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Abstract

Cuprate high temperature superconductors have been the subject of intense investiga-
tion since their discovery in 1986. The nature of the pairing mechanism in these uncon-
ventional superconductors does not seem to be mediated by phonons, as in conventional
superconductors, and thus remains a puzzle. The superconducting phase emerges from
doping holes (or electrons) into the CuO2 planes of an anti-ferromagnetic Mott insulator,
producing a wealth of electronic ordering phenomena in many of the cuprate families. One
of these phases is an incommensurate charge ordered state, known since the mid 90’s to
occur in La-based cuprates along with incommensurate spin ordering and compete with
superconductivity. Recent advances in experimental capabilities, notably the ability to
perform resonant diffraction experiments with soft x-rays, which can be made sensitive to
holes in Cu 3d and O 2p orbitals, have provided new opportunities to learn about these
charge ordered states. The study of charge order in cuprate superconductors by resonant
soft x-ray scattering is the subject of this thesis. The main results are as follows.

The energy dependence of the resonant scattering intensity sensitive to holes in Cu
3dx2−y2 and O 2px,y orbitals was shown to result from modulated orbital energy levels
rather than directly due to charge modulations. This is notable, as prior interpretations
of this scattering signature were taken as direct evidence for a sizeable charge modulation,
whereas this result indicates considerably smaller modulation amplitudes. The applica-
bility of this model was first demonstrated for La1.475Nd0.4Sr0.125CuO4, but subsequently
validated for YBa2Cu3O6+x as well. This commonality hinted at a largely similar type of
charge ordering in these different families, despite important structural and compositional
differences. Moreover, the applicability of this model in YBa2Cu3O6+x, along with studies
of the temperature and momentum dependence of the scattering signature, demonstrated
that the chain layer of YBa2Cu3O6+x, which supports its own type of order involving full
and empty CuO chains, was not responsible for the observed charge order and argued for
it being an intrinsic property of the CuO2 planes. This crucial distinction has now helped
to affirm charge order as a generic feature of hole-doped cuprates. This point has since
been further established by the observation of charge ordering in other cuprate families.

More recently, there has been a great deal of interest in determining the symmetry of
the charge density waves, as theory has predicted a d type symmetry on the O 2px,y bonds
surrounding Cu sites. To address this, an experiment on La1.875Ba0.125CuO4 involving
a special scattering geometry was performed. The relative d and s′ symmetry compo-
nents were determined by modelling of the polarization and geometry dependence of the
scattering intensity and mapping this to a theoretical construct to provide quantifiable
symmetry components. This revealed a dominant s′ symmetry, in contrast to d symmetry
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in other cuprate families recently identified by scanning tunnelling microscopy. The strong
incommensurate spin order in La2−xBaxCuO4 was argued to play a role in favouring this
symmetry arrangement.

The role of disorder in the charge density wave order seen in YBa2Cu3O6+x was also
investigated. Rather than introducing substitutional impurities, disorder was modified
by intentionally destroying the chain order. A special experimental procedure was used to
ensure the comparability of the scattering intensities and peak positions allowing for subtle
differences to be identified reliably. This experiment revealed that the presence of ordered
chains in YBa2Cu3O6+x enhances the scattering intensity from charge density waves in
the CuO2 planes, but has no impact on the correlation length, incommensurability and
temperature evolution of the charge density wave order, possibly by altering the balance
between superconducting and charge density wave order parameters.

Finally, resonant scattering studies of YBa2Cu3O6+x for a number of compositions
were undertaken to expand upon the known doping evolution of important characteristics
of the charge density wave order, such as the onset temperature, correlation length and
incommensurability. New phase diagrams were constructed revealing additional details of
their doping dependence. Notably, charge density wave order is observed at p = 0.058 in
a sample very near the low-p limit of the superconducting dome. This argues to extend
the dome of charge order down to p ∼ 0.05, roughly where superconductivity ceases.
This further demonstrates the existence of coexisting spin and charge density waves in the
0.05 < p < 0.08 region of the phase diagram. Differences in the doping dependence of
the charge order aligned with the a and b crystal axes were also identified by this study,
suggesting two partially overlapping domes and possibly faster extinction of the charge
density wave order along a due to competition with incommensurate spin density waves
also aligned with a in the low doping regime.
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Chapter 1

Introduction

1.1 Foreward

As explained on page iii, chapters 3-6 are structured as standalone publications. It should
therefore be possible to read these chapters independently, in any order. However, from
such a reading it might be difficult to place the significance of their content into a broader
context. This chapter will thus serve to provide such a broader context. Additionally, to
non-specialists, the technique of resonant soft x-ray scattering may be unfamiliar. Chapter
2 will thus review resonant soft x-ray scattering, aiming to provide a suitable theoretical
framework and general methodological details that underpin the experiments and analyses
presented in the following chapters.

1.2 Historical context

1.2.1 High temperature superconductivity

High temperature superconductivity (HTSC) in the copper oxides (cuprates) was discov-
ered in 1986.[5] In many ways, this discovery defied conventional thinking about super-
conductivity. For one, their record high critical transition temperatures (Tc) could not
readily be explained by the phonon mediated electron pairing mechanism used with great
success to describe conventional superconductors in the Migdal-Eliashberg extension of
Bardeen-Cooper-Schrieffer (BCS) theory[6, 7, 8] Moreover, the pairing gap ∆ was shown
to d-wave symmetry in the cuprates, rather than isotropic s-wave symmetry, with nodes
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and sign changes occurring at diagonal wavevectors in momentum space (see Fig. 1.1).[9]
Additionally, the crystal structure and and phase diagrams of the cuprates contradicted the
famous Matthias rules, which said that to increase Tc one should search for cubic crystals,
preferably d-electron metals with an odd number of valence electrons, that were should
not exhibit magnetic phases or metal-insulator transitions.[10] Instead, cuprates have lay-
ered crystal structures with quasi two-dimensional CuO2 planes (see Fig. 1.2) and a com-
plex phase diagram (see Fig. 1.3) that includes both magnetic order and metal-insulator
transitions.[11, 12] Also unexpectedly, at temperatures just above Tc the cuprates do not
exhibit normal Fermi-liquid behaviour, instead retaining a partially gapped Fermi surface
up to the ‘pseudogap’ transition temperature T ∗.[13, 14] That these phenomena could not
readily be explained by the very successful BCS theory sparked a flurry of activity to
resolve this astounding mystery.

Despite nearly three decades of intensive research, and more than 100,000 research
papers on the subject,[15] the mechanism for HTSC in the cuprates remains unclear. Al-
though this may seem discouraging, we should not forget that 1) it took nearly 50 years
for BCS theory to emerge (1957) after conventional superconductivity was discovered in
1911,[16] 2) cuprates still hold the record for the highest Tc, despite seven new classes
of superconductors having been discovered since 1986,[17] and 3) that there is still great
potential if this problem can be solved.

This potential is largely associated with the ultimate goal of developing room tempera-
ture superconductors. These would have immense societal benefit, for instance by bringing

-

+

-

+

(a) (b)

Figure 1.1 – Gap function in unconventional d-wave superconductors. (a) The d-wave gap in
momentum space. (b) Magnitude of the gap function versus polar angle φ. The gap function in
a conventional superconductor is constant as a function of φ (s-wave symmetry).
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economic viability to current applications that require liquid helium cooling (e.g., magnetic
resonance imaging, magnetically levitating trains), enabling new categories of devices (e.g.,
high performance computing, electronic devices), and potentially mitigating the energy cri-
sis with efficient power transmission and generation equipment.[18] The potential is also
rooted in the mere recognition that, regardless of whether the HTSC problem can be solved,

Figure 1.2 – Crystal structure of cuprate superconductors. The parent compounds YBa2Cu3O6

and La2CuO4 are shown. High-Tc superconductivity is achieved by hole doping the CuO2 planes
of these compounds. For La2CuO4, La is substituted with Sr or Ba and optionally co-doped with
Nd or Eu. For YBa2Cu3O6+x, O atoms are added, fitting most naturally in the top and bottom
CuOx layers. The common structural unit is the CuO2 plane, whose electronic states near EF

have Cu 3dx2−y2 and O 2px,y character.

3



the theoretical and experimental tools developed for it may likely be used to study and
understand other complex materials with untold potential applications.

1.2.2 The cuprate phase diagram

Besides being unconventional high-Tc superconductors, cuprates have drawn a great deal of
attention due the wide variety of other phenomena they exhibit.[19, 20] The basic building
block for all of this is the CuO2 plane (see Fig. 1.2), which is common to all cuprates.
Beginning with a ‘parent’ compound, chemical substitution can be used to dope the CuO2

plane, by either adding or removing electrons. Cuprates can be made superconducting by
electron doping or hole doping. I will focus on hole doped cuprates in this thesis.

A typical phase diagram for a generic hole doped cuprate is schematically illustrated
in Fig. 1.3. The hole doping p denotes the number of holes per Cu atom in the CuO2

planes. It contains 1) the antiferromagnetic (AF) Mott (charge-transfer) insulating phase
of the parent compound up to p ≈ 0.05, 2) the pseudogap up to a critical value of pc (not
shown, since its value is controversial), 3) an unusual metallic phase, and 4) a dome-shaped
region of d-wave superconductivity (d-SC). In Fig. 1.3, there is also a fifth phase: a region
of charge density wave (CDW) order centered around p = 1

8
, and coinciding with the

wiggle in Tc. This phase has only recently (2012) been recognized as a generic part of the
cuprate phase diagram,[22, 23, 24] despite charge “stripe” ordering having been observed
in La-based cuprates as early as 1995.[25]

1.2.3 Prior studies of the cuprates

The rich cuprate phase diagram has motivated a vast range of experimental and theoretical
studies, which is well beyond the scope of this thesis to fully cover. To give a sense of the
scale of this effort, I will instead provide a brief, and by no means complete, sampling of
the various methods used to study these phenomena and establish some of their properties.
Where possible, citations to topical reviews or seminal works are given.

The cuprates have been studied by numerous experimental probes, including angle-
resolved photoemission spectroscopy,[26, 14] to study the Fermi surface and energy dis-
persion, neutron and x-ray scattering,[27, 28, 29] to study spin and charge order, scan-
ning tunnelling microscopy,[30] for nanoscale imaging, localized spectroscopy, studies of
disorder and investigations of charge order, nuclear magnetic resonance,[31, 32] used to
infer the presence of the pseudogap and charge order, and electron energy-loss and x-ray
absorption spectroscopy,[33] to identify the electronic structure of states near the Fermi
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Figure 1.3 – Schematic phase diagram for hole doped cuprate superconductors. The parent
compound with hole doping p = 0 is a Mott (charge-transfer) insulator with AF order at temper-
atures below the Néel temperature TN. As holes are doped into the system, the insulating phase is
quickly destroyed by p ≈ 0.05 and a dome-shaped d-wave superconductivity (d-SC) phase forms.
Wiggles (or anomalous suppressions) in Tc appear near p = 1

8 , coincident with CDW order, which
onsets at TCDW. The line T ∗ tracks the opening of a pseudogap in the energy dispersion and in
this case intersects the Tc dome above optimal doping, defined as where Tc is maximal (p ≈ 0.16).
Tc and TCDW are representative of YBa2Cu3O6+x. Figure adapted from Ref. [21].

energy. Cuprates have also been thoroughly characterized through measurements of opti-
cal conductivity,[34] thermal conductivity,[35] transport,[36], the Hall effect,[37] the Nernst
effect,[38] and quantum oscillations,[39, 40, 41] helping to identify, for example: the insu-
lating state of the parent compound, that the gap has nodes across the phase diagram,
an unusual linear in T resistivity near optimum doping, the sign of the charge carriers,
the persistence of vortex excitations above Tc, and that there exists a closed Fermi surface
across the full phase diagram. There has also been a great deal of experimental effort
to study cuprate crystal structure and electronic structures,[11, 12, 42, 43] crystal growth
properties,[44, 45, 46] and the influence of defects on Tc.[47, 48, 49]
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Theoretical efforts to describe the physics of the CuO2 plane have frequently taken the
Hubbard,[12, 50, 51] t−J ,[52] spin-fermion,[53, 54], or Landau [55, 56] model as a starting
point. A variety of exotic states of matter and pairing mechanisms have been proposed to
describe the cuprate phase diagram or its d-SC, such as resonating valence bonds,[57] loop
currents,[58], ‘intertwined’ orders,[59, 60] pair-density waves,[61], nematic Fermi fluids,[62],
and most recently Ampearan pairing.[63] Numerical techniques such as quantum Monte
Carlo,[64, 65, 66] density matrix renormalization group,[67, 68] exact diagonalization,[69]
and dynamical mean field theory,[70] have also been developed to handle the strong elec-
tronic correlations of these models.

An area of particularly intense focus in hole doped cuprates has naturally been the
puzzling pseudogap phase. Historically speaking, two prevailing notions were that either i)
the pseudogap is a signature of pre-formed Cooper pairs or ii) it arises from doping a Mott
insulator.[71] As mentioned previously, generic CDW order is now a part of the cuprate
phase diagram, due to the unambiguous identification of CDW order in YBa2Cu3O6+x

by x-ray diffraction,[22, 23] and other cuprate families.[41, 72, 73, 74] This provides an
additional twist to the story of the pseudogap and HTSC, since the CDW order is found
in the underdoped regime of hole doped cuprates, it onsets at temperatures between T ∗

and Tc, and it clearly competes with superconductivity. This competition manifests itself
in two ways. First, Tc suppressed where the CDW order is strongest. Second, it has been
shown from x-ray diffraction that when a sample transitions into the superconducting
state, the CDW order weakens, but that if a magnetic field is used to suppress the SC,
the CDW order regains in strength.[23] The consequence is that theories now need to find
ground states that involve both d-wave superconductivity and CDW order, out of which a
better understanding of the pseudogap may arise. Already efforts have been made in this
regard.[54, 75, 60]

This phase of CDW order is the main focus of this thesis, in large part due to its role
in competing with superconductivity, its presence in the pseudogap phase and also many
other questions regarding its nature, highlighted in the next section.

1.3 Motivations and main results

I will now cover the motivations for the different studies presented in this thesis. This sec-
tion will also serve as an executive summary, highlighting the main results of those studies,
some of which motivated or guided later studies. In the broadest sense, my motivation prior
to 2012 was to clarify the nature of stripe order in La-based cuprates, given differences be-
tween model calculations and experimental data that suggested an incomplete explanation.
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Following the 2012 discovery of CDW order in YBa2Cu3O6+x, my focus naturally shifted to
identifying whether this CDW order was intrinsic to the CuO2 planes and what similarities
it may share with La-based cuprates. This led to my most recent study comparing the
orbital symmetry of the CDW states in La1.875Ba0.125CuO4 and YBa2Cu3O6.67.

1.3.1 CDW order in La-based cuprates

Prior to 2012, CDW order in the cuprates had only been seen, by diffraction techniques, in
La-based cuprates.[76] These compounds were shown to exhibit both static spin and charge
ordering.[25] However, this spin and charge order was generally attributed to structural
peculiarities unique to the La-based cuprates,[77, 78, 79, 80] and therefore not taken as
evidence for universal CDW order in cuprate superconductors. At this time, there was also
evidence for density wave order in cupric oxychloride and Bi-based cuprates, as revealed by
scanning tunnelling microscopy,[81, 82] but diffraction techniques did not find any signa-
tures of charge order in those materials.[83] In addition, a search for static CDW order in
YBa2Cu3O6+x by resonant soft x-ray scattering also reported a null result.[84] This state of
affairs seemed to support the notion that CDW order was confined to certain compounds,
attributable to particulars of their crystal structure.

I mention this because my research on the cuprates began in late 2009, at which time
the ubiquitous nature of CDW order in the cuprates was not yet known. It was natural
then to focus on the charge order in La-based cuprates. What was known about this
static charge order came from neutron scattering,[25, 85, 86, 87, 88, 89, 90, 91] hard x-
ray diffraction,[92, 93, 87, 94] and resonant soft x-ray scattering,[95, 96] in the La-based
cuprates with hole doping near p = 1

8
.

1.3.1.1 Evidence for stripes: neutron and hard x-ray scattering

Neutron and hard x-ray scattering measurements in La1.48Nd0.4Sr0.12CuO4 found incom-
mensurate charge and spin peaks in the vicinity of fundamental Bragg peaks, but split
from these by amounts δcharge and δspin and following the relation δcharge = 2δspin.[25, 92]
These observations were argued to be consistent with “stripes” of static spin and charge,
as depicted in Fig. 1.4. In this standard stripe model, for a hole doping of p = 1

8
and

at sufficiently low temperature, the holes arranges periodically into parallel, unidirectional
“rivers” of charge, each containing an average of 0.5 holes/Cu. The holes are mobile within
each stripe. Between stripes, the hole doping is 0 as in the undoped AF parent compound.
The stripes act as anti-phase domain walls for the AF order.
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Figure 1.4 – Standard picture of commensurate spin and charge stripe order in La-based cuprates
for p = 1

8 . Mobile holes (open circles) segregate into unidirectional stripes (light orange) with
an average doping of 0.5 holes/Cu within each stripe. The stripes have a period of 4 times the
lattice spacing. Regions between stripes (light green) are undoped and form AF order.
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Figure 1.5 – Impact of “1
8 -anomaly” on Tc in Nd-doped La2−xSrxCuO4. Doping Nd into

La2−xSrxCuO4 dramatically reduces Tc, particularly near x = p = 1
8 . A similar effect occurs

natively in La2−xBaxCuO4.[97] Data from Ref. [86]. Lines are guides to the eye.
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At around the same p = 1
8

doping, certain La-based cuprates exhibit a very strong sup-
pression of Tc. Fig. 1.5 illustrates this effect, frequently referred to as the “1

8
-anomaly”,[97]

for Nd-doped La2−xSrxCuO4. Competition between the stripes and superconductivity
seemed to be a likely explanation for this anomaly,[86] bringing a great deal of atten-
tion to the role of charge inhomogeneity in the CuO2 planes. This is because, despite
being only known to occur in La-based cuprates (at the time), this competition may hold
important clues to unlocking higher Tc in related compounds.

Yet, even as of 2009, the question of how this charge inhomogeneity manifests itself
was not truly resolved. One issue was that scattering experiments were unable to identify
higher harmonic diffraction peaks.[94, 80] These peaks are seen in the nickelates,[98] which
have analogous stripe order, and thus would also be expected in the cuprates if the stan-
dard stripe picture applied. One possibility could be that the charge inhomogeneity forms
sinusoidal modulations rather than stripe-like order. In principle, this could describe the
diffraction patterns while also accounting for the absence of higher harmonics, but an im-
portant question then follows: how should one detect these sinusoidal charge modulations?
Unfortunately, both neutron scattering, which is sensitive to the atomic nuclei, and hard
x-ray diffraction, which is sensitive to the total electron density (of which only a small
fraction is affected by the doped holes) away from an absorption edge, are only indirectly
sensitive to such charge modulations through their associated atomic displacements.

1.3.1.2 A new approach: resonant soft x-ray scattering

In recognition of this problem, new instruments for resonant soft x-ray scattering (RSXS)
at low temperature were developed. Resonant scattering refers to x-ray diffraction with
a photon energy that corresponds to an x-ray absorption edge.[99] In contrast to x-ray
diffraction far from an absorption edge, which is generally sensitive to the total electron
density, diffraction at an absorption edge causes a core electron to transition into a higher
energy unoccupied state before decaying back to the ground state. This resonant process
greatly enhances the sensitivity of the scattering to particular electrons (not all electrons),
providing element specificity as well as sensitivity to valence state and orbital orientation
(this is discussed further in Chapter 2). The so-called ‘soft’ x-rays correspond to lower
photon energies (e.g., 100 to 2000 eV) and shorter penetration lengths than ‘hard’ x-rays
(greater than 10 keV) that are commonly used for crystallography and medical imaging.

Designing a scattering instrument for use with soft x-rays poses many technological
challenges, namely caused by the need to operate a diffractometer in a high vacuum envi-
ronment. Early demonstrations date back to 1988,[100] but were limited in that cooling
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was not possible and that rotation of the polarization vector required rotating the scatter-
ing chamber around the beam axis. In the early 2000’s a number of new diffractometer
designs were implemented, providing temperature control and operating at more modern
soft x-ray beamlines.[101, 102, 103] These later systems enabled the first studies of stripe
ordered cuprates by RSXS.

Soft x-rays are particularly important for studying the CuO2 planes in the cuprates
since the O K and Cu L absorption edges are in this energy range. For the cuprates, hole
doping the the CuO2 planes influences the O K edge pre-edge structure, and the higher-
energy side of the Cu L3,2 edges,[104] by namely producing holes in states with Cu 3dx2−y2
and O 2px,y orbital character.[105] It was later pointed out that RSXS at the O K edge
in particular should provide a dramatically enhanced sensitivity to spatial modulations in
hole density.[102]

This technique was used to analyze the photon energy dependence of scattering from
O sites in the CuO2 planes of the spin and charge ordered cuprate La2−xBaxCuO4.[95] The
conclusions of Ref. [95] are largely in agreement with the conventional stripe picture and
suggested that the stripes were half-filled, separating regions of minimal charge. However,
a close inspection of calculated resonance profile (i.e., the energy dependence of the res-
onant scattering intensity), upon which such conclusions are contingent, reveals a rather
unsatisfying match to the experimental result. In particular, the experimental scattering
profile at the O K pre-edge has two peaks: a prominent peak located just above EF, asso-
ciated with the mobile carriers (holes), and a smaller peak at slightly higher photon energy
associated with the upper Hubbard band. The calculated profile in Ref. [95] is a single,
broad peak, that encompasses the appropriate energy range, but captures neither of these
fine details.

An effort to address this shortcoming was made by a different group in a later RSXS
study of La2−x−yEuySrxCuO4.[96] Here, a revised model calculation of the O K pre-edge
resonance profile produces two peaks at the appropriate energies. However, the calculated
weight in the second peak is considerably larger than the experimental result. Additionally,
the calculated resonance profile at the Cu L3 edge was much wider than the observation,
essentially mirroring the x-ray absorption profile rather than the scattering profile. These
two shortcomings suggested that the underlying origin for the resonant scattering signal,
and thus the nature of the charge inhomogeneity, was still not resolved.

This problem was a major motivation to study La1.475Nd0.4Sr0.125CuO4 by RSXS. As
is shown in Ref. [1] (here Chapter 3), a detailed study of its resonance profiles at the O
K and Cu L3,2 edges was compared to three model calculations. The first two models
followed conventional practice,[95, 96] and treated the scattering as arising from changes
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in local doping (valence) for O sites and atomic positions for Cu site. With these models,
a similar level of agreement to the previous calculations in Ref. [96] was found, failing to
entirely reproduce the observed resonance profiles.

To address this, a third model was developed. It operates on the basis that the resonant
transition energy, which relates to the orbital energy levels of the scatterers, is spatially
modulated by an amount ±∆E, so it is called the energy shift model. Calculations of the
O K and Cu L3,2 resonance profiles using the energy shift model (with ∆E < 0.2 eV)
are in excellent agreement with the data. An important feature of this model is that it
does not explicitly include modulations in local hole doping (these imply an associated
change in spectral weight, as shown by x-ray absorption;[105] for the energy shift model,
all sites have the same spectral weight). It is therefore at odds with the standard stripe
picture. Instead, its good match to the data is interpreted as a signature of a more subtle
modulation in electronic structure, either induced by small charge density modulations and
possibly consistent with a theoretically predicted valence bond order,[106] or arising from
a more exotic type of electronic order.

1.3.2 CDW order in YBa2Cu3O6+x

When CDW order was found in YBa2Cu3O6+x,[22, 23] it was unclear whether this CDW
order was intrinsic to the CuO2 planes or related to the periodic ordering of O atoms in
the partially filled CuOx chain layer. The chain layer in YBa2Cu3O6+x forms well-known
arrangements of CuO chains, depending on the oxgyen content x.[107, 108, 109, 110, 111]
For example, when x ≈ 0.75, the chain layer can order with an ortho-III configuration.
This refers to CuOx chains arranged in a full-full-empty pattern, as depicted in Fig. 1.6.
This was a crucial point to address, since if the observed CDW order were attributable to
the chain ordering, then this CDW order may simply be a mere peculiarity of the crystal
structure of YBa2Cu3O6+x, akin to the La-based cuprates. Conversely, if this order could
be shown to belong to the CuO2 planes and not depend on the chain ordering, then since
YBa2Cu3O6+x is often considered the benchmark ‘clean’ cuprate, it may be possible to
establish CDW order as generic to the cuprate phase diagram.

This motivated a RSXS study of the resonance profile at different wavevectors: 1)
QCDW,H = (0.31 0 L) and QCDW,K = (0 0.31 L), corresponding to the newly found CDW
order, and 2) QO = (HO 0 L), corresponding approximately to the inverse of the chain
order periodicity. A simple hypothesis was that if this CDW order was similar to the charge
order in La-based cuprates, then it should be possible to describe its resonance profile with
the energy shift model. Validation would then strongly argue that the CDW order resides in
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the CuO2 planes and is not tied to O order in the chains. A second hypothesis was that the
resonance profile of QO should be consistent with a periodic modulation in Cu valence,[84]
and thus differ significantly from that of QCDW in its energy, photon polarization and
temperature dependence. Both hypotheses were confirmed in Ref. [2] (here Chapter 4),
illustrating that the CDW order and O chain order are distinct.

Another important question regarding the CDW order in YBa2Cu3O6+x relates to the
possible role of disorder in setting the CDW length scale, or correlation length. It is gen-
erally believed that this can occur in two inequivalent ways: i) either disorder pins charge
density fluctuations to produce short-range static order or ii) disorder disrupts what would
otherwise be long-range order.[112, 113, 114] In YBa2Cu3O6+x, the most influential de-
fects reside in the CuOx chain layer.[48] YBa2Cu3O6+x crystals are otherwise very pure
and stoichiometric.[45] The previously mentioned ortho phases (e.g., o-II, o-III, o-V, o-
VIII) are typically formed with care in a long annealing process,[115] yet they can also be
destroyed by a simple procedure of heating the samples to modest temperatures and sub-
sequently quench cooling them to prevent ortho phase formation. This procedure provides
a unique means of investigating the role of disorder in YBa2Cu3O6+x, without the need to
chemically alter the sample composition nor even remove the sample from the diffractome-
ter, thus minimizing uncontrolled variables that may influence Tc, the CDW order, or the
reproducibility of the measurement.

full full empty full full empty full full empty

CuO2 
planes

Chain 
layer

Chain 
layer

a
b

Figure 1.6 – An expanded view of YBa2Cu3O6.75 showing three periods of ortho-III ordering in
the chain layer. Doped oxygen atoms form CuO chains that run along the b axis and these chains
go from being full to full and then to empty along the a axis.
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In Ref. [3] (here Chapter 6), this approach revealed that disordering the chains reduced
the CDW scattering intensity while not affecting the CDW correlation length, incommen-
surability or temperature dependence. Although the interpretation is not clear-cut and
future work is needed to sort it out, this can be argued not to result from either of the
above mentioned mechanisms, which may be more suited to scenarios where disorder plays
a stronger role. Rather, this finding may be indicative of an intrinsic CDW length scale,
possibly set by competition with superconductivity in the CuO2 planes.

1.3.3 Orbital symmetry of CDW order

An important point made in certain theories is that the CDW order can take on different
orbital symmetries.[106, 75, 54] One example is a d symmetry state where charge density
is minimal on Cu sites but has locally different sign on the bonds between the Cu sites
(i.e., the O sites) that run along the a and b axes of the CuO2 plane.[106] This prompted a
need to identify this orbital symmetry experimentally to constrain the theoretical models.
Shortly thereafter, an examination of existing scanning tunnelling microscopy data, using
a novel analysis method, identified a dominant d form factor, as favoured in the theory, in
Bi2Sr2CaCu2O8+δ (Bi-2212) and Ca2−xNaxCuO2Cl2 (Na-CCOC).[116] A d form factor was
also reported in YBa2Cu3O6+x and Bi2Sr2−xLaxCuO6+δ by means of RSXS at the Cu L3

edge in a special scattering geometry, interpreted at first by means of microscopic model
of the CDW order,[117] and later by means of a model quite similar to one presented in
Ref. [4] (here Chapter 5).1

These theoretical predictions also prompted me to investigate the orbital symmetry of
CDW order. In particular, I aimed to study whether the CDW orbital symmetry would also
have a d form factor in the La-based cuprates. Employing a similar scattering geometry
as in Ref. [117], a study of La1.875Ba0.125CuO4 was performed to address this question.
An important difference in methodology was that resonant scattering was performed at
the O K edge as well as the Cu L edge. For the O K edge, a mapping between the
experimental observables and a theoretical parametrization of bond order, that allows for
mixed orbital symmetries,[75] was developed in order to quantify the proportion of d and
s′ CDW symmetry components. It was found that La1.875Ba0.125CuO4 has a CDW orbital
symmetry dominated by an s′ component for the O atoms in the CuO2 planes, as will be
shown in Chapter 5. This further distinguishes the La-based cuprates from other cuprates.

An intriguing possibility is that this s′ symmetry CDW order in LBCO is more com-
patible with static spin order than CDW order with d symmetry. This possibility may

1Ref. [117] does not yet contain this revised analysis, which is known to me by private communication.
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be supported by theory. For instance, a recent calculation for a three-orbital model
finds a similar d to s′ proportion when the system develops both static spin and charge
order,[118] whereas models that do not form static spin order exhibit dominant d orbital
symmetry.[119, 75, 54, 120, 121]
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Chapter 2

Resonant soft x-ray scattering

2.1 Overview

Resonant soft x-ray scattering (RSXS) is a technique that extends conventional x-ray
diffraction (XRD) beyond the study of atomic positions in order to gain element, site,
valence and orbital specific information about ordered states of matter. This specificity
is gained by tuning the photon energy to an x-ray absorption edge, providing sufficient
energy to excite an inner-shell core electron into an empty valence state and altering the
anomalous components of the atomic scattering form factor such that it depends strongly
on photon energy, photon polarization and the electronic environment of the scatterers.
This resonant effect enhances the scattering amplitude, making it possible to detect weak
ordering signatures, and embeds a wealth of information about the charge, spin and orbital
degrees of freedom of the electronic order into the scattering process. In transition metal
(TM) oxides, most of the interesting physics occurs at low energies, near the Fermi level
of the transition metal ion. These low-lying empty states can be probed using soft x-rays
(~ω ∼50-2000 eV) which can resonantly excite the strong 2p→ 3d, 3d→ 4f , and 4d→ 5f
dipole-allowed transitions of TM ions. In contrast, hard x-rays (~ω > 10 keV) are less
useful for transition metal ions, since they probe the 4p states well above the Fermi energy
via the 1s→ 4p transition.

Over the past two decades, the impact and importance of RSXS has grown signifi-
cantly thanks to numerous advances in instrumentation and the theory of the resonant
scattering.[122] Third generation synchrotrons have provided simple control of the inci-
dent photon energy and polarization (thanks to elliptically polarizing undulators [123]),
while providing very high photon flux, excellent energy resolution (eg. a resolution of
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∆E ∼ 0.1 eV at E = 1000 eV is typical at most soft x-ray beamlines), better electron
orbit stability and improved x-ray beam focusing properties.[124] Notable advances in the
theory of resonant scattering have included the discovery of polarization dependence to
anomalous scattering,[125] the appearance of forbidden reflections due to anisotropic x-
ray susceptibility in crystals,[126] the theoretical description of magnetic resonant x-ray
diffraction,[127, 99] and the development of frameworks to calculate resonant inelastic x-ray
scattering spectra.[128, 129]

In this chapter, fundamental aspects of elastic RSXS will be presented. A theoretical
treatment tailored to supplement the following chapters is presented in section 2.2. More
exhaustive reviews of the theory of resonant scattering are available.[130, 131, 132, 133,
134, 135, 136, 28] Experimental details particular to the REIXS beamline at the Canadian
Light Source will be discussed in section 2.3.

2.2 Basic theory of resonant elastic x-ray scattering

2.2.1 Diffraction

The diffraction of x-rays by crystals, structures composed of periodic arrangements of atoms
that form a Bravais lattice,[137] was discovered in 1912 and has had an immeasurable
impact on a vast array of disciplines.[138, 139] When a plane wave of the form eik·r is
incident on periodic lattice of atoms, each atom causes a scattered radial wave of the form
feiQ·r/r (for non-zero scattering angle),[140] where f is the atomic scattering form factor
of the scattering atom. In a classical picture, this coincides with the incident wave causing
an electron to vibrate and behave like a dipole that emits a radial wave with a scattering
amplitude of f . Far from the scatterer, the emitted radial wave can be approximated
by a plane wave. Constructive interference of many of such emitted plane waves from
atoms in a lattice occurs when the difference in path length for plane waves arising from
crystal planes that are separated by a distance d is an integer multiple of the wavelength.
This describes the famous Bragg formulation of diffraction,[141] governed by the equation
nλ = 2dHKL sin θ, where λ is the x-ray wavelength, dHKL is the interplanar separation (for
a given set of lattice planes with Miller indices H, K, and L), θ is the scattering angle and
n is the order of the interference.

Alternatively, it is possible to sum the emitted plane waves keeping track of their
relative phases and arrive at the Laue condition for diffraction, k′ − k = G, where G is a
vector of the reciprocal lattice.[142] The Laue formulation is more useful when dealing with
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diffraction from a single crystal composed of multiple atom types, and it is more explicitly
written as a set of three simultaneous equations.[142]

a1 · (k′ − k) = 2πH

a2 · (k′ − k) = 2πK (2.1)

a3 · (k′ − k) = 2πL

Here, a1, a2 and a3 are the primitive vectors of the crystal lattice and H, K and L are
Miller indices for a reciprocal lattice vector G that satisfies G = Hb1 +Kb2 +Lb3, where
b1, b2 and b3 are the basis vectors for the reciprocal lattice.[143]

To account for the rotation of the crystal, and simplifying the problem to consider only
cubic, tetragonal or orthorhombic lattices, it is useful to write a(1,2,3) = (a, b, c)R.O(a,b,c),
where a, b and c are lattice constants, O(a,b,c) are the initial orientation vectors of the crystal
axes in the diffractometer frame (eg. for a horizontal scattering geometry, x̂=primary
beam direction, ẑ=vertical direction, ŷ=perpendicular to x̂ and ẑ in horizontal plane) and
R is a rotation matrix that rotates the crystal axes by the diffractometer’s rotations (eg.
R = Rθs · Rχ · Rφ). If one eliminates φ and χ rotations and considers only horizontal
plane scattering, then it is possible to show that for a crystal with initial orientation
Oa = −x̂ and Ob = ŷ, the sample rotation angle θs and the detector angle 2θ are related
to Q = 2π(H/a,K/b) according to:

2θ = 2 sin−1

 hc

2E

√(
H

a

)2

+

(
K

b

)2
 (2.2)

θs = θ − tan−1

(
H

K

b

a

)
, (2.3)

where h is Planck’s constant, c is the speed of light in vacuum and E is photon energy.1

Equations 2.2 and 2.3 are very useful for RSXS, since soft x-ray diffractometers typically
operate in a 2-circle mode (fixed χ and φ) with the detector kept in the scattering plane.
However, use of Eq. 2.1 can in principle be used to calculate scattering geometries for
H, K and L indices in 3- and 4- circle modes. In practice, many diffractometers are
typically running the scientific diffraction software spec, that includes a program called
fourc.[144] This program implements a general form of Eq. 2.1, based on previously estab-
lished calculations,[145] that can automatically calculate appropriate scattering geometries
for requested reciprocal lattice vectors, provided that the crystal parameters and initial
crystal orientation are set correctly.

1See Section A.1 for a derivation of these equations.
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As mentioned previously, the Laue formulation consists of summing up the plane waves
emitted by all the atoms in a crystal. This approach is useful as it provides a way to
calculate the scattering intensity as a function of Q, the incident and emitted photon
polarization vectors ε and ε′, and the photon energy E = ~ω. Assuming (for now) that
the quantum mechanical light-matter interaction that occurs when a plane wave interacts
with an atom in a crystal can be fully captured by the atomic scattering form factor
f → f(ω, ε, ε′), it is possible to write down an expression for the scattering intensity in
terms of this sum.[135, 28]

I(Q, ω, ε, ε′) ∝

∣∣∣∣∣∑
j

fj(ω, ε, ε
′)eiQ·Rj

∣∣∣∣∣
2

(2.4)

In Eq. 2.4, the sum is over all atomic sites j, with atomics positions denoted by Rj.
Following others, it is illustrative to index the coordinate system differently. IfRj is instead
written as Cm + rj, where Cm points to the center of unit cell m and rj locates the atoms
within the unit cell relative to Cm, then the scattering intensity can be separated into two
components: a unit cell structure factor F (ω, ε, ε′) and a lattice component L(Q).

I(Q, ω, ε, ε′) ∝

∣∣∣∣∣∑
m,j

fj(ω, ε, ε
′)eiQ·(Cm+rj)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
j

fj(ω, ε, ε
′)eiQ·rj

∣∣∣∣∣
2

×

∣∣∣∣∣∑
m

eiQ·Cm

∣∣∣∣∣
2

= |F (ω, ε, ε′)|2 × |L(Q)|2

(2.5)

The lattice component has to do with interference of scattering arising from different unit
cells whereas the unit cell structure factor describes interference coming from within the
unit cell. In the limit that the number of unit cells goes to infinity, all the cells will scatter
coherently (in phase) and L(Q) ∝

∑
G δ(Q −G),[28, 140] which is a convenient way to

arrive at the Laue condition (scattering occurs when Q = G).2 This procedure also shows
that for long range order, one only needs to calculate the unit cell structure factor in order
to calculate the scattering intensity function.

2This derivation is shown neatly in Ref. [140], section 3.2.4.
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2.2.2 Quantum mechanical origin of resonant scattering

The quantum mechanical origin of resonant scattering traces back to the interaction be-
tween an electromagnetic field and a Dirac (spin-1/2) particle. The general approach
for finding the scattering amplitude is to treat either the Schrödinger Hamiltonian, the
Schrödinger-Pauli Hamiltonian or the Dirac Hamiltonian, up to second order in perturba-
tion theory.[146, 147, 135] To capture the interaction of an electron with the electromagnetic
field, the momentum operator p is replaced with p−eA/c, where A is the vector potential
of a quantized, time-dependent radiation field.

The approach I follow (as in Refs. [146, 148, 135]) is to consider the low energy limit
(Ex-ray � mc2 ' 511 keV) of the Dirac Hamiltonian given by:

HD = βmc2 + eV (r) + cα · [p− eA(r, t)] , (2.6)

where β and α are 4 × 4 Hermitian matrices (see Ref. [149] Sec. 3-2 or Ref. [150]
for their properties), si is the electron spin, V (r) is the vector potential, and m is the
electron mass. This approach is appropriate for scattering at almost all x-ray absorption
edges (especially for soft x-rays Ex-ray < 2 keV). It also has the benefit of resolving all the
dominant resonant and non-resonant magnetic and non-magnetic terms that contribute to
the scattering cross-section. It has been shown that Eq. 2.6 leads to the following matter-
radiation interaction Hamiltonian, Hint = H1 + H2 + H3 + H4, when small relativistic
corrections are dropped.[146, 148, 135] The sum is over electrons labeled by index i.

H1 = +
∑
i

e2

2mc2
[A(ri, t)]

2 (2.7)

H2 = −
∑
i

e2~
2m2c4

si [∂tA(ri, t)×A(ri, t)] (2.8)

H3 = −
∑
i

e

mc
[A(ri, t) · pi] (2.9)

H4 = −
∑
i

e~
mc
si · [∇×A(ri, t)] (2.10)

Restricting our discussion to elastic scattering, we now consider how scattering events
can occur through Hint. An elastic scattering process can be defined as the interaction of
a photon (ε,k) with the electron system in a state |G〉 that results in the emission of a
photon (ε′,k′) and leaves the system in the final state |G〉 (for an elastic process |k| = |k′|).
This can occur most simply by an interaction that absorbs (annihilates) the photon (ε,k)
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and then emits a new photon (ε′,k′) without causing any electronic transitions. Elastic
scattering can also occur in cases where the absorption causes the electron to transition
out of state |G〉 into an intermediate state |I〉 which subsequently decays back to |G〉 by
emitting a photon. The former process is called non-resonant scattering and the latter is
called resonant scattering.

We can understand these cases explicitly by checking how the four terms in Hint act
upon |G〉. To do this, we introduce a general quantized vector potential as an expansion
in plane waves (with the Coulomb gauge ∇ ·A = 0), given by

A(r, t) =
∑
k,µ

√
hc

V |k|

(
ak,µεµ(k)ei(k·r−ωkt) + a†k,µεµ(k)e−i(k·r−ωkt)

)
, (2.11)

where V is the volume of the quantization box and a†k and ak are, respectively, photon
creation and annihilation operators that operate on photons with wavevector k and mode
µ.[148] The mode is conventionally represented by unit vectors that are either parallel to the
scattering plane (π-polarization) or perpendicular to the scattering plane (σ-polarization)
and in both cases perpendicular to the incident/scattered wave propagation directions.

The significance of Eq. 2.11 is that the vector potential is linear in the creation and
annihilation operators, which means that it must operate twice on |G〉 in order for elastic
scattering to occur.3 Hence, the terms H1 and H2, which are both quadratic in A, will
contribute in first order to elastic scattering. To calculate the transition rate and ultimately
the scattering cross-section, we first need calculate the matrix elements M1 = 〈G|H1|G〉
and M2 = 〈G|H2|G〉.[151, 152, 148, 135, 28]

To obtain the dominant scattering contributions of H3 and H4, which are both linear in
A, second order perturbation theory is needed. Following others,[148, 135] the expression
for the matrix elements M3 +M4 is given by

M3 +M4 =
∑
n

〈G|H∗3 +H∗4|In〉〈In|H3 +H4|G〉
~ωk − (En − Eg) + iΓ

2

, (2.12)

where the system transitions from a ground state |G〉 with energy Eg into all n accessible
intermediate states |In〉 with energy En and lifetime ' ~/Γ. The number of transitions

3To see why, simply consider that (a+ a†) acting on the vacuum state |0〉 gives |0〉+ |1〉 and therefore
does not preserve the number of photons. In contrast, (a+a†)2 has four terms and when acting on |0〉 one
of these terms that will first annihilate and then create a photon, as needed for scattering. It also has a
term that will first create and then annihilate a photon and two terms that create/annihilate ±2 photons,
but these extra terms do not correspond to scattering.
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per unit time w is then given by Fermi’s golden rule and can be evaluated as

w =
2π

~
|M1 +M2 +M3 +M4|2 δ(~ωk − ~ωk′)

=
2π

~

∣∣∣∣∣〈G|H1 +H2|G〉+
∑
n

〈G|H∗3 +H∗4|In〉〈In|H3 +H4|G〉
~ωk − (En − Eg) + iΓ

2

∣∣∣∣∣
2

δ(~ωk − ~ωk′).
(2.13)

This general expression can be used to calculate all the dominant contributions of charge
and magnetic scattering for both resonant and non-resonant processes. While magnetic
x-ray scattering is a deep and interesting subject, the studies contained within this thesis
rely on charge scattering, so for simplicity I will now drop the terms M2 and M4 that
contain the spin s (see Refs. [153, 127, 99, 154, 148, 135] for more on magnetic x-ray
scattering). Using Eq. 2.11, the matrix elements M1 and M3 become

M1 = 〈G|
∑
i

e2

2m
[A(ri, t)]

2 |G〉

=
hc

V |k|
e2

mc2
(ε∗µ′ · εµ)

∑
i

〈G|ei(k−k′)·ri |G〉 (2.14)

M3 =
∑
n

〈G|
∑

i
e
mc

[A∗(ri, t) · p∗i ] |In〉〈In|
∑

i
e
mc

[A(ri, t) · pi] |G〉
~ωk − (En − Eg) + iΓ

2

=
hc

V |k|m
e2

mc2

∑
n

〈G|
∑N

j=1 ε
′∗
µ′ · pje−ik

′·rj |In〉〈In|
∑N

j′=1 εµ · pj′e
ik·rj′ |G〉

~ωk − (En − Eg) + iΓ
2

(2.15)

as shown in Ref. [148].

Given these matrix elements, the differential cross-section (i.e., the probability that a
photon is scattered into a given solid angle dΩ) can be calculated using the relations

d2σ

dEdΩ
=
wρ(E)

c/V
, and ρ(E) =

V

(2π)3

E2

~3c3
(2.16)

where ρ(E) is the density of photon states (in the quantization box of volume V ) with
energy that satisfies ~ωk ≤ ~ωk′ + dE.[153, 148] Substitution of the matrix elements into
Eq. 2.13 and integration over energy (whereby the delta function ensures that only the
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elastic scattering is included) gives

dσ

dΩ
= r2

0

∣∣∣∣∣(ε∗µ′ · εµ)
∑
i

〈G|ei(k−k′)·ri|G〉

+
∑
n

〈G|
∑N

j=1 ε
′∗
µ′ · pje−ik

′·rj |In〉〈In|
∑N

j′=1 εµ · pj′e
ik·rj′ |G〉

~ωk − (En − Eg) + iΓ
2

∣∣∣∣∣
2 (2.17)

where r0 = e2/(mc2) is the classical electron radius. Note that the quantization box volume
V is not present in this observable and all the pre-factors except r0 have canceled out. It
is now apparent that the first term is simply Thomson scattering, which has the usual
polarization factor (ε∗µ′ · εµ)2 and is proportional to the square of the Fourier transform
F (Q) of the electron density ρ(r), defined by

F (Q) =
∑
i

〈G|eiQ·ri |G〉 =

∫
dreiQ·rρ(r). (2.18)

The second term is the resonant charge scattering differential cross-section. This term can
be further simplified if one takes the electric dipole approximation whereby the exponential
term in Eq. 2.17 is expanded as e−ik·rj ∼ (1+ik·rj−(k·rj)2/2+. . . ), keeping as many terms
as needed for describing a particular process. For the resonant processes discussed here,
only the first term contributes significantly. Multipole analysis involves keeping additional
terms and has been covered in Refs. [153, 99, 130, 131, 135].

Keeping just the first term in the dipole approximation, the resonant scattering cross-
section can be further simplified by replacing the momentum operator according to p =
m
i~ [r, Hel] = m

i~r(En−Eg), where Hel is the electron Hamiltonian that gives the energies of
the ground and intermediate states. Using this commutator identity and dropping all pre-
factors, the differential cross-section for electric dipole resonant scattering can be written(

dσ

dΩ

)
res.

∝

∣∣∣∣∣∑
n

〈G|ε′∗µ′ · (
∑

j rj)|In〉〈In|εµ · (
∑

j rj)|G〉
~ωk − (En − Eg) + iΓ

2

∣∣∣∣∣
2

. (2.19)

To illustrate the use of Eq. 2.19, it can further be shown (see Refs. [99, 131, 148]),
that in the special case of atoms treated as free ions with spherical symmetry that is only
broken by their magnetic moment, the differential cross-section simplifies to(

dσ

dΩ

)
res.

∝

∣∣∣∣∣∑
n

[
(ε′∗µ′ · εµ)F (0) − i(ε′∗µ′ × εµ) · znF (1) + (ε′∗µ′ · zn)(εµ · zn)F (2)

]∣∣∣∣∣
2

, (2.20)
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where the functions F (0,1,2) (as defined in Ref. [131], not to be confused with F (Q)) are
related to the radial wave functions of the atomic states (in terms of spherical harmonics)
and zn is a unit vector in the direction of the magnetic moment of the nth ion.4 It may be
surprising that although we previously dropped the terms with an explicit spin term, there
is a reappearance of magnetic scattering here in the second and third terms of Eq. 2.20.
This comes from the Pauli exclusion principle. Since the resonant scattering cross-section
depends on the availability of states into which the core electron can transition and since
the electron’s spin is conserved during the transition, the transition rate will depend on
whether the core electron has the same spin or opposite spin as the unoccupied state.[148]
These unexpected resonant magnetic scattering terms are important, as they can be used
to explain x-ray magnetic dichroism effects in x-ray absorption spectroscopy,[155, 156] and
also do contribute to resonant magnetic x-ray scattering effects.

The specific case of a free ion with spherical symmetry is, however, not general nor
always appropriate. Many ions in real crystals can have their spherical symmetry broken
due to their electronic environment (e.g., octahedral, tetragonal or orthorhombic coordi-
nation) in addition to perhaps having a local magnetic moment. Such anisotropy often
translates to magneto-optical effects, which will influence how an atom scatters light of
a given polarization. Instead of representing the interaction term by a scalar quantity
(complex or otherwise) a Cartesian tensor can be used.[125, 126]

An elegant treatment of this problem for x-ray scattering was recently presented.[157]

With the atomic scattering form factor denoted as a tensor f̂ rather than a scalar quantity,
the differential cross-section, or measured scattering intensity, is given by

I ∝ dσ

dΩ
∝

∣∣∣∣∣∑
j

(
ε′∗µ′ · f̂j · εµ

)
eiQ·rj

∣∣∣∣∣
2

, (2.21)

where the scattering tensor f̂j at atomic site j can be written, in the lowest possible
symmetry (i.e., triclinic) and dropping the site index, as

f̂(ω) =

 fxx(ω) fyx(ω) fzx(ω)
fxy(ω) fyy(ω) fzy(ω)
fxz(ω) fyz(ω) fzz(ω)

 . (2.22)

The components of f̂j depend on photon energy and are complex. For systems with
either cubic, tetragonal or orthorhombic symmetry, charge scattering contributions will

4Had we carried out the calculation including the matrix element M4, we would have found an extra
contribution to the charge scattering term proportional to (ε′ · ε); however, it turns out this correction is
less than 1% of the above term so it is safe to neglect.[135]
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only appear on the diagonal of this tensor but magnetic scattering contributions can appear
on and off-diagonal and will generally depend on the direction of the local magnetization
and the crystal symmetry.[157] These diagonal charge terms will play a crucial role in
Chapter 5, where the crystal symmetry and absence of sensitivity to magnetic order give
a tensor of the form

f̂charge =

 fxx 0 0
0 fyy 0
0 0 fzz

 . (2.23)

The tensorial representation of the scattering form factor has gained significance as the
RSXS technique becomes more accessible and is used to study materials with increasingly
complex magnetic structures or anisotropic crystal structures. However, prior to this de-
velopment (and in cases where a full tensor is not needed) the complex, yet non-tensorial,
atomic scattering form factor was (and is) used to calculate scattering intensities. I will
now relate the atomic scattering form factor to the differential cross-section, show how it
relates to the scattering tensor and highlight a practical, yet powerful, method of modelling
resonant scattering processes.

2.2.3 Atomic scattering form factor

The relation between the differential cross-section and the atomic scattering form factor
(also called the scattering length or scattering amplitude) is defined as

dσ

dΩ
= |f |2 . (2.24)

This comes simply from the definition that the scattered wave will have its amplitude
reduced by a factor of f as compared to the incident wave. Comparing Eq. 2.24 to Eq.
2.17, we can see that f can be decomposed into 3 terms5

f = fT + f ′ + if ′′

f(ω, ε, ε′) = fT(ε, ε′) + f ′(ω, ε, ε′) + if ′′(ω, ε, ε′),
(2.25)

where fT is the usual non-resonant Thomson form factor and f ′ + if ′′ is the anomalous
scattering form factor (also called the dispersion correction). The first line in Eq. 2.25 is
a shorthand form whereas the second line shows which terms depend explicitly on polar-
ization and/or energy. While fT is simply proportional to the number of electrons, we see

5Actually a fourth term, fM should appear in Eq. 2.25, corresponding to the non-resonant magnetic
scattering that would have been included if the matrix element M2 wasn’t dropped.
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that f ′ + if ′′ comes from the second order perturbation in H3, producing a photon energy
dependent, complex quantity with a damped pole (resonance) at ~ω = En − Eg. In this
way, the atomic scattering form factor is clearly divided into a non-resonant and resonant
contribution, both of which derive from the quantum mechanical interaction of an elec-
tromagnetic plane wave with an electron, as detailed in the previous section. Comparing
terms in Eq. 2.4 and Eq. 2.21, it is apparent that f and f̂ are related by

f(ω, ε, ε′) =
(
ε′∗µ′ · f̂ · εµ

)
, (2.26)

clarifying the link between the traditional atomic scattering form factor and the more
general tensor representation.

If we suppose that we are dealing with spherical symmetry (f̂ = fI3, where I3 is the
identity matrix) and an isolated atom, then it is possible to calculate f ′ and f ′′ for all the
elements. This problem has been studied extensively, and the most complete and currently
the “best” tabulation of such theoretical calculations for elements Z = 1−92 in the energy
range E = 1− 10 eV to 0.4− 1 MeV is given by combining the tables in Refs. [158, 159].
It is possible to obtain this data using the online resource at Ref. [160]. An empirical
tabulation of the atomic scattering form factor is given in Ref. [161], which can also be
accessed online.[162] For offline access, I have created a Mathematica notebook that loads
these databases and can then provide f ′ and f ′′ for all the elements and arbitrary photon
energy (this is posted publicly online, see Ref. [163]).

While the empirical and theoretical tabulations are largely convergent, there can be
sizeable differences, particularly at very low photon energy E < 100 eV and in the near-
edge regions. For an example of such differences, and to establish a general idea for how f
depends on photon energy, Fig. 2.1 shows f ′ and f ′′ for Cu and O in the soft x-ray regime.
The imaginary component (f ′′) has notable “step-like” features and the real part (f ′) has
“poles” that coincide with these steps.

The so-called edge-steps come from an instantaneous jump in the |G〉 → |I〉 transition
probability of the free-atom. If one has familiarity with x-ray absorption spectroscopy,
it becomes apparent that f ′′ is related to the x-ray absorption cross-section. In fact,
this comes from the terms in H3 that annihilate the incident photon but do not create a
scattered photon,[28] and we can then identify that the differential cross-section for x-ray
absorption is

dσabs

dΩ
=

4π

k
f ′′. (2.27)

This relation defines the optical theorem,[164, 147] an important consequence of which is
that the real and imaginary parts of the scattering amplitude satisfy the famous Kramers-
Kronig dispersion relations.[165]
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Figure 2.1 – The real and imaginary parts of the atomic scattering form factor for Cu (left) and
O (right) tabulated for photon energies in the soft x-ray regime. The discontinuous jumps in f ′′

correspond to x-ray absorption edges. A finite-width pole (resonance) in f ′ occurs at the edges.
Two sources are compared. The empirical data is interpolated from the available data in Ref.
[161]. The theoretical data is from Ref. [158]

2.2.3.1 Kramers-Kronig dispersion relations

The Kramers-Kronig dispersion relations are

f ′(E) =
2

π
P
∫ ∞

0

E ′f ′′(E)

E ′2 − E2
dE ′ (2.28)

f ′′(E) = −2E

π
P
∫ ∞

0

f ′(E)

E ′2 − E2
dE ′ (2.29)

where the integral P
∫

denotes a Cauchy principal value integral. These are causal relations,
strictly referring to the fact that a scattering event must first be preceded by an incident
wave interacting with the scatterer.[165] The power of these relations is that it is generally
possible to measure the x-ray absorption cross-section (eg., with an x-ray transmission
experiment), and thus to empirically determine f ′′ as a function of energy. Given this, one
can use Eq. 2.28 to determine f ′(E) and thus determine both f ′ and f ′′ from an x-ray
absorption measurement. This is what was done in Ref. [161] to tabulate f ′. Even in the

case that a scattering tensor f̂ is needed, it is possible to measure the x-ray absorption with
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the polarization vector aligned with the different crystal axes and build up the scattering
tensor from these components (see Ref. [84] for an example of this done for YBCO).

As a slightly technical point, there are various integration schemes that can be found
in the literature to deal with the principal value integral (see Refs. [161, 158] for two ex-
amples). These techniques are designed to succeed over a wide energy range by performing
different integrations depending on whether the energy is near or far from an absorption
edge. They are also coded in low level languages to ensure high speed. For the Kramers-
Kronig transforms presented in Chapters 3 and 4, it was not crucial to reproduce these
features, so I opted to implement the numerical integration in Mathematica. The key
feature is that the numerical integral can simply be performed with a single (high level)
function call of the form:

f ′[E] := Z +
2

π
NIntegrate

[
E ′f ′′[E ′]

E ′2 − E2
, {E ′, 0, E,∞},Method→

{
“PrincipalValue”,

Method→
{

“AdaptiveMonteCarlo”, “BisectionDithering”→ 1/8
}}
,

MaxRecursion→ 200

]
,

providing numerous options to control how NIntegrate is evaluated. Note that I have
included the atomic number Z in this calculation to match the NIST definition for the real
part of f , which includes the low-Q limit of fT (given simply by Z)6. To test this method,
I calculated f ′ from the tabulated values of f ′′ for a variety of elements and compared
them to the tabulated f ′ values. A few such calculations for O, Cu, C, K, Ba, and Pb
are presented in Fig. 2.2. I have made the precise implementation used to generate these
calculations publicly available at Ref. [166]. As can be seen, this method provides a very
good approximation of the tabulated f ′ values over the full energy range.

The residuals do highlight that this integration method has difficulty converging at the
absorption edges (where f ′′ is discontinuous). However, in a realistic use-case that I am
considering, the tabulated near-edge values of f ′′ would be replaced by high resolution x-ray
absorption data, such that the edge-jumps would either be smooth or small compared to
the x-ray absorption near-edge structure. Consequently, this numerical integration method
is generally quite reliable for the use case it targets. It is also worth pointing out the same
integration strategy was used for all cases in Fig. 2.2, but it is very likely that better results
can be achieved on a case-by-case basis by optimizing the strategy.

6This is approximate, as for very high energy a relativistic correction is needed, and Z should be
replaced by Z∗ ≈ Z − (Z/82.5)2.37, relevant for high Z elements.[161]
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Figure 2.2 – The real part of f = f ′ + if ′′ for O, Cu, C, K, Ba, and Pb was calculated (red)
and is compared to the tabulated values of f ′ (black) for free-atoms. Here, f ′ also includes the
Thomson term fT, which is approximately Z for low Q. The numerical integration strategy used
to evaluate the Kramers-Kronig transformation is described in the text. Minor convergence issues
are noticeable at the edge-steps due to discontinuities in f ′′ there. The tabulated values of f ′ and
f ′′ are from Refs. [158, 159], which are accessible online.[160]

While the existing methods and tabulated values are generally better and have been
more thoroughly verified for free-atom calculations of f ′ than this approach, another im-
portant benefit of this method is that it is simple to build upon it to reliably calculate
near-edge values of f ′ for non-free atoms with experimental x-ray absorption data as an
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input. This is a tremendously useful tool for modelling resonant soft x-ray scattering,
since the x-ray absorption cross-section is sensitive to the “true” electronic structure of a
material and it is in many cases simple to measure at a synchrotron. In contrast, relying
on a quantum mechanical formula akin to Eq. 2.17, requires the self-consistent determi-
nation of the ground state and all intermediate state wavefunctions that the core-electron
can transition into, which for atoms in a crystal can quickly become a very complicated
problem. This problem can be made tractable if one makes assumptions about the elec-
tronic structure and takes advantage of an existing software package to do the calculations
(eg. CTM4XAS [167]). This is a great way to identify the origin of different features in
x-ray absorption spectra. Yet, the calculations typically need to be validated against x-ray
absorption data, so there is little benefit to using the calculations rather than XAS as an
input to resonant scattering model calculations.

A general outline of how to use empirical x-ray absorption data along with the Kramers-
Kronig numerical transformation method above is as follows (the calculations in Chapters
3 and 4 followed this procedure):

1. Convert XAS for element X in a multi-atom material to a form proportional to f ′′

(a) Normalize XAS to σabs
tot = σabs

X + σabs
other and then subact σabs

other, giving σabs
X

(b) Calculate σabs
X × E ∝ f ′′ = f ′′data

(c) Normalize f ′′data to the tabulated values f ′′tables

2. Join f ′′data and f ′′tables together

3. Define a function f ′′interp that linearly interpolates the values f ′′data and f ′′tables

4. Define f ′′interp for energies outside the tabulated range as

(a) f ′′interp(E < Emin) = f ′′(Emin)

(b) f ′′interp(E > Emax) = f ′′(Emax)(E/Emax)−2

5. Evaluate Eq. 2.28 using f ′′interp in the integrand.
Modify NIntegrate strategy as needed.

With this approach, it is possible to fully determine the complex atomic scattering form
factor for an element within a crystal structure that has a non-trivial electronic structure.
Utilizing the polarization dependence of the x-ray absorption measurement, it is also pos-
sible to determine the individual elements of the more general scattering tensor to treat
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scattering for a more complex system. Then, armed with some knowledge (or a reasonable

guess) of how f̂ depends on site index j in Eq. 2.21, it is possible to calculate how the
resonant scattering intensity should depend on photon energy, polarization and Q. In this
thesis, the photon energy dependence is studied for the cuprates La1.475Nd0.4Sr0.125CuO4

and YBa2Cu3O6.75 in Chapters 3 and 4, respectively, and the polarization and Q depen-
dence are evaluated for La1.875Ba0.125CuO4 and YBa2Cu3O6.67 in Chapter 5.

2.2.4 The polarization dependence in REXS

The polarization vectors are, in addition to the scattering tensor, an essential part of Eq.
2.21. They effectively provide sensitivity to the different elements of f̂ . In Eq. 2.21, ε
and ε′ are labeled explicitly with an index µ (although it is often omitted for brevity),
which denotes the mode. These modes can be represented by two basis vectors which are
perpendicular to the wave propagation direction. The convention is to define the basis
with two linear polarization vectors εσ and επ, where εσ is perpendicular to the scattering
plane and επ is parallel to it. One choice of basis that has its primary axes aligned with
Q, k + k′, and k × k′ is depicted in Fig. 2.3.

Figure 2.3 – Scattering geometry with reference frame chosen such that x̂s ‖ (k−k′), ŷs ‖ (k+k′),
and ẑs ‖ (k × k′). The angle between k and k′ is defined as 2θ.

Formally, evaluation of Eq. 2.21 then requires summation over µ = {σ, π} and µ′ =
{σ′, π′}. There are four possibilities: σσ′, σπ′, πσ′, and ππ′. This can be represented as a
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scattering matrix G (still at site j), given by

Gj =

(
ε′∗σ′ · f̂j · εσ ε′∗π′ · f̂j · εσ
ε′∗σ′ · f̂j · επ ε′∗π′ · f̂j · επ

)
. (2.30)

The scattering intensity is then I ∝
∣∣∣∑µ,µ′

∑
j Gje

iQ·rj
∣∣∣2 = Iσσ′ + Iσπ′ + Iπσ′ + Iππ′ .

Depending of the incident polarization and whether the polarization of the scattered rays
can be discriminated, G can take on different forms. For example, if the incident light is
σ or π polarized and an instrument is available to detect the outgoing light polarization,
each scattering channel can be measured individually. More commonly (for soft x-ray
beamlines), the incident polarization can be controlled but the outgoing polarization is
unknown, leading to scattering that is either Iσσ′ + Iσπ′ or Iπσ′ + Iππ′ .

The case of Thomson scattering is particularly simple. For a spherically symmetric
scatterer, we have f̂j ∝ I3, (I3 is the identity matrix). With polarization vectors defined
as in Fig. 2.3

εσ =

 0
0
1

 εσ′ =

 0
0
1

 (2.31)

επ =

 cos θ
− sin θ

0

 επ′ =

 cos θ
sin θ

0

 , (2.32)

we find

G =

(
1 0
0 cos(2θ)

)
, (2.33)

by evaluation of Eq. 2.30. This reveals that only the σ → σ′ and π → π′ scattering channels

are active for Thomson scattering. If the incident light is σ polarized, then IT
σ =

∣∣fT(Q)
∣∣2.

For π polarization, we have IT
π = cos2(2θ)

∣∣fT(Q)
∣∣2. For unpolarized incident light, the

scattering intensity is the average IT
unpol. = (1/2)(1 + cos2(2θ))

∣∣fT(Q)
∣∣2. This pre-factor

is the well-known polarization factor for Thomson scattering. Notably, for unpolarized
incident incident light, Thomson scattering produces polarized light.

For non-magnetic charge scattering, the scattering tensor f̂charge (see Eq. 2.23) can be
used, giving

Gcharge =

(
fzz 0
0 fxx cos2(θ)− fyy sin2(θ)

)
. (2.34)
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Similar to Thomson scattering, charge scattering only consists of σ → σ′ and π → π′

processes. This relation can be useful when comparing resonant scattering intensities for
incident σ or π polarization, although generally one also needs to take the absorption of the
incident and scattered photons into account, since for an anisotropic absorption/scattering
tensor the absorption cross-section would differ for σ and π polarization.

2.3 Experimental methods

2.3.1 Beamline

The RSXS experiments presented in this thesis date back to early 2010,7 and were all per-
formed at the Canadian Light Source’s REIXS (Resonant Elastic and Inelastic X-ray Scat-
tering) 10ID-2 beamline using an in-vacuum four-circle diffractometer.[168] In synchrotron
parlance, the REIXS beamline is referred to as 10ID-2, meaning that the insertion device
(ID) is the second one installed on the 10th straight section of the CLS’s storage ring. The
ID at REIXS is an elliptically polarizing undulator (EPU) with 43 poles having a 75 mm
period and spanning 1.6 m. This EPU produces linearly polarized photons with energy
100→ 3000 eV or circularly polarized (left or right) photons with energy 100→ 1000 eV.
For linear polarization, the angle of the polarization can be set arbitrarily.

The optical configuration of the REIXS beamline is shown schematically in Fig. 2.4.
REIXS features a variable line spacing plane grating monochromator (VLS-PGM) with
three gratings (Ni low energy, Au low energy, Au high energy) and four coatings (Ni, C, Si,
Au) on the plane mirror. These can be chosen to optimize flux at photon energies spanning
the full energy range of the beamline. A variable exit slit can be used to adjust energy
resolution, giving maximal energy resolutions of 0.005 eV at 100 eV and 0.13 eV at 1000
eV. The size of the exit slit gap is typically set in the 10–50 µm range and is approximately
proportional to flux. The beamline produces a flux of 5× 1012 photons/s/0.1% bandwidth
(for 100 mA ring current and 1000 eV). Since the incident flux I0 depends on energy,

7Specifically, the data presented here was collected from February 2010 to January 2015, beginning
shortly after the REIXS beamline and scattering endstation were put together. For context, the monochro-
mator and EPU at REIXS were installed in November and December of 2007, respectively, and two years
later the scattering chamber received its first light (June 2009) and the first spectrum was recorded (July
2009). The diffractometer was commissioned (characterization and testing) from August 2009 to April
2010 by many people, including myself. Some of this early work is presented in Chapter 3. The first access
to general users was later made possible by letters of intent (specific proposals likely to succeed) in May
2010, followed soon thereafter by competitive proposals (January 2011).
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Figure 2.4 – Schematic of REIXS beamline showing novel x-ray optics configuration capable of
sending spatially separated beams from two EPUs to the sample position simultaneously. Figure
adapted from Ref. [169].

storage ring current and other beamline settings (grating, coating, exit slit gap, etc.), the
electron yield from a high transmission Au mesh is used to record I0 for normalization.
The beam spot size at the sample position is width×height ≈ 250× 150 µm. Note that in
typical usage, light from only one of two EPUs is sent down the optical path for scattering,
but that REIXS features an operating mode and optics capable of using the light from
10ID-1 (normally servicing the neighbouring soft x-ray spectromicroscopy beamline) and
10ID-2 simultaneously, such that two different light polarizations can be rapidly switched
during a measurement.

The entire beamline is operated in ultra-high vacuum (UHV) conditions (P < 10−9

Torr). This is firstly needed to ensure a long lifetime of the electron orbit in the storage
ring, which the EPU is a part of. It is also quite important due to the use of soft x-rays, since
even for modest pressures, the mean path length of soft x-rays can suffer dramatically.8

Operating in UHV also reduces the amount of contaminants that can build up on optical
elements of the beamline by limiting adsorption or potential condensation of gases such as
water vapour onto these components. For samples that are heated and cooled in vacuum,
this can also be quite important since certain measurements (e.g., electron yield or resonant
reflectivity) can be sensitive to the topmost layers of the sample.

2.3.2 Diffractometer and detectors

The following discussion is an abbreviated summary of some of the essential aspects of the
elastic scattering chamber and diffractometer design, which are covered thoroughly in Ref.

8See Section A.3 for a brief illustration of this point.
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[168]. Some details here will differ due to modifications to the system that have occurred
since Ref. [168] was published in July 2011.

The ∼1 m diameter stainless steel vacuum chamber pictured in Fig. 2.5 at the REIXS
beamline houses an UHV 4-circle diffractometer (Fig. 2.6) consisting of a 2-circle goniome-
ter mounted on a central θ ring and a detector arm mounted on a separate 2θ ring. The
diffractometer is mounted on a separate subframe than the main scattering chamber and
connected to it with flexible bellows, so that the diffractometer can be translated into the
x-ray beam path independent of the main scattering chamber.

A load lock is used so samples can be transferred without venting the scattering cham-
ber. The load lock has a garage for storage of up to 3 sample holders at a time. Sample
holders are transferred into the scattering chamber using a magnetically coupled rack and
pinion linear translator that uses a pincer mechanism to securely hold onto a small tab

Scattering chamber

Cryostat

Load lock

X-rays from beamline

Chamber frameDiffractometer
subframe

Transfer arm

Figure 2.5 – The RSXS scattering chamber at the CLS’s REIXS beamline. A polarized,
monochromatic beam of soft x-rays from the beamline enter from the right and focus at the
sample position, centred in the scattering chamber. A load lock is used to store samples and fa-
cilitate sample transfers. The closed-cycle cryostat is mounted on top of the scattering chamber.
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on the sample holder. Gate valves are used to isolate the scattering chamber from the
beamline and the load lock from the scattering chamber during sample transfers.

MCP

photodiode

slit wheel

z stage

y stage

x stage

support structure

heat shield

sample holder

heater

in-vacuum stepper motor

channeltron

sample receptacle

Figure 2.6 – The in-vacuum four-circle diffractome-
ter at the CLS’s REIXS beamline.

The load lock is pumped down with
a 300 L/s Pfieffer turbopump and typi-
cally reaches 5×10−7 Torr in ∼ 45 min
or less, sufficiently low for transfers.
The main chamber is pumped using
a 700 L/s Pfieffer turbopump (backed
by a triscroll roughing pump) and a
CTI Cryotorr 8F cryopump. A closed-
cycle cryostat is mounted on a differ-
entially pumped rotatory feedthrough,
located at the top of the chamber. The
feedthrough is pumped in two stages
by the triscroll pump and a 2 L/s
ion pump. The pressure in the scat-
tering chamber is usually better than
5 × 10−9 Torr. Pressure gauges in-
clude a cold cathode gauge, a hot fila-
ment ion gauge and a residual gas ana-
lyzer, for low pressure measurements,
as well as thermocouple and convec-
tron gauges for intermediate and high
pressures, respectively.

Sample translations up to ±7.5 mm
are accomplished with stacked x, y and
z linear translation stages mounted on
the goniometer. The θ and 2θ motions,
originally supported motion ranges of
−25◦ to +265◦, but due to instrument
modifications and practical considera-
tions, ranges of −60◦ to 165◦ for θ and −25◦ to 172◦ for 2θ are currently imposed. The
φ and χ motions have (approximate) ranges of ±7◦. These motions are primarily used to
correct sample alignment but can also be used to expand the range of accessible Q.

Cooling is achieved by connecting the cryostat’s cold head to the sample receptacle with
flexible copper braids (not seen in Fig. 2.6 since the braids are inside the heat shield). These
braids damp vibrations from the cryostat and also reduce torsional forces if the cryostat
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is stationary while θ is rotated (the cryostat can also be rotated to match θ rotations,
keeping constant torsion on the support frame). Moreover, because the cooling elements
are decoupled from the sample receptacle, their thermal expansion or contraction do not
affect the sample position.

The sample receptacle is attached to a support structure, built with thin-walled stainless
steel tubing, and mounted atop the translation stages of the goniometer. The support
structure design minimizes thermal conduction between the sample holder (and receptacle)
and the rest of the goniometer, reducing the heat load on the cryostat. It also limits
thermal expansion of the support structure as the sample temperature is varied. For
example, raising the temperature from 20 K to 298 K, thermal expansion accounts for just
∼ 180 µm of sample displacement along the z-axis, as shown in Fig. 2.7.
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Figure 2.7 – The relative displacement ∆z = z(T ) − z(20 K) due to thermal expansion of the
support structure, sample holder, and sample receptacle. The negative sign indicates that the z
stage must be lowered to centre as temperature is increased. The dashed line is a polynomial fit
providing a reasonable interpolation scheme for this temperature range.

With the configuration pictured in Fig. 2.6, a base temperature at the sample position of
18 K was possible during the 2009 to October 2013 timeframe. At the end of 2013 (October
to November) a magnet assembly was installed on the sample receptacle, increasing the
thermal load and raising the base temperature to ∼23 K. This base temperature may
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be improved in the future with planned revisions to the heatshield design. Heating is
accomplished with a 100 W Lakeshore HTR-25-1000 cartridge heater, which is thermally
connected to the sample receptacle just above the sample holder position. A sapphire plate
and ceramic hat washers are used to electrically isolate the heater from the sample holder
assembly. The heater is sufficiently powerful to raise the sample temperature to 400 K
with the cryostat in operation.

MCP

photodiode

slit wheel
channeltron

Polarization 
analyzer

Figure 2.8 – Detector assembly in the RSXS scattering chamber

Four detectors are currently installed on the detector arm (Fig. 2.8): a micro-channel
plate (MCP), a photodiode (PD), a channeltron (ChT) and a polarization analyzer. These
are located at a radius of ∼29 cm from the sample position and are mounted to a structure
that can be raised or lowered by 40 mm to place any of the detectors in the scattering
plane. The MCP has a 25 mm diameter and provides 2D sensitive single-photon detection
capability. A negatively charged grid is placed in front the MCP to capture positively
charged ions (from ion gauges or possibly ejected from the sample). The front surface is
also negatively biased to repel electrons from the surface. The ChT is a 10×10 mm detector
that provides single photon sensitivity similar to the MCP but without 2D sensitivity. It
has a similar biasing scheme as the MCP. The PD has a 10×10 mm active area, is sensitive
to a very wide range of photon energies with a linear response for photon energies up to 5
keV and a high dynamic range (currents can range from 10−12 to 10−5 A, suitable for the
high flux of the direct beam or an x-ray fluorescence measurement). A slit wheel allows
the the selection of different slits (with width × height of 10× 10 mm, 1× 2 mm, 0.5× 3
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mm, 0.1× 3 mm, or 0.1× 1 mm) and thin Al or SiN filters to be placed in front of either
the ChT or PD. The different slits give control over detector resolution and the filters can
be used to block charged ions or reduce the detection of background fluorescence.

The polarization analyzer uses two PDs and a selection of 4 multilayers suited for
different x-ray absorption edges (O K: 530 eV, Mn L: 645 eV, Ni L: 860 eV, and Cu
L: 940 eV), which can be switched using two Attocube rotary actuators, to reflect the
vertical and horizontal polarization components of the scattered light into one of the two
PDs. This design is not well suited to studying weak scattering signatures (as seen in this
thesis), since the intensity losses due to this multilayer reflectivity are extreme (97% for O
K and 99.85% for Cu L), but it can be useful in reflectivity experiments, where at small
angles the flux of scattered light can be very high.

2.3.3 Sample preparation

For successful RSXS experiments, it is essential to prepare samples with good surface
quality and with an orientation that provides access to a chosen zone in reciprocal space.
This is because, unlike hard x-ray scattering, the range of Q is very restricted and RSXS
can be sensitive to surface effects. I will first discuss crystal orientation by Laue diffraction
and then discuss crystal cleaving and polishing methods. Also, I will briefly describe the
methods used to mount samples for RSXS measurements.

x-rays from tube

35 kV

I

0.3 0.90.5 0.7
λ (Å)

W
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crystal

photographic
film

Figure 2.9 – Laue backscattering ge-
ometry for single crystal orientation.

In many cases, the crystallographic orientation
of as-grown crystals is not known. It is possible
to determine the orientation with Laue diffraction.
A typical configuration for Laue diffraction uses an
x-ray tube with a tungsten target in order to pro-
duce a broad spectrum of x-rays. This broad spec-
trum of light can then readily satisfy Bragg’s law (or
the Laue condition) simultaneously for many crystal
planes with different dhkl and lead to a series of spots
that can be recorded by photographic film. Laue
diffraction can be measured in transmission (x-rays
pass through a sample) or backscattering (x-rays are
diffracted back towards x-ray tube) geometry. For
the thick crystals studied in this thesis, backscatter-
ing geometry was more suitable. The backscattering
geometry is depicted in Fig. 2.9.
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A practical application is illustrated in Fig. 2.10. Here, Laue backscattering was used
to orient an La1.475Nd0.4Sr0.125CuO4 (LNSCO) crystal boule with unknown orientation.
First, a measurement on a cut surface was taken (left panels, Fig. 2.10). The orientation
was solved using OrientExpress by indexing high symmetry points shown in the lower left
panel of Fig. 2.10.[170] Angular corrections were calculated to orient the boule with the
a(b) axis perpendicular to the page and with c horizontal. A goniometer (see Fig. 2.11)
was used to make these rotations and a subsequent Laue image (right panels, Fig. 2.10)
confirmed the re-orientation.

The boule and goniometer were then transferred to a wire saw so that a cut could
be made along the ab plane. The sample was then mounted on this flat surface so that
subsequent cuts would produce tall samples with the c axis along the long side and a or b

Figure 2.10 – Laue backscattering images taken on a cut surface of an LNSCO boule before
(left) and after (right) orienting. The top row shows the Laue image as captured and the bot-
tom row shows a superimposed Laue simulation obtained using OrientExpress.[170] (Simulation
parameters: film to crystal distance: 35 mm, scattering geometry: 180◦, space group: I4/mmm,
lattice constants: a=b=3.787 Å, c=13.24 Å)
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Figure 2.11 – A crystal boule of LNSCO was cut on a wire saw, first to expose a surface for
Laue diffraction (top left), and then along a crystallographic plane (top right), for subsequent
mounting (bottom left) and additional cuts (bottom right). The samples shown in the bottom
right have the c axis out of the page and a(b) along their width and length.

horizontal. The different cutting stages are illustrated in Fig. 2.11. These smaller pieces
were then cut parallel to the flat edge,9 and finally once more along the horizontal of this
page, producing 4 tall samples with approximately square bases and dimensions in the
range of ∼ 1.5× 1.5× 3 mm to ∼ 2× 2× 3 mm.

After orienting a crystal, the next important consideration is the condition of the sur-
face. The wire saw achieves its cutting action by dragging a grit of boron carbide across
the sample, producing a rough and highly textured surface, as shown in Fig. 2.12 (a), not

9The flat edge enables further Laue measurements to establish the final orientation of the crystal,
as-mounted and ready for scattering. This is important, since small errors compound and it is rare to
have a perfectly oriented crystal. Knowing approximately where to look in angle-space with the soft x-ray
diffractometer can save a lot of time.
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(a) (b) (c) (d)

Figure 2.12 – (a)-(c) A sample of LNSCO with different surface conditions. (a) The rough surface
results from cutting on the wire saw. (b) The shiny, bumpy surface results from fracturing in
vacuum. (c) The flat, smooth, and shiny surface results from polishing (a piece broke off, giving
it a trapezoidal shape). (d) An La1.875Ba0.125CuO4 sample prepared for cleaving with a top post.

suitable for RSXS or XAS (due to surface damage and contamination). The load lock of
the scattering chamber is equipped with a blade and anvil sample cleaver, which in this
case was used to apply pressure to the sides of the sample and cause it to fracture in
vacuum, producing a fresh surface [Fig. 2.12 (b)] for XAS and RSXS measurements.10 It
is also possible to cleave or fracture a sample by attaching a post at the top of the sample
[Fig. 2.12 (d)]. An impact is then delivered to the top post and if the crystal is weaker
than its bonds to the sample plate and top post, a fresh surface will be exposed. Besides
cleaving, one can also polish a crystal to produce a smooth, flat surface [Fig. 2.12 (c)].

Polishing was performed in stages usually beginning with a 10 µm boron carbide pow-
der, suspended in mineral oil, to obtain the primary grinding action. Water-based suspen-
sions were avoided since cuprates are a bit hydroscopic. Using progressively finer powders
(eg. “jeweler’s rouge”, ∼0.5 to 1.5 µm), the surface could be smoothed down gradually.
The finishing stages used 0.3 and 0.05 µm lapping films. Given the delicate nature of the
samples, this was all done by hand using a custom-built polishing assembly. The polishing
direction could be aligned with a high-strength axis of the crystal to minimize the like-
lihood of fracturing. Despite this, parts of the samples did frequently fracture or break
off (usually near the edges). A comparison of the surface conditions of two YBa2Cu3O6+x

samples before and after polishing is shown in Fig. 2.13. The polished surfaces appeared
smooth and mostly featureless at a magnification of 45× (noted by eye, not pictured here).

For detecting charge density wave order by RSXS in La-based cuprates, cleaving sam-
ples has typically been a necessary step. Cleaving in vacuum or in air are both viable
approaches, with the former having the benefit of giving more reliable electron yield at the

10The pictured sample is oriented with its weak plane not aligned with the sample cleaver, so the surface
results formally from a fracture, not a cleave. The terms are often used interchangeably.
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Unpolished Polished

Figure 2.13 – Polishing YBa2Cu3O6+x samples. Left: unpolished samples. Right: after pol-
ishing. Polishing was performed in stages, as described in the text. The top row is a sample of
YBa2Cu3O6.335 and the bottom row is a sample of o-III ordered YBa2Cu3O6.75. The polishing
procedure succeeded in removing the surface imperfections. Although the polishing procedure
was gentle, parts of both samples can be seen to have broken off.

expense of being a more difficult procedure. I have also had success detecting CDW order
from a polished LNSCO surface. For YBa2Cu3O6+x, polishing was useful for eliminating
surface imperfections, but not essential for detecting the charge density wave order.

It is also important to have good electrical and thermal conductivity with the sample
holder. Electrical contact can be made using silver epoxy (EPO-TEK H21D), high purity
silver paint (SPI #5001-AB), silver paste (SPI #5063-AB) or carbon tape (SPI #05081-
AB). For low temperatures or experiments with significant temperature cycling, the silver
epoxy and paint are better choices, since they retain their strength and provide excellent
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thermal and electrical conductivity. Silver epoxy forms a much stronger and more per-
manent bond than silver paint, making it suitable when samples are to be cleaved. Silver
epoxy can be excessive for many applications, since removing it typically requires scraping
with a scalpel and hours of sonication in acetone. In contrast, silver paint can be removed
with a few minutes of sonication in acetone. For room temperature measurements, sil-
ver paste and carbon tape are good choices. Silver paste dissolves in acetone, with little
need for sonication. Samples mounted on carbon tape can usually be removed simply with
tweezers. Occasionally, carbon tape residue is left on the sample. The residue can be wiped
off or dissolved in acetone.
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Chapter 3

Spatially Modulated Orbital Energies
in Cuprate Superconductors

This chapter has been adapted from Ref. [1].

3.1 Overview

A prevailing description of the stripe phase in underdoped cuprate superconductors is
that the charge carriers (holes) phase segregate on a microscopic scale into hole rich and
hole poor regions. Here, resonant elastic x-ray scattering measurements of stripe-ordered
La1.475Nd0.4Sr0.125CuO4 at the Cu L and O K absorption edges are shown to identify an
additional feature of stripe order. Analysis of the energy dependence of the scattering
intensity reveals that the dominant signature of the stripe order is a spatial modulation
in the energies of Cu 2p → 3d and O 1s → 2p resonant transitions rather than the large
modulation of the charge density (valence) envisioned in the common stripe paradigm.
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3.2 Introduction

Static stripe order in cuprates was first theoretically predicted by mean-field Hubbard
model calculations [171, 172, 173, 174] and subsequently observed in lanthanum-based
cuprates by neutron and x-ray diffraction[25, 85, 92, 94, 175, 95, 96]. Although still a
matter of debate, more recent work has indicated that stripe-like density wave order is
generic to the cuprates [82, 176, 177, 178, 179, 32] and plays a significant role in competing
with or possibly causing superconductivity [59].

Microscopically, stripes in the cuprates have been widely described as rivers of charge—
hole-rich antiphase domain walls that separate undoped antiferromagnetic regions. How-
ever, alternate models with different underlying physics, such as the valence bond solid
(VBS), have also been proposed to explain stripe order [180, 19, 181]. VBS models involve
singlet formation between neighbouring spins and, in contrast to other models of stripe
order, may occur with a small modulation of the charge density [19].

Distinguishing which of these models is most relevant to stripe order in the cuprates
is challenging since the models share many symmetries and experimental signatures. In
particular, direct evidence for charge-density modulations, which may distinguish various
models, has been elusive. Neutron and conventional x-ray scattering are only sensitive to
lattice displacements. It is therefore only inferred indirectly that these lattice displacements
are induced by modulations in charge density (valence). Resonant soft x-ray scattering
(RSXS) offers a means to couple more directly to modulations in the electronic structure,
including charge density modulations. By performing an x-ray diffraction measurement on
resonance (at an x-ray absorption edge), the atomic scattering form factor f(ω) is enhanced
and made sensitive to the valence, orbital orientation and spin state of specific elements. A
key feature of RSXS is that the energy dependence of the scattering intensity through an
absorption edge differs for lattice distortions, charge-density modulations or other forms
of electronic ordering, providing a means to distinguish these different types of order.

In the cuprates, RSXS of the (2ε, 0, L) charge density wave (CDW) superlattice peak
has been measured in stripe-ordered La2−xBaxCuO4 (LBCO) [95], La2−x−yEuySrxCuO4

(LESCO)[96, 182] and La1.475Nd0.4Sr0.125CuO4 (LNSCO) [183] at the O K (1s→ 2p) and
Cu L (2p→ 3d) absorption edges, which provide sensitivity to the O 2p and Cu 3d orbitals
that are central to the physics of the cuprates. These measurements have been interpreted
as direct evidence for a large valence modulation on the O sites [95]. Moreover, it is argued
that a modulation of the valence occurs primarily on the O sites and not on the Cu sites,
which are instead subject to lattice distortions induced by the valence modulation on the O
sites [95, 96]. However, efforts to model the energy dependence of the scattering intensity
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based on this picture are not truly reconciled with experiment, leaving this interpretation
open to question [96].

In this chapter, the energy dependence of the resonant scattering at the O K and
Cu L edges of LNSCO are presented. This energy dependence is modelled using x-ray
absorption measurements to determine f(ω) at different sites in the lattice, a procedure
that has proven effective in describing the scattering intensity of valence modulations in
the chain layer of ortho-II YBa2Cu3O6+δ (YBCO) [84]. Contrary to previous analysis of
LESCO [96] and LBCO [95], it is shown that the resonant scattering intensity is best
described by small energy shifts in the O 1s→ 2p and Cu 2s→ 3d transitions at different
Cu and O sites rather than a valence modulation of O and a lattice displacement of Cu.

3.3 Results

3.3.1 Measurement

The measured intensity for scans through Q = (H, 0, 1.5) with the photon energy at
the peak of the Cu L3 absorption edge (931.3 eV) are presented in Fig. 3.1(b) (methods
are described in section 3.5.1). Below the stripe-ordering transition temperature of ∼70
K, a clear superlattice peak is observed at Q = (2ε, 0, L) = (0.236, 0, 1.5). Above the
stripe-ordering transition temperature, a large, smoothly varying fluorescence background
is observed. To determine the photon energy dependence of the scattering intensity, H
scans through the superlattice peak were performed at 22 K as a function of photon energy
at L = 1.5 for Cu and L = 0.2 for O. The fluorescence background is fit and subtracted from
each scan. The integrated intensity of the superlattice peak is then determined as a function
of photon energy for the O K and Cu L edges [Fig. 3.1(c) and Fig. 3.1(d)]. The resulting
spectra are qualitatively similar to previous measurements on LBCO [95] and LESCO [96].
Importantly, our measurements extend the previous Cu L edge measurements to include the
L2 edge, which proves valuable in distinguishing models for the stripe phase. An important
feature of our measurement is that all scattering measurements are performed with the
incident x-ray polarization along the bo axis of the sample. As a result, the scattering
intensity will be sensitive to only the O py and not the O px orbitals. Assuming doped
holes go only into σ-bonded orbitals of O, this measurement geometry is only sensitive
to half of the oxygen atoms; the site-centred and not the bond-centred oxygen. This fact
simplifies the expression for the structure factor.
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Figure 3.1 – Resonant scattering of 1/8 doped LNSCO at the Cu L and OK edges. (a) Schematic
representations of bond-centred stripe ordering for the three models proposed to describe the
resonant scattering energy dependence. (b) H scan through the CDW superlattice peak at (H, 0,
1.5) and at the peak of the Cu L3 absorption edge [84]. (c)—(h) Scattering intensity as a function
of photon energy through the Cu L3,2 and O K absorption edges. The measured intensity (red
line) is compared to the scattering intensity of valence modulation (blue line), lattice displacement
(green line) and energy shift (black line) models of the stripe-ordering. The best agreement with
experiment is for the energy shift model. (i) and (j) X-ray absorption µ(ω) at the Cu L3,2 (i) and
O K (j) absorption edges measured using total electron yield.

3.3.2 Model calculations

The measured energy dependence of the scattering intensity is compared to three model
calculations [see Fig. 3.1(a)]: 1. valence modulation, a spatial modulation in the valence of
the Cu and O; 2. lattice displacement, a small displacement of the Cu and O atoms from
their equilibrium positions outside the stripe-ordered phase; and 3. energy shift, a spatial
modulation in the energy of the Cu 3d and O 2p states. The first two models essentially
follow previous analysis of RSXS in LBCO and LESCO [95, 96].

The three models differ in the structure factor (described in section 3.5.2) and the
energy dependence of the atomic scattering form factor f(ω). These two factors give
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rise to a different energy dependence to the scattering intensity, Is(ω). For the valence
modulation model, Is(ω) ∝ |f(ω, p2) − f(ω, p1)|2/µ(ω), where p1 and p2 are the local
hole concentrations (valence) at different sites [see Fig. 3.1(a)] and µ(ω) is the absorption
coefficient. For the lattice displacement model, f(ω) is the same at each site for a given
element and Is(ω) ∝ |f(ω)|2/µ(ω). Finally, for the energy shift model, Is(ω) ∝ |f(~ω +
∆E) − f(~ω −∆E)|2/µ(ω), similar to the valence modulation model but with an energy
shift ±∆E at different sites instead of a modulation in valence. In all three models, the
site specific f(ω, p1,2,∆E) are determined from x-ray absorption measurements.

3.3.2.1 Valence modulation model

For the valence modulation model, x-ray absorption spectroscopy (XAS) on samples with
different doping levels from Ref. [105] are used to determine f(ω, p1,2). This procedure
found very good agreement between experiment and calculations for a modulation of the
Cu valence in the chain layer of oxygen-ordered YBCO [84]. In lanthanum based cuprates,
the key features of the O K edge XAS are two preedge peaks at 528.6 eV and 530.5 eV
that are due to hybridization between Cu 3d and O 2p states and have been assigned to the
mobile doped holes and the upper Hubbard band respectively [Fig. 3.1(j)] [104, 105, 184].
The intensities of these two peaks evolve strongly with doping, whereas the spectra at
higher energy are doping independent and dominated by O 2p states hybridized with
rare earth 5d and 4f states [185]. As argued in Ref. [96], the scattering intensity for a
valence modulation of arbitrary magnitude can be modeled using XAS measured at two
different dopings. Here fj(ω) [Fig. 3.2(b)] and the scattering intensity expected for a
valence modulation [Fig. 3.1(d)] is calculated from XAS in La2−xSrxCuO4 (LSCO) at x =
0.07 and 0.15 from Ref. [105], corresponding to a hole modulation of δp = p1 − p2 = 0.08.
Although this calculation successfully produces two peaks at approximately the correct
energies, it strongly overestimates the intensity of the peak at 529.9 eV [96]. A different
choice of doping values to determine f(ω, p1,2) impacts the magnitude of the scattering,
scaling it roughly as δp2, and produces differences in the line shape (see Fig. 3.4). However,
calculations using existing XAS data are all similarly inconsistent with the measured RSXS
line shape.

A similar analysis, again using XAS from Ref. [105] to determine f(ω, p) [Fig. 3.2(a)],
can be applied to the Cu L edge. The XAS for the Cu L edge exhibits two primary peaks
at 931.3 eV and 951.3 eV corresponding to the L3 and L2 edges that are split by the spin-
orbit coupling of the 2p core electrons. Focusing on the L3 edge, the XAS is comprised
of a peak (931.3 eV) and a shoulder (932.3 eV) that are associated with d9 (a single hole
in the dx2−y2 orbital) and d9L (doped holes that are primarily on the oxygen ligands)
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ground states. Consistent with this assignment, the high energy shoulder evolves much
more strongly with doping than the d9 peak [105]. It follows that the predicted scattering
intensity for a valence modulation of the Cu is peaked at the shoulder and not the peak
of the XAS [Fig. 3.1(c)]. As discussed in Refs. [95, 96], this is in poor agreement with
the energy dependence of the resonant scattering, which is peaked at the maximum of the
XAS.
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Figure 3.2 – The atomic scattering form factors f(ω) as a function of photon energy through
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3.3.2.2 Lattice displacement model

Calculations based on the lattice displacement model [Fig. 3.1(e) and Fig. 3.1(f)] are also
in poor agreement with experiment [here using XAS on our sample of LNSCO in Fig. 3.1(i)
and Fig. 3.1(j) to determine f(ω) in Fig. 3.2(c) and Fig. 3.2(d)]. The lattice displacement
model at the O K edge predicts large scattering intensity above and below the absorption
edge that is not observed in experiment and, at the Cu L edge, scattering intensity that is
broader in energy and has a smaller ratio of the L3 to L2 peaks than the measurement. The
calculated magnitude of the scattering intensity assumes a 0.004 Å lattice displacement,
as deduced from neutron scattering [85].

3.3.2.3 Energy shift model

Like the lattice displacement model, XAS on our sample of LNSCO [Fig. 3.1(i) and Fig.
3.1(j)] is used to determine f(ω) [Fig. 3.2(c) and Fig. 3.2(d)] for the energy shift model.
For the two sites (1 and 2), f(ω) is shifted in energy by ∆E = ±0.1 eV for both the O K
and Cu L edges. In contrast to the lattice displacement and valence modulation models,
the energy shift model is in very good agreement with experiment. At the Cu L edge, it
captures the correct intensity ratio of the Cu L3 and L2 peaks, the correct width in energy
of the scattering and the correct energy position of the maximum of the scattering intensity.
Similarly, at the O K edge, the energy shift model reproduces the energy dependence of the
preedge peak. It does not agree with the spectra at higher energy, predicting a large peak at
531.5 eV that is not observed. However, this apparent discrepancy can be reconciled if we
interpret this as evidence that only the low energy states involving hybridization between
the O 2p and Cu 3d states (and not the rare earth 5d and 4f states) are subject to these
energy shifts. We also note that the choice of ∆E impacts the magnitude, which scales as
∆E2, but not the energy dependence of the calculated scattering intensity, provided ∆E
is less than the energy width of the XAS (∼0.2 eV). As such, ∆E is neither determined in
our analysis, nor should it be viewed as a fitting parameter.

3.4 Discussion

Our interpretation of the energy shifts is that they are induced by subtle spatial modula-
tions of the local electronic structure. The energy levels of the unoccupied Cu 3d and O
2p states can be described by parameters such as the Cu onsite Coulomb repulsion (Udd),
the crystal field splitting parameters (10Dq,Ds,Dt), the charge transfer energy (∆pd) and
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the Cu 3d—O 2p hopping (tpd) [104, 186, 187]. Small changes to these parameters can lead
predominately to shifts in the Cu 3d and O 2p energy levels that would manifest themselves
as energy shifts in f(ω) [188], unlike the large changes in the spectral weight distribution
that are observed with doping [105]. Since the XAS and RSXS are sensitive to the Cu
2p→ 3d and O 1s→ 2p transitions, modulations of the Cu 2p and O 1s binding energies
may also contribute to the energy shifts.

The agreement between the measured scattering intensity and this simple phenomeno-
logical model indicates that energy shifts are responsible for the dominant contribution
to the resonant scattering intensity. In comparison, contributions arising from lattice dis-
placements and valence modulations appear to be much less significant. This is reasonable
for the lattice displacement model, given that the magnitude of the calculated scattering
intensity is ∼4 orders of magnitude weaker than the energy shift model at both the O K
and Cu L edges.1

In contrast, the valence modulation model (assuming δp = 0.08) is ∼4 times larger
than the energy shift model at the O K edge. At the Cu L edge, the valence modulation
model is ∼35 times weaker than the energy shift model at their respective peak values but
is comparable in intensity at 932.3 eV, the peak energy of the valence model calculation.
As such, unlike lattice displacements, we do not expect the energy shift contribution to
dominate the scattering intensity for valence modulations of order δp = 0.08 or larger. This
argues against a large valence modulation, such as those reported in Ref. [95], but does
not rule out smaller valence modulations. However, even if negligibly small, one can infer
that valence modulations must be nonzero, as they must occur for a spatial modulation
of the Cu 3d (or 2p) and O 2p (or 1s) energies (i.e., the energy shifts provide indirect
evidence for valence modulations). Placing a precise upper limit on the magnitude of the
valence modulation is beyond the scope of the present work, requiring more sophisticated
modelling. However, we note that the energy shift model has the same unoccupied spec-
tral weight, and hence the same valence, for all sites in the stripe phase. As such, the
resonant scattering line shapes, which are well described by the energy shift model alone,
are consistent with a stripe phase that has a minimal but nonzero valence modulation.

The origin of these modulating energy levels and how they relate to the microscopic
mechanism of stripe ordering is an open question. The energy shifts may simply be induced
by small charge-density modulations or lattice displacements, yet still be the dominant
signature in resonant scattering. Alternatively, they may be a more direct signature of the

1Since ∆E is unknown, for this analysis we compare to an arbitrarily chosen value of ∆E = 100 meV,
which serves as a reasonable upper limit value. Comparing to other values of ∆E involves scaling by
(∆E/(100 meV))2.
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interactions underlying stripe order. For instance, these energy modulations may point to
a VBS description of the stripe phase [180, 19, 181]. In the VBS picture, stripe order is
driven by exchange interactions, which also induce lattice displacements and bond-centered
charge order. However, the magnitude of bond-centered charge density modulations can be
small, being screened by long-range Coulomb repulsions. This may provide an explanation
for the lack of clear evidence for a valence modulation from resonant scattering. In contrast,
the energy shifts that we have identified in RSXS may arise naturally out of a VBS, which
involves a modulation of the bonding in the lattice.

Finally, our identification of energy shifts is likely applicable not only to CDW order
in other cuprates (energy shifts were recently shown to also describe density wave order
in YBCO [2]), but also to other transition oxides. For instance, recent first principles
calculations have shown that several “charge” ordered transition metal oxides exhibit a
site dependence to the energies of the electronic states but no site dependence to the total
d orbital occupation [189], similar to our phenomenological energy shift model.

3.5 Supplementary information

3.5.1 Methods

Resonant soft x-ray scattering measurements were performed at the Canadian Light Source’s
REIXS beamline.[168] Single crystals of LNSCO, grown by the traveling-solvent floating
zone method, were prepared with [100] and [001] faces and oriented such that scattering
could be performed in the Q = (H, 0, L) = (2π/ao, 0, 2π/c) plane. Here (H,K,L) is ref-
erenced to the high temperature tetragonal (HTT) unit cell, where ao and bo are aligned
with the Cu-O bonds. For all measurements the incident light was σ-polarized along the
bo axis. The sample orientation was confirmed by detection of (0, 0, 4) and (1, 0, 3) Bragg
reflections at 2.5 keV.[168] The sample was cleaved in vacuum to minimize surface contam-
ination effects in the O K edge x-ray absorption spectroscopy (XAS). XAS at the Cu L3,2

and O K edges was measured by total electron yield. Measurements of XAS [Fig. 3.1(i)
and Fig. 3.1(j)] have been offset and scaled to calculated values of µ(ω) from NIST [158]
at the pre-edge and post-edge to express µ(ω) in units of µm−1. Via the optical theorem,
Im{fj(ω)} is linearly proportional to the absorption coefficient, µ(ω), and Re{fj(ω)} can
be determined from Im{fj(ω)} using Kramers-Kronig transformations. Accordingly, to
determine f(ω) in electrons/atom (Fig. 3.2), measured XAS was scaled and extrapolated
to high and low energy using tabulated calculations of Im{f(ω)} above and below the
absorption edge.[158]
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3.5.2 Structure factors

The three scattering models discussed in the text can be understood by a calculation of
the structure factor S, which is written generally as

S =
∑
j

fj(ω)e−iQ·(rj+δrj) (3.1)

where fj is the atomic form factor at lattice position j, ω is the photon angular frequency,
Q is the scattering vector, rj is the position vector at j and δrj is the displacement at j
from the lattice position outside the stripe-ordered phase. The atomic form factor can also
depend on additional parameters related to the electronic structure of the atom at j, such
as the local charge density or energy level, and these factors are explicitly included for the
respective models.

To determine the structure factor for the 3 models, we make several assumptions: 1.
We take Q = 2π( 1

4ao
, 0, L

c
). 2. We treat only a single CuO2 plane for simplicity. 3. As

mentioned in the text, because εi ‖ bo, the scattering measurements at the O K edge
are only sensitive to the O 2py states and thus only half of the O atoms enter into the
structure factor. The relevant O have the same x positions as the Cu sites and thus share
expressions for the scattering intensity. 4. Because the scattering intensity is measured to
be very weak above and below the absorption edges, we assume that non-resonant terms in
the scattering intensity calculation are negligible compared to the resonant contributions
(ie. at the Cu edge we only include the Cu atoms in the structure factor).
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Figure 3.3 – Stripe-ordering models (a) and (b) Schematic representations of site-centred
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Illustration of the Cu 3dx2−y2 and O 2px,y orbitals of the CuO2 plane. Only the O 2py orbitals
are considered in the scattering models because of the experimental geometry and the incident
polarization.
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3.5.2.1 Valence modulation

The valence modulation model considers that the modulation of charge is due to differences
in the local hole concentration at different O or Cu sites. In the case of a bond-centred
stripe (Fig. 3.3(b)), there are two inequivalent sites in this case each with different local
hole doping levels p1 = p+ δp1 and p2 = p+ δp2. The structure factor is thus given by

S = (1 + i) [f2(ω, p+ δp2)− f1(ω, p+ δp1)] . (3.2)

As shown previously,[96] since the XAS is known to evolve roughly linearly with doping
and fj(ω) is proportional to the absorption coefficient, one can determine fj(ω, pj) with
arbitrary doping pj from a linear combination of f(ω) deduced from XAS at two Sr dopings,
x, (in our calculation, x = p = 0.07 and x = p = 0.15), such that

f1,2(ω, p+ δp1,2) ≈ f(ω, p = 0.125) +
f(ω, x = 0.15)− f(ω, x = 0.07)

0.15− 0.07
δp1,2 (3.3)

and therefore the scattering intensity, Is = c|S|2/µ(ω), (the division by µ(ω) accounts for
the energy dependent absorption of the incident and scattered x-rays) is given by

Is =
c

µ(ω)

∣∣∣∣(1 + i)
δp2 − δp1

0.15− 0.07
[f(ω, x = 0.15)− f(ω, x = 0.07)]

∣∣∣∣2
=

c

µ(ω)
|f(ω, x = 0.15)− f(ω, x = 0.07))|2 , (3.4)

where c is a constant. One can also use XAS at different Sr dopings, as shown in Fig. 3.4,
to calculate the scattering intensity.

In the case of a site-centred stripe (Fig. 3.3(a)), there are three inequivalent sites, but
the structure factor only depends on two sites owing to the cancellation of f3 terms by
symmetry:

S = i [f2(ω, p+ δp2)− f1(ω, p+ δp1)] , (3.5)

which gives the same scattering intensity as for a bond-centred stripe

Is =
c

µ(ω)
|f(ω, x = 0.15)− f(ω, x = 0.07))|2 . (3.6)
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3.5.2.2 Energy shift

The energy shift model has the same periodicity as the valence modulation model for both
site- and bond-centred stripes (Fig. 3.3(a) and Fig. 3.3(b)). The primary difference is that
we replace the dependence on local hole doping with shifts of the energy levels, such that
the structure factor is given by

Sbond−centred = (1 + i) [f2(~ω + ∆E2)− f1(~ω + ∆E1)] (3.7)

Ssite−centred = i [f2(~ω + ∆E2)− f1(~ω + ∆E1)] (3.8)

In our calculation, we set the magnitude of ∆Ej to 0.1 eV and ∆E1 = −∆E2, but any
value 0 < |∆Ej| ≤ 0.2 eV produces the same energy dependence. The scattering intensity
can thus be written as

Is =
c

µ(ω)
|f(~ω + ∆E)− f(~ω −∆E)|2 (3.9)

for either a bond-centred or site-centred stripe.
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3.5.2.3 Lattice displacement

Finally, for the lattice displacement model, fj is the same at each site, but rj + δrj is
site-dependent. Considering a chain of 4 sites separated by a, the structure factor is given
by

S = f(ω)
(
e−

iπδ1
2a + e−

iπ(a+δ2)
2a + e−

iπ(2a+δ3)
2a + e−

iπ(3a+δ4)
2a

)
. (3.10)

Expanding the exponential terms in series to first order (ie. for small displacements relative
to the lattice spacing), we find

S = f(ω)
π

2a
[(δ4 − δ2) + i(δ3 − δ1)] (3.11)

which gives a scattering intensity that goes as

Is =
c

µ(ω)
|f(ω)|2 π

2

4a2

[
(δ4 − δ2)2 + (δ3 − δ1)2

]
=

c

µ(ω)
|f(ω)|2. (3.12)

This result holds if one includes higher order terms in the series expansion or if one considers
a square lattice rather than a chain. Moreover, the magnitude of the displacements have
no impact on the energy dependence of the calculated scattering intensity. Although we
have depicted a bond-centred lattice displacement in Fig. 3.1(a), the generality of this
result illustrates that we recover the same energy dependence to Is for site-centred and
bond-centred stripe models.
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Chapter 4

Distinct Charge Orders in the Chains
and Planes of Ortho-III-Ordered
YBa2Cu3O6+δ

This chapter has been adapted from Ref. [2].

4.1 Overview

Recently, charge density wave (CDW) order in the CuO2 planes of underdoped YBa2Cu3O6+δ

was detected using resonant soft x-ray scattering. An important question remains: is the
chain layer responsible for this charge ordering? Here, we explore the energy and polariza-
tion dependence of the resonant scattering intensity in a detwinned sample of YBa2Cu3O6.75

with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order
in the chains is distinct from the CDW order in the planes. The ortho-III structure gives
rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polariza-
tion dependence agrees with expectations for oxygen ordering and a spatial modulation of
the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the
CDW order in the planes are shown to be distinct in Q as well as their temperature, energy,
and polarization dependence, and are thus unrelated to the structure of the chain layer.
Moreover, the energy dependence of the CDW order in the planes is shown to result from a
spatial modulation of energies of the Cu 2p to 3dx2−y2 transition, similar to stripe-ordered
214 cuprates.
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4.2 Introduction

Direct evidence for charge density wave (CDW) order in YBa2Cu3O6+δ (YBCO) was
recently observed in high magnetic field using nuclear magnetic resonance [32] and in
zero-field diffraction, first with resonant soft x-ray scattering (RSXS) [22] and subse-
quently with hard x-ray scattering [23]. Prior to these measurements, density wave order
[190, 179] had been observed in 214 cuprates [La2−x−y(Ba,Sr)x(Eu,Nd)yCuO4] [25] as well
as Ca2−xNaxCuO2Cl2 [82] and Bi2Sr2CaCu2O8+δ [191]. However, density wave order in
YBCO—a material long considered a benchmark cuprate due to its low disorder and high
Tc,max ' 94.2 K—had only been inferred indirectly, being offered as an explanation for
Hall effect measurements [177] and the electron pockets observed in quantum oscillation
experiments [39, 192, 193]. The observation of density wave order in YBCO thus marks an
important milestone in effortss to determine whether density wave order is generic to the
cuprates while providing new opportunities to identify common features of CDW order in
the cuprates.

RSXS is well suited to give direct insight into the nature of CDW order in YBCO. RSXS
involves diffraction with the photon energy tuned through an x-ray absorption edge. This
gives significant energy dependence to the atomic scattering form factor, f(ω), enhancing
the scattering from weak ordering and providing sensitivity to the charge, spin and orbital
occupation of specific elements. At the Cu L absorption edge, the scattering is sensitive
to modulations in the unoccupied Cu 3d states that are central to the low energy physics
of the cuprates [95, 96, 182, 183, 2]. The recent RSXS measurements of Ghiringhelli et al.
at the Cu L absorption edge identified superlattice peaks at Q = [0.31 0 L] and [0 0.31
L] indicative of CDW order [22]. They also showed that the intensity of the superlattice
reflections peak at ∼Tc and decrease in intensity for T < Tc, providing a clear link between
the density wave order and superconductivity [22]. Importantly, based on the energy
dependence of the scattering intensity and the presence of peaks at H=0.31 and K=0.31
in a detwinned sample, Ghiringhelli et al. also demonstrate that the CDW superlattice
peaks originate from modulations in the CuO2 planes.

However, the possible role of the charge reservoir layer in stabilizing the CDW order
is not yet clear. In YBCO, the charge reservoir for the CuO2 planes is composed of
CuO chains. The Cu sites in the chains (Cu1) and planes (Cu2) have different orbital
symmetries and contribute differently to x-ray absorption spectroscopy (XAS) and RSXS
measurements [194, 84]. In addition to making the structure orthorhombic (a 6= b), the
chain layer can be oxygen ordered into a variety of “ortho” ordered phases [107, 111]. For
instance, the ortho-III phase corresponds to a repeated pattern of full–full–empty ordering
of oxygen in the chains [see Fig. 4.1(a)] that produces a commensurate superlattice peak at
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[0.33 0 L], in close proximity to the [0.31 0 L] peaks observed in Ref. [22]. In addition, the
chains may also be susceptible to CDW order along the chains (producing incommensurate
peaks at [0 K L]) [195, 196, 197]. As such, the chains may act to stabilize CDW order in
YBCO akin to the low-temperature tetragonal (LTT) structural phase stabilizing spin and
charge stripes in stripe ordered 214 cuprates [25, 198].

In this chapter, RSXS measurements of a high purity, ortho-III ordered single crystal
of YBa2Cu3O6.75 (Tc=75.2 K, p=0.133) [45, 199] are shown to (a) confirm the in-plane
origin of the incommensurate [0.30 0 L] CDW peak 1, (b) clarify its relation to the oxygen
ordering in the chain layer, and (c) demonstrate a link to the microscopic origin of stripes
in 214 cuprates. Analysis of the scattering intensities provides clear evidence that the [0.30
0 L] CDW peak has an energy, polarization, and temperature dependence that is distinct
from the [0.33 0 L] oxygen ordering peak, indicating there is no clear relation between
the chain layer and the [0.30 0 L] CDW order. Moreover, the [0.30 0 L] peak is shown to
result from a spatial modulation of the energy of the Cu 2p to 3dx2−y2 transition, unlike
the [0.33 0 L] oxygen ordering peak, which is described by a spatial modulation of the Cu
valence. The former is consistent with RSXS measurements in stripe ordered 214 cuprates
[2], which is also described by the energy shift model, suggesting a common origin to the
CDW order that is generic to the cuprates.

4.3 Results

4.3.1 Measurement

Resonant scattering measurements were performed at the Canadian Light Source’s Reso-
nant Elastic and Inelastic X-ray Scattering (REIXS) beamline [168] using linearly polarized
light in both σ and π scattering geometries, as depicted in Fig. 4.1(b). The sample orien-
tation was confirmed by detection of [0 0 1], [±1 0 2], and [0 ±1 2] Bragg reflections at
2.05 keV. XAS was measured using total fluorescence yield (TFY).

1The peaks in Ref. [22] are observed at H=0.31 and K=0.31 and not at H=0.30 and K=0.30 as in
our measurements. At present, we cannot determine whether this difference is due to the different doping
levels of the samples (a truly intrinsic effect) or some minor differences in the alignment of the crystals in
the two studies.
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Figure 4.1 – (a) The crystal structure of ortho-III ordered YBCO. (b) A schematic of the ex-
periment geometry. (c) [H 0 L] and [0 K L] scans at T = 60 K measured using sigma polarized
light through the [0.30 0 1.4] and [0 0.30 1.4] superlattice peaks, which appear when the photon
energy is tuned to the peak of the XAS (∼931.4 eV). The ortho-III oxygen ordering superlattice
peak is seen at [0.33 0 L] and is most prominent around 933.8 eV. (d) The x-ray absorption with
polarization along the a and b axes measured using total fluorescence yield. (e) The scatter-
ing intensity with fluorescence background subtracted. (f) The temperature dependence of the
amplitudes of the [0.30 0 1.35] and [0.33 0 1.35] peaks. r.l.u., reciprocal lattice units.
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The measured intensity of H and K scans through the [0.30 0 1.4] and [0 0.30 1.4] peaks
at 60 K is shown in Fig. 4.1(c) for the incident photon energies indicated in Fig. 4.1(d).
These superlattice reflections are observed above a large x-ray fluorescence background,
similar to measurements from Ref. [22]. In addition, there is also a peak at [0.33 0 L] that
is evident at higher photon energy.
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Figure 4.2 – The [H 0 L] [(a) and (b)] and [0 K L] [(c) and (d)] normalized scattering intensity,
Isc/I0, in arbitrary units. The scattering intensity was measured with σ [(a) and (c)] and π [(b)
and (d)] incident photon polarization at T = 60 K. r.l.u., reciprocal lattice units.

The scattering intensity, Isc, was determined by fitting the fluorescence background to
a polynomial and subtracting it from the data [Fig. 4.1(e)]. This procedure was repeated
as a function of photon energy and for both σ and π incident photon polarizations, as
shown in Fig. 4.2. In Fig. 4.2(a) and Fig. 4.2(b), two peaks at H=0.30 and H=0.33 are
observed that resonate at different energies and have a different polarization dependence.
Due to the large width of both peaks, they overlap in H forming one broad asymmetric
peak, which is particularly evident around the peak in the x-ray absorption (931.4 eV).
In contrast, the peak at [0 0.30 1.4], shown in Fig. 4.2(c) and Fig. 4.2(d), resonates at
931.3 eV with only a small signature of the peak at ∼0.33, likely due to residual (<3%)
twinning of the sample. From these scans at 60 K, the correlation lengths of the peaks
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are ξ(K=0.30) ' 42 Å , ξ(H=0.30) ' 40 Å, and ξ(H=0.33) ' 37 Å. Consistent with
previous work [22, 23], the amplitude of the [0.30 0 L] reflection is first distinguished from
the fluorescence background at ∼160 K, peaks near Tc, and decreases for T < Tc, as shown
in Fig. 4.1(f). In contrast, the [0.33 0 L] peak amplitude exhibits a gradual T dependence
with no notable features at Tc or 160 K.

4.3.2 Analysis

Analysis of the energy and polarization dependence of the integrated scattering intensities
(Fig. 4.3) demonstrates that the H=0.30 and K=0.30 peaks are due to modulations in
the CuO2 planes, whereas the H=0.33 peaks are due to ortho-III ordering in the chain
layer. To model the scattering intensity of the H=0.33 peak, we followed the procedure
in Ref. [84] which illustrated that the scattering intensity and polarization dependence of
the oxygen order superstructure in ortho-II ordered YBCO (full–empty–full–empty chains)
could be calculated by accounting for the impact of the oxygen dopants on the Cu1 d states
in the full and empty chains.

This was done by experimentally determining the energy dependence of the atomic
scattering tensor, Fi, for Cu in full, FCu1f(ω), and empty, FCu1e(ω), chains using po-
larization dependent x-ray absorption measurements in YBCO prepared with either an
entirely full (YBa2Cu3O7) or an entirely empty (YBa2Cu3O6) chain layer. Here we use
the same analysis for the H = 0.33 peak with FCu1f(ω) and FCu1e(ω) from Ref. [84] and
Isc,o-III(H=0.33,~ε) = |fCu1f(ω,~ε) + fO − fCu1e(ω,~ε)|2. As shown in Fig. 4.3(a), this anal-
ysis reproduces the energy and polarization dependence of the H = 0.33 peak, providing
confirmation that this peak is dominated by the oxygen order in the chain layer.

In contrast, both the polarization and energy dependence of the H=0.30 and K=0.30
peaks are consistent with a spatial modulation of the Cu 3dx2−y2 states in the CuO2 planes.
First, one must note that the incident π and σ polarizations couple to different components
of the scattering tensor. For σ polarization, the photon polarization is entirely along the
b(a) axis for the H(K) = 0.30 peak and is therefore sensitive to the bb(aa) components
of the scattering tensor. However, for π polarized light, the polarization has components
along both the a and c axes that depend on the scattering geometry. For modulations of
Cu 3dx2−y2 states, faa,Cu2 ' fbb,Cu2 >> fcc,Cu2 and Isc(ππ

′)/Isc(σσ
′) = [sin(α) sin(β)∆faa]

2,
where α and β are the angles of the incident and scattered light relative to the sample
surface [see Fig. 4.1(b)] 2. For the values of α and β in our measurement, one would expect

2We assume only σσ′ or ππ′ scattering is allowed (no magnetic or anisotropic tensor susceptibility
scattering.)
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Figure 4.3 – (a) The measured energy dependence of the [0.33 0 1.4] oxygen ordering peak with
σ and π polarized incident light along with the calculated spectra for ortho-III oxygen ordering
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light compared to the energy shift model calculation. The energy shift calculation captures the
correct peak position and energy width of the scattering intensity. (d) The energy shift model
calculation compared to the [0 0.30 1.44] peak with σ polarized light.

the ratio of Isc(ππ
′)/Isc(σσ

′) = 0.46 for a modulation of Cu 3dx2−y2 states. As shown in
Fig. 4.3(b), the K = 0.30 peak is in good agreement with this ratio.

A final intriguing aspect of the energy dependence of the scattering intensity is that the
line shape can be described by a simple phenomenological model for the scattering intensity
based on a spatial modulation of the energy of the Cu 2p to 3dx2−y2 transition. The energy
of this transition is determined by the energy of the 3dx2−y2 states, as well as the core hole
energy and the interaction energy of the core hole with the d electrons, all of which may
be spatially modulated. This energy shift model was recently shown to account for the
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energy dependence of the scattering intensity of the [1/4 0 L] charge stripe ordering peak
in La1.475Nd0.4Sr0.125CuO4, unlike models based on lattice displacements or charge density
modulations [2]. Although in YBCO we do not know the structure factor that accounts for
the [0.30 0 L] and [0 0.30 L] peaks, we can naively invoke the same energy shift model and
assume that Isc[0.30 0 L](ω) ∝ Isc[0 0.30 L](ω) ∝ |fCu2a(~ω + ∆E) − fCu2b(~ω − ∆E)|2,
where Cu2a and Cu2b represent two sites in the CuO2 planes with f(ω) that is identical
apart from a small energy shift ±∆E at each site. Following previous work, fCu2(ω) can be
determined from the experimentally measured x-ray absorption spectra [95, 96, 2]. In this
case, the XAS with polarization oriented along the a-axis of the sample is used since it is
dominated by the Cu 3dx2−y2 states of the CuO2 planes with minimal chain contribution.
As shown in Fig. 4.3(c) and Fig. 4.3(d), the energy shift model is in excellent agreement
with the experiment, capturing the correct energy dependence and peak position, which
peaks ∼0.1 eV below the L3 peak of the x-ray absorption. Note, for this calculation
∆E=0.1 eV was used3.

4.4 Discussion

Although the energy shifts, and thus the scattering, may ultimately be caused by a mod-
ulation in Cu valence, the microscopic origin of the energy shifts is currently unclear. An
important implication of the energy shift model is that the resonant scattering provides
only indirect evidence for charge density (valence) modulations—the success of the energy
shift model allows one to infer there is a charge density modulation since this must occur
if the electronic structure is spatially modulated [2]. In contrast, the energy dependence
of the ortho-III oxygen order peak (H = 0.33) is described “directly” in terms of a large
change in valence between Cu in the full and empty chains. However, since we cannot
presently estimate the magnitude of the charge density modulation from the energy shifts,
it is conceivable that a modulation of charge is not the central feature of the newfound
density wave order in YBCO (and also stripes in 214 cuprates). In such a case, the energy
shifts may in fact be a signature of a novel electronic state, such as a valence bond solid [2].
Alternately, the energy shifts may result from weak-coupling, Fermi surface reconstruction
descriptions of density wave order in the cuprates. Regardless of the origin, the success of
the energy shift model may imply that the temperature dependence of the peak amplitudes
results from a temperature dependent energy shift that peaks at Tc, providing an apparent
link between the energy shifts and superconductivity.

3As discussed in Ref. [2], the line shape is insensitive to the magnitude of ∆E provided ∆E < 0.2 eV.
As such, ∆E should not be considered a fitting parameter.
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Moreover, the applicability of the energy shift model to the resonant scattering intensity
of charge stripe order in 214 cuprates and YBCO indicates that the CDW order likely
shares a common origin in the two material systems. This commonality stands in contrast
to important differences between the density wave order in YBCO and stripe ordered
214 cuprates. In 214 cuprates, the charge order is stabilized by the LTT structural phase
[25, 88], has an incommensurability that plateaus at high doping at the commensurate value
of 2δ = 0.25 [200, 179] and is understood to be unidirectional in nature (i.e. stripes). In
YBCO, while there is no LTT phase, one might expect that the orthorhombic structure of
YBCO would preferentially stabilize stripe order propagating along the a or b axes, perhaps
with a period locked to the oxygen ordering in the chain layer of YBCO. However, no clear
link between structure and the H and K = 0.30 peaks is observed in our measurements.
Rather, the incommensurate value of the 2δ = 0.30 peaks relative to the commensurate
oxygen ordering peak at H = 0.33, the similar magnitude of the scattering intensity of the
H and K peaks and the presence of the H = 0.30 peaks in samples with weak oxygen order
(only very short range ortho-V order) [22], indicate that the structural distortions are not
an essential ingredient for CDW order in YBCO. Additionally, the existence of peaks along
both H and K would seem to favor 2D checkerboard order. However, if the connection to
the lattice is indeed weak, domains of unidirectional stripes oriented along both a and b
may describe the CDW order in YBCO.

Finally, in addition to structural distortions, which may provide pinning centres com-
mensurate with the lattice, disorder can also provide random pinning centres for density
wave order and has been shown to enhance spin density wave and CDW order in 214
cuprates [201, 202, 203]. Moreover, 214 cuprates are intrinsically disordered owing to the
chemical cation substitution (e.g., Sr for La) near the CuO2 planes used to dope away
from half filling. This makes it difficult to disentangle the role of disorder from the intrin-
sic physics of 214 cuprates. In contrast, the presence of CDW order in high-purity, oxygen
ordered YBCO provides a strong indication that density wave order is in fact an intrinsic
feature of underdoped cuprates.
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Chapter 5

Orbital symmetry of charge density
wave order in La1.875Ba0.125CuO4 and
YBa2Cu3O6.67

An older version of this chapter is available in pre-print form.[4]

5.1 Overview

Recent theories of charge density wave (CDW) order in high temperature superconductors
have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital
symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4

(LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft x-ray scattering and a model
mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice,
we conclude that LBCO has predominantly s′ CDW orbital symmetry, in contrast to the
d orbital symmetry recently reported in other cuprates. Additionally, we find that the C4

orbital symmetry of the Cu sublattice scattering is approximately preserved in LBCO and
broken in YBCO. This work highlights orbital symmetry as an additional key property of
CDW order that distinguishes the different cuprate families. We discuss how the CDW
symmetry may be related to the “1/8–anomaly” and to static spin ordering.
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5.2 Introduction

Charge density wave (CDW) order in underdoped cuprates has recently been revealed as
an important and generic competitor to superconductivity (SC).[25, 176, 32, 22, 23, 2, 204,
73, 72] A significant property of CDW order is that it can exhibit both inter and intra
unit cell symmetry breaking.[179, 205] Specifically, CDW order can occur with d rather
than s or s′ orbital symmetry.[206, 207, 106, 119, 75, 54, 120, 117, 116, 208, 209] Here,
we report resonant soft x-ray scattering measurements of La1.875Ba0.125CuO4 (LBCO) and
YBa2Cu3O6.67 (YBCO) that are resolved onto the O 2px(y) and Cu sublattices and mapped
to the CDW symmetry. Our main finding is that LBCO has primarily s′ symmetry CDW
with a secondary d component, distinguishing it from the predominant d symmetry CDW
observed in other cuprates.[117, 116] We propose that the s′ symmetry in LBCO may
be related to the “1/8–anomaly” and that it favours static spin ordering more than d
symmetry. Additionally, we find that C4 orbital symmetry of the Cu sublattice scattering is
approximately preserved in LBCO and broken in YBCO. Moreover, in YBCO the symmetry
is broken to different degrees along the a and b crystal axes, suggesting either exotic
checkerboard order or domains of stripes. Finally, we present and discuss implications of
energy dependent scattering from the O 2px(y) sublattices in LBCO.

Stimulated by theory,[75, 54] resonant soft x-ray scattering (RSXS) in YBCO and
Bi2Sr2−xLaxCuO6+δ (Bi-2201),[117] and scanning tunnelling microscopy (STM) measure-
ments in Bi2Sr2CaCu2O8+δ (Bi-2212) and Ca2−xNaxCuO2Cl2 (Na-CCOC) [116] have re-
cently reported that d symmetry characterizes the CDW order in the CuO2 planes. In this
d-symmetry CDW state, the modulation of charge (or a related microscopic quantity) on
O px and O py sites is out of phase, as depicted in Fig. 5.1b for a commensurate, bond-
centered CDW. An important question is whether d-symmetry CDW order is a generic
property of underdoped cuprates and, specifically, if it also occurs in the canonical stripe-
ordered La-based cuprates. There are many similarities in the CDW order of the La-based
cuprates and other cuprates (eg. Bi-2212, YBCO) such as an enhancement in CDW in-
tensity at doping levels near p = 1/8,[175, 210, 211, 212] competition with SC and a
common spectroscopic signature to the resonant scattering intensity.[2, 1] However, these
similarities are at odds with important differences such as the doping dependence of the
CDW incommensurability.[175, 204, 211, 212, 30, 213, 200, 73] Perhaps most significantly,
static spin density wave (SDW) order commensurate with CDW order is only observed
in the La-based cuprates. Accordingly, it is not yet clear whether stripe order in the La-
based cuprates and CDW order in other cuprates are slightly different manifestations of a
common order or truly distinct phases.

Here, we have resolved the orbital symmetry and microscopic character of CDW order in
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LBCO and YBCO using a RSXS technique where the incident photon polarization is varied
relative to the material’s crystallographic axes and the crystal is simultaneously rotated
about the CDW ordering wavevector Q, as illustrated in Fig. 5.1a. This special scattering
geometry was used in Ref. [117] to study Cu sublattice scattering in YBCO and Bi-2201.
Here, we utilize it at the O K edge for LBCO to determine the relative strength, phase
relation and energy dependence of scattering from two O sublattices comprised of O atoms
with Cu–O–Cu bonds either parallel (O‖) or perpendicular (O⊥) to Q (see Fig. 5.1b). The
proportion of d to s′ symmetry was characterized from O K edge measurements in LBCO
using a polarization dependent RSXS model developed with parameters directly related
to the d and s′ symmetry components ∆d and ∆s′ . Additionally, RSXS measurements
sensitive to the Cu sublattice were used to assess the degree of rotational C4 symmetry on
Cu sites in LBCO and YBCO.

Prior to discussing our results, we first describe the polarization dependent RSXS model
which is used in this analysis and then parametrize the model in terms of the symmetry
components of the CDW order. Within this framework, the CDW orbital symmetries in
LBCO and YBCO are elucidated from the experimental data.

5.3 Polarization dependent resonant x-ray scattering

On an x-ray absorption edge, the resonant elastic x-ray scattering intensity is given by:

I(εi, ω,Q) ∝
∣∣ε∗f · T (ω,Q) · εi

∣∣2 , (5.1)

where ω is the angular frequency, Q is the momentum transfer, εi and εf are the incident
and scattered polarization, respectively, and

T (ω,Q) =
∑
n

Fn(ω)e−iQ·rn =

taa tab tac
tba tbb tbc
tca tcb tcc

 (5.2)

is a tensor equivalent of the structure factor – a sum over site index n of the atomic
scattering form factor, Fn(ω), with atomic positions rn. The form factor is given by Fn(ω) =
F 0
n(ω) + FR

n (ω), where F 0
n(ω) and FR

n (ω) are non-resonant and resonant contributions,
respectively. The resonant part, FR

n (ω), is strongly enhanced on an x-ray absorption edge
and has a symmetry that captures the local symmetry of electronic structure. For instance,
at the Cu L edge, which probes the Cu 2p→ 3d transition, a Cu atom in tetragonal CuO2
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planes would have C4 rotational symmetry and

FR
Cu(ω) =

fR
aa(ω) 0 0

0 fR
bb(ω) 0

0 0 fR
cc(ω)

 , (5.3)

where fR
aa(ω) = fR

bb(ω)� fR
cc(ω). When summed over n, the resulting symmetry of T (ω,Q)

involves both intra and inter unit cell symmetries – symmetry associated with the average
form factor, FR

n (ω) and the orbital symmetry of the CDW modulation.

By scattering at photon energies corresponding to the Cu L (931.4 eV) and O K (528.3
eV) absorption edges, we can resolve the CDW order into the Cu and O sublattices, which
occupy the “sites” and “bonds”, respectively, of a single-band CDW model.[75]

b

a

ki

kf

Q

a
c

b

Figure 5.1 – Experimental setup and visualization of CDW order. a. Scattering geometry in
laboratory frame, `. b. CDW order with s, s′ and d orbital symmetries, illustrated for a bond-
centered, commensurate, and unidirectional CDW. Green arrows are spins in the lower right
panel.

69



At the O K edge, the O sublattice can be further subdivided into two sublattices, Ox

and Oy, having different symmetries of FR
n (ω). Since O 2p holes are primarily in σ-bonded

2px or 2py orbitals, it follows that one sublattice of O will have fR
aa 6= 0 and fR

bb ' 0 and
the other will have fR

aa ' 0 and fR
bb 6= 0, at least at the O pre-edge photon energies of

interest. Referencing to the CDW wavevector, Q = (H 0 0) or (0 K 0), these two O
sublattices can be denoted as σ-bonded parallel (O‖) or perpendicular (O⊥) to Q (see Fig.
5.1b). The components of T (ω,Q) can also be referenced relative to Q. We henceforth
refer to the diagonal, in-plane components of T (ω,Q) as t⊥ and t‖, which sum over O⊥
and O‖, respectively [eg., t‖ =

∑
n faa,ne

−iHn and t⊥ =
∑

n fbb,ne
−iHn for Q = (H 0 0)].

The components of T (ω,Q) can be determined by varying εf and εi relative to the crys-
tallographic axes of the sample. As detailed in section 5.9, this is realized experimentally
by a combination of rotating the sample azimuthally by an angle, φ, about a fixed Q and
rotating the incident polarization εi between σ and π (see Fig. 5.1a). Additionally, since
the CDW peak in the cuprates is broad in L, a wide range of measurement geometries can
access the CDW peak and thus probe the components of T (ω,Q).

5.4 Model parametrization

We now turn to investigating the symmetry of CDW order through the symmetry of
T (ω,Q) which provides insight into the microscopic character of the CDW order. To see
why this is, we first consider the simple case of CDW order with a sinusoidal modulation of
charge density (s+ s′ symmetry) on a tetragonal CuO2 plane. In this scenario, one would
expect to have |t⊥| = |t‖| � |tcc|, at both the Cu L and O K edges, mirroring the dx2−y2
symmetry of FR. In other words, the scattering tensor, T , can to first order remain C4

symmetric even though a unidirectional stripe-like modulation breaks the C4 symmetry
of the lattice. If the average electronic structure were instead orthorhombic (fR

⊥ 6= fR
‖ ),

|t⊥| 6= |t‖| might be expected to occur. However, this could also occur if fR
⊥ = fR

‖ combined

with a CDW state with a different orbital symmetry (eg. d + s′) that modulates the a
and b components of Fn(ω) to different degrees. These differing possibilities highlight how
T (ω,Q) is linked to the underlying symmetry of the CDW order.

To quantify this link, we have parametrized CDW order with mixed orbital symmetries
into the single band model from Ref. [75]. The charge modulation amplitude ∆ij (or some
other quantity related to CDW order such as an energy shift)[2, 1] on bonds connecting
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nearest neighbour Cu sites i and j, is given by:

∆ij =
∑
Q∗

[
1

V

∑
k

eik·(ri−rj)∆Q∗(k)

]
eiQ

∗·(ri+rj)/2, (5.4)

where V is volume and Q∗ are the wavevectors of the CDW order. For 1D stripes, Q∗ is
given by either (±Qm 0 0) or (0 ±Qm 0) whereas checkerboard order has both (±Qm 0 0)
and (0 ±Qm 0). In this prescription, i = j corresponds to Cu sites and i 6= j corresponds
to O sites (bonds between Cu sites). ∆Q∗(k) captures the symmetry of the CDW state and
can contain both site-centred (∆s) and bond-centred (∆d and ∆s′) symmetry components.
As shown in section 5.8, this model can be mapped onto the O sites and related to the
components of T (ω,Q), giving

∆d

∆s′
=
t‖/t⊥ − 1

t‖/t⊥ + 1
. (5.5)

Inspection of Eq. 5.5 shows that for pure d-CDW and s′-CDW orders, t‖/t⊥ has the same
magnitude (=1), but with opposite sign. A mixed d and s′ state would have |t‖/t⊥| 6= 1.
In regions with |t‖/t⊥| < 1 (> 1), the sign of ∆d/∆s′ is negative (positive), giving rise to
an anti-phase (in-phase) relation between the d and s′ symmetry components. Fig. 5.2f
illustrates the mapping between t‖/t⊥ and ∆d/∆s′ for O atoms in the CuO2 plane. We
note that Eq. 5.5 applies to both stripe and checkerboard order indicating that, at least in
this prescription, t‖/t⊥ does not clearly distinguish checkerboard order from stripes.

The Cu L edge measurements are more difficult to interpret within this description.
Most directly, the scattering intensity at the Cu L edge should be sensitive to the site-
centered s symmetry component of the CDW order. However, the O-centered s′ and d
symmetry components may also influence the symmetry of scattering at the Cu L edge
(Cu 2p→ 3d transition) by inducing different energy shifts on the Cu core electrons.[54]

5.5 Results

5.5.1 Polarization dependent RSXS in LBCO

In Fig. 5.2, we investigate the φ (Figs. 5.2a and 5.2b) and L (Figs. 5.2c and 5.2d) de-
pendence of RSXS from CDW order in LBCO at the O K and Cu L edges in order to
determine the magnitude and sign of t‖/t⊥. The dependence on φ of Iπ/Iσ constrains both
the magnitude and sign of t‖/t⊥ whereas the dependence on L constrains its magnitude
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Figure 5.2 – The φ and L dependent RSXS for CDW order in LBCO at the O K and Cu L
edges. a-b. Measured Iπ (�), Iσ (4), and Iπ/Iσ (©) vs. φ at the O K (528.3 eV) and Cu L
(931.3 eV) edges. c-d. Iπ/Iσ vs. L at the O K and Cu L edges. Simultaneous fitting (red lines)
the Iπ/Iσ data in a and c (b and d) gives t‖/t⊥ = 0.612 and tcc/t⊥ = 0.034 (t‖/t⊥ = 0.991 and
tcc/t⊥=−0.067) for the O K (Cu L) edge. The blue and green lines in a and b are calculated
using these parameters. e. Colour map of χ2

0 with minima (best fit) shown as black dots and
the 95% CI from least-squares fitting shown as black rectangles. The red ellipses are contours of
constant χ2

0 defining a 95% confidence region. f. O-sublattice mapping of t‖/t⊥ to ∆d/∆s′ based
on Eq. 5.5.
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(this is illustrated in Fig. 5.6). A simultaneous fit of Iπ/Iσ for both the φ (Fig. 5.2a, lower
panel) and L (Fig. 5.2c) dependence in LBCO at the O K edge gives t‖/t⊥ = 0.612±0.035
and tcc/t⊥ = 0.034 ± 0.021. In Fig. 5.2a, we show that calculations (solid lines) of the φ
dependence using these parameters are in excellent agreement with the measured Iπ (green
squares) and Iσ (blue triangles), providing confidence that all relevant factors such as sur-
face geometry and absorption corrections have been properly taken into account within
the model. The reported errors represent 95% confidence intervals (CI) as determined
by standard nonlinear least-squares fitting. In Fig. 5.2e, maps of the reduced chi-squared
statistic, χ2

0, for the O K (left) and Cu L (right) edges illustrate more appropriate 95%
confidence regions of parameter space (red ellipses), defined as contours of constant χ2

0.

The ratio |t‖/t⊥| < 1 indicates that the O scattering tensor in LBCO breaks C4 symme-
try with a smaller modulation for the O‖ sublattice than for the O⊥ sublattice. This result
indicates that the Zhang-Rice singlet description of the electronic structure of the cuprates
is inadequate for the stripe phase. We cannot rule out that |t‖/t⊥| < 1 results simply from
an asymmetry in FR associated with the low-temperature tetragonal (LTT) phase transi-
tion in LBCO, which cants the CuO6 octahedra making each CuO2 plane orthorhombic.
However, this would require fR

‖ /f
R
⊥ = 0.612, which is difficult to reconcile with the small

octahedral tilts of the LTT phase. In contrast, if we interpret our results in terms of orbital
symmetry as outlined above, |t‖/t⊥| < 1 is evidence that CDW order in LBCO has mixed,
anti-phase d + s′ symmetry with a dominant s′ symmetry: ∆d/∆s′ = −0.241 ± 0.027.
This dominant s′ symmetry CDW stands in contrast to the dominant d symmetry CDW
reported in YBCO, Bi-2201, Bi-2212, and Na-CCOC.[117, 116]

Although a clear asymmetry between t‖ and t⊥ is observed at the O K edge in LBCO,
a similar asymmetry is not observed at the Cu L edge. Rather, the φ and L dependence
of Iπ/Iσ is consistent with |t‖| = |t⊥| � |tcc|. A simultaneous fit of the φ (Fig. 5.2b, lower
panel) and L (Fig. 5.2d) dependence at the Cu L edge gives t‖/t⊥ = 0.991 ± 0.015 and

tcc/t⊥ = −0.067±0.015, indicating that fR
⊥ = fR

‖ on Cu sites and that the scattering tensor
asymmetry observed on the O sublattice does not impart a similar asymmetry onto the
Cu 2p → 3d transition. Most simply, this may be understood as resulting from the Cu L
edge measurement being most sensitive to the s or s′ symmetry components of the CDW
order with only a weak sensitivity to the smaller d component identified by the O K edge
measurement. We note that the L dependence was measured in two LBCO samples with
slightly different incommensurability and mounted differently (sample S1 was on a wedge
and S2 was on a flat plug). These two samples exhibit similar L dependence (Fig. 5.2d)
and were both included in the fitting.
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Figure 5.3 – Cu L edge scattering in YBCO. a. Iπ/Iσ vs. L for the CDW peaks measured
along Q = (±0.31 0 L) (blue) and Q = (0 ± 0.31 L) (red) at 931.3 eV. The peaks along H have
larger Iπ/Iσ than those along K, giving different asymmetries in t‖/t⊥ for these directions. Fits
to the data (dashed lines) are for tcc = 0. b. Maps of χ2

0 show linear regions of acceptable fit
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5.5.2 Cu L edge investigation of YBCO

Turning to YBCO, the L dependence of Iπ/Iσ (Fig. 5.3) for Q =(0 ±0.31 L) is consistent
with |t‖/t⊥| ' 1, similar to LBCO. In contrast, the (±0.31 0 L) peaks exhibit larger values
of Iπ/Iσ than the (0 ±0.31 L) peaks, corresponding to |t‖/t⊥| > 1. Specifically, fitting
the data with tcc = 0 gives |t‖/t⊥| = 1.091 ± 0.154 for (0 ± 0.31 L) and 1.317 ± 0.087
for (±0.31 0 L). If we allow for tcc 6= 0, the fit is under-constrained and linear regions
in parameter space (Fig. 5.3b) provide acceptable fits to the data. However, one can
reasonably assume that the CDW order is dominated by the CuO2 planes and thus that tcc
is small relative to t⊥.[2] Imposing the constraint that |tcc/t⊥| ≤ 0.2 gives 1.01 ≤ |t‖/t⊥| ≤
1.17 for (0 ± 0.31 L) and 1.24 ≤ |t‖/t⊥| ≤ 1.39 for (±0.31 0 L).

These measurements show that the orbital symmetry of CDW order differs along H and
K in YBCO, providing further evidence that a simple checkerboard order is not applicable
to YBCO.[204, 214] Although an exotic form of checkerboard order may explain this, a
simpler view is that there are domains of stripe-like CDW order with different orbital
symmetries in YBCO.

For the CDW peak along K in YBCO, the observation of |t‖/t⊥| ' 1 is consistent
with the simplest picture of an s symmetry component dominating the scattering from
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the Cu sublattice. However, since it is not presently evident how d symmetry impacts the
Cu L edge measurement, a d symmetry component cannot be ruled out. This conclusion
differs from the recent interpretation of the φ dependence of the Q = (0 0.31 1.5) peak (at
the Cu L edge) in YBCO as evidence of dominant d symmetry CDW order, based on a
plausible microscopic model.[117] In the framework presented here, the clearest evidence
for dominant d symmetry would be the observation of t‖/t⊥ < 0 at the O K edge. Future
work is needed to determine if this indeed occurs in YBCO or other cuprates.

In contrast to the peaks along K, those along H do exhibit a more pronounced asym-
metry (|t‖/t⊥| 6= 1) that may be evidence for a sizeable d symmetry component to the
CDW order in YBCO. However, quantifying the relative components of ∆d, ∆s and ∆s′

requires a more detailed understanding of how these components influence the Cu L edge
RSXS.

5.5.3 O K edge energy dependence of RSXS in LBCO

The energy dependence of the CDW scattering intensity at the O K edge has been analyzed
in the past on either the O⊥ or the O‖ sublattice.[95, 96, 1, 215, 216] Here we present
the energy dependence of both sublattices. As shown in Fig. 5.4, when scaled to equal
intensity at 528.3 eV, both Iπ (probing O‖) and Iσ (probing O⊥) exhibit very similar
energy dependence. These measurements indicate that although the O K edge exhibits
a significant asymmetry in the magnitude of scattering from O⊥ and O‖, this asymmetry
does not manifest as a strong difference in the energy dependence. For σ-polarization, this
energy dependence was previously shown to result from a spatial modulation in the energy
of the O 1s→ 2p transition giving fn(ω) = f(ω+ ∆ωn), or more generally fn(ω) = f(ω) +

∆ωn
∂f(ω)
∂ω

.[1] These measurements are also consistent with this phenomenological energy
shift model, indicating that the O⊥ and O‖ sublattices are both subject to energy shifts. At
present, it is unclear whether an alternate description of the energy dependence based on
dynamical nesting would capture the measured polarization and energy dependence.[216]

As previously shown, the measured energy dependence does not correspond directly
to modulations in charge density;[1] although it may be a signature of charge density
modulations,[117] it could also arise due to modulations in other electronic structure pa-
rameters such as exchange interactions, the Cu–O hopping or the charge transfer energy.
Identifying the microscopic origin of the RSXS energy dependence requires further investi-
gation. To this end, we note that despite the good overall agreement between Iπ and Iσ at
the O K edge, the scaled scattering intensity is higher for Iπ than for Iσ at 529.5 eV. This
indicates that a model more sophisticated than the single parameter energy shift model is
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Figure 5.4 – Photon energy dependence at the O K edge of the (-0.232 0 0.77) CDW scattering
intensity in LBCO with σ (blue) and π (green) incident polarization. The scattering intensities
for the two polarizations, which measure the O⊥ and O‖ sublattices respectively, are scaled to 1
at 528.3 eV and compared to x-ray absorption (black) measured by total fluorescence yield with
ε ‖ a. Inset: Measured intensity as a function of H showing the scattering intensity along with
the x-ray fluorescence background Ifluo.. The background is fit and subtracted to determine Iscat..

needed to account for the detailed energy dependence of both Iπ and Iσ and may provide
a clue to the origin of the energy shifts. Specifically, the 529.5 eV peak appears to be more
isotropic (t‖ ' t⊥) than the lower energy peak at 528.3 eV. This difference in asymmetry
may be related to how states at different energies hybridize with the Cu 3d states. The
529.5 eV peak is closer in energy to the upper Hubbard band (UHB) peak in the X-ray
absorption spectrum (XAS) at 530.2 eV, which is present in the O K XAS due to strong
mixing between the O 2p and Cu 3d states. In contrast, the lower energy states at 528.3
eV would be present in a doped charge-transfer insulator even in the absence of O 2p–Cu
3d hybridization. Accordingly, the C4 symmetric character of the Cu edge scattering may
be reflected more strongly at the UHB than at states closer to EF.
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5.6 Discussion

The observation of dominant s′ symmetry CDW order in LBCO should be contrasted with
existing evidence for predominantly d symmetry CDW in Bi-2212 and Na-CCOC.[116]
If we assume both STM and RSXS have similar sensitivity to the CDW symmetry, our
measurements highlight CDW orbital symmetry as an additional property of CDW order
distinguishing the La-based cuprates from other cuprate families. This difference may be
related to the spin ordering properties of these different families - only in the La-based
cuprates does static SDW order develop with an incommensurability that is clearly related
to the CDW order (δcharge = 2δspin).[25, 175]. The related δcharge and δspin in La-based
cuprates is generally associated with a correlation between the local charge and the local
anti-ferromagnetic (AF) ordering.[25] For example, in a valence bond-solid description
of stripes, bond-order (CDW) and SDW order can be related, as shown in Fig. 5.1b,
wherein bonds are correlated with the local AF order and sufficiently weak bonds connect
ferromagnetically aligned spins.[19]

We now consider how this local charge/AF correlation is influenced by different CDW
orbital symmetries. For an s′ symmetry CDW, the local charge/AF order for bonds par-
allel and perpendicular to Q are modulated in-phase. This would naturally accommodate
static SDW order consistent with observations in La-based cuprates (a commensurate,
bond-centered s′-CDW+SDW order of this type is depicted in Fig. 5.1b).[25, 91] In con-
trast, d symmetry bond order would have local charge/AF order for bonds parallel and
perpendicular to Q modulated out-of-phase with each other. Accordingly, a d symmetry
CDW may prohibit static SDW order that is commensurate with the CDW, or conversely
static SDW order may prohibit d symmetry CDW. This notion of a relation between CDW
symmetry and static SDW order is consistent with existing theories. A recent study of
CDW order in a three-orbital model that develops both spin and charge stripe order,[118]
reports a predominantly s′ symmetry CDW with a d/s′ proportion similar in magnitude to
our findings in LBCO. In contrast, theories that have reported a d symmetry CDW order
have yet not exhibited both static SDW and CDW orders,[119, 75, 54, 120, 121] as found
in La-based cuprates.

Finally, we speculate on the role of CDW symmetry in the competition between CDW
order and superconductivity, for which various pictures have recently been proposed.[217,
63, 218, 219, 220] We note that Tc is more strongly suppressed around p = 1/8 in LBCO
than in other cuprate families. One possibility is that this greater competition may ul-
timately be rooted in the symmetry of the CDW order, which may have a greater pair-
breaking effect for s′ symmetry than for d symmetry.
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5.7 Methods

RSXS and x-ray absorption spectroscopy (XAS) measurements at the Cu L and O K edges
were performed using the in-vacuum four-circle diffractometer[168] at the Canadian Light
Source’s REIXS beam line on single-crystal samples of YBa2Cu3O6.67 (Tc = 64.5 K, p =
0.116) and La1.875Ba0.125CuO4 (Tc ≈ 4 K). The LBCO crystals were previously annealed
in an 17O2 environment.[221] Reciprocal lattice units (r.l.u.) were defined using the lattice
constants a=3.84 Å, b=3.88 Å, c=11.74 Å for YBCO and a=b=3.787 Å, c=13.24 Å for
LBCO. The YBCO sample was polished and two LBCO samples were cleaved in air prior
to measurement.

The crystallographic orientation of the samples was verified in the diffractometer using
appropriate structural Bragg peaks at ∼2 keV. LBCO samples were mounted separately
to flat and wedge-shaped sample plugs. The first sample (S1) exhibited CDW peaks at
Q = (±0.232 0 L), whereas the second sample (S2) had them at Q = (±0.237 0 L),
indicating a slight difference in doping (incommensurability). For the O K (Cu L) edge
azimuthal rotation experiment on LBCO, the wedge angle θw was 53◦ (34◦) (see Fig. 5.1a).
The formula defining these wedge angles is derived in Section A.2.

Due to a limited motion range on the φ motor, manual rotations of φ were performed
with an in-vacuum screwdriver. Photographs through a levelled telescope were used to
measure φ, yielding uncertainties of ∼ 1◦, and referenced to φ = 0◦ as set by the crystal-
lographic orientation. The measurements on LBCO were performed at T = 22 K whereas
those on YBCO were at 60 K and 160 K. The vacuum chamber pressure for all measure-
ments was P < 1× 10−9 Torr. X-ray absorption was measured by total fluorescence yield.
Additional details about background subtractions, peak fitting, model calculations and
parameter estimation are contained in section 5.10.
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5.8 Orbital symmetry of CDW order on oxygen sites

Following Ref. [75], non s-wave symmetry CDW order in a single-band model of the CuO2

planes can be parameterized by ∆ij, which characterizes the charge modulation (or some
other quantity related to charge order such as an energy shift)[2, 1] on bonds connecting
nearest neighbour Cu sites i and j:

∆ij =
∑
Q∗

[
1

V

∑
k

eik·(ri−rj)∆Q∗(k)

]
eiQ

∗·(ri+rj)/2, (5.6)

where V is volume and Q∗ are the wave vectors of the CDW order: Q∗ = (±Qm, 0, 0)
or (0, ±Qm, 0) for 1D stripes and Q∗ = (±Qm, 0, 0) and (0, ±Qm, 0) for checkerboard
order. In this prescription, ri indexes the Cu sites so that ∆ii corresponds to Cu sites and
∆ij with i 6= j corresponds to bonds between Cu sites (i.e. O sites). Including the s, s′

and d symmetry terms,

∆Q∗(k) =

{
∆s + ∆s′(cos kxa+ cos kyb) + ∆d(cos kxa− cos kyb) Q∗ = (±Qm, 0, 0)
∆s + ∆s′(cos kxa+ cos kyb)−∆d(cos kxa− cos kyb) Q∗ = (0,±Qm, 0)

(5.7)
giving rise to spatial modulations of ∆ij given in Fig. 5.1b.

This model identifies two distinct sublattices for the bonds, ij: one set of bonds, A,
having rj = ri ± ax̂ and the other set, B, having rj = ri ± bŷ. For these two sublattices,
a stripe state with Q∗ = (±Qm, 0, 0) has

∆iA = (∆s′ + ∆d) cos[Qm(rix + a/2)]
∆iB = (∆s′ −∆d) cos[Qmrix],

(5.8)

whereas a checkerboard with Q∗ = (±Qm, 0, 0) and Q∗ = (0, ±Qm, 0) has

∆iA = (∆s′ + ∆d) cos[Qm(rix + a/2)] + (∆s′ −∆d) cos[Qmriy]
∆iB = (∆s′ −∆d) cos[Qmrix] + (∆s′ + ∆d) cos[Qm(riy + b/2)].

(5.9)

Translating this model into bond order on the O atoms, one can associate ∆iA and ∆iB

with O atoms having holes in 2px and 2py orbitals, respectively. Next, we assume that
∆iA(B) are proportional to modulations in the atomic scattering form factor ∆FO,iA(B)(ω)
giving

∆FO,iA(ω) = C(ω)

∆iA 0 0
0 0 0
0 0 0

 and ∆FO,iB(ω) = C(ω)

0 0 0
0 ∆iB 0
0 0 0

 , (5.10)
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where C(ω) is a proportionality constant common to ∆FO,iA(ω) and ∆FO,iB(ω). For scat-
tering at the O K edge in LBCO, the assumption that the energy dependence factorizes
from the modulation amplitude and is common to the A and B sublattices seems justi-
fied given the approximate proportionality between the Iπ and Iσ scattering (see Fig. 5.4).
Then, for a measured Q = (Qm 0 L),

t‖ = taa =
C(ω)

N

∑
i

(∆s′ + ∆d) cos[Qm(rix + a/2)]eiQm(rix+a/2) and (5.11)

t⊥ = tbb =
C(ω)

N

∑
i

(∆s′ −∆d) cos[Qmrix]e
iQmrix , (5.12)

where rix is the position of the Cu sites. Combining Eqs. 5.11 and 5.12 gives

t‖
t⊥

=
∆s′ + ∆d

∆s′ −∆d

, (5.13)

which is written in terms of ∆d/∆s′ in Eq. 5.5, parametrizing how the experimental
observables, t‖ and t⊥, can be mapped to the symmetry of the CDW order for O sites in
the CuO2 plane.

5.9 Polarization Dependent Scattering Model

5.9.1 Model derivation and effect of absorption correction

The expression for the polarization dependent scattering intensity (Eq. 5.1) references the
incident and scattered photon polarization vectors relative to the crystallographic orienta-
tion of the sample. To see how variation of the experimental geometry (see Fig. 5.1a) affects
Eq. 5.1, we express the photon polarization in the laboratory reference frame (denoted by
the subscript `) and Eq. 5.1 is rewritten as

I(εi, ω,Q) ∝
∣∣ε∗f,` ·RT (ω,Q)R> · εi,`

∣∣2 , (5.14)

where R is a rotation matrix that rotates the sample (T (ω,Q) is still referenced to the
crystallographic axes) into the geometry necessary to satisfy the Bragg condition for a
particular photon energy ~ω and momentum transfer Q, and can also rotate the sample
azimuthally (φ) about Q.[117] For photon detection without polarization sensitivity, both
εf,σ and εf,π scattering contribute to the scattering intensity, giving I(εi) = Iεi,σ′ + Iεi,π′ .
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In calculating the expected scattering intensity for a given symmetry of T using Eq. 5.14,
the rotations that the sample and photon polarization undergo relative to the lab reference
frame must be specified. We incorporate a lab reference frame with ki along the (1 0 0)`
direction and the scattering plane being orthogonal to the (0 0 1)` direction, giving εi,σ
= (0 0 1)` and εi,π = (0 1 0)`. The sample can be mounted on a wedge, defined by a
wedge angle, θw, (θw = 0 corresponds to a flat surface, i.e. no wedge) that can be rotated
azimuthally about (0 1 0)` by an angle φ. The azimuthally rotated wedge can then be
rotated by an angle θ about the (0 0 1)` axis. For θw = 0, φ = 0 and θ = 0, the samples are
mounted such that the crystalline axes c // (0 1 0)` and a [b] along (1 0 0)` for investigation
of (H 0 L) [(0 K L)] peaks. These rotations can be expressed as a rotation matrix R acting
on T given by

R = R(θ)001R(φ)010R(θw)001RO, (5.15)

where, for example, R(θ)001 rotates the sample by an angle θ about the (0 0 1)` axis and
RO provides an initial orientation of the sample to give c ‖ (0 1 0)` and a or b along (1
0 0)`. The scattered photon polarization, εf , is determined by εi and RTR> and can be
expressed in terms of εf,σ and εf,π as

εf =
(ε∗f,σ ·RTR> · εi)εf,σ + (ε∗f,π ·RTR> · εi)εf,π
|(ε∗f,σ ·RTR> · εi)εf,σ + (ε∗f,π ·RTR> · εi)εf,π|

. (5.16)

where εf,σ = (0 0 1)`, εf,π = (− sin Ω cos Ω 0)` and Ω is the detector angle relative to the
incident beam. The scattering intensity can be determined without knowledge of εf by

I(εi, ω,Q) ∝
∣∣ε∗f,σ ·RT (ω,Q)R> · εi

∣∣2 +
∣∣ε∗f,π ·RT (ω,Q)R> · εi

∣∣2 . (5.17)

When comparing experimental results to model calculations, it is also important to ac-
count for the polarization dependent x-ray absorption cross-section, µ(ω, ε), of the incident
and scattered photons. This is a minor correction in more electronically isotropic materials,
but can have a significant impact in the cuprates, where the absorption coefficient along
the a, b and c axes varies considerably. To account for geometry dependent attenuation of
the incident and scattered x-rays, Eq. 5.17 must be corrected according to

Iabs(εi, ω,Q) ∝ I(εi, ω,Q)

µi + µf
sinα
sinβ

, (5.18)

where α and β are the angles of the incident and scattered beam relative to the sample
surface in the scattering plane and µi and µf are the linear absorption coefficients of the
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incident and scattered photons respectively. These are given by

µi ∝ Im
(
ε∗iRFR

>εi
)

and (5.19)

µf ∝ Im
(
ε∗fRFR

>εf
)
, (5.20)

where F is the scattering tensor averaged over all atomic sites (O, Ba, Cu, ...) and
includes both resonant and non-resonant contributions. Mirroring the polarization de-
pendent x-ray absorption in the cuprates [105, 84, 1], Im(faa) ' Im(fbb) and we estimate
Im(fcc)/Im(faa) ' 0.74 at the O K edge (528.3 eV) in LBCO, 0.45 at the Cu L edge (931.4
eV) in LBCO and 0.66 at the Cu L edge (931.4 eV) in YBCO. [84, 1] For these estimates
in LBCO, we assume that the absorption coefficient is similar to that of LNSCO, where
polarization dependent XAS is available.

The effect of the absorption correction on the φ and L dependence of the model are
illustrated in Fig. 5.5 for LBCO at the O K edge. The calculation without any absorption
correction (Eq. 5.17) is shown as thin solid lines. The effect of including the absorption
correction (Eq. 5.18) is shown with dashed lines. For the usual case where the sample
surface is parallel to the wedge surface, the dashed line would be the ideal calculation.
However, cleaving the sample LBCO S1 yielded a surface that was not parallel to the
sample holder (this can also occur for intentionally miscut surfaces), affecting the angles
α and β that enter into Eq. 5.18. The actual surface orientation was estimated with an
optical microscope and included in the model calculations, shown as thick lines. The φ
dependence of Iπ and Iσ (Fig. 5.5a) changes significantly when the absorption correction
and the orientation of the surface are incorporated. Examination of Fig. 5.5a illustrates
that modelling the azimuthal dependence of Iπ and Iσ directly (as shown in Fig. 5.2a)
requires a full characterization of the experimental geometry and the effect of absorption
on the incident and scattered photons.

When evaluating the ratio of Iπ and Iσ, however, the important differences seen in Fig.
5.5a are largely factored out, as shown in Figs. 5.5b and 5.5c. The effect of the absorption
correction is modest, on the order of∼ 5%-15% near φ = 0◦, 97◦, 180◦, but can be important
in accurately determining the parameters t‖/t⊥ and tcc/t⊥. The effect of the angled surface
is seen to be less important in calculating the ratios of Iπ and Iσ (Figs. 5.5b and 5.5c).
This highlights that our estimate of the sample surface orientation (due to the cleave) is
not important in the determination of t‖/t⊥ and tcc/t⊥ from fits to the ratio Iπ/Iσ.
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Figure 5.5 – Model calculations of the φ and L dependence of the scattering intensity in LBCO
at the O K edge (t‖/t⊥ = 0.612, tcc/t⊥ = 0.034). a. Iπ and Iσ vs. φ calculated by Eq. 5.17
(no absorption, thin line) and Eq. 5.18 (absorption) for a parallel surface (dashed line) and the
angled surface of the measured sample (thick line). The ratios of Iπ and Iσ vs. φ (b) and L (c).

5.9.2 Influence of CDW orbital symmetry and c axis scattering
contributions on model

The sensitivity of the model to φ and the scattering geometry is most readily understood
through calculations for representative sets of parameters corresponding to different CDW
orbital symmetries. In Fig. 5.6 we show the φ and L dependence of Iπ/Iσ calculated
according to Eq. 5.18 for values of t‖/t⊥ = ±1,±0.612,±0.612−1. We can interpret these
cases using Eq. 5.5 (see Fig. 5.2f for a mapping between t‖/t⊥ and ∆d/∆s′). The case
t‖/t⊥ = +1 (−1) corresponds to pure s′ (d) CDW symmetry (red lines in Fig. 5.6). We see
that d symmetry (red, dashed) would give rise to ∼ 3.3× larger maximum in Iπ/Iσ than
s′ symmetry (red, solid) and the maximum in φ would be located at φ ≈ 71◦ rather than
φ ≈ 99◦. The case t‖/t⊥ = +0.612 (−0.612) corresponds to ∆d/∆s′ = −0.241 (−0.241−1).
This is an anti-phase, mixed d and s′ state, with mostly s′ (d) symmetry, which would
appear experimentally as a maximum in Iπ/Iσ near φ ≈ 79◦ (φ ≈ 96◦). The mostly d
symmetry (black, dashed) case would give rise to a ∼ 2× larger maximum in Iπ/Iσ than
mostly s′ symmetry (black, solid). Similarly, t‖/t⊥ = +0.612−1 (−0.612−1) corresponds
to ∆d/∆s′ = 0.241 (0.241−1). This is an in-phase, mixed d and s′ state, with mostly s′

(d) symmetry. Again, the different peak positions and maximum values of Iπ/Iσ would
distinguish between the mostly s′ and d cases.
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Figure 5.6 – Model calculations for different cases of orbital symmetry in LBCO at the O K
edge. a. Calculated φ (left panels) and L (right panels) dependence of Iπ/Iσ showing sensitivity
to the sign and magnitude of t‖/t⊥. b. Calculated φ and L dependence of Iπ/Iσ demonstrating
sensitivity to the c axis contribution tcc/t⊥ of T . The blue curve is the best fit to the data.

From this discussion and examination of Fig. 5.6a, it becomes apparent that the φ
dependence is sensitive to the sign and magnitude of t‖/t⊥. In contrast, the L dependence
is sensitive to the magnitude but not the sign of t‖/t⊥. Combining both types of measure-
ments enhances the reliability of experimentally determining the sign and magnitude of
t‖/t⊥, ultimately enabling the determination of ∆d/∆s′ . This sensitivity to the magnitude
and sign of ∆d/∆s′ affirms that polarization dependent resonant soft x-ray scattering is a
powerful tool in discerning the symmetry of CDW order in the cuprates.

In Fig. 5.6b, we illustrate how a c axis contribution to the scattering influences the
model calculation. The blue curves are the best fit to the experimental data on LBCO
at the O K edge. The effect of a non-zero tcc/t⊥ is modest and similar in magnitude to
the effect of the absorption correction seen in Figs. 5.5b and 5.5c. This highlights the
importance of including a full geometry dependent absorption correction in the model, as
not doing so could lead to erroneous determinations of t‖/t⊥ and tcc/t⊥.
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5.10 Experimental data

Here we provide the experimental data that was used to determine the φ and L dependences
of Iσ and Iπ shown in Fig. 5.2. Fig. 5.7 shows the φ dependence of Iσ and Iπ in LBCO at
the O K edge (Q = (−0.232 0 0.611), ~ω = 528.3 eV). For each scan, the detector position
(at angle Ω) was kept constant and the crystal was rotated about the vertical axis (⊥ to
the scattering plane) by ±15◦. Iσ and Iπ were determined by first subtracting the x-ray
fluorescence background (Ifluo.) using a polynomial fit that excluded the peak region and
then fitting the resulting data (Iscat.) with a Lorentzian curve whose amplitude is reported
in Fig. 5.2a. Figs. 5.7a and 5.7b show this analysis procedure for a representative set of
measurements. Fig. 5.7c shows a projected view of the background-subtracted Iσ and Iπ
data for the full range of φ used in fitting to the scattering model.

Here we plot this data against ∆θ = θ − θ0, where θ0 is the center of the peak as
identified by peak fitting. Due to a slight misalignment of the a and c crystal axes during
sample mounting (∼ 0.6◦ about wedge normal), the scattering geometry gradually shifted
away from the nominal scattering geometry as φ was varied. This movement was small
enough that minor adjustments to the instrument’s χ angle (< 1.5◦) could be used to
reposition the CDW peak in the scattering plane, but it did moderately shift the apparent
peak position in θ as φ was adjusted (the maximum deviation was ∼ 1◦). By plotting
against ∆θ, we account for these minor shifts.

The measurement scheme we have employed (Ω remains fixed while θ is rotated) has
the advantage of faster data collection speed and reduced noise, but a consequence is that
the H, K and L indices all vary to differing degrees that depend on φ. These scans thus
correspond to cuts in Q space, as illustrated in Fig. 5.8a, that depend on φ. Fig. 5.8b
shows a projection onto the H–K plane of these same cuts. As can be seen, a scan at
φ = 0◦ is mostly along H, with no K and some L variation, whereas one at φ = 90◦ is
mostly along K, with some H and L variation.

In Fig. 5.8c, we present the same data as in Fig. 5.7 but here we have converted θ
values into H, K and L indices and plotted the normalized sum of Iπ and Iσ scattering in
the H–K plane. H and K were shifted by H0 and K0 in order to account for the shifts in
θ discussed above (ie. the data is plotted against ∆H and ∆K). The normalization is to
the sum of the fit amplitudes of the Iπ and Iσ data. In this form, the data can be fit to a
Lorentzian function I = A [(∆H/γH)2 + (∆K/γK)2 + 1]

−1
, where A is the amplitude and

γ(H,K) is the HWHM. The H and K correlation lengths are related to γ(H,K) according to
ξ(H,K) = (a, b)/(2πγ(H,K)). Fitting the normalized Iπ + Iσ data with this functional form
(see Fig. 5.8d) gives ξH ≈ 215 Å and ξK ≈ 184 Å. These correlation lengths and their
∼ 17% anisotropy appear consistent with prior hard x-ray scattering data on LBCO.[94]
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Figure 5.7 – Scans through the CDW peak as a function of φ for LBCO at the O K edge.
a. Normalized intensity of scattering and x-ray fluorescence (open symbols) for incident σ (top
panel) and π (bottom panel) photon polarization and polynomial background fit (dashed lines)
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for clarity. c. Projected view of background-subtracted Iσ (top) and Iπ (bottom) vs. φ for full
range of measured angles. φ values are indicated in legend on right.
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Fig. 5.9 shows the photon energy dependence of Iσ and Iπ vs. H for LBCO at the O
K edge with Q = (H 0 0.77). Similar to the φ dependent data, the x-ray fluorescence
background was first subtracted using a polynomial fit excluding the peak region (the
backgrounds shown in Fig. 5.7a are representative of this procedure). Lorentzian fits were
then used to determine the scattering intensities reported in Fig. 5.4.
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Figure 5.9 – Energy dependence of CDW scattering peak in LBCO at the O K edge for σ (a) and
π (b) incident photon polarization. Solid lines are Lorenztian fits to the background-subtracted
data (filled circles). Photon energy indicated in legend on the right. Data are offset for clarity.
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Fig. 5.10 shows the φ dependence of Iσ (top panels) and Iπ (lower panels) of LBCO at
the Cu L edge, Q = (−0.236 0 1.192), ~ω = 931.4 eV. As was done for the O K edge, the
x-ray fluorescence background was subtracted using a polynomial fit excluding the peak
region. Similar to the O K edge φ rotation data, we plot the Cu L edge data against ∆θ
to account for shifts in the scattering geometry as φ was varied (in this case, a maximum
shift in θ of ∼ 5◦ and χ corrections up to ∼ 4◦ were used, although the mounting error
was smaller for this measurement [∼ 0.4◦], there is a greater sensitivity to mounting errors
at 931.4 eV as compared to 528.5 eV). In addition to scans with Ω-fixed, we performed
scans with Ω = 2θ and these are plotted against ∆Ω. These latter scans correspond to
continually measuring the same arc in the H–L plane whereas the Ω-fixed scans correspond
to arcs that vary with φ, as shown in the right panels of Fig. 5.10. The Iπ and Iσ values
reported in Fig. 5.2b are the average Lorenztian fit amplitude of both types of scan.

Fig. 5.11 shows the L dependence of Iσ and Iπ vs. H of LBCO at the Cu L edge,
Q = (0.232 0 L), ~ω = 931.3 eV (top panels) and at the O K edge, Q = (−0.232 0 L),
~ω = 528.3 eV (bottom panels). Similar to the φ dependent data, the x-ray fluorescence
background was subtracted using a polynomial fit excluding the peak region. Lorentzian
fits were then used to determine the scattering intensities reported in Figs. 5.2c and 5.2d.

Fig. 5.12 shows the L dependence of Iσ and Iπ of YBCO at the Cu L edge (~ω =
931.3 eV) for the CDW peak along ±H and ±K. In this case the background subtraction
was accomplished by subtracting the measured x-ray fluorescence at 160 K from the mea-
surement at 60 K. Figs. 5.12a and 5.12b show a representative set of such backgrounds.
Lorentzian fits were then used to determine the scattering intensities reported in Fig. 5.3.

89



 0
 27.1
 55.2
 75.0
 88.8

 102.4
 123.2
 147.0
 178.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-4 -2 0 2 4 -8 -4 0 4 8

I (
ar

b.
 u

ni
ts

)
I (

ar
b.

 u
ni

ts
)

-0.30
-0.25

-0.20
-0.15

-0.10

H-0.05
0.00

0.05

K

1.0

1.1

1.2

1.3
L

-0.30
-0.25

-0.20
-0.15

-0.10

H-0.05
0.00

0.05

K

1.0

1.1

1.2

1.3
L
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5.11 Parameter estimation and confidence regions

The parameters t‖/t⊥ and tcc/t⊥ were determined by unconstrained, weighted least-squares
fitting of the experimental data to I(εi,π, ω,Q)/I(εi,σ, ω,Q), as defined by Eq. 5.18. These
were the only free parameters in the fit. For LBCO at the O K edge, both the φ and L
dependent data were fit simultaneously. This simultaneous fit narrowed the confidence
regions (CR) as compared to fitting either dataset individually. Since the φ dependence
at the Cu L edge in YBCO and LBCO were not measured here, the fits in those cases
are to the L dependence. Fitting to the L dependence alone does not determine the signs
of t‖/t⊥ and tcc/t⊥ (see Fig. 5.6a), but can still constrain their absolute values and their
relative sign (ie., t‖/t⊥ and tcc/t⊥ will either have the same or opposite sign).

Although least-squares fitting provides standard errors for the best fit parameters,
an examination of χ2

0, the reduced chi-squared statistic, throughout the parameter space
identified that the 95% confidence intervals defined by the standard errors (rectangular
regions in Fig. 5.2e) underestimated the regions of high confidence. The high confidence
regions were better described by contours of constant χ2

0, appearing as ellipses in the t‖/t⊥
– tcc/t⊥ plane for the LBCO O K and Cu L edge data. The contours were selected to
represent regions where there was a 95% (or higher) likelihood that the model described
the experimental data. To illustrate this point and the level of confidence with which the
reported values t‖/t⊥ and tcc/t⊥ are given, we show here how the model calculations vary
across the parameter space in regions around the best fit parameters. This analysis is
shown in Fig. 5.13 for LBCO at the O K edge, Fig. 5.14 for LBCO at the Cu L edge, and
Fig. 5.15 for YBCO at the Cu L edge.

We caution that the absolute values of χ2
0 reported here should not be over-interpreted

as the formal definition of χ2
0 requires that weights be calculated from true variances (ie.

σ from a normal distribution of repeated measurements). Here, we used statistical errors
from fitting the CDW peak to estimate the variance, which can lead to χ2

0 < 1, indicating
that the experimental uncertainty underestimates the variance. Although the magnitudes
of χ2

0 are affected by this detail, one can still use this statistic as a means of identifying
regions of parameter space where the model yields good agreement with the data. It is
in this sense that we have opted to define the high confidence regions of parameter space
where the model agrees with the data.
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likelihood that the experimental data is described by the model. The maps of χ2

0 are truncated
at values greater than 1, emphasizing the region of good agreement.
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Figure 5.14 – LBCO Cu L edge φ (left panels) and L dependence (middle panels) of measured
Iπ/Iσ (open symbols) compared to the model calculations (coloured lines) based on Eq. 5.18
at the points indicated by coloured symbols on the maps of χ2

0 in the t‖/t⊥ – tcc/t⊥ parameter
space (right panels). Each row corresponds to exploring the parameter space of the model along a
particular direction (ie., diagonal, vertical, horizontal). The red ellipse (right panels) is a contour
of constant χ2

0 that defines a region in the t‖/t⊥ – tcc/t⊥ plane where there is a 95% (or higher)
likelihood that the experimental data is described by the model. The maps of χ2

0 are truncated
at values greater than 1, emphasizing the region of good agreement.
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Figure 5.15 – L dependence of the model calculations based on Eq. 5.18, for YBCO at the Cu
L edge, at the points indicated in the colour maps of χ2
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The parameter space of the model is explored for the CDW peak along H (a-b) and K (c-d) in
the diagonal (left panels) and horizontal (right panels) directions. The maps of χ2

0 are truncated
at values greater than 4 to highlight the region of good agreement.

Lastly, we illustrate the confidence with which the sign of t‖/t⊥ is reported for LBCO at
the O K edge. An examination of χ2

0 over a larger region of the parameter space is shown
in right panel of Fig. 5.16. Here χ2

0 is truncated above χ2
0 = 30. The value of χ2

0 outside the
plotted region was found to be very large. The same 95% confidence region reported in Fig.
5.2e and shown above (Fig. 5.13) is shown in light green to provide a sense of scale for the
parameter space. In addition to the global minimum at t‖/t⊥ = 0.612 and tcc/t⊥ = 0.034,
we find a local minimum in χ2

0 with a small and negative t‖/t⊥ and a relatively large and
negative tcc/t⊥. As shown in Fig. 5.16, this local minimum has a considerably higher χ2

0

than the global minimum (right panel) and is a poor fit to the data along φ (left panel)
and L (center panel). A similar examination of χ2

0 throughout the parameter space for
the Cu L edge data in LBCO reveals very high values of χ2

0 for t‖/t⊥ < 0 and plots of
the model for these values are in very poor agreement with the measured φ dependence
(not shown). We therefore have a high degree of confidence that t‖/t⊥ > 0, ruling out a
dominant d symmetry to the CDW order in LBCO.
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Chapter 6

Impact of Quenched Oxygen
Disorder on Charge Density Wave
Order in YBa2Cu3O6+x

This chapter has been adapted from Ref. [3]

6.1 Overview

The competition between superconductivity and charge density wave (CDW) order in
underdoped cuprates has now been widely reported, but the role of disorder in this com-
petition has yet to be fully resolved. A central question is whether disorder sets the length
scale of the CDW order, for instance by pinning charge density fluctuations or disrupting
an otherwise long range order. Using resonant soft x-ray scattering, we investigate the
sensitivity of CDW order in YBa2Cu3O6+x (YBCO) to varying levels of oxygen disorder.
We find that quench cooling YBCO6.67 (YBCO6.75) crystals to destroy their o-V and o-VIII
(o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3),
but has little effect on the CDW correlation length, incommensurability, and temperature
dependence. This reveals that while quenched oxygen disorder influences the CDW order
parameter, the spatial extent of the CDW order is insensitive to the level of quenched
oxygen disorder and may instead be a consequence of competition with superconductivity.
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6.2 Introduction

Charge density wave (CDW) order has been solidified as a generic property and principal
competitor to superconductivity (SC) in underdoped cuprate superconductors through its
observation in YBa2Cu3O6+x (YBCO),[22, 23, 2, 204, 214, 32, 222] Bi-based, [82, 176, 30,
72, 73], La-based,[215] and Hg-based cuprates.[74] Despite important differences in crystal
structure and levels of disorder in these cuprates,[48] the spatial extent of CDW order is
relatively short range in all cases. The origin of this common short range character is
not currently understood. A widely held view is that disorder plays the role of either pin-
ning charge density fluctuations or disrupting an otherwise long-range order.[112, 113, 114]
These possibilities have been used to describe the effect of disorder and impurities in the
cuprates. For example, apical oxygen vacancies in Bi2+ySr2−yCaCu2O8+x (Bi2212) were ar-
gued to pin a CDW checkerboard state.[223] The substitution of spinless Zn atoms for Cu
atoms in YBCO was argued to disrupt [enhance] CDW [spin density wave (SDW)] correla-
tions in the vicinity of the Zn defects.[214] Within such interpretations, the common short
range character of CDW order in the cuprates is associated with each material’s specific
defect properties and crystal structure. However, it is also possible that such descriptions
only apply due to the high defect strength, masking a more generic and intrinsic origin of
this length scale, such as the competition of CDW order with superconductivity.[55, 56]

To address this question, we turn to high-purity, oxygen ordered YBCO. With regards
to defects, YBCO represents a special case in the cuprates since stoichiometric, ultra-
high purity crystals can be grown with low levels of cation disorder.[45] Doping of the
CuO2 planes occurs by the addition of oxygen atoms into the chain layer, which can
organize into a number of ortho-ordered phases depending on the oxygen content.[108, 109,
110] Disorder in these CuO chains have been shown by microwave conductivity studies of
quasiparticle scattering in YBCO6.5 to be the dominant source of weak-limit scattering,[224]
indicating that the most influential defects in YBCO reside in the chain layer.[48] As
previously established, the oxygen ordered states can be intentionally destroyed by heating
YBCO crystals to modest temperatures and subsequently quench cooling to prevent the
formation of chain order.[110, 115, 111, 224] This allows for individual crystals of YBCO
to be investigated with varying degrees of disorder.

In this chapter, this means of controlling disorder in YBCO is exploited to study the
effect of quenched disorder on CDW order in the cuprates using resonant soft x-ray scatter-
ing (RSXS). Our main finding is that disordering the chains decreases the CDW scattering
intensity, but has little impact on the CDW correlation length (ξCDW), incommensurability
or T dependence. This reveals that while disorder influences the CDW order parameter,
the length scale of the CDW order is insensitive to the level of disorder. We argue that
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this observation is difficult to reconcile with simple pictures of disorder-induced pinning or
of order nucleating around defects and suggest that the short range character of the CDW
order has an intrinsic origin, possibly rooted in the competition between CDW order and
superconductivity. We also discuss how the disorder effect studied here can be contrasted
to disorder effects in other cuprates.

RSXS and x-ray absorption spectroscopy (XAS) measurements were performed at the
Canadian Light Source’s REIXS beamline [168] using high purity single crystals of YBCO
with o-V (Tc=64.5 K, p=0.116, x=0.667), o-VIII (Tc=65.5 K, p=0.118, x=0.667) and
o-III (Tc=75.2 K, p=0.133, x=0.75) oxygen ordering.[45, 199] The samples were oriented
with the ac plane parallel to the scattering plane (with the c-axis normal to the sample
surface). The orientation was confirmed using (0 0 2) and (±1 0 2) Bragg reflections at
2 keV. Scattering was performed with σ polarized light and XAS was measured by total
fluorescence yield (TFY).

6.3 Results

In Fig. 6.1(a), RSXS measurements of the CDW peak are shown at 65 K, at L ' 1.48 and
at a photon energy of 931.3 eV, corresponding roughly to the maximum in CDW scattering
intensity at the Cu L3 edge.[22, 1] The fluorescence background and scattering contribu-
tions from nearby oxygen order peaks (off resonance but still visible) were subtracted using
a scan at high T , as shown in Fig. 6.2(a) for the o-V YBCO6.67 sample. This procedure
was susceptible to a larger error for the ordered o-III YBCO6.75 sample due to the over-
lap of the o-III superstructure reflection (H =−0.33) with the CDW peak (H =−0.31).
The correlation lengths [ξa = a/ (2πHWHMH)], T dependence (see Fig. 6.3) and incom-
mensurability, as determined by Lorentzian peak fits to the background subtracted data,
all vary somewhat weakly with doping and are consistent with previous and more recent
work.[204, 212, 211] The measured peak widths were not appreciably influenced by the
detector resolution.1 Note that in addition to determining the T dependence with fitting
of Q-scans, we have also monitored the detector count rate while the sample cooled below
TCDW, as shown in the solid lines of Fig. 6.3(a). Here we have subtracted a constant value
for the fluorescence background, which from measurements at (-0.25 0 1.48) (away from
the CDW peak) are found to be weakly temperature dependent over the temperature range
of interest. Accordingly, we find the shape of the cooling curves to be consistent with the
peak fitting results.

1The estimated resolution in the H direction at Q=(−0.31 0 1.48) is ∆H ≤ 0.019 r.l.u.
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Figure 6.1 – (H 0 L) scans through the (a) CDW peaks and (b) oxygen chain ordering super-
structure peaks in o-V, o-VIII and o-III ordered YBCO before (O) and after (D) heating the
samples to disorder the oxygen in the chain layer. In panel (a) a small contribution of the oxygen
order superstructure reflection is still visible for the oxygen ordered states at the photon energy
931.3 eV, where CDW order is most pronounced. The correlation lengths ξCDW

a given in (a) are
for the ordered and disordered states of the crystals and the ortho structure correlation lengths
ξa in (b) are for the ordered state.

After measurement in the ortho ordered state, the ortho phase was disordered by heat-
ing to ∼100 ◦C (above the oxygen ordering temperature). Despite oxygen atoms being mo-
bile at this temperature, the kinetics of oxygen incorporation at the surface are very slow,
so no change in sample stoichiometry is expected.[224] During this process, the pressure
in the chamber was maintained below 6× 10−9 Torr, ensuring a clean sample environment
and no surface contamination. The samples were maintained at 100 ◦C long enough for the
oxygen order superstructure reflection to disappear (∼30 to 60 min) and cooled back down
to room temperature in ∼7 min (dictated by the maximum cooling rate of the instrument)
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Figure 6.2 – CDW scattering intensity in o-V ordered YBCO before and after quench cooling.
(a) Background subtracted scattering intensity at select temperatures. Solid lines are Lorentzian
fits. (b) (H 0 L) scans at various L values. (c) and (d) The H and L dependence of the CDW
scattering intensity at 65 K scaled to match peak intensities. The peak width and position (c)
and L dependence (d) are the same in the oxygen ordered and disordered states.

to quench in the oxygen disorder. The degree of oxygen order is characterized by the in-
tensity and width of the ortho order superstructure peaks along the a-axis, shown in Fig.
6.1(b). The correlation length along the b-axis, which is known to be larger,[23] was not
measured here. In the ortho VIII ordered YBCO, the o-VIII ordering peak is replaced by
weak o-V order at H=−0.4 upon quenching. Similarly, the quenching procedure destroys
the o-V phase in the ortho V crystal and nearly eliminates the o-III phase of the ortho III
crystal.
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scattering amplitude was not measured upon cooling. (b) The T dependence of the CDW peak
amplitude in the o-V sample scaled to equal intensity at 65 K. The T dependence is unchanged
by disordering the chains. (c) The T dependence of ξCDW

a of the CDW peak in the ordered and
disordered states.

We find that disordering the chains results in a decrease in CDW peak intensity [Fig.
6.1(a)], but essentially no change in the CDW peak incommensurability (Q position) [Fig.
6.2(c)], temperature dependence [Fig. 6.3(a)] or correlation length (either in-plane, ξCDW

a

[Fig. 6.3(c)], or out-of-plane, ξCDW
c [Fig. 6.2(d)]). This is most clearly seen in the x =

0.667 o-V sample, where scaling the background-subtracted CDW scattering intensity after
quenching by a constant factor of ∼1.9 provides an excellent match to the H, L [Fig. 6.2(c)
and 6.2(d)] and T dependence [Fig. 6.3(b)] of the CDW peak in the original oxygen ordered
state. Since no change in the L dependence of the peak is observed [Fig. 6.2(b) and 6.2(d)],
we find that oxgyen disorder has a negligible impact on ξCDW

c .2

2The data suggests that ξCDW
c < c in both cases, consistent with the hard x-ray results in Ref. [23],

but we cannot determine a reliable value given the limited Q-space.
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6.4 Discussion

6.4.1 Interpretation

The disorder-independent incommensurability, ξCDW and T dependence argue against a
strong role of the chain order periodicity in stabilizing the CDW order, consistent with the
previous observations of distinct Q, energy and temperature dependence for the CDW and
chain superstructure peaks.[2] In addition, the change in CDW intensity does not appear
to be associated with a change in the hole doping in the CuO2 planes upon disordering the
chains. A change in hole doping might be expected since disordering the oxygen atoms can
reduce the chain length – affecting the charge transfer to the CuO2 planes by reducing the
number of Cu atoms in the full chains that are coordinated by 4 oxygen atoms (2 apical
and 2 in the chain layer) and increasing the number of Cu that are coordinated by only 3
oxygen atoms. However, XAS measurements (consistent with Refs. [194, 84]) before and
after the quenching procedure, shown in Fig. 6.4, indicate that the hole doping change
induced by disordering the chains is negligible, at least in the o-V sample. Moreover,
under the premise that the CDW peak is most intense around p=1/8,[22] underdoping the
x= 0.75 sample would presumably enhance the CDW order, whereas the measured effect
is a modest decrease in intensity by a factor of ∼1.3.

Consequently, rather than a change of hole doping in the CuO2 planes, the decrease
in CDW scattering intensity likely results from a change in the defect structure of the
materials, specifically how the O disorder in the chain layer influences the CuO2 planes.
These defects include point-like defects due to the ends of finite length chainlets and also
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Figure 6.4 – (a) O K and (b) Cu L3 edge XAS of the o-V sample in the oxygen ordered (O) and
disordered (D) states. Nominally, no change in orbital occupation in the CuO2 planes is seen.
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domain walls caused by phase slips in the chain ordering pattern. In the O ordered phase,
the short correlation length of the chain order implies an already large density of both
types of defects. Quenching the samples into an O disordered phase decreases the average
length of the chainlets, increasing the density of weak, random point-like defects. However,
since the chain order is originally short-range, quenching the samples into an O disordered
phase can also decrease rather than increase the domain wall density (a fully-disordered,
random O distribution in the chain layer would have a single o-I domain with no domain
walls). Somewhat counter-intuitively then, depending on the interplay of increasing point
defect density and decreasing domain wall density, disordering the chains may result in
more or less disorder in the CuO2 planes. In short, although the oxygen atoms in the
chain go from being ortho ordered to disordered after quench cooling, it is not yet clear
whether the resultant decrease in CDW intensity is due to an increase or decrease in defect
density in the CuO2 planes. Future work to determine the proportion of these defects is
needed to clarify this point. We also note that the variation in disorder here is unlikely
to correspond to a variation in the strength of point-like defects, making it unclear how
our measurements correspond to existing theoretical models of disorder effects on CDW
order.[112, 113]

We note that the measured ξCDW (at ∼ Tc) both here and in a wider range of dopings
is only weakly dependent on the excess oxygen content.[212, 211] Since the level of oxygen
disorder varies considerably in the investigated range of samples, a substantial doping
dependence to ξCDW would be expected if oxygen disorder were setting the length scale of
the CDW order.

6.4.2 Comparison to Zn doping

The effect of O disorder shown here should be compared with the effect of Zn-impurities on
the CDW order in YBCO.[214] Blanco-Canosa et al. [214] also found that Zn doping de-
creases the CDW peak intensity, like our O disorder measurements. But, unlike O disorder,
Zn-impurities decrease the correlation length and significantly change the T dependence
of the CDW order. This was argued to be consistent with spatially inhomogeneous CDW
order, with CDW order suppressed in regions around the Zn impurities, where incommen-
surate SDW order is enhanced. However, it is not clear that a similar description can be
applied to O disorder since Zn doping introduces a spinless impurity in the CuO2 planes
that is a much stronger defect than O defects in the chain layer and results in strong pair
breaking scattering, suppression of superconductivity, a slowing of spin fluctuations and
of static, incommensurate SDW order. Moreover, the lack of dependence on ξCDW and
T dependence for our O disorder measurements are difficult to reconcile with a simple
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inhomogeneity model, where the volume fraction of CDW order is decreased when the
O in the chain layer is disordered. Since ξCDW is not impacted by the O disorder, this
scenario would require a domain size larger than the CDW correlation length. Given that
the defect density is high in the O disordered state, and that the correlation length in the
ortho ordered states is in fact less than that of the CDW order [the O order is short range,
see Fig. 6.1(b)], it is unclear how CDW domains would form around O defects.

6.4.3 Possible origins

It is also difficult to reconcile the independence on oxygen disorder of the CDW T depen-
dence and correlation length with pinning of CDW order that would be fluctuating in the
absence of disorder, since the temperature evolution of the fluctuations should depend on
the level of disorder.[114] Rather, these measurements suggest that the short range nature
of the CDW order (ξCDW < 60 Å) could have an intrinsic origin related to the competition
between CDW order and SC rather than being a result of sample disorder. For instance,
it has been shown that the gradual, concave T dependence of the CDW order shown in
Fig. 6.3 can result from angular fluctuations of a multi-dimensional order parameter com-
prised of biaxial CDW order and superconductivity.[56] Although the impact of disorder
on this model has not been investigated, it is plausible that disorder can affect the CDW
peak amplitude without having a strong effect on the angular fluctuations that govern the
CDW T dependence and possibly the correlation length.

Although a detailed explanation for the O disorder dependence is yet not evident, in
the absence of a change in CDW volume fraction or pinning, it is reasonable to consider the
reduction of the CDW peak intensity as being associated with a reduction in the magnitude
of the CDW order parameter. As previously demonstrated, the CDW peak intensity at the
Cu L edge is associated with a spatial modulation in the Cu 2p to 3d transition energies
∆E, which for small modulations scales as ∆E2.[2, 1] Accordingly, the magnitude of these
energy modulations, which are presumably proportional to the CDW order parameter,
could be affected by quenched oxygen disorder (and full details of how quench cooling
alters the defect structure). In this context, we note that the CDW order is more strongly
reduced by disorder in the YBCO6.67 samples than it is in the YBCO6.75 sample. Although,
we should caution that the level of disorder is not well calibrated between samples, it is
curious that the larger change in the magnitude of the CDW order occurs in samples where
the CDW peaks are most intense. Naively one may have expected CDW order to be more
susceptible to disorder at doping levels where the order is weaker.
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6.4.4 Broader comparison to other cuprates

Finally, we address how these results on YBCO can be understood in the broader context of
CDW order in the cuprates. We showed here that the degree of oxygen disorder in YBCO
does not determine ξCDW, suggesting a more intrinsic origin for the short range character
of the CDW order. Although YBCO represents a case of relatively weak disorder, the
implication that disorder is not the dominant factor in determining ξCDW may be applicable
to other cuprates. This may explain why across the various cuprate families, where the
type of defects and their importance varies considerably (e.g. cation substition, oxygen
vacancies, lattice distortions),[48] ξCDW is of the same order of magnitude (e.g. 20-30
Å in Bi-2201,[73] ' 20 Å in Hg-1201,[74] and 50-175 Å in LBCO[175]). Rather than
an emphasis on disorder, an understanding of the competition between CDW order and
superconductivity, and how this competition is influenced by the electronic and crystalline
structure (e.g. Fermi surface topology, interlayer coupling), may clarify how the CDW
order differs in the various cuprate families.
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Chapter 7

Doping evolution of charge density
wave order in YBa2Cu3O6+x

7.1 Overview

The recent observation of CDW order in underdoped YBCO by hard and soft x-ray scat-
tering across a variety of hole dopings has solidified CDW order as an important phase
that onsets below the pseudgap and above the superconducting transition, and persist-
ing deep into the superconducting state. The interpretation of how these electronic and
quantum mechanical ordering phenomena compete, coexist and ultimately form is still a
subject of much debate. Establishing how the characteristics of CDW order vary across
the phase diagram is essential to framing this debate. In this chapter, I report such a study
for the CDW order in YBCO. I will present a phase diagram and the doping dependence
of several quantities (incommensurability, correlation length, peak intensity, temperature
dependence) that combine my observations with those from other groups.[212, 211, 204]
Notably, I report the observation of CDW order at p = 0.058, near the anti-ferromagnetic
insulator to superconductor transition, with a propagation direction along the b axis but
not along the a axis. At this doping level, static incommensurate spin density wave (SDW)
order is known to form along a in YBCO.[225] Combined with a notable deviation between
the a and b axis correlation lengths at low doping, this helps to establish the competition
between spin ordering in CDW order in YBCO. Moreover, it acts as a clear demonstration
of unidirectional CDW order in YBCO. Also identified is a subtle deviation from linearity
in the doping evolution of the incommensurability, which decreases with doping, opposite
to La-based cuprates and opposite to the incommensurability of spin order.
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7.2 Experimental results

Resonant soft x-ray scattering experiments on 7 samples of YBa2Cu3O6+x with varying
oxygen contents and degrees of oxygen ordering were conducted at the Canadian Light
Source’s REIXS beamline. Orientation of the crystals was performed at ∼ 2 keV using (0
0 2) or (0 0 4) and (±1 0 2) or (0 ±1 2) Bragg peaks. All RSXS data presented here is
for vertically polarized incident photons (σ-polarization) at a photon energy of 931.3 eV,
or about 0.1 eV below the maximum in the XAS for the Cu L3 edge. These experiments
were performed over a 3 year period, consisting of 12 “beamtimes”, so great care had to
be taken to ensure the reliability of the reported parameters. Despite a significant effort to
ensure the reliability and consistency of the data and the extracted parameters, there may
still be important experimental uncertainties that could influence some of the presented
results. These limitations are discussed at length in section 7.4.2.

7.2.1 YBa2Cu3O6+x samples

The properties and origins of the investigated YBa2Cu3O6+x crystals are listed in Ta-
ble 7.1. All but one of the samples were provided by Ruixing Liang, Doug Bonn and
Walter Hardy from the University of British Colombia (UBC). The other was provided
by Santiago Blanco-Canosa (and collaborators) from the Max-Planck-Institut (MPI) für
Festkörperforschung, Heisenbergstraße in Stuttgart, Germany. As noted in Table 7.1, most
of the samples were polished. Although the CDW order could be detected by RSXS with
and without polishing (eg. in YBa2Cu3O6.67 o-VIII and YBa2Cu3O6.75 o-III), polishing was
preferable to remove surface imperfections (see Fig. 2.13), as discussed in section 2.3.3. The
YBa2Cu3O6.99 sample was previously etched and studied by x-ray absorption at Taiwan’s
National Synchrotron Radiation Research Center, as reported in Ref. [84]. Chain ordering
and de-twinning was performed by the crystal growers.

The superconducting transition temperatures Tc were determined using DC suscepti-
bility measurements.1 The measurements are presented and discussed in section 7.2.3. The
corresponding hole concentrations were then obtained using previously established map-
ping between Tc and p in Ref. [199]. Note that the units of p denoted as “holes/Cu” in
this chapter refers to holes per planar copper atom.

Note, throughout this chapter the following notation will be adopted when discussing
the chain order state of the YBCO samples:

1Except for the sample YBCO6.5 (A). Here Tc was taken for the nominal composition.
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Table 7.1: YBa2Cu3O6+x sample properties

Sample Chains Tc (K) p (holes/Cu) Polished? Origin
YBCO6.335 o-I 12.6± 2 0.058± 0.003 Yes UBC
YBCO6.5 (A) o-II 56.0± 3 0.096± 0.008 Yes UBC
YBCO6.5 (A) o-IId 53.0± 3 0.089± 0.008 Yes UBC
YBCO6.5 (B) o-II 59.9± 3 0.105± 0.008 No MPI
YBCO6.67 o-V 65.3± 1 0.117± 0.003 Yes UBC
YBCO6.67 o-VIII 66.3± 1 0.119± 0.003 Yes & No UBC
YBCO6.75 o-III 77.1± 2 0.134± 0.003 Yes & No UBC
YBCO6.99 o-I 90.1± 2 0.181± 0.003 Yes & Br etched UBC

1. o-I indicates a fully disordered chain layer.

2. o-II, o-III, o-V, and o-VIII denote robust chain order in the form of an identifiable
peak (even if the correlation length of the order is modest, as shown in chapter 6).

3. o-IId, o-IIId, o-Vd, and o-VIIId will denote that the chains have been disordered, by
the quench cooling process discussed in chapter 6.

7.2.2 Resonant scattering data

A representative sampling of RSXS measurements of the CDW order in YBa2Cu3O6+x is
shown in Fig. 7.1. Measurements at temperatures corresponding to the high temperature
background, the onset temperature, T on

CDW, and the scattering intensity maximum, Tmax
CDW,

are shown. From visual inspection, there is a clear doping dependence to the peak intensity
(relative to the background) and the peak position, although the widths appear somewhat
comparable in all cases. Note that the data is coloured according to temperature with
a common scale across all panels. The photon energy is 931.3 eV and the wavevector
direction is indicated in each panel. The full set of temperatures-series are presented in
section 7.4.1.1.

For these measurements, the scan mode was a θ-scan. This entails keeping the detector
position fixed high angle (2θ ∼ 170◦) and rocking the θ motion, as was discussed in section
5.10. This scan type produces more points on either side of the peak than an H-scan does,
making it much simpler to perform reliable background subtractions. It also allows the L
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Figure 7.1 – Raw RSXS data of CDW scattering peak showing T on
CDW and Tmax

CDWin (a-b)
YBa2Cu3O6.335, (c) YBa2Cu3O6.5, (d)-(e)YBa2Cu3O6.67, and (f) YBa2Cu3O6.75. The chain or-
dering state as well as the scattering wavevector direction is indicated in each panel. The data
are coloured according to temperature with a common colour scale across all panels.

value at the peak position to be slightly higher than for an H-scan, increasing the signal to
noise ratio (SNR) by a modest amount. In a few test cases, the extracted peak positions,
widths and amplitudes were in good agreement for both scan methods. The L index (near
the peak) for these measurements was L ≈ 1.45.

The high temperature backgrounds shown in Fig. 7.1 are due primarily to x-ray fluo-
rescence from the samples. This can be seen by a calculation of the geometry dependence
of the x-ray fluorescence, as illustrated in section 7.4.1.3. Scattering from chain ordering
can also contribute to the background. Chain order causes a resonance at nearby Q and
E, as discussed in chapter 4. In such cases, a high temperature measurement was used to
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subtract the chain contribution. This procedure was also used when the high temperature
subtraction caused no noticeable artifacts. For cases where the background measurement
was not suitable for subtraction, polynomial fitting was used in its place. Additional details
of the background subtraction are discussed in section 7.4.2.1.

The background-subtracted RSXS measurements are shown in Fig. 7.2 at ∼Tmax
CDW. The

left panel is for samples with oxygen-ordering in the chain layer and the right panel is for
disordered chains. A common axis is used for scans taken along (H 0 L) and (0 K L). The
data are offset vertically for clarity. The vertical scale is common for all panels and the
peak intensities may be compared (cautiously) in this way. The associated uncertainties in
the vertical scales is quite large, owing to difficulties in comparing scattering amplitudes
across experimental beamtimes and samples. See section 7.4.2.3 for a discussion of the
uncertainties involved in making this comparison possible.

For YBCO6.335, the CDW scattering peak along K is barely present above the noise
in the fluorescence background [Fig. 7.1 (a)]. No peak was detected along H. At best,
the peak along K has a SNR of ∼ 1.8, sufficiently high to resolve, but very near the
detection limit. For this sample Tc is lower than the base temperature of the instrument,
so it is possible the peak would have continued to grow in intensity at lower temperature
13 K. The identification of a Tmax

CDW in this case was attributed a large error. The actual
data point with a maximum was taken as Tmax

CDW T on
CDW was identified as the average onset

temperature found in two experiments: one performed in August 2013 (set 1) and the
other in September 2014 (set 2), both shown in Fig. 7.1.

For YBCO6.5 o-II, the CDW scattering peak is seen along H and K in two samples,
labeled A and B. In both cases, the scattering intensity is clearly stronger along K, by a
factor of ∼ 2− 3, as shown in Fig. 7.2. Also, the peak along K has a larger incommensu-
rability than the one along H.

A special mention needs to be made about YBCO6.5 sample (A) with disordered o-II
chains. There is limited data from this sample (notably lacking a full temperature depen-
dence), but where possible data from its study has been included in the phase diagram. It
was not possible to disorder the chains on this sample inside the diffractometer, since the
quench cooling procedure was too slow and robust o-II order reformed in the time it took
to cool the sample. Instead, the sample was enclosed in an evacuated quartz tube, heated
up in a furnace at 200 ◦C for 2.5 hours and then quench-cooled by dumping into an ice bath
prior. After this procedure, the sample was mounted and loaded into the chamber in as
fast a time as possible (∼ 4 hours). It is estimated from Ref. [109] that the formation rate
of the o-II order at room temperature is sufficiently slow that this should not have allowed
the chains to reform. This is affirmed by the measurement of a significantly degraded o-II
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chain peak in this state (see Fig. 7.17). For this oxygen content, the presence of o-II chains
is known to influence Tc and hence p. Values from Ref. [199] were taken for Tc and p for
the ordered and disordered states of YBCO6.5 (A) o-II and o-IId. This provides data for
two dopings in the phase diagram in the low-doped regime.

For YBCO6.67 o-V, the CDW scattering peak is seen along H and K. Reliable (com-
parable) data for both was only measured after disordering the o-V chains, and is shown
in Fig. 7.2 (b). Here we can see ξa < ξb and IH > IK .

For the YBCO6.67 o-VIII sample that was investigated, a chain ordering peak of com-
parable strength was identified along H and K, suggesting that the sample was twinned,
at least in the region that was measured. Inspection of the sample with polarized light
under a microscope suggest some light twinning in various spots of this sample. Unfortu-
nately, the RSXS measurements were likely performed on such a spot. Consequently, H
and K could not be distinguished and the scattering arises from a mixture of CDW order
along both directions. That said, the position (amplitude) of this peak appears quite near
the average of ξa and ξb (IH and IK) for the 6.67 o-Vd sample, suggesting very similar
properties in its CDW order, despite the different chain orders.

For YBCO6.75 o-III, the CDW scattering peak is seen along H and K. The scattering
intensity is very slightly stronger along H and there is little difference in the peak position,
suggesting IH ≈ IK and ξa ≈ ξb.

The full temperature series shown in section 7.4.1.1 was analyzed by first performing
background subtractions and then fitting the result with a Lorentzian function. In Fig. 7.3
the temperature dependence of the fit amplitude is shown. Here the fit amplitudes have
been normalized to their maximum value and are shown as open circles. In cases where
the circles are not connected, cooling curves are shown as solid lines. These are obtained
by fixing the scattering geometry to QCDW and recording the total flux as the system cools
slowly from high T to base temperature, as described in section 6.3. The peak widths have
minima at T ∼Tc.

In Fig. 7.3, the gray (pink) striped regions denote Tc (T on
CDW). The measurement of Tc is

described in next section (section 7.2.3). T on
CDW and its uncertainty was set according to the

first detectable peak with a generous uncertainty spanning the neighbouring measurements.
If the first detectable peak was sufficiently above the detection limit, then the midpoint
between it and the next higher T was set as T on

CDW. Tmax
CDW was taken from the scan exhibiting

the strongest scattering peak, with an uncertainty given by the temperature spacing of the
neighbouring scans. The uncertainties in T on

CDW are discussed further in section 7.4.2.6.
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Figure 7.2 – Doping dependence background-subtracted RSXS peak from CDW order in samples
with oxygen-ordered chains (a) and with the chains disordered or absent (b). Open black squares
(red circles) are background-subtracted RSXS along H (K). The purple diamonds are for a
twinned sample. Solid lines are Lorentzian fits. This data and the corresponding fits are used
to extract the peak incommensurability (Fig. 7.6 and Fig. 7.7), correlation length (Fig. 7.8) and
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115



7.2.3 Measurement of Tc

The DC magnetic susceptibility of the YBa2Cu3O6+x samples was used to measure Tc, as
shown in Fig. 7.4. The samples were zero field cooled and slowly heated up in a 10 Oe
field. The magnetic field was coarsely aligned with the c axis. In Fig. 7.4, the magnetic
moment was normalized to -1 at low T and the resulting -5% crossing was defined as Tc

(indicated by the horizontal dashed line in Fig. 7.4).
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Figure 7.4 – Normalized DC magnetic susceptibility of YBa2Cu3O6+x samples. Tc is indicated
at the −5% crossing (dashed line).

The YBCO6.67 samples were measured at the Univeristy of Toronto (indicated as UT
in Fig. 7.4) with a Quantum Design magnetic property measurement system (MPMS)
operating in DC scan mode. For the other samples, measurements were performed at the
University of Waterloo’s WatLab with a Quantum Design MPMS3 operating in VSM mode
(vibrating sample magnetometer). For both instruments, samples were loaded into a straw
and held in place with cotton and two bent pieces of straw. Most samples had values of Tc

in agreement with the expected value within 1-2 K. The YBCO6.99 and YBCO6.335 samples
had slightly larger deviations from their expected Tc. This may be due to long-timescale
oxygen diffusion, given that these were grown less recently than the other samples (they
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sat in a desiccator at room temperature for a period of ∼ 7 years). Under this premise, the
YBCO6.99 (YBCO6.335) sample would have lost (gained) some oxygen content over time,
causing Tc to increase from the expected value in both cases.

As evidenced in Fig. 7.4, there were some difficulties associated with the measurements
performed in the VSM mode leading to small positive moments in the vicinity of Tc. These
are suspected to be artifacts of the VSM scan mode, as discussed in section 7.4.2.4. Error
bars were chosen generously to account for these challenges. Further discussion of the
uncertainties in the mapping between Tc and p is presented in section 7.4.2.5

7.2.4 Phase diagram

We can now examine trends in the doping evolution of T on
CDW, Tmax

CDW, δa,b, ξa,b, and Imax
H,K .

In addition to data from this work, these extracted parameters and their p dependence
will be compared with data published in recent studies performed by hard x-ray (HXR)
and soft x-ray (SXR) diffraction. Taken as whole, this gives us a wider perspective on the
competing phases across the hole doped side of cuprate superconductors. Notably, this
updated phase diagram expands the extent of known CDW order down to p ∼ 0.058, very
near the AF insulator phase and in coexistence with robust incommensurate SDW order.

7.2.4.1 CDW onset and maximum temperatures

In Fig. 7.5 a phase diagram has been constructed showing T on
CDW, Tmax

CDW, Tc, TN, T ∗ and
TSDW for YBa2Cu3O6+x. The solid symbols are from this work. Open symbols and lines
are taken from references given in the figure. The T on

CDW and Tmax
CDW domes are parabolic

fits to all of the plotted data. For T on
CDW (Tmax

CDW) the maximum is at p ∼ 0.120 (p ∼ 0.119)
and has a value of ∼155 K (∼67 K).

These fits suggest a termination of the CDW order in the range 0.045 < p < 0.055,
coincident with the termination of TN and the onset of Tc. At high p, the termination is
likely between 0.163 < p < 0.181, based on the observation of CDW order at p = 0.163,[212]
but not at p = 0.181 (this work) nor at p = 0.189 (Ref. [212]). This range encompasses
optimal doping for YBa2Cu3O6+x.

For much of the phase diagram it can be seen that Tmax
CDW tracks Tc (0.85 < p < 1.25).

Curiously, a deviation from Tc is apparent above p = 0.13 both from this work and in Ref.
[212]. For the point at p = 0.058 it is unclear whether Tmax

CDW and Tc are coincident since
the measurement could not be performed at sufficiently low T .

117



250

200

150

100

50

0
0.200.150.100.050.00

Te
m

pe
ra

tu
re

 (K
)

p (holes/Cu)

This work (SXR)
Blanco-Canosa et al. (2014) (SXR)
Hücker et al. (2014) (HXR)

Liang et al. (2006)
Haug et al. (2010) 

Figure 7.5 – YBa2Cu3O6+x phase diagram, highlighting spin and charge ordering onset tempera-
tures in contrast Tc. The CDW onset temperature, T on

CDW forms a dome centered at p = 0.12±0.01.
Tmax

CDW tracks Tc for much of the phase diagram, but appears to diverge at p > 0.13. For T on
CDW

and Tmax
CDW, the solid symbols are from this work and the open symbols were taken from Blanco-

Canosa et al. (2014),[212] and Hücker et al. (2014).[211] Tc is from Liang et al. (2006).[199] TN

and TSDW are from Haug et al. (2010).[225]

In the region p < 0.09, incommensurate (commensurate) SDW order along H (K)
was detected in YBa2Cu3O6+x by neutron scattering,[225] with onset temperature TSDW

as shown in Fig. 7.5 ranging between ∼ 60 K and ∼ 30 K. There are now at least three
independent observations of CDW order (along K only) in this low-doped region of the
phase diagram, providing confidence that superconductivity, SDW order and CDW order
do coexists at low p in YBa2Cu3O6+x.
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7.2.4.2 Incommensurability

The peak position, directly related to the incommensurability, δ, of the CDW with the
underlying crystal lattice, has been studied as a function of p. In Fig. 7.6, a compilation of
data from this work as well as others is presented. On a wide scale, there is a robust decrease
in δ with increasing p in YBa2Cu3O6+x. This, as noted previously,[211, 212] is opposite to
the trends in La-based cuprates. δCDW and δSDW for LBCO are shown for comparison. In
LBCO and other La-based cuprates, the spin and charge incommensurability are related
by δCDW ≈ 2δSDW. This is notably opposite to the observed δCDW and δSDW trends in
YBa2Cu3O6+x, which have opposite sign in the low p region.
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Figure 7.6 – Doping evolution of CDW (SDW) wavevector incommensurability, δCDW (δSDW),
in YBa2Cu3O6+x and La2−xBaxCuO4. Triangles (circles) denote δa (δb) and filled symbols are
from this work. Straight lines are linear fits in the region of available data. In La2−xBaxCuO4 a
relationship of 2δSDW ≈ δCDW exists, but in YBa2Cu3O6+x the slopes for δCDW and δSDW have
opposite signs. Open symbols were digitized from Blanco-Canosa et al. (2014),[212] Blackburn et
al. (2013),[204] Hücker et al. (2014),[211], Hücker et al. (2011),[175] and Haug et al. (2010).[225]
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In Fig. 7.7, we focus on δ for CDW order in YBa2Cu3O6+x. At this smaller scale, there
appears to be some deviation from the linear trend shown in Fig. 7.6, with δa,b mostly
being above (below) the fit line at p < 0.11 (p > 0.11). This is illustrated with the pink
(gray) shaded regions, which serve as guides to the eye for δa (δb). These guides were
obtained with sigmoid fits, giving their S-shapes. Despite the debatable applicability of
the sigmoid fit, there are also robust differences in δa and δb, as identified earlier in the
background-subtracted data (Fig. 7.2). Generally speaking, δb > δa over all p. To the
best of my knowledge, this deviation from linearity has not previously been noted. There
appears to be a robust increase in the rate of change of δ over 0.11 < p < 0.13.
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Figure 7.7 – Comparison of CDW incommensurability δa [δb] for peaks along wavevectors parallel
to (H 0 L) [(0 K L)], shown as triangles [circles]. The shaded regions have a width of 0.01 r.l.u.
(2× the estimated uncertainty) and guide the eye for δa (magenta) and δb (gray). The black line is
the same linear fit as in Fig. 7.6. This closer view suggests that the p evolution of δCDW deviates
slightly from linearity, as discussed in the text. Filled symbols are from this work whereas open
symbols were digitized from Blanco-Canosa et al. (2014),[212] Blackburn et al. (2013),[204] and
Hücker et al. (2014).[211]
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It would be very interesting to know if δb and δa converge for low or high p. This
might be expected at low p, since the a and b lattice constants of YBa2Cu3O6+x converge
giving a tetragonal crystal structure. Conversely, it might be surprising at high p, given
the maximal difference in a and b there. Given the scatter in the data, we can make
conservative estimates of the difference δb − δa. For this estimate, I use the sigmoid fits to
evaluate δa and δb. A constant uncertainty level of ±0.005 r.l.u. was used. The reasons
for this uncertainty level are discussed in section 7.4.2.1. I then estimate that δb − δa
is 0.006 ± 0.007 r.l.u. on average for all p, 0.004 ± 0.007 r.l.u. at low and high p, and
0.008± 0.007 r.l.u. near p = 0.12. At low and high p, there is then a 72% probability that
δb > δa and a 46% probability that δb = δa (within ±0.005 r.l.u.). At this stage, neither
probability level is sufficiently high to make a conclusive claim, either way, so the question
remains open.

7.2.4.3 Correlation length

The CDW correlation length, ξCDW, has also been studied as a function of p. In Fig. 7.8,
a compilation of data from this work (solid symbols) as well data from other groups (open
symbols) is presented. Here, the ξCDW is taken at T ∼Tc, within ∼ 5 K usually. As was
done for the incommensurability, the scattering data with wavevectors aligned to H and
K can be considered together or separately. In Fig. 7.8 (a) we take the first view. Here
the ξCDW appears to have a dome-like shape with a maximum at p = 0.11. The shaded
region is the 99% confidence band (CB) of a parabolic fit (solid black line) to the data.
Yet, when viewed this way, there are some pretty significant outliers and the fact that a
peak is not seen along H at low p is ignored.

In Fig. 7.8 (b), we take the second view and fit ξa and ξb separately (the fits were
unweighted). In this view, we note that there are now two domes with maxima at p =
0.11 and p = 0.125. These domes are not coincident at low p, but overlap at higher p.
Specifically, ξa and ξb largely overlap for p > 0.125 and ξb>ξb for 0.058 < p < 0.125.
This view also captures the fact that CDW order aligned with the a-axis should disappear
by p ∼ 0.08 – indeed, no CDW order along H has been reported at this doping, with
the reported observation here at p ∼ 0.089 in the o-IId sample being the lowest reported
doping with a detected peak along H.
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Figure 7.8 – The maximum CDW correlation length across the phase diagram of YBa2Cu3O6+x.
Correlation lengths are for T ∼Tc. (a) Values of ξa and ξb are considered together. This gives
an overall picture of a dome-like correlation length across the phase diagram with a maximum
at p = 0.11, as shown by a parabolic fit (black line) and its 99% confidence band. (b) Values of
ξa and ξb are now fit separately, giving the dashed (solid) line for ξa (ξb) and corresponding blue
(yellow) 99% CB. Regions of overlap appear dark yellow/green. This gives two domes that are
not coincident at low p, but overlap at higher p. The ξb (ξa) dome peaks at p = 0.11 (p = 0.125).
Filled symbols are from this work and open symbols were digitized from Blanco-Canosa et al.
(2014),[212] and Hücker et al. (2014).[211]

7.2.4.4 Scattering intensity

In Fig. 7.9 a phase diagram of the CDW scattering amplitude is presented. Here a dis-
tinction between ordered (a) and disordered (b) chains is made because, as discussed in
chapter 6 the CDW scattering amplitude decreases when chains are disordered. The gray
and red shaded regions are guides to the eye for scattering along H and K, respectively.
It should be noted that considerable flexibility exists as to how one can choose to draw
these guides, given the sparsity of data. These guides were drawn using a simultaneous fit
to all the datasets using a Lorentzian function with independent widths and amplitudes,
but a global peak position. It should also be noted that making this intensity comparison
possible required cross-calibration of scattering intensities across beamtimes spanning a
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Figure 7.9 – Maximum CDW scattering intensity across the phase diagram for peaks along
(H 0 L) and (0 K L) for cases where chain order is (a) present and (b) absent/minimal. The
data indicates that peaks along (0 K L) are stronger for p < 0.110. This trend appears to reverse
in the vicinity of p = 0.120, but this data is presently inconclusive for higher p. The vertical
dashed line denotes p = 0.12 and the horizontal dashed line denotes the experimental detection
limit. The shaded regions are guides to the eye.

3 year period and there could be major uncertainties resulting from this procedure. See
section 7.4.2.3 for a discussion of the relevant uncertainties. Despite these challenges, we
can attempt to draw some observations from this data.

The peak intensities along H and K both grow as p approaches p = 0.12 and then
drop back down. In the region p < 0.11, the scattering intensity is stronger along K than
along H. In the vicinity of p = 0.12 the peaks along H are generally stronger than along
K, regardless of the presence of chain order. When all the data is considered together,
the maximum in scattering intensity appears to occur at p ∼ 0.12. At present, it is not
possible to determine if there is a systematic difference between the peak position for H
and K from this intensity data.
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7.3 Discussion

The present study confirms much of the existing work on the doping evolution of CDW
order in YBa2Cu3O6+x [22, 204, 212, 211] while also extending the extent of CDW order
to lower p and providing updated phase diagrams. Importantly, the qualitative and quan-
titative agreement of independent measurements on different samples by different groups
in the reported trends for the CDW incommensurability, correlation length, scattering
amplitude, and onset/max temperatures (where overlap exists) provide confidence in the
overall correctness of the constructed phase diagram. In addition, comparisons of the CDW
characteristics for propagation directions parallel to the a and b crystal axes reveal impor-
tant differences in the scattering intensity and correlation length in this low-doped regime.
These observations further constrain the possible interpretations of the phase diagram and
make some important implications.

Based on three independent observations of CDW order for p < 0.082, the low-doped
region appears to support the coexistence of CDW order and incommensurate SDW order
along H.[225] Interestingly, below p ∼ 0.09 the CDW order persists along K but is not
detectable along H. This is reflected in the faster drop off in ξa identified in Fig. 7.8 (b)
towards lower p. This indicates that the incommensurate SDW and CDW order along H
(a∗) compete more strongly than the commensurate AF order and incommensurate CDW
order along K (b∗). As hypothesized in chapter 5, the incommensurate SDW in LBCO
may play a role in favouring (or being more compatible) with s′ symmetry CDW order.
Along the same lines, it may be that the CDW symmetry at low doping in YBCO also
prefers to exhibit s′ symmetry, due to this competing incommensurate SDW order, even
though YBCO reportedly exhibits d symmetry at higher doping.[117]

From Fig. 7.7, it also appears that the incommensurability along H and K deviates
slightly from linearity. The magnitude of the charge order wavevectors have recently been
linked experimentally to the separation between “hot spots” on the Fermi arcs of under-
doped cuprates.[72, 73] This observed deviation from linearity would then suggest that
the evolution of the Fermi arcs, and hence separation between hot spots, should gradually
accelerate and subsequently decelerate in the vicinity of p = 0.115. Although I am not
aware of any theoretical calculations that show this effect, it could be a very subtle feature
that is omitted when displaying a coarser variation in p.

It should be noted that, in Bi-2212, a substantial drop in δa occurs at p ∼ 0.1 (see Fig.
2H in Ref. [72]). Based on the magnitude of the jump, from δa ∼ 0.3 to δa ∼ 0.25, it is
speculated that for p < 0.1 (p > 0.1) the character of the CDW order in Bi-2212 is similar to
YBCO (LBCO). A similar, yet more subtle, effect could be occurring in YBCO. This could
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ultimately be tied to the symmetry character of the CDW order varying across the phase
diagram in response to changes in the degree of static and/or fluctuating SDW correlations.
Future work systematically investigating the CDW symmetry across the phase diagram of
YBa2Cu3O6+x would be needed to address this hypothesis.

Also potentially relevant for future calculations of Fermi arcs and understanding of the
electronic structure of YBa2Cu3O6+x is the observed difference δb − δa. On average I find
δb − δa = 0.006 ± 0.007 r.l.u., but the data could also be consistent with δb − δa tending
towards 0 at low and high p with a maximum of δb− δa = 0.008± 0.007 r.l.u. at p ∼ 0.12.
These features could potentially be revealed as subtle variations of the shape (asymmetry)
of the Fermi arcs in the doping range where CDW order is present.
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7.4 Supplementary information

In this section, supplementary data, a fluorescence calculation and additional discussions
regarding uncertainties in the measurements and analysis techniques will be presented.
There is quite a bit of information contained herein, most of which has already been
summarized or alluded to in the main text. Descriptions of the data here will be sparse
and only provided where clarification is needed.

7.4.1 Supplementary data

7.4.1.1 Temperature series

The presented RSXS scans in Fig. 7.1 were meant to illustrate the high temperature back-
ground, a scan corresponding approximately to T on

CDW, and a scan corresponding to Tmax
CDW.

Here, the complete temperature series are presented. Fig. 7.10 presents the raw form with
the background still intact (note that this figure spans multiple pages).

To present the background-subtracted data and the corresponding Lorentzian fits, I
have found it most useful to offset vertically the data, otherwise there is too much overlap
to evaluate fit quality. This makes for very tall figures, so these are presented filling a page
each.

126



Figure 7.10 – Note: this figure spans multiple pages. The measured temperature evolution of the
CDW scattering peak for (a) YBa2Cu3O6.335, (b)-(c) YBa2Cu3O6.5, (d)-(e)YBa2Cu3O6.67, and
(f)-(g) YBa2Cu3O6.75. The chain ordering state as well as the scattering wavevector direction is
indicated in each panel. The data are coloured according to temperature with a common colour
scale across all panels.
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(e) YBCO6.67 o-V
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(i) YBCO6.75 o-III
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Figure 7.11 – Background subtracted data and fits for YBCO6.335. Left and right panels are
for two measurements performed at different beamtimes. CDW onset temperature taken from
average value from both sets. SNR was better during set 1 measurements, but temperature
spacing was coarser due to time constraints.
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Figure 7.12 – Background subtracted data and fits for YBCO6.5, sample B. The temperature
evolution of peak along H (K) is shown in the left (right) panel.
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Figure 7.13 – Background subtracted data and fits for YBCO6.67 o-VIII and o-VIIId. The
temperature evolution of peak along H/K (twinned sample) for the ordered (disordered) state of
the chains is shown in the left (right) panel.
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Figure 7.14 – Background subtracted data and fits for YBCO6.75 o-III and o-IIId. The temper-
ature evolution of peak along H for the ordered (disordered) state of the chains is shown in the
left (right) panel.
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7.4.1.2 X-ray absorption data

As a very coarse means of verifying the overall doping levels of the samples and sample
orientation, one can evaluate the x-ray absorption with the incident photon polarization
along the a or b crystal axes and compare the spectra to the literature.[84] In Fig. 7.15, the
XAS at the Cu L3 edge for the investigated samples is shown for both ε ‖ a (left panel) and
ε ‖ b (right panel). Unfortunately, a failure to measure the XAS over a wide enough range
at the time of the experiment now prevents a proper normalization of some of the data
(the correct procedure is to normalize far away from the edge, in the pre- and post-edges;
eg. at 910 eV and 990 eV). Nevertheless, by normalizing to the maximum at the Cu L3

and in the pre-edge, we can see that the doping evolution is largely in agreement with
the literature. As oxygen content increases a shoulder develops at around 933.6 eV, most
notable for ε ‖ b, but also for the 6.75 and 6.99 samples for ε ‖ a. Note that this XAS was
recorded using total fluorescence yield (TFY). Self-absorption effects are likely present,
affecting this comparison slightly. Self-absorption can influence the lineshape, generally by
enhancing the shoulder features relative to the maximum.
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Figure 7.15 – Cu L3 edge x-ray absorption for investigated samples. Left (right) panel is for
an incident photon polarization parallel to a (b). The data are normalized to their maximum
and in the pre-edge; this is not ideal but a lack of wide-range XAS prevents are more accurate
normalization for all the measurements. Nevertheless, the observed doping evolution is largely
consistent with the literature XAS on YBa2Cu3O6+x.[84]
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7.4.1.3 Fluorescence background calculation

As mentioned in section 7.2.2, the background upon which the resonant scattering signal
rests is largely dominated by x-ray fluorescence from the sample. Neglecting the effect of
nearby chain-ordering scattering peaks, the geometry dependence of the fluorescence can
be modelled and compared to the experimental observation. One such calculation and
corresponding set of data is shown in Fig. 7.16.
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Figure 7.16 – (a) Fluorescence background calculation for YBa2Cu3O6+x showing the estimated
background’s variation with L, which alters the scattering geometry. For the θ-scan, the L value
denotes L at the position H = ±0.31. (b) A set of θ-scans on YBa2Cu3O6.67 where L varies from
1.48 to 1.2 in 0.02 increments. Dashed lines are polynomial fits to the background (filled circles)
excluding the peak region (solid lines). The background variation seen in (b) agrees qualitatively
with the calculated backgrounds (light blue, magenta and green) in (a).

The calculations in Fig. 7.16 (a) are performed according to the inset equation. µCu

and µtot are the x-ray attenuation coefficients for the Cu atoms in YBCO and all atoms
in YBCO, respectively, evaluated at 931.3 eV. The angles (θ, 2θ) define the scattering
geometry and depend on whether an H-scan or θ-scan is performed, thus giving different
shapes to the background. H-scans (solid lines) follow a straight line in Q-space with fixed
K and L, requiring motions of both θ and 2θ. The θ-scans (dashed lines) correspond to
a fixed 2θ position and only a motion in θ, which traces an arc in Q-space with varying
H and L. The calculations for the θ-scan at positive H are in quite good qualitative
agreement with the experimentally measured θ-scan background shown in Fig. 7.16 (b),
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where one should just focus on the dashed lines. These are polynomial fits to the data
(circles) excluding the peak region (lines). These types of calculations have been useful in
finding good experimental geometries with relatively flat backgrounds.

7.4.1.4 Disordering of o-II chains

As mentioned in section 7.2.2, the YBa2Cu3O6.5 sample A was measured both with robust
o-II chain order and with a degraded o-II order. This has a measurable impact on p, so
this data from disordered sample actually enabled the study of the CDW characteristics
at a different p using the same sample. In Fig. 7.17, the data showing the disordering of
the o-II chains is presented. The timeline of the experiments is as follows.
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Figure 7.17 – o-II chain peak in ordered and disordered YBCO6.5 A. The timeline for the
experiments and the quench cooling procedure are discussed in the text.
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Initial measurements were performed in February of 2013. There robust o-II chain
ordering was detected along H. A small peak was also seen along K, likely due to light
twinning of the sample. These are the solid black (H) and red (K) lines in Fig. 7.17.
During this experiment, an attempt to quench cool the sample was made in a similar way as
described in Chapter 6. Essentially, the sample was heated in the scattering chamber under
vacuum sufficiently long that the chain peak disappeared. The heater was then turned off
and the cryostat operated at maximum power to cool the sample. This procedure was
fast enough to destroy o-III, o-VIII, and o-V chains in other samples, but the o-II chains
reformed too quickly and the resulting state of the sample still exhibited robust o-II order,
∼ 90% as intense as the original o-II order.

The plan was then to disorder the chains outside of the scattering chamber by first
placing the sample in an evacuated quartz tube and heating it in a furnace and then
submersing the tube into an ice bath to quench cool the sample. In June 2013, this
procedure was performed 4 hours before the sample could be eventually transferred into
the scattering chamber. The data corresponding to the remaining o-II order is shown
in dashed lines in Fig. 7.17. Comparing the dashed lines to the solid lines reveals that
the procedure was indeed successful. Unfortunately, due to an error in accounting for
the cross-calibration of scattering intensities between beamtimes, this was not realized at
the time (!), and it was instead believed the sample was still well ordered, so very few
measurements were performed on it.2 By the next experimental beamtime in August, the
chains had partially re-ordered up to about 50% of their original amount (purple line), just
due to being kept at room temperature for a sufficiently long period of time.

Despite a failure to fully characterize the sample in its disordered state, there was still
some data that could be extracted from the experiments, and I have included as much
as I could in the phase diagram since these provide crucial additional data points in the
low-doped regime.

2In Fig. 7.17 this cross-calibration has been implemented.
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7.4.2 Discussion of experimental uncertainties

The data presented here are a selection from experiments that spanned the March 2012
to January 2015 timeframe. A significant effort was made to ensure consistency between
these experiments, yet there are some aspects of the measurements that cannot readily be
controlled and even those that can will have some uncertainty associated with them. The
net effect of these controlled and uncontrolled variables is an imperfect reproducibility of
measurements of the same samples in nominally identical conditions. As a result, only those
results which could be reliably extracted and checked for consistency across experiments
were kept and are presented in this chapter.

Despite these efforts, there may still be important errors (systematic or otherwise) in
some of the results. To account for this, generous error bars were assigned to the reported
parameters. In this section, I will cover all the significant sources of error that I am aware
of and provide my rationale for the reported uncertainties.

7.4.2.1 Peak position (incommensurability)

One of the important parameters studied in this chapter is the peak position, providing
a measure of the CDW incommensurability. The uncertainty in this parameter for all
reported data was set at ±0.005 r.l.u. to cover a variety of possible sources of error
influencing the peak position. This corresponds to ∼ 1.5% uncertainty in the reported
CDW incommensurability across the phase diagram. Here, I address the rationale for this
uncertainty level, which comes from consideration of errors in the lattice constants, the
calibration of the scattering geometry, and the background subtraction and peak fitting
procedures.

Lattice constants — The momentum transferQ has been expressed here, and through-
out this thesis, with the convention of expressing the Miller indices (H,K,L) in units of
(2π
a
, 2π
b
, 2π
c

). Consequently, the derived peak positions, and hence the reported CDW in-
commensurability, depend on the a, b, and c lattice constants. In YBCO, a, b, and c all
vary with sample composition and temperature. For the data presented here, estimates of
these lattice constants, based on expected nominal sample stoichiometry and adjusting for
expected thermal contraction, were used. Unfortunately, these values could not be readily
verified, so they are essentially a “best guess”, bringing into question what effect these
guesses may play in the observed incommensurability trends. Through a sensitivity anal-
ysis, it is possible to demonstrate that the maximum potential variation in reported peak
positions due these guesses is less than 1%, reflecting the fact that a and b vary less than
1% over 0.3 < x < 0.9.[226] For instance, if one uses the lattice constants for YBa2Cu3O6.9
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to defineQ in YBa2Cu3O6.3, the apparent locations of a (hypothetical) CDW peak along H
(K) would differ from the true position by 0.68% (−0.85%). The uncertainties caused by
such effects for the data in Fig. 7.7 are estimated to range primarily from 0% to 0.4%. This
corresponds, conservatively, to a maximum uncertainty of ±0.0015 r.l.u. due to possible
errors in the lattice constants used.

Scattering geometry and crystal orientation — The geometry of the diffractome-
ter (see Fig. 2.6), namely the angles θ and 2θ, obviously play an essential role in determining
the peak positions since (H K L) indices map directly to (θ, 2θ). For these experiments,
the angle 2θ was defined using the beam direction and a photodiode detector with a narrow
slit, giving < 0.01◦ error. A structural Bragg peak with a specular scattering geometry was
then used to define θ as half of 2θ. The precision of this latter step gives an uncertainty
in θ of ±0.15◦, equivalent to ±0.0013 r.l.u. in the H and K indices of peaks located at
(±0.31 0 L) or (0 ± 0.31 L), with L = 1.48. Note that refraction effects were neglected.3

Consequently, with conservative rounding, there is approximately a maximum uncertainty
of ±0.0015 r.l.u. from the crystal orientation step.

Background subtraction and peak fitting — All of the x-ray scattering data on
YBCO was collected with the MCP detector (see Fig. 2.8) that also collects a consider-
able amount of x-ray fluorescence. This generally produced smoothly varying, temperature
independent backgrounds. In cases where this background measurement was in good agree-
ment with the other data in a given T -series, a smoothed version of the background was
subtracted from all the scans. Occasionally the high temperature background did not
match perfectly for the full T -series, likely due to drifts in the beamline energy or the
beam spot on the sample. To account for this, the most frequent operation was simply a
constant offset applied to the background, but occasionally the background was scaled by
a small factor. The differences between offsetting or scaling the background were typically
very minute.

If subtraction of the high temperature background resulted in noticeable artifacts (eg.
dips, humps or slopes) even with offsets or scales, then it was preferable to fit the back-
grounds using order 3 to 6 polynomials. Here the fit was done in regions excluding the
peak. The polynomial order was varied to best match the fluorescence background of a
given experimental geometry and sample, but never between scans with the same geom-
etry (ie. any given T -series used the same polynomial order). This background varies
due to differences in the experimental geometry.4 Comparisons between this subtraction

3The index of refraction of YBa2Cu3O6+xat 2000 eV is 0.9996, so the resulting error in θ is corre-
spondingly < 0.04%, sufficiently small to neglect.

4The dependence on scattering geometry and representative calculations of this fluorescence background
are illustrated in Fig. 7.16.
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method and the high temperature background subtraction (when possible) did not reveal
any major quantitative differences, validating both approaches.

The most difficult background subtractions were for the YBCO6.75 and YBCO6.67 sam-
ples with o-III (o-VIII) ordered chains. Here the chain order peaks are very near the CDW
peak, so care needed to be taken to remove the influence of the chain peak on the CDW
peak. Comparing different methods and background subtractions for these samples yielded
differences in peak positions and amplitudes on the order of ±0.003 r.l.u. and 5%, respec-
tively. I take these errors as high limits and apply them (conservatively) to all samples. As
a final note, the uncertainties reported by the statistical errors from least-squares fitting
were typically an order magnitude lower than this, so they are being neglected.

Final estimate — Finally, to arrive at an estimate for the uncertainty due to all these
factors, I have taken the average of their direct addition (0.006 r.l.u.) and their addition in
quadrature (0.004 r.l.u), giving a global uncertainty of ±0.005 r.l.u in the peak positions.
Although this estimate is not statistically rigorous (I know of no proper way to combine
these errors since they are not related in a straightforward manner), I note that this value
is larger than any individual source of error by a factor of at least 1.5 and no more than
3.5, representing a fairly conservative (but not overly so) estimate.

7.4.2.2 Peak width (correlation length)

The peak widths and corresponding correlation lengths have uncertainties that range from
6% to 20%. This is largely dictated by the statistics of the peak fitting and varies with
the signal to noise ratio of the CDW scattering peak. For instance, the uncertainty in
YBCO6.335 is quite large since the signal to noise (SNR) ratio is ∼ 1.8, whereas it is much
small for YBCO6.67, since the SNR is ∼ 15. The reliability of the background subtraction
also influenced this uncertainty, so for the difficult cases mentioned above, the uncertainty
was increased accordingly.

The fitting function used consistently across data sets was a Lorentzian function of the
form f(x) = y0 + A/[1 + ((x− x0)/γ)2], where y0 is a constant offset, A is the amplitude,
x is either the H or K index, x0 is the centroid and γ is the half width at half-maximum
(HWHM). γ is related to the correlation length according to ξ(H,K) = (a, b)/(2πγ(H,K)).
Note that Gaussian fits tended to overestimate the width and not fit as well as a Lorentzian.
The data also fits well to a squared Lorentzian, which has a negligible impact on the ξmax

for all cases except the 6.67 samples (due to their higher SNR). In those cases, the squared
Lorentzian would decrease γ (increase ξ) by up to ∼ 10% as compared to the reported
values. For consistency, this has not been corrected, but the effect on Fig. 7.8 would be
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to raise the cluster of points near p = 0.12 (filled circles and squares) by amounts ranging
from 2 to 6 Å. While this does support a very slight maximum in ξ around p = 0.12
from this data, it does not significantly affect the overall trend nor the relatively weak
doping-dependence of ξ across the phase diagram.

Another factor to consider is the possible effect of instrumental resolution broadening.
The instrumental resolution depends on energy and scattering geometry, so we will just
consider the relevant case here. All of the presented data were collected on the MCP
detector with a 25.4 mm diameter. A rather simplistic calculation of the instrumental
resolution for high-L geometries (L ≈ 1.48) at 931.3 eV, produces an estimated resolution
of 0.016 r.l.u. (0.006 r.l.u.) for the MCP (channeltron detector: 10 mm slit).5 These
estimated resolutions are approximately 2/3 (1/4) of the minimum peak width, suggesting
there may be an issue with resolution broadening for the MCP detector and the narrowest
peaks (p ∼ 0.12, T ∼Tc). However, measurements of the CDW scattering peak on the MCP
and on the channeltron detector consistently produced peak widths that agreed within their
margins of error, even for the narrowest peaks. In my estimation, this observation rules
out a significant broadening effect and indicates that my simplistic resolution estimate is
likely inaccurate. Consequently, resolution broadening has not been corrected for. I expect
that doing so would increase the reported correlation lengths by less than 5%.

As a final note, the reported correlation lengths are only weakly sensitive to errors in
lattice constants (< 1%), temperature (negligible variation within ±10 K of Tc or Tmax

CDW),
or crystal orientation (< 2%), all of which fall below the statistical uncertainty, the effect
of the background subtraction and errors due to the fitting function.

7.4.2.3 Peak amplitude

Comparing the scattering amplitudes for samples measured at different beamtimes was
particularly challenging. The most important uncertainty comes from uncontrollable as-

5For this estimate, I simply take the width of the detectors and calculate the corresponding H or
K value at either edge of the detector to estimate the “width” of the detector in r.l.u. for geometries
near the peak. This overlooks the details of how resolution broadening should correctly be estimated. A
realistic treatment would require first mapping the 2-dimensional detector surface to (H K L) indices,
producing a surface in momentum space. It is this surface which should be convolved with the peak in
momentum space. This could possibly be done numerically with an assumed “true” peak shape. This
kind of calculation should more realistically indicate at what peak width the detector resolution has a
quantifiable impact. In terms of de-convolving the existing data, an additional complication is that the
surface actually changes gradually for every set of scattering angles, and each data point would then
correspond to a slightly different integration of the peak. It is not clear to me how one might expect to
handle this situation besides neglecting the changes in the surface shape.
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pects of the experimental setup (beamline changes, storage ring, detector sensitivity, etc.).
These can lead to large influences on the recorded intensity and the noise level of the data,
despite normalizing the detector current to the incident flux (as measured by a gold mesh,
upstream from the scattering chamber). To account for these changes, I compared x-ray
absorption data as well as scattering data with similar scattering geometries across all rel-
evant experiments and determined scaling factors that optimized both the comparability
of the x-ray absorption spectra and the x-ray fluorescence backgrounds of the momentum
space scans. These scaling factors have a large associated errors, since often this scaling
could not optimize both comparisons simultaneously. I found that the needed scaling fac-
tors could vary by 10% to 30%. Overall, this is the dominant source for the large error
bars in Fig. 7.9. Besides applying % errors of this magnitude, I also added uncertainty to
the points very near the detection threshold to account for their relatively low SNR.

There are other relevant factors that could also affect the uncertainty in the amplitude.
One is that the scattering intensity depends on photon energy and L (peaking at half-
integer values). The photon energy was controlled between experiments as best as possible,
but the possibility exists that the energy is offset by ±0.1 eV, which translates to errors
of ±5% in the scattering intensity (see Fig. 4.3). Differences in the L index could account
for underestimating the peak amplitude in some cases since occasionally L was less than
1.48. Using Fig. 6.2 (d) to model the L dependence for all samples, this would suggest an
maximum possible underestimate of ∼ 15% (comparing L = 1.4 to L = 1.48).

Also, the peak amplitudes were extracted using the fitting amplitude from the Lorentzian
function defined above. As noted, a squared Lorentzian function also could fit the data,
with differences only being noticeable for the x = 0.67 samples. In those cases, the reported
peak amplitude would diminish by about 1% using the squared Lorenztian. Finally, there
could be small errors if the measurement temperature was offset from the ideal maximum,
but this would be expected to be quite small and certainly less than the presented errors.

It should be mentioned that a different analysis method was also tested to evaluate
the trends presented in Fig. 7.9. By dividing the peak amplitude by the background level,
any differences in normalization factors between different experiments could in principle be
eliminated. This analysis produced results very similar to those in Fig. 7.9. Although this
procedure emphasized the uncertainty in the beamline energy, noise level, and statistics
of peak fitting rather than the scaling factors mentioned above, it still produced both
qualitatively similar results and a very similar global fit result with a peak at p = 0.122
and similar trends for the doping dependence. This provides confidence that the scaling
factors were determined appropriately and are not unduly distorting the presented trends.
I preferred to present the scaled amplitudes rather than the peak to background ratios as
the errors are more conservative and more easily quantified.
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7.4.2.4 Measurement of Tc

As discussed previously, the DC susceptibility measurements from U. of T. were performed
in DC scan mode whereas those at U. of W. were performed in VSM mode. The DC scan
mode produced a smooth transition between a clear diamagnetic response and none, just
above Tc. With the VSM mode, artifacts (in the form of a positive signal) appeared in
the data as the diamagnetic signal disappeared upon heating. Unfortunately, this made it
more difficult to assess Tc from these measurements. To understand why, I will provide a
brief explanation of the different scan modes.

The DC scan mode scans the sample height through an assembly of two counter-wound
superconducting quantum interference devices (SQUIDs), such that the profile resulting
from a magnetic material passing through them has a peaky structure on top of a back-
ground. With repeated measurements and fits to this peak function, an amplitude pro-
portional to the magnetic moment can be extracted. As the signal becomes weaker and
weaker, this method gradually finds that the scans resemble the background signal and so
there is a smooth transition to zero magnetic moment.

The VSM scan mode also scans the sample height, but at each height interval it os-
cillates the sample (hence the name “vibrating sample magnetometer”) and uses a lock-in
amplifier to determine the magnitude and phase of the resulting signal. The magnetic field
is still DC, but as the sample height oscillates, the SQUID picks up this oscillation. In
principle, this approach can allow the system to track extremely weak signals. Despite this,
close inspection of the data showed that very near Tc, the lock-in amplifier lost its phase
lock but still reported a non-zero magnetic moment. Eventually, the system settled down
and the magnetic moment was reported as zero. Although I suspect that there is no real
magnetic moment (positive or negative) in this region of positive response, I have allowed
for rather generous error bars in the reported values of Tc to account for the possibility
that this is wrong.

Note that there is a high cost associated with using these MPMS instruments, so I
had little choice but to use the available data despite the obvious issue I found with using
the VSM mode. Also note that at the time of the these measurements, the MPMS3 had
very recently been installed and was undergoing commissioning. It did not yet have the
necessary software to operate in DC scan mode, which would have been preferable.

7.4.2.5 Conversion of Tc to p

With the values of Tc obtained as described above, the hole concentration was determined
by digitization of the previously published mapping between Tc and p.[199] The errors on

143



Tc were converted to equivalent errors in p from this mapping. Given that interpolation
was needed and that digitization itself can introduce small errors, I then increased the
uncertainty in p by at least 0.001 holes/Cu for all samples. In most cases this led to ±0.003
holes/Cu as the uncertainty level. For the sample YBCO6.5 (B), it was a larger value of
±0.008 holes/Cu, mostly due to a larger error on Tc. Note that Tc for the sample YBCO6.5

(A) was not measured, but rather just taken as the nominal Tc for this stoichiometry.
This seems justified given the close match between this Tc and Tmax

CDW shown in Fig. 7.3.
Nevertheless, I also gave sample YBCO6.5 (A) the relatively large uncertainty of ±0.008
holes/Cu.

7.4.2.6 Measurement of T on
CDW

The CDW onset temperature was taken as the temperature at which the peak was first
resolvable by direct inspection of the raw data in comparison to a reference high-T scan.
The uncertainty was then set to span the two neighbouring points in the T -series. In
some cases, this underestimated T on

CDW a bit too strongly, so the midpoint between a scan
with a resolvable peak and one without was taken as T on

CDW while their T span (or a
slightly expanded span) represented the uncertainty. For the YBCO6.335 data, T on

CDW was
determined in this way for two datasets and then averaged (with error propagation) to
produce the range shown in Fig. 7.3.
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Chapter 8

Conclusion

8.1 Summary of results and significance

An overarching motivation for this thesis has been to clarify the nature of charge ordering
in cuprate superconductors in order to guide theoretical efforts to understand how this
phase may compete with superconductivity. In this regard, a few key conclusions can be
drawn from the experiments and analysis.

The charge density wave in La-based cuprates was shown to be consistent with a small
charge modulation amplitude. This conclusion arises from the ability to describe the
scattering processes from Cu and O sublattices in La2−x−yNdySrxCuO4 via a model of
spatially modulated orbital energies. Crucially, this model does not explicitly include
modulations in hole doping, yet it successfully describes the observed resonance profiles.
This indicates that the different sites in the lattice have atomic scattering form factors
with similar spectral weight distributions, providing indirect evidence for nonzero, yet
minimal, charge modulations. As compared to a half-filled charge stripe, this more nuanced
perspective on charge ordering in La-based cuprates points towards theoretical models that
emphasize bond order with minimal charge modulations, such as a valence bond solid, and
argues against the robust forms of charge stripe order that is seen in the nickelates and
identified in early mean-field theories.

Resonance profiles from the newfound incommensurate CDW order in YBa2Cu3O6+x

were also shown to be described by spatially modulated orbital energies. In contrast, the
valence modulation experienced by Cu atoms in the chain layer of YBCO is well described
by calculations involving sites with different doping, and hence different spectral weight
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distributions in their atomic form factors. This reveals the energy shifts as a distinguishing
characteristic between the CDW in the CuO2 planes and the valence modulation in the
CuO chains. That this energy shift model applies to YBa2Cu3O6+x as well as La-based
cuprates, despite their important structural differences, provides clear evidence that struc-
tural peculiarities are not central to the charge ordering, helping to dispel long-standing
beliefs that charge order in La-based is a special case associated with the LTT distortion.
This observation argues that charge order is a generic feature of the cuprate phase dia-
gram associated with the physics of the CuO2 plane. Indeed, it has been shown and is now
widely recognized that charge ordering is a ubiquitous phenomenon in the cuprates.

Recent theories of charge ordering have provided a framework for describing CDW
order with mixed orbital symmetry and predicted a dominant d form factor, as identified by
analysis of STM data on Bi-2212 and Na-CCOC. Here, scattering measurements in a special
experimental geometry were used to elucidate the orbital symmetry in La2−xBaxCuO4

and constrain the possible symmetry configurations for YBa2Cu3O6+x. It was revealed
that La2−xBaxCuO4 exhibits a dominant s′ symmetry with a secondary d component. For
YBa2Cu3O6+x, the orbital symmetry could not be resolved quantitatively, but it was shown
that it differs from La2−xBaxCuO4 and that it is also different for the a and b orientations
of the CDW in YBa2Cu3O6+x. The difference between La2−xBaxCuO4 and other cuprates,
including YBa2Cu3O6+x, is argued to be related to the static spin ordering, which seems
to favour s′ over d symmetry. This distinction also appears in theoretical models; for
example, a recent 3-band Hubbard model calculation develops a s′-CDW alongside static
spin order, whereas models that do not develop static spin order tend to develop a d-CDW.
Microscopically, this indicates that bond modulations correlate with local AF order.

An important aspect of CDW order in YBa2Cu3O6+x and other cuprates is the spatial
extent of CDW order, which remains relatively short range across many cuprate families.
To address disorder in the chain layer as a potential factor setting the length scale of
CDW order in YBa2Cu3O6+x, three crystals with different compositions and types of chain
order were studied before and after disordering the chains. It was shown that neither
the correlation lengths, temperature evolution, or peak incommensurability were affected
by the disruption of chain order, which alters the density of point-like oxygen defects
and chainlet endpoint defects. The CDW order was nonetheless affected by this change,
evidenced by a decrease in the scattering intensity associated with the magnitude orbital
energy modulations. Altogether, this argues against defects pinning the CDW order or
disrupting an otherwise long-range order and points towards a competition-mediated length
scale as the origin for the CDW length scale in cuprates.

Finally, an effort to characterize CDW order across the phase diagram of YBa2Cu3O6+x

was undertaken. CDW order was detected in a sample with a hole doping as low as
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p = 0.058 (Tc= 12.6 K) for order along the b axis but not along the a axis, providing
clear evidence for unidirectional CDW order at this low doping, near the AF insulator to
superconductor transition. An inequivalence in the correlation length for order along a
and b was identified for p < 0.12, suggesting that CDW order along a may be disrupted by
competition with static incommensurate spin correlations. The CDW incommensurability
decreases with increasing p, opposite of La-based cuprates and incommensurate spin or-
dering. Although this has been so far approximated as linear, here a subtle deviation from
linearity was identified, with an inflection point around p ∼ 0.11. These results extend the
range of CDW order in the phase diagram of YBa2Cu3O6+x. They also reveal important
differences between the characteristics of the CDW order oriented along the a and b crystal
axes, arguing for unidirectional order.

As has been shown, the cuprate problem is multifaceted and complex. Despite 3 decades
of research into these materials, no single theory has unified our understanding of their
physics and basic fundamental questions remain unsolved. What is the pairing mechanism?
Does Mott-Hubbard or quantum critical physics form a better basis for describing the
cuprates? Are the various orders intertwined or competing? Although this work does not
resolve these deep questions, it has revealed various important details which will guide
efforts to address them. Specifically, this work has helped to establish charge ordering
as a generic and central feature of the cuprate phase diagram. Any unified theory of
cuprate physics will need to explain not only superconductivity but also the co-existing
and competing charge order, thus constraining its various microscopic details: short range
character, temperature evolution, family-dependent CDW orbital symmetry (related to
spin ordering), small charge modulation amplitudes, spatially modulated orbital energies,
and a likely unidirectional nature. Altogether, this contributes significantly to narrowing
the focus on the cuprate problem and guiding future efforts to resolve this great challenge
in condensed matter physics.

8.2 Future work

A few projects come to mind when considering what else could still be done to exploit
RSXS and answer questions regarding the nature of CDW order in the cuprates. Firstly, I
think there is a potential to discover a doping evolution to the CDW symmetry in LBCO
and YBCO. These experiments would be challenging but potentially quite insightful. If
indeed the symmetry of the CDW varies as a function of doping, it may be possible to
relate this directly to a variation in the character of the spin ordering. It would also be
worth investigating if the CDW symmetry varies with temperature across Tc. If it did, it
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would provide additional clues as to how CDW order and superconductivity compete.

With regards to the influence of disorder on CDW order, additional work is warranted
as a major question remains: does the presence or absence of chain order correspond to
more or less effective disorder on the CuO2 plane? Theoretical models have yet to provide
certainty on this matter, as simulations typically involve impurity sites placed directly in
the CuO2 plane, a scenario not quite analogous to the chain layer disorder. Experimentally,
it may yet be worthwhile to revisit the case of YBa2Cu3O6.5 with and without o-II order.
Although the phase diagram work suggests the difference in the a and b properties of the
CDW is most directly related to static spin ordering at lower hole doping, it is possible
that the more robust o-II chain ordering also influences the CDW properties. This study
may also represent a potentially more viable theoretical playground than the other sample
compositions, given the half-filled nature of the chain layer.

There are also opportunities in developing more sophisticated modelling techniques to
describe the O K edge resonance profile. In particular, I believe it should be possible to
use interpolation schemes to model the doping evolution of the x-ray absorption in the
pre-edge, and thus approximate the atomic scattering form factors for arbitrary p. For
this, it would be ideal to measure x-ray absorption using electron yield on vacuum-cleaved
samples with, well characterized, Sr content x near the 1/8 level, since the literature data
are too coarse in x to reliably extrapolate to p ± δp for small δp. With such data and
a corresponding model, it may be possible to demonstrate an approximate equivalence
between an energy shift model and a hole modulation for small δp. In this scenario the
shift in spectral weight (hole modulation) could be minimal while still providing enough
of an energy shift ∆E to produce a detectable scattering intensity, providing a concep-
tually straightforward way to understand the energy shift model. This approach should
in principle be amenable to extracting quantitative values for δp and ∆E, advancing our
understanding of the microscopic nature of the CDW order.

Finally, a suitable microscopic description of how charge or energy modulations on O
sites may influence the Cu sites needs to be developed. This is extremely relevant to inter-
preting the symmetry of the CDW order from Cu L edge scattering, since how the CDW
symmetry components on O sites maps to the Cu sites depends on the electronic structure
of the CuO2 plane. Given the location in momentum space of the CDW scattering peak
(O sublattice scattering is practically impossible), this may represent the best opportunity
for determining the CDW symmetry in YBa2Cu3O6+x. It is thus crucial to develop an
appropriate electronic picture within which to make quantitative estimates for the CDW
symmetry components.
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Appendix A

Useful formulae and calculations
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A.1 Relation between Miller indices and (θ, 2θ) in a

2-circle scattering geometry

We begin with the Laue equations written in Eq. 2.1. Recall that a1, a2 and a3 are the
primitive vectors of the crystal lattice and H, K and L are Miller indices for a reciprocal
lattice vector G that satisfies G = Hb1 + Kb2 + Lb3, where b1, b2 and b3 are the basis
vectors for the reciprocal lattice.[143]

a1 · (k′ − k) = 2πH

a2 · (k′ − k) = 2πK (A.1)

a3 · (k′ − k) = 2πL

Working in the lab reference frame, rotations of the sample about the center of a four-
circle diffractometer have the effect of rotating the primitive vectors. The rotation rotation
matrix for our four-circle diffractometer that gives this rotation is R = Rθ ·Rχ ·Rφ, written
fully as:

R =

(
cos(θ) cos(φ)− sin(θ) sin(χ) sin(φ) − sin(θ) cos(χ) sin(θ) sin(χ) cos(φ) + cos(θ) sin(φ)
cos(θ) sin(χ) sin(φ) + sin(θ) cos(φ) cos(θ) cos(χ) sin(θ) sin(φ)− cos(θ) sin(χ) cos(φ)

− cos(χ) sin(φ) sin(χ) cos(χ) cos(φ)

)
.

(A.2)

We define the beam direction as x̂, the sample normal when θ = 0 as ŷ, and the vertical
direction as ẑ. This definition gives k = 2πE

hc
x̂ and k′ = 2πE

hc
[cos(ω)x̂ + sin(ω)ŷ], where I

am now using ω instead of 2θ to avoid confusing notation, E is the photon energy in
eV, and hc is Planck’s constant times the speed of light in vacuum.1 Thus Q = k′ − k =
2πE
hc

[(−1+cos(ω))x̂+sin(ω)ŷ]. For an orthorhombic crystal mounted with its a axis aligned
to −x̂, its b axis aligned to ẑ and its c axis aligned to ŷ (lattice constants a, b, and c), Eq.
A.1 becomes

R · (−x̂) · (k′ − k) = 2πH/a

R · (+ẑ) · (k′ − k) = 2πK/b (A.3)

R · (+ŷ) · (k′ − k) = 2πL/c

1Note that when c appears as hc, it is the speed of the light, whereas when it appears as L/c, it is the
lattice constant.
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For a diffractometer operating in 2-circle mode, we can set χ and φ to 0, thus simplifying
Eq. A.3 considerably. First, we find that K = (0 0 1) · (k′ − k) = 0, reducing the problem
from 3 to 2 dimensions. The two remaining equations are then given by:

−hc
E

H

a
= cos(θ − ω)− cos(θ) (A.4)

−hc
E

L

c
= sin(θ − ω)− sin(θ). (A.5)

Dividing Eq. A.4 by Eq. A.5, we arrive at

H

L

c

a
= tan

(ω
2
− θ
)
. (A.6)

Adding the square of Eq. A.4 to the square of Eq. A.5, we arrive at(
hc

E

)2(
H2

a2
+
L2

c2

)
= 2− 2 cos(ω), (A.7)

which can be re-written using the trigonometric identity 2 − 2 cos(x) = 4 sin2(x/2) and
taking the square root of both sides

hc

2E

√
H2

a2
+
L2

c2
= sin

(ω
2

)
. (A.8)

Eq. A.8 is just a 2-dimensional formulation of Bragg’s Law, nλ = 2d sin(θB). We can see

this by using the relations λ = hc
E

,
√

H2

a2
+ L2

c2
= 1

d
, n = 1, and sin(ω

2
) = sin(θB).

The equations Eq. A.6 and Eq. A.8 can be used to solve for (θ, ω) for a desired (H,L).
This is how Eq. 2.2 and Eq. 2.3 were derived in the main text. Note, a different notation
was used (ω → 2θ, θ → θs, L→ K, c→ b). Explicitly, in this notation, the relations are:

ω = 2 sin−1

 hc

2E

√(
H

a

)2

+

(
L

c

)2
 (A.9)

θ =
ω

2
− tan−1

(
H

L

c

a

)
, (A.10)

Interestingly, when deriving Bragg’s Law from the Laue equations, we realize that
Bragg’s Law fails to relate θ to the Miller indices. For any Bragg peak with H = 0, this
does not matter, as we have a specular condition and θ = ω/2 by definition. It also does
not matter for measurements of crystalline powders (with all possible orientations fulfilled),
as then the definition of θ is meaningless. For diffraction from single crystals, however, one
certainly needs to use the Laue formulation!
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A.2 Wedge angle for azimuthal rotation experiment

In chapter 5 an azimuthal rotation experiment was performed to rotate sample about
QCDW. For this a wedge-shaped azimuthal sample plug had to be made with the correct
surface angle. See Fig. 5.1 for the geometry. Here I will derive the formula for this angle.

The wedge acts as an additional rotation that occurs before φ, χ or θ, so the rotation
matrix with the wedge included is given by R = Rθ ·Rχ ·Rφ ·Rw, where Rw will provide a
rotation about the ẑ axis in the positive θ direction of magnitude θw. This can be simplified
using the substitutions θ = ω/2 and χ = 0. The former ensures that the axis of rotation of
φ is aligned with Q (specular geometry with θw = 0), while the latter limits the possible
solutions to those only involving θw. The rotation matrix is then given by:

R =

(
cos(w) cos

(
ω
2

)
cos(φ)− sin(w) sin

(
ω
2

)
− sin(w) cos

(
ω
2

)
cos(φ)− cos(w) sin

(
ω
2

)
cos

(
ω
2

)
sin(φ)

sin(w) cos
(
ω
2

)
+ cos(w) sin

(
ω
2

)
cos(φ) cos(w) cos

(
ω
2

)
− sin(w) sin

(
ω
2

)
cos(φ) sin

(
ω
2

)
sin(φ)

− cos(w) sin(φ) sin(w) sin(φ) cos(φ)

)
. (A.11)

We then evaluate the system Eq. A.3 using Eq. A.11 and find that it reduces to

−H
a

= 2 sin(θw) sin
(ω

2

) E
hc

K

b
= 0 (A.12)

L

c
= 2 cos(θw) sin

(ω
2

) E
hc

The wedge angle is thus found easily, giving

θw = − tan−1

(
H

L

c

a

)
. (A.13)

The sign is not important for manufacturing the wedge. However, some care should be
taken when defining φ = 0 in this system. Whether the wedge angle adds to θ or subtracts
from θ at φ = 0 turns out to be important for comparison to model calculations that
incorporate absorption effects, since these can cause the scattering intensity for φ = 0◦ and
φ = 180◦ to differ.
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A.3 Photon path lengths

The maximum path length pmax (cm) that photons of energy E can traverse through air
while retaining a fraction f = I/I0 of their initial flux can be approximated by

pmax = − ln(f)(ρµ(E))−1, (A.14)

where µ(E) is the x-ray attenuation coefficient (cm2/g) and ρ = 4.64444 × 10−4P/T is
the density of dry air (g/cm3) with pressure P (Torr) and temperature T (K). Table A.1
shows pmax for 100 eV photons passing through dry air at room temperature calculated
at pressures ranging from atmospheric pressure to UHV. Note that higher energy photons
have larger pmax than calculated here, since µ(100 eV) > µ(E > 100 eV) for dry air.

Table A.1: Maximum path length pmax that 100 eV photons can traverse through dry air
while maintaining I/I0 > f as a function of pressure. Calculated for T = 20◦C.

P (Torr) pmax (cm) pmax (cm)
f = 0.50 f = 0.99

760 1.19×10−2 1.72×10−4

100 9.02×10−2 1.31×10−3

1 9.02 1.31×10−1

10−3 9.02×103 1.31×102

10−6 9.02×106 1.31×105

10−9 9.02×109 1.31×108

As a practical example, if we want to build a 20 m long beamline (at room temperature)
and we want less than 1% flux loss for 100 eV photons, using Eq. A.14, we find that P
must be less than 6.54×10−5 Torr. This illustrates one fundamental reason why soft x-ray
beamlines typically operate in UHV conditions for all of their optical components. Other
reasons are the need to be connected to the storage ring, which is kept under UHV, and to
minimize contamination on optical components. The generally much smaller experimental
endstations can in principle be designed to operate at higher pressures with consideration
of these flux losses.
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[204] Blackburn, E., Chang, J., Hücker, M., Holmes, A.T., Christensen, N.B., Liang, R.,
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