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Abstract 
 
 The literature reviewed on lot-sizing models with random yields is limited to certain 

random occurrences such as day to day administrative errors, minor machine repairs and 

random supply due to faulty delivery of parts. In reality however, the manufacturing 

industry faces other risks that are non random in nature. One example would be yield 

discrepancies caused by non random triggers such as a change in the production process, 

product or material. Yield uncertainties of these types are temporary in nature and usually 

pertain until the system stabilizes. One way of reducing the implications of such events is 

to have additional batches processed earlier in the production that can absorb the risk 

associated with the event. In this thesis, this particular approach is referred to as the 

anticipatory batch insertion to mitigate perceived risk. 

 

This thesis presents an exploratory study to analyze the performance of batch insertion 

under various scenarios. The scenarios are determined by sensitivity of products, 

schedule characteristics and magnitude of risks associated with causal triggers such as a 

process change. The results indicate that the highest return from batch insertion can be 

expected when there are slightly loose production schedules, high volumes of sensitive 

products are produced, there are high costs associated with the risks, and the risks can be 

predicted with some degree of certainty.  

 

Keywords: Disruption, Batch Insertion, Schedule Hardness, Weighted Tardiness. 
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CHAPTER 1 

INTRODUCTION 

 
A substantial body of research has focused on lot-sizing decisions with random yields 

(Yano and Lee, 1995). This research has addressed various causes of random yield, 

including imperfect production processes, unexpected machine breakdowns, uncertain 

repair durations, and rework of defective units. These are all stochastic situations and 

typical strategies in the research call for increasing quantities to deal with scrap, or 

establishing suitable safety-stock levels. In the literature, non-random or predictable 

causes of yield variance are not addressed and there appear to be no specific production 

control strategies for decreasing the yield variance. In this thesis, we will address non-

random sources of yield variance associated with deterministic triggers such as changes 

in product composition, processes, personnel, and material. Specifically, we will 

introduce and explore a strategy for addressing and reducing the yield variance associated 

with such situations. 

 

Introduction of a new product, process, personnel, or material can be a significant source 

for yield variance (e.g., McKay, 1992; Grosfeld-Nir and Gerchak, 2004). For example, 

the substitute material from a new supplier might not react in exactly the same way as the 

old material or the documentation might be out of date for a job that is run irregularly, or 

there are new operators on the machine. All of these changes can result in batches of 

work being scrapped. In a perfect world, this would not be true but in a real factory, any 

change in the status quo or normal situation can result in manufacturing problems. The 

risk associated with such problems will pertain until the system stabilizes and is re-
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qualified. In this thesis, the risk associated refers to the scrapping of end items or final 

products. 

 

There can be a number of strategies used to address random and non-random yield 

variance. One class of strategies for random yield variance is largely reactive; this class 

involves the creation of safety stock or the creation of additional work orders once the 

yield loss hits a certain level. Another class of strategies associated with random yield 

variance is somewhat anticipatory as batch sizes are artificially increased by the predicted 

yield loss. These three strategies have been largely developed for the situations where the 

loss is a relatively small percentage of the batch size (e.g., 5-15%). In the case of a 

significant non-random loss, a system with no feed-forward control can simply react to 

the loss through the creation of a replacement batch. However, it is possible to 

contemplate feed-forward strategies to minimize certain non-random losses.  

 

One such strategy has been observed in empirical work performed by McKay (1992). In 

this strategy small extra batches are created by the scheduler and run earlier in the 

production  schedule - to absorb the risk implications associated with a change in 

production environment (process, product or material), thus causing fewer items to be 

scrapped. We call this particular approach, anticipatory batch insertion to mitigate risk. 

If the risk does not materialize, the strategy is equivalent to a batch-splitting; if the risk 

materializes and high scrap rates occur, the extra batch represents additional material and 

resource allocations. The performance and tradeoffs of this approach are analytically 

studied using a simulation model with respect to cost and tardiness factors. We also 
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analyze the sensitivity of the performance of this approach to the risk and production 

characteristics like due dates, sensitivity of the products to disruptions caused by causal 

triggers such as a process change, and the magnitudes of the loss associated with the 

disruptions. Further, we test the robustness of the model by varying the various 

experimental settings. 

 

The problem characteristics and the different ways of coping with such unusual events by 

the industry are detailed in Chapter 2. A general literature review of lot-sizing models is 

provided in Chapter 3. Chapter 4 describes the problem characteristics and develops a 

model to explore the problem. Chapter 5 details the experimental design. Chapter 6 

tabulates the results from the experimentation according to the different experimental 

scenarios and chapter 7 discusses and analyzes the results obtained from the 

experimentation. Chapter 8 discusses the robustness of the experimentation. Chapters 9 

and 10 focus on implications, limitations, future research, and conclusions. 
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CHAPTER 2 

MOTIVATION 

 
 
As shown in the literature review, the majority of random yield models studied in the 

literature appear to deal with imperfect production processes or variable capacities. The 

modeling methods increase either the quantity or the number of batches to reduce the 

implications of such events (Anily et al., 2002; Grosfeld-Nir and Gerchak, 2004). 

 

Empirical research suggests that production processes can incur losses of high magnitude, 

which are commonly caused by unusual but predictable production activities (McKay, 

1992; Grosfel-Nir and Gerchak, 2004). As noted in McKay (1992), these kinds of events 

are typically not addressed by the traditional planning processes. When they occur, there 

are significant costs and losses that are unanticipated, and the loss in productivity further 

destabilizes the manufacturing situations. For example, electronic manufacturers can be 

highly susceptible to such risks, as many of the parts are easily damaged and are 

expensive. In this type of situation, the unnecessary scrapping of large quantities should 

be avoided, if possible. For instance, at one point, an Intel P4-3.2CGHz CPU cost 

upwards of $900 (retail) and it would be expensive to scrap a board containing such a 

chip. Even if the work can be reclaimed, there is always a chance for additional damage 

to the parts and the cost of reclaiming. To illustrate some of the unusual incidents faced 

by a manufacturing plant, we give several examples from a field study conducted by 

McKay (1992). The field study was conducted at a state-of-the-art printed circuit board 

manufacturer who was using surface mounted technology. In one example, a process 
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change introduced by industrial engineering worked fine for most parts but affected a job 

that was irregularly run causing the final products to be scrapped. In another example, the 

supplier of a certain material was different from the last time the product was run; 

although the material was supposedly the same, it had different processing characteristics 

that resulted in high scrap rates on the first batch. In yet another example, machines had 

been upgraded since the last batch had been run of a specific part – machine settings 

changed, additional features added -  changes that were not thoroughly understood by the 

operators and engineers with respect to the infrequently run part. The batch was scrapped. 

These types of problems are associated with close tolerance work with high demands of 

accuracy and in situations where the processing at one step cannot be checked until later 

in the processing flow - after the batch has completed one or more operations. 

 

A scheduler can implement different approaches to deal with the different types of 

situations mentioned above. Some approaches are implemented after the defective units 

are identified (Reactive) while others can be implemented in anticipation of the risk 

involved (Proactive). 

 

Consider the following schedule of five jobs. These five jobs can be considered to be a 

job-set. One job-set satisfies the demand for a certain time period. 

 

 

 

 

A B A C B 
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Part A is produced in the first job, followed by jobs producing parts B, C, A, and B. 

Multiple orders for a part can appear in a single time period for a number of reasons (e.g., 

racking, oven sizes, etc.) and are used here to illustrate cyclic or repetitive manufacturing.  

 

Suppose that the operators are not skilled on part A, or have forgotten some of the setup 

instructions, leading to 90% of the output of Job A being scrapped. Let such 

circumstances that lead to such losses of job outcome be called causal triggers.  

 

There are five strategies observed in the literature- approaches used in industry to deal 

with significant job losses with these types of causal triggers (McKay, 1992; Grosfeld-

Nir, 2004; Anily et al., 2002): 

 

1) Processing another batch 

When the disruption is recognized, another job is inserted into the schedule with product 

type A. In this case, we assume that Job B begins processing before the complete 

inspection of Job A. This scenario can also result in the case where Job B has to be 

processed before making up for Job A, due to priority issues. The new schedule will look 

like the following. 

 

 

 

An additional setup cost will be incurred in this case, along with the processing cost of 

re-producing the 90% that was scrapped. Depending on how tight the schedule is, a 

A A C A B B 
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portion of the job-set can also end up being late due to the extra setup and production 

activities. That is, the job becomes tardy. 

 

2) Immediate processing of another batch 

Another batch with Job A is processed immediately after the disruption has occurred. 

This scenario is different from the above case since the disruption is recognized before 

the next job is initialized. The new schedule will look like the following. 

 

 

 

 

Depending on the job characteristics or machine characteristics, extra setup costs may or 

may not be incurred. For example, if the job has to pass through quality control or the 

machine has to be reset, then extra setup cost will be incurred. However, if the loss is 

immediately recognized and there is no need for a machine reset, then another job of 

same type can be processed without incurring 100% of the setup cost. The costs for 

processing the lost items are incurred in any case.  Similar to the above case, there is a 

chance that the job-set ends up being tardy. 

 

A A C B A B 
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3) Increasing size of the next batch 

In this case, the size of the next job with the same product type is increased. The amount 

of increase is equal to the amount lost due to the disruption. For example, if 100 units are 

processed in every job and 90 units of product A are lost due to the disruption, then the 

number of units processed in the next job processing product type A would be 190. The 

schedule remains the same. The only change is the size of the next job with the same 

product type and the temporary shortfall is accommodated by safety stock. Additional 

setup costs are not incurred. However, additional tardiness can be introduced due to the 

extra production time. 

 

 

 

 

This strategy is also used in cases where a safety stock exists. The lost amount is pulled 

from the safety stock and the outcome of the large batch is used to replenish the safety 

stock. It is also assumed, that the machine has enough capacity to process the large batch. 

There might be costs associated with the higher safety stock and there are many practical 

considerations in manufacturing that prevent the simple doubling of batch sizes. 

 

4) Safety stock 

When meeting the due date is a major concern the basic cycle or job-set must be 

completed, safety stock can be temporarily used to make up for the loss incurred. Safety 

stock can then be replenished after all the jobs in the job-set are processed (e.g., on a third 

A B 

A 
C B 
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shift or in a slack period). Again, suppose that we lost 90 units because of the disruption. 

This amount will be pulled out from the safety stock. Once the job-set is processed and 

the demand is satisfied, an additional setup is made for product A to replenish the safety 

stock. The new schedule will be of the form shown below. 

 

 

 

 

It is assumed that safety stock contains enough items to make up for the loss. There will 

be the expected costs for holding sufficient safety stock. As noted, it is also assumed that 

the job is setup during slack time and tardiness is not increased for the remainder of the 

job-set. 

 

5) Do nothing 

There is always the possibility of doing nothing. If there are more than enough items to 

satisfy the demand already, nothing is done to recover the 90% lost. This situation is 

probably very rare, because manufacturers typically do not produce more than what is 

required due to storage cost, processing cost, raw material cost and other costs involved 

with production and storage. Nevertheless, this alternative could be applicable to cases 

where replacement products exist or cases where there is an over supply of products in 

the market place. For example, where one product is cross-licensed to multiple 

manufacturers, it is possible acquire a product from the competition and re-label it. 

 

A B A C B A 
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These five approaches are either exclusively or largely reactive in nature. Approaches 

one through three, and number five are completely reactive in nature since compensation 

for the scrapped products are made once the disruption has been recognized. Building a 

safety stock in approach four is somewhat proactive since the safety stock is built in 

anticipation of the disruption. In other words, the safety stock is built before starting the 

production process. However, the safety stock is used in a reactive way. 

 

Anticipatory batch insertion to mitigate risk is a proactive approach possibly most 

suitable for cases where scrapping of an item is expensive (because this approach is 

designed to reduce the total number of items scrapped). Intuitively, if the due dates are 

loose, it can be beneficial to make extra setups with small batch sizes earlier in the 

production, which can absorb the disruption. For example, if a small batch size of ten 

items is processed in the beginning instead of one hundred, then a 90% loss will result in 

loosing nine items instead of ninety in the first case. Therefore, the small batch in the 

beginning reduces the risk implications associated with reducing the amount of items 

being scrapped and thus preserving expensive raw material used for processing. The 

rationale is that any problems with processes, settings, instructions, and stabilizations are 

fixed with the small batch, and will not recur with the second or later batches.  

 

It is not simple enough to say that small batches should always precede larger batches - a 

heuristic to be applied in every case. Creating extra batches can be costly due to 

additional setup and production costs, and the possible introduction of added tardiness. 

Hence, tradeoffs exist in any decision about additional batch insertions with respect to 
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schedule characteristics (schedule hardness) and the production and operating costs. A 

number of different factors other than setup costs and due dates define this relationship. 

Some of these factors include magnitude of risk and sensitivity of the product type to the 

disruption. Magnitude of risk defines the percentage of products lost due to the disruption. 

It might be more beneficial to incorporate the batch insertion strategy in situation where 

high magnitude of risk is predicted. It would also be interesting to explore the 

relationship between the sensitivity of product types and the performance of the strategy. 

The cost of raw materials is also an obvious contributor to the performance of this batch 

insertion strategy.  If the costs of raw materials are negligent then scrapping of items is 

not a real problem; certainly not one warranting complex heuristics.  On the whole, if the 

added-value cost of re-producing an item (including cost of time spent in the plant) is 

relatively high compared to setup costs, then the effort to minimize scrap is justified. 

 

The very nature of the causal triggers in question make them unavoidable in real life. A 

production control strategy on batches, batch sizes, and batch timing is a quantitative 

approach to the problem. However, several qualitative measures can also be taken in 

order to reduce the risk associated with these types of events may have, or reduce the 

frequency at which they occur. Some of the possible ideas are: 

1. Maintain good communication between the upper management and low-level 

assembly line workers. Communication can avoid errors and delays during a 

process. 

2. Another alternative is to train and retrain the factory personnel at regular intervals 

so that fewer errors are made during the setup and production. 
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3. Study and track the process changes or other technical changes well enough to 

avoid unexpected events - consider all products that use a specific machine or 

process and discuss any side effects or dependencies. 

4. Make sure that the machines and personnel can handle new products, materials, or 

processes before starting the actual production. 

 

 In a perfect world, these four suggestions would probably be sufficient to reduce or 

eliminate most, if not all, of the causal triggers. However, it is assumed that most 

factories are not perfect or that the scheduler has little or no control over the industrial 

engineering process, personnel training, and other such activities. The scheduler will have 

to deal with the situations, as they exist to a large degree. It is towards this end that the 

quantitative research on anticipatory batch insertions - number of batches, and the batch 

sizes - is undertaken. The next chapter presents a literature review on the relevant lot-

sizing research. 



 13

CHAPTER 3 

LITERATURE REVIEW 

 
Lot-sizing policies are an integral part of the supply chain management decision-making 

process. Supply Chain Management can be defined as an attempt to coordinate processes 

involved in producing, shipping, and distributing products. An inefficient supply chain 

system can cause significant losses in money and customer relationships. A lot-size can 

be defined as the quantity produced or ordered in a given period, and it is very important 

to choose an appropriate lot–size as it affects almost all the costs associated with 

production and storage. 

 

The modern era of research on optimal or close to optimal lot-sizes started in the mid 

1950s (Wagner and Whitin, 1958). This topic is still very active (e.g., Grosfeld-Nir and 

Gerchak, 2004) because of its potential contribution to costs. Unfortunately, finding an 

optimal solution to a lot-sizing problem is generally NP hard due to issues such as the 

cost structure, quantity discounts, and demand distributions. The objectives for lot-sizing 

models are also different across different types of industries. Some industries may focus 

on minimizing cost in finished goods, while others focus on reducing flow-times and 

work-in-process. 

 

Research on lot-sizing problems with respect to production and procurement can be 

broadly classified into two categories. The first category is a group of problems with 

known production rates. This case carries the assumption that the output of a production 

process is fixed, accurately predictable, or is known with certainty.  This assumption 
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holds true when the production process is completely efficient and there is zero 

probability of any external risk. The assumption can also be valid in cases where the risk 

involved is minimal and can be recovered from easily. 

 

The second category is more realistic and it deals with cases where the production 

process is not repeatable or predictable (i.e. output has a random element). This category 

is applicable to certain type of industries where having perfect material or perfect 

production processes is almost impossible. Some examples include electronic fabrication 

and chemical processes. Three main challenges with modeling random yield problems are 

modeling costs affected by random yields, modeling of yield uncertainty, and measures 

of performance (Yano and Lee, 1995). 

 

In both of the categories mentioned above, lot-sizing decisions can be further subdivided 

based on different problem objectives such as minimizing cost, satisfying due dates and 

improving quality. Sections 3.1 and 3.2 discuss lot-sizing models with deterministic and 

stochastic production processes respectively. Section 3.3 shows the methodologies used 

in general to solve for lot-sizing or scheduling problems and the last section provides a 

summary. 

3.1 Lot-Sizing When Yield Is Deterministic 
 
Reviewing the literature on lot-sizing shows that a considerable amount of work has been 

done on scenarios where production rates are known. In fact, many sophisticated 

procedures are available to solve these kinds of problems to optimality (Yano and Lee, 

1995). The objectives and problem characteristics differ between the procedures. Most of 
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the earlier work focused on minimizing cost. Costs have included aspects such as setup 

cost, production cost, holding cost and tardiness costs; although not all forms of costs are 

incorporated in all models. Some lot-sizing decisions are also based on satisfying due 

dates. The literature suggests that material requirement planning (MRP) systems typically 

focus on satisfying due dates. Brief descriptions of the work done on the problems 

categorized by the two main objectives are detailed below. 

 

Minimizing Cost Objective 

Some of the earlier problem formulations on lot-sizing decisions concentrated on 

minimizing cost. Wagner-Whitin algorithms, Silver Meal Heuristics, and Least Cost 

Heuristics (Nahmias, 2000) were some of the earliest algorithms developed to output lot-

sizing policies that minimized cost. These algorithms become computationally infeasible, 

as the number of periods for decision-making grow larger (Nahmias, 2000). One of the 

simplest lot-sizing policies still considered is the Economic Order Quantity. Note that all 

these methods assume that demand is known when the decision is made. A brief 

description of the above algorithms can be found in Nahmias (2000) and Silver et al. 

(1998). 

 

The optimal or close to optimal solution to lot-sizing problems, with a minimizing cost 

objective, is mostly dependent on the structure of cost function itself. Several researchers 

have considered this factor in order to improve the earlier algorithms. In the paper 

Aggarwal and Park (1993), the authors developed a “Monge Array” resulting from a 

concave cost structure and the application of dynamic programming. The structure of the 
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Monge Array is used to develop significantly faster algorithms to solve economic lot-

sizing problems. Federgruen and Lee (1990) studied discounted cost structures, and so 

did Xu and Lu (1998). Chan et al. (1999) developed a model that minimizes holding and 

ordering cost, if the total cost as well as the cost per unit is a decreasing function. M.Tzur 

(1991) and Wagelman et al. (1992) developed models that use cost structures to solve 

economic order quantity more efficiently. Linear programming, mixed integer 

programming, and dynamic programming are some of the mathematical approaches 

implemented to solve lot-sizing problems with deterministic production rates (M.Tzur, 

1991; Wang and Gerchak, 1996; Zhang and Guu, 1998). Heuristics and algorithms are 

usually “smart” versions of earlier algorithms like the Wagner-Whitin algorithm. For 

example, researchers typically incorporate cost structures and demand patterns to 

improvise classic algorithms like Wagner-Whitin algorithm. 

  
Due Dates 
 
The literature on lot-sizing suggests that the lot-sizing decisions in complex systems such 

in MRP (Materials Requirement Planning) are still mainly based on satisfying due dates.  

MRP derives demand for component sub assemblies and a production schedule of parent 

items or end items. The lot-sizing in MRP may be constrained by min-max rules and 

sizes that are multiples (e.g., round to the nearest 10,000). When not so constrained, lot-

sizing decisions are mostly driven by the demand distribution and lead-time distribution. 

Since MRP is dynamic and constrained by many factors, simulation studies have been 

typically conducted to determine the best lot-sizing policy (Berry, 1972). 
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Researchers have studied demand patterns and have used the information to improve the 

performance of lot-sizing rules in MRP systems. Berry (1972) has shown that the cost 

performance of lot-sizing rules improves, as demand gets lumpier.  

 

Graves (1987), Arrow et al. (1958), Love (1979), and Banks et al. (1986) give reviews of 

literature on lot-sizing problems with uncertain demands. Characteristics such as capacity 

constraints, number of machines, and number of products differ across different problems 

included in the research. Research has also considered both continuous and discrete type 

of models with respect to demand distributions. 

 

3.2 Lot-sizing When Yield Is Random 
 

Research on random yield is not a new topic area. Researchers and industrial engineers 

involved in quantitative modeling and analysis were aware of yield randomness as early 

as the 1950s. However, research on this type of problem was relatively sparse until the 

mid 1980s (Grofeld-Nir and Gerchak, 2004).  The popularity of this area of research has 

grown remarkably in the last two decades because the manufacturers and scientists have 

focused on the consequences of yield randomness in manufacturing and logistics 

(Grosfeld-Nir and Gerchak, 2004; Yano and Lee, 1995). 

 

Yano and Lee (1995) provide an extensive literature review on lot-sizing up to 1995. This 

has been used as a starting point for discussing recent developments. The next section 

contains a brief summary of the analysis and discussion in Yano and Lee. In addition, 
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relevant papers published from 1995 until 2004 are discussed and analyzed. The 

objective of this section is to provide an overview of the work typically done in this area. 

 

Lot-Sizing with Random Yields: A Review Summary (Yano and Lee, 1995) 

Yano and Lee conducted an extensive review of quantitatively oriented approaches to 

determining lot-sizes when yield is random. According to their paper, the results of such 

models focus on the levels of variance in production that occur day to day and the results 

can be used to: 

1. Help an operation run more effectively so that effort can be focused on improving 

performance, including yields. 

2. Process improvement and supplier selection decisions can be assessed more 

accurately and effectively if the system wide effects of these decisions on yield 

are modeled accurately and, where appropriate, optimized. 

3. Assist in capacity planning decisions when yield randomness is expected to be a 

long-range concern. 

The models discussed in the review paper include single stage continuous systems, single 

stage periodic systems as well as complex manufacturing systems. Some of the modeling 

issues noted by Yano and Lee include; modeling of costs affected by random yield, 

modeling of yield uncertainty and performance measures. In particular, modeling of yield 

uncertainty has received the most attention in the literature. Yet, this area of yield 

characterization is constrained by a number of simplifying assumptions made by the 

researchers. For example, assumptions such as binomially distributed yield, stochastically 

proportional yield and geometrically proportional yield are commonly made, but the 
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assumptions are not linked back to any empirical evidence or support. The models and 

assumptions can provide valuable insights into model behavior and bounds, but provide 

few insights for the actual practice of lot-sizing. Sometimes it is important to have a 

deeper understanding of the manufacturing process in order to characterize the yield 

process. This is because most of the risks associated with a specific production process 

may be directly linked to the way the products are processed and the resulting distribution 

may not be close to a theoretical baseline distribution (e.g., binomial or proportional). 

Some other drawbacks noted by Yano and Lee in their discussion on lot-sizing models 

with random yield included: 

1. Lack of explicit consideration of the inspection process 

2. Alternative recourse actions that can be taken with regard to defective items. Most 

papers assume that scrapping is the only recourse action possible. 

3. Assumption of linear cost structure. 

4. Assumption of stationary demands 

5. Single product 

Even with these limiting assumptions, the problem is quantitatively challenging and it is 

difficult for any model or concept to consistently derive good results under a variety of 

conditions. It is also important to note that majority of the recourse actions considered by 

the different papers in the review are reactive in nature, that is, the approaches considered 

are implemented after the defective units have been identified. 
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Recent Research On Lot-Sizing With Random Yield 

The majority of the recent papers reviewed for the purpose of this research have 

concentrated on yield distributions similar to the papers reviewed by Yano and Lee. For 

example, Anily (1995) has developed a single-machine lot-sizing model with uniform 

yield and deterministic demand, whereas Zhang and Guu (1998), Guu and Liou (1999), 

Guu (1999) and Anily et al. (2002) have developed models, where the production 

distribution is assumed to be geometric in nature. Zhang and Guu (1997), as well as 

Wang and Gerchak (2000), consider multiple lot-sizing models with general yield 

distribution.  

 

Ciarello et al. (1994) and Wang and Gerchak (2000) consider models that are constrained 

by variable production capacity. In this case, random yield is assumed to be the result of 

imperfect production processes and variable capacity, which is assumed to be a 

consequence of unexpected breakdowns, unplanned maintenance, uncertain repair 

duration, or rework of defective units. Grosfelf-Nir and Gerchak (2002) studied a similar 

environment with rework capability.  

 

Grosfeld-Nir and Gerchak (1996) addressed several fundamental questions in single 

stage, multiple lot-sizing production environments. They note that multiple lot-sizing 

problems have received much attention in the recent years due to the following reasons: 

1. Prevalence of production-to-order of relatively small volumes of custom made 

items. 

2. Resurgence of interest in understanding the consequences of random yield in 
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manufacturing and logistics. 

3. Proposal and analysis of several practically relevant yield concepts. 

 

In their paper, Grosfeld-Nir and Gerchak (2004) also provide a review of models, 

analytical results, and insights pertaining to multiple lot-sizing in production-to-order 

environments. The papers discussed in their review assume that random yield is due to 

imperfect production process, material imperfections, and other external factors like 

temperature and humidity. 

 

Discussion Of Literature On Lot-sizing With Random Yield 

Section 3.2 has focused on random yield research. Two of the common characteristics of 

the papers reviewed are: 

1. The tradeoffs that are analyzed are those that exist between overage costs and 

underage costs. Overage cost is incurred due to over production, and underage 

cost is incurred when the order in not satisfied. 

2. Associated with the above point is that the objective functions of the papers focus 

on the minimization of expected costs. 

As shown, traditional research has concentrated on the cost structure, and the 

distributions of yield or demand. The source for uncertainty in yield receives little 

attention. In particular, the literature does not show yield variability caused by triggers 

such as process changes, or material changes, which have been shown to occur in reality. 

Furthermore, traditional research carries the assumption that the distribution of yield is 

known, whereas the occurrence of causal triggers like the ones mentioned above are 
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assumed to be completely random in nature, have insignificant disruptions, and do not 

follow any known distribution or predictive pattern. However, changes to materials and 

processes are not always random unless there is an error in the operation of the machine, 

or mishandling of materials, or miscommunication between personnel. The management 

and personnel of the manufacturing unit normally know that a vendor was changed, new 

workers are hired, and that new processes are introduced. The literature reviewed does 

not consider concepts such as creating extra batches of small sizes in the beginning, so 

that the risk associated with the predictable triggers defined above is absorbed by small 

batches, thereby reducing the number of items scrapped. 

 

3.3 Modeling and Analysis Methodology 
 
 

Morton and Pentico (1993) summarize some of the classical and modern approaches to 

the lot-sizing and scheduling problems. They classify the traditional approaches into two 

categories; computer simulation and mathematical:  

1. Computer Simulation Approaches: Simulation is used to model the system under 

consideration. If the manufacturing system is too complex to analyze using 

algorithmic or analytical approaches (e.g., real MRP systems), simulation studies 

are sometimes implemented (Berry, 1972).  Large-scale simulation is also 

sometimes preferred to optimal approaches when the area of study is relatively 

new and the objective of the experimentation is to get insights into the problem 

characteristics rather than finding an optimal solution (McKay et al., 2000; Black 

et al., 2004). 
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2. Mathematical Approaches: Linear programming, integer programming, dynamic 

programming, and mathematical heuristics/algorithms can be categorized as 

mathematical approaches. In recent research, dynamic programming has been 

widely used to analyze lot-sizing problems (Grosfel-Nir and Gerchak, 1996, 2002, 

2004; Zhang and Guu, 1997, 1998). Wagner-Whitin algorithms, Silver Meal 

Heuristics, and Least Cost Heuristics are three other examples of mathematical 

algorithms. 

 

Morton and Pentico (1993) also discussed some of the modern approaches that utilize 

artificial intelligence concepts such as expert systems and neural networks. Tabu search 

and simulated annealing are shown in their text as well. The recent papers on lot-sizing 

models and the papers reviewed in Yano and Lee (1995), favour mathematical 

approaches. 

 

In summary, the dominant methodologies used in traditional lot-sizing policies include 

heuristics developed for specific kinds of problems, linear programming, integer 

programming, dynamic programming, and simulation models. Less common methods 

have also included queuing network theory (Dessauky, 1998) and the assignment method 

(Cosgrove et al., 1993). Considering the wide variety of modeling methods and 

approaches, it appears that the methodology chosen may be largely dependent on the 

system characteristics as well as the structure of the variables involved. 
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The reviewed literature suggests that when the objective of a study is to explore different 

characteristics of the model, sensitivity of the model parameters, or robustness of the 

model, simulation studies are often used. Simulation is preferred since it easily allows the 

exploration and alteration of the parameters involved - learning and understanding the 

dynamic relationships between the parameters and constructs. In addition, simulation 

facilitates the analysis of how the performance measure is affected (Law and Kelton, 

1991). Large-scale computational simulations have also been used in production control 

research when precise solutions cannot be obtained and general production guidelines are 

desired (Morton and Pentico, 1993). As stated in the introduction chapter, the purpose of 

the research being conducted on anticipatory insertion of batches to mitigate risk is 

exploratory and preliminary. It is also in a field in which closed form or precise analytical 

results are not possible due to the complex nature of production characteristics. 

Specifically, one of the goals of the research is to explore the batch insertion strategy 

under varying experimental situations. Given these three observations, a similar approach 

used by Morton and Pentico (1993) is considered appropriate - large-scale computational 

experiments rather than analytical analysis. 

 

The design and use of this large-scale simulation model is comparable to the methods 

used in the two papers on “Aversion Dynamics” found in the Journal of Scheduling. The 

Aversion Dynamic papers used methods found in similar heuristic research (Morton and 

Pentico, 1993).  A brief summary of the methods used in the Aversion papers is presented 

below. 
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In McKay et al. (2000), a heuristic called “Averse-1” is developed to model a situation in 

scheduling with a primary event (planned or unexpected change, possible disruptions) 

leading to a secondary impact (machine not fixed properly, next few jobs being adversely 

affected). The purpose of this paper was to identify the problem and its attributes, then to 

provide an illustrative example to show how a solution to this problem could be 

approached in general. 

 

The study explores the sensitivity of Averse-1 heuristic to schedule hardness, α recovery 

rates and τj, the impact factor. Schedule hardness defines the characteristics of due time. 

“α” determines the duration of the secondary impact and the impact factor, τj determines 

the magnitude of impact. The simulation study was designed to validate Averse-1 and to 

probe its robustness on a single static machine. Weighted tardiness was used to compare 

the performance of Averse-1 to other heuristics. The aversion point was set at time zero, 

the average processing time was 20 hours with a standard deviation of 5, and the average 

weight of the job was assumed to be 40 with a standard deviation of 10. Nine basic 

combinations of recovery and impact were tested with nine schedule hardness criteria, 

giving 81 basic runs. Each run was comprised of 500 job sets, and 10 jobs each in each 

set. Each of the 500 job sets was randomly generated according to processing time, due 

time, weight, and impact parameters. Separate random number streams were used for 

each parameter and were initiated from known seeds. The job-sets were scheduled 

according to five different heuristics and the results were compared. 
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Results were categorized according to the occurrence and non-occurrence of a disruption. 

This was done to see how Averse-1 performed when the impact does not occur. It was 

important to study both cases as the authors wanted to know if the benefits associated 

with Averse-1 became insignificant in cases where the impact does not occur as expected. 

When the impact does occur, Averse-1 outperformed other heuristics for the different 

recovery criteria, impact criteria and schedule hardness criteria. However, when the 

impact does not occur, Averse-1 performed worse than two other heuristics by a very 

small percentage.  

 
Black et al. (2002) develops a heuristic called Averse-2, which is a proactive and 

dynamic extension of Averse-1. Three dispatch heuristics including Averse-2 were 

studied. Similar to the first Averse-1 paper, two major scenarios were analyzed – impact 

occurs as expected and disruption does not occur as expected. As in comparable heuristic 

research, job arrival tightness and schedule hardness was also considered. 

 

The above factors resulted in 72 scenarios, which were translated to the 72 basic runs. 

Similar to Averse-1, 500 replications were made for each run. Randomization was 

achieved by using unique random number streams across replications and for each 

random number within a replication. The performance measure for each run was the 

weighted tardiness value, also similar to that of Averse-1. 

 

The approach used in the anticipatory batch insertion research is similar to the methods 

summarized above. This is with respect to the experimental factors and the different 

manufacturing environments considered. The same overall experimentation strategy has 
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been utilized, as were the concepts relating to job tightness, schedule hardness, and 

impact versus no impact. The next chapter describes the simulation and experimentation 

in greater depth. 

 

3.4 Summary 
 
 
 
The literature on lot-sizing models and random yield can be classified into two main 

categories with respect to the production process and how the production process affects 

yield: deterministic and stochastic production processes. The topic of anticipatory batch 

insertion to mitigate risk falls naturally into the stochastic category in that the variance in 

cost and tardiness associated with the causal triggers would appear to be stochastic if it 

was not specifically modeled or accounted for. If the high variance in production 

outcome was not anticipated and included in a plan, the variance in performance measure 

would appear as a spike and be reacted against.  

 

The concept of causal triggers, the resulting high variance in production outcome, and 

strategies for controlling the output variance appears to be totally absent in the literature. 

As a result, a conservative research agenda is warranted; one that is suitable for 

exploratory and preliminary work. The first steps of such a conservative agenda are 

descriptive and should be designed to identify the major components of the phenomena 

under study and to describe any interrelationships between the components. For example, 

the relationship between the schedule characteristics and the magnitude of the risk 

associated with disruptions associated with causal triggers. This is the approach taken in 

the following chapters. The basic components of the concept are developed and a large-
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scale Monte Carlo simulation is performed to study the behavior and results when the 

concept is applied. 
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CHAPTER 4 

CONCEPTUAL DEVELOPMENT 

Causal triggers lead to disruptions that create significant yield losses, and which are 

associated with the changes in the status quo can be identified in the factory. One 

possible strategy is to create a secondary work order or job in advance of the main job 

that is expected to be affected. This is the anticipatory batch insertion to mitigate risk 

concept. As noted in the previous chapters, such manipulations have many tradeoff 

considerations in a factory setting. There are also many other factors in a real factory that 

can complicate the decision-making. In this chapter, a rich situation is first described, 

followed by a set of simplifying assumptions. Following this introduction, the basic 

scheduling problem, elements of the scheduling problem, conceptual model, and research 

questions are presented. 

 

4.1 Problem Scope, Simplifying Assumptions 
 

The real situation in a factory would have many machines, many steps in an operation, 

many products, and many other complicating factors to model. In order to conduct a 

preliminary study of the situation, a single-machine problem structure will be used. In a 

real factory, the scheduler has also to first identify the causal trigger and understand what 

work might be affected. In other words the scheduler has to identify the possibility of the 

jobs being scrapped. The empirical work conducted by McKay (1992) showed that this 

was possible. However, the scheduler or planner might not be perfect, make a false 

prediction, and cause an unnecessary batch to be created. Although the process of 
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predicting will not be dealt with in this thesis, the possible sensitivity of the mitigation 

strategy to false predictions will be examined. 

Once the prediction is made, the scheduler has three main decisions to make: □  First, how many batches to make? For example, is one extra batch sufficient to re-

stabilize the process, or if two or more small batches will need to be made before 

all is well. It will be assumed for this research that, one batch will be sufficient to 

absorb the risk and allow stabilization (retrieves to normal processing). This batch 

is also referred to as the test batch.  The topic of multiple batches is identified as 

an area for future research.  □  Second, when should the test batch be scheduled? The scheduler may want the 

test batch to be made one or two weeks or several days in advance of the larger 

batch. This decision is likely to depend on the perceived risk, anticipated time to 

re-stabilize, and if additional batches might be necessary. To explore the basic 

concept of batch insertion, this timing is not considered to be a major factor and 

the second batch will be constructed within the same time period and just prior to 

the full batch. The timing issue can be explored in future research along with the 

concept of multiple batches.  □  Third, how many parts should be in the test batch? In a real situation, there might 

be a minimum or maximum number of parts in the test batch that would be 

necessary. This will not affect the extra setup costs, but will affect the costs 

associated with materials. A 10% factor of the mean will be used in the research. 

If a smaller batch size is used, say one piece, this may give undue bias to the 

strategy. However, it is also unlikely that a test batch would need to be greater 
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than 10% of the batch size to test out the system and re-stabilize it. The sensitivity 

of the strategy to the number of parts in the test batch is also identified as a 

possible topic for future research. 

Thus, the basic problem scope will be simplified to that of a single-machine model, with 

a single test batch of 10% of the mean quantity to be constructed immediately prior to the 

main batch to be made. That is, once the scheduler has identified the possibility of a 

disruption due to triggers such as in introduction of change, he/she processes a test batch 

prior to the full production in the hope that it absorbs the risk associated with the possible 

disruptions. The performance of this strategy will be measured using cost and tardiness 

factors. The cost includes all cost associated with production and scrapping (see example 

in pg 33), but does not involve cost associated with the lateness of a job. Weighted 

tardiness on the other hand captures the lateness factor of the job-set. In addition to the 

sensitivity analysis of false predictions, the sensitivity of the strategy to three other key 

factors will be explored: i) due dates (e.g., schedule hardness), ii) sensitivity of the job to 

the disruptions associated with the change, and iii) the magnitude of the loss associated 

with the disruptions caused by causal triggers. Schedule hardness refers to the 

relationship between slack time in the schedule and the distribution of due dates in the 

job-set. For example, it is relatively easy to create a schedule with no tardiness if there 

are few jobs and there is slack in the schedule sufficient to cover all of the due dates 

(loose schedules). Schedule hardness is one of the concepts used to measure the quality 

of generated schedules when using weighted-tardiness measures (Morton and Pentico, 

1993). 
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The next section describes the typical structure of the single-machine scheduling 

formulation when focusing on weighted tardiness. 

 
4.2 Brief Overview Of The Single-Machine Scheduling Structure 
 
The process of scheduling is dynamic in nature and is usually constrained by a number of 

factors. In order to illustrate the dynamics of scheduling and the assumptions made to 

simplify the model, consider a repetitive manufacturing line processing three products A, 

B, and C in one time period:  

 

 

This set of six jobs of equal sizes satisfies a demand and can be called a job-set. In this 

simple example, all of the three products have equal demand. If A has priority over B and 

B has priority over C, then the schedule will look like the following diagram where two 

jobs with product type A is processed first and jobs with product type C is processed at 

the end. 

 

 

This type of grouping assumes that storage space, racks, safety stock, and such matters 

are not of a concern. If this grouping was encountered in a real factory, there is a 

probability that only three setups are required, one for each product type, provided there 

are no inspection or quality control issues. However, if some dispatch rule like the 

weighted shortest processing time (WSPT) is used, then the schedule could be of any 

form depending on the weight of each job. An illustration of some possible forms is 

presented below. 

A A B B C C 

A B C A B C 
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Example 1: 

   

Example 2: 

 

Example3: 

 

Example4: 

 

 

The schedule in example 1 incurs five setups, whereas the schedules in examples 2, 3 and 

4 incur four, six and three setups respectively, assuming no quality control constraints. 

Example 3 represents the extreme case where successive jobs process different types of 

products and no opportunity exists to reduce the number of setups.  

 

If the research focuses on the basic behavior of the dispatch heuristic (a heuristic that 

decides the sequence in which jobs are processed, based on some optimization strategy), 

taking advantage of setup reductions is usually ignored; examples 2 and 3 would have the 

same number of setups - six. Simple dispatching heuristics such as WSPT do not take 

sequence dependent setups into account (e.g., Morton and Pentico, 1993; Pinedo, 2002), 

as specific job or part knowledge is not included or addressed. The usual formulations 

include due date, processing time for the batch, and possible weights or penalties for 

tardiness. Although the batch insertion research includes setup tradeoffs and part specific 

ABCCAB

ACCABB

CABCAB

CCAABB
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information, the sequencing logic in this thesis will take the form of simple machine 

dispatching heuristics. 

 

There are also assumptions about job arrivals. In the deterministic case, all jobs in the 

job-set are assumed to be in the work queue and any job can be worked on at any time. In 

the dynamic case, the jobs appear throughout the scheduling horizon at random times. 

The dynamic job arrival complicates the research analysis and it is reasonable to assume 

that deterministic job arrivals are suitable for the type of preliminary exploration being 

conducted in this research.  

 

The single-machine problem formulation also assumes no state knowledge of other 

machines, inventory contents, or information about what happened on prior operations 

processed. 

 

4.3 Elements Of The Scheduling Formulation 
 
A job-set consists of a group of jobs processed to satisfy a demand or an order. A set of 

parameters define the job and the product types. Some of the elements of the formulation 

are deterministic or stochastic. The detailed components of the production control 

problem being formulated are:  
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Deterministic Parameters: 
 
The following parameters are set to nominal values to create a base case for tradeoff 

analysis across various problem configurations. Sensitivity analysis is not conducted on 

these aspects of the problem formulation. 

1. Setup cost: Setup cost is the cost of setting up a job (e.g. the cost of the operator 

or machine that sets up the job). Sequence dependent setups are not considered for 

the normal jobs in order to reduce setups in order to simplify the modeling and 

analysis. However, the setup costs after a job is inserted are altered. If a test batch 

is inserted and a problem does occur, the setup cost associated with the full batch 

is modified. It is assumed that additional effort and resources will be assigned to a 

job when it is run a second time after a major failure on the first attempt. This 

would include additional testing, supervisor attention, and so forth. It might not 

affect the time for setup, but the cost of the setup would be increased. 

2. Setup time: Setup time is the time required to setup a job.  

3. Time per piece: This is the time for processing one unit of product. 

4. Cost per piece: This is the cost of processing one unit of product. This typically 

involves cost of operator, lubricants and other operating costs involved in 

processing a unit.  

5. Dollar per time: Cost of spending a unit of time on the processing equipment - 

either for setup or for processing. An example of this parameter is the expenses 

which are incurred due to wear and tear or rental expenses of the machine or plant.  
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6. Dollar per scrap: This is the cost of scrapping one piece of product. This involves 

cost of raw materials used for processing and the cost of value added during 

processing.  

 

Stochastic Parameters: 
 
The stochastic parameters are those related to the sensitivity analysis conducted. 

1. Due time: This parameter represents the time at which each job is due. The due 

time of each job is determined according to the defined schedule hardness criteria. 

2. Base Quantity: Base quantity is the number of items per job. 

3. Yield Loss: Yield loss is the % of units scrapped due to day to day administrative 

errors. 

4. Job Weight: Job weight is the reduced value of the job when the job is tardy by 

one unit of time. This can be different for different jobs.  

 

An example of how these parameters are used in the creation of job-sets follows: 

Example Problem: 

First, consider a manufacturing plant producing two types of products, A and B. In the 

starting description, there are no causal triggers and no abnormal scrapping levels. The 

example has a set of 10 jobs (job-set) in order to satisfy a known demand.  

Table 4.1 Nominal Job-Set: No Causal Triggers 

JOB 1 2 3 4 5 6 7 8 9 10 
Product A A A B B A A A B B 
# Pieces 100 100 100 100 100 100 100 100 100 100 
#scrap 10 10 10 10 10 10 10 10 10 10 
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Each job has 100 pieces to process and processes only one type of product (i.e. job 1 

processes only product type A and job 4 processes only product type B). On average, 10 

pieces of product are scrapped due to imperfect production processes that occur randomly. 

Table 4.1 illustrates one possible schedule of jobs and the characteristics of each job. A 

list of the problem parameters and the equations for cost calculations are given below. 

 

The cost of the job-set would be sum of the various total costs per job. Where 

 □  Total Job Cost = setup costs (material and personnel) + cost to run the machine 

during the setup +  material cost to make the batch quantity + cost to run the 

machine for the batch + any scrap costs 

 

Let: 

 Setup Cost   � SC $/job 

 Setup Time   � ST $/job 

 Cost Per Piece   � CP $/piece 

 Time Per Piece  � TP time unit/piece 

 Dollar Per Time  � CT $/time 

 Dollar Per Scrap  � CS $/scrapped unit 

 

Total setup cost includes the setup cost and cost of the time associated with setup: □  Total Setup Cost = SC + (ST*CT) per job 
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The total production cost associated with each job is the cost of processing 100 units as 

well as the cost of the time associated with the production of 100 units. □  Total Production Cost = (100*CP) + (100*TP*CT) per job 

 

Total scrapping cost is amount of money lost due to the scrapping of 10 defective units in 

each job. □  Total Scrap Cost = 10*CS per job 

 

Total cost of a job is the sum of all the above costs. □  Total Cost = SC + (ST*CT) + (100*CP) + (100*TP*CT) + (10*CS) per job 

 

If all of the setup requirements, cost factors, and times per piece were set to a nominal 

value of 1 for illustrative purposes, the total cost per job would be: □  Total Cost = 1 + (1*1) + (100*1) + (100*1*1) + (10*1) 

 = $212 

 

This is the total cost with nominal yield loss or nominal scrapping. Now, consider the 

costs if there is a causal trigger leading to a disruption and if there is one job that is 

sensitive to the disruption. 

 

Let product type A be sensitive to the issues implied by a causal trigger - e.g., a material 

change. Assume that the disruption affects only the first job processing product type A 

and the magnitude of the scrapping is 100%. In other words, Job 1 loses 100 units instead 
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of the nominal loss of ten units.  The factory will react and the lost job will be replaced. 

Using the simplifying assumption related to sequence dependent setups, another setup is 

required to make up for the lost job. As a result, the costs associated with production 

change by: □  Total Setup Cost = Setup Cost(1) (From the first batch) + Setup Cost(2) (From the 
second batch) □  Total Production Cost =2*(Total Material and Processing Cost) □  Total Scrap Cost = 100*CS (From the first batch) + 10*CS (From the second 
batch) 

 

If the second setup cost is assumed to be $2 while other costs and timing requirements are 

held constant, the total cost to complete the job is now: 

 □  Total Cost = SC(1) + SC(2) + (2*ST*CT) + (2*100*CP) + (2*100*TP*CT) + 

(100*CS) + (10*CS) 

 = 1 + 2 + (2*1*1) + (2*100*1) + (2*100*1*1) + (100*1) + (10*1) 

 = $515 

 

Note that the setup cost and production cost have at least doubled. Scrapping costs have 

also increased by 90*CS, which is ten times the nominal scrapping cost. In a real setting, 

the financial risks associated with such a disruption will be related to the setup, 

production, and scrapping costs. Consider now the application of the anticipatory batch 

insertion to mitigate risk strategy. Assume that the scheduler predicts that A will have an 

extreme problem the first time it is run. 
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The strategy suggests that an additional batch is setup before the first order for A. For 

illustration purposes, an additional batch with 10 pieces is setup before the first order for 

A. The new schedule will look like the following: 

Table 4.2 Anticipatory batch insertion concept- Prediction of Variances in cost 

JOB 1 2 3 4 6 7 8 9 10 11 12 
Product A A A A B B A A A B B 
# Pieces 10 100 100 100 100 100 100 100 100 100 100 
#scrap 10 10 10 10 10 10 10 10 10 10 10 
 

 

Variances in cost compared to the first case: □  Total Setup Cost = SC(1) + SC(2) □  Total Production Cost = (10*CP) + (100*CP) + (10*TP*CT) + (100*TP*CT) □  Total Scrap Cost = (10*CS) + (10*CS) 

 

The total cost would then be: □  Total Cost = SC(1) + SC(2) + (2*ST*CT) + (10*CP) + (100*CP) +  (10*TP*CT) 

+ (100*TP*CT) + (10*CS) + (10*CS) 

 = 1 + 2 + (2*1*1) + (10*1) + (100*1) + (10*1*1) + (100*1*1) + (10*1) + (10*1) 

 = $245 

 

If no disruption associated with the causal trigger occurs, the cost is $212. The cost of the 

disruption (without any proactive strategy) is $515 - a difference of $303. If a proactive 

strategy is taken, the cost with an extra batch is $245 or only an increase of $33 over the 
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base case. When the disruption occurs, the gain is obvious. When the disruption does not 

occur, 9 of the 10 in the first batch will go into additional stock (assuming no forward 

modification of the next order) and the second setup will be normal. This reduces the cost 

of the strategy to $235 - a difference of $23.  

 

In this example, we did not go into tardiness and the other factors. The purpose was to 

simply illustrate the basic concept. The tradeoffs of false calls, schedule hardness, and so 

forth form the exploratory nature of the research. The following section describes the 

strategy in a more formal fashion. 

 

4.4 Conceptual Framework 
 
The conceptual framework for the anticipatory batch insertion strategy consists of four 

main entities, which are the initial job-set, production process, and perceived disruption, 

and the modified job-set. A job-set consists of a set of jobs. A single-machine, which is 

part of the production process, processes each job. Figure 4.1 below is a pictorial 

illustration of the conceptual model. 
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Figure 4.1 Conceptual Model 

 

The number of pieces, job weight, due time, setup time, setup cost, time per piece, and 

cost per piece determine the characteristics of each job. Cost per time period and the 

nominal yield loss due to imperfect production processes or random capacity define the 

production process characteristics. Magnitude of risk defines the percentage of products 

lost. To explore the conceptual framework, a number of propositions have been 

formulated in the next section.  

 

JOB-SET 
Batch Strategy 

PRODUCTION PROCESS 

Perceived 
Disruption 

MODIFIED  
JOB-SET 
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4.5 Research Questions and Propositions 
 

The objective of the research is to explore various characteristics of the batch insertion 

strategy and evaluate the performance of the strategy under different scenarios 

determined by:  

 □  Schedule hardness,  □  Sensitivity of products to the disruption and  □  Magnitude of risk/loss associated with the disruption. 

Each scenario is compared using the cost and weighted tardiness measures. 

 

The exploration is driven by the following five research questions. Each question is 

described along with its rationale. Propositions are derived based on each of the questions.  

 

Q1. How worthwhile is it to insert a test batch if there is a disruption due to causal 

triggers? 

Q2. What are the implications when a batch is inserted and the disruption does not 

occur? 

Q3. How does schedule hardness affect the performance of the strategy?  

Q4. How does product sensitivity affect the performance of the strategy? 

Q5. How does the performance of the strategy vary with different magnitudes of risk 

 associated with the disruption? 

 

Each question is expanded upon in the following paragraphs. 
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Q1. How worthwhile is it to insert a test batch if there is a disruption due to causal 

triggers? 

 

The anticipatory batch insertion strategy suggests that extra test batches are cost 

effective when disruptions are perceived and one or more jobs are at risk. However, 

setting up additional batches is costly with respect to setup costs and production costs. 

In addition, if the due date is tight, additional setups could cause lead-time delays. 

Therefore, a tradeoff exists between the benefits and costs associated with batch 

insertion. The risk associated with the disruption might not be significant for a 

manufacturing unit that produces cheap and easily recoverable items. In such 

situations, batch insertion for test and re-stabilization purposes might not be very 

profitable. In order to answer this research question we will explore the following 

proposition in the experimentation. Although this proposition is somewhat intuitive, it 

is explicitly included to establish a base case for the sensitivity analyses. 

 

Proposition 1: The process of anticipatory batch insertion to mitigate risks will 

produce significant benefits for a production process that is subjected to the risks 

associated with the disruption. 

 

Q2. What are the implications when a batch is inserted and the disruption does not 

occur? 
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Batch insertion for test purposes is a proactive approach and the perceived risk 

associated with a causal trigger cannot be predicted accurately. Sometimes a 

production process will run smoothly even after the introduction of a change. This 

can occur when quality control issues like personnel training and machine tuning is 

implemented properly.  In the cases where the disruption does not occur as expected, 

the cost associated with batch insertion becomes a concern - it is an unnecessary 

expense and can be considered a wasteful activity. Therefore, it is important to 

analyze the cost factor associated with batch insertion in such an environment. The 

batch insertion can be viewed as a conservative or risk averse practice and the costs 

of this type of practice can be explored: 

 

Proposition 2: The cost associated with batch insertion is relatively insignificant for 

cases where the disruption does not occur as expected. 

 

Q3. How does schedule hardness affect the performance of the strategy?  

 

Schedule hardness defines the due date characteristics. When a schedule is tight, there 

is little slack time until the order’s due date. In this case, setting up additional batches 

could increase the job-set’s total tardiness. On the other hand, if the schedule is loose 

there is sufficient time to complete the job-set’s production. In this latter case, having 

additional batches in the beginning might not be a concern in terms of tardiness issues. 

The behavior of the strategy under different levels of schedule hardness can be 

explored: 
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Proposition 3: Batch insertion will be more beneficial for a production situation 

with a loose schedule provided the setup cost and/or production cost is not 

substantially high. 

 

Q4. How does product sensitivity affect the performance of the strategy? 

 

Sensitivity of a product refers to its sensitivity to the disruption associated with causal 

triggers such as a change in materials or machine. If a product or machine is sensitive 

to the casual trigger, there could be a disruption on the jobs processing that type of 

product. For instance, consider a manufacturing plant processing two types of products. 

If both product types were sensitive to the disruption, then the risk associated with the 

disruption would be higher when compared to the case where only one product type is 

sensitive. Consequently, the benefits associated with batch insertion would be higher 

in the first case, where both product types are sensitive to the disruption. Analyses of 

these factors could be useful in determining the type of industries that should consider 

having anticipatory batch insertion in order to mitigate the risk associated with the 

perceived disruption. The linearity of the strategy (linear relationship between 

performance of the strategy and the number of sensitive products) will be explored via:  

 

Proposition 4: The benefits associated with batch insertion will linearly increase 

with an increasing number of sensitive products. 

 



 47

Q5. How does the performance of the strategy vary with different magnitudes of risk 

 associated with the disruption? 

 

The magnitude of risk is interpreted as the percentage of units scrapped due to the 

disruption. The highest risk associated would be the case where the entire output of a 

production process is lost (100% yield loss). This can happen in a manufacturing plant 

that produces highly sensitive products that can only be checked when the complete batch 

is processed. If the magnitude of risk is high, then it will be more beneficial to have batch 

insertions, because batches of small sizes absorb the risk associated with the disruption, 

which leads to scrapping fewer items. The following proposition tests the linearity of the 

strategy with regard to the magnitude of risk.  

 

Proposition 5: The benefits associated with batch inserting will linearly increase for 

production processes that are susceptible to higher magnitudes of risk. 

 

4.6 Summary 
 
This chapter developed the conceptual framework and the issues for exploration. The 

following chapter describes the experimental design used for the exploration.  
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CHAPTER 5 

EXPERIMENTAL DESIGN 

 
This chapter describes the experiments used to explore the conceptual model. The 

simulation model and experimental framework are described in the following chapters. 

MATLAB software was used to implement and run the large-scale simulation model. The 

first section gives a brief overview of the experiment structure and a description of the 

approach used to conduct the experiments. The second section describes the specific 

experimental parameters. The third section discusses the approach used to validate the 

simulation model. 

 

5.1 EXPERIMENTAL STRUCTURE 
 
 
There are four structural components to this experiment. These are: Job Matrix, 

Experimental Scenarios, Simulation Model, and the Performance Measures. A brief 

description of each of the components is given below. 

Job Matrix 
 
The job matrix represents a set of jobs. Each job is created randomly according to the 

base quantity, due time, yield loss and job weight distributions. Once the job-set is 

created, the jobs in the job-set are scheduled according to the weighted shortest 

processing time (WSPT) rule. 
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Experimental Scenarios 

The different experimental scenarios are determined by the experimental factors, which 

are schedule hardness, sensitivity of products and the magnitude of risk. A text file lists 

the different scenarios and the model reads in the data from the file for each run. 

APPENDIX A provides the list of scenarios. The simulation model calculates cost and 

weighted tardiness for the different scenarios considered. 

 

Simulation Model 

The simulation program implemented in MATLAB simulates different scenarios for the 

four experimental cases. They are NO DISRUPTION-NO INSERTION, DISRUPTION-

NO INSERTION, DISRUPTION-INSERTION, and NO DISRUPTION-INSERTION. 

The program calls the job matrix, reads the experimental scenarios, processes the jobs 

under the different experimental cases, and calculates the cost and weighted tardiness for 

each scenario.  

 

Performance Measures 

The Cost and Weighted tardiness are the performance measures used to compare the 

performance of batch insertion under different scenarios. Weighted tardiness is the 

reduction in value of a job when the job becomes tardy by one unit. It is calculated 

according to the following equation: max (0, completion time of job-due time)*job 

weight.  

Figure 5.1 illustrates the structural relationships: 
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Figure 5.1 Structural Components 

 

 

 

 

 

 

 

 

 

 

5.2 Experimentation Design 
 
This section describes the design specifications for each structural component of the 

experimentation framework, namely job matrix, experimental scenarios, simulation 

model, and the performance measures.  

 

Job Matrix 
 
The job matrix contains 500 job-sets with 10 jobs in each set. The due time, base 

quantity, yield loss and job weight determine the job characteristics. Each of the 10 jobs 

is assigned product type A or product type B with equal frequencies. The job matrix also 

contains any new batches created by the anticipatory batch insertion heuristic. In the case 

where a possible disruption is identified, an additional job is setup immediately before the 
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first occurrence of a particular product type. The additional job is set to contain 10% of 

the pieces of the original job. All other job characteristics remain the same as that of the 

original job. The original job is the job with the first occurrence of the product type 

considered. Similarly, an additional job is setup for the second case with no anticipated 

disruption. However, the number of pieces in the original job is set to be 90% of the base 

quantity in order to avoid cases with over production since a disruption is not anticipated 

in this case. The settings used for the different experimental parameters are listed. 

 

1. Due time = Normally distributed according to the schedule hardness criteria 

2. Base Quantity = Normally distributed with a mean of 100 and a standard 

deviation of 10 

3. Yield loss = Uniformly distributed between 5% to 10% 

4. Job weight = Normally distributed with a mean of 40 and a standard deviation of 

10 to create a coefficient of variation of 0.25 

 

These settings are similar to the settings in the “Aversion Dynamics” papers. Separate 

random number streams for different experimental parameters are used to ensure 

independent observations. 

 

Experimental Scenarios 

 
The three experimental factors considered are schedule hardness, sensitivity of products 

and magnitude of risk. NO DISRUPTION-NO INSERTION, DISRUPTION -NO 

INSERTION, DISRUPTION-INSERTION, and NO DISRUPTION-INSERTION 
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represent the different manufacturing environments analyzed. The performance of 

anticipatory batch insertion heuristic is analyzed under the different scenarios produced 

by all combinations of the experimental factors. Cost and Weighted Tardiness measure 

the performance. The different experimental cases and factors are analyzed in order to 

answer the research questions and test the propositions documented in Chapter 4. Table 

5.1 below provides a summary of the research questions and the corresponding 

propositions. Following the table is a detailed description of the various experimental 

cases and factors respectively. 

Table 5.1 Summary of Research Questions and Propositions 
RESEARCH QUESTIONS PROPOSITIONS 
Q1: How worthwhile it is to insert a test 
batch if there is a disruption due to 
causal triggers. 

Proposition 1: The process of anticipatory 
batch insertion to mitigate risk will 
produce significant benefits for a 
production process that is subjected to the 
risks associated with the disruption. 

 

Q2: What are the implications when a 
batch is inserted and the disruption does 
not occur? 

Proposition 2: The cost associated with 
batch insertion is relatively insignificant 
for cases where the disruption does not 
occur as expected. 

 

Q3: How does schedule hardness affect 
the performance of the strategy? 

Proposition 3: Batch insertion will be 
more beneficial for a production situation 
with a loose schedule provided the setup 
cost and/or production cost is not 
substantially high. 

 

Q4: How does product sensitivity affect 
the performance of the strategy? 

Proposition 4: The benefits associated with 
batch insertion will linearly increase with 
an increasing number of sensitive 
products. 

 

Q5: How does the performance of the 
strategy vary with different magnitudes 
of risk associated with the disruption? 

Proposition 5: The benefits associated with 
batch insertion will linearly increase for 
production processes that are susceptible 
to higher magnitudes of risk. 
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Experimental Cases 
 
A description of the four experimental cases and their significance in terms of answering 

the research questions are given. 

 
1. NO DISRUPTION-NO INSERTION CASE: This case represents the risk-free 

manufacturing environment where there is zero probability for any disruption. 

This case is referred to as the production process being in its normal state. 

Comparing this case to the others assists with understanding the significance of 

the causal triggers and analyzing the performance of anticipatory batch insertions. 

     

2. DISRUPTION-NO INSERTION CASE: The system in this case does not perform 

a batch insertion, but the disruption still occurs. This case shows the significance 

of the disruption caused by causal triggers in a “normal” production environment 

- one which has not implemented any proactive measures to reduce the risks 

associated with the causal triggers. It is important to see the effects of such 

disruptions and decide on whether such situation requires considerable attention. 

The effects of the disruption are tested under various scenarios to see if there is a 

need to implement any risk mitigation techniques for every scenario. This will 

help answer Q1 of the research questions. The implications of Proposition 1 can 

also be tested using the results from the sensitivity analysis. 

 

3. DISRUPTION -INSERTION CASE: This is the case where a disruption occurs, 

but batch insertion heuristic is employed to mitigate the risk associated with the 

disruption. The results obtained from this case are analyzed to see if the 
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implementation of batch insertion produces benefits when a disruption occurs. It 

is necessary to know under which scenario batch insertion provides the most 

benefits. Analyses of the results obtained from the various scenarios will provide 

evidence to support or refute Q1 and Proposition 1. 

 

4. NO DISRUPTION-INSERTION: This case models a system where batch 

insertion is executed, but the disruption does not occur as predicted. This 

environment indicates how much additional cost is incurred with batch insertion 

when a disruption does not occur. Analyses of the results obtained from this case 

can be used to verify the significance of costs associated with batch insertions. 

The data is also used to investigate Q2 and Proposition 2. 

 
Experimental Factors 
 
The four experimental cases are tested under different scenarios as defined by the three 

experimental factors, which are schedule hardness, sensitivity of products and the 

magnitude of risk. A description of the three experimental factors and the different 

criteria considered for each is derived below. 

 

SCHEDULE HARDNESS: The tardiness factor (TF) and the range of due date factor 

(RDD) is used to set due dates with different hardness criteria (McKay et al., 2001). 

TF= 1-davg/Σjpj. When TF is close to one, due dates are tight and if it is close to 0, due 

dates are loose. 

RDD= (dmax-dmin)/ Σjpj. Due date ranges are wide if RDD is high, and are narrow if RDD 

values are low. 



 55

Therefore, the TF and RDD determine the mean and standard deviation values of the due 

dates respectively. Three different combinations of TF and RDD values with an average 

processing time of 110 units is used to get 9 schedule hardness criteria.  The weighted 

tardiness values under the nine different criteria will show how anticipatory batch 

insertion performs under different schedule hardness criteria. Table 5.2 shows the 

different factor values. 

Table 5.2 Schedule Hardness Criteria 

TF / RDD 
(Mean, STD) 

TF=.25 TF=0.50 TF=0.75 

RDD=.25 (825, 92) (550, 92) (275, 92) 
RDD=.50 (825, 183) (550, 183) (275, 183) 
RDD=.75 (825, 275) (550, 275) (275, 275) 

 

To show an example of how the numbers in the cells are calculated, consider the entry for 

TF=0.25, RDD=0.25. The value of TF and the average processing time of 110 units are 

substituted in the equation for tardiness factor (TF) to get the average due date value of 

825. Similarly, the RDD value of 0.25 and the processing time are used to get a due date 

range and the range is divided by three in order to obtain a standard deviation of 92. 

These specific values generate due dates that are loose with a narrow spread. The analysis 

of results obtained from the various scenarios of schedule hardness address Q3 and 

Proposition 3. 

 

SENSITIVITY OF PRODUCTS: It is not necessary to have all products being sensitive 

to every kind of disruption. In the studies noted by McKay (1987, 1992) one product may 

be sensitive to one kind of disruption and not sensitive to other kinds. Proposition 4 stated 
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that the performance of batch insertion would improve with an increased number of 

sensitive products. In order to address this issue, three different scenarios of sensitivity 

are considered. Analysis of the results obtained from different scenarios of sensitivity 

explores Q4 and Proposition 4. 

Sensitivity Criteria 

1) Only product type A is sensitive to the disruption. 

2) Only product type B is sensitive to the disruption. 

3) Both products, A and B are sensitive to the disruption. 

 

MAGNITUDE OF RISK: The magnitude of risk is the percentage of the products 

scrapped due to disruption. Sensitivity analysis of this factor against the performance of 

the heuristic is done to determine if it is more beneficial to implement batch insertion in 

cases where high magnitude of risk is predicted. Three different scenarios are tested to 

see how batch insertions perform in each scenario. Analyses of the results obtained from 

the three scenarios are used in the investigation of Q5 and Proposition 5. 

 

Disruption Criteria 

1) Disruption causes 40% of items to be scrapped 

2) Disruption causes 60% of items to be scrapped 

3) Disruption causes 80% of items to be scrapped 

 

These experimental factors and the different criteria considered produces 81 basic 

scenarios. The simulation model executes the model logic and compares the performance 
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of anticipatory batch insertion to mitigate risk under different scenarios. The next section 

provides a description of the simulation model. 

 

Simulation Design 
 
 
The simulation model simulates job-sets under different scenarios and probes the 

robustness of the batch insertion strategy on a single machine with static jobs. For each 

scenario under consideration, the simulation model calls the job matrix, runs the 500 job-

sets, and then outputs the total average cost and weighted tardiness values for each 

scenario. The different criteria considered for the three different experimental factors 

mentioned above give 81 basic cases for each experimental case, which was translated to 

81 basic runs in the simulation design. The simulation model reads the different scenarios 

from a data file (Appendix A). The start time of each job is set to zero. Hence, it falls 

under the category of Monte Carlo simulation with static arrival of jobs. A series of pilot 

runs determine the set of parameter values that gives a more realistic experimentation 

scenario. APPENDIX C provides the MATLAB code that implements these experiments. 

The following settings are used for the parameters which are constant. 

Constant Settings 

Setup cost =10 units. 

Setup time = 10 units. 

Cost per piece = 1unit. 

Time per piece = 1unit. 

Dollar per time = 1unit. 

Dollar per scrap = 1unit. 
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Performance Measures 
 
The performance measures are average total cost and average weighted tardiness values. 

These are used to compare the performance of anticipatory batch insertion under different 

scenarios. The measurement of cost is strictly quantitative while the weighted tardiness is 

a qualitative measure since no cost was associated with it. Weighted tardiness values 

capture the lateness factor and have implications on customer satisfaction. Therefore, by 

using both measures, the quantitative and qualitative aspects of the problem are addressed. 

 
5.3 Verification and Validation. 
 
Since the performance of batch insertions under different experimental scenarios is being 

considered, it is important to make sure that other experimental conditions remain the 

same for each scenario. That is, the variations obtained should be due to the changes in 

the scenarios, not due to the variations in random numbers. To ensure this, the same 

random number streams are used across the different scenarios. 

In order to validate the model logic, the batch insertion model was compared to results 

reported in the Aversion papers. The simulation parameters were adjusted to reflect the 

simple base case (i.e., equivalent to the Aversion base case) and the simulation run. The 

results for the WSPT heuristic were then compared. In theory, if the simulation code used 

random numbers and executed the heuristics correctly, the basic heuristic performance 

(e.g., weighted tardiness objective) should be similar. APPENDIX B contains the results 

of this validation step. The results are similar for WSPT and it is assumed that the basic 

structure and implementation of the batch insertion model is adequate for the purpose of 

this research. 
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5.4 Summary 
 
This chapter has described the design of the experimental framework used to explore the 

batch insertion heuristic. The following chapter presents the results obtained during the 

experimentation. 



 60

CHAPTER 6 

EXPERIMENTATION RESULTS 

 

This chapter presents the results from the large-scale simulation experiments and 

analyzes them to determine if the results are rational and if there are any issues relating to 

basic validity. Chapter 7 provides a discussion on sensitivity analysis of the different 

experimental factors and interprets the numerical results. Within this chapter, the results 

are grouped according to the different experimental cases. 

 

The first section groups the results for the different experimental cases. Analysis of each 

case provides insight into implication of the risks associated with causal triggers such as 

changes in process, product, or material. The analysis of the last two cases in particular 

shows the benefits associated with batch insertion given the cost of its implementation. 

The second section presents the results obtained from changing the schedule hardness 

criteria. The third section tabulates the value of performance measures under different 

criteria of sensitivity and the fourth section shows the performance of anticipatory batch 

insertion when there are different magnitudes of risk. 

 

The assumptions and values used in all of the experiments were: 

 

• Two products, A and B are processed by the manufacturing resource under 

consideration 
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• Sequence dependent setup is not considered. Setup costs are incurred for every 

batch processed. 

• Setup cost = $10 per job 

• Setup time = 10 time units per job 

• Cost per piece = $1 per piece 

• Time per piece = 1 time unit per piece 

• Dollar Per Time per time = $1 per one unit of time spent in the plant 

• Dollar per scrap = $1 per unit scrapped 

• Due time = Normally distributed according to the schedule hardness criteria 

• Base Quantity = Normally distributed with a mean of 100 and a standard 

deviation of 10 

• Yield loss = Uniformly distributed between 5% to 10% 

• Job weight = Normally distributed with a mean of 40 and a standard deviation of 

10 

• Total Cost of a Job = Total Setup Cost + Total Production Cost + Total Scrapping 

Cost. 

• Weighted Tardiness of a Job = Max (0, Completion Time of Job – Due Time of 

Job) * Job Weight. 

 

The following sections present the results with respect to the different experimental 

scenarios. Note that the results obtained are rounded off to the nearest integer value. 
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6.1 Results under different experimental cases 
 
 
The simulation model processes 500 job-sets for each scenario determined by schedule 

hardness, sensitivity of products and the magnitudes of risk. The following list consists of 

four experimental cases in which each job-set is processed. 

 

1. NO DISRUPTION -NO INSERTION CASE 

2. DISRUPTION-NO INSERTION CASE 

3. DISRUPTION-INSERTION CASE 

4. NO DISRUPTION-INSERTION 

 

The average cost and weighted tardiness values obtained for each experimental case are 

provided in Table 6.1. Note that all the experimental factors (i.e., schedule hardness, 

sensitivity of products and magnitudes of risk) vary across all experimental runs.  This 

table represents the average result – a mix of all factors. The same variations were 

applied to the four experimental cases. Therefore, the results obtained from the four 

experimental cases are comparable to each other. The % values in the table provide the 

increase in cost and weighted tardiness values for each case when compared to the 

base case. 
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Table 6.1 Performance Measures-Experimental Cases 

 
Performance 
Measures/ 
Experimental cases 

Average Cost ( $) Average Weighted 
Tardiness (time 
unit) 

No Disruption, No 
Insertion 

2282 129660 

Disruption, No 
Insertion 

2540 (11%) 164030 (27%) 

Disruption and 
Insertion 

2367 (4%) 146660 (13%) 

No Disruption, 
Insertion 

2321(2%) 141560 (9%) 

 

The lowest value of cost and weighted tardiness can be seen in the first row represented 

by the “NO DISRUPTION-NO INSERTION” case. The second case, “DISRUPTION-

NO INSERTION” represents the case with highest values of cost and weighted tardiness. 

In this case, no risk mitigation techniques were used to reduce the effect of the disruption. 

These gross results intuitively match what would be expected (e.g., which case would be 

highest, second highest etc.). In this initial experiment, the specific values are not as 

important as the ordering since the main purpose of the research is to probe the 

relationships and sensitivity inherent in the heuristic. 

 
6.2 Schedule Hardness 
 
 
Schedule Hardness determines the characteristics of the schedule and is related to the 

Tardiness Factor and Range of Due Dates. Nine different scenarios of schedule hardness 

are considered in the analysis. The results are grouped according to different 

experimental cases as shown in the tables below. It is important to note that a constant set 

of values for the rest of the experimental factors are used. This ensures that the variations 
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obtained in the results are consequences of changes in schedule characteristics. In this 

part of the study, both products are sensitive and both have the same magnitude of risk 

(60%). 

 

In each of the tables below (one for each disruption/insertion case), it can be seen that the 

average cost remains the same with different schedule hardness criteria. This is because 

the cost calculated does not include any cost incurred due to tardiness factors. Thus, the 

results obtained aid in the validation of the implementation. The average weighted 

tardiness values increase as the schedule becomes tighter. The % values are the 

decrease of weighted tardiness values for each case compared to the extreme case 

where the schedule is the tightest. 

 

No Disruption, No Insertion 

Table 6.2 Performance Measures- Schedule Hardness (NO DISRUPTION-NO 

INSERTION) 

 
Tardiness Factor  
(TF) 

 0.25   0.50   0.75  

Range of due date 
factor (RDD) 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

Average Cost ($) 
 2282 2282 2282 2282 2282 2282 2282 2282 2282 
Average Weighted 
Tardiness (time units) 

14792 
(89%) 

18430 
(86%) 

24488 
(81%) 

51573 
(60%) 

56249 
(57%) 

63845 
(51%) 

116582 
(10%) 

122001
(6%) 129661 
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Disruption, No Insertion 

Table 6.3 Performance Measures- Schedule Hardness (DISRUPTION-NO INSERTION) 

Tardiness Factor 
 (TF) 

 0.25   0.50   0.75  

Range of due date 
factor (RDD) 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

Average Cost 
 2659 2659 2659 2659 2659 2659 2659 2659 2659 
Average Weighted 
Tardiness 

28573 
(84%) 

32731 
(81%) 

39705 
(77%) 

78311 
(55%) 

83644 
(52%) 

92279 
(47%) 

159174
(9%) 

165675 
(5%) 175042 

 

Both Disruption and Insertion 

Table 6.4 Performance Measures- Schedule Hardness (DISRUPTION- INSERTION) 

 
Tardiness Factor 
 (TF) 

 0.25   0.50   0.75  

Range of due date 
factor (RDD) 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

Average Cost 
 2372 2372 2372 2372 2372 2372 2372 2372 2372 
Average Weighted 
Tardiness 

18502 
(87%) 

22295 
(85%) 

28715 
(80%) 

59315 
(59%) 

64295 
(56%) 

72588 
(50%) 

129761 
(11%) 

136265 
(7%) 145963 

 

No Disruption, Insertion 

Table 6.5 Performance Measures- Schedule Hardness (NO DISRUPTION--INSERTION) 

Tardiness Factor 
 (TF) 

 0.25   0.50   0.75  

Range of due date 
factor (RDD) 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

Average Cost 
 2322 2322 2322 2322 2322 2322 2322 2322 2322 
Average Weighted 
Tardiness 

16641 
(88%) 

20357 
(86%) 

26666 
(81%) 

55586 
(60%) 

60520 
(57%) 

68796 
(51%) 

124094 
(12%) 

130681 
(7%) 140525 

 



 66

6.3 Sensitivity of Products 
 

 
Sensitivity of a product defines its sensitivity to the disruptions associated with causal 

triggers. Three different scenarios of sensitivity are considered. As in the other tests, the 

simulation model evaluates the performance measures corresponding to the three 

different criteria, keeping other experimental factors constant. The results are grouped 

according to the experimental cases considered, as shown in tables 6.6-6.9. The tests 

were run with a medium degree of schedule hardness (TF=0.50, RDD=0.50). The 

magnitude of the risk was set at 60%. 

 

No Disruption, No Insertion 

Table 6.6 Performance Measures- Product Sensitivity (NO DISRUPTION-NO 

INSERTION) 

Sensitivity (A,B) 
1=Sensitive, 0=Not 
sensitive 

1,0 1,1 0,1 

Average Cost 
 2282 2282 2282 
Average Weighted 
Tardiness 56249 56249 56249 

Disruption, No Insertion 

Table 6.7 Performance Measures-Product Sensitivity (DISRUPTION-NO INSERTION) 

Sensitivity (A,B) 
1=Sensitive, 0=Not 
sensitive 

1,0 1,1 0,1 

Average Cost 
 2471 2659 2469 
Average Weighted 
Tardiness 69145 83644 69057 
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Both Disruption and Insertion 

Table 6.8 Performance Measures-Product Sensitivity (DISRUPTION-INSERTION) 

 
Sensitivity (A,B) 
1=Sensitive, 0=Not 
sensitive 

1,0 1,1 0,1 

Average Cost 
 2327 2372 2327 
Average Weighted 
Tardiness 60137 64295 60194 

 

No Disruption, Insertion 

Table 6.9 Performance Measures- Product Sensitivity (NO DISRUPTION- INSERTION) 

Sensitivity (A,B) 
1=Sensitive, 0=Not 
sensitive 

1,0 1,1 0,1 

Average Cost 
 2302 2322 2302 
Average Weighted 
Tardiness 58310 60520 58383 

 

The average cost and weighted tardiness values are generally high in the cases where the 

disruption occurs and both products in consideration are sensitive to the disruption 

compared to the cases where only one type of product is sensitive to the disruption. The 

two scenarios which have one sensitive product provide slightly different values for 

performance measures due to the difference in product characteristics. 

 
6.4 Magnitude of Risk 
 

 
The magnitude of risk is the percentage of end-items scrapped due to the disruption. 

Three different criteria were considered. Tables 6.10-6.13 present the results grouped 

under different experimental cases. The tests were run with a medium degree of schedule 
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hardness (TF=0.50, RDD=0.50). Both products were considered sensitive to the 

disruption. 

 

No Disruption, No Insertion 

Table 6.10 Performance Measures- Magnitudes of Risk (NO DISRUPTION-NO 

INSERTION) 

Magnitude of Risk 
80% 60% 40% 

Average Cost 
 2282 2282 2282 
Average Weighted Tardiness 

56249 56249 56249 
 
Disruption, No Insertion 

Table 6.11 Performance Measures- Magnitudes of Risk (DISRUPTION-NO INSERTION) 

Magnitude of Risk 80% 60% 40% 

Average Cost 
 2772 (9%) 2659 (4%) 2547 
Average Weighted Tardiness 92023 

(22%) 
83644 
(11%) 75668 

 
Both Disruption and Insertion 

Table 6.12 Performance Measures- Magnitudes of Risk (DISRUPTION- INSERTION) 

Magnitude of Risk 80% 60% 40% 

Average Cost 
 

2376 
(0.30%) 

2372 
(0.15%) 2369 

Average Weighted Tardiness 
64295 64295 64295 
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No Disruption, Insertion 

Table 6.13 Performance Measures- Magnitudes of Risk (NO DISRUPTION-INSERTION) 

Magnitude of Risk 80% 60% 40% 

Average Cost 
 2322 2322 2322 
Average Weighted Tardiness 

60520 60520 60520 
 

In the cases where disruption occurs, the cost value increases with increasing magnitudes 

of risk. The weighted tardiness value also increases with increasing magnitudes of risk in 

the second case where there was no risk mitigation techniques deployed. These changes 

in weighted tardiness values cannot be seen in cases where batch insertion is 

implemented as the earlier batches absorb the risk associated and no further delays are 

incurred. 

 

6.5 Summary 
 
This chapter presented the results obtained under different experimental scenarios and 

discussed the results from a validation perspective. Chapter 7 provides a discussion of the 

results. 
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CHAPTER 7 

ANALYSIS AND DISCUSSION 

 

This chapter presents the discussion of the results obtained from the simulation model. 

The objective of this chapter is to provide insights into the dynamics associated with 

various problem parameters. Section 7.1 analyses the four experimental cases and 

evaluates the performance of anticipatory batch insertion. Section 7.2 discusses schedule 

hardness and its implication on the performance of the heuristic. Sections 7.3 and 7.4 deal 

with the sensitivity factor and the magnitude of risk respectively. 

 

7.1 Experimental Cases 
 
 
Table 6.1 of Chapter 6 listed the average total cost and weighted tardiness values for the 

different experimental cases. The results indicate that the anticipatory batch insertion 

strategy substantially reduced the implications of the disruption. The results also showed 

that the cost incurred when performing batch insertion can be considerably small given 

the benefits associated with it. 

 

Without implementing any risk mitigation techniques prior to the incidence of the 

disruption, the increase in cost ranges from 6% to 22%, and the increase in weighted 

tardiness range from 12% to 126%. The upper bound and the lower bound of the ranges 

are determined by the schedule and production characteristics. When batch insertion is 

employed, the cost increase due to the disruption ranges from 2% to 4% and the increase 

in weighted tardiness ranges from 5% to 25%, when compared to the base case of 
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disruption and no batch insertion heuristic is employed. These values demonstrate that 

anticipatory batch insertion can yield substantial benefits for production environments 

that anticipate disruptions associated with changes in the production process. If the 

disruption does not occur, batch insertion and the conservative stance associated with 

attempting to reduce the risk costs 1% to 2% more than the nominal cost. In addition, the 

weighted tardiness increases from 3% to 13% of the nominal value. Table 7.1 

summarizes these results. 

 

Table 7.1 Percentage increase in Costs and Weighted Tardiness values 

 

These results show that the heuristic can significantly reduce the implications associated 

with risks involved in production. Moreover, the costs involved in setting up the 

additional batches can be less significant compared to the benefits associated.  Therefore, 

anticipatory batch insertion can provide significant benefits in the cases where risks are 

anticipated due to changes in the manufacturing environment. However, the overall 

performance of this approach can be dependent on other experimental factors like 

schedule hardness, sensitivity of products and magnitudes of risk. The following sections 

briefly discuss these factors. The above discussion suggests evidence to support the 

following propositions.  

 

Experimental Case Percentage increase in 
Cost  

Percentage increase in 
weighted tardiness 

Disruption -No insertion 6% - 22% 12% - 126% 
Disruption - Insertion 2% - 4% 5% - 25% 
No Disruption-Insertion 1% - 2% 3% - 13% 
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Proposition 1: The process of anticipatory batch insertion to mitigate risk will 
produce significant benefits for a production process that is subjected to the 
disruption associated with the causal triggers. 

 

Proposition 2: The cost associated with batch inserting is relatively insignificant for 
cases where the disruption does not occur as expected. 

 

 
7.2 Schedule Hardness 
 
 
Tables 6.2 through 6.5 in the previous chapter grouped the results based on the nine 

different schedule hardness criteria for different experimental cases. The definition of 

schedule hardness suggests that the benefits of batch insertion would be more evident 

when the schedules are loose, compared to the cases where schedules are tight. In order 

to explore the behavior of this relationship, two extreme values and three moderate values 

of schedule hardness were selected. The set of criteria was. 

 

1) (0.25, 0.25) to represent the extreme case in which the schedule is loose and the range 

of due date is wide 

2) (0.25, 0.50) to represent the case in which the schedule is loose and the range is 

moderately wide 

3) (0.50, 0.50) to represent the medium case in which the schedule is moderately tight 

and the range is moderately wide 

4) (0.50, 0.75) to represent the case in which the schedule is moderately loose and the 

range of due date is narrow 

5) (0.75, 0.75) to represent the other extreme where the due date is very tight and the 

range of due date is narrow. 
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The performance measures were evaluated for the above five criteria. The variations in 

the results are consequences of the variations in the schedule hardness criteria since 

constant settings are used for other experimental factors. Note that schedule hardness 

only influences the tardiness values, because there are no costs associated with tardiness. 

Table 7.2 presents the percentage improvement in weighted tardiness values due to the 

implementation of anticipatory batch insertion, compared to the case where no risk 

mitigation techniques were implemented. 

Table 7.2 Schedule Hardness-Weighted Tardiness 

Schedule Hardness 
(TF, RDD) 

(0.25, 
0.25) 

(0.25, 
0.50) 

(0,50, 
0.50) 

(0.50, 
0.75) 

(0.75, 
0.75) 

Percentage improvement 
in weighted tardiness 
values 

35 28 23 21 17 

 

The results suggest that batch insertion performs the best when the schedule is loose and 

the improvement in performance decreases as the schedule gets tighter. Figure 7.1 

illustrates the rate at which the performance deteriorates given the experimental settings. 
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Figure 7.1 Schedule Hardness VS Performance Improvement 

 

 

The above figure does not indicate a strict linear relationship between the schedule 

characteristics and performance of batch insertion. However, the figure does not indicate 

any significant trends, nor negative improvement in any of the cases. Therefore, it is 

reasonable to observe that the implementation of the batch insertion heuristic provides 

positive improvements across the schedule hardness criteria. This observation is possible 

because both extremes of schedule hardness ((0.25, 0.25) and (0.75, 0.75)) were 

considered. The variations in slope from one point to the next suggest the potential for 

further research into the relationship, but this analysis is beyond the scope of the initial 

research. The linear interpolation of the data gives the following results: 
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Equation of the straight line fitting���� y= -4.3x+38 

Norm of  residuals = 2.8107 

 

The “norm of residuals” implies the goodness of fit. The smaller the value, the better is 

the fit.  The norm of residual value in this case represents an average fit. Since batch 

insertion in this experimentation does not illustrate negative improvements, support exists 

for the following proposition: 

Proposition 3: Batch inserting will be more beneficial for a production situation 
with a loose schedule provided the setup cost and/or production cost is not 
substantially high. 

 

 

7.3 Sensitivity of Products 
 
 
Tables 6.6 through 6.9 documented the improved performance of anticipatory batch 

insertion with increasing number of sensitive products. Table 7.3 summarizes the 

percentage improvement due to batch insertion, for each scenario considered. 

Table 7.3 Sensitivity of Products-Improvement in performance (Two Products) 

 

Number of Sensitive products 1 2 

Percentage improvement in Cost due to batch insertion 
6 11 

Percentage improvements in weighted tardiness due to batch 
insertion 

13 23 

 
 

The percentage improvements in performance measures are much higher in the case 

where two products are sensitive. In order to analyze the rate of increase, a manufacturing 

resource is considered that produces more than two products. In particular, consider a 

manufacturing resource that processes five product types A, B, C, D, and E. The 
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following settings were used: scheduling hardness - TF=0.50, RDD=0.50; magnitude of 

risk for each product type – 60%. 

 

The performance improvement of batch insertion for each scenario of sensitivity, when 

compared to the case where no insertions are implemented is given in Table 7.4. 

Table 7.4 Sensitivity of Products-Performance Measures (Five Products) 

 

Number of Sensitive Products 1 2 3 4 5 

Percentage improvement in Cost due to batch insertion 
5 10 14 18 21 

Percentage improvements in Weighted Tardiness due to batch 
insertion 

13 26 37 51 63 

 

The results indicate that the performance of batch insertion improves with the increasing 

number of sensitive products. Figures 7.2a and 7.2b represent the rate of increase in the 

cost and weighted tardiness values respectively. 

Figure 7.2 a & b Sensitive Products VS Performance Improvements. 
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The above figures suggest that the number of sensitive products has a close-to-linear 

relationship with the performance measures, which are cost and weighted tardiness. A 

linear interpolation on both graphs gives the following results: 

Cost Improvements:                                     Weighted Tardiness Improvements: 

Equation of the best fitting line����y=12x+0.5         Equation of the best fitting line����y=4x+16 

Norm of Residuals= 1.0954                                     Norm of Residuals= 1.2247 

 

The norms of residual values are considerably small implying a good fit. Therefore, it can 

be reasonably concluded that the relationship analyzed is almost linear and that support 

exists for the following proposition: 

Proposition 4: The benefits associated with batch inserting will linearly increase with 
an increasing number of sensitive products. 

 
7.4 Magnitude of Risk 
 
Tables 6.10 through 6.13 from the previous chapter illustrated that the performance of 

batch insertion with increasing magnitudes of risk. Higher magnitudes of risk imply 

higher number of items scrapped; consequently, the benefits associated with batch 

insertion will be higher since it reduces that number of products scrapped. Table 7.5 

presents the performance improvements compared to the “DISRUPTION-NO 

INSERTION” case. Two more scenarios (20% and 100%) were added to the three 

considered in 7.3 to strengthen the analysis. 

Table 7.5 Magnitudes of Risk-Performance Measures 
 

Magnitude of Risk 20% 40% 60% 80% 100% 

Percentage improvement in Cost due to 
batch insertion 

3 7 11 14 18 

Percentage improvements in weighted 
tardiness due to batch insertion 

6 15 23 30 36 
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Graphs 7.3a and 7.3b illustrate the rate of increase in cost and weighted tardiness values 

respectively.  

 

Figure 7.3 a & b Magnitude of Risk VS Performance Improvement 

 

 

Figures 7.3a and 7.3b visually illustrate that a high magnitude of risk results in greater 

benefit and that the relationship is inherently linear. There is minor curvature, but the 

relationship can be described as being linear. The linear interpolation data is: 

 

Cost Improvements:                                    Weighted Tardiness Improvements: 

Equation of the best fitting line����y=0.19x-0.5     Equation of the best fitting line����y=0.38x-0.5 

Norm of Residuals= 0.54772                                  Norm of Residuals= 1.8708 

 

The norms of residuals are low, and this suggests that the relationship between the 

performance measures and the magnitudes of the risk is close to linear. Therefore, 

support appears to be present for the following proposition: 
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Proposition 5: The benefits associated with batch inserting will linearly increase for 
production processes that are susceptible to higher magnitudes of risk. 

 
 

7.5 Summary 
 
The analysis of the different experimental scenarios suggests that anticipatory batch 

insertion is: a) is most suited for a production environment that is susceptible to 

disruptions caused by causal triggers, produces a large number of sensitive products, and 

has loose schedules; and b) composed of reasonably well-behaved linear relationships 

between the strategy and experimental factors. The anticipatory batch insertion strategy is 

likely to always yield some form of positive improvements in cost and weighted tardiness 

when a disruption occurs. However, the percentage of improvement may not be high in 

cases with a low magnitude of risk and tight schedule. The next chapter tests the 

robustness of the model by modifying a number of the assumptions made with respect to 

the experimental parameters. 
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CHAPTER 8 

EXPERIMENTAL ROBUSTNESS 

 

The model environment described in Chapter 5 is defined by a number of constants. 

These include parameters such as Setup Cost, Setup Time, Time per Piece, Dollar per 

Time, Cost per Piece and Dollar per Scrap. This chapter explores the sensitivity and 

robustness issues related to four of these parameters: Setup Cost, Dollar Per Scrap, Cost 

per Piece and Dollar per Time.  

 
8.1 Setup Costs 
 
Setup Cost is the cost incurred when setting up a batch for processing. In the main 

experiment, it was assumed that the additional setup cost incurred after the occurrence of 

a disruption is usually higher than the nominal setup costs. This is because of the 

involvement of additional factory personnel, and the added caution (McKay, 1992). Five 

different scenarios were analyzed for this parameter.  The first scenario considered the 

case where the cost of the extra setup is the same as the nominal setup. In the second 

scenario, the cost of the extra setup is 1.25 times the nominal setup. In the third case, the 

extra setup cost is 1.50 times the nominal setup cost. In the fourth case, an additional 

setup cost is 1.75 times the nominal. Lastly, in the fifth case, an additional setup cost is 

twice the nominal cost. Table 8.1 presents the cost increase in each case. Note, modifying 

setup costs do not affect tardiness values and the tardiness values are not presented. The 

following experimental settings were used to run the analysis: TF=0.50, RDD=0.50; both 
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products sensitive and the magnitude of risk set to 60%. All the earlier assumptions other 

than the setups costs remain valid. 

Table 8.1 Additional Setup Cost- Cost values 
 

Setup cost 
Scenarios/ 
Experimental cases 

Nominal 1.25*Nominal 1.5*Nominal 1.75*Nominal 2*Nominal 

No Disruption, No 
Insertion 2282 2282 2282 2282 2282 
Disruption, No 
Insertion 2659 2664 2669 2674 2679 
Disruption and 
Insertion 2372 2372 2372 2372 2372 
No Disruption, Only 
Insertion 

2322 2322 2322 2322 2322 
 

The additional setup cost affects the second row, where extra setups are made to account 

for the loss associated with the disruption. The extra setup cost does not affect the first 

and last cases since the disruption does not occur in those cases. The third case 

implements batch insertion and hence, no additional setup costs are incurred. The 

percentage improvement in cost due to the implementation of anticipatory batch insertion 

is provided in Table 8.2. 

Table 8.2 Additional Setup Costs- Performance Improvement 
 

Setup cost 
Scenarios 

Nominal 1.25*Nominal 1.5*Nominal 1.75*Nominal 2*Nominal 

Percentage 
improvement in 
cost 

10.8 10.9 11.1 11.3 11.5 
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There is a very slight improvement in cost with increasing values of additional setups. 

Figure 8.1 presents the rate of increase. 

Figure 8.1 Additional Setup Costs VS Cost Improvements 

 

 

The results indicate a close-to-linear relationship between additional setup costs and the 

performance of batch insertion. The variation in slope between the first two points can be 

attributed to the rounding off error as the points only differ by 0.2.  A linear interpolation 

on the data gives the following results. 

Equation of the straight line fit���� y=0.72x+10 

Norm of Residuals: 0.0632 

 

The norm of residuals is significantly small. Therefore, it is reasonable to conclude that 

the relationship is close to linear in nature even though the rate of increase is relatively 

small. It is important to note that just changing the nominal setup costs in the 



 83

experimental framework will not show any improvements with respect to the 

performance of batch insertion. This is because the number of setups does not vary in the 

case where anticipatory batch insertion is done to mitigate risk. 

 
8.2 Dollar Per Scrap 
 
 
Dollar per Scrap is the scrapping value of one piece of product. This cost includes non-

recoverable raw material cost, value added, and other similar operational costs. These 

values can be high for manufacturers when the manufactures are not able to recover the 

parts from the defective items. It was assumed that the value of Dollar per Scrap was one 

for the purpose of experimentation. In the robustness study this value was set to two, 

three, four, and eight. The weighted tardiness values do not change, as the scrapping 

value does not have any implication on the tardiness factor. Table 8.3 contains the results 

obtained. 

Table 8.3 DollarPer Scrap- Cost Improvements 
 

Cost per unit scrapped 1 2 3 4 8 
Percentage Improvement in Cost 11 13 16 18 24 

 

The test results show that improvements are higher with increasing “dollar per scrap” 

values. The basic trend is intuitive because batch insertion strategy is designed to reduce 

the number of items scrapped. The results were analyzed to determine if the relationship 

was linear or non-linear. Figure 8.2 shows the linear fit: 
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Figure 8.2 Dollar Per Scrap VS Improvement in Cost 

 

The relationship is close to linear as can be seen from the data obtained from linear 

interpolation. 

 

Equation of the straight line fit���� y=1.8x+9.8 

Norm of Residuals: 1.4406 

 

However, there is some inflection around the values of 3 and 4. While this is not 

significant, further analysis should be included in future research to verify this 

observation.  

 
8.3 Cost Per Piece 
 
 
Cost Per Piece is the cost of processing one product or piece. Costs involved can be 

operator’s wage, machine cost, lubrication cost and other costs associated with the 
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production process. To ensure the stability of the heuristic relative to this parameter, the 

value was changed from one to two, three, and four. Table 8.4 summarizes the results 

obtained from the four scenarios.  Cost per Piece does not affect tardiness value and this 

value is not shown. 

Table 8.4 Cost Per Piece- Cost Improvements 
 

Cost per piece value 
1 2 3 4 

Percentage Improvement in 
Cost 

10.8 10.1 9.8 9.6 

 

The improvements are decreasing slightly with increased cost per piece. Nevertheless, the 

rate at which it is decreasing seems to diminish with increasing value of cost. In order to 

see if the improvements become negative at any point, two extra runs were made with the 

values of 100 and 10000. At both of these values, the percentage of improvement was 

8.6%.  Although little can be said about the region between the two values, the results 

suggest that the percentage of improvement stabilizes at some point. Further 

investigations on this behavior should be included in any future research. Figure 8.3 

presents the results of the analysis. 
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Figure 8.3 Cost Per Piece VS Cost Improvements 

 

 
8.4 Dollar per Time 
 
Dollar per Time is the cost of running the resource for one time unit. These values were 

changed from one to two, three, and four. Table 8.5 lists the improvement in performance 

for each scenario considered. 

Table 8.5 Dollar per Time- Cost Improvements 
 

Dollar per time 1 2 3 4 
Percentage Improvement in 
Cost 

10.8 9.8 9.3 9 

 

The improvements are slightly reduced with increased Dollar per Time values.  Similar to 

the case with Cost per Piece, the rate of decrease is diminishing with increased value of 

Dollar per Time. To see if the improvements become negative at some point, two 

additional runs were made with the values of 100 and 10000. Improvement in both cases 
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was 7.8%. This result as shown in Figure 8.4 suggests that the improvement stabilizes at 

some point.  

Figure 8.4 Dollar Per Time VS Cost Improvements 

 

 
8.4 Summary 
 

For the purposes of this initial exploration of the batch insertion heuristic, the stability of 

the heuristic is important; negative improvement or random results should be absent. For 

Setup Costs and Dollar per Scrap, the behavior appears to be linear and well-behaved. 

The heuristic also appears to be stable for the both Dollar per Time and Cost per Piece. 

However, future research should explore their leveling off of improvement. 
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Sensitivity analysis was not done on Setup Time, as it affects both the experimental 

cases: DISRUPTION-NO INSERTION, DISRUPTION-INSERTION equally. This is 

because the number of setups remains same in both cases. Robustness studies were also 

not performed on Time per Piece. Time per piece is the amount of time it takes to process 

a product or piece. Time per Piece and Dollar per Time complement each other. 

Therefore, it is not necessary to do a separate sensitivity study. 
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CHAPTER 9 

IMPLICATIONS AND LIMITATIONS 

 

9.1 Implications 
 

 The purpose of this thesis is to perform an exploratory and preliminary analysis of an 

anticipatory batch insertion strategy. Key to the concept is the assumption that certain 

major perturbations can be attributed to causal triggers and be predicted in advance. 

Several characteristics of the problem are explored: schedule hardness, product 

sensitivity, and magnitude of risk. The results from the simulation experiments suggest 

that such disruptions can cause significant losses to a manufacturing environment that 

does not implement any risk mitigation approach. The results also suggests that the 

process of anticipatory batch insertion significantly reduces the implications of such a 

disruption; the increase in cost and weighted tardiness associated with batch insertions is 

insignificant compared to the benefits it provides when a disruption occurs. Therefore, it 

appears reasonable to recommend anticipatory batch insertion for a production 

environment that has experienced high-risk disruption is anticipating yield uncertainties 

due to causal triggers. 

 

The benefit associated with batch insertion is most significant when the schedule is loose. 

If there is sufficient time before the due date and the production environment is prone to 

disruptive causal triggers, making additional setups in the beginning is probably 

profitable. Even though batch insertion provides positive benefits for every scenario of 
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schedule hardness, the magnitude of improvement is not very significant in the case 

where the schedule is tight. 

 

The number of sensitive products also plays a critical role in the performance of batch 

insertion. The results suggest that batch insertion would be beneficial for a manufacturing 

facility that processes sensitive products. The higher the number of sensitive products, the 

higher the benefits associated with batch insertion. Hence, batch insertion would provide 

higher profits for manufacturing plants that produces a number of highly sensitive 

products (e.g. electronic manufacturers). 

 

Performance of anticipatory batch insertion is also dependent on the magnitudes of risk. 

The performance of the strategy was shown to improve with increasing magnitudes of 

risk. That is, the higher the risk associated with the disruption, the more beneficial it is to 

do batch insertion. Therefore, it is reasonable to suggest that the anticipatory batch 

insertion to mitigate risk can be very profitable to a manufacturing facility facing risky 

disruptive events. The magnitude of risk is likely to be dependent on a number of factors, 

such as the type of change introduced, the level of training available for the factory 

personnel, and the tuning of the factory equipment. 

 

By changing the experimental settings defined by the constant parameters, the robustness 

of the experimentation was tested. Different values were specified for the experimental 

constants. The robustness experimentation suggests that the relationships defined by the 

experimentation results are not altered by the different experimental settings. The 
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relationships suggest that batch insertion can reduce the costs incurred by industries that 

experience risky events while producing products that have high scrapping costs - the 

additional batches of small sizes reduce the number of items scrapped. 

 

9.2 Limitations  
 

1. A limited number of experimental factors were analyzed in this thesis. The 

absence of a strict linear relationship between the performance of batch insertion 

and the experimental factors indicate the possible existence of other factors 

affecting its performance. These factors need to be recognized and analyzed to 

establish stronger relationships. 

2. It is assumed that only the first batch of a product is affected by the disruption. 

This assumption needs to be relaxed to design a more realistic model. The time 

during which the batch is inserted requires more exploration. 

3. The timing of inserted batches and the number of inserted batches was not 

explored. 
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CHAPTER 10 

FUTURE RESEARCH AND CONCLUSIONS 

 

10.1 Future Research  
 

The study conducted in this thesis is exploratory and preliminary. The objective of this 

thesis is not the identification of an optimal solution, but is the exploration of the 

characteristics of the anticipatory batch insertion strategy to mitigate risks. Based on the 

experimental results from this first study, there are a number of factors that could be 

explored in subsequent research. The following sections discuss the factors associated 

with the assumptions used in the research.  

 

 Disruptions 

 For the purpose of experimentation, this thesis assumes known “magnitudes of risk”. 

However, in reality, this phenomenon is more uncertain in nature. The probability of a 

high magnitude risk could be lower than the probability of a low magnitude of risk. It is 

possible to use the probabilistic logic in an improved version of the simulation model. In 

addition, the experiment in this thesis is limited to the case where changes or such 

disruptions affect only the job with the first occurrence of a sensitive product type. What 

happens when the disruption affects more jobs? Does the timing of insertion affect the 

performance of the strategy?  Exploring such questions could result a more realistic and 

more robust strategy. 
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Setups 

It has been assumed that the setup costs and setup times are constants. Although this 

assumption is widely seen in the literature, there are instances where these values are 

stochastic. Incorporating this factor will produce a more dynamic model. 

 

Costs 

Cost per piece, cost per time and cost per unit of scrap can be considered as stochastic 

variables for future research. 

 

Products 

For introductory purposes, two products are considered in the majority of the 

experimental scenarios. Increasing the number of products and varying the sensitivity to 

disruptions could result in a deeper analysis. 

 

10.2 Conclusion  
 

In this thesis the concept of inserting a test batch to mitigate perceived risk was explored. 

A large scale simulation approach was used for the exploration. As the research is 

exploratory, a single machine with static job arrivals was used to explore the 

characteristics of causal triggers and to analyze the performance of batch insertion under 

various experimental settings. 

 

The performance measures, the total average cost and weighted tardiness values, were 

used to compare the different cases. For the given experimental scenario, the results 
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indicated that a disruption on an average could lead to 11% increase in cost and 27% 

increase in weighted tardiness. The highest percentage increase in cost was 22% and the 

highest weighted tardiness increase was 126%. The implementation of the batch insertion 

strategy can cause improvements in cost and weighted tardiness values when such 

disruptions occur. In the cases where batch insertion was implemented the highest values 

for percentage increase in cost and weighted tardiness were 4% and 25% respectively. 

When disruptions did not occur as expected, the increases in cost associated with batch 

insertion were shown to be relatively insignificant. The average cost and weighted 

tardiness increases were 2% and 9% respectively. 

 

To explore the robustness of the strategy, three external factors were experimentally 

studied to find out if the performance of the strategy was sensitive to them. These were: 

schedule hardness, number of sensitive products and magnitude of risk. The results 

suggest that schedule hardness has a close to linear relationship with the performance of 

batch insertion. The improvement in weighted tardiness decreased as the schedule got 

tighter. Therefore, it is reasonable to suggest that the anticipatory batch insertion strategy 

performs best when the schedule is loose (35% improvement in weighted tardiness). If 

the costs associated with the disruption exceed late penalties, the strategy may also be 

useful in tight situations.  The magnitude of risk also has a close to linear relationship 

with the performance of the strategy. The improvement due to batch insertion increases 

with increasing magnitudes of risk. The highest improvement was shown in the case 

where the magnitude of risk was 100%. The percentage improvement in this case was 

36%. 
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A number of constants defined the experiment scenario. Sensitivity studies on these 

constants were performed to check if there were any changes to the relationships defined 

by the experimental results. The results suggest that the relationships remain valid. 

Further analysis is required to explore the stabilizing effects of the other constants. 

 

In summary, this thesis took a heuristic observed in an empirical setting (McKay 1992) 

and explored its quantitative soundness. The exploratory research suggests that the 

strategy has merit in manufacturing settings that are highly susceptible to the risks 

associated with causal triggers. The highest return can be expected when there are 

slightly loose production schedules, high volumes of sensitive products are produced, 

there are high costs associated with the risks, and the risks can be predicted with some 

degree of certainty. However, the exploratory study is preliminary and it is suggested that 

future research be conducted on the strategy to further explore the relationships that exist 

in the trade-offs discussed in this thesis. 
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APPENDICES 

 
 
APPENDIX A: EXPERIMENT SCENARIOS 
 

Run Duedate 
MEAN 

Duedate 
STD 

A 
Sensitivity 

B 
Sensitivity 

Risk 
Magnitude 

1. 825 92 1 0 .40 
2. 825 183 1 0 .40 
3. 825 275 1 0 .40 
4. 550 92 1 0 .40 
5. 550 183 1 0 .40 
6. 550 275 1 0 .40 
7. 275 92 1 0 .40 
8. 275 183 1 0 .40 
9. 275 275 1 0 .40 
10. 825 92 1 1 .40 
11. 825 183 1 1 .40 
12. 825 275 1 1 .40 
13. 550 92 1 1 .40 
14. 550 183 1 1 .40 
15. 550 275 1 1 .40 
16. 275 92 1 1 .40 
17. 275 183 1 1 .40 
18. 275 275 1 1 .40 
19. 825 92 0 1 .40 
20. 825 183 0 1 .40 
21. 825 275 0 1 .40 
22. 550 92 0 1 .40 
23. 550 183 0 1 .40 
24. 550 275 0 1 .40 
25. 275 92 0 1 .40 
26. 275 183 0 1 .40 
27. 275 275 0 1 .40 
28. 825 92 1 0 .60 
29. 825 183 1 0 .60 
30. 825 275 1 0 .60 
31. 550 92 1 0 .60 
32. 550 183 1 0 .60 
33. 550 275 1 0 .60 
34. 275 92 1 0 .60 
35. 275 183 1 0 .60 
36. 275 275 1 0 .60 
37. 825 92 1 1 .60 
38. 825 183 1 1 .60 
39. 825 275 1 1 .60 
40. 550 92 1 1 .60 
41. 550 183 1 1 .60 
42. 550 275 1 1 .60 
43. 275 92 1 1 .60 
44. 275 183 1 1 .60 
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45. 275 275 1 1 .60 
46. 825 92 0 1 .60 
47. 825 183 0 1 .60 
48. 825 275 0 1 .60 
49. 550 92 0 1 .60 
50. 550 183 0 1 .60 
51. 550 275 0 1 .60 
52. 275 92 0 1 .60 
53. 275 183 0 1 .60 
54. 275 275 0 1 .60 
55. 825 92 1 0 .80 
56. 825 183 1 0 .80 
57. 825 275 1 0 .80 
58. 550 92 1 0 .80 
59. 550 183 1 0 .80 
60. 550 275 1 0 .80 
61. 275 92 1 0 .80 
62. 275 183 1 0 .80 
63. 275 275 1 0 .80 
64. 825 92 1 1 .80 
65. 825 183 1 1 .80 
66. 825 275 1 1 .80 
67. 550 92 1 1 .80 
68. 550 183 1 1 .80 
69. 550 275 1 1 .80 
70. 275 92 1 1 .80 
71. 275 183 1 1 .80 
72. 275 275 1 1 .80 
73. 825 92 0 1 .80 
74. 825 183 0 1 .80 
75. 825 275 0 1 .80 
76. 550 92 0 1 .80 
77. 550 183 0 1 .80 
78. 550 275 0 1 .80 
79. 275 92 0 1 .80 
80. 275 183 0 1 .80 
81. 275 275 0 1 .80 
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APPENDIX B: RESULTS FOR VERIFICATION OF LOGIC 
 (Compared to Averse-1) 
 
Run Duedatemean Duedatestd Avg Cost Avg WeightedTardiness 

1 150 17 615.52 2664.61 
2 150 33 613.07 3291.97 
3 150 50 614.29 4410.75 
4 100 17 616.46 8945.71 
5 100 33 615.58 9620.63 
6 100 50 616.09 10828.44 
7 50 17 614.79 19958.47 
8 50 33 612.13 21063.80 
9 50 50 618.18 22845.82 

10 150 17 615.60 2678.68 
11 150 33 616.91 3396.42 
12 150 50 615.00 4368.85 
13 100 17 615.11 8887.29 
14 100 33 612.92 9530.22 
15 100 50 614.13 11028.53 
16 50 17 614.16 20118.27 
17 50 33 615.02 21079.64 
18 50 50 614.30 22180.05 
19 150 17 617.53 2796.06 
20 150 33 614.59 3348.59 
21 150 50 611.49 4055.29 
22 100 17 612.74 8616.65 
23 100 33 614.27 9611.87 
24 100 50 615.70 11244.64 
25 50 17 617.03 20086.10 
26 50 33 614.61 20811.37 
27 50 50 614.91 22111.70 
28 150 17 614.18 2671.92 
29 150 33 618.38 3421.39 
30 150 50 612.85 4177.28 
31 100 17 615.99 9043.84 
32 100 33 614.48 9600.21 
33 100 50 613.35 10924.32 
34 50 17 616.53 20189.39 
35 50 33 617.07 21606.95 
36 50 50 613.48 22397.75 
37 150 17 613.03 2553.41 
38 150 33 615.73 3299.76 
39 150 50 613.69 4239.75 
40 100 17 617.16 9142.57 
41 100 33 615.52 9868.82 
42 100 50 616.34 11426.78 
43 50 17 616.25 19960.14 
44 50 33 612.71 20569.63 
45 50 50 613.69 22555.52 
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46 150 17 615.85 2735.34 
47 150 33 613.85 3154.95 
48 150 50 613.61 4374.99 
49 100 17 617.04 8999.15 
50 100 33 614.03 9636.73 
51 100 50 617.29 11071.35 
52 50 17 614.18 20035.41 
53 50 33 616.20 21310.27 
54 50 50 614.62 22869.06 
55 150 17 615.55 2690.09 
56 150 33 614.26 3236.76 
57 150 50 614.01 4240.76 
58 100 17 614.09 8752.19 
59 100 33 615.70 9927.48 
60 100 50 614.41 10759.15 
61 50 17 614.35 20019.57 
62 50 33 613.92 21066.84 
63 50 50 612.62 22301.35 
64 150 17 614.53 2614.48 
65 150 33 615.60 3191.03 
66 150 50 613.85 4296.35 
67 100 17 617.13 8883.76 
68 100 33 616.77 9842.48 
69 100 50 614.20 10842.92 
70 50 17 616.19 19889.61 
71 50 33 615.03 20747.58 
72 50 50 616.06 22520.11 
73 150 17 615.98 2685.36 
74 150 33 614.73 3111.53 
75 150 50 614.17 4383.27 
76 100 17 616.29 9124.55 
77 100 33 612.84 9584.52 
78 100 50 616.03 11059.96 
79 50 17 611.98 19603.04 
80 50 33 612.07 21106.27 
81 50 50 616.25 22909.07 
82 150 17 613.88 2664.91 
83 150 33 618.07 3490.25 
84 150 50 614.88 4394.40 
85 100 17 615.54 8759.66 
86 100 33 614.28 9741.07 
87 100 50 617.13 11278.83 
88 50 17 616.91 20033.73 
89 50 33 612.06 20701.57 
90 50 50 615.17 22515.49 
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 APPENDIX C: MATLAB CODE 
 
%Job Set Matrix is created with 500 jobsets each set containing 10 jobs. 
%Created by------SMITHA VARGHESE----DEPT OF MANAGEMENT SCIENCES 
%Each job has the following attributes: 
%Quantity Base: The number of items in each batch  
%Due time: This gives the due time and is randomly generated using schedule hardness 
%Setup cost: 10 units 
%Setuptime: 10 units 
%Time/Piece: 1 unit 
%dollarpertimeunit =1 unit 
%Dollar/Scrap:1 unit per piece 
%Jobweight:weight associated with each job 
%Yield: 5%-10% 
 
function varargout = splitmatrix(duedatemean, duedatestd,  jobsensitivityofA, jobsensitivityofB) 
setuptime= 10; 
timeperpiece=1; 
jobsensitivity(1,1)=jobsensitivityofA; 
jobsensitivity(1,2)=jobsensitivityofB; 
 
%Create random number series with different seeds 
%randn functions generates normal random numbers. 
%rand function generates uniform random numbers. 
%Different seed numbers are used for each of the stochastic 
%variables so that random numbers are generated from different 
%streams thus causing less bias in the outcome. 
 
%Random numbers for base quantity. 
randn(‘seed’,1); 
 
for i=1:500 
for j=1:10 
basequantity(i,j)=normrnd(100,10); 
end 
end 
 
%Random numbers for due time 
randn(‘seed’,2); 
 
for i=1:500 
for j=1:10 
duetime(i,j)=normrnd(duedatemean,duedatestd); 
end 
end 
 
%Random numbers for yieldloss 
rand(‘seed’,1); 
 
for i=1:500 
for j=1:10 
yieldloss(i,j)=unifrnd(.05,.10); 
end 
end 
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%Random numbers for jobweight 
randn(‘seed’,3); 
 
for i=1:500 
for j=1:10 
jobweight(i,j)=normrnd(40,10); 
end 
end 
 
%Random numbers to determine product types 
rand(‘seed’,4); 
 
for i=1:500 
for j=1:10 
uniformrandom(i,j)=unifrnd(0,1); 
end 
end 
     
%creating a jobsets with specified parameters 
for i=1:500 
     
for j =1:10 
     
% Determining the product type in the current batch when there are two types of products 
 
if (uniformrandom(i,j) <= 0.5) 
product=1; 
 
else 
product=2; 
end 
     
    
WSPTpar(i,j)=(setuptime+(basequantity(i,j)*timeperpiece))/jobweight(i,j); %Parameter for WSPT rules 
jobsets(i,j)={[basequantity(i,j) duetime(i,j) yieldloss(i,j) jobweight(i,j) WSPTpar(i,j) product]}; %Matrix of 
jobs 
end  
%Scheduling jobsets according to WSPT rule 
WSPTparSort = sort(WSPTpar,2); 

for k=1:10 
m=1;  
for m=1:10 
% Ordering jobs in ascending order according to WSPT if jobsets{i,m}(1,5)==WSPTparSort(i,k)            

jobsetsWSPT{i,k}=jobsets{i,m}; %Matrix of schduled jobs 
end 
end 
end 
end  
 
% Creating matrix with splits done in half 
 
for i= 1:500 
k=1; 
%initialing product flag 
jobflag=char(‘F’,’F’); 



 107 

     
for j=1:10 

producttype= jobsetsWSPT{i,j}(1,6); 

if (jobsensitivity(1,producttype)==1) & (jobflag(producttype)==’F’) 

jobsplit{i,k}=jobsetsWSPT{i,j}; 
jobsplit{i,k}(1,1)=jobsetsWSPT{i,j}(1,1)*0.10; 
jobsplit1{i,k}=jobsetsWSPT{i,j}; 
jobsplit1{i,k}(1,1)=jobsetsWSPT{i,j}(1,1)*0.10; 
jobsplit{i,k+1}=jobsetsWSPT{i,j}; 
jobsplit{i,k+1}(1,1)=jobsetsWSPT{i,j}(1,1); 
jobsplit1{i,k+1}=jobsetsWSPT{i,j}; 
jobsplit1{i,k+1}(1,1)=jobsetsWSPT{i,j}(1,1)*0.90; 
k=k+2; 
jobflag(producttype)=’T’; 
         
else 
jobsplit{i,k}=jobsetsWSPT{i,j}; 
jobsplit1{i,k}=jobsetsWSPT{i,j}; 
k=k+1; 
         
end 

end 
NumberofJobs(i)=k-1; 
end 
varargout(1)={jobsetsWSPT}; 
varargout(2)={jobsplit}; 
varargout(3)={jobsplit1}; 
varargout(4)={NumberofJobs}; 
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%Simulation Model that runs the 4 experimental cases under different 
scenarios. 
%Created by------SMITHA VARGHESE----DEPT OF MANAGEMENT 
SCIENCES 
 
% Reading in the scenario files 
BASECASE=dlmread(‘BASECASESCENARIOS.txt’,’ ‘,0,0); 
for q=1:243 
duedatemean=BASECASE(q,2); 
duedatestd=BASECASE(q,3); 
N=BASECASE(q,4); 
probofprod1=BASECASE(q,5); 
probofprod2=BASECASE(q,6); 
jobsensitivity(1,1)=BASECASE(q,7); 
jobsensitivity(1,2)=BASECASE(q,8); 
MagOfRisk=BASECASE(q,9); 
 
% Calling the jobmatrix 
[Job1,Job2,Job3,numberofjobs]=splitmatrix(duedatemean,duedatestd,probofprod1,probofprod2,jobsensitivi
ty(1,1),jobsensitivity(1,2)); 
% Experiment paramters 
setupcost = 10; 
setuptime = 10; 
timeperpiece= 1; 
dollarpertime= 1; 
costperpiece= 1; 
dollarperscrap= 1; 
 
 
%Simulate jobsets and keep track of time. 
for i=1:500 
t1=0; % Initializing time for the jobset 
TotJobsetCost1=0; %Initiating cost for the jobset 
TotWeightedTardiness1=0; %Initiating total tardiness cost for jobset 
     
t2=0; % Initializing time for the jobset 
TotJobsetCost2=0; %Initiating cost for the jobset 
TotWeightedTardiness2=0; %Initiating total tardiness cost for jobset 
     
t3=0; % Initializing time for the jobset 
TotJobsetCost3=0; %Initiating cost for the jobset 
TotWeightedTardiness3=0; %Initiating total tardiness cost for jobset 
     
t4=0; % Initializing time for the jobset 
TotJobsetCost4=0; %Initiating cost for the jobset 
TotWeightedTardiness4=0; %Initiating total tardiness cost for jobset 
     
% NO SPLIT SCENARIO 

%initialing product flag 
jobflag=char(‘F’,’F’); 
     
for j=1:10 
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ProcessingTime1=setuptime+Job1{i,j}(1,1)*timeperpiece; %CompletionTime of Job 
t1=t1+ProcessingTime1; %Advancing the timer t4=t4+ProcessingTime1; 

SlackTime1=max(0,Job1{i,j}(1,2)-t1); %Calculate Slack Time 

totsetupcost1=setupcost+setuptime*dollarpertime; %Total setup cost for batch 

totprocessingcost1=Job1{i,j}(1,1)*timeperpiece*dollarpertime+Job1{i,j}(1,1)*costperpiece; %total 
processing cost for batch 
totwaste1=Job1{i,j}(1,1)*Job1{i,j}(1,3)*dollarperscrap; %money lost due to yield loss 

CostofJob4=totsetupcost1+totprocessingcost1+totwaste1; %Total cost associated with the batch 
WeightedTardiness4=max(0,t4-Job1{i,j}(1,2))*Job1{i,j}(1,4); %weighted tardiness 

 
CostofJob1=totsetupcost1+totprocessingcost1+totwaste1; %Total cost associated with the batch 
WeightedTardiness1=max(0,t1-Job1{i,j}(1,2))*Job1{i,j}(1,4); %weighted tardiness 

 

% No Disruption 

TotJobsetCost4=TotJobsetCost4+CostofJob4; 

TotWeightedTardiness4=TotWeightedTardiness4+WeightedTardiness4; 

     
%Disruption occurence 

producttype= Job1{i,j}(1,6); 

if jobsensitivity(1,producttype)==1 & jobflag(producttype)==’F’ 

CostofJob1=CostofJob1+(Job1{i,j}(1,1)-(Job1{i,j}(1,1)*Job1{i,j}(1,3)))*MagOfRisk*dollarperscrap... 
+setupcost+setuptime*dollarpertime+Job1{i,j}(1,1)*MagOfRisk*timeperpiece*dollarpertime... 
+Job1{i,j}(1,1)*MagOfRisk*costperpiece; 

t1=t1+setuptime+(Job1{i,j}(1,1)-(Job1{i,j}(1,1)*Job1{i,j}(1,3)))*MagOfRisk*timeperpiece; 
WeightedTardiness1=WeightedTardiness1+max(0,t1-Job1{i,j}(1,2))*Job1{i,j}(1,4); 
jobflag(producttype)=’T’; 
Job1{i,j}(1,7)=1; 
else 
Job1{i,j}(1,7)=0; 
end 
Job1{i,j}(1,8)=CostofJob1; 

TotJobsetCost1=TotJobsetCost1+CostofJob1; 

TotWeightedTardiness1=TotWeightedTardiness1+WeightedTardiness1; 

end 

% SPLIT SCENARIO 

%initialing product flag 
jobflag=char(‘F’,’F’); 
     
for j=1:numberofjobs(i) 

ProcessingTime2=setuptime+Job2{i,j}(1,1)*timeperpiece; %CompletionTime of Job 
t2=t2+ProcessingTime2; %Advancing the timer 
SlackTime2=max(0,Job2{i,j}(1,2)-t2); %Calculate Slack Time 
totsetupcost2=setupcost+setuptime*dollarpertime; %Total setup cost for batch 
totprocessingcost2=Job2{i,j}(1,1)*timeperpiece*dollarpertime+Job2{i,j}(1,1)*costperpiece; %total 
processing cost for batch 
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totwaste2=Job2{i,j}(1,1)*Job2{i,j}(1,3)*dollarperscrap; %money lost due to yield loss 

CostofJob2=totsetupcost2+totprocessingcost2+totwaste2; %Total cost associated with the batch 
WeightedTardiness2=max(0,t2-Job2{i,j}(1,2))*Job2{i,j}(1,4); %weighted tardiness 

ProcessingTime3=setuptime+Job3{i,j}(1,1)*timeperpiece; %CompletionTime of Job 
t3=t3+ProcessingTime3; %Advancing the timer 
SlackTime3=max(0,Job3{i,j}(1,2)-t3); %Calculate Slack Time 
totsetupcost3=setupcost+setuptime*dollarpertime; %Total setup cost for batch 
totprocessingcost3=Job3{i,j}(1,1)*timeperpiece*dollarpertime+Job3{i,j}(1,1)*costperpiece; %total 
processing cost for batch 
totwaste3=Job3{i,j}(1,1)*Job3{i,j}(1,3)*dollarperscrap; %money lost due to yield loss 

CostofJob3=totsetupcost3+totprocessingcost3+totwaste3; %Total cost associated with the batch 
WeightedTardiness3=max(0,t3-Job3{i,j}(1,2))*Job3{i,j}(1,4); %weighted tardiness 

%Disruption occurence 

producttype= Job2{i,j}(1,6); 

if jobsensitivity(1,producttype)==1 & jobflag(producttype)==’F’ 

CostofJob2=CostofJob2+(Job2{i,j}(1,1)-(Job2{i,j}(1,1)*Job2{i,j}(1,3)))*MagOfRisk*dollarperscrap; 
jobflag(producttype)=’T’; 

end 

    
TotJobsetCost2=TotJobsetCost2+CostofJob2; 

TotWeightedTardiness2=TotWeightedTardiness2+WeightedTardiness2; 

TotJobsetCost3=TotJobsetCost3+CostofJob3; 

TotWeightedTardiness3=TotWeightedTardiness3+WeightedTardiness3; 

end 

JobsetInfo1(i)={[TotJobsetCost1 TotWeightedTardiness1]}; 
JobsetInfo2(i)={[TotJobsetCost2 TotWeightedTardiness2]}; 
JobsetInfo3(i)={[TotJobsetCost3 TotWeightedTardiness3]}; 
JobsetInfo4(i)={[TotJobsetCost4 TotWeightedTardiness4]}; 
end 
%OutPut 
for i=1:500 
CostVector1(i)=JobsetInfo1{i}(1,1); 
WeightedTardinessVector1(i)=JobsetInfo1{i}(1,2); 
     
CostVector2(i)=JobsetInfo2{i}(1,1); 
WeightedTardinessVector2(i)=JobsetInfo2{i}(1,2); 
     
CostVector3(i)=JobsetInfo3{i}(1,1); 
WeightedTardinessVector3(i)=JobsetInfo3{i}(1,2); 
     
CostVector4(i)=JobsetInfo4{i}(1,1); 
WeightedTardinessVector4(i)=JobsetInfo4{i}(1,2); 
end 
% no disruption, no split 
MeanCost4=mean(CostVector4); 
MeanWT4=mean(WeightedTardinessVector4); 
 
%disruption, no split 
MeanCost1=mean(CostVector1); 
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MeanWT1=mean(WeightedTardinessVector1); 
 
%disruption, split 
MeanCost2=mean(CostVector2); 
MeanWT2=mean(WeightedTardinessVector2); 
 
%no disruption, split 
MeanCost3=mean(CostVector3); 
MeanWT3=mean(WeightedTardinessVector3); 
 
runsummary1(q,1)=q; 
runsummary1(q,2)=MeanCost4; 
runsummary1(q,3)=MeanWT4; 
 
 
runsummary2(q,1)=q; 
runsummary2(q,2)=MeanCost1; 
runsummary2(q,3)=MeanWT1; 
 
 
runsummary3(q,1)=q; 
runsummary3(q,2)=MeanCost2; 
runsummary3(q,3)=MeanWT2; 
 
runsummary4(q,1)=q; 
runsummary4(q,2)=MeanCost3; 
runsummary4(q,3)=MeanWT3; 
 
end 
 
dlmwrite(‘NODISRUPTIONNOSPLIT’,runsummary1,’\t’); 
dlmwrite(‘DISRUPTIONNOSPLIT’,runsummary2,’\t’); 
dlmwrite(‘DISRUPTIONSPLIT’,runsummary3,’\t’); 
dlmwrite(‘NODISRUPTIONSPLIT’,runsummary4,’\t’); 
 
meancost1=mean(runsummary1(q,2)) 
meanWT1=mean(runsummary1(q,3)) 
meancost2=mean(runsummary2(q,2)) 
meanWT2=mean(runsummary2(q,3)) 
meancost3=mean(runsummary3(q,2)) 
meanWT3=mean(runsummary3(q,3)) 
meancost4=mean(runsummary4(q,2)) 
meanWT4=mean(runsummary4(q,3)) 
 
 


