludes contributions
from cubic or quartic gluon self-interactions, they interact only by exchanging virtual
gravitons as if they were photons. Of course, we should modify the notation slightly
by replacing γ by g.

It is pleasing that a simple formula such as (5.21) already computes a special class of
EYM partial amplitudes, involving arbitrary number of gluon traces and arbitrary
number of gravitons. To extend this special case to the most general amplitudes in
EYM, the only thing we need to consider is how to increase the number of gluons in
each individual trace.

To achieve this, we first re-arrange a “partial” amplitude of this special class, i.e., a sin-
gle term in (5.21), to a slightly different form (ignoring the overall sign)

tr(T Ia1 T Ib1 )

σa1,b1 σb1,a1

tr(T Ia2 T Ib2 )

σa2,b2 σb2,a2

· · · tr(T Iat T Ibt )

σat,bt σbt,at

P{a,b}({ε̃})Pf′Ψn({ε}) , (5.25)

where we define a new quantity

P{a,b} := sgn({a, b}) σa1,b1 σa2,b2 · · · σat,bt Pf′[Ψn]h,a1,b1,a2,b2,··· ,at,bt :h . (5.26)

In the above we explicitly write out {a1, b1, a2, b2, . . . , at, bt} instead of just g, in or-
der to emphasize that these labels also indicates the relative positions of the corre-
sponding rows and columns in the minor, which may lead to a relative sign of the
Pfaffian when specifying different ordering of the labels. This will be important later
on.

The re-writing of (5.25) is useful because each pre-factors of the form tr(T Ia T Ib )
σa,b σb,a

therein
is exactly a special case of a building block, the Parke–Taylor factor after ordering
summation, that we defined in Section 4.1

Cn := ∑
α∈Sn/Zn

tr(T Iα(1)T Iα(2) · · · T Iα(n))Cn(α) , (5.27)

where now n = 2 and the two labels are {a, b}. As commented before, this structure
is natural for theories with a non-trivial flavor or color group. In the current context,
imagine that we start from certain amplitude in EYM where the color structure of
the gluons consists of several traces, and so in terms of Feynman diagrams the gluon
lines separate into corresponding disconnected parts. Obviously the propagators
linking these different parts have to be those of virtual gravitons. Then we can
explore factorization channels corresponding to these virtual gravitons recursively, so
as to extract smaller amplitudes each of which contains a single color trace. In any
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such small amplitude, we expect a building block similar to (5.27) to enter into the
corresponding integrand, hence we generalize its definition to

C{a1,a2,...,as} := ∑
ρ∈Ss/Zs

tr(T Iρ(a1) T Iρ(a2) · · · T Iρ(as))

σρ(a1),ρ(a2) σρ(a2),ρ(a3) · · · σρ(as),ρ(a1)
(5.28)

for a subset of labels {a1, a2, . . . , as} ⊂ {1, 2, . . . , n}. As a result of the above discussion,
these C factors can account for the most general color structures of EYM amplitudes.
It is convenient to introduce the notation tri for the set of labels for the gluons in the
ith trace, so that g = tr1 ∪ tr2 ∪ · · · ∪ trt, and now |g| ≥ 2 t.

To generalize the formula to arbitrary EYM amplitudes, it is obvious that there should
be a factor of Pf′Ψn providing gluon polarization vectors, and an additional copy of
the polarization vectors that make up the graviton polarization tensor. Another clue
is that given the trace structure tr1, tr2, . . . , trt, we need the corresponding C factors,
i.e., the combination Ctr1 Ctr2 · · · Ctrt . The remaining problem is how to generalize
P{a,b}.

The most natural generalization is as follows: we choose two labels {ai, bi} ⊂ tri for
each i, compute the RHS of (5.26), and then sum over all choices, i.e.,

∑
{a,b}

′P{a,b} := ∑
a1<b1∈tr1···

at−1<bt−1∈trt−1

sgn({a, b}) σa1b1 · · · σat−1bt−1 Pf[Ψ]h,a1,b1,...,at−1,bt−1 :h . (5.29)

Note that in (5.29) we did not take the tth trace in to consideration, which seems to
be a flaw. But recall that in the extreme case (5.26) we were using a reduced Pfaffian,
and when writing it explicitly out we need to delete two labels and pay a factor of the
form 1

σa,b
. Hence the generalization (5.29) is completely consistent with (5.26). That

is why we put a prime in denoting this quantity ∑{a,b}
′P{a,b}. In fact, we can choose

to delete any one of the t traces so that the RHS of (5.29) has no explicit dependence
on it, and the result is independent of the choice we make. To see the reason for this
independence, however, it is better to switch to an alternative expression equivalent
to (5.29) that will be introduced in the next subsection, where this fact will be explicit.
What is nice with this quantity is that it is manifestly SL(2, C) covariant with respect to
every graviton label and neutral with respect to all gluon labels

∑
{a,b}

′P{a,b}
ψ∈SL(2,C)−−−−−−−→ ∑

{a,b}

′P{a,b} ∑
c∈h

(γ σc + δ)2 . (5.30)
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To summarize, the proposal for the integrand for the most general m-trace amplitudes
in EYM, as obtained from our first approach, has the form

IEYM
n (tr1, tr2, . . . , trt; h) :=

(
Ctr1 Ctr2 · · · Ctrt ∑

{a,b}

′P{a,b}({ε̃})
)

Pf′Ψn({ε}) . (5.31)

By (5.30) this integrand is well-defined.

5.2.2 An Einstein–Yang–Mills Theory: Second Approach

In the second approach to EYM, we start from a gravity amplitude, and turn a subset
of the gravitons into gluons by “hiding half of the polarization tensor” for each of
them. So the gravity theory considered here again involves the B-fields and the dilaton
and we decompose εµν = εµ ε̃ν. Without lose of generality we choose to hide ε’s to
obtain gluons. This is achieved by “squeezing” the matrix Ψn({ε̃}) into a new matrix
and restoring the SL(2, C) covariance of its Pfaffian.

In the simplest case, let us consider how to produce the integrand for amplitudes
with a single trace. As mentioned above, the operation leading to this acts on
the matrix Ψn({ε̃}). We assume that particles {1, 2, . . . , n} stay as gravitons while
those labeled by {r + 1, r + 2, . . . , n} are converted into gluons. Recall the range
of the indices {1, 2, . . . , n : 1, 2, . . . , n} for the matrix Ψn that we introduced in Sec-
tion 4.3, which separates into two blocks. The squeezing procedure consists of several
steps:

1. Add all rows {r+ 1, r+ 2, . . . , n− 1} from the first block of {1, 2, . . . , n : 1, 2, . . . , n}
to the nth row in the first block. Do the same for the second block.

2. Repeat the same procedure on the columns.

3. Delete all rows and columns with labels in {r + 1, r + 2, . . . , n− 1} from both
blocks of {1, 2, . . . , n : 1, 2, . . . , n}, so as to obtain a 2 (r + 1)× 2 (r + 1) matrix.
So far we are only doing linear manipulations, and explicitly the resulting matrix
has the form as if all the original rows and columns in tr1 = {r + 1, r + 2, . . . , n}

57



are squeezed into the one labeled by n, in both blocks (it is in this sense that we
call this operation “squeezing”)

b ∈ h n b ∈ h n

(An)a,b ∑
d∈tr1

(An)a,d −(CT
n )a,b − ∑

d∈tr1

(CT
n )a,d



a ∈ h

∑
c∈tr1

(An)c,b 0 − ∑
c∈tr1

(CT
n )c,b − ∑

c,d∈tr1,c 6=d
(CT

n )c,d n

(Cn)a,b ∑
d∈tr1

(Cn)a,d (Bn)a,b ∑
d∈tr1

(Bn)a,d a ∈ h

∑
c∈tr1

(Cn)c,b − ∑
c,d∈tr1,c 6=d

(Cn)c,d ∑
c∈tr1

(Bn)c,b 0 n

, (5.32)

where h = {1, 2, . . . , r}. Note that the two original diagonal entries (An)n,n and
(Bn)n,n remain zero after the manipulation, due to anti-symmetry. Obviously
this resulting matrix is still anti-symmetric, and so we can define a (reduced)
Pfaffian again. But there are two problems: (i) we have not yet hidden the
polarization vectors ε̃ for the gluons, and (ii) the Pfaffian of this matrix does not
transform covariantly under SL(2, C).

4. These two remaining problems are both fixed by a single step: replace ε̃
µ
a → σa kµ

a

∀a ∈ tr1 = {r + 1, r + 2, . . . , n}. We denote the resulting new matrix as Π(h; tr1).

5. Replace Pf′Ψn in the integrand

Pf′Ψn −→ Ctr1 Pf′Π(h; tr1) . (5.33)

The definition of the reduced Pfaffian Pf′Π and the reason for the validity of
this replacement will be explained shortly.

The explicit form of the 2 (r + 1)× 2 (r + 1) matrix Π(h; tr1) is

b ∈ h 1 b ∈ h 1′

(An)a,b ∑
d∈tr1

ka · kd

σad
−(CT

n )a,b ∑
d∈tr1

ka · kd σd

σa,d



a ∈ h

∑
c∈tr1

kc · kb

σc,b
0 ∑

c∈tr1

kc · ε̃b

σc,b
∑

c,d∈tr1,c 6=d
kc · kd 1

(Cn)a,b ∑
d∈tr1

ε̃a · kd

σa,d
(Bn)a,b ∑

d∈tr1

ε̃a · kd σd

σa,d
a ∈ h

∑
c∈tr1

σc kc · kb

σc,b
− ∑
c,d∈tr1,c 6=d

kc · kd ∑
c∈tr1

σc kc · ε̃b

σc,b
0 1′

. (5.34)

Here we also introduced new notation for the rows and columns resulting from the
squeezing procedure: 1 and 1′, instead of the original label n. The label 1 refers to the
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trace of gluons tr1 in the first block, and we use a prime for the two rows/columns in
the other block.

The above operation can be iterated to generate a Π matrix corresponding to multiple
traces. For example, for the case of two traces tr1 = {r′+ 1, . . . , n}, tr2 = {r+ 1, . . . , r′},
we start from (5.34) (but with r replaced by r′) and convert gravitons {r + 1, . . . , r′}
into gluons in the same way, obtaining a 2 (r + 2)× 2 (r + 2) matrix, which we denote
as Π(h; tr1, tr2).

In general for t traces, assuming r remaining gravitons, we obtain a 2 (r + t) ×
2 (r + t) matrix, Π(h; tr1, tr2, . . . , trt), by iterating the same operations t times. It is
straightforward to implement this procedure, but notation-wise it is non-trivial to
present the result explicitly. Nevertheless we present the most general Π matrix below,
labeling its columns and rows by a, b ∈ h, and i, j, i′, j′ ∈ {tr} ≡ {1, . . . , t} for the
traces:

Π =

b ∈ h j ∈ {tr} b ∈ h j′ ∈ {tr}
(An)a,b Πa,j −(CT

n )a,b Πa,j′


a ∈ h

Πi,b Πi,j Π̃i,b Πi,j′ i ∈ {tr}
(Cn)a,b Π̃a,j (Bn)a,b Π̃a,j′ a ∈ h

Πi′,b Πi′,j Π̃i′,b Πi′,j′ i′ ∈ {tr}

. (5.35)

Note that here four blocks of the Π matrix are identical to those in Ψn, and we use
a slight abuse of notation for the remaining twelve blocks: the blocks with different
types of subscripts, such as i, b and i′, b, or i, j, i′, j and i′, j′ are distinct matrices,
and in addition we denote Π̃ those blocks where one subscript is a graviton label
and the other a trace label. Explicitly, entries in eight of the remaining blocks are

Πi,b = ∑
c∈tri

kc · kb

σc,b
, Π̃i,b = ∑

c∈tri

kc · ε̃b

σc,b
, Πi′,b = ∑

c∈tri′

σc kc · kb

σc,b
, Π̃i′,b = ∑

c∈tri′

σc kc · ε̃b

σc,b
,

Πi,j = ∑
c∈tri , d∈trj

kc · kd

σc,d
, Πi′,j = ∑

c∈tri′ , d∈trj

σc kc · kd

σc,d
, Πi′,j′ = ∑

c∈tri′ , d∈trj′

σc kc · kd σd

σc,d
,

(5.36)

while the other four blocks can be obtained from (5.36) by anti-symmetry. To save
space, we suppressed the condition c 6= d on the second line for diagonal entries i = j
and i′ = j′.
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Before writing down the final integrand for the amplitudes, note that Π has a two-
dimensional kernel spanned by the vectors:

v1 = (1, . . . , 1︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
t

)T,

v2 = (σ1, . . . , σr︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
t

)T ,
(5.37)

which is reminiscent of the kernel of the original matrix Ψn. Recall the labels are
arranged as {1, . . . , r, 1, . . . , t : 1, . . . , r, 1, . . . , t}. Given v1, v2, the reduced Pfaffian
of Π can be defined as the Pfaffian of a reduced matrix obtained by deleting two
rows and two columns in any of the following four equivalent ways, dressed by its
corresponding Jacobian:

Pf′Π := Pf[Π]î: ĵ′ =
(−1)a

σa
Pf[Π]â,î: = −

(−1)a

σa
Pf[Π]â: ĵ′ =

(−1)a+b

σa,b
Pf[Π]â,b̂: , (5.38)

with i, j′ ∈ {1, . . . , t}, and (importantly) a, b ∈ {1, 2, . . . , r} for the first r rows/columns.
Here [Π] with two hatted subscripts denotes Π with the two indicated rows and
columns deleted, and the Jacobian factor in front is easily understood by the structure
of v1 and v2. The reduced Pfaffian is independent of the labels being deleted, and in
particular the first definition means we can eliminate any one of the t traces. This
should sound familiar from the results in the previous subsection.

The final integrand for general multi-trace mixed amplitudes in EYM is then

IEYM
n (h; tr1, tr2, . . . , trt) := Ctr1 Ctr2 · · · Ctrt Pf′Π(h; tr1, tr2, . . . , trt)Pf′Ψn . (5.39)

One of the advantages of having a formulation in terms of Pf′Π is that it makes
the symmetries among the traces manifest, and is convenient for analyzing various
properties of the amplitudes, such as soft limits. We did not show that the integrand
(5.39) is well-defined. In fact, its SL(2, C) covariance is guaranteed by its equivalence
with the integrand (5.31), via the identity

Pf′Π(h; tr1, tr2, . . . , trt) = ∑
{a,b}

′P{a,b} . (5.40)

The proof for this identity is summarized in Section 5.A.

5.2.3 Explicit Examples

In this subsection we provide several explicit examples of general EYM amplitudes,
for the sake of a better understanding of its structure.
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Single-Trace Amplitudes

In the first example, we discuss an arbitrary amplitudes involving gluons and (possi-
bly) gravitons, where the color structure of the gluons form a single trace, which we
name as single-trace amplitudes.

The matrix Π entering the integrand for such amplitudes has been worked out
explicitly in (5.34). Note that in defining its reduced Pfaffian we are free to make any
of the choices as listed in (5.38). A particularly nice choice for these amplitudes is to
delete the only two rows and columns labeled by the unique trace. What is left is a
familiar minor of the matrix Ψn, obtained by extracting graviton labels only. Hence
the integrand can be written out solely with analogues of familiar building blocks
in the pure gluon and pure gravity amplitudes. Explicitly, the integrand for the full
amplitudes is

IEYM:single-trace
n = Cg Pf′[Ψn]h:h Pf′Ψn . (5.41)

Multi-Trace Gluon Amplitudes

In the second example, we study amplitudes of scattering among gluons only, where
the color structure forms several traces (say t traces), which we call multi-trace gluon
amplitudes. In this case the matrix Π only contain trace labels and it only depends on
σ’s and the Mandelstam variables. Explicitly, it reads

Π(∅; tr1, tr2, . . . , trt) =

j ∈ {tr} j′ ∈ {tr} ∑
c∈tri , d∈trj

kc · kd

σc,d
∑

c∈tri , d∈trj

σc kc · kd

σc,d


i ∈ {tr}

∑
c∈tri , d∈trj

kc · kd σd

σc,d
∑

c∈tri , d∈trj

σc kc · kd σd

σc,d
i′ ∈ {tr}

. (5.42)

In the above, each block is labeled by i, j ∈ {1, . . . , t}, and in the diagonal entries we
have c 6= d. According to (5.38), we define the reduced Pfaffian by deleting rows and
columns for some i and j′.

In the simplest case the color structure forms a single trace Ctr1 ≡ Cn. Note that now
the matrix Π is a 2× 2 matrix of rank-0, and so by definition its reduced Pfaffian
is trivially 1. In this situation the integrand is exactly that for pure Yang–Mills
amplitudes, as is expected (if there is any internal graviton, the color structure has to
break up into several traces).
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The simplest non-trivial case is when the color structure forms two traces and the
matrix Π becomes a 4× 4 matrix. In defining its reduced Pfaffian we can further delete,
say both rows and columns labeled by {2 : 2}. Then it reduces to a single Mandelstam
variable, which is completely independent of the σ variables

Pf′Π(∅; tr1, tr2) = ∑
c,d∈tr1

c 6=d

σc kc · kd

σc,d
=

1
2 ∑

c,d∈tr1
c 6=d

kc · kd =
1
2

(
∑

c∈tr1

kc

)2

. (5.43)

In this example we clearly see that the choice in defining Pf′Π preserves the symmetry
among the traces, since (∑c∈tr1

kc)2 = str1 = str2 . Hence the integrand for the full
amplitude is

IEYM:double-trace gluon
n =

1
2
Ctr1 Ctr2 str1 Pf′Ψn . (5.44)

5.2.4 Another Yang–Mills–Scalar Theory

When we obtained the formula for general EYM amplitudes from “squeezing” graviton
amplitudes, the only change in the integrand is the replacement

Pf′Ψn −→ Ctr1 Ctr2 · · · Ctrt Pf′Π(h; tr1, tr2, . . . , trt) . (5.45)

So in principle we are allowed to apply this operation to any formula where the
integrand involves at least one copy of Pf′Ψn (we have already considered the case
with two copies). Recalling the results in Section 4.4, such candidate can be amplitudes
in the pure Yang–Mills theory, or the Born–Infeld theory. While the integrand for
photon amplitudes in Eintein–Maxwell always contain a Pf′Ψn as well, the result of
“squeezing” in general does not produce physically sensible results, so we do not
consider this case.

We first study the formula from “squeezing” that for pure Yang–Mills

Igen.YMS
n := Cn︸︷︷︸

color

Ctr1 Ctr2 · · · Ctrt︸ ︷︷ ︸
flavor

Pf′Π(g; tr1, tr2, . . . , trt) . (5.46)

Note that the above integrand is for the full amplitude instead of a partial amplitude.
Since the new particles arising from the “squeeze” are scalars, the factor Ctr1 Ctr2 · · · Ctrt

thus produced is associated to the flavor structure of the scalars, while the scalars are
also gauged by the original gluons and the corresponding color structure is captured
by the factor Cn. The study of a general factorization channel shows no other internal
propagating states. In particular this means there are no gravitons (nor B-fields nor
dilatons), and so the color structure has to always form a single trace containing
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generators from every external state. Hence (5.46) again leads to a closed formula for
a theory of massless scalars gauged by Yang–Mills.

At first sight this seems to be no different from the YMS that we discussed in Sec-
tion 5.1.1, but there is a crucial difference. In (5.46) we can take the extreme case that
the flavor structure forms a single trace only, i.e.,

Ctr1 Ctr2 · · · Ctrt Pf′Π(g; tr1, tr2, . . . , trt) −→ Ctr1 ≡ Cn . (5.47)

We see that the integrand reduces to that for the Φ3 theory where the scalars are
flavored in U(N)×U(Ñ) (although one copy of U(N) is now gauged). This indicates
that the new theory at least contains a cubic scalar vertex with exactly the same form
as that in the Lagrangian (4.16). It turns out this is all what we need apart from
the terms already existing in the YMS Lagrangian (4.23). Hence we call this new
theory the generalized Yang–Mill–Scalar (gen. YMS). Explicitly, the its Lagrangian
is

Lgen. YMS :=− 1
2

trc(DµΦI DµΦI)− 1
4

trc(Fµν Fµν)− g2

4
trc

(
[ΦI , ΦJ ]2

)
− λ

3!
f f
I,J,K f c

Ĩ, J̃,K̃ ΦI, Ĩ ΦJ, J̃ ΦK,K̃ .
(5.48)

5.2.5 An Extended Dirac–Born–Infeld Theory

Next we study what “squeezing” the formula for the Born–Infeld theory has to
produce. The resulting integrand is easily obtained as

Iext.DBI
n := Ctr1 Ctr2 · · · Ctrt Pf′Π(h; tr1, tr2, . . . , trt) (Pf′An)

2 . (5.49)

As will be discussed in detail in Chapter 6, the study of a general factorization
channel confirms the consistency of this formula regarding locality and unitarity, and
we do not observe new particles, and so this integrand leads to a closed formula
for yet one more theory of photons and scalars, where the scalars are flavored in
U(N).

First of all, as before we can take two different extreme cases of this integrand. The
first one is the scalar amplitudes in which the flavor factor forms a single trace, by
which the integrand (5.49) reduces to that for NLSM (4.26)

INLSM
n = Cn (Pf′An)

2 . (5.50)

In the second case, we study the amplitudes with even number of scalars, where each
flavor trace contains generators from exactly two scalars. Recall the normalization
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condition tr(T Ia T Ib) = δIa,Ib , the integrand reduces to a single term in the integrand
for DBI (5.14)

IDBI
n = Pf[Xn]s Pf′[Ψn]:ŝ (Pf′An)

2 (5.51)

after expanding Pf[Xn]s. Hence we know that both NLSM and DBI are certain sectors
of this new theory.

Apart from these, we expect to observe more interaction vertices in this theory. For
example, the integrand (5.49) obviously produces a non-trivial amplitude for the
scattering of a single photon with three scalars, which has to vanish if all vertices
involving photons come from the Lagrangian for DBI. We name this theory as extended
DBI, considering the fact that this is an extension of the ordinary DBI theory with the
flavor structure of the scalars non-Abelian.

Given that any amplitude in this theory can be computed from (5.49), one can derive
all the interaction vertices in the Lagrangian starting from lower orders. In fact, an
educated ansatz can be made due to the observation of the two sectors pointed out
before. When the vertices are worked out to all orders of multiplicity, interestingly
they turn out to sum up into a square root again, as is in the DBI Lagrangian. The
conjectured Lagrangian for this theory is

Lext. DBI = `−2

√
−det

(
ηµν +

`2

λ2 tr
(
∂µU† ∂νU

)
+ `2 Wµν + ` Fµν

)
− `−2 , (5.52)

where U = U(Φ) is defined in (4.28) and expanding U in terms of Φ gives rise to the
usual scalar kinetic term. The extra term Wµν is

Wµν =
∞

∑
m=1

m−1

∑
k=0

2(m− k)
2m + 1

λ2m+1 tr(∂[µΦ Φ2k ∂ν]Φ Φ2(m−k)−1). (5.53)

We call this the extended Dirac–Born–Infeld theory (ext. DBI).

5.3 a unified point of view

In this section we introduce one more operation. While this does not leads to any
formula for a new theory other than the ones we have discussed so far, it provides
a convenient view point of how the integrands in different theories are connected
together, as a result of which we can regard amplitudes in any of these theories as
obtained by several steps of compactification or analogues of compactification from
the gravity amplitudes.
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5.3.1 A Generalized Compactification

To introduce the new operation, let us recall the standard compactification discussed
in Section 5.1

Pf′Ψn −→ Pf[Xn]S Pf′[Ψn]:Ŝ , (5.54)

where S denotes certain subset of {1, 2, . . . , n}. When all the polarization in the Pf′Ψn

are compactified (i.e., S = {1, 2, . . . , n}) we simply get

Pf′Ψn −→ PfXn Pf′An . (5.55)

The important fact leading to this result is that for the compactified polarization
vectors Ea · Eb = δIa,Ib .

Now, instead of the usual compactification, we can imagine a compactification from
2 d dimensions to d dimensions, and for the polarization vectors that are compactified
we restrict them to be

EM
a = (0, 0, . . . , 0︸ ︷︷ ︸

d

, k0
a, k1

a, . . . , kd−1
a ) . (5.56)

We call this “generalized compactification”. Whenever we apply this compactification
we always do it for all labels, which means Ka · εb = 0 and εa · εb = ka · kb for any
a, b.

In this case the matrix Ψn again becomes block-diagonal (since Cn = 0)

Ψn =

(
An −CT

n

Cn Bn

)
=

(
An(k, σ) 0

0 An(k, σ)

)
. (5.57)

If we naively compute Pf′Ψ we get zero, since Ψ has two additional null vectors due
to the bottom-right An block

Pf′oldΨn

Pf′An
= PfAn =

n

∑
b=1,b 6=a

(−1)a+b+1 sa,b

σa,b
Pf[An]â,b̂ = (Pf′An)

n

∑
b=1,b 6=a

sa,b = 0 . (5.58)

The correct way to implement this procedure is to extract the coefficient of the zero

∑n
b=1,b 6=a sa,b = −sa,a = 0, which naturally yields a non-trivial result. In other words,

we define the reduced Pfaffian by deleting four rows and four columns, two for each
An,

Pf′newΨn := (Pf′An)
2 . (5.59)

Hence this connects, e.g., gravity ampliutdes to BI amplitudes.
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5.3.2 Summary of the Theories

In this chapter we have introduced three operations on the integrand, whose effects
are all certain replacement of Pf′Ψn, summarized as follows

compactification : Pf′Ψn
compactify

Pf[Xn]S Pf′[Ψn]:Ŝ , (5.60)

squeezing : Pf′Ψn
squeeze

Ctr1 Ctr2 · · · Ctrt Pf′Π(t̄r; tr1, tr2, . . . , trt), (5.61)

a generalized
compactification : Pf′Ψn

“compactify”
(Pf′An)

2 , (5.62)

where S, tr1 . . . , trt are some subsets of {1, 2, . . . , n} with tri ∩ trj = ∅ ∀i, j, which we
can freely choose, and t̄r denotes the complement of (tr1 ∪ tr2 ∪ · · · ∪ trt). There are
several choices that are comparatively special. The first one is

Ctr1 Ctr2 · · · Ctrt Pf′Π(t̄r; tr1, tr2, . . . , trt)
|tri |=2 ∀i−−−−−→ δ

Ia1,b1
σa1,b1

δ
Ia2,b2

σa2,b2
· · · δ

Iat ,bt
σat ,bt

Pf′[Ψn]:Ŝ

∩
Pf[Xn]S Pf′[Ψn]:Ŝ

, (5.63)

where S = {a1, b1, a2, b2, . . . , at, bt}. In fact we can reverse the above arrow, which then
becomes the approach that we discussed in Section 5.2.1 then produces the alternative
expression ∑{a,b}

′P{a,b} for Pf′Π. For example, this switches photons to gluons, so
as to bring the integrand for Einstein–Maxwell to that for Einstein–Yang–Mills. The
second one is

Ctr1 Ctr2 · · · Ctrt Pf′Π(t̄r; tr1, tr2, . . . , trt)
tr1={1,2,...,n}−−−−−−−→ Cn , (5.64)

in other words all labels enter the same trace. While this is just a special case of the
generic integrand on the LHS, it actually produces an integrand which is closed by
itself, and thus singles out a certain sector of the original theory. For example, this
produces the integrand for pure Yang–Mills from that for the Einstein–Yang–Mills, and
we know very well that in a single-trace gluon amplitude there cannot be any graviton
propagators from the point of view of Feynman diagrams.

As a consequence, we are able to start from the integrand for pure gravity Pf′Ψn Pf′Ψn,
and interpret the closed integrands for all the theories we have found so far as
obtained by applying a sequence of the operations discussed above. These are
summarized in Table 3. Note that the integrand for gravity consists of two copies of
Pf′Ψn and the operation of the generlized compactfication commutes with the other
operations, hence the integrands containing (Pf′An)2 can be obtained by different
procedures. However, in general we cannot freely compactify or squeeze both Pf′Ψn in
the integrand for pure gravity, as this may produce double poles. The only consistent
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GR

EMEYM

YM

YMS
gen.
YMS

Φ3

BI

DBI
ext.
DBI

NLSM

sGal

com
pactify

“squeeze”
“compactify”

Table 3: Connections among integrands. Compactify: . Squeeze: . “Compact-
ify”: . Non-Abelian: . Restrict to single trace: .

way is to compactify or squeeze in the second step those particles which are already
photons/gluons from the first step. Due to this restriction, we did not list out EMS in
Table 3.

As mentioned at the beginning of Chapter 4, most of the formulas that we identify with
amplitudes in certain theories are conjectured. The ones that have been completely
proven are the integrand for gravity, Yang–Mills, and Φ3. Given these, we do not have
worry about the formulas for EM(S) and YMS, since they are obtained just by the
standard compactifications of amplitudes in gravity and YM. As will be discussed in
detail in Chapter 6, we are able to study a generic soft limit or a generic factorization
limit to confirm the consistency regarding locality and unitarity. However, in the
absence of a complete proof explicit checks up to a sufficiently high order in the
multiplicity n and to a sufficiently generic situation (spacetime dimensions, and
specific configuration of external states when several types of particles are involved)
are still necessary for the remaining formulas. We summarize the explicit checks that
have been performed for each of them in Table 4.
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Table 4: Existing Checks for the Formulas without a Proof

Theory Ref. Checks

EYM [8, 9] (numerically in four dimensions, against results in [55]
and those from BCFW recursion)
up to eight points, single-trace one-gluon amplitudes;
all double- and triple-trace gluon amplitudes up to six points;
double-trace four-gluon one-/two-graviton amplitudes;
double-trace five-gluon one-graviton amplitude.

gen. YMS [9] (include the amplitudes in YMS)
analytically up to eight points, all possible amplitudes.

ext. DBI [9] (include the amplitudes in DBI and in NLSM)
analytically up to six points, all DBI amplitudes;
numerically up to ten points, all possible amplitudes.

sGal [9] (in arbitrary dimensions)
analytically up to six points;
numerically at eight points.

5.a expansion of pf′Π

In this appendix we provide a proof for equation (5.40) that Pf′Π can be expanded as
a linear combination of Pfaffians of minors of matrix Ψ. Recall the convention there
that we consider t traces of gluons and r gravitons1. In using the definition (5.38) for
the reduced Pfaffian we choose to delete the two rows and columns corresponding to
the tth trace, so that the Jacobian is trivially 1, and the reduced matrix [Π]t̂:t̂′ is of size
2(t + r− 1)× 2(t + r− 1).

We express Pf′Π in terms of summing over perfect matchings

Pf′Π = ∑
α∈p.f.

sgn(α(1), . . . , α(2(t+ r− 1))) Πα(1),α(2) · · ·Πα(2(t+r)−3),α(2(t+r)−2)︸ ︷︷ ︸
m+r−1

. (5.65)

Here α denotes a permutation of the label set h ∪ {1, 1′, . . . , (t − 1), (t − 1)′}, and
restricted to inequivalent perfect matchings. For an entry Πα,β, the non-trivial situation

1 Here “gluon” and “graviton” are merely ways to name the entries, and they can equally be called “scalar”
and “gluon”; (5.40) is a purely mathematical identity.
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is when α ∈ {1, . . . , (t− 1)} or α ∈ {1′, . . . , (t− 1)′} (the trace labels), in which it can
be further expanded into

Πα,β = ∑
aα∈trα

kaα · #β

σaα,β
or Πα,β = ∑

aα∈trα

σaα (kaα · #β)

σaα,β
, (5.66)

respectively, where #b denotes some Lorentz vector depending on the label β. Similarly
when β belongs to the trace labels we have instead

Πα,β = ∑
bβ∈trβ

#α · kbβ

σα,bβ

or Πα,β = ∑
bβ∈trβ

(#α · kbβ
) σbβ

σα,bβ

. (5.67)

After fully expanding the Π entries labeled by traces in (5.65), it is obvious that each
term in the full expansion of Pf′Π is again a product of (t + r− 1) factors of the form
in (5.66) and (5.67) (since when α, β ∈ h Πα,β is also of this form), which are the same
as those appearing in the entries of matrix Ψ, except for possible extra σ factors in the
numerator.

Note that for every trace i, the summation over labels in tri always appears twice in
the full expansion, due to the block structure of Π. Let us distinguish the particle
labels for these two summations as ai and bi (though they both sum over tri), we see
that in each term of the full expansion of (5.65), either σai or σbi will appear, but they
can neither both appear nor both be absent. So in each term, apart from the kinematic
factors, the form of the σ factors is exactly

σc1 σc2 · · · σcm−1 , (5.68)

where ci denotes either ai or bi. Now there are two cases which we discuss sepa-
rately.

Case 1: If in a given term ai,bi appear in the same factor in the denominator, i.e.,

termadj.
ai ,bi

= sgn(. . . , i′, i, . . .) · · ·
σai kai · kbi

σai − σbi

· · · , (5.69)

then in the full expansion we cannot find another term which is identical to

sgn(. . . , i, i′, . . .) · · ·
kai · kbi σbi

σai ,bi

· · · , (5.70)

since the summation in (5.65) is over perfect matchings rather than the full permuta-
tions. Hence fixing the other indices and summing over ai, bi results in

∑
ai∈tri

∑
bi∈tri

termadj.
ai ,bi

= ∑
ai<bi∈tri

σai ,bi sgn(. . . , i′, i, . . .) · · ·
kai · kbi

σai ,bi

· · · ,

= sgn(i′, i) ∑
ai<bi∈tri

sgn(ai, bi) σai ,bi sgn(. . . , ai, bi, . . .) · · ·
kai · kbi

σai ,bi

· · · .
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(5.71)

Case 2: If in a given term ai, bi appear in different factors in the denominator, i.e.,

termnon-adj.(1)
ai ,bi

= sgn(. . . , i′, . . . , i, . . .) · · · σai kai · #c

σai ,c
· · ·

kbi · #d

σbi ,d
· · · , (5.72)

the full expansion also contains the contribution from

termnon-adj.(2)
ai ,bi

= sgn(. . . , i, . . . , i′, . . .) · · · kai · #c

σai ,c
· · ·

σbi kbi · #d

σbi ,d
· · · . (5.73)

The summation over ai, bi with the other indices fixed thus produces

∑
ai∈tri
bi∈tri

∑
q=1,2

termnon-adj.(q)
ai ,bi

= ∑
ai ,bi∈tri

σai ,bi sgn(. . . , i′, . . . , i, . . .) · · · kai · #c

σai ,c
· · ·

kbi · #d

σbi ,d
· · · ,

= sgn(i′, i) ∑
ai ,bi∈tri

sgn(ai, bi) σai ,bi sgn(. . . , ai, . . . , bi, . . .)

· · · kai · #c

σai ,c
· · ·

kbi · #d

σbi ,d
· · · .

(5.74)

By comparing (5.71) and (5.74), we see that they have the same form

sgn(i′, i) ∑
ai<bi∈tri

sgn(ai, bi) σai ,bi · · · . (5.75)

This applies to every trace label i, and the remaining factors depending on labels
ai, bi are exactly the same as the entries of matrix An, and can be observed to re-sum
back into Pf[Ψ]h,a1,b1,...,am−1,bm−1:h since during the above manipulations preserve the
structure of the original Pfaffian expansion in (5.65), only switching the meaning
of the labels and corresponding entries. Without loss of generality, we can choose
to set sgn(i′, i) = 1 (∀i). Therefore, the full expansion can be re-arranged into

Pf′Π(h; tr1, tr2, . . . , trt) = ∑
{a,b}

′P{a,b} , (5.76)

with ∑{a,b}
′P{a,b} defined as in (5.29).
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6
L O C A L I T Y A N D U N I TA R I T Y

As promised in Chapter 4 and Chapter 5, in this chapter we explore two types of limits
of amplitudes using the CHY representation: the soft limits and the factorization limits,
for the purpose of a systematic consistency check regarding locality and unitarity for
all the formulas we have discussed in the previous two chapters.

For later convenience, we abbreviate the scattering equations as

f (n)a :=
n

∑
b=1
b 6=a

ka · kb

σa − σb
= 0 , ∀a , (6.1)

where the superscript in f (n)a means that the kinematic variables {k} therein are
associated to an n-particle scattering. Also, in order to focus on the structure of the
formulas in these limits, let us not worry about the overall signs.

6.1 soft theorems i

We begin by studying the single soft limit. We follow the convention in Section 2.4.1
and assume kµ

n to be soft: let kµ
n = τ pµ and take τ → 0 while keeping pµ fixed.

In this limit, a graviton amplitudes satisfies a soft theorem upto the sub-sub-leading
order [56, 57]

MGR
n = (S(0)

h + S(1)
h + S(2)

h )[MGR
n−1] +O(τ2) , (6.2)

where the soft operators are

S(0)
h :=

n−1

∑
a=1

εn,µν kµ
a kν

a

kn · ka
, (6.3)

S(1)
h := −i

n−1

∑
a=1

εn,µν kµ
a (kn,ρ Jρν

a )

kn · ka
, (6.4)

S(2)
h := −1

2

n−1

∑
a=1

εn,µν (kn,ρ Jρµ
a ) (kn,σ Jσν

a )

kn · ka
. (6.5)
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Here Jµν
a := Jµν

a,orbital + Jµν
a,splin denotes the total angular momentum operator for the ath

particle, with

Jµν
a,orbital := i

(
kµ

a
∂

∂ka,ν
− kν

a
∂

∂ka,µ

)
, (6.6)

Jµν
a,spin[ε

ρ
b ] := i δab (δ

νρδ
µ
σ − δµρδν

σ)ε
σ
a , (6.7)

acting on the orbital part and on the spin part respectively. Among these, the leading-
order S(0)

h is just a multiplicative operator, corresponding to the Weinberg’s soft
theorem [12], which is actually universal in the sense that it is valid for the general
situation that the soft graviton couples to any particles. This universality was first
observed by the arguments from Feynman diagrams, and actually each term in S(0)

h for
a specific a is largely the three-point vertex of the graviton n coupled to the external
leg for the hard particle a in the limit kµ

n → 0. Hence deriving this multiplicative soft
operator bridges the CHY representation and Feynman diagrams, which at first sight
appear very different from each other.

There exists a similar soft theorem for gluon amplitudes, but up to the sub-leading
order

MYM
n = (S(0)

g + S(1)
g )[MYM

n−1] +O(τ) , (6.8)

where

S(0)
g := ∑

α∈Sn−1

tr(T Iα(1) · · · T Iα(n−2) [T Iα(n−1) , T In ])
εn · kα(n−1)

kn · kα(n−1)
, (6.9)

S(1)
g := ∑

α∈Sn−1

tr(T Iα(1) · · · T Iα(n−2) [T Iα(n−1) , T In ])
εn,µ (kα(n−1),ν Jµν

α(n−1))

kn · kα(n−1)
, (6.10)

where S(0)
g is again a multiplicative operator, and it also holds when the soft gluon

couples to scalars.

Aimed at drawing connections between the CHY representation and the Feynman
diagrams, in studying the single soft limit we only focus on the leading order. We first
estimate the leading order scaling in τ of various amplitudes. After that we derive the
leading order soft theorems for gravitons and gluons, emphasizing their universality
as viewed from the CHY representation. Extension of this analysis to the subleading
orders can be found in [58–60].

72



6.1.1 Scaling at the Leading Order

In a generic CHY formula, let us not exclude the variable σn, nor delete the delta
constraint δ( f (n)n ). Then in the measure

dµn = ∏
a

′dσa ∏
a

′
δ( f (n)A ) , (6.11)

every f (n)a approximates to f (n−1)
a except for f (n)n , which is

f (n)n = τ
n−1

∑
b=1

p · kb

σn − σb
. (6.12)

Hence the measure behaves as

dµn = dµn−1
1
τ

dσn δ(
n−1

∑
b=1

p · kb

σn − σb
) +O(τ0) . (6.13)

From Section 2.4.1 we know that in the single soft limit all the solutions to the
scattering equations remain non-degenerate as τ → 0, i.e., (σa − σb) ∼ τ0 for any a, b.
So the leading order in τ of each building block only depends on whether it explicitly
involves the soft momentum kµ

n, and we quickly observe

Cn[α] ∼ τ0 , PfXn ∼ τ0 , Pf′An ∼ τ1 . (6.14)

The situation for Pf′Ψn and Pf′Π(h; tr1, tr2, . . . , trt) is relatively involved. In both
quantities if there are rows and columns labeled by n, at first sight there will be exactly
one row and one column proportional to τ. But there is a unique entry that remains
finite, i.e., the entries (Cn)n,n. Thus we know

Pf′Ψn ∼ τ0 , Pf′Π ∼ τ0 . (6.15)

There is a subtlety for Pf′Π when n ∈ tri for some trace i. In most situations kµ
n enters

in a summation and thus sub-leading, which leads to the same conclusion (6.15).
However, the only exception to this is when tri contains exactly two labels, say {a, n}
for some a. To understand the structure in this case, let us write out the matrix Π
explicitly

b ∈ h j b ∈ h j′ ∑
c∈{a,n}

kc · kb

σc,b
∑

c∈{a,n},d∈trj

kc · kd

σc,d
∑

c∈{a,n}

kc · εb

σc,b
∑

c∈{a,n},d∈trj′

kc · kd σd

σc,d


i

∑
c∈{a,n}

σc kc · kb

σc,b
∑

c∈{a,n},d∈trj

σc kc · kd

σc,d
∑

c∈{a,n}

σc kc · εb

σc,b
∑

c∈{a,n},d∈trj′

σc kc · kd σd

σc,d
i′

.

(6.16)
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To avoid unnecessary information, in the above we content to write out the two
rows labeled by the ith trace only, and one column for each of the four types. Since
tri = {a, n}, from (6.16) it is easy to observe that if we take the first row therein,
multiply by σa, and then subtract the second row, then in each entry in the resulting
row the terms for c = a cancel away, so that this linear combination is proportional to
τ. Hence in this case we conclude

Pf′Π ∼ τ1 . (6.17)

One can observe that this case is a generalization for the product PfXn Pf′An ∼ τ1,
which is an extreme case of Pf′Π (when every trace contain exactly two labels).
This happens in the amplitudes in EM and DBI, and in YMS and extended DBI
when the flavor/color structure contains a factor of the form tr(T Ia T In). All these
cases share the common feature that, from the Feynman diagram point of view
the structure responsible for this is a three-point vertex involving different types of
particles, e.g., two scalars coupled to one photon/gluon, or two photons coupled to a
graviton.

With the above estimation, we can easily read out the scaling in τ at the leading
order for amplitudes in each theory, which are summarize in Table 5. In the third

Table 5: Leading Order Scaling of the Amplitudes

Theory Integrand Leading Scaling

gravity Pf′Ψn Pf′Ψn τ−1

YM Cn Pf′Ψn τ−1

Φ3 Cn Cn τ−1

EM Pf[Xn]γ Pf′[Ψn]:γ̂ Pf′Ψn γ : τ0, h : τ−1

EYM Ctr1 · · · Ctrt Pf′Π(h; tr1 . . . , trt)Pf′Ψn g : τ−1/τ0, h : τ−1

YMS Cn Pf[Xn]s Pf′[Ψn]:ŝ s : τ0, g : τ−1

gen. YMS Cn Ctr1 · · · Ctrt Pf′Π(g; tr1 . . . , trt) s : τ−1/τ0, g : τ−1

BI Pf′Ψn (Pf′An)2 τ1

DBI Pf[Xn]s Pf′[Ψn]:ŝ (Pf′An)2 s : τ2, γ : τ1

ext. DBI Ctr1 · · · Ctrt Pf′Π(γ; tr1 . . . , trt) (Pf′An)2 s : τ1/τ2, γ : τ1

NLSM Cn (Pf′An)2 τ1

sGal (Pf′An)4 τ3

column of this table, for theories involving two types of particles the leading scaling
depends on the type of the soft particle. Especially in EYM, gen. YMS and ext. DBI
when the soft particle is the one with lower spin, the leading scaling has to fur-
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ther depend on the detailed flavor/color structure, due to the subtlety previously
discussed.

In that same table, we also separate the theories into three groups, according to the
power of τ. The theories that we are interested in regarding single soft theorems are
those in the first group (top) and those in the second group (middle) when a particle
of higher spin becomes soft. In all these cases the leading terms in the single soft limit
diverges as τ−1, which is a hint for the presence of a three-point vertex. Those in the
third group (bottom) vanish in the soft limit, which indicates that the theory should
possess non-trivial symmetries that force cancellations among Feynman diagrams
[48].

6.1.2 Single Soft Theorems at the Leading Order

Now we derive the leading order soft theorems for the emission of a single soft
graviton or gluon, which couples to any amplitude for which a CHY formula is
known from previous chapters. The key observation is that the σ integrals can
be equally viewed as a contour integral whose contour wraps the solutions to the
scattering equations. Specifically, here we re-interpret

∫
dσn as a contour integral, and

so by the leading-order approximation (6.13) we obtain

Mn =
∫

dµn−1

∮ dσn

2 π i
τ−1

∑n−1
b=1

p·kb
σn−σb

In + (sub-leading) . (6.18)

The general strategy is to apply a contour deformation. But before doing this, we
need to work out the approximation of In.

Soft Graviton

For single soft graviton emissions, we study amplitudes in gravity, EM(S) and EYM,
which include the situations when the graviton couples to itself or photons/gluons or
scalars. Since the graviton label never enters Cn, we only need to approximate Pf′Ψn

and Pf′Π(h; tr1, . . . , trt) to the leading order. As discussed before, the leading terms in
Pf′Ψn are those containing (Cn)n,n, and the explicit expansion is

Pf′Ψn = Pf′Ψn−1

n−1

∑
b=1

εn · kb

σn − σb
+O(τ) . (6.19)
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The same applies to reduced pfaffians of minors of Ψn, as long as rows and columns
labeled by n are involved. Since n ∈ h, it is not affected when a “squeezing” procedure
is applied, and so a general Pf′Π admits a similar expansion

Pf′Π(h; tr1, tr2, . . . , trt) = Pf′Π(h\{n}; tr1, tr2, . . . , trt)
n−1

∑
b=1

εn · kb

σn − σb
+O(τ) . (6.20)

Hence in the soft limit any amplitudes in these theories behaves as

Mn =
∫

dµn−1 In−1

∮ dσn

2 π i

τ−1
(

∑n−1
b=1

εn·kb
σn−σb

)2

∑n−1
b=1

p·kb
σn−σb

+O(τ0) . (6.21)

Obviously there is no pole at σn = ∞, and so we are free to deform the σn contour,
which picks up a simple pole at σn = σb for every b ∈ {1, 2, . . . , n− 1}. The residue
at each pole has the form of a factor times the corresponding lower-point amplitude,
and in total we obtain

Mn =

(
τ−1

n−1

∑
b=1

(εn · kb)
2

p · kb

)
Mn−1 +O(τ0) . (6.22)

Soft Gluon

For the single soft gluon emission, we consider amplitudes in YM, EYM, YMS and
gen. YMS. Note that for ampliutdes in EYM we consider the case when the trace
containing T In at least has size three (here let us assume that n ∈ tr1 and that tr1

contains t1 labels). Since Pf′Ψn is fully permutation invariant, its behavior is the same
as (6.19). In addition, one can work out

Pf′Π(h; tr1, . . . , trt) = Pf′Π(h; tr1\{n}, tr2, . . . , trt) , (6.23)

Pf′Π(g; tr1, . . . , trt) = Pf′Π(g\{n}; tr1, . . . , trt)
n−1

∑
b=1

εn · kb

σn − σb
, (6.24)

Cn = ∑
α∈Sn/Zn

tr(T Iα(1) · · ·T Iα(n−1) T In)Cn−1
σα(n−1),α(1)

σα(n−1),n σn,α(1)
, (6.25)

Ctr1 = ∑
α∈St1 /Zt1

tr(T Iα(1) · · ·T Iα(t1−1) T In)Ctr1\{n}
σα(t1−1),α(1)

σα(t1−1),n σn,α(1)
. (6.26)

With these, the formula for YM, YMS and gen. YMS approximates to

Mn =
∫

dµn−1∑
α∈Sn−1

tr(T Iα(1) · · ·T Iα(n−1) T In) In−1[α]
∮ dσn

2 π i

τ−1 ∑n−1
b=1

εn·kb
σn−σb

∑n−1
b=1

p·kb
σn−σb

σα(n−1),α(1)

σα(n−1),n σn,α(1)
.

(6.27)
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Again, there is no pole at σn = ∞, but this time for each term in the summation the
contour deformation only picks up two simple poles, at σn = σα(n−1) and σn = σα(1)

respectively. The final result is

Mn = ∑
α∈Sn−1

tr(T Iα(1) · · ·T Iα(n−1) T In) τ−1

(
εn · kα(n−1)

p · kα(n−1)
−

εn · kα(1)

p · kα(1)

)
Mn−1[α]

= ∑
α∈Sn−1

tr(T Iα(1) · · ·T Iα(n−2) [T Iα(n−1) , T In ]) τ−1 εn · kα(n−1)

p · kα(n−1)
Mn−1[α] .

(6.28)

For the remaining theory EYM it is not hard to see that we obtain exactly the same re-
sult, but the summation is instead over the permutations of labels in tr1.

6.2 factorization

In the absence of a general proof for our formulas, one can nonetheless show that they
behave correctly in a generic factorization channel. This analysis requires that one first
do a careful re-parametrization to the σ moduli so as to see that the formula indeed
possesses a simple pole when approaching any desired physical channel, and remains
(at most) finite for any physical channels that are forbidden by the theory. In those de-
sired channels, one further needs to verify that the given amplitude factorizes into two
sub-amplitudes at leading order; most importantly, the internal particle thus produced
has to be consistent with Feynman diagrams. When working with the CHY represen-
tation, we say that a given formula is closed if in any physical factorization channel it
splits into two formulas at the leading order, both of which share the same type of
integrand as the original one. We use this to verify that the formulas we obtained in
Chapter 4 and Chapter 5 are self-consistent and closed.

6.2.1 Setting Up the General Analysis

We follow the analysis in Section 2.4.2 to specify a generic factorization channel as
k2

I = (k1 + k2 + · · ·+ knL)
2 → 0, for which we re-define

σa =


ζ
ua

, a ∈ L ,
va
ζ , a ∈ R ,

(6.29)
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and fixing {u1, u2, vn−1, vn} to get rid of the SL(2, C) redundancy while leaving ζ as a
variable. From those discussions we also know that the original scattering equations
produce a constraint for ζ

−1
2

k2
I + ζ2 ∑

a∈R
b∈L

ka · kb

va ub
+O(ζ4) = 0 , (6.30)

by which there exist a set of degenerate solutions such that ζ2 ∼ k2
IR

. For these solu-
tions, we concluded that the new {u} and {v} variables satisfy scattering equations
for the left amplitude and the right one respectively (at the leading order in ζ2), where
the variables for the internal particle uIL and vIR are fixed to 0.

When working with a specific CHY formula we need to do this more carefully, i.e., in
the measure dµn we choose to exclude the delta constraint labeled by {1, 2, n− 1} and
properly apply linear transformations to turn one of the remaining delta constraint
(say the nth one) to the one imposing the equation (6.30), and in addition one needs to
carefully work out the Jacobian for the gauge fixing with the new variables. These are
explained in detail in [61], which lead to the following expansion of a CHY formula
(with a generic integrand) to the leading order

Mn =
∫

dζ2 ζ2(nL−nR−3) ∏
a∈L\{1,2}

dua ∏
a∈R\{n−1,n}

dva
(u1,2u1u2)2(vn−1vnvn−1,n)

2

(∏ u)4

× δ(ζ2 F− k2
I )

nL

∏
a=3

δ( ∑
b∈L∪{IL}

b 6=a

ka · kb

ua,b
)

n−2

∏
a=nL+1

δ( ∑
b∈R∪{IR}

b 6=a

ka · kb

va,b
) In({

ζ

u
,

v
ζ
})

+ (subleading) ,

(6.31)

where we denote the coefficient of ζ2 in (6.30) as F since it is not important for the
analysis. From (6.31), if the amplitude indeed factorizes we should expect (up to a
sign)

In({
ζ

u
,

v
ζ
}) −→ ζ2(−nL+nR+2) (∏ u)4 InL+1({u}) InR+1({v}) (6.32)

to the leading non-vanishing order in ζ, where the “+1” in the subscripts refers to the
internal particle. If this is true, then the integration∫ dζ2

ζ2 δ(ζ2 F− k2
I ) (6.33)

merely produces a 1/k2
I . We do not have to worry about the non-degenerate solutions

to the original scattering equations, because their contribution can never diverge and
so are always subleading. Furthermore, if InL+1 and InR+1 on the RHS of (6.32) belongs
to the same kind of integrand as In on the LHS, then the unitarity of the amplitude
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described by this formula is confirmed, otherwise this indicates that the formula is
not closed and we need to seek for its extension.

6.2.2 Behavior of the Buildng Blocks for Scalars

According (6.32) in the previous subsection, our task reduces to the study of the
various building blocks in the factorization limit. We first study Cn[α], Pf′An and
PfXn.

For the Parke–Taylor factor, we first assume that it comes with the canonical ordering.
Its expansion is easily worked out to be (up to a sign)

Cn[12 · · · n] =ζ−nL+nR+2 (∏ u)2

× 1
u1 u1,2 · · · unL−1,nL unL

1
vnL+1 vnL+1,nL+2 · · · vn−1,n vn

+O(ζ−nL+nR+3) .

(6.34)

Note that the two factors in the second line are exactly the Parke–Taylor factors for
the two factorized parts. For a generic ordering α, if it can be split into two parts, such
that one part contains all the labels {1, 2, . . . , nL} while the other its complement, then
Cn[α] factorizes as (6.34) with exactly the same prefactor (−1)nL ζ−nL+nR+2(∏ u)2 and
differs only in the ordering of u’s and v’s. However, if this is not the case, then one
can verify that the power of ζ will always be greater than −nL + nR + 2, which is a
hint that the entire formula stays finite in the factorization limit. Hence in terms of
the fully color-dressed Parke–Taylor factor Cn, we have

Cn = ζ−nL+nR+2 (∏ u)2 CL∪{IL}({u}) CR∪{IR}({v}) +O(ζ
−nL+nR+3) . (6.35)

More generally, if the flavor/color factor contains several traces and thus several
smaller Parke–Taylor factors of the form (5.28) are present, say Ctr1Ctr2 · · · Ctrt (note
that we only require (tr1 ∪ tr2 ∪ · · · ∪ trt) ⊂ {1, 2, . . . , n}), there are several situa-
tions

1. For some 1 ≤ r ≤ t, we have (tr1 ∪ tr2 ∪ · · · ∪ trr) ⊂ L and (trr+1 ∪ trr+2 ∪ · · · ∪
trt) ⊂ R. In this case it trivially splits and we do not see any internal labels
arises

Ctr1 · · · Ctrt =ζ−|tr1|−···−|trr |+···+|trr+1|+|trt| ( ∏
a∈tr1∪···∪trr

ua)
2

× Ctr1({u}) · · · Ctrr({u}) Ctrr+1({v}) · · · Ctrt({v})

+O(ζ1−|tr1|−···−|trr |+|trr+1|+···+|trt|) ,

(6.36)
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where || denotes the cardinality of the set.

2. For some 1 ≤ r ≤ t, we have trr = trL
r ∪ trR

r with trL
r ∩ trR

r = ∅, and that
(tr1 ∪ · · · ∪ trr−1 ∪ trL

r ) ⊂ L and (trR
r ∪ trr+1 ∪ · · · ∪ trt) ⊂ R. In this case it

factorizes into two parts, one containing r traces and the other t− r + 1 traces,
and two internal labels appear

Ctr1 · · · Ctrt =ζ2−|tr1|−···−|trr−1|−|trL
r |+|trR

r |+|trr+1|+···+|trt| ( ∏
a∈tr1∪···∪trr−1∪trL

r

ua)
2

× Ctr1({u}) · · · Ctrr−1({u}) CtrL
r ∪{IL}({u})

× C{IR}∪trR
r
({v}) Ctrr+1({v}) · · · Ctrt({v})

+O(ζ3−|tr1|−···−|trr−1|−|trL
r |+|trR

r |+|trr+1|+···+|trt|) .

(6.37)

3. There are two or more traces whose labels splits into two parts, one belonging to
L and the other belonging to R. In this case at the leading order or Ctr1Ctr2 · · · Ctrt

one will observe more than one pair of {IL, IR}, which is not sensible for tree-
level factorizations. In fact, when combining this with the remaining part of the
integrand (to be discussed later), one can verify that the total power of ζ in In is
too high to produce a simple pole. Hence in this case the amplitudes at most
stays finite, and we do not further discuss this.

Next we study the behavior of Pf′An. In the factorization limit, the matrix An

approximates to

b ∈ L b ∈ R − ua ub
ζ

ka·kb
ua−ub

−ζ ka·kb
vb

 a ∈ L

ζ ka·kb
va

ζ ka·kb
va−vb

a ∈ R

. (6.38)

Without loss of generality we assume 1 ∈ L and n ∈ R. In the definition of the reduced
Pfaffian, it is convenient to exclude the rows and columns labeled by 1 and n. There
are two situations

1. Both |L| and |R| are odd. In this case, dues to the fact that we use Pf′An =

Pf[An]1̂,n̂, by the structure in (6.38) one immediately see that

Pf′An =ζ
−nL+nR+2

2 (∏
a∈L

ua)Pf′AL∪{IL}({u})Pf′AR∪{IR}({v})

+O(ζ
−nL+nR+4

2 ) ,
(6.39)

where from direct computation Pf′AL∪{IL} =
1
u1

Pf[AL∪{IL}]1̂, ÎL
and Pf′AR∪{IR} =

1
un

Pf[AR∪{IR}]n̂, ÎR
.
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2. Both |L| and |R| are even. In this case the leading piece in Pf′An does not
factorize cleanly, and its power in ζ is −nL+nR+4

2 . Hence in most cases we would
expect that the simple pole is not present. The only exception is when Pf′An is
accompanied by a PfXn, which will be discussed later.

We do not discuss in detail about PfXn (or more generally PfXn), because in all the
formulas we found in Chapter 4 and Chapter 5 whenever it appears it always appears
with a copy of Pf′An. Since as commented before PfXnPf′An is a special case of
Ctr1 Ctr2 · Ctrt Pf′Π, we postpone this to the discussion of Pf′Π.

6.2.3 Φ3, U(N) Non-Linear Sigma Model, and the Special Galileon

Now we are well-equipped to study the amplitudes whose corresponding integrand
can be constructed using Cn and Pf′An only: which are Φ3, NLSM, and sGal. From
(6.35) and (6.39), there is never any polarization vectors produced for the internal par-
ticle, and so it has to be a scalar always. Explicitly, we see that

Φ3 : CnCn −→ ] (CL∪{IL}CL∪{IL}) (CR∪{IR}CR∪{IR}) , (6.40)

NLSM : Cn(Pf′An)
2 −→ ] (CL∪{IL}(Pf′AL∪{IL})

2) (CR∪{IR}(Pf′AR∪{IR})
2) , (6.41)

sGal : (Pf′An)
4 −→ ] (Pf′AL∪{IL})

4 (Pf′AR∪{IR})
4 , (6.42)

where ] = ζ2(−nL+nR+2) (∏ u)4 is exactly the correct factor in (6.32) that we expect
in order that the formula factorizes, and the latter two are true only in odd particle
channels (in even particle channels, one can explicitly check that the ζ power is higher).
Hence we see these three formulas are closed by themselves.

In addition, if we focus on the double partial amplitudes mn[α|β] in Φ3 instead
of the full amplitudes, we see that a given mn[α|β] factorizes if and only if both
α and β can be split into two parts, which consist of labels in L and R respec-
tively.

6.2.4 Behavior of Building Blocks with Polarization Vectors

In this subsection we discuss the behavior of Pf′Ψn and Pf′Π, where in particular
we are going to see how an internal photon/gluon or graviton may arise from
factorization. This is non-trivial because in the CHY representation there is nowhere
any Feynman diagrams and for a generic amplitude it is not even sensible to talk
about internal particles, not to say what particle it is.
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Behavior of Pf′Ψn

We first have a look at the structure of the matrix Ψn in a generic factorization limit,
which is

b ∈ L b ∈ R b ∈ L b ∈ R
− ua ub

ζ
ka·kb

ua−ub
−ζ ka·kb

vb
− ua ub

ζ
ka·εb

ua−ub
−ζ ka·εb

vb


a ∈ L

ζ ka·kb
va

ζ ka·kb
va−vb

ζ ka·εb
va

ζ ka·εb
va−vb

a ∈ R

− ua ub
ζ

εa·kb
ua−ub

−ζ εa·kb
vb

− ua ub
ζ

εa·εb
ua−ub

−ζ εa·εb
vb

a ∈ L

ζ εa·kb
va

ζ εa·kb
va−vb

ζ εa·εb
va

ζ εa·εb
va−vb

a ∈ R

. (6.43)

The only exception to the above is the diagonal entries of the off-diagonal blocks, i.e.,
(Cn)a,a. For these entries, when a ∈ L we have

(Cn)a,a = −
ua

ζ ∑
c∈L\{a}

εa · kc uc

ua − uc
+O(ζ) = −u2

a
ζ ∑

c∈L∪{IL}\{a}

εa · kc

ua − uc
+O(ζ) , (6.44)

again with uIL = 0. And when a ∈ R we have

(Cn)a,a = ζ(∑
c∈L

εa · kc

va
+∑
c∈R\{a}

εa · kc

va − vc
) +O(ζ3) = ∑

c∈R∪{IR}\{a}

εa · kc

va − vc
+O(ζ3) , (6.45)

with vIR = 0. Thus to the leading order all the entries with both labels in L (or R)
are exactly the entries that should appear in ΨL∪{IL} (or ΨR∪{IR}) for the factorized
amplitude, up to a simple coefficient.

From (6.43), (6.44) and (6.45), we observe that

(Ψn)a,b ∼

ζ−1 , a, b ∈ L ,

ζ , else .
(6.46)

Recalling the definition of Pfaffian (4.5), this means that in the expansion of Pf′Ψn

in terms of perfect matchings, the more factors whose two labels are in L the more
dominant the corresponding term is. In order to see the emergence of the internal
particle, it is most convenient to exclude, say, 1 ∈ L and n ∈ R in the first block of
labels, i.e., Pf′Ψn = − (−1)n+1

σ1−σn
Pf[Ψn]1̂,n̂:. Counting labels in both blocks together, we

see there are altogether 2nL − 1 labels belonging to L, which is odd. This means at the
leading order, all the terms are in the form

(Ψn)L,L · · · (Ψn)L,L︸ ︷︷ ︸
nL−1

(Ψn)L,R (Ψn)R,R · · · (Ψn)R,R︸ ︷︷ ︸
nR−1

, (6.47)
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where for simplicity we use L and R to denote any label in the set. Note that the entry
(Ψn)L,R always has the form of a Lorentz product ea · eb. We insert a completeness
relation into each of such factor

ea · eb = eµ
a ηµν eν

b = eµ
a

(
∑
εI

εIL,µ εIR,ν +
k I,µ k I,ν

k2
I

)
eν

b ⇒∑
εIL

ea · εIR εI · eb , (6.48)

where εI = εIL = εIR . The last step above is not an identity by itself, but as long as
with this substitution we are able to confirm in the end that the original formula
factorizes and each part from the factorization corresponds to an on-shell amplitude,
then the k I,µk I,ν term merely projects out.

Clearly the substitution (6.48) fully disentangle the labels in L from the labels in R.
After summing over all perfect matchings with the pattern (6.47), we observe that the
leading terms factorize into two reduced Pfaffians again

Pf′Ψn = ζ−nL+nR+2 (∏
a∈L

ua)
2 ∑

εI

Pf′ΨL∪{IL}({u})Pf′ΨR∪{IR}({v}) +O(ζ
−nL+nR+3) ,

(6.49)

where Pf′ΨL∪{IL} =
1
u1

Pf[ΨL∪{IL}]1̂, ÎL : and Pf′ΨR∪{IR} =
1
vn

Pf[ΨR∪{IR}]n̂, ÎR :, as one di-
rectly observe from the computation. Details about this re-summation is explained in
[61].

It is helpful to comment on the structure ea · eb that enters (6.48) a bit more. In
most cases eµ can be proportional to either kµ or εµ, but it can also a summation,
e.g., (Cn)a,a ≈ ζεa · (∑b∈L∪{IL}\{a} kb) when a ∈ L. Note that this fact continues to
be true in a generic matrix Π (5.35). Recalling the squeezing procedure with which
we obtain Π from Ψn, we should expect that Pf′Π factorizes in the same way, as
long as the factorization channel merely separates the labels that explicitly enter
Π.

Behavior of Pf′Π

Since generically Pf′Π corresponds to amplitudes with multi-trace, and is always ac-
companied by Ctr1 Ctr2 · · · Ctrt , there are also three situations here.

1. For some 1 ≤ r ≤ t, we have (tr1 ∪ tr2 ∪ · · · ∪ trr) ⊂ L and (trr+1 ∪ trr+2 ∪ · · · ∪
trt) ⊂ R. In this case, the labels that enter the matrix Π, i.e., {1, 2, . . . , r, 1, 2, . . . , t},
are simply separated into two groups, those belongs to L and those to R. With
a slight abuse of notation we say i ∈ L iff tri ⊂ L, and similarly for R. By the
observation at the end of the previous subsubsection, it is easy to see that the
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leading piece of Pf′Π factorizes in a way similar to that of Pf′Ψn. In fact, it is nice
to combine the Parke–Taylor factors and Pf′Π together, and a detailed derivation
leads to

Ctr1 · · · Ctrt Pf′Π =ζ−nL+nR+2 (∏
a∈L

ua)
2 ∑

εI

Pf′ΨL∪{IL}({u})

× Ctr1 · · · Ctrr Pf′Π(hL ∪ {IL}; tr1, . . . , trr)

× Ctrr+1 · · · Ctrt Pf′Π(hR ∪ {IR}; trr+1, . . . , trt)

+O(ζ−nL+nR+3) ,

(6.50)

where hL ⊂ L, hR ⊂ R and h = hL ∪ hR. So in this case the factorization
produces a polarization vector for the internal particle.

2. For some 1 ≤ r ≤ t, we have trr = trL
r ∪ trR

r with trL
r ∩ trR

r = ∅, and that
(tr1 ∪ · · · ∪ trr−1 ∪ trL

r ) ⊂ L and (trR
r ∪ trr+1 ∪ · · · ∪ trt) ⊂ R. In this case, it

is easier to work with the representation of Pf′Π in terms of the expansion

∑{a,b}
′P{a,b} (5.29). Recall that in this expansion every term involves a Pfaffian

instead of a reduced Pfaffian, and the Pfaffian is for a minor of the matrix Ψ
with all the graviton labels and exactly two labels from each trace, except for one
trace that we choose to exclude. Since we are able to exclude any of the traces, a
particularly nice choice is to exclude r, then with the experience in the behavior
of Ψn we know that the Pfaffians entering the summation (5.29) cleanly factorize.
Again let us combine Pf′Π with the Parke–Taylor factors, and we obtain

Ctr1 · · · Ctrt Pf′Π =ζ−nL+nR+2 (∏
a∈L

ua)
2 Pf′ΨL∪{IL}({u})

× Ctr1 · · · Ctrr−1 CtrL
r ∪{IL} Pf′Π(hL; tr1, . . . , trr−1, trL

r ∪ {IR})

× CtrR
r ∪{IR}Ctrr+1 · · · Ctrt Pf′Π(hR; trR

r ∪ {IR}, trr+1, . . . , trt)

+O(ζ−nL+nR+3) .

(6.51)

So the factorization of Π in this case does not produce any polarization vector
for the internal particle.

3. There are two or more traces whose labels splits into two parts, one belonging to
L and the other belonging to R. As mentioned before, by counting the leading
power in ζ we know there cannot be any simple pole and so this case is excluded.

Some emphasis needs to be stressed on the combination Pf[Xn]SPf′[Ψn]:Ŝ for some
S ∈ {1, 2, . . . , n}. As discussed before, if we expand Pf[Xn]S in terms of perfect
matchings, than each term in the expansion of Pf[Xn]SPf′[Ψn]:Ŝ can be regarded as
a special case of Ctr1Ctr2 · · · Ctrt Pf′Π(h; tr1, tr2, . . . , trt), where |tri| = 2 ∀i. Suppose
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a generic factorization channel splits the set S into SL ∈ L and SR ∈ R, and also
its complement into S̄L and S̄R ∈ R. In analogy with the above discussion, this
combination can factorize in two ways

1. If |SL| is even (and so is |SR|), then we have

Pf[Xn]SPf′[Ψn]:Ŝ =∑
εI

ζ−nL+nR+2 (∏
a∈L

ua)
2

× Pf[XL∪{IL}]SLPf′[ΨL∪{IL}]:ŜL Pf[XR∪{IR}]SRPf′[ΨR∪{IR}]:ŜR

+O(ζ−nL+nR+3) ,

(6.52)

which produces a polarization vector for the internal particle.

2. If |SL| is edd (and so is |SR|), then we have

Pf[Xn]SPf′[Ψn]:Ŝ =ζ−nL+nR+2 (∏
a∈L

ua)
2

× Pf[XL∪{IL}]SL∪{IL}Pf′[ΨL∪{IL}]L∪{IL}:S̄L

× Pf[XR∪{IR}]SR∪{IR}Pf′[ΨR∪{IR}]R∪{IR}:S̄R

+O(ζ−nL+nR+3) ,

(6.53)

which does not yields any new polarization vector.

6.2.5 Theories with Photons/Gluons and Gravitons

In Section 4.2 we found several more formulas for scalar amplitudes whose factoriza-
tions have not been checked so far. These are (here we use the integrand for the full
amplitude)

IYMS:scalar
n = Cn PfXn Pf′An , IEMS:scalar

n = (PfXn Pf′An)
2 ,

IDBI:scalar
n = PfXn (Pf′An)

3 .
(6.54)

We commented in Section 4.2 that the former two integrands are not closed. From the
discussion at the end of the previous subsection this is obvious, since the combination
PfXnPf′An is a special case of Pf[X ]SPf′[Ψn]:Ŝ (when S = {1, 2, . . . , n}), and in any
even particle channel this part of scalars amplitudes in either YMS or EMS thus
have to factorize according to (6.52), which produces a new polarization vector
to be associated to the internal particles. Because IYMS:scalar

n contains one copy of
PfXnPf′An, this internal particle has to be a gluon (photon is ruled out due to the
presence of Cn). And because IEMS:scalar

n is exactly two copies of this combination, the
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internal particle has to sum over the graviton states, the B-field states, and the dilaton
state.

In comparison, the factorizations in even particle channels are excluded for the scalar
amplitudes in DBI, due to the presence of extra two powers of Pf′An. Recall that in
such a channel Pf′An by itself scales as ζ

−nL+nR+4
2 , so that IDBI:scalar

n acquires too high a
power to eliminate the simple pole. Hence these amplitudes can only factorize in an
odd particle channel, and according to (6.39) and (6.53)

PfXn (Pf′An)
3 =ζ2(−nL+nR+2) (∏ u)4

× PfXL∪{IL} (Pf′AL∪{IL})
3 PfXL∪{IR} (Pf′AL∪{IR})

3

+O(ζ2(−nL+nR+3)) ,

(6.55)

verifying that IDBI:scalar
n is closed.

For amplitudes in GR, YM and BI, since the corresponding integrands are constructed
from Cn, Pf′ψn and Pf′An, there is only a single type of facotrization channel, and by
(6.34), (6.39) and (6.49), it is easy to verify that these factorizes correctly and are closed.
The only thing special about BI is that the even particle channel is forbidden in this
theory, due to the same reason as that for the scalar amplitudes in DBI as discussed
above.

For amplitudes in EM, YMS and DBI, the corresponding integrands share the common
factor Pf[Xn]SPf′[Ψn]:Ŝ, and so by (6.52) and (6.53) there are two types of factorization
channels according to whether the channel splits any trace structure, and the internal
particles observed in these channels are different. As mentioned in the previous
subsector these amplitudes can be regarded as special cases of amplitudes in EYM,
gen. YMS and ext. DBI, respectively. By (6.50) and (6.51) the factorization pattern in
these theories follows similarly. We do not repeat to write out the explicit expressions
for their behaviors in a generic factorization channel here, but merely provide an
example in YMS that is very neat. Recall the double-trace gluon amplitudes in EYM
shown in (5.44)

IEYM:double-trace g
n =

1
2
Ctr1 Ctr2 str1 Pf′Ψn . (6.56)

Let us explore the channel defined by str1 = str2 → 0. In this channel it is very easy to
see how Ctr1 , Ctr2 and Pf′Ψn behave. For the remaining Mandeltam variable, while it
vanishes, we need to know its leading behavior. Recalling the constraint (2.34), to the
leading order we have

1
2

s2
tr1
≈ ζ2 ∑

a∈tr1
b∈tr2

ka · kb

ua vb
= ζ2 ∑

εI

(Ctr1∪{IL})IL,IL (Ctr2∪{IR})IR,IR , (6.57)
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and so altogether

IEYM:double-trace g
n ≈ ζ2(−nL+nR+2) (∏ u)4 Ctr1 (Ctr1∪{IL})IL,IL Pf′Ψtr1∪{IL}

×Ctr2 (Ctr2∪{IR})IR,IR Pf′Ψtr2∪{IR} .
(6.58)

Given the fact that

(Ctr1∪{IL})IL,IL = Pf′Π({IL}; tr1) , (Ctr2∪{IR})IR,IR = Pf′Π({IR}; tr2) , (6.59)

one immediately recognize that this formula correctly factorizes into two, each of
which computes a single-trace amplitudes of gluons coupled to one graviton (the
internal particle) in EYM, as is expected by Feynman diagrams.

6.3 soft theorems ii

In this section we present two types of double soft scalar theorems, each of which
captures the behavior of amplitudes in a class of theories in this limit, respectively
[13]. Double soft limits of scalars are of interests in the study of symmetries in the
underlying theory, e.g., the moduli space of vacua and the E7(7) structure in N = 8
supergravity [62]. As before, we stick to the convention in Section 2.4.1 and assume
kµ

n−1 = τ pµ and kµ
n = τ qµ to be soft (τ → 0).

The first class consists of theories with neither color nor flavor structure, which
includes sGal, DBI, and EMS. For theories in the first class, any n-point amplitude
behaves as

Mn = (kn−1 · kn)
m (S(0) + S(1) + S(2))Mn−2 +O(τ2m+4) , (6.60)

where m = 1, 0,−1 for sGal, DBI and EMS respectively, and

S(0) =
1
4

n

∑
a=1

(
(ka · (kn−1 − kn))2

ka · (kn−1 + kn) + kn−1 · kn
+ ka · (kn−1 + kn) + kn−1 · kn

)
, (6.61)

S(1) = −i
1
2

n

∑
a=1

ka · (kn−1 − kn)

ka · (kn−1 + kn) + kn−1 · kn
(kn−1,µkn,ν Jµν

a ) , (6.62)

S(2) = −1
2

n

∑
a=1

1
ka · (kn−1 + kn) + kn−1 · kn

(
(kn−1,µkn,ν Jµν

a )2 +
4m− 3

2
(kn−1 · kn)

2
)

.

(6.63)

Here S(0) is a multiplicative operator which has an expansion in τ starting at O(τ1),
S(1) is a first-order differential operator starting at O(τ2), and S(2) is a second order
differential operator starting at O(τ3).
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Two comments are in order at this point. The first is that in (6.60) the kinematic
invariant (kn−1 · kn) plays the role of a natural “dimensionful parameter” needed to
link amplitudes with different number of particles. This simple dimensional argument
leads to universal formulas for S(0) and S(1), i.e., they are theory independent. The
second is that the only dependence on the theory under consideration appears in the
multiplicative piece of S(2).

The second contains theories with a U(N) flavor/color group for the scalars, which
include NLSM and YMS. The double soft scalar emission for a color-ordered partial
amplitude is

Mn[1, 2, . . . , n] = (kn−1 · kn)
m (S(0) + S(1))Mn−2[1, 2, . . . , n− 2] +O(τ2m+2) , (6.64)

with m = 0,−1 for NLSM and YMS respectively, and

S(0) =
1
2

(
kn−2 · (kn−1 − kn) + kn−1 · kn

kn−2 · (kn−1 + kn) + kn−1 · kn
+

k1 · (kn − kn−1) + kn · kn−1

k1 · (kn + kn−1) + kn · kn−1

)
, (6.65)

S(1) = −i
(

kn−1,µkn,ν

kn−2 · (kn−1 + kn) + kn−1 · kn
Jµν
n−2 +

kn,µkn−1,ν

k1 · (kn + kn−1) + kn · kn−1
Jµν
1

)
.

(6.66)

In this formula S(0) starts atO(τ0) while S(1) starts at orderO(τ).

In the following we summarize the proof for these scalar soft theorems to the sub-
leading order. Emphases are stressed on the origins of different parts in the soft
operators.

6.3.1 Scaling at the Leading Order

Again we first investigate the leading scaling in τ of different formulas in the double
soft limit. As a result of the discussions in Section 2.4.1, in this case there exist
both degenerate solutions and non-degenerate ones, depending on whether the two
punctures for the soft particles pinch together. It is helpful to count the leading scaling
of the contributions from both types of solutions respectively, because they may not
both contribute to the leading terms in the limit.

As mentioned before it is nice to re-define

σn−1 = ρ− ξ

2
, σn = ρ +

ξ

2
. (6.67)
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Let us delete neither dσn−1dσn nor δ( f (n)n−1)δ( f (n)n ) in the measure dµn, and do the
transformation (we do not care a possible over sign)

dσn−1 dσn δ( f (n)n−1) δ( f (n)n ) = −dρ dξ 2 δ( f (n)n−1 + f (n)n ) δ( f (n)n−1 − f (n)n ). (6.68)

Clearly, the remaining part of dµn merely reduce to the lower-point one dµn−2 in
the limit τ → 0. Recall that in the non-degenerate solutions ξ ∼ τ0 while in the
degenerate ones ξ ∼ τ1. With the form on the RHS of (6.68), it is straightforward
to see that for the non-degenerate solutions dµn ∼ τ−2 and for degenerate ones
dµn ∼ τ−1.

We then go on to check the scaling behavior of the various building blocks:

1. With the new variables the Parke–Taylor factor (considering the two soft particles
to be adjacent) is

1

(σ1 − σ2) · · · (σn−2 − ρ + ξ
2 )(−ξ)(ρ + ξ

2 − σ1)
. (6.69)

Obviously it remains finite on non-degenerate solutions but diverges as τ−1 on
degenerate ones. More generally, we may encounter multi-cycles of Parke-Taylor
factors, where each is of size equal or bigger than two. Inspired by the above
structure, the general case always stays finite on non-degenerate solutions, while
on degenerate solutions there are several situations: (i) when a cycle of size
greater than two contains σn−1,n, it scales as τ−1; (ii) when still in this situation
but the cycle is of size two, it scales as τ−2; (iii) in all other situations it stays
finite as well. Analogously, we always have PfX ∼ τ−1 on degenerate solutions.

2. We then look at the building block Pf′An. In terms of the new variables matrix
An has the form

An =


An−2

...
...

· · · 0 τ2 p·q
−ξ

· · · τ2 p·q
ξ 0

 . (6.70)

All entries whose explicit expressions are suppressed always scales as τ, and
so on non-degenerate solutions every term in the expansion of Pf′An scales as
τ2. However, due to the lower right block, on degenerate solutions the leading
scaling reduces to τ1.

3. Finally we inspect Pf′Ψ. To see the structure clearly, let us rearrange the rows
and columns of matrix Ψ so that the last four rows/columns are labeled by
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{n− 1, n : n− 1, n}. Then it suffices to focus only on the entries explicitly shown
in the following

Ψn =



Ψn−2 O(τ) O(τ) O(τ0) O(τ0)

0 τ2 p·q
−ξ −(CT

n )n−1,n−1 τ
p·εn
−ξ

0 τ
q·εn−1

ξ −(CT
n )n,n

0 εn−1·εn
−ξ

0


. (6.71)

Note that both (Cn)n−1,n−1 and (Cn)n,n remain finite on all solutions. Since Pf′Ψn

contains a term Pf′Ψn−2(Cn)n−1,n−1(Cn)n,n and it is easy to verify that no term
can ever diverge, we conclude that Pf′Ψn ∼ τ0 on all solutions.

We summarize the results so far in Table 6 (Here “adj.” indicates that the two soft
particles are adjacent in the trace, while “non-adj.” means they are non-adjacent.
When non-trivial flavor structure is present, we assume the two soft particles share
the same flavor index). Combining these results, we can find the total behavior of
formulas for different amplitudes, which we list out in Table 7.

Table 6: Scaling of Building Blocks in Double Soft Limits

building block non-deg. soln. deg. soln.

dµn τ−2 τ−1

Cn[α] (adj.) τ0 τ−1

Cn[α] (non-adj.) τ0 τ0

PfXn τ0 τ−1

Pf′An τ2 τ1

Pf′Ψn τ0 τ0

6.3.2 Proof of Scalar Double Soft Theorems S(0)

In this subsection we provide a proof for the double-soft theorem to the leading
order. Clearly, we need to get rid of the ρ and ξ integrations in order to land on
the lower-point amplitude. Starting from the formula after the transformation (6.68),
the general idea is to localize the ξ integration using δ( f (n)n−1 − f (n)n ), and regard the
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Table 7: Scaling of Formulas in Double Soft Limits

Amplitude Integrand non-deg. soln. deg. soln.

YM (adj.) Cn[α]Pf′Ψn τ−2 τ−2

YM (non-adj.) Cn[α]Pf′Ψn τ−2 τ−1

GR det′ Ψn τ−2 τ−1

YMS: φ (adj.) Cn[α]PfXn Pf′An τ0 τ−2

YMS: φ (non-adj.) Cn[α]PfXn Pf′An τ0 τ−1

BI Pf′Ψn (Pf′An)2 τ2 τ1

DBI: φ PfXn (Pf′An)3 τ4 τ1

EMS: φ (PfXn)2 (Pf′An)2 τ2 τ−1

NLSM (adj.) Cn[α] (Pf′An)2 τ2 τ0

NLSM (non-adj.) Cn[α] (Pf′An)2 τ2 τ1

sGal (Pf′An)4 τ6 τ3

ρ integration as a contour integration whose contour wraps the zeros of f (n)n−1 + f (n)n .
This leads to

Mn =
∮ dρ

2πi ∑
ξ solutions

∫
dµ′n

1

f (n)n−1 + f (n)n

− 2
∂

∂ξ

[
f (n)n−1 − f (n)n

] IN(k, σ, ρ, ξ) , (6.72)

where ξ is understood to be evaluated on its solutions to the equation f (n)n−1 − f (n)n = 0.
We also use the notation dµ′n to denote the remaining part of dµn.

As a result from the previous subsection, we only need to consider the degenerate
solutions, in which ξ ∼ τ1. So we can perturbatively expand it as ξ = τ ξ1 +O(τ2),
and from (2.29) we know at the leading order it is uniquely fixed to be ξ−1

1 =
1

2p·q ∑n−2
a=1

ka·(p−q)
ρ−σa

. Then (6.72) can be expanded to

Mn = −
∫

dµn−2

∮ dρ

2πi
1

∑n−2
a=1

ka·(p+q)
ρ−σa

ξ2
1

τ p · q In + (sub-leading) , (6.73)

where the ρ-contour is now specified by ∑n−2
a=1

ka·(p+q)
ρ−σa

= 0.

91



To derive the leading-order soft theorems from (6.73), we need to expand In with
respect to τ. From previous discussions it is easy to see the relevant building blocks
behave as

Cn[1, 2, . . . , n] = Cn−2[1, 2, . . . , n− 2]
σn−2 − σ1

(σn−2 − ρ) (−τ ξ1) (ρ− σ1)
+O(τ0) , (6.74)

PfXn = − 1
τ ξ1

PfXn−2 +O(τ0) , (6.75)

Pf′An = −τ p · q
ξ1

Pf′An−2 +O(τ2) . (6.76)

Combining these, for scalar amplitudes in sGal, DBI and EMS (with m = 1, 0,−1) we
obtain

Mn = −
∫

dµn−2 In−2

∮ dρ

2πi
1

∑n−2
a=1

ka·(p+q)
ρ−σa

ξ2
1

τ p · q

(
1

τ ξ1

)1−m(τ p · q
ξ1

)m+3

+O(τ2m+2)

= −
∫

dµn−2 In−2
τ (τ2 p · q)m

4

∮ dρ

2πi

(
∑n−2

a=1
ka·(p−q)

ρ−σa

)2

∑n−2
a=1

ka·(p+q)
ρ−σa

+O(τ2m+2) .

(6.77)

Now we perform the ρ-integral by deforming the contour and use a residue theorem.
Although there appears to be a simple pole at ρ = ∞, it is eliminated by an additional
zero in the numerator due to momentum conservation. Thus we only encounter
simple poles at ρ = σa (a = 1, . . . , n), and the final result is

Mn = (τ2 p · q)m

(
τ

4

n−2

∑
a=1

(ka · (p− q))2

ka · (p + q)

)
Mn−2 +O(τ2m+2) . (6.78)

Note that the soft operator in the bracket agrees with S(0) in (6.61) at O(τ), because
the additional piece in S(0) is of higher order by momentum conservation, ∑n−2

a=1 ka ·
(p + q) = −2τ(p.q)2. This concludes our proof for the leading order soft theorem in
these theories.

Similarly, for scalar partial amplitudes in NLSM and YMS (with m = 0,−1) we obtain

Mn[1, 2, . . . , n] = −
∫

dµn−2 In−2[1, 2, . . . , n− 2]
∮ dρ

2πi
ξ2

1/p · q
τ ∑n−2

a=1
ka·(p+q)

ρ−σa

× σn−2 − σ1

(σn−2 − ρ)(−τ ξ1)(ρ−σ1)

(
1

τξ1

)−m (τ p · q
ξ1

)2+m

+O(τ2m+1)

=
∫

dµn−2 In−2[1, 2, . . . , n− 2]

× (τ2 p · q)m

2

∮ dρ

2πi
∑n−2

a=1
ka·(p−q)

ρ−σa

∑n−2
a=1

ka·(p+q)
ρ−σa

σn−2 − σ1

(σn−2 − ρ) (ρ−σ1)
+O(τ2m+1) ,
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(6.79)

Obviously there is no pole at ρ = ∞, and we pick up two poles at ρ = σ1 and ρ = σn,
which then leads to

Mn[1, 2, . . . , n] =
(τ2 p · q)m

2

(
kn−2 · (p− q)
kn−2 · (p + q)

+
k1 · (q− p)
k1 · (q + p)

)
Mn−2[1, 2, . . . , n− 2]

+O(τ2m+1) .
(6.80)

The derivation of the double soft theorem at the sub-leading order is more involved,
and we refer interested readers to [63] for details.

6.3.3 More General Cases

So far all what we have studied are scalar amplitudes only, even when the theory
may involve other types of particles. In this section, we extend the discussion in two
directions. Firstly we are going to show that the scalar double soft theorem (6.60) is
still valid in DBI when external photons are present (the only modification, as usual,
is to regard Jµν

a as the full angular momentum operator, i.e., including both the orbital
and the spin part). And secondly, we are going to show that there is also a similar
leading-order theorem for simultaneous emission of two soft photons in photon
amplitudes in Born–Infeld (BI) and Einstein–Maxwell (EM).

DBI Amplitudes with Mixed External States

For a DBI amplitudes with both scalar and photon external states, with two soft
scalars the soft theorem is still in the form of (6.60). Here we sketch the proof still
only at the leading order. The main task is to study the behavior of the new building
block Pf′[Ψn]:ŝ in the double soft limit. When evaluated on the degenerate solution
the detailed structure of the matrix [Ψn]:ŝ is

[Ψn]:ŝ ≈


(An−2)a,b

τ ka·p
σa−ρ

τ ka·q
σa−ρ (−CT

n−2)a,d
τ p·kb
ρ−σb

0 τ p·q
−ξ1

τ p·εd
ρ−σd

τ q·kb
ρ−σb

τ q·p
ξ1

0 τ q·εd
ρ−σd

(Cn−2)c,b
τ εc·p
σc−ρ

τ εc·q
σc−ρ (Bn−2)c,d

 , (6.81)

where a, b ∈ {1, 2, . . . , n − 2} and c, d ∈ γ (we assume the last two labels denote
scalars). Since the four blocks at the corner are completely finite we do not bother to
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write them explicitly. This is very similar to the case of matrix An, and we immediately
know

Pf′[Ψn]:ŝ =
τ q · p
−ξ1

Pf′[Ψn−2]:ŝ +O(τ2) . (6.82)

Recalling (6.76) we see that when we replace the integrand for scalar amplitude
PfXn (Pf′An)3 to that for mixed amplitude Pf[Xn]γ̂ Pf′[Ψn]:ŝ (Pf′An)2, the expression
(6.77) stays the same, and hence we have exactly the same S(0).

Double Soft Photons Emission in Born–Infeld and Einstein–Maxwell

We go on to investigate photon amplitudes in BI and EM, with two soft photons. We
can use a single integrand for this class of amplitudes

In = (PfXn)
−m (Pf′An)

2+m Pf′Ψn , (6.83)

where m = 0,−1 denotes BI and EM respectively. The prescription of the limit is still
the same as that for the soft scalars. Again the only thing we need the check is the
behavior of the matrix Ψn since now the second block of labels also includes n− 1
and n.

To the order sufficient for our interest the structure of matrix Ψn is

Ψn ≈



(An−2)a,b
τ ka·p
σa−ρ

τ ka·q
σa−ρ (−CT

n )a,d
ka·εn−1
σa−ρ

ka·εn
σa−ρ

τ p·kb
ρ−σb

0 τ p·q
−ξ1

τ p·εd
ρ−σd

(−CT
n )n−1,n−1

p·εn
−ξ1

τ q·kb
ρ−σb

τ q·p
ξ1

0 τ q·εd
ρ−σd

q·εn−1
ξ1

(−CT
n )n,n

(Cn)c,b
τ εc·p
σc−ρ

τ εc·q
σc−ρ (Bn−2)c,d

εc·εn−1
σc−ρ

εc·εn
σc−ρ

εn−1·ka
ρ−σa

(Cn)n−1,n−1
εn−1·q
−ξ1

εn−1·εd
ρ−σd

0 εn−1·εn
−τ ξ1

εn·ka
ρ−σa

εn·p
ξ1

(Cn)n,n
εn·εd
ρ−σd

εn·εn−1
τ ξ1

0


,

(6.84)

where the two extra diagonal terms of matrix Cn are approximated as

(Cn)n−1,n−1 =
n−2

∑
i=1

εn−1 · ki

ρ− σi
− εn−1 · q

ξ1
+O(τ) =

n−2

∑
i=1

εn−1 · p⊥i
ρ− σi

+O(τ) , (6.85)

with p⊥i := ki − p·ki
p·q q (We denote this new vector as p⊥i because p · p⊥i = 0). In the

second equality above we applied the scattering equation labeled by n− 1 to get rid
of ξ1. Similarly, we have

(Cn)n,n =
n−2

∑
i=1

εn · q⊥i
ρ− σi

+O(τ) , (6.86)
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with q⊥i := ki − q·ki
q·p p. By studying carefully the scaling of each entry in (6.84) we

observe that

Pf′Ψn = Pf[Ψn]n−1,n:n−1,n Pf′Ψn−2 +O(τ2) , (6.87)

where [Ψn]n−1,n:n−1,n is the minor of Ψn with entries {n − 1, n : n − 1, n} only. we
obtain

S(0) =
∮ dρ

2πi
1

n−2

∑
b=1

kb·(p+q)
ρ−σb

− ξ2
1

τ p · q

(
−1
τ ξ1

)−m (τ p · q
−ξ1

)2+m

(6.88)

×
(

p · q εn−1 · εn

ξ2
1

−
n−2

∑
i,j=1

εn−1 · p⊥i εn · q⊥i
(ρ− σi) (ρ− σj)

− p · εn q · εn−1

ξ2
1

)

=
∮ dρ

2πi
(τ2 p · q)1+m

−τ
n−2

∑
b=1

kb·(p+q)
ρ−σb

(
p · q εn−1 · εn − p · εn q · εn−1

ξ2
1

−
n−2

∑
i,j=1

εn−1 · p⊥i εn · q⊥i
(ρ− σi) (ρ− σj)

)
.

Recalling the solution (2.29) ξ−1
1 = 1

2p·q ∑n−2
a=1

ka·(p−q)
ρ−σa

, although there seems to be a sim-
ple pole at ρ = ∞, as one can check its residue is proportional to

p · q εn−1 · εn − p · εn q · εn−1

4 (p · q)2

(
n−2

∑
b=1

kb · (p− q)

)2

−
n−2

∑
i,j=1

εn−1 · p⊥i εn · q⊥i , (6.89)

which vanishes due to momentum conservation. Hence contour deformation again
picks up a simple pole at every ρ = σb with b ∈ {1, 2, . . . , n− 2}, which leads to the
result

n−2

∑
b=1

(τ2 p · q)1+m

τ kb · (p + q)

(
p · q εn−1 · εn − p · εn q · εn−1

4 (p · q)2 (kb · (p− q))2 − εn−1 · p⊥b εn · q⊥b
)

.

(6.90)

Since the original expansion of the Pfaffian is not modified by the ρ integration, we ob-
serve that the soft factor can still be written as a Pfaffian, and so

Mn =
τ3 (τ2 p · q)m−1

4

n−2

∑
a=1

(
(kb · (p− q))2

kb · (p + q)
PfSb

)
Mn−2 +O(τ4+2m) . (6.91)

where Sb is a 4× 4 anti-symmetric matrix

Sb =


0 p · q p̂⊥b · εn−1 p · εn

−q · p 0 −q · εn−1 q̂⊥b · εn

−εn−1 · p̂⊥b εn−1 · q 0 εn−1 · εn

−εn · p −εn · q̂⊥b −εn · εn−1 0

 , (6.92)

where p̂⊥b := 2 p·q
kb·(p−q) p⊥b and q̂⊥b := 2 p·q

kb·(p−q) q⊥b .
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7
R E L AT I O N S A M O N G A M P L I T U D E S

7.1 relations among amplitudes in yang–mills and gravity

7.1.1 U(1) Decoupling Identities and Kleiss–Kuijf Relations

In Section 1.2.2 of the introduction we introduced color decomposition, which breaks a
full amplitude in a theory with non-trivial flavor/color group into smaller pieces called
partial amplitudes. While these partial amplitudes can be determined individually,
one may doubt whether this really simplifies computation, because we still have to
determine all of them.

It has been known for a long time that the actual computational work needed is
much less at least in the amplitudes of pure Yang–Mills, thanks to the many algebraic
relations among the partial amplitudes. The simplest type of relations are called U(1)
decoupling identities

n−1

∑
a=1

MYM
n [1, 2, . . . , a, n, a + 1, a + 2, . . . , n− 1] = 0 . (7.1)

Physically, this corresponds to the factor that if one considers the gauge group to be
U(1), then the amplitude where a photon scatters (in U(1)) with a set of gluons (in
SU(N)) has to vanish. Apart from this, we also have the Kleiss–Kuijf (KK) relations
[64, 65], which can be written as

MYM
n [1, α, n, β] = (−1)|β| ∑

γ∈OP(α,βT)

MYM
n [1, γ, n] , (7.2)

where βT denotes the reverse ordering of β, |β| denotes the size of β, and OP(α, βT)

denotes all possible shuffles of α and β, i.e., permutations of α ∪ β with the ordering α

and βT preserve respectively. For example,

MYM
n [1, 2, 3, 6, 4, 5] =

MYM
n [1, 2, 3, 5, 4, 6] + MYM

n [1, 2, 5, 3, 4, 6] + MYM
n [1, 2, 5, 4, 3, 6]

+MYM
n [1, 5, 2, 4, 3, 6] + MYM

n [1, 5, 4, 2, 3, 6] + MYM
n [1, 5, 2, 3, 4, 6] .

(7.3)
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The U(1) decoupling identities and the KK relations together reduce all the (n− 1)!
partial amplitudes to (n− 2)! independent ones.

The CHY representation makes these relations particularly straightforward. Recall
that in this formula

MYM
n [α] =

∫
dµn Cn[α]Pf′Ψn , (7.4)

every part is permutation invariant except for Cn[α] which depends on the given
ordering. As one can explicitly verify, if we substitute each MYM

n [α] by the corre-
sponding Cn[α], (7.1) and (7.2) hold for generic σ’s. So the above relations among
amplitudes are direct consequences of the algebraic properties of the function Cn[α].
In fact this has already been observed in the early proposals for formulas alterna-
tive to the CHY representation in four dimensions, commonly known as connected
formulation.

7.1.2 Bern–Carrasco–Johansson Relations

It turned out the (n− 2)! basis for Yang–Mills partial amplitudes are still redundant,
and the actual algebraically independent basis are of size (n− 3)!. This is originally
observed by the discovery of a set of new relations resulting from imposing algebraic
relations among the kinematic part of the numerators in Feynman diagrams that
resembles the Jacobi identity among the structure constants. These are called Bern–
Carrasco–Johansson (BCJ) relations [66]. While the amount of such relations are huge,
most of them are redundant and can be derived from the simplest ones known as the
fundamental BCJ relations, which are

n−1

∑
a=1

( a

∑
b=1

sn,b
)

MYM
n [1, 2, . . . , a, n, a + 1, a + 2, . . . , n− 1] = 0 . (7.5)

As was proven in [23], the building block Cn[α] is again solely responsible for these re-
lations. To be precise, when we substitute Mn[α] by Cn[α] in (7.5), then these relations
are valid on the support of the scattering equations. The fact that the scattering equa-
tions are needed is the reason why (7.5) are more non-trivial.

7.1.3 Kawai–Lewellen–Tye Relations

A practical way to study gravity amplitudes is to use the Kawai–Lewellen–Tye (KLT)
relations [14] in the field-theory limit. These are originally relations that express a
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closed string amplitude as convolution of two copies of open string amplitudes. In
the field theory limit, they reduce to the relations between gravity amplitudes and YM
amplitudes. In the field theory context these relations were explicitly written down in
[15]. When expressed in terms of the (n− 3)! fully independent basis as discussed
before, they are commonly written as

MGR
n = ∑

α,β∈Sn−3

MYM
N [1, α, n− 1, n]Kn[α|β] MYM

n [1, β, n, n− 1] , (7.6)

where α, β are permutations of labels {2, 3, . . . , n − 1}. Kn[α|β] is called the KLT
momentum kernel, which is a function of the Mandelstam variables only and depends
on the two orderings α and β. Explicitly,

Kn[α|β] :=
n−2

∏
c=2

(
s1,α(c) +

c−1

∑
d=2

θ
(β)
α(d),α(c) sα(d),α(c)

)
, (7.7)

where θ
(β)
a,b = 1 if a comes in front of b in the ordering β and zero otherwise

[16].

From the experience in previous discussions one may wonder whether the KLT
relation again is closely related to the Parke–Taylor factor in the context of the CHY
representation. The answer is yes, and this is achieved by an identity called the KLT
orthogonality [17].

7.2 kawai–lewellen–tye orthogonality

7.2.1 Proposition

Let us first define an inner product

(i, j) := ∑
α,β∈Sn−3

C(i)
n [1, α, n− 1, n]Kn[α|β]C(j)

n [1, β, n, n− 1] , (7.8)

where the superscript (i) means to evaluate on the ith solution to the scattering
equations. With this definition, the Kawai–Lewellen–Tye orthogonality is stated as
follows

Proposition 7.2.1. The inner product (7.8) satisfies

(i, j)

(i, i)
1
2 (j, j)

1
2
= δi,j , ∀i, j ∈ {1, 2, . . . , (n− 3)!} . (7.9)
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For a proof, note that the LHS of (7.9) remains invariant under SL(2, C)× SL(2, C),
where one SL(2, C) acts on σ(i)’s while the other on σ(j)’s. Hence it suffices to prove the
proposition for a particular choice of gauge on σ(i)’s and σ(j)’s respectively. For conve-
nience, we choose a partial fixing by setting {σ(i)

n−1, σ
(i)
n } = {∞, 1} and {σ(j)

n−1, σ
(j)
n } =

{1, ∞}. Correspondingly, define the following object

Kn({σ}, {σ̃}) := ∑
α,β∈Sn−3

1
σ1,α(2) · · · σα(n−3),α(n−2)

Kn[α|β]
1

σ̃1,α(2) · · · σ̃α(n−3),α(n−2)
. (7.10)

The motivation for Kn is that it appears in the LHS of (7.9) after the above partial
gauge fixing, i.e.,

(i, j)

(i, i)
1
2 (j, j)

1
2
=

Kn({σ(i)}, {σ(j)})

K
1
2
n ({σ(i)}, {σ(i)})K

1
2
n ({σ(j)}, {σ(j)})

. (7.11)

In addition, we define a (n− 2)× (n− 2) matrix ϕ̃n

(ϕ̃n)a,b =


sa,b

σa,b σ̃a,b
, a 6= b ,

−∑n−2
c=1
c 6=a

(ϕ̃n)a,c , a = b .
(7.12)

This matrix has co-rank one, since all the rows/columns add up to zero. So an invariant
quantity associated to this matrix is a reduced determinant det′ ϕ̃n := det[ϕ̃n]â, where
[ϕ̃n]â is the minor of ϕ̃n with the ath row and column deleted. Obviously the reduced
determinant is independent of the choice of a.

A crucial observation for the two objects defined above is that

Kn({σ}, {σ̃}) = (−1)n det′ ϕ̃n({σ}, {σ̃}) , (7.13)

for generic values of σ’s and σ̃’s. Since this proof of (7.13) is technical, we refer
interested reader to Appendix B of [11] for details. The basic idea here is that since
both are functions of the unconstrained complex variables {σ} ∪ {σ̃}, we can prove
this identity by showing that they have the same set of poles (including a possible
pole at infinity) and that the residues at each pole are identical.

Now the reduced determinant det′ ϕ̃n has an interesting property. To illustrate it, let
us further define an n× n matrix

(Φ̃n)a,b =


sa,b

σa,b σ̃a,b
, a 6= b ,

−∑n
c=1
c 6=a

(Φ̃n)a,c , a = b .
(7.14)

Obviously we have the relation

ϕ̃n = lim
σn−1→∞

σ̃n→∞

[Φ̃n] ˆn−1,n̂ , (7.15)
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where the limit we take is consistent with the partial gauge fixing we did before.
Note that when both {σ} and {σ̃} are certain solutions to the scattering equations the
entries of Φ̃n satisfy

n

∑
b=1

(Φ̃n)a,b σb = −
n

∑
b=1

(Φ̃n)a,b (σa − σb) + σa

n

∑
b=1

(Φ̃n)a,b = −∑
b 6=a

sa,b

σ̃a,b
= 0 , (7.16)

n

∑
b=1

(Φ̃n)a,b σa σ̃b =
n

∑
b=1

sa,b − σa ∑
b 6=a

sa,b

˜σa,b
− σ̃a ∑

b 6=a

sa,b

σa,b
+ σa σ̃a

n

∑
b=1

(Φ̃n)a,b = 0 , (7.17)

which indicate that the matrix ϕn has a kernel that is spanned by the following four
vectors

(σr
1 σ̃s

1, σr
2 σ̃2

s, . . . , σr
n σ̃s

n)
T , (7.18)

with r, s ∈ {0, 1}. The situation divides into two cases: when {σ} and {σ̃} are two
different solutions the kernel is four dimensional; but when {σ} and {σ̃} are evaluated
on the same solution the kernel is instead three dimensional, because now the vector
with {r, s} = {1, 0} becomes identical to that with {r, s} = {0, 1}. Recalling (7.13),
this means

Kn({σ(i)}, {σ(j)}) ∝ det[Φ̃n]â, ˆn−1,n̂({σ
(i)}, {σ(j)}) ∝ δi,j . (7.19)

Applying this in (7.11) proves the KLT orthogonality (7.9).

In fact, by the form of the basis for the kernel (7.18), one can observe that when {σ}
and {σ̃} are the same solution, we have the exact identity

Kn({σ}, {σ}) =
(−1)n∣∣∣∣ 1 1 1

σa σn−1 σn
σ2

a σ2
n−1 σ2

n

∣∣∣∣ det[Φ̃n]â, ˆn−1,n̂({σ}, {σ}) = Jn({σ}) , (7.20)

where Jn({σ}) = det′Φn is exactly the Jacobian from solving the delta constraints in
the CHY representation, as defined in (3.7), which is now evaluated on the solution
{σ}. Using (7.20) and (7.11), the KLT orthogonality relation (7.9) can be equivalently
written as

∑
α,β∈Sn−3

C(i)
n [1, α, n− 1, n]Kn[α|β]C(j)

n [1, β, n, n− 1] = δi,j (det′Φn)
(i) , (7.21)

which is what we have shown in (1.50) in the introduction.

7.2.2 Consequence

With the KLT orthogonality in the form of (7.21), it is very easy to see how the KLT
relations (7.6) work. Moreover, these relations can be set in a more general context.
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Suppose we have two theories A and B, both of which assume non-trivial flavor/color
groups such that we can define partial amplitudes as in (1.28). With this assumption
the integrands for amplitudes in both theories have to contain a Parke–Taylor factor.
Let us assume that these integrands have the form

IA
n [α] = Cn[α] ĨA

n , IB
n [α] = Cn[α] ĨB

n , (7.22)

where recall that Ĩ transforms as half of the full integrand. Then we can consider the
following

∑
α,β∈Sn−3

MA
n [1, α, n− 1, n]Kn[α|β] MB

n [1, β, n, n− 1]

= ∑
α,β∈Sn−3

(n−3)!

∑
i=1

C(i)
n [1, α, n− 1, n] ĨA,(i)

n

J(i)n

Kn[α|β]
(n−3)!

∑
j=1

C(j)
n [1, β, n, n− 1] ĨB,(j)

n

J(j)
n

=
(n−3)!

∑
i=1

ĨA,(i)
n ĨB,(j)

n

J(i)n

=
∫

dµn ĨA
n ĨB

n ,

(7.23)

where in the first equality we used the CHY representation in terms of summing
over the solutions (3.5). Obviously the combination ĨA

n ĨB
n transforms correctly under

SL(2, C), and so we can regard it as the integrand for some theory C, and hence

MC
n = ∑

α,β∈Sn−3

MA
n [1, α, n− 1, n]Kn[α|β] MB

n [1, β, n, n− 1] . (7.24)

Let us abbreviate the relation (7.24) as C = A⊗KLT B. When both Ĩ’s are Pf′Ψn this is
the well-known KLT construction of gravity amplitudes from Yang–Mills amplitudes
GR = YM⊗KLT YM. But now we can also choose each Ĩ to be either Pf[Xn]SPf′[Ψn]:Ŝ
or Ctr1Ctr2 · · · Ctrt Pf′Πn(tr1, tr2, . . . , trt) or (Pf′An)2. Hence we also have the following
KLT relations

BI = NLSM⊗KLT YM , (7.25)

sGal = NKSM⊗KLT NLSM , (7.26)

EM = YMS⊗KLT YM , (7.27)

DBI = NLSM⊗KLT YMS , (7.28)

EYM = gen. YMS⊗KLT YM , (7.29)

ext. DBI = NLSM⊗KLT gen. YMS . (7.30)

The KLT construction for YM, YMS, gen. YMS and NLSM is trivial, because they are
re-produced by the KLT of Φ3 with themselves.
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7.3 the role of trivalent scalar diagrams

From the above results, it looks that the scalar amplitudes in Φ3 are very special. The
fact that A = Φ3 ⊗KLT A for A being a theory in which flavor/color ordered partial
amplitudes are defined suggests that the KLT momentum kernel is the inverse of MΦ3

n ,
i.e., the trivalent massless scalar diagrams. This correspondence is made precise as
follows.

First let us define two (n− 3)!× (n− 3)! matrices

U(i)
α :=

C(i)
n [1, α, n− 1, n]√

Jn({σ(i)})
, V(i)

α :=
C(i)

n [1, α, n, n− 1]√
Jn({σ(i)})

, (7.31)

and let Kα
β := Kn[α|β]. Then the KLT orthogonality (7.9) can be written in terms of

these matrices as

U K VT = 1 , (7.32)

where 1 is the identity in the solution space. Obviously both U and V are invertible.
So let us multiply both sides of (7.32) by VT on the left and (VT)−1 on the right, which
yields

VT U K = 1 , (7.33)

where now the 1 is the identity in the permutation space. Interestingly, note that

(VT U)α
β =

(n−3)!

∑
i=1

C(i)
n [1, α, n, n− 1]C(i)

n [1, β, n, n− 1]
Jn({σ(i)})

=
∫

dµn IΦ3

n [1, α, n, n− 1|1, β, n− 1, n] ,

(7.34)

which is exactly the double partial amplitude that we have defined in the Φ3 theory
flavored in U(N)×U(Ñ). Thus we observe that the KLT momentum kernel is nothing
but the inverse of the cubic massless scalar diagrams [7]

Kn[α|β] =
(
mn[1, α, n, n− 1|1, β, n− 1, n]

)−1 . (7.35)
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8
O U T L O O K

In this thesis we introduced the scattering equations, which provide a map from the
kinematics data of an n-particle scattering to an auxiliary space M0,n, the space of
all inequivalent n-punctured Riemann spheres, with the purpose of modeling the
tree-level S-matrix. The only assumption for these equations is that the momenta
are conserved and massless on-shell. So it is expected that the scattering equations
are universal, in the sense that their form remains the same for any type of massless
particles and any interactions in a given theory.

The scattering equations lead to a very natural integral over M0,n, which can be
utilized to construct formulas for various tree-level amplitudes. By making simple
proposals for the integrand therein, we found out several instances which generate
physically sensible results, and these results are identified to tree-level amplitudes in
certain theories. With the introduction of three operations acting on the integrand,
we discovered other integrands that are more complicated but still well-defined, and
they turned out to describe the tree-level scattering in several more theories. With
the arguments from the study of a generic factorization channel and behaviors in the
soft limits, we showed that all these formulas are closed (i.e., valid for all possible
amplitudes to all multiplicities in the theory).

For the future explorations related to the scattering equations and the CHY represen-
tation, some of the most relevant ones are

1. Extension of the scattering equations and their applications to loop levels.

2. The CHY representation in fixed spacetime dimensions, in particular 4d and 6d.

3. The CHY representation in theories with fermions, and supersymmetries.

4. Scattering equations for massive particles.

In the following we briefly comment on these one by one, but they are also inter-
related.

Conceptually there exists a very natural extension of the scattering equations to loop
levels. Recall that in Chapter 2 we basically discovered these equations starting with
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a generic meromorphic form ωµ(z) on CP1 with only simple poles at the n marked
points, and then imposing the requirement that it squares to zero everywhere on CP1,
i.e., ωµωµ ≡ 0. Since the meromorphic forms exist for any Riemann surface, when we
switch to amplitudes at the level of g loops, we can simply repeat the same analysis
but on a Riemann surface of genus g [25, 27, 37]. Note that at g > 0 a Riemann surface
allows for non-trivial holomorphic forms that can be freely added to a meromorphic
form, which introduces more degrees of freedom. A straightforward interpretation is
that for the scattering equations at loop orders, information about the loop momenta
should also enter into the kinematics data, and so what the corresponding CHY
representation (if it exists) computes is the integrand before integrating out the
loop momenta (the loop integrand) instead of the final loop-level amplitude. It is an
interesting fact that the number of independent loop momenta matches the dimension
of the space of holomorphic forms. But it is difficult to solve the scattering equations
even at one-loop and four-points, because elliptic functions start to enter (almost all
concrete analysis regarding this up to now are consistency checks in various limits, in
which the Riemann surface degenerates [27, 31]). Besides, it is puzzling how a loop
integrand, which is expected to be rational, can come out of a formulation that contains
elliptic functions. Nonetheless this is still a major direction worth exploring. And if
this extension indeed works, we may hope to land on certain compact expressions as
what we have already achieved at tree level.

Prior to the CHY representation, various alternative integral representations for the
tree-level S-matrix in four dimensions were discovered. These are called connected
formulations, and are particularly suitable for, e.g., N = 4 super Yang–Mills and
N = 8 supergravity [10, 17, 41, 67–71]. As was shown in [10], one can obtain similar
formulas for various theories in three dimensions, as a direct result of dimensional
reduction from four dimensions. The availability of the spin-helicity formalism in 3d
and 4d plays an important role here. A similar formalism also exist in six dimensions
[72], but less is known about how an analogous connected formulation should work
in six dimensions. It would be interesting to see how the formulas that we propose in
this thesis can exactly reduce to existing formulas in various connected formulations
when restricted to four dimensions. Understanding this may help us acquire intuition
about how to reduce them to six dimensions.

In this thesis we have fully restricted our attention to bosons. This does not mean that
the current framework fails for fermions. As commented in Section 3.2, in principle any
Feynman diagram acquires an integral formula based on the scattering equations (3.4).
For instance, look at the simple process of Compton scattering e− γ→ e−γ (assuming
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the energy is high enough so that the electron mass can be ignored), which contains
two Feynman diagrams, leading to the following expression

−i e2
(

ū4 /ε3
/k3 + /k4

(k3 + k4)2 /ε1 u2 + ū4 /ε1
/k2 + /k3

(k2 + k3)2 /ε3 u2

)
. (8.1)

with the help of (3.14) this expression can be turned into

− i e2

2

∫
dµ4

1
σ1,2 σ2,3 σ3,4 σ4,1

(
ū4 /ε3 (/k3 + /k4) /ε1 u2

σ1,2 σ2,4 σ4,3 σ3,1
+

ū4 /ε1 (/k2 + /k3) /ε3 u2

σ2,3 σ3,1 σ1,4 σ4,2

)
. (8.2)

Other examples of involving fermion are available in, e.g., [27, 35, 73]. The real
problem, however, resides in whether the results like (8.2) can re-sum into something
simple and compact, and at best, whether for a given theory involving fermions we
can find a closed formula for its tree-level S-matrix, i.e., a CHY representation as those
summarized in Table 1. This remains largely unclear.

More or less related to the above is the question of how to encode supersymmetries into
the CHY representation. As mentioned before, in the connected formulations super-
symmetries enter naturally with the help of spin-helicity formalism (mainly because
we are able to introduce fermionic spinors to parametrize the on-shell superspace
[74]), but this is absent in arbitrary dimensions, and in the current proposal of CHY
representation polarization vectors/spinors are used instead. Since supersymmetric
theories are very sensitive to spacetime dimensions, perhaps we should expect again
to rely on certain techniques specialized to a chosen dimension.

There is another restriction to our discussions in this thesis: we require that the
particles in the theory are all massless. This plays a fundamental role already in the
proposal of the scattering equations, i.e., Q ≡ 0. So when we want to extend them to
the case involving massive particles, it is natural to expect to modify these equations,
or even the concept that leads to them. With some clever observations, modifications
were worked out so as to allow for the description of scattering among a single type
of massive scalars [38], and the scattering involving massive scalars and gauge bosons
in the context of spontaneous symmetry breaking [39, 40]. But beyond these we are
lacking a general concept of how to deal with massive particles.

Apart from these, it is also interesting and perhaps important to explore the connection
of the CHY representation with string amplitudes. Note that a Riemann sphere is
present in both the CHY representation and the ordinary string amplitudes (the
worldsheet), but there is an essential difference between the two. In string amplitudes
one sums over all possible histories of string propagation and thus integrates over
the moduli space of the worldsheet where every point is equally important. And
the boundaries of the moduli space single out to specific field-theory diagrams only
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in the infinite string tension limit. In addition, the moduli space depends on the
external states and the theory. In contrast, in the CHY representation we are always
dealing with Riemann spheres for whatever particles under consideration. And
while it has the form of an integral, only at most a finite number of points in M0,n

contribute to the amplitude, which highly depends on the kinematics. Despite these
differences, there are still several remarkable similarities. It is well-known that the
field-theory amplitude of gluon scattering comes as the infinite tension limit of the
corresponding string amplitude. In a series of recent works [75], it was shown that
the string amplitudes for gluons can be linearly expanded onto a basis in the form of
KLT relations. This basis, the open string disk integral, depends on two orderings α,β,
and is defined as

Zn[α|β] :=
∫

zα(1)<···<zα(n)

n

∏
a=1

′
dza ∏

a<b
|za,b|α

′ ka·kb
1

zβ(1),β(2) zβ(2),β(3) · · · zβ(n),β(1)
, (8.3)

where all z’s are real, and the prime in ∏′dz is defined in the same way as (3.3). The
factor |za,b|α

′ ka·kb is called the Koba–Nielsen factor. Note this has a remarkably similar
form as the double partial amplitudes in Φ3

mn[α|β] =
∫ n

∏
a=1

′
dσa

n

∏
a=1

′
δ
(

∑
b 6=a

ka · kb

σa,b

)
× 1

σα(1),α(2) σα(2),α(3) · · · σα(n),α(1)

1
σβ(1),β(2) σβ(2),β(3) · · · σβ(n),β(1)

.

(8.4)

Moreover, by expressing YM amplitudes as the KLT of Φ3 amplitudes with themselves,
one can find that mn[α|β] is indeed exactly the α′ → 0 limit of the disk integral Zn[α|β].
It would be interesting to find out whether this connection between (8.3) and (8.4)
has to tell something deep. In particular, it is worth to mention that the scattering
equations can also arise from the saddle point expansion of the Koba–Nielsen factor
in (8.3) in the limit of high-energy fixed-angle scattering (the Gross–Mende limit),
corresponding to α′ → ∞ rather than α′ → 0. Some results along this exploration
were made in, e.g., [35].

Finally, the main open question is what is the space of all quantum field theories
whose complete tree-level S-matrix admits a CHY representation (in the sense that
a closed formula is available), and what is special about the theories that admit one.
Once extended to loop level, one can ask whether the CHY representation is a hint for
a different way of thinking about quantum field theory.
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