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Abstract

This thesis is motivated by an industrial problem faced by Bombardier Inc. in

designing a two-echelon supply chain. The upper echelon is a plant that operates

under batch ordering inventory policy. The lower echelon is a set of service centers

which operate under base stock inventory policy. The problem is to decide which

service centers to open and how to assign customers to open service centers based

on their preference. The stock level at each open service center is decided to meet a

specified mean target response time requirement. The objective is to minimize the

total cost including the location-allocation cost, the ordering cost at the plant, the

holding cost, and the backorder cost at both the plant and open service centers.

The inventory-location problem is formulated as a mixed-integer programing prob-

lem with stochastic variables and mean target response time constraint. A cutting-

plane algorithm is proposed to solve the model. Numerical testing is performed on

industry instances and instances from the literature to evaluate the effectiveness

of the cutting-plane algorithm and to investigate the effects of different inventory

replenishment policies.
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Chapter 1

Introduction

An inventory-location problem is studied in this thesis. The problem focuses on

designing a supply chain for spare parts with customer preferences and response

time constraints. Spare parts are used to replace or repair a malfunctioned sys-

tem or part of it. This research is motivated by a similar work by Riaz [20]. We

study a similar system which consists of a central manufacturing plant that has a

limited production capacity and multiple service centers (SCs). The SCs need to

meet customer demands by keeping stocks and replenishing from the plant. The

SCs have a limited capacity and operate under a base stock (one-for-one) replenish-

ment policy and the plant also has a limited capacity and operates under a batch

ordering replenishment policy. Demands from the customers follow an independent

Poisson process. Customers are assigned to open SCs based on their preference

and customer orders must be satisfied within a target response time. The decisions

to make are where to locate the open SCs, how to allocate customers to the open

SCs, and what stock levels to keep at the plant and at the open SCs. The objective
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is to minimize the total cost including the location cost and the total inventory cost.

The solution to this supply chain design problem can be used to solve other

problems in the industry, especially in relation to spare parts. Spare parts are used

in the high technology field like computer, automotive and aerospace industry. It

is important to study the spare parts industry because failure of a single part may

cause a whole system to break down. In the spare parts industry, the base stock

policy is widely used since spare parts are generally ordered in single unit and the

holding cost is high while the order cost is relatively low at the service centers [27].

However at the plant, since demand is accumulated from all the SCs, it is relatively

higher at the plant than that at the SCs [1]. Therefore, it is reasonable for the

plant to operate a batch ordering policy. In this thesis, we assume a batch ordering

policy at the plant. We also assume a fixed replenishment cost.

Response time is essential to guanrantee customer orders are satisfied within a

specified target time. Since spare parts are critical for customer operation, reliable

fulfillment of spare parts is a requirement for successful spare parts supply chain.

A possible way to satisfy customer demand within a certain time is to keep

ample supply at SCs. However, for some expensive spare parts like those used in

the aerospace industry, the demand is low and inventory holding costs are high, so

it is not economical to keep ample supply at the SCs [20]. The major challenge for

modern industries is how to balance the trade-offs between inventory holding costs
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and customer service. Manufacturers could make significant savings by designing

an efficient supply chain network of spare parts.

In this thesis, a mixed-integer programming is formulated to solve a two-echelon

inventory-location problem for spare part. In order to find the optimal solution, a

cutting-plane algorithm is proposed. The algorithm separates the original problem

into a master problem which is a location problem and a subproblem which is a

inventory stocking problem. Numerical testing using an industrial dataset and a

dataset from the literature is performed to test the effectiveness of the algorithm.

The rest of the thesis is organized as follows: Chapter 2 presents a literature

review related to the facility location problem, the inventory stocking problem

and the inventory-location problem. Chapter 3 presents the formulation of the

inventory-location problem. Chapter 4 discusses the formulation of the inventory

stocking problem and the steady state parameters, and gives the exact algorithm

to solve the inventory stocking problem. Chapter 5 develops an exact cutting-plane

algorithm to solve the inventory-location problem. Chapter 6 presents the results

on the performance of the cutting plane algorithm and discusses the effects of base

stock and batch ordering inventory policies. Finally the conclusion is provided in

Chapter 7.
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Chapter 2

Literature Review

There are three major research areas related to the inventory-location problem

studied in this thesis, namely facility location, inventory and integrated inventory-

location. The facility location problem is a critical step in the strategic planning

for many industries. Many mathematical models are available in the literature.

Similarly, there is a large body of literature that studies the inventory stocking

decisions. On the other hand, the inventory-location problem attempts to make the

location and inventory decisions simultaneously. In this chapter, we first review the

literature on the facility location problem. Then we review the inventory stocking

problem. Finally we review the integrated inventory-location problem.

2.1 The Facility Location Problem

The facility location problem has been widely studied in Operation Research litera-

ture. A general facility location problem is to locate facilities and allocate customers

4



to open facilities to meet the customer demand so as to minimize the location-

allocation cost. The simplest setting of this problem is to select p locations from

candidate locations to minimize the total cost or distance while fulfilling customer

demand. This is the p-median problem. This setting requires that all candidate

places are equivalent. However, if the setup cost for locating a candidate place is

different but fixed, this setting is called the uncapacitated facility location prob-

lem, known as UFLP. Daskin [6], Hamacher and Drezner [7] discusses the p-median

problem while references of UFLP can be found in Mirchandani and Francis [14]

and Revelle et al. [19]. There is also an important extension of UFLP which is

called capacitated facility location problem (CFLP) where the demand that can

be supplied from each candidate site is limited by its capacity [25]. More recent

reviews are in Klose and Drexl [9] and Melo [12].

A typical location problem allocates customers to facilities based on minimum cost.

However, based on the industry application, customers pay for shipment cost, so it

is natural that customers are given the option to be served by their most preferred

open service center. Similar to Riaz [20], we allocate customers based on their

preference.

2.2 Inventory Stocking Problem

The inventory stocking problem focuses on determining optimal stocking policy to

minimize the total cost, which may include the holding cost, the order cost and

the backorder cost. Sherbrooke [23] constructed the METRIC (multi-echelon tech-

nique for recoverable item control) model. The METRIC model assumes that the
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stockouts at the service centers are fully backordered. The model finds an opti-

mal stock level that minimizes the expected backorder at service centers subject

to a budget constraint. This is the first multi-echelon model for the service part

inventory management. Many works have been carried out to extend this mod-

el. Wang et al. [29] and Andersson et al. [2] used the METRIC model to deal

with a two-echelon inventory system and specifically, Wang et al. [29] studied the

impact of depot-replenishment lead times on system performance. Andersson et

al. [2] optimized the base stock policy with one plant and an arbitrary number of

service centers. In addition to the analytical models, simulation models are also

used. Moinzadeh et al. [15] used the METRIC model and simulation to study a

multi-echelon inventory system under a base stock policy where all the stocking

locations have two options: replenishing the inventory through the normal channel

or a more expensive emergency channel.

The inventory stocking problem we study is characterized by the mean target re-

sponse time constraint which is considered to be a complicating constraint. Several

works have been done to provide methods including heuristics, approximation al-

gorithms and exact solution approach algorithms to deal with the complicating

constraint and to find the solution. Basten et al. [3] proposed a step and check

heuristic to find the near optimal solution with 0.2% error on average and a s-

mart enumeration heuristic to find the exact optimal solution for a two-echelon

distribution network with one plant and multiple service centers with each facing

independent Poisson demand. Tsai et al. [28] presented a simulation optimiza-

tion algorithm to solve the multi-echelon inventory problem subject to service level

constraints. Lin Li et al. [10] presented solution approaches to find approximate
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inventory policies for a two echelon inventory system with stochastic demand, s-

tochastic lead times, fixed order costs and customer service level requirements.

Caggiano et al. [4] described a continuous review inventory model for a multi-item

and multi-echelon service parts distribution system with time-based service level

requirements. They also used an intelligent greedy algorithm to find near-optimal

solutions to large-scale problems and a Lagrangian-based approach to find both

near-optimal solutions and good lower bounds.

The most related work to our inventory stocking problem is by Topan and Bayindir

[26]. Topan and Bayindir [26] developed greedy heuristic approaches in multi-

product two-echelon spare parts inventory systems in order to minimize the system-

wide inventory holding costs under aggregate mean response time constraint. Topan

and Bayindir [27] also presented an exact branch-and-price algorithm to find the

inventory control policy parameters that minimize the system-wide inventory hold-

ing and fixed order cost subject to an aggregate mean response time constraint at

each facility. In both papers, they assumed a batch ordering policy in the plant

and a base-stock policy at each service center.

2.3 Inventory-Location Problem

The integration of the location and inventory stocking decision is a challenging

task. The integrated inventory-location problem balances the location and inven-

tory stocking costs, but is a difficult problem to solve. Many models and several

approximation and heuristic approaches are developed in the literature. Jia Shu et

al. [24] proposed a scenario-based two-level stochastic model to address the design
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of the two-echelon network. They determine how many service centers to be opened,

where to locate them and how to allocate these service centers to the customers.

The near-optimal inventory replenishment policies for service centers and customer-

s were used to minimize the total expected system-wide multi-echelon inventory,

transportation, and facility location costs in order to save the CPU time. Sadjady

et al. [22] considered a problem of designing a two-echelon supply chain network,

which allowed multiple levels of capacities for the facilities at both echelons. They

developed a Lagrangian-relaxation based heuristic solution to solve the given prob-

lem. Chen and Li [5] studied an inventory-location problem that optimized facility

locations, customer allocations, and inventory management decisions where facili-

ties were subject to disruption risks. They also developed a Lagrangian relaxation

solution framework for this problem, including a polynomial-time exact algorithm

for the relaxed nonlinear Lagrangian subproblem. Miranda et al. [13] proposed

a novel inventory location model with stochastic capacity constraints based on a

periodic inventory control policy, and they used an exhaustive algorithm to find the

optimal solution for small instances. Jin et al. [18] studied the inventory-location

problem with multiple-commodities, stochastic demands and capacity constraints.

Zhang et al. [31] considered the integrated optimization problem of the location

and inventory decisions of a distribution center, subject to a given customer service

level constraint in a multi-product and multi-echelon supply chain. Yao et al. [30]

studied an integrated facility location-allocation and inventory problem. The major

difference is that the service center can be replenished by several plants together

because of capabilities and capacities of plants.
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Two similar models to our problem are from Jeet et al. [8] and Mak and Shen

[11]. Jeet et al. [8] presented a single-part integrated network design and inventory

stocking problem for low-demand systems such as service parts logistic networks.

They developed an exact scheme based on an outer-approximation shceme to find

the upper and lower bound of the problem. Mak and Shen [11] presented a two-

echelon supply chain model for spare parts with target response time constraint

and proposed a Lagrangian relaxation method.

Our work is different from the papers mentioned so far because we consider a

two-echelon problem with fixed single unit replenishment time and response time

constraint. We also proposed an cutting-plane algorithm to find the exact solu-

tion of the problem. The most related work is from Riaz [20]. He considered a

two-echelon inventory-location system for spare parts and assumed base stock re-

plenishment policy at both plant and service centers. He developed a cutting-plane

algorithm to solve the inventory-location problem. The only difference from our

work is the replenishment policy at the plant. In our work, we assume a batch

ordering replenishment policy at the plant.
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Chapter 3

The Inventory-Location Problem

3.1 Problem Description

The problem we consider is to design a two-echelon supply chain system. The upper

echelon is a plant and the lower echelon is a set of potential service centers. The

plant’s goal is to set stock levels to satisfy the demand from the service centers,

while the service centers’ goal is to set stock levels to satisfy stochastic demand

from the customers. The stochastic demand of a customer follows a Poisson distri-

bution.

Service centers use base stock replenishment policy with backordering: a customer

places an order at its assigned service center. If there is inventory available, the

customer order is fulfilled. Otherwise, the item is backordered. Whenever the ser-

vice center receives an order from a customer, it makes an immediate order from

the plant. The backorder is filled when a replenishment is received based on a
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first-in-first-out (FIFO) policy. The plant uses a batch ordering policy. It satisfies

the order from each service center if it has enough inventory. Otherwise, the order

is backordered. The plant place an order of size Q whenever the stocking level falls

below the reorder point R. After receiving the replenishment order, the outstand-

ing backorders at the plant are immediately satisfied according to a FIFO policy.

The shipment time between the plant and the service centers, or lead time between

the echelons, is fixed.

The demand process at each service center is a Poisson process and the demand

process at the plant is a superposition of the service centers’ ordering processes

which is also a Poisson process. Customers have a preference of the SCs and are

assigned to an open SC based on the preference. This also indicates that each

customer will be assigned to the most preferred open SC and we can assume the

customer to be served by a single source.

Finally, the time interval between when the customer places an order and when the

customer order is fulfilled is called customer response time. Customer orders need

to be satisfied within a mean target response time. In our model, we are interested

in the long-run operation of the system and we are not interested in the risk of the

decision. Therefore we consider the steady state behavior performance instead of

using chance constraint to consider the risk. Figure 3.1 depicts the replenishment

process.
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Figure 3.1: Replenishment process

The decisions to make are: locate the service centers, assign customers to the

service centers, and determine the stock levels at each facility so that the response

time constraint is satisfied. The objective of the problem is to minimize the total

cost including the inventory holding cost and the backorder cost both at the service

centers and at the plant, the order cost at the plant, and the location cost of all

service centers.
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3.2 Problem Formulation

We use the following notation to formulate our model.

Parameters:

I : Set of customers.

N ∪ 0 : N represents the set of potential SCs, 0 represents plant.

fn : Fixed cost of opening SC n, n ∈ N .

K : Fixed order cost at the plant.

hn : Holding cost at SC n, n ∈ N .

h0 : Holding cost at plant.

pn : Backorder cost at SC n, n ∈ N .

p0 : Backorder cost at plant.

τ : The mean target response time.

λi : Demand rate of customer i ∈ I.

dmax : Distance limit between customer and the assigned SC.

Ni : The preference list of SC for customer i.

C0 : The storage capacity at the plant.

Cn : The storage capacity at SC n, n ∈ N.

Q0 : The order size limit.

λ =
∑
i∈I

λi : Total customer demand.

13



Decision Variables:

Xn = 1 if SC n is opened, 0 otherwise, n ∈ N .

Yin = 1 if customer i is assigned to SC n, 0 otherwise, i ∈ I, n ∈ N .

Sn : The base-stock level at SC, n ∈ N .

Q : Order size at plant.

R : Reorder Point at plant.

Auxiliary Variables:

In : Expected on-hand inventory level at SC n ∈ N .

I0 : Expected on-hand inventory level at plant.

IP 0 : Expected inventory position at the plant.

Xn : Expected number of outstanding orders at SC n ∈ N .

Y n : Expected demand during lead time at SC n ∈ N .

Bn : Expected backorder level at SC n ∈ N .

B0 : Expected backorder level at the plant.

B
(n)

0 : Expected backorder level of SC n at the plant.

W n : Expected waiting time at SC n ∈ N .

W 0 : Expected waiting time at the plant.

We use Z =
∑
n

(hnIn + pnBn) + λK/Q for n ∈ N ∪ 0 to be the inventory ordering,

14



holding and back order cost incurring in the whole system. The inventory-location

model is formulated next.

[ILP] : min
∑
n∈N

fnXn + Z (3.1)

s.t.
∑
n∈N

Yin = 1 ∀i ∈ I, (3.2)

Yin ≤ Xn, ∀i ∈ I,∀n ∈ Ni, (3.3)

Yin ≥ Xn −
n−1∑
l=1

Xl, ∀i ∈ I, ∀n ∈ Ni, (3.4)

Sn ≤ CnXn ∀n ∈ N, (3.5)

R ≤ C0 +Q0, (3.6)

W n ≤ τ ∀n ∈ N, (3.7)

Z =
∑
n

(hnIn + pnBn) + λK/Q, ∀n ∈ N ∪ 0 (3.8)

Sn ≥ 0 ∀n ∈ N, (3.9)

Q ≥ 0, (3.10)

Q ≤ Q0, (3.11)

R ≥ −1, (3.12)

Z ≥ 0, (3.13)

Xn ∈ {0, 1} ∀n ∈ N, (3.14)

Yin ∈ {0, 1} ∀i ∈ I, ∀n ∈ N (3.15)
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The objective function (3.1) minimizes the total cost of setting up the facilities

and the inventory cost at both the service centers and the plant. Constraint (3.2)

ensure that each customer must be assigned to exactly one service center. Con-

straint (3.3) enforces that the customer can only be assigned to an open facility.

Constraint (3.4) is the preference constraint. It assigns each customer to the most

preferred available service center based on the preference. Constraint (3.5) sets the

maximum inventory level at the service center not exceed the capacity. Constraint

(3.6) enforces the reorder point at the plant not exceed the maximum inventory po-

sition at the plant. Constraint (3.7) is the complicated constraint which says that

the average waiting time at any service center should not exceed the mean target

response time. The expected waiting time W n is calculated based on Q,R and S.

Constraints (3.9) - (3.15) are the non-negativity and the integrality constraints. In

constraint (3.12), R = −1 means the reorder is made when a backorder occurs.

Problem [ILP] is hard because of constraints (3.7). The mean response time W n

needs to be calculated using the mean backorder level and to find the mean back-

order level, we need to know the inventory decision based on a certain location

allocation decision, which makes [ILP] not solvable directly using commercial soft-

ware. Mak and Shen [11] used Lagrangian relaxation to separate the constraint

(3.7) from the other constraints. We use a similar idea as in Riaz [20]. A cutting-

plane method is used to separate constraint (3.7).

When dropping constraints (3.5), (3.6), (3.7), (3.9), (3.10), (3.11) and (3.12), the

problem becomes:
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[MP] : min
∑
n∈N

fnXn + Z (3.16)

s.t.
∑
n∈N

Yin = 1 ∀i ∈ I (3.17)

Yin ≤ Xn, ∀i ∈ I, ∀n ∈ Ni (3.18)

Yin ≥ Xn −
n−1∑
l=1

Xl, ∀i ∈ I, ∀n ∈ Ni (3.19)

Z ≥ 0 (3.20)

Xn ∈ {0, 1} ∀n ∈ N (3.21)

Yin ∈ {0, 1} ∀i ∈ I, ∀n ∈ N (3.22)

The [MP] is a location allocation problem featured with the customer preference

constraint and it can be solved by commercial software directly.

In the next chapter, we describe how to deal with the complicating constraint

(3.7) and the exact method to calculate the mean response time W n. In Chapter

5, we detail the exact cutting-plane algorithm.
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Chapter 4

The Inventory Stocking Problem

The (Q, R) policy is a continuous review policy where we place an order of size Q

whenever the inventory level drops to level R. It is also known as batch ordering

policy. According to Muckstadt [16], the key assumption of the model is there is

no more than one single order outstanding at any point in time. This implies the

expectation of demand over a lead time never exceeds Q. We choose an appropriate

R to satisfy the demand during the lead time. A large Q will decrease the order

cost since it will decrease the number of orders in a period. However at the same

time it will increase the average holding cost as the average in-stock inventory level

is higher. Thus, selecting Q involves a trade-off between the order cost and the

inventory holding cost.

The (S, S − 1) policy is also a continuous review policy known as base stock

policy. By following the (S, S−1) policy, an order is placed immediately whenever

a demand occurs for one or more units of an item and the order quantity matches

18



the size of the demand exactly. Therefore, the inventory position is constant over

the infinite planning horizon.

In our model, the plant operates under (Q, R) policy while the service centers

operate under (S, S−1) policy. The most related work to our problem is by Topan

and Bayindir [27]. They minimize the total holding and order costs subject to an

aggregate mean response time constraint. However, in our model, we also have to

consider the backorder cost. We need to find the optimal (S, S−1) policy for each

service center and the optimal (Q, R) policy for the plant.

4.1 Problem Formulation

Recall that K is the fixed order cost and λ is the mean demand faced by the plant.

Let N̂ denote the set of locations where a service center is open. The inventory

stocking problem is formulated as:
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[SP] : min Z =
∑

n∈N̂∪0
(hnIn + pnBn) + λK/Q (4.1)

s.t. Sn ≤ Cn, ∀n ∈ N̂ (4.2)

W n ≤ τ, ∀n ∈ N̂ (4.3)

Q ≤ Q0, (4.4)

R ≤ C0 +Q0, (4.5)

Sn ≥ 0, Sn integer,∀n ∈ N̂ (4.6)

Q ≥ 1, R ≥ −1, Q,R integer (4.7)

In the formulation, the objective function (4.1) is to minimize the total cost

including the inventory holding and backorder cost both at the service centers and

at the plant, as well as the order cost at the plant. Constraint (4.2) makes sure the

inventory level at each service center lower than the capacity. Constraint (4.3) is the

service constraint that says the mean waiting time at each facility can not exceed

the target. Constraints (4.4) and (4.5) set upper bounds on Q and R. Constraints

(4.8) and (4.9) are the integrality constraints for decision variables Q,R, and Sn.

The complicating constraint is (4.3). To deal with it, we analyze each SC as a

queue. By Little’s law, we have:

W n =
Bn

λn
(4.8)
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Substituting (4.8) in expression (4.3) and get

Bn ≤ τλn (4.9)

To solve the inventory problem, we need to evaluate the backorder term Bn.

4.2 Inventory Level at the Plant and at the Ser-

vice Centers

Table 4.1: Notations
n Service center index, 0 represents the plant

Yn Demand during lead time at service center n ∈ N̂
Y0 Demand during lead time at the plant
T0 Lead time at the plant
T Lead time between service center n and the plant

In(Q,R, S) On-hand inventory level at service center n ∈ N̂
I0(Q,R, S) On-hand inventory level at the plant
IP0(Q,R, S) Inventory position at the plant

Bn(Q,R, S) Backorder level at service center n ∈ N̂
B0(Q,R, S) Backorder level at the plant

On(Q,R, S) Outstanding orders at service center n ∈ N̂
Bn

0 (Q,R, S) Backorder level of service center n at the plant

For sake of brevity, we rewrite the variables omitting the parameters that the

variables depend on, e.g., B0(Q, R S) is denoted as B0. An open service center

operates under base stock policy so that a demand occurrence at a service center will

automatically trigger an order at the plant. Since the demand at each service center

follows a Poisson distribution, the plant faces demand with Poisson distribution as
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well. Muckstadt [17] shows that the inventory position at the plant which is IP0 is

uniformly distributed between R+1 and R+Q. Based on result from Topan et. al

[27] for multiple item model, we derive the steady state distributions of parameters

for the single item model as follow

I0 −B0 = IP0 − Y0 (4.10)

Equation (4.10) holds when the replenishment time at the plant is constant. In

our model, we assume the time to replenish one unit is a constant µ. For a given

order size Q, the replenishment time is a constant T0 = Qµ. Therefore, the demand

at the plant during replenishment time Y0 has a Poisson distribution with mean

λQµ. According to (4.10), I0 and B0 are:

P (I0 = x) =


1

Q

R+Q∑
k=max(R+1,x)

P{Y0 = k − x} for 1 ≤ x ≤ R +Q

1

Q

R+Q∑
k=r+1

P{Y0 ≥ k} for x = 0

(4.11)

P (B0 = x) =


1

Q

R+Q∑
k=R+1

P{Y0 = k + x} for x ≥ 1

1

Q

R+Q∑
k=R+1

P{Y0 ≤ k} for x = 0

(4.12)

Then we need to have the steady state distribution of the inventory level as well

as the backorder level at each service center. Since every service center uses a base
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stock policy, the inventory position is always a constant at the base stock level S.

Therefore, the inventory position at time t is:

IPn(t) = Sn = In(t)−Bn(t) +On(t) (4.13)

In equation (4.13), we need to get the expression of In and On to calculate Bn.

To find On, we see that the number of outstanding orders at time t at service center

n is the sum of the number of backorders delivered to service center n at time t−T

and the demand during the lead time T . Thus, On can be expressed as:

On(t) = B
(n)
0 (t− T ) + Yn(t− T, t) (4.14)

In equation (4.14), we can calculate the first term B
(n)
0 using conditional prob-

ability on B0 as:

P{B(n)
0 = x} =

∞∑
y=x

P{B(n)
0 = x|B0 = y} × P{B0 = y} for x ≥ 0 (4.15)

In this expression, B
(n)
0 |B0 follows a binomial distribution with parameters B0

and λn
λ0

[16]. If we use the same idea to deal with (4.14), we will see that:

P{On = x} =
x∑
y=0

P{Yn = y} × P{B(n)
0 = x− y}, for x ≥ 0 (4.16)

where Yn follows a Poisson distribution with mean λnT .
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We come back to equation (4.13). We could see that if there is any on-hand inven-

tory, the backorder level must be 0 which says if In is positive, Bn must be 0. Now

we can calculate the steady state distribution of In as:

P (In = x) =


P{On = Sn − x} for 1 ≤ x ≤ Sn

1−
Sn∑
x=1

P{In = x} for x = 0
(4.17)

Now we have all the expressions we need to calculate the backorder level. Then

we can find the expression of the backorder level as:

B0 = Y 0 −R−
Q+ 1

2
+ I0

Bn = On − Sn + In

(4.18)

Then we can use the expression of the backorder in constraint (4.9).

4.3 Search algorithm

In this section, an exact algorithm is proposed to solve the inventory stocking prob-

lem introduced in Section 4.1. This algorithm is based on the enumeration of all

feasible solutions to calculate the optimal policy parameters (Q, R) for the plant

and the optimal policy parameter Sn for each service center that satisfy both re-

sponse time and the capacity constraints.

The algorithm starts by setting Q and R at their upper limit. The upper limit for

Q is the order size limit Q0 and the upper limit for R is the plant capacity limit
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C0. Then it enumerates on all feasible values of Sn for each open service center

with respect to the mean target response time constraint. We look for a value of

Sn that gives the lowest total cost, including the total holding cost and the backo-

rder cost at service centers. If setting Sn at its highest value Cn cannot satisfy the

mean target response time constraint for any open service center, we conclude the

inventory problem as infeasible. Once we find a local minimum solution for given

(Q, R), we keep Q the same, decrease R by one unit, and repeat the enumeration

procedure. After R reaches the lower bound which is -1, we decrease Q by one unit

and set R to its upper limit to go through this enumeration again until Q hits the

lower bound value 0.

After generating all the local optimal solutions, we select the minimum to be the

global optimal solution. If all local solutions are infeasible, we conclude [SP] is

infeasible.

Before presenting the search algorithm, we define Ẑ = Ẑ0 +
∑
n∈N̂

Ẑn where Ẑ0 =

λK/Q+ h0I0 + p0B0 and Ẑn = hnIn + pnBn for n ∈ N̂ .

The search algorithm is summarized as:
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Search algorithm to determine (Q, R) at the plant and (S, S − 1) at the SCs.

Initialize Q = Q0

While Q > 0

Initialize R = C0 +Q0

While R > −1

Calculate Ẑ0

For Each open service center n

Set Sn = 0

Calculate Bn

While Sn < Cn

If Bn > λn ∗ τ

Sn = Sn + 1, Calculate Bn

Else

Calculate Ẑn, Update Ẑn

End If

End While

Update Ẑ, Update (Q, R, Sn)

End For

R = R− 1

End While

Q = Q− 1

End While
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4.4 Useful Lemmas

In order to narrow the search space and improve the algorithm, we could use the

results from Topan et al. [27] to improve the lower bound on R based on stochastic

dominance [21].

Definition 1. (First-Order Stochastic Dominance). A cumulative distribution

A first-order stochastic dominates another distribution B iff

P (A ≥ x) ≥ P (B ≥ x) (4.19)

for all x with a strict inequality over some interval.

Definition 1 is equally saying A first-order stochastic dominates B iff FA(x) ≤

FB(x) where FA(x) is the cumulative distribution function of A and FB(x) is the

cumulative distribution function of B.

Corollary 1 If A first-order stochastic dominates B

EA(x) ≥ EB(x) (4.20)

We use notation ≥st to denote the first-order stochastic dominance.

Lemma 1. For any R+ > R

B0(Q,R) ≥st B0(Q,R
+) (4.21)
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Proof. From (4.12), we have P (B0(Q,R) ≤ x) = 1
Q

R+Q∑
k=R+1

P (Y0 ≤ k + x). In-

creasing R will not change the summation interval. Denote t = R + p + x where

1 ≤ p ≤ Q and t+ = R++p+x where 1 ≤ p ≤ Q and therefore t ≤ t+. Since t ≤ t+

and P (Y0) is a cumulative distribution function of Y0, P (Y0 ≤ t) ≤ P (Y0 ≤ t+)

which result in the
R+Q+x∑
t=R+1+x

P (Y0 ≤ t) ≤
R++Q+x∑

t+=R++1+x

P (Y0 ≤ t+) for the same sum-

mation interval length. Therefore P (B0(Q,R) ≤ x) ≤ P (B0(Q,R
+) ≤ x). By

definition, it is the same as (4.21).

Lemma 2. For any R+ > R

B
(n)
0 (Q,R) ≥st B(n)

0 (Q,R+) (4.22)

On(Q,R) ≥st On(Q,R+) (4.23)

Inequality (4.22) can be directly derived from (4.21) and (4.15). Inequality

(4.23) is a direct result from (4.14) and (4.22).

Lemma 3. For any R+ > R

P(In(Q,R, Sn) = 0) ≥ P(In(Q,R+, Sn) = 0) (4.24)

Proof. P(In(Q,R, Sn) = 0) = P(On(Q,R, Sn) ≥ Sn). According to (4.23) and

Definition 1, P(On(Q,R, Sn) ≥ Sn) ≥ P(On(Q,R+, Sn) ≥ Sn).
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Lemma 4. For any R+ > R, k is a positive integer parameter

P(Bn(Q,R, Sn) ≥ k) ≥ P(Bn(Q,R+, Sn) ≥ k) (4.25)

Bn(Q,R, Sn) ≥st Bn(Q,R+, Sn) (4.26)

Proof. P(In(Q,R, Sn) = 0) = P(Bn(Q,R, Sn) ≥ 0). By (4.24), P(Bn(Q,R, Sn) ≥

0) ≥ P(Bn(Q,R+, Sn) ≥ 0). For any other positive integer parameter k, P(Bn(Q,R, Sn) ≥

k) = P(On(Q,R, Sn) ≥ Sn + k). Therefore, (4.25) is a direct result from (4.23) and

(4.26) is a direct result of (4.24) and (4.25).

Corollary 2. For any R+ > R

E(Bn(Q,R, Sn)) ≥ E(Bn(Q,R+, Sn)) (4.27)

Corollary 2 is used in our search algorithm to reduce the search space since

when the value of Q is fixed, if some larger value of R cannot provide a feasible

solution, any smaller value R cannot provide a feasible solution either.
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Chapter 5

Solution of the Inventory-Location

Problem

The original formulation [ILP] is a stochastic mixed integer optimization program

that is difficult to solve. In this chapter, a cutting-plane algorithm is provided to

solve the problem.

The algorithm first drops constraints (3.5) -(3.12), the relaxed master problem [MP]

is then a location allocation problem. The solution to the relaxed master problem

gives a lower bound to the original problem. Given the assignment of the cus-

tomers and the location decisions from the solution of the [MP], the subproblem

is an inventory stocking problem [SP]. By solving [SP], we may obtain an upper

bound on the original problem and valid cuts. These cuts are then added to the

relaxed master problem. If the subproblem is feasible, we obtain an optimality cut

from the subproblem and then the lower bound may be improved. If the subprob-

lem is infeasible, then a feasibility cut is added. The algorithm iterates between
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the solution of [MP] and [SP] until the upper bound and the lower bound are equal.

5.1 Valid Cuts and Algorithm

The optimal solution of [MP], defined as (X̂, Ŷ , Ẑ) gives the following information:

X̂ gives which service centers are open and Ŷ gives the assignment of customers

to open SCs. We define N̂ = {n : X̂n = 1} to be the set of open service centers

and λ̂n =
∑
i∈I
λiŶin be the demand rate faced at service center n. We then solve the

inventory stocking problem [SP] using N̂ and λ̂.

When [MP] is solved, in the first iteration, Z will be set to 0. After solving [SP]

for a given (X̂, Ŷ ), Z is either updated to Ẑ which means [SP] is feasible or it is

concluded that [SP] is infeasible.

If the subproblem is feasible, an optimality cut is formulated as:

Z ≥ Ẑ − Ẑ(
∑
n∈N̂

(1−Xn) +
∑
n/∈N̂

Xn) (5.1)

where N̂ is the set of open service centers and Ẑ is the minimum total inventory

cost given N̂ .

If the same set of service centers is selected, the cut is reduced to:

Z ≥ Ẑ (5.2)
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which forces Z to be Ẑ. If a different set of service center is selected, then
∑
n∈N

(1−

Xn) +
∑
n/∈N

Xn is not 0 and the cut is redundant.

If the subproblem is infeasible, we add the feasibility cut defined as:

∑
n∈N̂

(1−Xn) +
∑
n/∈N̂

Xn ≥ 1 (5.3)

If the same set of service centers is open, the cut is:

∑
n/∈N̂

Xn ≥ 1 (5.4)

which forces at least one more service center to open. In other words the current

infeasible solution is removed from the search space.

Cuts (5.1) and (5.3) are valid since the two cuts do not remove any feasible solution

and do remove the infeasible solutions. Therefore, the search space is narrowed by

adding cuts and the solution will converge to optimality.

We decompose the original problem into the relaxed master problem [MP] which is

a location-allocation problem and the subproblem which is an inventory stocking

problem [SP]. The algorithm solves the relaxed master problem which gives a lower

bound on the original problem. Given information from the solution of [MP], the

algorithm solves the subproblem as well. If the subproblem is feasible, an optimality

cut is added to [MP] and the upper bound is updated and if the subproblem is

infeasible, a feasibility cut is added to [MP]. The algorithm performs the two steps

iteratively until the lower bound is equal to the upper bound.

The cutting-plane algorithm is described below:
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Cutting-Plane Algorithm [CP]

Initialize: UB = inf, LB = 0.

While LB 6= UB

Step 1. Solve [MP], obtain solution (X̂, Ŷ , Ẑ), update LB,

Step 2. If UB = LB , Stop

Step 3. Solve [SP] using search algorithm

- If [SP] is feasible:

- Construct feasible solution (X̂, Ŷ , Ẑ), update UB.

- Add optimality cut (5.1) to [MP].

- If [SP] is infeasible:

- Add feasibility cut (5.3) to [MP].

- Go to step 1
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Chapter 6

Numerical Testing and Sensitivity

Analysis

In this chapter, we test the effectiveness of the cutting-plane algorithm [CP]. The

algorithm is implemented in Matlab R2012 on a computer with Intel(R) Core(TM)

i5-2500 CPU @3.30GHz, 16.00GB RAM and Windows 7. The master problem [MP]

is solved by solver CPlex Version 12.6.

6.1 Performance of the Cutting Plane Algorithm

In this section we test the performance of [CP] using an industrial dataset from

Bombardier Inc. and datasets from the literature.
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6.1.1 The Industry Dataset

We use the same dataset as Riaz [20]. The dataset is obtained from Bombardier

Inc. This dataset has 20 potential SC locations and 121 customers. The demand

data has 20 different parts. We use one spare part which has the highest demand.

Different parameters are set to form 4 instances to test the effectiveness of the

algorithm under different scenarios.

The distance from customer i to facility j is in hours and the demand is monthly

based. Lead time for every facility is 0.23 months and the order size limit is 5 units.

We have two different versions of Bombardier instances. The differences are:

• The plant and service center capacity in version 1 is 10 units and in version

2 is 5 units;

• The replenishment time for one unit at the plant in version 1 is 0.9
λ

and in

version 2 is 0.5
λ

;

• The mean target response time requirement in version 1 is 0.025 months and

in version 2 is 0.01 months;

• The distance requirement in version 1 is 40 hours and in version 2 is 25 hours.

Each instance is solved with 3 different values of the order cost: 0, 5, 10.

Version 2 is considered to be a more difficult version than version 1 because the

capacity limit in version 2 is smaller which could cause a higher backorder level but

the mean target response time is smaller. The distance requirement is also smaller

in version 2 which may require more facilities to open to fulfill customer demand.
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The notation used in Tables 6.1 and 6.2 is: Iter stands for the number of iterations

of [CP]; # of SC stands for the number of open SCs; LB stand for lower bound; K

is the fixed order cost at the plant; Q is the optimal reorder quantity at the plant,

run time denotes the time to reach the optimal solution in clock seconds, # of F

denotes the total number of feasibility cuts when reach optimal solution and CoF

denotes the cost of first feasible solution.

Dataset K Iter
# of
SC

LB GAP Q Run Time
# of
F

CoF

BBD V1 0 21 1 104680 0 1 215.3 0 104680
BBD V1 5 21 1 104694 0 4 212.3 0 104694
BBD V1 10 21 1 104710 0 5 211.8 0 104710
BBD V1 15 21 1 104799 0 5 211.8 0 104799
BBD V2 0 82 2 202580 0 1 620.4 0 202890
BBD V2 5 82 2 202602 0 4 608.1 0 202913
BBD V2 10 82 2 202610 0 5 602.1 0 202920
BBD V2 15 82 2 202809 0 5 602.1 0 202925

Table 6.1: Performance of [CP] for Bombardier Instances

Table 6.1 presents the results of running [CP] on Bombardier instances. Opti-

mality gap is 0 for all instances. The time to get the optimal solution varies between

3 minutes and 10 minutes. When order cost is 0, the plant has an optimal reorder

size 1 which means the plant is running under (S, S − 1) policy. Increasing the

order cost will shorten the run time.
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6.1.2 Daskin Instances

Daskin instances consist of a 49-node, a 88-node and a 150-node datasets. The data

is based on the 1990 United Stated Census, where 49 nodes represent the 48 capital

cities and Washington D.C.; 88 nodes represent the 50 most populated cities and

the 48 capital cites; and 150 nodes represent the 150 largest cities. A node is either

a SC location or a demand point. The following assumptions are made: the facility

location costs fj is the same for all j; the demand rates λi are obtained by dividing

the census population figures by 106; the unit holding costs h0 and hn are 50; and

backorder cost p is 150.

There are two versions where the shipment lead time αj is obtained by dividing the

distance from the potential SC location node to the demand location by a factor of

100 in version 1 and 1000 in version 2. The other differences are:

• The plant and SC capacities C0 = Cj = 10 in version 1 and C0 = Cj = 5 in

version 2;

• The replenishment time for one unit at the plant is 0.9
λ

in version 1 and 0.5
λ

in

version 2;

• The response time requirement τ = 5.5 in version 1 and τ = 1.5 in version 1;

• The distance requirement dmax = 2000 in version 1 and dmax = 500 in version

2.

Version 2 of the datasets are considered more difficult as the capacities, response

time and distance requirement are set to be less than those of version 1. As a
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consequence, it is expected that more facilities will open in order to fulfill demand.

Dataset K Iter
# of
SC

LB GAP Q Run Time
# of

F
CoF

Da49 V1 0 3 1 48826 0 1 3.43 0 48826
Da49 V1 5 3 1 49132 0 3 3.35 0 49132
Da49 V1 10 3 1 49320 0 5 3.26 0 49320
Da49 V1 15 3 1 49390 0 5 3.27 0 49392
Da49 V2 0 2 5 283670 0 1 2.43 0 283670
Da49 V2 5 2 5 283892 0 3 2.21 0 283892
Da49 V2 10 2 5 284170 0 5 2.18 0 284170
Da49 V2 15 2 5 284260 0 5 2.18 0 284160
Da88 V1 0 2 1 49226 0 1 2.27 0 49226
Da88 V1 5 2 1 49279 0 3 2.18 0 49279
Da88 V1 10 2 1 49316 0 5 2.10 0 40316
Da88 V1 15 2 1 49421 0 5 2.10 0 49421
Da88 V2 0 2 7 417840 0 1 2.42 0 417840
Da88 V2 5 2 7 417891 0 3 2.31 0 417891
Da88 V2 10 2 7 417930 0 5 2.12 0 417930
Da88 V2 15 2 7 417955 0 5 2.13 0 417955
Da150 V1 0 45 1 104430 0 1 2898.31 14 104571
Da150 V1 5 45 1 104967 0 3 2853.87 14 105192
Da150 V1 10 45 1 105400 0 5 2698.64 14 105925
Da150 V1 15 45 1 105465 0 5 2697.60 14 105990
Da150 V2 0 1075 6 607500 - 1 - - -
Da150 V2 5 - - - - - - - -
Da150 V2 10 - - - - - - - -

Table 6.2: Performance of [CP] for Daskin Instances

Table 6.2 presents the results of running [CP] on Daskin instances. The last

two lines are not complete because it takes over 35 hours to get the optimal solu-

tions. Optimality gap is 0 for all other instances and the run time varies between

2 seconds and 49 minutes.
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Since Riaz [20] studied a two-echelon supply chain which operates a base stock

policy at both the service centers and the plant while the system we study operates

a base stock policy at the service centers and a batch ordering policy at the plant,

the different policy settings make the algorithm perform differently.

Since we use the exact approach to find the solution, we need to compare our

results with the exact solution result in Riaz [20]. However, the result in Riaz [20]

is only for METRIC-like approximation and negative binomial approximation and

the exact approach is expected to take longer than the approximation approaches.

So, we compare our results with those in Riaz [20] that take the longer time among

the Metric-like and negative binomial approximation.

The negative binomial approach for Bombardier V1 in Riaz [20] work takes 43

seconds and 21 iterations and in our model, it takes more than 200 seconds to find

the optimal solution when the order cost is 0, which is theoretically the same sys-

tem as Riaz [20]. This time difference is due to time of solving [SP]. In our model,

we enumerate on both Q and R in every iteration which is very time consuming.

This is also shown in Daskin 150 city instance Version 1, where the run time of our

system performs almost 1000 seconds worse than Riaz [20] work. When Q0 and C0

increase, solution time increases exponentially.
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From Tables 6.2 and 6.1, when the order cost is 10, the run time is relatively

short compared to the 0 order cost case. This happens since in our enumeration

process, if the order cost is positive, the search algorithm will not need to go through

every possible Q and R. The difference is only within 0.5 seconds for Daskin 49 city

version 1 but is almost 200 seconds for Daskin 150 city version 2.

To better understand how these parameters affect the system in terms of the

total cost and run time, we perform experiments using different parameters in the

next section.

6.2 Effect of Different Replenishment Policies

In the previous section, we showed that [CP] can solve the small industrial case

in acceptable time. To better understand the effect of the policy change and the

impact of the parameters, including plant and service center capacity and the or-

dering size, we run several experiments.

6.2.1 Effect of Capacity

To better understand the impact of changing the capacity of the SCs and the plant,

we choose Bombardier case to test. The reason that the Bombardier case is chosen

is because the number of iterations to get the optimal solution for both versions of

Bombardier data set is reasonable. We also pick the cases with order cost 5 and

40



10.

Figure 6.1: Optimal Decisions Under Different C0 for BBD V1

Figure 6.2: Optimal Decisions Under Different Cn for BBD V1

Figure 6.3: Optimal Decisions Under Different C0 for BBD V2
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Figure 6.4: Optimal Decisions Under Different Cn for BBD V2

When more than one SC are needed, Sn is the total stock level over all open

SCs, In and W n is the inventory decision at the service center which has the longest

mean target response time.

According to Table A.16 and Figures 6.1-6.4, it is shown that changing the re-

plenishment policy at the plant doesn’t change the location decision of the supply

chain when the order cost is small compare to the fixed facility cost but it changes

the inventory decision at the plant. It further shows that the location decision is

affected by the service center’s capacity. The plant capacity may affect the optimal

order size and reorder point. For Bombardier dataset version 1, when the plant’s

capacity drops to 5, even when the order cost is large, the plant orders 3 units and

keeps the reorder point at the maximum. When the plant’s capacity is 10, the order

size is affected by the order cost: a larger order cost gives a larger order size so as

to decrease the number of orders. The reorder point is higher than base stock level

in Riaz [20] and leads to a larger holding cost. When the plant’s capacity increases

to 15, since the location decision and the inventory decision at the service center

are not changed, the plant works the same way as when the capacity is 10. On the

other hand, when the capacity of the service center changes, the location decision
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and the inventory decision at both the plant and the service centers may change.

When the capacity of the service center drops to 5, a single service center cannot

satisfy customer demand subject to the mean target response time constraint even

when the service center keeps inventory at its maximum level. Therefore, more

service centers are needed under this scenario. Since the location decision changes,

the inventory decision at each service center changes also. However, since the plant

faces the same aggregate demand from the service centers, the inventory decision

at the plant does not change. When the capacity of the service center increases to

15, the reorder point at the plant drops to 2 and the reorder point at the service

center increases to 15. A possible explanation is that the system shifts inventory

from the plant to the service centers in order to save on holding cost.

In conclusion, we found that when changing the replenishment policy at the

plant, the location decision and the service center’s inventory decision are not af-

fected but the inventory decision at the plant changes. Fewer orders are needed

but higher ordering and inventory holding costs are incurred. We also found that

the plant’s capacity may affect the inventory decision but makes no impact on the

location decisions and the service center’s inventory decisions. However, the service

center’s capacity may affect both the location decision and the inventory decisions

at both the service centers and the plant.

43



6.2.2 Effect of the Order Size and Order Cost

In this section, we will discuss the impact of the order size and the order cost pa-

rameters. To see the impacts, we choose the Bombardier cases with order cost 5,10

and 15 to test.

Figure 6.5: Relation Between Q and Q0 Under Different K

Table A.15 and Figure 6.5 show that, changing of either the order cost or the

order limit affects the inventory decision at the plant. For Bombardier dataset

version 1, when the order cost drops to 5, the order size at the plant is either the

allowable order size or 4. When the allowable order size decreases to 2, the reorder

point at the plant decreases to 8 and it decreases the inventory holding cost at the

plant. However, the trade-off is the order cost, since number of orders increases,

and the backorder cost increases. When the allowable order size increases to 5 or

more, the order size does not change. This is because if the plant orders more,

although the order cost drops, the plant needs to keep more safety stock since the

replenishment time for the order increases as well and the trade-off is a larger ex-

pense on holding inventory. Increasing the allowable order size either decreases the

total cost or keeps the total cost unchanged. Theoretically, increasing maximum
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order size implies to looser constraint (3.11), if the constraint was binding, a better

solution is obtained, otherwise the solution remains unchanged.

In conclusion, changing of the order cost and the maximum order size will affect

the plant’s inventory decisions. Increasing the maximum order size either improves

the inventory decision or keeps the inventory decision the same.

6.2.3 Effect of Large Order Cost

Recall Table A.16, when the capacity of the plant is 5, and the capacity of the

service center is 10, although the order cost is different, the optimal order size is

the same at 3. However, This may not be the case when the order cost is large

compared to facility location cost. In this section, further tests on larger order cost

values are presented.

We use dataset from Bombardier version 1 to see how the large order cost will

affect the supply chain design decision when the capacity of the plant is limited.
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Figure 6.6: Location Decision Under Different Order Cost for BBD V1

Figure 6.6 shows that when the order cost jumps from 20 to 3000, it changes the

location allocation decisions and the inventory decision at both the plant and the

service centers. The reason is when the order cost is large enough, it will force the

plant to decrease order times which will increase the order size. However, ordering

more means the lead time is longer and the required safety stock is more. For the

decision to open 1 service center, keeping most stock at the plant can not satisfy

the demand from the service center and will not satisfy the mean target response

time constraint. Therefore, the system decides to open more service centers and to

keep more stock at the service centers. This is the decision balances the order cost

and the location cost.

Next, we use dataset from Bombardier version 2 to see how the large order cost

will affect the supply chain design decision under different plant lead times. The

parameters are C0 = Cn = 5, Q0 = 50. Notation µ represents the lead time of

replenishing a single unit. i.e. µ = 0.5 if the lead time of replenishing one unit is

0.5/λ.
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Figure 6.7: Location Decision Under Different Order Cost for BBD V2

Figure 6.7 shows that increasing the order cost to a large value will force the

plant to order fewer times but to order more every time. When the lead time for

replenishing a single unit is short, ordering more will not increase the total lead

time significantly. Therefore the plant can still keep enough safety stock for the

demand during lead time. However, when the lead time for replenishing a single

unit is long, ordering more will increase the total lead time significantly. Therefore

according to Figure 6.7, the plant may not increase the order size when the order

cost is not large. However, when the order cost is arbitrarily large, the plant will

certainly order more which results in a significant time increase. In that case, the

plant may not be able to hold enough stock to satisfy the demand from the service

centers and the service centers are not able to satisfy the mean target response time

constraint. Therefore the system needs to open one more service centers and to

keep more stock in order to satisfy the mean target response time constraint. This

is a trade off between order cost and facility location cost.

In conclusion, increasing the order cost under some conditions, i.e. limited ca-
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pacity of the plant and longer replenishment time, will affect the location decision

of the supply chain.
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Chapter 7

Conclusion

The problem presented in this thesis is a two-echelon inventory location problem.

The SCs face stochastic demands that are independent Poisson processes. The re-

plenishment rate for a single item at plant is µ. The SCs operate under base stock

policy and the plant operates under batch ordering policy. The SCs need to satisfy

the mean target response time requirement for customers.

To the best of our knowledge, our paper is the first to find an optimal solution

to a two-echelon inventory-location problem when the plant operates under batch

ordering policy with fixed single unit replenishment time and the service centers

operate under base stock policy with Poisson demand. We consider customer pref-

erence constraints when making the location-allocation decision and time-based

service constraints when making the inventory decision. In the work of Topan et.al

[27], the replenishment time at the plant is fixed but the replenishment time at the
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plant in our model varies based on the order size. The mean target response time

constraint makes the problem difficult to solve. The cutting-plane algorithm is to

break the problem into two parts which are location allocation problem and inven-

tory stocking problem. We solve the location-allocation problem as master problem

and solve the inventory stocking problem as subproblem to generate valid cuts. We

provide an exact solution approach to the original inventory-location problem.

We used industrial data set obtained from Bombardier Inc. and data sets from

the literature to test the cutting-plane algorithm. The results show that when the

search space is relatively small, the cutting-plane algorithm finds the optimal so-

lution in a reasonable time. The algorithm is time consuming when the maximum

order size and plant capacity are relatively large.
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Appendix A

Numerical Results

A.1 Bombardier Results

Iteration #SC LB UB GAP Q

1 1 50000 104680 1.0936 1
2 1 50000 104680 1.0936 1
3 1 50000 104680 1.0936 1
4 1 50000 104680 1.0936 1
5 1 73346 128020 0.74548 1
6 1 85012 139690 0.64318 1
7 1 94168 148850 0.58064 1
8 1 94168 148850 0.58064 1
9 1 94168 148850 0.58064 1

10 1 94168 148850 0.58064 1
11 1 94168 148850 0.58064 1
12 1 94168 148850 0.58064 1
13 1 94168 148850 0.58064 1
14 2 100000 171540 0.71545 1
15 2 100000 171020 0.71024 1
16 2 100000 178690 0.78691 1
17 2 100000 178290 0.78289 1
18 2 100000 171680 0.7168 1
19 2 100000 171020 0.71024 1
20 1 100000 154680 0.54678 1
21 1 104680 104680 0 1

Table A.1: Bombardier V1 / order cost = 0
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iteration #of SC Lb Ub GAP Q

1 1 50000.0 104710.0 1.0943 5
2 1 50000.0 104710.0 1.0943 5
3 1 50000.0 104710.0 1.0943 5
4 1 50000.0 104710.0 1.0943 5
5 1 73346.0 128060.0 0.74595 5
6 1 85012.0 139730.0 0.64359 5
7 1 94168.0 148880.0 0.58101 5
8 1 94168.0 148880.0 0.58101 5
9 1 94168.0 148880.0 0.58101 5

10 1 94168.0 148880.0 0.58101 5
11 1 94168.0 148880.0 0.58101 5
12 1 94168.0 148880.0 0.58101 5
13 1 94168.0 148880.0 0.58101 5
14 2 100000.0 171580.0 0.71579 5
15 2 100000.0 171060.0 0.71058 5
16 2 100000.0 178730.0 0.78726 5
17 2 100000.0 178320.0 0.78324 5
18 2 100000.0 171060.0 0.71058 5
19 2 100000.0 171710.0 0.71715 5
20 1 100000.0 154710.0 0.54713 5
21 1 104710.0 104710.0 0 5 ]

Table A.2: Bombardier V1 / order cost = 10
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Iteration #SC LB UB GAP Q

1 2 100000 202890 1.0289 1
2 2 100000 202580 1.0258 1
3 2 100000 202580 1.0258 1
4 2 123350 226210 0.83394 1
5 2 135010 236930 0.75489 1
6 2 144170 254640 0.76626 1
7 2 144170 247070 0.71377 1
8 2 144170 247070 0.71377 1
9 2 144170 246750 0.71151 1

10 2 144170 246290 0.70839 1
11 2 144170 246750 0.71151 1
12 2 144170 246750 0.71151 1
13 2 144170 246750 0.71151 1
14 2 144170 246350 0.70874 1
15 2 144170 247060 0.71366 1
16 3 150000 247060 0.64703 1
17 3 150000 272780 0.81851 1
18 3 150000 272780 0.81851 1
19 2 158360 261250 0.64973 1
20 2 163210 265780 0.62851 1
21 2 163210 265780 0.62851 1
22 2 163210 266090 0.63041 1
23 2 167510 278470 0.66235 1
24 2 168660 271240 0.60818 1
25 2 168660 271240 0.60818 1
26 2 168660 271240 0.60818 1
27 3 173350 303280 0.74954 1
28 3 173350 303280 0.74954 1
29 3 173350 303340 0.74992 1
30 3 173350 303340 0.74992 1
31 3 173350 295770 0.70626 1
32 3 173350 295660 0.70559 1
33 2 175650 278560 0.58583 1
34 2 177610 279790 0.57529 1
35 2 179180 281310 0.56997 1
36 2 179180 282080 0.5743 1
37 2 179180 282080 0.5743 1
38 3 185010 306710 0.65779 1
39 3 185010 306880 0.65869 1
40 3 185010 306880 0.65869 1
41 2 188340 298810 0.58656 1
42 2 188340 290910 0.54465 1
43 2 188340 291240 0.54638 1
44 2 188340 290910 0.54465 1

Table A.3: Bombardier V2 / order cost = 0
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45 2 188340 291240 0.54638 1
46 2 188340 290910 0.54465 1
47 3 194170 324100 0.66916 1
48 3 194170 324100 0.66916 1
49 3 194170 324100 0.66916 1
50 3 194170 324100 0.66916 1
51 3 194170 324100 0.66916 1
52 3 194170 324180 0.66958 1
53 3 194170 316400 0.62952 1
54 3 194170 316400 0.62952 1
55 3 194170 316370 0.62937 1
56 3 194170 316370 0.62937 1
57 3 194170 316370 0.62937 1
58 3 194170 316940 0.63232 1
59 3 194170 324210 0.66976 1
60 3 194170 316940 0.63232 1
61 3 194170 324180 0.66958 1
62 3 194170 324100 0.66916 1
63 3 194170 324140 0.66936 1
64 3 194170 324140 0.66936 1
65 3 194170 324140 0.66936 1
66 3 194170 316940 0.63232 1
67 3 194170 324160 0.6695 1
68 3 194170 316480 0.62993 1
69 3 194170 324230 0.66986 1
70 3 194170 316940 0.63232 1
71 3 194170 316940 0.63232 1
72 3 194170 324160 0.6695 1
73 3 194170 316480 0.62993 1
74 3 194170 316680 0.63098 1
75 3 194170 316680 0.63098 1
76 3 194170 316940 0.63232 1
77 2 198220 300350 0.51522 1
78 3 200000 330000 0.65 1
79 4 200000 330000 0.65 1
80 3 200000 330000 0.65 1
81 3 200000 330100 0.65052 1
82 2 202580 202580 0 1

Table A.4: Bombardier V2 / order cost = 0
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Iteration # of SC LB UB GAP Q

1 2 100000 202920 1.0292 5
2 2 100000 202610 1.0261 5
3 2 100000 202610 1.0261 5
4 2 123350 226240 0.83423 5
5 2 135010 236970 0.75515 5
6 2 144170 254670 0.7665 5
7 2 144170 247110 0.71402 5
8 2 144170 246780 0.71175 5
9 2 144170 246780 0.71175 5

10 2 144170 246780 0.71175 5
11 2 144170 247110 0.71402 5
12 2 144170 246780 0.71175 5
13 2 144170 247090 0.7139 5
14 2 144170 246380 0.70898 5
15 2 144170 246330 0.70863 5
16 3 150000 246330 0.6422 5
17 3 150000 272810 0.81874 5
18 3 150000 272810 0.81874 5
19 2 158360 261280 0.64995 5
20 2 163210 265820 0.62873 5
21 2 163210 265820 0.62873 5
22 2 163210 266130 0.63063 5
23 2 167510 278500 0.66256 5
24 2 168660 271270 0.60839 5
25 2 168660 271270 0.60839 5
26 2 168660 271270 0.60839 5
27 3 173350 303310 0.74974 5
28 3 173350 303310 0.74974 5
29 3 173350 303380 0.75012 5
30 3 173350 303380 0.75012 5
31 3 173350 295690 0.70579 5
32 3 173350 295810 0.70646 5
33 2 175650 278590 0.58603 5
34 2 177610 279820 0.57549 5
35 2 179180 282120 0.5745 5
36 2 179180 281340 0.57016 5
37 2 179180 282120 0.5745 5
38 3 185010 282120 0.52486 5
39 3 185010 306910 0.65888 5
40 3 185010 306750 0.65798 5
41 2 188340 298840 0.58674 5
42 2 188340 290950 0.54484 5
43 2 188340 291270 0.54657 5
44 2 188340 291270 0.54657 5

Table A.5: Bombardier V2 / order cost = 10
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45 2 188340 290950 0.54484 5
46 2 188340 290950 0.54484 5
47 3 194170 324130 0.66934 5
48 3 194170 324130 0.66934 5
49 3 194170 324130 0.66934 5
50 3 194170 324210 0.66976 5
51 3 194170 324130 0.66934 5
52 3 194170 316980 0.6325 5
53 3 194170 324210 0.66976 5
54 3 194170 324130 0.66934 5
55 3 194170 324130 0.66934 5
56 3 194170 316440 0.6297 5
57 3 194170 316980 0.6325 5
58 3 194170 324130 0.66934 5
59 3 194170 324170 0.66954 5
60 3 194170 324170 0.66954 5
61 3 194170 316410 0.62955 5
62 3 194170 316410 0.62955 5
63 3 194170 324200 0.66968 5
64 3 194170 316720 0.63116 5
65 3 194170 324170 0.66954 5
66 3 194170 324250 0.66994 5
67 3 194170 324250 0.66994 5
68 3 194170 324270 0.67004 5
69 3 194170 316980 0.6325 5
70 3 194170 316980 0.6325 5
71 3 194170 316980 0.6325 5
72 3 194170 316980 0.6325 5
73 3 194170 316510 0.63011 5
74 3 194170 324200 0.66968 5
75 3 194170 316720 0.63116 5
76 3 194170 316510 0.63011 5
77 2 198220 300380 0.5154 5
78 3 200000 330030 0.65017 5
79 4 200000 330030 0.65017 5
80 3 200000 330030 0.65017 5
81 3 200000 330140 0.6507 5
82 2 202610 202610 0 5

Table A.6: Bombardier V2 / order cost = 10
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A.2 Daskin Results

Iteration # of SC LB UB GAP Q

1 1 48400 48826 0.008809 1
2 1 48800 49226 0.008736 1
3 1 48826 48826 0 1

Table A.7: Daskin 49 V1 / order cost = 0

iteration # of SC LB UB GAP Q

1 1 48400 49320 0.019017 5
2 1 48800 49720 0.018861 5
3 1 49320 49320 0 5

Table A.8: Daskin 49 V1 / order cost = 10

Iteration # of SC LB UB GAP Q

1 5 282200 283670 0.005224 1
2 5 283670 283670 0 1

Table A.9: Daskin 49 V2 / order cost = 0

iteration # of SC LB UB GAP Q

1 5 282200 284170 0.006975 5
2 5 284170 284170 0 5

Table A.10: Daskin 49 V2 / order cost = 10

iteration # of SC LB UB GAP Q

1 1 48800 49226 0.008736 1
2 1 49226 49226 0 1

Table A.11: Daskin 88 V1 / order cost = 0
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Iteration # of SC LB UB GAP Q

1 1 48800 49316 0.010574 5
2 1 49316 49316 0 5

Table A.12: Daskin 88 V1 / order cost = 10

Iteration # of SC LB UB GAP Q

1 7 417000 417840 0.002022 1
2 7 417840 417840 0 1

Table A.13: Daskin 88 V2 / order cost = 0

Iteration # of SC LB UB GAP Q

1 7 417000 417930 0.002237 5
2 7 417930 417930 0 5

Table A.14: Daskin 88 V2 / order cost = 10
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A.3 Sensitivity Analysis Result

Table A.15: Effects on order size and Cost
Instance K Q0 Q R Sn I0 B0 Total Cost

BBD V1 5 2 2 8 10 2.76 3.84 104706
BBD V1 5 3 3 9 10 3.53 3.25 104701
BBD V1 5 4 4 9 10 3.54 3.21 104694
BBD V1 5 5 4 9 10 3.54 3.21 104694
BBD V1 5 6 4 9 10 3.54 3.21 104694
BBD V1 5 7 4 9 10 3.54 3.21 104694
BBD V2 5 2 2 0 9 0 0 202608
BBD V2 5 3 3 1 9 0.14 0 202604
BBD V2 5 4 4 1 9 0.15 0 202602
BBD V2 5 5 4 1 9 0.15 0 202602
BBD V2 5 6 4 1 9 0.15 0 202602
BBD V2 5 7 4 1 9 0.15 0 202602
BBD V1 10 2 2 8 10 2.76 3.84 104731
BBD V1 10 3 3 9 10 3.53 3.25 104728
BBD V1 10 4 4 9 10 3.54 3.21 104720
BBD V1 10 5 5 9 10 3.56 3.18 104710
BBD V1 10 6 6 9 10 3.57 3.16 104701
BBD V1 10 7 7 10 10 4.18 2.97 104693
BBD V2 10 2 2 0 9 0 0 202711
BBD V2 10 3 3 1 9 0.14 0 202695
BBD V2 10 4 4 1 9 0.15 0 202649
BBD V2 10 5 5 1 9 0.15 0 202610
BBD V2 10 6 6 1 9 0.16 0 202553
BBD V2 10 7 7 2 9 0.77 0 202512
BBD V2 10 8 7 2 9 0.77 0 202512
BBD V1 15 2 2 8 10 2.76 3.84 104818
BBD V1 15 3 3 9 10 3.53 3.25 104811
BBD V1 15 4 4 9 10 3.54 3.21 104805
BBD V1 15 5 5 9 10 3.56 3.18 104799
BBD V1 15 6 6 9 10 3.57 3.16 104787
BBD V1 15 7 7 10 10 4.18 2.97 104779
BBD V2 15 2 2 0 9 0 0 202832
BBD V2 15 3 3 1 9 0.14 0 202826
BBD V2 15 4 4 1 9 0.15 0 202818
BBD V2 15 5 5 1 9 0.15 0 202809
BBD V2 15 6 6 1 9 0.16 0 202798
BBD V2 15 7 7 2 9 0.77 0 202786
BBD V2 15 8 8 3 9 1.14 0 202772
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Table A.16: Effects on Capacity Change

Instance K C0 Cn # of SC Q R Sn I0 B0 In W n

BBD V1 5 5 10 1 3 8 10 2.77 3.61 2.94 0.018
BBD V1 10 5 10 1 3 8 10 2.77 3.61 2.94 0.018
BBD V1 5 10 10 1 4 9 10 3.54 3.21 2.94 0.018
BBD V1 10 10 10 1 5 9 10 3.56 3.18 2.94 0.018
BBD V1 5 15 10 1 4 9 10 3.54 3.21 2.94 0.018
BBD V1 10 15 10 1 5 9 10 3.56 3.18 2.94 0.018
BBD V1 5 10 5 3 4 9 13 3.54 3.21 1.71 0.023
BBD V1 10 10 5 3 5 9 13 3.56 3.18 1.71 0.023
BBD V1 5 10 10 1 4 9 10 3.54 3.21 2.94 0.018
BBD V1 10 10 10 1 5 9 10 3.56 3.18 2.94 0.018
BBD V1 5 10 15 1 4 2 15 0 0 4.59 0.014
BBD V1 10 10 15 1 5 2 15 0 0 4.59 0.014
BBD V2 5 4 5 2 4 1 9 0.15 0 1.55 0.024
BBD V2 10 4 5 2 5 1 9 0.15 0 1.55 0.024
BBD V2 5 5 5 2 4 1 9 0.15 0 1.55 0.024
BBD V2 10 5 5 2 5 1 9 0.15 0 1.55 0.024
BBD V2 5 6 5 2 4 1 9 0.15 0 1.55 0.024
BBD V2 10 6 5 2 5 1 9 0.15 0 1.55 0.024
BBD V2 5 5 4 4 4 0 10 0 0 0.41 0.023
BBD V2 10 5 4 4 5 0 10 0 0 0.41 0.023
BBD V2 5 5 5 2 4 1 9 0.15 0 1.55 0.024
BBD V2 10 5 5 2 5 1 9 0.15 0 1.55 0.024
BBD V2 5 5 6 2 4 1 10 0.15 0 1.55 0.024
BBD V2 10 5 6 2 5 1 10 0.15 0 1.55 0.024
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Appendix B

Worst Case Scenario of the

Cutting-Plane Algorithm

In our thesis, we proposed an cutting-plane algorithm to find the optimal solution

to an inventory-location problem. The algorithm defines on two nested procedures.

The outer procedure searches through all possible location allocation decisions and

the inner procedure searches for the optimal inventory decision for a given location

allocation decision and then generates cut for the outer procedure. In this section,

we will going to find the maximum number of iterations that will be needed to find

the optimal solution to the inventory-location problem in the worst case scenario.

First, in our model, the inner procedure is an enumeration algorithm that search-

es through all feasible combinations of (Q,R, S). In the worst case, the enumeration

algorithm will need to search through all combinations of (Q,R, S). For a given
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standard of order size limit and the capacity of both the plant and the service cen-

ters, the maximum value of Q, R and S is fixed. Therefore the maximum number

of iterations to find the optimal inventory decision for one service center as well

as the plant is fixed. We call this number ”M”. However, when more than one

service center is open, for example j service centers are open, in the worst case, the

maximum number of iterations to find the optimal inventory decision is jM .

Second, the outer procedure is to find the location allocation decision, in the

worst case, it will need to search through all possible combinations of open service

centers, i.e, if there are n potential service centers, in the worst case, the procedure

will need to iterates 2n − 1 times.

Finally, combining the result from above, for a problem with n potential service

centers, and with given standard of order size and capacity of the plant and the

service centers, in the worst case, the maximum number of iterations to find the

optimal solution is given as:

N = C1
nM + 2C2

nM + 3C3
nM + ...+ nCn

nM (B.1)

According to (B.1), since M is not depending on n, we can factor it out as:

N = (C1
n + 2C2

n + 3C3
n + ...+ nCn

n)M (B.2)
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As known,

kCk
n =

kn!

k!(n− k)!
= nCk−1

n−1 (B.3)

Therefore,

C1
n + 2C2

n + 3C3
n + ...+ nCn

n = n(C0
n−1 +C1

n−1 +C2
n−1 + ...+Cn−1

n−1) = n2n−1 (B.4)

According to (B.4), (B.2) can be reduced to:

N = n2n−1M (B.5)

Therefore, in the worst case, as n increases, the maximum number of iterations

will increase exponentially.
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