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ABSTRACT

Retinal imaging provides an opportunity to detect pathological and natural age-related
physiological changes in the interior of the eye. Diagnosis of retinal abnormality requires an
image that is sharp, clear and free of noise and artifacts. However, to prevent tissue damage,
retinal imaging instruments use low illumination radiation, hence, the signal-to-noise ratio
(SNR) is reduced which means the total noise power is increased. Furthermore, noise
is inherent in some imaging techniques. For example, in Optical Coherence Tomography
(OCT) speckle noise is produced due to the coherence between the unwanted backscattered
light. Improving OCT image quality by reducing speckle noise increases the accuracy of
analyses and hence the diagnostic sensitivity. However, the challenge is to preserve image
features while reducing speckle noise. There is a clear trade-off between image feature
preservation and speckle noise reduction in OCT.

Averaging multiple OCT images taken from a unique position provides a high SNR
image, but it drastically increases the scanning time. In this thesis, we develop a multi-
frame image denoising method for Spectral Domain OCT (SD-OCT) images extracted
from a very close locations of a SD-OCT volume. The proposed denoising method was
tested using two dictionaries: nonlinear (NL) and KSVD-based adaptive dictionary. The
NL dictionary was constructed by adding phases, polynomials, exponentials and boxcar
functions to the conventional Discrete Cosine Transform (DCT) dictionary. The proposed
denoising method denoises nearby frames of SD-OCT volume using a sparse representation
method and combines them by selecting median intensity pixels from the denoised nearby
frames. The result showed that both dictionaries reduced the speckle noise from the OCT
images; however, the adaptive dictionary showed slightly better results at the cost of a
higher computational complexity. The NL dictionary was also used for fundus and OCT
image reconstruction. The performance of the NL dictionary was always better than that
of other analytical-based dictionaries, such as DCT and Haar.

The adaptive dictionary involves a lengthy dictionary learning process, and therefore
cannot be used in real situations. We dealt this problem by utilizing a low-rank approx-
imation. In this approach SD-OCT frames were divided into a group of noisy matrices
that consist of non-local similar patches. A noise-free patch matrix was obtained from a
noisy patch matrix utilizing a low-rank approximation. The noise-free patches from nearby
frames were averaged to enhance the denoising. The denoised image obtained from the pro-
posed approach was better than those obtained by several state-of-the-art methods. The
proposed approach was extended to jointly denoise and interpolate SD-OCT image. The
results show that joint denoising and interpolation method outperforms several existing
state-of-the-art denoising methods plus bicubic interpolation.
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Chapter 1

Introduction

Examination of the retina provides a means to detect pathological changes that are both
ocular and systemic in origin. Incidence of retinal pathologies, such as diabetic retinopathy
(DR), glaucoma and age related macular degeneration (AMD) are sharply increasing, and
in the case of DR, reaching epidemic proportions in western countries [1]. These pathologies
can be detected through retinal imaging. Furthermore, telemedicine allows such retinal
images to be obtained from remote areas and thereby allows diagnosis and treatment when
a specialist is not present [2]. A well-known retinal imaging method is fundus photography.
A fundus is the inner lining of the eye (the retina) and includes the macula, fovea, optic
disc and retinal blood vessels. A fundus image of the right eye of a healthy patient taken
with a fundus camera is shown in Figure 1.1. The image clearly delineates the retina,
the retinal vasculature, and the optic disc from which the optic nerve connects the retina.
The optic disc is normally an orange-yellow color circular area, measures about 1.5mm
in diameter. The retinal arteries and veins that nourish the retina with oxygen emerge
from the optic disc. The arterioles are brighter and narrower than venules. The macula is
located approximately in the center of the retina. It is slightly darker than its surrounding
area and is responsible for sharp central vision. Many retinal disorders can be diagnosed
and followed up by examination of the fundus images. The fundus imaging also screens for
the presence of early stages of the pathology and provides an enhanced analysis in clinical
follow-up. Microaneurysms, hemorrhages, exudates and cotton wool spots, drusen, and
abnormal and fragile new blood vessels are all indicators of retinal disease.

Optical Coherence Tomography (OCT) is one of the most popular and well-established
non-invasive methods for imaging the interior of the eye [3]. OCT is similar to ultrasound;
however, instead of sound it utilizes low coherence light source to image the tissue. By tak-
ing cross-sectional images of the retina, OCT provides detailed images of the retinal tissues
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Figure 1.1: A fundus image of a visually normal eye.

and can capture subtle changes. The axial resolution of OCT ranges from 1-15 µm, which
is 100 times higher than that of ultrasound. In addition, OCT provides cross-sectional
images with imaging depth of 2-3 mm in tissue, and for that reason it became the most
commonly used technique for imaging the interior of the retina. The OCT scan is captured
in pseudo-color imaging; the red color represents the high reflectivity, green represents in-
termediate and blue/black represents low reflectivity. The red color usually comes from
the reflectance of the junctions of inner and outer segments of photoreceptors (PR) and
retinal pigment epithelium (RPE). Similarly, the green and blue/black colors come from
the reflectance of inner and outer plexiform layers and nuclear layers, respectively. Figure
1.2 shows OCT scan printouts in horizontal and vertical directions of a healthy individual.

1.1 Optical Coherence Tomography

OCT creates an image by measuring the time delay and the strength of reflected light
from the sample (tissue). It is performed using essentially a Michelson interferometer. A
schematic diagram of time domain OCT (TD-OCT) is depicted in Figure 1.3. Light from
the low coherence light source, such as broad-bandwidth laser or superluminescent diode,
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Figure 1.2: Optical coherence tomography image of optic disc taken from the left eye of
a visually normal patient.
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is divided into two arms by a beam splitter. One half of the light goes to a reference arm,
which consists of a plane mirror at a known distance, and the other half goes to the sample
arm of the interferometer, where it is reflected back by the tissue structures [4]. The light
reflected back from the reference and sample arms are recombined by the beam splitter in
order to produce an interference pattern. The constructive interference occurs only when
the optical lengths of the reflected lights (from the mirror and tissue) are equal. Hence, the
position of the reference arm is moved to allow imaging the tissue at different depths [5].
By scanning the reference mirror, a series of data from the different depths of the tissue
along a point can be acquired which is known as an A-scan. A series of A-scans can be
collected by shifting the position of the incident beam across the tissue. The collection of
A-scans along the tissue creates a 2D cross-sectional image, which is known as a B-scan.
Similarly, the collection of parallel B-scans produces a 3D volume. The image acquisition
speed of TD-OCT depends upon the mechanical movement of the reference arm hence it
is relatively slower than Spectral domain optical coherence tomography (SD-OCT).

SD-OCT employs a slightly different technique. A schematic diagram of SD-OCT is
depicted in Figure 1.4. Instead of oscillating the reference mirror to capture the intensity
of the reflected light at different depths, it keeps the reference arm stationary, and splits
the interference pattern into its frequency components using a diffraction grating. The
various depths in the tissue result in different frequency components in the interferogram.
The intensities of the frequency components are simultaneously measured by the charged
couple device (CCD). The SD-OCT simultaneously measures the spectral interferogram,
hence the name spectral domain. The Fourier transform of the spectral measurement
provides an A-scan, similar to that obtained from the TD-OCT. The SD-OCT does not
require mechanical movement of the reference arm, rather it simultaneously collects all the
frequencies, and therefore it is 100 times faster than the TD-OCT. In addition, it acquires
a larger amount of data per second that results in a higher resolution. Therefore, SD-OCT
has benefit over the TD-OCT both in terms of acquisition speed and resolution.

1.1.1 OCT Resolution

The term resolution refers to the ability of an imaging instrument to reveal the fine details
in an object. In this thesis, the term resolution refers to the spatial resolution. Spatial
resolution is further divided into axial and transverse resolution. Axial resolution is the
ability to distinguish two closely-spaced points in the direction parallel to the direction
of the incident beam (Figure 1.5). The axial resolution of OCT is determined by the

4



Figure 1.3: A schematic diagram of TD-OCT.
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Figure 1.4: A schematic diagram of SD-OCT.

coherence length of the incident light and is given by

∆z =
2 ln 2

π
.
λ2

∆λ
(1.1)

where λ is the center wavelength of the input light and ∆λ is the spectral bandwidth. Since
shorter coherence length occurs with the broader bandwidth light source, a high resolution
(HR) image is obtained by using the broader bandwidth light. However, the size of the
bandwidth is also limited, because the speed of the light in medium depends upon the
wavelength, which causes extra delay and introduces additional phase difference if a very
broad bandwidth is used. An HR image can also be obtained by using a shorter central
wavelength light; however, the shorter wavelength light is scattered more by biological
tissues. On the other hand, the transverse resolution is the ability of an instrument to
distinguish two closely-spaced points in the direction perpendicular to the direction of
the incident beam (Figure 1.5). The transverse resolution is determined by the size of
the focused spot; the wider the focused spot, the poorer the transverse resolution. The
transverse resolution is given by

∆x =
4λ

π
.
f

d
(1.2)

where f is the focal length of the objective lens and d is the size of the incident beam. The
transverse resolution of an imaging instrument depends mostly on its imaging optics, such
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Figure 1.5: Illustration of axial and lateral resolution.

as numerical aperture (NA) [6]. The transverse resolution in terms of NA is given by

∆x = 0.37
λ

NA
. (1.3)

A high NA lens can be used to generate a small spot size that can improve the trans-
verse resolution; however, the resolution achieved is rather limited. Furthermore, both
monochromatic and chromatic aberration increase with increasing NA [7]; therefore, it is
not beneficial to increase the NA beyond a certain limit. In addition, there is a trade-off
between the transverse resolution and depth of focus. The depth of focus (b) is given by

b =
π(∆x)2

2λ
. (1.4)

This relation shows that depth of focus decreases while increasing the transverse resolution,
which limits the transverse resolution in the OCT. Figure 1.6 shows a schematic of sample
arm optics of OCT.
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Figure 1.6: A schematic of sample arm optics of OCT (Adapted from [6]).

1.1.2 OCT Noise

The presence of noise degrades the quality of an image giving it a grainy, mottled, snowy
or textured appearance. OCT noise is categorized into two types: system noise and speckle
noise [7]. The system noise is the noise originating from any component of the imaging
system, such as optical, electrical or optoelectrical components. Based on its origin, the
system noise is further categorized into thermal noise, excess noise, shot noise and relative
intensity noise [7]. The thermal noise, also referred to as the receiver noise, mostly arises
from the energy exchange between the environment and the sensor. The excess noise is
determined by the detector’s quantum efficiency limit and originates from the multiplica-
tion process at a gain in the detector. The current fluctuation in the system produces shot
noise. Shot noise increases when the input light power increases. The excess noise, spot
noise and relative intensity noise vary when the powers of the light from the reference and
sample arms of the OCT vary. The speckle noise arises from the coherence of unwanted
back-scattered light. As mentioned earlier, OCT imagining modality relies on interferome-
try technique. It measures the spatial and temporal coherence of the back-scattering light
from the reference and sample arms. However, this process also leads to speckle noise.
Speckle noise is also results from an interference; however, it is produced by unwanted
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back-scattered light and therefore has no obvious relation with the texture of the sample.
Generally, the light reflected back from the tissue can be classified into three types: 1)
the single-scattering light where the light reflected by a single particle is captured by the
instrument; 2) the multiple-scattering light, where the light undergoes multiple scattering
from more than two particles; and 3) the mixture of the unscattered and the multiple scat-
tered light. Only the single-scattering light carries the information of the tissue; the latter
two types lead to speckle noise. Many analytical models have been developed to eliminate
the speckle noise from the signal. The most common model is based on the Beer-Lambert
law that uses only the single-scattering light [5]. In this model the light intensity decays
exponentially as

Î(z) = I0 exp(−2µsz) (1.5)

where µs is the scattering coefficient of a material, Î(z) is the intensity of the back scattered
light at the penetration depth z. Î(z) can be assumed as the uncontaminated pixel value
at depth z. Let I(z) is the observed intensity (pixel) value at that depth. The observed
intensity value can be obtained by modelling the speckle noise as the multiplicative random
noise [8]

I(z) = η × Î(z) (1.6)

where η is a random variable whose value taken from the exponential probability density
function (pdf) of the form

fη(η) =

{
exp(−η) , η ≥ 0
0 , otherwise.

(1.7)

It is very challenging to differentiate the speckle noise from the speckles that carry mi-
crostructure information. The speckles that carry microstructure information originate
from the large scatterers in the sample volume; whereas the speckle noise originates from
the small scatterers outside the sample volume. The speckle noise can be reduced to some
extent by suitably designing the optical scanner; however, it cannot be completely removed
since the amplitude of speckle noise is the same as that of the signal carrying speckles [7].

1.2 Aims and Goals

The images taken with the OCT are contaminated by unwanted speckle noise. Since
OCT imaging is based on interferometry, speckles are inherent in coherence imaging. The
coherence between backscattered light produces speckle pattern in the image [9]. The
speckle noise is visible as light and dark spots in the image. It reduces the contrast and
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degrades the quality of the image, making the OCT images less informative in diagnostic
examinations [9]. Therefore, to accurately detect the pathological changes, it is necessary to
remove the speckle noise. However, the challenge is to retain image features while removing
such noise. Besides removing the speckle noise, the resolution of the image should also be
increased. An HR image has the ability to resolve micron scale retinal structures that allow
a better understanding of the biophysics and visual process. An HR image contains more
information and hence increases the accuracy in assessing the size, form and structure of
a retinal lesion. An HR image requires a longer acquisition time at each lateral spot [10].
The longer acquisition time increases the motion artifacts due to the patients movement.
Hence, a critical challenge in imaging by OCT is to optimally balance the trade-off between
the image resolution, signal-to-noise-ratio (SNR), and the acquisition time. However, one
may perform efficient post-processing techniques such as image super-resolution (SR) and
denoising to reconstruct an HR high SNR image. Image interpolation and denoising are two
widely used techniques in biomedical image processing. These techniques are mostly used
one after another to reduce the computational speed. Although there exist several denoising
and interpolation methods for OCT images in the literature, the search for efficient image
denoising and interpolation methods is still an important and active research area. The
main aim of this thesis is to develop new denoising and interpolation algorithms for OCT
images which perform better than existing methods.

The raw images taken with fundus camera and OCT are very large. To store the im-
ages they are usually compressed. Image compression reduces the file’s size. Telemedicine
allows retinal images to be obtained from remote areas and thereby allows diagnosis and
treatment when a specialist is not present. For online transformation of the medical im-
ages, the files need to be small, since smaller images can be transmitted faster and the
increased transmission capacity reduces the transmission cost. To compress the image
without sacrificing too much detail, it is necessary to use an appropriate dictionary (basis
function). The second goal of this thesis is to develop a dictionary which yields better
image reconstruction results for retinal images.

1.3 Contributions

Studies show that the performance of image reconstruction depends largely on the choice
of the dictionary. Our first contribution is the development of a new analytical-based
dictionary called nonlinear (NL) dictionary and its application for fundus and OCT image
reconstruction. We also compare the NL dictionary with the other existing dictionaries
for retinal image reconstruction. This work was done in collaboration with Mathiruban
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Tharmalingam, a Masters degree student at the Ryerson University. The results of this
study have been published in IEEE International Conference on Image Processing [11] and
IEEE International Conference on Digital Image Processing [12].

Our second contribution is the design of a multi-frame image denoising algorithm using
a sparse representation technique for reducing speckle noise from SD-OCT images. The
algorithm denoises multiple B-scans of a SD-OCT volume using sparse representation tech-
nique and takes median pixels from the patches of the nearby B-scans to further suppress
the speckle noise.

Our third contribution is the development of a joint speckle noise reduction and inter-
polation method for SD-OCT images using a low-rank approximation. This method uses
weighted nuclear norm minimization (WNNM), and Singular Value Decomposition (SVD)
fusion to recover an HR, high SNR image from a series of low resolution (LR), low SNR
images extracted from a close location of SD-OCT volume. A partial results of this study
have been accepted for publication in the Journal of Modern Optics [13].

SR is an off-line approach for improving the resolution of an image. Several methods
have been developed for SR of natural images; however, these methods had never been
applied to retinal images. We apply several SR methods on fundus images and compare
their performances. The main results of this study have been published in Journal of
Biomedical Optics [14].

1.4 Organization of the Thesis

The rest of the thesis is structured as follows. In Chapter 2, we present signal processing
theories used in this thesis. We mostly concentrate on the sparse representation of a
signal, compressive sensing and low-rank approximation. In Chapter 3, we present retinal
image reconstruction using NL dictionary. In Chapter 4, we design a multi-frame sparsity-
based SD-OCT image denoising method. In Chapter 5, we present a multi-frame speckle
noise reduction method for SD-OCT images using low-rank approximation. Then, we
design an image interpolation method for SD-OCT images using SVD fusion. We also
present experiments which show how our denoising and interpolation method perform in
comparison with the other existing techniques. In Chapter 6, we review several SR methods
and demonstrate the positive impact expected from SR of retinal images and investigate
the performance of various SR techniques. Chapter 7 concludes the thesis with some future
directions.
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Chapter 2

Theory

An image may be defined as a two-dimensional representation of an object. If the intensity
values are measured on regular intervals along x and y directions and if the intensity values
are finite and discrete, the image is called a digital image. Each element of a digital image is
called a picture element or simply a pixel. Digital image processing methods perform some
operations on digital images in order to enhance them or extract some useful information
from them. These methods are applied to improve the pictorial information for human
interpretation or to facilitate for autonomous machine perception. A common approach
in digital image processing is to decompose an image into its fundamental components
(such as Fourier transform) and then perform the required operations on each component
separately or on a group of components. For example, Fourier analysis is an approach that
decomposes an image into its sinusoidal components. The required processing is performed
on Fourier coefficients. Thresholding is one of the most widely used operations for removing
noise from an image. After performing the required operations, the image is reconstructed
from its components. Table 2.1 and 2.2 show various types of transforms (parametric and
non-parametric) [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] that have
been developed to decompose an image.

In this Chapter we overview some signal reconstruction techniques that are used for de-
veloping image restoration algorithms for this thesis. Section 2.1 presents signal reconstruc-
tion via sparse representation technique. Section 2.2 provides signal recovery techniques;
such as compressive sensing and low-rank approximation, to reconstruct a signal/image
from incomplete and corrupted measurements.
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Table 2.1: A summarized table about atomic representations and sparse transforms: Para-
metric methods (non data-driven dictionary)

References Transform
Domain

Dimensions Parameters Year

Campbell and Foster [15] Fourier Transform 1D/2D/3D Frequency 1948

Ahmed, Natarajan and
Rao [16]

Discrete Cosine
Transform

1D/2D/3D Duration
translation

1974

Daubechies [17] Separable Wavelet
Transform

1D/2D/3D Scale trans-
lation

1988

Coifman [18] Wavelet Packet
Transform

1D/2D/3D Scale trans-
lation
frequency

1992

Donoho [19] Geometrical X-lets
(wedgelet)

2D Scale trans-
lation rota-
tion

1997

Kingsbury [20] Complex Wavelet
Transform

2D/3D Scale trans-
lation rota-
tion

1998

Candes and Donoho [21] Geometrical X-lets
(curvelet)

2D/3D Scale trans-
lation rota-
tion

2000

Pennec and Mallat [22] Geometrical X-lets
(bandlet)

2D Scale trans-
lation rota-
tion

2004

Do and Vetterli [23] Geometrical X-lets
(contourlet)

2D Scale trans-
lation rota-
tion

2005

Lu and Do[24] Geometrical X-lets
(Surfacelet)

3D Scale trans-
lation rota-
tion

2005
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Table 2.2: A summarized table about atomic representations and sparse transforms: Non-
parametric methods (Dictionary learning)

References Transform
Domain

Dimensions Parameters Year

Jolliffe [25] Principal Compo-
nent Analysis

1D/2D/3D Eigen Vec-
tors

1986

Comon [26] Independent Com-
ponent Analysis

1D/2D/3D Eigen Vec-
tors

1994

Coifman and Lafon [27] Diffusion Maps 1D/2D/3D Spectral 2006

Engan and Aase [28] Conventional
Method of Optimal
Directions

1D/2D/3D Duration
Translation

1999

Aharon [29] K-SVD 1D/2D/3D Duration
Translation

2006

Coifman and Maggioni
[30]

Diffusion Wavelet 1D/2D/3D Scale Spec-
tral

2006

Kafieh, Rabbani and Se-
lesnick [31]

Complex Wavelet
based K-SVD

1D/2D/3D Scale trans-
lation rota-
tion

2014

2.1 Sparse Representation of a Signal

Consider a finite dimensional discrete time signal zεRN and a basis ΨεRN×N . The signal

can be represented in terms of basis expansion with N coefficients z =
N∑
i=1

αiψi, where ψi is

the ith basis vector and αi is its coefficient. The effectiveness of the signal representation
largely depends upon the choice of the basis function. Therefore, the basis is chosen in a
way that the signal is represented by only M << N basis vectors. Over the last century,
there have been extensive studies on constructing a basis function that results in better
signal representation. It has been found that the effectiveness of signal representation with
the orthogonal basis is limited. An over-complete basis DεRN×K ;N < K (one with more
columns than rows) has resulted in better signal representation [32]. A basis that has more
columns than rows is called a dictionary and each basis function is called an atom [29]. A
good dictionary can decompose a signal using a few atoms making signal representation
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Figure 2.1: Sparse representation of a signal.

coefficients vector sparse, i.e., the coefficient vector has many zero coefficients and a few
non-zero coefficients. This kind of signal representation is called sparse representation [29].
Sparse representation of a signal is obtained by solving the following optimization problem

min
x

‖x‖0

subject to Dx = z.
(2.1)

The aim of sparse representation is to represent z using D such that both the number of
non-zero coefficients ‖x‖0 and signal representation error ‖Dx− z‖22, where x is the sparse
coefficient vector, are minimized. A schematic diagram of sparse coding is shown in Figure
2.1.

2.1.1 Sparse Coding Algorithms

Sparse representation searches for the most compact representation of a signal using a
dictionary. This process involves solving equation 2.1 using an optimization algorithm.
Equation 2.1 consists of l0 norm which is equivalent to the number of non-zero coefficients
in the coefficient vector x. The exact solution of this problem is an NP-hard because of
its nature of combinational optimization; however, a suboptimal solution can be obtained
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by iterative process using matching pursuits. An approximate solution can be acheived by
converting l0 norm to l1 norm and solving the problem using basis pursuit. This subsection
briefly discusses some pursuit algorithms.

Matching pursuit is a greedy algorithm that iteratively selects atoms from a given
dictionary that have the highest inner product with the signal [33]. It consists of two
stages: atom selection stage and the residual update stage. The atom selection stage finds
the atom with the largest projection onto the signal (residual). In the residual update
stage, the contribution due to that atom is subtracted from the residual to obtain a new
residual. The process starts by setting the residual r0 = z. If the residual at (j − 1)
iteration is rj−1 then the residual in the jth iteration is obtained by the following equation
[34]

rj = rj−1 − xjdj (2.2)

where dj is the atom selected in the jth iteration and xj is its corresponding coefficient.
The process is repeated to the residual signal until the stopping criteria are met. The
iteration stops if either the maximum number of atoms ‖x‖0 < L is reached or signal
representation error is smaller than the maximum error tolerance ‖Dx − z‖22 < ε. The
matching pursuit is simple but it is slow and sometimes fails to converge due to sub-
optimality. Orthogonal Matching Pursuit (OMP) [35] is a popular extension of matching
pursuit in which the residual after each iteration is made orthogonal to all selected atoms
by updating the coefficients, so no atom is selected twice [34]. Consider Dj−1 is the matrix
of atoms selected up to the (j − 1)th iteration. Let dj be the new atom selected in the jth

iteration such that the new matrix Dj = [Dj−1, dj] denotes the atoms selected up to the
jth iteration. The residual in the jth iteration is given by

rj = rj−1 −Dj(D
†
jrj−1) (2.3)

where D†jrj−1 is the coefficient selected at the jth iteration. Like matching pursuit the
process is repeated to the residual signal until the stopping criteria are met. In OMP once
an atom is selected, it will never be selected again in the successive iterations. Therefore,
the algorithm converges fast. It should be noted that OMP requires more computation than
matching pursuit; however, it leads to better signal representation. The residual update
stage in the OMP involves pseudo-inverse transformation. This increases the computational
complexity when the dictionary is large. To speed up the OMP, various algorithms have
been proposed in recent years such as Cholesky OMP [36], Batch OMP [36] and Stagewise
OMP [37].

Another well-known pursuit algorithm to solve the sparse representation problem is the
Basis Pursuit [38]. Basis Pursuit finds the solution by minimizing l1 norm of the coefficients
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vector. The problem posed in equation 2.1 is reformulated by replacing the l0-norm with
l1-norm as follows

min
x

‖x‖1

subject to Dx = z.
(2.4)

The l1 norm attempts to minimize the sum of the magnitude of the coefficients in the
solution vector, i.e., ‖x‖1 =| x1 | + | x2 | + · · ·+ | xN |. The basis pursuit is the
convex optimization problem and can be solved using linear programming methods. Basic
pursuit has gained much interest in recent years especially in compressive sensing since
it provides the sparest solution among all the possible solutions of an inverse problem.
FOCal Underdetermined System Solver (FOCUSS) [39] is another sparse reconstruction
algorithm similar to l1-norm minimization; however, it gives the solution by minimizing lp
norm of the coefficient vector where 0 ≤ p ≤ 1.

2.1.2 Dictionary Design

The signal representation error in sparse representation varies largely depending on the
dictionary; therefore, the dictionary is chosen in a way that the error is minimized. The
dictionary can be either chosen as a pre-specific set of functions (analytic-based dictionary)
or learned from a training set to fit a given set of signals (learning-based dictionary)
[29]. Construction of analytical-based dictionary is simple in which the atoms are created
using a stationary function such as sine and cosine or wavelet functions. Time-Frequency
Dictionaries, DCT, Gabor Transform, Wavelet Transform, Contourlet Transform, etc., have
been used in the literature. Amongst these DCT and Wavelet Transform are commonly
used. This subsection describes some of the dictionaries used in the sparse representation
of a signal. In one dimension, DCT dictionary can be constructed using the following
function

dk(t) = cos
[(2t+ 1)πk

2N

]
, k = 0, 1, · · · , N − 1. (2.5)

The function creates a set of N atoms. The DCT dictionary can be extended to two
dimensions by simply multiplying two 1-D atoms. Figure 2.2 shows an example of 2D
DCT dictionary, with 256 atoms, that can be used to decompose a signal of length 64.

In 1990s DCT dictionary was widely used for many image processing applications,
such as image compression (JPEG). However, the image reconstructed by DCT sometimes
suffered from blocking effects as shown in Figure 2.3; therefore, it was later replaced by
Discrete Wavelet Transform (DWT). The wavelets (wavelet basis functions) are created by
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Figure 2.2: A DCT dictionary.

dilation and translation of the mother wavelet. For example, the following wavelet can be
created by scaling mother wavelet by a factor of a and translating it by a factor of b

ψab(t) =
1√
a
ψ
(t− b

a

)
. (2.6)

The simplest wavelet that can be created by scaling and translating mother wavelet is the
Haar wavelet

ψ(t) =

{
1 0 ≤ t ≤ 1/2
0 otherwise.

(2.7)

Figure 2.4 shows an example of 2D Haar dictionary, with 484 atoms, that can be used
to decompose a signal of length 64. The wavelet offers a resizable structure for atoms;
therefore, the frequency resolution can be varied. A wide variety of other wavelet-based
harmonic dictionaries that involve various space-frequency partitions have been proposed
in the recent years; examples are Gabor, curvelets and contourlets [40].

The atoms of a dictionary can also be created from the image itself. The first approach
used in signal processing to create a dictionary from the image/signal is the Karhunen-
Loeve Transform (KLT) [41]. An image consists of an array of pixels and there is some
degree of correlation between the neighboring pixels of an image. KLT is the linear trans-
formation which removes redundancies by decorrelating the image. KLT is generally com-
puted from the covariance matrix of the image.
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Figure 2.3: (a) Original Image (b) Image reconstructed using DCT dictionary. Blocking
effect are seen in the reconstructed image
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Figure 2.4: A Haar dictionary

Consider an n-dimensional signal {z1, z2, · · · , zN}. The KLT of any n-dimensional vec-
tor z is

y = V T (z − µz) (2.8)

where µz = 1
N

N∑
i=1

zi is the mean vector of the given signal. The column vector of V is the

eigenvector corresponding to the covarience matrix

Cv =
1

N

( N∑
i=1

[(zi − µz)(zi − µz)T ]
)
. (2.9)

The basis functions of the KLT are the eigenvectors of the covariance matrix Cv [41].
Principal Component Analysis (PCA), which is closely related to KLT, is also widely used
in dictionary design in sparse representation. The PCA uses an orthogonal transform
matrix that converts a set of correlated variables into a new set of linearly uncorrelated
variables called principal components. The transformation is designed in such a way that
the variances of the principal components are arranged in decreasing order. Only the
K most uncorrelated variables are kept; and therefore the dimensionality of the data
is reduced. PCA decorrelates multivariate data, finds useful components and reduces
dimensionality of the data. The PCA is obtained by using either the SVD of the Data
Matrix, or eigenvalue decomposition of the covariance matrix [42].
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Consider a signal Z = [z1, z2, · · · , zM ] in which ziεR
N . The SVD of Z is: Z = UΣV T ,

where U is a N ×N orthogonal matrix of eigenvectors of ZZT , V is a M ×M orthogonal
matrix of eigenvectors of ZTZ and Σ is a rectangular diagonal matrix containing singular
values (σ1, σ2, · · · , σn) in its diagonal. The covariance matrix created from the signal Z is

Cv =
1

N − 1
ZTZ (2.10)

Cv =
1

N − 1
V ΣUTUΣV T

Cv =
1

N − 1
V Σ2V T .

This shows that the eigenvectors of Cv are the same as the right singular vectors of Z.
Therefore the eigenvalues of Cv can be computed from the singular values of Z as

λj =
σ2
j

N − 1
. (2.11)

This shows the relationship between the PCA and SVD. The principal components are
columns of UΣ matrix such that the signal Z is represented by the eigenvectors V as
Z = UΣV T .

The atoms of a dictionary can also be trained directly from a training sample. This
method is called dictionary learning [29]. The dictionary trained from a training sample
is adapted to a given sample, and therefore it may better represent the signal. There are
various ways of learning a dictionary. Here we describe the most famous one, called K-SVD
algorithm. The algorithm is a direct extension of K-means clustering that is used to solve
vector quantization (VQ) problem.

VQ is a lossy data compression method in which a good codebook is selected that
provides the least mean square error (MSE) [29]. Consider a codebook matrix C =
[c1, c2, · · · , ck] each column represents the codeword (codevector). The signal is repre-
sented by the codeword such that zi = Cxi, where xi = ej is a vector containing all zero
entries except the one in the jth position. The index j is selected according to the following
criteria

∀k 6=j = ‖zi − Cej‖22 ≤ ‖zi − Cek‖22. (2.12)

This is sparse coding of zi in which only one atom is used to represent the signal and the
coefficient is forced to have unit value. The overall MSE is given by

E =
K∑
i=1

‖zi − Cxi‖22 = ‖Z − CX‖2F . (2.13)
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Figure 2.5: Adaptive dictionary trained from a fundus image using KSVD algorithm

The VQ training problem aims to train a codebook C that minimizes the error E, such
that the coefficient vector contains only one non-zero entry and the value of the coefficients
must be 1.

min
C,X

‖Z − CX‖2F

subject to ∀i, xi = ek for some k.
(2.14)

The above problem can be solved by using K-means algorithm. It is an iterative method
that can be used to design an optimal codebook for VQ. The K-means algorithm comprises
of two stages. The first stage is a sparse coding, in which a fixed codebook C is used to
sparsely represent the signal while minimizing equation (2.14). The second stage updates
the dictionary using fixed coefficient matrix X so as to minimize equation (2.14).

The K-SVD algorithm is considered as a generalization of the K-means algorithms in
which instead of representing a signal with only one atom and fixing the coefficient to have
the value of 1, the signal is represented by linear combinations of more than one atom and
the coefficients can have any arbitrary values. For this case, minimization problem is

min
D,X

‖Z −DX‖2F

subject to ∀i, ‖xi‖0 ≤ L.
(2.15)
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Similar to K-means, this approach consists of two stages: sparse coding and dictionary
update. In the sparse coding stage, a known dictionary D is used to determine the sparse
vector X using any pursuit methods described in subsection (2.1.1). The dictionary update
stage searches for a better dictionary. Since updating the overall dictionary D at the same
time is impossible, the dictionary is updated one column at a time, keeping all the other
columns fixed. For the column dk of dictionary D, a new column d̃k and a new value for
its coefficient that reduces the MSE in equation 2.15 are obtained. If we wish to update
only one column dk and its corresponding coefficient, the signal reconstruction error can
be decomposed as follows

‖Z −DX‖2F = ‖Z −
K∑
j=1

djx
j
T‖

2
F = ‖

(
Z −

∑
j 6=k

djx
j
T

)
− dkxkT‖2F = ‖Ek − dkxkT‖2F (2.16)

where Ek is the error associated to all the other atoms when dk is removed. The process of
updating only one column at a time can be achieved by using SVD; however, this process
does not enforce the sparsity constraint. Therefore, the new vector xkT is most likely to be
filled, which is against the sparsity constraint defined in equation 2.15. This problem can
be tackled by using only a set of indices in X that uses the atom dk that simply means
indices of X where xkT (i) is non-zero. Let wk be such a set

wk = {i | 1 ≤ i ≤ K, xkT (i) 6= 0}. (2.17)

Now, construct a matrix ΩkεR
(N×length(wk)) with ones on the (wk(i), i)

th position and zeros
elsewhere. The matrix transforms xkR = xkTΩk by keeping only non-zero coefficients, that
converts the row vector xkT to the row vector xkR of length equal to length | wk |. The same
thing is applied to the input signal ZR

k = ZΩk and error ER
k = EkΩk, where ZR

k represents
the subset of input signal and ER

k represents the portion of the error that are using the
dk atom. The minimization problem (equation 2.16) can be converted to give a solution
vector x̃kT that has the same support as the original xkT as follows

‖EkΩk − dkxkTΩk‖2F = ‖ER
k − dkxkR‖2F . (2.18)

This can be easily solved using SVD method. SVD decomposes the error matrix ER
k =

U∆V T . The first column of U is assigned as the new dictionary atom d̃k and its coefficient
xkR is calculated by multiplying the first column of V by ∆(1, 1). The same approach is
followed to update all the columns of the dictionary and their corresponding coefficients
in K-SVD dictionary learning approach. Figure 2.5 shows a trained dictionary from the
fundus image.

23



2.2 Signal Recovery from Incomplete and Corrupted

Measurements

In many signal processing applications, some entries of the data are missing or only a
small set of data is accessible, or the data is corrupted by errors or noise [43]. The aim in
such applications is to reconstruct the true set of data from an undersampled or corrupted
data. There are many techniques to do this and they utilize some prior information of
the data such as the sparsity, low-rankness and redundancy. This information is very
important for efficient recovery of the data. The true signal can be recovered from the
undersampled or corrupted signal by minimizing objective functions such as sparsity and
matrix rank; however, these objective functions are in fact NP-hard. Recent methods utilize
convex optimization that optimizes the convex relaxation of the original objective function
under certain reasonable assumptions to give the optimal solution to the original problem
[43]. In this section, two approaches are discussed that exploit convex optimization; one
approach minimizes the sparsity of the signal and is called compressive sensing, and the
other approach minimizes the rank of the matrix (rank minimization).

2.2.1 Compressive Sensing

A continuous signal of a finite bandwidth can be reconstructed accurately by a finite
number of its discrete values. The number of discrete values is specified by the Nyquist-
Shannon sampling theorem which states that a signal can be perfectly reconstructed when
the sampling rate is set more than twice the highest frequency of the signal. Recently,
many researchers have begun to investigate an alternative sampling paradigm called Com-
pressive Sampling that goes against Nyquist-Shannon sampling in data acquisition. In this
approach, under certain conditions a signal is uniquely reconstructed from samples far less
than that required by Nyquist-Shannon theorem. The idea of reconstructing a signal from
highly incomplete samples was proposed by Candes, Romberg, and Tao [44]; however, the
name compressed sensing (compressive sampling) was coined by Donoho in 2006 [45]. The
very first papers that introduced the concept of compressive sensing (CS) are [44, 45, 46].

Mathematically, consider a finite dimensional discrete time signal zεRN . The signal
can be sparsely represented in the transform domain. The coefficient vector has many zero
coefficients and few non-zero coefficients if the signal is compressible. Commonly, a signal
is said to be K-sparse in the transform domain if K of the N components of coefficient
vector are non-zero. A signal is not sparse in the spatial domain; therefore, sampling less
than twice of the Nyquist frequency yields aliasing. However, a signal is sparse in the
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transform domain; therefore, K largest transform coefficients are sufficient to recover a
signal without much perceptible loss. CS is a novel sampling paradigm that collects inner
products between the signal and the basis vectors instead of directly sampling the intensities
values from the scene. Let Φ be a collection of basis vectors and if we make M << N inner
products between the signal and basis vectors such as: y1 = φ1z, y2 = φ2z, · · · , yM = φMz,
then the CS data acquisition process is described by

yM×1 = ΦM×NzN×1 (2.19)

yM×1 = ΦM×NΨN×NxN×1 (2.20)

where y1, y2, · · · , yM are the measured values. Equation 2.20 consists of two matrices: Φ
for sampling the signal, and Ψ for transform coding. One of the crucial steps in CS is
to carefully build these two matrices based on the specific properties of the signal. These
two matrices should be highly incoherent. The coherence between any two matrices is
within the range of [1,

√
N ]. Intuitively, if the coherence between the two matrices is

small, fewer samples are needed to reconstruct the original signal. In such case the signal
can be estimated by only M > K log(N) linear measurements, which is far less than the
actual bandwidth of the signal. For a K sparse signal if we make M linear measurements
such that M > K, then the necessary and sufficient condition for signal recovery is the
validity of the Restricted Isometry Property (RIP) for the measurement matrix Φ, i.e., the
preservation of Euclidean distance. The RIP states that a matrix Φ has the RIP of order
K if δk ε(0, 1), such that

(1− δK) ≤ ‖Φz‖
2
2

‖z‖22
≤ (1 + δK) (2.21)

holds simultaneously for all sparse vectors z having no more than K non-zero entries
[47]. For simplicity, by selecting entries of Φ from a random matrix or independent and
identically distributed random variables from Gaussian or Bernoulli distributions, both the
RIP and incoherence could be achieved with a high degree of probability, and the signal can
be recovered from insufficient samples provided that the nonlinear signal recovery method
is adopted [48]. For signal reconstruction the traditional least squares optimization is
inadequate, so other types of signal reconstruction methods such as l1-norm minimization
or greedy algorithms must be invoked. For more information, we refer the readers to a
recently published review paper by Thapa et al. [49].

2.2.2 Matrix Rank Minimization

Matrix rank minimization is the latest extension of CS. Matrix rank minimization is similar
to the CS; however, instead of minimizing the l0 norm of the sparse vector x of signal z (a
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column of Z), it minimizes the l0 norm of the singular value vector of Z. The low-rankness
of a matrix requires that the number of columns or rows of the matrix to be much greater
than the rank of the matrix. The rank of a matrix is equal to the number of its non-zero
singular values [43] and can be calculated by taking the SVD of a matrix and arranging
all the singular values into a vector. The matrix rank minimization method reconstructs
the unknown matrix by utilizing its low-rankness. The aforementioned method has been
widely used in the signal processing, such as, object recognition, collaborative filtering,
matrix complication, etc.

Mathematically, consider a low-rank matrix ZεRm×n;m ≤ n. Let A : Rm×n → Rp be a
linear transformation, and b εRp. The rank minimization problem is defined as

min
Z

rank(Z)

subject to A(Z) = b.
(2.22)

Here, the objective function is the rank of Z. This is an NP-hard problem so it is usually
replaced by a computationally efficient method called nuclear norm minimization (NNM)

‖Z‖∗ =
n∑
k=1

σk(Z), i.e., minimizing the sum of all singular values of Z

min
Z

‖Z‖∗

subject to A(Z) = b.
(2.23)

The solution of equation (2.23) is exactly the same as the solution of equation (2.22) when
it satisfied RIP condition for the matrix Z. For every integer r with 1 ≤ r ≤ m, define
isometry constant of A, δr to be the smallest number such that

(1− δr) ≤
‖AZ‖22
‖Z‖22

≤ (1 + δr) (2.24)

holds for all matrices Z of rank at most r [50].

There are various ways of solving rank minimization problem and utilizing SVD method
is one of them. The low-rank approximation has several applications; however, in this
thesis, we concentrate on its application for recovering true image from its noisy version.
Consider a noisy matrix Y . The aim is to reconstruct a noise-free matrix Z from the noisy
matrix Y by removing the noise. This is an inverse problem which seeks a true noise-free
matrix from a noisy observation. There are several ways to solve such inverse problem.
One way is to use NNM. That is, the noise-free matrix is obtained from the solution of the
following energy function [51]

Ẑ = min
Z
‖Y − Z‖2F + λ‖Z‖∗ (2.25)
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where ‖Z‖∗ =
∑
i

| σi(Z) |1 is the nuclear norm of the matrix Z; σi(Z) is the ith singular

value of Z; ‖.‖F is the Frobenius norm and λ is a positive constant. Cai et al. [52] proved
that Eq. 2.25 can be solved using soft-thresholding operation on the singular values of the
noisy matrix Y

Ẑ = USλ(Σ)V T (2.26)

where U and V are orthogonal matrices and Σ is a diagonal matrix containing singular
values (σ1, σ2, · · · , σn) in its diagonal. These matrices are obtained by taking the SVD of
the noisy image Y (i.e., Y = UΣV T ). The soft-thresholding function Sλ(Σ) is performed
on the singular values in such a way that for each diagonal element σi in Σ

Sλ(σ) = max(σi − λ, 0). (2.27)

The rationale for this approach is that the singular values are shrunk by soft-thresholding.
The main downside with this approach is that, it shrinks all singular values by the same
amount; therefore, we may lose important information from the matrix. In case of an
image, it has been known that each singular value carries useful information about the
image, but the larger ones carry more information than the smaller ones. Therefore, to
preserve the important information, the larger singular values need to be shrunk less.
Zhang et al. [53] introduced truncated NNM method that minimizes the smallest n − r
singular values, where n is the total number of singular values and r is the rank of the
matrix Y . The practical challenge of this method is selecting the rank of the matrix. The
rank of the matrix is very important since based on that the algorithm decides whether to
regularize a specific singular value or not [51]. Recently, Gu et al. [51] proposed WNNM
in which different weights are assigned to the singular values based on their magnitude.
The weighted nuclear norm of the matrix Z is denoted by ‖Z‖w,∗ and is defined as

‖Z‖w,∗ =
∑
i

| wiσi(Z) |1 (2.28)

where wni=1 ≥ 0 are the non-negative weights assigned to the singular values σi(Z). Finally
the noise-free image is reconstructed by utilizing these weighted singular values as: Ẑ =
UWi(Σ)V T .

2.3 Image Quality Metrics

Many image quality metrics are used to test the performance of the image processing
algorithms in this thesis. The most commonly used objective quality metric is the peak

27



SNR (PSNR). The PSNR is the peak signal-to-noise ratio between the predicted image
and its original, in decibels. PSNR is calculated from the MSE, which is the average error
between the predicted image and its original. Let Z(i, j) be the original image and Ẑ(i, j)
be the predicted image. Then MSE and PSNR are defined as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[
Z(i, j)− Ẑ(i, j)

]2
(2.29)

PSNR = 20 log10

L√
MSE

(2.30)

where L is the maximum signal value in the image. A higher value of PSNR indicates
a better image quality. Structural similarity (SSIM) is another important object quality
metric that computes the similarity between the predicted and original image. The SSIM
accounts for the luminance, contrast, and structural changes between the two images. The
SSIM index is defined as

SSIM =
(2µZµẐ + C1)(2σZẐ + C2)

(µ2
Z + µ2

Ẑ
+ C1)(σ2

Z + σ2
Ẑ

+ C2)
(2.31)

where µZ and µẐ are the means and σ2
Z and σ2

Ẑ
are the variances of the original and

predicted images, respectively. σ2
ZẐ

is the covariance of the predicted image and its original.

C1 = (k1L)2 and C2 = (k2L)2 are the two variables that stabilize the division when the
denominator is weak; k1 and k2 are constants [54].

Cross-correlation (XCOR) is also calculated to estimate the quality of denoising. The
XCOR is defined as [55]

XCOR =

∑
i,j

Z(i, j) Ẑ(i, j)∑
i,j

[Z(i, j)]2
. (2.32)

XCOR measures the similarity between the two images. The XCOR value approaches to
1 when the predicted image is similar to its original.

Mean-to-standard-deviation ratio (MSR) and contrast-to-noise ratio (CNR) are the
other two objective quality metrics used in image processing for examining the image
quality. MSR and CNR are defined as follows

MSR =
µ̄f
σf

(2.33)

28



Figure 2.6: The image quality metrics are calculated from the foreground and background
rectangular regions. MSR is calculated from homogeneous foreground regions (black colour
rectangles) and CNR is calculated from both the homogeneous and inhomogeneous fore-
ground regions (black and blue rectangles). The red rectangle represents the background
region.

CNR =
| µ̄f − µ̄b |√
0.5(σ2

f + σ2
b )

(2.34)

where µ̄f and σf are the mean and standard deviation of the foreground region and µ̄b and
σb are the mean and standard deviation of the background region [10]. The foreground
and background regions of an image are shown in Figure 2.6. The red rectangle shows a
background region and the black and blue rectangles show the foreground regions. The
CNR measures the contrast between the foreground and background regions. MSR mea-
sures the smoothness of regions and is calculated from the regions that have homogeneous
appearance.
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Chapter 3

Retinal Image Reconstruction Using
Nonlinear Dictionary

Chapter 2 highlighted a few examples of analytical-based and learning-based dictionaries.
It has been found that the performance of analytical-based dictionaries highly depends on
the nature of input signals. For example, DCT dictionary provides excellent results for
smooth harmonic signals, but fails to provide similar results for transient signals. Similarly,
wavelets, such as Haar and Gabor are well suited for transient signals; however, in com-
parison with DCT dictionary they do not perform well on harmonic signals. Nevertheless,
the Gabor dictionary is unique in that it can be modified to work with both harmonic
and non-harmonic signals by carefully adjusting the parameters of the function. However,
selecting optimal parameters for generating appropriate Gabor atoms for an input signal
is difficult [56]. On the other hand, learning-based dictionaries (adaptive dictionaries) per-
form well as they are created to best fit a given signal; however, the computational cost
of training the dictionary is very high. Moreover, the dictionaries are adaptive so they
do not work well with other signals of interest; therefore, a lengthy learning process is
required. Adaptive dictionaries are adapted to a specific size based on the length of the
signal and hence cannot be used for varying sizes of the signal. For example, if a dictionary
is trained for a signal with 64 data points (i.e. 8 × 8 pixels patch of an image), it cannot
accommodate for a signal with 49 data points (i.e. 7× 7 pixels patch); indicating that the
dictionary is not flexible. Another downside of adaptive dictionaries is that they require
storing both the dictionary and sparse vectors. This consequently increases the storage
requirement and hence decreases the compression efficiency. For online transformation
both dictionary and sparse vectors need to be transferred which might be expensive. In
contrast, the analytical-based dictionaries are better than adaptive dictionary in terms of
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flexibility and storage requirement. Analytical-based dictionaries are simply mathemat-
ical functions and can be easily adjusted to accommodate signals of any size. However,
when it comes to performance and compression ratio, the adaptive dictionaries are better
than analytical-based dictionary. Many researchers have developed different types of dic-
tionaries that result in better signal representation and research in sparsity-based signal
processing continues. We have also created a hybrid dictionary that performs better than
the known analytical-based dictionaries. In this chapter, we provide the performance of
hybrid dictionary for retinal image reconstruction.

3.1 Nonlinear Atoms

3.1.1 Phase Added DCT Atoms

As discussed in chapter 2, DCT atoms are created from cosine function by changing the
frequency; however, the phases are normally ignored. Therefore, a signal with a non-zero
phase cannot be perfectly represented by the DCT atoms. In such a case, the signal
reconstruction error is high. Marsousi [40] has shown that adding extra phase components
to the DCT atoms improves the signal reconstruction. For each frequency in the horizontal
and vertical direction, a set of evenly selected phases between 0 to 2π can be incorporated
to the conventional DCT to create phase added DCT atoms. The phase can be chosen from
the set φε{0, 2π/NP , 4π/NP , · · · , 2(Np− 1)π/NP}; where Np = 1, 2, 3, · · · is the number of
phase division between 0 to 2π. In 1-D, the phase added DCT atoms are generated using
Eq. 3.1 where k represents the size of the discrete signal

dk(t) = cos
[(2t+ 1)πk

2N
+ φ
]
, k = 0, 1, · · · , N − 1. (3.1)

The aforementioned process increases the size of the dictionary. The phase added dictionary
atoms created by adding phases φε{0, 2π/3, 4π/3} are shown in Figure 3.1.

To demonstrate the performance of phase added dictionary, let us consider four different
types of signals as shown in Table 3.1. The value of t was limited to -5 to 5 and the length
of the signal was kept at 64. The OMP algorithm was used for signal coding. After coding,
the signals were reconstructed using only 3 non-zero sparse coefficients. DCT and phase
added DCT dictionaries were used for both sparse coding and signal reconstruction. The
performances of dictionaries were compared by calculating the MSE and PSNR between the
original and reconstructed signals. The results showed that MSEs were small when phase
added DCT dictionary was used. Table 3.1 shows that the MSE decreases when phase
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Figure 3.1: A phase added DCT dictionary.

Table 3.1: Performance of phase added atoms

DCT Phase added DCT

Signals MSE PSNR MSE PSNR

y1 = 5 cos(2π5t) 0.0143 66.58 0.0133 66.90

y2 = 5 cos(2π5t+ π/2) 5.2490 40.93 0.0129 67.04

y3 = 5 cos(2π5t+ π/3) 2.4202 44.29 0.0123 67.25

y4 = 5 cos(2π5t+ 3π/2) 2.5215 40.71 0.0129 67.04

added DCT atoms are used for reconstructing the signal with non-zero phases. Similarly,
PSNRs were better when phase added dictionary was used for signal reconstruction.

3.1.2 Polynomial Atoms

The DCT atoms cannot precisely reconstruct a signal if it consists of non-harmonic com-
ponents, such as polynomials. The accuracy of signal reconstruction can be increased by
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Table 3.2: Performance of polynomial atoms

DCT DCT+Polynomials

Signals MSE PSNR MSE PSNR

y5 = 5 cos(2π5t) 0.0954 58.33 0.0954 58.33

y6 = 5t2 + 5 cos(2π5t) 47.69 31.35 0.2970 53.40

y7 = t4 − 2t2 + t 2498.50 14.15 21.6205 34.78

adding a few polynomials atoms. The simplest polynomial atoms can be created using
the following function dn(t) = tn; where t is linearly spaced points equal to the length of
the vector and n = 1, 2, · · · , P order of the polynomial. The low order polynomial atoms
characterize the non-harmonic smooth signals and higher order polynomial atoms charac-
terize the transient signals; therefore, including these atoms in the DCT atoms facilitates
reconstruction of both non-harmonic and transient signals. To illustrate this, consider sig-
nals y5, y6 and y7 as shown in Table 3.2 .The signal y6 consists of both harmonic (cosine)
and non-harmonic (non-cosine) polynomial parts. Twenty polynomial atoms were created
using the function dn(t) = tn in which the values of t were taken from equally spaced values
between -2 and 2. After coding, the signal was reconstructed with OMP method using only
3 sparse coefficients vector. The signal reconstruction results are shown in Table 3.2.

The MSE with the DCT atoms alone was 47.69 for signal y6. With the addition of
polynomial atoms, MSE reduced to 0.2970. However, for the harmonic signal y5, the poly-
nomials atoms did not show any effect. The MSE for signal y7 is 2498.50 when DCT atoms
were used, and was reduced to 21.62 when DCT plus polynomial atoms were used. Simi-
larly, PSNRs increased significantly when polynomial atoms were added to DCT dictionary
for reconstructing signals with non-harmonic components. Inspired by these results, we
generated more structured polynomials atoms by translating and dilating the basic poly-
nomial function of the form as shown in Eq. 3.2

dn(t) = tn−1 +
n−1∑
i=0

ait
i. (3.2)

Equation 3.2 consists of a set of polynomial constants. These constants can be generated
in many ways. However, care should be taken to generate the coefficients since these
coefficients are generated and stored prior to the construction of the polynomial atoms. The
aforementioned increases the storage requirement and computational cost of the dictionary.
For example, if we generate 64 coefficients using Eq. 3.2, we need to store at least 64
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coefficients. The increased storage requirement reduces the ability to compress the signal.
In this thesis, the coefficients were generated by fixed spacing scheme such that ai = a0+∆i
where i = 1, 2, · · · , k, a0 is the starting coefficient value, and ∆ is a fixed incremental step.
The coefficients were circularly shifted to create the coefficients for another polynomial
atom. In this method, only the starting and final coefficient values and the incremental
step are stored. This will reduce the storage requirement to some extent and also allows
generating atoms from various polynomial functions without describing each polynomial.
The coefficients can be used in Eq. 3.2 to create a set of polynomial atoms. Besides
coefficients, the polynomial atoms can easily cross the boundaries for larger values of t;
therefore, the value of t should be limited to a certain range. In this thesis, t was set to
equally spaced values between -5 and 5.

3.1.3 Exponential and Logarithmic Atoms

One of the common dictionaries which use exponential functions is the Gabor dictionary.
Exponential functions have been used for many image processing tasks. The exponen-
tial atoms can also be created from polynomials by taking the exponential value of the
polynomial function. In this thesis, the exponential atoms are created using Equation 3.3

dn(t) = exp(Pn(t)) (3.3)

where Pn(t) are the generic polynomial atoms. Similarly, we can create logarithmic atoms
by taking the log of the polynomials functions as shown in Eq. 3.4

dn(t) = log(Pn(t)). (3.4)

3.1.4 Shifted Boxcar Atoms

A boxcar function is a function that has a constant value over a small interval and zero
elsewhere. It is a simple step function that resembles a boxcar, hence the name. The
boxcar function can be defined as

dn(t) =

{
c a ≤ t ≤ b
0 else.

(3.5)

The boxcar function can be thought of as an extension of the delta function. The delta
function is non-zero at a single point whereas the boxcar function is non-zero for a small
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range. The boxcar function can be used to describe small and transient signals. We cre-
ated boxcar atoms by performing N-circular shifts on the elementary boxcar function of
constant width. By changing the width of the function, we produced an over-complete
boxcar dictionary. The boxcar dictionary performance is similar to the Haar wavelet dic-
tionary; therefore, it performs poorly for smooth signal and strong for transient signals.
The performance of the DCT dictionary can be increased by adding boxcar functions so
that the combined dictionary represents both the harmonic and transient signals. In this
thesis, the boxcar atoms were created by keeping c = 1 and varying the width from 2 to 4
data points in the atoms.

3.1.5 Proposed Nonlinear Dictionary

We created a NL dictionary by adding phase shifted cosine functions and NL functions,
such as polynomials, exponential and boxcar atoms to the DCT dictionary. The hybrid
dictionary consists of a diverse set of atoms that are able to describe smooth harmonic,
non-harmonic and transient signals. Table 3.3 shows a list of atoms that are used to create
NL dictionary. The inclusion of the NL atoms will increase the size of the dictionary
and therefore increases the sparse coding process as compared to the DCT dictionary.
However, NL dictionary does not require time consuming dictionary learning algorithm;
so it is much faster and less expensive than the adaptive dictionary. To reduce the sparse
coding time, we can reduce the size of the NL dictionary by removing duplicate and useless
atoms from the dictionary. An example of dictionary optimization has been proposed by
Tharmalingam [56].

Once the atoms are arranged they are scanned for discontinuities; the dictionary columns
are normalized. This new dictionary can be used for various sparsity-based image process-
ing techniques. We can also add other functions to the NL dictionary; however, the addition
of new atoms increases both the size and complexity of the dictionary.

The NL dictionary was compared with Haar wavelet and DCT dictionaries for the
following three different types of signals y8, y9 and y10 as shown in Table 3.3. The signals
consist of both harmonic and non-harmonic components. For all three dictionaries, OMP
algorithm was used for sparse coding and the signals were reconstructed from only 3 sparse
coefficients. The NL dictionary showed least MSEs for all 3 signals y8, y9 and y10 compared
to DCT and Haar dictionaries.

The results for the signals y8, y9 and y10 are also shown in Figures 3.2, 3.3 and 3.4,
respectively. The total number of non-zero coefficients (sparsity constant) was fixed to
3, 6, 9, 12, and 15 for 5 different cases. The signal was reconstructed from the sparse
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Table 3.3: Different atoms of NL dictionary

Functions Tunable Parameters No. of Atoms

Phase added DCT:
Dk(t) = cos

[ (2k+1)πt
2N

+ φ
] φε{0, 2π/Np, · · · , 2(Np− 1)π/Np}

where Np = 5
321

Simple polynomials:
Pk(t) = tk

−2 < t < 2 20

Structured polynomials:

Pk(t) = tk−1 +
k−1∑
i=0

ait
i

ai = a0 + ∆i 30

Exponential atoms:
Ek(t) = exp(Pk(t))

0 < t < 1 11

Boxcarl atoms:

Bk(t) =

{
1 a ≤ t ≤ b

0 else

widths={2 : 3} 130

Table 3.4: Performance of DCT, Haar and NL dictionaries for sparse signal reconstruction.

DCT Haar NL

Signals MSE PSNR MSE PSNR MSE PSNR

y8 = cos(7t) 0.0082 69.00 0.27 53.81 0.0011 77.73

y9 = 2t2 + 5 cos(2π5t) 18.31 35.50 57.77 30.51 0.4618 51.48

y10 = t3 + 2t+ 5 cos(2π5t) 45.09 31.58 126.77 27.10 4.911 41.22

coefficient vector. PSNRs were calculated to examine the performance of the dictionaries.
The results showed that the NL dictionary had better performance for signal that consists
of non-harmonic components.

3.2 Fundus and OCT Image Reconstruction using Non-

linear Dictionary

In this subsection, we describe the application of NL dictionary for retinal image recon-
struction. Two fundus images (Figure 3.5) and two OCT images (Figure 3.6) were used
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Figure 3.2: Performance comparison of DCT, Haar and NL dictionaries for y = cos(7t).

Figure 3.3: Performance comparison of DCT, Haar and NL dictionaries for y = 2t2 +
5 cos(2π5t).
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Figure 3.4: Performance comparison of DCT, Haar and NL dictionaries for y = t3 + 2t+
5 cos(2π5t).

for the simulations. Using a fundus camera (Non-Mydriatic Auto Fundus Camera, Nidek
AFC-230, Japan) fundus images were taken from the right eye of the author who has no
ocular pathology. OCT images from two patients were provided by Sankara Nethralaya
Eye Hospital Chennai, India.

3.2.1 Comparison Between Different Set of Nonlinear Atoms

To run the simulation, the images were broken down into 8 × 8 patches. Each patch
was converted into one column vector. OMP algorithm was performed on each patch
separately for sparse coding. The total number of non-zero coefficients (sparsity constant)
was fixed to 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 for ten different cases. Finally, each
patch was reconstructed from the sparse coefficient vector. The patches were reshaped to
their square 8 × 8 shape and the image was reconstructed from the patches. To test the
effect of different sets of atoms, the sparse coding was performed separately with (a) DCT
atoms (b) phase added DCT atoms (c) phase added DCT atoms plus polynomials and
exponential atoms, and (d) phase added DCT atoms plus polynomials, exponential and
boxcar functions. PSNR and SSIM indices between the original and reconstructed images

38



Figure 3.5: Test fundus images.

39



Figure 3.6: Test OCT images.
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were calculated. MATLAB software (version R2013a) was used to code and implement
the reconstruction process. A computer with the operating system 64 bit, Windows 7,
Intel (R) Pentium (R) CPU G620T 2.2 GHz processor, and 4GB RAM was used. Figure
3.7 shows plots between PSNRs and number of non-zero coefficients. The results showed
that PSNR improves with the addition of each of the aforementioned types of atoms. The
improvement in PSNRs with the addition of polynomials, exponential and step functions
was fairly noticeable for both fundus and OCT images. For example, there was at least
1.0 db improvement in the PSNR when fundus image A was reconstructed by 6 non-zero
coefficients per patch (size of a patch 8×8 pixels) using a dictionary that was constructed by
adding polynomial, exponential, and step functions to the DCT atoms. The improvement
was more perceptible when the images were reconstructed with greater number of non-zero
coefficients. For the same image, there was at least 5.0 db improvement in PSNR when the
image was reconstructed by 30 non-zero coefficients; there was at least 3.5 db improvement
in the PSNR when only phase, polynomial and exponential atoms were added to the DCT
atoms. Figure 3.8 shows plots between SSIMs and the number of non-zero coefficients.
Like PSNR, there was a clear perceptible improvement in the SSIM indices due to the
addition of the polynomial, exponential and step functions for all fundus and OCT images.
The dictionaries were the same size (64 × 512), therefore, the improvement is not due to
the increased size of the dictionary.

3.2.2 Comparison with Other Known Dictionaries

The NL dictionary was compared with other dictionaries such as DCT, Haar and KSVD.
The MATLAB source codes for KSVD dictionary learning were downloaded from Ron
Rubinstein’s webpage [57]. Similar to the previous section, the images were broken down
into 8× 8 patches and sparse coding was performed on each patch separately using OMP
algorithm. The total number of non-zero coefficients (sparsity constant) was fixed to 3, 6,
9, 12, 15, 18, 21, 24, 27, and 30 for 10 different cases. Finally, the image was reconstructed
from the sparse coefficients. The PSNR and SSIM indices calculated from the fundus and
OCT images were plotted against the number of non-zero coefficients and are shown in
Figures 3.9 - 3.12. The results showed that DCT, Haar, KSVD and NL dictionaries all
improved PSNR when the number of non-zero coefficients per patch was increased.

The PSNRs and SSIMs obtained by NL dictionary were better than those obtained
by DCT and Haar dictionaries; however, they were slightly less than those obtained from
learned dictionary when fewer non-zero sparse coefficients were used. Nonetheless, the NL
dictionary performed better than all three dictionaries when a large number of non-zero
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Figure 3.7: PSNRs obtained from each set of atoms of the NL dictionary. D1=DCT; D2=
Phase added DCT; D3=Phase added DCT plus polynomials and exponential functions;
and D4= Phase added DCT plus polynomials, exponential and step functions.
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Figure 3.8: SSIM indices obtained from each set of atoms of the NL dictionary. D1=DCT;
D2= Phase added DCT; D3=Phase added DCT plus polynomials and exponential func-
tions; and D4= Phase added DCT plus polynomials, exponential and step functions.
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Figure 3.9: Performance of DCT, Haar, NL, and KSVD dictionaries for fundus image A
reconstruction.
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Figure 3.10: Performance of DCT, Haar, NL, and KSVD dictionaries for fundus image B
reconstruction.
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Figure 3.11: Performance of DCT, Haar, NL, and KSVD dictionaries for OCT image A
reconstruction.
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Figure 3.12: Performance of DCT, Haar, NL, and KSVD dictionaries for OCT image B
reconstruction.
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Figure 3.13: Fundus image A reconstructed from 6 non-zero coefficients per patch using
(a) DCT (PSNR=41.05), (b) Haar (PSNR=41.09), (c) NL (PSNR= 42.58) and (d) KSVD
(PSNR=44.68) dictionaries.
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Figure 3.14: Fundus image B reconstructed from 6 non-zero coefficients per patch using
(a) DCT (PSNR=43.24), (b) Haar (PSNR=43.12), (c) NL (PSNR= 44.37) and (d) KSVD
(46.26) dictionaries.
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Figure 3.15: OCT image A reconstructed from 6 non-zero coefficients per patch using
(a) DCT (PSNR= 23.59), (b) Haar (PSNR=24.47), (c) NL (PSNR=25.01) and (d) KSVD
(PSNR=28.65) dictionaries.

50



Figure 3.16: OCT image B reconstructed from 6 non-zero coefficients per patch using
(a) DCT (PSNR=24.85), (b) Haar (PSNR=25.48), (c) NL (PSNR=26.00) and (d) KSVD
(PSNR=29.63) dictionaries.
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sparse coefficients were used. To get the same PSNR, the NL dictionary requires fewer non-
zero coefficients than DCT and Haar dictionaries, which increases both the compression
ratio and reconstruction time. There is a cross over between the NL and KSVD dictionary
when there were about nine non-zero coefficients (see figures 3.9 to 3.12). Figures 3.9-3.12
show that in analytical based dictionaries such as NL, as the number of non-zero coefficients
increased, the PSNR increased too; i.e., the plots showing changes in PSNR with changes
in the number of non-zero coefficients are almost linear. However, the performance of
the KSVD dictionary does not increase linearly as the number of non-zero coefficients
increased. One reason for such finding is the effect of noise on KSVD dictionary. The
KSVD dictionary is trained from the test images; therefore, some of its atoms represent the
noise. The analytical dictionaries however, are created from a known function; therefore,
their atoms are not influenced by noise.

Figures 3.13 -3.16 show fundus and OCT images reconstructed from 6 non-zero coeffi-
cients per patch using DCT, Haar, NL and KSVD dictionaries. The visual quality of the
images reconstructed by NL dictionary was better than that of the images reconstructed by
DCT and Haar dictionaries. However, the visual quality of the images reconstructed by NL
dictionary was slightly poorer than that of the images reconstructed by KSVD dictionary.

3.3 Discussion and Conclusion

This chapter compared NL dictionary with various over-complete dictionaries in terms of
image quality metrics, such as PSNR and SSIM indices. The experimental results showed
that the performance gain is due to the addition of NL functions, such as polynomials,
exponential, step functions and phase shifted cosine functions. The conventional DCT
atoms provide excellent results for the smooth harmonic signals, but the retinal image may
also contain some non-harmonic signals that cannot be perfectly represented by the DCT
atoms. The NL dictionary includes a diverse set of atoms, which can reconstruct both
the harmonic and non-harmonic signals; however, the inclusion of the atoms increases the
computation cost. The computation time required to construct DCT dictionary was 0.207
seconds whereas the time required to create NL dictionary was 0.854 seconds which is
four times greater than that of the DCT dictionary when compared in a computer with
the operating system 64 bit, Windows 7, Intel (R) Pentium (R) CPU G620T 2.2 GHz
processor, and 4GB RAM. This indicates that, NL dictionary is slightly more expensive
than DCT when computing the same number of non-zero coefficients from sparse coding
algorithm; however, the NL dictionary requires fewer number of non-zero coefficients to
provide the same image quality (such as PSNR) so it is faster than DCT dictionary. The
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NL dictionary is composed of diverse set of atoms; therefore, when constructed it requires
more parameters compared to DCT dictionary, which increases the storage requirement.
Nevertheless its storage requirement is far less than that of the adaptive dictionary. Since
NL dictionary consists of many parameters, it is really difficult to implement it in hardware
based applications such as cameras, micro-controllers and microprocessors. The suitable
areas of application for the NL dictionary are those in which the compression ratio is more
important than the compression time, such as medical image compression and storage,
archives and CS. NL dictionary can also be used in telemedicine; the smaller data can be
transmitted faster and the increased transmission capacity reduces the transmission cost.

Although NL dictionary provides slightly lower PSNR and SSIM indices than KSVD
dictionary, it has three advantages over the adaptive dictionary. First, it does not require
training set images therefor can be used in the real time situations. The second advantage
involves data compression. If the data is compressed by learning-based dictionary, both
the dictionary and sparse coefficients need to be stored, and therefore, it would take a large
amount of computer space. For online transformation, both trained dictionary and sparse-
coefficients need to be sent. However, if a signal is represented by an analytical-based
dictionary, only sparse coefficients need to be sent or stored. This might have applications
in telemedicine. Third, the construction of adaptive dictionary takes longer than that of
the analytical dictionaries since it involves a learning algorithm that selects one dictionary
atom at a time. The NL dictionary can replace adaptive dictionary if shorter execution
time is required.

3.4 Summary

This chapter presented NL dictionary by adding various types of NL atoms such as phase
added DCT, polynomials, exponential and steps functions to the conventional DCT atoms.
The NL dictionary showed better performance when the signal consisted of both the har-
monic and non-harmonic components. The NL dictionary was applied to reconstruct fun-
dus and OCT images. The efficiency of image reconstruction increased with the addition
of each sets of NL atoms. The NL dictionary performed better than DCT and Haar dic-
tionaries for retinal image reconstruction; however, it showed slightly poorer performance
than adaptive dictionary.
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Chapter 4

Multi-frame Sparsity-based SD-OCT
Image Denoising

Image denoising is a process of estimating a noise-free image from a noisy image or a series
of images. Even though several methods have been developed to remove speckle noise from
OCT images, image denoising still remains a challenging problem and an active field of
research in image processing. The various denoising methods differ in terms of techniques,
the noise model, and the amount of noise present in the image. OCT image denoising
methods can be broadly divided into two groups: single-frame and multi-frame methods
[58]. Single frame methods exploit either a standard filter or a sophisticated regularization
method. Many single-frame methods have been developed for reducing the speckle noise;
however, they either reduce the image resolution or increase the computational complexity,
or both [59]. On the other hand, multi-frame methods take multiple images of the same or
nearby locations and obtain a noise-suppressed image by averaging these images. In this
chapter, we review the most commonly used speckle reduction methods and propose a new
method based on the sparse representation algorithm.

4.1 Single-frame Denoising Methods

Filtering is the traditional approach for removing noise from an image. It can be done in
spatial as well as transform domains. The most common spatial domain filtering methods
include: mean filters, Wiener filters, median filters, Lee filters, Kuan filters, Geometric
filters, Box filters, Gamma Maximum A Posteriori (MAP) filters, diffusion filters, non-
local means, total variation (TV) regularization, and kernel regression. Transform domain
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filtering methods are also broadly divided into the following two categories: data adaptive
and non-data adaptive. If a transform matrix is constructed from the pre-specific set of
functions, e.g. DCT and wavelet transform, then the filtering is called non-data adaptive.
Wavelet domain methods are the most frequently used non-data adaptive transform do-
main methods for denoising images. This is because of their sparsity and multiresolution
structures [58]. On the other hand, data adaptive filtering methods use a basis that is cre-
ated from training set images, such as Principal Component Analysis (PCA), Independent
Component Analysis (ICA), KSVD and BM3D. We review both spatial domain filtering
methods and transfrom domain methods in this subsection.

4.1.1 Spatial Domain Filtering

There are various types of spatial filters; the simplest of them is the Box filter [60]. The
Box filter is a simple low pass filter that prevents the passage of high frequency noise
components. However, it also smoothens the high frequency image components such as
edges and fine details. Therefore, Box filter is less frequently used for denoising medical
images. Another important filter used to remove speckle noise is median filter [60]. Median
filter is created by constructing a window from an odd number of samples. The window
selects a small section (equal to the size of the window) of the image and the middle pixel
of this section is replaced by the median value of its neighbours. This process removes
the noise by removing the abruptly changing pixels from the image. However, it provides
wrong values at the edge of the image, blurring the edges and details. A more efficient
filter for removing speckle noise is the Lee filter [61]. Lee filter, also called minimum mean
square error filter, is based on the linear speckle noise model. It produces an output pixel
from the following formula

Î(x, y) = Ī(x, y) +W (x, y)[I(x, y)− Ī(x, y)] (4.1)

where Ī(x, y) is the mean intensity within the window and W (x, y) is the weighting func-
tion. The weighting function is adaptive and is calculated from the following equation

W (x, y) = 1− C2
n

C2
I + C2

n

(4.2)

where CI is the coefficient of variance of the noised image and Cn is the coefficient of
variance of the noise. The weighting function approaches zero in the uniform region;
therefore, the output pixel is just the simple average of the pixels within the window.
However, the weighting function approaches unity at edges and hence slightly modifies the
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edges pixel values. Although the filter preserves the edges, its performance near edges is
not optimum because it ignores some speckle noise. Another filter that is similar to Lee
filter is the Kuan filter [62]. Both Lee and Kuan filter calculates the weighting functions
based on the equivalent number of looks (ENL) from the image. The ENL estimates the
noise variance and based on that smoothing will be performed. A smaller ENL leads to
higher smoothing applied to the image. Kuan filter is different from Lee filter only in terms
of its weighting function. The weighting function is calculated by

W (x, y) =
1− C2

n

C2
I

1 + C2
n

. (4.3)

Wiener filter is another commonly used adaptive filter for removing noise and blur from
an image [63]. It minimizes the overall MSE. The Wiener filter in the Fourier domain is
given by

W (u, v) =
H∗(u, v)SI(u, v)

| H(u, v) |2 SI(u, v) + Sn(u, v)
(4.4)

where H(u, v) is the blurring filter and SI(u, v) and Sn(u, v) are the power spectra of the
original image and noise, respectively. The noise and power spectra can be estimated in
various ways. The filter removes the noise based on the calculation of local variance from
the image. If the local variance is small, the image is smoothed significantly; however, if
the local variance is large, the image is smoothed slightly to preserve the edges and fine
details.

The Frost filter is another adaptive filter that estimates the new pixel from a weighted
sum of the intensity values within the moving kernel [64]. The kernel moves across the
image and the weights are calculated based on the local statistics in the moving window.
The weight decreases with distance from the filter centre and increases if the variance of
the kernel increases

W = exp[−DCI(s0) | s |] (4.5)

where D is the exponential damping factor, CI = σI/Ī; Ī and σI are the mean and standard
deviation, s0 is the location of the processed pixel and | s | is the distance from the pixel s0.
The parameters are measured within a fixed size window. The output pixel is calculated
from the following formula

Îi =

∑
IiWi∑
Wi

. (4.6)

The improved Lee filter, improved Kuan Filter and improved Frost filter are the modified
versions of Lee, Kaun and Frost filters, respectively [60]. These filters classify the image
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into three different regions: homogeneous, heterogeneous and isolated, and exploit different
filters and weights for each region to enhance denoising.

Another standard filter for removing speckle noise is Gamma MAP filter [60]. The
Gamma MAP filter assumes that the values of the filtered pixel are gamma distributed.
Another method uses partial differential equations for removing speckle noise from the
images. An anisotropic diffusion filter denoises an image using the diffusion equation, a
partial differential equation [65, 66]. The anisotropic diffusion scheme is given by

∂I(i, j, t)

∂t
= div[g(‖∇I‖)∇I] (4.7)

where ‖∇I‖ is the gradient magnitude, and g‖∇I‖ is an edge stopping function. Perona
and Malik [65] proposed two different edge stopping functions

g(∇I) =
1

1 +
(‖∇I‖

K

)2 (4.8)

g(∇I) = exp
[
−
(‖∇I‖

K

)2]
(4.9)

where K is an edge magnitude parameter. These functions remove the noise from the
uniform area; however, they cannot preserve the edge information. They were modified
later by Black et al. [66] for a better edge-stopping function

dn(t) =

{ [
1− (‖∇I‖)2

K2

]2
, if (‖∇I‖)2 ≤ K2

0 , else.
(4.10)

In anisotropic diffusion filtering, if the gradient magnitude is greater than edge magnitude
(i.e. | ∇I |> K), then g(∇I)→ 0, and if | ∇I |< K, then g(∇I)→ 1. Diffusion is carried
out if (‖∇I‖)2 ≤ K2.

The previous methods replace the intensity of a pixel with the average intensity of the
nearby pixels. However, the performance of a denoising method can be further enhanced
by averaging the remote pixels that have similar intensities. Non-local means is a method
that averages similar non-local pixels to reduce the image noise [67]. In this method pixels
with similar neighbours will have larger weight than those with different neighbors. In
practice, the search for similar pixels is carried out in a large neighborhood. The whole
image is divided into small patches and the resemblance among the patches is evaluated
to calculate the weight. The non-local means filter is defined as

NLI(p) =
1

C(p)

∫
f(d(B(p), B(q))I(q)dq (4.11)
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where f(d(B(p), B(q)) is the weight, d(B(p), B(q)) is Euclidean distance between the two
patches B(p) and B(q) centre at pixels p and q, respectively. The intensity of the pixel p
is calculated from the following function

Îi(p) =
1

C(p)

∑
qεB(p,s)

Ii(q)w(p, q) (4.12)

where,

C(p) =
∑

qεB(p,s)

w(p, q).

B(p, s) is a neighbourhood with (2s+ 1)× (2s+ 1) pixels centered at p. We can choose the
size of the neighbourhood based on the amount of noise in the image. A larger neighbor-
hood provides better denoising results by averaging many pixels with higher computational
complexity. The Euclidean distance d = d(B(p, r), B(q, r)) between the patches B(p, r)
and B(q, r) of size (2r + 1)× (2r + 1) within the neighbourhood is calculated as

d2(B(p, r), B(q, r)) =
1

(2r + 1)2

∑
qεB(0,r)

(I(p+ i)− I(q + i))2. (4.13)

The weight w(p, q) is calculated by

w(p, q) = exp
[
− max(d2 − 2σ2, 0)

h2
]

(4.14)

where σ is the standard deviation of the noise and h is the filtering parameter depends on
σ. In this approach each pixel value is estimated from the weighted average of the similar
pixels.

4.1.2 Transform Domain Approaches

The transform domain methods are further divided to non-data adaptive and data adaptive
methods. The non-data adaptive approaches use a set of pre-defined basis functions; such
as Fourier transform, DCT, and wavelet transform. The Wavelet transform transforms a
noisy image into a wavelet domain, and shrinks the wavelet coefficients. Before shrinking
the coefficients, multiplicative speckle noises are converted to additive noise by taking the
lagorithmic transformation. Since speckles are high-frequency components and have non-
zero wavelet coefficients when the image is transformed in the wavelet domain, they can
be suppressed by shrinking the wavelet coefficients. Thresholding or statistical modelling
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is used to remove the noise and/or the relatively less important wavelet coefficients. After
noise suppression, an inverse wavelet transform is performed to reconstruct the image into
the spatial domain. Following these steps, several wavelet domain based image denoising
methods have been proposed in the past few decades [68].

An image can be effectively denoised using linear filters such as Weiner filters, or non-
linear thresholding methods such as Hard Thresholding and/or Soft Thresholding of the
wavelet coefficients [69, 70]. Thresholding methods convert wavelet coefficients to zero if
their magnitudes are less than the threshold and maintain (Hard Thresholding) or modify
(Soft Thresholding) them if their magnitudes are greater than the threshold. Threshold-
ing methods are further divided into non-adaptive and adaptive thresholding. The best
known non-adaptive thresholding method is VISUShrink [71], where a universal threshold
is used to reduce the noise. On the other hand, SUREShrink is the most common adaptive
thresholding method and performs better than VISUShrink where a threshold is derived by
minimizing Steins unbiased risk estimator [72]. Furthermore, a new SURE-based orthonor-
mal wavelet image denoising approach that does not need any prior statistical model of the
wavelet coefficients is presented in [62]. The downsides of thresholding method are that
first of all it is difficult to find the appropriate threshold, and second the same threshold
cannot be used for different resolutions.

Recently, several researchers have developed models of wavelet coefficients and applied
them to denoised images corrupted by additive white Gaussian noise. The models are
either deterministic or statistic. One of the most successful statistical models that have
performed well for modeling the wavelet coefficients is Gaussian State Mixture (GSM) [73].
GSM models the neighborhoods of coefficients as a product of Gaussian Random Vector
and an Independent Hidden Random Scalar Multiplier. The other important wavelet-
based denoising method uses the Bayesian least squares estimate of the noise-free data us-
ing a conditional posterior sampling approach [74]. Recently, a probabilistic model called
Product of Edgeperts (PoEdges) [75] which models the statistical dependencies between
coefficients in a wavelet decomposed image, has been introduced. This model shows im-
pressive results in the field of image denoising. Although wavelets show promising results
for features changing in horizontal and vertical directions, they have limitations when it
comes to features in other orientations and hence do not represent the features changing
along the edges of the image effectively. Other wavelet based speckle denoising methods
have been proposed in the literature such as curvelet and contourlet [76, 77]. Curvelet
transform is an extension of the wavelet transform that provides better performance along
curves. Curvelet transform performs better than other methods of speckle reduction.

The data adaptive approaches train a basis (dictionary) from the training set images
that best matches a given signal/image. This subsection describes the most important
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data-adaptive transform domain denoising approaches. One such approach utilizes thresh-
olding of singular values using SVD [78]. In this method, first the test image is divided
into rectangular overlapping patches. Then similar patches are grouped together using
clustering methods such as K-means clustering. A cluster matrix is extremely redundant;
the unknown noise-free cluster matrix can be estimated utilizing its low-rankness. This can
be done by utilizing NNM which is performed by thresholding singular values. The signal
variance is used to set an initial threshold and the threshold is updated iteratively. The
noise is reduced by soft-thresholding of singular values, and the image is reconstructed by
averaging the overlapping section of the image. A recently proposed method uses WNNM,
in which smaller singular values are shrunken more and the larger singular values are
shrunken less [51].

Another approach uses PCA to reduce image noise. PCA algorithms transform the
image into PCA domain and then eliminate the noise and minor principal components
and reconstruct the image from a few most significant principal components. Applying
PCA directly to noisy images without data selection has resulted in noise residual and
many visual artifacts in the processed image. A new method called Local Pixel Grouping-
Principle Component Analysis (LPG-PCA) uses a moving window to group similar pixels
for training a local PCA transformation matrix [79]. Similarly, other recent methods divide
an image into rectangular patches and group the patches into many structural clusters and
train a local PCA transformation matrix from each cluster. Each data cluster is denoised
by the corresponding local PCA transformation matrix [80].

Another approach frequently used for removing noise is utilizing sparse representation
technique. A very popular technique that utilizes sparse representation of a signal is the
denoising technique proposed by Elad and Aharon [81]. In this technique, a highly over-
complete dictionary is trained from the noisy image patches using KSVD algorithm and is
used to sparsely represent the image patches. Each patch of the image can be approximated
as a linear combination of few dictionary atoms; therefore, the representation vector is
sparse. Only the most significant sparse coefficients are used to reconstruct the image patch,
hence the noise is suppressed from patch. A clean image is reconstructed by averaging the
overlapping portion of the denoised patches. The KSVD approach uses the sparsity of the
image; however, it does not use the self-similarity of the image. Dabov et al. [82] proposed
a denoising method called BM3D by utilizing the self-similarity of the image. The method
was considered a cutting edge approach in the past as it proved to be an extremely effective
method in natural image denoising. The method consists of three steps. First, it searches
for similar 2D blocks in the image using a block matching algorithm and stacks them
together to create a 3D cube. Second, a 3D transform of the cube is taken and the noise is
removed by shrinking the transform coefficients through Wiener filtering. Third, an inverse
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3D transform is performed to reconstruct a noise suppressed image in the spatial domain.
Local methods such as KSVD dictionary learning method train a dictionary of a basis
function that sparsely represents an image. On the other hand, the nonlocal methods
such as BM3D achieve the sparsity by clustering the similar blocks and shrinking the
coefficients. Dong et al. [83, 84] incorporated these two methods into a unified variational
framework and developed a denoising method. In this method, an image is divided into
rectangular patches. These patches are divided into many structural clusters using block
matching algorithm. A compact PCA dictionary is computed from each structural cluster
and is used for sparse representation of the patches within the cluster. Finally, the image is
reconstructed by averaging the overlapping portions of sparse reconstructed patches. Fang
et al. [10] used a similar approach in which the PCA dictionary was replaced with KSVD
based learned dictionary.

4.2 Multi-frame Denoising Methods

Multi-frame denoising methods average multiple images of the same or nearby locations
to obtain a noise-suppressed image. Multi-frame averaging is done is two ways. In one
method, the optical setup or scanning protocols of the OCT is modified to acquire multiple
images in a way that the speckle pattern differs but the structure of the images remains the
same [59]. These images are then averaged to acquire a noise-suppressed image. Various
spatial compounding and frequency compounding methods are reported under this category
[59]. While this method works well, it may increase the complexity of the data acquisition
process. The second method of multi-frame averaging is by modifying the software. In this
method various post processing algorithms are used to suppress the speckle noise.

In the past decade, several digital signal processing-based multi-frame image denoising
algorithms, from simple averaging to complex registration and optimization-based aver-
aging algorithms, have been developed to reduce speckle noise in OCT images. These
algorithms either denoise a single frame at a time and then average multiple denoised
frames, or average multiple frames and denoise the averaged frame. Ozcan et al. [85] did
not find any significant difference between the two approaches quantitatively; however, the
computation time was much shorter when only the averaged frame was processed. Sunder
et al. [86] proposed a robust correlation algorithm to line up A-scans of a specific retinal
location from 5 to 15 consecutively recorded B-scans using TD-OCT. A weighted average
of these A-scans was taken to obtain the final noise-suppressed image and the weights were
determined according to the correlation between the corresponding A-scans extracted from
the series of B-scans. A small weight was given if the correlation between the correspond-
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ing A-scans was poor. The practical challenge of this approach is the very time consuming
task of obtaining a number of consistent B-scans using a TD-OCT [28]. Sakamoto et
al. [87] utilized a custom software (LabVIEW 7.1, National Instruments, Austin, TX) to
average a set of 12 B-scans obtained from an identical retinal location using a SD-OCT
imagers. Mayer et al.[88] took the wavelet transform of each B-scan and then calculated
the weighted average of wavelet coefficients of multiple frames. The final noise-free image
was reconstructed from the averaged wavelet coefficients. They gained a much better SNR
ratio by averaging only 8 B-scans rather than simple averaging. In fact, the SNR acquired
by averaging 8 B-scans using wavelet technique was comparable to that of simple averag-
ing of 29 B-scans. However, these algorithms require repeated imaging of the same retinal
location and therefore are not very efficient in terms of scanning time. Chitchin et al. [89]
implemented another wavelet transform method called double-density dual-tree complex
wavelet transform to average 7 neighbouring B-scans in order to suppress speckle noise.
The final processed image was comparable to the high-SNR averaged image obtained from
Spectralis (Heidelberg Engineering, Heidelberg, Germany) OCT system by averaging 50
frames. The Spectralis OCT has a built-in image stabilization and averaging system which
can directly produce a high-SNR image by capturing and averaging a series of frames from
the same retinal location [90]. Fang et al. [90] exploited sparse representation technique
to learn a dictionary from a high-SNR image and used this dictionary to denoise other low
SNR images. In another study, Fang et al. [10] utilized structural clustering to learn dic-
tionaries from many clusters of training set high SNR images and then used these learned
dictionaries to denoise similar clusters of a low SNR image. They performed sparse coding
of 5 neighbouring B-scans and took weighted average to further suppress the speckle noise.
The sparse representation technique does not require multiple imaging, and therefore, sig-
nificantly reduces the image acquisition time. However, the dictionary learning process is
tedious and time consuming. The learned dictionary may be less effective if the retinal
location and/or pathologies of the eyes are different. In such cases, a new dictionary that
better correlates with the anatomical or pathological structure of the test image is required.

4.3 Proposed Multi-frame SD-OCT Denoising Approach

We propose a multiscale denoising algorithm that utilizes both the self-similarity and spar-
sity for denoising SD-OCT images. Figure 4.1 shows the flowchart of the proposed algo-
rithm. In this approach, multiple B-scans taken from the nearby locations of the SD-OCT
volume were used. There is a high degree of correlation among the neighboring B-scans
of SD-OCT volume; therefore, these neighboring B-scans can be used to decrease speckle
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Figure 4.1: Flowchart of the proposed multiscale sparsity-based denoising method.

noise from SD-OCT images. Fang et al. [10] assumed that similar patches from neighboring
B-scans can have similar sparse coefficients but with slightly different in magnitudes. We
made the same assumption and denoise and combine 5 nearby SD-OCT images to acquire
a high SNR B-scan. First, B-scans from very close locations of the SD-OCT volume were
extracted and their correlation was examined. If the neighboring patches of the B-scans
did not show high degree of correlation, then they were removed.

The test image and its neighboring images were first divided into overlapping patches.
Let us consider yj is the patch created from the test image and {yj+w}Ww=−W is the cor-
responding patch from the neighboring slices. These patches were converted to column
vectors. Patches from each image were grouped into various structural clusters using k-
means clustering method. After structural clustering, a KSVD dictionary was learned from
each structural cluster. In case of NL dictionary, a fixed universal dictionary was used for
all the clusters. Let Di be the dictionary created from the test images for ith cluster. The
similar patches from the nearby slices were combined into one matrix (one patch from each
nearby slice create a matrix that has 5 columns) and simultaneously decompose by solving
the following equation

{x̂j+w}Ww=−W = min
{xj+w}Ww=−W

W∑
w=−W

‖yj+w −Dixj+w‖2

subject to ‖xj+w‖0 ≤ L, w = −W, · · · ,W

(4.15)

where xj+w is the non-zero coefficient vector and L is the sparsity constant. The above
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problem can be solved using Simultaneous Orthogonal Matching Pursuit (SOMP) devel-
oped by Tropp et al. [91]. The SOMP yields sparse representation matrix {x̂j+w}Ww=−W
from the matrix created from the nearby patches in which the indices of non-zero coeffi-
cients remain the same while their magnitude varies. The patches were then reconstructed
from their sparse vectors.

ẑj+w = Dix̂j+w. (4.16)

Finally, median pixels of the reconstructed patches of the nearby frames were chosen
which further enhanced the denoising. We selected the median pixels from the nearby
frames because this approach is equivalent to the median filtering and median filtering is
more robust to an inaccurate image registration as well as to the non-Gaussian noise present
in OCT images. The same process was repeated to all the patches in each cluster. In case
of KSVD dictionary, a different KSVD dictionary was used for each cluster; however, in
case of NL dictionary the same universal dictionar was used for all the clusters. Finally
the vectorized form of the reconstructed patches were returned to their original rectangular
form. The patches were highly overlapped therefore the overlapping portion of the patches
was averaged to reconstruct the image.

4.4 Experimental Results

The proposed denoising algorithm examined two different types of SD-OCT images: syn-
thetic images and real experimental images. The images were provided by Dr. Sinu Farsiu,
Duke University, NC, USA [92]. Dr. Farsiu and his group used these images to simultane-
ously denoise and interpolate SD-OCT images. For detailed information about the image
acquisition process we refer the reader to the original paper by Fang et al. [10]. In brief, the
synthetic images were generated by subsampling HR images in both random and regular
patterns. Thus, the number of A-scans in each B-scan of the SD-OCT image is reduced.
The real experimental images were directly taken from human and mouse retina. These
images were acquired at relatively low sample rate using a regularly sampled pattern.

The parameters in the proposed algorithm were set by experience. The number of
nearby images was set to 4. Two B-scans above and two B-scans below the test B-scans
were considered. The patch size was set to 16 × 4 pixels. The total number of clusters
was 90. The NL dictionary was a universal dictionary; therefore the same dictionary was
used for all the clusters. In case of adaptive dictionary, we trained KSVD dictionary from
each cluster. SOMP was used for simultaneous sparse coding. The number of non-zero
coefficients per patch was set to L = 3. The standard deviation of the noise in the test
SD-OCT image was estimated by employing a MATLAB code written by Fang et al.[10].
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Table 4.1: Image quality metrics calculated from the simulated retinal SD-OCT images.

Image(Method) CNR MSR PSNR XCOR SSIM

Test 1.79 ± 0.40 4.12 ± 0.17 17.70 0.9556 0.1092

Average 6.44 ± 4.49 18.67± 1.46 - - -

Denoised (NL) 8.57 ±6.86 25.28±3.46 28.39 0.9966 0.6561

Denoised (KSVD) 9.25±7.52 26.71± 2.42 28.54 0.9967 0.6718

4.4.1 Simulated Retinal SD-OCT Images

The simulated datasets were acquired from the subjects with and without nonneovascu-
lar AMD. Simulated dataset were obtained by subsampling the previously acquired HR
SD-OCT images by 840-nm wavelength SD-OCT imaging system from Bioptigen, Inc.
(Durham, NC). The axial resolution of the imaging system was ∼ 4.5µm per pixel in tis-
sue [10]. A volumetric image was provided by the instrument by comprising 100 B-scans
per volume with 1000 A-scans per B-scan. We utilized central foveal B-scans extracted
from nearby locations. In order to compare the performance of our denoising approach
with the simple frame averaging method, we utilized the average noise-free image (refer-
ence image) created by Fang et al. [10]. The reference image was created by registering
and averaging 40 azimuthally repeated B-scans using StackReg image registration plug-in
for imageJ software (National Institutes of Health, Bethesda, MD, USA) [10]. The size
of the input frame was 450 × 900 pixels. The PSNR between the average image and the
test image was 17.70 db, whereas the PSNR between the average image and the denoised
image were 28.39 db and 28.54 db using NL and KSVD dictionaries, respectively. The
results showed a considerable improvement in PSNR using the proposed method (Table
4.1). The XCORs between the image obtained by the proposed method and the average
image were 0.9966 and 0.9967 using NL and KSVD dictionaries, respectively, which were
larger than the XCOR computed between the test image and average image (0.9556). The
SSIMs increased from 0.1092 (test) to 0.6561 (NL) and 0.6718 (KSVD). There was signifi-
cant improvement in the quality of the images in terms of CNR and MSR metrics using the
proposed method. The processed images obtained from both dictionaries using the pro-
posed method had better CNR and MSR values compared to those obtained from average
image (Table 4.1). The KSVD performed slightly better than the NL dictionary. Figure
4.2 shows the test image, average image and image obtained by the proposed method using
NL and KSVD dictionaries.
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Figure 4.2: Image denoising algorithm applied to simulated SD-OCT images. (a) noisy
test image (PSNR=17.70). (b) Average image obtained by registering and averaging 40
azimuthally repeated B-scans using StackReg image registration plug-in for imageJ soft-
ware. (c) Denoised image by our approach using NL dictionary (PSNR=28.39) and (d)
Denoised image by our approach using KSVD dictionary (PSNR=28.54)
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Figure 4.3: Image denoising algorithm applied to human retinal SD-OCT images. (a)
noisy test image (CNR=1.43 ±0.50 and MSR=3.25±0.14) (b) Denoised image by our
approach using NL dictionary (CNR=3.66 ±1.22 and MSR=12.37±0.81) and (c) Denoised
image by our approach using KSVD dictionary (CNR=3.84 ±1.41and MSR=13.12±0.93)
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Figure 4.4: Image denoising algorithm applied to mouse retinal SD-OCT images. (a) noisy
test image (CNR=1.40 ±0.92 and MSR=3.19±0.24) (b) Denoised image by our approach
using NL dictionary (CNR=4.59±1.78 and MSR=15.36±0.64) and (c) Denoised image by
our approach using KSVD dictionary (CNR=4.84 ±1.75 and MSR=16.49±0.71)
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4.4.2 Human Retinal SD-OCT Images

Human retinal SD-OCT datasets were directly acquired by the Bioptigen SD-OCT imagers
described in subsection 4.4.1. The axial resolution was ∼ 4.5µm and the volumetric image
comprised 100 B-scans per volume with 500 A-scans per B-scan [10]. The input frames
were extracted from the foveal regions and the size of the frames was 450×450 pixels. The
proposed multiscale denoising algorithm was implemented on an experimental dataset of
human macula. Figure 4.3 shows the test image and the image obtained by the proposed
method using NL and KSVD dictionaries. The visual quality of the image was considerably
improved by using the proposed method. Since we didn’t have an average image, we were
unable to calculate the PSNR, XCOR and SSIM indices. The CNR and MSR metrics
obtained by the proposed method were far better than those of the noisy image. This
indicates better image quality when using the proposed denoising method. When the
performances of the dictionaries were compared, the KSVD dictionaries showed greater
improvement in image quality compared to NL dictionary.

4.4.3 Mouse Retinal SD-OCT Images

Mouse retinal SD-OCT datasets were acquired using an ultra-HR SD-OCT system (Biopti-
gen Envisu R2200) [10]. The axial resolution was ∼ 2µm in tissue. The input frames were
extracted from the optic nerve of a mouse and the size of the frames was 450×1000 pixels.
The test image and denoised image from the proposed method using NL and KSVD dic-
tionaries are shown in Figure 4.4. The visual quality of the denoised image obtained from
our proposed method was considerably better than that of the noisy image. Similar to the
human dataset, we were unable to calculate the PSNR, XCOR and SSIM indices. The
CNR and MSR metrics obtained from the proposed method were far better than those of
the noisy image. When the performances of the NL and KSVD dictionaries were compared,
KSVD showed slightly higher CNR and MSR compared to the NL dictionary.

4.5 Discussion and Conclusion

The proposed multi-frame denoising method works well with both simulated images and
real experimental datasets from human and mouse retina. The proposed method signifi-
cantly increases the value of CNR and MSR metrics. The CNR and MSR values obtained
by our approach are better than those obtained by registering and averaging 40 azimuthally
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Table 4.2: Image quality metrics (CNR and MSR) calculated from human and mouse
retinal SD-OCT images.

Human Dataset Mouse Dataset

Images(Method) CNR MSR CNR MSR

Test 1.43± 0.50 3.25 ± 0.14 1.40 ±0.92 3.19 ±0.24

Denoised (NL) 3.66 ±1.22 12.37 ±0.81 4.59 ±1.78 15.36 ±0.64

Denoised (KSVD) 3.84 ±1.41 13.12 ±0.93 4.84 ±1.75 16.49 ±0.71

repeated B-scans. Regardless of the type of image used (i.e., simulated image or experi-
mental dataset for human and mouse), the proposed method provides high quality noise-
free images with minimum artifact. The proposed method also significantly improved the
PSNR, XCOR and SSIM indices. The proposed method has many advantages. For exam-
ple it can be used in the pre-processing stage that will increase the accuracy of other image
processing methods such as image segmentation, registration, and interpolation. It does
not require multiple scanning of identical locations; rather it reduces noise from the nearby
B-scans of SD-OCT volume and takes the weighted average of the denoised B-scans. There-
fore, the method significantly reduces the scanning time. The short image acquisition time
reduces the patients discomfort and motion artifacts. However, this approach still requires
lengthy dictionary learning method if a trained dictionary is used. The computation time
was significantly shortened by using NL dictionary; however, the performance was slightly
lower. Better denoising might have been possible if the dictionaries were learned from the
HR and high SNR training set images.

4.6 Summary

In this chapter, we reviewed various image denoising approaches for SD-OCT images and
proposed a new denoising method. The proposed multiscale sparse representation method
involves denoising and averaging a series of B-scans extracted from the nearby locations
of a 3D SD-OCT volume to obtain a relatively noise-free image. The proposed method
provided significant improvement in image quality metrics by reducing speckle noise from
the SD-OCT images. In fact, an image obtained by combining 5 nearby B-scans using the
proposed method has higher quality metrics than an image obtained by registering and
averaging 40 azimuthally repeated B-scans.
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Chapter 5

Multi-frame Denoising and
Interpolation of SD-OCT Images
with Low-Rank Approximations

In chapter 4 we proposed a multi-frame denoising algorithm based on the sparse represen-
tation framework. Although the sparse representation technique does not require multiple
imaging of the same tissue, and therefore, significantly reduces the image acquisition time,
it requires a very tedious and time consuming dictionary learning process. An adaptive
dictionary is needed for each cluster if we divide the image into several clusters and in-
corporate the self-similarity of the image. In addition, if the dictionary is trained for a
given image from a set of HR images (such as in [90]), the adaptive dictionary may be
less effective for images of other retinal locations and/or pathologies. In such cases, a
new dictionary which correlates better with the anatomical or pathological structures of
the image is required. In this chapter, we introduce two image restoration algorithms for
SD-OCT. The first algorithm is a speckle noise reduction algorithm that utilizes WNNM
and non-local self-similarity of images. The second algorithm extends the first algorithm
in order to jointly interpolate and denoise SD-OCT images using SVD-based image fusion
method.

5.1 Proposed Multi-frame Denoising Approach

As discussed in Chapter 2, a noise-free matrix Z can be recovered from its noisy version Y
using the NNM method. That is, the noise-free matrix is obtained by solving the following
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energy function [3]

Ẑ = min
Z
‖Y − Z‖2F + λ‖Z‖∗ (5.1)

where ‖Z‖∗ =
∑
i

| σi(Z) |1 is the nuclear norm of the matrix Z; σi(Z) is the ith singular

value of Z; ‖.‖F is the Frobenius norm and λ is a positive constant. The solution of Eq. 5.1
can be obtained using soft-thresholding operation on the singular values of noisy matrix
[52]. More recent studies have shown that better results are observed with WNNM [51],
in which different weights are assigned to the singular values based on their magnitudes.
The weighted nuclear norm of the matrix Z is denoted by ‖Z‖w,∗ and is defined as

‖Z‖w,∗ =
∑
i

| wiσi(Z) |1 (5.2)

where wni=1 ≥ 0 are the non-negative weights assigned to the singular values σi(Z). In this
section, we exploit WNNM method proposed by Gu et al. [51] to reduce speckle noise from
SD-OCT images. Figure 5.1 shows a schematic diagram of the proposed approach.

With the developments in technology, SD-OCT is now able to capture 3D dataset by
composing a number of B-scans (frames). It has been found that there is a high degree
of correlation among neighbouring frames of a 3D SD-OCT volume [10]. Therefore, the
similar patches from nearby B-scans can be denoised and averaged to reduce noise. In our
denoising method, B-scans from very close locations of the SD-OCT volume were extracted
and their correlation was examined. Only B-scans with high degree of correlation were used.
We start by extracting overlapping patches from the test frame and its nearby frames. A
patch is converted to a column vector by lexicographic ordering. Let yij be the jth patch of

the test frame and {yi+bj }Bb=−B be the corresponding patches from the nearby frames, where
B represents the frames above and below the test frame. A block matching approach is
used to find the non-local similar patches across each frame. The non-local similar patches
are stacked together to form a matrix Yk, where k = 1, 2, · · · , k is the indices of the
patch matrices. Each patch matrix Zk is a low-rank matrix; therefore, it can be estimated
from the noisy patch matrix Yk using low-rank approximation methods [51]. The WNNM
method solves this problem by minimizing the following energy function

Ẑk = min
Zk

1

σ2
n

‖Yk − Zk‖2F + λ‖Zk‖∗ (5.3)

where σn is the standard deviation of the noise in the test image and w is the weight
vector. Since larger singular values carry more image information than the smaller ones,
the weight vector (w) is determined in a way that the large singular values are shrunk less
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than the small singular values

wi =
c
√
n

σi(Zk) + ε
(5.4)

where σn(Zk) is the ith singular value of a patch matrix Zk, n is the number of non-local
patches in the matrix, c is a positive constant, and ε is a small constant included to avoid
dividing by zero [51]. The weight wi is inversely proportional to the magnitude of the
singular value σn(Zk). In Eq. 5.4, the singular values σn(Zk) are unknown; therefore, the
initial singular values σn(Zk) are estimated from the singular values of the noisy patch
matrix Yk as

σ̂i(Zk) =
√

max(σ2
i (Yk)− nσ2

n, 0). (5.5)

Equation 5.5 provides the initial estimate of singular values σn(Zk). These estimates are
used to calculate weights wi in Eq. 5.4. The weight vector is used to estimate the low-rank
matrix Zk in Eq.5.3. The aforementioned process is applied to each patch of the matrix to
get the estimated patch. Finally, a weighted average of the estimated patches Ẑi

j is taken

ẑij =
B∑

b=−B

abj ẑ
i+b
j (5.6)

where abj is the weight assigned to the jth patch of the input images. The weight is computed
by

bj =
exp
(
− ‖zi+bj − zij‖22

)
/h

N
(5.7)

where N is a normalization factor and h is a predetermined constant. The final estimated
patch is reshaped to its original rectangular shape and the overlapping sections are averaged
to reconstruct a noise-free image. This method denoises and averages multiple B-scans of
3D SD-OCT volume; therefore, we named this method multi-frame weighted nuclear norm
minimization (MWNNM).

5.1.1 Experimental Results

The proposed denoising algorithm was implemented on two different types of SD-OCT
images: synthetic images and real experimental images. The SD-OCT images described
in Chapter 4 were used to examine the performance of our proposed algorithm. The
parameters in the proposed algorithm were set by experience. The number of nearby
images was set to 4. Two B-scans above and two B-scans below the test B-scans were

73



Figure 5.1: A flowchart of the proposed MWNNM method.

considered. The patch size was set to 7× 7 pixels. The non-local patch searching window
for block matching algorithm was set to 30. The total number of patches in each noisy
patch matrix was 70. The parameters c in (5.4) and h in (5.7) were set to 2

√
2 and 80,

respectively. Iteration number was 8 for simulated dataset and 4 for the real experimental
dataset. The final processed patch is the weighted average of five neighbouring image
patches in which the WNNM has been performed separately on each patch matrix of
individual images. The standard deviation of the noise in the test SD-OCT image was
estimated by employing a MATLAB code published by Fang et al. [92]. We also utilized
the MATLAB source codes by Zhang [93] for WNNM.

The objective image quality metrics, MSR and CNR were calculated from the test,
average and denoised images to compare the performance of the proposed method. MSR
was calculated from 4 homogeneous foreground regions (black rectangles in Figure 2.6),
whereas CNR was calculated from both the homogeneous and inhomogeneous foreground
regions. A total of 8 foreground regions were used to calculate the CNR. XCOR, SSIM
and PSNR were also calculated between the reference (average) image and the processed
image.

The performance of the proposed method was examined first with the simulated SD-
OCT retinal images described in Chapter 4. The simulated SD-OCT images were cropped
to 256 × 512 pixels. The results of the proposed denoising approach implemented on the
simulated images are shown in Table 5.1. The image quality metrices, MSR and CNR
were calculated from the test, average and denoised images. The CNR and MSR metrics
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Table 5.1: Image quality metrics calculated from the simulated retinal images.

Image/Method Frames CNR MSR PSNR XCOR SSIM

Test 5 1.79 ± 0.40 4.12 ± 0.17 17.70 0.9556 0.1114

Average 40 6.44 ± 4.49 18.67± 1.46 - - -

Median 5 6.04±4.09 17.55±1.28 27.74 0.9954 0.5848

Mayer et al. 5 9.17±7.55 24.10± 3.95 28.24 0.9965 0.6855

Our Approach 5 9.37±7.78 24.48± 3.31 28.56 0.9966 0.6785

Median 4 5.65±3.67 16.21±1.34 27.24 0.9948 0.5567

Mayer et al. 4 8.41±6.72 21.89± 3.57 27.92 0.9962 0.6690

Our Approach 4 8.74±7.12 22.53± 3.35 28.19 0.9963 0.6647

Median 3 5.05 ±3.06 14.27±0.97 26.26 0.9938 0.5154

Mayer et al. 3 7.23±5.37 18.62± 2.08 27.16 0.9953 0.6372

Our Approach 3 7.71±5.99 19.57± 2.71 27.63 0.9956 0.6439

obtained from our approach were better than those of the average image (Table 5.1).
These results show that our approach provides better denoising results by averaging just 5
neighbouring B-scans than the average image which was obtained by averaging 40 images.
The PSNR between the average image and the test image was 17.73 db whereas the PSNR
between the average image and the image obtained using MWNNM method was 28.56 db
(Table 5.1), an indication of a considerable improvement in the PSNR by using MWNNM
method. Similarly, the XCOR between the test and average image was 0.9556 whereas
XCOR between the average image and MWNNM image was 0.9966 (Table 5.1), suggesting
an improved image quality with MWNNM method. The SSIM index improved from 0.114
(between average image and test image) to 0.6785 (between average image and processed
image).

The performance of our algorithm was also examined by reducing the number of frames
to 4 and 3 and the results are shown in Table 5.1. The results indicate that the image
quality metrics decrease with fewer number of frames. The PSNRs between the average
image and processed image obtained from 5, 4 and 3 nearby frames were 28.56 db, 28.19
db and 27.63 db, respectively. The XCOR and SSIM indices also declined in a similar
fashion. CNR and MSR decreased as the number of frames was reduced. When fewer than
3 frames were used, the CNR and MSR values were lower than those of the average image.
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Table 5.2: Image quality metrics (CNR and MSR) calculated from human and mouse
retinal images.

Human Dataset Mouse Dataset

Images/Method Frames CNR MSR CNR MSR

Test 5 1.43± 0.50 3.25 ± 0.14 1.40 ±0.92 3.19 ±0.24

Median 5 3.24 ±0.78 10.77 ±1.03 4.08 ±1.86 12.09 ±0.48

Mayer et al. 5 3.74 ±1.32 12.01 ±1.08 5.05 ±1.59 16.38 ±1.20

Our Approach 5 3.87 ±1.53 13.83 ±1.19 4.95 ±1.62 16.77 ±1.74

Median 4 3.15±0.73 10.61 ±1.32 3.87 ±1.80 11.25 ±0.29

Mayer et al. 4 3.67 ±1.27 11.80 ±1.42 4.77 ±1.51 15.15 ±0.48

Our Approach 4 3.88 ±1.54 13.90 ±1.58 4.80 ±1.52 16.20 ±1.78

Median 3 3.00 ±0.58 10.07 ±0.98 3.62 ±1.72 10.39 ±0.66

Mayer et al. 3 3.47 ±1.08 11.08 ±0.89 4.47 ±1.48 13.99 ±1.02

Our Approach 3 3.79 ±1.42 13.49 ±1.38 4.77 ±1.45 16.00 ±1.58

Figure 5.2 shows the test image and three processed images obtained by combining 5, 4,
and 3 nearby frames.

We compared the performance of our denoising approach with the wavelet based multi-
frame denoising approach proposed by Mayer et al. [88]. We also generated an image by
performing median filtering to individual frames (filter size 3 × 3) and taking a weighted
average of the filtered frames. The image quality metrics calculated by these approaches
are shown in Table 5.1. The results indicate that among these three methods, median
filtering exhibits the worst performance. Our approach showed the largest PSNR, XCOR,
CNR and MSR indices whereas the approach proposed by Mayer et al. [88] showed a
slightly better SSIM index. The denoising methods were also compared by reducing the
number of input frames; however, the performance order remained the same. The average
image and the processed images obtained by median filter, Mayer et al. [88] approach and
our approach are shown in Figure 5.3.

The proposed approach was also implemented on human SD-OCT retinal images de-
scribed in Chapter 4. The input frames were extracted from the foveal regions and the
frames were cropped to 256 × 256 pixels. The SD-OCT frames were denoised by median
filtering, Mayer et al. [88] multi-frame approach and our approach. Table 5.2 shows the
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Figure 5.2: Implementation of our denoising approach on simulated SD-OCT images.
(a) Test image (PSNR=17.70); images obtained by denoising and averaging (b) 3 frames
(PSNR=27.63); (c) 4 frames (PSNR=28.19); and (d) 5 frames (PSNR=28.56) using our
approach.
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Figure 5.3: Image denoising algorithms applied to simulated retinal SD-OCT images. (a)
Reference (average) image. Images obtained by denoising and averaging 5 frames using
(b) median filtering and averaging method (PSNR= 26.26); (c) Mayer et al. approach [88]
(PSNR=27.16); and (d) our approach (PSNR=28.56).
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Figure 5.4: Image denoising algorithms applied to human retinal SD-OCT images. (a)
Test image (CNR=1.43, MSR=3.25). Images obtained by denoising and averaging 5 frames
using (b) median filtering and averaging method (CNR=3.24, MSR=10.77); (c) Mayer et al.
approach [88] (CNR=3.74, MSR=12.01); and (d) our approach (CNR=3.87, MSR=13.83).
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Figure 5.5: Image denoising algorithms applied to mouse retinal SD-OCT images. (a)
Test image (CNR=1.40, MSR=3.19). Images obtained by denoising and averaging 5 frames
using (b) median filtering and averaging method (CNR=4.08, MSR=12.09); (c) Mayer et al.
approach [88] (CNR=5.05, MSR=16.38); and (d) our approach (CNR=4.95, MSR=16.77).
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image quality metrics (CNR and MSR) calculated from the denoised images obtained by
denoising and averaging 5, 4 and 3 nearby frames. The CNR and MSR metrics obtained
by our approach are better than those of the median and Mayer et al. approach. The
results showed that CNR and MSR decreased and visual quality of the processed image
deteriorated by reducing the number of frames. Figure 5.4 shows the test image and the
processed images obtained by denoising and averaging 5 nearby SD-OCT frames using
median filtering, Mayer et al. [88] approach and our approach.

Finally, the proposed approach was implemented on Mouse SD-OCT retinal images
described in Chapter 4. The input frames were extracted from the optic nerve of a mouse
and the frames were cropped to 256 × 512 pixels. Median filtering, Mayer et al. [88]
approach and our approach were implemented on the mouse retinal images. The results
are presented on Table 5.2. The test image and the processed image obtained by denoising
and averaging 5 nearby frames using the aforementioned approaches are shown in Figure
5.5. The CNR and MSR metrics obtained from our approach are better than those obtained
by median filtering or Mayer et al. [88] approach. Mayer et al. [88] showed a slightly better
CNR in one condition (i.e., 5 frames); however, our approach showed better CNR for the
rest of the conditions and better image quality metrics.

5.1.2 Discussion and Conclusion

In this study, we extended WNNM method in multi-frame to reduce the speckle noise
of SD-OCT images. The MWNNM method involves denoising and averaging a series of
B-scans extracted from the nearby locations of a SD-OCT volume to obtain a noise-free
image. We showed that an image obtained by averaging 5 nearby B-scans with MWNNM
method has better image quality metrics than an image obtained by registering and aver-
aging 40 azimuthally repeated B-scans. The CNR and MSR metrics were very small in the
test images because of the high level of speckle noise present in the test images; however,
when they were denoised and averaged, the image quality metrics significantly increased
and exceeded those of an average image obtained by registering and averaging 40 frames.
The MWNNM method also significantly improved other image quality metrics such as
PSNR, XCOR and SSIM. PSNR, XCOR and SSIM were small when calculated between
the test image and the average (reference) image; however, there was a huge improvement
in PSNR and SSIM indices when the test images were denoised by MWNNM approach and
PSNR and SSIM indices were calculated between the denoised and reference images. We
also compared our processed image with the average image generated by median filtering
and averaging multiple frames (i.e., weighted average of frames denoised by median filter-
ing). Our method provides significantly better image quality metrics than median filtering.
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Similarly, we compared our results with the wavelet based multi-frame denoising approach
developed by Mayer et al. [88]. The image quality metrics computed on the denoised
image by our approach were greater than those of the Mayer et al. [88] approach in most
conditions (Tables 5.1 and 5.2). The image quality metrics computed from denoised image
decreased as the frame number was reduced and the level of noise reduction achieved with
multi-frame denoising could not be achieved with single frame denoising.

MWNNM works well with both simulated images and real experimental datasets from
human and mouse retina. A visual inspection of processed image shows that our multi-
frame denoising method significantly reduces the noise without degrading the retinal struc-
tures. The retinal structures not very clear in the noisy test scan, are easily identified in the
denoised image. For example, the retinal layers not clearly discernible in the noisy B-scan,
were clearly detectable in the denoised image (Figure 5.2). Thus the denoised image had
greater diagnostic value for retinal pathologies. The denoised image produced by Mayer et
al. [88] shows some image artifacts near the edges; however, the denoised image produced
by our method is free of such artifacts.

MWNNM is a significantly better method for reducing speckle noise in SD-OCT images
than the average image obtained by registering and averaging nearby B-scans. Regardless
of the type of image used (i.e., simulated image or real experimental dataset from human
and mouse), MWNNM provides high quality noise-free images without generating image
artifacts. There are several advantages of MWNNM method. An important advantage is
that it does not require any learning steps. Such advantage speeds up the image reconstruc-
tion process significantly, and therefore, it can be used in real time. In addition, unlike the
sparsity-based method, the MWNNM does not require a high SNR image and works well
with images from a lower cost OCT machines, eliminating the scanning time necessary for
obtaining a high SNR image. Furthermore, MWNNM does not require multiple scanning
of identical locations; rather it takes the weighted average of the noise-free B-scans from
the nearby locations. Therefore, the method significantly reduces both the scanning and
computation time. The short image acquisition time reduces the patients discomfort and
motion artifacts. The MWNNM method can also be used to increase the accuracy of other
image processing methods such as image segmentation, registration, and interpolation.

5.2 Proposed Interpolation Approach

As discussed in Chapter 1, since SD-OCT images are corrupted by speckle noise, an efficient
image denoising method is required to accurately detect the pathological changes. Besides
removing the speckle noise, the resolution of the image should also increase. An HR image
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Figure 5.6: A flowchart of the proposed joint denoising and interpolation approach.
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has the ability to resolve micron scale retinal structures that allow a better understanding
of the anatomy and pathology of the eye [14].

Image interpolation and denoising are two widely used techniques in biomedical image
processing. The literature shows that these techniques are mostly used one after another
to reduce the computational speed. Some studies [94, 95] first interpolate images and then
denoised them, whereas others [96] reverse the order and perform denoising first followed
by interpolation. One can also use these methods simultaneously. Recently Fang et al. [10]
have proposed a simultaneous image denoising and interpolation technique by exploiting
sparse representation technique. They utilized structural clustering to learn dictionaries
from different clusters of the training set HR high-SNR images and then used these learned
dictionaries to simultaneously denoise and interpolate similar clusters of the LR low SNR
images.

In this subsection, we introduce a joint denoising and interpolation algorithm that
utilizes multiframe weighted nuclear norm minimization method that was developed in
Section 5.1. The proposed joint denoising and interpolation technique consists of two
steps. In the first step, multiple frames are denoised, registered and fused together to get
a noise-free HR image. The denoising is performed using the WNNM method described
in Section 5.1. The denoised frames are registered and fused together using a bicubic
interpolation method. Bicubic interpolation method is implemented in this thesis because
it is computationally very efficient. A more powerful interpolation method can be adopted
to further enhance the performance. In the second step, SVD fusion method is used to
exploit the information of HR image to interpolate individual frames. In the SVD fusion
method, a block matching approach is used to find similar patches across the image and
the similar patches are stacked to form a group. Using block matching the test image and
HR image obtained from the first step are divided into several groups. In each group, SVD
fusion is applied as follows

IT = UTΣTVT (5.8)

IH = UHΣHVH (5.9)

where IT and IH are the test and HR image. The subscripts T and H represent the test
image and the HR image, respectively. The final image is reconstructed using the following
equation

IR = UHΣmaxV
′
H (5.10)

where,

Σmax =

{
ΣT if, σT > σH
ΣH if, σT < σH

(5.11)
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where σT and σH are the singular values of test and HR image, respectively. The approach
selects Σmax = ΣT if the singular values of test image are larger than that of the HR image,
and Σmax = ΣH if the singular values of the test image are smaller than that of the HR
image. The approach is similar to that applied by Nasir et al. [97]; however, they have not
exploited the self-similarity of images. The reconstructed image is an interpolated high
SNR image. The flowchart of the proposed joint denoising and interpolation approach is
depicted in Figure 5.6.

5.2.1 Experimental Results

The proposed algorithm was examined on simulated SD-OCT retinal images described
in Chapter 4. The performance was tested on simulated SD-OCT images from two par-
ticipants. To differentiate the image sets, they are coded as patient A and patient B
images throughout this section. The parameters in the proposed algorithm were kept the
same as those in the MWNNM method. The performance of our proposed method was
compared with the other SR methods described in Chapter 6; however, the images were
corrupted by large amount of noise, and the SR method alone could not provide a high
SNR image. There was no improvement in the image quality metrics (such as PSNR, SSIM
and XCOR) with the application of SR methods on the SD-OCT dataset. Therefore, the
performance of our approach was compared with the state-of-the-art denoising methods
plus bicubic interpolation. MSR and CNR were calculated from the images obtained from
bicubic interpolation, KSVD [81] + bicubic, BM3D [82] + bicubic, Nonlocally Centralized
Sparse Representation (NCSR) [98] + bicubic, single frame WNNM [51] + bicubic and
the proposed method. Similar to the MWNNM algorithm, MSR was calculated from the
4 homogeneous foreground regions, and CNR was calculated from 4 homogeneous and 4
inhomogeneous foreground regions. The PSNR, XCOR and SSIM indices were calculated
between the processed image and the reference image. The reference image is the average
image created by registering and averaging 40 azimuthally repeated B-scans.

Each patient data sets consist of 1 test image and its 4 neighboring images. The
images were 450 × 900 pixels. The images were first subsampled to create LR images of
size 225 × 450 pixels. The LR images were denoised by WNNM method. The denoised
images were registered and interpolated using multi-frame bicubic interpolation to obtain
an HR image of size of 450 × 900 pixels. The SVD fusion was performed between the
interpolated test image and HR image obtained from the aforementioned process. Table
5.3 provides a quantitative comparison of the proposed method with bicubic interpolation,
KSVD [81] + bicubic, BM3D [82] + bicubic, NCSR[98] + bicubic, single frame WNNM [51]
+ bicubic on patient A retinal images. The results showed that the largest MSR and CNR
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Table 5.3: Image quality metrics calculated from the simulated dataset from patient A.

Image/Method CNR MSR PSNR XCOR SSIM

Test 1.72 ± 0.36 3.51 ± 0.20 17.04 0.9446 0.0771

Average 3.99 ± 1.18 11.70± 1.40 - - -

bicubic 3.00±0.44 6.86±0.91 21.89 0.9838 0.3390

KSVD [81] ±bicubic 4.09±1.30 9.72± 2.15 23.49 0.9900 0.5942

BM3D [82] ±bicubic 4.10±1.25 9.84± 1.76 23.56 0.9903 0.6114

NCSR [98] ±bicubic 4.14±1.31 9.95± 1.84 23.51 0.9901 0.5880

WNNM[51] ±bicubic 4.21±1.36 9.97± 1.99 23.60 0.9905 0.6168

Our Approach 4.49±1.50 10.92± 1.79 23.94 0.9915 0.6325

values were obtained from the proposed method. Similarly, the largest PSNR, XCOR and
SSIM indices between the reference image and the processed image were obtained by the
proposed method. Figure 5.7 shows the test image, reference image and processed images
obtained from bicubic interpolation, KSVD [81] + bicubic, BM3D [82]+ bicubic, NCSR
[98] + bicubic, single frame WNNM [51] + bicubic methods. Similar results were obtained
from the patient B retinal images. Table 5.4 shows the MSR and CNR calculated from the
processed images and PSNR, XCOR, and SSIM indices calculated between the reference
image and the processed image. The proposed approach showed significantly better results
compared to the other state-of-the-art methods plus bicubic interpolation. Figure 5.8 shows
the test image, reference image and processed images obtained from bicubic interpolation,
KSVD [81] + bicubic, BM3D[82] + bicubic, NCSR [98] + bicubic, single frame WNNM[51]
+ Bicubic methods for patient B retinal images.

5.2.2 Discussion and Conclusion

In this study we showed that a joint denoising and interpolation method is far better for
interpolating SD-OCT images. The proposed method involves denoising, registration and
fusion of a series of frames extracted from the nearby locations of a SD-OCT volume to
create an HR image. The information of the HR image is incorporated to interpolate indi-
vidual B-scans. This method can be adopted if the images are highly corrupted by speckle
noise. The SD-OCT images are examples of such images. Comparing the image obtained
from the proposed approach with the directly interpolated one reveals that the joint de-
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Figure 5.7: Joint denoising and interpolation algorithm applied to patient A simu-
lated SD-OCT images. (a) Noisy test image. (b) Average image. (c) Bicubic recon-
struction (PSNR=21.89). (d) KSVD [81] +bicubic reconstruction (PSNR=23.49). (e)
BM3D [82] +bicubic reconstruction (PSNR=23.56). (f) NCSR [98]+ bicubic reconstruc-
tion (PSNR=23.51). (g) WNNM [51] + bicubic reconstruction (PSNR=23.60). (h) Our
approach (PSNR=23.94).
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Figure 5.8: Joint denoising and interpolation algorithm applied to patient B simulated
SD-OCT images. (a) Noisy test image. (b) Average image. (c) Bicubic reconstruction
(PSNR=24.41). (d) KSVD [81] + bicubic reconstruction (PSNR=27.57). (e) BM3D
[82] + bicubic reconstruction (PSNR=27.85). (f) NCSR [98] + bicubic reconstruction
(PSNR=27.58). (g) WNNM [51]+ bicubic reconstruction (PSNR=27.96). (h) Our ap-
proach (PSNR=28.53).
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Table 5.4: Image quality metrics calculated from the simulated dataset from patient B.

Image/Method CNR MSR PSNR XCOR SSIM

Test 1.79 ± 0.40 4.12 ± 0.17 17.86 0.9397 0.0867

Average 6.44 ± 4.49 18.67± 1.46 - - -

bicubic 3.44±1.60 8.83±0.48 24.41 0.9862 0.3587

KSVD [81] ±bicubic 5.38±3.54 13.19± 1.19 27.57 0.9937 0.6146

BM3D [82] ±bicubic 5.74±3.93 14.55± 1.44 27.85 0.9941 0.6340

NCSR [98] ±bicubic 5.52±3.68 13.52± 1.25 27.58 0.9937 0.6085

WNNM[51] ±bicubic 6.01±4.20 14.69± 1.34 27.96 0.9942 0.6392

Our Approach 6.71±4.90 16.64± 1.45 28.53 0.9950 0.6541

noised and interpolated image has greater diagnostic value for retinal pathologies. The
original SD-OCT images are very noisy and the retinal structures are not clearly visible.
If we interpolate such images without removing the noise, there will be no advantage in
terms of visual quality (see the image interpolated by bicubic interpolation only). However,
the retinal structures are easily identified in the interpolated image obtained from joint
denoising and interpolation.

The proposed approach significantly increases CNR and MSR metrics. The CNR and
MSR metrics obtained by the proposed approach are significantly greater than those ob-
tained by bicubic interpolation, KSVD [81] + bicubic, BM3D [82] + bicubic, NCSR [98]
+ bicubic, single frame WNNM [51] + bicubic. The proposed method denoised and inter-
polated the images with minimum image artifacts. We also compared our result with the
results obtained by Fang et al.[10] approach. Fang et al. [10] used sparse representation
approach to denoise and interpolate the individual B-scans and took the weighted average
of similar patches from the neighbouring B-scans. Interpolation is performed by learning
a mapping function between the 10 HR training set images and 10 LR training set images.
The HR and LR dictionaries and mapping functions are learned from the tranining set
images and store. They used different dictionaries for sparse representation and image
reconstruction. The LR dictionary is used for sparse representation of test image patch
and HR dictionary and mapping function are used for reconstructing the patch from the
sparse coefficients. For example let αl and Dl be the sparse vector and LR dictionary and
Dh be the HR dictionary. Let M be the mapping function trained between the LR and HR
images. Fang et al. [10] reconstructed the image using the following equation y = DhMαl.
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The PSNRs between the reference image and processed image obtained by Fang et al. [10]
were 24.56 db and 29.58 db for patient A and patient B images, respectively, which were
greater than that obtained by our method. However, in the method proposed by Fang et al.
[10]the processed images were calculated by averaging denoised patches from the 5 nearby
images, while in our method the PSNRs were calculated from a single frame. When indi-
vidual frames were denoised, interpolated and averaged, the PSNR significantly increased
and became 24.33 db and 29.15 db for patient A and patient B images, respectively, which
were comparable to those of the Fang et al. approach. In addition, our proposed method
does not require multiple imaging of a tissue, HR and LR training set images and a tedious
and time consuming learning algorithm which significantly increases both the acquisition
and computational speed.

5.3 Summary

In this chapter, we proposed two image processing algorithms for SD-OCT images. The
first algorithm removes noise from 5 B-scans extracted from the nearby locations of the
SD-OCT volume using WNNM method and then averages them to get a noise-free B-scan.
The second algorithm jointly denoises and interpolates B-scans from the nearby locations
of SD-OCT volume. It consists of two steps. The first step reduces noise from a series
of 2D B-scans in order to obtain a relatively noise-free HR image. In the second step the
information from the HR image is incorporated to enhance the resolution of individual B-
scans using SVD-based fusion approach. Both algorithms showed significant improvement
in the image quality in terms of PSNR, SSIM, XCOR, CNR and MSR.
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Chapter 6

Comparision of Super-resolution
Techniques Applied to Fundus
Images

The critical challenge in biomedical imaging is to optimally balance the trade-off between
the image resolution, SNR, and the acquisition time. Although acquiring an HR image is
possible, it is either expensive or time consuming or both. Resolution is also limited by the
physical properties of the imaging device, such as the nature and size of the input source
radiation and the optics of the device. SR, an off-line approach for improving the resolution
of an image, is free of these trade-offs. Over the past several years several methodologies,
such as interpolation, frequency domain, regularization, and learning-based approaches
have been developed for SR of natural images. In this chapter, we review some of these
methods and demonstrate the positive impact expected from SR of retinal images and
investigate the performance of various SR techniques.

6.1 Observation Model

It is important to know the parameters that degrade a retinal image before applying any
SR method on it. The blur created either by defocusing camera or motion degrades the
retinal image quality. Sampling an object at a frequency less than the highest frequency
contained in the object produces aliasing. Also, all retinal images contain some level of
noise. These image degradation factors can be incorporated into a mathematical model
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Figure 6.1: Super-resolution observation model. The LR images are the blurred, warped,
decimated, and noisy version of an HR image.

that relates the HR image to the observed LR image. To be more precise, let X be an
image degraded by motion blur (M) followed by camera blur (B) and decimation effect
(D). Furthermore, the image is deteriorated by the white Gaussian noise η created during
the acquisition process. The observation model that relates the HR image to the observed
LR image is

Y k = DBkNkX + ηk (6.1)

Y = HX + η. (6.2)

The SR methods estimate the image degradation model H and use it to reconstruct an
HR image X from a sequence of LR images Y . Figure 6.1 shows a schematic diagram of
the observation model. By using different values of k (i.e., different motion parameters,
blur, decimation and noise), different LR images can be created from an HR image.

6.2 Multi-frame Super-resolution

In this technique an HR image is reconstructed from a sequence of LR images. A schematic
diagram is depicted in Figure 6.2. There are a number of different approaches for recon-
structing a single HR image by pooling information from multiple LR images. This thesis
includes only the most common reconstruction-based SR approaches.

6.2.1 Interpolation-based Approaches

Interpolation is one of the simplest ways of improving the resolution of an image. It es-
timates new pixels within an image’s given set of pixels. The interpolation has proven
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useful in many practical cases. Most of the commercial software, such as Photoshop, Qim-
age, PhotoZoom Pro, and Genuine Fractals use interpolation methods to resize an image.
However, single image interpolation methods are incapable of integrating the information
that was lost during the acquisition process [99]. Therefore, we mainly focus on combining
a set of LR images to estimate an HR image using non-uniform interpolation methods.

The interpolation-based SR methods involve the following three intermediate steps:
registration, interpolation, and restoration. Image registration is the process of geometri-
cally aligning a set of LR images of the same scene with reference to a particular LR image
called the reference image. LR images have different sub-pixel displacements and rotations
from each other. Therefore it is very important to have an accurate estimation of motion
parameters before fusing them to create an HR image. Inaccurate estimate of motion pa-
rameters results in various types of visual artifacts that consequently degrade the quality
of the reconstructed image. The registration is performed in either the frequency domain
or the spatial domain. There are various techniques in each domain for estimating motion
parameters. The frequency domain approaches are described in more details in section
6.2.2. As for the spatial domain, Karen et al. [100] proposed an algorithm based on Taylor
expansion which estimates the motion parameters with sub-pixel accuracy. Bergen and col-
leagues [101] proposed a hierarchical framework for the estimation of motion models such
as planer and affine methods. Irani et al. [102] developed an interactive multi-resolution
approach for estimating motion parameters. To estimate motion parameters, some algo-
rithms map the whole image while others map only the features that are common among
the LR images [103]. The HR image and motion parameters can be simultaneously es-
timated using Bayesian methods. Hardie et al. [104] explain one such approach. The
Bayesian approaches are described in more detail in subsection 6.2.3. Besides registration,
the interpolation also plays an important role for estimating an HR image. There are many
different interpolation methods, yet the complexity of each method depends on the number
of adjacent pixels used to estimate the intermediate pixels. Commonly used interpolation
methods include nearest neighbor, bilinear and bicubic. Nearest neighbor is the most ba-
sic interpolation method that simply selects the closest pixel surrounding the interpolated
point. The disadvantage of nearest neighbor is the stair-step shaped linear features visible
in the HR image. The bilinear method takes a weighted average of the closest 2× 2 neigh-
borhood pixels to estimate the value of the unknown interpolated pixel. Similarly, bicubic
takes the closest 4 × 4 neighborhood pixels to estimate the value of the unknown inter-
polated pixel. In both of the latter methods higher weights are given to the closer pixels.
Since the shifts among the LR images are unequal, non-uniform interpolation methods are
required to fuse all LR frames into one HR frame. In 1992 Ur and Gross [105] developed a
non-uniform interpolation method for a set of spatially translated LR images using gener-
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alized multi-channel sampling theorem [105]. There are many other complex interpolation
approaches for resizing a single image, such as Cubic Spline, New Edge-Directed Interpola-
tion (NEDI) [106], and Edge-Guided Interpolation (EGI) [107]. In short, the cubic spline
fits a piecewise continuous curve, passing through a number of points. This spline consists
of weights and these weights are the coefficients on the cubic polynomials. The essential
task of the cubic spline interpolation is to calculate the weights used to interpolate the
data. NEDI [106] is a covariance-based adaptive directional interpolation method in which
interpolated pixels are estimated from the local covariance coefficients of the LR image
based on the geometric duality between the LR covariance and the HR covariance. EGI
[107] divides the neighborhood of each pixel into two observation subsets in two orthog-
onal directions. Each observation subset approximates a missing pixel. The algorithm
fuses these two approximate values into a more robust estimate by using linear minimum
mean square error estimation. These complex interpolation methods are very efficient and
preserve most of the image information; however, their processing time and computational
cost is higher than those of the commonly used interpolation methods. The information
obtained from registration methods is used to fuse a set of LR images. While fusing the
LR frames, pixel averaging methods are used. These methods blur the image; hence, image
restoration methods are also needed to remove the blur [99]. Estimation of the blur kernel
has an important role in predicting an HR image; however, many SR approaches assume a
known blur kernel for simplicity. The known blur kernel can help to estimate an HR image
from a set of simulated LR images; however, for real LR images, the motion blur and point
spread functions may lead to an unknown blur kernel [108]. Many algorithms are proposed
in Bayesian framework to estimate the blur kernel. Recently, Liu and Sun [108] proposed
a Bayesian approach of simultaneously predicting motion blur, blur kernel, noise level and
HR image. The blind deconvolution algorithm has been used when the information about
the blur kernel and the noise level were unknown. The registration, interpolation, and
restoration steps in the SR method can be conducted iteratively to achieve an HR image
from a sequence of LR images using an Iterative Back Projection (IBP) approach [102].
In this method, an HR image is estimated by iteratively minimizing the error between the
simulated LR images and the observed LR images. This approach is very simple and easy
to understand; however, it does not provide a unique solution due to the ill-posed inverse
problem. Another easily implementable SR approach is the Projection Onto Convex Set
(POCS), devised by Stark and Oskoui [109]. In this method, constraints sets are defined
to restrict the space of the HR image. The constraint sets are convex and represent cer-
tain desirable SR image characteristics, such as smoothness, positivity, bounded energy,
reliability, etc. The intersection of these sets represents the space of a permissible solution.
Thus, the problem is reduced to finding the intersection of the constraint sets. To find the
solution, a projection operator is determined for each convex constraint set. The projection
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Figure 6.2: The framework of reconstruction-based SR technique. An HR image can be
reconstructed by pooling information from many LR images.

operator projects an initial estimate of the HR image onto the associated constraint set.
By iteratively performing this approach an appropriate solution can be obtained at the
intersection of the k convex constraint sets.

6.2.2 Frequency Domain Approaches

Another popular approach for increasing the resolution of an image is the frequency domain
approach. Initially adopted by Tsai and Huang [110], the approach was expanded by many
researchers in order to formulate different SR methods. In frequency domain methods,
the LR images are first transformed into the Discrete Fourier Transform (DFT). Motion
parameters can be estimated in the Fourier domain by measuring the phase shift between
the LR images; since spatially shifted images in the Fourier domain differ only by a phase
shift [111]. The phase shift between any two images can be obtained from their correlation.
Using the phase correlation method, both the planar rotation and the horizontal and
vertical shift can be estimated precisely [111]. To minimize errors due to aliasing, only parts
of the discrete Fourier coefficients that are free of aliasing are used. After estimating the
registration parameters, the LR images are combined according to the relationship between
the aliased DFT coefficients of the observed LR images and these of the unknown HR image.
The data, after fusion, are transformed back to the spatial domain and reconstructed. The
advantage of the frequency domain method is that it is easy and best suited for the aliased
images since aliasing is easier to remove in the frequency domain than in the spatial domain.
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The disadvantage of the frequency domain method is that the observation model is limited
to global motion, so it works only for planar shifts and rotations [111]. The DFT has
been replaced by DCT [112] and Discrete Wavelet Transform (DWT) [113] to minimize
the reconstruction error.

6.2.3 Regularization-based Approaches

SR is an underdetermined problem with many solutions. Another interesting approach
for solving this ill-posed problem is utilizing a regularization term. The regularization
approach incorporates the prior knowledge of the unknown HR image to solve the SR
problem. Deterministic and stochastic approaches are two different ways of implement-
ing regularization. The deterministic approach introduces a regularization term, which
converts the ill-posed problem to a well-posed one

X = min
N∑
k=1

‖Y k −HkX‖2 + λR (6.3)

where R is the regularization term and λ is regularization constant. Various regularization
terms have been utilized to solve this ill-posed problem. The constrained least square
regularization method uses smoothness, and regularized Tikhonov least-square estimator
uses l2-norm as regularization [114]. The l2-norm does not guarantee a unique solution.
Farsiu et al. [115] exploited an alternative l1-norm minimization for fast and robust SR.
Zomet and colleagues [116] described a robust SR method for considering the outliers.
Recently, Mallate and Yu [117] proposed a regularization-based SR method which uses
adaptive estimators obtained by mixing a family of linear inverse estimators.

The stochastic approach, especially Maximum A-Posteriori (MAP) approach, is popular
since it provides a flexible and convenient way to include an a priori and builds a strong
relationship between the LR images and the unknown HR image. The method proposes
to find the MAP estimation of the HR image XMAP for which a-posteriori probability
P (X | Y ) is a maximum [99]

X̂MAP = min
X

P (X | Y ) (6.4)

Using Bayes theorem, the above equation can be written as [104]

X̂MAP = min
x

[logP (Y | X) + log (P (X))] (6.5)
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where P (Y | X) is the likelihood function and P (X) is the priori. Markov Random
Field (MRF) is commonly used as the prior model and the Probability Density Function
(pdf) of noise is calculated to determine the likelihood function [118]. The HR image is
computed by solving the optimization problem defined in Eq. 6.4. Several models such
as Total Variation (TV) norm, [119], l1-norm [120] of horizontal and vertical gradients,
Simultaneous Auto Regressive (SAR) norm [121] have been used for the prior image model.
Similarly, other frequently used prior image models are Gaussian MRF model, Huber MRF
model, discontinuity adaptive MRF model, the two-level Gaussian non-stationary model,
and Conditional Random Field (CRF) model [99].

All the above SR techniques assume that the blurring function is known. The blur can
be modeled by convolving the image with the point spread function; however, it requires
a strong prior knowledge of the image and blur size. The blind deconvolution algorithm
can be used when the information about the blur and the noise are unknown. The blind
deconvolution SR methods recover the blurring function from the degraded LR images
and estimate the HR image without any prior knowledge of blur and the original image
[122, 123]. The blur is calculated from another regularization term as shown in the following
equation

E(X, h) =
k∑
k=1

‖DHkX − Yk‖2 + αQ(X) + βR(h). (6.6)

The first term is the fidelity term, and the remaining two are regularization terms. The
regularization Q(X) is a smoothing term while R(h) is a probability density function (pdf)
term. The regularization is carried out in both the image and blur domain.

6.3 Single-frame Super-resolution

Learning-based SR methods extract the high frequency information, (lost during image
acquisition process), from the external sources (training set images) and integrate this
information with the input LR image to acquire a super-resolved image [124, 125, 126] .
Figure 6.3 shows the schematic diagram of learning-based SR. The training set consists of
many HR images and their simulated LR versions. The performance of the learning-based
SR methods highly dependent on the training set data. The training set images should
have high frequency information, and be similar to the input LR image [124]. To reduce the
computational complexity, the learning-based methods are usually performed on the image
patches. The learning-based SR methods include the following four stages as depicted in
Figure 6.4. First, the HR patches and their simulated LR version are stored in the training
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Figure 6.3: An illustration of learning-based SR.

set in pairs. The features of the training set patches are extracted. A number of different
types of feature extraction models can be used such as luminance values, DCT coefficients,
wavelet coefficients, contourlet coefficients, PCA coefficients, gradient derivatives, Gaussian
derivatives, Laplacian pyramid, steerable pyramid, feature extracted from bandpass filter,
low and high pass frequency components, quaternion transformation, histogram of oriented
gradients, etc. A summary of various feature extraction models is found in [124]. Second,
features of the input LR patches are extracted. Third, the features extracted from the
input patches and training set patches are matched and the best matched pair from the
training set is selected. In recent years a number of learning methods for matching the
features have been proposed. The most common learning models are Best Matching, MRF,
Neighbor Embedding, and Sparse Representation Model [124]. Fourth, the learned HR
features are integrated into the input LR patch to achieve a super-resolved patch. Finally,
all super-resolved patches are combined to generate the HR image.

The example-based (EB) SR method proposed by Kim and Kwon [126] has outper-
formed several state-of-the-art algorithms in single image SR. This method is based on the
framework of Freeman et al. [125] which collects pairs of LR and HR image patches in the
training stage. In the learning stage, each LR patch of the input image is compared to the
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Figure 6.4: Flow chart of learning-based SR.
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Figure 6.5: Flow chart of SR via sparse representation algorithm.

stored training set LR patches, and using a nearest neighbor search method a nearest LR
patch and its corresponding HR pair are selected. However, this approach often results in
a blurred image. Kim and Kwon [126] modified this approach by replacing nearest neigh-
bour search with sparse kernel ridge regression. In their approach, kernel ridge regression
is adopted to learn a map from input LR patch to training sets HR and LR patch pairs.
This method also produces some blurring and ringing effects near the edges which can be
removed using post processing techniques [126].

Sparse representation has become a major field of research in signal processing. Utilizing
this approach, several researchers have proposed learning-based SR algorithms [127, 128,
80, 129, 84, 98]. Sparse representation based SR computes the sparse approximation of
input LR patch and uses the coefficients of approximation to estimate an HR patch. In this
method, two dictionaries Dh and Dl are jointly trained from HR and LR patches. There is
a need to enforce the similarity of sparse coding between the LR (j = Dlβ) and HR patch
(l = Dhα). The dictionary extracted from the HR patch Dh is applied with the sparse
representation of the LR patch (Dhβ) to recover the super-resolved patch. The schematic
illustration of SR via sparse representation as proposed by Yang, Wright, Huang, and Ma
[127] is shown in Figure 6.5.
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In sparse representation-based approach, the final super-resolved image patch is gener-
ated from the combination of sparse coefficients of the LR patch and the HR dictionary;
the performance of the method depends upon both the sparse coefficients of LR patch and
the HR dictionary. Many researchers have proposed new algorithms to better estimate the
HR dictionary and sparse coefficients of the LR image. Dong et al. [80] proposed a clus-
tered based sparse representation model called Adaptive Sparse Domain Selection (ASDS)
to improve the dictionary. In this approach, the image patches are gathered into many
clusters and a compact subdictionary is learned for each cluster. For each image patch, the
best subdictionary can be selected that can reconstruct an image more accurately than a
universal dictionary. In another study, Dong et al. [129] proposed sparse representation-
based image interpolation through incorporating the image non-local self-similarities to the
sparse representation model. The term self-similarity refers to the similarity of image pixel
values or structure at different parts of the image. The algorithm included non-local au-
toregressive model as a new fidelity term to the sparse representation model which reduces
the coherence between the dictionaries, and consequently makes the sparse representation
model more effective. Dong and colleagues not only estimated better HR dictionary for
each image patch, but they also utilized the image non-local self-similarity to obtain good
estimation of the sparse representation coefficients of LR image. Recently, they have pro-
posed two models for extracting sparse coding coefficients from the LR image as close to
the original image as possible using non-local sparsity constraints. These are the Cen-
tralized Sparse Representation (CSR) model [84] and the Nonlocally Centralized Sparse
Representation model (NCSR) model [98].

6.4 Experimental Results

MATLAB software (version R2008a) was used to code and/or to run the programs. The
MATLAB codes were downloaded from the websites of respective authors, and the param-
eters of each method were set according to the values given in their corresponding papers.
A computer with the operating system 64 bit version of Windows 7, Intel (R) Pentium
(R) CPU G620T 2.2 GHz processor, and 4GB RAM was used to run the simulations. The
screen resolution was 1920×1080. Retinal fundus images taken with a fundus camera (Non-
Mydriatic Auto Fundus Camera, Nidek AFC-230, Japan) were used to run the simulations.
The images were taken from the author who has no ocular pathology. SR approaches were
applied separately for real LR images and simulated LR images. Simulated LR images are
viewed as the shifted, rotated and downsampled version of an HR image. We cropped 3
important sections (256× 256 pixels) from 3 different fundus images to run SR in different
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Figure 6.6: HR test images created by cropping three different sections of different fundus
images and their corresponding LR versions.
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Table 6.1: PSNR and SSIM indices between the original and the super-resolved images
obtained from a set of LR simulated images using different multi-frame SR approaches.

Optic disc Macula Blood vessels

Methods PSNR SSIM PSNR SSIM PSNR SSIM

Fourier 36.67 0.8944 42.47 0.9596 42.14 0.9579

Robust regularization 39.22 0.9393 44.54 0.9727 43.69 0.9703

IBP 39.79 0.9455 44.51 0.9712 42.90 0.9635

POCS 39.99 0.9481 44.13 0.9681 41.29 0.9517

TV norm 42.57 0.9626 46.13 0.9789 45.33 0.9762

L1 norm 42.31 0.9606 45.98 0.9781 45.20 0.9757

SAR norm 42.48 0.9632 46.23 0.9795 45.51 0.9777

parts of the fundus image. The cropped sections were the optic disc, macula and retinal
blood vessels (Figure 6.6). Four 128 × 128 pixels LR images were created from these HR
images. The shift and rotation parameters were adjusted manually. Horizontal and vertical
displacements were set to (0, 0), (−3, 2), (2, 1) and (−2, 3) and rotation angles were set to
(0, 5, 3,−2) degrees, respectively, to create 4 LR images. The downsample factor was set
to 2. Finally, Gaussian noise was added to the LR images to maintain the SNR of 40dB.
The first LR image is the reference LR image which is a downsampled version of the HR
image with the shift and rotation parameters at zero. The reference LR images are shown
in Figure 6.6 with their original. Figure 6.7 shows all 4 LR images that were created from
the cropped optic disc image. We used these simulated LR images to recover the original
HR image (resolution 256× 256) using various SR methods.

Frequency domain SR approaches [111] were first examined on the simulated LR fundus
images. These images were transformed into the Fourier domain, and shift and rotation
parameters between the LR and reference images were calculated based on their low-
frequency, aliasing part. Shifts were estimated from the central low frequency components
in which the number of low frequency components used was 10 and the rotations were
estimated from a disc of radius 0.8. By incorporating these motion parameters on the
simulated LR images, an HR image was reconstructed using cubic interpolation. Besides
cubic interpolation, the performances of IBP [102], Robust Regularization [116], and POCS
[109] were also examined in Fourier domain. We employed MATLAB software prepared by
Vandewalle, Su and Vetterli [111] to implement these algorithms. For IBP, an upsampled
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Figure 6.7: LR images (resolution 128×128) obtained from an optic disc using observation
model. These images were used to run all the multi-frame SR techniques.
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version of the reference LR image was used as an initial estimate of HR image. The
upsampling was performed using bicubic interpolation. The IBP created a set of LR images
from the initial estimate of HR image using the motion parameters estimated in Fourier
domain. The estimate was then updated by iteratively minimizing the error between
the simulated LR images and test LR images based on the algorithm developed in [102].
Robust regularization further incorporates a median estimator in the iterative process to
achieve better results. We implemented the robust regularization algorithm proposed by
Zomet and colleagues [116]. The POCS algorithm which reconstructs an HR image using
projection on convex sets was examined only for the planer shift.

Similarly, Bayesian SR methods were studied and their robustness on the LR fundus
images was tested for various prior models. We used algorithms and MATLAB software
prepared by Villena, Vega, Babacan, Molina and Katsaggelos [121] for the simulation. Total
Variation (TV) [119], l1 norm of the horizontal and vertical gradients [120], and Simultane-
ous Auto Regressive (SAR) [121] were used as image prior models. The motion parameters
and downsampled factor were kept unchanged between the Fourier domain methods and
Bayesian methods for fair comparison except for POCS in which planar rotation was not
applied. The simulated 4 LR images were used as input. The algorithm utilized hierarchical
Bayesian model where the model parameters, registration parameters and HR image were
estimated simultaneously from the LR images. Variational approximation was applied to
estimate the posterior distributions of the unknowns. The algorithm terminated when ei-
ther a maximum number of iterations (k=100) or the criterion ‖xk−xk−1‖2/‖xk−1‖2 < 10−4

where xk is the kth estimated HR image, was satisfied. The Bayesian methods showed the
highest PSNR value compared to the other multi-frame SR methods. However, the TV
norm, l1 norm of the horizontal and vertical gradients and SAR norm priors model led to
over-smooth non-edge regions of the image. Figures 6.8, 6.9 and 6.10 show the results of
various multi-frame SR approaches applied to the LR images of optic disc, macula and
retinal blood vessels.

Single image interpolation methods were also studied on retinal images. The input LR
image was created by direct subsampling of the original image by a factor of 2. The LR
retinal image was upscaled to double its size 256 × 256 using nearest neighbor, bilinear
and bicubic interpolations. The interpolated images were compared with the original
image. The PSNR and SSIM indices for bicubic method were greater than those of the
nearest neighbor and bilinear interpolation. The complex interpolation methods, such
as Cubic Spline [117], NEDI [106], and EGI [107] were also applied to the downsampled
LR images of optic disc, macula and retinal blood vessels. Noise was not added to the
LR image of single image interpolation methods so they showed better PSNR and SSIM
indices. The comparisons between various single image interpolation approaches in terms
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Figure 6.8: Results from different multi-frame SR approaches for LR optic disc images.
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Figure 6.9: Results from different multi-scale SR approaches for LR blood vessels.
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Figure 6.10: Results from different multi-frame approaches for LR macula images.
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Table 6.2: PSNR and SSIM indices between the original and the reconstructed images
obtained from various single image SR approaches.

Optic disc Macula Blood vessels

Methods PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 41.87 0.9592 47.06 0.9831 46.01 0.9802

EGI[107] 41.84 0.9593 46.42 0.9814 45.83 0.9797

NEDI[106] 41.88 0.9609 46.50 0.9817 45.83 0.9798

SME[117] 42.71 0.9663 47.01 0.9835 46.64 0.9828

Cubic interpolation 42.14 0.9621 46.60 0.9823 46.20 0.9812

Kim et al. [126] 43.34 0.9694 47.75 0.9851 47.12 0.9838

Yang et al. [128] 43.35 0.9704 48.24 0.9868 47.45 0.9855

Sparse interpolation [129] 42.01 0.9598 44.28 0.9713 44.69 0.9739

ASDS [80] 41.69 0.9549 45.43 0.9750 44.32 0.9703

CSR [84] 42.31 0.9597 46.11 0.9781 45.27 0.9752

NCSR [98] 43.75 0.9720 48.13 0.9865 47.64 0.9861

of objective quality metrics (PSNR and SSIM) are shown in Table 6.2. The performance
of regularization-based SR with Sparse Maxing Estimators (SME) [117] was also examined
and that showed better PSNR and SSIM indices.

We examined EB method proposed by Kim and Kwon [126] on the cropped fundus
images. We chose this method since it has outperformed many state-of-the art algorithms
and also because it removes blurring and ringing effects near the edges [126]. The input
LR images were created by downsampling the original image by a factor of 2. Noise was
not added to the downsampled image. The training set was created by randomly selecting
HR generic images. The LR training images were obtained by blurring and subsampling
HR images. Thus, the training set constituted a set of LR and HR image pairs. The
algorithm was performed on image patches. In this method, the input LR patch was first
interpolated by a factor of 2 using cubic interpolation. Next, kernel ridge regression was
adopted to learn a map from input LR patch to training set HR image and LR patch
pairs. The regression provided a set of candidate images. The super-resolved image was
obtained by combing through candidate images based on the estimated confidences. The
artifacts around the edges of the reconstructed image were removed by utilizing image
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prior regularization term. Better PSNR and SSIM values are noticed in this method.

Similarly, sparse representation-based SR techniques were examined on the LR fundus
image. We extracted 5× 5 patches with overlap of 1 pixel between adjacent patches from
the input image. The HR dictionaries and sparse coefficients were learned from both the
training set HR images and LR test image. We used the method and software proposed
by Yang, Wright, Huang and Ma [128] to run the simulation. In addition, ASDS [80],
sparse interpolation [129], CSR [84], and the most recent NCSR [98] methods proposed by
Dong et al. were also implemented on LR patches. The latter two methods introduced
the centralized sparsity constraint by exploiting non-local statics. Both the local sparsity
and non-local sparsity constraints are combined in this approach. The centralized sparse
representation approach approximates the sparse coefficients of the LR image as closely as
the original HR image does which results in better image reconstruction and hence better
PSNR and SSIM indices. Figures. 6.11, 6.12 and 6.13 show the results of various single
image SR approaches applied to the LR images of optic disc, macula and retinal blood
vessels.

Finally, multi-frame SR techniques were examined on multiple real retinal images. A
fundus camera was fixed manually on the right eye of the author and six consecutive
images were taken. The participants head was fixed using a chin rest. To eliminate pupil
constriction, one drop of pupil dilating agent (Tropicamide 1%) was used. The dilating
agent also minimized the accommodation effects by paralyzing the ciliary muscles. Six
images were acquired with small shifts and rotations due to the eye motions. The images
were then cropped to obtain the desired sections. We cropped a small retinal blood vessel
section of the fundus image in this study. The cropped sections were 128×128 pixels. One
such section is shown in Figure 6.14 (top left corner).

In the Fourier domain, the shifts between the images were estimated from the cen-
tral 5% of the frequency and the rotations were estimated from a disc of radius 0.6 as
described by Vandewalle et al. [111]. The images were registered in the Fourier domain
and then reconstructed to obtain an HR image using cubic interpolation. The resolution
was increased by a factor of two. The robust regularization, IBP and POCS were also
tested on the real images. The results showed that cubic interpolation and POCS methods
estimated the blur HR images. These images were worse than the image estimated by
a single image bicubic interpolation method while the HR images estimated by IBP and
robust regularization had better visual quality.

A hierarchical Bayesian algorithm was used to estimate the registration parameters in
Bayesian methods and the blur was assumed to be a 3× 3 Gaussian with variance 1. We
examined TV-prior, l1-prior and SAR-prior models; however, these models led to over-
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smooth non-edge regions of the image. Therefore, combined TV-SAR and l1-SAR prior
models were used as described by Villena et al. [121]. The HR images obtained from
these methods are shown in Figure 6.14. The image obtained from single image bicubic
interpolation is also shown for comparison. The HR images suffered from registration
errors more likely due to the fact that most of the SR algorithms work only with planar
motion and rotations. The real images especially retinal images taken from a fundus
camera may have non-planar motions due to the eye motion. A more precise knowledge
of motion parameters is needed to solve this problem. The registration error may also be
minimized by taking images from dynamic instruments. Last but not least, we examined
blind deconvolution-based SR approach to combine multiple LR images to estimate an
HR image as described by Sroubek and Flusser [122]. This method does not assume any
prior information about the blur; it requires only the approximate size of the blur. In our
case we set 3× 3 blur kernel size. The algorithm built and minimized a regularized energy
function given in equation (6.6) with respect to original image and blur. The regularization
is conducted in both the image and blur domain. Total variation (TV) regularization was
used for our simulation. The HR image predicted by a blind deconvolution method showed
a more even spread of the brightness and the edges are sharper and clearer. Among all of
the above multi-frame SR techniques, blind deconvolution showed the best results for our
LR images.

6.5 Discussion and Conclusion

In this chapter, we demonstrated the possibility of resolution enhancement of retinal images
using SR techniques. Three important sections of the fundus images, namely optic disc,
macula and retinal blood vessels were considered for the simulations. In the first part,
we simulated 4 LR images by shifting, rotating, downsampling and adding Gaussian noise
to an HR image. A number of important features of the fundus image are missing or
less clearly visible in the LR images. For example, the arteries and veins emerging from
the margins of the optic disc are less clearly visible. The connections between the optic
disc and some of the blood vessels are not distinct in the LR optic disc images. The
borderlines of blood vessels are less distinct in retinal blood vessels image. Similarly, there
are several tiny arteries (cilioretinal arteries) that supply additional blood to the macular
region that are also less clearly visible in LR macula images. In addition, the background
of the retina is unclear and therefore it is difficult to identify the cilioretinal arteries. The
foveal reflex is considerably dim in LR macula images. We applied SR techniques to the
images of a healthy normal eye in this thesis; the application of SR techniques might
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Figure 6.11: Results from various single-image SR approaches for LR optic disc images.
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Figure 6.12: Results from various single-image SR approaches for LR macula images.
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Figure 6.13: Results from various single image SR approaches for LR blood vessel images.
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Figure 6.14: Results from various multiframe SR approaches for real retinal images.
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be more important for the images taken from pathological eyes, such as DR and AMD.
Microaneurysms, hemorrhages, exudates and cotton wool spots, drusen, and abnormal and
fragile new blood vessels are all indicators of retinal diseases. The retinal lesions associated
with retinal diseases can be enhanced by using SR techniques which may help to improve
early diagnosis of retinal diseases.

SR techniques give magnified image by fusing multiple LR images. The features of
an image are also magnified in the same factor so they are visually clearer in a larger
image. This can be seen in many super-resolved images shown in figures 6.8 to 6.13. The
features which are visually less distinct in LR images are more distinct in super-resolved
image and the connection between the optic disc and blood vessels are comparatively
clearer in super-resolved images given by SME [117], EB [126] and sparse representation
[128] methods (Figure 6.11). However, some SR techniques such as sparse interpolation
and ASDS over-smooth the image, and therefore the important features are lost from the
image. The cilioretinal arteries and foveal reflex in super-resolved images given by EB
[126], SME [117], and sparse [128] methods are as clear as in the original image while
those in super-resolved images obtained from sparse interpolation and ASDS [80] methods
are significantly smoothed out (Figure 6.12). The other SR techniques show intermediate
performance. While many features have been recovered in the super-resolved images, the
edges or textures lost during the decimation process could not be recovered completely.
The EB [126] and sparse representation [128] methods show good results and can be used
when sufficient number of input LR images are unavailable and/or when a higher resolution
factor is required. The performance of these algorithms may be improved using a larger
set of training images and more relevant learning method.

In the second part, we implemented SR techniques on cropped version of 6 multiple
acquisition retinal images taken with a fundus camera. The real images were first normal-
ized to reduce the effect of different levels of illumination in different images. The Fourier
method [111] was used to estimate the registration parameters and these parameters were
subsequently used to fuse LR images. The Fourier-based cubic interpolation method signif-
icantly blurred the reconstructed image. The IBP, robust regularization and single image
bicubic interpolation method introduced small amount of ringing effect; however, they pre-
served most of the image features. The Bayesian approaches performed registration and
fusion tasks simultaneously. They provided visually pleasant images; however, the HR
images reconstructed by the Bayesian approaches were over-smoothed and many image
details were lost. The blind deconvolution approach provided much sharper and cleaner
reconstructed image than others; however, the HR image was not free of artifacts. Never-
theless, the algorithm is more realistic because it doesn’t need prior information of the blur.
In the real image SR approaches we utilized only 6 LR images to perform SR; better results
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can be obtained if the number of LR image is increased. Meitav and Ribak [130] used more
than 200 retinal LR images to achieve an HR image using a weighted average method. Fur-
thermore, the registration methods are restricted to the planar translational and rotational
while the eye movements may induce non-planar variations between LR images. The vari-
ations in the ocular surface such as the dynamic nature of the tear film, accommodation
and cardiopulmonary effect of the eye may yield variations in the LR retinal images. Small
sub-pixel error in the registration may result in different estimation. Therefore, a robust
motion estimation algorithm is essential to perform SR in retinal images. Furthermore,
many algorithms including Bayesian approaches assume spatially uniform Gaussian blur
which is usually impractical. To avoid damage to the eye, the retinal images are taken in
low light condition, and therefore suffer from low signal to noise ratio. Most of the SR
algorithms deteriorate when noise is present in the image; therefore, a method which is
more robust to noise while preserving image features is essential.

6.6 Summary

In summary, we demonstrated resolution enhancement of retinal images using image pro-
cessing methods. While we investigated the performance of various SR techniques, we
are unable to present the details of each method in this thesis. The reader is advised to
refer to the related reference papers for specific implementation details. Since the codes
were downloaded from the websites of the respective authors and the parameters of each
method were set according to the values given in their corresponding papers, the differ-
ences in PSNRs and SSIMs between various SR approaches may be due to the differences
in techniques, and/or their parameters. We refer the interested reader to visit the webpage
http://quark.uwaterloo.ca/ dthapa which contains the MATLAB source code for various
SR techniques developed by several groups of researchers.
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Chapter 7

Conclusion and Future Directions

7.1 Conclusions

This dissertation discusses the application of image restoration methods on retinal images.
The dissertation begins with introducing imaging instruments such as OCT, and the quality
of the images provided by imaging instruments. A raw image taken with an imaging
instrument usually goes through a post-processing stage. The purpose of post-processing
is to improve the image quality. Image denoising and interpolation are two important post-
processing techniques applied to retinal images. In this thesis, we developed new denoising
and interpolation algorithms for OCT images that outperform several existing algorithms.

Sparse representation is the most compact representation of a signal. The effectiveness
of the signal representation depends mostly on the choice of dictionary. A dictionary can
be created in two ways. The analytical-based dictionaries are created by changing the
parameters of a known mathematical function, while the learning-based dictionaries are
trained from a training set. Analytical-based dictionaries are simple and can be created
very fast; however, their performance depends on the nature of the signal. There is not a
single dictionary that works well for all kinds of signals. On the other hand, trained dictio-
naries are made for a specific signal, and therefore perform better than the analytical-based
dictionary. Nonetheless the trained dictionary is not flexible and the computational com-
plexity of training a dictionary is inevitable. We created a new analytical-based dictionary
(nonlinear dictionary) that addresses these challenges to some extent. The proposed dic-
tionary performed better than DCT and Haar dictionaries and does not require a time
consuming learning process. The proposed dictionary is a hybrid dictionary which con-
sists of a diverse set of atoms; therefore, it provides less reconstruction error not only for
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harmonic and non-harmonic signal reconstructions but also for image reconstruction. We
implemented our NL dictionary for fundus and OCT image reconstruction. The results
showed that image reconstruction improved (in terms of PSNR) with the addition of each
set of NL atoms. The NL dictionary performed better than DCT and Haar dictionaries
for fundus and OCT image reconstruction; however, its performance was slightly poorer
than the trained dictionary. The NL dictionary is appropriate for medical images where
the quality of the reconstructed image is very important. KSVD dictionary provides the
best quality images; however, it needs high storage space and therefore it is not suitable
for medical images. Hospitals need to store lots of images from the patients, sometimes
for a very long time to allow proper follow up. The NL dictionary on the other hand is
suitable for applications where lots of images need to be stored. Similarly NL dictionary
can be used for telemedicine. Speckle noise is inherent in OCT images. In chapter 4, we
utilized our NL dictionary for speckle noise reduction in SD-OCT images. The denoising
method uses B-scans taken from a nearby location of SD-OCT volume, therefore, it does
not require multiple scanning of identical locations. The aforementioned significantly re-
duces the scanning time. B-scans from nearby locations of SD-OCT volumes are registered
and simultaneously denoised using a sparsity-based approach. Finally the median pixels
of the denoised patches from the nearby frames are chosen to reconstruct an image that
further enhances the denoising. The proposed multi-frame denoising approach is capable
of reducing the speckle noise from the SD-OCT images while preserving the image features.
Since there is a clear trade-off between the image feature preservation and speckle noise re-
duction, our denoising method provides an image without degrading the retinal structures.
Although the K-SVD dictionary provides better quality images, it has a much longer com-
putation time. Due to its inevitably long computation time, the KSVD dictionary cannot
be applied in real time.

The computation time can also be reduced by utilizing a low-rank approximation.
There are several applications of low-rank approximation. In this thesis however, we only
explained its application in reconstruction of a noise free image from a noisy image. In
our denoising method, the B-scan was divided into several small matrices consisting of
non-local similar patches. Block matching algorithm was used to search for the non-local
similar patches and stacked them into a matrix. Each column of the matrix consisted of
noisy patches from the image. A noise free patch matrix was obtained from noisy patch
matrix using WNNM. Finally the denoised patches from the nearby frames were averaged
to enhance the denoising. The denoised image obtained from the proposed approach was
better than those obtained by several state-of-the-art methods. In the second part of the
Chapter 5, we extended the proposed denoising approach for joint denoising and interpo-
lation of SD-OCT images. The multiple denoised frames were interpolated and fused to
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get an HR image. The information of the HR image were incorporated to denoise and in-
terpolate individual frames. We used SVD fusion method to add information from an HR
image to the test image. The proposed denoising approach has several advantages. First,
it does not require multiple imaging of one location. Regular and fast scanning machines
can be used to acquire noisy images from an eye, significantly reducing the scanning time
and hence the image artifacts due to eye motion. The LR images taken by low cost OCT
can be simultaneously denoised and interpolated to acquire an HR, high SNR image.

Finally we examined the possibility of resolution enhancement of fundus images using
several SR techniques. Previously written and publicly available MATLAB codes were
downloaded and their performance on fundus images were examined. Three important
sections of the fundus images, namely optic disc, macula and retinal blood vessels, were
cropped from the fundus images and were used to study the effectiveness of the SR tech-
niques. The SR techniques were compared with both the simulated LR images and real
experimental images. A number of important features of the fundus image were missing
or less clearly visible in the LR images. These features were magnified by the SR tech-
niques so that they were clearer in the super-resolved images. However, when used in real
experimental images, the SR techniques provided image artifacts. This could be due to
eye movements which may induce non-planar variations between LR images. Therefore, a
robust motion estimation algorithm or an eye tracking system is required to perform SR
on real experimental images.

7.2 Future Directions

The NL dictionary has lots of room for improvement. It is possible that other NL atoms
can further reduce signal reconstruction error; therefore, a possible future work is to look
for dictionary atoms that provide better performance. We added a set of evenly selected
phases between 0 to 2π to the conventional DCT atoms to create a phase added dictionary.
The performance of the phase added dictionary can be improved by adding non-linear
phases so that the dictionary correlates better with the signal. Besides, the NL dictionary
consists of many parameters and some of them are not well defined. These parameters
should be clearly defined to make generating the atoms easier and the dictionary more
flexible. For example, polynomial atoms were created using predefined set of coefficients
which were not optimized. The coefficient optimization may improve the performance of
the NL dictionary for signal reconstruction. We can also adopt dictionary optimization
techniques to optimize the atoms of the dictionary so that the size of the dictionary is
reduced without degrading its performance. We applied NL dictionary for fundus and
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OCT image reconstruction and image denoising. The effectiveness of the dictionary can be
examined for other image restoration processes such as feature extraction, interpolation,
image compression and automated detection.

The sparsity-based denoising method proposed in Chapter 4 can be further extended to
image interpolation. There is a high degree of similarity between the LR and HR images.
The learning technique can be used to find the matching parameters between the test LR
image and the training set HR images. The matching parameters can be incorporated to
the LR image to increase their resolution. The efficiency of denoising can be increased by
training a KSVD dictionary from HR images from the same location of retina.

In Chapter 5, we proposed a joint denoising and interpolation technique for SD-OCT
images. In this technique we implemented simple bicubic interpolation method to fuse
multiple images since this method is very easy and computationally fast. A better SR
technique can be employed to improve the results.

Chapter 6 describes a variety of techniques for SR of fundus images. We implemented
super-resolution techniques on gray-scale images. The micro scale retinal structures less
clearly visible or missing in the LR images were enhanced in the super-resolved images.
These structures were magnified in the super-resolved images to enhance visibility. How-
ever, fundus color also help clinicians to detect early stages of retinal diseases. Therefore,
another future work would be applying SR techniques on fundus color images. Moreover,
the images used in chapter 6 were taken from healthy individuals. It would be interesting
to examine the performance of the SR techniques on images of patients to verify the clinical
or diagnostic value of these software. Findings of such studies could improve diagnosis of
retinal diseases.
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