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Abstract

The literature reviewed on lot-sizing models with random yiesdBmited to certain
random occurrences such as day to day administrative errors, mmaicbine repairs and
random supply due to faulty delivery of parts. In reality however,ntl@ufacturing
industry faces other risks that are non random in nature. One example be yield
discrepancies caused by non random triggers such as a change odtraiqn process,
product or material. Yield uncertainties of these types arpdary in nature and usually
pertain until the system stabilizes. One way of reducing thaedatjgns of such events is
to have additional batches processed earlier in the production thatbsarb the risk
associated with the event. In this thesis, this particular appres referred to as the

anticipatory batch insertion to mitigate perceived risk.

This thesis presents an exploratory study to analyze thermparice of batch insertion
under various scenarios. The scenarios are determined by sensifiviproducts,
schedule characteristics and magnitude of risks associatedamislal triggers such as a
process change. The results indicate that the highest return ftomibsertion can be
expected when there are slightly loose production schedules, high gobfrsensitive
products are produced, there are high costs associated withktheand the risks can be

predicted with some degree of certainty.
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CHAPTER 1

INTRODUCTION

A substantial body of research has focused on lot-sizing decisitimgamdom yields
(Yano and Lee, 1995). This research has addressed various causes of yaidpm
including imperfect production processes, unexpected machine breakdaveestain
repair durations, and rework of defective units. These are all stmck#@sations and
typical strategies in the research call for increagjngntities to deal with scrap, or
establishing suitable safety-stock levels. In the literatno:-random or predictable
causes of yield variance are not addressed and there appearaeecific production
control strategies for decreasing the yield variance. Inthi@sis, we will address non-
random sources of yield variance associated with determitrigigers such as changes
in product composition, processes, personnel, and material. Spegifiealywill
introduce and explore a strategy for addressing and reducing ktheaimnce associated

with such situations.

Introduction of a new product, process, personnel, or material can ¢peifacant source
for yield variance (e.g., McKay, 1992; Grosfeld-Nir and Gerchak, 208zt).example,
the substitute material from a new supplier might not reactantly the same way as the
old material or the documentation might be out of date for a johsthan irregularly, or
there are new operators on the machine. All of these changegstdhin batches of
work being scrapped. In a perfect world, this would not be true but ial éactory, any
change in the status quo or normal situation can result in manuigcproblems. The

risk associated with such problems will pertain until the sys@hbilizes and is re-



qualified. In this thesis, the risk associated refers to th@@iog of end items or final

products.

There can be a number of strategies used to address random and non-yaidom
variance. One class of strategies for random yield varianeegsly reactive; this class
involves the creation of safety stock or the creation of additiondk wrders once the
yield loss hits a certain level. Another class of strateggs®ciated with random vyield
variance is somewhat anticipatory as batch sizes areiatlyfimcreased by the predicted
yield loss. These three strategies have been largely devetoptibe ituations where the
loss is a relatively small percentage of the batch sizg, (8-15%). In the case of a
significant non-random loss, a system with no feed-forward controbkicaply react to
the loss through the creation of a replacement batch. However, pbossible to

contemplate feed-forward strategies to minimize certain non-random losses.

One such strategy has been observed in empirical work performddiay (1992). In

this strategy smalkxtra batches are created by the scheduler and run earlier in the
production schedule - to absorb the risk implications associated watharge in
production environment (process, product or material), thus causing itewer to be
scrapped. We call this particular approaattjcipatory batch insertion to mitigate risk.

If the risk does not materialize, the strategy is equivatemt batch-splitting; if the risk
materializes and high scrap rates occur, the extra batclseapseadditional material and
resource allocations. The performance and tradeoffs of this a@bpeya analytically

studied using a simulation model with respect to cost and tardiaeggsst We also



analyze the sensitivity of the performance of this approach teigkeand production
characteristics like due dates, sensitivity of the producthstoiptions caused by causal
triggers such as a process change, and the magnitudes of theslosimtad with the
disruptions. Further, we test the robustness of the model by vatlggngvarious

experimental settings.

The problem characteristics and the different ways of copitigsumch unusual events by
the industry are detailed in Chapter 2. A general literatwieweof lot-sizing models is
provided in Chapter 3. Chapter 4 describes the problem charactesistiocdevelops a
model to explore the problem. Chapter 5 details the experimentgnd&shapter 6
tabulates the results from the experimentation according to ttezedi experimental
scenarios and chapter 7 discusses and analyzes the results obtamedhé
experimentation. Chapter 8 discusses the robustness of the expationer@hapters 9

and 10 focus on implications, limitations, future research, and conclusions.



CHAPTER 2

MOTIVATION

As shown in the literature review, the majority of random yielets studied in the
literature appear to deal with imperfect production processesriablacapacities. The
modeling methods increase either the quantity or the number of gatchieduce the

implications of such events (Anily et al., 2002; Grosfeld-Nir and Gerchak, 2004).

Empirical research suggests that production processes can incur losgismégnitude,
which are commonly caused by unusual but predictable production actiWtecy,
1992; Grosfel-Nir and Gerchak, 2004). As noted in McKay (1992), these kired®ots
are typically not addressed by the traditional planning proced#esn they occur, there
are significant costs and losses that are unanticipated, andghe fm®eductivity further
destabilizes the manufacturing situations. For example, electmamafacturers can be
highly susceptible to such risks, as many of the parts aréy elmnaged and are
expensive. In this type of situation, the unnecessary scrappinggefdaantities should
be avoided, if possible. For instance, at one point, an Intel P4-3.2CGHzcG&U
upwards of $900 (retail) and it would be expensive to scrap a boardniogtauch a
chip. Even if the work can be reclaimed, there is always a cHaneglditional damage
to the parts and the cost of reclaiming. To illustrate sombeeotihusual incidents faced
by a manufacturing plant, we give several examples froneld §tudy conducted by
McKay (1992). The field study was conducted at a state-of-theriated circuit board

manufacturer who was using surface mounted technology. In one examplecess



change introduced by industrial engineering worked fine for mots pat affected a job
that was irregularly run causing the final products to be scrappadother example, the
supplier of a certain material was different from the lase the product was run;
although the material was supposedly the same, it had differemtspiog characteristics
that resulted in high scrap rates on the first batch. In yet @neample, machines had
been upgraded since the last batch had been run of a specifie pacthine settings
changed, additional features added - changes that were not thorondafgtood by the
operators and engineers with respect to the infrequently run part. The batstra@ped
These types of problems are associated with close tolerankenitbrhigh demands of
accuracy and in situations where the processing at one step banctwecked until later

in the processing flow - after the batch has completed one or more operations.

A scheduler can implement different approaches to deal withdifferent types of
situations mentioned above. Some approaches are implementedhaftiafective units
are identified (Reactive) while others can be implemented icigaiion of the risk

involved (Proactive).

Consider the following schedule of five jobs. These five jobs can be considered to be a

job-set. One job-set satisfies the demand for a certain time period.

CEOr OO



Part A is produced in the first job, followed by jobs producing part€ BA, and B.
Multiple orders for a part can appear in a single time period farmber of reasons (e.qg.,

racking, oven sizes, etc.) and are used here to illustrate cyclic or repetitiveantaring.

Suppose that the operators are not skilled on part A, or have forgottee of the setup
instructions, leading to 90% of the output of Job A being scrapped. Lét suc

circumstances that lead to such losses of job outcome be calkatitriggers.

There are five strategies observed in the literature- appesacsed in industry to deal
with significant job losses with these types of causal trigdiKay, 1992; Grosfeld-

Nir, 2004; Anily et al., 2002):

1) Processing another batch

When the disruption is recognized, another job is inserted into the sehlatiulproduct

type A. In this case, we assume that Job B begins processing libéo complete
inspection of Job A. This scenario can also result in the caseswberB has to be
processed before making up for Job A, due to priority issues. The heduse will look

like the following.

B O (O

An additional setup cost will be incurred in this case, along wighprocessing cost of

re-producing the 90% that was scrapped. Depending on how tight the sciedal



portion of the job-set can also end up being late due to the extraasetygroduction

activities. That is, the job becomes tardy.

2) Immediate processing of another batch
Another batch with Job A is processed immediately after theipdisn has occurred.
This scenario is different from the above case since the dmmugtrecognized before

the next job is initialized. The new schedule will look like the following.

OO0

Depending on the job characteristics or machine characteristica setup costs may or
may not be incurred. For example, if the job has to pass through quatitsol or the
machine has to be reset, then extra setup cost will be incuroeeeudr, if the loss is
immediately recognized and there is no need for a maching tesa another job of
same type can be processed without incurring 100% of the setupThestosts for
processing the lost items are incurred in any case. Sitoildre above case, there is a

chance that the job-set ends up being tardy.



3) Increasing size of the next batch

In this case, the size of the next job with the same prodpetisyincreased. The amount
of increase is equal to the amount lost due to the disruption. For exahdflO units are
processed in every job and 90 units of product A are lost due to the idisyupéen the
number of units processed in the next job processing product type A beod@0. The
schedule remains the same. The only change is the size ofxthpmevith the same
product type and the temporary shortfall is accommodated by sdtety. Additional
setup costs are not incurred. However, additional tardiness can dauged due to the

extra production time.

OO (D)

This strategy is also used in cases where a safety stmtk.el'he lost amount is pulled
from the safety stock and the outcome of the large batch istoseglenish the safety
stock. It is also assumed, that the machine has enough capamitgéss the large batch.
There might be costs associated with the higher safety stocthare are many practical

considerations in manufacturing that prevent the simple doubling of batch sizes.

4) Safety stock
When meeting the due date is a major concern the basic cygtdb-set must be
completed, safety stock can be temporarily used to make up farsthénturred. Safety

stock can then be replenished after all the jobs in the job-set are processed éetlgirdon



shift or in a slack period). Again, suppose that we lost 90 units bechtlse disruption.
This amount will be pulled out from the safety stock. Once the jolsg@bcessed and
the demand is satisfied, an additional setup is made for producteplemish the safety

stock. The new schedule will be of the form shown below.

B OO OO

It is assumed that safety stock contains enough items to mdke ting loss. There will
be the expected costs for holding sufficient safety stock. As notedalso assumed that
the job is setup during slack time and tardiness is not increaséukefremainder of the

job-set.

5) Do nothing

There is always the possibility of doing nothing. If thereraoge than enough items to
satisfy the demand already, nothing is done to recover the 90%r last situation is

probably very rare, because manufacturers typically do not produee thar what is

required due to storage cost, processing cost, raw materiarwbstther costs involved
with production and storage. Nevertheless, this alternative could beadgplio cases
where replacement products exist or cases where there is asupypdy of products in

the market place. For example, where one product is cross-licensenultiple

manufacturers, it is possible acquire a product from the competition and re-label it.



These five approaches are either exclusively or largelgtiveain nature. Approaches
one through three, and number five are completely reactive in nataeec@mpensation
for the scrapped products are made once the disruption has been extoBnilding a
safety stock in approach four is somewhat proactive since fagy stock is built in
anticipation of the disruption. In other words, the safety stock is lbefitire starting the

production process. However, the safety stock is used in a reactive way.

Anticipatory batch insertion to mitigate risk is a proactive approach possibly most
suitable for cases where scrapping of an item is expensiveu@eethdis approach is
designed to reduce the total number of items scrapped). Intuitivéhe due dates are
loose, it can be beneficial to make extra setups with smathlszes earlier in the
production, which can absorb the disruption. For example, if a smahll bate of ten
items is processed in the beginning instead of one hundred, then ag0%ll result in
loosing nine items instead of ninety in the first case. Theretbeesmall batch in the
beginning reduces the risk implications associated with redubmaimnount of items
being scrapped and thus preserving expensive raw material usetbé¢esging. The
rationale is that any problems with processes, settingsydtisins, and stabilizations are

fixed with the small batch, and will not recur with the second or later batches.

It is not simple enough to say that small batches should alwagsde larger batches - a
heuristic to be applied in every case. Creating extra batchesbe costly due to
additional setup and production costs, and the possible introduction of addeeds.

Hence, tradeoffs exist in any decision about additional batch iorsenvith respect to

10



schedule characteristics (schedule hardness) and the production eathgpmosts. A
number of different factors other than setup costs and due dates thhefinelationship.
Some of these factors include magnitude of risk and sensitivibegbroduct type to the
disruption. Magnitude of risk defines the percentage of products lost dioe disruption.
It might be more beneficial to incorporate the batch inserti@testy in situation where
high magnitude of risk is predicted. It would also be interesting xjgloee the
relationship between the sensitivity of product types and the perioend the strategy.
The cost of raw materials is also an obvious contributor to therpefwe of this batch
insertion strategy. If the costs of raw materials areigeg then scrapping of items is
not a real problem; certainly not one warranting complex hexgiston the whole, if the
added-value cost of re-producing an item (including cost of timet Spethe plant) is

relatively high compared to setup costs, then the effort to minimize scrapfisgusti

The very nature of the causal triggers in question make them unavailabéd life. A
production control strategy on batches, batch sizes, and batch timanguantitative
approach to the problem. However, several qualitative measureslstame taken in
order to reduce the risk associated with these types of evegthawa, or reduce the
frequency at which they occur. Some of the possible ideas are:

1. Maintain good communication between the upper management and low-level
assembly line workers. Communication can avoid errors and delays during
process.

2. Another alternative is to train and retrain the factorygrersl at regular intervals

so that fewer errors are made during the setup and production.

11



3. Study and track the process changes or other technical chaglgenough to
avoid unexpected events - consider all products that use a speatcnmar
process and discuss any side effects or dependencies.

4. Make sure that the machines and personnel can handle new productalsnater

processes before starting the actual production.

In a perfect world, these four suggestions would probably be suffimergduce or

eliminate most, if not all, of the causal triggers. Howevers iassumed that most
factories are not perfect or that the scheduler has little @ontyol over the industrial
engineering process, personnel training, and other such activities. Thealschell have

to deal with the situations, as they exist to a large defjreetowards this end that the
guantitative research on anticipatory batch insertions - number dfdsatand the batch
sizes - is undertaken. The next chapter presents a literatueg ren the relevant lot-

sizing research.

12



CHAPTER 3

LITERATURE REVIEW

Lot-sizing policies are an integral part of the supply chainagament decision-making
process. Supply Chain Management can be defined as an attempidioatecoprocesses
involved in producing, shipping, and distributing products. An inefficient supply cha
system can cause significant losses in money and custontesnghgps. A lot-size can
be defined as the quantity produced or ordered in a given period,iamnvery important

to choose an appropriate lot—size as it affects almost alkcdses associated with

production and storage.

The modern era of research on optimal or close to optimal lot-siaeed in the mid
1950s (Wagner and Whitin, 1958). This topic is still very active,(&gpsfeld-Nir and
Gerchak, 2004) because of its potential contribution to costs. Unforyniteling an
optimal solution to a lot-sizing problem is generally NP hard dussiees such as the
cost structure, quantity discounts, and demand distributions. The objdotiVetsizing
models are also different across different types of industra@aeSndustries may focus
on minimizing cost in finished goods, while others focus on reducing titoes and

work-in-process.

Research on lot-sizing problems with respect to production and pnoentrecan be
broadly classified into two categories. The first categorg igroup of problems with
known production rates. This case carries the assumption that the oudpptaafuction

process is fixed, accurately predictable, or is known with cgytai This assumption

13



holds true when the production process is completely efficient an@ ikezero
probability of any external risk. The assumption can also bd wattases where the risk

involved is minimal and can be recovered from easily.

The second category is more realistic and it deals witkescasere the production
process is not repeatable or predictable (i.e. output has a randoengleThis category
is applicable to certain type of industries where having penfeaterial or perfect
production processes is almost impossible. Some examples inclutiteretefabrication
and chemical processes. Three main challenges with modeling random yieésaiok
modeling costs affected by random vyields, modeling of yield vmogyt and measures

of performance (Yano and Lee, 1995).

In both of the categories mentioned above, lot-sizing decisions camtberfsubdivided
based on different problem objectives such as minimizing cost,ysagisfue dates and
improving quality. Sections 3.1 and 3.2 discuss lot-sizing models withnaatstic and

stochastic production processes respectively. Section 3.3 shows tielolegies used
in general to solve for lot-sizing or scheduling problems andastesection provides a

summary.

3.1 Lot-Sizing When Yield s Deterministic

Reviewing the literature on lot-sizing shows that a considerabbeiat of work has been
done on scenarios where production rates are known. In fact, many sapdustic
procedures are available to solve these kinds of problems to optif¥aity and Lee,

1995). The objectives and problem characteristics differ betwegprdicedures. Most of

14



the earlier work focused on minimizing cost. Costs have inclugeecesssuch as setup
cost, production cost, holding cost and tardiness costs; although notredldbcosts are
incorporated in all models. Some lot-sizing decisions are also leassdtisfying due
dates. The literature suggests that material requirement plaiiRig) systems typically
focus on satisfying due dates. Brief descriptions of the work donéerproblems

categorized by the two main objectives are detailed below.

Minimizing Cost Objective

Some of the earlier problem formulations on lot-sizing decisions eorated on
minimizing cost. Wagner-Whitin algorithms, Slver Meal Heuristics, and Least Cost
Heuristics (Nahmias, 2000) were some of the earliest algorithms developedpiat tait
sizing policies that minimized cost. These algorithms becom@ue@tionally infeasible,

as the number of periods for decision-making grow larger (Nahr@@00). One of the
simplest lot-sizing policies still considered is tB@nomic Order Quantity. Note that all
these methods assume that demand is known when the decision is madef A br
description of the above algorithms can be found in Nahmias (2000pitvedl et al.

(1998).

The optimal or close to optimal solution to lot-sizing problems, withigmizing cost
objective, is mostly dependent on the structure of cost function iBmleral researchers
have considered this factor in order to improve the earlierritligts. In the paper
Aggarwal and Park (1993), the authors developed a “Monge Arraytirgsditom a

concave cost structure and the application of dynamic programifiegstructure of the
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Monge Array is used to develop significantly faster algorithmsolve economic lot-
sizing problems. Federgruen and Lee (1990) studied discounted cost sfuaha so
did Xu and Lu (1998). Chan et al. (1999) developed a model that minimizeadhaldti
ordering cost, if the total cost as well as the cost pensiaidecreasing function. M.Tzur
(1991) and Wagelman et al. (1992) developed models that use cost strictsodve
economic order quantity more efficiently. Linear programming, echixinteger
programming, and dynamic programming are some of the matlamapproaches
implemented to solve lot-sizing problems with deterministic prodaatates (M.Tzur,
1991; Wang and Gerchak, 1996; Zhang and Guu, 1998). Heuristics and algorghms ar
usually “smart” versions of earlier algorithms like the Waghéhitin algorithm. For
example, researchers typically incorporate cost structuresdanthnd patterns to

improvise classic algorithms like Wagner-Whitin algorithm.

Due Dates

The literature on lot-sizing suggests that the lot-sizing ogssn complex systems such
in MRP (Materials Requirement Planning) are still mainlgdshon satisfying due dates.
MRP derives demand for component sub assemblies and a production schedunésof
items or end items. The lot-sizing in MRP may be constrainethinymax rules and
sizes that are multiples (e.g., round to the nearest 10,000). When not tsaiceds|ot-
sizing decisions are mostly driven by the demand distribution adetitea distribution.
Since MRP is dynamic and constrained by many factors, simlatudies have been

typically conducted to determine the best lot-sizing policy (Berry, 1972).
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Researchers have studied demand patterns and have used thetiorotonianprove the
performance of lot-sizing rules in MRP systems. Berry (1972)dm@wn that the cost

performance of lot-sizing rules improves, as demand gets lumpier.

Graves (1987), Arrow et al. (1958), Love (1979), and Banks et al. (1986 )egieevs of
literature on lot-sizing problems with uncertain demands. Charstatersuch as capacity
constraints, number of machines, and number of products differ acressrdiproblems
included in the research. Research has also considered both continudisceetd type

of models with respect to demand distributions.

3.2 Lot-sizing When Yield s Random

Research on random yield is not a new topic area. Researchdrglasigial engineers
involved in quantitative modeling and analysis were aware of yieldoraness as early
as the 1950s. However, research on this type of problem was rgiapagke until the
mid 1980s (Grofeld-Nir and Gerchak, 2004). The popularity of this arezseérch has
grown remarkably in the last two decades because the manufa@acescientists have
focused on the consequences of yield randomness in manufacturing asiitdogi

(Grosfeld-Nir and Gerchak, 2004; Yano and Lee, 1995).

Yano and Lee (1995) provide an extensive literature review on lot-sizing up to 1995. This

has been used as a starting point for discussing recent developifenisext section

contains a brief summary of the analysis and discussion in Yantemdn addition,
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relevant papers published from 1995 until 2004 are discussed and analyeed.

objective of this section is to provide an overview of the work typically done in this area.

Lot-Sizing with Random Yields: A Review Summary (Yano and L ee, 1995)

Yano and Lee conducted an extensive review of quantitatively oriamjeaaches to
determining lot-sizes when yield is random. According to thgiepahe results of such
models focus on the levels of variance in production that occur day @ndahe results
can be used to:

1. Help an operation run more effectively so that effort can be foarsémproving
performance, including yields.

2. Process improvement and supplier selection decisions can bsedssesre
accurately and effectively if the system wide effectshese decisions on yield
are modeled accurately and, where appropriate, optimized.

3. Assist in capacity planning decisions when yield randomnesgéected to be a
long-range concern.

The models discussed in the review paper include single stage contaysterss, single
stage periodic systems as well as complex manufacturingrss/sBome of the modeling
issues noted by Yano and Lee include; modeling of costs affecteenipm yield,
modeling of yield uncertainty and performance measures. Ircplarti modeling of yield
uncertainty has received the most attention in the literaturg. this area of yield
characterization is constrained by a number of simplifyingimptions made by the
researchers. For example, assumptions such as binomially distrjbeitd stochastically

proportional yield and geometrically proportional yield are commanéade, but the
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assumptions are not linked back to any empirical evidence or supporinddeds and
assumptions can provide valuable insights into model behavior and bounds, but provide
few insights for the actual practice of lot-sizing. Sometiteés important to have a
deeper understanding of the manufacturing process in order to ehnaeche yield
process. This is because most of the risks associated withiicspexiuction process
may be directly linked to the way the products are processed and the resultibgtaia
may not be close to a theoretical baseline distribution (e.g., bihom@roportional).
Some other drawbacks noted by Yano and Lee in their discussion omingtisiodels
with random yield included:

1. Lack of explicit consideration of the inspection process

2. Alternative recourse actions that can be taken with regard to defisetnge Most

papers assume that scrapping is the only recourse action possible.

3. Assumption of linear cost structure.

4. Assumption of stationary demands

5. Single product
Even with these limiting assumptions, the problem is quantitativeditenging and it is
difficult for any model or concept to consistently derive good resuitder a variety of
conditions. It is also important to note that majority of the recoactens considered by
the different papers in the review are reactive in natureighidite approaches considered

are implemented after the defective units have been identified.
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Recent Research On Lot-Sizing With Random Yield

The majority of the recent papers reviewed for the purpose of élsisarch have
concentrated on yield distributions similar to the papers reviewetaho and Lee. For
example, Anily (1995) has developed a single-machine lot-sizing Invatte uniform

yield and deterministic demand, whereas Zhang and Guu (1998), Guu and. 298, (

Guu (1999) and Anily et al. (2002) have developed models, where the production
distribution is assumed to be geometric in nature. Zhang and Guu (E39Wkell as
Wang and Gerchak (2000), consider multiple lot-sizing models withrgenyeld

distribution.

Ciarello et al. (1994) and Wang and Gerchak (2000) consider mode#sdhainstrained
by variable production capacity. In this case, random yield is a&sktorbe the result of
imperfect production processes and variable capacity, which is edston be a
consequence of unexpected breakdowns, unplanned maintenance, uncertain repair
duration, or rework of defective units. Grosfelf-Nir and Gerchak (20@0@jed a similar

environment with rework capability.

Grosfeld-Nir and Gerchak (1996) addressed several fundamentalogsesti single
stage, multiple lot-sizing production environments. They note thdtiple lot-sizing
problems have received much attention in the recent years due to the following reasons:
1. Prevalence of production-to-order of relatively small volumes dbousnade
items.

2. Resurgence of interest in understanding the consequences of ranttbrm yie
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manufacturing and logistics.

3. Proposal and analysis of several practically relevant yield concepts.

In their paper, Grosfeld-Nir and Gerchak (2004) also providevéew of models,
analytical results, and insights pertaining to multiple lot-siaimgproduction-to-order
environments. The papers discussed in their review assume that ramedidns gue to
imperfect production process, material imperfections, and othernektéactors like

temperature and humidity.

Discussion Of Literature On Lot-sizing With Random Yield
Section 3.2 has focused on random yield research. Two of the common erfistrestof
the papers reviewed are:

1. The tradeoffs that are analyzed are those that exist betwweeage costs and
underage costs. Overage cost is incurred due to over production, and underage
cost is incurred when the order in not satisfied.

2. Associated with the above point is that the objective functiotieegfapers focus
on the minimization of expected costs.

As shown, traditional research has concentrated on the cost struande the
distributions of yield or demand. The source for uncertainty in yiet@ives little
attention. In particular, the literature does not show yield varpliiused by triggers
such as process changes, or material changes, which have beencshoeur in reality.
Furthermore, traditional research carries the assumptionhiatistribution of yield is

known, whereas the occurrence of causal triggers like the ones merdiooeel are
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assumed to be completely random in nature, have insignificant disrugimhslo not
follow any known distribution or predictive pattern. However, charngesaterials and
processes are not always random unless there is an error in thgoopef the machine,
or mishandling of materials, or miscommunication between personreln@hagement
and personnel of the manufacturing unit normally know that a vendor wagethaew
workers are hired, and that new processes are introduced. Theiéeraviewed does
not consider concepts such as creating extra batches of smeallisithe beginning, so
that the risk associated with the predictable triggers defihedeais absorbed by small

batches, thereby reducing the number of items scrapped.

3.3 Modeling and Analysis M ethodology

Morton and Pentico (1993) summarize some of the classical and mqueoaches to
the lot-sizing and scheduling problems. They classify the traditapaioaches into two
categories; computer simulation and mathematical:

1. Computer Simulation Approaches: Simulation is used to model trersystder
consideration. If the manufacturing system is too complex to zmalging
algorithmic or analytical approaches (e.g., real MRP sy3tesimsulation studies
are sometimes implemented (Berry, 1972). Large-scale siomlas also
sometimes preferred to optimal approaches when the area of stuehatively
new and the objective of the experimentation is to get insighdasthiet problem
characteristics rather than finding an optimal solution (McKasl.eR000; Black

et al., 2004).
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2. Mathematical Approaches: Linear programming, integegraroming, dynamic
programming, and mathematical heuristics/algorithms can be caedoas
mathematical approaches. In recent research, dynamic progrgnitas been
widely used to analyze lot-sizing problems (Grosfel-Nir and Gerchak, 1996, 2002,
2004; Zhang and Guu, 1997, 1998). Wagner-Whitin algorithms, Silver Meal
Heuristics, and Least Cost Heuristics are three other exarplmathematical

algorithms.

Morton and Pentico (1993) also discussed some of the modern apprdestheslize
artificial intelligence concepts such as expert systems am@lngetworks. Tabu search
and simulated annealing are shown in their text as well. Thatrpapers on lot-sizing
models and the papers reviewed in Yano and Lee (1995), favour mattemati

approaches.

In summary, the dominant methodologies used in traditional lot-sizingigminclude
heuristics developed for specific kinds of problems, linear progwag) integer
programming, dynamic programming, and simulation models. Less commdmdsaet
have also included queuing network theory (Dessauky, 1998) and the assigretierd
(Cosgrove et al.,, 1993). Considering the wide variety of modelinghadst and
approaches, it appears that the methodology chosen may be Ildegelgdent on the

system characteristics as well as the structure of the variables involved.
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The reviewed literature suggests that when the objective afig & to explore different
characteristics of the model, sensitivity of the model paras)eterrobustness of the
model, simulation studies are often used. Simulation is preferred gieasily allows the
exploration and alteration of the parameters involved - learning aserstanding the
dynamic relationships between the parameters and construcslditon, simulation
facilitates the analysis of how the performance measuedfested (Law and Kelton,
1991). Large-scale computational simulations have also been used in modocitrol
research when precise solutions cannot be obtained and general produidiétinegs are
desired (Morton and Pentico, 1993). As stated in the introduction chapteyrpiese of
the research being conducted on anticipatory insertion of batohestigate risk is
exploratory and preliminary. It is also in a field in which closed formrecise analytical
results are not possible due to the complex nature of production ehistasd.
Specifically, one of the goals of the research is to explogebatch insertion strategy
under varying experimental situations. Given these three obs#rsasi similar approach
used by Morton and Pentico (1993) is considered appropriate - largecsoaputational

experiments rather than analytical analysis.

The design and use of this large-scale simulation model is conpdoathe methods
used in the two papers on “Aversion Dynamics” found inJthenal of Scheduling. The
Aversion Dynamic papers used methods found in similar heuristiareds@iorton and
Pentico, 1993). A brief summary of the methods used in the Aversion papers is gresente

below.
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In McKay et al. (2000), a heuristic called “Averse-1" is developechddel a situation in
scheduling with a primary event (planned or unexpected change, |podisituptions)
leading to a secondary impact (machine not fixed properly, nexpfesbeing adversely
affected). The purpose of this paper was to identify the problentsaatiributes, then to
provide an illustrative example to show how a solution to this probdemid be

approached in general.

The study explores the sensitivity of Averse-1 heuristic tocidbehardnessy recovery
rates and; the impact factor. Schedule hardness defines the charactevistiose time.
“a” determines the duration of the secondary impact and the imgaot, fg determines
the magnitude of impact. The simulation study was designed tiat@lAverse-1 and to
probe its robustness on a single static machine. Weighted tardiassssed to compare
the performance of Averse-1 to other heuristics. The aversion poirgaevas time zero,
the average processing time was 20 hours with a standard deviafipanaf the average
weight of the job was assumed to be 40 with a standard deviation of ri€.bsic
combinations of recovery and impact were tested with nine scheduleekarcriteria,
giving 81 basic runs. Each run was comprised of 500 job sets, and 10 jblbs each
set. Each of the 500 job sets was randomly generated according ésgamgctime, due
time, weight, and impact parameters. Separate random numbenstwese used for
each parameter and were initiated from known seeds. The job-setssaleeduled

according to five different heuristics and the results were compared.
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Results were categorized according to the occurrence and nonemoeuaf a disruption.
This was done to see how Averse-1 performed when the impact doescuot It was
important to study both cases as the authors wanted to know if thetbassbciated
with Averse-1 became insignificant in cases where the impact does notascexpected.
When the impact does occur, Averse-1 outperformed other heuristidsefalifterent
recovery criteria, impact criteria and schedule hardnessriaritHowever, when the
impact does not occur, Averse-1 performed worse than two other heubsgtia very

small percentage.

Black et al. (2002) develops a heuristic called Averse-2, which pgoactive and
dynamic extension of Averse-1. Three dispatch heuristics includingsé\& were
studied. Similar to the first Averse-1 paper, two major scenargye analyzed — impact
occurs as expected and disruption does not occur as expected. As aratdmpeuristic

research, job arrival tightness and schedule hardness was also considered.

The above factors resulted in 72 scenarios, which were translated #@ basic runs.
Similar to Averse-1, 500 replications were made for each run. dRaadtion was
achieved by using unique random number streams across replicatiorfer amaich
random number within a replication. The performance measure ¢br re@ was the

weighted tardiness value, also similar to that of Averse-1.

The approach used in the anticipatory batch insertion resmsasatmilar to the methods
summarized above. This is with respect to the experimental $aatat the different

manufacturing environments considered. The same overall experiroergatitegy has
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been utilized, as were the concepts relating to job tightnessjutehkardness, and
impact versus no impact. The next chapter describes the simulatiagxperimentation

in greater depth.

3.4 Summary

The literature on lot-sizing models and random vyield can besifiéas into two main
categories with respect to the production process and how the producitass affects
yield: deterministic and stochastic production processes. The topitioipatory batch
insertion to mitigate risk falls naturally into the stochastitegory in that the variance in
cost and tardiness associated with the causal triggers would apgeaistochastic if it
was not specifically modeled or accounted for. If the high vesiaim production
outcome was not anticipated and included in a plan, the variance innpenfte measure

would appear as a spike and be reacted against.

The concept of causal triggers, the resulting high variance in produmitcome, and
strategies for controlling the output variance appears to be tatabnt in the literature.
As a result, a conservative research agenda is warranted;hanestsuitable for
exploratory and preliminary work. The first steps of such a consezvagenda are
descriptive and should be designed to identify the major components pifiehemena
under study and to describe any interrelationships between the congdiweréxample,
the relationship between the schedule characteristics and thetudagioif the risk
associated with disruptions associated with causal triggersisTtiie approach taken in

the following chapters. The basic components of the concept are davelog a large-
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scale Monte Carlo simulation is performed to study the behavioresults when the

concept is applied.

28



CHAPTER 4

CONCEPTUAL DEVELOPMENT

Causal triggers lead to disruptions that create significamd yosses, and which are
associated with the changes in the status quo can be identified factbey. One
possible strategy is to create a secondary work order or jofvanee of the main job
that is expected to be affected. This is #mécipatory batch insertion to mitigate risk
concept. As noted in the previous chapters, such manipulations have radeyfft
considerations in a factory setting. There are also many faitters in a real factory that
can complicate the decision-making. In this chapter, a rich situaifirst described,
followed by a set of simplifying assumptions. Following this intragung the basic
scheduling problem, elements of the scheduling problem, conceptual matetsaarch

guestions are presented.

4.1 Problem Scope, Simplifying Assumptions

The real situation in a factory would have many machines, mapg & an operation,
many products, and many other complicating factors to model. In twdeonduct a
preliminary study of the situation, a single-machine problem sireietill be used. In a
real factory, the scheduler has alsdita identify the causal trigger and understand what
work might be affected. In other words the scheduler has to idéméfgossibility of the
jobs being scrapped. The empirical work conducted by McKay (1992) shbatethis
was possible. However, the scheduler or planner might not becipariake a false

prediction, and cause an unnecessary batch to be created. Althoughodbes of
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predicting will not be dealt with in this thesis, the possible sgitgiof the mitigation
strategy to false predictions will be examined.
Once the prediction is made, the scheduler has three main decisions to make:

o First, how many batches to make? For example, is one exttaddficient to re-
stabilize the process, or if two or more small batches willl hede made before
all is well. It will be assumed for this research that, onetbaill be sufficient to
absorb the risk and allow stabilization (retrieves to normal psowgs This batch
is also referred to as the test batch. The topic of multigthés is identified as
an area for future research.

o Second, when should the test batch be scheduled? The scheduler mayewant
test batch to be made one or two weeks or several dagivam@e of the larger
batch. This decision is likely to depend on the perceived risk,@ated time to
re-stabilize, and if additional batches might be necessary. Torexyle basic
concept of batch insertion, this timing is not considered to beja fiagtor and
the second batch will be constructed within the same time periogistnatior to
the full batch. The timing issue can be explored in future relsedong with the
concept of multiple batches.

o Third, how many parts should be in the test batch? In a raatisit, there might
be a minimum or maximum number of parts in the test batch tbatdwbe
necessary. This will not affect the extra setup costs, butaffdict the costs
associated with materials. A 10% factor of the mean will bd irséhe research.
If a smaller batch size is used, say one piece, this mayugidee bias to the

strategy. However, it is also unlikely that a test batch wouétl ne be greater
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than 10% of the batch size to test out the system and re-stébilibe sensitivity

of the strategy to the number of parts in the test batch esidéstified as a

possible topic for future research.
Thus, the basic problem scope will be simplified to that of desimgchine model, with
a single test batch of 10% of the mean quantity to be construateeldiately prior to the
main batch to be made. That is, once the scheduler has idethi@éegobssibility of a
disruption due to triggers such as in introduction of change, he/she ge@etest batch
prior to the full production in the hope that it absorbs the risk asedanath the possible
disruptions. The performance of this strategy will be measured aestgand tardiness
factors. The cost includes all cost associated with production amgbstg (see example
in pg 33), but does not involve cost associated with the latenessobf &Veighted
tardiness on the other hand captures the lateness factor of the. jpbasddition to the
sensitivity analysis of false predictions, the sensitivity ofdtnategy to three other key
factors will be explored: i) due dates (e.g., schedule hardmg¢s®nsitivity of the job to
the disruptions associated with the change, and iii) the magnitutie édds associated
with the disruptions caused by causal triggers. Schedule hardness tef the
relationship between slack time in the schedule and the distributidneoflates in the
job-set. For example, it is relatively easy to create adstlevith no tardiness if there
are few jobs and there is slack in the schedule sufficient to @lvef the due dates
(loose schedules). Schedule hardness is one of the concepts usedute nieaquality
of generated schedules when using weighted-tardiness measurgsn(fnd Pentico,

1993).
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The next section describes the typical structure of the esmgkhine scheduling

formulation when focusing on weighted tardiness.

4.2 Brief Overview Of The Single-Machine Scheduling Structure

The process of scheduling is dynamic in nature and is ustailtrained by a number of
factors. In order to illustrate the dynamics of scheduling ancagsamptions made to
simplify the model, consider a repetitive manufacturing line peiegghree products A,

B, and C in one time period:

Ca 0o (e Dn(a Dn(e (e )

This set of six jobs of equal sizes satisfies a demand anlecealled a job-set. In this
simple example, all of the three products have equal demandhads Ariority over B and
B has priority over C, then the schedule will look like the followdinggram where two
jobs with product type A is processed first and jobs with product tyjgepBcessed at

the end.

Ca (e (G (e (e (e )

This type of grouping assumes that storage space, racks, s@afeity and such matters
are not of a concern. If this grouping was encountered in afaetdry, there is a
probability that only three setups are required, one for each progectdsovided there
are no inspection or quality control issues. However, if some dispate like the
weighted shortest processing time (WSPT) is used, then the sehwmmud be of any
form depending on the weight of each job. An illustration of some ldes&rms is

presented below.

32



Example 1:

Ce G )Xe (e e G

Example 2

G PG O e GO

Example3:

C G OX e G O D

Example4:

DDA DL D

The schedule in example 1 incurs five setups, whereas the schadedasnples 2, 3 and
4 incur four, six and three setups respectively, assuming no qaatityol constraints.
Example 3 represents the extreme case where successiygqobss different types of

products and no opportunity exists to reduce the number of setups.

If the research focuses on the basic behavior of the dispatchtice(@isieuristic that
decides the sequence in which jobs are processed, based on someatmtrsirategy),
taking advantage of setup reductions is usually ignored; examples32nandd have the
same number of setups - six. Simple dispatching heuristics SUMMS®T do not take
sequence dependent setups into account (e.g., Morton and Pentico, 1993; 2802)o0,
as specific job or part knowledge is not included or addressed. Thefosualations
include due date, processing time for the batch, and possible werghtnalties for

tardiness. Although the batch insertion research includes setigoffimand part specific
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information, the sequencing logic in this thesis will take the fofnsimple machine

dispatching heuristics.

There are also assumptions about job arrivals. In the determicast#; all jobs in the
job-set are assumed to be in the work queue and any job can be wodteghgriime. In
the dynamic case, the jobs appear throughout the scheduling horizo@nrémes.
The dynamic job arrival complicates the research analysist amdeiasonable to assume
that deterministic job arrivals are suitable for the type olimpneary exploration being

conducted in this research.

The single-machine problem formulation also assumes no state kigewtd other
machines, inventory contents, or information about what happened on priotiansera

processed.

4.3 Elements Of The Scheduling Formulation

A job-set consists of a group of jobs processed to satisfy a demandooder. A set of
parameters define the job and the product types. Some of the elemhgr@gormulation
are deterministic or stochastic. The detailed components of the pordwontrol

problem being formulated are:
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Deter ministic Parameters:
The following parameters are set to nominal values to ceedtase case for tradeoff
analysis across various problem configurations. Sensitivity asak/siot conducted on
these aspects of the problem formulation.
1. Setup costSetup cost is the cost of setting up a job (e.g. the cost of thatape
or machine that sets up the job). Sequence dependent setups are not considered for
the normal jobs in order to reduce setups in order to simplify the mgdmahd
analysis. However, the setup costs after a job is insertedtared. If a test batch
is inserted and a problem does occur, the setup cost associatégevith batch
is modified. It is assumed that additional effort and resourdébevassigned to a
job when it is run a second time after a major failure on tisé dttempt. This
would include additional testing, supervisor attention, and so forth. htrmigt
affect the time for setup, but the cost of the setup would be increased.
2. Setup timeSetup time is the time required to setup a job.
3. Time per pieceThis is the time for processing one unit of product.
4. Cost per piecerhis is the cost of processing one unit of product. This typically
involves cost of operator, lubricants and other operating costs involved in
processing a unit.

5. Dollar per time Cost of spending a unit of time on the processing equipment -

either for setup or for processing. An example of this parametdeiexpenses

which are incurred due to wear and tear or rental expenses oatene or plant.

35



6. Dollar per scrapThis is the cost of scrapping one piece of product. This involves

cost of raw materials used for processing and the cost of aalded during

processing.

Stochastic Parameters:

The stochastic parameters are those related to the sensitivity anayisted.

1. Due time This parameter represents the time at which each jdbesThe due

time of each job is determined according to the defined schedule hardness criteria.

2. Base QuantityBase quantity is the number of items per job.

3. Yield Loss Yield loss is the % of units scrapped due to day to day admtivstra

errors.

4. Job WeightJob weight is the reduced value of the job when the job is tardy

one unit of time. This can be different for different jobs.

An example of how these parameters are used in the creation of job-sets follows:

Example Problem:

First, consider a manufacturing plant producing two types of praddcasd B. In the

starting description, there are no causal triggers and no abnormapisgr levels. The

example has a set of 10 jobs (job-set) in order to satisfy a known demand.

Table 4.1 Nominal Job-Set: No Causal Triggers

JOB 1 2 3 4 5 6 7 8 9 10
Product | A A A B B A A A B B

# Pieces| 100 100 100 100 100 100 100 100 100 1
#scrap 10 | 10 10 10 10 10 10 10 10 10
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Each job has 100 pieces to process and processes only one type of predjoii (

processes only product type A and job 4 processes only product tys Byerage, 10
pieces of product are scrapped due to imperfect production processexthhaandomly.
Table 4.1 illustrates one possible schedule of jobs and the chatams@iseach job. A

list of the problem parameters and the equations for cost calculations are given below

The cost of the job-set would be sum of the various total costs per job. Where

o Total Job Cost = setup costs (material and personnel) +ccogh tthe machine

during the setup + material cost to make the batch quantity t#@oan the

machine for the batch + any scrap costs

Let:
Setup Cost -> SC $/job
Setup Time > ST $/job
Cost Per Piece > CP $/piece
Time Per Piece - TP time unit/piece
Dollar Per Time - CT $/time
Dollar Per Scrap - CS $/scrapped unit

Total setup cost includes the setup cost and cost of the time associated with setup:

o Total Setup Cost = SC + (ST*CT) per job
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The total production cost associated with each job is the cost adfgsing 100 units as
well as the cost of the time associated with the production of 100 units.

o Total Production Cost = (100*CP) + (100*TP*CT) per job

Total scrapping cost is amount of money lost due to the scrappitffydsfective units in
each job.

o Total Scrap Cost = 10*CS per job

Total cost of a job is the sum of all the above costs.

o Total Cost = SC + (ST*CT) + (100*CP) + (100*TP*CT) + (10*CS) per job

If all of the setup requirements, cost factors, and times per piece were set tma nom
value of 1 for illustrative purposes, the total cost per job would be:
o Total Cost =1 + (1*1) + (100*1) + (100*1*1) + (10*1)

=$212

This is the total cost with nominal yield loss or nominal scrappiamv, consider the
costs if there is a causal trigger leading to a disruption atttere is one job that is

sensitive to the disruption.

Let product type A be sensitive to the issues implied by a caiggger - e.g., a material

change. Assume that the disruption affects only the first jobepsotg product type A

and the magnitude of the scrapping is 100%. In other words, Job 1 I@sesitlinstead
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of the nominal loss of ten units. The factory will react anddbkejob will be replaced.
Using the simplifying assumption related to sequence dependapssahother setup is
required to make up for the lost job. As a result, the costsiasmbavith production
change by:
o Total Setup Cost = Setup Cost(1) (From the first batch) + Setup Cost(2) (From the
second batch)
o Total Production Cost =2*(Total Material and Processing Cost)

o Total Scrap Cost = 100*CS (From the first batch) + 10*CS (From the second
batch)

If the second setup cost is assumed to be $2 while other costs and timing requireanents ar

held constant, the total cost to complete the job is now:

o Total Cost = SC(1) + SC(2) + (2*ST*CT) + (2*100*CP) + (2*100*TP*CT) +
(100*CS) + (10*CS)
= 1+ 2+ (251*1) + (2*100*1) + (2*100*1*1) + (100*1) + (10*1)

= $515

Note that the setup cost and production cost have at least doublgapiSgreosts have
also increased by 90*CS, which is ten times the nominal scrappstglc a real setting,
the financial risks associated with such a disruption will batedl to the setup,
production, and scrapping costs. Consider now the application ahtiogatory batch

insertion to mitigate risk strategy. Assume that the scheduler predicts that A will have

extreme problem the first time it is run.

39



The strategy suggests that an additional batch is setup befoiiesth@rder for A. For

illustration purposes, an additional batch with 10 pieces is setup bleéofiest order for

A. The new schedule will look like the following:

Table 4.2 Anticipatory batch insertion concept- Prediction of Variances in cost

JOB 1 2 3 4 6 7 8 9 10 11 12
Product | A A A |A B B A A A B B

# Pieces| 10 | 100 | 100| 100 | 100| 100] 100 10(¢ 100 100 100
#scrap |10 |10 |10 | 10 10 10 10 10 10 10 10

Variances in cost compared to the first case:

o Total Setup Cost = SC(1) + SC(2)

o Total Production Cost = (L0*CP) + (100*CP) + (LO*TP*CT) + (L00*TP*CT)

o Total Scrap Cost = (10*CS) + (10*CS)

The total cost would then be:

o Total Cost = SC(1) + SC(2) + (2*ST*CT) + (10*CP) + (100*CPY}0*TP*CT)

+ (LOO*TP*CT) + (10*CS) + (10*CS)

=1+ 2+ (2*1*1) + (10*1) + (100*1) + (10*1*1) + (100*1*1) + (10*1) + (10*1)

= $245

If no disruption associated with the causal trigger occurs, thec$2iR. The cost of the

disruption (without any proactive strategy) is $515 - a differeic®303. If a proactive

strategy is taken, the cost with an extra batch is $245 or onhcerase of $33 over the
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base case. When the disruption occurs, the gain is obvious. When the distapsarot
occur, 9 of the 10 in the first batch will go into additional stockuf@ssg no forward
modification of the next order) and the second setup will be normalrdduses the cost

of the strategy to $235 - a difference of $23.

In this example, we did not go into tardiness and the other fadtbespurpose was to
simply illustrate the basic concept. The tradeoffs of falfle, s@hedule hardness, and so
forth form the exploratory nature of the research. The follovsection describes the

strategy in a more formal fashion.

4.4 Conceptual Framework

The conceptual framework for the anticipatory batch insertiategfy consists of four
main entities, which are the initial job-set, production processparzkived disruption,
and the modified job-set. A job-set consists of a set of jobs. Aesmgchine, which is
part of the production process, processes each job. Figure 4.1 belowidtorzal

illustration of the conceptual model.
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Figure 4.1 Conceptual Model
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The number of pieces, job weight, due time, setup time, setup costpéinpiece, and
cost per piece determine the characteristics of each job.pgostme period and the
nominal yield loss due to imperfect production processes or randoacigadefine the
production process characteristics. Magnitude of risk defines thenpage of products
lost. To explore the conceptual framework, a number of propositions hese b

formulated in the next section.
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4.5 Resear ch Questions and Propositions

The objective of the research is to explore various charstoterof the batch insertion

strategy and evaluate the performance of the strategy underedif scenarios

determined by:

o Schedule hardness,
o Sensitivity of products to the disruption and

o Magnitude of risk/loss associated with the disruption.

Each scenario is compared using the cost and weighted tardiness measures.

The exploration is driven by the following five research questioashEjuestion is

described along with its rationale. Propositions are derived based on ¢helyaéstions.

QL.

Q2.

Q3.

Q4.
Q5.

How worthwhile is it to insert a test batch if there distuption due to causal
triggers?

What are the implications when a batch is inserted and thettsr does not
occur?

How does schedule hardness affect the performance of the strategy?

How does product sensitivity affect the performance of the strategy?

How does the performance of the strategy vary with differegnitudes of risk

associated with the disruption?

Each question is expanded upon in the following paragraphs.
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Q1. How worthwhile is it to insert a test batch if there disguption due to causal

triggers?

The anticipatory batch insertion strategy suggests that édtabatches are cost
effective when disruptions are perceived and one or more jobs as&.dtlowever,
setting up additional batches is costly with respect to setup costs and production costs
In addition, if the due date is tight, additional setups could causditeadielays.
Therefore, a tradeoff exists between the benefits and cestxiated with batch
insertion. The risk associated with the disruption might not be mignif for a
manufacturing unit that produces cheap and easily recoverable itensich
situations, batch insertion for test and re-stabilization purposest may be very
profitable. In order to answer this research question we willoexghe following
proposition in the experimentation. Although this proposition is somewhaivetutt

is explicitly included to establish a base case for the sensitivity analyses

Proposition 1: The process of anticipatory batch insertion to mitigate risks will

produce significant benefits for a production process that is subjected to the risks

associated with the disruption.

Q2. What are the implications when a batch is inserted and theptilisr does not

occur?
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Batch insertion for test purposes is a proactive approach angdeticeived risk
associated with a causal trigger cannot be predicted accur&elpetimes a
production process will run smoothly even after the introduction of a chahge.
can occur when quality control issues like personnel training and meattming is
implemented properly. In the cases where the disruption does notascexpected,
the cost associated with batch insertion becomes a concerng am unnecessary
expense and can be considered a wasteful activity. Therefoie,intportant to
analyze the cost factor associated with batch insertion in suemaronment. The
batch insertion can be viewed as a conservative or risk averse@i@utl the costs

of this type of practice can be explored:

Proposition 2: The cost associated with batch insertion is relatively insignificant for

cases where the disruption does not occur as expected.

Q3. How does schedule hardness affect the performance of the strategy?

Schedule hardness defines the due date characteristics. Whedwdeschtght, there

is little slack time until the order’s due date. In this cas#tjng up additional batches
could increase the job-set’s total tardiness. On the other hahd,sthedule is loose
there is sufficient time to complete the job-set’'s productiornhis latter case, having
additional batches in the beginning might not be a concern in terms of tardguess is
The behavior of the strategy under different levels of schedule lssrdrean be

explored:
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Proposition 3: Batch insertion will be more beneficial for a production situation
with a loose schedule provided the setup cost and/or production cost is not

substantially high.

Q4. How does product sensitivity affect the performance of the strategy?

Sensitivity of a product refers to its sensitivity to the disampassociated with causal
triggers such as a change in materials or machine.rfgupt or machine is sensitive
to the casual trigger, there could be a disruption on the jobs procésaingpe of
product. For instance, consider a manufacturing plant processing two types otgroduc
If both product types were sensitive to the disruption, then the riskiatsd with the
disruption would be higher when compared to the case where only ah&cptype is
sensitive. Consequently, the benefits associated with batch insedidd e higher
in the first case, where both product types are sensitive tighgtion. Analyses of
these factors could be useful in determining the type of indusittaéshould consider
having anticipatory batch insertion in order to mitigate the asgociated with the
perceived disruption. The linearity of the strategy (lineartioFlahip between

performance of the strategy and the number of sensitive proaulttse explored via:

Proposition 4: The benefits associated with batch insertion will linearly increase

with an increasing number of sensitive products.
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Q5. How does the performance of the strategy vary with diffenagnitudes of risk

associated with the disruption?

The magnitude of risk is interpreted as the percentage of umédppsd due to the
disruption. The highest risk associated would be the case wheratitee aitput of a
production process is lost (100% vyield loss). This can happen in a mamnuiggilant

that produces highly sensitive products that can only be checked when the comptete batc
is processed. If the magnitude of risk is high, then it will be rbereficial to have batch
insertions, because batches of small sizes absorb the riskatss$acith the disruption,
which leads to scrapping fewer items. The following proposition testfinearity of the

strategy with regard to the magnitude of risk.

Proposition 5: The benefits associated with batch inserting will linearly increase for

production processes that are susceptible to higher magnitudes of risk.

4.6 Summary

This chapter developed the conceptual framework and the issuespforaéon. The

following chapter describes the experimental design used for the exploration.
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CHAPTERS

EXPERIMENTAL DESIGN

This chapter describes the experiments used to explore the cohomoidel. The
simulation model and experimental framework are described in tlwsviol) chapters.
MATLAB software was used to implement and run the large-scale simulatidelnThe
first section gives a brief overview of the experiment stmgctnd a description of the
approach used to conduct the experiments. The second section desueilspecific
experimental parameters. The third section discusses the appreactouglidate the

simulation model.

5.1 EXPERIMENTAL STRUCTURE

There are four structural components to this experiment. TheseJalpe:Matrix,
Experimental Scenarios, Simulation Model, and the PerformanceuldsasA brief

description of each of the components is given below.

Job Matrix

The job matrix represents a set of jobs. Each job is createtbmly according to the
base quantity, due time, yield loss and job weight distributions. Crecgob-set is
created, the jobs in the job-set are scheduled according to tlghteekishortest

processing time (WSPT) rule.
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Experimental Scenarios

The different experimental scenarios are determined by theimgoeal factors, which
are schedule hardness, sensitivity of products and the magnitug&. ok text file lists

the different scenarios and the model reads in the data fromilehéif each run.

APPENDIX A provides the list of scenarios. The simulation modé&utates cost and

weighted tardiness for the different scenarios considered.

Simulation Model

The simulation program implemented in MATLAB simulates differscgnarios for the
four experimental cases. They are NO DISRUPTION-NO INBERI, DISRUPTION-
NO INSERTION, DISRUPTION-INSERTION, and NO DISRUPTIAONSERTION.
The program calls the job matrix, reads the experimental sSaenarocesses the jobs
under the different experimental cases, and calculates thencbhgtegghted tardiness for

each scenario.

Performance Measures

The Cost and Weighted tardiness are the performance measudeto usempare the
performance of batch insertion under different scenarios. Weidhatelihess is the
reduction in value of a job when the job becomes tardy by one tmé.chlculated
according to the following equatiomax (0, completion time of job-due time)*job
weight.

Figure 5.1 illustrates the structural relationships:
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Figure 5.1 Sructural Components
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EXPERIMENTAL SCENARIOS

5.2 Experimentation Design

This section describes the design specifications for each salctumponent of the
experimentation framework, namely job matrix, experimental sweEjasimulation

model, and the performance measures.

Job Matrix

The job matrix contains 500 job-sets with 10 jobs in each set. Thdirdee base

quantity, yield loss and job weight determine the job characterigmch of the 10 jobs
is assigned product type A or product type B with equal freqaenthe job matrix also
contains any new batches created by the anticipatory batchiandeeuristic. In the case

where a possible disruption is identified, an additional job is setup immediatetg ltied
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first occurrence of a particular product type. The additioniali$ set to contain 10% of
the pieces of theriginal job. All other job characteristics remain the same as thtteof
original job. The original job is the job with the first occurremafethe product type
considered. Similarly, an additional job is setup for the secondva#dseo anticipated
disruption. However, the number of pieces in the original job iodet ©0% of the base
guantity in order to avoid cases with over production since a disruptioot ianticipated

in this case. The settings used for the different experimental parametésseal.

1. Due time = Normally distributed according to the schedule hardness criteria

2. Base Quantity = Normally distributed with a mean of 100 anstaadard
deviation of 10

3. Yield loss = Uniformly distributed between 5% to 10%

4. Job weight = Normally distributed with a mean of 40 and a stami@aidtion of

10 to create a coefficient of variation of 0.25

These settings are similar to the settings in the “Agar§lynamics” papers. Separate
random number streams for different experimental parametersusa@ to ensure

independent observations.

Experimental Scenarios

The three experimental factors considered are schedule hardsressyity of products
and magnitude of risk. NO DISRUPTION-NO INSERTION, DISRUBN -NO

INSERTION, DISRUPTION-INSERTION, and NO DISRUPTION-INREION
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represent the different manufacturing environments analyzed. €Hermpance of
anticipatory batch insertion heuristic is analyzed under the diffeseenarios produced

by all combinations of the experimental factors. Cost and Weighdediness measure

the performance. The different experimental cases and facw@nalyzed in order to
answer the research questions and test the propositions documentegtar @hdable

5.1 below provides a summary of the research questions and the corregpondin
propositions. Following the table is a detailed description of the vasgpsrimental

cases and factors respectively.

Table 5.1 Summary of Research Questions and Propositions

RESEARCH QUESTIONS PROPOSITIONS
Q1: How worthwhile it isto insert a test Proposition 1: The process of anticipatory
batch if there is a disruption due to batch insertion to mitigate risk will
causal triggers. produce sdignificant benefits for a

production process that is subjected to the
risks associated with the disruption.

Q2: What are the implications when a Proposition 2: The cost associated with
batch isinserted and the disruption does batch insertion is relatively insignificant
not occur? for cases where the disruption does not

occur as expected.

Q3: How does schedule hardness affect Proposition 3: Batch insertion will be
the performance of the strategy? more beneficial for a production situation
with a loose schedule provided the setup
cost and/or production cost is not
substantially high.

Q4: How does product sensitivity affect Proposition 4. The benefits associated with

the performance of the strategy? batch insertion will linearly increase with
an increasing number of sensitive
products.

Q5: How does the performance of the Proposition 5: The benefits associated with
strategy vary with different magnitudes batch insertion will linearly increase for
of risk associated with the disruption? production processes that are susceptible
to higher magnitudes of risk.
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Experimental Cases
A description of the four experimental cases and their signifecanterms of answering

the research questions are given.

1. NO DISRUPTION-NO INSERTION CASE: This case represédhe risk-free
manufacturing environment where there is zero probability for dasuption.
This case is referred to as the production process being imoiteal state.
Comparing this case to the others assists with understandirsigthiicance of

the causal triggers and analyzing the performance of anticipatory batctomsert

2. DISRUPTION-NO INSERTION CASE: The system in thisecdses not perform
a batch insertion, but the disruption still occurs. This case shovesgiiécance
of the disruption caused by causal triggers in a “normal” productigimomment
- one which has not implemented any proactive measures to reduciskthe
associated with the causal triggers. It is important to seeeffeets of such
disruptions and decide on whether such situation requires considetabteoat
The effects of the disruption are tested under various scenause tif there is a
need to implement any risk mitigation techniques for every siceriehis will
help answeR1 of the research questions. The implication®mdposition 1 can

also be tested using the results from the sensitivity analysis.

3. DISRUPTION -INSERTION CASE: This is the case whemisauption occurs,
but batch insertion heuristic is employed to mitigate the slo@ated with the

disruption. The results obtained from this case are analyzed taf dbe
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implementation of batch insertion produces benefits when a disruptionsodic
is necessary to know under which scenario batch insertion providendsie
benefits. Analyses of the results obtained from the various sesmaitl provide

evidence to support or refufgl andProposition 1.

4. NO DISRUPTION-INSERTION: This case models a system rgvhieatch
insertion is executed, but the disruption does not occur as predicted. This
environment indicates how much additional cost is incurred with batehtiors
when a disruption does not occur. Analyses of the results obtained fooata
can be used to verify the significance of costs associatédbatth insertions.

The data is also used to investigated@@Proposition 2.

Experimental Factors

The four experimental cases are tested under different scenaraefined by the three
experimental factors, which are schedule hardness, sensitivifgroducts and the
magnitude of risk. A description of the three experimental factod the different

criteria considered for each is derived below.

SCHEDULE HARDNESS: The tardiness factor (TF) and the rasfgéue date factor
(RDD) is used to set due dates with different hardness criteria (McKay 20@1).

TF= 1-dw¢Zjp. When TF is close to one, due dates are tight and if it is otoSe due
dates are loose.

RDD= (thaxdmin)/ Zjp;. Due date ranges are wide if RDD is high, and are narro@id R

values are low.
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Therefore, the TF and RDD determine the mean and standard devidties ohthe due
dates respectively. Three different combinations of TF and RDiesakith an average
processing time of 110 units is used to get 9 schedule hardness.crifbe weighted
tardiness values under the nine different criteria will show haticipatory batch
insertion performs under different schedule hardness criteriae Tal2l shows the

different factor values.

Table 5.2 Schedule Hardness Criteria

TF/RDD TF=.25 TF=0.50 TF=0.75
(Mean, STD)

RDD=.25 (825,92) | (550,92) | (275, 92)
RDD=.50 (825, 183) | (550, 183)| (275, 183
RDD=.75 (825, 275) | (550, 275)| (275, 275

To show an example of how the numbers in the cells are calculated, considentherent
TF=0.25, RDD=0.25. The value of TF and the average processiagfihl0 units are
substituted in the equation for tardiness factor (TF) to get thagaelue date value of
825. Similarly, the RDD value of 0.25 and the processing time are aiged & due date
range and the range is divided by three in order to obtain aasthddviation of 92.
These specific values generate due dates that are loose with a nagadv $pe analysis
of results obtained from the various scenarios of schedule hardnesssd@@rand

Proposition 3.

SENSITIVITY OF PRODUCTS: It is not necessary to havepadiducts being sensitive

to every kind of disruption. In the studies noted by McKay (1987, 1992) one prodyct

be sensitive to one kind of disruption and not sensitive to other kinds. Proposition 4 stated
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that the performance of batch insertion would improve with an inedeasmber of
sensitive products. In order to address this issue, three diffeesrdarsxs of sensitivity
are considered. Analysis of the results obtained from differemasos of sensitivity

exploresQ4 andProposition 4.

Sensitivity Criteria

1) Only product type A is sensitive to the disruption.
2) Only product type B is sensitive to the disruption.

3) Both products, A and B are sensitive to the disruption.

MAGNITUDE OF RISK: The magnitude of risk is the percentagethad products

scrapped due to disruption. Sensitivity analysis of this factonsigéie performance of
the heuristic is done to determine if it is more beneficiatmplement batch insertion in
cases where high magnitude of risk is predicted. Three diffecenasos are tested to
see how batch insertions perform in each scenario. Analyske ofgults obtained from

the three scenarios are used in the investigati@Qba@ndProposition 5.

Disruption Criteria

1) Disruption causes 40% of items to be scrapped
2) Disruption causes 60% of items to be scrapped

3) Disruption causes 80% of items to be scrapped

These experimental factors and the different criteria considpreduces 81 basic

scenarios. The simulation model executes the model logic and cantipangerformance
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of anticipatory batch insertion to mitigate risk under diffesa@narios. The next section

provides a description of the simulation model.

Simulation Design

The simulation model simulates job-sets under different scenaridspeobes the
robustness of the batch insertion strategy on a single machimestaiic jobs. For each
scenario under consideration, the simulation model calls the jolbxnrains the 500 job-
sets, and then outputs the total average cost and weighted tardihess fea each

scenario. The different criteria considered for the threeeraifit experimental factors
mentioned above give 81 basic cases for each experimental case walsitranslated to
81 basic runs in the simulation design. The simulation model readdférerd scenarios

from a data file (Appendix A). The start time of each jolsas to zero. Hence, it falls
under the category of Monte Carlo simulation with static arotgbbs. A series of pilot

runs determine the set of parameter values that gives a saligtic experimentation
scenario. APPENDIX C provides the MATLAB code that implementselexperiments.

The following settings are used for the parameters which are constant.

Constant Settings

Setup cost =10 units.
Setup time = 10 units.
Cost per piece = 1unit.
Time per piece = lunit.
Dollar per time = 1unit.

Dollar per scrap = lunit.
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Performance M easur es

The performance measures are average total cost and averggeaveardiness values.
These are used to compare the performance of anticipatory bat¢lomsader different
scenarios. The measurement of cost is strictly quantitative wiel weighted tardiness is
a qualitative measure since no cost was associated with ighi&eé tardiness values
capture the lateness factor and have implications on customéatadis Therefore, by

using both measures, the quantitative and qualitative aspects of the probleressed.

5.3 Verification and Validation.

Since the performance of batch insertions under different expeahseeinarios is being
considered, it is important to make sure that other experimemaltons remain the
same for each scenario. That is, the variations obtained should be ttheechanges in
the scenarios, not due to the variations in random numbers. To ensuringéhgeime

random number streams are used across the different scenarios.

In order to validate the model logic, the batch insertion model wapared to results
reported in the Aversion papers. The simulation parameters wergteatifo reflect the
simple base case (i.e., equivalent to the Aversion base casdjeasichtilation run. The
results for the WSPT heuristic were then compared. In thddhe simulation code used
random numbers and executed the heuristics correctly, the basidibeqeréormance
(e.g., weighted tardiness objective) should be similar. APPEN®Eontains the results
of this validation step. The results are similar for WSPT amlassumed that the basic
structure and implementation of the batch insertion model is adefgudte purpose of

this research.
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5.4 Summary

This chapter has described the design of the experimental framework used to éeplore t
batch insertion heuristic. The following chapter presents the results obtained Haring t

experimentation.
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CHAPTERG

EXPERIMENTATION RESULTS

This chapter presents the results from the large-scale siomulexperiments and
analyzes them to determine if the results are rational @hdrié are any issues relating to
basic validity. Chapter 7 provides a discussion on sensitivity asatyshe different
experimental factors and interprets the numerical resulthifthis chapter, the results

are grouped according to the different experimental cases.

The first section groups the results for the different experimeass. Analysis of each
case provides insight into implication of the risks associatéu egiusal triggers such as
changes in process, product, or material. The analysis ofghéMa cases in particular
shows the benefits associated with batch insertion given the castiwiplementation.

The second section presents the results obtained from changisghibdule hardness
criteria. The third section tabulates the value of performanasunes under different
criteria of sensitivity and the fourth section shows the perdioga of anticipatory batch

insertion when there are different magnitudes of risk.

The assumptions and values used in all of the experiments were:

 Two products, A and B are processed by the manufacturing resondss

consideration
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* Sequence dependent setup is not considered. Setup costs are inguengstyfo
batch processed.

» Setup cost = $10 per job

* Setup time = 10 time units per job

» Cost per piece = $1 per piece

» Time per piece = 1 time unit per piece

» Dollar Per Time per time = $1 per one unit of time spent in the plant

» Dollar per scrap = $1 per unit scrapped

* Due time = Normally distributed according to the schedule hardness criteria

* Base Quantity = Normally distributed with a mean of 100 andaadard
deviation of 10

* Yield loss = Uniformly distributed between 5% to 10%

» Job weight = Normally distributed with a mean of 40 and a standardtida of
10

» Total Cost of a Job = Total Setup Cost + Total Production Costal Scrapping
Cost.

* Weighted Tardiness of a Job = Max (0, Completion Time of Job —Tue of

Job) * Job Weight.

The following sections present the results with respect to theraht experimental

scenarios. Note that the results obtained are rounded off to the nearest integer value.
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6.1 Resultsunder different experimental cases

The simulation model processes 500 job-sets for each scenario idetetny schedule
hardness, sensitivity of products and the magnitudes of risk. The ifodjdst consists of

four experimental cases in which each job-set is processed.

1. NO DISRUPTION -NO INSERTION CASE
2. DISRUPTION-NO INSERTION CASE
3. DISRUPTION-INSERTION CASE

4. NO DISRUPTION-INSERTION

The average cost and weighted tardiness values obtained for eadmerfa case are
provided in Table 6.1. Note that all the experimental factors (i.eedsde hardness,
sensitivity of products and magnitudes of risk) vary acrossxakranental runs. This
table represents the average result — a mix of all factdrs. shme variations were
applied to the four experimental cases. Therefore, the resultsexbtttom the four
experimental cases are comparable to each dthe® valuesin the table provide the
increase in cost and weighted tardiness values for each case when compared to the

base case.
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Table 6.1 Performance Measures-Experimental Cases

Performance Average Cost ( $) Average Weighted
Measures/ Tardiness (time
Experimental cases unit)

No Disruption, No | 2282 129660

Insertion

Disruption, No | 2540 (11%) 164030 (27%)
Insertion

Disruption and | 2367 (4%) 146660 (13%)
Insertion

No Disruption, | 2321(2%) 141560 (9%)
Insertion

The lowest value of cost and weighted tardiness can be seemnfirsthrow represented
by the “NO DISRUPTION-NO INSERTION” case. The seconde;d' DISRUPTION-

NO INSERTION” represents the case with highest values ofarwbtveighted tardiness.
In this case, no risk mitigation techniques were used to reduce the effectrthion.

These gross results intuitively match what would be expectgd yehich case would be
highest, second highest etc.). In this initial experiment, the fgpealues are not as
important as the ordering since the main purpose of the rbsearto probe the

relationships and sensitivity inherent in the heuristic.

6.2 ScheduleHardness

Schedule Hardness determines the characteristics of the sclaaduls related to the
Tardiness Factor and Range of Due Dates. Nine different soemdrschedule hardness
are considered in the analysis. The results are grouped accoalirgjfferent

experimental cases as shown in the tables below. It is imptotaote that a constant set

of values for the rest of the experimental factors are usedemhiges that the variations
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obtained in the results are consequences of changes in schedalgestsdics. In this
part of the study, both products are sensitive and both have the s@mitude of risk

(60%).

In each of the tables below (one for each disruption/insertion, ¢asan be seen that the
average cost remains the same with different schedule harditessa.cThis is because
the cost calculated does not include any cost incurred due to tartiogss. Thus, the
results obtained aid in the validation of the implementation. The geensighted
tardiness values increase as the schedule becomes tighter values are the
decrease of weighted tardiness values for each case compared to the extreme case

wherethe scheduleisthetightest.

No Disruption, No I nsertion

Table 6.2 Performance Measures- Schedule Hardness (NO DISRUPTION-NO

INSERTION)

Tardiness Factor 0.25 0.50 0.75
(TF)

Range of due date| 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
factor (RDD)

Average Cost ($)
2282 | 2282 | 2282 | 2282 | 2282 | 2282 | 2282 | 2282 | 2282

Average  Weighted | 14792 | 18430 | 24488 | 51573 | 56249 | 63845 | 116582 | 122001
Tardiness (timeunits) | (89%) | (86%) | (81%) | (60%) | (57%) | (51%) | (10%) (6%) | 129661
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Disruption, No Insertion

Table 6.3 Performance Measures- Schedule Hardness (DISRUPTION-NO INSERTION)

Tardiness Factor 0.25 0.50 0.75
(TF)

Range of due date| 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
factor (RDD)

Average Cost
2659 2659 2659 2659 2659 2659 2659 2659 2659

Average ~ Weighted | 2g573 | 32731 | 39705 | 78311 | 83644 | 92279 | 159174 | 165675
Tardiness (84%) | (81%) | (77%) | (55%) | (52%) | (47%)| (9%) | (5%) | 175042

Both Disruption and Insertion

Table 6.4 Performance Measures- Schedule Hardness (DISRUPTION- INSERTION)

Tardiness Factor 0.25 0.50 0.75
(TF)

Range of due date| 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
factor (RDD)

Average Cost
2372 2372 2372 2372 2372 2372 2372 2372 2372

Average  Weighted | 18502 | 22295 | 28715 | 59315 | 64295 | 72588 | 129761 | 136265
Tardiness (87%) | (85%) | (80%) | (59%) | (56%) | (50%)| (11%)| (7%) | 145963

No Disruption, Insertion

Table 6.5 Performance Measures- Schedule Hardness (NO DISRUPTION--INSERTION)

Tardiness Factor 0.25 0.50 0.75
(TF)

Range of due date| 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
factor (RDD)

Average Cost
2322 2322 2322 2322 2322 2322 2322 2322 2322

Average  Weighted | 1641 | 20357 | 26666 | 55586 | 60520 | 68796 | 124094 | 130681
Tardiness (88%) | (86%) | (81%) | (60%) | (57%)| (51%)| (12%)| (7%) | 140525
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6.3 Sengitivity of Products

Sensitivity of a product defines its sensitivity to the disagiassociated with causal
triggers. Three different scenarios of sensitivity are congidéye in the other tests, the
simulation model evaluates the performance measures correspondititg tthree
different criteria, keeping other experimental factors constam. résults are grouped
according to the experimental cases considered, as shown ia 6b66.9. The tests
were run with a medium degree of schedule hardness (TF=0.50, RBID)=The

magnitude of the risk was set at 60%.

No Disruption, No I nsertion

Table 6.6 Performance Measures- Product Sensitivity (NO DISRUPTION-NO

INSERTION)
Sensitivity (A,B) 1,0 1,1 0,1
1=Sensitive,  0=Not
sensitive
Average Cost

2282 2282 2282

Average  Weighted
Tardiness 56249 | 56249 | 56249

Disruption, No Insertion

Table 6.7 Performance Measures-Product Sensitivity (DISRUPTION-NO INSERTION)

Sensitivity (A,B) 1,0 1,1 0,1
1=Sensitive,  0=Not
sensitive

Average Cost

2471 2659 2469

Average  Weighted
Tardiness 69145 | 83644 | 69057
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Both Disruption and Insertion

Table 6.8 Performance Measures-Product Sensitivity (DISRUPTION-INSERTION)

Sensitivity (A,B) 1,0 11 0,1
1=Sensitive, 0=Not
sensitive

Average Cost

2327 2372 2327

Average  Weighted
Tardiness 60137 | 64295 | 60194

No Disruption, Insertion

Table 6.9 Performance Measures- Product Sensitivity (NO DISRUPTION- INSERTION)

Sensgitivity (A,B) 1,0 11 0,1
1=Sensitive,  0=Not
sensitive

Average Cost

2302 2322 2302

Average Weighted
Tardiness 58310 | 60520 | 58383

The average cost and weighted tardiness values are generallg khghcases where the
disruption occurs and both products in consideration are sensitive to thetidis
compared to the cases where only one type of product is sensithe desruption. The
two scenarios which have one sensitive product provide slightly diffeedoes for

performance measures due to the difference in product characteristics.

6.4 M agnitude of Risk

The magnitude of risk is the percentage of end-items scrappetbdbhe disruption.
Three different criteria were considered. Tables 6.10-6.13 presemeshks grouped

under different experimental cases. The tests were run wigtdaum degree of schedule
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hardness (TF=0.50, RDD=0.50). Both products were considered sensitive to the

disruption.

No Disruption, No I nsertion

Table 6.10 Performance Measures- Magnitudes of Risk (NO DISRUPTION-NO

INSERTION)

80% 60% 40%
Magnitude of Risk
Average Cost
2282 2282 2282
Average Weighted Tardiness
56249 56249 56249

Disruption, No Insertion

Table 6.11 Performance Measures- Magnitudes of Risk (DISRUPTION-NO INSERTION)

Magnitude of Risk 80% 60% 40%
Average Cost
2772 (9%) | 2659 (4%) 2547
Average Weighted Tardiness 92023 83644
(22%) (11%) 75668

Both Disruption and Insertion

Table 6.12 Performance Measures- Magnitudes of Risk (DISRUPTION- INSERTION)

Magnitude of Risk 80% 60% 40%
Average Cost 2376 2372
(0.30%) (0.15%) 2369
Average Weighted Tardiness
64295 64295 64295
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No Disruption, Insertion

Table 6.13 Performance Measures- Magnitudes of Risk (NO DISRUPTION-INSERTION)

Magnitude of Risk 80% 60% 40%
Average Cost
2322 2322 2322
Average Weighted Tardiness
60520 60520 60520

In the cases where disruption occurs, the cost value increasaacsgfising magnitudes
of risk. The weighted tardiness value also increases with imegesmsgnitudes of risk in
the second case where there was no risk mitigation technigpleyeld These changes
in weighted tardiness values cannot be seen in cases where hatstion is

implemented as the earlier batches absorb the risk assoaradedo further delays are

incurred.

6.5 Summary

This chapter presented the results obtained under different expedirmeabharios and

discussed the results from a validation perspective. Chapter 7 mavdiscussion of the

results.
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CHAPTER 7

ANALYSISAND DISCUSSION

This chapter presents the discussion of the results obtained frosmthkation model.

The objective of this chapter is to provide insights into the dyrsmimssociated with
various problem parameters. Section 7.1 analyses the four experincastd and
evaluates the performance of anticipatory batch insertionioBetP discusses schedule
hardness and its implication on the performance of the heuristic. Sections 7.3 and 7.4 deal

with the sensitivity factor and the magnitude of risk respectively.

7.1 Experimental Cases

Table 6.1 of Chapter 6 listed the average total cost and weigirthdess values for the
different experimental cases. The results indicate that theipatbry batch insertion
strategy substantially reduced the implications of the disruptioa.ré@sults also showed
that the cost incurred when performing batch insertion can be cafdiglemall given

the benefits associated with it.

Without implementing any risk mitigation techniques prior to thadewce of the
disruption, the increase in cost ranges from 6% to 22%, and the incneaséghted
tardiness range from 12% to 126%. The upper bound and the lower bound ofge ra
are determined by the schedule and production characteristics Mdheh insertion is
employed, the cost increase due to the disruption ranges froto 2% and the increase

in weighted tardiness ranges from 5% to 25%, when compared to the dsesefc
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disruption and no batch insertion heuristic is employed. These valuemnsgate that
anticipatory batch insertion can yield substantial benefits for ptiotuenvironments
that anticipate disruptions associated with changes in the prodymoess. If the
disruption does not occur, batch insertion and the conservative stancatedsadth
attempting to reduce the risk costs 1% to 2% more than the norostalln addition, the
weighted tardiness increases from 3% to 13% of the nominal valaiele T7.1

summarizes these results.

Table 7.1 Percentage increase in Costs and Weighted Tardiness values

Experimental Case Percentage increase in | Percentage increase in
Cost weighted tardiness

Disruption -No insertion 6% - 22% 12% - 126%

Disruption - Insertion 2% - 4% 5% - 25%

No Disruption-Insertion 1% - 2% 3% - 13%

These results show that the heuristic can significantly rethecenplications associated
with risks involved in production. Moreover, the costs involved in setting hap t
additional batches can be less significant compared to the lseasdiiciated. Therefore,
anticipatory batch insertion can provide significant benefits in #secwhere risks are
anticipated due to changes in the manufacturing environment. Howeveoyenal
performance of this approach can be dependent on other experirfeattat like
schedule hardness, sensitivity of products and magnitudes of riskolldverig sections
briefly discuss these factors. The above discussion suggests evidesapport the

following propositions.
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Proposition 1: The process of anticipatory batch insertion to mitigate risk will
produce significant benefits for a production process that is subjected to the
disruption associated with the causal triggers.

Proposition 2: The cost associated with batch inserting is relatively insignificant for
cases wher e the disruption does not occur as expected.

7.2 Schedule Har dness

Tables 6.2 through 6.5 in the previous chapter grouped the results basednimethe
different schedule hardness criteria for different experinhar@ses. The definition of
schedule hardness suggests that the benefits of batch insertion beoidre evident
when the schedules are loose, compared to the cases where scaedtiggg. In order
to explore the behavior of this relationship, two extreme values and three modérate v

of schedule hardness were selected. The set of criteria was.

1) (0.25, 0.25) to represent the extreme case in which the schelhaseisand the range
of due date is wide

2) (0.25, 0.50) to represent the case in which the schedule is loose amhgheis
moderately wide

3) (0.50, 0.50) to represent the medium case in which the schedule is telydeght
and the range is moderately wide

4) (0.50, 0.75) to represent the case in which the schedule is netglévase and the
range of due date is narrow

5) (0.75, 0.75) to represent the other extreme where the due datg isgkieland the

range of due date is narrow.
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The performance measures were evaluated for the above tegacrThe variations in
the results are consequences of the variations in the scheddteeds criteria since
constant settings are used for other experimental factors. Nates¢chedule hardness
only influences the tardiness values, because there are no costatadswith tardiness.
Table 7.2 presents the percentage improvement in weighted tardihgss dae to the
implementation of anticipatory batch insertion, compared to the wasee no risk

mitigation techniques were implemented.

Table 7.2 Schedule Hardness-Weighted Tardiness

Schedule Hardness (0.25, (0.25, (0,50, (0.50, (0.75,
(TF, RDD) 0.25) 0.50) 0.50) 0.75) 0.75)
Percentage improvement | 35 28 23 21 17

in  weighted tardiness
values

The results suggest that batch insertion performs the best hdasctedule is loose and
the improvement in performance decreases as the schedule gets. tigbtire 7.1

illustrates the rate at which the performance deteriorates given thenespil settings.
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Figure 7.1 Schedule Hardness VS Performance | mprovement

Schedule Hardness VS Weighted Tardiness Improvements
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The above figure does not indicate a strict linear relationshiwelket the schedule
characteristics and performance of batch insertion. Howeefighre does not indicate

any significant trends, nor negative improvement in any of thescakherefore, it is
reasonable to observe that the implementation of the batch amsbguristic provides
positive improvements across the schedule hardness criteriaobB@ss/ation is possible
because both extremes of schedule hardness ((0.25, 0.25) and (0.75, 0.75)) were
considered. The variations in slope from one point to the next sugggsotdreial for

further research into the relationship, but this analysis is beyorsttpe of the initial

research. The linear interpolation of the data gives the following results:
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Equation of the straight linefitting=> y=-4.3x+38
Norm of residuals=2.8107

The “norm of residuals” implies the goodness of fit. The smdilenvalue, the better is
the fit. The norm of residual value in this case represents aagavét. Since batch
insertion in this experimentation does not illustrate negative improvements, tsexipts

for the following proposition:

Proposition 3: Batch inserting will be more beneficial for a production situation
with a loose schedule provided the setup cost and/or production cost is not
substantially high.

7.3 Sengitivity of Products

Tables 6.6 through 6.9 documented the improved performance of anticipatony batc
insertion with increasing number of sensitive products. Table 7.3 suresathe

percentage improvement due to batch insertion, for each scenario considered.

Table 7.3 Sengitivity of Products-1mprovement in performance (Two Products)

Number of Sensitive products 1 2
6 11

Percentage improvement in Cost due to batch insertion

Percentage improvements in weighted tardiness due to batch | 13 23

insertion

The percentage improvements in performance measures are much ihighercase
where two products are sensitive. In order to analyze the rate of increamayfacturing
resource is considered that produces more than two products. In pgriccuisider a

manufacturing resource that processes five product types A, B,, @nd E. The
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following settings were used: scheduling hardness - TF=0.50, RDD=af&@hitude of

risk for each product type — 60%.

The performance improvement of batch insertion for each scesfasensitivity, when

compared to the case where no insertions are implemented is given in Table 7.4.

Table 7.4 Sensitivity of Products-Performance Measures (Five Products)

Number of Sensitive Products

N
N
w
N
ol

Percentage improvement in Cost due to batch insertion

Percentage improvements in Weighted Tardiness due to batch | 13| 26| 37| 51| 63
insertion

The results indicate that the performance of batch insertion improves with thesingre
number of sensitive products. Figures 7.2a and 7.2b represent the rate of increase in the

cost and weighted tardiness values respectively.

Figure 7.2 a & b Sensitive Products VS Performance | mprovements.
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The above figures suggest that the number of sensitive products di@sedo-linear
relationship with the performance measures, which are cost agtitec tardiness. A

linear interpolation on both graphs gives the following results:

Cost | mprovements. Weighted Tardiness | mprovements:
Equation of the best fitting line>y=12x+0.5 Equation of the best fitting line>y=4x+16
Norm of Residuals= 1.0954 Norm of Residuals= 1.2247

The norms of residual values are considerably small implying a goddhétefore, it can
be reasonably concluded that the relationship analyzed is almest And that support

exists for the following proposition:

Proposition 4: The benefits associated with batch inserting will linearly increase with
an increasing number of sensitive products.

7.4 Magnitude of Risk

Tables 6.10 through 6.13 from the previous chapter illustrated that toenpence of
batch insertion with increasing magnitudes of risk. Higher mage# of risk imply
higher number of items scrapped; consequently, the benefits asdowdh batch
insertion will be higher since it reduces that number of predactapped. Table 7.5
presents the performance improvements compared to the “DISRUPN@N-
INSERTION” case. Two more scenarios (20% and 100%) were adddak tthitee

considered in 7.3 to strengthen the analysis.

Table 7.5 Magnitudes of Risk-Performance Measures

Magnitude of Risk 20% |40% |60% |80% | 100%

3 7 11 14 18
Percentage improvement in Cost due to

batch insertion

Percentage improvements in weighted | 6 15 23 30 36
tardiness due to batch insertion
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Graphs 7.3a and 7.3b illustrate the rate of increase in cost andedeigidiness values

respectively.

Figure 7.3 a & b Magnitude of Risk VS Performance | mprovement

Magnitudes of Impact VS Cost Improvements Magnitudes of Impact VS Weighted Tardiness Improvements
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Figures 7.3a and 7.3b visually illustrate that a high magnitude lofesuilts in greater
benefit and that the relationship is inherently linear. Thereimomturvature, but the

relationship can be described as being linear. The linear interpolation data is:

Cost | mprovements. Weighted Tardiness | mprovements:
Equation of the best fitting line>y=0.19x-0.5 Equation of the best fitting line>y=0.38x-0.5
Norm of Residuals= 0.54772 Norm of Residuals= 1.8708

The norms of residuals are low, and this suggests that the rdgpidmstween the
performance measures and the magnitudes of the risk is clolseedn. Therefore,

support appears to be present for the following proposition:
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Proposition 5: The benefits associated with batch inserting will linearly increase for
production processes that are susceptible to higher magnitudes of risk.

7.5 Summary

The analysis of the different experimental scenarios sugdestsanticipatory batch
insertion is: a) is most suited for a production environment thatusseptible to
disruptions caused by causal triggers, produces a large numberit¥sgmeducts, and
has loose schedules; and b) composed of reasonably well-behaadrdiaionships
between the strategy and experimental factors. The anticigedtaly insertion strategy is
likely to always yield some form of positive improvements in emst weighted tardiness
when a disruption occurs. However, the percentage of improvement mag hah in
cases with a low magnitude of risk and tight schediilee next chapter tests the
robustness of the model by modifying a number of the assumptions rnitadespect to

the experimental parameters.
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CHAPTER 8

EXPERIMENTAL ROBUSTNESS

The model environment described in Chapter 5 is defined by a numlmemstfants.
These include parameters such as Setup Cost, Setup Time, TirReeper Dollar per
Time, Cost per Piece and Dollar per Scrap. This chapter exglmeesensitivity and
robustness issues related to four of these parameters: Setypaltzs Per Scrap, Cost

per Piece and Dollar per Time.

8.1 Setup Costs

Setup Cost is the cost incurred when setting up a batch for pragebs the main
experiment, it was assumed that Haelitional setup cost incurred after the occurrence of
a disruption is usually higher than the nominal setup costs. This auseof the
involvement of additional factory personnel, and the added caution (MdRag). Five
different scenarios were analyzed for this parameter. Tskesibenario considered the
case where the cost of the extra setup is the same asrthieal setup. In the second
scenario, the cost of the extra setup is 1.25 times the nominpl sethe third case, the
extra setup cost is 1.50 times the nominal setup cost. In the fas#h an additional
setup cost is 1.75 times the nominal. Lastly, in the fifth casedditional setup cost is
twice the nominal cost. Table 8.1 presents the cost increasehicase Note, modifying
setup costs do not affect tardiness values and the tardiness values presented. The

following experimental settings were used to run the analy6is0.50, RDD=0.50; both
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products sensitive and the magnitude of risk set to 60%. All thereassumptions other

than the setups costs remain valid.

Table 8.1 Additional Setup Cost- Cost values

Setup cost | Nominal | 1.25*Nominal | 1.5*Nominal | 1.75*Nominal | 2*Nominal
Scenariosy
Experimental cases
No Disruption, No
Insertion 2282 2282 2282 2282 2282
Disruption, No
Insertion 2659 2664 2669 2674 2679
Disruption and
Insertion 2372 2372 2372 2372 2372
No Disruption, Only
I nsertion

2322 2322 2322 2322 2322

The additional setup cost affects the second row, where extra setupsgde to account

for the loss associated with the disruption. The extra setup casthdoaffect the first

and last cases since the disruption does not occur in those casethirfihease
implements batch insertion and hence, no additional setup costs areedncline

percentage improvement in cost due to the implementation of antigifettwh insertion

is provided in Table 8.2.

Table 8.2 Additional Setup Costs- Performance Improvement

improvement in
cost

Setup cost Nominal | 1.25*Nominal | 1.5*Nominal | 1.75*Nominal | 2*Nominal
Scenarios

10.8 10.9 11.1 11.3 115
Percentage

81




There is a very slight improvement in cost with increasing values of additionpbset

Figure 8.1 presents the rate of increase.

Figure 8.1 Additional Setup Costs VS Cost Improvements
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The results indicate a close-to-linear relationship between aaaitsetup costs and the
performance of batch insertion. The variation in slope betweenrghéwb points can be
attributed to the rounding off error as the points only differ by 0.2ine®r interpolation

on the data gives the following results.

Equation of the straight linefit=> y=0.72x+10
Norm of Residuals: 0.0632

The norm of residuals is significantly small. Therefore, ite@sonable to conclude that
the relationship is close to linear in nature even though the ramerefse is relatively

small. It is important to note that just changing the nominalipsatosts in the
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experimental framework will not show any improvements with rdsgec the
performance of batch insertion. This is because the numbeupks#bes not vary in the

case where anticipatory batch insertion is done to mitigate risk.

8.2 Dollar Per Scrap

Dollar per Scrap is the scrapping value of one piece of prodhid.cost includes non-
recoverable raw material cost, value added, and other similartiopatacosts. These
values can be high for manufacturers when the manufactures abl@db recover the
parts from the defective items. It was assumed that the galDellar per Scrap was one
for the purpose of experimentation. In the robustness study this vakisev#o two,

three, four, and eight. The weighted tardiness values do not chantjes ssrapping

value does not have any implication on the tardiness factor. Talder@ans the results

obtained.

Table 8.3 DollarPer Scrap- Cost |mprovements

Cost per unit scrapped 112 |3 |4 |8
Percentage Improvementin Cost | 11| 13| 16| 18| 24

The test results show that improvements are higher with inogeédollar per scrap”
values. The basic trend is intuitive because batch insertiongstiateesigned to reduce
the number of items scrapped. The results were analyzed to ohetefitihe relationship

was linear or non-linear. Figure 8.2 shows the linear fit:
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Figure 8.2 Dollar Per Scrap VS Improvement in Cost
Dollar Per Scrap VS Cost Improvements
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The relationship is close to linear as can be seen from the data obtained from linear

interpolation.

Equation of the straight linefit-> y=1.8x+9.8
Norm of Residuals: 1.4406

However, there is some inflection around the values of 3 and 4. Whidleist not
significant, further analysis should be included in future researclvetdy this

observation.

8.3 Cost Per Piece

Cost Per Piece is the cost of processing one product or pieds. iQasved can be

operator's wage, machine cost, lubrication cost and other costs adsdouiith the
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production process. To ensure the stability of the heuristic relatittes parameter, the
value was changed from one to two, three, and four. Table 8.4 summbaszessults
obtained from the four scenarios. Cost per Piece does not affioets value and this

value is not shown.

Table 8.4 Cost Per Piece- Cost | mprovements

1 2 3 4
Cost per piece value
Percentage I mprovement in 10.8 10.1 9.8 9.6
Cost

The improvements are decreasing slightly with increased cost per d@a=theless, the
rate at which it is decreasing seems to diminish with incrgaslue of cost. In order to
see if the improvements become negative at any point, two extravemesnade with the
values of 100 and 10000. At both of these values, the percentage of impmowesse
8.6%. Although little can be said about the region between the two yéheesesults
suggest that the percentage of improvement stabilizes at sonme ppairther
investigations on this behavior should be included in any future resdagthie 8.3

presents the results of the analysis.
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Figure 8.3 Cost Per Piece VS Cost Improvements
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8.4 Dollar per Time

Dollar per Time is the cost of running the resource for one tinte Timése values were
changed from one to two, three, and four. Table 8.5 lists the improvanysrformance

for each scenario considered.

Table 8.5 Dollar per Time- Cost Improvements

Dollar per time 1 2 3 4
Percentage I mprovement in 10.8 9.8 9.3 9
Cost

The improvements are slightly reduced with increased Dollar ipgg Values. Similar to
the case with Cost per Piece, the rate of decrease isighingy with increased value of
Dollar per Time. To see if the improvements become negative a¢ gamt, two

additional runs were made with the values of 100 and 10000. Improvement irabesh c
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was 7.8%. This result as shown in Figure 8.4 suggests that the impri\stai®lizes at

some point.
Figure 8.4 Dollar Per Time VS Cost Improvements
Dollar Per Time VS Cost Improvements
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8.4 Summary

For the purposes of this initial exploration of the batch insertionigtee, the stability of
the heuristic is important; negative improvement or random resultsdshewdbsent. For
Setup Costs and Dollar per Scrap, the behavior appears to be hhdearek-behaved.
The heuristic also appears to be stable for the both Dollar per dind Cost per Piece.

However, future research should explore their leveling off of improvement.
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Sensitivity analysis was not done on Setup Time, as it affects thet experimental
cases: DISRUPTION-NO INSERTION, DISRUPTION-INSERTIO&gually. This is
because the number of setups remains same in both cases. Rolsisthiessvere also
not performed on Time per Piece. Time per piece is the amounteftttakes to process
a product or piece. Time per Piece and Dollar per Time compleessit other.

Therefore, it is not necessary to do a separate sensitivity study.
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CHAPTER9

IMPLICATIONSAND LIMITATIONS

9.1 Implications

The purpose of this thesis is to perform an exploratory and prefiynarealysis of an
anticipatory batch insertion strategy. Key to the concept isassemption that certain
major perturbations can be attributed to causal triggers and betpted advance.
Several characteristics of the problem are explored: schedulindsar product
sensitivity, and magnitude of risk. The results from the simulatiperenents suggest
that such disruptions can cause significant losses to a manufgotmuronment that
does not implement any risk mitigation approach. The results afygests that the
process of anticipatory batch insertion significantly reducesntipéications of such a
disruption; the increase in cost and weighted tardiness assowittdohtch insertions is
insignificant compared to the benefits it provides when a disruptiamrs@ctherefore, it
appears reasonable to recommend anticipatory batch insertiora fproduction
environment that has experienced high-risk disruption is anticipatiihd) yneertainties

due to causal triggers.

The benefit associated with batch insertion is most signifigaeh the schedule is loose.
If there is sufficient time before the due date and the productionoenvent is prone to
disruptive causal triggers, making additional setups in the beginningroisably

profitable. Even though batch insertion provides positive benefits for egenario of
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schedule hardness, the magnitude of improvement is not very signiiircdné case

where the schedule is tight.

The number of sensitive products also plays a critical role ipén®rmance of batch
insertion. The results suggest that batch insertion would be ben&drceamanufacturing
facility that processes sensitive products. The higher the number of sensitive prifduct
higher the benefits associated with batch insertion. Hencé imestertion would provide
higher profits for manufacturing plants that produces a number dllyhggensitive

products (e.g. electronic manufacturers).

Performance of anticipatory batch insertion is also dependent onatipatodes of risk.
The performance of the strategy was shown to improve with inogeasagnitudes of
risk. That is, the higher the risk associated with the disruptienmiore beneficial it is to
do batch insertion. Therefore, it is reasonable to suggest that tlgataty batch
insertion to mitigate risk can be very profitable to a manufaxy facility facing risky
disruptive events. The magnitude of risk is likely to be dependent on a nafrfaetors,
such as the type of change introduced, the level of training avaflabline factory

personnel, and the tuning of the factory equipment.

By changing the experimental settings defined by the constearhpters, the robustness
of the experimentation was tested. Different values were ggddr the experimental
constants. The robustness experimentation suggests that the relpsiatefined by the

experimentation results are not altered by the different empetal settings. The
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relationships suggest that batch insertion can reduce the costedabyrindustries that
experience risky events while producing products that have highpstgacosts - the

additional batches of small sizes reduce the number of items scrapped.

9.2 Limitations

1. A limited number of experimental factors were analyzed in tiesis. The
absence of a strict linear relationship between the perfornwdrizatch insertion
and the experimental factors indicate the possible existencehef tdctors
affecting its performance. These factors need to be recogaimbdnalyzed to
establish stronger relationships.

2. It is assumed that only the first batch of a product icifieby the disruption.
This assumption needs to be relaxed to design a more realisti¢. Mbddime
during which the batch is inserted requires more exploration.

3. The timing of inserted batches and the number of insertethelsatwas not

explored.
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CHAPTER 10

FUTURE RESEARCH AND CONCLUSIONS

10.1 Future Research

The study conducted in this thesis is exploratory and prelimindmy.objective of this
thesis is not the identification of an optimal solution, but is thdoexion of the
characteristics of the anticipatory batch insertion strategyitigate risks. Based on the
experimental results from this first study, there are a nurabéactors that could be
explored in subsequent research. The following sections discuss thes fassociated

with the assumptions used in the research.

Disruptions

For the purpose of experimentation, this thesis assumes known “magndiidek”.
However, in reality, this phenomenon is more uncertain in naturepidiability of a
high magnitude risk could be lower than the probability of a low nhageiof risk. It is
possible to use the probabilistic logic in an improved version of théaiion model. In
addition, the experiment in this thesis is limited to the caserevbleanges or such
disruptions affect only the job with the first occurrence ofresisige product type. What
happens when the disruption affects more jobs? Does the timimgestion affect the
performance of the strategy? Exploring such questions could aswdte realistic and

more robust strategy.
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Setups
It has been assumed that the setup costs and setup times d@amtsordthough this
assumption is widely seen in the literature, there are inganbere these values are

stochastic. Incorporating this factor will produce a more dynamic model.

Costs
Cost per piece, cost per time and cost per unit of scrap can bderedsas stochastic

variables for future research.

Products
For introductory purposes, two products are considered in the majorityheof
experimental scenarios. Increasing the number of products and vHrgiisgnsitivity to

disruptions could result in a deeper analysis.

10.2 Conclusion

In this thesis the concept of inserting a test batch to mitgereeived risk was explored.
A large scale simulation approach was used for the exploratiorthé\sesearch is
exploratory, a single machine with static job arrivals wasduse explore the
characteristics of causal triggers and to analyze the pericenat batch insertion under

various experimental settings.

The performance measures, the total average cost and weigtdatkss values, were

used to compare the different cases. For the given experimeetsr®, the results
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indicated that a disruption on an average could lead to 11% increasstiand 27%
increase in weighted tardiness. The highest percentage inaneasst was 22% and the
highest weighted tardiness increase was 126%. The implementatienhadtch insertion
strategy can cause improvements in cost and weighted tardiness wahen such
disruptions occur. In the cases where batch insertion was implehtbetlighest values
for percentage increase in cost and weighted tardiness were 426%ndespectively.
When disruptions did not occur as expected, the increases in cosat@ssogth batch
insertion were shown to be relatively insignificant. The averag# and weighted

tardiness increases were 2% and 9% respectively.

To explore the robustness of the strategy, three external Saskne experimentally
studied to find out if the performance of the strategy wastsensd them. These were:
schedule hardness, number of sensitive products and magnitude of riskestiie r
suggest that schedule hardness has a close to linear relationtbhipemperformance of
batch insertion. The improvement in weighted tardiness decreagsbée ashedule got
tighter. Therefore, it is reasonable to suggest that the antipydaditch insertion strategy
performs best when the schedule is loose (35% improvement in eeitgrtiness). If

the costs associated with the disruption exceed late penaltiestrategy may also be
useful in tight situations. The magnitude of risk also has a ttosaear relationship

with the performance of the strategy. The improvement due to beteltion increases
with increasing magnitudes of risk. The highest improvement wawrs in the case
where the magnitude of risk was 100%. The percentage improvemens ica@ was

36%.
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A number of constants defined the experiment scenario. Sensitiuiijeston these
constants were performed to check if there were any changfes telationships defined
by the experimental results. The results suggest that thgorships remain valid.

Further analysis is required to explore the stabilizing effects of the othéarmtsns

In summary, this thesis took a heuristic observed in an empiataig (McKay 1992)
and explored its quantitative soundness. The exploratory research tsutjggsthe
strategy has merit in manufacturing settings that are yhighkceptible to the risks
associated with causal triggers. The highest return can betespeten there are
slightly loose production schedules, high volumes of sensitive prodwetpreduced,
there are high costs associated with the risks, and the askbecpredicted with some
degree of certainty. However, the exploratory study is prelimiaad it is suggested that
future research be conducted on the strategy to further exploregldhienships that exist

in the trade-offs discussed in this thesis.

95



10.

11.

12.

REFERENCES

Aggarwal, A., J. K. Park. 1993. Improved algorithms for economic lotgizielems.
Oper. Res. 41(3) 549-571.

Anily, S. 1995. Single-machine lot sizing with uniform yields anddrigemands:
robustness of the optimal solutions. IIE Trans. 27 625-633.

Anily, S., Beja, A., Mendel, A. 2002. Optimal lot sizes with geomgtnaduction
yield and rigid demand. Operations Research 50 (3) 319-414

Arrow, K.J., S.Karlin, H.Scarf, 1958. Studies in mathematical theomyeiitory and
production. Stanford University Press, Stanford, Calif.

Banks, J.,W.J. Fabrycky. 1986. Procurement and Inventory Systems Analysi
Prentice- Hall, Englewood Cliffs, N.J.

Barad, M., Braha, D., 1996. Control limits for multistage manufatguorocess with
binomial yield single and multiple production runs. Journal of Operatideakarch
society 47, 98-112

Beja, A. 1977. Optimal reject allowance with constant marginal primatuetficiency.
Naval Res. Logist. Quart. 24 21-33.

Berry, W.L., 1972. “Lot-Sizing procedures for Requirement Plannipgtens: A
Framework for Analysis,” Production and Inventory Management Jolighé), 19-
34.

Black, G. McKay, K., Messimer, S., 2004. Predictive, stochastic dymhmic
extensions to aversion dynamics scheduling. Journal of Scheduling VValuissue:
4, July 2004 - August 2004, pp. 277-292

Bregman Robert L., 1991. Selecting Among MRP Lot-Sizing Methods for Purchased

Components When the Planning Horizon Is Limited. Production and Inventory
Management Journahlexandria 32, (2), p.32-40

Bregman, R.L., Whybark, D.c., 1982. “Materials Requirement PlannirigP(Mand
Purchase Discounts”, Journal of Operations Management 2 (2), 137-143

Bregman, Whybark, D. C., 1982. “Lot-sizing Under Uncertainty in alifiRpl
Horizon Environment,” Proceedings, Midwest Aid Conference, Milwaukee

96



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Callarman, T. E. and Whybark, D. C., 1981. “Determining Purchase Qaarftti
MRP requirements,” Journal of Purchasing and Materials ManagemeBy,, 1348-
358

Chan, L. M. A., A. Muriel, Z. J. Shen and D. Simchi-Levi.2002. On the Effents®
of Zero-Inventory Ordering Policies for One-Warehouse Multi-Ratddistribution
Systems with Piece-Wise Linear Cost Structuvesagement Sciencé8, 1446-1460

Chan, L. M. A., A. Muriel, Z. J. Shen, D. Simchi-Levi. 1999a. On the effectiveness of
zero-inventory-ordering policies for the economic lot sizing modéh wiecewise
linear cost structures. Technical report, North Western University, Evanston, IL.

Ciarello, F.W., R.Akella and T.E. Morton, 1994. A periodic review production
planning model with Uncertain Capacity and Uncertain Demand- @fstymof
Extended Myopic Policies. Management Sciences 40(1994) 320-332

Cosgrove, William J, Westerman, Robert R, Knox, John E. 1993. Optimatteisot
sizing: A convenient approach. Production and Inventory Management Journal
Alexandria:. Vol. 34, Iss. 3; p. 14 - 21

Dessouky, M. 1998. Using queueing network models to set lot-sizingigzsolior
printed circuit board assembly operations. Production and Inventory Manaigeme
Journal. Falls Church: Vol. 39, Iss. 3; p. 38-43

Federgruen, A., C. Y. Lee. 1990. The dynamic lot size model with quargtount.
Naval Res. Logist. 37 707—713.

Gerchak, Y., Wang, Y., Yano, C.A., 1994. Lot-Sizing in assembly systéth
random component yields. IIE Transactions 26, 19-24

Goode. H.P., Saltzman. 1961. Computing Optimal shrinkage Allowances fot Smal
Order Sizes. J. Indus. Engin. 12(1), 57-61

Graves, S.C.1987. Safety Stock in Manufacturing systems. J. ManufOAnd.
Mgmt. 1(1), 67-101

Grosfeld-Nir, A. 1995. Single bottleneck systems with proportional expeattds
and rigid demand. Eur. J. Oper. Res. 80 297-307.

Grosfeld-Nir, A., Y. Gerchak. 1996. Production to order with random yieldglesi
stage multiple lot sizing. IIE Trans. 28 669—-676.

Grosfeld-Nir, A., Y. Gerchak. 2002. Multi-Stage production to order with rewor
capability. Management Science. 48(5) pp 652-664.

97



26. Grosfeld-Nir, A., Y. Gerchak. 2004. Multiple lot-sizing in production to order.
review. Annals of Operations Research. Vol 126. p. 43-69.

27. Guu, S.M., Liou, F.R. 1999. An algorithm for multiple lot-sizing problems wigid
demand and interrupted geometric yield. Journal of mathematic@ysmsnand
applications 234, 567-579

28. Guu, S.M. 1999. Properties of multiple lot-sizing problems with rigid deina
general cost structures and interrupted geometric yield. QpesadResearch Letters
25, 59-65

29. Hemphill, A. D. and Whybark, D. C., 1978. “A simulation comparison of MRP
Purchase discount Procedures”, Discussion Paper No. 96, Indiana University

30. Laforge R.L., “MRP Lot-sizing with multiple purchase discountSgmputers and
Operations research, Vol 12, No. 6, (1985), p. 579-587.

31. Law, A., Kelton, D. Simulation modeling and analysis, 1991

32. Levitan, R. E. 1960. The optimum reject allowance problem. Managemen6 Sci
172-186.

33. Llewellyn, R. W. 1959. Order sizes for job lot manufacturing. J. Im@gEngrg. 10
176-180.

34. Love, S.F. 1979. Inventory Control, McGraw-Hill, NewYork.

35. McKay, K.N., 1987 Conceptual Framework. For Job Shop Scheduling. MASC
Dissertation, University of Waterloo, Dept of Management Sciences.

36. McKay, K.N., 1992 Production Planning and Scheduling. PHD Dissertation,
University of Waterloo, Dept of Management Sciences.

37. McKay, K., Morton, T., Ramnath, P., Wang, J. 2000 “Aversion Dynamics”
Scheduling When System Changes. Journal of Scheduling 3 (2), 71-88

38. Monden, Y. 1983. Toyota Production System. Industrial Engineering and
Management Press, Norcross, GA.

39. Morton, T., Pentico, D., 1993. Heuristic scheduling systems with applsatio
production systems and project managemafiiey-Interscience.

40. Munson, C. L., M. J. Rosenblatt. 1998. Theories and realities of quantudis:
An exploratory study. Production Oper. Management 27(4) 352—-369.

41. Nahmias, S. 2000. Production and Operations Analysis, 4th ed. Mc-G tala,
Burr Ridge, IL.

98



42.

43.

45,

46.

47.

49,

50.

51.

52.

53.

54.

55.

Nevison, C., M. Burstein. 1984. The dynamic lot size model with stochlasid
times. Management Sci. 30 100-109.

Noor, A., 1984. Setting Job Shop due dates with Service Level ConstMi&C
Dissertation, University of Waterloo.

. Pinedo, M., 2002. Scheduling: Theory, Algorithms and Systei’ﬂﬁcﬂtion, Integre

Technical Publishing Company. Inc

Porteus, E. L. 1986. Optimal lot sizing, process quality improvemensetng cost
reduction. Oper. Res. 34 137-144.

Rosenblatt, M. J., H. L. Lee. 1986a. A comparative study of continuous and periodi
inspection policies in deteriorating production systems. lIE Trans. 18 2-9.

Shaw, D. X., A. P. M. Wagelmans. 1998. An algorithm for single itepactated
economic lot sizing with piecewise linear production costs and ddmddang costs.
Management Sci. 44(6) 831-838.

. Silver, E. A., D. F. Pike, R. Peterson. 1998. Inventory Management and Pooducti

Planning and Scheduling, 3rd ed. Wiley, New York.

Tzur, M., 1991. A simple forward algorithm to solve general dyndwticsizing
models with n periods in O(nlogn) or O(n) time. Management Sci. 37 909-925.

Van Hoesel, C. P. M., A. P. M. Wagelmans. 2001. Fully polynomial appraxmat
schemes for single-item capacitated economic lot-sizing problglath Oper. Res.
26(2) 339-357.

Wagelmans, A., S. van Hoesel, A. Kolen. 1992. Economic lot sizing—An O(nlogn)
algorithm that runs in linear time in the Wagner-Whitin case.rOpes. 40 S145—
S156.

Wagner, H. M., T. M. Whitin. 1958. Dynamic version of the economic lot sizing
model. Management Sci. 5 89-96.

Wang, Y., Gerchak, Y., 1996. Periodic review production models with variable
capacity, random yield and uncertain demand. Management Science 42, 130-137

Wang, Y., Gerchak, Y. 2000 Input control in a batch production system with lead
times, due dates and random yields, European Journal of OperationscRdstgr
371-385

Whybark, D. C., 1977 “Evaluating Alternative Quantity Discounts,” dalurof
Purchasing and Material Management, Vol 13, No2 p. 18-22

99



56. Xu, J., L. L. Lu. 1998. The dynamic lot size model with quantity discount:
Counterexample and corrections. Naval Res. Logist. 45 419-422.

57.Yano, C. A., H. Lee. 1995. Lot sizing with random yields: a reviewerORes. 43
311-334.

58. Zhang, A.X., Guu, S.M., 1997. Properties of Multiple Lot Sizing model wgtd r
demand and general yield distribution. Computers and Mathematltapyptications
33 (5), 55-65.

59. Zhang, A.X., Guu, S.M., 1998. The multiple lot-sizing problems with rigid afem
and interrupted geometric yield. IIE Transactions 30, 427-431.

100



APPENDICES

APPENDIX A: EXPERIMENT SCENARIOS

Run Duedate | Duedate | A B Risk
MEAN STD Sensitivity | Sensitivity | Magnitude
1. 825 92 1 0 .40
2. 825 183 1 0 .40
3. 825 275 1 0 .40
4. 550 92 1 0 .40
5. 550 183 1 0 .40
6. 550 275 1 0 .40
7. 275 92 1 0 .40
8. 275 183 1 0 .40
9. 275 275 1 0 .40
10. 825 92 1 1 .40
11. 825 183 1 1 .40
12. 825 275 1 1 .40
13. 550 92 1 1 .40
14. 550 183 1 1 .40
15. 550 275 1 1 .40
16. 275 92 1 1 .40
17. 275 183 1 1 .40
18. 275 275 1 1 .40
19. 825 92 0 1 .40
20. 825 183 0 1 .40
21. 825 275 0 1 .40
22. 550 92 0 1 .40
23. 550 183 0 1 .40
24. 550 275 0 1 .40
25. 275 92 0 1 .40
26. 275 183 0 1 .40
27. 275 275 0 1 .40
28. 825 92 1 0 .60
29. 825 183 1 0 .60
30. 825 275 1 0 .60
31. 550 92 1 0 .60
32. 550 183 1 0 .60
33. 550 275 1 0 .60
34. 275 92 1 0 .60
35. 275 183 1 0 .60
36. 275 275 1 0 .60
37. 825 92 1 1 .60
38. 825 183 1 1 .60
39. 825 275 1 1 .60
40. 550 92 1 1 .60
41. 550 183 1 1 .60
42. 550 275 1 1 .60
43. 275 92 1 1 .60
44. 275 183 1 1 .60
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45. 275 275 1 1 .60
46. 825 92 0 1 .60
47. 825 183 0 1 .60
48. 825 275 0 1 .60
49. 550 92 0 1 .60
50. 550 183 0 1 .60
51. 550 275 0 1 .60
52. 275 92 0 1 .60
53. 275 183 0 1 .60
54. 275 275 0 1 .60
55. 825 92 1 0 .80
56. 825 183 1 0 .80
57. 825 275 1 0 .80
58. 550 92 1 0 .80
50. 550 183 1 0 .80
60. 550 275 1 0 .80
61. 275 92 1 0 .80
62. 275 183 1 0 .80
63. 275 275 1 0 .80
64. 825 92 1 1 .80
65. 825 183 1 1 .80
66. 825 275 1 1 .80
67. 550 92 1 1 .80
68. 550 183 1 1 .80
69. 550 275 1 1 .80
70. 275 92 1 1 .80
71. 275 183 1 1 .80
72. 275 275 1 1 .80
73. 825 92 0 1 .80
74. 825 183 0 1 .80
75. 825 275 0 1 .80
76. 550 92 0 1 .80
77. 550 183 0 1 .80
78. 550 275 0 1 .80
79. 275 92 0 1 .80
80. 275 183 0 1 .80
81. 275 275 0 1 .80
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APPENDIX B: RESULTSFOR VERIFICATION OF LOGIC

(Compared to Averse-1)

Run |Duedatemean |Duedatestd |Avg Cost |[Avg WeightedTardiness
1 150 17 615.52 2664.61
2 150 33 613.07 3291.97
3 150 50 614.29 4410.75
4 100 17 616.46 8945.71
5 100 33 615.58 9620.63
6 100 50 616.09 10828.44
7 50 17 614.79 19958.47
8 50 33 612.13 21063.80
9 50 50 618.18 22845.82

10 150 17 615.60 2678.68
11 150 33 616.91 3396.42
12 150 50 615.00 4368.85
13 100 17 615.11 8887.29
14 100 33 612.92 9530.22
15 100 50 614.13 11028.53
16 50 17 614.16 20118.27
17 50 33 615.02 21079.64
18 50 50 614.30 22180.05
19 150 17 617.53 2796.06
20 150 33 614.59 3348.59
21 150 50 611.49 4055.29
22 100 17 612.74 8616.65
23 100 33 614.27 9611.87
24 100 50 615.70 11244.64
25 50 17 617.03 20086.10
26 50 33 614.61 20811.37
27 50 50 614.91 22111.70
28 150 17 614.18 2671.92
29 150 33 618.38 3421.39
30 150 50 612.85 4177.28
31 100 17 615.99 9043.84
32 100 33 614.48 9600.21
33 100 50 613.35 10924.32
34 50 17 616.53 20189.39
35 50 33 617.07 21606.95
36 50 50 613.48 22397.75
37 150 17 613.03 2553.41
38 150 33 615.73 3299.76
39 150 50 613.69 4239.75
40 100 17 617.16 9142.57
41 100 33 615.52 9868.82
42 100 50 616.34 11426.78
43 50 17 616.25 19960.14
44 50 33 612.71 20569.63
45 50 50 613.69 22555.52
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46 150 17 615.85 2735.34
47 150 33 613.85 3154.95
48 150 50 613.61 4374.99
49 100 17 617.04 8999.15
50 100 33 614.03 9636.73
51 100 50 617.29 11071.35
52 50 17 614.18 20035.41
53 50 33 616.20 21310.27
54 50 50 614.62 22869.06
55 150 17 615.55 2690.09
56 150 33 614.26 3236.76
57 150 50 614.01 4240.76
58 100 17 614.09 8752.19
59 100 33 615.70 9927.48
60 100 50 614.41 10759.15
61 50 17 614.35 20019.57
62 50 33 613.92 21066.84
63 50 50 612.62 22301.35
64 150 17 614.53 2614.48
65 150 33 615.60 3191.03
66 150 50 613.85 4296.35
67 100 17 617.13 8883.76
68 100 33 616.77 9842.48
69 100 50 614.20 10842.92
70 50 17 616.19 19889.61
71 50 33 615.03 20747.58
72 50 50 616.06 22520.11
73 150 17 615.98 2685.36
74 150 33 614.73 3111.53
75 150 50 614.17 4383.27
76 100 17 616.29 9124.55
77 100 33 612.84 9584.52
78 100 50 616.03 11059.96
79 50 17 611.98 19603.04
80 50 33 612.07 21106.27
81 50 50 616.25 22909.07
82 150 17 613.88 2664.91
83 150 33 618.07 3490.25
84 150 50 614.88 4394.40
85 100 17 615.54 8759.66
86 100 33 614.28 9741.07
87 100 50 617.13 11278.83
88 50 17 616.91 20033.73
89 50 33 612.06 20701.57
90 50 50 615.17 22515.49
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APPENDIX C: MATLAB CODE

%Job Set Matrix is created with 500 jobsets eatha®aining 10 jobs.

%Created by------ SMITHA VARGHESE----DEPT OF MANAGHBNT SCIENCES
%Each job has the following attributes:

%Quantity Base: The number of items in each batch

%Due time: This gives the due time and is randagelyerated using schedule hardness
%Setup cost: 10 units

%Setuptime: 10 units

%Time/Piece: 1 unit

%dollarpertimeunit =1 unit

%Dollar/Scrap:1 unit per piece

%Jobweight:weight associated with each job

%Yield: 5%-10%

function varargout = splitmatrix(duedatemean, dtestd, jobsensitivityofA, jobsensitivityofB)
setuptime= 10;

timeperpiece=1;

jobsensitivity(1,1)=jobsensitivityofA,;

jobsensitivity(1,2)=jobsensitivityofB;

%Create random number series with different seeds
%randn functions generates normal random numbers.
%rand function generates uniform random numbers.
%Different seed numbers are used for each of thehastic
%variables so that random numbers are generataddifferent
%streams thus causing less bias in the outcome.

%Random numbers for base quantity.
randn(‘seed’,1);

for i=1:500

for j=1:10
basequantity(i,j)=normrnd(100,10);
end

end

%Random numbers for due time
randn(‘seed’,2);

for i=1:500

for j=1:10
duetime(i,j)=normrnd(duedatemean,duedatestd);
end

end

%Random numbers for yieldloss
rand(‘seed’,1);

for i=1:500

for j=1:10
yieldloss(i,j)=unifrnd(.05,.10);
end

end
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%Random numbers for jobweight
randn(‘seed’,3);

for i=1:500

for j=1:10
jobweight(i,j)=normrnd(40,10);
end

end

%Random numbers to determine product types
rand(‘seed’,4);

for i=1:500

for j=1:10
uniformrandom(i,j)=unifrnd(0,1);
end

end

%creating a jobsets with specified parameters
for i=1:500

forj=1:10
% Determining the product type in the current battlen there are two types of products

if (uniformrandom(i,j) <= 0.5)
product=1;

else
product=2;
end

WSPTpar(i,j)=(setuptime+(basequantity(i,j)*timepieqe))/jobweight(i,j); YoParameter for WSPT rules
jobsets(i,j)={[basequantity(i,j) duetime(i,j) yidtass(i,j) jobweight(i,j) WSPTpar(i,j) product]}; %btrix of
jobs

end

%Scheduling jobsets according to WSPT rule

WSPTparSort = sort(WSPTpar,2);

for k=1:10

m=1;

for m=1:10

% Ordering jobs in ascending order according to W8kobsets{i,m}(1,5)==WSPTparSort(i,k)

jobsetsWSPT{i,k}=jobsets{i,m}; %Matrix of schdulgdbs
end
end
end
end

% Creating matrix with splits done in half
for i= 1:500
k=1,

%initialing product flag
jobflag=char(‘F','F’);
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for j=1:10
producttype= jobsetsWSPT{i,j}(1,6);
if (jobsensitivity(1,producttype)==1) & (jobflag(pducttype)=="F’)

jobsplit{i,k}=jobsetsWSPT{i,j};
jobsplit{i,k}(1,1)=jobsetsWSPT{i,j}(1,1)*0.10;
jobsplit1{i,k}=jobsetsWSPT{i,j};
jobsplit1{i,k}(1,1)=jobsetsWSPT{i,j}(1,1)*0.10;
jobsplit{i,k+1}=jobsetsWSPT{i,j};
jobsplit{i,k+1}(1,1)=jobsetsWSPT{i,j}(1,1);
jobsplitl{i,k+1}=jobsetsWSPT{i,j};
jobsplitd{i,k+1}(1,1)=jobsetsWSPT{i,j}(1,1)*0.90;
k=k+2;

jobflag(producttype)="T";

else
jobsplit{i,k}=jobsetsWSPT{i,j};
jobsplit1{i,k}=jobsetsWSPT{i,j};
k=k+1;

end

end

NumberofJobs(i)=k-1;

end
varargout(1)={jobsetsWSPT};
varargout(2)={jobsplit};
varargout(3)={jobsplit1};
varargout(4)={NumberofJobs};
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%Simulation Model that runs the 4 experimental saseer different
scenarios.

%Created by------ SMITHA VARGHESE----DEPT OF MANAGHBNT
SCIENCES

% Reading in the scenario files
BASECASE=dImread('BASECASESCENARIOS.txt," *,0,0);
for q=1.:243
duedatemean=BASECASE(q,2);
duedatestd=BASECASE(q,3);
N=BASECASE(q,4);
probofprod1=BASECASE(q,5);
probofprod2=BASECASE(q,6);
jobsensitivity(1,1)=BASECASE(q,7);
jobsensitivity(1,2)=BASECASE(q,8);
MagOfRisk=BASECASE(q,9);

% Calling the jobmatrix

[Job1,Job2,Job3,numberofjobs]=splitmatrix(duedatamauedatestd, probofprod1,probofprod2,jobsensitivi
ty(1,1),jobsensitivity(1,2));

% Experiment paramters

setupcost = 10;

setuptime = 10;

timeperpiece= 1;

dollarpertime= 1;

costperpiece=1;

dollarperscrap= 1,

%Simulate jobsets and keep track of time.

for i=1:500

t1=0; % Initializing time for the jobset

TotJobsetCost1=0; %Initiating cost for the jobset
TotWeightedTardiness1=0; %lnitiating total tardimesst for jobset

t2=0; % Initializing time for the jobset
TotJobsetCost2=0; %Initiating cost for the jobset
TotWeightedTardiness2=0; %lnitiating total tardimesst for jobset

t3=0; % Initializing time for the jobset
TotJobsetCost3=0; %Initiating cost for the jobset
TotWeightedTardiness3=0; %lnitiating total tardimesst for jobset

t4=0; % Initializing time for the jobset
TotJobsetCost4=0; %Initiating cost for the jobset
TotWeightedTardiness4=0; %lnitiating total tardimesst for jobset

% NO SPLIT SCENARIO

%initialing product flag
jobflag=char(‘F','F’);

for j=1:10
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ProcessingTimel=setuptime+Job1{i,j}(1,1)*timepexqae%CompletionTime of Job
tl=tl1+ProcessingTimel; %Advancing the timer t4=tdbeessingTimel;

SlackTimel=max(0,Job1{i,j}(1,2)-t1); %Calculate &kaTime
totsetupcostl=setupcost+setuptime*dollarpertimeptallsetup cost for batch

totprocessingcost1=Job1{i,j}(1,1)*timeperpiece*dnfpertime+Job1{i,j}(1,1)*costperpiece; %total
processing cost for batch
totwaste1=Job1{i,j}(1,1)*Job1{i,j}(1,3)*dollarpersap; %money lost due to yield loss

CostofJob4=totsetupcostl+totprocessingcostl+toadadbTotal cost associated with the batch
WeightedTardiness4=max(0,t4-Job1{i,j}(1,2))*Job]}{il,4); %weighted tardiness

CostofJobl=totsetupcostl+totprocessingcostl+toddadbTotal cost associated with the batch
WeightedTardiness1=max(0,t1-Job1{i,j}(1,2))*Jobj}il,4); %weighted tardiness

% No Disruption
TotJobsetCost4=TotJobsetCost4+Costofob4;
TotWeightedTardiness4=TotWeightedTardiness4+WeijFaediness4;

%Disruption occurence

producttype= Job1{i,j}(1,6);

if jobsensitivity(1,producttype)==1 & jobflag(proditype)=="F’
CostofJob1=CostofJob1+(Job1{i,j}(1,1)-(Jobl{i,j}*Job1{i,j}(1,3)))*MagOfRisk*dollarperscrap...
+setupcost+setuptime*dollarpertime+Job1{i,j}(1,1)8gOfRisk*timeperpiece*dollarpertime...
+Job1{i,j}(1,1)*MagOfRisk*costperpiece;
t1=tl+setuptime+(Jobi{i,j}(1,1)-(Job1{i,j}(1,1)*JdHi,j}(1,3)))*MagOfRisk*timeperpiece;
WeightedTardiness1=WeightedTardiness1+max(0,t1{d§#1,2))*Job1{i,j}(1,4);
jobflag(producttype)="T";

Job1{i,j}1,7)=1;

else

Job1{i,j}(1,7)=0;

end

Job1{i,j}(1,8)=CostofJob1l;

TotJobsetCost1=TotJobsetCost1+CostofJob1l;
TotWeightedTardiness1=TotWeightedTardiness1+WedjFdediness1;
end

% SPLIT SCENARIO

%initialing product flag

jobflag=char(‘F’,'F’);

for j=1:numberofjobs(i)

ProcessingTime2=setuptime+Job2{i,j}(1,1)*timepexqae%CompletionTime of Job
t2=t2+ProcessingTime2; %Advancing the timer

SlackTime2=max(0,Job2{i,j}(1,2)-t2); %Calculate SkaTime
totsetupcost2=setupcost+setuptime*dollarpertimeptallsetup cost for batch
totprocessingcost2=Job2{i,j}(1,1)*timeperpiece*anfpertime+Job2{i,j}(1,1)*costperpiece; %total
processing cost for batch
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totwaste2=Job2{i,j}(1,1)*Job2{i,j}(1,3)*dollarpergap; %money lost due to yield loss

CostofJob2=totsetupcost2+totprocessingcost2+tod®agbTotal cost associated with the batch
WeightedTardiness2=max(0,t2-Job2{i,j}(1,2))*Jobil,4); %weighted tardiness

ProcessingTime3=setuptime+Job3{i,j}(1,1)*timepeqae%CompletionTime of Job
t3=t3+ProcessingTime3; %Advancing the timer

SlackTime3=max(0,Job3{i,j}(1,2)-t3); %Calculate SkaTime
totsetupcost3=setupcost+setuptime*dollarpertimeptallsetup cost for batch
totprocessingcost3=Job3{i,j}(1,1)*timeperpiece*dofpertime+Job3{i,j}(1,1)*costperpiece; %total
processing cost for batch

totwaste3=Job3{i,j}(1,1)*Job3{i,j}(1,3)*dollarpergap; %money lost due to yield loss

CostofJob3=totsetupcost3+totprocessingcost3+toaBagbTotal cost associated with the batch
WeightedTardiness3=max(0,t3-Job3{i,j}(1,2))*JobPfil,4); %weighted tardiness

%Disruption occurence

producttype= Job2{i,j}(1,6);

if jobsensitivity(1,producttype)==1 & jobflag(prodttype)=="F
CostofJob2=CostofJob2+(Job2{i,j}(1,1)-(Job2{i,j}*Job2{i,j}(1,3)))*MagOfRisk*dollarperscrap;
jobflag(producttype)="T";

end

TotJobsetCost2=TotJobsetCost2+CostofJob2;
TotWeightedTardiness2=TotWeightedTardiness2+WeijFdediness2;
TotJobsetCost3=TotJobsetCost3+CostofJob3;
TotWeightedTardiness3=TotWeightedTardiness3+WedjFdediness3;
end

Jobsetinfol(i)={[TotJobsetCostl TotWeightedTardsids
Jobsetinfo2(i)={[TotJobsetCost2 TotWeightedTards&}s
Jobsetinfo3(i)={[TotJobsetCost3 TotWeightedTarda&}s
Jobsetinfo4(i)={[TotJobsetCost4 TotWeightedTardg}
end

%OutPut

for i=1:500

CostVectorl(i)=JobsetInfol{i}(1,1);
WeightedTardinessVectorl(i)=Jobsetinfol{i}(1,2);

CostVector2(i)=JobsetInfo2{i}(1,1);
WeightedTardinessVector2(i)=JobsetInfo2{i}(1,2);

CostVector3(i)=JobsetInfo3{i}(1,1);
WeightedTardinessVector3(i)=JobsetInfo3{i}(1,2);

CostVector4(i)=JobsetInfo4{i}(1,1);
WeightedTardinessVector4(i)=JobsetInfo4{i}(1,2);
end

% no disruption, no split
MeanCost4=mean(CostVector4);
MeanWT4=mean(WeightedTardinessVector4);

%disruption, no split
MeanCostl=mean(CostVectorl);
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MeanWTl=mean(WeightedTardinessVectorl);

%(disruption, split
MeanCost2=mean(CostVector2);
MeanWT2=mean(WeightedTardinessVector2);

%no disruption, split
MeanCost3=mean(CostVector3);
MeanWT3=mean(WeightedTardinessVector3);

runsummaryl1(q,1)=q;
runsummaryl1(q,2)=MeanCost4;
runsummaryl1(q,3)=MeanWT4;

runsummary2(q,1)=q;
runsummary2(q,2)=MeanCost1;
runsummary2(q,3)=MeanWT1;

runsummary3(q,1)=q;
runsummary3(q,2)=MeanCost2;
runsummary3(q,3)=MeanWT?2;

runsummary4(q,1)=q;
runsummary4(q,2)=MeanCost3;
runsummary4(q,3)=MeanWT3;

end

dimwrite(‘'NODISRUPTIONNOSPLIT’,runsummaryl,\t’);
dimwrite(‘'DISRUPTIONNOSPLIT’,runsummary2,\t");
dimwrite(‘'DISRUPTIONSPLIT’,runsummary3,’\t’);
dimwrite(‘'NODISRUPTIONSPLIT’,runsummary4,\t");

meancostl=mean(runsummary1(q,2))
meanWTl=mean(runsummaryl1(q,3))
meancost2=mean(runsummary2(q,2))
meanWT2=mean(runsummary2(q,3))
meancost3=mean(runsummary3(q,2))
meanWT3=mean(runsummary3(q,3))
meancost4=mean(runsummary4(q,2))
meanWT4=mean(runsummary4(q,3))
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