
Studying the Properties of Cellular
Materials with GPU Acceleration

by

Pranav Madhikar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Chemistry

Waterloo, Ontario, Canada, 2015

c© Pranav Madhikar 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

There has always been a great interest in cellular behaviour. From the molecular level,
studying the chemistry of the reactions that occur in cell, and the physical interactions
between those molecules, to the scale of the cell itself and its behaviour in response to var-
ious phenomena. Suffice it to say, that cellular behaviour is highly complex and, therefore,
it is difficult to predict how cells will behave or to even describe their behaviour in detail.
Traditionally cell biology has been done solely in the laboratory. That has always yielded
interesting results and science. There are some aspects of phenomena that, due to cost,
time, or other factors, need to be studied computationally. Especially if these stimuli occur
on very short or long time scales. Therefore, a number of models have been proposed in
order to study cell behaviour.

Unfortunately, these methods can only be used in certain situations and circumstances.
These methods can, and do, produce interesting and valid results. Yet there is not really
any model available that can be used to model more than one or two kinds of cell be-
haviour. For example, methods that can show cell sorting do not necessarily show packing.
Furthermore, many of the models in the literature represent cells as collections of points,
or polygons, so cellular interactions at interfaces cannot be studied efficiently. The goal of
the work presented here was to develop a three dimensional model of cells using Molecular
Dynamics. Cells are represented as spherical meshes of mass points. And these mass points
are placed in a force field that emulates cellular interactions such as adhesion, repulsion,
and friction. The results of this work indicates that the model developed can reproduce
qualitatively valid cellular behaviour. And the model can be extended to include other
effects.

It must also be recognized that Molecular Dynamics (MD) is very expensive computa-
tionally. Especially in the case of this model as many mass points are needed in the cellular
mesh to ensure adequate spatial resolution. Higher performance is always needed either
to study larger systems or to iterate on smaller systems more quickly. The most obvious
way to alleviate this problem is too use high performance hardware. It will be shown
that this performance is most accessible, after some effort, with Graphics Processing Unit
(GPU) acceleration. The model developed in this work will be implemented with GPU
acceleration. The code generated in this way is quite fast.

iii

Acknowledgements

Firstly, I must thank my supervisor, Mikko Karttunen, for accepting me into his group.
Mikko has been a tremendous source of guidance, wisdom, and expertise for which I will
be eternally grateful. It was he who suggested this project to me, helped me develop it
and pioneered its inception. I thank him for the support and hope that one day I will be
as skilled as he is.

It will quickly become clear throughout this thesis my work could only begin after the
hard work and ingenuity of my supervisor Mikko Karttunen, Jan Åström, a collaborator
of his in Finland, and Anna Mkrtchyan, an alum of our group. Mikko and Jan first laid
down the basis for the model described in this thesis in 2006, later Anna completed their
work in 2D in 2014. Only after their effort was I given the opportunity bring their model
into the third dimension. And for that I will be always grateful. Jan has continuously been
helpful during this project, I thank him for that as well.

The programming work that I have done for this thesis was only possible after the work
of Jan Westerholm at the Åbo Akademi University. I am still very much a novice when it
comes to programming, and much more so when in comes to CUDA. My work would not
have been possible without Jan W.’s efforts and support. I thank him for his work.

I would also like to thank the members of my committee Professor Marcel Nooijen and
Professor Pierre-Nicolas Roy for their time and consideration.

iv

Dedication

Newton is often attributed with saying that the reason he saw so far was because he
stood on the shoulders of giants that came before him. He spoke of the great scientists
that came before him. But I think this can be interpreted in a different way. My parents
were the ones who always supported me and encouraged me. I owe all of my success to
their relentless hard work and boundless love.

To my parents, Dr. Prabhakar Madhikar and Rukmini Madhikar, for being my giants.
And to my brother, Prateek Madhikar, for being my best friend.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1

2 Background Information 5

2.1 Cell Structure . 5

2.2 Cell Division . 8

2.2.1 The Division Plane . 11

2.2.2 Inter-Cellular Adhesion . 13

vi

2.3 Molecular Dynamics . 14

2.3.1 Methodology . 15

3 Some Cell Modelling Techniques 20

3.1 Mathematical Biology . 21

3.1.1 Models of Cell Population Dynamics 22

3.1.2 Continuum Models of Cell Behaviour 23

3.2 Discrete Cell Models . 24

3.2.1 Delaunay Object Dynamics . 24

3.2.2 The Cellular Potts Model . 26

3.2.3 Topological Models . 29

3.2.4 Vertex Models . 30

3.3 Two Dimensional Cell Dynamics . 31

3.3.1 Intracellular forces . 31

3.3.2 Intercellular Forces . 32

4 Programming on GPUs 36

4.1 GPU versus CPU . 37

4.2 GPU Architecture . 43

4.3 Programming Perspective . 46

4.3.1 CUDA Execution Model . 48

4.3.2 Thread Hierarchy . 49

4.3.3 Memory Hierarchy and Access . 52

4.3.4 Some strategies to enhance GPU performance 53

5 Methods and Implementation 57

5.1 The Force-Field . 58

5.1.1 Assumptions in the Model . 58

vii

5.1.2 The Model Cell . 60

5.1.3 The Cell Interior . 64

5.1.4 Inter-cellular interactions . 67

5.2 Parametrization . 68

5.3 Modelling the Cell Division . 70

5.4 Implementation with CUDA . 71

5.4.1 The Division of Labour . 72

5.4.2 Description of the Code . 73

6 Results and Discussion 77

6.1 Mitotic Index . 77

6.2 Cell Packing . 81

6.3 Summary . 82

7 Conclusions 92

7.1 Future Plans . 93

References 94

viii

List of Tables

4.1 GPU vs CPU calculation of electrostatics 43

5.1 Parameters and their values . 70

ix

List of Figures

2.1 The Prokaryotic cell . 6

2.2 A typical animal cell . 7

2.3 Cell Cortex Sketch . 8

2.4 Prokaryotic cell life cycle . 10

2.5 Contractile Ring Action . 12

2.6 Symmetric and Asymmetric Division . 13

2.7 Periodic boundary conditions . 17

3.1 Sample Delaunay and Voronoi graphs . 25

3.2 The Cellular Potts (Lattice) model. 27

3.3 Neighbour distribution of Drosophila . 29

3.4 The topological model . 30

3.5 2D cell model . 32

3.6 2D cell dynamics results. 34

3.7 The evolution of mitotic index for three different kinds of cell division. . . 35

4.1 CPU clock speed over time . 38

4.2 Comparison of GPU and CPU performance 42

4.3 NVIDIA GPU Hardware . 44

4.4 CPU and GPU architecture schematic . 45

4.5 Abstract device compute architecture . 46

x

4.6 Depiction of single and multiple threads. 47

4.7 Sketch of CUDA’s execution model . 48

4.8 Schematic of threads in two-dimensional blocks. 50

5.1 The ball and spring model. 60

5.2 The 2D and 3D models. 62

5.3 Details of the 3D model. 63

5.4 Unit Vector Description of spring forces. 64

5.5 The normal to the cell surface. 66

5.6 Model of cell division . 71

6.1 Snapshots of cell division . 78

6.2 Snapshots of epithelial system . 83

6.3 Mitotic Index of Drosophila . 84

6.4 Mitotic Index of 3D simulations . 85

6.5 Mitotic Index of 3D simulations with confinement 86

6.6 Mitotic index of free and confined systems for different γm 87

6.7 Confined cells with Voronoi tessellation. 88

6.8 Cell packing shown for cells of a variety of species 89

6.9 γext and cell packing . 90

6.10 γm and cell packing . 91

xi

List of Abbreviations

ALU

Arithmetic Logic Unit. 45

API

Application Program Interface. 40, 49–51

BPTI

Bovine Pancreatic Trypsin Inhibitor. 14

CAM

Cell Adhesion Molecules. 13

CPM

Cellular Potts Model. 26–28

CPU

Central Processing Unit. 2, 3, 15, 19, 36–41, 44, 54

CUDA

The Compute Unified Device Architecture. 3, 40, 41, 43, 45–47, 49, 50

DOD

Delaunay Object Dynamics. 24–26, 29

DRAM

Dynamic Random-Access Memory. 45

xii

ECM

Extracellular Matrix. 93

EXPResSO

Extensible Simulation Package for Research on Soft matter. 14

GCC

the Gnu Compiler Collection. 41, 43, 48

GFLOP/S

Giga FLoating point OPerations per Second. 39

GPGPU

General Purpose GPU. 41

GPU

Graphics Processing Unit. iii, vii, xiii, 3, 15, 19, 36, 37, 39–41, 43, 44, 53, 77, 78, 92,
93

GROMACS

GROningen MAchine for Chemical Simulations. 14

HOOMD-blue

Highly Optimized Object-Oriented Molecular Dynamics. 14

HPC

High Performance Computing. 37

HSA

Heterogeneous Systems Architecture. 40

ICC

the Intel C Compiler. 41, 43

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator. 14

xiii

MD

Molecular Dynamics. iii, 2, 3, 14–16, 19, 33, 36, 37, 41, 48, 50, 92, 93

MI

Mitotic Index. 35, 78, 84

MIC

Multiple Integrated Core. 93

MMTK

Molecular Modelling ToolKit. 14

MOSFET

Metal-Oxide-Semiconductor Field-Effect Transistor. 37

NAMD

NAnoscale Molecuar Dynamics. 14

OOP

Object Oriented Programming. 46

OpenCL

Open Compute Language. 3, 40, 41, 43, 45, 49, 50

P3M

Particle Particle Particle Mesh. 18

PBC

Periodic Boundary Conditions. 17

PME

Particle Mesh Ewald. 18

SIMD

Single Instruction Multiple Data. 49

xiv

SM

Stream Multiprocessor. 44, 45, 53

SP

Stream Processor. 45

SPME

Smooth Particle Mesh Ewald. 18

TDP

Thermal Design Power. 37

VDW

Van der Waals. 16

xv

Chapter 1

Introduction

The human body is said to contain roughly 100 trillion cells of varying types and func-
tions [1, 2]. The number of cells is very great, but they all come from a single fertilized
cell that contains all of the information needed to create the entire body. The develop-
ment of all of these kinds of cells from the single to the embryo stage is not understood
completely[3–6].

The cell is the fundamental building block of all living organisms, both for single celled
organisms such as bacteria and multi-cellular organisms such as animals and plants. In
fact, most of the base functions of life occur at the cellular level and rely upon the cells’
ability to evolve, regenerate, and replicate. The cell embodies all of Koshland’s seven
pillars of life[7].

Koshland’s Seven Principles of Life

1. Program
The ability to efficiently store, retrieve, and apply the information to apply the
remaining pillars of life.

2. Improvisation
The ability the adapt the Program to changes in the environment. Such as evolving
immunity to a virus.

3. Compartmentalization
The capacity for certain parts of a living organism to specialize and increase its

1

productivity for certain activity. For example, separate digestive and immune systems
would be more effective than a single system that does both.

4. Energy
The capability of a life form to obtain, regulate, and store energy efficiently.

5. Regeneration
Any life form that expects to survive must be able to heal in the face of injuries, but
must also be able to remove waste as a result of energy gathering and storage.

6. Adaptability
Life should be able to react to protect itself when the process of improvisation is too
slow. Seeking medicine to treat disease, for example.

7. Seclusion
The different chemical process of life are extremely complex, it is therefore necessary
to have special systems that regulate each process separately to avoid confusion and
errors.

This author submits that cell behaviour can be roughly divided into three categories:
cell division, migration or motion, and function. Cell division and migration apply to most
cells in a general way. Cell function, though, is highly specific to the cell type itself (e.g.
neurons and liver cells). The work described in this thesis will focus on cell division mostly.
The modelling of the development of cell function and migration is out of the scope of this
thesis.

The goal of the work presented here is to describe an approach to modelling cell be-
haviour that encompasses as much of the behavioural spectrum of cells as possible. This
will be done with Molecular Dynamics (MD). MD has already been used extensively to
study the behaviour of complex biological behaviours such as proteins [8], lipids [9, 10],
carbohydrates. However, the problem with MD is its high cost when it comes to modelling
complex systems. It is not uncommon for runtimes of many weeks or months to complete
a single simulation.

In order to reduce simulation run times, it is normally necessary to run these MD
simulations on very large systems with Central Processing Units (CPUs). However, this
is very expensive as these systems are very expensive to maintain and are also not very
environmentally friendly as they require large amounts of power. Hence, it is desirable to
use other methods of accelerating simulations on simple workstations or PCs.

2

A good way of accelerating these simulations is to use Graphics Processing Unit (GPU)
acceleration technologies such as the The Compute Unified Device Architecture (CUDA)
or the Open Compute Language (OpenCL). These technologies leverage the hardware
capabilities of GPUs, or in the case of OpenCL other processor types as well, to greatly
increase the run rate of simulation code. In some cases a speed up of up to one or two
orders of magnitude is possible [11–13]. However, in reality, the performance of GPUs is
about 2–3 times (in best case scenarios approximately 10 times) CPU performance, which
is still significant [12, 13]. The modelling technique described here will be accelerated on
GPUs with CUDA by combining the CPU and GPU to maximize performance.

The simulation method described in this thesis is based on a simple model of cells as
closed loops of mass points that was introduced in 2006 by Karttunen and Åström [14].
Later, Mkrtchyan, Karttunen, and Åström added to this model and were able to reproduce
some cell behaviour [15]. So far, the model was always two-dimensional. An extension in
to the third spatial dimension was the next logical step. The work presented in this thesis
is towards developing such a 3D model.

Structure of this Thesis

Each chapter will focus on one aspect of the work presented in this thesis. First, in
Chapter 2, some information regarding the behaviour of cells is presented. That chapter
will hopefully give readers an adequate primer on cell behaviour to be able to understand
the rest of the project. A detailed knowledge of cell biology is not required, though it may
be helpful.

Chapter 3 will described some modelling techniques used to model cell behaviour. Quite
a few computational models of cell behaviour. Unfortunately, many of them have certain
limitations in how they represent cells and, as a result, can only be applied in particular
situations. The latter part of Chapter 3 describes the 2D model by Mkrtchyan et al. [15]
that the work in this thesis is based upon.

Next, we switch gears slightly and look at GPU acceleration in Chapter 4. GPUs can
be vastly superior to CPUs in certain applications. It turns out that certain parts of MD
are perfect candidates for GPU acceleration. The reason to pursue GPU acceleration will
be described. Then, some basic ideas of multi-threading on GPUs will be shown and some
examples given.

In Chapter 5 the methodology of the 3D model of cells will be described in greater detail.
That chapter will be ideal for readers who are most interested in the implementation. The
basics of the simulation algorithm will be described as well.

3

Chapter 6 will show some interesting results that were created with the 3D code. As
the 3D model is an extension of the 2D model, the first step of validation is comparing
between the 3D and 2D model. The 2D model is particularly amenable to modelling
epithelia (planar tissue) [15], so the comparison is done there.

Finally, Chapter 7 describes some conclusions that can be derived from the work done
for this thesis. In addition, the plan for this project in the future will be discussed. The
simulation code is, while adequate for replicating the 2D code, can still be improved in
performance, and many more features can be added to be able to study more complex
forms of cell behaviour.

4

Chapter 2

Background Information

2.1 Cell Structure

Cell structure can vary greatly from cell to cell [1, 16]. This section will show the struc-
tures of some simple cells. There are two kinds of organisms, prokaryotes and eukaryotes.
Bacteria and archaea belong to prokaryote family. All animals, plants, and fungi belong
to the eukaryote family.

Figure 2.1 shows a typical bacterium or prokaryote. This type of cell tends to have
diameters of 1-10 µm[17]. Notice that there is no compartmentalization evident in this
type of cell. All genetic information is stored in a nucleoid region with coiled DNA and
cell functions happen more-or-less uniformly throughout the cell. All of this is enclosed
in a plasma membrane which is encapsulated by a harder capsule. These cells can have
flagella that exert control on the cell’s motion.

Figure 2.2 shows a typical animal cell. These cells tend to be much larger than prokary-
otes at 10-100 µm. In some cases these cells may have flagella, however most animal cells do
not control their motion in this manner. Animal cells tend to be either stationary or moved
passively such as blood cells. There are, nevertheless, some types of animal cells that move
by selectively expanding the body, anchoring a part of their body, then contracting the
free part of the body.

The animal cell is enclosed by a cell membrane that gives the structural integrity of the
cell and controls what can move into and out of the cell. There is the plasma membrane
that encloses the whole cell and other membranes that constitute the boundaries of the
organelles such as the nuclear envelope of the nucleus [16, 18].

5

Figure 2.1: The structure of a typical bacterial cell which is a prokaryotic organism. Image
taken from the public domain. By Mariana Ruiz Villarreal, LadyofHats [Public domain], via
Wikimedia Commons.

The cell membrane is an extremely complex component of cells [16, 18]. It is made of
a mixture of various lipids and proteins. These components also includes apparatus that
connect the cell to its neighbouring cells or tissue. It is composed of a bilayer of amphiphilic
molecules named lipids. Proteins are a major component of lipid membranes and give rise
to most of the functionality of the membrane such as transport through the membrane,
cell-cell communication, and anchoring to the surrounding tissue.

The Cytoskeleton

The structural strength of the cell comes from protein filaments that span throughout the
cell as a mesh of interconnected fibres known as the cytoskeleton. This structure not only
gives the cell its shape and mechanical properties, but is also essential in the transport of
vesicles and organelles during cell division. The cytoskeleton is also essential for governing
cell motion [1, 2]. The proteins that form the cytoskeleton can be categorized into three
classes.

6

Figure 2.2: A typical animal cell. This eukaryotic cell has a much more complex structure.
Unlike the prokaryotic cell, this one has specialized organelles with more complex structure.
Also unlike eukaryotes, the DNA is kept inside the nucleus. Note that most animal cells do
not have flagella. By LadyofHats (Mariana Ruiz) [Public domain], via Wikimedia Commons.

1. G-actin and related microfilaments
These filaments combine to support the cell membrane. G-actin (Globular-actin)
is a single chain of 375 amino acids with molecular mass of approximately 42 kDa.
G-actin polymerizes into a chain named the F-actin filament which has a thickness
of roughly 8 nm. These polymers are somewhat flexible with a persistence length
of 3-17 µm [19]. These filaments can cross-link to create two dimensional networks.
These networks tend to be roughly uniform with a constant average distance between
cross linked proteins. Figure 2.3 shows a sketch of such as mesh.

2. Intermediate filaments
Intermediate filaments are thicker than F-actin filaments and have a more complex
hierarchical structure. In animal cells that lack cell walls, these filaments given
the cell its mechanical strength [20]. Each intermediate filament is a cylindrical
arrangement of protofilaments which are themselves composed of pairs of helical
polymers.

7

3. Microtubules
Microtubules are the thickest class of structural proteins. These are structures made
of α-tubulin and β-tubulin. This unit is 8 nm in length and has a molecular mass of
about 100 kDa. The overall microtubule can have a mass of about 160 kDa/nm.

Figure 2.3: This sketch shows the mesh like structures generated through the cross-linking
of F-actin filaments. This gives a good approximation for the structure of cell cortex.

Obviously, cells are incredibly complex things. Simulating a full cell would be extremely
difficult, if not completely impossible. The way such an object reacts to stimuli would be
impossible to simulate regardless of how much computational power is available. Simpli-
fications are needed to be able to simulate such systems. Fortunately, as we will see in
later chapters, the behaviour of the cell can be approximated. Thus cell behaviour can be
studied in silico and compared to experimental results.

2.2 Cell Division

Cell division itself is a highly complex process that differs between cells of different organ-
isms[21, 22] and is controlled by many different conditions [23–26]. Furthermore, incon-
sistencies can introduce many variations that further complicate the behaviour of cellular
systems. These variations may have useful effects such as morphogenesis [27–30] and detri-
mental effects such as cancers or other diseases [31–33] when they occur erroneously.

Walther Flemming first observed cells in mitosis in the 1880s [34], and cell division been
an intense topic of research ever since. Much work has been invested into studying the

8

molecular mechanics of mitosis including what regulates it and which proteins participate
in it [5]. He coined the term “mitosis” which comes from the Greek work for thread,
mito, after noting the thread like structures of dividing cells. The process of mitosis is
a multi-step process that depends on many factors within the cell and its environment.
First the cell grows if there are enough nutrients in the system. Once it then reaches
appropriate size, the internal mechanisms of cell division are started. This includes the
replication of DNA and the creation of proteins that structurally partition the cell into two
daughter cells. Cell mechanics ensure that mitotic cells have a roughly spherical shape[35,
36], they define the division plane[5, 37, 38], and even govern the changes in the cell shape
by manipulating the cell cortex. The cells proliferate to create the various organs in the
human body.

The cell cycle is the series of events that lead to duplication and replication of a cell.
Figure 2.4 shows a typical cell cycle. The goal of the cell cycle is to produce two daughter
cells that are accurate copies of the parent. There is a continuous growth cycle with
accompanying increase in cell mass and volume, and a discontinuous division cycle in
which DNA is replicated and distributed to the daughter cells.

While bearing in mind figure 2.4, we can then see what the detailed steps involved in
cell division are. The cell cycle is divided into three phases[16, 39]: M-Phase, Interphase,
and cytokinesis.

1. Interphase
This is the part of the cell cycle in between subsequent mitosis events. The cells grow
and replicate their DNA in this phase which can further be divided into 3 steps:

(a) G1: The first gap phase
This is the longest and most variable portion of the cell cycle. When cells
enter this portion of the cell cycle, they are normally half the size of their
parent cell. They grow to maturity during this phase. At the beginning of this
phase, all of the mechanisms that govern replication and division are halted
until the restriction point. The restriction point is when the cell checks the
supply of nutrients before it starts the remaining steps before mitosis. Once it
is determined that there is sufficient nutrient supply, the cycle continues.

(b) G0: Differentiation and growth control
After the organism has developed sufficiently, most cells differentiate into a new
Go state and no longer divides. The cell is still highly active doing things other
than division and can be motile as well. This state is not permanent, the cell
can reenter G1 phase to divide again.

9

G
1

G
1

S

G
2

M

Error
Checking

Mitosis

Chromosome Duplication

Growth G
0

Cytokinesis

M-Phase

Interphase

Figure 2.4: The different phases of a eukaryotic cell. During the G1 phase the cell gains
mass and volume. Chromosome duplication occurs during the S phase. The DNA error
checking mechanism is started during the G2 phase. Finally, the cell is divided during the
M phase. Adapted from Figure 40–2 in [16].

(c) S: Chromosome replication
Due to complexity of eukaryotic DNA, replication must be done in a highly
controlled manner. Replication happens from multiple points of origin. The
duplicate copies of DNA copied at each point of origin are name “sister chro-
matids” and remain linked until they are separated during mitosis.

(d) G2: The second gap phase
This is a relatively brief period during which the replicated DNA is checked
for damage or errors. Enzymatic activity specific to mitosis accumulates and
triggers mitosis once a threshold is reached.

2. M-Phase
Once the DNA has been replicated, the cell segregates them on opposite ends of a
cellular scaffold named the mitotic spindle. After the segregation, cytokinesis, the

10

process of cleaving the cell into two daughter cells begins. This phase proceeds in
five steps.

(a) Prophase: Formation of the mitotic spindle
A change in the properties of the cytoskeleton cause it to separate and form two
poles of the mitotic spindle.

(b) Prometaphase: Nuclear breakdown
The nucleus breaks down and the sister chromatids and begin to move towards
the centre of cell roughly half-way between the two cell poles.

(c) Metaphase: Mid-point of the process
At this point the chromosomes are roughly halfway between the two cell poles.
They form a collection of chromatids named the metaphase plate.

(d) Anaphase: Sister chromatid seperation
The chromatids separate and begin to move opposite spindle poles and the
poles themselves begin to move apart. The cell cortex is also activated to begin
cleaving the cell into two.

(e) Telophase: Nuclear envelope reformation
The separated chromatids are now enveloped in new nuclear membranes.

3. Cytokinesis
Once all of the genetic information and organelles have moved into the regions of the
parent cell, a contractile ring of protein fibers (actin and myosin) forms about the
equator of the parent cell. The ring contracts, forms a cleavage furrow and pinches the
cell into two daughter cells. Figure 2.5 shows the onset of cytokinesis. The contractile
ring continues to contract until the two halves of the parent cell are “pinched off” of
each other. This process is a delicate balance between the internal pressure of the
cell (aka the turgor pressure in plants and fungi) [16, 40, 41], the plastic nature of
the cell membrane, and the forces of the cytoskeleton. It is theorized that similar
mechanisms contribute to cell migration[37].

2.2.1 The Division Plane

The selection of the division plane is another interesting aspect of cell division. The division
plane of the cell is simply the plane in which the contractile ring lies. Or in other words, it
is the plane at which the parent cell is pinched off to make daughter cells. The orientation
of cell the division plane is required to generate complex multi-cellular organisms[42].

11

Figure 2.5: After the chromatids have been correctly separated a the end of anaphase, a
contractile ring of actin forms roughly halfway between the two cell poles during telophase.
This concludes the activities of M-Phase. Cytokinesis begins with the protein ring contract-
ing and ends when the two halves of the parent cell are pinched off of each other.

Orientation of the division plane can have significant bearing on development and cell
differentiation[43].

The selection of the cell division plane can vary from cell type to cell type. The shape
of the cell can affect division plane [42] in addition other factors such as the alignment of
the molecular spindle [44]. There may be more than one force that act on the centering of
the molecular spindle.

Given all of these factors that can affect the division plane orientation, we can look at
what different division planes are possible and effects they may have. The first type of
division plane is selected by Hertwig’s rule, also known as the “long axis rule” [45]. Hertwig
concluded: “The two pole of the division figure come to lie in the direction of protoplasmic
mass”. That is the mitotic spindle lies along the longest axis of a cell. Then, the division
plane is chosen roughly mid-way, perpendicular to this axis.

In addition to reproduction where the cell is divided in to cell of equivalent size, it is
possible to have asymmetric division[30, 38]. In this case the one of the daughter cells is
significantly larger than the other[32, 35, 46, 47]. The division plane may depend on the
alignment of the mitotic spindle, if the spindle is misaligned with respect to the axes of the
cell, then the division occurs such that one daughter is smaller than the other. However this
is not always the case, sometimes mitosis begins in a symmetric way, then at some point
after the formation of the cleavage furrow, one half the cell expands and the other contracts.
A consequence of asymmetric cell division is that the daughters may receive different kinds
of intrinsic cell-fate determinants which play a role in differentiation[47]. Some kinds of

12

stem cells are known to differentiate from reproducing through asymmetric cell division[48],
and producing new cell types. We will see later that in the 3D model developed in this
thesis, the division plane is set randomly and symmetrically (see Section 5.3 and figure 2.6).
Other division planes are planned for the future. In the 2D model on which the 3D model
is based, introduced by Mkrtchyan et al. [15, 49], all three division schemes were studied.
So the model presented in Chapter 5 is amenable to modelling different division planes.

Figure 2.6: Division planes showing symmetric and asymmetric division. The bold orange
line is the mitotic spindle. The orange dashed line shows the symmetric division plane. The
purple dashed line shows an example of an asymmetric plane line.

2.2.2 Inter-Cellular Adhesion

The adhesion forces between cells play an important role in their interactions and be-
haviour [50–55]. Cells may adhere to substrates, the extracellular medium, or other cells.
The complex structures of cell membranes make it difficult to describe accurately. There
may be two sources for the adhesion interaction between cells: van der Waals forces, and
site specific adhesion mediated by Cell Adhesion Molecules (CAM) [50]. Variation in cell
adhesion is known to have effects on the geometry and function of tissues [54, 56]. At longer
ranges, the adhesion is caused by van der Waals interactions and electrostatic interactions
between lipids with charged head groups. As membranes of different cells come into close
proximity with each other, steric hindrance and thermal undulations of the membranes
cause repulsion.

Stronger adhesion interactions occur through specific interaction sites between CAMs.
CAMs are molecules embedded in the cell cortex that interact with CAMs of other cells
or the extracellular [50]. These CAMs may be spread evenly over the surface of cells or at
specific junctions that induce some control over the structuring of tissue [50].

13

Due to the complex nature of cell behaviour, especially cell reproduction, there is a need
for theoretical frameworks to study cells and provide predictions. Quite a few models have
been proposed to meet this need[15, 34, 57–64]. Some of these are described in Chapter 3.

2.3 Molecular Dynamics

Molecular Dynamics (MD), is a very powerful and highly used method to model matter at
the molecular level. With this method, we can simulate systems in states of equilibrium and
non-equilibrium [65]. Over the past several years, many software packages have emerged
that can run MD simulations of very large systems efficiently. These include packages
such as the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [66],
DLPOLY [67], the GROningen MAchine for Chemical Simulations (GROMACS) [68], the
NAnoscale Molecuar Dynamics (NAMD) [69], the Extensible Simulation Package for Re-
search on Soft matter (EXPResSO) [70], the Molecular Modelling ToolKit (MMTK) [71],
and the Highly Optimized Object-Oriented Molecular Dynamics (HOOMD-blue) [65].
Most of these packages support multithreading on multi-core CPUs and parrallelization
across multiple computational nodes with multiple CPUs. Some of these packages such as
GROMACS and HOOMD-blue support acceleration on GPUs as well.

All of the packages above are fundamentally alike in that they use the same algorithms
that have were first developed in the 1950–1970 in theoretical physics; these methods have
been evolving ever since. When first developed, these methods were primarily used to
study simple atoms[72–75].

One of the very first MD simulations was run by Alder and Wainwright in 1957[72]
that used a hard sphere model where all atoms interacted through perfect collisions and
studied their phase transition. Later, Rahman applied a continuous potential that made
the atoms behave more realistically [73]. Rahman showed that this method could reproduce
the properties of Argon at 94.4 K. The very first protein was first simulated with MD in
1977 by Karplus al. [76]. The Karplus group simulated the dynamics of Bovine Pancreatic
Trypsin Inhibitor (BPTI). These simulations were all conducted with less than 1000 atoms,
and since then the number of atoms that are routinely simulated has grown rapidly to the
point that simulations with 104–106 atoms have become commonplace[8].

Furthermore, the very first simulations could only simulate on the order of 10’s of ps at a
time due to limitations of computational power. Nowadays it is common to run simulations
up to the µs range with simulated domain sizes on the order of 1 µm3 thanks to the vast
improvements in computational power and methodological techniques. There has been a

14

great deal of work in studying the properties of, among other systems, lipid aggregates[9,
10, 77], lipid monolayers[78, 79], bilayer pore formation [80], protein binding [81, 82], and
enzyme activity [83].

Despite these vast improvements, there is still a never ending demand for larger simula-
tions that are run for longer. Therefore, there is a great deal of interest for parrallelization
of MD codes over multiple Central Processing Units (CPUs) and Graphics Processing
Units (GPUs). This demand coupled with the fact that access to supercomputers with
many CPUs is difficult and expensive has increased the interest in GPU acceleration which
are cheaper to use and easier to operate. The technology that has been developed to run
MD over multiple CPUs can be reused to run on multiple GPUs if needed.

The aim of MD simulations is to compute macroscopic behaviour form microscopic
interactions[84]. When the macroscopic behaviour can be reproduced computationally by
simulating microscopic systems, the simulations can be used to study the macroscopic
systems computationally. MD furnishes the scientist with the capacity to study real and
theoretical system as well.

2.3.1 Methodology

A simulation method, henceforth called the model, needs to be both correct as far as its
results go and also needs to be tractable. That is, it must use minimal resources (memory
and/or processing power). The most expensive part of any model is the complexity of
the interactions between the particles in a system described by a potential energy equa-
tion. These equations are approximations of the fundamental laws of physics that govern
real atoms. The approximations are made due to some assumptions that simplify the
interactions somewhat.

With elementary mechanics, the force on a particle i is defined as function of the
potential energy that a particle feels, U as shown in (2.1).

Fi = −∇U (2.1)

If U is defined correctly, the force on any particle can be calculated. When defining
U , it must be first decided what interactions will be modelled. A valid simulation is
completely dependent upon the accuracy of the potential energy landscape of the system.
Simultaneously, the potential energy functions must remain tractable to not overwhelm
computational resources. U is broken down into a sum of different potential functions Uint
depending on the type of interaction,

15

U =
∑
int

Uint. (2.2)

Typically when modelling molecules, there will be non-bonded interactions between
particles. If the particles are molecules, then the interactions between the atoms of the
molecule will have what are known as bonded interactions. The bonded interactions are
approximated by harmonic potentials (Eq. (2.3)), harmonic bending potentials (Eq. (2.4)),
and torsional interactions (Eq. (2.5)) that can be of the Ryckaert-Bellemans [85, 86] type.
Bonded interactions have quite a short range, not extending beyond three to four times
the bond length. They are also highly anisotropic and require a bond to exist to be valid.
No chemical reactions are modelled in a strictly MD simulation so these potentials depend
entirely on the definition of the molecules’ bond lengths, angles, and dihedrals which are
part of the initial conditions of the system,

US(rij) =
1

2

(
rij − roij

)2
(2.3)

UB(θijk) =
1

2

(
θijk − θoijk

)2
(2.4)

UT (φijkl) =
3∑

n=0

Sn(cos (φijkl − π))n. (2.5)

where rij is the bond length between particles i and j, θ and φ are the bond and dihedral
angles. The variables denoted by a “naught” are the equilibrium values of the same. The
constants KS, KB, and Sn are constants that can be approximated empirically and depend
on the system being modelled.

Inter-molecular interactions include Van der Waals (VDW) interactions and electro-
static interactions. These type of interactions extend well beyond bonds are also isotropic.
They are approximated more completely than bonded interactions. VDW potential is
approximated by the Lennard-Jones potential function (Eq. (2.6)).

ULJ
ij = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.6)

The electrostatic potential is a much more complicated problem to tackle. VDW and
bonded interactions have a much shorter range when compared to electrostatic potentials.

16

Therefore, a much larger number of particles (close to infinity) have to be simulated in
order for the simulation to be realistic. This is, of course, impossible to do. This issue also
affects other non-bonded interactions for the same reason of wanting to simulate systems
comparable in size to experimental systems with many moles of particles in a reaction
vessel.

Figure 2.7: Sketch of periodic boundary conditions. A much larger system is created by
periodic images of the simulated system. The virtual particles interact with the particles near
the boundary of the simulation box. As particles exit the simulation box, a copy replaces
it on the opposite side. Particles can interact with other particles and virtual particles
depending on the distance between them.

These problem of system size is alleviated with Periodic Boundary Conditions (PBC),
see figure 2.7. PBC make the simulation of smaller microscopic systems resemble larger
macroscopic systems more closely. PBC introduce a periodicity into the system that is only
valid for crystalline systems. This artifact introduced by PBC is removed by the minimum
image convention[87].

With this setup, the electrostatic potential energy function can be formulated in a
tractable way. Due to their long range, electrostatics have to be modelled using more
complex methods. To consider all of space surrounding a particle, Ewald sums are used
where the electrostatic energy is calculated in Fourier space[88–90]. There are three popular

17

algorithms that implement Ewald sums: Particle Mesh Ewald (PME)[88], Smooth Particle
Mesh Ewald (SPME)[91], and Particle Particle Particle Mesh (P3M) [92]. Eq. (2.7) defines
the total electrostatic energy in a system of N Coulomb point charges.

E =
1

2

N∑
i,j=1

∑
nεZ3

qiqj
|rij + nL|′

(2.7)

where rij is the vector between particles i and j, L = diag(lx, ly, lz) is a diagonal matrix
with sidelengths lx, ly,lz, n indexes the surrounding periodic cells, and the ′ indicates that
the calculation is ignored for i = j and n = {0,0,0}.

Equation (2.7) decays very gently over r, so a direct calculation is not feasible. The
PME, SPME, and P3M are some efforts to solve this problem. Readers are referred to [90,
93, 94] for more details about electrostatic force-field calculations. Due to the complexity
of these potential functions, the simulations may require a large amount of computer
resources—even more is needed for simulating macromolecules. This problem is solved by
coarse-graining [95].

The simulations are often times run with the molecules being described at the atomic
level. This can be prohibitively expensive. Coarse-graining is built upon the assumption
that the internal dynamics interatomic interactions are of less importance than intermolec-
ular interactions of large macromolecules [95]. Groups of atoms are grouped into beads that
then interact with each other. There are a large number of coarse-graining methods[96–
100] that have been implemented in the aforementioned software packages.

Now that the interparticle interactions are defined, the next step is to calculate and
update the particle positions and velocities. As part of the initial conditions, the particle
positions are chosen randomly and given random distributions. The positions are taken
form a uniform distribution and velocities are chosen from the Maxwell-Boltzmann[84]
distribution, shown in Eq. (2.8), to reach equillibrium quickly,

p(vi) =

√
mi

2πkBT
exp(−miv

2
i

2kBT
). (2.8)

Equation (2.1) can be rewritten into a differential form,

m
d2xi

dt2
= −∇U(xi) (2.9)

18

which will have to be solved numerically. The velocity Verlet [101] algorithm is used
thanks to its symplectic nature symmetry under time reversal [101, 102]. Equations (2.11)
and (2.10) define the math behind velocity Verlet,

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)

mi

·∆t2 +O(∆t4) (2.10)

vi(t) =
ri(t+ ∆t)− ri(t−∆t)

2∆t
+O(∆t2). (2.11)

Notice that in all of the equations described above, it seems that they can be calculated
simultaneously for each particle. The calculation of, say, the force on a certain particle
does not depend on the forces on the other particles in the system. This can be taken
advantage of any the calculation may be parrallelized to be carried out simultaneously on
multiple cores and CPUs. Due to network latency, unfortunately, there are a diminishing
returns associated with increasing the number of CPUs. The number of CPUs used has to
be balanced with the overall performance (measured in steps/day or ns/day) of the simu-
lation. The latency problem can be avoided by using GPUs. GPUs can run many threads
simultaneously, and deal with intercommunication without high latency networking. Many
of the MD software packages mentioned before already support acceleration on GPUs.

Finally, note that the MD done for this thesis is slightly different in that it does not
model the interaction between atoms and molecules. Essentially, only the aspect of inte-
gration used in MD will be used for modelling cell dynamics. This is done by defining
custom, and much simpler, force fields that operate on mass points that are much more
massive than single molecules. This is described in detail in Chapter 5.

19

Chapter 3

Some Cell Modelling Techniques

As discussed in previous chapters, cell behaviour is extremely complex and depends on
many factors. The behaviour is interesting because its responses to chemical and physical
stimuli is what leads to development of complex multi-cellular living organisms. Much has
been learned through the traditional experimental nature of cell biology. Much progress
has been done since Flemming first described mitosis in the late 19th century [34].

Cell biologists have learned a great deal of regarding the operation of the internal
components of the cell. Such as the role of mitochondria in energy production and cellular
metabolism, the photosynthesis function of chrolophyl in plant cell, the conduction of
electrical impulses through axons in nerve cells, etc [16, 18]. The vital behaviour of groups
of cells is also a vibrant topic of inquiry [103–105]. Not only for scientific curiosity, but also
to more practical ends such as understanding the mechanisms of disease or decay due to old
age. Naturally, there is a need for multidisciplinary research activities to full understand
such phenomena.

Any complex phenomenon that is difficult to describe analytically, i.e. anything that
is even a little more realistic than spherical cows in a frictionless vacuum, is an attractive
topic for the development of computational models that allow us to run simulations that
can accurately simulate that behaviour. The models that arise from such analysis can
then be used as either a basis for experimental design, as an augmentation to already
available experimental evidence, or even as a cheap sandbox to create strange environments
and stimuli that are difficult to create in the lab. Thus, many computational techniques
have been developed to study cells. This chapter attempts to summarize some of these
techniques.

When considering cell behaviour, it is possible to have multiple types of models that can

20

be used. The field of mathematical biology encompasses a number of so–called continuum
models which are ones in which the behaviour of cells is modelled using mathematical
equations that link certain behaviours to parameters related to the cell type or environment.
This method produces a set of coupled differential equations that can be solved and their
solutions compared with experimental data. The problem with these techniques is they
sacrifice the vast majority of the properties of the cells themselves in order to elucidate some
macroscopic “emergent” property. This is not always possible as inter-cellular interactions
cannot always be approximated fully [106].

The other type of models are those that consist of cells that are treated as individual
cells. In most cases, the cell is modelled as a closed shape that interacts with its surround-
ings in a particular way. The nature of this interaction, of course, depends on the model
itself. The advantage with these methods is that the individual behaviour of the cells
themselves can be studied and observed computationally. Naturally, the cost of computa-
tions is significantly higher with these type of models. Despite the increased granularity,
or resolution, of these types of models, many approximations have to be made regarding
cell structure itself. Additionally, these models will abstract away all of the minute in-
termolecular interactions that intercellular interactions are based on. It is also possible
to create hybrid models that are based on both of these principles with discrete elements
being affected by continuous functionals [107].

The model that is presented in this thesis is based on previous work by Karttunen
and Åström, who designed the basic principles in 2006 [14], and the work of Mkrtchyan et
al. [15, 49] that was used to study epithelial packing in 2014. The 2D model is described
in Section 3.3

3.1 Mathematical Biology

The first kind of models that can be used to study cell behaviour are those that will
be referred to as either mathematical models, these are the kind that simply reduce cell
behaviour into mathematical formulations that apply to on specific aspect of cell behaviour.
This techniques are placed under the umbrella of Mathematical Biology and can be thought
of as continuum models.

In this class of techniques, differential equations are derived from principles observed
experimentally or from first principles —biological first principles. Unfortunately, there
is a difficulty in defining principles such as the rules of equilibrium or conservation that
govern cell behaviour[108]. This is due to the non-linear nature of the interactions between

21

cells, i.e. the outcome of interactions of a cell with its neighbours is not always a linear
sum of each individual interaction with each individual neighbour [109].

Therefore, it is rarely biologically sound to try to show some macroscopic properties
from first principles [106]. Nonetheless, these methods can be very useful to study systems
that are at least temporarily in the valid domain of applicability of a specific model.

In general, models of this type have been developed to study many various cellular
phenomena [108, 110, 111] such as: cell-cycle control, cell death, cell differentiation, cell
aging and renewal, and the same for cancer cells. Or sub-cellular phenomena such as:
DNA control (Transcription, Replication, Repair), or endocytosis[112]. Readers interested
in other aspects of this field are referred to Refs. [106, 108, 110, 113–115].

3.1.1 Models of Cell Population Dynamics

As an example of mathematical biology, consider the study of population dynamics. The
progression of cell growth over time has always been an important area of study. Firstly,
measuring the population of a culture and observing its trend are fairly simple procedures,
compared to other more complex experiments, so it can be done relatively easily. The
trends in the number of cells in a culture over time can easily be observed, and be plotted.
This type of graph will be called the population curve or population trend line hereafter.
The cells of different organisms grow at different rates and with different kinds of trends.
Anomalies in population trends can be linked to illness [116]. The population curve can
also differ greatly within the same species depending in what stage of life that organism
is in (development, reproduction, death, etc.). Growth curves with remarkably similar
properties can be found in the progression of many quantities such as the height of a
human, or population of most organisms. These growth curves tend to be sigmoidal and
can even describe quantities such as dose-mortality relations [117].

While making some simple assumptions, one can very easily derive the population curve
of an ideal system where nothing limits cell growth at all. At one instance in time, some
fraction r of cells will divide, so the rate of change of the number of cells N will be given
by (3.1). Which can trivially be solved to give (3.2) where No is the initial number of cells.

dN

dt
= rN (3.1)

N(t) = Noe
rt (3.2)

22

The function in (3.2) is called an intrinsic growth trend, it describes the population
growth under ideal conditions where each individual has complete access to nutrients and
does not perish. Unfortunately, or fortunately depending on perspective, this is not the
case. The conditions for growth are far from ideal, one can even say that it the world is
hostile of growth. There are many factors that limit growth rate such as competition with
other cells for nutrients, the limited lifetime of cells with an associated death rate, the
threat of disease and/or predators, etc. A more complex trend is normally observed. This
is where we shift to looking at sigmoidal functions.There have been number of functions
[116–118] that are known to follow this behaviour:

• Intrinsic Growth [119]
N = Noe

kt, (3.3)

• The logistic function [117]

N =
Nmax

1 + be−kt
, (3.4)

• The Gompertz function [120]

N = Nmaxe
−be−kt

. (3.5)

These models are not only valid to study the cell number over time, but can also be
applied to other observables such as average size or weight[116, 118]. Typically in such
systems, growth starts at population of zero (or some small value close to zero) at t = 0,
accelerates to a maximum (µm) after a lag time (λ), finally the growth rate drops to zero
again asymptotically at a maximum population A [117].

In 1981, Schnute generalized all of the growth models shown above, including some
other more complex ones, into special cases of a universal growth model[116]. Zwietering
et al. [117] did a study that compared various special cases of the Schnute model [116] and
showed that they can produce good fits to the population trends of various bacteria, where
the parameters µm, λ, and A were found with nonlinear fitting.

3.1.2 Continuum Models of Cell Behaviour

Local interaction functions are used to develop these type of models[51, 121–123]. From a
mathematical perspective, these models are not much different from the models in mathe-
matical biology. The microscopic interactions of cells are abstracted into functional forms

23

which may describe parameters such as density, growth rate, death rate, inter-cellular in-
teraction strength [122], or interaction strength with the medium [109]. Unfortunately,
this kind of modelling cannot take into account of all the minute interactions between cell
membranes, and therefore are not always ideal for simulating cell behaviour.

Somewhat like in many-particle physics, all of the individual cells are modelled with
some continuous parameter like density. Then, spatiotemporal equations of motions are
derived that describe the dynamics of a continuum of cells [115, 124]. This method yields
the dynamics of the total population as whole and individual behaviour is neglected. Con-
tinuum models have been used to study a variety of phenomena such as tissue deformabil-
ity [51], tumour growth [121], viscosity of tissues [122], and anisotropic tissue growth [123].
While the results of computational studies have proven favourable, their limitations remain.
Continuum models cannot take the mechanical interactions between cells at the cellular
scale of size. Methods that can model individual cells are needed to fully understand cell
behaviour.

3.2 Discrete Cell Models

Now we take a look at some models that implement cells as individual entities that interact
with their surroundings, much like real cells. These models can be more computationally
expensive, however they allow us to study different aspects of cell behaviour at a lower
level without forgoing any of the small interactions between cells. It is possible to have
models that simulate cells as either two dimensional or three dimensional objects. Two
dimensional models are cheaper computationally though they do not possess the ability to
model the full breadth of cell behaviour directly as they are missing the third dimension.
Three dimensional models can capture cell behaviour more fully, but are computationally
very expensive. More generally, cell models that simulate single cells can also be named
agent-based methods.

3.2.1 Delaunay Object Dynamics

Delaunay Object Dynamics (DOD) is a three dimensional technique where each cell is
modelled as a three dimensional, elastic, and adhesive Voronoi cells [64, 124–126]. A cell is
described as a three dimensional polygon that is constructed with Delaunay triangulation.
Readers interested in the details of Delaunay triangulation are referred to [125, 127, 128].
Each face and edge of each cell is then modelled with damped Newtonian Mechanics [125].

24

The Delaunay triangulation used in this method is slightly varied form regular Delaunay
triangulation and is termed weighted Delaunay triangulation [64, 129]. To put it simply,
Delaunay triangulation is method of triangulation for a set of points that obeys the De-
launay Condition [125, 130]. The Delaunay condition is that the circle circumscribing any
triangulation must not contain any other points. Figure 3.1 shows a Delaunay triangulation
of a random set of points.

Figure 3.1: Here the Delaunay triangulation of two dimensional cells is shown. The dashed
edges belong to Delaunay simplices, the solid line is the Voronoi region corresponding to the
middle cell. The overlapping circles represent the weighting of the triangulation. Reprinted
with permission [124] c© 2005 American Physical Society.

The Delaunay triangulation describes the topology of the surroundings of the cell and
how it is positioned in space with respect to its neighbours. This way, the triangulation
describes the distances between cells very well. The dual graph of Delaunay triangulation
is the Voronoi tessellation of the same set of points [131]. The Voronoi regions, shown in
Figure 3.1 describe the shape, contact surfaces, and sizes of the cells in the system [64].
Cell division, death, or flux changes the triangulation by adding, removing, or changing
the positions of points in the system. As the points change the Delaunay and Voronoi
graphs change accordingly.

The forces between cells are caused by interactions occurring on the surfaces of the
Voronoi cells are modelled along the Delaunay triangulation simplices [64, 124, 126]. The
DOD force-field contains terms for active forces that are generated by the exertion of

25

cytoskeleton on the cells’ surroundings, and passive forces that are a result of the cells’
interactions with their neighbours. The passive forces model cell elasticity and adhesion.
Lastly, the forces are damped by a drag forces on all cells that embody the interaction of
the medium with the cells.

DOD has been used to study the proliferation, death, and behaviour of lymphoid
cells [64], tumour cell reaction to changes in nutrient levels [124]. DOD is also gener-
ally applicable to tissue organization [64], and cell migration [132].

3.2.2 The Cellular Potts Model

Physicists have been for a very long time modelling and analyzing problems which exist at
many different scales of space and time, so called multi-scale problems. The mechanisms
that control tissue organization depend on the local intercellular interactions between each
cell and its neighbours. The Cellular Potts Model (CPM) is a lattice based model that that
can be used to understand the factors at the cellular scale that affect tissue organization [60,
133].

For many decades, physicists have been developing models that apply to very difficult
multi-scale problems. It is often possible to find some already existing model used for some
unrelated science in the wild that can be applied to a new problem at hand. The CPM is
one such model that was developed by Glazier and Graner[134, 135]. The model originally
developed in the field of solid-state physics to study ferromagnetism. This model is also
called the Glazier-Graner-Hogeweg[60] model.

The CPM is based on the Potts model that was developed by R.B Potts under the
tutelage of C. Domb in the early 1950s[136]. Potts proposed this model as a part of his
PhD thesis. It is a generalization of the Ising model[137] where instead of considering
two possible states, such as for example atomic spin states -1 and +1, the Potts model
considers any number of states. See the review by Wu[138] for a more detailed description
of the Potts model.

Much like the Potts model, the CPM is a lattice model at heart. That means that
each cell no longer is its own entity, but collection of grid points, which may be pixels or
voxels. These collections grid points are then treated individually. Graner and Glazier first
studied cell sorting using this method [135], but it is possible to study other phenomena
such as cell migration[62], and morphogenesis[139]. The lattice grid may be cubic or
hexagonal. The basic idea in this type of modelling is too minimize the energy under
certain imposed fluctuations. The cell is modelled as a more-or-less deformable object and

26

its shape is affected by both internal and external stimuli. The parameters of the model
can be mapped to the physical and biological properties of real cells.

Figure 3.2 shows an example of a two dimensional square lattice that was used by
Voss-Böhme [60] in their analysis of CPMs. The system is divided into a grid lattice,
which can be in 2D or 3D, and each lattice cite is assigned an index depending on what
type of site it is. The 0 index is typically reserved for the medium, and the remaining
sites are enumerated to lie in their own cells. This defines cells as internally structure-less
boundaries that can have complex shapes. The cell interactions are described as effective
energies and elastic constraints. Time is propagated as changes in the configuration by
minimizing these interaction energies. The configurations are updated by with a modified
Metropolis Monte-Carlo algorithm [62, 140, 141] in which sites are updated randomly and
accepts changes with a Metropolis-Boltzmann probability [62, 136].

Figure 3.2: The CPM is a lattice model where each cell is considered to be a collection of
grid points. The cells have indices 1,2,3 and the medium is with index 0. Domains of the
same index greater than 0 define the shape of each cell. There are three interaction terms:
JAM which is for the interaction between cell type A and the medium, JAB which is for the
interaction between the A cells and B cells, JAA between the cells of the A type, and JBM

for the interaction between B and the medium. JBB is also valid, however is not needed in
this figure. Taken from [60], CC license.

Let the state of the system be denoted by σ(x, y) where (x, y) is the location being
considered. J is a single parameter than accounts for adhesion and cortical tension which
is measured in cost of energy per unit of membrane length between two sites of different
type. The volume of the cell (or area in 2D) is constrained to a reference of vo with

27

compressibility κ−1. ∆E is the energy difference between the two states. Equation (3.6)
shows the probability distribution for accepting or rejecting updates,

P (∆E) =

{
1 if ∆E ≤ 0

e−
∆E
T if ∆E > 0.

(3.6)

Where T represents the average fluctuation in the boundary of each cell. Normally, one
Monte-Carlo step (MCS) is an attempt to update each lattice site. Equations (3.7), (3.8), (3.9),
(3.10) show how the energy of σ may be defined. Echem is the contribution to the energy
coming from motile forces that point along the direction of cell polarity ni with field
strength µi.

The energy of any given pixel of a cell is given by

E = Eadh + Evol + Echem, (3.7)

where
Eadh =

∑
k,l

Jkl (1− δk,l) (3.8)

is an approximation of the intercellular interaction between cells, J is related to membrane
tension and differs depending on what two cells are being considered (JAB, JAM , JAA in
Figure 3.2), k, l index the neighbouring pixels. δk,l is 1 if the pixels k, l belong to the same
cell, and 0 otherwise.

Evol =
∑
i

1

2
κ(vi − vo)2 (3.9)

is the energy needed to deform a cell, where v0 is the cell volume (area in 2D) at equilibrium,
κ−1 is the cells compressibility, and vi is the instantaneous cell volume.

Echem =
∑
i

−µini · ri, (3.10)

is the energy resulting from motile forces along polarization vector ni, with magnitude µi.
ri is the location of the cell’s centre of mass.

CPMs have been used to study a wide variety of cellular phenomena, especially cell
sorting [134, 135, 142, 143], cell migration [62, 144], and chemotaxis [145, 146](cell motion
in reaction to chemical gradient).

However, it is clear that the interactions between cells in CPM models do not take into
account any mechanical interactions between cells. While the resultant motion of cells due
to energetically unfavourable conditions can be correct, the mechanical interactions of cells
play a vital role in their behaviour [54, 56].

28

3.2.3 Topological Models

This class of models are based on the work of Matella and Fletterick that they did in
the 1980s[147–149]. These models are inherently two dimensional and rely on graphs of
adjacent cells, much like DOD (see Section 3.2.1). In topological models, the cells are
triangulated such that they always meet at corners with two neighbouring cells [149] at
trivalent junctions. The resultant arrangement is intentional because it was observed that
cells in planar systems favoured hexagonal packing[15, 49, 56, 61, 150–152]. The dual map
of the trivalent junction describes the adjacency of cells.

The dynamics of the cells are simulated by manipulating the map structure to introduce
cell division, growth, movement, adhesion, differentiation and death [149]. Cell division
is simulated by introducing new edges that divide a parent cell into fairly symmetric
daughters. Cell growth is simulated by systematically increasing the size of cells. Cell
movement is done by exchanges in adjacent cells. Differentiation is done by subtly changing
parameters of some of the cells so that their behaviour is slightly different. And finally cell
death is simulated by removing some edges of the dying cell until it finally disappears.

3 4 5 6 7 8 9
Number of neighbours

0

10

20

30

40

50

Fr
a
ct

io
n
 (

%
)

Drosophila
Simulation

Figure 3.3: This graph shows the packing distribution of a topological simulation done by
Patel et al., data taken from [61]. The results are of orthogonal equal split division.

Once again, the limitation of this technique is that topological models cannot account
for cellular geometry, the mechanical interactions between adjacent cell membranes, and
the interactions of cells with the medium. Topological model simulations are known to be
good approaches to study two dimensional structures such as epithelia [61, 151, 153, 154].

29

However due to the assumptions made about the packing of cells, these models cannot be
applied to simulate three dimensional tissue, or tissue that is not necessarily hexagonal.

Consider the results shown in Figure 3.4 and Figure 3.3. The topological simulation
that was run by Patel et al. [61] produced the correct packing distribution of epithelial
cells. But in Figure 3.4, we clearly see that the mechanics at the cellular level are not
necessarily correct.

Figure 3.4: Left: The approximate polygonal topology of the epithelium the Drosophila
melanogaster (fruit fly) wing disc as measured by Patel et al. [61]. Right: The topological
model that was used to simulate the wing disc, as simulated by Patel et al. [61]. Dark blue
cells have four neighbours, blue have five, green have six, orange have seven, and maroon
have eight. Even though Patel et al. ended up with the correct distribution of cell grouping,
the model cells themselves do not arrange themselves like real cells. c© 2009 Patel et al.,
CC license.

3.2.4 Vertex Models

Vertex models are a made of sub-cellular particles that are bound in tightly bound clouds,
developed by Newman[63]. Each cell is represented by a cloud of mass mounts that are
held together with strong intracellular Morse potentials [63, 155], weak Morse potentials
are used for inter-cellular interactions (Eq. (3.11)),

V (r) = Vo exp(−r
2

ζ21
)− Uo exp(−r

2

ζ22
), (3.11)

30

where Vo, Uo, ζ1, ζ2 determine the strength of adhesion and repulsion. This model can
be used to study cell reproduction in two and three dimensions.

3.3 Two Dimensional Cell Dynamics

The model that is described in this work is a three dimensional version of one that was first
designed by Karttunen and Åström in 2006 [14]. Later, in 2014, Mkrtchyan, Åström, and
Karttunen expanded upon the model by adding modes of cell growth and division[15, 49].
Since the model is two dimensional, epithelial cell packing seemed like an obvious target
for model validation. They saw that their model could accurately reproduce the packing
of the Drosophila wing disc[15, 49].

To summarize, the new model is a single-cell based mechanical model with which ac-
counts for cell cortex contractility, and cell-cell adhesion[15, 49]. Each cell is a closed
loop of mass points, and the mass points interact with each other in a force field that
accounts for bonding interactions between neighbouring mass points in the same cell, ad-
hesive interactions with neighbouring cells, and intercellular friction. Each cell is assigned
an internal pressure which controls the cells’ growth. Mitotic cells are known to grow by
internal pressure [35, 37], which makes the driving force behind growth biologically sound.
Furthermore, the physical properties of tissue, and the effects of division on the same, can
be controlled at the cellular level. The system allows for spontaneous cell rearrangements
and movement without the need for stochastic laws.

3.3.1 Intracellular forces

A cell is represented by a loop of springs connected at mass points. This structure was
originally suggested by Åström and Karttunen in their work on cell aggregation in confined
spaces[14]. Tension forces operate on each mass point through spring interactions with
neighbouring mass points. Figure 3.5 shows the tension and pressure forces operating on
each mass point.

Spring forces of adjacent mass points balance the internal pressure force. With this,
the forces acting on a mass point can be denoted as

Fcell
i = σiηi − σi+1ηi+1 +

Pl

2
(νi + νi+1) , (3.12)

31

Figure 3.5: The two dimensional model that was introduced by Mkrtchyan et al. [15,
49]. Cells grow by gradual increase in their internal pressure. When a cell is divided, new
mass points are added along the division line. The division line can be symmetric random,
orthogonal, or asymmetric.

where η, ν are the tangential and normal vectors respectively, and σ is the tension force
defined as σi = Kspr(l− lo), l and lo being the equilibrium and instantaneous spring lengths
respectively. All of the springs are given the same spring constant Kspr

i ≡ Kspr, but this
condition can be lifted.

3.3.2 Intercellular Forces

The force-field also defines inter-cellular forces in a two dimensional tissue. Mass points
of different cells experience repulsion (Eq. (3.13)), adhesion (Eq. (3.14)), and intercellular
friction (Eq. (3.15)). For all of the following equations, i indexes the mass point being
considered and j indexes mass points belonging to other cells,

Frep
ij =

{
−Krep(Rrep

c −Rij)R̂ij if Rij < Rrep
c

0 otherwise.
(3.13)

The mass points repulse if they are within Rrep
c of each other. The repulsion force

should balance the pressure force that pushes all mass points outwards towards the mass
points of other cells, so the repulsion spring is set as Krep ≈ KsprPl.

Intercellular adhesion maintains tissue integrity. Real cells adhere to each other through
adhesive molecules[156, 157], this behaviour is emulated by this model by including attrac-

32

tive intercellular forces. Each mass point acts as a site for adhesive interaction. All sites
are assumed to have the same adhesion strength Kadh

ij = Kadh. The adhesion force is
defined in Equation (3.14) as

Fadh
ij =

{
Kadh
ij

(
Radh
c −Rij

)
R̂ij if Rij < Radh

c

0 otherwise,
(3.14)

so that mass points within the attraction range, Radh
c , attract each other with strength

Kadh.

During tissue formation cells can experience local rearrangements or large scale migra-
tions. These actions depend the cells impend the motion of each other, therefore, the cell
movement can be controlled be controlling the level of viscous dampening between cells.
If i and j are two cells moving past each other, then the friction between them depends on
their relative velocity vij = vi−vj. Ffric is then calculated with the tangential component
of vij, vτij. The effects of a viscous medium is also added with a dampening coefficient c
that acts uniformly on all mass points,

Ffric
ij = −γivτij. (3.15)

With all of its components defined, Equation (3.16) shows the full force acting on any
particle. This force is then used to simulate the particles in an MD simulation:

mr̈ = Fcell
i +

∑
j

Frep
ij +

∑
j

Fadh
ij +

∑
j

Ffric
ij − cvi (3.16)

In isolation, many cells prefer a roughly spherical shape [35]. Though in tissues where
cells interact strongly with neighbours, cells can take a more polygonal shape [151]. In two
dimensional tissue such as epithelia, experiments have shown that cells pack together with
a particular topology. Lewis[152] showed that epithelial cells pack as mostly hexagonal
cells, with lower fractions of pentagonal and heptagonal cells. Gibson et al. [151] later
showed that this distribution of cell packing is conserved among different species, which
suggests a common mechanism to the emergence of this packing. It is important for any
models of 2D tissue to also contain similar distribution of cell polygon types. Comparison
between the polygon distributions of experiment and simulation are shown in Figure 3.6.

The model introduced by Mkrtchyan et al. [15] is also capable of modelling the effects
of different kinds of cell division on cellular proliferation.

33

Figure 3.6: Left: The packing of epithelial cells at the end of the simulation. Pentagons
are green, hexagons are red, and heptagons are blue. Right: Bar chart showing the packing
distribution compared to Drosophila packing at different γs. Right Inset: The percentage of
hexagons over time. Adapted form Mkrtchyan et al. [15, 49] with permission of The Royal
Society of Chemistry.

The model that is developed in this thesis is similar to the 2D model introduced by
Mkrtchyan et al. earlier[15]. The 3D model is described in detail in Chapter 5. The
principles remain the same, except they are applied to a 2D mesh of mass points on the
surface of a sphere instead of on a loop of mass points.

34

Figure 3.7: Mitotic index development over time for 2D simulated cells. Asymmetric
and symmetric division show similar Mitotic Index (MI) time evolution. Hertwig’s rule
division [45] decays faster. In all three cases, the mitotic index trend is comparable to
experimental trends[158], see Section 6.1. Figure from [159], manuscript to be submitted.

35

Chapter 4

Programming on GPUs

So far, we have seen why we need to use simulations to model the behaviour of phenomena
that are too complex to study theoretically, yet still important and interesting. Exper-
imentally, it is not always possible to study all the details of biological systems. This
could be due to a shortage of funds, inadequate access to instruments, unavailability of
appropriate personnel, time constraints, time and length scales that are difficult to study
experimentally, or unavailability of biological samples. There is always a great demand
for simulation software that can simulate biological systems, both existing and theoretical.
And so, many simulation techniques have been developed that can be used to model cell
behaviour, which is the focus of this work.

Some software packages exist already. And where they do not, the algorithms that
are used in them can implemented. However, most of these packages are designed to run
on CPUs. For example, most Molecular Dynamics (MD) code was initially developed to
run on CPUs with the possibility for using multi-threading or running on many hundreds
of Central Processing Units (CPUs). It is certainly possible to run the simulation code
on many hundreds of CPUs, but it is not always favourable. In fact, when compared to
running Graphics Processing Unit (GPU) code in certain cases, it may become difficult to
advocate CPU code over GPU code. Given the inadequate computational power of the
average personal workstation, users are forced to get access to supercomputers which have
their own set of problems. GPUs can be used to replace CPUs in some cases. This chapter
introduces the advantages of running simulations on GPUs and summarizes their use and
operation.

36

4.1 GPU versus CPU

CPUs are created with a great mount of complex control circuitry. This is to maximize
performance and flexibility. However, this dramatically higher mount of complexity leads
to high power consumption and heat dissipation. The Thermal Design Power (TDP) is
generally higher with higher clock speeds. Higher performance has always been the driving
force behind processor hardware design. Over the past few decades, processor clock speeds
increased steadily and came to a stop a few years ago as can be seen in figure 4.1. The
saturation in clock speeds can be attributed to the fact that even though performance
is the ultimate goal, it is constrained by power consumption and heat dissipation. This
constraint has become more stringent in the past few years because the heat produced per
transistor has not reduced by much, whereas the number of transistors per chip have been
increasing exponentially. The heat produced by chips with high clock speeds has become
unmanageable [160, 161]. Furthermore, the thickness of the oxide layer in most Metal-
Oxide-Semiconductor Field-Effect Transistor (MOSFET) designs is now at an irreducible
minimum, so that even if the heat problem is solved, transistor switching speed still cannot
be reduced by much [160, 161]. The heat dissipation problem, transistor switching speed
problem, and the demand for high processing capacity are reconciled by multicore chips
where there are more cores with lower clock speeds [160, 161].

Some problems with relying on CPUs for High Performance Computing (HPC) are
outlined below. Many problems are a consequence of being forced to use compute super-
computers with thousands CPUs.

Problems related to CPUs:

1. Higher run times
As will be shown further below, CPUs are plainly slower than GPUs for running MD
simulations. The force calculating step in MD is such that the forces on any one
particle are independent of the forces on the other particles in a system. Therefore,
it is possible to calculate the forces on multiple particles simultaneously. This fact
is taken advantage of fully on single GPUs which are capable of performing many
more such calculations simultaneously. Many (10 − 103) of CPUs have to be used
simultaneously for the same effect.

However, there is one important caveat here, the speed of the CPUs is limited by the
interconnect between the different CPU nodes. Interconnects always have a delay
on the order of 1–10 ms, CPUs operate in the ns range. The latency forces CPUs

37

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

10-1

100

101

102

103

104

105

C
lo

ck
 (

G
H

z) AMD
Intel
IBM

Figure 4.1: CPU Clock speed trend over the past few decades. Apart from a single anomaly,
it seems that clock speeds have reached a maximum. Data taken from cpudb.stanford.edu.

to wait relatively long times when many CPUs are communicating data to process.
The latency problem places a limit on how many CPUs can be used efficiently on a
single problem.

All of these issues add up to long simulation run times. Simulation run times are the
limiting factors to how fast a researcher can iterate on the initial conditions of their
simulations. If run time is minimized, productivity will be maximized.

2. Lack of access to supercomputers
Computers with many thousands of CPUs are rare. Those that do exist were built
for a high cost, and are expensive and difficult to maintain. Obtaining access to such
compute servers is not easy and even after getting access, the server has to be shared
with other users.

3. Complexity in programming

(a) Inadequate software

38

The software installed on the servers is not always appropriate and users rarely
have full control on what software they use. Sometimes,

(b) Queue time
The super computers often have long queue times due to the number of users
clamouring for compute devices CPUs.

(c) Down time
These systems are prone to failures and require periodic regular maintenance
due to their complexity.

4. Power consumption
GPUs are known to consume less power than CPUs per Giga FLoating point OPera-
tions per Second (GFLOP/S) [161, 162], see Figure 4.2. This means that using GPUs
saves considerable power and can be considered less harmful to the environment—
greener.

This slow down in clock speeds has been accompanied by an increase in the number of
cores per CPU, which has forced developers to parallelize software to run on multiple cores
to maximize usage. That, and improving algorithm efficiency, will be the most reliable
way to ensure faster run times in the foreseeable future. Running codes on highly parallel
GPUs should be the most obvious next step in this direction.

A single GPU can be used to replace large numbers of CPUs thanks to the enormous
compute capacity they have. Simulations can be run on a single workstation that costs
much less and is easier to maintain. Though, for fairness, these problems are present and
just as frustrating when problems are so large as to need many GPUs. With GPUs the
need for large compute clusters is shifted to truly enormous problems that would not even
be tractable with many CPUs. So by using GPUs we can either reduce costs vastly, or
start studying vastly more complex and/or large systems. Which are both highly sought
after improvements in any case.

So far, it has been implicated that there are no disadvantages for using GPUs. This is
not true. There are many problems with using GPUs [11–13]. The GPU was designed to
solve a very specific kind of problem [11–13]. This was the problem of applying complex
transformations to images efficiently. When personal computers were first being developed,
CPUs were not powerful enough to adequately manipulate images. This necessitated the
invention of specialized processor that would only process images. As a result, the GPU
has a very particular architecture. Therefore, a GPU can only be used under certain
circumstances.

39

Issues with using GPUs:

1. Dependence on CPUs
GPUs cannot be used as general purpose processors due to the highly specialized

nature of GPU hardware design. Consequently any programs that utilize GPUs must
be managed by a CPU, see figure 4.7. This may change in the near future with pro-
cessors that borrow architectural principles from both CPUs, named Heterogeneous
Systems Architecture (HSA). However, even with HSA devices, complexities will still
exist and glsgpu acceleration techniques will still be needed for them.

2. Complexity
The highly parallelized hardware architecture of GPUs exposes programs to highly
esoteric constraints on algorithm design and validation. It is very likely that seem-
ingly simple algorithms would have to be heavily redisigned to maximize performance
gains. If code algorithms are not written correctly, then using GPUs may actually
yield worse performance than CPUs due to the slower clock frequencies of GPUs.

3. Interfacing
Targeting the GPU for executing simulation code is non-trivial. Until fairly recently,
this was not even possible as there were no Application Program Interfaces (APIs)
available to do floating point math normally. So all physical problems had to be recast
into graphics processing problems which was quite non-intuitive. This problem has
been solved somewhat with the introduction of some libraries such as The Compute
Unified Device Architecture (CUDA) and Open Compute Language (OpenCL). These
libraries have made interfacing with GPUs simpler.

4. Problem dependence
The specialized nature of GPU architecture makes the device only good at solving
certain types of problems [11, 13]. Some criteria for choosing problems to accelerate
on GPUs are:

(a) Large computational requirements
The GPU only outperforms the CPU when its hardware is being used to the

fullest. Small calculations will generally be more efficiently computed on the
CPU

(b) Substantial parallelism
It follows from issue 4a that the calculation must be parallelizable. Problems
with a lot of recursion most probably will not benefit form GPU acceleration (e.g.

40

computing the Fibonacci sequence or the factorial of a number). Fortunately
MD can be parallelized efficiently.

(c) Latency independence
The calculation being done is not affected by latency. Because of issues 1 and 3,
there is a large overhead in transferring data to and from the GPU. This is really
only a problem for graphics applications and is included here for completeness.
It does not affect MD code very much as, typically, initial conditions have to
be moved to the GPU only once. Data is read from the GPU only to output it.
There are also ways of hiding this latency when running calculations, but that
is out of the scope of this thesis.

Until a few years ago, direct floating point math was not possible on GPUs. The
effort to use GPUs for general computations is called General Purpose GPU (GPGPU) [12]
computing. GPGPU has become significantly easier with the advent of new hardware which
supports floating point arithmetic (needed for scientific computing), and new software
libraries and standards that make interfacing with GPUs more efficient are simple. Software
such as OpenCL and CUDA.

With all of the problems with CPUs and GPUs in mind, there still are certain problems
particularly well suited to execution on GPUs[11, 13, 65, 163, 164]. It has been shown that
MD simulations are definitely well suited to GPU acceleration[11, 65, 165–170], they have
large computational requirements, benefit from parallelism, and can be independent of
latency. When applied correctly, GPUs will always outperform CPUs by at least 2–3
times, and in some cases by a few orders of magnitude. See figure 4.2 for some comparison
of performance information.

Stone et al. made a simple comparison, shown in table 4.1. Some energy evaluation
kernels were written in c and in CUDA with varying levels of optimization. C code was
compiled with the Gnu Compiler Collection (GCC) and the Intel C Compiler (ICC), ICC
is known to yield higher performance binaries, especially on Intel devices. A large portion
of the speed up on GPUs can be attributed to the significantly faster memory access
speeds on GPUs thanks to the highly optimized hardware design and faster GPU memory
clocks. Anderson et al. [65] found that many aspects of MD, including Lennard-Jones force
calculation, neighbour list generation, can be sped up significantly on GPUs [65].

41

Figure 4.2: Comparison of performance data of some high end processors. AMD CPUs are
not included as the trends are largely the same. AMD APUs are not included because they
cannot be directly compared to GPUs and CPUs. (a) The number of processing elements
per processor; GPUs have considerably mode processing elements than most CPUs. (b)
The theoretical peak performance of each processor; GPUs outperform CPUs easily. (c)
The performance of the processing elementsCPUs in general have higher performing cores,
but GPUs have many more. Enough to outperform CPUs. GPUs have many more cores. (d)
Inspite of their higher performance, GPUs are the more energy efficient alternative. Credit
to Mark Rupp[162], CC license.

With all of this in mind, it may be concluded that an efficient solution for MD should
contain parts that use both CPUs and GPUs. The goal of the work in this thesis is to
produce such a program that can simulate cellular behaviour with a model based on MD
principles, and accelerate the appropriate parts (force calculations, velocity and position

42

Table 4.1: Direct Coulomb summation performance comparison. Performance was com-
pared on the CPU with compiled with GCC and ICC and on the GPU with code compiled
with CUDA at different levels of optimization. Clearly, GPUs are superior for energy eval-
uations even with minimal optimization. Data taken from Stone et al. [11].

Kernel Performance Normalized to Intel
C

Billion
Evaluations/sec

GFLOPS

CPU-GCC-SSE 0.052 0.046 0.28
CPU-ICC-SSE 1 0.89 5.3
CUDA-Simple 16.6 14.8 178
CUDA-Unroll8x 38.9 34.6 268
CUDA-Unroll8y 40.9 36.4 191
CUDA-
Unroll8clx

44.4 39.5 291

updates) on GPUs. This code, in conjunction with the force-field described in Chapter 5,
will be used to model cell behaviour.

If following sections GPU architecture and programming will be introduced. The terms
used will be CUDA terms for the sake of simplicity, but the concepts are common between
CUDA and most other libraries. The remainder of this chapter may seem like it only
applies to GPUs but much of it will be a general introduction to programming on any
parallel device. Thanks to libraries like OpenCL (which was not used for the program used
in this thesis), the principles will remain the same regardless of device.

4.2 GPU Architecture

In this section a brief overview of GPU architecture will be given. A detailed analysis of
the design specifications is out of the scope of this thesis as it differs from GPU to GPU
depending on brand and model type. A cursory understanding of GPU design should be
sufficient to proceed. Readers looking for more detailed descriptions are referred to [12,
13].

Simply speaking, the entire goal with GPU hardware design is to supply a greater
number of computing cores to do the calculations. Until recently, GPU hardware was
only suitable for image transformations. Newer GPUs are capable of doing floating point
math at rates much faster than CPUs. Figure 4.3 shows the complexity of some NVIDIA
GPUs, other types of GPUs are not much different conceptually. There are many levels

43

of hierarchy and caching that make the design complicated. A simpler depiction of CPUs
and GPUs is presented in Figure 4.4.

Figure 4.3: Core placement and categorization on two kinds of NVIDIA GPUs. (a) Typical
FermiTM NVIDIA GPU design, the cores are placed within Stream Multiprocessors (SMs)
which are themselves inside placed into Graphics Processor Clusters. There are multiple
levels of memory (caches) but the most relevant to GPU developers is the DRAM memory.
(b) This picture shows a more detailed representation of a KeplerTM type gpu. There
are multiple control circuits including circuits that manage the memory accessing and the
caching of data in the different levels of cache.

The designs shown in Figures 4.3 and 4.3 are far too complicated to considered exactly
when coding, especially when targeting more than one kind of GPU. The structure of the
GPU is abstracted into a more tractable form. For the sake of generality, some general
terms are defined here. Newer CPUs are being designed with many cores incorporated into
them, so it is beneficial to use some common terms that are equally applicable to multicore
CPUs, GPUs, and any other parallelized computational devices. The managing device will
be named the “Host” and the computational device the “Device”. A host may have any
number of devices. A PC may contain one host (the main CPU), and one or more GPUs
devices. A large compute server may contain hundreds or thousands of devices. For the
remainder of this section, device and GPU are used interchangeably.

As shown in Figure 4.5, each device can be divided into a collections of Compute Units
(CU), the compute units access global memory (G) as a group simultaneously. These
compute units are nothing but a collection of Processing Elements (PE) (cores) with com-
mon Local Storage (LS), each processing element contains within another cache of private

44

Figure 4.4: Schematic of CPU and GPU architecture. (a) The CPU contains much more
control circuitry and more complex caching and fewer Arithmetic Logic Units (ALUs) which
are basically the same as processing cores. Dynamic Random-Access Memory (DRAM) is
accessed through the motherboard (a little slower than GPU DRAM) but is shown here for
comparison. (b) The GPU is a little more simple but has many more ALUs. This is an
important image to bear in mind when targeting the GPU in code. All data is stored in the
large DRAM segment (also called global storage) and each read or write to global memory
is slow and expensive.

memory (P). G is slow to access and has the highest capacity (approximately 1–10GB),
LS is faster with moderate with about half a MB, and P is the fastest with a few KB’s
of storage. All communication with the host must be done through G memory as it is
the only memory accessible to all CUs and the host, LS is only accessible to the PEs in
a single CU, and P is only accessible by a single PE. The three levels of memory may be
separated again into Constant cache, texture cache, etc for GPUs or L2, L1 cache, etc. for
CPUs. But this sub-hierarchy of caches is not as important from the programming aspect
normally. They do, however, come into play when optimizing code.

In NVIDIA GPUs and CUDA, a compute unit is named a Stream Multiprocessor SM
and processing element is called a Stream Processor (SP). There are also other terms
apply to NVIDIA specifically, but do not differ much in their meaning. AMD devices use
the same terminology used in figure 4.5, which are OpenCL terms. Figure 4.3 shows the
architecture of a fermi type GPU. Typically, each SM contains 32 cores. This collection of
cores is mapped to a “warp” of threads which play an important role in memory access,
see Section 4.3.3. Each core contains one optimized core floating point calculations and
one for integer calculations. Thread hierarchy is based in this hierarchy in the hardware.
Each thread block is run on a single SM, see Section 4.3.2.

45

Global Memory

PE

LS

P

Global Memory

Constant Memory

Figure 4.5: From the programmers perspective, any parallel device can be approximated
with this structure. Note that the number of elements shown here is just an example, actual
devices can have any number of CUs and PEs.

4.3 Programming Perspective

The hardware abstractions being out of the way, the programming perspective will be
illustrated in this section. The GPU architecture is important when aiming for the highest
performing code. In table 4.1, Stone et al. [11] showed that GPU code without optimization
is still very fast. So, when coding, at least initially, a detailed picture of hardware is not
needed as much as when optimizing. From the programmers perspective, the GPU is not
much different from a CPU with a very large number of cores.

A unit of computational work is named a kernel [171]. Kernels contain a module of
code that does a certain task. It can be thought of as a function or subroutine that runs
on the compute device (GPU). Listing 1 shows some sample code with the same kernel
implemented in C and in CUDA. The kernel can be executed in a serial manner on the
CPU or in parallel on the GPU.

CUDA code follows the same standards of C/C++ with some some extensions and
differences. The differences from C/C++ include things like lack of recursion [171, 172],
no Object Oriented Programming (OOP). CUDA also introduces some new data types
and built-in functions to ease programming. There are also some libraries that make

46

programming with CUDA almost indistinguishable from programming in C++ such as
Thrust [173] and boost.compute (still in testing, kylelutz.github.io/compute/). Some
accelerated versions of standard libraries: cuFFT, cuBLAS, CUDA Math Library, etc.
There is no need to use C/C++, CUDA supports Python, FORTRAN, C#, and Java.

As an example, consider the task of adding two vectors, c = a+b. CPU code is straight
forward. This task can be done with a for loop sequentially. Since elements of a and b can
be summed independently, the operation can be parallelized to execute on multiple cores
on the GPU, see figure 4.6. Assuming the CPU and GPU cores have the same clock, the
operation can be sped up by eight times.

Parallel GPU Execution

Serial CPU Execution

Figure 4.6: Diagram showing single threaded CPU execution and multithreaded GPU
execution. Note that the segments representing a, b, and c reside on either host DRAM or
device DRAM depending on what device executes them. From the programming perspective
(refer to Section 4.3.2), the CPU has one 1D block of one thread and the GPU has one 1D
block of 8 parallel threads.

Listing 1 shows CPU C code and GPU CUDA code. CUDA syntax is not very different
from regular C syntax. The variable m specifies the block size which is the number of con-
current threads. If the size of a, b, and c is greater than the number of maximum possible
concurrent threads GPU_MAX_THREADS, then m = n/GPU_MAX_THREADS and the calculation
is looped m times, n threads running at a time. At first glance, this might seem to be quite
a fatal limitation. A very large number of threads can be running on modern GPUs, about

47

kylelutz.github.io/compute/

2000 per stream multiprocessor. Another limitation is the block size (explained further
in 4.3.2)

CUDA programs are compiled with the CUDA compiler (NVCC) which is a wrapper
around GCC. CUDA kernels are written the same way as normal C/C++ function with
the exception that they must return nothing (only return void) and are defined with the
__global__ keyword.

4.3.1 CUDA Execution Model

Initialization
Allocate Host memory
Allocate GPU memory
Generate positions
Generate Velocities

CPU Tasks
GPU Kernel Launch
Memory Management
Output
Analysis

GPU
Global
DRAM

Host
DRAM

GPU Kernels
Force calculations
Position Updates

C/C++ (CPU)

CUDA (GPU)

Figure 4.7: Sketch of CUDA’s execution model. The program is started on the host.
host code then manages allocating memory on host DRAM and GPU DRAM, initializing
variables, moving data to GPU Global memory, and managing GPU kernel launches.

Figure 4.7 shows the execution model in a typical CUDA MD program. The execution
of CUDA GPU code is handled by the host. The host allocates memory on GPUs and
manages the transfer of the memory. The host also manages kernels; it sets the block size
n, determines the number of blocks to run m, and passes the kernels the memory locations
that they need (d_a,d_b,d_c). CUDA benefits from the fact that kernel calls look very
much like normal C/C++ calls, so getting set up in the beginning is straight forward.

At the beginning of the program the host has to search the system for an onboard
CUDA capable device and assign in for execution. Managing the simulation over multiple
GPUs is possible and also desirable when simulating very large systems. The host has

48

to manage the distribution of the work across the GPUs. GPUs can be thought of as
calculation machines that must be managed manually.

All data is communicated to the GPU through the GPU’s on board of global memory.
Regardless of platform, moving data from one region of memory to another region is
very time consuming, especially if the memory is in different locations. Memory transfer
must be minimized in order to maximize performance because there is a highly latency in
communication with GPUs. Thankfully, the communication line with GPUs has a fairly
large bandwidth, 100’s of GBs/sec., so a lot of data can be moved at once. Once data has
moved to the GPU, it should be kept there until it absolutely must be sent back to the
host. Minimizing the need for data manipulation on the host entirely should always be one
of the goals of any good algorithm. Thanks to this execution model, the idle CPU time
can be used to perform other tasks

Once on the GPU, the simulation can begin in earnest. Ideally, all of the resources of
the GPU are being used at maximum capacity and all the host is doing is waiting for the
GPU to finish. However, because there is no way for the GPU to access storage drives,
or manage memory, the data has to be transferred back to the host every once in a while
for output. In the case of the cell division code, data has to be moved to handle the cell
division part.

At the end of the simulation, since the host manages GPU memory, it has to handle
releasing no longer needed resources. Though, if the program is to end at this point, CUDA
is intelligent enough to release that memory when the program ends. Nevertheless, it is
good practise to keep careful track of memory because chasing memory leaks on the GPU
can be quite frustrating.

4.3.2 Thread Hierarchy

A kernel is a task that applies to large amounts of data. With each kernel, a single block
of instructions (a single function) is being applied to a large amount of data. This way
of data processing is named Single Instruction Multiple Data (SIMD) in computer science
and is the most obvious target for parallel computing. A thread is the concept of a kernel
being executed once on some piece of data once. In other words, each kernel is executed
as a, potentially large, collection of threads on large amounts of data. Now, the focus is
shifted to thread management from the programmer’s perspective. It is useful to know the
workings of the hardware for optimization, but the hardware complexity is abstracted out
in the CUDA and OpenCL API. So, at least in the beginning of a project, it is useful to

49

focus on the basics of GPU programming. Readers interested in more detail are referred
to [172]

The size of data that is needed for MD is very large, the position and velocity of,
and the force on each atom in a system should be calculated simultaneously. If we take
these tasks as one function, then this function is of one (discrete) variable, namely the
index of each atom in some master data array containing the coordinates of all atoms.
In this sense, this is a ‘one dimensional’ problem (see Figure 4.7). One can imagine such
problems with higher dimensionality. There are many problems in science and engineering
that are applied over 2D or 3D grids, for example, the temperature distribution on a metal
plate. For conceptual compatibility and ease of programming, it is convenient to bundle
concurrent threads in 1D, 2D, 3D, or N-dimensions.

This is recognized in the field of GPU acceleration, and the API is designed with this
functionality. OpenCL kernels can be bundled in N dimensions, whereas CUDA is limited
to three. Keep in mind that this dimensional bundling does not limit the problems that
can be solved at all, one may choose to implement everything in one dimensional blocks if
that is desirable. This bundling is only for convenience.

Figure 4.8: Here is a two dimensional set up of thread blocks is shown. In this figure,
following the convention in Eq. 4.1, t1 = 6, t2 = 4, t3 = 1 and b1 = b2 = 2, b3 = 1. So that the
thread index of the thread circled red is thread (4, 1, 0) in block (1, 0, 0). That thread also
has a global index of (10, 1, 0).

50

In CUDA terms, all threads are bundled into blocks. In each block, threads can be
indexed by a one-dimensional, two-dimensional, or three-dimensional index. Similarly, the
blocks can be indexed by one-dimensional, two-dimensional, or three-dimensional index.
The total number of threads launched by the host is given by

nt = t1t2t3 · · · tn · b1b2b3 · · · bm (4.1)

where t is the number of threads in along dimensions 1, 2, 3, and b is the number the
blocks. Of course with CUDA, n ≤ 3,m ≤ 3. Depending on the hardware, there can be
constraints on nt and other strategies will be needed to solve that problem (multiple GPUs
or looping over the work with a single GPU). In new CUDA GPUs, tmax = t1t2t3 = 1024,
so nt,max = 1024bmax. bmax depends on the hardware and implementation, it is difficult
to determine a priori as it depends on the number of registers available per thread. bmax
plays an important role in optimizing occupancy. Once again, this is just a limit on how
many threads and blocks can be launched at a single time. If more are needed, then the
calculation can be looped or split among GPUs.

device occupancy is defined as the ratio of the number of active threads per device
divided and the maximum possible number of threads per device. Obviously, this should
be kept as close to one as possible. The GPU hardware and drivers are designed to do this
as much as possible. Maximizing device occupancy is difficult, detailed knowledge of GPU
design, API, and thread hierarchy are required. Occupancy is affected by choice of block
size, shared memory usage, private memory usage, and hardware limitations.

At first glance this splitting of threads into blocks may seem arbitrary, it actually serves
two vital purposes [172]: (1) This indexing gives a precise identity to each thread and this
identity can be accessed within a kernel, (2) block and thread breakdown informs memory
breakdown and vice-versa. Each thread has private memory to itself, all of the threads have
access to shared memory in a block, and all blocks have shared access to global memory.
Figure 4.8 shows an example of two dimensional thread blocks. Tuples of indices are used
to identify threads, they can have a local index which requires indexing blocks and threads,
or global indices. It is necessary to calculate the global index because data spans all of
threads. The CUDA code snippet below shows sample code with this indexing in action.
Assume that there are three arrays, one for each of the Cartesian axes, that contain the
position of all atoms. The positions of can be distinctly accessed with a unique index i.
With this information, we launch the kernel KernelExample once for each atom. So the
index of the thread can be converted to the index of corresponding atom.

__global__ KernelExample (float* Xdata, float* Ydata, float* Zdata){

printf("BlockID = (\%d, \%d, \%d), ThreadID = (\%d, \%d, \%d)\n",

51

blockIdx.x, blockIdx.y, blockIdx.z,

threadIdx.x, threadIdx.y, threadIdx.z);

// Below since Ydata spans all thread blocks, we get the global

// address of a thread by multiplying by blockDim.y

int i = blockIdx.y*blockDim.y + threadIdx.y;

float y = Ydata[i];

}

Special reserved variables such as threadIdx store the index of each thread. These
variables are used to access data in global memory, or in shared memory among threads
in the same block.

4.3.3 Memory Hierarchy and Access

The placing of threads in separate blocks brings control to memory access and is an impor-
tant factor in optimizing performance. All threads always have access to global memory.
There is also shared memory that is made available to all threads of the same block. A
block of threads will only every run on a single Stream Multiprocessor (PE in Figure 4.5).
And then, each thread has private memory to itself. Private is the fastest to access, shared
a little slower, and global memory is the slowest to access [12, 172]. Shared memory and
private memory is temporary and has the same lifetime as its block or thread respectively,
global memory persists over many kernel calls, as long as the host does not release it.

Not only is global memory slow to access, but access to global memory has to be done
in certain ways to maximize speed. Memory access occurs 16 threads at a time regardless
of how many threads are requested to access memory [172]. 32 threads are named a warp
in CUDA terminology, so memory access occurs in half-warps. This means block sizes must
be multiples of 2, as required by CUDA, and also multiples of 16 to maximize memory
access efficiency. OpenCL does not require even block sizes [174], but still benefits greatly
by making block sizes a multiple of 16 on NVIDIA devices.

__global__ void MemoryAccessKernel(float* array){

int index = blockIdx.x * blockDim.x + threadIDx.x;

float element = array[index];

}

MemoryAccessKernel<<<1, 1>>> (float* arrayWithOneElement);

MemoryAccessKernel<<<1, 16>> (float* arrayWith16Elements);

MemoryAccessKernel<<<1, 17>> (float* arrayWith31Elements);

52

The first two kernels will take the same amount of time to complete, while the last
kernel call will take double the time of the first two kernels even though it is accessing
almost the same number of memory locations as the second kernel call. Memory access
latency is very often a major bottleneck in kernel execution. The following section contains
some strategies that can be used to maximize memory access performance, and maximize
performance in general. Following these strategies is beneficial, but should not be a priority
until after the software is shown to be correct and without any bugs.

4.3.4 Some strategies to enhance GPU performance

Generally speaking, kernels can be divided into three types: latency bound, compute
bound, and memory bound.

(1) Optimizing latency bound kernels
Latency bound kernels depend on their execution by the host. They are optimized by
adjusting the execution parameters that were set by host code. Latency problems can
occur when not threads are not broken down into blocks optimally.

(a) Maximize occupancy
The GPU has built-in circuitry that launches units of work on each SM, if the
work given is not enough to saturate this process, then performance is wasted/lost.
This requirement is difficult to meet and should be left to the end of the project.
Maximizing occupancy helps greatly to shifting the slowest step to memory access.

(i) Saturate the GPU
Adjust block size, private memory, and shared memory usage such that there
is always an abundance of work to be done by the hardware.

(ii) Concurrent kernel execution
The host normally waits until after the kernel has finished executing to re-
sume. If adjusting the launch parameters does not help, many kernels can
be launched concurrently.

(2) Optimizing compute bound kernels
Compute bound kernels are kernels that spend most of their time doing calculations,
this type of kernel can be optimized with algorithmic improvements. Sometimes, simple
changes in the way calculations are carried out can result in significant performance
gains.

53

(a) Uniform execution path
The GPU executes instructions uniformly for an entire warp. In order to maximize
usage, all threads should have the same execution path (run the same code). This
problem only occurs if the divergence is among threads of the same warp (same
block).

(i) Avoid thread branching
Some tasks require divergence depending on the data being processed. In
those cases, it may be beneficial to decide what data needs to be processed
on the host, and launch kernels that work with only that data. The code
snippet below shows a bad example of thread branching—the first 6 threads
are idle with this execution path.

if (threadIdx.x > 5)

DoSomething();

else

DoNothing();

(b) Loop unrolling
There is a performance benefit to type out each iteration of for loop. This
increases the amount of work done for each thread so efficiency is improved sig-
nificantly.

(c) Intrinsic/Fast Math
If exact matching with CPU is not required, then there are intrinsic optimized
versions of common math functions that should can be used for performance.
For example, __sinf() vs. sinf(). Readers are referred to CUDA/OpenCL
documentation [174, 175] for more details regarding intrinsic functions.

(3) Optimizing memory access
Memory bound kernels are kernels that spend time accessing memory. These kernels
can optimized by correctly requesting memory reads (or writes).

(a) Coalesced memory access
As noted before, memory access is done on a per warp, in some cases per half-warp
depending on GPU, basis. Furthermore, there is a minimum transaction size for
each memory read. On Kepler GPUs it is four warps (128 threads) [176], since
memory transactions are always done n warps at a time, it is good practise to
assume minimum transaction of 32 threads. Additionally, It is always preferable
to access contiguous blocks of memory at a time. That means that threads in a
single warp should be accessing adjacent regions of memory always. If this is done
properly, memory access can be “coalesced” into a single operation.

54

(i) Align memory access in a block
Thread index should be aligned with element index to maximize performance.
For example, thread 0 accesses element 0, thread 1 accesses element 1, etc.
Threads can also be aligned with an offset, which should be a multiple of
minimum transaction size (32 bytes). Thread 0 accesses element 8, etc.

// example of aligned memory reads

float a = bigArray[threadIdx.x];

// with an offset

float b = bigArray[threadIdx.x + 8];

Below is an example of inefficient access. Every third element is being ac-
cessed.

float a = bigArray[threadIdx.x*3];

Finally, we have an example of misalignment, this occurs when the offset is
not a multiple of the minimum transaction size of memory.

float a = bigArray[threadIdx.x+13];

(ii) Avoid broadcasting
Broadcasting is the access of multiple threads to the same, memory location.
Instead constant memory should be used. Not only is many threads read-
ing from the same memory location inefficient but writing to it can lead to
difficult to debug race conditions.

(iii) Avoid concurrent thread writes
The opposite of broadcasting is when multiple concurrent threads (i.e. threads
in the same block) attempt to update a single memory location. This leads
to undefined behaviour and is named a race condition. Race conditions do
not necessarily lead to lower performance but can lead to incorrect results
and complicated bugs.

55

1 /****** CPU code segment start ********/

2 void add (float* h_a, float* h_b, float* h_c, int n){

3 for (int i = 0; i < n; i++){

4 h_c[i] = h_a[i] + h_b[i];

5 }

6 }

7 add(h_a, h_b, h_c, n);

8 output(h_c);

9 /******** CPU code segment end ********/

10

11 /****** GPU code segment start ********/

12 __global__ void add(float* d_a, float* d_b, float* d_c){

13 i = blockIdx.x*blockDim.x + threadIdx.x;

14 /* blockIdx.x iterates from 0 to m-1

15 blockDim.x equals n

16 threadIdx.x iterates from 0 to n-1

17 */

18 d_c[i] = d_a[i] + d_b[i];

19 }

20 HostToGpuCopy(h_a, d_a);

21 HostToGpuCopy(h_b, d_b);

22 add<<<m, n>>>(a, b, c);

23 /* m = 1 if n <= Max number of threads (can be 512 or 1024)*/

24 GpuToHostCopy(d_c, h_c);

25 output(h_c);

26 /******** GPU code segment end ********/

Listing 1: Adding two vectors is not very different when comparing GPU and CPU code.
The number of threads to launch is specified by host code and device code contains special
variables with the thread index information.

56

Chapter 5

Methods and Implementation

As described earlier, modelling cell behaviour could be highly challenging due to highly
complex nature of most cells. An average cell contains many multitudes of different
molecules, large and small, that all come with their own particular complex behaviours
and interactions. These complex interactions are, of course, all highly interesting on their
own, but they unfortunately make studying the cell as a whole an intractable problem.

Fortunately, cell-cell interactions can be approximated through a variety of approxima-
tions, see Chapter 3. However, these approximations tend to be ad hoc in the sense that
they can only model limited behaviours of cells in certain regimes.

We will approach building this model from two angles. The first being the theoretical
basis, physics and mathematics, for the model. And, naturally, the second will be actual
implementation in C++. C++ was chosen for out simulation because of the variety of
tools and libraries available for acceleration. We will be using CUDA for our acceleration
needs.

The cells are modelled with Molecular Dynamics techniques, where each cell is com-
prised of a spherical membrane made of a fixed, though optionally can be varied, number
of particles in a force field. The force field itself contains terms for the surface tension of
the cell membrane, the adhesion (or friction) between cells, the repulsion between cells,
and a term for the drag that the cell experiences in its medium. This model is based on
work by Mkrtchyan et al [15] in 2014, and Åström and Karttunen [14] in 2006.

The simulation is then optimized to run on GPUs. The optimization method will be
outlined in some detail and some strategies that can be employed to further optimized this
code will be discussed.

57

In Section 5.1, the model will be defined and described in detail. Section 5.2 describes
the values that are given to the parameters that are part of the model, and Section 5.4
describes the implementation with CUDA and the design choices that were made to increase
performance.

5.1 The Force-Field

First we will define the force-field of the particles in our simulation. There are two broad
categories within the force-field that have to be defined. That is done in the following
sections.

In Section 5.1.1, the assumptions that are made with this simulation method are de-
scribed and justified. It is important to begin with a relatively simple model to begin, then
more complexity and detail can be added if needed.

In Section 5.1.2, the structure of the model cell will described in detail, this includes the
geometry of the particles that make up the cell and the physics of the cell membrane. To
summarize, each cell is modelled using the C180 molecule [177–179] as a template, where
the particles and bonds are treated as balls and springs.

Section 5.1.3, the interactions that govern the interactions between the particles within
a cell are described. The forces defined here govern the integrity of the cell body and
regulate its growth.

In Section 5.1.4, the methods used to model inter-cellular interactions will be described.
These include the final elements of the MD force-field. We will see that interactions between
cells is broken down into an adhesive force and a repulsive force. Another force is a
dissipative one that is used to model the environment around the cells.

5.1.1 Assumptions in the Model

The ultimate goal of this work is to simulate the behaviour of cells as completely as
possible. However, we first begin with a simpler model then, more complexity and detail
can be added if needed. Hence, some assumptions are made to simplify the construction
of the model.

1. There is only one cell type.
All of the cells in the system will be identical in structure. They will be allowed to
behave independently. Some of the remaining assumptions follow from this one.

58

2. All cells grow at the same rate.
If able, all of the cells will grow and the same rate. To be more clear, the driving

force behind cell growth, discussed in section 5.1.3, will be the same for all cells.
Cells also grow at the same rate whatever their surface areas.

3. External conditions do not affect the simulation.
External conditions such as pressure, temperature, humidity are ignored. These can
be indirectly modelled by setting the parameters discussed in sections 5.1.3 and 5.1.4,
and therefore can be easily introduced into the model at a later time. Another
consequence of this assumption is that the availability of nutrients in the system,
and the cells’ access to those nutrients, are both ignored. However, these can be
included back into the model.

4. Cell death is ignored.
In reality, cells die either because they have depleted their lifetime, due to un-
favourable conditions, or both [180, 181]. However, this fact is ignored. Though
it is possible to add cell death to the model, it will not be explored in this thesis.

5. The cells exist in an infinite space.
The cells will not be confined spatially, at least initially, in anyway. This not only
means that the cells will not be hindered in any way, but also means that there are
no periodic boundaries or any other boundaries of any time.

6. All of the cells are spherical in their natural state.
This comes from the fact that animal cells favour a rounded structure due to their
cortex contractility[35, 36].

7. Cell-cell interactions are isotropic
Cells can interact differently depending on direction. But this is ignored for our
model, the cells in our simulations interact uniformly with each other.

8. Hertwig’s rule can be ignored.
The cell division plane will always be random and through the centre of mass, see 5.3.

9. Each daughter cell will be identical.
The model will not, initially, do any asymmetric cell division, see 5.3.

59

5.1.2 The Model Cell

The cell itself will be modelled as sphere made up of a number of particles with uniform
mass. The mass of the particle in itself is an interesting parameter and will be discussed
in more detail in Section 5.2. Figure 5.1 is a sketch of how such models are constructed.

Figure 5.1: The ball and spring model. Figure shows a particle with an arbitrary number
of bonds. This particle has N springs connected to it.

We can easily calculate the forces on the particle as shown in equation (5.1). Basically,
we do a vector sum of the force caused by each spring,

FS =
∑
i=1

Fi =
∑
i=1

−kixi, (5.1)

where xi denotes the displacement vector of the particle from the equilibrium position
of with respect to spring i. The spring force becomes an important element of the force field
used in our Molecular Dynamics simulation. Given this very basic modelling technique,
we can build particle model for the whole cell. However, we must first come with a general
method to represent the cell within our simulations.

A generalized spherical geometry is needed to build the cell itself. Coming up with

60

this geometry is not a trivial task. Because to be usable for the simulation, it must meet
certain criteria listed below.

Criteria for choosing the cell geometry:

Uniformity:
The geometry should be more or less uniform. In other words, the distances between
particles should not change by very much over the surface of the sphere. This is
to simplify the parametrization of the simulation in the future. Ideally, all of the
particle pairs will have the same bond length1

Simplicity:
The geometry should be simple and well understood. The coordinates of the particles
that make up our sphere should not be difficult to calculate. Ideally, an already known
geometry should be used.

Versatility:
The geometry should accommodate the physical changes that are expected with cell
behaviour. In other words, the geometry should allow for deformation and expansion
without breaking down. Additionally, the geometry should be easily matched with
basic cellular structure. i.e. spherical cell should be modelled by a spherical geometry,
ellipsoidal with ellipsoidal geometry, etc.

Spatial Resolution:
The behaviours of cells can be highly complex as discussed in Section 2.1, so there
should be enough points to accurately describe these behaviours. Conversely, while
it is true that a high resolution is needed, it must not be so high that it overwhelms
the available computational resources.

Taking all of the above criteria into account, a simple model for the cell can be created
in 2D, however, this is not true for the 3D case. Mkrtchyan et al. showed a good sketch of
the 2D model [15] which is reproduced in Figure 5.2. Figure 5.3 shows the 3D extension
to this model.

1 This way we can only worry about setting one bond length in our simulation. If in our geometry,
there are many possible bond lengths for each bond, then they would each have to be set manually. This
way we eliminate the degrees of freedom introduced by the geometry of the model cell. The effect of bond
length can be studied in greater detail at a later time.

61

(a) (b)

Figure 5.2: (a) The 2D model of the cell, all of the points are in the plane of the page,
the various forces that act on each mass point are defined in Section 3.3 and [15]. (b) The
3D model, the number of particles that make up the membrane is variable in theory, though
it is 180 in all of the simulations run for this thesis. The cells tend to stay spherical unless
they interact with surrounding cells or other surfaces in the system such as walls.

The 3D model itself is not much more complicated than the 2D model mathematically
or conceptually, the complication arises from the numerical calculations associated with
the additional degrees of freedom introduced by modelling the system in 3D. Another note
is that each particle is bonded to three neighbours in the 3D model, one more than the 2D
case.

The 3D geometry of the model cell may seem familiar, this is because the geometry
is borrowed from the C180 fullerene [177–179]. The geometry of this fullerene is well
understood and fairly simple. One can quite easily find the coordinates of each atom from
a variety of sources in the literature [36, 179, 182], another popular resource is M. Yoshida’s
library of fullerene geometry [183]. The 180 particle mesh is also of sufficient resolution
to be able to model the cells, while keeping the load fairly low. A few thousand cells
amounting to less than one million MD particles can be modelled comfortably [65]. If a
higher resolution is needed, then this geometry can be changed to a larger fullerene. The
particles are spaced more-or-less uniformly over the surface of the fullerene, so a uniform
equilibrium bond length (equilibrium spring length) can be assumed. Lastly, the geometry

62

is approximately spherical, this is to ensure that we start from a simple model. Most cells
tend to favour a spherical shape[35, 36], and different kinds of fullerenes exist that can be
used to model different types of cells, though that is left for later research.

(a) (b)

(c)i

(c)ii

(c)iii

Figure 5.3: (a) The 3D geometry of the cell. (b) One isolated face of the cell, note that
each cell is bonded to three neighbours. (c) The different types of interactions that each
particle experience in the force-field. There are spring forces (i), Attraction, repulsion, and
friction forces (ii), and a pressure force that governs the cell growth (iii).

Referring to Figure 5.3, we can now see a more detailed expression for the force on a
single particle in the cell shown in equation (5.2),

Fi =
3∑
j=1

FS
ij + +FP

i + FR
i + FA

i + FF
i , (5.2)

where FS
ij is the spring force associated with neighbouring particles within the same

cell, FP
i is the pressure force acting of the membrane of the cell, FR

i is the repulsive force
between the membranes of different cells, FA

i is the adhesive force between membranes
of different cells, FF contains the terms for friction between cells that hinders cellular
rearrangements [15] FF,e and FF,m the friction with extracellular medium.

With the basics of the model in mind, we can proceed to define the force-field in more

63

detail. The force-field can be broken down into two basic categories. The interior of the
cell and the exterior inter-cellular interactions.

5.1.3 The Cell Interior

There are two competing forces that act in the interior of the cell. The spring interaction
between neighbouring particles, and the pressure force that will maintain the structure
of the cell and also lead to the growth of the cell. The parameters shown below are in
dimensionless units, the basis for this scheme will be shown in Section 5.2.

The Spring Interaction force.

In reference to equation (5.2), we need to define the FS terms in the force-field. As already
shown in equation (5.1).

Figure 5.4: The unit vectors along each bond are shown. These are the vector terms used
to then calculate the spring for contribution.

Using the description of the bond2 vectors, we can represent the spring force explicitly.
Now we need another index, j, to index the neighbouring particles.

Bij = ri − rj (5.3)

Rij = ‖Bij‖ (5.4)

2Note that this is not bonding between atoms in a molecule, it is just the attraction between points on
the mesh that forms the cell membrane. It comes from cortical actin filaments that give the cell its shape.

64

b̂ij =
Bij

Rij

(5.5)

FS
ij = E

A

Ro
ij

b̂ij(Rij −Ro
ij) (5.6)

Where E is the Young’s Modulus of the spring and A its cross-sectional area, and in our
case we set the cross-sections to be the same, so we can simply redefine ks = EA/Ro

ij and 5.6
would be equally valid. The new kS variable is related to the cell cortex contractility,
which depends on the structure of the cell membrane and will differ between different cells.
Additionally, we can assume that the equillibrium bond length is the same for all particles.
So we set Ro

ij = Ro, and

FS
i =

3∑
j=1

kSb̂ij (Rij −Ro)− γintvij. (5.7)

The motion of the mass points in the spring interaction cannot be left to oscillate freely
when interacting with each other. So an internal damping term, −γintvij, is introduced to
make sure that the mass points behave well where vij is the relative velocity of neighbouring
mass points.

The Pressure Force

The internal pressure of the cell is the second element of the force-field that applies to the
within the cells. The pressure force has is simpler by definition, the pressure is simply the
ratio between a force and the area it is applied to. In this case, the area that it is applied
is simply the surface area of the cell S. The internal pressure of each cell will apply a
uniform force on each particle in our membrane mesh. So the magnitude of the pressure
force on each particle will be equivalent. Cells are known to regulate their pressure before
mitosis [35, 37],

F P
i = PnSn, (5.8)

where n indexes each individual cell. However, referring to our assumptions (5.1.1), we
see that the cells will have the growth rate will be, independent of surface area. Hence our

65

pressure can be redefined as:
Fi = PiS, (5.9)

where both Pi and S are constants. Thus we can regulate the growth rate by setting
PiS. It is also possible to regulate the population of the system by developing a relationship
between PiS and the number of cells to study population dynamics in the future.

Figure 5.5: Diagram showing the normal vector to the surface of the cell pointing from
the particle i. This normal vector gives us the direction of the pressure force.

From figure 5.5, we can then calculate the normal vector and use equation (5.9) for the
pressure force on each particle as

ni ≈ (b1 − b3)× (b2 − b3) (5.10)

and
FP
i = PiSn̂i (5.11)

This formulation follows the assumptions that we made in 5.1.1, assumption 2, on
page 59, states that the cell division shall not depend on the size of the cell. Therefore,
PS is treated as its own variable that is not a function of cell radius rcell.

At any given pressure, the springs in that are used to model the cell cortex will extend
or contract to attain an equilibrium volume. There is a threshold volume VD at which cells
divide, with a corresponding pressure PDS. The growth rate of a cell can be thought of
as the rate at which the volume of the cell increases. That rate of volume increase is then
set by the rate of increase of internal pressure ∆(PS). ∆(PS) is set to be the same for
all cells, PiS = PiS + ∆(PS) increases at a constant rate until VD is reached, then the
PiS of each cell is optionally reset to a lower volume, and the process is repeated for each
daughter cell.

66

5.1.4 Inter-cellular interactions

Cell-cell interaction is highly complex and varied [184–186]. Modelling such complex in-
teractions is not a trivial task [14, 15, 62, 64]. Furthermore, the interaction type, strength,
and directionality may vary greatly from cell to cell. However, we assumed that our cells
will interact isotropically with each other. This simplifies things for us greatly, as our cell-
cell force-field need only depend on intercellular distance. We can completely generalize
the cell-cell interaction force into two parts, adhesion and repulsion. We have an additional
term in the force-field for the viscous damping (or friction) force.

The attraction and repulsion forces are implemented as springs as well, with one dif-
ference. They both will have a cut-off distance. This means that the springs only react
to compression or to extension, but not both. The repulsion and adhesion terms are both
calculated for individual particles that are within repulsion and adhesion range of each
other.

The repulsion force is needed to prevent the cells from penetrating one another, and
the adhesion force is to simulate the interaction between different cells,

FR
i =

∑
j

FR
ij (5.12)

FR
ij =

{
−kR

(
RR
c −Rij

)
r̂ij if Rij < RR

c

0 if Rij ≥ RR
c

(5.13)

FA
i =

∑
j

FA
ij (5.14)

FA
ij =

{
kA
(
RA
c −Rij

)
r̂ij if Rij < RA

c

0 if Rij ≥ RA
c

(5.15)

where j indexes the particles near the particle i but not part of the same cell as i. Here
four new parameters are introduced. RR

c and RA
c are the repulsion and adhesion cuttoff

radii respectively. These have to be set manually in the simulation. Theoretically, the
would be related to the interaction ranges of different cells. And kA, kR are the spring
constants that set the strength of the adhesive and repulsive forces. The constants kA, kR

can be related to the spring constant kS so that they can be set in comparison to the spring

67

force. kA = AkS and kR = RkS, where A and R are the adhesive strength and repulsive
strength, respectively.

The third term in the cell-cell interaction part of the force-field is the viscous damping.
As cells move past each other, there should be friction between the two cell membranes.
This friction would depend on the relative velocity of the cells. The relative velocity of
two cells can reduced down to the relative velocity of particles in the membranes of the
two cells vin,

vin = vi − vn (5.16)

FF,e
i =

∑
n

−γextvτin (5.17)

vτin = vij − (vij · n̂) n̂, (5.18)

where vτin is the tangential component of the relative velocity, γext is the damping the
mass points experience with points of other cells.

Finally, we have another friction. This force arises from the friction of the cells with
their environment. Basically, there is some liquid, such as water perhaps, that hinders the
motion of cells. The velocity of the particles is used to calculate this force,

FF,m
i = −γmvi (5.19)

Thus, we have defined all of the terms in equation 5.2. Now we proceed to give values
to all of the parameters (constants) that appear in the force-field.

5.2 Parametrization

The conceptual design of the simulation has been described in previous sections of this
chapter. Now, the numerical values of the various constants are described. This is necessary
to be able to compare the results of simulations to experimental results.

The average volume of a human cell HeLa [187, 188] can be taken as Vavg ≈ 103 µm3 [189,
190]. Using this, let’s take the unit of volume in the simulation to be [V]≈103 µm3. Con-
sequently, [L]≈10 µm. Stewart et al. [35] measured the internal pressure of cells and found

68

that it was roughly 0.1nN µm−2, which can be rewritten as 10−8 N [L]−2. With, the unit
volume [V] given above we can approximate the total surface area of a cell with A≈5 [L]2.
The outward force acting on each mass point is then given by F P≈5× 10−8 N. Each cell
has 200 mass points, so that the force on each mass point will be 1× 10−9 N. Therefore
the unit of force in the simulation will be set to [F]=10−9 N.

Stewart et al. [35] also estimated the Young’s modulus of mitotic cells and found them
to be E ≈10−9 N µm−2 = 100 [F] [L]−2. E is related to ks with kS = Y Ao

Ro
, where Ao is

the cross-sectional area of the cortex interconnects (thickness of the springs) and Ro is the
equilibrium bond length. Ao approximated by Ao≈1 [L]2 assuming a diameter of 100 nm,
and Ro with Ro≈0.1 [L] which is set by scaling the C180 structure to a volume of 1 [V].
Then, the result is kS=1000 [F] [L]−1.

The adhesion and repulsion spring constants are defined by comparing their strength
to the spring forces. Mkrtchyan et al. [15] reasoned that the repulsion forces should be
stronger than internal pressure forces. This follows form the fact that a pressure force of
(PS)o is pushing outwards against neighbouring cells, so more rigid cells require stronger
repulsion between them. With this in mind R is set to (PS)o, so that the repulsion force is
always a factor of PS stronger than the spring force (kR = RkS); PS ≈ 100 as the internal
pressure will be on the order of 100. With the same reasoning, the adhesion strength A
is set to 0.5 so that more rigid cells experience stronger adhesion, but still less than the
attraction between points in the cell membranes (kA = AkS). These values will be varied
and their effects studied later.

HeLa cells have a mass of 10−12 kg on average [191]. Given that the model cells have
about 200 mass points, the unit of mass can be set to [M]≈10−13 kg by setting the mass of
each cell to 10 [M]. Setting the mass of the cell to 10 [M] is done by arguing that the mass
of each mass point should be high enough to reduce motion as much as possible which is
achieved by setting the mass of each mass point to M=0.05 [M], γm ≈ 10, γext ≈ 1.0, and
γint ≈ 100. With this, the unit of time can be calculated with [T] =

√
[M][Length]/[F] ≈

10−5s. Considering the fact the animal cells can take anywhere from an hour to a day[16],
this unit is too small to set the time step in the simulation. Instead, the time step by
measuring the number of time steps needed for a cell to divide, which is 1000 in the
simulation’s case. The time for a cell to go through one division is roughly T div = 1000∆t.
∆t is set to 10−4 [T] for algorithmic reasons (stability and run time).

The growth rate of cells is set in the simulation with the parameter ∆(PS), which is
not going to be any one value. It will be varied to study what effects it has on the results
for simulations. The internal pressure of each cell will be regulated with ∆(PS) increments
between a minimum and maximum pressure. The minimum pressure is set to (PS)o = 10

69

which keeps cellular volume at roughly 1 [V]. Maximum pressure is chosen considering the
algorithm to ensure stability, it will generally not be greater than 100 [F] [L]−2.

Table 5.1: Listing of all of the required parameters by accelerated cell dynamics simulations.
Some of these will be varied to see what effects they have on cell behaviour.

Parameter Name Variable value

Particle mass m 0.05
Number of mass points N 180
Equilibrium spring length Ro 0.1
Repulsion Range RR

c 0.2
Attraction Range RA

c 0.3
Spring Constant kS 1000.0
Adhesion Strength A 0.5
Repulsion Strength R 100.0
Intercellular Damping γext 1.0–10.0
Internal Damping γint 100.0
Medium Damping γm 0–20.0
Division Volume VD 2.9
Time Interval ∆T 0.0001
Pressure Increment ∆(PS) 0.008
Maximum Pressure (PS)1 50.0–100.0
Minimum Pressure (PS)o 10.0
Threshold Pressure (PS)th 63.3

5.3 Modelling the Cell Division

Here the division of the cell will be discussed. In order for cell division to proceed, the
mathematical basis for the division of the C180 molecule must be discussed first. The
division does not occur in the model spontaneously, e.g. growth occurs spontaneously due
to the pressure. Therefore, there needs to be a systematic way of dividing the appropriate
cells, those that are over some minimum volume, into two daughter cells.Figure 5.6 shows
a sketch of the different possible division methods.

Oscar Hertwig described a common way in which cells divide [30, 45], the long axis
rule. The cells tend to divide along the longest axis of cells. Another type of division is
asymmetric division where the two daughter cells are not identical [30, 192]. Finally, we

70

(a) (b)

(i) (ii)

(iii)

Figure 5.6: (a) The division schemes shown in 2D: (i) asymmetric Cell Division, (ii)
Hertwig’s rule [45], new generated points shown, (iii) random division through the centre of
mass. (b) Random division through the centre of mass in 3D, the new points are not shown.

also have random division line selection through the centre of mass, this is the method
that will be used in our model. Figure 5.6 (b) shows division by random division plane in
3D cells.

Division using Hertwig’s rule only differs from the random division case when cells are
not spherical. When they are spherical, as is the case in our model, division methods (ii)
and (iii) are identical. However, cells can be deformed due to their interaction with the
surroundings. In that case Hertwig’s rule may be applied and it will differ from case (iii).

After the division plane is chosen, the C180 geometry is divided in two and recon-
structed for the two daughter cells. This geometry is unfavourable for the cells and the
force-field naturally brings the cell back into spherical shape over a short period of time.

This framework allows the modelling of all three division schemes, symmetric random,
longest axis (Hertwig’s), and asymmetric. So far, only random symmetric has been imple-
mented, the other schemes will be implemented in the future.

5.4 Implementation with CUDA

Implementation of the accelerated MD code is explained in this section. As mentioned
before, CUDA will be used to accelerate our simulation. Due to the complexities of GPU
acceleration some techniques are needed to maximize the usage of the GPU. On top of that,

71

we have to be careful to avoid the potential issues associated with this type of coding. If
not done correctly, using the GPU can actually be detrimental to performance [12, 164].

A simple description of the simulation is given as a series of steps on page 74. The
code was initially developed by Jan Westerholm from Åbo Akademi University, in Finland.
Subsequently, other features were added to conform with the requirements for this project.

5.4.1 The Division of Labour

The reasoning behind GPU acceleration is to use the maximum amount of stream pro-
cessors (or processing elements) simultaneously. This can be done with multiple levels of
parallelization. The work of doing all of the calculations associated with the simulation
needs to be consolidated into appropriate kernels, and the kernels have to be coordinated
by the host. This is conceptually simple, but can be difficult to implement.

As mentioned in earlier sections, the force field can be divided into two parts: Inter and
intra-cellular interactions. However, at the implementation level, both of these interactions
are calculated at the same time, by the same level. The distribution of tasks is not related
to the definition of our force-field. So, if needed, the two aspects of this work can be
modified without affecting each other.

The simulation partitions the work of calculating the forces according the to some rules
that are set by default in CUDA. CUDA assumes a multiple of 32 threads per block being
run [171, 175] . Putting it simply, this means that the number of threads that can share
memory must be a multiple of 16. The maximum number of threads per block depends on
the Compute Capability of the GPU and is usually 512, or 1024, threads per block [171,
175].

As mentioned before, each cell is modelled by 180 mass points. To simplify the simula-
tion algorithm, it is useful to let one cell be operated on by a single block of 180 threads,
each thread operating on a single mass point. So that each block of threads will operate
on 180 coordinates. However, recall that memory access should be coalesced. Since 180
is not a multiple 32, the data structure for each cell is padded with 12 zeros to make 192
threads per block. Note that this does not mean that calculations of only one cell can be
done at a time, that would depend on the hardware structure of the GPU.

The code snippet below summarizes the points in this section.

1 int nBlocks = no_of_cells;

2 int thPerBlock = 192;

72

3 // function call to simulate the cells

4 SimulateCells <<nblocks, thPerBLock>> (mass_point_coordinates,

5 simulation_parameters);

5.4.2 Description of the Code

A simple explanation of the simulation code follows. We focus on the most relevant parts
of the code.

Initialization

First, we must initialize the simulation. During initialization, the data structure that will
be used to store all relevant data, which is mostly coordinates of the membrane particles,
will be created. Additionally, the limits of the hardware must be probed as those are
needed to calculate the maximum size of our system.

A vital portion of the initialization phase, is setting the limits of the simulation. The
simulation process requires a large amount of memory allocated on the host and the GPU
to proceed. Additionally, due to the large amount of time required to allocated memory,
the maximum amount of available memory must be allocated at the beginning and used
without modification. This is an indirect way of saying that we must set a maximum for
the number of cells in our system before we begin the simulation.

Simulation

The next step is to perform the simulation. All of the starting cells have been created in
the previous phase of the simulation. This step is by far the most complex and the most
time consuming.

Initially, the pressure of the cells must be set. This can be set to be a constant or to
a growing value. There is a threshold pressure below which the cells will not grow, this
threshold depends on the parameters set for the simulation.

The system must first be divided into lists of neighbouring cells. This is needed to cal-
culate the dissipative force FV . A data structure containing the corresponding neighbours
for each cell is populated.

73

Another crucial step is to update the positions of the particles. Three phases of the
particle positions are stored. The previous time step positions, the current time step
positions, and the next time step positions. In this step, the previous time step data is
updated to current time step data, the current time step updated to the next time step
data. The next time step data is effectively discarded. Then we calculate the forces and
the future time step positions with the current time step and past time step positions,

The velocity Verlet, shown in Equation (5.20), method is used to calculate the next
time step coordinates and the positions.

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
Fi(t)

mi

·∆t2 (5.20)

vi(t+ ∆t) =
1

∆t
(ri(t+ ∆t)− ri(t)) (5.21)

Interlaced in between these three steps is the code that does some of the analysis portion
of the simulation. Namely, the counting for the mitotic index [193, 194].

Program End

Not much needs to be done at the end of the program run, all of the memory allocated at
the beginning is simply release and output files closed.

Program Summary:

1. Parse Arguments
The arguments of the simulation must be parsed in order to begin the simulation.
These arguments include values for the parameters that are used in the force field,
the starting number of cells, additional simulation parameters such as whether there
any walls (none by default), and the path to any output files.
Assumptions:

1 There is a CUDA capable GPU on the system not requiring a network connection.
Running on a networked GPU is possible with CUDA, but is not supported by the
code. Non NVIDIA GPUs are not supported.

2 There are no other programs running that required the use of the GPU. This means
that should a computer only have one GPU, it should not be using the GPU for
any rendering. Alternatively, a computer with a dedicated GPU for simulation
runs can be used.

74

3 There is enough space on the system available for arbitrary size data files.

2. Allocate Memory
Allocate enough memory for a maximum of 250,000 cells. This is a very large number
of cells and it is set only for the purpose of allowing a simulation environment that
is as close to infinite as possible. It is not easy to deduce the population trend of
the simulation from the input parameters, so a large “sandbox” is allocated. Note
that the simulation does calculate the relevant quantities for all 250,000 cells from
the start. The number of cells grows naturally over time.
Assumptions:

1 There is enough available memory on the GPU for 250,000 cells. This is close
to 2GB of memory. Allocating memory while taking into account the memory
available on the GPU is possible, such as 1GB or 512MB, or any other amount.

2 In the case of more than one GPU is available, the first one, as set by the operating
system, will be used. The simulation will not run on any other GPUs.

3 Once allocated, memory need not be managed again. This means that there will
not be any other programs running that will required access to this allocated
memory (this assumption is valid for most software.)

3. Initialize the system
Now, we must create the starting cells and make the necessary preparations for the
simulation. There are two phases to this step. First, the positions of the centres
of the starting cells (the centres of the C180 fullerenes) must be determined. Then,
the positions of the atoms themselves do not change relative to their centres. The
positions of the atoms themselves are read from an available data file.
Assumptions:

1 The cells are placed in a uniform 2D grid. This is to simplify the initialization and
debugging. Other configurations can be added easily.

2 The cells all have the same orientation, i.e. they are not rotated relative to each
other. Given that the cells are spherical, this is theoretically true regardless of
orientation. However, rotation would introduce minor variations in the C180 con-
figuration. Granted that these variations would have no effect given our force-field,
this possibility is eliminated nevertheless.

4. Find nearest neighbours
There are dedicated kernels that handle the finding of nearest neighbours in the sys-

75

tem. These kernels are optimized to use the fastest algorithms described in Chapter 4.
This step is repeated every time step.

5. Set pressure (growth rate)
The growth rate of the cells must be set before the force calculations may proceed.
This is because depending on which phase of their lives the cells are in, they will
have a different pressure. However, for the sake of simplicity, the pressure is made
equivalent for all cells. They will grow at the exact same rate regardless of their
state.

6. Force calculations and position updates
The force calculation is done for each particle in each cell. This part of the simulation
is most susceptible to inefficiencies and may be the slowest step.

1 Spring force calculation

2 Pressure force calculation

3 Internal Damping force calculation

4 Interfullerene Force calculations (adhesive and repulsive)

5 Time propagation

7. Analysis and cell division
Here some analysis of the cells is done which is needed to determine which cells are
ready to divide. The volume of each cell is calculated by using the geometry of
each cell. Those cells with high enough volumes are divided. The division is not
spontaneous and is done by introducing new mass points and separating the mass
points of the parent cell into two daughter cells. The division plane is chosen so that
it divides the parent into two equal halves, see Section 5.3.

76

Chapter 6

Results and Discussion

Until now the focus has been on the development of the model and simulation code. In
this chapter, results of running this simulation code will be shown. The cell dynamics
model described here began in 2006 when a basic version of this model was introduced by
Karttunen and Åström [14]. Later, working with Mkrtchyan as well, they improved the
model and were able to show a variety of cell behaviour [15]. That work was done entirely
in 2D, the next step was to extend the model into 3D. The results shown in this chapter
are a result of that work. Figure 6.1 shows some representative snapshots of a simulation
run with the simulation code. At first glance, the cells seem to look like real cells. The
powerful Graphics Processing Unit (GPU) hardware blazes through the simulation and
can produce such systems in a few minutes. The system in Figure 6.1 contains 1100 cells,
which can be simulated for 100TDiv in about 10 minutes (≈ 1010 force calculation and
position updates).

To compare with the 2D model of Mkrtchyan et al. [15], a system resembling epithelia
was to be created. This is done by confining the cells between walls separated by a gap
approximately equal to the diameter of a cell. This is a simple way of simulating epithelia
which are two dimensional tissues. Figure 6.2 shows snapshots of cells confined within
walls. All of the systems are initialized with a group of cells placed in a grid, which is why
the snapshots seem to be square shaped. This shape is lost after longer simulation time.

6.1 Mitotic Index

As cell populations grow and pass through the various cell phases, the ability of cells to
reproduce may change over generations. As tissue matures, some cells cease to divide, or

77

(a) (b)

Figure 6.1: (a)Here a sample cell is shown at various stages of its cycle. The cell begins at a
relatively small size, grows until it reaches a threshold VD, then is divided into two cells. The
system grows by successive divisions in this manner. The cell surface has been smoothed
in post processing, the cells actually look something like what is shown in Figure 5.2(b).
This sequence is over about 1TDiv. (b) The system after 100TDiv time has passed, this
image contains roughly 1100 cells. This state can be reached within 10 minutes of run time
thanks to the GPU acceleration. These images were generated with the Blender software
package [195].

divide rarely. Some other types of cells are able to reproduce rapidly and consistently, such
as cells of the apical meristem in plant roots [196] or unimpeded cancer cells [193, 194].

A standard measure of proliferation (mitotic activity) is the Mitotic Index (MI). MI
is basically the fraction of cells in mitosis in a sample of tissue. This index is useful in
determining the health[197] or age of the cells being examined[198]. It is a useful indicator
of the effects of the environment on cellular activity[199, 200]; MI can go up or down
depending on how the environment affects the cells. For example, MI is used to measure
the efficacy of chemotherapy on some types of cancer cells[193, 194, 200]. Typically tissue
begins with a relatively high mitotic index and as it matures the mitotic index decays to a
constant value[158]. Figure 6.3 shows the mitotic index of Drosophila wing disc measured
by Wartlick et al. [158]. This type of exponential decay is expected with normal systems
of cells.

Mitotic index is simply the fraction of cells undergoing mitosis at any one point in time.
It is measured as

78

MI = 100× NM

Nc

, (6.1)

where NM is the number of cells in mitosis and Nc is the number of not dividing cells
in the system. Nc can also be the total number of cells [194], or some constant such as
1000 [201]. In the results below, NC will always be the number of not dividing cells as
that is how it was calculated by Wartlick et al. [158]. This can be configured differently to
compare to other experimental results. Figure 6.3 shows comparisons between the model
of Mkrtchyan et al. [15] and some experimental results by Wartlick et al. [158].

Figure 6.4 was created with data from 3D simulations. A qualitatively similar trend
of mitotic index can be seen in 3D as well as in 2D. The first few data points are ignored
in the fit because they are measured at somewhat artificial conditions. The cells all start
with identical sizes and internal pressures, so the mitotic index always starts at 100% as
all cells divide at the same instant. The very high mitotic index can be seen in the inset of
Figure 6.4 which contains a plot of average mitotic index of the same 10 simulations. This
effect goes down dramatically and the behaviour becomes more comparable to experiment
very quickly. Future versions of the simulation code will include options to randomize
initial cell conditions, which may reduce this effect.

This behaviour of mitotic index can be rationalized by looking at what effects the
growth of the system has on the inner most cells. As the number of cells increases, the
outer cells constrain the growth of the inner cells, so the cells near and on the surface of the
tissue can grow more easily. As the surface area to volume ratio decreases with increasing
system size, the ratio of cells near the surface to cells inside the tissue goes down as well,
which leads to a lower mitotic index overall. From a biological perspective, perhaps the
cells near the surface of a system have easier access to nutrients than inner cells in the
absence of vasculature.

Equation 6.2 is the equation of the function fitted to average mitotic index (blue line
in Figure 6.4). The fit starts at ∼2.74% approaches 1.58% over the run time. The decay
of mitotic index begins at approximately 4.32%, which is close to the experimental results
shown in Figure 6.3. In Figure 6.4(b) the mitotic index evolution for multiple vales of γext
are shown. It seems that all of the trends are within the margin of error of each other. This
is expected because γext is only hinders the motion of cells past each other. Cell growth
seems to be unaffected by γext. Later, it will be shown that the medium can affect mitotic
index.

MI3D = 2.2737exp(−0.027182t) + 1.5802 (6.2)

79

The next step is to observe how the mitotic index is affected by γext in conditions similar
to epithelia. An epithelium is a system of tightly bound cells in two dimensions. Examples
of epithelia include the epidermis[202, 203] the wings of Drosophila melanogaster (fruit
fly)[158, 204]. Epithelial cells were simulated by confined 3D cells between rigid walls set
approximately one cell diameter apart. Figure 6.5 shows how the mitotic index of cells
confined between two walls changes with time. In this case, mitotic index reduces quickly
and becomes approximately constant. The confinement was done to simulate epithelial
tissue. Experimental studies of the Drosophila wing disc show that, on average, the mitotic
index is constant on average at about 1.7% [205]. This is in qualitative agreement with the
results shown in Figure 6.5 which shows quick decay to constant mitotic index, though the
actual average mitotic index produced by the simulation differs. Equation 6.3 reveals an
average mitotic index of ∼0.7% for γext = 10. But the mitotic index behaves unpredictably
at higher γext’s. The unpredictable nature of the mitotic at higher γext’s may be caused by
undefined behaviour in the event of a cell dividing with an approximately horizontal division
line (Figure 6.5(c), far right), too high intercellular friction prevents the two daughter cells
from separating and finding enough space to grow. This explains the lower mitotic index
at γext = 15, but not the higher mitotic index of γext = 20. In Section 6.2, investigations
of cell packing (Figure 6.9) will reveal strange behaviour at γext = 20 there as well. It is
unclear at this point what is happening at γext = 20 for confined systems.

MI2D = 1.1551 exp(−0.094358t) + 0.7198 (6.3)

Lastly, the effects of friction with the medium, set by γm, will be investigated. Readers
are reminded that γm affects all cells equally, unlike γext which only acts upon neighbouring
cells. Figure 6.6 shows the mitotic index at different values of γm. The plots of mitotic
index show that as the medium becomes more viscous, the cells take longer to divide the
mitotic index reacts more slowly. The slowing down of division also leads to lower steady
state values of mitotic index. This demonstrates the susceptibility of mitotic index to
environment conditions.

The initial results are at least qualitatively comparable to experimental results. This
means that the framework developed in the code can used with correctly determined pa-
rameters to study real cells more realistically in the future.

80

6.2 Cell Packing

In isolation, many cells prefer a roughly spherical shape. Though in tissues where cells
interact strongly with neighbours, cells can take a more polygonal shape [151]. In two
dimensional tissue such as epithelia, experiments have shown that cells pack together with
a particular topology. Lewis[152] showed that epithelial cells pack as mostly hexagonal
cells, with lower fractions of pentagonal and heptagonal cells. Gibson et al. [151] later
showed that this distribution of cell packing is conserved among different species, which
suggests a common mechanism to the emergence of this packing. Figure 6.7 shows the cross
section of the cells that form an epithelium, and a Voronoi tessellation done to determine
the number of neighbours that the cells have.

Figure 6.8 shows the fraction of cells with different number of nearest neighbours for a
the cells of a number of different species. The rough shape of a cell is determined by the
number of neighbours it has, cells are usually in contact in tissue. So pentagonal cells have
five neighbours, hexagonal have six, etc. There tends to be a relatively high proportion of
hexagonal cells, with lower portion of pentagonal cells, lower portion still of heptagonal,
and then some small amount of other polygons. It stands to reason that the packing of
different cells is affected by intercellular interactions. Operating on this assumption, the
effects of γext on cell packing are studied in this section.

Figure 6.8 shows how the packing behaves with changes in γext. It appears as if the
distribution of polygon types is indeed affected by γext with comparison to experimental
results of Drosophila taken from [158]. Most of the different values of γext produce distribu-
tions that are comparable to the experimental results in Figure 6.8(a). Except the strange
behaviour at γext = 20 is seen again. Further study into this value of γext will be done to
determine if this effect is real (valid in the context of the simulation) or a result of some
error in the code. γext = 20 was simulated many times with the same result. Furthermore,
strange behaviour with the same value of γext = 20 was seen in Figure 6.5(b).

Figure 6.10 shows the effects higher values of γm have on cellular packing. Higher γm
hinders all cell motion more, which prevents cell rearrangements and growth. The flat
regions of Figure 6.10(b) inset can be explained by noting that higher γm slows down cell
growth and rearrangement, so that the fraction of cells jumps abruptly between different
values and can stay constant over longer periods of time. The distribution at the end of is
simulations is somewhat comparable to experimental ones though less so when compared
to Figure 6.9.

81

6.3 Summary

Mitotic index and cell packing with various parameters were tested in this section. The
results shown in this chapter aim to demonstrate the efficacy of the model, that was devel-
oped throughout Chapter 5, by comparing two aspects of cell behaviour to experimental
results.

The mitotic index was replicated successfully for 3D free cell systems, and mostly for
cells confined in between two walls as well—except for one case in which unexpected be-
haviour was seen. Differences in cell packing were also observed in the packing distribution
of simulated cells. The reason for this aberration is unclear and will be studied further in
the future. It is likely that this is caused by bug in the simulation code. There is also the
remote possibility that the cell behaviour actually changes drastically at specific values of
adhesion strength, this will be revisited again once the code has been exhaustively tested.

At least at a qualitative level, the results shown in this chapter can be taken as a
preliminary indication of the validity of the 3D model that was a result of the work done
by Karttunen, Åström, and Mkrtchyan in 2D, and the work done as part of this thesis in
3D. The next step would be refine the model further to enable it to reproduce general as
well as specific cell behaviour.

82

t= 20 t= 100t= 80

Figure 6.2: Top: Snapshots of an epithelium at three different times chosen to coincide
with the 2D system of Mkrtchyan et al. [15] The system was set up as a grid of cells, which
is why it has a square like shape, this shape is lost after longer simulation time. The dotted
loops are cross sections of cells at roughly halfway between two walls in the XY plane.
Bottom: Snapshots of the 2D model, taken from [15], reprinted with permission from the
Royal Society of Chemistry. Note that the 2D model uses a unit of time that is 10 times
larger.

83

Figure 6.3: (a)Measurement of MI of Drosophila citeWartlick2011. The black line is the fit
to the MI data, the other lines are the growth rate (can be related to MI) fits which are, for
the purposes of this thesis, irrelevant. The mitotic index starts off at roughly 6% then decays
to about 1%–2%. From [158], reprinted with permission from AAAS. (b) Mitotic index with
2D simulations at different γext with the code of Mkrtchyan et al. [15, 49], the friction term
between cells which affects cell rearrangements. Adapted from [15] with permission of The
Royal Society of Chemistry.

84

Figure 6.4: (a) Plot of mitotic index of data generated by 3D accelerated cell dynamics.
The blue line shows a fit to the black points which are the average of 10 simulations (grey
points) done at γext = 10.0. The first twenty or so time points were ignored when creating the
fit as the first few data points are always unnaturally high due to the initial conditions of the
cells. (b) The same data for different values of γext. The noisy lines are the average mitotic
index of 10 simulations. Measurements were done at TDiv intervals (1000 time steps).

85

Figure 6.5: These graphs were created with simulations with confining walls placed roughly
one cell diameter apart. (a) Shows the average mitotic index of ten simulations. Inset shows
the mitotic index for the whole simulation time at γext = 10. (b) Shows the same for different
values of γext. Inset shows the raw data (average of ten simulations) over the same time
periods that were used for the fits. The fits at γext = 15 and γext = 20 show a different
behaviour compared to lower γext’s. (c) shows the cross-sections of some cells in confinement.
The right most daughter cells formed almost perfectly parallel to the confining walls.

86

Figure 6.6: Here the affects of γm on the mitotic indices of free and confined systems are
explored. (a) Free 3D cells are placed in simulations with varying levels of γm, this parameter
can affect mitotic index dramatically. Similar exponential decay is observed but at different
rates and to lower steady states with higher γm(b) Mitotic index of 3D cells confined between
walls. γm affects the confined cells just like the unconfined cells.

87

Figure 6.7: These figures show a two dimensional cross section done halfway in between
the confining walls. (a) Voronoi tessellation that was used to determine the number of
neighbours each cell has. Cells with four neighbours are coloured white, pentagonal cells are
coloured green, hexagonal cells are coloured red, heptagonal cyan, and octagonal magenta.
(b) This figures shows the cross section of the mass points that make up the cells. This
images were generated by taking the projection of all points on a plan parallel to the walls
to simulate an epithelium.

88

Figure 6.8: (a)This figure the fraction of cell polygon types for a number of species.
The number in brackets is the number of cells counted, and the GPNP model refers to
the results of a topological model (see Section 3.2.3) that was used by Gibson et al. [151].
Taken from[204], c© 2011 Sandersius et al., CC license. (b) Similar measurement using the
2D model done by Mkrtchyan et al. [15] at various values of γext, with comparison with
Drosophila [158].

89

Figure 6.9: All measurements were done with γm = 5. (a) The change in fraction of polygons
over the simulation time of γext = 15. Cell growth was halted at t = 100TDiv, the system then
relaxes by rearranging cell distribution towards more favourable packing distribution. (b)
The packing distribution at different γext compared to a experimental measurement [158].
Inset shows the change in fraction of hexagons over simulation time, cell division was halted
at t = 100TDiv. Error bars are the variation in packing from t = 100TDiv and onward. Most
values of γext, except γext = 20 produce distributions comparable to the results shown in
Figure 6.8.

90

Figure 6.10: γm has a different effect on packing. All of these measurements were done at
γext = 2 to minimize its effects while still maintaining a modicum of intercellular adhesion.
(a) The evolution of the fractions of different polygon types over the simulation time, growth
was halted at t = 100. (b) The proportions of different polygon types measured with various
γm, inset shows evolution of hexagonal cell fraction over time. This figure indicates that
while γm does affect the distribution, it is γext that is instrumental in this process. γm slows
all cell motion down, while γext only hinders rearrangement.

91

Chapter 7

Conclusions

The goal of this project was to develop a novel method of cell modelling. Some of the
existing models were described in Chapter 3, and the problems associated with them
discussed. It was found that these models, while excelling in certain situations, were
insufficient in replicating cell behaviour fully. Due to the complexity of cellular structure,
it is difficult to completely simulate cellular behaviour. This problem is compounded by
limitations in computational power. Therefore, the models that have been developed thus
far, were limited by necessity rather than lack of interest or capability. The goal of this
project was to develop a Molecular Dynamics (MD) based method to simulate cells in a
more realistic manner than the techniques used in the field today while taking advantage
of the novel computational techniques in the area of scientific computing.

With the use of GPU acceleration, a novel method of modelling cells as three dimen-
sional meshes based on previous work by Karttunen, Åström [14], and Mkrtchyan [15].
This method is described was described in some detail in Chapters 5 and 4. The code
was first developed by Jan Westerholm from the Åbo Akademi University, then modi-
fied to replicate cell behaviour more accurately. GPU acceleration, even though not fully
optimized yet, has made the run times much more manageable without adding much to
resource cost. In this respect, it is the opinion of this author, that the GPU acceleration
was successful and further optimization should be pursued.

Once the simulation was developed, it needed to be validated. After validation, the
program can be used to study new cells in different ways, and even to make predictions of
cell behaviour. The first step of validation was to compare to the results produced in 2D
by Mkrtchyan et al. in their work [15]. To that end, the behaviour of Mitotic index was
studied in Chapter 6. It was found that the mitotic indices produced behaved as expected.

92

The simulated cells were also placed in between confining walls to emulate epithelia and
to study how the cells packed into two dimensional tissue. It was found that that the
simulation produced expected packing distributions. There is also still more work to be
done towards refining the model further and studying other aspects of cell behaviour.

7.1 Future Plans

The next steps of this project can be divided into three broad areas: Technical improve-
ments, further validation, and model refinement. On the technical side progress will be
made on two fronts. There is still some more work that could be done to improve perfor-
mance by optimizing the GPU kernels. This will entail algorithmic improvements in the
implementation of MD on GPUs correctly. Some further research will be done into the
hardware and software nuances of NVIDIA devices. It is also highly desirable to use other
devices, such as multicore or Multiple Integrated Core (MIC) devices, for acceleration.
GPUs are of course amazing devices, but that is no need to shun other perfectly fine high
performance hardware. This will be done with OpenCL which has the added advantage of
being supported by most processors in the in the market.

Further validation and model refinement are related. Firstly, the results in Chapter 6
only compare to two dimensional experimental results, the MD method of simulating cells
has to be modified to reproduce cell behaviour in three dimensions. This will be begin by
adding cell diffusion to the model. The aim in that case will be to study cell motilities.
After that, the next target will be various kinds of cell migration; diffusion directed by
some potential such as a concentration gradient(chemotaxis), changes in adhesion strength
of the Extracellular Matrix (ECM) (haptotaxis). So far only single types of cells have
been discussed. This model also allows for modelling different types of cells, which leads
to various interesting phenomena such as cell sorting [135] and morphogenesis [134]. The
difference in cells may be introduced as initial conditions, or changes may be introduce in
the model itself that would affect cell behaviour. The cell division done for this thesis was
random symmetric division, but we saw in Chapter 2 that cells may divide different ways
to lead to different daughter cells. Asymmetric, and division by the longest axis rule will
also be implemented and their affects on the parameters measured in Chapter 6 will be
tested and validated.

93

References

[1] D Boal. Mechancis of the Cell. 1st ed. Cambridge University Press, 2002.

[2] H. Lodish. Molecular Cell Biology. Macmillan, 2008.

[3] T. Rozario and D. W. DeSimone. “The extracellular matrix in development and
morphogenesis: A dynamic view”. In: Dev. Biol. 341.1 (2010), pp. 126–140. doi:
10.1016/j.ydbio.2009.10.026.

[4] G. K. Gittes. “Developmental biology of the pancreas: A comprehensive review”.
In: Dev. Biol. 326.1 (2009), pp. 4–35. doi: 10.1016/j.ydbio.2008.10.024.

[5] T. J. Mitchison and E. D. Salmon. “Mitosis: a history of division.” eng. In: Nat.
Cell Biol. 3.1 (2001), E17–E21. doi: 10.1038/35050656.

[6] P. Bheda and R. Schneider. “Epigenetics reloaded: the single-cell revolution”. In:
Trends Cell Biol. 24.11 (2014), pp. 712–723. doi: 10.1016/j.tcb.2014.08.010.

[7] D. E. Koshland Jr. “SPECIAL ESSAY: The Seven Pillars of Life”. In: Science
295.5563 (2002), pp. 2215–2216. doi: 10.1126/science.1068489.

[8] S. A. Adcock and J. A. McCammon. “Molecular Dynamics: Survey of Methods for
Simulating the Activity of Proteins”. In: Chem. Rev. 106.5 (2006), pp. 1589–1615.
doi: 10.1021/cr040426m.

[9] J. J. Janke, W. F. D. Bennett, and D. P. Tieleman. “Oleic Acid Phase Behavior
from Molecular Dynamics Simulations”. In: Langmuir 30.35 (2014), pp. 10661–
10667. doi: 10.1021/la501962n.

[10] W. D. Bennett and D. P. Tieleman. “Computer simulations of lipid membrane
domains”. In: Biochim. Biophys. Acta - Biomembranes 1828.8 (2013), pp. 1765–
1776. doi: 10.1016/j.bbamem.2013.03.004.

94

http://dx.doi.org/10.1016/j.ydbio.2009.10.026
http://dx.doi.org/10.1016/j.ydbio.2008.10.024
http://dx.doi.org/10.1038/35050656
http://dx.doi.org/10.1016/j.tcb.2014.08.010
http://dx.doi.org/10.1126/science.1068489
http://dx.doi.org/10.1021/cr040426m
http://dx.doi.org/10.1021/la501962n
http://dx.doi.org/10.1016/j.bbamem.2013.03.004

[11] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K.
Schulten. “Accelerating Molecular Modeling Applications with Graphics Proces-
sors”. In: J. Comput. Chem. 28.16 (Dec. 2007), pp. 2618–2640. doi: 10.1002/jcc.
20829.

[12] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell. “A Survey of General-Purpose Computation on Graphics Hardware”.
In: Comput. Graph. Forum 26.1 (Mar. 2007), pp. 80–113. doi: 10.1111/j.1467-
8659.2007.01012.x.

[13] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips. “GPU Com-
puting”. In: Proc. IEEE 96.5 (May 2008), pp. 879–899. doi: 10.1109/JPROC.2008.
917757.

[14] J. A. Åström and M. Karttunen. “Cell aggregation: Packing soft grains”. In: Physical
Review E 73 (6 2006), p. 062301. doi: 10.1103/PhysRevE.73.062301.

[15] A. Mkrtchyan, J. Åström, and M. Karttunen. “A new model for cell division and mi-
gration with spontaneous topology changes”. In: Soft Matter 10.24 (2014), pp. 4332–
4339. doi: 10.1039/c4sm00489b.

[16] T. Pollard, W. Earnshaw, and J. Lippincott-Schartz. Cell Biology. Ed. by W.
Schmidt. 2nd ed. Saunders Elsevier, 2008.

[17] G. M. Cooper and R. E. Hausman. The Cell. 5th ed. Sinauer Associates, 2000.

[18] D. Voet, J. G. Voet, and C. W. Pratt. Fundamentals of Biochemistry: Life at the
Molecular Level. Wiley, 2008.

[19] Q. Wen and P. A. Janmey. “Polymer physics of the cytoskeleton”. In: Curr. Opin.
Solid. St. M. 15.5 (2011), 177–182. doi: 10.1016/j.cossms.2011.05.002.

[20] H. Herrmann, H. Bär, L. Kreplak, S. V. Strelkov, and U. Aebi. “Intermediate fila-
ments: from cell architecture to nanomechanics”. In: Nat. Rev. Mol. Cell Biol. 8.7
(2007), pp. 562–573. doi: 10.1038/nrm2197.

[21] J. I. Castrillo, L. A. Zeef, D. C. Hoyle, N. Zhang, A. Hayes, D. C. J. Gardner,
M. J. Cornell, J. Petty, L. Hakes, L. Wardleworth, B. Rash, M. Brown, W. B.
Dunn, D. Broadhurst, K. O’Donoghue, S. S. Hester, T. P. J. Dunkley, S. R. Hart,
N. Swainston, P. Li, S. J. Gaskell, N. W. Paton, K. S. Lilley, D. B. Kell, and S. G.
Oliver. “Growth control of the eukaryote cell: a systems biology study in yeast.”
eng. In: J. Biol. 6.2 (2007), p. 4. doi: 10.1186/jbiol54.

[22] L. H. Hartwell. “Cell division from a genetic perspective.” eng. In: J. Cell Biol. 77.3
(1978), pp. 627–637.

95

http://dx.doi.org/10.1002/jcc.20829
http://dx.doi.org/10.1002/jcc.20829
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1103/PhysRevE.73.062301
http://dx.doi.org/10.1039/c4sm00489b
http://dx.doi.org/10.1016/j.cossms.2011.05.002
http://dx.doi.org/10.1038/nrm2197
http://dx.doi.org/10.1186/jbiol54

[23] B. Guo, Q. Liang, L. Li, Z. Hu, F. Wu, P. Zhang, Y. Ma, B. Zhao, A. L. Kovcs,
Z. Zhang, and et al. “O-GlcNAc-modification of SNAP-29 regulates autophagosome
maturation”. In: Nat. Cell Biol. (2014). doi: 10.1038/ncb3066.

[24] S. J. Silverman, A. A. Petti, N. Slavov, L. Parsons, R. Briehof, S. Y. Thiberge, D.
Zenklusen, S. J. Gandhi, D. R. Larson, R. H. Singer, and et al. “Metabolic cycling in
single yeast cells from unsynchronized steady-state populations limited on glucose
or phosphate”. In: Proc. Natl. Acad. Sci. U. S. A. 107.15 (2010), pp. 6946–6951.
doi: 10.1073/pnas.1002422107.

[25] A. D. Chalmers. “Oriented cell divisions asymmetrically segregate aPKC and gener-
ate cell fate diversity in the early Xenopus embryo”. In: Development 130.12 (2003),
26572668. doi: 10.1242/dev.00490.

[26] H. Zhang and Z. Z. Wang. “Mechanisms that mediate stem cell self-renewal and
differentiation.” eng. In: J. Cell. Biochem. 103.3 (2008), pp. 709–718. doi: 10.1002/
jcb.21460.

[27] J. A. Knoblich. “Assymetric Cell Division During Animal Development”. In: Nat.
Rev. Mol. Cell Biol. 2.1 (2001), pp. 11–20. doi: 10.1038/35048085.

[28] R. A. Neumuller and J. A. Knoblich. “Dividing cellular asymmetry: asymmetric cell
division and its implications for stem cells and cancer”. In: Genes & Development
23.23 (2009), pp. 2675–2699. doi: 10.1101/gad.1850809.

[29] Y. Miyaoka and A. Miyajima. “To divide or not to divide: revisiting liver regener-
ation”. In: Cell Div 8.1 (2013), p. 8. doi: 10.1186/1747-1028-8-8.

[30] T. Gillies and C. Cabernard. “Cell Division Orientation in Animals”. In: Curr. Biol.
21.15 (Aug. 2011), pp. 599–609. doi: 10.1016/j.cub.2011.06.055.

[31] D. Hanahan and R. A. Weinberg. “Hallmarks of cancer: the next generation.” eng.
In: Cell 144.5 (2011), pp. 646–674. doi: 10.1016/j.cell.2011.02.013.

[32] H. R. Horvitz and I. Herskowitz. “Mechanisms of asymmetric cell division: two Bs
or not two Bs, that is the question.” eng. In: Cell 68.2 (1992), pp. 237–255.

[33] M. Tian, J. R. Neil, and W. P. Schiemann. “Transforming growth factor-β and the
hallmarks of cancer.” eng. In: Cell. Signal. 23.6 (2011), pp. 951–962. doi: 10.1016/
j.cellsig.2010.10.015.

[34] W. Flemming. Zellsubstanz, kern und zelltheilung. Leipzig, F.C.W Vogel, 1882.

[35] M. P. Stewart, J. Helenius, Y. Toyoda, S. P. Ramanathan, D. J. Muller, and A. A.
Hyman. “Hydrostatic pressure and the actomyosin cortex drive mitotic cell round-
ing”. In: Nature 469.7329 (2011), 226230. doi: 10.1038/nature09642.

96

http://dx.doi.org/10.1038/ncb3066
http://dx.doi.org/10.1073/pnas.1002422107
http://dx.doi.org/10.1242/dev.00490
http://dx.doi.org/10.1002/jcb.21460
http://dx.doi.org/10.1002/jcb.21460
http://dx.doi.org/10.1038/35048085
http://dx.doi.org/10.1101/gad.1850809
http://dx.doi.org/10.1186/1747-1028-8-8
http://dx.doi.org/10.1016/j.cub.2011.06.055
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/j.cellsig.2010.10.015
http://dx.doi.org/10.1016/j.cellsig.2010.10.015
http://dx.doi.org/10.1038/nature09642

[36] T. Lecuit and P.-F. Lenne. “Cell surface mechanics and the control of cell shape, tis-
sue patterns and morphogenesis”. In: Nat. Rev. Mol. Cell Biol. 8.8 (2007), pp. 633–
644. doi: 10.1038/nrm2222.

[37] C. Roubinet, P. T. Tran, and M. Piel. “Common mechanisms regulating cell cortex
properties during cell division and cell migration.” eng. In: Cytoskeleton (Hoboken)
69.11 (2012), pp. 957–972. doi: 10.1002/cm.21086.

[38] S. W. Grill. “Forced to Be Unequal”. In: Science 330.6004 (2010), 597598. doi:
10.1126/science.1198343.

[39] Y. Imoto, Y. Yoshida, F. Yagisawa, H. Kuroiwa, and T. Kuroiwa. “The cell cycle,
including the mitotic cycle and organelle division cycles, as revealed by cytological
observations”. In: Microscopy 60.suppl 1 (2011), S117S136. doi: 10.1093/jmicro/
dfr034.

[40] P. Kunda and B. Baum. “The actin cytoskeleton in spindle assembly and position-
ing.” eng. In: Trends Cell Biol. 19.4 (2009), pp. 174–179. doi: 10.1016/j.tcb.
2009.01.006.

[41] M. T. Tyree and H. T. Hammel. “The Measurement of the Turgor Pressure and the
Water Relations of Plants by the Pressure-bomb Technique”. In: J. Exp. Bot. 23.1
(1972), 267282. doi: 10.1093/jxb/23.1.267.

[42] N. Minc, D. Burgess, and F. Chang. “Influence of Cell Geometry on Division-Plane
Positioning”. In: Cell 144.3 (2011), pp. 414–426. doi: 10.1016/j.cell.2011.01.
016.

[43] R. Rappaport. Cytokinesis in Animal Cells. Cambridge University Press, 1996.

[44] J. M. Scholey, I. Brust-Mascher, and A. Mogilner. “Cell division.” eng. In: Nature
422.6933 (2003), pp. 746–752. doi: 10.1038/nature01599.

[45] O. Hertwig. Das Problem der Befruchtung und der Isotropie des Eies, eine Theorie
der Vererbung. Jena, 1884.

[46] D. St Johnston and J. Ahringer. “Cell Polarity in Eggs and Epithelia: Parallels and
Diversity”. In: Cell 141.5 (2010), pp. 757–774. doi: 10.1016/j.cell.2010.05.011.

[47] Y. N. Jan and L. Y. Jan. “Assymetric cell division”. In: Nature 392.6678 (1998),
pp. 775–778. doi: 10.1038/33854.

[48] J. A. Knoblich. “Mechanisms of Asymmetric Stem Cell Division”. In: Cell 132.4
(2008), pp. 583–597. doi: 10.1016/j.cell.2008.02.007.

[49] A. Mkrtchyan. “A Single Cell Based Model for Cell Divisions with Spontaneous
topology changes”. PhD thesis. 2013.

97

http://dx.doi.org/10.1038/nrm2222
http://dx.doi.org/10.1002/cm.21086
http://dx.doi.org/10.1126/science.1198343
http://dx.doi.org/10.1093/jmicro/dfr034
http://dx.doi.org/10.1093/jmicro/dfr034
http://dx.doi.org/10.1016/j.tcb.2009.01.006
http://dx.doi.org/10.1016/j.tcb.2009.01.006
http://dx.doi.org/10.1093/jxb/23.1.267
http://dx.doi.org/10.1016/j.cell.2011.01.016
http://dx.doi.org/10.1016/j.cell.2011.01.016
http://dx.doi.org/10.1038/nature01599
http://dx.doi.org/10.1016/j.cell.2010.05.011
http://dx.doi.org/10.1038/33854
http://dx.doi.org/10.1016/j.cell.2008.02.007

[50] B. M. Gumbiner. “Cell adhesion: the molecular basis of tissue architecture and
morphogenesis.” eng. In: Cell 84.3 (1996), pp. 345–357.

[51] G. Bell, M. Dembo, and P. Bongrand. “Cell adhesion. Competition between non-
specific repulsion and specific bonding”. In: Biophys. J. 45.6 (1984), 10511064. doi:
10.1016/s0006-3495(84)84252-6.

[52] C. D. Buckley, G. E. Rainger, P. F. Bradfield, G. B. Nash, and D. L. Simmons.
“Cell adhesion: More than just glue (Review)”. In: Mol. Membr. Biol. 15.4 (1998),
167176. doi: 10.3109/09687689709044318.

[53] J. T. Parsons, A. R. Horwitz, and M. A. Schwartz. “Cell adhesion: integrating
cytoskeletal dynamics and cellular tension.” eng. In: Nat. Rev. Mol. Cell Biol. 11.9
(2010), pp. 633–643. doi: 10.1038/nrm2957.

[54] J. Käfer, T. Hayashi, A. F. M. Marée, R. W. Carthew, and F. Graner. “Cell adhe-
sion and cortex contractility determine cell patterning in the Drosophilaretina”. In:
Proc. Natl. Acad. Sci. U. S. A. 104.47 (2007), 1854918554. doi: 10.1073/pnas.
0704235104.

[55] P. DiMilla, K. Barbee, and D. Lauffenburger. “Mathematical model for the effects
of adhesion and mechanics on cell migration speed”. In: Biophys. J. 60.1 (1991),
1537. doi: 10.1016/s0006-3495(91)82027-6.

[56] T. Hayashi and R. W. Carthew. “Surface mechanics mediate pattern formation
in the developing retina”. In: Nature 431.7009 (2004), 647652. doi: 10 . 1038 /

nature02952.

[57] H. Byrne and D. Drasdo. “Individual-based and continuum models of growing cell
populations: a comparison”. In: J. Math. Biol. 58.4-5 (2008), 657687. doi: 10.1007/
s00285-008-0212-0.

[58] D. Stamenović and D. E. Ingber. “Models of cytoskeletal mechanics of adherent
cells.” eng. In: Biomech. Model. Mechanobiol. 1.1 (2002), pp. 95–108. doi: 10.

1007/s10237-002-0009-9.

[59] B. G. Sengers, M. Taylor, C. P. Please, and R. O. C. Oreffo. “Computational mod-
elling of cell spreading and tissue regeneration in porous scaffolds.” eng. In: Bioma-
terials 28.10 (2007), pp. 1926–1940. doi: 10.1016/j.biomaterials.2006.12.008.

[60] A. Voss-Böhme. “Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the
Cellular Potts Model”. In: PLoS ONE 7.9 (2012). Ed. by C. M. Aegerter, e42852.
doi: 10.1371/journal.pone.0042852.

98

http://dx.doi.org/10.1016/s0006-3495(84)84252-6
http://dx.doi.org/10.3109/09687689709044318
http://dx.doi.org/10.1038/nrm2957
http://dx.doi.org/10.1073/pnas.0704235104
http://dx.doi.org/10.1073/pnas.0704235104
http://dx.doi.org/10.1016/s0006-3495(91)82027-6
http://dx.doi.org/10.1038/nature02952
http://dx.doi.org/10.1038/nature02952
http://dx.doi.org/10.1007/s00285-008-0212-0
http://dx.doi.org/10.1007/s00285-008-0212-0
http://dx.doi.org/10.1007/s10237-002-0009-9
http://dx.doi.org/10.1007/s10237-002-0009-9
http://dx.doi.org/10.1016/j.biomaterials.2006.12.008
http://dx.doi.org/10.1371/journal.pone.0042852

[61] A. B. Patel, W. T. Gibson, M. C. Gibson, and R. Nagpal. “Modeling and Inferring
Cleavage Patterns in Proliferating Epithelia”. In: PLoS Comput. Biol. 5.6 (2009).
Ed. by J. Axelrod, e1000412. doi: 10.1371/journal.pcbi.1000412.

[62] A. J. Kabla. “Collective cell migration: leadership, invasion and segregation”. en.
In: Journal of The Royal Society Interface 9.77 (Dec. 2012), pp. 3268–3278. doi:
10.1098/rsif.2012.0448.

[63] T. J. Newman. “Modeling multicellular systems using subcellular elements.” eng.
In: Math. Biosci. Eng. 2.3 (2005), pp. 613–624.

[64] T. Beyer and M. Meyer-Hermann. “Multiscale modeling of cell mechanics and tissue
organization”. In: 28.2 (2009), 3845. doi: 10.1109/memb.2009.931790.

[65] J. A. Anderson, C. D. Lorenz, and A. Travesset. “General purpose molecular dy-
namics simulations fully implemented on graphics processing units”. In: J. Comput.
Phys. 227.10 (May 2008), pp. 5342–5359. doi: 10.1016/j.jcp.2008.01.047.

[66] S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics”. In:
J. Comput. Phys. 117.1 (Mar. 1995), pp. 1–19. doi: 10.1006/jcph.1995.1039.

[67] W Smith and T. R. Forester. “DL POLY 2.0: a general-purpose parallel molecular
dynamics simulation package.” In: J. Mol. Graph. 14.3 (June 1996), pp. 136–41.

[68] H. Berendsen, D. van der Spoel, and R. van Drunen. “GROMACS: A message-
passing parallel molecular dynamics implementation”. In: Comput. Phys. Commun.
91.1-3 (Sept. 1995), pp. 43–56. doi: 10.1016/0010-4655(95)00042-E.

[69] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R. D. Skeel, L. Kalé, and K. Schulten. “Scalable molecular dynamics with NAMD.”
In: J. Comput. Chem. 26.16 (Dec. 2005), pp. 1781–802. doi: 10.1002/jcc.20289.

[70] H. Limbach, A. Arnold, B. Mann, and C. Holm. “ESPResSoan extensible simulation
package for research on soft matter systems”. In: Comput. Phys. Commun. 174.9
(May 2006), pp. 704–727. doi: 10.1016/j.cpc.2005.10.005.

[71] K. Hinsen. “The molecular modeling toolkit: A new approach to molecular simula-
tions”. In: J. Comput. Chem. 21.2 (Jan. 2000), pp. 79–85. doi: 10.1002/(SICI)
1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B.

[72] B. J. Alder and T. E. Wainwright. “Phase Transition for a Hard Sphere System”.
In: J. Chem. Phys. 27.5 (1957), p. 1208. doi: 10.1063/1.1743957.

[73] A. Rahman. “Correlations in the Motion of Atoms in Liquid Argon”. In: Phys. Rev.
136.2A (Oct. 1964), A405–A411. doi: 10.1103/PhysRev.136.A405.

99

http://dx.doi.org/10.1371/journal.pcbi.1000412
http://dx.doi.org/10.1098/rsif.2012.0448
http://dx.doi.org/10.1109/memb.2009.931790
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1016/j.cpc.2005.10.005
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1103/PhysRev.136.A405

[74] R. Allen, F. de Wette, and A. Rahman. “Calculation of Dynamical Surface Proper-
ties of Noble-Gas Crystals. II. Molecular Dynamics”. In: Phys. Rev. 179.3 (1969),
887891. doi: 10.1103/physrev.179.887.

[75] B. J. Alder and T. E. Wainwright. “Studies in Molecular Dynamics. VIII. The
Transport Coefficients for a Hard-Sphere Fluid”. In: J. Chem. Phys. 53.10 (1970),
p. 3813. doi: 10.1063/1.1673845.

[76] J. A. McCammon, B. R. Gelin, and M. Karplus. “Dynamics of folded proteins”. In:
Nature 267.5612 (1977), 585590. doi: 10.1038/267585a0.

[77] W. D. Bennett, A. W. Chen, S. Donnini, G. Groenhof, and D. P. Tieleman. “Con-
stant pH simulations with the coarse-grained MARTINI model – Application to
oleic acid aggregates”. In: Can. J. Chem. 91.9 (Apr. 2013), pp. 839–846. doi:
10.1139/cjc-2013-0010.

[78] N. Nisoh, M. Karttunen, L. Monticelli, and J. Wong-ekkabut. “Lipid monolayer
disruption caused by aggregated carbon nanoparticles”. In: RSC Adv. 5.15 (2015),
1167611685. doi: 10.1039/c4ra17006g.

[79] B. Liu, M. I. Hoopes, and M. Karttunen. “Molecular Dynamics Simulations of
DPPC/CTAB Monolayers at the Air/Water Interface”. In: J. Phys. Chem. B 118.40
(2014), 1172311737. doi: 10.1021/jp5050892.

[80] W. Bennett, N. Sapay, and D. Tieleman. “Atomistic Simulations of Pore Formation
and Closure in Lipid Bilayers”. In: Biophys. J. 106.1 (2014), 210219. doi: 10.1016/
j.bpj.2013.11.4486.

[81] T. N. Do, W.-Y. Choy, and M. Karttunen. “Accelerating the Conformational Sam-
pling of Intrinsically Disordered Proteins”. In: J. Chem. Theory Comput. 10.11
(2014), 50815094. doi: 10.1021/ct5004803.

[82] A. H. Elcock. “Molecular simulations of diffusion and association in multimacro-
molecular systems.” eng. In: Methods Enzymol. 383 (2004), pp. 166–198. doi: 10.
1016/S0076-6879(04)83008-8.

[83] A. Warshel. “Computer simulations of enzyme catalysis: methods, progress, and
insights.” eng. In: Annu. Rev. Biophys. Biomol. Struct. 32 (2003), pp. 425–443.
doi: 10.1146/annurev.biophys.32.110601.141807.

[84] W. F. van Gunsteren and H. J. C. Berendsen. “Computer Simulation of Molecular
Dynamics: Methodology, Applications, and Perspectives in Chemistry”. In: Angew.
Chem. Int. Ed. Engl. 29.9 (1990), pp. 992–1023. doi: 10.1002/anie.199009921.

100

http://dx.doi.org/10.1103/physrev.179.887
http://dx.doi.org/10.1063/1.1673845
http://dx.doi.org/10.1038/267585a0
http://dx.doi.org/10.1139/cjc-2013-0010
http://dx.doi.org/10.1039/c4ra17006g
http://dx.doi.org/10.1021/jp5050892
http://dx.doi.org/10.1016/j.bpj.2013.11.4486
http://dx.doi.org/10.1016/j.bpj.2013.11.4486
http://dx.doi.org/10.1021/ct5004803
http://dx.doi.org/10.1016/S0076-6879(04)83008-8
http://dx.doi.org/10.1016/S0076-6879(04)83008-8
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141807
http://dx.doi.org/10.1002/anie.199009921

[85] J.-P. Ryckaert and A. Bellemans. “Molecular dynamics of liquid alkanes”. In: Fara-
day Discuss. Chem. Soc. 66 (1978), p. 95. doi: 10.1039/dc9786600095.

[86] J.-P. Ryckaert, G. Ciccotti, and H. J. Berendsen. “Numerical integration of the
cartesian equations of motion of a system with constraints: molecular dynamics
of n-alkanes”. In: J. Comput. Phys. 23.3 (1977), 327341. doi: 10.1016/0021-

9991(77)90098-5.

[87] D. Frenkel, B. Smit, and M. A. Ratner. “Understanding Molecular Simulation: From
Algorithms to Applications”. In: Phys. Today 50.7 (1997), p. 66. doi: 10.1063/1.
881812.

[88] T. Darden, D. York, and L. Pedersen. “Particle mesh Ewald: An Nlog(N) method
for Ewald sums in large systems”. In: J. Chem. Phys. 98.12 (1993), p. 10089. doi:
10.1063/1.464397.

[89] P. P. Ewald. “Die Berechnung optischer und elektrostatischer Gitterpotentiale”. In:
Annalen der Physik 369.3 (1921), pp. 253–287. doi: 10.1002/andp.19213690304.

[90] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington. “Implement-
ing molecular dynamics on hybrid high performance computers Particleparticle
particle-mesh”. In: Comput. Phys. Commun. 183.3 (Mar. 2012), pp. 449–459. doi:
10.1016/j.cpc.2011.10.012.

[91] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. “A
smooth particle mesh Ewald method”. In: J. Chem. Phys. 103.19 (1995), p. 8577.
doi: 10.1063/1.470117.

[92] R. W. Hockney and K. W. Eastwood. Computer Simulations Using Particles. CRC
Press, 2010.

[93] M. Karttunen, J. Rottler, I. Vattulainen, and C. Sagui. “Chapter 2 Electrostatics
in Biomolecular Simulations: Where Are We Now and Where Are We Heading?”
In: Curr. Top. Membr. (2008), pp. 49–89. doi: 10.1016/s1063-5823(08)00002-1.

[94] G. A. Cisneros, M. Karttunen, P. Ren, and C. Sagui. “Classical Electrostatics for
Biomolecular Simulations”. In: Chem. Rev. 114.1 (2014), pp. 779–814. doi: 10.

1021/cr300461d.

[95] T. Murtola, A. Bunker, I. Vattulainen, M. Deserno, and M. Karttunen. “Multiscale
modeling of emergent materials: biological and soft matter”. In: Phys. Chem. Chem.
Phys. 11.12 (2009), p. 1869. doi: 10.1039/b818051b.

101

http://dx.doi.org/10.1039/dc9786600095
http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1016/0021-9991(77)90098-5
http://dx.doi.org/10.1063/1.881812
http://dx.doi.org/10.1063/1.881812
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1016/j.cpc.2011.10.012
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1016/s1063-5823(08)00002-1
http://dx.doi.org/10.1021/cr300461d
http://dx.doi.org/10.1021/cr300461d
http://dx.doi.org/10.1039/b818051b

[96] D. Tieleman, S. Marrink, and H. Berendsen. “A computer perspective of mem-
branes: molecular dynamics studies of lipid bilayer systems”. In: Biochimica et
Biophysica Acta (BBA) - Reviews on Biomembranes 1331.3 (1997), 235270. doi:
10.1016/s0304-4157(97)00008-7.

[97] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S.-J.
Marrink. “The MARTINI Coarse-Grained Force Field: Extension to Proteins”. In:
J. Chem. Theory Comput. 4.5 (2008), 819834. doi: 10.1021/ct700324x.

[98] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. “The
MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations”. In: J.
Phys. Chem. B 111.27 (2007), 78127824. doi: 10.1021/jp071097f.

[99] Y. Wang, W. Jiang, T. Yan, and G. A. Voth. “Understanding ionic liquids through
atomistic and coarse-grained molecular dynamics simulations.” In: Acc. Chem. Res.
40.11 (Nov. 2007), pp. 1193–9. doi: 10.1021/ar700160p.

[100] R. Rudd and J. Broughton. “Coarse-grained molecular dynamics and the atomic
limit of finite elements”. In: Phys. Rev. B 58.10 (Sept. 1998), R5893–R5896. doi:
10.1103/PhysRevB.58.R5893.

[101] L. Verlet. “Computer Experiments on Classical Fluids. I. Thermodynamical Prop-
erties of Lennard-Jones Molecules”. In: Phys. Rev. 159.1 (1967), 98103. doi: 10.
1103/physrev.159.98.

[102] E. Hairer, C. Lubich, and G. Wanner. “Geometric numerical integration illustrated
by the StrmerVerlet method”. In: Acta Numerica 12 (2003), 399450. doi: 10.1017/
s0962492902000144.

[103] I. Geudens and H. Gerhardt. “Coordinating cell behaviour during blood vessel for-
mation”. In: Development 138.21 (2011), 45694583. doi: 10.1242/dev.062323.

[104] K. Riento and A. J. Ridley. “Rocks: multifunctional kinases in cell behaviour”. In:
Nat. Rev. Mol. Cell Biol. 4.6 (2003), 446456. doi: 10.1038/nrm1128.

[105] M. C. Frame. “Src in cancer: deregulation and consequences for cell behaviour”. In:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1602.2 (2002), 114130.
doi: 10.1016/s0304-419x(02)00040-9.

[106] R. M. Merks and J. A. Glazier. “A cell-centered approach to developmental biology”.
In: Physica A: Statistical Mechanics and its Applications 352.1 (2005), 113130. doi:
10.1016/j.physa.2004.12.028.

[107] S. Turner. “Using cell potential energy to model the dynamics of adhesive biological
cells”. In: Phys. Rev. E 71 (4 2005), p. 041903. doi: 10.1103/PhysRevE.71.041903.

102

http://dx.doi.org/10.1016/s0304-4157(97)00008-7
http://dx.doi.org/10.1021/ct700324x
http://dx.doi.org/10.1021/jp071097f
http://dx.doi.org/10.1021/ar700160p
http://dx.doi.org/10.1103/PhysRevB.58.R5893
http://dx.doi.org/10.1103/physrev.159.98
http://dx.doi.org/10.1103/physrev.159.98
http://dx.doi.org/10.1017/s0962492902000144
http://dx.doi.org/10.1017/s0962492902000144
http://dx.doi.org/10.1242/dev.062323
http://dx.doi.org/10.1038/nrm1128
http://dx.doi.org/10.1016/s0304-419x(02)00040-9
http://dx.doi.org/10.1016/j.physa.2004.12.028
http://dx.doi.org/10.1103/PhysRevE.71.041903

[108] N. Bellomo and B. Carbonaro. “Toward a mathematical theory of living systems
focusing on developmental biology and evolution: A review and perspectives”. In:
Phys. Life Rev. 8.1 (2011), 118. doi: 10.1016/j.plrev.2010.12.001.

[109] N. NDri, W. Shyy, and R. Tran-Son-Tay. “Computational Modeling of Cell Adhe-
sion and Movement Using a Continuum-Kinetics Approach”. In: Biophys. J. 85.4
(2003), 22732286. doi: 10.1016/s0006-3495(03)74652-9.

[110] D. A. Baltazar and A. Friedman. Models of Cellular Regulation. Oxford University
Press (OUP), 2008.

[111] J. C. Sible and J. J. Tyson. “Mathematical modeling as a tool for investigating cell
cycle control networks”. In: Methods 41.2 (2007), pp. 238–247. doi: 10.1016/j.
ymeth.2006.08.003.

[112] J. A. D. Wattis, B. O’Malley, H. Blackburn, L. Pickersgill, J. Panovska, H. M.
Byrne, and K. G. Jackson. “Mathematical model for low density lipoprotein (LDL)
endocytosis by hepatocytes.” eng. In: Bull. Math. Biol. 70.8 (2008), pp. 2303–2333.
doi: 10.1007/s11538-008-9347-9.

[113] R. Robeva, R. Davies, T. Hodge, and A. Enyedi. “Mathematical biology modules
based on modern molecular biology and modern discrete mathematics.” eng. In:
CBE Life Sci. Educ. 9.3 (2010), pp. 227–240. doi: 10.1187/cbe.10-03-0019.

[114] N. F. Britton. Essential mathematical biology. Springer, 2003.

[115] J. D. Murray. Mathematical Biology: I. An Introduction: Pt. 1 (Interdisciplinary
Applied Mathematics). Springer New York, 2008.

[116] J. Schnute. “A Versatile Growth Model with Statistically Stable Parameters”. In:
Can. J. Fish. Aquat. Sci. 38.9 (1981), 11281140. doi: 10.1139/f81-153.

[117] M. H. Zwietering, I. Jongenburger, F. M. Rombouts, and K. van ’t Riet. “Model-
ing of the bacterial growth curve.” eng. In: Appl. Environ. Microbiol. 56.6 (1990),
pp. 1875–1881.

[118] F. J. Richards. “A Flexible Growth Function for Empirical Use”. In: J. Exp. Bot.
10.2 (1959), pp. 290–301. doi: 10.1093/jxb/10.2.290. eprint: http://jxb.
oxfordjournals.org/content/10/2/290.full.pdf+html.

[119] G. C. Jahn, L. P. Almazan, and J. B. Pacia. “Effect of Nitrogen Fertilizer on the
Intrinsic Rate of Increase of Hysteroneura setariae (Thomas) (Homoptera: Aphidi-
dae) on Rice (Oryza sativa L.)” In: Environmental Entomology 34.4 (2005), 938943.
doi: 10.1603/0046-225x-34.4.938.

103

http://dx.doi.org/10.1016/j.plrev.2010.12.001
http://dx.doi.org/10.1016/s0006-3495(03)74652-9
http://dx.doi.org/10.1016/j.ymeth.2006.08.003
http://dx.doi.org/10.1016/j.ymeth.2006.08.003
http://dx.doi.org/10.1007/s11538-008-9347-9
http://dx.doi.org/10.1187/cbe.10-03-0019
http://dx.doi.org/10.1139/f81-153
http://dx.doi.org/10.1093/jxb/10.2.290
http://jxb.oxfordjournals.org/content/10/2/290.full.pdf+html
http://jxb.oxfordjournals.org/content/10/2/290.full.pdf+html
http://dx.doi.org/10.1603/0046-225x-34.4.938

[120] B. Gompertz. “On the nature of the function expressive of the law of human mor-
tality, and on a new mode of determining the value of life contingencies”. In: Philos.
Trans. Roy. Soc. London (1825), pp. 513–583.

[121] M. Ben Amar, C. Chatelain, and P. Ciarletta. “Contour Instabilities in Early Tumor
Growth Models”. In: Phys. Rev. Lett. 106.14 (2011). doi: 10.1103/physrevlett.
106.148101.

[122] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F. Julicher. “Fluidization
of tissues by cell division and apoptosis”. en. In: Proc. Natl. Acad. Sci. U. S. A.
107.49 (Dec. 2010), pp. 20863–20868. doi: 10.1073/pnas.1011086107.

[123] T. Bittig, O. Wartlick, A. Kicheva, M. González-Gaitn, and F. Jlicher. “Dynamics
of anisotropic tissue growth”. In: New Journal of Physics 10.6 (2008), p. 063001.
doi: 10.1088/1367-2630/10/6/063001.

[124] G. Schaller and M. Meyer-Hermann. “Multicellular tumor spheroid in an off-lattice
Voronoi-Delaunay cell model”. In: Phys. Rev. E 71.5 (2005). doi: 10.1103/physreve.
71.051910.

[125] G. Schaller and M. Meyer-Hermann. “Kinetic and dynamic Delaunay tetrahedral-
izations in three dimensions”. In: Comput. Phys. Commun. 162.1 (2004), 923. doi:
10.1016/j.cpc.2004.06.066.

[126] M. Meyer-Hermann. “Delaunay-Object-Dynamics: Cell Mechanics with a 3D Ki-
netic and Dynamic Weighted Delaunay-Triangulation”. In: Curr. Top. Dev. Biol.
(2008), 373399. doi: 10.1016/s0070-2153(07)81013-1.

[127] D. T. Lee and B. J. Schachter. “Two algorithms for constructing a Delaunay trian-
gulation”. In: International Journal of Computer & Information Science 9.3 (1980),
219242. doi: 10.1007/bf00977785.

[128] L. Paul Chew. “Constrained delaunay triangulations”. In: Algorithmica 4.1-4 (1989),
97108. doi: 10.1007/bf01553881.

[129] H. Edelsbrunner and N. R. Shah. “Incremental topological flipping works for regular
triangulations”. In: Algorithmica 15.3 (1996), 223241. doi: 10.1007/bf01975867.

[130] B. Delaunay. “Sur la sphère vide. A la mémoire de Georges Voronöı”. In: Bulletin
de l’Académie des Sciences de l’URSS 6 (1934), pp. 793–800.

[131] F. Aurenhammer. “Power Diagrams: Properties, Algorithms and Applications”. In:
SIAM Journal on Computing 16.1 (1987), 7896. doi: 10.1137/0216006.

104

http://dx.doi.org/10.1103/physrevlett.106.148101
http://dx.doi.org/10.1103/physrevlett.106.148101
http://dx.doi.org/10.1073/pnas.1011086107
http://dx.doi.org/10.1088/1367-2630/10/6/063001
http://dx.doi.org/10.1103/physreve.71.051910
http://dx.doi.org/10.1103/physreve.71.051910
http://dx.doi.org/10.1016/j.cpc.2004.06.066
http://dx.doi.org/10.1016/s0070-2153(07)81013-1
http://dx.doi.org/10.1007/bf00977785
http://dx.doi.org/10.1007/bf01553881
http://dx.doi.org/10.1007/bf01975867
http://dx.doi.org/10.1137/0216006

[132] T. Beyer and M. Meyer-Hermann. “Modeling emergent tissue organization involving
high-speed migrating cells in a flow equilibrium”. en. In: Phys .Rev. E 76.2 (Aug.
2007), p. 021929. doi: 10.1103/PhysRevE.76.021929.

[133] A. Szabó and R. M. H. Merks. “Cellular Potts Modeling of Tumor Growth, Tumor
Invasion, and Tumor Evolution”. In: Front. Oncol. 3 (2013). doi: 10.3389/fonc.
2013.00087.

[134] J. Glazier and F. Graner. “Simulation of the differential adhesion driven rearrange-
ment of biological cells”. In: Phys. Rev. E 47.3 (1993), pp. 2128–2154. doi: 10.
1103/physreve.47.2128.

[135] F. Graner and J. Glazier. “Simulation of biological cell sorting using a two-dimensional
extended Potts model”. In: Phys. Rev. Lett. 69.13 (1992), pp. 2013–2016. doi:
10.1103/physrevlett.69.2013.

[136] R. B. Potts and C. Domb. “Some generalized order-disorder transformations”. In:
Math. Proc. Camb. Phil. Soc. 48.01 (1952), pp. 106–109. doi: 10.1017/s0305004100027419.

[137] E. Ising. “Beitrag zur theorie des ferromagnetismus”. In: Zeitschrift für Physik A
Hadrons and Nuclei 31.1 (1925), pp. 253–258.

[138] F. Y. Wu. “The Potts model”. In: Rev. Mod. Phys. 54.1 (1982), pp. 235–268. doi:
10.1103/revmodphys.54.235.

[139] N. Chen, J. A. Glazier, J. A. Izaguirre, and M. S. Alber. “A parallel implementation
of the Cellular Potts Model for simulation of cell-based morphogenesis”. In: Comput.
Phys. Commun. 176.11-12 (2007), pp. 670–681. doi: 10.1016/j.cpc.2007.03.007.

[140] N. Metropolis and S. Ulam. “The Monte Carlo Method”. In: J. Am. Stat. Assoc.
44.247 (1949), pp. 335–341. doi: 10.1080/01621459.1949.10483310.

[141] N. Metropolis. “The beginning of the Monte Carlo method”. In: Los Alamos Science
15.584 (1987), pp. 125–130.

[142] A. Köhn-Luque, W. de Back, J. Starru, A. Mattiotti, A. Deutsch, J. M. Prez-
Pomares, and M. A. Herrero. “Early Embryonic Vascular Patterning by Matrix-
Mediated Paracrine Signalling: A Mathematical Model Study”. In: PLoS ONE 6.9
(2011). Ed. by B. Riley, e24175. doi: 10.1371/journal.pone.0024175.

[143] M. Krieg, Y. Arboleda-Estudillo, P.-H. Puech, J. Kfer, F. Graner, D. J. Mller, and
C.-P. Heisenberg. “Tensile forces govern germ-layer organization in zebrafish”. In:
Nat. Cell Biol. 10.4 (2008), 429436. doi: 10.1038/ncb1705.

105

http://dx.doi.org/10.1103/PhysRevE.76.021929
http://dx.doi.org/10.3389/fonc.2013.00087
http://dx.doi.org/10.3389/fonc.2013.00087
http://dx.doi.org/10.1103/physreve.47.2128
http://dx.doi.org/10.1103/physreve.47.2128
http://dx.doi.org/10.1103/physrevlett.69.2013
http://dx.doi.org/10.1017/s0305004100027419
http://dx.doi.org/10.1103/revmodphys.54.235
http://dx.doi.org/10.1016/j.cpc.2007.03.007
http://dx.doi.org/10.1080/01621459.1949.10483310
http://dx.doi.org/10.1371/journal.pone.0024175
http://dx.doi.org/10.1038/ncb1705

[144] J. Starruß, T. Bley, L. Søgaard-Andersen, and A. Deutsch. “A New Mechanism
for Collective Migration in Myxococcus xanthus”. In: J Stat Phys 128.1-2 (2007),
269286. doi: 10.1007/s10955-007-9298-9.

[145] R. M. H. Merks, E. D. Perryn, A. Shirinifard, and J. A. Glazier. “Contact-Inhibited
Chemotaxis in De Novo and Sprouting Blood-Vessel Growth”. In: PLoS Comput.
Biol. 4.9 (2008). Ed. by P. E. Bourne, e1000163. doi: 10.1371/journal.pcbi.
1000163.

[146] J. Käfer, P. Hogeweg, and A. F. M. Mare. “Moving Forward Moving Backward:
Directional Sorting of Chemotactic Cells due to Size and Adhesion Differences”. In:
PLoS Comp Biol 2.6 (2006), e56. doi: 10.1371/journal.pcbi.0020056.

[147] R. J. Matela and R. J. Fletterick. “Computer simulation of cellular self-sorting: A
topological exchange model”. In: J. Theor. Biol. 84.4 (1980), 673690. doi: 10.1016/
s0022-5193(80)80027-0.

[148] R. J. Matela and R. J. Fletterick. “A topological exchange model for cell self-
sorting”. In: J. Theor. Biol. 76.4 (1979), 403414. doi: 10.1016/0022-5193(79)
90009-2.

[149] S. Duvdevani-Bar and L. Segel. “On Topological Simulations in Developmental Bi-
ology”. In: J. Theor. Biol. 166.1 (1994), 3350. doi: 10.1006/jtbi.1994.1003.

[150] A Tardieu and M Delaye. “Eye Lens Proteins and Transparency: From Light Trans-
mission Theory to Solution X-Ray Structural Analysis”. In: Annu. Rev. Biophys.
Biophys. Chem. 17.1 (1988), 4770. doi: 10.1146/annurev.bb.17.060188.000403.

[151] M. C. Gibson, A. B. Patel, R. Nagpal, and N. Perrimon. “The emergence of geomet-
ric order in proliferating metazoan epithelia”. In: Nature 442.7106 (2006), 10381041.
doi: 10.1038/nature05014.

[152] F. T. Lewis. “The effect of cell division on the shape and size of hexagonal cells”.
In: The Anatomical Record 33.5 (1926), 331355. doi: 10.1002/ar.1090330502.

[153] Y.-i. Nakajima, E. J. Meyer, A. Kroesen, S. A. McKinney, and M. C. Gibson.
“Epithelial junctions maintain tissue architecture by directing planar spindle orien-
tation”. In: Nature 500.7462 (2013), 359362. doi: 10.1038/nature12335.

[154] R. Nagpal, A. Patel, and M. C. Gibson. “Epithelial topology”. In: Bioessays 30.3
(2008), 260266. doi: 10.1002/bies.20722.

[155] P. M. Morse. “Diatomic Molecules According to the Wave Mechanics. II. Vibrational
Levels”. In: Phys. Rev. 34.1 (1929), 5764. doi: 10.1103/physrev.34.57.

106

http://dx.doi.org/10.1007/s10955-007-9298-9
http://dx.doi.org/10.1371/journal.pcbi.1000163
http://dx.doi.org/10.1371/journal.pcbi.1000163
http://dx.doi.org/10.1371/journal.pcbi.0020056
http://dx.doi.org/10.1016/s0022-5193(80)80027-0
http://dx.doi.org/10.1016/s0022-5193(80)80027-0
http://dx.doi.org/10.1016/0022-5193(79)90009-2
http://dx.doi.org/10.1016/0022-5193(79)90009-2
http://dx.doi.org/10.1006/jtbi.1994.1003
http://dx.doi.org/10.1146/annurev.bb.17.060188.000403
http://dx.doi.org/10.1038/nature05014
http://dx.doi.org/10.1002/ar.1090330502
http://dx.doi.org/10.1038/nature12335
http://dx.doi.org/10.1002/bies.20722
http://dx.doi.org/10.1103/physrev.34.57

[156] F. van Roy and G. Berx. “The cell-cell adhesion molecule E-cadherin.” eng. In: Cell.
Mol. Life Sci. 65.23 (2008), pp. 3756–3788. doi: 10.1007/s00018-008-8281-1.

[157] M. P. Stemmler. “Cadherins in development and cancer.” eng. In: Mol. Biosyst. 4.8
(2008), pp. 835–850. doi: 10.1039/b719215k.

[158] O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum, F. Julicher, and M.
Gonzalez-Gaitan. “Dynamics of Dpp Signaling and Proliferation Control”. In: Sci-
ence 331.6021 (2011), 11541159. doi: 10.1126/science.1200037.

[159] A. Mkrtchyan, P. Madhikar, J. Åström, and M. Karttunen. “Working title:Effects
of Cell Division Variance on Epithelial Topologies.” In: Manuscript to be submitted.
(2015).

[160] H. Sutter. “The free lunch is over: A fundamental turn toward concurrency in soft-
ware”. In: Dr. Dobbs journal 30.3 (2005), pp. 202–210.

[161] H. Sutter. Welcome to the Jungle. http://herbsutter.com/welcome-to-the-
jungle/. Blog. 2012.

[162] M. Rupp. CPU, GPU and MIC Hardware Characteristics over Time. Blog. 2013.

[163] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems.” In: Computing in science & engineering
12.3 (May 2010), pp. 66–72. doi: 10.1109/MCSE.2010.69.

[164] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. “GPU-accelerated molec-
ular modeling coming of age.” In: Journal of molecular graphics & modelling 29.2
(Sept. 2010), pp. 116–25. doi: 10.1016/j.jmgm.2010.06.010.

[165] W. Liu, B. Schmidt, G. Voss, and W. Mller-Wittig. “Molecular Dynamics Simula-
tions on Commodity GPUs with CUDA”. In: Lecture Notes in Computer Science
(2007), 185196. doi: 10.1007/978-3-540-77220-0_20.

[166] J. Yang, Y. Wang, and Y. Chen. “GPU accelerated molecular dynamics simulation
of thermal conductivities”. In: J. Comput. Phys. 221.2 (2007), 799804. doi: 10.
1016/j.jcp.2006.06.039.

[167] J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. “Long-timescale
molecular dynamics simulations of protein structure and function”. In: Curr. Opin.
Struct. Biol. 19.2 (2009), 120127. doi: 10.1016/j.sbi.2009.03.004.

[168] A. Sunarso, T. Tsuji, and S. Chono. “GPU-accelerated molecular dynamics sim-
ulation for study of liquid crystalline flows”. In: J. Comput. Phys. 229.15 (2010),
54865497. doi: 10.1016/j.jcp.2010.03.047.

107

http://dx.doi.org/10.1007/s00018-008-8281-1
http://dx.doi.org/10.1039/b719215k
http://dx.doi.org/10.1126/science.1200037
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1016/j.jmgm.2010.06.010
http://dx.doi.org/10.1007/978-3-540-77220-0_20
http://dx.doi.org/10.1016/j.jcp.2006.06.039
http://dx.doi.org/10.1016/j.jcp.2006.06.039
http://dx.doi.org/10.1016/j.sbi.2009.03.004
http://dx.doi.org/10.1016/j.jcp.2010.03.047

[169] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand, and R. C. Walker.
“Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1.
Generalized Born.” In: J. Chem. Theory Comput. 8.5 (May 2012), pp. 1542–1555.
doi: 10.1021/ct200909j.

[170] R. Salomon-Ferrer, A. W. Gtz, D. Poole, S. Le Grand, and R. C. Walker. “Routine
Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit
Solvent Particle Mesh Ewald”. In: J. Chem. Theory Comput. 9.9 (2013), 38783888.
doi: 10.1021/ct400314y.

[171] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable parallel programming
with CUDA”. In: Queue 6.2 (2008), p. 40. doi: 10.1145/1365490.1365500.

[172] S. Cook. CUDA programming: a developer’s guide to parallel computing with GPUs.
Newnes, 2012.

[173] J. Hoberock and N. Bell. Thrust. 2008.

[174] Khronos OpenCL Working Group and others. “The opencl specification”. In: version
1.29 (2008), p. 8.

[175] C. Nvidia. Programming guide. 2008.

[176] NVIDIA. “NVIDIA’s Next Generation CUDATM Compute Architecture: KeplerTM

GK110”. In: NVIDIA. NVIDIA, 2015, pp. 9–10.

[177] H. Shen. “The compressive mechanical properties of C n (n = 20, 60, 80, 180) and
endohedral M@C 60 (M = Na, Al, Fe) fullerene molecules”. In: Mol. Phys. 105.17-18
(2007), pp. 2405–2409. doi: 10.1080/00268970701679467.

[178] H. Shen. “Mechanical properties and electronic structures of compressed C60, C180
and C60@C180 fullerene molecules”. In: J. Mater. Sci. 42.17 (2007), 73377342. doi:
10.1007/s10853-007-1576-z.

[179] P. Fowler and D. Manolopoulos. An Atlas of FULLERENES. Dover Publications,
Inc., 2007.

[180] L. Hayflick. “The limited in vitro lifetime of human diploid cell strains”. In: Exp.
Cell Res. 37.3 (1965), 614636. doi: 10.1016/0014-4827(65)90211-9.

[181] L. Hayflick and P. Moorhead. “The serial cultivation of human diploid cell strains”.
In: Exp. Cell Res. 25.3 (1961), pp. 585–621. doi: 10.1016/0014-4827(61)90192-6.

[182] D. Bakowies, M. Bhl, and W. Thiel. “A density functional study on the shape of
C180 and C240 fullerenes”. In: Chem. Phys. Lett. 247.4-6 (1995), pp. 491–493. doi:
10.1016/s0009-2614(95)01222-2.

108

http://dx.doi.org/10.1021/ct200909j
http://dx.doi.org/10.1021/ct400314y
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1080/00268970701679467
http://dx.doi.org/10.1007/s10853-007-1576-z
http://dx.doi.org/10.1016/0014-4827(65)90211-9
http://dx.doi.org/10.1016/0014-4827(61)90192-6
http://dx.doi.org/10.1016/s0009-2614(95)01222-2

[183] M. Yoshida. M. Yoshida’s Fullerene Library. 1999. url: http://www.jcrystal.
com/steffenweber/gallery/Fullerenes/Fullerenes.html.

[184] K. K. Hirschi. “PDGF, TGF-beta , and Heterotypic Cell-Cell Interactions Mediate
Endothelial Cell-induced Recruitment of 10T1/2 Cells and Their Differentiation to
a Smooth Muscle Fate”. In: The Journal of Cell Biology 141.3 (1998), 805814. doi:
10.1083/jcb.141.3.805.

[185] A Pierres, A. Benoliel, and P Bongrand. “Cell-cell interactions”. In: Physical chem-
istry of biological interfaces (2000), pp. 459–522.

[186] U Rutishauser, A Acheson, A. Hall, D. Mann, and J Sunshine. “The neural cell adhe-
sion molecule (NCAM) as a regulator of cell-cell interactions”. In: Science 240.4848
(1988), 5357. doi: 10.1126/science.3281256.

[187] H. W. Jones. “Record of the first physician to see Henrietta Lacks at the Johns
Hopkins Hospital: History of the beginning of the HeLa cell line”. In: Am. J. Obstet.
Gynecol. 176.6 (1997), s227s228. doi: 10.1016/s0002-9378(97)70379-x.

[188] The Johns Hopkins Hospital. Surgical Biopsy Number 92498. Baltimore, MD, 1951.

[189] L. Zhao, C. D. Kroenke, J. Song, D. Piwnica-Worms, J. J. H. Ackerman, and J. J.
Neil. “Intracellular water-specific MR of microbead-adherent cells: the HeLa cell
intracellular water exchange lifetime”. In: NMR Biomed. 21.2 (2008), 159164. doi:
10.1002/nbm.1173.

[190] R. Milo, P. Jorgensen, U. Moran, G. Weber, and M. Springer. “BioNumbers–the
database of key numbers in molecular and cell biology”. In: Nucleic Acids Res.
38.Database (2009), D750D753. doi: 10.1093/nar/gkp889.

[191] K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R.
Bashir. “’Living cantilever arrays’ for characterization of mass of single live cells in
fluids.” eng. In: Lab. Chip 8.7 (2008), pp. 1034–1041. doi: 10.1039/b803601b.

[192] S. W. Grill and A. A. Hyman. “Spindle positioning by cortical pulling forces.” eng.
In: Dev. Cell 8.4 (2005), pp. 461–465. doi: 10.1016/j.devcel.2005.03.014.

[193] J. P. A. Baak, E. Gudlaugsson, I. Skaland, L. H. R. Guo, J. Klos, T. H. Lende,
H. Søiland, E. A. M. Janssen, and A. Zur Hausen. “Proliferation is the strongest
prognosticator in node-negative breast cancer: significance, error sources, alterna-
tives and comparison with molecular prognostic markers.” eng. In: Breast Cancer
Res. Treat. 115.2 (2009), pp. 241–254. doi: 10.1007/s10549-008-0126-y.

109

http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html
http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html
http://dx.doi.org/10.1083/jcb.141.3.805
http://dx.doi.org/10.1126/science.3281256
http://dx.doi.org/10.1016/s0002-9378(97)70379-x
http://dx.doi.org/10.1002/nbm.1173
http://dx.doi.org/10.1093/nar/gkp889
http://dx.doi.org/10.1039/b803601b
http://dx.doi.org/10.1016/j.devcel.2005.03.014
http://dx.doi.org/10.1007/s10549-008-0126-y

[194] L. Medri, A. Volpi, O. Nanni, A. M. Vecci, A. Mangia, F. Schittulli, F. Padovani, D.
C. Giunchi, A. Zito, A. Vito, D. Amadori, A. Paradiso, and R. Silvestrini. “Prognos-
tic relevance of mitotic activity in patients with node-negative breast cancer.” eng.
In: Mod. Pathol. 16.11 (2003), pp. 1067–1075. doi: 10.1097/01.MP.0000093625.
20366.9D.

[195] Blender. http://www.blender.org.

[196] N. Darbelley, D. Driss-Ecole, and G. Perbal. “Elongation and mitotic activity of cor-
tical cells in lentil roots grown in microgravity.” In: Plant Physiological Biochemistry
27 (1989), pp. 341–347.

[197] L. Jin, T. H. Murakami, N. A. Janjua, and Y. Hori. “The effects of zinc oxide and
diethyldithiocarbamate on the mitotic index of epidermal basal cells of mouse skin.”
eng. In: Acta Med. Okayama 48.5 (1994), pp. 231–236.

[198] P. Muehlbauer and M. Schuler. “Measuring the mitotic index in chemically-treated
human lymphocyte cultures by flow cytometry”. In: Mutation Research/Genetic
Toxicology and Environmental Mutagenesis 537.2 (2003), 117130. doi: 10.1016/
s1383-5718(03)00076-7.

[199] J. N. Miller and G. W. Milton. “An experimental comparison between tumour
growth in the spleen and liver”. In: The Journal of Pathology and Bacteriology 90.2
(1965), 515521. doi: 10.1002/path.1700900219.

[200] T. Nakano and K. Oka. “Differential values of ki-67 index and mitotic index of
proliferating cell population. An assessment of cell cycle and prognosis in radiation
therapy for cervical cancer”. In: Cancer 72.8 (1993), 24012408. doi: 10.1002/1097-
0142(19931015)72:8<2401::aid-cncr2820720818>3.0.co;2-d.

[201] A. V. Pisciotta, D. W. Westring, C. Deprey, and B. Walsh. “Mitogenic Effect of
Phytohaemagglutinin at Different Ages”. In: Nature 215.5097 (1967), 193194. doi:
10.1038/215193a0.

[202] M. Stücker, A. Struk, P. Altmeyer, M. Herde, H. Baumgärtl, and D. W. Lübbers.
“The cutaneous uptake of atmospheric oxygen contributes significantly to the oxy-
gen supply of human dermis and epidermis”. In: The Journal of Physiology 538.3
(2002), 985994. doi: 10.1113/jphysiol.2001.013067.

[203] E. Proksch, J. M. Brandner, and J.-M. Jensen. “The skin: an indispensable barrier”.
In: Exp. Dermatol. 17.12 (2008), 10631072. doi: 10.1111/j.1600-0625.2008.
00786.x.

110

http://dx.doi.org/10.1097/01.MP.0000093625.20366.9D
http://dx.doi.org/10.1097/01.MP.0000093625.20366.9D
http://www.blender.org
http://dx.doi.org/10.1016/s1383-5718(03)00076-7
http://dx.doi.org/10.1016/s1383-5718(03)00076-7
http://dx.doi.org/10.1002/path.1700900219
http://dx.doi.org/10.1002/1097-0142(19931015)72:8<2401::aid-cncr2820720818>3.0.co;2-d
http://dx.doi.org/10.1002/1097-0142(19931015)72:8<2401::aid-cncr2820720818>3.0.co;2-d
http://dx.doi.org/10.1038/215193a0
http://dx.doi.org/10.1113/jphysiol.2001.013067
http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x
http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x

[204] S. A. Sandersius, M. Chuai, C. J. Weijer, and T. J. Newman. “Correlating Cell
Behavior with Tissue Topology in Embryonic Epithelia”. In: PLoS ONE 6.4 (2011).
Ed. by J. Langowski, e18081. doi: 10.1371/journal.pone.0018081.

[205] M. Milán, S. Campuzano, and A. Garćıa-Bellido. “Cell cycling and patterned cell
proliferation in the wing primordium of Drosophila.” eng. In: Proc. Natl. Acad. Sci.
U. S. A. 93.2 (1996), pp. 640–645.

111

http://dx.doi.org/10.1371/journal.pone.0018081

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background Information
	Cell Structure
	Cell Division
	The Division Plane
	Inter-Cellular Adhesion

	Molecular Dynamics
	Methodology

	Some Cell Modelling Techniques
	Mathematical Biology
	Models of Cell Population Dynamics
	Continuum Models of Cell Behaviour

	Discrete Cell Models
	Delaunay Object Dynamics
	The Cellular Potts Model
	Topological Models
	Vertex Models

	Two Dimensional Cell Dynamics
	Intracellular forces
	Intercellular Forces

	Programming on GPUs
	GPU versus CPU
	GPU Architecture
	Programming Perspective
	CUDA Execution Model
	Thread Hierarchy
	Memory Hierarchy and Access
	Some strategies to enhance gpu performance

	Methods and Implementation
	The Force-Field
	Assumptions in the Model
	The Model Cell
	The Cell Interior
	Inter-cellular interactions

	Parametrization
	Modelling the Cell Division
	Implementation with CUDA
	The Division of Labour
	Description of the Code

	Results and Discussion
	Mitotic Index
	Cell Packing
	Summary

	Conclusions
	Future Plans

	References

