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Abstract

Residential electricity demand is affected by three types of external factors: weather,
time, and the price of electricity. Ontario has mandated time-of-use pricing for all residen-
tial customers in the province. We implement a data-driven study using multiple linear
regression to quantify the effects of mandatory time-of-use pricing on residential electricity
demand in south west Ontario. In order to isolate the effects of this pricing policy on
electricity demand, we first account for the combined effects of weather and time.

Our treatment of temporal variables such as month, working days, and hour-of-day is
consistent with prior work. However, there is no consensus in prior work for modelling
the effects of temperature and weather over time. In temperate regions like Ontario, the
relationship between residential electricity demand and temperature is notably non-linear
across winter and summer seasons. A mild or extreme summer may skew the estimated
impacts of time-of-use pricing if the effects of temperature are not properly accounted
for. To address this challenge, we formulate a detailed comparison of existing methods
used to transform dry-bulb temperature observations. We consider piecewise linear and
natural spline transformations for modelling non-linearity. We also consider coincident
weather observations such as humidity, wind chill, and qualitative weather conditions.
Finally, we consider variable transformations that take into account the time delay or
build-up of temperature that household thermal controls react to. We consider lagged
observations, cooling degree-hour, heating degree-hour, moving average, and exposure-lag-
response transformations. For all combinations of temperature variable transformations
we report the explanatory power, out-of-sample prediction accuracy, and discuss impacts
on model interpretability.

Using the results from our temperature transformation comparison, we select a well-
performing, descriptive model for use in a time-of-use case study. Ontario’s time-of-use
pricing policy is evaluated according to two of its stated objectives: energy conservation
and shifting consumption out of peak demand periods. We show that during the summer
rate season, time-of-use pricing is associated with electricity conservation across all price
periods. The average demand change during on-peak and mid-peak periods is -2.6% and
-2.4% respectively. Change during working day and non-working day off-peak periods is
-0.9% and -0.6% but is not statistically significant. The peak-to-average ratio, a separate
metric to measure shifted electricity demand, changed -0.8% under time-of-use pricing from
1.441 to 1.429. These results are consistent with prior time-of-use evaluations carried out
within the province, though less pronounced compared to pilot studies.
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Chapter 1

Introduction

1.1 Motivation

As a ubiquitous component of daily life, the generation and use of electricity represents a
substantial portion of greenhouse gas emissions. In April 2005, the Ontario Energy Board
created a time-of-use (TOU) electricity pricing framework pursuant to efficiency and envi-
ronmental conservation goals [52]. In August 2010, the Ontario Energy Board mandated
that all electricity distributors establish schedules to bill their customers according to the
TOU pricing framework [53]. By August 2012, TOU pricing was in place for 4.4 million
residential customers, comprising 91% of residential customers in the province [54].

TOU is a time-based pricing framework which divides the day into rate periods that
correspond to well known, aggregate electricity demand patterns. In Ontario there are
three rate tiers for residential customers: off-peak, mid-peak, and on-peak. These rate
tiers correspond to typical levels of electricity demand throughout the day. During off-
peak hours the demand on the electricity grid is the lowest, so consumers are charged
at the lowest price rate. Conversely, during on-peak hours consumers pay a higher price
for electricity. The Ontario Energy Board introduced this pricing framework with three
objectives: i) to more accurately reflect the market cost of electricity in the price con-
sumers pay; ii) to encourage electricity conservation across all hours of the day; and iii) to
shift electricity use from high-demand periods to lower-demand periods [51]. Lower, more
constant demand allows electricity generation facilities to operate in a manner that has
less impact on the environment. A flattened demand pattern lowers nuclear generation
facilities’ risk of difficult and costly curtailment. It also reduces the amount that fossil fuel
facilities must ramp generation up and down to match demand.
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TOU pricing has been studied regularly since the 1970s, when the U.S. Department of
Energy ran several experiments and pilot programs to explore the concept as a conservation-
inducing measure during the energy crisis [2]. Most studies have been experimental, pi-
lot projects, implementations that require customer opt-in, or implementations that are
mandatory only for customers with average demand above a certain threshold. Ontario is
one of only a few large jurisdictions in the world that has mandated TOU pricing for all
residential customers.

In this work, enabled by the availability of smart meter data, we explore the effects of
weather, time, and price on aggregate residential electricity demand. We are interested in
evaluating the effectiveness of Ontario’s mandatory TOU pricing policy according to its
stated efficiency and environmental objectives. Has increased consumer mindfulness about
the amount and timing of electricity usage resulted in conservation across all hours of the
day? Has electricity use been shifted from on-peak periods to off- and mid-peak periods?
What is the magnitude of demand change at the household and local distribution company
levels?

1.2 Problem Statement

In order to quantify the demand change associated with TOU pricing, its effects must be
isolated from other external factors relating to time and weather. Treatment of temporal
variables is consistent in prior work. Explanatory variables typically reflect hour-of-day,
weekdays, weekends, and holidays. However, the manner in which weather has been mod-
elled in prior work varies significantly, depending primarily on the geographic region in
which the study was performed and the frequency of observations. Our data from a lo-
cal distribution company in south west Ontario is hourly, exhibits significant variability
associated with weather, and has been subject to two different pricing frameworks.

Therefore, we propose a multiple regression analysis to quantify change in aggregate
residential electricity demand associated with TOU pricing. A multiple regression model
is chosen for its interpretability and its modularity. Time, weather, and price can each be
incorporated and discussed as separate components of the regression.

1.3 Challenges

Real world data is often incomplete and noisy. Because this is a data-driven study, our
sample of hourly smart meter readings from a local distribution company is no different.

2



We first manually label residential meters and remove erroneous data. Using the cleaned
data set, we create a normalized sample of hourly residential electricity demand from the
aggregate set of meters reporting each hour. This reduces the noise of individual customer
time series samples. It also resolves gaps in individual time series data without interpolating
values.

A second challenge, the core component of our study, is to properly model the predom-
inant effects of temperature so that the moderate effects of TOU electricity pricing may
be isolated and quantified. A mild or extreme summer may skew the estimated impacts of
TOU pricing if the effects of weather and time are not adequately modelled.

The final challenge, common to statistical modelling, is variable selection. With a
large number of observations, it is possible for a researcher to explain small amounts of
variance in the data. Similarly, with a large number of potential explanatory variables, it
easy to overfit a model in pursuit of explaining small amounts of variance. We define a
parsimonious model by using statistical tests to analyze components of variance, account
for heteroscedasticity in model residuals, quantify model complexity, and guard against
overfitting.

1.4 Contributions

Our primary focus is to infer the effects of TOU pricing associated with aggregate residen-
tial electricity demand.

� There is no clear consensus in existing literature on how to model the effects of
weather on electricity demand. We conduct a detailed comparison of existing tem-
perature variable transformations which incorporate coincident weather observations
(e.g. humidity and wind chill), past temperature observations, and varying degrees
of non-linearity. We conclude that a six-hour moving average of dry-bulb tempera-
ture observations transformed using natural cubic splines has significant explanatory
power and is easily interpretable.

� In particular, we apply a variable transformation known as exposure-lag-response as-
sociation as a component of our temperature transformation comparison. To the best
of our knowledge, exposure-lag-response association has not been used in electricity
demand modelling literature. We hypothesize that the variable transformation might
provide nuanced insight into how electricity demand is affected by prolonged expo-
sure to cold or warm temperatures and how those effects are weighted over time. Our
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result, how temperature effects are weighted over time, is difficult to interpret and
provides no added explanatory value. Though this is a somewhat negative result, we
share our findings because we have not seen exposure-lag-response applied in prior
work.

� We conclude that during the summer rate season, TOU pricing is associated with
electricity conservation across all price periods. The average demand change dur-
ing on-peak and mid-peak periods is -2.6% and -2.4% respectively. Change during
working day and non-working day off-peak periods is -0.9% and -0.6% but is not sta-
tistically significant. The peak-to-average ratio of electricity demand changed -0.8%
from 1.441 to 1.429.

Effort has been made to describe the process behind explanatory variable selection by
visualizing decisions and reporting supporting statistics. Source code for our analysis is
also provided [39].

In addition to our analytical contributions, our data set has several characteristics that
make it a novel item of study. First, large samples of hourly smart meter readings are
difficult to obtain due to privacy issues. We have a large data set with adequate numbers
of observations before and after the implementation of TOU pricing. Second, the local
distribution company transitioned all customers from flat rates to TOU rates at a single
point in time, meaning that there is no uncertainty introduced by a staggered customer
billing roll-out. Third, TOU pricing is mandatory for all residential customers, high-use
and low-use. Studying the effects of mandatory TOU pricing within Ontario may provide
insight for other regions considering similar mandatory implementations.

1.5 Outline

Chapter 2 first gives background on multiple linear regression, residual analysis, measures
of explanatory power, and out-of-sample predictive power. After providing background
information on relevant statistical methods, we then review related work. Literature is
grouped by techniques used to include coincident weather information, the structure given
to temperature over time, and temperature’s non-linear relationship with electricity de-
mand.

Chapter 3 first describes our data set provided by a local distribution company in south
west Ontario. We also describe a set of weather observations and how they are paired with
smart meter readings. Because both data sets are real-world observations, data cleaning
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is required to make them suitable for study. Each data cleaning step is described and
supported.

To properly model the effects of weather on electricity demand, we propose a detailed
comparison of existing temperature variable transformations. Descriptions, visualizations,
and equations for the fixed and varying components of our multiple regression model are
provided. Our comparison generates models using all combinations of temperature trans-
formations falling into three categories: coincident weather, past observations, and non-
linearity.

Finally, we provide empirical results from our temperature transformation comparison.
The fitted models are primarily evaluated according to their explanatory power and inter-
pretability. Though the primary purpose of our study is not forecasting, we also report the
out-of-sample prediction error for each model. Out-of-sample predictive power supports
the general applicability of our conclusions and shows that we are not overfitting the data.

Chapter 4 carries out a case study to quantify the effects associated with TOU pricing
in our data sample. First, noteworthy TOU pilot studies and mandatory TOU deployments
are reviewed. We then use a well-performing model from chapter 3 to carry out a “what-if”
analysis to quantify the effects of Ontario’s TOU policy on aggregate residential electricity
demand.

Chapter 5 reviews conclusions drawn from our temperature transformation comparison
and TOU case study. We then list avenues of future work possible by building on this
study and our data set.

5





Chapter 2

Background and Prior Work

2.1 Background

The focus of our study is to describe the functional relationship between hourly aggregate
residential electricity demand Y and a set of explanatory variables. A single-variable,
linear relationship between a response variable and an explanatory variable is referred
to as simple linear regression. Multiple linear regression is an extension of simple linear
regression which adds multiple explanatory variables, each with its own slope coefficient
[31]. This is also simply referred to as multiple regression and will be referred to as such
going forward. Appendix A provides a review of multiple regression.

We assume that the underlying process driving residential electricity demand can be
estimated using a multiple regression model (2.1). The N × 1 vector Ŷ is an estimate of
aggregate electricity demand Y produced by adding the estimated effects of three types
of explanatory variables: time, price, and weather. Let X be an N × Ptime matrix of tem-
poral explanatory variables, V be an N × Pprice matrix of explanatory variables reflecting
electricity price, and T be an N × Pweather matrix produced by transforming temperature
observations. N is the number of observations in our sample of hourly time series data
and each subscript of P is the number of explanatory variables of a given type.

We break the explanatory variables up into separate matrices so that each type may be
discussed separately. The temperature transformation comparison described in chapter 3
will hold X and V fixed and compare combinations of temperature transformations which
produce T. Similarly, the TOU case study described in chapter 4 will hold X and T fixed
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while adding many TOU explanatory variables to V.

Ŷ = β̂0 + Xβ̂ + Vω̂ + Tθ̂ (2.1)

Let β̂0 be the estimated intercept term which other coefficient estimates are offset from.
β̂ is a Ptime × 1 vector of coefficient estimates for X. ω̂ is a Pprice × 1 vector of coefficient

estimates for V. θ̂ is a Pweather × 1 vector of coefficient estimates for T.

2.1.1 Least Squares

The process of choosing values for β̂, ω̂, and θ̂ is known as model fitting or training the
model. The best set of values chosen are those that minimize the difference between
observations of Y and the estimate Ŷ. The differences between each observed response
and estimated response are known as residuals, shown in (2.2).

e = Y − Ŷ (2.2)

Let e be an N × 1 vector of residuals. Figure 2.1 illustrates a generic set of observations,
estimates, and residuals. The goal of estimating model coefficients is to find the best
set of values that produce an estimated response Ŷ which is as close to all values of the
observed response Y as possible. There are many ways to measure the best set of coefficient
estimates. The most common approach is to minimize the least squares criterion [31].

First, let us define the total sum of squares to describe the amount that observed data
varies from the sample mean ȳ, shown in (2.3). The notation yi represents the ith element
of the vector Y. This notation for referencing specific elements in vectors will be used
going forward.

SStotal =
N∑
i=1

(yi − ȳ)2 (2.3)

SStotal may be partitioned into two parts shown in (2.4): explained sum of squares and
residual sum of squares.

SStotal = SSexplained + SSresiduals (2.4)

Explained sum of squares (2.5) represents the amount of deviation from the sample
mean explained by the fitted model.

SSexplained =
N∑
i=1

(ŷi − ȳ)2 (2.5)
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Figure 2.1: Blue points represent a generic set of observations Y. Each point on the plot
represents an individual observation yi in Y. The red line Ŷ is produced by an estimated
model of the true, underlying function. The vertical black lines represent residuals e.
(Creative-Commons 3.0 image [25], edited by Reid Miller)
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When the value of β̂0 is set to ȳ, the estimated coefficient vectors β̂, ω̂, and θ̂ explain
observations’ deviation from the mean. The variance left unexplained is the residual sum
of squares, shown in (2.6).

SSresiduals =
N∑
i=1

(yi − ŷi)
2

=
N∑
i=1

e2
i

(2.6)

SSresiduals provides an absolute measure of the lack of fit of the model to observations. To
report the explanatory power of a multiple regression model in more familiar terms, the
R2 statistic (2.7) reports the proportion of variance explained on a scale from 0 to 1 [31].

R2 = 1− SSresiduals

SStotal

(2.7)

For details on how the coefficient estimates that minimize (2.6) are computed (i.e. ordinary
least squares), the reader is directed to chapter 3 of [26]. Throughout this study the core
stats package in the statistical computing environment, R, is used to fit multiple regression
models [58].

2.1.2 Model Parsimony

The number of explanatory variables that may be used to describe electricity demand is
potentially infinite. Many additional explanatory variables could be used such as solar
irradiance, wind speed, visibility, indicators for hours surrounding daylight savings, and
many more. Each may potentially explain some part of the variance in electricity demand.
Adding additional variables, even those weakly associated with the response, will always fit
the training data more accurately. R2 will always increase as more parameters are added
to the model [31].

Including too many parameters can have a number of negative effects. First, coefficient
estimates associated with too many explanatory variables can become difficult to inter-
pret, especially in the presence of multicollinearity. Multicollinearity occurs when several
explanatory variables describe the same underlying phenomenon. Second, as more explana-
tory variables are added, they increase the degrees of freedom of the model. If a model has
too many degrees of freedom the coefficient estimates may be overfit to irreducible error
in the observed data (i.e. noise), rather than the true underlying function. An overfit
model will exhibit poor predictive power when it encounters out-of-sample observations.
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An overfit model also has less general applicability, due to the fact that it describes the
nuances of one particular data sample.

To guard against overfitting, several measures have been defined to punish overly-
complex models. They strive to find a balance between model complexity and explanatory
power, referred to as model parsimony. AdjustedR2, shown in (2.8), is the R2 value
adjusted for sample size N and the total number of explanatory variables P . Let the total
number of explanatory variables be the combined number of explanatory variables in each
matrix such that P = Ptime + Pprice + Pweather.

AdjustedR2 = 1− SSresiduals/(N − P − 1)

SStotal/(N − 1)
(2.8)

If there are a large number of observations, then it is possible to detect small effect sizes
with large N . When considering the addition of an explanatory variable to the model,
if the model has a large number of explanatory variables but only a small decrease of
SSresiduals, then the added model complexity is not justified. AdjustedR2 has a value in
the range [0, 1] similar to R2. However, AdjustedR2 will always be less than ≤ R2.

A second measure of model parsimony is the Bayesian Information Criterion (BIC)
shown in (2.9) [59]. It is a unitless value that decreases for models with low test error,
but adds a penalty as the number of explanatory variables increase. When comparing two
models estimating the same response, the model with a lower BIC value is considered more
parsimonious.

BIC = N · ln(
SSresiduals

N
) + (P + 1) · ln(N)) (2.9)

2.1.3 Explanatory Variable Selection

We use two conceptually-similar methods of selecting explanatory variables for our multiple
regression models. The first is called forward selection. In forward selection we begin with
the null model, a model that contains the intercept β0 but no explanatory variables in
X, V, and T. We then fit a number of alternate models, each with a single explanatory
variable added. The explanatory variable which resulted in an alternate model with the
lowest SSresiduals is added to the null model. This method of adding explanatory variables
one at a time is continued until the analysis of variance stopping condition is met.

Similarly, backward selection starts with all possible explanatory variables in X, V,
and T. This initial model is also called the saturated model. We remove variables with
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the largest p-value (i.e. the least statistically significant variable) one at a time until the
analysis of variance stopping condition is met.

Analysis of variance (ANOVA) performs a hypothesis test comparing two models M1

and M2. The null hypothesis is that the less-complex model M1, with fewer explanatory
variables, is sufficient to describe the response. The alternate hypothesis that a more
complex modelM2 is required. ANOVA tests whether the variance explained by an added
explanatory variable or interaction are significantly different than the original model [31].
The formulation of ANOVA is beyond the scope of our study. We direct the reader to [15]
for full details of the procedure.

2.1.4 Heteroscedastic Residuals

Fitted models are said to be heteroscedastic if the variance of residuals increases or de-
creases systematically with the value of the estimated response vector Ŷ, with the value
of an explanatory variable, or with previous residuals. In our results, we will visualize
heteroscedasticity by plotting e as a function of Ŷ and as a function of several explanatory
variables.

When modelling time series data, it is common that the residual at a given index ei

will be correlated with previous residuals, a form of heteroscedasticity known as serially
correlated residuals. We will report the Durbin-Watson test for serial correlation [5], shown
in (2.10).

DW =

∑N
i=2(ei − ei−1)2∑N

i=2 e2
i

(2.10)

The value of the Durbin-Watson statistic DW will always be in the range (0, 4). DW = 2
indicates that there is no serial correlation present within the residuals. DW < 1 indicates
positive correlation, meaning sequential residuals are often similar. DW > 3 indicates
negative correlation, meaning sequential residuals are often far apart.

In the presence of heteroscedastic residuals, normal standard error estimates for each
explanatory variable are too small, implying that we have too much confidence in the coef-
ficient estimates. This has implications when using standard error estimates in confidence
intervals, ANOVA, and other hypothesis tests. Because normal standard error estimates
are erroneously small in the presence of heteroscedasticity, hypothesis tests would report
explanatory variables as significant when they are not. To correct for this problem, stan-
dard errors should be estimated using heteroscedasticity and autocorrelation consistent
(HAC) standard errors. The HAC procedure increases the standard error of coefficient
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estimates, indicating that we have less confidence in our model. These wider HAC stan-
dard errors are appropriate for use in hypothesis tests. The formulation of HAC standard
errors is beyond the scope of our study. We direct the reader to [63] for full details of the
procedure.

2.1.5 Out-of-Sample Validation

Though our focus is on the descriptive power of our model, we also report models’ out-of-
sample predictive power using mean absolute error (MAE) and mean absolute percentage
error (MAPE) shown in (2.11) and (2.12) respectively [28].

MAE =

∑N
i=1 | ei |
N

(2.11)

MAPE = 100 ·
∑N

i=1 | ei/yi |
N

(2.12)

To measure out-of-sample prediction accuracy, we use a form of time series cross-validation
described in [29] by training our model on the first 12,312 hours of data and test using
the next 168 hours (i.e. one week). We then slide the windows of training and test data
forward 168 hours yielding a new set of training and testing data. This process is repeated
12 times, yielding 12 MAE values and 12 MAPE values. We report the mean MAE and
mean MAPE averaged over the 12 out-of-sample validation folds.

2.2 Prior Work

Both aggregate residential electricity demand and the effects of time-based electricity pric-
ing are well-studied problems. However, there are several recent changes enabled by smart
meters that make our study relevant. Household, hourly smart meter readings are still a
fairly recent source of data. They may be used individually to identify customer groupings
and common behaviours. They may also be used in aggregate to provide short-term and
mid-term insights about electricity demand. Our study focuses on the latter, providing
insight about aggregate electricity demand relevant at the mid-term planning horizon of
several months or several years. Table 2.1 provides an overview of temperature observa-
tion transformations used in prior work. These techniques use temperature observations
as an input to a number of basis functions, transforming it into into a basis matrix T.
The prior work described throughout the remainder of this section each describe different
transformations to create T.
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Table 2.1: Overview of three temperature transformation categories which we consider.

Coincident Weather Transformations

Temperature Humidity Index [17, 48]
Humidex [18]

Other Humidity Transform [42]
Wind Speed [20, 42]

Solar Irradiance and Cloud Cover [20, 8]

Temporal Transformations

Lagged Observations [24]
Heating Degree-Days / Cooling Degree-Days [57, 9]

Heating Degree-Hours / Cooling Degree-Hours [47]
Moving Average [42]

Weighted Moving Average [20, 8]

Non-Linear Transformations

Switching Regression [41, 18, 47, 48, 35, 62]
Threshold Regression [41, 6, 4]

Threshold Regression with Saturation at Extremes [9]
Regression Splines [12, 24]
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2.2.1 Coincident Weather Variables and Transformations

We define coincident weather to be other measurable weather phenomena which coincide
with temperature observations. For example, the humidity observed at time i is coincident
with dry-bulb temperature observed at time i.

Several studies transform temperature by taking humidity into account via the temper-
ature humidity index [17, 48], the Canadian Humidex [18], or by incorporating humidity
into some other transformation of temperature [42]. Humidity may have a direct effect on
load via dehumidification equipment, or it may have an indirect effect on load via human
perception and comfort levels. Wind speed has also been incorporated into temperature
transformations by [20, 42]. Wind may reduce electricity demand if customers choose to
cool their home by leaving windows open during transition seasons. It may also affect
human perception of cold outdoor temperatures via wind chill, inclining them to stay
indoors.

2.2.2 Temperature’s Effects Over Time

Effort has also been taken to account for the delay between when an outdoor temperature
occurs to when its effects are felt within a customer’s home. Depending on the quality of
housing insulation prevalent in the area, this heat transfer can take a number of hours.
Heating degree-days and cooling degree-days are common derived values used to measure
the prolonged heating and cooling requirements of a home over time. As hourly electricity
demand readings have become commonplace, these metrics have been extended to heating
degree-hours and cooling degree-hours. The traditional degree-day or degree-hour procedure
is based on the idea that for residential buildings, electricity demand will be proportional
to the difference between the mean daily temperature and a temperature break point [56].
It is found by summing the number of recent observations that have been below or above
a given break point. For analysis of long-term and mid-term horizons, heating and cooling
degree-days have been used and are sufficient [57, 9]. Cooling and heating degree-hours are
better suited to analysis of short-term and mid-term horizons [47]. This transformation is
described with greater detail in section 3.7.4.

In [24], the authors considered lagged hours of temperature in early models of their
study, though ultimately they did not use lagged temperature in the final model. The
authors of [42] used a four-hour moving average of recent temperatures as a component of
the space heating index used in their model. The most sophisticated method of accounting
for thermal transfer inertia is found in [20], which is a refinement of [8]. In these papers,
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the authors define an exponentially weighted moving average filter to be the smoothed
temperature. This smoothed temperature represents the heat transfer inertia of buildings.
It is combined with an instantaneous outdoor temperature offset by cloud cover and solar
irradiance. Together the smoothed temperature and instantaneous temperature are com-
bined into a sensible temperature which is ultimately used as a component in their multiple
regression model.

2.2.3 Non-linear Effects of Temperature

Recall (2.1), in which the underlying functional form of explanatory variables is assumed
to be linear and additive. Temperature has a non-linear relationship with electricity de-
mand, discussed in greater detail throughout chapter 3. To model temperature’s non-linear
relationship with electricity demand, the temperature observations must be transformed.
There are a number of common techniques used to model explanatory variables which have
a non-linear association with the response variable.

The authors of [41] describe two types of piecewise linear models and create a terminol-
ogy that adds meaning for electricity demand analyses. They describe a single temperature
break point as a switching regression. The line fit to temperatures below the break point
represents household heating effects. The line fitted to temperatures above the break point
are cooling effects. When two break points are selected, the authors describe it to be a
threshold regression. Temperatures below the cooler temperature break point are heat-
ing effects. Temperatures above the warmer temperature break point are cooling effects.
The range of temperatures between these two points, the threshold, are assumed to be
temperatures where no heating or air conditioning is used within the household. The
threshold is typically a region of moderate temperatures experienced during spring and
autumn seasons. Using the terminology established in [41], a switching regression is used
in [18, 47, 48]. The authors of [35, 62] also use switching regression, but the lower region
has a slope of zero because residential users in Arizona and California do not have heating
requirements. A threshold regression is used in [6] and [4] to approximate customer-specific
thermal responses.

The authors of [9] note that extreme low temperatures and extreme high tempera-
tures exhibit saturation of heating and cooling effects. At these extreme temperatures, all
household thermal controls such as space heaters, electric baseboard heating, fans, or air
conditioning available to residential are working constantly. Electricity demand plateaus
at the maximum amount associated with heating or cooling.

Extending the multiple regression model beyond piecewise linear regions, temperature
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observations may be transformed into derived values that better support non-linearity.
Building on piecewise linear transformations, smoothed transitions between threshold re-
gions and heating/cooling effects are described in [8, 20, 41].

Regression splines, a widely-used explanatory variable transformation in econometric
literature, are capable of modelling the smooth transitions between heating effects, mid-
temperatures, cooling effects, and saturation plateaus at temperature extremes [12, 24].
The regression spline transformation first divides the range of temperatures into a number
of regions. Within each region, a polynomial function is fit to the data and constraints may
be placed on the polynomial functions to connect them at the region boundaries, known
as knots. This transformation is described with greater detail in section 3.7.3.

17





Chapter 3

Comparison of Temperature
Transformations

Statistical models may fall into one of three categories: explanatory models, descriptive
models, or predictive models [61]. Explanatory models must demonstrate causality, for-
mally testing a causal hypothesis. They are often parametric models chosen for their mod-
ularity and the interpretability of their coefficient estimates. Models with high explanatory
power may not necessarily have high out-of-sample prediction accuracy. Conversely, mod-
els that have high predictive power may not have much explanatory value. The primary
focus of predictive modelling is the ability to forecast future observations accurately.

Our study falls under the third category: descriptive modelling. We define a parametric
multiple regression model with explanatory variables relating to weather, time, and resi-
dential electricity price. Because our data sample is not from a controlled experiment and
has no classic control group, we cannot test causal relationships between our explanatory
variables and electricity demand. However, we can describe changes in aggregate electric-
ity demand associated with each explanatory variable. Our primary objective is inference
about the effects of weather and TOU pricing on aggregate electricity demand. We also
use time series cross-validation to evaluate our model’s out-of-sample predictive accuracy
and to maintain model parsimony. We focus on a mid-term planning horizon, evaluating
how the local distribution company’s service region responds to time-of-day, changes in
weather, and Ontario’s TOU pricing policy.
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3.1 Data Description

3.1.1 Smart Meter Data

The smart meter data used in our study was provided by a local distribution company
in south west Ontario. It contains hourly smart meter readings from 28,890 customers
across a four-city service region. The time range of observations is from October 29, 2010
through October 17, 2012. Attributes available for each customer include a unique meter
number, the longitude/latitude of the meter, kWh of electricity consumed per hour, con-
nection/disconnection dates, and the distribution transformer that the meter is connected
to.

Prior to November 1, 2011, residential customers were billed according to a seasonal,
flat rate. The long-standing flat rate pricing structure was comprised of a summer price
of 6.8¢/kWh over all hours of the day from May through October. It then changed to a
winter price of 7.1¢/kWh over all hours of the day from November through April.

On November 1, 2011 the electricity pricing structure changed to TOU rates comprised
of three price levels: off-peak, mid-peak, and on-peak. Summer off-peak hours are 7:00pm
through 6:59am (overnight) at 6.5¢/kWh. Mid-peak hours are 7:00am through 10:59am
and 5:00pm through 6:59pm at 10¢/kWh. On-peak hours are 11:00am through 4:59pm at
11.7¢/kWh. Winter off-peak hours are 7:00pm through 6:59am (overnight) at 6.2¢/kWh.
Mid-peak hours are 11:00am through 4:59pm at 9.2¢/kWh. On-peak hours are 7:00am
through 10:59am and 5:00pm through 6:59pm at 10.8¢/kWh. In both summer and winters,
all hours of weekends and holidays are off-peak rates. The weekday TOU pricing seasons
are illustrated in Figure 3.1. The distribution company’s concise transition from flat rates
to TOU pricing provides a clear opportunity to measure the effectiveness of TOU pricing in
accomplishing two of its stated objectives: overall conservation and demand-shift between
price periods.

3.1.2 Weather Data

The weather data set used in this study is hourly, historical observations from two nearby
Environment Canada monitoring stations [13, 38]. Weather observations are paired with
each meter by selecting those from the nearest monitoring station, all within 5-25 kilome-
tres. Section 3.2 describes the process of aggregating the smart meter readings to create
a single electricity demand time series. Similarly, a weighted average of weather observa-
tions is created based on the number of meters reporting each hour. Additional weather
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Figure 3.1: Plot of the TOU rate structure for weekdays. All hours of weekends and
holidays are billed at the off-peak rate. Left : Winter weekday rates, November through
April. Right : Summer weekday rates, May through October.

attributes recorded each hour are dry-bulb temperature, relative humidity, dew point,
wind direction, wind speed, visibility, atmospheric pressure, Humidex, wind chill, and a
weather condition description. The term dry-bulb refers to air temperature measured by
thermometer, shielded from moisture and radiation.

Let τ be an N × 1 vector of hourly dry-bulb outdoor temperature observations. This
is not to be confused with Kendall’s τ rank correlation coefficient, common in statistics
literature; we do not discuss Kendall’s τ in our study. The vector of outdoor dry-bulb
temperature observations τ will be used as input to temperature transformation functions
with create a matrix T of dimension N ×Pweather, where Pweather is the number of columns
in T, determined by the variable transformation applied. Left untransformed, T = τ and
θ̂ is a scalar.

3.2 Data Cleaning Process

Our first data cleaning step ensures that only residential meters are sampled. The local
distribution company’s data is a mixture of unlabelled commercial and residential meters.
Using the distribution transformer attribute for each meter, we are able to infer labels
for meters. First, only single-phase transformers and their connected meters are selected.
Second, because the longitude and latitude are known for each transformer and meter, it is
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possible to plot them in geographic information system software. The locations of meters
and transformers are exported to a Keyhole Markup Language (KML) file and viewed in
Google Earth [23]. In the KML file, folder elements are created for each distribution
transformer and child placemark elements are created for each meter connected to that
transformer, shown in Figure 3.2. In this way, the visibility of all meters connected to a
transformer can be toggled on and off easily within Google Earth’s interface. Using this
method, transformers are manually labelled as either residential, commercial, or mixed-
use based on visual information. If all meters connected to the transformer are clearly
residential or commercial, the transformer is labelled accordingly. Transformers that are
connected to both residential meters and commercial meters are labelled as mixed-use to
avoid type I errors (i.e. false-positives). Using this process, it is possible to infer labels
for 28,890 meters by manually labelling 2,657 distribution transformers. Selecting only
meters connected to residential labelled transformers results in 23,670 residential meters
to be considered in subsequent data cleaning steps.

Second, the connection date and disconnection date of meters are known. For example,
meters in newly constructed or demolished buildings would have to be connected or discon-
nected from the distribution grid. We remove meters that were connected or disconnected
during the sample period.

Third, customer changes associated with each meter are known. For example, if the
tenant changes within a rental unit, then the customer identifier connected to the meter
changes. We remove meters from our sample that had a customer change during the sample
period.

Finally, high level diagnostics are performed on this interim data sample to uncover
data quality issues. The only concerning issue identified are that some residential meters
have extremely high readings. The worst of which is a meter reading of 214,902.7 kWh for a
given hour. A 215 MWh reading is clearly an equipment failure or data transmission error.
Rather than introducing bias into selecting which meters have reported erroneous values,
a reasonable filter criteria is used to throw out meters reporting erroneous values. IEEE
C57.91-2011 section 8.2.2 describes the maximum short-term overloading of a distribution
transformer to be 300% of its nameplate rating [30]. Using this guideline, if a smart meter
has an hourly reading that single-handedly violates the maximum short-term overloading
capacity of the transformer it is connected to, then that meter is removed from the sample.

The remaining residential meter sample after all data cleaning steps contains 20,556
meters. A possible bias our data cleaning technique may have introduced is that me-
ters from mixed-zone housing in city-centres or rentals with changing tenants may be
under-represented due to removal of mixed-use transformers and removal of meters with a
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Figure 3.2: This screenshot from within Google Earth illustrates the meter labelling pro-
cess. Meters are shown as red squares. Distribution transformers are shown as blue squares.
In this screenshot, the meters for one selected transformer have been made visible. The
meters for the two unselected transformers have been hidden.
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customer change. A cursory look at the meter sample viewed in Google Earth shows that
large apartment complexes are still adequately represented in the meter sample.

A second data quality issue is the presence of missing observations. From October 29,
2010 through February 28, 2011 only seven meters reported electricity demand. Those
months have been removed from the sample so that the fitted model is not biased toward
those seven customers’ behaviour. In the remaining March 1, 2011 through October 17,
2012 sample, most meters have at least a few missing observations over the course of the
sample period. Often, a meter’s missing values occur as irregularly positioned gaps lasting
multiple hours, such that data interpolation is not suitable. We choose to study the data in
aggregate by deriving the average household demand in each hour from all households that
reported observations during that hour. The normalized aggregate residential electricity
demand time series is shown in (3.1). Going forward, we will refer to this as aggregate
electricity demand.

yi =

∑Jmeters

j=1 Υi,j∑Jmeters

j=1 I(Υi,j > 0)
, i = 1, ..., N (3.1)

Let Υ be the N×Jmeters dense matrix of smart meter readings from March 1, 2011 through
October 17, 2012. N = 14, 328, the number of hours in our sample time series after data
cleaning. Jmeters = 20, 556, the number of meters remaining after data cleaning. Let the
indicator function I() return 1 if there exists a reading for meter j at hour i. As the
function is evaluated from i = 1, ..., N , an N × 1 vector Y representing the aggregate
electricity demand for each hour of the sample period will be created. We use the vector Y
as the response variable for the remainder of this study. Figure 3.3 illustrates the number
of meters reporting each hour.

3.2.1 Overview of the Aggregate Electricity Demand Sample

Figure 3.4 shows the sample of aggregate electricity demand plotted over time. The summer
air conditioning requirements can clearly be seen during summer months. There is a less
noticeable heating effect during winter. Figure 3.5 shows a density plot of Y. The aggregate
electricity demand observations fall in the range 0.49 kWh–3.54 kWh and are approximately
lognormally distributed with mean 1.18 kWh and median 1.03 kWh.
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Figure 3.3: The number of meters reporting demand for each hour of the sample period.
The maximum number of meters reporting each hour is 20,556. The minimum number
reporting hourly during the sample period is 77 meters for a period in late March 2011.
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Figure 3.4: The cleaned sample of aggregate electricity demand plotted as a function of
time. Opacity has been used to give a sense of observation density.
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Figure 3.5: Density of the response vector Y, a sample of aggregate electricity demand.
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3.3 Temperature Transformation Comparison

This section of our analysis is a detailed comparison of existing temperature variable trans-
formations that incorporate coincident weather observations, past temperature observa-
tions, and varying degrees of non-linearity. We will illustrate in section 3.9 that aggregate
electricity demand is predominantly associated with changes in weather. By comparing
all combinations of temperature variable transformations and selecting a well-performing
model, a substantial amount of variance can be explained by weather. Based on our results,
we will carry the well-performing model forward into chapter 4. After explaining as much
variance associated with temperature as possible, the moderate effects of TOU pricing on
aggregate electricity demand can be isolated and more accurately quantified.

Recall the multiple regression model used to estimate aggregate electricity demand
(2.1). We restate the equation below for clarity:

Ŷ = β̂0 + Xβ̂ + Vω̂ + Tθ̂

Let Ŷ be an N ×1 vector representing the estimate of Y. N is the number of observations
in our aggregate electricity demand sample. Let β̂0 be the estimated intercept term. We
formulate the explanatory variables using three matrices X, V, and T which represent
time, price, and temperature transformations respectively. The effects of these explanatory
variables are represented by the coefficient estimate vectors β̂, ω̂, and θ̂ fit using ordinary
least squares.

Our treatment of time and price explanatory variables is consistent with prior work.
Accordingly, the explanatory variables in X and V remain fixed for each iteration of our
comparison. We define the notation x•,p to represent the pth column and all rows of X.
This same notation will be used with other matrices going forward. Note that categorical
variables are modelled using contrasts and require one fewer degree of freedom than there
are levels in the variable. Contrasts make use of the baseline value for each categorical
variable that needs no indicator. For example, the baseline value for hour-of-day is 00:00.
All other hour-of-day coefficients are offset from that baseline [31]:

� x•,p=1 through x•,p=23 are hour-of-day indicators representing 01:00 through 23:00.

� x•,p=24 is a working day indicator.

� x•,p=25 through x•,p=48 are indicators representing the hour-of-day × working day
interaction.

� v•,p=1 is a utility rate season indicator representing summer and winter rates.
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� v•,p=2 is a TOU active indicator representing whether customers are billed according
to flat rates or TOU rates.

Explanatory variables in X and V are selected using forward selection and ANOVA as
described in section 2.1.3. Sections 3.4 and 3.5 will describe each of the explanatory
variables in X and V.

We define three steps of temperature transformations which are used in conjunction
with one another to generate T:

1. Coincident Weather Transformations: dry-bulb temperature, feels like temper-
ature

2. Temporal Transformations: current observation, lagged observations, CDH/HDH,
moving average, and exposure-lag-response association

3. Non-Linear Transformations: switching regression, natural cubic splines

Our comparison iterates over all combinations of temperature transformations. Each iter-
ation uses a different combination of transformation functions to generate the temperature
transform basis matrix T while holding the matrices X and V fixed.

We also include several base models for comparison: a null model (i.e. intercept-only)
in which X, V, and T have been omitted; non-temperature explanatory variables only in
which T has been omitted; and dry-bulb temperature without any transformation in which
T = τ .

3.4 Temporal Explanatory Variables

Our treatment of temporal variables such as hour-of-day and working day are consistent
with prior work. We will briefly describe the relationship of each temporal explanatory
variable with electricity demand.

3.4.1 Hour of Day

First, we will define hour-of-day. The province of Ontario observes daylight savings time.
In our sample, users shifted their clocks forward one hour on March 13, 2011 and March 11,
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2012 as the province entered daylight savings. Clocks were shifted backward one hour on
November 6, 2011 as the daylight savings ended. The hours used as explanatory variables
are the hours customers base their routines around and that the province bases TOU
price periods around. This seemingly obvious assumption has three implications for the
structure of our model.

First, the periodicity of time series electricity demand is 24 hours. We considered mod-
elling periodicity as a cyclic function using index i as an input. Using regression splines or
a Fourier transform could potentially save many degrees of freedom in the model. However,
daylight savings would essentially be a phase shift which requires special treatment.

Second, we wish to construct a descriptive, interpretable model. Particularly in chapter
4, when hour-of-day is interacted with utility rate seasons and TOU pricing, we wish to
interpret effects associated with aggregate electricity demand for each hour. A basis matrix
used to model a periodic function of i would be difficult and non-intuitive to interpret. As
shown in [1], the alignment of Ontario’s three TOU periods to demand patterns is a topic
of interest and may not be optimally defined.

Third, when interacted with a working day indicator, the hour-of-day factor has clear
and interpretable meaning.

For these reasons, hour-of-day is modelled as a categorical factor with 24 terms. In X,
hour-of-day is represented by 23 sparse columns with indicators for each hour. Following the
convention of model contrasts, the hour 00:00 is considered the baseline and has no indicator
column in X. All other hours of the day are represented by indicator variables and deviate
from this baseline case [31]. Figure 3.6 shows a box plot of electricity demand grouped
by hour-of-day. See Appendix B for details regarding box and whisker plot interpretation.
Examining the distribution for each hour shows the expected patterns of user activity
within the home.

3.4.2 Working Days

It is intuitive to assume that residential electricity demand will differ by day-of-week. De-
mand within the home will typically be different on a Monday than a Saturday. It will
also differ on holidays, when residential customers will not follow their typical weekday de-
mand patterns. Following this intuition, we initially added day-of-week as a seven-category
factor and an indicator variable flagging statutory holidays in the province. However, we
are able to achieve the same level of explanatory power using only one degree of freedom
by defining a working day indicator, rather than using seven degrees of freedom to model
day-of-week and holiday. The working day indicator is defined similar to [40, 41] such that
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Figure 3.6: Plot of aggregate electricity demand grouped by hour. Note that this plot
contains data from both working and non-working days.
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Figure 3.7: Left : Distribution of electricity demand grouped by day-of-week, for non-
holidays only. Right : Distribution of electricity demand grouped by the working day
indicator.

weekends and holidays are non-working days. All other weekdays are working days, shown
in Figure 3.7. This in line with the local distribution company’s definition of a working day
and associated off-peak TOU prices. It allows for meaningful variable interactions to be
defined in chapter 4 and reduces the degrees of freedom in our multiple regression model.

A statistically significant and intuitive interaction exists for working day and hour-of-
day. An interaction between two categorical factors like hour-of-day and working day is a
sparse matrix with indicators for each unique combination of two variables not represented
by their main effects or baseline values. The main effects of each explanatory variable
represent deviation from the sample mean and the two-way interactions represent deviation
from their main effects.

For example, the baseline for hour-of-day is 00:00 and the baseline for working day is
working day=FALSE (i.e. non-working days). If observation i occurs at 00:00 on a non-
working day, neither variable’s main effects will be added to β0. If observation i is 07:00
on a non-working day, only the coefficient estimate for 07:00 will be added to β0 (i.e. main
effects). Neither a main effect for working day nor an interaction for the two is added
because the working day explanatory variable is at its baseline. If observation i is 07:00
on a working day. Then both the coefficient estimate for 07:00 and the coefficient estimate
for working day=TRUE will be added to β0 (i.e. main effects). Additionally, an interaction
indicator for the combination of 07:00 × working day=TRUE exists and adds an interaction
effect to β0. An example of working day × hour-of-day interaction coefficient estimates is
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Table 3.1: Coefficient estimates illustrating the intuition behind the hour-of-day × working
day interaction.

Interaction Term Coefficient Est. p-val Significance
01:00×working day=TRUE 0.001 0.9772
02:00×working day=TRUE -0.009 0.8642
03:00×working day=TRUE 0.007 0.8814
04:00×working day=TRUE 0.017 0.7278
05:00×working day=TRUE 0.031 0.5377
06:00×working day=TRUE 0.066 0.1850
07:00×working day=TRUE 0.135 0.0066 **
08:00×working day=TRUE 0.152 0.0022 **
09:00×working day=TRUE -0.010 0.8336
10:00×working day=TRUE -0.140 0.0048 **
11:00×working day=TRUE -0.208 0.0000 ***
12:00×working day=TRUE -0.246 0.0000 ***
13:00×working day=TRUE -0.261 0.0000 ***
14:00×working day=TRUE -0.268 0.0000 ***
15:00×working day=TRUE -0.252 0.0000 ***
16:00×working day=TRUE -0.214 0.0000 ***
17:00×working day=TRUE -0.153 0.0020 **
18:00×working day=TRUE -0.086 0.0817 .
19:00×working day=TRUE -0.061 0.2205
20:00×working day=TRUE -0.025 0.6088
21:00×working day=TRUE 0.016 0.7501
22:00×working day=TRUE 0.043 0.3919
23:00×working day=TRUE 0.038 0.4386

33



given in Table 3.1. The coefficient estimates will change slightly with each temperature
transformation compared, but the sign, intuition, and statistical significance remain appli-
cable. To interpret coefficient contrasts for an interaction term, one must keep in mind the
baselines for each explanatory variable: 00:00 and working day=FALSE. Aggregate elec-
tricity demand begins earlier on working days than the working day=FALSE baseline. This
activity is likely caused by residential customers preparing for work around 07:00 or 08:00
on working days, reflected by a positive coefficient estimate that is of noticeable effect
size and has a statistically significant p-value. 10:00 through 17:00 on working days are
associated with less aggregate electricity demand, likely because the majority of residential
customers are at work. All coefficient estimates are negative, have meaningful effect size,
and have statistically significant p-values.

3.5 Seasonality and Price

As suggested by Figure 3.4, there are clear seasonal patterns during summer and winter
months. Fitting a model with a categorical explanatory variable for month is statistically
significant and increases AdjustedR2. However, for temperature transformation compar-
ison we are primarily interested in the explanatory power of each temperature transfor-
mation combination used to generate T. Any explanatory variable that is collinear with
the temperature transformation basis matrix masks its effects. Collinearity indicates the
values of two explanatory variables increase and decrease together, fitting the effects of the
underlying temperature phenomenon across two variables’ coefficient estimates.

We check for collinearity using variance inflation factor (VIF) shown in (3.2) and the
car package in R [19].

V IF (β̂j) =
1

1−R2
Xj |X•,j

(3.2)

The term R2
Xj |X•,j

represents the R2 value of regressing Xj onto all other explanatory

variables. As R2 of one variable regressed onto others approaches 1, the VIF will become
large, indicating collinearity. Table 3.2 shows VIF values for the main effects of a model fit
with current, dry-bulb temperature, transformed using natural cubic splines (section 3.7.3).
Categorical variables from X are also used. Generally, a V IF > 5 indicates collinearity,
meaning that the term may mask the significance of other collinear terms [31]. In Table
3.2, none of the main effects considered are collinear.

Table 3.3 shows VIF values when a categorical variable for month is considered as
well. In the second scenario, month and temperature are indicated to be collinear due
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Table 3.2: VIF of explanatory variable main effects with no seasonality.
Explanatory Variable(s) VIF Degrees of Freedom
Natural Cubic Splines T 1.12 4

Hour-of-Day 1.12 23
Working Day 1.00 1

Table 3.3: VIF of explanatory variable main effects with a categorical variable for month.
Explanatory Variable(s) VIF Degrees of Freedom
Natural Cubic Splines T 8.52 4

Month 7.60 11
Hour-of-Day 1.29 23

Working Day 1.01 1

to V IF > 5. The addition of a month explanatory variable would mask the effects of
temperature.

Instead, we have considered two slightly similar but distinct categorical variables for
utility rate season and a TOU billing indicator to be included in the explanatory variable
matrix V. Utility rate season takes values “summer” or “winter” according to the local
distribution company’s billing season. It indicates a different, economic seasonality that
the customer may react to. The TOU billing indicator, referred to as TOU Active indicates
whether TOU billing has gone into effect. Together, these two economic indicators add
model pricing effects that may influence residential customers. Table 3.4 of VIF statistics
for this model. The addition of pricing seasonality is not collinear with T. The terms

Table 3.4: VIF of explanatory variable main effects with addition of utility rate season and
a TOU billing indicator.

Explanatory Variable(s) VIF Degrees of Freedom
Natural Cubic Splines T 3.08 4

Rate Season 2.85 1
TOU Active 1.08 1
Hour-of-Day 1.17 23

Working Day 1.00 1

also have statistically-significant p-values, so their inclusion in the temperature effects
comparison are justified.
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3.6 Conditioned Value Visualizations

All figures in sections 3.4 and 3.5 illustrating the relationships of temporal and price ex-
planatory variables to aggregate electricity demand have been plots of the original, observed
explanatory variables. As we visualize each type of temperature transformation through
section 3.7, it becomes difficult to visualize the transformations using observed data. Ex-
amining Figure 3.8 one could argue that there is slight horizontal stratification among the
plotted observations. For the purposes of visualizing the fitted regression line for a temper-
ature transformation, it is desirable to filter out the effects of other explanatory variables.
Because the effects from each explanatory variable are assumed to be independent, the
response can be conditioned such that the effects from certain explanatory variables can
be fixed at some hypothetical baseline. For example, if estimate ŷi occurred at 19:00, the
coefficient estimate for hour 19:00 could be subtracted from ŷi so that the observation has
been conditioned as if it occurred at hour-of-day’s baseline 00:00. This manner of condi-
tioning the response is done for all variables that are not of interest for the purposes of
visualizing temperature transformations [7]. The application of conditioned values is used
for visualization purposes only. It does not affect the model fitting process. Figure 3.9
shows the same aggregate electricity demand as Figure 3.8, but with hour-of-day condi-
tioned to 00:00, working day conditioned to FALSE, TOU active conditioned to FALSE, and
utility rate season conditioned to summer. All plots in sections 3.7.1, 3.7.2, and 3.7.3 will
condition explanatory variables from X and V in this manner for the sake of visualizing
the remaining variance fit by temperature transformations.

3.7 Temperature Variable Transformations

Sections 3.4 and 3.5 describe the temporal and electricity price explanatory variables in X
and V. In the remaining sections of this chapter, those explanatory variables in X and V
will remain fixed. This section describes three steps of temperature transformations used
to iterate all combinations of temperature variable transformations used to generate T in
our comparison study.

Recall section 3.1.2. We begin the temperature transformation steps with an N × 1
vector of outdoor, dry-bulb temperature observations τ . The algorithm used to gener-
ate T is shown in Algorithm 1. Using this algorithm, all combinations of temperature
transformations will be compared.
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Figure 3.8: Aggregate electricity demand as a function of dry-bulb temperature. Points
have been given 50% transparency to give a sense of density.
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Figure 3.9: After fitting an interim model with explanatory variables in X and V, we can
condition the response on each variables’ baseline.
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Algorithm 1 Overview of how temperature transformations are combined to generate the
matrix T.

1. Transform dry-bulb temperature observations τ into the vector τ ′ using coincident
weather observations.

2. Transform the vector τ ′ into the vector τ ′′ using a transformation which incorporates
past observations. This transformation represents temperature’s effects over time.

3. Finally, use the vector τ ′′ as input into a transformation which models the non-linear
relationship between τ ′′ and aggregate electricity demand Y. The result of this third
step is the matrix T used in the multiple regression model.

3.7.1 Coincident Weather Transformation

If τ is left untransformed during the first step of the temperature transformation Algorithm
1, then τ ′ = τ . The output of the coincident weather transformation would be dry-bulb
temperature observations.

Feels Like Transformation

Humidity has been incorporated as a component of temperature observations frequently in
prior work for two reasons. First, due to the effects of relative humidity on heat transfer
and human comfort, residential customers may be more inclined to use cooling controls
within their home on humid days. Second, dehumidifiers and air conditioners must operate
more frequently on humid days to remove moisture from the air to maintain a comfortable
environment indoors.

Similarly, wind chill on extremely cold days may have an added effect beyond dry-bulb
temperature observations due to human perception of temperature. They may be more
inclined to stay indoors and use heating controls within their home.

The feels like temperature transformation replaces dry-bulb temperature observations
with heat index or wind chill values where applicable. Algorithm 2 provides an overview
of the feels like transformation and Figure 3.10 visualizes its output.
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Algorithm 2 Overview of feels like temperature transformation. Formulation of heat
index can be found at [60] and wind chill found at [14].

if τi > 27 andRelativeHumidityi > 40% then
τ ′i = Heat Indexi

else if τi ≤ 10 andWindSpeedi > 4.8kph then
τ ′i = WindChilli

else
τ ′i = τi

end if

Figure 3.10: A scatter plot of feels like temperature observations plotted against aggregate
electricity demand conditioned on other temporal explanatory variables.
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Table 3.5: Up to 5 lags of dry-bulb temperature are correlated with the aggregate electricity
demand at levels comparable to dry-bulb temperature at time i.

Correlation with yi

τi 0.539
τi−1 0.551
τi−2 0.558
τi−3 0.558
τi−4 0.550
τi−5 0.533
τi−6 0.509
τi−7 0.477
τi−8 0.440
τi−9 0.400
τi−10 0.361
τi−11 0.328
τi−12 0.302

3.7.2 Temperature Effects Over Time

If τ ′ is left untransformed during the second step of the temperature transformation Algo-
rithm 1, then τ ′′ = τ ′. The output of the past weather observation transformation would
be current observations from τ ′.

Prior work mentioned in 2.2.2 and building management literature both suggest that
lagged temperatures are important, due to heat stored in the building fabric [49]. To assess
the importance of past temperature in predicting present electricity consumption, Table
3.5 shows the correlation of 0-12 lags of dry-bulb temperature τ with yi. The correlation
of yi with past temperatures suggests that there may be an underlying temporal process
interacting with temperature. There may be a heat transfer delay through insulation, a
build-up of temperature in building fabric, human perception of prolonged temperatures,
or smoothing observations with a moving average may simply have better explanatory
power.
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Lagged Temperature Variables

The lagged observation transformation (3.3) considers the possibility that temperature’s
effects on electricity demand may be delayed by a number of hours `, also known as lags.
The cause for this delay may be the time it takes an outdoor temperature experienced to
pass through a building’s insulation. After the time delay, the household’s thermal controls
react.

τ ′′i = τ ′i−`, i = (1 + `), ..., N (3.3)

This interim transformation vector has ` fewer rows than the original vector of tempera-
tures. Accordingly, rows i = 1, ..., ` from Y, X, and V must be removed from the sample.
In our comparison we will compare all lags ` = 1, ..., 6.

Temperature Moving Average

A moving average of recent temperatures, shown in (3.4), is included in our comparison
to model the possibility that household thermal control systems are not reacting only to
a specific temperature experienced at time i or some past time i − `. Instead, thermal
control systems may be reacting to a number of recently experienced temperatures. The
moving average also has the benefit of smoothing brief temperature extremes which, in the
context of housing insulation and thermal controls, may not have descriptive value aside
from their influence on the moving average. The variable L represents the number of recent
temperatures used in the moving average.

τ ′′i =

∑L−1
`=0 τ

′
i−`

L
, i = L, ..., N (3.4)

The moving average transformation vector has L − 1 fewer rows than the vector τ ′ used
as input. Accordingly, rows i = 1, ..., (L − 1) from Y and X must be removed from the
sample. Figure 3.11 shows conditioned electricity demand plotted as a function of a six-
hour moving average (i.e. L = 6) of dry-bulb temperature observations. L = 6 is selected
empirically using the highest AdjustedR2 as the selection criterion.

3.7.3 Non-Linear Temperature Effects

The temperature-sensitivity of electricity demand is dependent on the region of study.
Ontario has four distinct seasons. In the context of electricity demand, summer and winter
seasons are notable. Methods to cool residential households include central air conditioning,
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Figure 3.11: Conditioned aggregate electricity demand plotted as a function of temperature
moving average with L = 6.
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window unit air conditioning, and fans [45]. All of these cooling methods require electricity
for use. Winter heating methods are roughly 66.7% natural gas, 13.9% wood, 10.4%
electric, 5.4% heating oil, and 3.5% other [46]. Although Ontario’s heating requirements
are significant, only those homes with electric heating would increase electricity demand.
There may also be increased electricity usage due to customers’ tendency to stay indoors
during during cold days. Given these details of thermal response methods in Ontario, we
expect that residential cooling requirements have a more significant effect on electricity
demand than heating requirements. Figure 3.8 suggests that this assumption is valid.

If τ ′′ is left untransformed during the third step of the temperature transformation
Algorithm 1, then T = τ ′′. The output of the non-linearity transformation would be a
one-column matrix of observations generated by the first two transformation steps. Figure
3.12 shows the coefficient estimate θ̂ fit for an untransformed vector of dry-bulb temper-
ature observations. It easy to see that in a temperate region like Ontario, temperature’s
relationship with aggregate electricity demand is non-linear. The coefficient estimates for
untransformed T has little meaning and is arguably misleading.

Switching Regression Transformation

The non-linear relationship between temperature and aggregate electricity demand can be
approximated by a number of linear regions. This approach is generally referred to as a
piecewise linear transformation or linear splines [31]. In the context of electricity demand
we can choose one break point and refer to it as a switching regression [41]. (3.5) shows
the basis function which transforms τ ′′ into a column of T representing heating effects
noticeable during low temperatures. Recall that the notation ti,1 represents the ith row
and 1st column of the matrix T.

ti,1 = (ξbreak − τ ′′i )+, i = 1, ..., N (3.5)

Similarly, (3.6) shows the basis function which transforms τ ′′ into a second column of T
representing cooling effects noticeable during high temperatures.

ti,2 = (τ ′′i − ξbreak)+, i = 1, ..., N (3.6)

Let the notation (x)+ denote only positive values such that (x)+ := max(0, x). Let ξbreak
be the temperature break point estimated using the segmented package in R [43, 44]. The
fitted regression line for this switching regression transformation is shown in Figure 3.13.
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Figure 3.12: Linear regression line fit to untransformed, outdoor, dry-bulb temperature
observations.
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Figure 3.13: Fitted regression line for switching regression transformation of outdoor, dry-
bulb temperature. Temperature break point at 17.9 ◦C.
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Natural Cubic Splines Transformation

As we progress to increasingly non-linear transformations of τ ′′, the interpretation of the
fitted model becomes less straightforward. Polynomial transformation of explanatory vari-
ables is a common econometric technique used to deal with non-linearity. However, high-
degree polynomial transformations of explanatory variables occasionally result in unintu-
itive fits. The fit at explanatory variable extremes is particularly unstable. Regression
splines are a common technique used to constrain the polynomial transformation [26].

Similar to switching regression, the goal of piecewise polynomial transformation is to
break τ ′′ into regions using break points called knots, represented by the K × 1 vector ξ.
Let K be the number of knots, such that there are K + 1 regions. For each region, a
polynomial basis function is used to transform observations in τ ′′. Additional restrictions
about the continuity of the polynomial functions at each knot can be added, known as the
order of the spline, denoted by M .

First, a number of knots are selected. Figure 3.14 illustrates K = 3 knots. Second, M
is defined to be the order of desired continuity. An order M = 1 spline indicates that the
polynomial function fit to each region can be discontinuous at the knots. Order M = 2
restricts piecewise polynomial functions of adjacent regions to be continuous at their shared
knot. M = 3 places the additional restriction that the functions’ 1st derivative must be
continuous at the knots. M = 4 places yet another restriction that the functions’ 2nd
derivative must be continuous at the knots. We have chosen order M = 4 splines, also
known as cubic splines, which are widely used [26]. The first M columns of T represent
the order of the spline (i.e. continuity restrictions), shown in (3.7).

ti,m = τ ′′
m−1
i , m = 1, ...,M (3.7)

The subsequent K columns of T represent the polynomial basis function applied to each
temperature region, shown in (3.8).

ti,M+k = (τ ′′i − ξk)M−1
+ , k = 1, ..., K (3.8)

One further refinement, used to address erratic behaviour of polynomials at the extremes
where few observations exist, is to place additional constraints on the fit of the outer
spline regions. Natural cubic splines restrict the polynomial functions of the outer regions
to be linear beyond the sample boundaries. This added bias at the boundaries is often
reasonable considering the sparse number of observations. Figure 3.14 illustrates a natural
cubic spline fit of aggregate electricity demand to dry-bulb temperature. There are three
knots placed at 3 ◦C, 23 ◦C, and 30 ◦C, selected empirically using the highest AdjustedR2

47



Figure 3.14: Natural cubic splines fit of outdoor, dry-bulb temperature fit to aggregate
electricity demand. Knots are placed at 3 ◦C, 23 ◦C, and 30 ◦C.
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as the selection criterion. A smooth transition between heating and cooling effects is visible
around 17 ◦C. The lower tail exhibits heating effects saturation. The upper tail begins to
show cooling effects saturation, but a plateau is never reached nor does it seem apparent
in the data. This is a limitation of our data sample, having only two summers of weather.
It is likely that cooling effects plateau at extremely hot temperatures not present during
our sample period.

3.7.4 Complex Temperature Transformations

There are two complex temperature transformations which violate Algorithm 1. Both the
heating/cooling degree-hour transformation and the exposure-lag-response transformation
combine temperature transformation steps two and three. Both transform τ ′ directly to
the matrix T.

Cooling Degree-Hours and Heating Degree-Hours

Heating degree-hours (HDH) and cooling degree-hours (CDH) are derived values which
represent the build-up of temperature beyond a given threshold during a recent window of
time. Similar to switching regression, a temperature break point ξbreak is chosen. HDH is
determined by summing the number of degrees below ξbreak during a window of L recent
hours, shown in (3.9).

ti,1 =
L∑

`=0

(ξbreak − τ ′i−`)+, i = L, ..., N (3.9)

Similarly, CDH is determined by summing the number of degrees above ξbreak during a
window of L recent hours, shown in (3.10).

ti,2 =
L∑

`=0

(τ ′i−` − ξbreak)+, i = L, ..., N (3.10)

The resulting (N −L)× 2 transformation matrix T is a piecewise linear regression, similar
to switching regression. Rows i = 1, ..., L from Y, X, and V must also be removed from
the sample. Because CDH and HDH values are approximately linear, shown in Figure 3.15,
we do not fit a model using these values as input to a natural cubic splines transformation.
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Figure 3.15: Both HDH and CDH window size is L = 6. Left Conditioned aggregate
electricity demand plotted as a function of HDH. Right Conditioned aggregate electricity
demand plotted as a function of CDH.

Exposure-Lag-Response Transformation

Recall Table 3.5 which shows the correlation of lagged temperature observations with
electricity demand at time i. A finite distributed lag model was initially proposed in [3]
to compute a weighted sum of past explanatory variable effects on a response variable.
More recent implementations of this concept have come to be known as distributed lag
non-linear models (DLNM) [21]. In the DLNM framework, the effects of weather and
its relation with time are represented by the concept of basis. It assumes that the effect
at time i is a basis that can be expressed as a linear combination of exposure and lag
transformations of τ ′. These transformations are known as basis functions. For example,
the basis function of temperature’s effects may be modelled with natural cubic splines and
is known as the exposure-response association. The weight of the effect may change with
time. The basis function describing effect weights over time is known as the lag-response
association. Together, they comprise the basis known as exposure-lag-response association.

Let the exposure basis function be some non-linear transformation described in section
3.7.3. We transform τ ′ using a non-linear transformation but instead denote the resulting
matrix as Z, representing the exposure basis matrix with dimensions N ×U . Let U be the
number of explanatory variables in the exposure basis matrix.

To represent the time dimension, we first define an (L+ 1)×1 vector £ that represents
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lags of time, shown in (3.11).
£ = [0, ..., `, ..., L]> (3.11)

A lag-response matrix C is created by transforming £ with a lag basis function. For our
temperature transformation comparison, we choose a cubic polynomial transformation as
our lag basis function. The application of a polynomial transformation to £ is shown in
(3.12).

ci,• = [£1
i ,£

2
i , ...,£

D
i ]>, i = 1, ..., (L+ 1) (3.12)

Let D be the degree of the polynomial transformation (i.e. the maximum exponent).
Because we have chosen a cubic polynomial transformation, D = 3. Let the notation ci,•
indicate all columns of row i of C. Each column of ci,• is £i raised to a higher power.

Assuming a maximum lag L, a lag dimension is added for each of the basis variables in
Z to produce an N ×U × (L+ 1) array Ṙ. (3.13) shows the definition of the lag dimension
in Ṙ using elements from Z.

ri,j,• = [zi,j, ..., zi−`,j, ..., zi−L,j]
>, i = 1, ..., N ; j = 1, ..., U (3.13)

At the core of the exposure-lag-response association is the cross-basis matrix, which
we will use as the temperature transformation T. The cross-basis matrix simultaneously
expresses the form of temperature exposure effects and non-linear weight of those effects
on electricity demand a recent window of L hours. We first present a cross-basis array Ḣ
shown in (3.14).

Ḣ = (1> ⊗ Ṙ)� (1⊗G1,3(C)⊗ 1>) (3.14)

Let Gi,j be the operator permuting the indexes i and j and assume that a generic i × j
matrix can be expressed as an i × j × 1 array. Let 1 be vectors of ones with appropriate
dimensions. The notation ⊗ indicates the tensor product and � indicates the entrywise
product. Ḣ will be an N × (U ·D)× (L+ 1) array.

To create a cross-basis matrix to be used as T we sum along the third dimension of
lags, shown in (3.15).

ti,j =
L+1∑
`=1

hi,j,`, i = 1, ..., N ; j = 1, ..., (U · U) (3.15)

In our comparison we used the package dlnm in R to create the exposure-lag-response cross-
basis matrix [22, 21]. Figure 3.16 shows the effects of temperature over time as estimated
by exposure-lag-response association. A natural cubic splines transformation is used as the
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Figure 3.16: Exposure-lag-response association using a natural cubic spline exposure-
response basis function, cubic polynomial lag-response basis function, and L = 12 lags
considered.
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exposure-response basis function and a cubic polynomial transformation is used as the lag-
response basis function. The interpretation of this figure is that exposure to temperature
has an additive effect on aggregate electricity demand over time. The effect associated
with temperature at time i is added with effect associated with temperature at time i− 1,
and so on to i − L. In Figure 3.16 the maximum number of lags to consider effects for is
set to L = 12. Any temperature exposures beyond that are assumed to have no effect on
electricity demand at time i. Our interpretation of this transformation is discussed with
greater detail in section 3.9.2.

3.8 Temperature Transformation Evaluation Criteria

3.8.1 Variance Explained

Our primary evaluation criteria will be a measure of variance explained, AdjustedR2,
defined in (2.8). We also check the value of BIC defined in (2.9) to guard against over
fitting. As AdjustedR2 increases, BIC’s value should decrease. If AdjustedR2 decreases
and BIC increases or if both AdjustedR2 and BIC increase, then added explained variance
is not justified by added model complexity.

3.8.2 Residual Analysis

Aside from examining the relationship of each explanatory variable with aggregate electric-
ity demand individually, the residuals remaining after fitting a model to data can provide
an indication of underlying issues with the estimated model. Recall (2.2) which defines
an N × 1 vector of residuals e. Ideally, e should be normally distributed, mean zero, and
independent of each explanatory variable. To address heteroscedasticity increasing with
electricity demand, the temperature transformation comparison was also run fitting mod-
els to log transformed electricity demand. The results did not yield any additional insight
beyond the untransformed response Y and are briefly discussed in Appendix C.

3.9 Temperature Transformation Explanatory Power

The temperature transformation comparison results are shown in Table 3.6. The first three
columns show how temperature transformations from the three categories are combined.
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The AdjustedR2 column is our primary evaluation criterion. It measures the amount of
variance explained by the model. BIC and DW columns provide secondary measures of
model complexity and serially correlated errors. The final two columns report predictive
accuracy using the time series cross-validation process described in section 2.1.5. Discussion
of the temperature transformation steps is provided in sections 3.9.1 through 3.9.3. Though
combinations of temperature transformation steps each produce incremental improvements,
the proportion of variance explained by all temperature transformations is notable when
compared to the three baseline models: the null model, non-temperature explanatory
variables only, and a model which applies no transformation to temperature observations.
The AdjustedR2 for a model which applies no temperature transformation is 0.580. Across
all temperature transformations the resulting models’ AdjustedR2 values range from 0.790
to 0.911.

3.9.1 Discussion of Coincident Weather and Temperature

The use of heat index and wind chill as components of feels like temperature has greater
AdjustedR2 than the use of dry-bulb temperature in all cases but two. Our analysis
cannot provide additional insight about the underlying process, whether human percep-
tion or mechanical. Conversely, feels like temperature has poorer out-of-sample predictive
power than dry-bulb temperature. Our interpretation of this mixed result is that our feels
like interim temperature transformation has little added value over simply using dry-bulb
temperature observations.

3.9.2 Discussion of Delayed Temperature Effects

Our clearest descriptive results pertain to the time delay between observed temperature
and its effects within residential households. If an analyst is to use a single temperature
observation to explain electricity demand at time i, the temperature observation at time
i − 2 should be used. It has the highest correlation as shown in Table 3.5. Of single
temperature variables, it also has the highest AdjustedR2 and out-of-sample predictive
power. We interpret this to mean that residential customer’s household thermal controls
are reacting to temperatures experienced in the past, not the current hour.

Of the three temporal transformations that use a window of recent temperature obser-
vations, both CDH/HDH and the moving average transformations showed that a six-hour
window of temperature observations yielded the highest AdjustedR2. We set the number of
lags used in exposure-lag-response to be six hours as well to be comparable with CDH/HDH
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Table 3.6: Results of temperature transformation comparison.
Temporal Weather Non-Linearity Adj. BIC DW Avg. MAE Avg. MAPE
Transform Transform Transform R2 (kWh) (%)

ideal=1 ideal=low ideal=2 ideal=0 ideal=0,
max=100

Null Model (i.e. intercept only) 0.000 22339.7 0.056 0.432 37.57
Non-Temperature Explanatory Variables Only 0.438 14497.9 0.042 0.397 37.36

None (i-0) None (Drybulb) None (Linear) 0.580 10324.2 0.060 0.266 23.51
None (i-0) None (Drybulb) Switching Regression 0.854 -4822.3 0.201 0.166 14.20
None (i-0) None (Drybulb) Natural Splines 0.862 -5551.9 0.198 0.157 13.19
None (i-0) Feels Like Switching Regression 0.857 -5097.0 0.208 0.164 14.00
None (i-0) Feels Like Natural Splines 0.862 -5550.1 0.210 0.158 13.35
i-1 None (Drybulb) Switching Regression 0.875 -7068.5 0.229 0.149 13.05
i-1 None (Drybulb) Natural Splines 0.884 -8028.3 0.228 0.141 12.02
i-1 Feels Like Switching Regression 0.878 -7326.9 0.236 0.149 12.82
i-1 Feels Like Natural Splines 0.884 -8036.4 0.241 0.143 12.19
i-2 None (Drybulb) Switching Regression 0.881 -7741.3 0.258 0.144 12.71
i-2 None (Drybulb) Natural Splines 0.889 -8722.6 0.262 0.135 11.64
i-2 Feels Like Switching Regression 0.883 -7974.6 0.266 0.144 12.46
i-2 Feels Like Natural Splines 0.890 -8810.8 0.276 0.137 11.76
i-3 None (Drybulb) Switching Regression 0.873 -6803.5 0.248 0.149 12.96
i-3 None (Drybulb) Natural Splines 0.880 -7627.2 0.250 0.138 11.72
i-3 Feels Like Switching Regression 0.875 -7026.7 0.257 0.149 12.73
i-3 Feels Like Natural Splines 0.882 -7807.8 0.266 0.139 11.81
i-4 None (Drybulb) Switching Regression 0.853 -4683.5 0.232 0.159 13.50
i-4 None (Drybulb) Natural Splines 0.859 -5294.1 0.231 0.147 12.05
i-4 Feels Like Switching Regression 0.855 -4925.3 0.240 0.158 13.28
i-4 Feels Like Natural Splines 0.862 -5563.3 0.244 0.147 12.13
i-5 None (Drybulb) Switching Regression 0.825 -2171.8 0.192 0.173 14.29
i-5 None (Drybulb) Natural Splines 0.830 -2628.2 0.191 0.160 12.84
i-5 Feels Like Switching Regression 0.828 -2437.6 0.199 0.172 14.11
i-5 Feels Like Natural Splines 0.834 -2940.9 0.201 0.161 12.94
i-6 None (Drybulb) Switching Regression 0.790 387.4 0.166 0.189 15.39
i-6 None (Drybulb) Natural Splines 0.796 -9.7 0.165 0.179 14.34
i-6 Feels Like Switching Regression 0.794 114.4 0.171 0.188 15.24
i-6 Feels Like Natural Splines 0.801 -321.1 0.172 0.179 14.41
CDH/HDH (L=6) None (Drybulb) Switching Regression 0.895 -9493.4 0.183 0.133 11.53
CDH/HDH (L=6) None (Drybulb) Natural Splines N/A N/A N/A N/A N/A
CDH/HDH (L=6) Feels Like Switching Regression 0.896 -9629.3 0.184 0.134 11.36
CDH/HDH (L=6) Feels Like Natural Splines N/A N/A N/A N/A N/A
Moving Avg. (L=6) None (Drybulb) Switching Regression 0.895 -9492.1 0.195 0.139 12.33
Moving Avg. (L=6) None (Drybulb) Natural Splines 0.902 -10537.5 0.196 0.128 10.94
Moving Avg. (L=6) Feels Like Switching Regression 0.897 -9771.0 0.193 0.138 11.99
Moving Avg. (L=6) Feels Like Natural Splines 0.904 -10718.9 0.199 0.130 11.16
Lag-Response: Cubic
Polynomial (L=6)

None (Drybulb) Exposure-Response:
Switching Regression

0.902 -10388.5 0.197 0.127 10.93

Lag-Response: Cubic
Polynomial (L=6)

None (Drybulb) Exposure-Response:
Natural Splines

0.910 -11559.9 0.209 0.118 9.86

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response:
Switching Regression

0.901 -10257.2 0.192 0.129 10.88

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response:
Natural Splines

0.911 -11732.2 0.213 0.123 10.43
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and moving average transformations. All three temporal transformations which include a
window of past observations have high AdjustedR2 values and improved out-of-sample
prediction accuracy. This suggests that a window of recently-observed temperatures is
important to properly describe its relationship with electricity demand.

Despite the prevalence of the CDH/HDH metric in literature, the more simplistic mov-
ing average transformation has greater explanatory power and predictive power. This may
be caused by the smoothing effect that moving average has on the temperature explanatory
variable.

Finally, we use the exposure-lag-response transformation in our analysis to evaluate a
technique we have not found in electricity demand analysis literature. Its intended purpose,
to model the weight of an exposure effect over time, is not easily interpretable when applied
to our data sample. Figure 3.16 was created using a natural splines form of temperature
effects over 12 hours. As expected, low- and high-temperature extremes have a significant
effect on aggregate electricity demand. However, the form of its impact over time is not
intuitive. The most unintuitive result is that of > 35 ◦C and 1 − 5 ◦C experienced 11-12
hours in the past reducing the estimated electricity demand at hour i. Considering the
effect of temperate at time i−12 for other temperatures, one would expect that > 35 ◦C and
1− 5 ◦C have no effect on electricity demand. Our result seems symptomatic of overfitting
the time dimension. The six-hour lag-response used for comparison to CDH/HDH and
moving average is even more problematic, shown in Figure 3.17. This unintuitive result
is likely a symptom of lag-response basis function having three degrees of freedom over
six lags of time. For a short window of time one might select a simpler linear or identity
lag-response basis function. However, they would have little explanatory value over moving
average. For these reasons, we do not believe the exposure-lag-response transformation has
added descriptive value for our case study.

3.9.3 Discussion of Non-Linear Structure

Despite the strong assumption of linearity made by the switching regression transforma-
tion, it explains untransformed aggregate electricity demand reasonably well using either
dry-bulb temperature or feels like temperature. When estimating unlagged temperature
observations, its AdjustedR2 ≈ 0.85 is comparable to AdjustedR2 ≈ 0.86 using natural
splines. The temperature breakpoint has a straightforward interpretation in relation to
electricity demand. The empirical switching point for dry-bulb temperature in our data,
estimated using the segmented package in R, is 17.9 ◦C [44].

Natural cubic splines do provide more flexibility in modelling the temperature’s non-
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Figure 3.17: Exposure-lag-response association using a natural cubic spline exposure-
response basis function, cubic polynomial lag-response basis function, and L = 6 lags
of temperature exposure considered.
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linear relationship with aggregate electricity demand and has higher AdjustedR2 than
switching regression. The assumption of linearity beyond the range of observations is well-
suited to model saturation of heating effects at low temperatures, not reflected in switching
regression. However, this assumption of linearity beyond observed high temperatures ob-
served in our data is not well-suited to cooling effects saturation.

3.10 Residual Analysis

The first assumption of linear regression analysis is that errors be normally distributed
with mean zero. Figure 3.18 shows the residuals of a multiple regression using a dry-bulb,
six-hour moving average, natural cubic splines transformation to generate T. Residuals
are normally distributed with mean=0.

The residual plot checks for statistical independence of the errors and the potential
for them to be correlated with explanatory variables. We are primarily concerned with
time and temperature. Figure 3.19 shows residuals as a function of dry-bulb temperature
observations. This plot shows heteroscedasticity in the model’s residuals, with increased
variability at warm temperatures.

Figure 3.20 shows residuals as a function of time. The plot shows heteroscedasticity in
the model’s residuals, with greater variance associated with summer and winter seasons.
There are also indications of greater variance associated with certain days. The variance
associated with summer and winter seasons is likely a result of its heteroscedasticity asso-
ciated with temperature and season’s collinearity with dry-bulb temperature. This result
is supported quantitatively by the Durbin-Watson statistic in Table 3.6. A DW < 1 value
indicates positive serial correlation of residuals.

The final residual plot in Figure 3.21 shows residuals as a function of the estimated
response variable, aggregate electricity demand. The plot illustrates that variance of resid-
uals increases with larger values of the response variable. This too is likely a result of
heterosedasticity associated with dry-bulb temperature. Because warm temperatures are
associated with greater variance of residuals and also associated with higher electricity de-
mand, it follows that greater residual variance is associated with higher electricity demand.
Figures 3.19, 3.20, and 3.21 indicate that HAC standard errors, discussed in section 2.1.4,
must be used when performing hypothesis tests in our TOU pricing case study.
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Figure 3.18: Density of residuals, resulting from a comparison model using dry-bulb, six-
hour moving average, and natural cubic splines to generate the temperature transformation
matrix T.
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Figure 3.19: Residuals as a function of dry-bulb temperature observations, resulting from
a comparison model using dry-bulb, six-hour moving average, and natural cubic splines to
generate the temperature transformation matrix T.
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Figure 3.20: Residuals as a function of time, resulting from a comparison model using
dry-bulb, six-hour moving average, and natural cubic splines to generate the temperature
transformation matrix T.
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Figure 3.21: Residuals as a function estimated response, resulting from a comparison
model using dry-bulb, six-hour moving average, and natural cubic splines to generate the
temperature transformation matrix T.
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Chapter 4

Case Study: Effects of Mandatory
Time-of-Use Billing in South West
Ontario

In section 2.1 we describe the rationale for modelling time, price, and weather explanatory
variables as the matrices X, V, and T. We held explanatory variable matrices X and
V constant for our temperature transformation comparison in chapter 3. Based on our
results in section 3.9 we conclude that the dry-bulb, six-hour moving average, natural cubic
splines transformation T has the best balance of explanatory power and interpretability.

The motivation for this case study is to quantify change in aggregate electricity demand
associated with mandatory TOU pricing. To model effects associated with TOU pricing
with hourly fidelity, the matrices X and T will be held constant. We will use backward
selection, ANOVA, and HAC standard errors (described in sections 2.1.3 and 2.1.4) to
remove insignificant variables from a saturated explanatory variable matrix V. The re-
maining, significant explanatory variables in V are used as components of the multiple
regression model in a “what if” analysis. We use our results from the “what if” analysis
to quantify the change in demand associated with TOU pricing.

4.1 Results from Prior Work

A recent literature review performed by the authors of [50] reviews the impacts of three
types of dynamic pricing pilots: critical peak pricing, time-of-use, and peak time rebates.
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Their review includes 13 TOU pilot studies conducted after 1997. They conclude that
basic TOU pricing programs like Ontario’s can expect to see residential on-peak demand
change by -5.00%. An earlier TOU literature review [16] covering 12 TOU pilot studies
concluded that TOU pricing induces a -3% to -6% change in residential on-peak demand.

We carry out a similar TOU literature review with a focus on mandatory TOU pricing
implementations, similar to Ontario’s TOU framework. Several of the studies in our review
are impact analysis studies commissioned by the Ontario Energy Board. Notably, we
quantify the impacts of TOU pricing in section 4.2 in a manner consistent with [48]. We
also consider several controlled experiments and pilot studies. Table 4.1 summarizes the
results of our literature review.

Table 4.1: Results from prior TOU studies.
Study Location Pilot Mandatory Season Total On-Peak Mid-Peak Off-Peak Weekend

Study Change (%) (%) (%) (%) Off-Peak (%)

[27] Ontario, CAN Yes No summer -3.30 -3.70 NR NR NR
[35] Arizona, USA Yes No summer -3.17 -8.84 -3.95 +2.86 NA
[55] Ontario, CAN Yes No summer -6.00 -2.40 (NS) NR NR NR
[62] California, USA Yes No full year NR -9.02 NA +6.51 NA
[33] Arizona, USA Yesa No summer NR -20.65d NA NR NA
[32] north east USA No Yesa summer -3.14 -6.09 NA -2.00 NA
[32] north east USA No Yesb summer +0.39 +1.16 NA +0.06 NA
[32] north east USA No Yesc summer +2.64 +3.11 NA +2.4 NA
[18] Ontario, CAN No Yes summer 0 to -0.45e -2.60 to -5.70 decrease increase NR
[18] Ontario, CAN No Yes winter 0 to -0.45e -1.60 to -3.20 decrease increase NR
[47] Ontario, CAN No Yes full year 0.66 (NS) -2.80 -1.39 +0.16 (NS) +2.21
[48] Ontario, CAN No Yes summer 0 to -0.10 -3.30 -2.20 +1.20 +1.90
[48] Ontario, CAN No Yes summer

shoulder
NR -2.20 -1.50 +1.50 +1.40

[48] Ontario, CAN No Yes winter NR -3.40 -3.90 -2.50 -1.20
[48] Ontario, CAN No Yes winter

shoulder
NR -2.10 -2.30 -1.10 +0.50 (NS)

[36] ITA No Yes Jan–Jun NR -0.83 NA NR NA
[37] Anhui, CHN No Yes Feb–Dec increase increase NA increase NA

NR – not reported
NA – not applicable
NS – not statistically significant
a high-use customers only
b medium-use customers only
c low-use customers only
d three highest peak days of summer
e annual

Our first observation is that results from opt-in experiments and pilot studies such as
[27, 35, 55, 62, 33] are often more pronounced than mandatory studies such as [18, 47, 48].
We expect our results to be less pronounced, similar to the latter studies.
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Our second observation is that most studies in our review either have a pronounced
demand shift from on-peak to off-peak hours or conservation across all hours. Only two
subsets of one study [32] showed the opposite effect.

Finally, we observe that several tiered implementations of TOU to high-use customers
first showed substantial flexibility to shift demand [32, 33]. However, [33] evaluated the
effects of TOU pricing during the three highest peak days of summer. Though the authors
do not classify it as such, this is very similar to critical peak pricing, in which more
pronounced conservation effects are common.

4.2 Methodology

Based on our temperature transformation comparison results presented in section 3.9, we
set the temperature transformation matrix T to be a dry-bulb, six-hour moving average,
natural cubic splines transformation. We show (2.1) below again for clarity.

Ŷ = β̂0 + Xβ̂ + Vω̂ + Tθ̂

Y is an N × 1 vector representing aggregate electricity demand. Because collinearity of
temperature and seasonal explanatory variables are not an issue of concern when analyzing
the effects of TOU, we add a categorical explanatory variable for month to X, supported
by ANOVA. Explanatory variables in the matrix X are then held constant.

We saturate the matrix V with explanatory variables related to TOU pricing. We
include all two-way and three-way interactions combining a TOU billing indicator, working
day, hour-of-day, and utility rate season. These variable interactions provide the necessary
degrees of freedom to explain the effects of TOU billing for each hour of day. The categorical
variables in X and V before backward selection are:

� x•,p=1 through x•,p=11 are month indicators representing January through December.

� x•,p=12 through x•,p=34 are hour-of-day indicators representing 00:00 through 23:00.

� x•,p=35 is a working day indicator.

� x•,p=36 through x•,p=58 are indicators representing the hour-of-day × working day
interaction.

� v•,p=1 is a utility rate season indicator representing summer and winter rates.
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� v•,p=2 is a TOU active indicator representing whether customers are billed according
to flat rates or TOU rates.

� v•,p=3 through x•,p=25 are indicators representing the hour-of-day × rate season in-
teraction.

� v•,p=26 through x•,p=48 are indicators representing the hour-of-day × TOU active
interaction.

� v•,p=49 is an indicator representing the working day × rate season interaction.

� v•,p=50 is an indicator representing the working day × TOU active interaction.

� v•,p=51 is an indicator representing the rate season × TOU active interaction.

� v•,p=52 through x•,p=74 are indicators representing the hour-of-day × working day ×
rate season interaction.

� v•,p=75 through x•,p=97 are indicators representing the hour-of-day × working day ×
TOU active interaction.

� v•,p=98 through x•,p=120 are indicators representing the hour-of-day × rate season ×
TOU active interaction.

� v•,p=121 is an indicator representing representing the working day × rate season ×
TOU active interaction.

We chose categorical variables representing the structure of utility rate seasons and TOU
price periods rather than a continuous value representing the price paid for electricity each
hour. To model customer price sensitivity to varying TOU rates, additional modelling
techniques such as price elasticity analysis are required. Because our sample contains only
two summers and TOU prices do not change during the course of one summer season, our
ability to quantify price elasticity is limited. Categorical variables representing the TOU
pricing structure are adequate and useful for our study’s objective, the quantification of
electricity demand conservation and peak-shifting.

4.2.1 Backward Explanatory Variable Selection

Using the explanatory variable selection process known as backward selection, initially
described in section 2.1.3, we remove variables from the saturated matrix V to create more
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parsimonious model [31]. We will keep only the explanatory variable interactions added
for mandatory TOU pricing that can be justified by ANOVA. The process of backward
selection is shown in Algorithm 3. Using backward selection this manner, we drop the

Algorithm 3 Overview of backward variable selection using ANOVA with HAC standard
errors.

1. Let V start as a matrix of all three-way and two-way interactions related to TOU
pricing.

2. Run ANOVA over the coefficient estimates β̂, ω̂, and θ̂ using HAC standard errors.

3. ANOVA F-tests are sorted in a descending order for each explanatory variable group.

4. If the p-value of a value of F is > 0.05, that explanatory variable is removed from V.

5. The model estimate (2.1) is updated with the reduced explanatory variable matrix
V, and this backward selection algorithm returns to step 2. Otherwise, if all F-tests
are significant at p-value ≤ 0.05, then the model is considered parsimonious and this
backward selection algorithm ends.

following interactions from V: working day × rate season × TOU active, hour-of-day ×
working day × TOU active, and working day × TOU active.

We also re-ran our temperature transformation comparison with the more complex
matrix V. AdjustedR2 values are higher but the intuition and our conclusions from the
analysis remain the same. The model used in this case study yields AdjustedR2 = 0.935.

4.2.2 Counterfactual “What If” Analysis

An impact analysis commissioned by the Ontario Energy Board [48] formulates a “what if”
counterfactual analysis that we will use to measure the effects of mandatory TOU pricing,
shown in Algorithm 4. Because our sample of data does not have a complete winter utility
rate season of TOU active = FALSE from November 2010 through May 2011, we are not
able to perform a “what if” counterfactual analysis for the winter rate season. We are only
able to carry out the “what if” counterfactual analysis for summer utility rate season.
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Algorithm 4 “What if” counterfactual analysis used to quantify the effects mandatory
TOU electricity pricing.

1. Fit a model to the entire sample of data. In our study, the sample runs from March
1, 2011 – October 17, 2012.

2. For the summer utility rate season, select sample data where TOU active = FALSE

(i.e. May 2011 – October 2011).

3. Group the selected observations by working day indicator. For each working day type
find the mean electricity demand observations for each hour. These hourly averages
for each working day type represent the observed summer.

4. Copy the selected sample data from step 2 into a new hypothetical sample of data
called the counterfactual summer.

5. In the counterfactual summer, change the TOU active indicator from FALSE to TRUE.

6. Estimate a response vector using the adjusted counterfactual summer from step 5.
Because TOU active has been changed to TRUE, the coefficients estimated in step 1
will create a response vector as if TOU billing had been active during summer 2011.
This estimated response vector is the “what if” analysis.
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4.3 Results from South West Ontario Data Set

We plot the estimated effects of TOU pricing for each hour of a working day in the summer
utility rate season in Figure 4.1. Similarly, we plot the estimated effects of TOU pricing
for each hour of a non-working day in the summer utility rate season in Figure 4.2. Table
4.2 shows the hourly effects averaged by TOU price period. Effect size is reported both in
terms of kWh impact and percentage impact.

Table 4.2: Estimated change in the aggregate electricity demand for each price period
under TOU pricing.

Hourly
Impact
(kWh)

95% Confidence
Interval (kWh)

Hourly
Impact
(%)

95% Confidence
Interval (%)

Summer On-Peak -0.035 ± 0.024 -2.641 ± 1.819
Summer Mid-Peak -0.030 ± 0.024 -2.403 ± 1.933
Summer Off-Peak -0.011 ± 0.024 -0.888 ± 1.901
Summer Non-Working Day -0.009 ± 0.030 -0.617 ± 2.212

Finally, we report the estimated change to peak-to-average ratio which measures how
extreme daily demand peaks are typically. Each day’s peak-to-average ratio during a
sample period is defined as the peak demand for each day divided by the average demand
during that day. The result is a vector of daily peak-to-average ratios for each day in
the sample. We can take the mean of daily peak-to-average ratios for to summarize the
sample period. The observed peak-to-average ratio for summer 2011 under flat pricing
was 1.441. The estimated summer peak-to-average ratio of the counterfactual sample is
1.429, had TOU pricing been active. This represents an estimated change of -0.844% to
the peak-to-average ratio, with a 95% confidence interval of ±0.6%.

4.4 Discussion

Because our sample of data is from one local distribution company in south west Ontario,
we acknowledge that our results are only applicable to that region. Additionally, because
we only have data for one summer of before and after the switch to TOU pricing, we
cannot assess the effects of TOU pricing during winter rates. Though we make an effort
to accurately model the effects of temperature throughout chapter 3, our ability to model
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Figure 4.1: The hourly effects of a “what if” counterfactual analysis estimated using sum-
mer 2011 data from our sample. The observed data is the solid, black line, indicating the
mean of observed demand for each hour of working days. The dotted blue line indicates
the mean of estimated demand for each hour of working days, had TOU billing been in
place. A 95% confidence interval is also plotted for each hour.
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Figure 4.2: The hourly effects of a “what if” counterfactual analysis estimated using sum-
mer 2011 data from our sample. The observed data is the solid, black line, indicating the
mean of observed demand for each hour of non-working days. The dotted blue line indi-
cates the mean of estimated demand for each hour of non-working days, had TOU billing
been in place. A 95% confidence interval is also plotted for each hour.
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extremely warm temperatures are limited due to the range of observed temperatures in
our sample, as discussed in section 3.7.3.

Both the slight decrease in peak-to-average ratio and the hourly demand reduction
across all TOU price periods indicate that mandatory TOU pricing has addressed the
Ontario Energy Board’s goal of electricity conservation.

Analysis of electricity demand shifting is more complex. Examining Table 4.2, we can
see that the majority of estimated summer demand reduction occurs in on-peak and mid-
peak periods. When TOU effects are aggregated by price period, change during off-peak
periods for both working days and non-working days is only −0.6% to −0.9% and is not
statistically significant. The observed mean of electricity demand during those periods falls
within the aggregated confidence interval of the counterfactual estimate. We conclude that
conservation has been focused during on- and mid-peak periods, but demand from these
periods has not been shifted to off-peak periods.

However, by examining hourly reduction in Figure 4.1 more closely, the off-peak hours
19:00 through 21:00 on working days are notable. In these three hours the the confidence
interval for the estimated demand reduction does not contain the observed electricity de-
mand. Together with the second mid-peak period, 17:00 through 18:00, there appears to be
substantial demand reduction occurring in the evening after typical work hours. Residen-
tial customers may be attempting to conserve electricity, but they may only have flexibility
in their after-work household activity. Because Ontario’s TOU pricing also applies to com-
mercial customers, it may not be optimally structured around residential demand flexibility.
Furthermore, [1] concludes that TOU periods may not be optimally aligned with provincial
demand patterns, though that study uses residential, commercial, and industrial aggregate
provencial data.

Extrapolating the results from Table 4.2 to all 20,556 residential customers in the local
distribution company’s service region, the hourly impact of TOU pricing is shown in 4.3.

Table 4.3: Change in aggregate electricity demand for each price period under TOU pricing
extrapolated for the local distribution company’s 20,556 residential customers.

Hourly LDC
Impact (MWh)

95% Confidence
Interval (MWh)

Summer On-Peak -0.72 ± 0.49
Summer Mid-Peak -0.62 ± 0.49
Summer Off-Peak -0.23 ± 0.49
Summer Non-Working Day -0.17 ± 0.62
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Chapter 5

Conclusions and Future Work

In this work we model changes in aggregate electricity demand associated with time, the
price of electricity, and weather. We implement a detailed comparison of temperature
variable transformations that incorporate coincident weather, past temperature, and non-
linear transformations. Models are evaluated according to their explanatory power and
interpretability so that our results may inform future modelling decisions.

Motivated by environmental concerns, we carry out a case study to evaluate the ef-
fectiveness of TOU electricity pricing in south west Ontario. Using results from our tem-
perature transformation comparison, we select a well-performing transformation to model
the predominant effects of weather on electricity demand. Many additional explanatory
variable interactions related to TOU pricing are added to the model so that change in
electricity demand associated with TOU pricing can be modelled with hourly fidelity.

5.1 Conclusions

� A six-hour moving average of dry-bulb temperature observations has significant ex-
planatory power and is easily interpretable. Its non-linear relationship with electricity
demand is best modelled using a natural cubic splines transformation.

� Temperature transformation using exposure-lag-response association generated mixed
results. It has slightly greater explanatory power than other variable transformations,
but its intended purpose, to model the weight of an exposure effect over time, is not
easily interpretable. We conclude that this negative impact on model interpretability
does not justify the moderate increase in variance explained.
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� During the summer rate season, TOU pricing is associated with electricity conser-
vation across all price periods. Additionally, the peak-to-average ratio of electricity
demand changed -0.8% from 1.441 to 1.429.

� The average demand change during on-peak and mid-peak periods is -2.6% and -2.4%
respectively. Change during working day and non-working day off-peak periods is
-0.9% and -0.6% but is not statistically significant. We interpret this to mean that
electricity demand is not being shifted to off-peak periods, but that conservation is
focused during on- and mid-peak periods.

� Our TOU findings are consistent with prior TOU evaluations carried out within the
province, though less pronounced than pilot studies. Our study is limited by the
time period of data sampled. The estimated impact of TOU prices is based on data
from the first summer after TOU pricing was implemented by the local distribution
company. It is possible that customers had not been subject to TOU prices long
enough to change their electricity demand habits. Conversely, it is also possible that
because TOU pricing was still new, their response to the policy may be overstated.

5.2 Future Work

Beyond this analysis of TOU pricing’s effects on residential customers in aggregate, we
intend to study the effects of TOU pricing on individual customers or groups of customers.

5.2.1 Neighbourhood Comparison

Each meter in our data set has longitude and latitude information. Using this precise
location data, a spatial component could be incorporated into the analysis. We consider
the possibility of grouping customers by neighbourhood using postal code information
or Statistics Canada’s dissemination area coding (block-level). Does TOU pricing affect
neighbourhoods differently? Can this be paired with household income bands available in
Statistics Canada data? Does TOU pricing affect customers differently based on affluence?

5.2.2 Differences by Discretionary Electricity Usage

Customers may also be stratified according to their annual electricity consumption. A
number of groups could be created based on the magnitude of customer’s electricity use.
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Do those who have greater discretionary electricity use have a different reaction to TOU
prices than those with less?

5.2.3 Effects of Time-of-Use on Customers Grouped by Demand
Pattern

Customers may also be grouped using some clustering technique to analyze their electricity
demand time series. Grouping customers by demand patterns (i.e. demand shape) might
yield some easily interpretable groups. For example, one group might be customers who
are active within the household all day such as stay-at-home parents. A different group
may be customers with demand peaks before and after the work-day, such as single working
professionals. A random effects model could then be used to quantify how TOU pricing
affects each group differently. Are some customer group demand patterns more flexible
than others? How has each type of customer shifted their electricity demand? Are some
groups more responsible for demand shifting than others? Do the effects of TOU pricing
on each group have any future policy implications?

5.2.4 Irish Residential Data Sample

The Commission for Energy Regulation in Ireland has made a sample of 30-minute house-
hold electricity demand available for study through the Irish Social Science Data Archive.
There are 5,000 labelled residential and commercial customers observed in an experimental
setting from July 2009 through December 2010 [10]. Using this data we would like to both
analyze the effects of temperature on residential electricity demand in Ireland and also
confirm the ability of our temperature transformation comparison to describe an entirely
new data set. Unfortunately, there no location information tied to each meter in the sam-
ple and participants may be located anywhere in the country. The primary concern for
modelling the effects of temperature on this data is whether a weighted average temper-
ature for the country is sufficient. Initial investigation of weather time series from four
cities Cork, Connaught, Dublin, and Shannon suggests that temperature across the four
locations is fairly homogeneous. A weighted average temperature for the country may be
adequate for our proposed study.
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Appendix A

Review of Multiple Linear Regression

We wish to understand the relationship between a response variable, represented by the
vector Y, and three matrices of explanatory variables X, V, and T. The explanatory
variables in X, V, and T have some functional relationship with the response variable Y,
shown by (A.1).

Y = f(X,V,T) + ε (A.1)

The function f represents the systematic information that X, V, and T provide about
Y. The irreducible error term ε represents unmeasured explanatory variables or error
introduced when assuming a form for f . Ideally, ε should be independent of X, normally
distributed, and have mean zero.

Our study assumes that the underlying relationship has a linear form, shown in (A.2).

f(X,V,T) = β0 + Xβ + Vω + Tθ (A.2)

Let β0 be the intercept term. All explanatory variables’ effects are offset from this value.
X is an N×Pa matrix of a type of explanatory variables. β is a Pa×1 vector of coefficients
reflecting the additive effect of each variable in X. V is an N ×Pb matrix of a second type
of explanatory variables. β is a Pb× 1 vector of coefficients reflecting the additive effect of
each variable in V. T is an N × Pc matrix of a third type of explanatory variables. θ is a
Pc × 1 vector of coefficients reflecting the additive effect of each variable in T. The reason
for splitting explanatory variables into three matrices and three vectors of coefficients is
simply for clarity in our study.

Substituting the linear functional form (A.2) into (A.1) yields a parametric, multiple
linear regression model, shown in (A.3). This is also simply referred to as multiple regression
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and is referred to as such throughout our study.

Y = β0 + Xβ + Vω̂ + Tθ + ε (A.3)

Note that this equation is shown in matrix notation for clarity and brevity. The expanded
form of the ith row is shown in (A.4)

yi = β0 + xi,1β1 + ...+ xi,PaβPa + ω1vi,1 + ...+ ωPb
vi,Pb

+ θ1ti,1 + ...+ θPcti,Pc + εi (A.4)

Let i index each hour in a sample of time series data and yi be the ith observation of the
response variable. Each explanatory variable xi,pa and its coefficient βpa models part of a
systematic, linear relationship with yi. We define the notation x•,j to represent the jth
column and all rows of x. The jth coefficient βj represents the additional contribution of
variable x•,j to y [26]. As an example of this additive relationship, consider one observation
of electricity demand yi where the hour-of-day at index i is 19:00. At 19:00, residential
customers are typically home from work and active within their house, resulting in increased
electricity demand. yi will deviate positively from the sample mean β0. If xi,j is an indicator
variable for hour 19:00, then βj will be positive, reflecting the systematic relationship of
19:00 with electricity demand.

In practice, the true underlying function f driving the response variable is often un-
known. We can only create an estimate for f using the samples of observations X, V, T,
and Y. This estimate is shown in (A.5)

Ŷ = f̂(X,V,T)

Ŷ = β̂0 + Xβ̂ + Vω̂ + Tθ̂
(A.5)

The estimated underlying function f̂ produces Ŷ, the estimate for Y. f̂ is comprised of
coefficient estimates represented by β̂0, the N ×Pa vector β̂, the N ×Pb vector ω̂, and the
N × Pc vector θ̂. Note that the estimated model has no error term because an estimate
cannot account for irreducible error. Instead, we can only measure the residual differences
between values of Y and Ŷ, shown in (2.2). We use these residuals to quantify the best
estimates of β̂, ω̂, and θ̂ using ordinary least squares.
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Appendix B

Box Plot Interpretation

B.1 Description and Diagram

When plotting many observations which can be grouped into categorical factors, scatter
plots will likely have many overlapping points, reducing the amount of information they
can convey. One option may be to use opacity or stutter points along one axis to give a
sense of density. Another, more common solution is to make use of box plots.

For categorical groups of data, box plots are a useful tool for conveying additional
information about the distribution of data in each category. Figure B.1 is a diagram
of a box and whisker plot as it relates to the probability density function of a normal
distribution. The bold line in the middle of the box is the median of the data for a given
category. The top and bottom of the box indicate the 25th and 75th percentiles of the
data, known as the 1st and 3rd quaretiles. The range between the 1st and 3rd quaretiles is
known as the inter-quartile range and represents 50% of the data for a given category. The
thin lines extending out of each end of the box are whiskers. When there are no outliers,
the whisker extends out the maximum or minimum value. When there are outliers, the
whisker extends only to 1.5 times the interquartile range, roughly two standard deviations.
Any data points outside this range are considered outliers for each category [11].
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Figure B.1: Diagram of a box plot and its relationship to the probability density function
of a normal distribution. (Creative-Commons 2.5 image [34], edited by Reid Miller)
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Appendix C

Temperature Transformation
Comparison Using Log Transformed
Aggregate Electricity Demand

C.1 Formulation

Fitting a model using log transformed response variables is often used to address het-
eroscedasticity in residuals. We repeat the set of comparisons described in section 3.3
using a log transformed response, shown in (C.1).

y′i = ln(yi), i = 1, ..., N (C.1)

The estimate for Y′ is shown in (C.2).

Ŷ′ = β̂0 + Xβ̂ + Vω̂ + Tθ̂ (C.2)

A log transformation results in a greater amount of shrinkage of the larger response values,
reducing heteroscedasticity [31]. When dealing with the log transformed model, all reported
statistics and plotted data will be backtransformed for interpretation.

C.2 Results

Table C.1 shows the results of fitting (C.1) as described in section C.1. The results compare
each temperature transformation’s explanatory power when estimating a log transformed
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response. All summary statistics have been backtransformed for comparison to the match-
ing temperature transformation used to estimate an untransformed response. Note that
BIC values between Tables 3.6 and C.1 are not comparable due to the different response
variables.
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Table C.1: Results of temperature transformation comparison estimating log transformed
response as described in section C.1.

Temporal Weather Non-Linearity Adj. BIC DW Avg. MAE Avg. MAPE
Transform Transform Transform R2 (kWh) (%)

ideal=1 ideal=low ideal=2 ideal=0 ideal=0,
max=100

Null Model (i.e. intercept only) -0.030 13412.8 0.068 0.419 33.58
Non-Temperature Explanatory Variables Only 0.434 3110.2 0.044 0.364 32.17

None (i-0) None (Drybulb) None (Linear) 0.614 -645.8 0.061 0.249 20.83
None (i-0) None (Drybulb) Switching Regression 0.864 -14244.5 0.189 0.152 13.00
None (i-0) None (Drybulb) Natural Splines 0.867 -14495.8 0.185 0.149 12.76
None (i-0) Feels Like Switching Regression 0.849 -14153.2 0.192 0.158 13.36
None (i-0) Feels Like Natural Splines 0.868 -14698.5 0.195 0.150 12.83
i-1 None (Drybulb) Switching Regression 0.872 -15444.0 0.201 0.140 12.11
i-1 None (Drybulb) Natural Splines 0.877 -15782.0 0.199 0.137 11.88
i-1 Feels Like Switching Regression 0.854 -15265.1 0.205 0.147 12.51
i-1 Feels Like Natural Splines 0.879 -16012.1 0.210 0.138 11.88
i-2 None (Drybulb) Switching Regression 0.869 -15832.0 0.218 0.138 11.89
i-2 None (Drybulb) Natural Splines 0.877 -16220.8 0.217 0.135 11.62
i-2 Feels Like Switching Regression 0.849 -15589.8 0.222 0.144 12.27
i-2 Feels Like Natural Splines 0.880 -16501.8 0.228 0.135 11.60
i-3 None (Drybulb) Switching Regression 0.860 -15482.3 0.223 0.143 12.00
i-3 None (Drybulb) Natural Splines 0.869 -15890.6 0.222 0.139 11.70
i-3 Feels Like Switching Regression 0.839 -15225.8 0.224 0.147 12.32
i-3 Feels Like Natural Splines 0.874 -16215.4 0.233 0.138 11.64
i-4 None (Drybulb) Switching Regression 0.846 -14594.0 0.220 0.151 12.36
i-4 None (Drybulb) Natural Splines 0.855 -15004.0 0.217 0.147 12.00
i-4 Feels Like Switching Regression 0.824 -14355.8 0.222 0.153 12.62
i-4 Feels Like Natural Splines 0.861 -15350.6 0.227 0.145 11.94
i-5 None (Drybulb) Switching Regression 0.830 -13439.1 0.198 0.159 12.76
i-5 None (Drybulb) Natural Splines 0.839 -13814.2 0.196 0.155 12.37
i-5 Feels Like Switching Regression 0.810 -13248.3 0.201 0.161 13.02
i-5 Feels Like Natural Splines 0.844 -14160.6 0.205 0.154 12.30
i-6 None (Drybulb) Switching Regression 0.812 -12083.5 0.184 0.168 13.25
i-6 None (Drybulb) Natural Splines 0.819 -12406.2 0.182 0.164 12.80
i-6 Feels Like Switching Regression 0.794 -11952.1 0.186 0.170 13.53
i-6 Feels Like Natural Splines 0.825 -12729.9 0.190 0.162 12.75
CDH/HDH (L=6) None (Drybulb) Switching Regression 0.883 -17514.8 0.181 0.129 10.90
CDH/HDH (L=6) None (Drybulb) Natural Splines N/A N/A N/A N/A N/A
CDH/HDH (L=6) Feels Like Switching Regression 0.862 -17222.4 0.178 0.135 11.33
CDH/HDH (L=6) Feels Like Natural Splines N/A N/A N/A N/A N/A
Moving Avg. (L=6) None (Drybulb) Switching Regression 0.884 -17654.8 0.190 0.129 11.05
Moving Avg. (L=6) None (Drybulb) Natural Splines 0.893 -18131.7 0.191 0.126 10.83
Moving Avg. (L=6) Feels Like Switching Regression 0.861 -17359.6 0.184 0.135 11.44
Moving Avg. (L=6) Feels Like Natural Splines 0.896 -18476.8 0.195 0.125 10.76
Lag-Response: Cubic
Polynomial (L=6)

None (Drybulb) Exposure-Response:
Switching Regression

0.876 -17771.8 0.200 0.138 11.89

Lag-Response: Cubic
Polynomial (L=6)

None (Drybulb) Exposure-Response:
Natural Splines

0.906 -19754.9 0.219 0.120 10.11

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response:
Switching Regression

0.841 -17538.5 0.197 0.143 12.12

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response:
Natural Splines

0.906 -19790.8 0.220 0.121 10.14
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