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Abstract

Content-based image retrieval (CBIR) has been one of the most active areas in medical

image analysis in the last two decades because of the steadily increase in the number

of digital images used. Efficient diagnosis and treatment planning can be supported by

developing retrieval systems to provide high-quality healthcare. Extensive research has

attempted to improve the image retrieval efficiency. The critical factors when searching

in large databases are time and storage requirements. In general, although many methods

have been suggested to increase accuracy, fast retrieval has been rather sporadically in-

vestigated. In this thesis, two different approaches are proposed to reduce both time and

space requirements for medical image retrieval. The IRMA data set is used to validate

the proposed methods. Both methods utilized Local Binary Pattern (LBP) histogram fea-

tures which are extracted from 14,410 X-ray images of IRMA dataset. The first method is

image folding that operates based on salient regions in an image. Saliency is determined

by a context-aware saliency algorithm which includes folding the image. After the fold-

ing process, the reduced image area is used to extract multi-block and multi-scale LBP

features and to classify these features by multi-class Support vector machine (SVM). The

other method consists of classification and distance-based feature similarity. Images are

firstly classified into general classes by utilizing LBP features. Subsequently, the retrieval

is performed within the class to locate the most similar images. Between the retrieval and

classification processes, LBP features are eliminated by employing the error histogram of

a shallow (n/p/n) autoencoder to quantify the retrieval relevance of image blocks. If the

region is relevant, the autoencoder gives large error for its decoding. Hence, via examining

the autoencoder error of image blocks, irrelevant regions can be detected and eliminated. In

order to calculate similarity within general classes, the distance between the LBP features

of relevant regions is calculated. The results show that the retrieval time can be reduced,
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and the storage requirements can be lowered without significant decrease in accuracy.
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Chapter 1

Introduction

With rapid growth of computer technologies, digitized information has gained tremendous

interest for more than two decades. Since the steadily increasing amount of information

has been made easily accessible through digital media, navigation and retrieving accurate

and relevant information from big data has become one of the most important problems in

information technology. Images are utilized in many application fields such as biomedicine,

crime prevention, architecture, engineering, military, commerce, education and entertain-

ment. Imaging provides important support in these areas. Especially in medicine, imaging

constitutes a very fast and non-invasive method for diagnosis, treatment and monitoring

of different disease. The digitization of images comes into prominence because of benefits

in many areas. For instance, people can easily have a collection of hundreds or thousands

of images stored on a personal computer. Most of the images may never be displayed

again, but we frequently search for some of them in order to set them as a computer screen

wallpaper, email them to a friend or print them. This kind of search may be performed

manually, which is difficult in a larger collection of images. At this point, image retrieval
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can be an effective choice to handle large collection of medical image data. In order to

find and access relevant images in a medical database, efficient navigation and retrieval

methods are indispensable. There are two kinds of medical image retrieval systems, namely

text-based and content-based methods.

1.1 Text-based Image Retrieval

In text-based retrieval, images are labeled by taking advantage of keywords, classification

codes or subject heading to search and retrieve images. Using these textual labels, retrieval

can be easily and quickly applied. However, there is no understandably no general query

pattern in text-based retrieval as different users query via different keywords for the same

images. Another problem is that it requires sophisticated techniques and/or tremendous

effort to annotate all images with descriptive metadata. As well, this method cannot

prevent incorrect or missing results based on mistakenly labeled images. Finally, the

spatial information in digital images can rarely be accurately and completely described

in textual annotations. This may be impossible for many image categories.

1.2 Content-based Image Retrieval

In the Content-Based Image Retrieval (CBIR) technique, image contents are used to search

and retrieve digital images. This technique is introduced to address the problems associ-

ated with text-based image retrieval. CBIR is generally a combination of techniques for

retrieving relevant images based on automatically derived image features [1]. The main

purpose of CBIR is to index and retrieve images efficiently to reduce the need for (auto-

mated and manual) annotations in the indexing process. Although CBIR systems differ in
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details, the general concepts are rather similar. Extracting features of every image based

on the image content and defining comparison rules for images are the main stages in

CBIR. Image features represent the image used to measure similarity with other images in

the database.

1.2.1 Feature extraction

Feature extraction is the first step in an image retrieval system. The main intention in

extracting features is to create high-level descriptions from low-level data. Recent medical

image retrieval systems are implemented with visual features, such as color, shape, texture,

and other spatial characteristics. Visual features can be classified into low level, middle

level and high level features. Almost all early systems were based on low level features

that capture some image characteristics (color, shape). Recently, both mid-level (e.g.

bagging approach) and high-level (semantics) image representations have emerged. General

visual features are preferred in most CBIR systems, because they are independent of prior

information and efficient in terms of computation [2]. The efficiency of a CBIR system relies

on the quality of extracted features. If the features do not represent the image content

effectively, similar images can hardly be retrieved. The features can be represented as

symbolic and numeric data with vectors or graphs. These features can be extracted from

the whole image (globally) or from regions of the image (locally).

Global features

Global features have had common usage as image descriptors since the beginning of CBIR.

In [3], global features are extracted to obtain image semantics such as color histograms as

color features, coarseness and direction as texture features and circularity and eccentricity
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as shape features. These features are derived globally from the whole image. In the global

representation of image, features cannot efficiently work for some semantically meaningful

conditions such as scale and position. In other words, image retrieval using global features

often gives ineffective results because of failure to capture semantic information within

the image. For instance, global average of color in an image which has two cars with

different color (yellow and red), is orange. This global representation does not describe

exactly semantic meaning of the image. Another simple example of global features is a

histogram. However, histograms do not contain information about location, shape and

texture. Additionally, their results are sensitive to intensity, distortions and cropping [4].

There are some methods that combine two types of global features (texture and color) in

order to retrieve images more precisely [5]. The retrieval for both features can be applied

separately. However, the texture features are also extracted globally from the image and

they cannot provide accurate description of the image in all cases. Although gist and scale

invariant feature transform (sift) methods are commonly used global feature extraction

methods in recent works [6], they need more complex function, computational time and

feature storage areas comparing with low-level feature extraction methods.

Local features

Retrieval systems using local features have been developed to overcome limitations of global

features. Local features represent images as collections of regions that consist of objects

such as cars, eyes, flowers and humans. A key step in such an image retrieval system is

a robust region detector algorithm [7]. The system takes an input image and separates

regions by clustering pixels of this image that are similar. Each object in the image can

be described by these local features [8]. The retrieval system should have the ability of

identification of objects in the image in order to retrieve similar images in different location
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or size. Some retrieval system examples which utilize local features are the Natra [9] and

the Blobworld [10]. These two systems search based on regions of images. They require

professional user guidance. For example, an user should provide segmented regions of the

image and should select the types of features to compare. For this reason, the system result

is highly influenced by the user. Another retrieval model is WALRUS [11], which is a robust

model for scaling and translation of objects within an image. As a first step, an image is

decomposed into local regions and then the similarity measure between two images can be

defined by matching regions. The authors proposed a method that iteratively chooses the

best pair of matching maximum area regions. R* three is cluster-based approach which

is used to segment images into areas with the aim to increase efficiency of the system

[12]. Moreover, in another image retrieval method [13], low-level features such as color,

texture, and edge density are derived locally. A greedy region matching method is applied

to reduce computational time. In this method, there is a threshold value in similarity

detection. If the distance is more than threshold value, the region in the target image is

automatically eliminated. While the aforementioned methods exemplify only comparison

applied to a local region of an image and a local region of a target image, Integrated Region

Matching (IRM) [14] compares similarity between a local area of an image and several local

areas of target image. This measurement gives many relationships between images, and

weighted summation of distances can define similarity. The Fuzzy Club [15] is another

local feature-based retrieval method that combines color, texture and shape information.

Firstly, theimage is divided by blocks and these local regions are reformed by unsupervised

clustering. A color histogram is represented by fuzzy logic. Then color, texture and shape

features are extracted. The second clustering is applied to features. Next, the distance

and centroid of the regions’ classes are described. Finally, the query only compares the

candidate images that have regions in same classes. All these local-based methods are
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strongly dependent on the segmentation results. In other words, if an error happens in

segmentation or clustering part, the retrieval system can collapse.

1.2.2 Similarity measurement

After feature extraction, the similarity measurement begins. The similarity methods cal-

culate the similarity of two images in terms of various features such as color, texture, shape

etc. Then, search results are sorted with respect to their measured value of distance. The

shorter distances correspond to higher similarity. There are many similarity measurement

methods that have been used for image retrieval. Image features and descriptor selec-

tion and their representation methods directly affect the choice of similarity measurement

method. Metrics on vector spaces (e.g., the Euclidean distance, the city-block-distance

and the Minkowsky distance) are the most commonly implemented methods to calculate

similarities due to their computational simplicity for linear searching.

Each visual feature set is usually stored in a high dimensional vector. In general, the

dimension of feature vector space within similarity measurements is reduced for efficiency.

For this purpose, principal component analysis (PCA) [16] or minimum description length

(MDL) [17] can be applied. The concept of these reduction methods is to keep crucial

information while reducing the size of the feature space. Some tree-based techniques, such

as KD-trees [18] and R-trees [19], are also utilized for easy access to large feature vector

space in CBIR systems. Furthermore, statistical methods can be trained to compare

features. Some examples are neural networks [20], Bayesian networks [21] and Hidden

Markov Models (HMMs) [22]. Different strategies have been developed to use various

modalities in searching for CBIR, such as constrained hierarchies or classes, early fusion

and fusion [23]. While the search process is restricted with some hierarchies or classes in
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constrained methods, all images are searched in both early and late fusion methods. Using

constrained method speeds up the retrieval process. Performing search within a local area

(a certain class) or based on a hierarchical order takes less time than searching in the entire

dataset. This method provides advantages especially for huge datasets [24]. However, if

the class or hierarchy estimate fails, the system cannot work effectively.

1.3 Thesis Motivations

In order to discuss possible methodological developments and to benefit from them clini-

cally, understanding the needs of CBIR in medical imaging is essential. The main purpose

of a medical information system is to acquire information to provide efficient and high-

quality healthcare. Retrieving similar images of the same modality from the same anatomic

region can support the radiologist to diagnose the disease more confidently. In [25], ex-

perimental results prove clinical benefit of image retrieval systems. Visual features can be

utilized with aim of improving diagnostics, teaching and research in medicine. In the med-

ical educational domain, lecturers and students can use retrieval systems as an educational

and training tool.

The most crucial problems in CBIR are related to metadata and semantic gap. Meta-

data are data types that consist of text information describing the visual information.

Conceptually, if the content of an image is described by the text in metadata, the sys-

tem could retrieve the images effectively using some text search algorithms. However,

text-based systems are limited in practice. Moreover, the manual creation of meaningful

metadata is a tedious task and impractical. On the other hand, automatic metadata sys-

tems are still unreliable, because images cannot be represented properly and descriptively.

This representation problem of converting the low-level information into high-level infor-
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mation of the image content is known as the semantic gap [26]. The semantic gap means

’the lack of matching between the retrieval information and real semantics’ [27]. On the

other hand, the computational load, when large image collections are managed, is most

of the time not manageable or possible [23]. For these reasons, the design and develop-

ment of efficient CBIR systems are still of interest. Speeding up the retrieval process with

extending capability of database storage is clearly on demand in a medical setting.

1.4 Thesis Objectives and Contributions

The aim of this thesis is to propose a new CBIR system by reducing the overall retrieval time

and storage requirements. The system first divides images into regions that correspond to

blocks. Texture features are then extracted from each image block to which the proposed

algorithms applied. The contributions of this work can be stated as follows:

1. Salient texture features are extracted from sub-block regions using local binary patterns.

Instead of using a segmentation process, the salient region is detected by a context-aware

algorithm and data is folded according to this salient region. In this manner, computational

complexity and retrieval time are reduced.

2. Most systems compare the query image with every target image in the database to find

the top matching images. The linear search is inefficient when the database is large. It

is not necessary to search the entire database. In fact, it is possible to restrict a priori

information regarding the general classes of images in the database in the feature space

before a query is put forward. Only a part of the database needs to be searched, while

a large portion of the database may be eliminated from the search. This certainly saves

significant query processing time without compromising the retrieval precision.

3. To further increase the performance of the system, block (region) feature elimination
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in retrieval is applied via using autoencoders. This thesis proposes a search algorithm

that uses the same texture features from the divided blocks of the image to compute the

distance between two images. This algorithm combines classification and the region-based

searching algorithms that eliminate features using autoencoders. This way, the search

area, the feature dimension, and hence the search time are reduced. Results illustrate that

the system developed in this thesis significantly improves the overall retrieval efficiency

compared to the existing systems.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 summarizes some of the related

work on CBIR and other primary research issues. In Chapter 3, an overview of the pro-

posed CBIR systems, their principles, and techniques used for feature extraction, similarity

measure, and indexing structures are described. The second implemented region-based re-

trieval systems with auto-encoder is also introduced in Chapter 3. Finally, Chapter 4

concludes with summary of the work and some suggestions for future work.
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Chapter 2

Literature Review and Background

2.1 Literature Review

2.1.1 CBIR systems

CBIR systems can retrieve, manage and navigate huge visual data archives based on query

images selected by the user or automatically. Recent medical image retrieval systems rely

on visual features such as color, shape, texture etc. CBIR systems consist of two general

processes, which are feature extraction and similarity measurement, in order to retrieve

desired images from a huge visual database. IBM Almaden Research Center project [28]

and Chabot project [29] are pioneer studies in CBIR area. Additionally, market-based

CBIR systems have been developed such as VIRAGE [30] and NEC AMORE [31]. On

the other hand, MIT Photobook [32], Columbia VisualSEEK and WebSEEK [33], UCSB

NeTra [9] and Stanford WBIIS [34] are popular methods emerging from academia. Most

of them have been using low-level of visual features (color or texture), while Blobworld
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[10] and PicHunter [35] systems are utilizing higher level visual features ( e.g., segmented

part of image). Medical CBIR system samples are TELEMED [36], ASSERT [37], PACS

[38] , IRMA [39], CervigramFinder [40] and SPIRS [41]. TELEMED is a visualization

and segmentation tool in neurology, radiology and surgery. ASSERT (Automated Search

Selection engine with Retrieval Tools) is a CBIR system for field of computed tomography

of lung. PACS is Picture archive and Communication system which aims to integrate

image modalities with other health information systems. IRMA (Image retrieval medical

applications) is working on global medical image characteristics for retrieval process. The

CervigramFinder works with cervicographic images and is created by National Cancer

Institutes and National Library of Medicine. SPIRS (Spine Pathology and Image Retrieval

Systems) is developed by National Library of Medicine in order to retrieve X-ray images

from 17000 digitized spine radio graphs. Almost all recent CBIR systems have benefited

from visual features of images.

Visual Features

Visual features ,which are fundamental for CBIR, can be classified into three levels. These

are low-level features (primitive), middle-level features (logical) and high-level features

(abstract). Early systems are based on low level features which represent characteristics

of images (color or shape), but currently, middle and high-level image representations are

grabbing attention. Middle-level features are obtained from particular parts of the image

such as sub-image [42], important regions [43], and segmented and important details [44].

These features can be described with hierarchical [45] or graphical structure in order to

improve retrieval results. Multiple learning and the bagging approach [46] represent images

with visual words. Moreover, a review [47] describes the visual words which are related with

dictionaries or the bag of visual words concept. High-level features are defined via semantic
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design. Semantic design can be visual or textual. In the WordNet [48], link annotations

are used for image concepts. Although color and texture features are defined as low-level

features, they can be related to middle-level according to their extraction process. The

methods utilizing color, texture and local features are investigated in following paragraphs

because of their widespread usage in CBIR and also their relationship to the proposed

algorithm.

Color is one of the most important low-level features of images. These features are

measured based upon a particular color model or space. RGB, LUV, HSV and HMMD [49]

are basic color models in the literature. Common color feature extracting methods are color

histogram, color moments [50], color coherence vector [51] and color correlogram [52] etc.

Moreover, dominant color descriptor, colour layout descriptor, colour structure descriptor

and scalable colour descriptor are other color features which are standardized by MPEG-7

[53]. The simplest features among them are color moments that are used in many retrieval

systems. The common color moments are mean, standard deviation and skewness. Since

moments are very generalized features, they do not contain all the color information of an

image. More specific color feature is color histogram which describes color distribution of

an image [28]. In other words, color space is sampled into different bins and each color bin

is defined based on frequency of pixels. Being independent from changes in resolution and

rotations is a special advantage of the histogram method. Additionally, being simple to

implement, efficient to compute and the low space requirement are some other advantages

why histograms are common in CBIR [54]. Nevertheless, possible assignments for similar

color intensities to different bins and the absence of any spatial information are the main

disadvantages of using histograms [55]. To overcome these problems, partition-based his-

tograms that contain spatial information by splitting the image into multiple partitions and

calculating local histograms have also been developed [55]. Moreover, to solve the spatial
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information problem in a histogram, the color coherence vectors (CCV) method has been

proposed [55]. It investigates similar color regions in the image and counts the number of

pixels in these regions. The method compares the number of pixels in the region with a

threshold and classifies them as coherent or incoherent. For this reason, performance of

CCV is usually better than a color histogram, but CCV is more complex. In this method,

some spatial information is still missed. Determination of a threshold poses a potential

problem as well. Another method is the color correlogram which is supposed to extract

both color and spatial information from an image [52]. The method processes pixel posi-

tion, intensity, probability of intensity and distance. A color correlogram is a gray level

co-occurrence matrix (GLCM) with the color. A color correlogram is a combination of the

2D colors of any pixel pair and their spatial distance [52]. Therefore, complexity of the

color correlogram is much more than complexity of the CCV and histogram because of high

dimensionality and multiple matrix processing. Another histogram-based descriptor is the

scalable color descriptor (SCD). The scalability issue distinguishes SCD from the regular

histogram. Reducing the number of color bins by the Haar transform and removing some

least significant bits from the quantized representations of the bin values are two methods

for scalability. However, SCD has a similar problem as the conventional histogram which

is missing spatial information. Color structure descriptor (CSD) also relies on a histogram

[56]. The CSD is made while a structuring element is moving through the image. The

window size is important for accuracy, and it is more complex than SCD. Dominant color

descriptor (DCD) is also a type of histogram-based method [57]. A selected threshold

applied to the bins and a dominant color bin is defined. This method is more accurate

compared with the conventional histogram, but it loses efficiency in dissimilarity mea-

surement. In summary, color moments are insufficient to represent the regions among all

different kinds of color features. CCV, color correlogram and CSD perform well for image
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representation, but they all have high computational complexity.

Texture is also one of the low-level image features that has common use in CBIR. While

color features have been calculated by a pixel property, texture features are measured by

using a group of pixels. In both image retrieval and semantic learning approaches, texture

features are attractive to apply. In order to calculate texture features, various techniques

have been proposed. These techniques can be grouped in two classes, spatial and spectral

feature extraction. Pixel statistics and local pixel structures are measured as texture

features in the spatial method. Texture extraction methods can be classified into three

classes which are statistical, structural and model-based. The statistical texture method

relies on low-level statistics of gray level images. Moments [58], Tamura texture features

[59] and gray level co-occurrence matrix features [60] are regraded as statistical features in

the spatial domain. Texture primitives and their placement rules [61] are used to extract

structural features. Furthermore, Local Binary Patterns (LBPs) have been implemented

originally to describe texture of the images [62]. LBP is a practical method to quantify

color textures by utilizing patterns of local neighborhoods. LBP features have been used

in various applications for texture classification [63]. LBP is widely considered as the state

of the art texture descriptor because of low computational complexity and its invariance

to changes in resolution. For model-based methods, random or generative models are

applied in order to produce texture features. Markov random field [64], simultaneous auto

regressive model [8] and fractal dimension [65] are some sample methods for texture feature

extraction methods. Their computational cost increases due to including optimization part.

Spectral features are calculated after converting images into the frequency domain. Fourier

transform (FT) [66], discrete cosine transform [67], wavelet [68], and Gabor filters [53] are

usual spectral feature extraction methods. FT and DCT give results rapidly without scale

and rotation informations. Recently, the most applicable and accurate method is Curvelet
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features [69] because it is able to successfully derive curvilinear properties [70]. The only

problem for these methods are that they only can process a square area. In [71], a method

which can transform an irregular texture region to a square texture region is proposed.

Shape features have been applied to retrieve images. Shape extraction can be classified

into two groups which are contour-based and region-based methods. The boundary of the

shape is of interest for contour-based methods, while the entire region is important for

region-based methods. The contour-based method is more sensitive to noise with respect

to area of interest. For this reason, the previous methods in image retrieval are generally

region-based. Area, moment, circularity and eccentricity are common shape descriptors.

In [72], the area method is performed. The work presented in [73] uses both eccentricity,

elongation and area description methods. Eccentricity refers to the ratio of the major axis

length to the minor axis length. The combination of many shape extraction methods has

broad usage in order to design robust methods for image retrieval.

2.1.2 Similarity Metrics

Image distance measures are used to compare two images in CBIR in terms of features

such as color, texture and shape. Then, search results are arranged with respect to their

distance (similarity) to the query image. Intuitively, shorter distances refer to higher simi-

larity. There are various kinds of similarity measurement methods that have been used for

image retrieval. Image feature extraction, descriptor type and feature representation di-

rectly affect to distance metric selection. Metrics can be defined by vector spaces. Metrics

on vector spaces such as Euclidean distance, city-block-distance and Minkowsky distance

are commonly used similarity measurement methods, because their computational com-

plexity is low. In addition, Earth Movers Distance (EMD) [74] introduces a solution by
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computing an optimal agreement between the two multidimensional histograms. Another

approach to calculate similarity is the graph-based technique, which is capable of represent-

ing both local color, texture, shape features and spatial distribution of region [75]. Graph

matching refers to a special class of similarity measurement that is only applicable when

the image content is represented by a graph [76]. A graph can illustrate both similarity

and dissimilarity. In [77], the Blobworld approach [10], which is a type of graph-based

descriptor, is applied. The similarity between the query and database images is calculated

by matching the graph scheme [78]. Another method is classifier-based similarity mea-

surement using the classification techniques of query by predetermined labels [79]. The

statistical classifiers categorize new features by using high-level information derived from

a training set of features with known labels [79].

2.1.3 Performance evaluation

Some evaluation criteria are applied to compare descriptors. These criteria can be classified

into five groups in terms of feature extraction complexity, distance function complexity,

storage requirements, effectiveness and validation environment. A feature extraction al-

gorithm has to be fast, because the query extraction performance of descriptors directly

affects system response time. Complexity analysis gives information about performance.

The distance function of a descriptor takes too much time when a query is being processed

in the CBIR system. For this reason, distance functions are expected to be fast during

the search process. Indexing objects by a distance metric is also a crucial process. Storage

requirement is really an important issue in evaluation. From this point of view, image com-

pression techniques can help to find a way to reduce image features. For instance, dividing
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into blocks with scaling-based or wavelet-based methods has been commonly used meth-

ods to encode image with requiring smaller space [80] [81] [82] and they can also be useful

method for image retrieval feature reduction. Feature vectors representing image proper-

ties are stored by the image descriptor. The required storage space for feature vectors are

directly affected by the number of images in the database. There are many dimensionality

reduction techniques that can reduce storage size, e.g., PCA and LDA. The effectiveness

of an image retrieval system is directly dependent on relevant results. In order to measure

effectiveness in image retrieval systems, query and results should agree with each other.

Hence, ground truth data can be used. Precision and Recall are the common choices to

evaluate performance. Precision quantifies the proportion of relevant images to the re-

trieved set. Recall calculates the proportion of relevant retrieved images to all relevant

images existing in the database. If the precision value is one, that means all retrieved im-

ages are relevant. If the recall value is one, all relevant images in the database are retrieved

in the result set. When precision and recall values are both one, the system is considered

as perfect. The validation environment includes testing image data to compare image de-

scriptors. Several different evaluation measures and image databases are employed, making

it difficult to perform a meta-analysis. Evaluation methods are rarely investigated in the

literature. However, with increasing workshops where common benchmark datasets are

used, the interest seem to be growing. There are some automatic evaluation systems, such

as TREC-EVAL5, which were created by the CLEF organizers by considering top retrieval

results of all submitted runs of the participating groups, applying Mean Average Precisions

(MAP), Geometric Mean Average Precision (GMAP) and precision measurements [83].
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2.1.4 Techniques in medical CBIR

In this section, various techniques currently used or proposed for medical image retrieval

applications are described. Then, the general datasets and their evaluation techniques are

briefly reviewed. Radiology serves as the main application field here.

Nowadays, the number of medical images is rapidly increasing. It is increasingly more

complex to access and navigate these huge collections. The most important expenditures

in clinical applications are constituted by imaging systems and their archiving systems

[84]. Therefore, many methods from the computer vision and image processing fields have

already been investigated for medical purposes. Patient identification, modality and study

description [85], which are described in the DICOM standard [86], are performed to access

data. In [22], web interfaces of medical image databases are defined. The Assert [87]

system on the classification of high resolution computed tomographies of the lung [88] and

the IRMA system for the classification of images into anatomical areas, modalities, and

view points are rare samples to break away from past limited sources [89]. Recently, with

usage of multi-modality devices which have the ability to register two modalities during

the same imaging session, such as PET-CT [90] and PET-MR [91] scanners, performances

have improved. Several studies have reported the potential clinical benefits of CBIR in

clinical applications. For example, ASSERT [87] has gained improvement in the accuracy

of diagnosis made by physicians [92]. Another CBIR experiment has been applied on liver

CT providing real-time decision support [93]. An interface of a basic CBIR system retrieves

images according to their calculated similarity score. The user can control the results and

mark them as relevant or non-relevant in order to change the parameters for more effective

results.
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Features

The first medical information systems were initiated with providing only textual informa-

tion about patients [89]. Recently, because of the rapid increase in amount of medical

information and the increased accessibility to equipment for medical imaging, managing

and storing of multimedia information have become relevant. Textual information has also

been used to implement several studies in ImageCLEF medical on the same data [94]. Chu

et al. [95] proposed a method that uses text information as query input for all data. In

[96], this method was improved by contraction and combining group hierarchy approaches.

Another combination method utilized correlation between visual and text features [97].

The performance of the combined method was higher than for the individual ones. The

result was verified by different retrieval algorithms [98]. The latter use the ImageCLEF

medical dataset detailed with information, which makes textual retrieval easier than visual

retrieval. In addition to this dataset, the dataset without annotations was used in [99] and

text features, visual features and combinations of them were also compared. The research

concluded that visual features show better performance than textual features in indexing

and retrieval. In comparison between combined features and others, the results indicate

that the combination of them is more efficient in indexing, but there is no significant change

in retrieval when they are combined. Semantic textual information is used with different

kinds of information on decision trees for unsupervised classification by Quellec et al. [100].

As mentioned before, visual features are generally implemented in medical CBIR sys-

tems. Shape feature extraction methods used in medical image similarity retrieval are

generally characterized as being region-based or boundary-based [101]. The shape rep-

resents a complementary space to color and texture [102]. This shape is defined as the

probability density of a two dimensional variable using orthogonal moments [103]. Color
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is one of the widely used visual features that can provide information about the visual

content of an image. Some studies give vague description about general texture and color

or gray level features [104]. Histogram samples that describe color and gray level features

are explained in [105]. Local and global gray level features have been processed in [106].

Moreover, in [77] and [107] experiments are based on statistical distributions of gray levels

to classify medical images and [108] uses a brightness histogram. Because medical images

do not contain color, brightness calculations may be needed. If pathology images are nor-

malized, they can be shown in different colors [109]. Also, texture and shape features play

an important role for CBIR in the medical domain. To detect texture features, various edge

detection methods have been performed, such as Canny [110] and Sobel [111]. Shape de-

tection with Fourier filter [112], moments [113], co-occurrence matrices [114], Gabor filters

[106], wavelets [114] and Markov models [112] methods have been frequently implemented

in CBIR to extract texture features. Density is an important factor in mammography to

find nodules within the breast [115]. The essential process in feature detection is segmen-

tation and it is applied in many studies by different methods. In [116], segmentation is

implemented for pathological images. Moreover, some basic morphological features are pro-

cessed and the pattern spectrum is defined in [117]. The use of eigenimages for the retrieval

of medical images in analogy to Eigenfaces for face recognition, is proposed in [118]. These

features can help to easily retrieve images with histogram intersection method. Similar

to general CBIR, semantic features are proposed for visual similarity queries with medical

images [119]. In [120], decision forest tree method has been applied on different medical

images with sub-windowing technique. Also, randomized trees are utilized by extracting

gray level features from medical images for retrieval, classification, interest point detection

and segmentation purposes [120]. A project for automatically attaching semantic labels

to images or regions is described in [105]. As a result of these studies, performance has
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been increased by combining textual and visual features or content and context of images,

respectively.

Datasets

Medical content-based image retrieval studies are generally utilized for private datasets [37].

Using large publicly available datasets with ground truth facilitates benchmarking of CBIR

methods. Several publicly available dataset are listed in the following. The ImageCLEF

in the medical domain between 2005 and 2007 provide over 66,000 medical images [121].

These images consist of radiology, pathology, endoscopic, and nuclear medicine images. For

the medical task of the ImageCLEF in 2013, over 300,000 images containing MR, CT, PET,

ultrasound, and multi modalities in one image from the National Library of Medicine can

be classified and retrieved with various methods. Another publicly accessible dataset is the

PEIR Digital Library [122], which includes pathology images for educational purposes with

text descriptions. These text descriptions can be used as ground truth. Furthermore, a

chain study was performed over a 30 year period to illustrate health trends in USA, named

the National Health and Nutrition Examination Surveys (NHANES) [123]. Only part of

the dataset is publicly available and it consists of spine, hand and knee X-ray images.

The Cancer Imaging Archive (TCIA) [124] has large image collections, which are built

up for different specific purposes, e.g., the Lung Imaging Database Consortium (LIDC)

of chest CT and X-rays [125]. Lastly, the VISCERAL project [126] is a new initiative

with the purpose of providing 10 TB medical image data both for research and validation.

The VISCERAL dataset should have two annotation standards; a gold corpus (experts

annotation) and a silver corpus (participants consensus annotation). As of 2014, the plan

is to provide retrieval benchmarks with larger dataset with weak label.
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Medical Image Retrieval for Radiology

While general descriptors (color, texture, histograms) are frequently encountered features

in all CBIR systems, they are also mostly applied in radiology. Vector distance similarity

analyses are preferred in [79]. Furthermore, high dimensional feature vector spaces or

with statistical classifiers are implemented in [127]. On the other hand, mixed descriptors

are created by a combination of general descriptors and annotations [128]. Annotations

help to fill the semantic gap in CBIR systems. For instance in [128], the system relies

on an annotation tool in order to narrow the search area in the database. The other

descriptor type is a specialized descriptor which exploits the interrelations between feature

sets based on domain knowledge. For example in [37], the system retrieves pathology

bearing regions in lung CT images with a human in the loop approach. Some examples of

medical similarity measurement methods are the feature-vector distance matching method

[77], graph matching method [129] and statistical classification [79] .

2.2 Background

Before description of the proposed methods, some established methods are explained as

background.

2.2.1 Local Binary Patterns (LBP)

LBP features are utilized for texture description [130]. LBP is a practical method to mea-

sure gray-scale invariant texture features of images in local neighborhoods. The basic LBP

operator replaces pixel values with labels by binarizing 3× 3 neighborhoods of each pixel

by a center pixel threshold. Then these pixel labels are converted to decimal numbers.
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The binarizing function F for the basic LBP can be formulated as follows ;

F (I(Zo), I(Zi)) =

 0, if I(Zi)≤I(Z0), and

1, otherwise,

(2.1)

where Z0 is the center pixel and Zi represents its 8 neighbors. LBP can also be defined as

binary gradient representation. LBP features have been successfully used in many appli-

cations such as texture classification [63], face recognition [131], fingerprint identification

[132], and automated cell phenotype image classification [133]. Main advantages of LBP are

easy computation and its ability to produce multiple features in same dimension. In [134]

and [135], LBPs are used to characterize medical images, for instance, magnetic resonance

and mammography images. The method in [135] is also trained with a support vector

machine (SVM) in order to distinguish mammographic masses from normal parenchyma.

LBP is widely considered as the state-of-the-art texture descriptor because of low compu-

tational complexity and its invariance to changes in resolution.

In the proposed method, LBP is applied to multi-block patches in image with different

scales. In other words, different neighborhood sizes are applied. After labeling the image

parts, the histogram features are extracted from the local region labels. The region can be

rectangular, circular or triangular.

2.2.2 Support Vector Machines (SVM)

The support vector machine (SVM) is a machine-learning method to classify data. Image

annotation and classification can be considered as a first step for speeding-up image re-

trieval in large databases. SVM is a popular machine learning algorithm to perform reliable
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and generally fast classification [136]. SVM takes a set of training data that consists of

inputs and desired outputs [137] and SVM maps the input vectors to a higher dimension

feature space, because separation of classes and detection of pattern are easier in higher

dimension space [138]. Kernel functions map the input data into a higher dimension fea-

ture space, because this data could be easily separated or better structured [138]. The

main task of SVM is to create hyperplanes using support vectors in a higher dimension

space [139]. A hyperplane separates the space into two half spaces. A good separation

is achieved by hyperplanes that have the largest distance (margin) from the nearest data

points. There are many kernel function in SVM which are used for mapping [140]. The

various kernel functions can be grouped into two methods which are local and global.

Some local kernel functions examples are RBF, KMOD and Inverse Multi-quadric. Linear,

Polynomial, Sigmoid are global kernels.

Recently, SVM methods have been widely utilized for medical applications. For in-

stance, linear SVM methods with quadratic optimization have been proposed for CT brain

images [141]. Also, SVM has been combined with K-NN classifiers [142] and with boost-

ing [143]. Since it is common to have to deal with high-dimensional feature space, most

indexing methods cannot perform within a reasonable time.

In this thesis, SVM is used as a statistical multi-class classifier in order to predict query

image label for medical image retrieval purposes.

2.2.3 Context-Aware Saliency

The context-aware saliency algorithm detects image regions that best represent the ’scene’

[144]. It is a region detection algorithm based on four principles observed in the psycholog-

ical literature: local low-level considerations, global considerations, visual organizational
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rules, and high-level factors. Local low-level factors consist of contrast and color. Visual

organization rules state that visual forms may possess one or several centres of gravity

and high-level factors include priors on the salient object location and object detection.

Further descriptions and implementation of this algorithm are available on the authors’

website 1. The basic principles of the saliency detection equation are focused on both

isolated pixels and the surrounding path. This approach promises immediate content. As

a first step, pixel color similarity is defined and then the position distance between patches

are considered. A dissimilarity equation measures distance dissimilarity based upon both

color and position:

D =
dcolor(pi, qi)

1 + c× dposition(pi,qi)
(2.2)

Si = 1− exp(− 1

K
)

n∑
i=1

d(pi, qi), (2.3)

where pi and qi are compared patches, dcolor and dposition correspond to distance in terms

of color and position respectively, c is a constant, K is the number of possible comparisons,

D is dissimilarity between comparing parts and Si is total similarity.

Multi scale enhancement has been applied. The same saliency equation is applied in

different scales and the average of them is taken. Lastly, in order to obtain immediate

content of salient region, the threshold is set and weighting is based on Euclidean distance

metric. Most of salient region detection methods have been designed with general images

by using their color distinctiveness [145]. Some of them consider patch distinctiveness [146]

[144]. Some studies claims ”medical saliency” by identifying informative regions based on

internal image statistics [147]. The saliency algorithm is utilized in this thesis to assign

relevant regions in the image in order to apply a folding method.

1http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
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2.2.4 Autoencoders

Autoencoders are a specific architecture of neural networks consisting of encoding and de-

coding operations in order to reach minimum error. As an unsupervised learning technique,

the autoencoder utilizes backpropagation networks without training [148]. Autoencoders,

having a general n/p/n architecture, encode n inputs into p positions, and then decode p

positions back into n outputs. p<n is general case in which autoencoder functions as a

compressor to reduce dimensionality. An autoencoder is basically a shallow neural network

with some level of error. The error can be reduced if the network is deepened, for instance

make it an n/m/p/m/n autoencoder with n>m>p [149]. For any A ∈ A and B ∈ B , the

autoencoder transforms an input vector x ∈ F n into an output vector A ◦B(x) ∈ F n. The

corresponding autoencoder problem is to find A ∈ A and B ∈ B that minimizes the overall

distortion function:

minE(A,B) = minA,B

p∑
t=1

E(Xt) = min

p∑
t=1

4(A ◦B(Xt), Xt), (2.4)

where A is class of functions from decoding (from Gp to F n), B is a class of functions

from encoding (from F n to Gp ), X is set of training vectors and Y is a target vector, 4 is

the dissimilarity or distortion measurement via Hamming or Ln distance functions [149].

Deep architectures provide reuse of features and they conduct more high level features. In

other words, high level features can be constructed by autoencoders.

Recently, the denoising autoencoder has been developed to reconstruct data from one

of its corrupted versions [150]. Deep architectures can learn many layers’ features of image

color. Afterwards, they can encode images as the binary codes [151]. Mammograms can

be compressed by use of patches of images [152]. There are broad surveys on deep learning

and autoencoders [153]. [154] attempts to propose a generalized autoencoder via manifold
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learning and uses it for digit and face image manifolds. [149] presents a generic frame-

work about kinds of autoencoders. To deal with complex databases, stacked autoencoders

have been implemented in [155]. Furthermore, [156] proposes a feature ensemble learning

method based on sparse autoencoders for image classification. As mentioned in the next

section, this work proposes to train a shallow autoencoder and record the error histogram

of each class to eliminate image blocks that are irrelevant for retrieval.
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Chapter 3

Image Area Reduction via Folding

and Autoencoding

3.1 Introduction

With acquisition of many images each day in medicine, the necessity of searching and

navigation in databases has drastically increased. CBIR methods have been developed

for more than two decades to provide high-quality care through accurate and efficient

diagnosis and treatment planning. In medical imaging, CBIR can enormously contribute

to more reliable diagnosis by classifying and retrieving similar images. Almost all medical

retrieval methods have been proposed to increase the accuracy of retrieval, because medical

images are much more sensitive to process comparing to other images. Accurate retrieval

methods are important, but also retrieval time and storage capacity play crucial roles in

practice because efficiency also states on accuracy, computational time and storage. For

this reason, the main purpose of this thesis is to obtain a high classification score and to
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generate effective retrieval results with less computational complexity and lower storage

requirement. In order to save time and to obtain a high classification score, the fundamental

goals are envisioned to reach by reducing the number of features by decreasing the image

area subject to feature extraction (traditionally the entire image is used).

With this in mind, two approaches are developed in this thesis. The first method

is based on folding less relevant image regions whereas some alignment and summation

operations are necessary to keep the intensity values of the folded regions. The second

approach is a retrieval system which eliminates irrelevant image areas completely and

then extracts features from the remaining image area. The steps of both approaches and

extracted features are described in the following sections in detail. The benchmark dataset

used in this study and validation details are described in this chapter . Finally, all results

are illustrated and discussed from different perspectives.

3.1.1 Problem Definition and Dataset

While there have been many studies to increase retrieval accuracy in medical imaging,

retrieval time and acquired storage have been rarely investigated in the literature. However,

these issues play an important role especially because of the dramatic increase of medical

images produced each day. A medium-size hospital can produce 2 terabytes (TB) of data

per 100,000 studies [25]. Most hospitals produce 200,000 studies per year on average. This

means that each year the hospital should store 4 TB of image data and maintain them

for several years. Generally each hospital has some regulations about keeping the medical

history of their patients for approximately 7 years. According to these general numbers,

each hospital should support to store at least 28 TB of image data [124]. Moreover,

navigation and search in big datasets take a large amount of time. The main retrieval
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problems in big datasets are run time and storage. In order to examine these problems,

a big dataset which has at least 10,000 images with their ground-truth should be select.

Thus, the IRMA 2009 dataset was chosen to investigate how retrieval time and storage

needs can bee reduced.

The IRMA 2009 (IRMA1), which is a publicly available dataset, has 14,410 X-ray

images that have been randomly collected from daily routine work at the Department

of Diagnostic Radiology of the RWTH Aachen University2. X-ray images in the dataset

have been taken from different anatomical regions of body, from different directions and

from different biological systems. Downscaled images were collected from different ages,

genders, view positions, and pathologies [157]. Each image is labeled with IRMA codes.

These codes correspond to the ground-truth of images. 193 classes are defined according

to 2008 IRMA codes. The IRMA code comprises four axes with three to four positions: 1)

the technical code (T) (modality), 2) the directional code (D) (body orientations), 3) the

anatomical code (A) (body region), and 4) the biological code (B) (the biological system

examined). The complete IRMA code consists of 13 characters TTTT-DDD-AAA-BBB,

with each character in {0, . . . , 9; a, . . . , z}. As many as 12,677 images are separated for

training. The remaining 1,733 images are used as test data. Figure 3.1 shows sample

images from the IRMA 2009 dataset. The first lines on the bottom of the figures state the

IRMA 2008 code of the image, and the second line is the IRMA 2005 code of images.

In this project, the IRMA 2009 dataset has been used with specified 2008 IRMA labels

(consisting of 193 classes) for retrieval and annotation purposes. Otherwise, same dataset is

utilized with general 2005 IRMA labels (consisting of 57 classes) for classification purpose.

2005 IRMA labels are more general than 2008 IRMA labels because it has been made of 6

1http://irma-project.org/
2http://www.rad.rwth-aachen.de/
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Figure 3.1: Sample images in IRMA 2009 dataset from different groups with IRMA 2008

and IRMA 2005 codes. The first line on the bottom of the images corresponds 2008 IRMA

codes and the second line is 2005 IRMA codes.

characters from the top hierarchical classes, TT-D-AA-B. In the 2009 dataset, each image

cannot have been coded according to the 2005 IRMA coding regularity. A total number

of 12,631 images from a training set and 1,639 images from a testing set have 2005 IRMA

codes.

3.2 First Area Reduction Approach: Image Folding

The first technique to implement is to reduce the image area via folding. A statistical

classification method is developed with saliency-based folding. Classifier-based similarity

measurement systems retrieve similar images by using classification of a query image ac-

cording to a set of ground-truth labels. SVM is used as a statistical classifier. If the salient

(significant) image regions are detected, then folding less significant (rectangular) regions

is applied inwardly and their intensity values are added to the inward (salient) pixels.

The folded image is again divided into fewer regions (3 × 3). Afterward, texture features

are extracted from these blocks, because LBP from multi-blocks are histogram-based fea-
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tures that contain texture and spatial information about images. In following sections, the

details of this approach will be explained.

3.2.1 System Architecture

The first approach is comprised of preprocessing, off-line training and on-line usage (see

Figure 3.2). During the preprocessing stage, saliency detection and image folding take

place. In the off-line stage, SVM is trained on histograms of LBPs of not only folded

images but also images which are not folded. To detect salient regions, the context-aware

saliency algorithm 3 is used [158]. Saliency maps of images have been obtained to create

a saliency template by averaging all saliency maps. The average of saliency maps is first

calculated internally within each class, then the global average is taken across all classes.

Image folding and calculation of the saliency template are detailed in following sections.

After image folding, the folded image is divided into blocks. Then, the feature extraction

process begins, where local texture features are extracted using the LBP method. LBP

is implemented from two different scales to be applied on local sub-image areas. After

that, histograms of these blocks are derived form LBP features. The LBP histograms of

training sets of data are used to train SVM and support vector models stored. Then,

multi-class SVM is applied as a classifier with a radial basis function in an offline stage.

Both folded and not folded images from the IRMA training set have been utilized in order

to compare the two methods based on efficiency and time. Lastly, learned SVM models

have been tested with folded and not folded images from the testing dataset in the online

stage. Alghorithm 3.2.1 and Figure 3.2 give a generic overview of the proposed system.

The pre-processing of image data mainly consists of two steps. As a first step, a saliency

3http://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
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Algorithm 1 Proposed Approach
1: ———— Pre-Processing—————-

2: Read all images from Training set; Ii.

3: Calculate saliency template S∗

4: IFi ← Apply folding on all images Ii,

5: Save S∗ and all folded images IFi .

1: ————– Off-line Training ———–

2: Read folded images IFi

3: Set number of classes NC

4: Extract LBP features from folded images

5: Train SVM to learn model

6: Save SVM model

1: ————– On-line Classification ———–

2: Read query image Iq

3: Read the Saliency template S∗

4: Read the SVM model

5: Iqs ←Apply saliency template S∗ on Iq

6: IqF← Apply folding F on Iqs

7: Extract LBP features from IqF

8: Classify the query using SVM
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Figure 3.2: Three stages of image area reduction via folding.

template is created, and in the second step, image folding is formulated based on the

saliency template as described below.

Saliency Map Template

The detection of salient regions of an image is crucial to extract effective information.

This work proposes to create a saliency template by averaging all saliency maps which

are detected by the aforementioned context-aware saliency algorithm. Saliency maps of all

training images are generated and averaged to calculate a saliency map template (Algo-

rithm 2). Figure 3.3 shows four saliency maps. The first three images are from different

classes and the last one is the template which is created by averaging all saliency maps.
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Algorithm 2 Pre-Processing Stage: Saliency Template S∗

1: NC ← number of classes; i = 1.

2: Initialize saliency template S∗

3: while i < NC do

4: Calculate the saliency map Si for image Ii [158]

5: S∗ ← S∗ + Si

6: i← i+ 1

7: end while

8: S∗ ← S∗

NC

Figure 3.3: The first three images are samples of saliency maps, the last image is the

template saliency map for all images

The salient, less salient and not salient areas are defined for training data by dividing

images into N sub-blocks. Then, based on the saliency map, the folding is applied. The

new images with reduced area can now be used for local pattern analysis. The average

of saliency maps is first calculated internally within each class, then the average is taken

across all classes.
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Image Folding

Folding leads to the area reduction of an image. A is the rectangular region in image I

(A ⊂ I) and I ′ is the folded image (I ′ ⊂ I). I ′ can be calculated through I ′ = A + I\A

whereas the sign ’\’ denotes the set-theoretical subtraction. The main purpose of folding

is to reduce the image area to decrease the dimensionality of features without loosing in-

formation. While area is reduced, pixel information is not deleted. Salient regions gain

importance with the saliency template and non-salient regions become irrelevant without

deleting. The folding is applied only row-wise and column-wise. This method can be ex-

tended to work block-wise as well. If block-wise folding or smaller region folding is applied,

the area will be reduced, but the folding decision takes more time than the run time of

row- and column-wise approaches. For this reason, the simple folding type, which is row-

or column-wise, is used.

The proposed folding approach starts with dividing an image into equal parts. Each

part is assigned a value according to a saliency template. Then, each part is folded with

other possible parts to find the best combination of folding. The main step in folding

corresponds to summation of pixel values in the saliency template covered by the candidate

folding area. The image will be folded column-wise or row-wise. The folding stages are

described in Algorithm 3 step by step. Folding starts with dividing the template saliency

map into M parts (e.g., N × N with N = 4). All possible column folding cases are tried

by aligning two columns and then taking the summation of all pixel values in the saliency

template. The maximum pixel value of summed columns scimax are saved. Hence, for

each folding case we have scolumn
max =

∑
i s

ci
max. All possible row folding cases are processed

by aligning two rows and then taking the summation of all pixel values in the saliency
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template. The maximum pixel value of summed rows s
rj
max are saved. Hence, for each

folding case we have srowmax =
∑

j s
rj
max. Then the method finds the folding Fbest function

that satisfies the following : s = min(scolumn
max , srowmax). Finally, the folding Fbest is applied to

the image.

Figure 3.4: The input image (left) is processed to find a salient regions (second image

from left). Subsequently, non-salient regions are marked as IR to be folded with relevant

regions which are labeled with R. The blocks have been numbered and folded parts have

been included with ” ’ ” such as 15’ means that 15 is folded. Column-wise folding on the

example image is illustrated lastly (right).

After applying image folding, the image area is reduced by half. The ratio of salient

to non-salient regions in the folded image is more than the ratio of salient to non-salient

regions in unfolded regions. This shows that relevant regions are preserved in folding. As

mentioned before, the folded image is divided into 9 (3 × 3) equal regions. LBP features

are extracted from these regions by two scaling factors (1 and 2). Any number of blocks

which is under 16 (4× 4) may be selected, because image area is smaller than before. The

rectangular block region is selected to be 3 × 3. Afterwards, LBP histogram features are

trained with multi-class SVM [159] to classify images. SVM kernel type is set to Radial

Basis Function. In the online part of the method, an image query is selected from the
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Algorithm 3 Pre-Processing Stage: Image folding

1: Set number of blocks M(NxN = 4x4)

2: Read saliency template S∗

3: Read input image I

4: while not all combinations tested do

5: Align two columns

6: Take summation of all pixel values in S∗

7: Keep scimax(maximum value of summed columns)

8: Update scolumn
max ←

∑
i s

ci
max

9: end while

10: while not all combinations tested do

11: Align two rows

12: Take summation of all pixel values in S∗

13: Keep s
rj
max(maximum value of summed columns)

14: Update srowmax ←
∑

i s
rj
max

15: end while

16: Find the folding Fbest that satisfies s = min(scolumn
max , srowmax)

17: Apply the folding Fbest to I.
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test dataset and LBP features are calculated from the saliency-based folded image as new

images are encountered. SVM classification is performed with these features and compared

to the SVM-based approach on the IRMA test dataset without folding.

3.2.2 Analysis of Results

SVM classification results on folded images have been compared with SVM classification

results without folding in terms of accuracy and time. Classification accuracy is measured

by a specific error score calculation method developed for the IRMA dataset. Accuracy

measurement is crucial in order to show that the proposed method runs as effectively

as existing methods. For this reason, ImageCLEF has defined an error score evaluation

method in order to evaluate the performance of methods on IRMA datasets [157].The

equation is

E =
n∑

i=1

1

bi

1

i
δ(Ii, Îi), (3.1)

where bi is the number of possible labels at position i, and δ is the probability of decision

(zero or one). δ is the decision error value in the equation. If the decision is correct,

δ = 0, if the decision is wrong, δ = 1, where Ii is the correct code for an axis and Îi is the

classified code for an axis. E is the error score. For every axis, the maximal possible error

is computed and the errors are normalized between 0.25 and 0. If all positions in all axes

are wrong, the error value is 1, or the reverse condition error value is 0.

Classification Error

All folded images in test datasets have been classified by multi-class SVM and the total

error score is evaluated using the error score function. All images without folding in the
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Figure 3.5: The input image (left) is processed to find salient regions using the saliency

template (middle image). Column-wise folding is applied on the example image and se-

lected column combinations are summed and normalized (right image).

test set have been also classified with multi-class SVM and the error score is measured by

the same function. The error score for the proposed method of SVM image classification

with multi-scale LBP on the saliency map-based folded image is 153.07. If images are

not folded, the SVM classification error slightly decreases to 146.55. This slight decrease

in error comes with a huge cost in computation, because the dimensions of features are

twice the dimensions of the folded image. This means that the accuracy does not drop

considerably while time and computational cost decrease. Saliency-based folding reduces

the complexity without loosing important patterns in salient regions.

In order to test saliency template effects, folding is implemented without applying the

saliency template on image. Without consideration of salient areas, folding has been tried

in different directions. The error clearly and considerably increases. In addition, if we fold

images in random ways, the accuracy significantly drops. Clearly, a saliency map plays

a crucial role for the decision on how to fold an image. Figure 3.5 illustrates the folding
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method application to a real image from the IRMA dataset. In the example, folding is

applied column-wise according to their salient areas.

There are comparable studies in the literature. For instance, The IRMA dataset is used

in ImageCLEF 2009 competition with 2008 IRMA code and basic LBP on 4 × 4 multi-

blocks is applied by VPASabanci. The error score is reported as 261.2 [157]. In addition,

the lowest error score in ImageCLEF 2009 with 2008 IRMA code is 169.5. The comparison

of classifiers and SVM results are outlined in Table 3.1. According to this comparison

table, the proposed approach provides higher accuracy than previous methods. Besides

the error score, an example of the GUI interface in Figure 3.6 shows that classification

works properly.

Memory and Time

Regarding memory and time, a decrease in area causes reduction in memory requirement

and computational time. The image area is reduced by 50% with saliency-based folding.

As the result of area reduction, the number of image blocks decreases too. Also the

feature dimensionality reduces from 1888 to 1062 which is a 44% decrease. SVM needs

141.17 s training time and 92.51 s testing time without saliency-based folding. In contrast,

with saliency-based folding, SVM only needs 60.36 s training time and 52.56 s testing

time for all images. To neglect the overhead for the saliency calculations, and only by

looking at the time required for testing (online execution), using the proposed approach

accelerates the classification process by approximately 13%. Considering the challenges of

big sets of image data in the medical field, this can be a tremendous improvement. As

a result of the error score, dimension and time reductions, it is experimentally verified

that the proposed method has succeeded in its goals. Moreover, Figure 3.6 illustrates

the efficiency of the method in retrieving images correctly. In summary, a classification-
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Figure 3.6: The images on the left are query images , the other three images on the right

are three results from classified categories in the proposed study.

based CBIR system depends on good classification first to assign a query to the right

image category within a short time. The time requirements become paramount when

dealing with big data. The proposed medical image classification using the saliency-based

folding method appears to be an effective method when support vector machines and local

binary patterns are employed. Folding non-salient (non-relevant) parts of the image may

lead to a slight increase of classification error. That may be expected since folding areas

overlap with salient regions. Overlapping salient and not salient regions may result in slight

distortion. However, the proposed approach does accelerate the online classification. This

is an advantage that might be crucial for big image data (reduction from 53 ms per image
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Method Error score t(ms)/image

The proposed 4× 4 Multiscale LBP+SVM 146.55 53

The proposed 3× 3 Multiscale LBP+SVM w. folding 153.07 30

TAU [157] (Patches+BoW+SVM) 169.5 –

VPASabanci [157] (Local+Block position) 261.2 –

Table 3.1: Image classification results (Error score and time TAU and VPASabanci results

as reported in literature)

to 30 ms corresponding to 43% acceleration). Furthermore, storage requirements have

been decreased from 1888 to 1062 feature vector length by the proposed folding method.

With respect to time and memory reductions, the method gives better solution to image

classification. The most critical part of the method is the decision of how to fold image

blocks. Different approaches can be examined in future work to investigate the feasibility

and the potential effect of folding blocks and not necessarily just folding rows and columns.

Moreover, other methods can be applied by deleting non-salient blocks. We have examined

this method by implementing an autoencoding approach.

3.3 Second Area Reduction Approach: Autoencoding

Error

The previous system showed that non-salient regions cannot significantly affect the clas-

sification accuracy. Also, elimination of non-salient regions can speed up the method. In

order to demonstrate ineffectiveness of unimportant regions on retrieval, another (different)

approach is proposed in this section that reduces the image area as well. While the elim-
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ination step is before the feature extraction process in the image folding method, in this

approach, the elimination stage takes place after classification and before similarity mea-

surements. The proposed method detects irrelevant image blocks in each medical image

class by analyzing the error histogram of decoding errors when autoencoders are applied to

each image block. Features from irrelevant blocks are eliminated based on error histograms

of their classes. With this in mind, an n/p/n autoencoder has been utilized while p < n.

The hypothesis of this study is that the relevance of image blocks is directly proportional

to error of an autoencoder when the hidden layer is smaller than input/output layer. There

is assumption that images are widely free from noise.

3.3.1 System Architecture

In a specific retrieval task, all regions of an image may not be relevant to search similarity.

For this reason, selected regions of interest in an image, ROI, can be efficiently processed

by the retrieval system. In order to select relevant regions, an approach that attempts

to eliminate small patches (blocks) of the image from the feature extraction process is

developed. This region reduction should be based on some universal criteria to ensure a

general approach. This approach consists of configuration, training, and testing retrieval

parts. Algorithm 4 describes the main steps of the proposed approach. In order to imple-

ment a complete solution, LBP features and SVM are used to classify the images. In the

configuration step, the number of image blocks k is determined. The percentage of area

reduction and the number of autoencoder hidden layers are also decided by the user in this

step. These variables affect the results as discussed in the results section. LBP features of

all training images have been extracted by multi-block LBP descriptors with given block

number k in the training step. Utilizing LBP histogram features and general ground-truth
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classes (57 classes), SVM creates the support vector modal. This the SVM modal is used

in the test section of this method to classify the query image. In addition to building SVM

modal, the training section includes autoencoder error calculation. n/p/n autoencoder er-

rors are sorted by a histogram for all classes and image features have been eliminated with

respect to the sorted error histogram (lower error indicating lower relevancy). The query

image from the testing dataset is used to extract LBP features by using multi-blocking.

After SVM classification, the LBP feature vector size is reduced via an error histogram

elimination function. Lastly, similar images are retrieved by eliminated features derived

from eliminated blocks by using similarity measurement.

Figure 3.7: Three stages of the proposed image retrieval method .
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LBP and SVM Settings

Local binary patterns have been extracted from 3× 3 neighborhoods in each image block.

The LBP descriptor calculates features from two scales (1 and 2). These binary patterns

are converted from binary numbers to decimal numbers in order to calculate a histogram

hLBP. These histograms were used for both classification and retrieval. The LBP histogram

features from IRMA training dataset are utilized to train the multi-class SVM [159]. The

radial basis function is set as the kernel for SVM. For each block in one scale, the LBP

image descriptor creates 59 histogram features. For this reason, dimension of LBP features

depends on the number of image blocks. Different blocks numbers have been tried within

this method, such as 4 × 4, 5 × 5 and 6 × 6. The relationship between accuracy or time

and block numbers can be derived from these results.

Shallow autoencoders reduction

As a neural network, autoencoders are explained in Section 2. An autoencoder with p < n

is used to reduce dimensionality. The p < n autoencoder is basically a shallow neural

network with some level of error. The purpose of this study is to design a shallow network

to keep the decoding error high. Utilizing shallow networks, the relationship between a

relevant region and error value can be examined. The errors in decoding image blocks are

captured with a histogram matrix H for each class. These histograms will enable us to find

retrieval-irrelevant image regions. Figure 3.8 illustrates the idea of relevance quantification

via an autoencoding error histogram. The hypothesis of this work is that if the image block

contains relevant information, the encoding error is expected to be high for a n/p/n type of
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autoencoder when p < n . In contrast, if uniform regions are encoded, low decoding error

can be expected. Therefore, lowest decoding error states the least contribution to accurate

retrieval. These blocks which have lowest decoding errors will be eliminated according to

the desired area reduction rate (e.g., experts determined that 25% of the least relevant

image area may be discarded). If an image I is divided into k×k blocks and the reduction

rate is given as d ∈ [0, 1), the task is to eliminate as many as bd × k × kc blocks. The

autoencoding errors are recorded for all blocks of a certain image class, in order to update

the class histogram for every query. The SVM classifies the query image and assigns it to

a certain general class (among 57 classes). After the classification, the most similar images

to the query are retrieved using the reduced texture features. The proposed reduction of

feature dimensionality using autoencoding error analysis occurs to improve the speed and

space requirements of the intra-class retrieval task.

Similarity measurement

A distance metric calculates the similarity of two images in terms of their features. Then,

search results are sorted with respect to their measured distance. The shorter distances

correspond to higher similarity. Image features and descriptor selection and their represen-

tation methods directly affect the choice of distance metric. Metrics on vector spaces (e.g.,

The Euclidean distance, the city-block-distance and the Minkowsky distance) are the most

commonly implemented methods due to their computational simplicity. In this work, the

Pearson distance metric d is used:

d2 =
n∑

i=1

(Xi − Yi)2

Xi + Yi
(3.2)
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p =

n∑
i=1

(Xi − X̂)(Yi − Ŷ )

n∑
i=1

√
(Xi − X̂)(Yi − Ŷ )

(3.3)

d = 1− p (3.4)

where Xi and Yi are compared data positions, X̂ and Ŷ are the state mean of the data

and d is the distance.

Accuracy Measurement for Retrieval

Retrieval evaluation is important in comparing results of similarity metrics with other

methods. As common evaluation methods in medical image retrieval, precision and recall

are calculated. Looking at the top m retrieved images, the number of correctly retrieved

images (true positives Tp) and wrongly retrieved images (false positives Fp) can be used to

calculate the precision Ptop m of the retrieval:

Ptop m =
Tp

Tp + Fp

. (3.5)

The average precision can be calculate with:

Ptop m av =
1

x

x∑
o=1

Ptop m (3.6)

where x is number of trials for the same number of results (same topm). Similar to

precision, using the top m retrieved images, the number of correctly retrieved images (true

positives Tp) and wrongly not-retrieved images (false negative Fn) can be used to calculate

the recall Rtop m of the retrieval:

Rtop m =
Tp

Tp + Fn

(3.7)
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Rtop m av =
1

x

x∑
o=1

Rtop m (3.8)

These measurements are applied 100 times within same classes for top 10, 20 and 30. After

calculating all of them, the average of precisions and recalls are calculated in terms of their

top retrieved image number m.

Figure 3.8: Schematic illustration of the proposed approach: Image blocks are autoencoded

in an n/p/n architecture. The encoding error of each block is recorded for each image class

to create the error histogram. A desired reduction (e.g. 50% = 8 blocks) can be used to

exclude a number of blocks (gray blocks) from feature extraction.
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Algorithm 4 Proposed approach

1: ——- Configuration ——-

2: Set k to divide the image into k × k blocks

3: Set the desired reduction rate d ∈ [0, 1)

4: Set n/p/n for the autoencoder (p < n)

5: ——- Training ——-

6: Get the number of training images mmax

7: Initialize the feature matrix F

8: Initialize the class vector c

9: Initialize the error histogram H for all classes

10: for each i ∈ {1, 2, . . . ,mmax} do

11: Read the training image Ii and its class ci

12: c← ci

13: for each j ∈ {1, 2, . . . , k × k} do

14: Bj ← currentBlock(Ii)

15: f ← extractLBPfeatures(Bj)

16: F← appendFeatures(F, f)

17: error←autoEncode(Bj)

18: H(ci, j)← H(ci, j)+ error

19: end for

20: end for

21: [v1,v2, . . . ]← TrainSVM (F, c)

22: Save support vectors v1,v2, . . .

23: Save the error histogram H

24: ——- Testing —— (See Algorithm 5)
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Algorithm 5 Testing step in Proposed Approach

1: Read support vectors v1,v2, . . .

2: Read the error histograms H

3: Read new image Inew

4: for each j ∈ {1, 2, . . . , k × k} do

5: Bj ← currentBlock(Inew)

6: f ← extractLBPfeatures(Bj)

7: end for

8: cnew ← classifySVM (f)

9: f ′ ← ignoreBlocks(f ,H, cnew)

10: < I∗1 , I
∗
2 , I

∗
3 , · · · >← calculateSimilarity(F, f ′,H, cnew)

11: Show retrieved images < I∗1 , I
∗
2 , I

∗
3 , · · · >

3.3.2 Analysis of Results

The IRMA 2009 dataset is utilized for this second method for retrieval purpose. The clas-

sification error score measurement is explained in the first method previously mentioned.

The classification error is calculated using the same Equation 3.1 defined for the Image-

CLEF competition [157]. However, the error has been measured based on 2005 IRMA

codes. According to 2005 IRMA codes, there are 57 classes. These classes are more gen-

eral than 2008 classes, since 2008 IRMA codes classify same images into 193 categories. It

means that 2008 IRMA codes are designed to show detailed classes. For this reason, while

2005 IRMA codes have been used to classify images into general classes, 2008 IRMA codes

will be utilized for retrieval evaluation.
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Results

First of all, the images are classified with multi-class SVM using LBP histogram features.

We have tried to extract LBP features from the entire image (not blocks), but there is

a large difference in classification accuracy (≈ 50% decrease in accuracy). Analogous to

global versus local thresholding, it appears that calculating LBP histograms for image

blocks is more capable of capturing the spatial characteristics of the image compared to

extracting only one LBP histogram for the entire image. As Table 3.2 illustrates, the

LBP-SVM approach achieves the lowest error score comparing ImageCLEF results based

on 2005 IRMA code, and hence the highest accuracy is reached while implementing 4× 4

blocks (image divided into 16 regions).

Table 3.2: SVM accuracy with LBP features (59 dimensions for each block) for classification

of 2005 IRMA image dataset containing 14,270 images constituting 57 image categories.

Method Accuracy Error score

The Proposed with 4× 4 blocks 75.50% 116.77

The Proposed with 5× 5 blocks 74.31% 121.34

The Proposed with 6× 6 blocks 72.23% 133.90

TAU [157] – 356

Idiap [157] – 393

An example of this method implementation on figure is shown in Figure 3.9. Regardless

of any classes, the autoencoders and error concept applications are illustrated in this figure.

In the retrieval process, image blocks are autoencoded using the restricted Boltzmann

machine (RBM) function. For fixed n inputs and outputs, different p values are tried.
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However, the condition of p < n is maintained, the error levels are not considerably affected

from changes of p value. The number of iterations for the autoencoder is set to 5, and

more iterations does not seem to change the results. As a similarity measurement of

two vectors which represents two images, the Pearson distance metric is used. The cases

with no reduction and different reduction levels are compared, such as 1/8, 1/4 and 1/2

corresponding to 12.5%, 25% and 50% image area reduction, respectively. The precision

and recall are calculated to evaluate retrieval when the top 10, 20 and 30 images are in

focus. Moreover, retrieval times are recorded for each case. Table 3.3 provides the averages

of 100 runs in each classes for different settings. According to the Table 3.3, 6 × 6 takes

longest time in each case. Precision and recall do not significantly change while block

numbers are changing within the same reduction rate. In general, when the reduction rate

increases, the precision and recall slightly decrease. Tables 3.4 and 3.5 summarize the rates

of decreases in terms of precision, recall and time by evaluating the top 20 retrieval hits.

It is obvious that for finer grid structures (6 × 6 blocks) the time savings of greater than

27% can be achieved where 50% of the image blocks have been ignored resulting in 50%

reduction of the feature vector size. This becomes a significant result when it is observed

that a slight decrease in accuracy (both precision and recall) less than 1% for the top 20

hits of the retrieval.

3.4 Summary and Analysis

Searching for similar images in large medical image archives is both necessary and challeng-

ing. The actual retrieval of similar images may need more computational resources through

more costly with one-by-one comparisons. This becomes a serious task for medical imag-

ing dealing with big image data. There are many methods to reduce the dimensionality
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Figure 3.9: Illustration of the proposed approach: An example image from the IRMA

dataset (left) is divided into 16 blocks and image blocks are autoencoded in an n/p/n

architecture. The error of each block is the recorded matrix (middle). A desired reduction

(e.g. 50% = 8 blocks) is applied to exclude a number of blocks (gray blocks) from feature

extraction. Gray blocks are eliminated because they have low error to generate the final

results (right) which can be used to generate a shorter feature vector.
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Table 3.3: The average precision P , recall R and time t are measured for top 10, top 20

and top 30 retrieval for randomly selected image from 57 classes and repeated 100 times.

As distance metric, cross-correlation was used.

Blocks Reduction PTop 10 RTop 10 PTop 20 RTop 20 PTop 30 RTop 30 t(sec)

4× 4 0 0.872 0.1807 0.868 0.2527 0.882 0.3214 0.01807

5× 5 0 0.874 0.1783 0.873 0.2538 0.883 0.3222 0.02154

6× 6 0 0.871 0.1792 0.877 0.2542 0.882 0.3220 0.02620

4× 4 1/8 0.862 0.1761 0.866 0.2485 0.878 0.3199 0.01684

5× 5 ≈1/8 0.869 0.1783 0.872 0.2531 0.880 0.3212 0.02005

6× 6 ≈1/8 0.867 0.1786 0.873 0.2519 0.882 0.3221 0.02388

4× 4 1/4 0.863 0.1762 0.862 0.2478 0.877 0.3205 0.01592

5× 5 ≈1/4 0.870 0.1788 0.870 0.2497 0.879 0.3214 0.01833

6× 6 1/4 0.869 0.1775 0.871 0.2513 0.879 0.3195 0.02182

4× 4 1/2 0.856 0.1745 0.858 0.2458 0.865 0.3147 0.01396

5× 5 ≈1/2 0.864 0.1762 0.862 0.2491 0.875 0.3185 0.01591

6× 6 1/2 0.868 0.1790 0.870 0.2519 0.878 0.3212 0.01905

of image classification and retrieval tasks. In this chapter, retrieval methods were tested

on 14,410 medical X-ray images using different approaches in order to reduce time, data

storage needs and computational complexity. Motivated by the fact that in medical image

analysis usually a certain region of interest (ROI) is of interest for user evaluation. Firstly,

the proposed saliency-based folding demonstrated that relevant regions do not lose their

importance, if they are summed with irrelevant regions. Summation is applied via column-

wise or row-wise folding and relevant regions are defined by a context-aware saliency tem-
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Table 3.4: Decrease in precision and recall and gain in time (for top 20 hits) compared to

no reduction case where the LBP of all image blocks is calculated and used for retrieval

comparisons.

12.5% reduction 25% reduction 50% reduction

Blocks Precision Recall Time Pre. Rec. Time Pre. Rec. Time

4× 4 0.20% 1.6% 6.8% 0.7% 1.9% 11.8% 1.2% 2.7% 22.7%

5× 5 0.11% 0.2% 6.9% 0.3% 1.2% 14.9% 1.3% 1.8% 26.1%

6× 6 0.40% 0.2% 8.8% 0.7% 1.1% 16.7% 0.8% 0.9% 27.2%

plate to find relevant regions in an image. This way, the image dimension is decreased,

making feature extraction easier. In addition, classification runtime and computation com-

plexity are reduced. Unlike folding, the autoencoding method eliminates irrelevant regions

from the image. In other words, irrelevant regions are permanently deleted using autoen-

coder error histograms. Autoencoders have been investigated in the past with respect to

their compression capabilities. In this work, a different approach for data reduction via

autoencoder was designed. Feature elimination leads to reduction of both memory re-

quirements and computational expense of the retrieval task. To decide which image blocks

are rather irrelevant for the retrieval process, a n/p/n autoencoder (p < n) was trained

with the image blocks. The autoencoding errors are sorted in a histogram for all image

classes. This histogram is then thresholded to exclude a certain percentage of the image

area corresponding to low autoencoding error. Although experiments on the IRMA dataset

illustrate that there is a slight decrease in precision and recall for the top 20 hits, the space

requirements for the annotated feature vectors is reduced where simultaneously, the speed

of the retrieval is increased.
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Table 3.5: Decrease in precision and recall and gain in time (for top 10 hits) compared to

no reduction case, where the LBP of all image blocks is calculated and used for retrieval

comparisons.

12.5% reduction 25% reduction 50% reduction

Blocks Precision Recall Time Pre. Rec. Time Pre. Rec. Time

4× 4 1.1% 2.5% 6.8% 1.2% 2.5% 11.8% 1.8% 3.4% 22.7%

5× 5 0.57% 0% 6.9% 0.46% 2.0% 14.9% 1.2% 1.2% 26.1%

6× 6 0.46% 0.3% 8.8% 0.3% 0.9% 16.7% 0.34% 0.1% 27.2%
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Chapter 4

Summary and Conclusions

Content-based Image Retrieval (CBIR) has become one of the most active research fields

because of the development of digital technology and the rapid increase of imaging applica-

tions in medicine. An image is described by visual features, such as color, texture, shape,

space etc. The critical issue in CBIR is how to construct effective methods to describe the

image content, how to find images in a short time, and how to store them in a compact

way to save storage space. The retrieval speed is an important issue in image retrieval

systems as modern image archives usually have to store big image data generally meaning

thousands of terabytes of data. If images are searched one by one, the computation usu-

ally becomes impractically long. However, if all images in a database are classified, similar

images will be organized around one center or cluster. In order to improved such indexing

structures as commonly used in recent CBIR systems, this thesis proposed time and stor-

age reduction algorithms for both classification and retrieval of medical X-ray images. The

IRMA 2009 medical dataset, which includes 14,410 X-ray images, was utilized to validate

the performance of proposed algorithms.
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The first method is based on statistical classification method. Classifier-based simi-

larity measurement retrieves similar images by using a classifier according to ground-truth

labels. SVM is used as a statistical classifier in this method. In the first step of this

method, salient regions are detected with context-aware saliency algorithm [158] and a

saliency template is created with the average of all saliency maps. Afterward, applying

the saliency template to each image, relevant and irrelevant regions are identified. Then

images are divided into several blocks. Using relevant regions, column- or row-wise fold-

ing is applied by summation of aligned image columns or rows. Features are extracted

from the folded image to classify the query with SVM. The second method is a retrieval

method consisting of classification and distance metrics. This method uses LBP features

and SVM without folding. As class labels, this method used 2005 IRMA codes. While the

first method classifies images into 193 classes, this code structure has 57 classes for the

same images. After the classification, some blocks are deleted according to autoencoders

decoding errors. Autoencoder neural networks were utilized to find relevant blocks by

examining their decoding error. An n/p/n autoencoders was applied when p < n. The

main hypothesis behind this method is that if the autoencoder error gives large decoding

error, this means that the input region contains complex or relevant structures. With

respect to this hypothesis, an error histogram is generated for all classes. Subsequently,

the irrelevant regions (blocks) that have the lowest error are eliminated. LBP features

of remaining blocks can be compared with cross correlation (Pearson distance) similarity

measurement to retrieve similar images within a given class. Classification accuracy was

measured based on ImageCLEF error classification function. Retrieval results have been

evaluated according to precision and recall measurements.

Comparing results of this SVM classification method on folded images with SVM clas-

sification without folding, the folding method speeds up the classification and reduces the
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feature dimensions without significant decrease in accuracy. The second method results

show that image retrieval time and storage needs decrease. Both methods aim to reduce

run time and storage requirements for efficient medical image retrieval. Whether using the

folding or autoencoding method, it seems that irrelevant regions do not contain effective

information for retrieval. Finding these irrelevant regions can help to reduce feature di-

mensionality via image area reduction to reduce both computation time and storage needs.

These two methods may be improved by using different texture or visual features instead of

LBP. As future work, the folding method can be implemented by applying block-wise fold-

ing. If a global elimination function could be designed using only an autoencoder (without

classification step), it would be a more effective method that cannot be affected by the

performance of classification. Moreover, other feature dimension reduction methods, such

as LDA and PCA, can be compared to these methods with respect to accuracy, run time

and storage requirements.
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