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Abstract

In this thesis, we address a convex stochastic optimal control problem in mathe-
matical finance, with the goal of minimizing a general quadratic loss function of
the wealth at close of trade. We study this problem in the setting of an Ito process
market model, in which the underlying filtration to which the market parameters
are adapted is the joint filtration of the driving Brownian motion for the market
model, together with the filtration of an independent finite-state Markov chain
which models occasional changes in “regime states”, that is our model allows for
“regime switching” among a finite number of regime states. Other aspects of the
problem that we address in this thesis are:

(1) The portfolio vector of holdings in the risky assets is confined to a given closed
and convex constraint set;

(2) There is a “state constraint” in the form of a stipulated almost-sure lower bound
on the wealth at close of trade.

The combination of constraints represented by (1) and (2) makes the optimization
problem quite challenging. The powerful and effective method of auxiliary markets,
of Cvitanic and Karatzas [Ann. Appl. Prob., v.2, 767-818, 1992] for dealing with
convex portfolio constraints, does not appear to extend to problems with regime-
switching, while the more recent approach of Donnelly and Heunis [SIAM Jour.
Control Optimiz., v.50, 2431-2461, 2012], which deals with both regime-switching
and the convex portfolio constraints (1), is nevertheless confounded when one adds
state constraints of the form (2) to the problem. The reason for this is clear: state
constraints of the form (2) typically involve “singular” Lagrange multipliers which
fall well outside the scope of the “well-behaved” Lagrange multipliers, manifested
either as random variables or stochastic processes, which suffice when one is dealing
only with portfolio constraints such as (1) above. In these circumstances we resort to
an “abstract” duality approach of Rockafellar and Moreau, which has been applied
with considerable success to finite-dimensional problems of stochastic mathematical
programming in which singular Lagrange multipliers also naturally arise. The main
goal of this thesis is to adapt and extend the Rockafellar-Moreau approach to
the stochastic optimal control problem summarized above. We find that this is
indeed possible, although some considerable effort is required in view of the infinite
dimensionality of the problem. We construct an appropriate space of Lagrange
multipliers, synthesize a dual optimization problem, establish optimality relations
which give necessary and sufficient conditions for the given optimization problem
and its dual to each have a solution with zero duality gap, and use the optimality
relations to synthesize an optimal portfolio in terms of the Lagrange multipliers.
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Chapter 1

Introduction, Background and
Motivation

1.1 Introduction

In this thesis we study a stochastic optimal control problem which arises from the
allocation of an agent’s wealth among a variety of assets according to a widely
used notion of “quadratic loss optimality”. The goal is to continuously trade in a
designated set of risky assets (i.e. shares) and a single bond (effectively a money-
market account) in such a way as to minimize the expected value of a general
quadratic loss function of the wealth at close of trade. By appropriately special-
izing the quadratic loss function one can model genuine trading scenarios such as
quadratic hedging of contingent claims and mean-variance hedging. For example,
in quadratic hedging of a contingent claim, an agent is responsible for “paying out”
at some future fixed date T a sum of money (i.e. the contingent claim) represented
by a square-integrable random variable γ which is “measurable” with respect to all
the trading information available in the market up to the closing date T . The agent
must then use the increasing information available in the market as time evolves
to trade among the available shares and money-market account over the trading
interval 0 ≤ t ≤ T , in order to generate a wealth-stream {X(t), 0 ≤ t ≤ T} in such
a way that the mean-square discrepancy

E|X(T )− γ|2 (1.1)

between the contingent claim γ for which the agent is responsible, and the actual
wealth X(T ) which the agent will have generated by the date T in order to meet this
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obligation, is minimized. If one regards the allocation of wealth among shares over
the interval 0 ≤ t ≤ T as a “control” and the wealth-process {X(t), 0 ≤ t ≤ T}
which is being thus “controlled” as the “state”, then we essentially have a stochastic
optimal control problem the goal of which is to minimize the quantity E|X(T )−γ|2.
Such trading scenarios based on quadratic minimization were first envisaged (for
a simple “one-period”) model in the Nobel prize-winning work of Markowitz [28],
and are now quite widely used in practice.

To further enhance the applicability of the stochastic optimal control model, one
can postulate convex portfolio constraints, that is insist, as part of the definition
of the optimization problem, that the vector of allocations of wealth in various
stocks always takes values in a designated convex constraint set. For example,
a regulatory body might specify that traders not short-sell a designated set of
stocks, and this can be represented by means of a convex portfolio constraint (simple
examples of this are illustrated later in the thesis). We should mention that portfolio
constraints are effectively control constraints in a stochastic control setting, and as
such constitute a definite challenge. The definitive work on portfolio constraints (for
utility maximization rather than quadratic minimization) is that of Cvitanic and
Karatzas [5]. As we shall see in the discussion that follows, the particular aspects of
the problem we intend to address unfortunately rules out the elegant methodology of
[5], and we shall have to establish a substitute framework for dealing with portfolio
constraints.

Despite the widespread use of the quadratic loss criterion, there is nevertheless one
distinct drawback associated with this criterion, namely even when the discrepancy
E|X(T ) − γ|2 is minimized one can still have P{X(T ) < 0} > 0, that is strictly
negative wealth (or bankruptcy) with positive probability at close of trade. Ob-
viously this is a very undesirable outcome from the point of view of the agent,
and in practice this problem is typically taken care of by a variety of heuristic
and ad-hoc devices, none of which are completely satisfactory. In fact, the only
honest way of dealing with this drawback is to include as a specific constraint in
the quadratic minimization problem the requirement that X(T ) ≥ 0 a.s., so that
the goal of the stochastic control problem is now to minimize the quadratic loss
function subject to this additional constraint, together with the convex portfolio
constraint of the previous paragraph. A major challenge in implementing this idea
is that the constraint X(T ) ≥ 0 a.s. is an almost-sure “state constraint”, which
must be dealt with in addition to the afore-mentioned portfolio constraint or “con-
trol constraint”, so that we are effectively dealing with a stochastic control problem
which exhibits both a control constraint and an a.s. state constraint. We indicated
earlier that control constraints by themselves constitute a significant challenge. It
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is well known that this challenge is very substantially compounded by the addi-
tion of a state constraint, even in the case of deterministic optimal control, and of
course these challenges become even greater when one is dealing with a stochastic
optimal control problem. Indeed, the archetypical works on deterministic optimal
control problems with state and control constraints (i.e. without any randomness)
by Dubovitskii and Mil’yutin [8], Rockafellar [35] and Makowski and Neustadt [27]
make abundantly clear the challenges posed by a combination of control and state
constraints. Among the most serious of these challenges is that the “Lagrange mul-
tiplier” which enforces the combination of control and state constraints often turns
out to be “strange” or “degenerate” or “singular” in some sense (such as being
only a finitely additive measure instead of a countably additive measure). This is
in direct contrast to the case of problems which only have control constraints and
no state constraints; these are certainly challenging as we have already noted, call-
ing upon Lagrange multipliers which are “infinite dimensional” and which can be
quite exotic (such as countably additive measures or stochastic processes), but at
least these Lagrange multipliers are regular and well behaved mathematical objects
without the degeneracies which are all too characteristic of the multipliers which
arise when one adds in a state constraint as well. The fact that the enforcement of
a combination of control and state constraints calls upon such singular Lagrange
multipliers is really a reflection of just how challenging such combined constraints
actually are. In the case of stochastic optimal control problems with control and
almost-sure state constraints the challenges already inherent in the simpler deter-
ministic case are of course considerably multiplied by the stochastic character of
the problem, and in fact there are few if any general results on such problems.

Remark 1.1.1 We conclude this introductory discussion with the following re-
mark: since our goal is to minimize the quantity ( 1.1) would it not be preferable
simply to use the standard Black-Scholes approach to replicate the contingent claim
γ in the sense of determining a trading strategy such that

X(T ) = γ, (1.2)

for in this case we certainly minimize the quantity at (1.1), and we seem to avoid
the rather thorny issues indicated above as well. We shall see in Chapter 2 that the
conditions of the problem addressed in this thesis do not, in any way, match the
conditions under which one can apply a Black-Scholes approach and that effectively
we must use the stochastic control approach that has been outlined in the preceding
discussion.
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1.2 Background and Motivation

Despite the difficulties and challenges noted in Section 1.1, there is a pioneering
work of Bielecki, Pliska, Jin and Zhou [2] which addresses a special case of the trad-
ing problem of quadratic minimization in the previous section with the state con-
straint X(T ) ≥ 0 a.s. included but with unconstrained portfolios. The approach of
[2] exploits the fact that, for certain models of the share-price dynamics, the wealth
process {X(t), 0 ≤ t ≤ T} is determined by a stochastic differential equation which
is particularly simple, so simple in fact that the Lagrange multipliers for the state
constraint turn out to be scalar variables which can be determined by application
of the theorem of separating hyperplanes in finite-dimensional space. In particular,
with the simple market dynamics adopted in [2], the Lagrange multipliers do not
exhibit any of the singularities seen in Dubovitskii and Mil’yutin [8] and Makowski
and Neustadt [27], which address rather general (although deterministic) system
dynamics. We do not intend to enter into a detailed discussion of the approach of
[2], and wish only to emphasize that the portfolios in that work are assumed to be
unconstrained and the share-price dynamics are modeled by classical Itô stochastic
differential equations driven by an underlying Brownian motion which effectively
models the continuous microscopic random effects at play in the market. The mar-
ket parameters (that is, the prevailing interest rate process, and the processes which
model the mean return-rate and volatility of the shares) are assumed to be random
and adapted to the filtration of the underlying Brownian motion. The crucial thing
in this market model is that the posited underlying Brownian motion is the one and
only source of randomness in the model, and since the portfolios are assumed to be
unconstrained this means that one can hedge completely against this randomness
(in the parlance of mathematical finance theory the market model adopted in [2] is
complete). It is really this property of the market model in [2] which leads to the
very simple structure of the Lagrange multipliers for the state constraint X(T ) ≥ 0
a.s.

Despite its simplicity, the market model adopted by Bielecki, Pliska, Jin and Zhou
[2] is of definite interest when markets are functioning under “normal” or “regular”
conditions and there are no externally mandated portfolio constraints. However, as
we have already noted, it may well be the case that there are externally imposed
portfolio constraints; in the parlance of mathematical finance portfolio constraints
render the market model incomplete, and this effectively rules out the approach
of [2] which does rely crucially on completeness of the market model arising from
the absence of portfolio constraints. Furthermore, empirical evidence suggests that
a Brownian motion alone does not provide sufficient randomness to model all as-
pects of observed market behavior. In particular, markets are observed to make
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the occasional discontinuous and random change in “regime state” (e.g. from a
“bullish” to a “bearish” state), and these random changes cannot be modeled by
a Brownian motion alone, since Brownian motion is really best suited to model-
ing cumulative changes resulting from highly persistent “small-scale” continuous
random perturbations. Despite the fact that the discontinuous changes in regime
state are only rather occasional they are nevertheless large-scale changes with an
important impact on the market, so it is important to attempt to model these
changes accurately. One of the most successful models for such changes is a finite-
state Markov chain, and models in which the basic source of randomness is not just
a Brownian motion but is instead a Brownian motion together with a finite-state
Markov chain are known as regime switching market models. Thus, in these models
the Brownian motion effectively accounts for persistent small-scale continuous per-
turbations whereas the finite-state Markov chain accounts for occasional large-scale
discontinuous perturbations. Such regime switching market models are now being
increasingly encountered in practice and are seen to be considerably more realistic
than the simpler models in which all randomness is due only to a Brownian mo-
tion, such as the market model adopted in [2]. On the other hand, the theoretical
analysis of regime switching models is considerably more challenging than is the
case for the simpler complete market model of [2]. We do not intend to discuss in
detail the rather technical reasons for this, and note only that when randomness is
modeled by the combination of a Brownian motion and a finite-state Markov chain
then (much as for portfolio constraints) the resulting market model is incomplete,
and this again rules out generalizing the approach of Bielecki et-al, which relies
on a complete market model. Despite the challenges presented by market models
which include regime switching, the many advantages of this model make it a very
worthwhile object of study, and it has recently received significant attention in the
literature on mathematical finance. Particularly significant are the following works:

(I) Zhou and Yin [47]: This addresses the problem of minimizing a general quadratic
loss function of the wealth at close of trade in a market model incorporating a
simplified form of regime switching, in which the market parameters at every instant
are determined entirely by the regime switch Markov chain at that same instant
(the market parameters are then said to be Markov-modulated), and there are no
constraints either on the portfolio (so that the market model is incomplete by
virtue of regime switching only) or on the wealth at close of trade i.e. there is no
constraint on the wealth at close of trade analogous to X(T ) ≥ 0. This absence
of any constraints, together with the simple structure of the Markov-modulated
market model, makes it possible to proceed by direct analysis of the primal problem
through an elegant and simple, but nevertheless very problem-specific, completion-
of-squares approach. In particular, this approach does not extend to problems which
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involve either portfolio or state constraints, nor to problems in which the market
parameters are not just Markov-modulated but depend non-trivially on both the
driving Brownian motion and the finite-state Markov chain.

(II) Sotomayor and Cadenillas [42]: This addresses the problem of utility maximiza-
tion (as opposed to the quadratic minimization addressed by [47]) but in much the
same setting as [47], that is regime switching is included in the market model in
the form of simple Markov-modulated market parameters, the portfolio is uncon-
strained, and there is no a.s. state constraint on the wealth at close of trade. Since
the objective function involves (non-quadratic) utility maximization, it is not pos-
sible to proceed by the completion-of-squares approach of [47]. Instead, Sotomayor
and Cadenillas [42] exploit the special features of their problem (absence of any
constraints, Markov-modulated market parameters) to analyze the primal problem
directly by means of dynamic programming and the Hamilton-Jacobi equation.

(III) Donnelly and Heunis [7]: The work [7] generalizes the quadratic minimization
problem of Zhou and Yin [47] in two ways, namely it allows for convex constraints
on the portfolio, and the market parameters are determined not just by the in-
stantaneous value of the regime switch Markov chain (as in the Markov-modulated
case), but instead depend non-anticipatively on both the regime switch Markov
chain and the Brownian motion. This is a much more general market model than
the simple Markov-modulated models of [47] and [42], and this fact, together with
the portfolio constraints, completely rules out application of either the completion-
of-squares-approach of [47] or the dynamic programming approach of [42]. A possi-
ble natural approach to this problem would involve extending the auxiliary market
model approach of Cvitanic and Karatzas [5] from the domain of non-regime switch-
ing models in which the only source of randomness is a Brownian motion (for which
the approach of [5] works extremely well) to the domain of regime switching models
in which the underlying source of randomness is both a finite state Markov chain
and a Brownian motion. Unfortunately it is far from clear how to accomplish this
extension. Instead, in [7], a conjugate duality framework complementary to that of
Cvitanic and Karatzas [5], but capable of dealing with regime switching models, is
established. This framework actually exploits an extraordinarily flexible stochastic
calculus of variations problem introduced in a very classic work of Bismut [3], and
furnishes the means to construct an optimal portfolio in terms of the solution of
an associated dual problem by means of Kuhn-Tucker optimality relations. In par-
ticular, it is seen in [7] that the Lagrange multiplier which enforces the portfolio
constraint is a square-integrable Ito process driven by the joint filtration of the
underlying Brownian motion and finite state Markov chain.

With the preceding discussion in mind, we can finally formulate, at least in gen-
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eral non-quantitative terms, the main goal of this thesis. We intend to address a
quadratic minimization problem of the general kind studied by Bielecki, Pliska, Jin
and Zhou [2], Zhou and Yin [47], and Donnelly et-al [7], with market parameters
which depend non-anticipatively on both a driving regime switch Markov chain and
Brownian motion (exactly as in [7]), with convex portfolio constraints (again ex-
actly as in [7]), together with the a.s. state constraint X(T ) ≥ 0 a.s. This problem
is clearly substantially more general than that addressed in [47], since it includes a
general market model together with both portfolio constraints and a.s. state con-
straints (none of which are present in [47]). In addition, our problem significantly
generalizes the problem addressed by Bielecki, Pliska, Jin and Zhou [2], since it in-
cludes both portfolio constraints and regime switching, two elements which are not
present in [2] and which rule out application of the elegant (but problem-specific)
separating hyperplanes approach of [2]. On the other hand, the problem that we
intend to study looks rather close to the problem addressed by Donnelly el-al [7],
in fact being different from this problem only in that it also includes the state con-
straint X(T ) ≥ 0 a.s., which is not present in [7]. One might therefore imagine that
the conjugate duality approach of [7] could somehow be “fine-tuned” or adapted
or extended to work for the problem addressed here. Unfortunately, the marvelous
flexibility of the calculus-of-variations formulation of Bismut [3], which is central to
[7], does not go quite far enough to allow this, for it is predicated on a complete ab-
sence of any state constraints whatsoever. In fact, as we shall see in later chapters,
addition of the a.s. state constraint significantly changes the entire structure of the
Lagrange multiplier which now becomes a pair, comprising a square-integrable Ito
process (to enforce the portfolio constraint, exactly as in [7]) paired with a finitely
additive measure (to enforce the a.s. state constraint). This “compound” Lagrange
multiplier unfortunately falls outside the scope of the elegant and powerful duality
theory of Bismut [3], which a-priori posits Lagrange multipliers that are Ito pro-
cesses only, and this means that the approach of [7], based as it is on the duality
theory of Bismut [3], again does not extend to the problem of this thesis.

All of this discussion leads inevitably to the conclusion that stochastic optimal con-
trol with portfolio constraints together with state constraints in a regime switching
market model presents its own quite special challenges which demand an approach
very different from that in any of the prior works [2], [7], and [47]. In particu-
lar, with this model the Lagrange multipliers which enforce the state and portfolio
constraints are no longer simple scalar variables (as is the case in [2]) or square
integrable Ito processes (as is the case in [7]) but are “singular” in the sense of also
involving finitely additive measures. That is, we essentially encounter the same
sort of singular Lagrange multipliers that are found in the works of Dubovitskii
and Mil’yutin [8] and Makowski and Neustadt [27]. These nonstandard multipliers,

7



together with the effects of regime switching, feature largely in the challenges posed
by this problem.

1.3 General Approach

Although the problem we intend to study does present definite challenges as out-
lined in the previous section, it nevertheless has one very nice feature that will be
the cornerstone of our entire approach, namely it is a convex optimization prob-
lem. The importance of this fact cannot be over-stated, for it will allow us to use
the general method of convex duality. The essence of this method is to associate
with the given convex optimization problem (usually called the primal problem) an
associated dual optimization problem. It is usually the case that a dual problem
is much better behaved than the primal problem, and in fact one can readily set
up conditions which ensure existence of a solution of the dual problem, whereas
it is often very difficult to do the same thing for the given primal problem. So-
lutions of the dual problem are very important, for these are just the Lagrange
multipliers which enforce the constraints in the primal problem, and one can typ-
ically construct a solution of the given primal problem in terms of these Lagrange
multipliers. However, a particular challenge in implementing the method of convex
duality, particularly for the sort of dynamic problems encountered in optimal con-
trol (either deterministic or stochastic), is that the structure of an appropriate dual
problem is usually far from clear a-priori. Indeed, for the sort of stochastic control
problems encountered in mathematical finance it is usually the case that the dual
problem is arrived at by a lengthy process of guesswork and trial and error, and
then subsequently verified to work (this is not unlike trying to guess the solution
of a complicated differential equation and then verifying by substitution that the
guessed solution actually works). For the stochastic optimal control problem that
we address here it is very difficult to follow this “trial and error” approach, since
the structure of appropriate dual variables (i.e. the space of variables over which
the dual functional is defined) is itself not even a-priori clear when one has a combi-
nation of almost-sure state constraints and portfolio constraints. Moreover, it must
be said that resort to a “trial and error” approach is also not very satisfying! For
abstract problems of convex optimization a very flexible and powerful approach for
constructing appropriate dual variables and dual problems (without any guesswork)
was worked out as long ago as the 1970’s by Rockafellar and Moreau (this approach
is comprehensively summarized in the monographs of Rockafellar [36] and Ekeland
and Témam [9]). In fact, regarding the Rockafellar-Moreau approach, Ekeland and
Témam state (see p.xii in [9]) “This very flexible abstract theory can be adapted
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to a wide variety of situations”, and then demonstrate this flexibility in [9] on a
number of challenging problems concerned with the calculus of variations of partial
differential equations. To the best of our knowledge there are, however, almost
no applications of the Rockafellar-Moreau approach to problems of stochastic con-
trol which exhibit the combination of constraints outlined above as well as regime
switching in the market model. One exception is the recent work [14] on a simplified
version of the problem of this thesis, which includes portfolio constraints as well as
an almost-sure inequality constraint on the wealth at close of trade, but which does
not include regime switching, the addition of which makes the problem of this thesis
significantly more challenging than the problem addressed in [14]. In this thesis we
are going to see that the basic idea of Rockafellar and Moreau is so flexible that it
can actually be extended (albeit with significant effort) to our stochastic optimal
control problem which features state constraints, control constraints and regime
switching in the dynamics, and in particular provides the means for synthetically
constructing the appropriate vector space of dual variables, dual functional, and
optimality relations, without any trial and error guesswork. Although it will not
be demonstrated in this thesis, the resulting approach is also powerful enough to
constitute a unified method for obtaining all of the prior results of [2], [7], and [47].

In addition to the Rockafellar-Moreau approach noted above, this thesis is also
indebted to a work of Rockafellar and Wets [37] which addresses static problems
of stochastic convex optimization. This is in contrast to the present thesis which
addresses a convex stochastic control problem i.e. a dynamic problem of stochastic
convex optimization. Although dynamic optimization problems are considerably
more challenging than static problems, it is nevertheless the case that some of the
insights from [37] carry over directly to this thesis. In particular, Rockafellar and
Wets were the first to understand that almost-sure inequality constraints unavoid-
ably involve Lagrange multipliers which are not “normal” or “regular” (in the sense
of being constants, or random variables or stochastic processes) but are “singular”
or “pathological” objects (in much the same way that the well-known impulse func-
tion or Dirac delta-function of system theory is singular or pathological). We shall
find that the almost-sure inequality constraints in the dynamic problem of this the-
sis similarly demand singular Lagrange multipliers which are precise analogs of the
singular Lagrange multipliers occurring in the static problems of Rockafellar and
Wets [37].
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1.4 Organization of the Thesis

In Chapter 2, we define the market model and quadratic loss minimization (QLM)
problem that is the main focus of this work in precise mathematical terms. We also
reformulate this problem into an abstract form to which the Rockafellar Moreau
approach mentioned in Section 1.3 is suited. Chapter 3 presents a self-contained
summary of the Rockafellar-Moreau approach, which is the main technical tool
of this whole work, and Chapter 4 is concerned with the solution of the QLM
problem using the Rockafellar-Moreau approach. Following Chapter 5 are several
appendices. Proofs of several technical results occurring in the main body of the
thesis are relegated to Appendix A in order to avoid obscuring the main lines of
development. Readers of the thesis will in fact lose very little if they choose not to
study the proofs in Appendix A in detail. The remaining Appendices B - 5 for the
most part do not contain any new work as such, and have been included only to
provide some of the technical background necessary to read this thesis. We suggest
that readers consult these appendices for reference only (when needed) rather than
read the appendices in their entirety.
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Chapter 2

Market Model and Quadratic Loss
Minimization

The goals of this chapter are twofold. We first precisely define the main mathemati-
cal elements of the regime switching market model that will be assumed throughout.
This model is quite widely used and is certainly not novel to this thesis, but we
give the model in complete detail in order for the thesis to be readable. What is
novel is the quadratic loss minimization (QLM) problem in a market model with
regime-switching and including a combination of portfolio constraints and state
constraints that we also formulate later in this chapter.

2.1 The Market Model

As we noted previously our regime switching market model is quite standard and
widely used. Here we borrow in its entirety the presentation due to Donnelly [6]
who gives a particularly clear and complete formulation of this model.

The market consists of a single bank account (or money market account) and a
number of stocks in which an agent is allowed to trade. We assume that market
is subject to regime-switches from time to time. For example the market could
be in a “bullish” phase, with stock prices generally rising, and this phase can be
considered a regime. Suddenly there is a stock market crash, and the market enters
a “bearish” phase, in which stock prices are mostly falling. The “bearish” phase
is another regime, so this is an example of a regime-switch; the market makes
a random switch from a “bullish” regime to a “bearish” regime. Of course, the
“bearish” regime will eventually give way to another “bullish” regime. In this case
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we have just two regime states (“bullish” and “bearish”) and the switching between
these states is modeled by a two-state Markov chain. More generally, as will be
seen later in this section, we are going to allow for D regime states (D being a fixed
finite integer).

We make the assumption that each time t in the trading interval [0, T ], an investor
in the market will know everything that has occurred up to time t. This assumption
is expressed mathematically using a filtration. This is a structure which contains all
the events which could have occurred up to each time t. We construct a filtration
from a Brownian motion, which drives the stock prices, and a Markov chain, which
models the regime-switching.

Before defining the market model itself, it is necessary to define the regime-switching
Markov chain and the Brownian motion which provide the source of randomness
in the market model. We also need to specify the probability space on which all
processes in the market model are defined. Once we have this probability space,
we can define the basic filtration which contains the information available to an
investor. We can then use the filtration to define a measurability property required
of the stochastic integrands and portfolio investment processes.

Condition 2.1.1 All investment activity takes place over a finite time interval
[0, T ], where 0 < T <∞ is non-random and fixed in advance.

The probability space

Let (Ω,F ,P) be a complete probability space. By complete we mean that all the
P-negligible subsets of Ω are F -measurable.

Modeling the regime-switching

Regime switching is modeled using a continuous time Markov chain α defined on the
probability space (Ω,F ,P). We assume that there are only finitely many possible
regime states I = {1, 2, . . . , D}, so the Markov chain takes values in the finite state
space I. We assume that the regime state Markov chain {α(t) | t ∈ [0, T ]} is time
homogeneous in the sense that

pij(t) := P (α(t) = j | α(s) = i) 0 ≤ s ≤ t ≤ T, i, j = 1, 2, . . . , D (2.1)

= P (α(t− s) = j | α(0) = i). (2.2)
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We denote by Q the generator of the Markov chain α, that is Q is the D×D matrix
Q = (qij)

D
i,j=1, with the following properties.

qij ≥ 0 ∀ i 6= j and − qii =
∑
j 6=i

qij, (2.3)

and pij(t) = (eQt)ij, t ∈ [0,∞), i, j = 1, 2, . . . , D. (2.4)

Appendix (G.1) is a compendium of useful standard background on finite state
Markov chains, included for easy reference in the thesis.

Brownian Motion for the Market Model

We assume that the stock prices are driven by a standard, N -dimensional Brownian
motion W ≡ {W(t) = (W1(t),W2(t), . . . ,WN(t))> | t ∈ [0, T ]}, defined on the
complete probability space (Ω,F ,P). By a standard, N -dimensional Brownian
motion, we mean the following.

Definition 2.1.2 A standard, N-dimensional Brownian motion in an RN -valued
process W ≡ {W(t) = (W1(t), . . . ,WN(t))>| t ∈ [0, T ]} such that

1. W ≡ {W(t) | t ∈ [0, T ]} is null at the origin;

2. the sample paths t→W(ω, t) are continuous for each ω ∈ Ω; and

3. For each s < t such that s, t ∈ [0,∞), the RN -valued increment W(t)−W(s)
is distributed according to N(0, (t−s)IN) and is independent of the filtration
F◦,Ws := σ{W(u) : u ∈ [0, s]}, where IN is the N ×N identity matrix.

Independence Assumption

The following independence assumption is very natural from a modeling viewpoint.
The idea is that the Brownian motion models the movement of the prices of individ-
ual stocks due to micro-economic effects which occur over very short time periods,
and the Markov chain models the movement of the prices due to occasional macro-
economic effects which occur over much longer time periods.

Condition 2.1.3 The Brownian motion process {W(t) | t ∈ [0, T ]} is independent
of the Markov Chain process {α(t) | t ∈ [0, T ]}, in the sense that

P[A ∩B] = P[A]P[B], ∀A ∈ F◦,αT ∀B ∈ F◦,WT . (2.5)

Here F◦,αT := σ{α(t) : t ∈ [0, T ]} and (2.6)

F◦,WT := σ{W(t) : t ∈ [0, T ]}. (2.7)
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Generating the filtration and defining predictability

Having defined the Brownian motion W and the regime-switching Markov chain α
on the common probability space (Ω,F ,P), we next construct the filtration with
respect to which we shall define the problem addressed in this thesis.

The raw filtration {F◦t : t ∈ [0, T ]} generated by W and α is defined in the standard
way as

F◦t := σ{W(s), α(s) : s ∈ [0, t]} ∀t ∈ [0, T ]. (2.8)

In order to use the results of stochastic calculus we want a filtration which has
the usual regularity properties, namely it must contain all the P-null sets in the
σ-algebra F and be right-continuous. The filtration at (2.8) does not unfortunately
have these properties. Nevertheless, it is well known that the Brownian motion W
is a Feller process with state space RN , and, likewise, the finite state Markov chain
α is also a Feller process with finite state space I (see III(2.22) of Revuz and Yor
[31]). From Condition 2.1.3 the Feller processes α and W are independent, and
therefore the joint process (W, α), with state space RN × I is again a Feller process
(as follows from Kallenberg [19], Ex. 10, Chap.19, p.389). Now it follows from
III(2.10) of Revuz and Yor [31] that the filtration

Ft := F◦t ∨N (P), ∀t ∈ [0, T ], (2.9)

is right-continuous and includes the P-null events in F as required.

Remark 2.1.4 It is essential to note the role of the Markov chain α in determining
that structure of the raw filtration at (2.8), and therefore of the filtration at (2.9),
for the regime switching in the market model formulated in this section resides
completely in the presence of the Markov chain α at (2.8). The significance of the
filtration at (2.8)-(2.9) is that it represents the total information available to the
investor, that is at every instant t ∈ [0, T ] the investor knows the paths of the
processes {W(s), s ∈ [0, t]} and {α(s), s ∈ [0, t]}. This is the information used by
the investor in formulating the portfolio process which should therefore be adapted
to (more precisely predictable with respect to) the filtration {Ft, t ∈ [0, T ]} (see
Definition 2.2.1 which follows). In market models which do not account for regime
switching one uses in place of (2.8) - (2.9) a filtration which depends only on the
driving Brownian motion W, that is the filtration defined by

FW
t := σ{W(s) : s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ]. (2.10)

Although the role of the regime switch Markov chain α at (2.8) may look innocuous,
it nevertheless does make the formulation of optimal portfolios significantly more
challenging than in the case of the simpler filtration at (2.10).
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Remark 2.1.5 In the terminology of Definition B.2.3 we therefore see that the
pair ((Ω,F ,P), {Ft}), for the filtration at (2.9), is a standard filtered probability
space. Consequently, we can use the tools of stochastic calculus for integration
against general (i.e. discontinuous) semimartingales relative to the filtration {Ft}.

We use throughout the probability space (Ω,F ,P) and we use the qualifier almost
surely (“a.s.”).

To ensure that the stochastic integrals we deal with are properly defined, it is nec-
essary that the stochastic integrands have a type of measurability called predictable
measurability (or simply predictability). We define this next:

Definition 2.1.6 Let P∗ denote the minimal σ-algebra on Ω × [0, T ] generated
by the set of all continuous R-valued {Ft}-adapted processes. Then a process
{X(t), t ∈ [0, T ]} on (Ω,F ,P) is said to be Ft-predictably measurable when it is
P∗-measurable when regarded as a mapping on Ω× [0, T ].

The canonical martingales of the Markov chain

Associated with the Markov chain α are a set of canonical martingales {Mij : i, j ∈
I, i 6= j}. Their construction and properties are detailed in Appendix (G). We
summarize the most important items here.

For each i, j = 1, . . . , D and for all t ∈ [0, T ], set

Mij(t) :=

{ ∑
0<s≤t χ[α(s−) = i]χ[α(s) = j]− qij

∫ t
0
χ[α(s) = i] ds if i 6= j,

0 if i = j,
(2.11)

where the indicator function χ is such that for each i = 1, . . . , D,

χ[α(s) = i] =

{
1 if α(s) = i,
0 otherwise.

(2.12)

Remark 2.1.7 We define Mii for notational convenience as Mii := 0 to make it
clear that the set {Mii : i ∈ I} is not part of the set of canonical martingales of
the Markov chain, which is based only on distinct states i and j. This is discussed
further in Appendix (G).
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We have Mij ∈ M0,2({Ft},P) and Mij is a finite variation process (see Remark
G.2.15 and Lemma G.2.16). The set of martingales {Mij : i, j ∈ I, i 6= j} are the
canonical martingales of the Markov chain α. We define the D × D “matrix of
martingales”

M := (Mij)
D
i,j=1. (2.13)

We may loosely refer to this matrix M as the set of canonical martingales of the
Markov chain α. However, this should be understood as excluding the diagonal
elements, all of which are zero (see Remark 2.1.7).

Since Mij ∈ M0,2({Ft},P), Theorem B.2.29 ensures existence of the associated
square-bracket quadratic variation process [Mij] (see Remark B.2.30) of Mij. More-
over, Lemma G.2.19 establishes that this is explicitly given by

[Mij](t) :=

{ ∑
0<s≤t χ[α(s−) = i]χ[α(s) = j], if i 6= j,

0, if i = j,
(2.14)

∀ t ∈ [0, T ].
Since Mij ∈ M0,2({Ft},P), Theorem B.2.24 ensures existence of the associated
angle-bracket quadratic variation process 〈Mij〉 (see Remark B.2.26) of Mij, and
Lemma G.2.21 establishes that it is given explicitly by

〈Mij〉(t) :=

{ ∫ t
0
qijχ[α(s−) = i] ds, if i 6= j,

0, if i = j,
(2.15)

∀ t ∈ [0, T ].
From (2.14) and (2.15), the set of canonical martingales {Mij : i, j ∈ I, i 6= j}
can be written as the difference of its square and angle bracket quadratic variation
process.

Almost everywhere

Throughout this thesis we shall encounter several natural measures on the measure
space (Ω× [0, T ],P∗). One such measure is the product measure (P⊗ Leb), where
Leb represents Lebesgue measure on the Borel σ-algebra on [0, T ]. This measure
will be particularly important for stochastic integrals with respect to the Brownian
motion W.

Another measure on the measurable space (Ω× [0, T ],P∗) is ν[Mij ], defined by

ν[Mij ][A] := E

∫ T

0

χA(ω, t) d[Mij](t), ∀A ∈ P∗, (2.16)
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for each i, j = 1, . . . , D, i 6= j. This is the Doléans measure generated by the
finite-variation process [Mij], and will be particularly important for dealing with
stochastic integrals with respect to the canonical martingales Mij. In all cases we
specifically indicate which of these measures is intended for relations which hold
almost everywhere (“a.e.”) on Ω× [0, T ].

Notation 2.1.8 Frequently we can subsume statements involving equality ν[M] -
a.e. into a single statement as follows: The notation

G = H ν[M] − a.e. (2.17)

for RD×D-mappings G := (Gij)
D
i,j=1, H := (Hij)

D
i,j=1 on the set Ω × [0, T ], will

indicate that

Gij = Hij ν[Mij ] − a.e., ∀i, j ∈ I, i 6= j. (2.18)

Market Model, Stocks and Bonds

The market model that we adopt in this thesis comprises of N + 1 assets traded
continuously over the interval [0,T], namely a single bond, with price S0(t) and N
stocks with prices {Sn(t)}, n = 1, 2, . . . , N .

We begin by modeling the bond. The price at time t of the bond will be denoted
by S0(t), with the convention that S0(0) = 1. The price process of the bond is
modeled by equation

dS0(t) = r(t)S0(t) dt, 0 ≤ t ≤ T, (2.19)

in which r(t) is a given process, called the risk-free interest rate process at time t,
and subject to

Condition 2.1.9 The risk-free rate of return {r(t)} is a uniformly bounded, non-
negative, {Ft}-predictable, R-valued stochastic process on the set Ω× [0, T ].

We next define the stock price processes for our model. The price of one unit
holding in the nth stock at time t will be denoted by Sn(t), with the convention
that Sn(0) is some positive constant, for each n = 1, . . . , N. The price process of
the nth stock satisfies for each n = 1, . . . , N, and for all t ∈ [0, T ],

dSn(t) = Sn(t)

[
bn(t) dt +

N∑
m=1

σnm(t) dWm(t)

]
. (2.20)
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bn(t) is called the mean rate of return process of the nth stock at time t, and σnm(t)
is the (n,m)th entry of the N×N matrix volatility process σ(t) for n,m = 1, . . . , N.

Condition 2.1.10 The entries of the mean rate of return process b(t) = {bn(t)}Nn=1

and the entries of the volatility process σ(t) = {σnm(t)}Nn,m=1 are uniformly bounded
and {Ft}-predictable, R-valued processes on the set Ω× [0, T ].

Definition 2.1.11 The processes {r(t)}, {b(t)}, {σ(t)} are called the market co-
efficients or market parameters of the market model.

Remark 2.1.12 We observe from the Doob measurability theorem that Condition
2.1.9 and Condition 2.1.10 formulate a very general predictable dependence of the
market parameters on the Markov chain α and the Brownian motion W. This very
general dependency structure was introduced by Donnelly [6], and is considerably
richer and more flexible than the dependency structures adopted in [47] and [42],
in which the market parameters are posited to depend at each instant t only on
the “value” α(t−) of the regime state Markov chain immediately prior to instant t
and nothing else (this rather special dependence is known as “Markov modulation”
and is completely essential to the approaches of [47] and [42], which cannot be
generalized to the more general dependency structure introduced by Donnelly [6]
which we also posit here).

Remark 2.1.13 In the preceding market model the role of the regime state Markov
chain α seems almost invisible, since it does not appear as an explicit element in the
modeling equations (2.19) and (2.20). It is as a building block of the filtration {Ft}
(see (2.9)) and the {Ft}-predictability posited by Condition 2.1.9 and Condition
2.1.10 that α plays an essential role by determining the market parameters through
the Doob measurability theorem. As we shall see the contribution of the Markov
chain α to the filtration {Ft} vastly affects the structure of the dual variables when
we construct an associated dual problem.

Further conditions and market price of risk process

In addition to Condition 2.1.10 we shall also postulate

Condition 2.1.14 There exists a constant κ ∈ (0,∞) such that

z′σ(t, ω)σ′(t, ω)z ≥ κ ‖ z ‖2 ∀(z, t, ω) ∈ RN × [0,T]× Ω. (2.21)

where we use ‖ z ‖ to denote the usual Euclidean length of a vector z ∈ RN .
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Remark 2.1.15 Condition 2.1.14 is a technical condition which is nevertheless a
very standard condition in portfolio optimization theory, and in particular implies
that the matrix σ(t, ω) is non-singular for each (t, ω) ∈ [0, T ] × Ω. This technical
condition is rather consistent with observed market data, and greatly facilitates the
use of stochastic calculus tools.

Remark 2.1.16 We will collectively call Conditions 2.1.3, 2.1.9, 2.1.10, 2.1.14 the
market conditions.

In view of Condition 2.1.10, Condition 2.1.14 and Karatzas, Lehoczky, and Shreve
[20], there exists a constant κ ∈ (0,∞) such that

max
{
‖ (σT (t, ω))−1z ‖, ‖ (σ(t, ω))−1)z ‖

}
≤ 1√

κ
‖ z ‖

∀(z, t, ω) ∈ RN × [0,T]× Ω. (2.22)

From (2.22) and Condition 2.1.10, there exists a constant κσ ∈ (0,∞) such that

max
{
‖ (σT (t, ω))z ‖, ‖ (σ(t, ω))z ‖, ‖ σT (t, ω))−1z ‖, ‖ (σ(t, ω))−1)z ‖

}
≤ κσ ‖ z ‖, (2.23)

for all (z, t, ω) ∈ RN × [0,T]×Ω. The simple bounds expressed at (2.22) and (2.23)
will be used numerous times in this thesis.

Definition 2.1.17 The market price of risk is the mapping θ : Ω × [0,T] → RN
given by

θ(ω, t) := σ−1(ω, t)(b(ω, t)− r(ω, t)1), (2.24)

where 1 ∈ RN has all unit entries.

Remark 2.1.18 From Condition 2.1.9 and (2.23) it follows that RN -valued process
{θ(t)} is {Ft}-predictable and uniformly bounded on Ω×[0,T]. That is, there exists
a constant κθ ∈ (0,∞) such that

‖ θ(ω, t) ‖≤ κθ, ∀ (ω, t) ∈ Ω× [0,T]. (2.25)

Remark 2.1.19 At each time t, we know the values of the market coefficients
r(ω, t), b(ω, t), σ(ω, t), θ(ω, t). The goal of portfolio optimization is to charac-
terize, and, if possible, compute the optimal portfolio in terms of these known
quantities.
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2.2 The quadratic loss minimization problem

In the present section we formulate the problem of interest in this thesis, namely
a stochastic optimal control problem with the goal of minimizing a quadratic loss
function of the wealth at close of trade subject to constraints. For convenience we
will refer to this as the quadratic loss minimization (or QLM) problem. It turns out
that the quadratic loss minimization problem models a variety of hedging and mean-
variance optimization problems that are of genuine practical importance. In order
for the formulation of the QLM problem to be meaningful we first need to introduce
several prior notions, in particular the portfolio process, the wealth equation, and
appropriate spaces of stochastic integrands. All of these will be needed in order to
formulate the problem.

The Investor

We consider an investor with some given initial wealth x0 > 0. The total wealth
of an investor in the market at time t ∈ [0, T ] is denoted by Xπ(t). The reason for
the superscript π will be apparent in the next few paragraphs. We assume that the
investor consumes nothing and that there are no transaction costs.

We denote by π0(t) the dollar amount of wealth that the investor holds in the bond
at time t. We denote by πn(t) the dollar amount of wealth that the investor holds
in stock n at time t, for each n = 1, . . . , N . Defining the vector

π(t) := (π1(t), . . . , πN(t))>, (2.26)

we can express the total wealth Xπ(t) of the investor at time t in terms of asset
holdings (π0(t),π>(t)) at time t as

Xπ(t) = π0(t) + π>(t)1, ∀t ∈ [0, T ], (2.27)

where 1 ∈ RN has all unit entries.

Note that the value of π0(t) can be retrieved from (2.27) if we know the values of
Xπ(t) and π(t). As a result, we will define a portfolio process as π = {π(t) : t ∈
[0, T ]}, the investor’s dollar holdings in the stocks only.

It is now clear that the superscript π of Xπ(t) alludes to the investor’s portfolio
holdings π(t) in the N stocks.

We formally define a portfolio process as follows.
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Definition 2.2.1 A portfolio process {π(t) : t ∈ [0, T ]} for the market model is a

{Ft}-predictable process π : Ω× [0, T ]→ RN such that
∫ T

0
‖ π(t) ‖2 dt <∞ a.s.

From Karatzas and Shreve, [22], chapter 1, it is known that the wealth process
in terms of π, θ and σ is given by following linear stochastic differential equation
in which the portfolio process π(t), reflecting the dollar amounts invested in each
stock at instant t, is essentially an “input” or “driving” process and Xπ(t) is the
resulting investor wealth:

dXπ(t) = [r(t)Xπ(t) + π>(t)σ(t)θ(t)]dt+ π>(t)σ(t) dW(t), Xπ(0) = x0. (2.28)

We call (2.28) the wealth equation.

The wealth process Xπ = {Xπ(t) : t ∈ [0,T]} is the unique (up to indistinguisha-
bility) solution of the wealth equation (2.28). It follows from the elementary theory
of linear stochastic differential equations applied to (2.28) that the process Xπ is
the continuous, {Ft}-adapted, R-valued process given by the explicit formula

Xπ(t) = S0(t)

{
x0 +

∫ t

0

S−1
0 (τ)π>(τ)σ(τ)θ(τ) dτ +

∫ t

0

S−1
0 (τ)π>(τ)σ(τ)dW(τ)

}
.

(2.29)
We refer to Xπ as the solution to the wealth equation (2.28) for the portfolio process
π.

Examining the right-hand side of (2.29), we see that the only parameter which is
under the sole control of the investor is the portfolio process π. The initial wealth
x0 is fixed and all the other parameters are market-determined parameters, known
to the investor but not controlled by the investor. Notice how (2.29) displays the
wealth as a very simple relation in terms of the portfolio π.

Spaces of integrands

We will see in the next section that in order to formulate the QLM problem alluded
to above, we must have E|Xπ(T )|2 < ∞. This implies that the wealth processes
Xπ which we wish to consider as potential solutions must be square-integrable.
With this necessity in mind, we define a space B consisting of right-continuous,
square-integrable Ft semimartingales.

The wealth process which solves the wealth equation (2.28) is of course a contin-
uous Ft semimartingale, and for this reason, we also define a subspace A of B
whose members are continuous processes, in addition to being square-integrable.
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Potential solutions to the QLM problem will turn out to be wealth processes in the
smaller space A. The larger space B of right-continuous semimartingales will play
an essential role later on, for it will be seen that the Lagrange multipliers for the
constraints in the QLM problem will be members of this space.

We start by defining some appropriate spaces of integrands.

L21 :=

{
Υ : Ω× [0,T]→ R|Υ ∈ P∗ & E

(∫ T

0

|Υ(t)| dt
)2

<∞

}
. (2.30)

L2(W) :=

{
ξ : Ω× [0,T]→ RN | ξ ∈ P∗ & E

∫ T

0

‖ ξ(t) ‖2 dt <∞
}
. (2.31)

L2(M) :=
{
Γ = {Γij}Di,j=1 : Ω× [0,T]→ RD×D|Γii = 0, (P⊗ Leb)− a.e.,∀i ∈ I,

Γij ∈ P∗ & E

∫ T

0

|Γij(t)|2 d[Mij](t) <∞, ∀i, j ∈ I, i 6= j

}
. (2.32)

The preceding are all vector spaces of predictable processes satisfying various inte-
grability conditions. Now define the product vector space B as follows:

B := R× L21 × L2(W)× L2(M). (2.33)

We then write Y ∈ B to indicate that Y ≡ {Y (t) : t ∈ [0, T ]} is a right-continuous
semimartingale of the form

Y (t) := Y0 +

∫ t

0

ΥY (τ) dτ +
N∑
n=1

∫ t

0

ξYn (τ) dWn(τ) +
D∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ),(2.34)

for some Y0 ∈ R, ΥY ∈ L21, ξ := (ξY1 , . . . , ξ
Y
N)> ∈ L2(W), and ΓY := (ΓYij)

D
i,j=1 ∈

L2(M). Alternatively (and more explicitly) we shall write

Y ≡ (Y0,Υ
Y , ξY ,ΓY ) ∈ B, (2.35)

to indicate that (2.34) holds for Y ∈ B, and we call the quadruple (Y0,Υ
Y , ξY ,ΓY )

the components of Y .

We also define a subspace A of B as

A := {X ≡ (X0,Υ
X , ξX ,ΓX) ∈ B |ΓX = 0, ν[M] − a.e.}. (2.36)
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Remark 2.2.2 Effectively a process X is a member of A when it is given by

X(t) := X0 +

∫ t

0

ΥX(τ) dτ +
N∑
n=1

∫ t

0

ξXn (τ) dWn(τ) (2.37)

for some X0 ∈ R, ΥX ∈ L21, and ξ := (ξX1 , . . . , ξ
X
N )> ∈ L2(W) (as follows from

(2.34) with the dMij-integrals removed). The subspace A therefore consists of all
continuous processes in the space B.

The next result just establishes that the integrands in the representation (2.34) are
uniquely determined. For completeness the rather standard proof of this result is
placed in Appendix A.

Proposition 2.2.3 Suppose we have X ≡ (X0,Υ
X , ξX ,ΓX) ∈ B and

Y ≡ (Y0,Υ
Y , ξY ,ΓY ) ∈ B. If for all t ∈ [0, T ],

X0 +

∫ t

0

ΥX(τ) dτ +
N∑
n=1

∫ t

0

ξXn (τ) dWn(τ) +
D∑

i,j=1

∫ t

0

ΓXi,j(τ) dMij(τ)

= Y0 +

∫ t

0

ΥY (τ) dτ +
N∑
n=1

∫ t

0

ξYn (τ) dWn(τ) +
D∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ) (2.38)

then X0 = Y0,Υ
X = ΥY , ξX = ξY ,ΓX = ΓY .

The following lemma shows that the members of B are square integrable. The proof
of this result is again placed in Appendix A.

Lemma 2.2.4 For all Y ≡ (Y0,Υ
Y , ξY ,ΓY ) ∈ B, we have

E

(
sup
t∈[0,T ]

|Y (t)|2
)
<∞. (2.39)

Remark 2.2.5 Observe that the wealth process Xπ which solves the wealth equa-
tion (2.28) for a portfolio process π is a continuous process. The next proposition,
the elementary proof of which is located in Appendix A, establishes that Xπ ∈ A
(i.e. Xπ is square integrable) when the portfolio process π is in L2(W).

Proposition 2.2.6 For Xπ which solves the wealth equation (2.28) for a portfolio
process π, we have

Xπ ∈ A if and only if π ∈ L2(W). (2.40)
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Remark 2.2.7 Suppose that π ∈ L2(W). Then from the wealth equation (2.28)
and Proposition 2.2.6, we see that

Xπ ≡ (x0, rX
π + π>σθ,σ>π, 0) ∈ A. (2.41)

2.2.1 The Investor’s Problem

Having formulated the wealth equation (see (2.28)) and spaces of integrands, we
are finally able to define precisely the QLM problem that will be the focus of this
thesis. We first define the so-called quadratic loss function:

Definition 2.2.8 Define a quadratic loss function J of the form

J(x, ω) :=
1

2
[a(ω)x2 + 2c(ω)x] + q, (x, ω) ∈ R× Ω, (2.42)

subject to the following condition:

Condition 2.2.9 a and c are FT -measurable, square-integrable random variables
on (Ω,F ,P), q ∈ R is a constant and a satisfies

0 < inf
ω∈Ω
{a(ω)} ≤ sup

ω∈Ω
{a(ω)} <∞. (2.43)

From Proposition 2.2.6, the portfolio processes we are interested in must lie in
the space L2(W). This ensures that the corresponding wealth process Xπ is in A
and therefore square-integrable. Thus, we require that the admissible portfolios be
members of L2(W). We now introduce a portfolio constraint, namely we shall insist
that the portfolio vector π always remain in a given constraint set K ⊂ RN :

Condition 2.2.10 K ⊂ RN is non-empty, closed and convex with 0 ∈ K.

Example 2.2.11 Several important examples of convex constraints sets K are
given by Karatzas and Shreve [22], in particular:

1. Unconstrained case : K = RN .

2. Prohibition of short selling : K = [0,∞)N . This requires that a nonnegative
dollar amount always be invested in each and every stock.
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3. Incomplete market : K = {π ∈ RN ; πM+1 = · · · = πN = 0}, for some
M ∈ {1, . . . , N − 1}. This constraint effectively prohibits investment in the
stocks with prices SM+1, . . . , SN .

Definition 2.2.12 Define the set A of admissible portfolios as

A := {π ∈ L2(W)|π(t) ∈ K (P⊗ Leb)− a.e.}. (2.44)

We next formulate a generalization of the terminal wealth constraint Xπ(T ) ≥ 0
a.s. which was discussed in Chapter 1. To this end we shall suppose

Condition 2.2.13 We are given a random variableB which is P-essentially bounded.

In the forthcoming definition of the QLM problem addressed in this thesis (see
Problem 2.2.16) we are going to insist that portfolios π always satisfy two con-
straints, namely the portfolio constraint that π ∈ A (see Definition 2.2.12) and the
terminal wealth constraint that Xπ(T ) ≥ B a.s. It is this combination of constraints
which makes the problem particularly challenging.

Definition 2.2.14 The primal value, denoted by η, is defined as

η := inf
π∈A

Xπ(T )≥B a.s.

E[J(Xπ(T ))], (2.45)

where Xπ is the solution to the wealth equation (2.28) corresponding to π. The
set of admissible portfolios A is given by Definition 2.2.12 and the loss function is
given by Definition 2.2.8.

The elementary proof of the following Lemma is given in Appendix A

Lemma 2.2.15 The primal value given by (2.45) is such that −∞ < η <∞.

We are now ready to define the problem that we are going to address in this thesis:

Problem 2.2.16 The quadratic loss minimization (QLM) problem is to deter-
mine the existence of, and to characterize, a portfolio process π̄ ∈ A such that
X π̄(T ) ≥ B-a.s. and η = E[J(X π̄(T ))]. This portfolio π̄ satisfies the constraints of
the problem and minimizes the quadratic loss function among all portfolios which
satisfy the problem constraints.
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By existence and characterization, we mean demonstrating the existence of π̄ and
characterizing its dependence on the market coefficient r(t), b(t) and σ(t) and the
filtration {Ft}.

Remark 2.2.17 In Problem 2.2.16 recall that the wealth process Xπ is given in
terms of the portfolio process π ∈ L2(W) by the stochastic differential equation
(2.28), in which the initial value x0 ∈ (0,∞) is the given initial wealth of the
investor.

Remark 2.2.18 The random variable B in the constraint Xπ(T ) ≥ B a.s. at
(2.45) reduces to the no-bankruptcy condition Xπ(T ) ≥ 0 that we discussed in
Chapter 1 if we simply put B := 0. However, being able to choose this random
variable results in a more general problem. For example, fixing B = c for a constant
c > 0 guarantees the investor a wealth in excess of c at close of trade.

Remark 2.2.19 In this remark we indicate more precisely how the QLM Problem
2.2.16 relates to, and generalizes, the problems addressed by Bielecki, Pliska, Jin
and Zhou [2], Zhou and Yin [47], and Donnelly [7] that we discussed as motivation
in Section 1.2 of Chapter 1.

(a) Take K := RN at Definition 2.2.12 (that is, the portfolio is unconstrained i.e.
A = L2(W)), put B := 0, and remove regime switching from the market model
by assuming that the market parameters are adapted only to the filtration of the
Brownian motion process W, without any dependency on a regime switch Markov
chain, that is adapted to the filtration {FW

t , t ∈ [0, T ]} defined at (2.10) (com-
pare (2.8), (2.9) and Condition 2.1.10). With these simplifications Problem 2.2.16
reduces to the problem addressed in [2]. As we noted in Chapter 1, these special
features make it possible to construct an optimal portfolio by an application of
the separating hyperplanes theorem. However, this elegant approach is completely
ruled out by either the presence of regime switching or portfolio constraints, and
certainly by the combination of these that we have in Problem 2.2.16.

(b) Again take K := RN at Definition 2.2.12 (i.e. unconstrained portfolios), re-
move the constraint Xπ(T ) ≥ B (see (2.45) and Problem 2.2.16), and strengthen
Condition 2.1.9 and Condition 2.1.10 by requiring that the market parameters be
Markov-modulated. Essentially this means that at every instant t ∈ [0, T ] the mar-
ket parameters r(t), bn(t) and σnm(t) are σ{α(t)}-measurable, that is r(t), bn(t)
and σnm(t) are determined completely by the random variable α(t). Obviously this
is a much simpler type of dependency than the predictability with respect to {Ft}
stipulated at Condition 2.1.9 and Condition 2.1.10, since dependence on the Brow-
nian motion W is excluded completely and dependence on the Markov chain α is
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limited only to the instant t instead of the history of α on the interval [0, t]. With
these simplifications Problem 2.2.16 reduces to the problem addressed in [47]. It
is these very special features which allow the application of results from classical
LQ-control in [47]. However, the presence of either the portfolio constraint (i.e.
π ∈ A), or the state constraint Xπ(T ) ≥ B, or the general form of regime switch-
ing at Condition 2.1.10, all of which are built into Problem 2.2.16, completely rules
out the approach of [47] based on classical LQ-control.

(c) If we remove the constraint Xπ(T ) ≥ B (see (2.45) and Problem 2.2.16), then
Problem 2.2.16 reduces to the problem addressed by Donnelly [7] on the basis
of the general conjugate duality theory of Bismut [3]. As we noted in Chapter
1 the presence of this constraint effectively rules out the approach of [7], since it
brings into play a Lagrange multiplier which is singular (in the sense of being only a
finitely additive, rather than a countably additive measure), and which falls outside
the scope of the conjugate duality theory of [3].

Remark 2.2.20 The most important special case of the quadratic loss function
formulated at Definition 2.2.8 arises as follows: a contingent claim is a specified
FT -measurable random variable γ. An agent (e.g. a pension fund) is responsi-
ble for paying out this contingent claim at T (the date at which the contingent
claim matures). The challenge of the agent is then to trade in the specified bond
and stocks so as to generate a wealth Xπ(T ) which most closely “approximates”
the contingent claim γ. The sense of “approximation” must of course be made
precise, and Markowitz [28] suggested minimization of the mean square discrep-
ancy E[|Xπ(T )− γ|2], a criterion which is now widely used in practice. If we take
a(ω) := 2, c(ω) := −2γ(ω), q := E[γ2] in Definition 2.2.8 then we see that

E[J(Xπ(T ))] = E[|Xπ(T )− γ|2],

as required.

Remark 2.2.21 At the very end of Section 1.1, in Remark 1.1.1, we briefly drew
attention to the possibility (or otherwise) of a Black-Scholes hedging approach to
our Problem 2.2.16. Having formulated the problem in some detail we can now
argue why it is definitely not possible to use hedging to address Problem 2.2.16.
The essence of a hedging problem (for European options) is the following: one is
given a contingent claim γ, and the goal is to determine both an initial wealth x0

and a trading strategy π over the trading interval 0 ≤ t ≤ T such that the wealth
at instant t = T resulting from the initial investment x0 and the trading strategy
π is exactly equal to the contingent claim γ, that is

Xx0,π(T ) = γ, (2.46)
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in whichXx0,π(t) denotes the quantity on the right hand side of (2.29). The essential
idea is this: if one starts with an appropriate initial wealth x0 (the so-called hedging
price of the contingent claim), then there is a trading strategy π which exactly
replicates the contingent claim at t = T in the sense that (2.46) holds. The basic
assumptions on which the Black-Scholes theory rests are two-fold namely

(i) Determination of an initial wealth x0 which makes the perfect hedging at (2.46)
possible for some portfolio π is part of the hedging problem. This initial wealth is
the hedging price of the contingent claim, and is given taking the expectation of
the discounted contingent claim with respect to a “risk neutral measure”;

(ii) The market model must be complete, which, in the present setting, excludes
any constraints whatsoever on either the portfolio or wealth processes, as well as
excluding regime switching in the market model. Indeed, with constraints and/or
regime switching in the market model, one cannot in general expect to replicate a
contingent claim γ in the sense of finding some x0 together with a (constrained)
portfolio π such that the (constrained) wealth process Xx0,π satisfies (2.46).

In view of (ii) the presence of constraints and regime switching in Problem 2.2.16
immediately rules out any approach based on Black-Scholes hedging. Would Black-
Scholes hedging become a viable possibility if one considered a simplified version
of Problem 2.2.16 in which all constraints are discarded and regime switching is
removed? Again the answer is in the negative, this time because assumption (i) is
not satisfied. In Problem 2.2.16 the initial wealth x0 is arbitrarily assigned, being
the initial amount of wealth with which the investor must live, and if this x0 is less
than the hedging price of the contingent claim then there generally does not exist
any portfolio π (even an unconstrained portfolio) for which (2.46) holds. It is for
this very reason that Zhou and Yin [47], who addressed the unconstrained version
of Problem 2.2.16, formulated this problem in stochastic control terms rather than
as a hedging problem. We see from the preceding discussion that both assumptions
(i) and (ii) fail in the case of Problem 2.2.16, and so we adopt a stochastic control
approach as well.

For the Problem 2.2.16 to make sense we must have Xπ(T ) ≥ B-a.s. for some
π ∈ A, since, if this failed to hold, then there would not exist any portfolio π which
satisfies the constraints of the problem. In fact, as will be seen in Remark 4.2.4,
we shall need to strengthen this to the following very mild Slater type condition in
order to secure existence of Lagrange multipliers:

Condition 2.2.22 There is some π̂ ∈ A and constant ε ∈ (0,∞) such that
X π̂(T ) ≥ B + ε a.s.
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Remark 2.2.23 If there failed to exist some π ∈ A such that Xπ(T ) ≥ B-a.s.
then of course Problem 2.2.16 would be ill-defined, since the portfolio constraint
π ∈ A on π would be incompatible with the terminal wealth constraint Xπ(T ) ≥ B
on π. Effectively, this means that one has been “unrealistic” in the choice of the
random variable B when specifying Problem 2.2.16, since this level of wealth can
never be weakly exceeded at close of trade with the portfolio constraint in place.
The assumption that Xπ(T ) ≥ B-a.s. for some π ∈ A is therefore absolutely es-
sential for Problem 2.2.16 just to be well defined. Condition 2.2.22 is a very mild
strengthening of this assumption, and really just compels one to make a “reason-
able” choice of the random variable B, in the sense that there should exist some
admissible portfolio π̂ ∈ A which not only exceeds the stipulated terminal wealth
B but does so with a small “margin” ε to spare. An example of such a choice of B is
B = αx0S0(T ) (for some constant α ∈ [0, 1)); since {r(t)} is uniformly bounded (see
condition 2.1.9) we see that Condition 2.2.22 holds with π̂ = 0. This choice of B
constitutes portfolio insurance for an amount corresponding to investing a fraction
α of the initial wealth in a money-market account, and is a very common form of
portfolio insurance. Conditions similar to Condition 2.2.22, in the sense of requiring
satisfaction of the stipulated problem constraints with a small “margin” ε to spare,
were first introduced by Slater [41] many decades ago for finite dimensional non-
linear optimization problems, and are completely essential for securing existence of
Lagrange multipliers for the constraints (this is treated extensively in the context
of convex finite dimensional optimization problems in Part VI of Rockafellar [34]).
Condition 2.2.22 will similarly be indispensable for securing existence of Lagrange
multipliers for the rather complex constraints in Problem 2.2.16 (this will be seen
at Remark 4.2.2, Proposition 4.2.3 and Remark 4.2.4 in the next chapter). Our for-
mulation of the Slater type Condition 2.2.22 is motivated by Rockafellar and Wets
[37], who use Slater type conditions to obtain existence of Lagrange multipliers for
static problems of stochastic convex programming. In the present thesis we extend
the use of this type of condition to the dynamic Problem 2.2.16.

2.2.2 Problem Reformulation

The discussion of Remark 2.2.19 indicates that the QLM Problem 2.2.16 demands
an approach quite different from the prior and motivating works [2], [7] and [47].
Indeed, Problem 2.2.16 really amounts to a stochastic optimal control problem
with both a control constraint (in the form of the portfolio constraint π ∈ A)
and a state constraint (in the form of the constraint Xπ(T ) ≥ B a.s.). There are
very few available results on such problems, but the prior works of Dubovitskii
and Milyutin [8] and Makowski and Neustadt [27], in the considerably simpler
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setting of deterministic optimal control, warn us at the very least to expect rather
troublesome “singular” Lagrange multipliers. There is, however, one very nice
property possessed by Problem 2.2.16, which is not a feature of the problems studied
in [8] and [27], this being that the problem is convex. This convexity is an immediate
consequence of the simple linear dynamics of the wealth equation (2.28) and the fact
that the portfolio constraints set K is assumed convex (see Condition 2.2.10), and
its importance simply cannot be overstated. Indeed, we shall exploit this convexity
as the key to applying the abstract, and very powerful, conjugate duality theory
of Rockafellar and Moreau [36] to Problem 2.2.16. This theory has hitherto been
applied mainly to static optimization problems, and of course Problem 2.2.16 is
a control problem, that is dynamic. Nevertheless, we shall see that this general
theory, by virtue of its abstractness, can nevertheless be made to apply to Problem
2.2.16, although (again by virtue of its abstractness) this application is far from
routine or mechanical. In fact, one of the major challenges of this thesis is to “re-
shape” the Rockafellar-Moreau theory and make it apply to the dynamic Problem
2.2.16. In particular, we shall see that the Rockafellar-Moreau approach introduces
the “singular” Lagrange multipliers mentioned above in a very simple and natural
way.

In order to apply the Rockafellar-Moreau approach we must first “remove” the
portfolio π as the underlying problem variable with respect to which we optimize,
and reformulate Problem 2.2.16 as the minimization of a convex function f over the
linear space of Itô processes A. We devote the remainder of the present chapter to
this reformulation (which is very simple indeed). With this reformulation in place
we shall then be able to apply the general approach of Rockafellar and Moreau
to Problem 2.2.16 in the following Chapter. As the first step in this reduction we
introduce

Definition 2.2.24 Define the set D of admissible wealth processes as

D := {Xπ |π ∈ A}. (2.47)

Remark 2.2.25 From Proposition 2.2.6 it follows that D ⊂ A.

Notice that a wealth process X is admissible provided that it corresponds to an
admissible portfolio π ∈ A, and that an admissible wealth process X need not
necessarily satisfy the all-important constraint X(T ) ≥ B a.s. We take care of this
latter constraint by building it into the so-called primal function defined as follows:
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Definition 2.2.26 Define the primal function f : A→ (−∞,∞] as follows:

f(X) :=

{
EJ(X(T )), whenX ∈ D andX(T ) ≥ B a.s.,
+∞, otherwise.

(2.48)

Remark 2.2.27 From Lemma 2.2.4, Condition 2.2.9 and (2.42) it follows that
J(X(T )) is P-integrable for each X ∈ A, while Condition 2.2.22 ensures that the
value of η in Problem 2.2.16 is finite, i.e. η ∈ R. From (2.48), (2.47) and (2.45), we
then have

η = inf
π∈A

Xπ(T )≥B a.s.

E[J(Xπ(T ))] = inf
X∈A

f(X). (2.49)

Remark 2.2.28 We have reduced Problem 2.45, and therefore the QLM Problem
2.2.16, to one of minimizing the convex function f(·) over the linear space A (see
(2.49)). Our goal is therefore to construct some X̄ ∈ A such that

η = f(X̄). (2.50)

Since η ∈ R it follows from (2.48) that X̄ ∈ D and X̄(T ) ≥ B a.s. In view of (2.47)
we then see that X̄ = X π̄ for some π̄ ∈ A which is then the optimal portfolio.
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Chapter 3

Rockafellar-Moreau Approach

The QLM Problem 2.2.16 is a convex optimization problem in the sense that the
objective function to be minimized is convex (in fact quadratic) and all constraints
in the problem are convex. This convexity is a huge asset and is effectively the key
to dealing with the otherwise rather intractable aspects of Problem 2.2.16. Convex
optimization problems have the very nice property that one can typically associate
with them a so-called dual optimization problem which is often much more tractable
than the given (or primal) problem. If a solution of the dual optimization problem
exists then it represents the Lagrange multipliers which enforce the constraints
in the problem, and the solution of the given primal problem can be determined
from the Lagrange multipliers by means of optimality relations (or Kuhn-Tucker
relations) which relate solutions of the primal and dual problems. The challenge in
applying this convex duality approach to a given convex problem is that one often
has little a-priori knowledge concerning the appropriate space of dual variables
over which the dual functional must be defined, as well as the dual functional and
optimality relations, which are themselves far from clear as well. Over the years a
collection of “standard” convex optimization problems has been built up, for which
the space of dual variables, dual functional and optimality relations have really been
determined by a process of trial and error. Particularly important members of this
collection are linear programming and quadratic programming problems. However,
it is not very difficult to come up with new convex problems which are not in this
“library” of standard problems, the QLM Problem 2.2.16 being a case in point, and
for these one has to go through an arduous process of guesswork, experimentation,
and trial and error to ascertain the structure of the dual variables, dual functional
and optimality relations. The Rockafellar-Moreau approach that we summarize
in this chapter vastly reduces the amount of trial and error work that is needed
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to construct an appropriate dual problem for a given convex primal problem. The
works of Rockafellar [36] and Ekeland and Temam [9] show that essentially all of the
standard convex optimization problems mentioned above fall within the scope of
the Rockafellar-Moreau approach. Much more important however, is the fact that
Rockafellar-Moreau approach provides a very systematic way of dealing with convex
optimization problems for which nothing about the corresponding duality structure
is a-priori known (this is certainly the case for Problem 2.2.16). In fact, the book of
Ekeland and Temam [9] illustrates several examples from continuuum mechanics,
calculus of variations for partial differential equations, and filtering, all of which
involve convex optimization problems for which nothing about an associated duality
structure is known in advance, and demonstrates how one can synthesize a vector
space of dual variables, dual functional and optimality relations by means of the
Rockafellar-Moreau approach. Concerning this approach Ekeland and Temam ([9],
p.xii) remark “This very flexible abstract theory can be adapted to a wide variety
of situations”. One of the main goals of this thesis is to show how this “very flexible
abstract theory” can be adapted to our Problem 2.2.16. Of course this adaptation
is far from routine (being very different from the cases illustrated in [36] and [9])
and involves some definite challenges. Addressing these challenges constitutes much
of the technical core of the thesis.

In this chapter we are going to set out the main elements of the Rockafellar-Moreau
approach. The elements of this approach are actually set forth in the work [36],
but in a rather scattered form which is difficult to access, as well as in [9]. The
self-contained summary in this chapter is completely adequate for reading this the-
sis. As a supplement to the present chapter we include in Section E.1 of Appendix
E a simple “tutorial example” (suggested by Rockafellar and Wets [37]) in which
the Rockafellar-Moreau approach is used on a static problem of convex stochas-
tic optimization. Despite its simplicity this example illustrates “in miniature” the
much more sophisticated application of the Rockafellar-Moreau approach to the
QLM Problem 2.2.16 defined in Chapter 2, and also makes clear how “singular”
Lagrange multipliers can unavoidably occur in even the very simplest problems
of convex stochastic optimization with almost-sure inequality constraints. Among
other things, this simple example illustrates the essential role of the Yosida-Hewitt
decomposition of the adjoint space L∗∞ which is summarized in Appendix D, for it
is the Yosida-Hewitt decomposition theorem which in fact gives the singular La-
grange multipliers.
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3.1 Main Steps of the R-M Approach

Suppose that X is a given real linear space, and the primal problem is to minimize
a given convex function

f : X→ [−∞,∞] (3.1)

on X. Notice that this very simple formulation does not involve any loss of gener-
ality, since the objective function f can always be defined to have the value +∞ at
all points of X excluded by possible constraints in the problem (exactly as (2.49)).
The Rockafellar Moreau approach gives a systematic method for constructing an
appropriate vector space of dual variables, a Lagrangian, and a dual function, and
is implemented in the following two steps:

Step I. Fix some real linear space of perturbations U, and some convex pertur-
bation function

F : X× U→ [−∞,∞] (3.2)

which must be consistent with the objective function f at (3.1) in that

F (x, 0) = f(x), x ∈ X, (3.3)

that is when u = 0 (meaning zero perturbation) the function F (x, u) reproduces
the objective function f . Notice the complete freedom of choice that we have in
selecting a space of perturbations U and a perturbation F ; the only requirement is
that the consistency relation (3.3) holds.

Step II. Fix a real linear space Y of so-called dual variables and some bilinear
form 〈·, ·〉 on U × Y, that is, (U,Y, 〈·, ·〉) is a dual system in the sense of Remark
B.4.7. Having fixed the vector spaces U and Y, together with the bilinear form 〈·, ·〉
on U×Y, we can formulate a Lagrangian function and a dual function as follows:

Definition 3.1.1 Define the Lagrangian K : X × Y → [−∞,∞] by the concave
conjugate

K(x, y) := inf
u∈U

[〈u, y〉+ F (x, u)], (x, y) ∈ X× Y. (3.4)

Definition 3.1.2 Define the dual function g : Y→ [−∞,∞] by

g(y) := inf
x∈X

K(x, y) = inf
(x,u)∈X×U

[〈u, y〉+ F (x, u)], y ∈ Y. (3.5)

34



It is immediate from (3.3) to (3.5) that g(·) is concave on Y (being the point-wise
infimum of a collection of affine functionals on Y).

Remark 3.1.3 Taking u = 0 at (3.4) we get

f(x) ≥ K(x, y) ≥ g(y), (x, y) ∈ X× Y. (3.6)

From (3.6) we obtain the basic inequality

inf
x∈X

f(x) ≥ sup
y∈Y

g(y). (3.7)

The quantity on the left of (3.7) is called the primal value while the quantity on the
right of (3.7) is called that dual value. If the primal value is strictly greater than
the dual value then the difference between these quantities constitutes the so-called
duality gap. We can never get anything useful out of the convex duality approach if
the duality gap is non-zero (i.e. strictly positive). It is therefore essential to choose
the space of perturbations U, the space of dual variables Y and the bilinear form
〈·, ·〉 in such a way that the the left and right sides of (3.7) are equal i.e. the duality
gap is zero. Theorem 3.1.4 which follows next is an essential result which, among
other things, establishes conditions which ensure that the duality gap is zero, and
furthermore guarantees existence of a solution of the following dual optimization
problem:

maximize the dual function g : Y→ [−∞,∞]. (3.8)

Theorem 3.1.4 (Rockafellar-Moreau) Suppose that 〈U,Y〉 is a given dual sys-
tem and U is a 〈U,Y〉-compatible topology U on U (recall Definition C.1.10). If
there exists some x1 ∈ X and some U -neighborhood G of the origin 0 ∈ U such that

sup
u∈G

F (x1, u) <∞, (3.9)

then

inf
x∈X

f(x) = sup
y∈Y

g(y) = g(ȳ) for some ȳ ∈ Y. (3.10)

Remark 3.1.5 The vector spaces U and Y, the convex function F (·, ·) on X × U
and the bilinear form 〈·, ·〉 on U × Y are at our discretion, although subject to
(3.3); different choices of these yield different spaces of dual variables Y as well
as different Lagrangian and dual functions. These items must be chosen with the
following considerations in mind:
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1. The conditions of Theorem 3.1.4 should hold;

2. The dual function at (3.5) should have a reasonably tractable form, so that
we can obtain useful necessary conditions resulting from the optimality of ȳ
given by Theorem 3.1.4.

3. It should be possible to write the condition f(x) = g(y)(for an arbitrary
pair (x, y) ∈ X × Y) as reasonably explicit Kuhn-Tucker optimality rela-
tions, involving in particular transversality conditions, complementary slack-
ness conditions, and feasibility conditions. These relations, together with the
necessary conditions from (2), should furthermore be useful for constructing
x̄ ∈ X in terms of the maximizer ȳ ∈ Y given by Theorem 3.1.4, such that
f(x̄) = g(ȳ).

Remark 3.1.6 In verifying the conditions of the Rockafellar-Moreau Theorem
3.1.4 one should really choose the 〈U,Y〉-compatible topology U to be the Mackey
topology τ(U,Y) since, according to the Mackey-Arens Theorem C.1.12, this is the
〈U,Y〉-compatible topology with the largest collection of open sets, making it eas-
ier to find a U -neighborhood G of the origin 0 ∈ U such that (3.9) holds for some
x1 ∈ X. Unfortunately the Mackey topology is not very easy to deal with, since the
abstract characterization of this topology given by Remark C.1.11 is of little use
in concrete applications. As a practical matter, in most applications of Theorem
3.1.4 (including the applications in this thesis) the space of perturbations U is a
normed vector space, and the space of dual variables Y is typically chosen to be the
norm-dual of U, that is

Y = U?, (3.11)

with the canonical dual pair 〈U,Y〉 defined by

〈u, y〉 = y(u), u ∈ U, y ∈ Y. (3.12)

It then follows from the Mackey Theorem C.1.13 that we can take U to be the
norm-topology on U when applying Theorem 3.1.4, that is we need to show

sup
u∈U
||u||<ε

F (x1, u) <∞, (3.13)

for some x1 ∈ X and some (small) ε ∈ (0,∞) in order to verify (3.9) (here || · ||
denotes the norm on U). This significantly simplifies the application of Theorem
3.1.4.
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Chapter 4

Application of the
Rockafellar-Moreau Approach to
the QLM Problem 2.2.16

With the formulation (2.49) of the QLM Problem 2.2.16 in place we are in a position
to apply the general approach of Rockafellar and Moreau summarized in Chapter 3
for synthesizing a vector space of dual variables, a dual optimization problem, and
associated optimality relations which are the natural dual partner of our primal
QLM Problem 2.2.16. Also needed for application of the Rockafellar-Moreau ap-
proach is a capital result in functional analysis due to Yosida and Hewitt [46] which
decomposes the adjoint L∗∞ of the space L∞ into ‘regular” and “singular” parts,
since the Lagrange multipliers associated with the state constraint Xπ(T ) ≥ B a.s.
in Problem 2.2.16 turn out to be members of this adjoint space. We summarize the
necessary background on the Yosida-Hewitt decomposition in Appendix D.

4.1 Perturbation, Lagrangian and the Dual Prob-

lem

As indicated in Chapter 3, the Rockafellar Moreau approach gives a systematic
method for constructing an appropriate vector space of dual variables, a Lagrangian,
and a dual function. The first step is to fix some real linear space of perturbations
U, and some convex perturbation function.
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Notation 4.1.1 From now on write Lp for the spaces Lp(Ω,FT ,P) for all p ∈
[1,∞], where FT is defined by (2.9). Similarly write L∗∞ for the norm-dual L∗∞(Ω,FT ,P)
of the real linear space L∞(Ω,FT ,P).

We shall now implement the perturbational Rockafellar-Moreau approach summa-
rized in Chapter 3 with the goal of synthesizing a vector space of dual variables,
together with a Lagrangian, a dual function and optimality relations. According
to the summary in Chapter 3 the first step in this approach is to define a linear
space of perturbations and a perturbation function (see Step I in Chapter 3). Here
we borrow an ingenious perturbation from Rockafellar and Wets [37] involving es-
sentially bounded perturbations. It will be seen that this is exactly what is needed
in order to associate an appropriate dual variable with the almost-sure inequality
constraint Xπ(T ) ≥ B in QLM Problem 2.2.16. Our definition of the space of
perturbations is therefore

U := L2 × L∞. (4.1)

Definition 4.1.2 Define the perturbation function F : A× U→ (−∞,∞] as

F (X, u) :=

{
EJ(X(T )− u1), whenX ∈ D andX(T ) ≥ B + u2 a.s.,
+∞, otherwise,

(4.2)

for all X ∈ A, u = (u1, u2) ∈ U.

Remark 4.1.3 Convexity of F (·, ·) on A × U follows from convexity of J(·) (see
(2.42)). We also have the consistency relation that is emphasized in Step I of
Chapter 3, namely

F (X, 0) = f(X), X ∈ A, (4.3)

as follows from (4.2) and (2.48).

In the search for dual solutions we are going to restrict attention to the vector
subspace B1 ⊂ B given by

B1 := {Y ≡ (Y0,Υ
Y , ξY ,ΓY ) ∈ B |ΥY (t) = −r(t)Y (t), (P⊗ Leb)− a.e.}. (4.4)
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Define the R-valued processes {β(t); t ∈ [0, T ]} and {Ξ(y,λ,γ)(t); t ∈ [0, T ]}
(for (y,λ,γ) ∈ R× L2(W)× L2(M)) as follows:

β(t) := exp

{
−
∫ t

0

r(τ) dτ

}
, (4.5)

Ξ(y,λ,γ)(t) := β(t)

{
y +

∫ t

0

β−1(τ)λ>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)γi,j(τ) dMij(τ)

}
.

(4.6)

The vector subspace B1 at (4.4), and the functions β at (4.5) and Ξ at (4.6),
are borrowed from Donnelly [7], which addresses a simplified version of the QLM
Problem 2.2.16 that includes the portfolio constraint π ∈ A but does not include
the almost-sure state constraint Xπ(T ) ≥ B. As was emphasized in Chapter 1 the
presence of this state constraint effectively rules out the approach of [7] for the
QLM Problem 2.2.16. It is nevertheless the case some of the technical machinery
developed in [7] can be used and adapted in this thesis. We shall in fact see,
although by an approach quite different from that followed in [7], that B1 defined by
(4.4) is actually still the vector space of dual variables for the portfolio constraint
π ∈ A, exactly as it was in [7], and one of the major challenges of the present
chapter is to come up with an appropriate vector space of dual variables for the
state constraint Xπ(T ) ≥ B in the QLM Problem 2.2.16.

Elementary properties of the set B1 and the mapping Ξ are summarized in the
next proposition, for later use in this chapter. The proof is a simple application of
Itô’s formula and is given in Appendix A

Lemma 4.1.4 Define the vector space S := R × L2(W) × L2(M) (where L2(W)
and L2(M) are defined by (2.31) and (2.32)), and recall the representation (2.34)
of general elements Y of B. Then

1. B1 is a real linear space;

2. If Y := Ξ(y,λ,γ) for some (y,λ,γ) ∈ S, we get

Y ≡ (y,−rY−,λ,γ) ∈ R× L21 × L2(W)× L2(M). (4.7)

Moreover, recalling (4.4), we have

Y ∈ B1. (4.8)

3. Ξ : S→ B1 is a linear bijection.
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We shall next implement Step II in the summary of the Rockafellar-Moreau method
given in Chapter 3. This involves defining a vector space Y of dual variables together
with a duality pairing of the vector spaces Y and U. Define the real linear space Y
as

Y := B1 × L∗∞ (4.9)

and bilinear form (see Definition B.4.5) 〈·, ·〉 on U× Y as follows:

〈(u1, u2), (Y, Z)〉 := E[u1Y (T )] + Z(u2), (u1, u2) ∈ U, (Y, Z) ∈ Y. (4.10)

The motivation for the definition of Y at (4.9) is to be found in Remark 3.1.6 in
Chapter 3. We want Y to be the norm-dual of the space of perturbations U. Of
course L2 is the norm-dual of L2, and we will see from Lemma 4.2.1 that B1 is
isomorphic to L2, hence we can take B1 to be the norm-dual of L2 as we do in the
first factor space at (4.9). As for the second factor space L∗∞ at (4.9), this is of
course the norm-dual of the second factor space L∞ at (4.1).

Remark 4.1.5 For (Y, Z) ∈ Y we have Y ∈ B1, thus Y (T ) ∈ L2 (from Lemma
2.2.4 and (4.4)), i.e. the right side of (4.10) is well-defined.

Motivated by (3.4) we define the Lagrangian

K(X, (Y, Z)) := inf
(u1,u2)∈U

[〈(u1, u2), (Y, Z)〉+ F (X, u1, u2)], X ∈ A, (Y, Z) ∈ Y.

(4.11)

We next evaluate the right side of (4.11) explicitly. To this end, define sets A1 and
D1 of Itô processes, and the convex conjugate J∗(y, ω) as

A1 := {X ∈ A | there is someα ∈ R s.t.X(T ) ≥ B + α a.s.}, (4.12)

D1 := D ∩ A1 6= ∅, (4.13)

J∗(y, ω) := sup
x∈R

[xy − J(x, ω)] (y, ω) ∈ R× Ω. (4.14)

Observe that the non-emptyness of D1 asserted at (4.13) follows from Condition
2.2.22. The set A1 comprises all square-integrable Itô processes X ∈ A with prop-
erty that X(T )−B is uniformly lower bounded by a constant α ∈ R, while D1 is the
set of all admissible wealth processes X ∈ D with the same property. The set D1

is therefore a sort of “reduced” set of admissible wealth processes. The reason for
defining this set is that it arises very naturally when we evaluate the Lagrangian
K in explicit form (see Proposition 4.1.7 which follows). In order to evaluate the
Lagrangian we first explicitly calculate the convex conjugate J∗ of the quadratic
loss function J . The calculation is elementary but we work out all the details in
Appendix A for completeness:
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Lemma 4.1.6 For all (y, ω) ∈ R× Ω we have

J∗(y, ω) =
(y − c(ω))2

2a(ω)
− q, (4.15)

for the convex conjugate given by (4.14).

In Proposition 4.1.7 we explicitly calculate the Lagrangian function defined at
(4.11). The proof of this proposition is in Appendix A:

Proposition 4.1.7 For eachX ∈ A and each (Y, Z) ∈ Y, the Lagrangian K(X, (Y, Z))
defined by (4.11) is explicitly given by

K(X, (Y, Z)) =


E[X(T )Y (T )]− E[J∗(Y (T ))] + inf

u2∈L∞
u2≤X(T )−B

Z(u2), if X ∈ D1 & Z ≤ 0,

−∞, if X ∈ D1 & Z � 0,

+∞, if X 6∈ D1.

(4.16)

Remark 4.1.8 From Equation (4.15), Lemma 2.2.4 and Condition 2.2.9 it follows
that X(T )Y (T ) and J∗(Y (T )) are P -integrable so that the expectations in (4.16)
are defined for each (X, Y ) ∈ A× B1.

Remark 4.1.9 The infimum on the right of (4.16) (for X ∈ D1 and Z ≤ 0) is just
the usual Lagrange “weighting” of the constraint X(T ) ≥ B by the “multiplier”
Z ∈ L∗∞. This simplifies to the familiar form Z(X(T )− B) when X(T ) ∈ L∞, for
then X(T )−B ∈ L∞, so that Z(X(T )−B) is defined for each Z ∈ L∗∞. However,
in general X(T ) is only square-integrable (recall that X(T ) ∈ L2), therefore this
simplification is not available to us, and we must express the Lagrange weighting
indirectly in terms of the infimum on the right of (4.16) (when X ∈ D1 and Z ≤ 0).

Motivated by (3.5) and recalling Y defined at (4.9) we define dual function.

Definition 4.1.10 The dual function is the mapping g : Y→ [−∞,∞] given by

g(Y, Z) := inf
X∈A

K(X, (Y, Z)), (Y, Z) ∈ Y, (4.17)

where K is the Lagrangian given by (4.11).
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In order to expand the dual function at Definition 4.1.10 put

κ(Y, Z) := sup
X∈D1

−E[X(T )Y (T )]− inf
u2∈L∞

u2≤X(T )−B

Z(u2)

 (Y, Z) ∈ Y. (4.18)

Then, for each (Y, Z) ∈ Y the dual function is given by

g(Y, Z) =

{
−κ(Y, Z)− E[J∗(Y (T ))], Z ≤ 0,
−∞, otherwise,

(4.19)

as follows immediately from (4.17), (4.18) and Proposition 4.1.7.

Remark 4.1.11 From Definition 2.2.26 of the primal function f , Definition 4.1.10
of the dual function g, and the definition of the Lagrangian K (see (4.11)) we
immediately have the weak duality relation

f(X) ≥ K(X, (Y, Z)) ≥ g(Y, Z), X ∈ A, (Y, Z) ∈ Y, (4.20)

(exactly as at Remark 3.1.3).

4.2 Optimality Relations

We have defined the convex perturbation function F (·, ·) on A× U (see Definition
4.1.2), the space of dual variables (see (4.9)), the bilinear form 〈·, ·〉 on U × Y
(see (4.10)), constructed the Lagrangian K (see Proposition 4.1.7), and defined the
dual function g (see Definition 4.1.10). With Remark 3.1.5 in mind, we shall now
show in Proposition 4.2.3 that there exists a maximizer of the dual function with
zero duality gap (see (E.20)), so that, in particular, there exists a solution of the
dual problem of maximizing the dual function g on the space of dual variables Y.
We shall see that the Rockafellar-Moreau Theorem 3.1.4 is essential for establishing
Proposition 4.2.3. We proceed further to establish Kuhn-Tucker optimality relations
(see Remark 3.1.5) which will be used in the next section to construct an optimal
wealth process X̄ ∈ A (see (2.50)) in terms of the maximizer of the dual function.

To this end we need the next result, which is a simple consequence of the martingale
representation theorem. The elementary proof is relegated to Appendix A:

Lemma 4.2.1 Suppose Condition 2.1.9 and (2.1.10) and recall (4.4). Then for
each ζ ∈ L2 (recall Notation 4.1.1), there is a unique Y ∈ B1, such that Y (T ) = ζ
a.s.
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Remark 4.2.2 Proposition 4.2.3 which follows establishes that the duality gap is
zero (again recall Remark 3.1.3) and that there exists a maximizer of the dual func-
tion g. This maximizer is the Lagrange multiplier which “enforces” the constraints
in the QLM Problem 2.2.16, which is the central problem addressed in this thesis.
The proposition is therefore central to the entire conjugate-duality approach of the
thesis, since this relies completely on existence of Lagrange multipliers and a du-
ality gap of zero. As such, Proposition 4.2.3 is the most important single result in
the thesis. In view of this we give the proof of the proposition here in the main
body of the present chapter, rather than relegating it to an appendix as we have
done with most other proofs. As will be seen (at Remark 4.2.4 which follows) the
Rockafellar-Moreau Theorem 3.1.4 and the Slater-type Condition 2.2.22 are the
central elements of the proof:

Proposition 4.2.3 Suppose Conditions 2.1.9, 2.1.10 and 2.1.14. Then there exists
a maximizer of the dual function g : Y→ [−∞,∞] (see Definition 4.1.10) with zero
duality gap. That is, there exists some (Ȳ , Z̄) ∈ Y such that

inf
X∈A

f(X) = sup
(Y,Z)∈Y

g(Y, Z) = g(Ȳ , Z̄) ∈ R. (4.21)

Here f is the primal function given by Definition 2.2.26.

Proof. Define the “maximum” norm || · ||U for (u1, u2) ∈ U as

||(u1, u2)||U := max{||u1||L2 , ||u2||L∞}. (4.22)

Let U be the norm-topology (topology generated by || · ||U) on U. For (Y, Z) ∈ Y,
Lemma 2.2.4 implies that Y (T ) ∈ L2. Moreover, Z is a norm-continuous linear
functional on L∞. Hence the mapping (u1, u2) → 〈(u1, u2), (Y, Z)〉 is clearly U -
continuous on U for each (Y, Z) ∈ Y (recall (4.10)).

Now fix some U -continuous linear functional φ on U. From (4.22) it is clear that
u2 → φ(0, u2) is a continuous linear functional on L∞. By (D.14), we get

φ(0, u2) = Z(u2), (4.23)

for all u2 ∈ L∞, for some Z ∈ L∗∞.
Also, again from (4.22), the mapping u1 → φ(u1, 0) is norm-continuous on L2, thus
the Riesz representation theorem D.1.2 gives some ζ ∈ L2 such that

φ(u1, 0) = E[u1ζ], (4.24)
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for all u1 ∈ L2.
In view of Lemma 4.2.1, there is some Y ∈ B1 such that Y (T ) = ζ almost surely.
Hence we get

φ(u1, 0) = E[u1Y (T )], (4.25)

for all u1 ∈ L2.
We thus get that

φ(u1, u2) = φ(u1, 0) + φ(0, u2)

= E[u1Y (T )] + Z(u2)

= 〈(u1, u2), (Y, Z)〉 (4.26)

for all (u1, u2) ∈ U, as required to see that the topology U on U is 〈U,Y〉-compatible
(see Definition C.1.10).

We now proceed to verify the remaining conditions of Theorem 3.1.4. Let X̃ := X π̃,
for π̃ ∈ A given by Condition 2.2.22. Then

X̃ ∈ D, (4.27)

X̃(T ) ≥ B + u2, ∀ u2 ∈ L∞ s.t.||u2||L∞ < ε. (4.28)

From Lemma 2.2.4 it follows that X̃(T ) ∈ L2. Then, from Condition 2.2.9 and
Definition 2.2.8, one sees that the mapping

u1 → E[J(X̃(T )− u1)] : L2(Ω,FT ,P)→ R (4.29)

is norm-continuous. From the continuity of this map, (4.27), (4.28) and the defini-
tion of perturbation function (4.1.2) it is immediate that

sup
(u1,u2)∈U
||(u1,u2)||U<α

F (X̃, (u1, u2)) <∞ (4.30)

for some α ∈ (0,∞). Now put

G := {(u1, u2) ∈ U | ||(u1, u1)||U < α}. (4.31)

Then G is a U -neighborhood G of the origin (0, 0) ∈ U, and from (4.30) we have

sup
(u1,u2)∈G

F (X̃, (u1, u2)) <∞. (4.32)
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Recall that X̃ ∈ A, that U is a 〈U,Y〉-compatible topology on U, and F (·) is convex
on A × U and satisfies the consistency relation stated in Remark 4.1.3. It follows
that all conditions of Theorem 3.1.4 have been verified, and therefore

inf
X∈A

f(X) = sup
(Y,Z)∈Y

g(Y, Z) = g(Ȳ , Z̄) (4.33)

for some (Ȳ , Z̄) ∈ Y. The common value is finite, as follows from Remark 2.2.27.

Remark 4.2.4 Proposition 4.2.3 establishes existence of a Lagrange multiplier
(Ȳ , Z̄) for (2.49), together with zero duality gap. Notice that Proposition 4.2.3
is a consequence of Theorem 3.1.4, the use of which relies on showing (4.32), and
notice the crucial role played by the Slater-type Condition 2.2.22 in establishing
Proposition 4.2.3. In fact, one sees from the proof that it is the choice of essentially
bounded perturbations u2 at (4.2), together with the choice of the norm-topology
for U on U (recall (4.1)), which secures (4.30) from Condition 2.2.22. This effec-
tively mandates the definition of Y at (4.9) with L∗∞ for the second factor, since,
with this definition of Y and the bilinear form (4.10), the norm-topology U is
〈U,Y〉-compatible, as required to use Theorem 3.1.4.

Remark 4.2.5 The Lagrange multiplier (Ȳ , Z̄) given by Proposition 4.2.3 is a pair
in the vector space Y := B1 ×L∗∞ (see (4.9)). In this pair the first member Ȳ ∈ B1

is the Lagrange multiplier which accounts for the portfolio constraint π ∈ A, while
the second member Z̄ ∈ L∗∞ is the Lagrange multiplier for the a.s. state constraint
Xπ(T ) ≥ B in the QLM Problem 2.2.16. As we noted at Remark 2.2.19(c), removal
of the constraint Xπ(T ) ≥ B from Problem 2.2.16 results in the problem addressed
by Donnelly [7], which involves only the portfolio constraint π ∈ A. Accordingly,
the Lagrange multiplier in [7] should just be a process Ȳ ∈ B1 needed to account
for the portfolio constraint. That this is the case is clear (see Proposition 4.8 and
(4.23) in [7]).

Remark 4.2.6 For later use we make the following simple observations. Remark
4.1.8 and Proposition 4.2.3 ensure that the integral EJ∗(Ȳ (T )) exists in R and that
g(Ȳ , Z̄) ∈ R. It then follows from (4.19) that Z̄ ≤ 0 and κ(Ȳ , Z̄) ∈ R.

Notation 4.2.7 From now on the notation ∂J∗(y, ω) indicates the gradient of the
mapping y → J∗(y, ω) given by Equation (A.36) for ω fixed, that is

∂J∗(y, ω) = (y − c(ω))/a(ω), (y, ω) ∈ R× Ω. (4.34)
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The next Proposition 4.2.8 gives Kuhn-Tucker optimality relations (see Remark
3.1.5) which are equivalent to the equality f(X) = g(Y, Z) for arbitrary X ∈ A and
arbitrary (Y, Z) ∈ Y. The proof is placed in Appendix A.

Proposition 4.2.8 (Kuhn-Tucker optimality relations) Suppose Conditions 2.1.9,
2.1.10 and 2.2.9. For each (X, (Y, Z)) ∈ A× Y, we have the equivalence

f(X) = g(Y, Z) (4.35)

iff

X(T )−B ≥ 0, X ∈ D1, Z ≤ 0, (4.36)

inf
u2∈L∞

u2≤X(T )−B

Z(u2) = 0, (4.37)

E[X(T )Y (T )] + κ(Y, Z) = 0, (4.38)

X(T ) = (∂J∗)(Y (T )). (4.39)

Remark 4.2.9 Equations (4.36)-(4.39) constitute the Kuhn-Tucker optimality re-
lations for the QLM Problem 2.2.16.. In particular, (4.36) gives feasibility conditions
on the primal variable X and the dual variable Z. On the other hand (4.37) and
(4.38) are complementary slackness relations for the constraints in the problem,
that is relations between the primal variable X, the dual variable (Y, Z), and the
problem constraints. In particular, (4.37) is the complementary slackness relation
specific to the constraint X(T ) ≥ B in the primal cost functional (2.48), while
(4.38) is a further complementary slackness relation specific to the portfolio con-
straint X ∈ D in the primal cost functional (2.48). Finally, (4.39) is a transversality
relation which (as is always the case) relates the primal variable X, the dual variable
(X, Y ), and the problem cost functional J at the right boundary point t = T . In
Section 4.3 which follows we shall construct a process X̄ ∈ A in terms of the solution
(Ȳ , Z̄) ∈ Y of the dual problem (the existence of which is established by Proposition
4.2.3) such that (X̄, (Ȳ , Z̄)) ∈ A×Y verifies the Kuhn-Tucker optimality relations
(4.36) - (4.39). It then follows from the equivalence given by Proposition 4.2.8 that

f(X̄) = g(Ȳ , Z̄). (4.40)

Upon combining (4.40) and (4.21) we find

f(X̄) = inf
X∈A

f(X), (4.41)

as required to establish (2.50). It follows from Remark 2.2.28 that X̄ is the optimal
wealth process for the QLM problem 2.2.16.
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4.3 Candidate Optimal Wealth and Portfolio Pro-

cesses

Remark 4.3.1 In Proposition 4.2.3 we have established existence of a maximizer
(Ȳ , Z̄) ∈ Y of the dual function g : Y → [−∞,∞]. As noted at Remark 4.2.9,
our goal in the present section is to construct an Ito process X̄ ∈ A (recall (2.36))
such that the triple (X̄, (Ȳ , Z̄)) satisfies the optimality relations (4.36) - (4.39)
of Proposition 4.2.8. It then follows, as noted at Remark 4.2.9, that X̄ is the
optimal wealth process for the QLM problem 2.2.16. As a technical tool in the
construction of the process X̄ we shall need the following on semimartingales, which
is an immediate consequence of Proposition I-1 of Bismut [3]:

Proposition 4.3.2 For any (X0,Υ
X , ξX ,ΓX) ∈ B and (Y0,Υ

Y , ξY ,ΓY ) ∈ B (recall
(2.33) - (2.34)), the process {M(X, Y )(t) : t ∈ [0, T ]} defined by

M(X, Y )(t) := X(t)Y (t)−X0Y0 −
∫ t

0

(ΥX(τ)Y (τ) +X(τ)ΥY (τ))dτ

−
N∑
n=1

∫ t

0

ξXn (τ)ξYn (τ) dτ −
D∑

i,j=1

∫ t

0

ΓXi,j(τ)ΓYi,j(τ) d[Mij](τ)

(4.42)

is a martingale, more precisely M(X, Y ) ∈M0({Ft},P).

Remark 4.3.3 Proposition 4.2.3 ensures that g(Ȳ , Z̄) ∈ R and Remark 4.1.8 en-
sures that E[J∗(Ȳ (T ))] exists in R. Now it follows from (4.19) that Z̄ ≤ 0 and
κ(Ȳ , Z̄) ∈ R. These observations will be used several times in what follows.

We shall need several useful correspondences between sets and functions. The
simplest associates with each set C in a linear space X the characteristic function
δ̄X(·|C) of C ⊂ X which is defined as follows:

Definition 4.3.4 The characteristic function δ̄(x|C) of a set C in a linear space X
is defined as

δ̄X(x|C) =

{
0, if x ∈ C
+∞, if x 6∈ C. (4.43)
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Remark 4.3.5 C is a convex set if and only if δ̄X(·|C) is a convex function on X.
Characteristic functions play a fundamental role in convex analysis, and should not
be confused with the familiar indicator functions of real analysis (see (D.15)). We
shall always refer to (4.43) as a characteristic function and (D.15) as an indicator
function.

We shall next establish several necessary conditions resulting from the optimality of
(Ȳ , Z̄) ∈ Y given by Proposition 4.2.3, that is, we shall obtain several consequences
of the fact that

g(Ȳ , Z̄) ≥ g(Y, Z) for all (Y, Z) ∈ Y. (4.44)

To this end we shall also need the following technical result which effectively gives
the support function (see Lemma B.1.1) of the set of admissible wealth processes D
(see (2.47)). The proof of Proposition 4.3.6 is located in Appendix A.

Proposition 4.3.6 Suppose Conditions 2.1.9, 2.1.10, 2.1.14 and recall (B.1). For
each Y ∈ B1 we have

sup
X∈D

E[−X(T )Y (T )] = −x0Y0 + E

∫ T

0

δ(−σ(τ)[θ(τ)Y (τ) + ξY (τ)]|K)dτ.

(4.45)

Here x0 ∈ (0,∞) is the given nonrandom initial wealth (see (2.28) and Remark
2.2.17).

We shall now establish the first of several necessary conditions resulting from the
optimality of (Ȳ , Z̄) for the dual problem. We include the proof here (instead of
relegating it to Appendix A) because the argument illustrates the essential idea of
exploiting the all important optimality of (Ȳ , Z̄) at (4.44).

Proposition 4.3.7 Suppose Conditions 2.1.9, 2.1.10, 2.1.14 and recall (B.1) and
Proposition 4.2.3. For each Y ∈ B1 we have

E[∂J∗(Ȳ (T ))Y (T )]− x0Y0 + E

∫ T

0

δ(−σ(τ)[θ(τ)Y (τ) + ξY (τ)]|K)dτ ≥ 0,

(4.46)

where x0 ∈ (0,∞) is again the nonrandom initial wealth.

48



Proof. From Proposition 4.2.3 (i.e. from (4.44)), it follows that, for every ε ∈ (0,∞)
and Y ∈ B1, we have

g(Ȳ + εY, Z̄) ≤ g(Ȳ , Z̄) ∈ R, (4.47)

and then, from (4.47) and (4.19), we get

−κ(Ȳ + εY, Z̄)− E[J∗(Ȳ (T ) + εY (T ))] ≤ −κ(Ȳ , Z̄)− E[J∗(Ȳ (T ))]. (4.48)

Since κ(Ȳ , Z̄) ∈ R (see Remark 4.3.3), we then obtain from (4.48)

κ(Ȳ + εY, Z̄)− κ(Ȳ , Z̄) + E[J∗(Ȳ (T ) + εY (T ))]− E[J∗(Ȳ (T ))] ≥ 0, (4.49)

(the simple arithmetical operation at (4.49) is inadmissible if κ(Ȳ , Z̄) = +∞).
Again using κ(Ȳ , Z̄) ∈ R (by Remark 4.3.3), from (4.18) we have

κ(Ȳ + εY, Z̄)− κ(Ȳ , Z̄) ≤ ε sup
X∈D1

E[−X(T )Y (T )]. (4.50)

for all ε ∈ (0,∞) and Y ∈ B1. Since D1 ⊂ D (recall (4.13)), from (4.49) and (4.50)
we obtain

sup
X∈D

E[−X(T )Y (T )] + E[
J∗(Ȳ (T ) + εY (T ))− J∗(Ȳ (T ))

ε
] ≥ 0, (4.51)

for all ε ∈ (0,∞) and Y ∈ B1.

In view of Lemma 4.1.6 and the dominated convergence theorem, we can take ε→ 0
at (4.51) to get

sup
X∈D

E[−X(T )Y (T )] + E[∂J∗(Ȳ (T ))Y (T )] ≥ 0, (4.52)

for each Y ∈ B1. Now (4.46) follows from (4.45) and (4.52).

We will later use the inequality (4.46) as tool for constructing the optimal wealth
process X̄. For this construction we shall also need the state price density H defined
in terms of the market price of risk θ (see Definition 2.1.17) and bond price S0 (see
(2.19)) as follows:

Definition 4.3.8 The state price density is the process H : Ω× [0, T ] → R given
by

H(t) = [S0(t)]−1exp
(
−
∫ t

0
θ>(τ) dW(τ)− 1

2

∫ t
0
‖ θ(τ) ‖2 dτ

)
, t ∈ [0, T ].

(4.53)
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The following proposition establishes that the state-price density H is strongly
bounded. The proof, which just involves a routine boundedness computation, is in
Appendix A:

Proposition 4.3.9 For every p ∈ R we have

E

(
sup
t∈[0,T ]

|H(t)|p
)
<∞. (4.54)

The following result is again elementary, giving the Ito process components of the
state-price density H (recall Remark 2.2.2). The proof is relegated to Appendix A.

Proposition 4.3.10 Recalling (2.36), we have H ≡ (1,−rH,−Hθ, 0) ∈ A. That
is

H0 = 1, ΥH = −rH ∈ L21, ξ
H = −Hθ ∈ L2(W) and ΓH = 0 ∈ L2(M). (4.55)

The next result is another tool that we shall need for constructing an optimal
portfolio X̄ in terms of the Lagrange multipliers (i.e. the maximizer (Ȳ , Z̄) ∈ Y
given by Proposition 4.2.3). The proof is rather lengthy but uses only elementary
ideas of stochastic calculus, and is placed in Appendix A:

Proposition 4.3.11 Fix some ζ ∈ L2 (recall Notation 4.1.1), and define the R-
valued process {X(t)} in terms of ζ and the state price density H (see Definition
4.3.8) as follows:

X(t) := H(t)−1E[ζH(T )|Ft], t ∈ [0, T ]. (4.56)

Then the following hold:

(a) X is square integrable, that is

E

(
sup
t∈[0,T ]

|X(t)|2
)
<∞. (4.57)

(b) For X defined as in (4.56) and the state price density H(see (4.53)), the product
process XH is both a martingale and a locally square integrable martingale. More
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precisely (recall Definition B.2.6, Definition B.2.14, Remark B.2.7 and Remark
B.2.16) we have

XH ∈Mloc
2 ({Ft},P) ∩M({Ft},P), (4.58)

(note that one does not have Mloc
2 ({Ft},P) ⊂ M({Ft},P) although it is always

the case that M2({Ft},P) ⊂M({Ft},P)).

(c) XH can be expanded as a sum of stochastic integrals, in particular there exist
integrand processes

ξ̃ = (ξ̃1, . . . , ξ̃N)> ∈ Lloc2 (W) (4.59)

and Γ̃ = (Γ̃ij)
D
i,j=1 ∈ Lloc2 (M) (4.60)

such that

X(t)H(t) = X0 +
N∑
n=1

∫ t

0

ξ̃n(τ) dWn(τ) +
D∑

i,j=1

∫ t

0

Γ̃i,j(τ) dMij(τ). (4.61)

(d) The RN -valued process {π̃(t), t ∈ [0, T ]} defined by

π̃(t) := [σ>]−1{H−1(t)ξ̃(t) +X(t−)θ(t)}, t ∈ [0, T ], (4.62)

pathwise square integrable, that is∫ T

0

‖ π̃(t) ‖2 dt <∞ a.s. (4.63)

(e) The process X given by (4.56) is a semimartingale of the form

X(t) = X0 +

∫ t

0

{r(τ)X(t) + π̃>(τ)σ(τ)θ(τ)}dτ +

∫ t

0

π̃>(τ)σ(τ) dW(τ)

+
D∑

i,j=1

∫ t

0

H(τ)−1Γ̃ij(τ) dMij(τ). (4.64)

(f) The process π̃ (see (4.62)) and Γ (recall (4.60)) are such that

σ>π̃ ∈ L2(W) and H−1Γ̃ ∈ L2(M). (4.65)

Corollary 4.3.12 Equation (4.63) can be strengthened to

π̃ ∈ L2(W). (4.66)
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Proof. Follows from (4.65) and the uniform boundedness of σ.

Corollary 4.3.13 Recalling (2.33), we have

X ≡ (X0, rX− + π̃σθ,σ>π̃, H−1Γ̃) ∈ B (4.67)

Proof. From (4.65), we have σ>π̃ ∈ L2(W) and H−1Γ̃ ∈ L2(M). So we need only
show that rX−+π̃>σθ ∈ L21. However, from (4.57), we have E

(
supt∈[0,T ] |X(t)|2

)
<

∞ and from Corollary 4.3.12, E
∫ T

0
‖ π̃(t) ‖2 dt < ∞. From these two facts and

uniform boundedness of r,σ, and θ, we have rX− + π̃σθ ∈ L21.

Remark 4.3.14 It is evident from (4.56) that the process X is completely deter-
mined by the choice of the random variable ζ ∈ L2. The integrand processes ξ̃
and Γ̃ at (4.59) - (4.60) are obtained from application of the martingale representa-
tion theorem (see Theorem G.3.5) to the locally square-integrable martingale XH
(see (4.58)); since X, and therefore XH, is completely determined by the random
variable ζ ∈ L2, it follows that the integrand processes ξ̃ and Γ̃ are themselves
completely determined by the random variable ζ ∈ L2. It then follows from (4.62)
that the process π̃ is also completely determined by the random variable ζ ∈ L2.
Later (see (4.69)) we are going to use the component Ȳ of the dual optimal solution
(Ȳ , Z̄) given by Proposition 4.2.3 to appropriately construct the random variable
ζ ∈ L2 such that X defined at (4.56) is actually the optimal wealth process and π̃
defined at (4.62) is the corresponding optimal portfolio process for the QLM Prob-
lem 2.2.16. In order to carry out this program we shall need the following result on
a particular type of linear stochastic integral equation. This result is established in
Donnelly et-al (see Lemma A.3 of [7]). For completeness the proof is also given in
Appendix A.

Lemma 4.3.15 For each ρ ∈ L2(W) and γ = (γ)Di,j=1 ∈ L2(M), there exists
λ ∈ L2(W) such that for all t ∈ [0, T ] we have a.s.

λ(t) + θ(t)

∫ t

0

λ>(τ) dW(τ) = ρ(t)− θ(t)
D∑

i,j=1

∫ t

0

γij(τ) dMij(τ), (4.68)

where λ is unique in the sense that if there exists λ̄ ∈ L2(W) such that (4.68) holds
with λ replaced by λ̄, then λ = λ̄ (P⊗ Leb)-a.e.
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Remark 4.3.16 In the present section we have accumulated several technical
tools, in particular Propositions 4.3.2, 4.3.7, and 4.3.11, Corollaries 4.3.12 and
4.3.13, and Lemma 4.3.15. With these tools we are now finally ready to begin con-
struction of the optimal wealth process X̄ (recall Remark 4.3.1). Recalling Ȳ ∈ B1

given by Proposition 4.2.3 define

ζ := ∂J∗(Ȳ ). (4.69)

We then have

ζ ∈ L2, (4.70)

as follows immediately from Notation 4.2.7, Lemma 2.2.4 and Condition 2.2.9. All
results in Proposition 4.3.11 therefore hold in particular when ζ is defined at (4.69).
We now define a candidate optimal wealth process X̄ in accordance with (4.56) with
ζ defined at (4.69) in terms of the component Ȳ of the dual solution (Ȳ , Z̄) (see
(4.44)), that is

X̄(t) := H(t)−1E[∂J∗(Ȳ (T ))H(T )|Ft], t ∈ [0, T ]. (4.71)

The remainder of this section is devoted to showing that X̄ ∈ A, and that the
triplet (X̄, (Ȳ , Z̄)) ∈ A × Y (recall Proposition 4.2.3) satisfies the optimality re-
lations (4.36) - (4.39) of Proposition 4.2.8. It then follows that X̄ is the optimal
wealth process for the QLM problem 2.2.16 (see Remark 4.3.1).

In view of Proposition 4.3.11(c) we have

X̄(t)H(t) = X̄0 +
N∑
n=1

∫ t

0

ξ̄n(τ) dWn(τ) +
D∑

i,j=1

∫ t

0

Γ̄i,j(τ) dMij(τ), (4.72)

for some integrand processes

ξ̄ = (ξ̄1, . . . , ξ̄N)> ∈ Lloc2 (W) (4.73)

and Γ̄ =
(
Γ̄ij
)D
i,j=1
∈ Lloc2 (M). (4.74)

The integrand processes ξ̄ and Γ̄ are just the integrand processes ξ̃ and Γ̃ at Proposi-
tion 4.3.11(c) for the particular case of ζ given by (4.69). Motivated by Proposition
4.3.11(d) we also define the candidate optimal portfolio process in terms of X̄ and
the integrand ξ̄ at (4.73) in accordance with (4.62), that is

π̄(t) := [σ>]−1{H−1(t)ξ̄(t) + X̄(t−)θ(t)}, t ∈ [0, T ]. (4.75)
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Remark 4.3.17 It is most important to understand that the process X̄ defined at
(4.71), and the process π̄ defined at (4.75), are each completely determined by the
component Ȳ of the optimal dual solution (Ȳ , Z̄) given by Proposition 4.2.3. This
is immediate from the dependency on general ζ ∈ L2 noted at Remark 4.3.14 and
the definition of ζ in terms of Ȳ (see (4.69) and (4.70)). It will be seen that the
optimality of (Ȳ , Z̄) (see (4.44)) is the essential thing for establishing that X̄ is the
optimal wealth process and π̄ is the corresponding optimal portfolio for the QLM
Problem 2.2.16.

Remark 4.3.18 In the remainder of this section we are going to show that

π̄ ∈ A, (4.76)

that is π̄ defined by (4.75) is an admissible portfolio process (recall Definition 2.2.12)
and that

X̄ ∈ D with X̄ = X π̄, (4.77)

that is the process X̄ defined at (4.71) is an admissible wealth process (recall (2.47))
and is actually the wealth process corresponding to the admissible portfolio π̄ (recall
(2.28)). We shall then verify that the pair (X̄, (Ȳ , Z̄)) satisfies the optimality
relations (4.36)-(4.39) (recall Remark 4.3.16). Since all the preceding constructions
in the present section have been quite extensive we shall first briefly recall and
highlight the main results which have been established so far: From Proposition
4.3.11(a) and Remark 4.3.16 it follows that X̄ defined at 4.71 is bounded in the
following sense:

E

(
sup
t∈[0,T ]

|X̄(t)|2
)
<∞. (4.78)

Moreover, from Corollary 4.3.12, Remark 4.3.16 and (4.75), we have

π̄ ∈ L2(W). (4.79)

Finally, recalling ξ̄ and Γ̄ as defined in (4.72), Corollary 4.3.13 and Remark 4.3.16
we get

X̄ ≡ (X̄0, rX̄− + π̄σθ,σ>π̄, H−1Γ̄) ∈ B. (4.80)
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Recalling the equivalence of (2.34) and (2.35), we can write (4.80) in expanded
form to see that X̄ defined at (4.71) satisfies the integral relation

X̄(t) = X̄0 +

∫ t

0

[r(τ)X̄(τ−) + π̄>(τ)σ(τ)θ(τ)]dτ

+

∫ t

0

π̄>(τ)σ(τ) dW (τ) +
D∑

i,j=1

∫ t

0

H−1(τ)Γ̄i,j dMij(τ). (4.81)

We now proceed to establish that (4.76) and (4.77) hold. For this we will need the
following result, which is just a slight refinement of Proposition 4.3.7:

Lemma 4.3.19 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22 and recall
X̄ and π̄ defined at (4.71) and (4.75) respectively in terms of Ȳ ∈ B1 given by
Proposition 4.2.3. Then for each Y ∈ B1, we have

(X̄0 − x0)Y0 + E

∫ t

0

π̄>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)] dτ

+E
D∑

i,j=1

∫ t

0

H(τ)−1Γ̄ij(τ)ΓYij(τ) d[Mij](τ)

+E

∫ T

0

δ(σ(τ)[θ(τ)Y (τ) + ξY (τ)]|K)dτ ≥ 0. (4.82)

The elementary proof of Lemma 4.3.19 is placed in Appendix A.

Lemma 4.3.19 and Lemma 4.3.15 are now used as technical tools for establishing
Proposition 4.3.20 which follows. From this result it will be clear that (4.76) and
(4.77) hold for π̄ defined at (4.75) and X̄ defined at (4.71) (see the discussion in
Remark 4.3.21 which follows). The proof of Proposition 4.3.20 is somewhat lengthy
and technical and is placed in Appendix A.

Proposition 4.3.20 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22 and
recall X̄ and π̄ defined at (4.71) and (4.75) respectively in terms of Ȳ ∈ B1 given
by Proposition 4.2.3. Then

(a) x0 being the given initial wealth of investor (recall (2.28) and Remark 2.2.17),
we have

X̄(0) ≡ X̄0 = x0, (4.83)
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that is, the value at t = 0 of the semimartingale X̄ defined at (4.71) is equal to the
initial wealth x0.

(b) For the candidate portfolio process π̄ given by (4.75), we have

π̄(t) ∈ K (P⊗ Leb)− a.e., and therefore π̄ ∈ A, (4.84)

that is, the candidate portfolio process π̄ satisfies the stipulated portfolio con-
straints, and is therefore an admissible portfolio process for the QLM Problem
(recall Definition 2.2.12 and Problem 2.2.16).

(c) For Γ̄ at (4.81), we have

Γ̄ = 0 ν[M] − a.e. (4.85)

that is, the dMij-stochastic integral on the right side of (4.81) is identically zero.

Remark 4.3.21 From Proposition 4.3.20(b) we know that π̄ is an admissible port-
folio process. Moreover, from Proposition 4.3.20(a)(c) together with (4.81), we have

X̄(t) = x0 +

∫ t

0

[r(τ)X̄(τ) + π̄>(τ)σ(τ)θ(τ)] dτ

+

∫ t

0

π̄>(τ)σ(τ) dW (τ),

(4.86)

and in particular

X̄ ∈ A, (4.87)

(see (2.36)). Upon comparing (4.86) with the general relation (2.28) we see that
X̄ = X π̄. That is, the semimartingale X̄ defined at (4.71) in terms of the component
Ȳ of the optimal dual solution (Ȳ , Z̄) given by Proposition 4.2.3, is actually the
wealth process corresponding to the admissible portfolio π̄ ∈ A, that is X̄ ∈ D (see
(2.47)). We have therefore established (4.76) and (4.77).

Continuing the program summarized in Remark 4.3.18 we next verify that (X̄, (Ȳ , Z̄))
satisfies the optimality relations (4.36)-(4.39). In order to accomplish this we need
to extract yet another necessary condition resulting from the optimality of (Ȳ , Z̄)
obtained in Proposition 4.2.3 (see also (4.44)). Recall that we have already obtained
one such necessary condition in Proposition 4.3.7, and that this necessary condi-
tion was the essential thing needed to obtain (4.76) and (4.77). In the course of

56



establishing Proposition 4.3.7 we varied only the first argument of the dual function
g(·, ·) while keeping the second argument fixed at Z̄ (see (4.47)). In Proposition
4.3.22 which follows we shall obtain yet another necessary condition from the opti-
mality of (Ȳ , Z̄) (which complements the necessary condition at Proposition 4.3.7),
by varying both arguments (Y, Z) in a particular way (see (4.90) which follows).
The necessary condition of Proposition 4.3.22 will itself be essential for establish-
ing that X̄ satisfies the terminal wealth constraint, that is X̄(T ) ≥ B, a.s. (i.e.
that X̄ satisfies the first relation of (4.36)). Since Proposition 4.3.22 relies on the
all-important optimality of (Ȳ , Z̄) (see (4.44)) we give the proof here instead of
relegating it to Appendix A.

Proposition 4.3.22 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22 and
recall (4.13), Notation 4.1.1 and X̄ defined at (4.71). Then for each ζ ∈ L2, we
have

sup
X∈D1,u2∈L∞
u2≤X(T )−B

E[ζ(u2 − (X(T )−B))] + δ̄L∗∞(−ζ|G) + E[(X̄(T )−B)ζ] ≥ 0. (4.88)

Proof. Fix some ζ ∈ L2; from Proposition 4.2.1 we have

Y (T ) = ζ, (4.89)

for some Y ∈ B1. Then Proposition 4.2.3 gives

g(Ȳ + εY, Z̄ − εζ) ≤ g(Ȳ , Z̄) for all ε ∈ (0,∞). (4.90)

Hence from (4.90) and (4.19),

κ(Ȳ + εY, Z̄ − εζ) + EJ∗(Ȳ (T ) + εζ) + δ̄L∗∞(Z̄ − εζ|G)

≥ κ(Ȳ , Z̄) + EJ∗(Ȳ (T )) + δ̄L∗∞(Z̄|G), ε ∈ (0,∞) (4.91)

Since Z̄ ∈ G (by Remark 4.3.3), we have

δ̄(Z̄|G) = 0 (4.92)

and δ̄L∗∞(Z̄ − εζ|G) ≤ εδ̄L∗∞(−ζ|G), ε ∈ (0,∞), (4.93)
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since Z̄ − εζ ∈ G when −ζ ∈ G. From (4.18) and (4.89), we get

κ(Ȳ + εY, Z̄ − εζ) = sup
X∈D1

−E[X(T )(Ȳ + εY )(T )] + sup
u2∈L∞

u2≤X(T )−B

(εζ − Z̄)(u2)


≤ sup

X∈D1

−E[X(T )Ȳ (T )] + sup
u2∈L∞

u2≤X(T )−B

(−Z̄)(u2) + ε sup
u2∈L∞

u2≤X(T )−B

{E[ζu2]− E[ζX(T )]}


≤ κ(Ȳ , Z̄) + ε sup

X∈D1

 sup
u2∈L∞

u2≤X(T )−B

E[ζ(u2 −X(T ))]

 , for each ε ∈ (0,∞). (4.94)

Since κ(Ȳ , Z̄) ∈ R (see Remark 4.2.6), we can combine (4.91),(4.92),(4.93) and
(4.94) to get

sup
X∈D1,u2∈L∞
u2≤X(T )−B

E[ζ(u2 −X(T ))] + δ̄L∗∞(−ζ|G) + E

[
J∗(Ȳ (T ) + εζ)− J∗(Ȳ (T ))

ε

]
≥ 0,

(4.95)

for all ε ∈ (0,∞). Since X̄(T ) = ∂J∗(Ȳ (T )), it follows from Condition 2.2.9 and
dominated convergence, that the third term on left of (4.95) converges to E[X̄(T )ζ]
as ε→ 0. Since (4.95) holds for arbitrarily chosen ζ ∈ L2 we obtain (4.88).

With Proposition 4.3.22 it is very easy to establish that the wealth process X̄
satisfies the terminal wealth constraint in the QLM Problem 2.2.16:

Proposition 4.3.23 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22. Re-
call Notation 4.1.1 and X̄ defined at (4.71) in terms of Ȳ ∈ B1, given by Proposition
4.2.3. Then X̄(T ) ≥ B, a.s.

Proof. Put

ζ := IX̄(T )<B, (4.96)

where I is the indicator function given by Definition D.1.12. Since ζ is an indicator
function with values in the two-point set {0, 1} it is clear that ζ ∈ L2 and ζ ≥ 0.
We therefore get

δ̄L∗∞(−ζ|G) = 0. (4.97)
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Now suppose the contrary of what we wish to establish, namely P [X̄(T ) < B] > 0.
Then from (4.96)

E[(X̄(T )−B)ζ] < 0. (4.98)

Moreover, for each X ∈ D1 and u2 ∈ L∞ with u2 ≤ X(T )−B, we have

E[ζ(u2 − (X(T )−B))] ≤ 0. (4.99)

It follows from (4.97), (4.98) and (4.99) that the quantity on the left side of (4.88)
is strictly negative when we suppose that P [X̄(T ) < B] > 0. Since this contradicts
the result of Proposition 4.3.22, we get X̄(T ) ≥ B, a.s.

Remark 4.3.24 Recall from Remark 4.2.9 that our goal is to construct X̄ ∈ A
in terms of the maximizer (Ȳ , Z̄) ∈ Y of the dual function given by Proposition
4.2.3 such that (X̄, (Ȳ , Z̄)) ∈ A×Y satisfies the optimality relations (4.36)-(4.39).
We defined X̄ in terms of (Ȳ , Z̄) (see (4.71)), and have established that X̄ ∈ A
(see (4.87)). We have also accomplished most of the work needed for verifying that
(X̄, (Ȳ , Z̄)) satisfies (4.36)-(4.39). In fact, from Proposition 4.3.23 it follows that

X̄(T )−B ≥ 0, (4.100)

so that clearly

X̄ ∈ A1, (4.101)

(see (4.12)). Since we have already shown that X̄ ∈ D (see Remark 4.3.21 and
(4.77)) we then obtain from (4.101)

X̄ ∈ D1, (4.102)

(see (4.13)). From Remark 4.3.3, it follows that

Z̄ ≤ 0, (4.103)

and in view of (4.100), (4.102) and (4.103), the pair (X̄, Z̄) satisfies Equation (4.36)
of Proposition 4.2.8. Furthermore, it is immediate from (4.71) that

X̄(T ) = (∂J∗)(Ȳ (T )), (4.104)

hence (4.39) of Proposition 4.2.8 is verified as well. It therefore only remains to
verify that the complementary slackness relations (4.37) and (4.38) also hold. This
is the goal of the following proposition which again exploits the optimality of (Ȳ , Z̄)
established at Proposition 4.2.3 (see also (4.44)):
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Proposition 4.3.25 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22. Re-
call Notation 4.1.1, (Ȳ , Z̄) given by Proposition 4.2.3 and X̄ defined at (4.71).
Then

κ(Ȳ , Z̄) + E[X̄(T )Ȳ (T )] = inf
u2∈L∞

u2≤X̄(T )−B

Z̄(u2) = 0. (4.105)

Proof. The proof of this proposition again relies on the optimality of the pair (Ȳ , Z̄)
established at Proposition 4.2.3. In fact, from Proposition 4.2.3, we get

g(Ȳ − εȲ , Z̄ − εZ̄) ≤ g(Ȳ , Z̄) (4.106)

and Remark 4.3.3 implies

Z̄ − εZ̄ ≤ 0, (4.107)

for all ε ∈ [0, 1).

It therefore follows from (4.19), (4.106) and (4.107) that

κ(Ȳ − εȲ , Z̄ − εZ̄) + EJ∗(Ȳ (T )− εȲ (T )) ≥ κ(Ȳ , Z̄) + EJ∗(Ȳ (T )), (4.108)

for all ε ∈ (0, 1).

From (4.18) one sees that

κ(Ȳ − εȲ , Z̄ − εZ̄) = (1− ε)κ(Ȳ , Z̄), (4.109)

for all ε ∈ [0, 1). Using this in (4.108), with κ(Ȳ , Z̄) ∈ R (see Remark 4.3.3) then
gives that

−κ(Ȳ , Z̄) +
1

ε
E[J∗((1− ε)Ȳ (T ))− J∗(Ȳ (T ))] ≥ 0 for all ε ∈ (0, 1). (4.110)

We now let ε → 0 at (4.110): from Lemma 4.1.6 and the dominated convergence
theorem we easily obtain

lim
ε→0

1

ε
E[J∗((1− ε)Ȳ (T ))− J∗(Ȳ (T ))] = −E[Ȳ (T )∂J∗(Ȳ (T ))], (4.111)

and upon combining (4.111) with (4.110) and (4.104) we find

κ(Ȳ , Z̄) + E[X̄(T )Ȳ (T )] ≤ 0. (4.112)
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Moreover, since Z̄(0) = 0, it is immediate from Proposition 4.3.23 that

inf
u2∈L∞

u2≤X̄(T )−B

Z̄(u2) ≤ 0, (4.113)

and, since X̄ ∈ D1 (see Remark 4.3.24), it follows from (4.18) that

κ(Ȳ , Z̄) + E[X̄(T )Ȳ (T )] + inf
u2∈L∞

u2≤X̄(T )−B

Z̄(u2) ≥ 0. (4.114)

The proposition is now immediate from (4.112), (4.113) and (4.114).

Remark 4.3.26 It is immediate from Proposition 4.3.25 that (X̄, (Ȳ , Z̄)) ∈ A×Y
satisfies the complementary slackness relations (4.37) and (4.38). In view of Remark
4.3.24 we have established that (X̄, (Ȳ , Z̄)) satisfies the entire set of Kuhn-Tucker
optimality relations (4.36)-(4.39). Proposition 4.2.8 then gives

f(X̄) = g(Ȳ , Z̄). (4.115)

However, from Remark 4.1.11 we also have

f(X) ≥ g(Y, Z) for each X ∈ A and (Y, Z) ∈ Y, (4.116)

and from (4.115) and (4.116) we find

X̄ ∈ A, and f(X̄) = inf
X∈A

f(X), (4.117)

that is X̄ is the minimizer of the primal function f on the set A of admissible wealth
processes. From Remark 4.3.24 we have X̄ = X π̄ ∈ D and X̄(T ) ≥ B a.s. From
this, together with (2.49), we finally obtain

η = E[J(X π̄(T ))] = f(X π̄) = f(X̄), (4.118)

that is π̄ is the optimal portfolio for the QLM Problem 2.2.16.

The results of this chapter are summarized in the following Proposition.

Proposition 4.3.27 Suppose Conditions 2.1.9,2.1.10,2.1.14,2.2.9 and 2.2.22. Then
there exists some (Ȳ , Z̄) ∈ Y := B1×L∗∞ which maximizes the dual function g(Y, Z)
on Y (recall Definition 4.1.10 and Proposition 4.2.3). Define the R-valued process
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X̄ in terms of Ȳ and state price density H (see Definition 4.3.8) and the RN -valued
process π̄ ∈ P∗(see Definition 2.1.6) by

X̄(t) := H(t)−1E[∂J∗(Ȳ (T ))H(T )|Ft], t ∈ [0, T ],

π̄(t) := [σ>]−1{H−1(t)ξ̄(t) + X̄(t−)θ(t)}, t ∈ [0, T ],

where ξ̄ ∈ Lloc2 (W) is the dW-integrand given by the martingale representation
theorem (see (4.72) - (4.73)). Then

(a) X̄ ∈ A (recall (2.36)), and in particular Γ̄ = 0, ν[M] = 0-a.e. (see Proposition
4.3.20).

(b) π̄ ∈ A (recall (4.79) and (4.84)), X̄ = X π̄ (recall (2.28)), X π̄(T ) ≥ B a.s.
and

E [J(X π̄(T ))] = inf
π∈A

Xπ(T )≥B a.s.

E[J(Xπ(T ))]

= sup
(Y,Z)∈Y

g(Y, Z) = g(Ȳ , Z̄). (4.119)

In particular,

E [J(X π̄(T ))] = η, (4.120)

(recall (2.49)) and π̄ is the optimal portfolio for the QLM Problem 2.2.16.
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Chapter 5

Conclusion and suggestions for
Future Work

In this thesis we have addressed a problem of quadratic loss minimization in the
presence of portfolio (or control) constraints and terminal wealth (or state) con-
straints with regime switching included in the market model. This combination
leads to a fairly challenging convex stochastic control problem the key to which
is to exploit convexity in order to introduce a dual problem. The solution of the
dual problem gives the associated Lagrange multipliers, in terms of which one con-
structs the optimal portfolio (or optimal control). A method of Rockafellar and
Moreau, hitherto mainly used for finite dimensional problems of convex optimiza-
tion, is adapted to the stochastic control problem of this thesis, which is an infinite
dimensional problem of convex optimization.

The present work can clearly be taken further in a variety of possible directions, of
which the following seem to be the most interesting:

(I) The state constraint in this thesis is only on the wealth at close of trade T ,
namely Xπ(T ) ≥ B a.s. (see Definition 2.2.14), and as such is a European-type
state constraint. A considerably more challenging problem results when this is
replaced with an American-type state constraint, in which a continuous Ft-adapted
process {B(t), t ∈ [0, T ]} stipulates an acceptable “floor level” of wealth over
the entire trading interval, so that the problem is to minimize the quadratic loss
function E[J(Xπ(T ))] subject to the portfolio constraint π ∈ A (exactly as in the
QLM Problem 2.2.16) but with the state constraint Xπ(t) ≥ B(t) a.s. now over
the entire trading interval t ∈ [0, T ] (instead of just at close-of-trade T , as in the

63



QLM Problem 2.2.16). The primal value of this problem is then given by

η := inf
π∈A

Xπ(t)≥B(t) a.s.

t∈[0,T ]

E[J(Xπ(T ))], (5.1)

(c.f. (2.45) for Problem 2.2.16). In place of the Slater Condition 2.2.22 one pos-
tulates that there is some π̂ ∈ A and constant ε ∈ (0,∞) such that X π̂(t) ≥
B(t) + ε for all t ∈ [0, T ] a.s., and the perturbation by u2 ∈ L∞ at (4.2) must
be replaced with the perturbation X(t) ≥ B(t) + u2(t), t ∈ [0, T ] a.s. for each
u2 ∈ L∞((Ω, {Ft}, P );C[0, T ]) (this denotes the Banach space of all real-valued,
continuous, Ft-adapted and P -essentially bounded processes {u2(t); t ∈ [0, T ]}
with norm ||u2|| := P − ess-sup{maxt∈[0,T ] |u2(t)|}). With this perturbation, the
natural analogue of the “second” factor space L∗∞ at (4.9) is then the norm dual of
L∞((Ω, {Ft}, P );C[0, T ]), a characterization of which is essentially provided by Ioffe
and Levin (Theorem 3 on page 57 of [16]), a result which generalizes the Yosida-
Hewitt decomposition (recall Theorem D.1.11) to essentially bounded measurable
functions taking values in a separable Banach space. The Rockafellar-Moreau ap-
proach provides a rational method for dealing with this constraint, but definite
technical challenges going well beyond those of the present thesis must nevertheless
still be resolved.

(II) If the a.s. state constraint Xπ(T ) ≥ B is removed from the QLM Prob-
lem 2.2.16 then this problem simplifies to the problem addressed by Donnelly [7],
namely minimize E[J(Xπ(T ))] subject to the portfolio constraint π ∈ A. In this
case it is possible to get explicit optimal portfolios in feedback form when the con-
vex portfolio constraint set K (see (2.44)) is “nice” (e.g. a cone) and the market
parameters are adapted to the filtration of the Markov chain α that is

Fαt := σ{α(s) : s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ], (5.2)

(see Section 5 of [7]). It is therefore natural to ask if one can also get comparably
explicit optimal portfolios in feedback form for the QLM Problem 2.2.16, which is
effectively the problem addressed in [7] with the a.s. constraintXπ(T ) ≥ B included
(recall Remark 2.2.19(c)). The calculation of explicit optimal portfolios in Section
5 of [7] relies on the fact that the Lagrange multiplier is just a simple Ito process
Ȳ ∈ B1. In the case of Problem 2.2.16 the Lagrange multiplier is a pair (Ȳ , Z̄) ∈
B1 × L∗∞, in which the second member Z̄ ∈ L∗∞ is the Lagrange multiplier for the
state constraint Xπ(T ) ≥ B (see Remark 4.2.5), and it is this second Lagrange
multiplier Z̄ which ruins the possibility of getting explicit optimal portfolios in
feedback form along the lines of [7]. This is because Z̄ ∈ L∗∞ typically involves
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a singular element Z̄◦ ∈ Q(Ω,FT ,P) and there is as yet no adequate calculus
for handling such singular elements. Despite this, Proposition 4.3.27 is still an
essential starting point for the computation of optimal portfolios, since the duality
characterization of optimality that it furnishes is indispensable for implementing
any of the powerful duality-based primal-dual Lagrangian algorithms (motivated
by Chap.4 of Ito and Kunisch [17]). In particular, one sees from Proposition 4.3.27
that the optimal portfolio π̄ depends explicitly on just the first element Ȳ of the
solution (Ȳ , Z̄) of the dual problem, and consequently we need approximate the
second element Z̄ in only a rather weak sense. Now the space L2(Ω,FT ,P) is a
σ{L∗∞, L∞}-dense subspace of L∗∞ (as follows from Theorem 6.24(3) in Aliprantis
and Border [1]), that is Z̄ ∈ L∗∞ can be approximated arbitrarily closely in the
σ{L∗∞, L∞}-topology by (much more tractable) elements of L2(Ω,FT ,P). With such
an approximation at hand it becomes possible to extend the approach in Section 5
of [7] to get at least approximate optimal portfolios in feedback form. This suggests
the goal of implementing a primal-dual Lagrangian algorithm in function space for
approximating a triple (X̄, (Ȳ , Z̄)) ∈ D × (B1 × L∗∞) such that f(X̄) = g(Ȳ , Z̄)
in which Z̄ is approximated by elements of L2(Ω,FT ,P) in the (weak∗) topology
σ(L∗∞, L∞).
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Appendix A

Supplementary Results and Proofs

The proofs of several of the technical results in the main body of the thesis are
collected in the present Appendix. The reason for this is that these proofs, which
are sometimes quite lengthy and technical, are usually of subsidiary interest, and
can obscure the main lines of development if placed in the main part of the thesis,
and are accordingly best relegated to an appendix. In fact, we have retained in the
main body of the thesis only those proofs which illustrate ideas of genuinely “in-
trinsic” interest, and have placed all other proofs in this Appendix. Readers of the
thesis will actually lose very little if they choose not to study the proofs which follow.

Proof of Proposition 2.2.3: Set t = 0 in (2.38) to obtain immediately X0 = Y0.
Then we have a.s.∫ t

0

(ξX − ξY )>(τ) dW(τ) =

∫ t

0

ΥY (τ)−ΥX(τ) dτ +
D∑

i,j=1

∫ t

0

(ΓYi,j − ΓXi,j)(τ) dMij(τ)

(A.1)

for all t ∈ [0, T ]. The right-hand side of (A.1) is the sum of continuous finite
variation process and a finite-variation local martingale, both null at the origin. So
the right-hand side is a finite-variation semimartingale. The left-hand side of (A.1)
is clearly a continuous local martingale, null at the origin. However, the left-hand
side must also have paths of finite-variation, since the right-hand side had paths of
finite-variation.

If a continuous local martingale N has paths of finite variation then N(t) = 0 a.s.
for all t ∈ [0, T ] (see Rogers and Williams [32], Theorem IV.30.4). Thus from (A.1)
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we obtain ∫ t

0

(ξX − ξY )>(τ) dW(τ) = 0 a.s., ∀ t ∈ [0, T ] (A.2)

Evaluating at time t = T , squaring, taking expectations and using the Itô isometry,
we get from (A.2),

0 = E

(∫ t

0

(ξX − ξY )>(τ) dW(τ)

)2

= E

∫ t

0

‖ (ξX − ξY )(τ) ‖2 dτ (A.3)

This implies that ξX = ξX(P⊗ Leb)-a.e. From (A.1) and (A.2) we then obtain∫ t

0

ΥX(τ)−ΥY (τ) dτ =
D∑

i,j=1

∫ t

0

(ΓYi,j − ΓXi,j)(τ) dMij(τ) a.s. (A.4)

The left-hand side of (A.4) is a continuous process, null at the origin. This implies
that the finite-variation local martingale on the right-hand side of the equation is
continuous. As noted above, for any continuous local martingale N which has paths
of finite variation, we have N(t) = 0-a.s. for all t ∈ [0, T ]. Thus

D∑
i,j=1

∫ t

0

(ΓYi,j − ΓXi,j)(τ) dMij(τ) = 0 a.s., ∀ t ∈ [0, T ] (A.5)

Evaluating at time t = T , squaring, taking expectations and using the itô isometry,
we get from (A.5),

0 = E

(
D∑

i,j=1

∫ t

0

(ΓYi,j − ΓXi,j)(τ) dMij(τ)

)2

=
D∑

i,j=1

E

∫ T

0

|(ΓYi,j − ΓXi,j)(τ)|2 d[Mij](τ)

(A.6)

This implies that ΓYi,j = ΓXi,j (ν[Mij ])-a.e. for each i, j = 1, . . . , D, i 6= j. By virtue

of ΓX ,ΓY ∈ L2(M), we have ΓXi,i = ΓYi,i = 0 (P ⊗ Leb)-a.e. for each i = 1, . . . , D.

Hence, ΓX = ΓY (ν[M] − a.e.)
Finally from (A.4) and (A.5), we are left with∫ t

0

ΥX(τ)−ΥY (τ) dτ = 0 (A.7)

So we must have ΥX(τ) = ΥY (τ) for all t ∈ [0, T ].
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Proof of Lemma 2.2.4: From (2.34), we have a.s.

Y (t) := Y0 +

∫ t

0

Υ(τ) dτ +
N∑
n=1

∫ t

0

ξYn (τ) dWn(τ) +
D∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ) (A.8)

Then squaring both sides and using the identity

(Z1 + Z2 + Z3 + Z4)2 ≤ Z2
1 + Z2

2 + Z2
3 + Z2

4 , ∀ z1, z2, z3, z4 ∈ R

and |
∫ t

0

Υ(τ) dτ | ≤
∫ t

0

|Υ(τ)| dτ
(A.9)

We get

|Y (t)|2 ≤ 4|Y0|2 + 4

(∫ t

0

|Υ(τ)| dτ
)2

+ 4

∣∣∣∣∣
n∑

i,j=1

∫ t

0

ξYn (τ) dWn(τ)

∣∣∣∣∣
2

+ 4

∣∣∣∣∣
n∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ)

∣∣∣∣∣
2

(A.10)

Taking the supremum over t ∈ [0, T ], and taking expectations, we get

|Y (t)|2 ≤ 4|Y0|2 + 4E

(∫ t

0

|Υ(τ)| dτ
)2

+ 4E

 sup
t∈[0,T ]

∣∣∣∣∣
n∑

i,j=1

∫ t

0

ξYn (τ) dWn(τ)

∣∣∣∣∣
2


+ 4E

 sup
t∈[0,T ]

∣∣∣∣∣
n∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ)

∣∣∣∣∣
2


(A.11)

Applying Doob’s L2− inequality to the last two terms on the right-hand side, both
of which are martingales since ξY ∈ L2(W) and ΓY ∈ L2(M), followed by the Itô
isometry we get

|Y (t)|2 ≤ 4|Y0|2 + 4E

(∫ t

0

|Υ(τ)| dτ
)2

+ 16E
n∑

i,j=1

∫ T

0

∣∣ξYn (τ)
∣∣2 dτ

+ 16E
n∑

i,j=1

∫ T

0

|ΓYi,j(τ)|2 d[Mij](τ)

(A.12)
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Then as all the terms on the left-hand side above are finite, we obtain

E

(
sup
t∈[0,T ]

|Y (t)|2
)
<∞ (A.13)

Proof of Proposition 2.2.6. First we show that Xπ ∈ A implies that π ∈
L2(W). From the wealth equation (2.28) for the portfolio process π, we have

Xπ ≡ (x0, rX
π + π>σθ,σ>π) ∈ R× L21 × L2(W) (A.14)

Therefore, σ>π ∈ L2(W). From the uniform boundedness of σ, it follows that
π ∈ L2(W).

Next we show that π ∈ L2(W) implies that Xπ ∈ A

First note that by the uniform boundedness of r assumed in Condition 2.1.9,the
bank account price process S0(t) = exp

∫ t
0
r(τ) dτ , given by (2.19), is also uniformly

bounded. Let κS0 be a uniform upper bound on S0(t). By the nonnegativity of the
risk-free interest rate process {r(t)}, we have the S−1

0 (t) is bounded above by one.
Then from (2.29), we get

|Xπ(t)| = κS0

{
x0 +

∫ t

0

π>(τ)σ(τ)θ(τ) dτ +

∫ t

0

π>(τ)σ(τ)dW(τ)

}
(A.15)

Then using the identity

|z1 + z2 + z3|2 ≤ 3z2
1 + 3z2

2 + 3z2
3 , ∀z1, z2, z3 ∈ R (A.16)

and |
∫
f dµ|2 ≤

∫
|f |2 dµ, we get from (A.15) that

E| sup
t∈[0,T ]

Xπ(t)|2 ≤ 3κ2
S0

{
x2

0 + E

(
sup
t∈[0,T ]

∫ t

0

|π>(τ)σ(τ)θ(τ)|2 dτ

)

+E

(
sup
t∈[0,T ]

|
∫ t

0

π>(τ)σ(τ)dW(τ)|2
)} (A.17)

Applying Doob’s L2-inequality and the Itô isometry, and noting that the supremum
of the second term on the right-hand side of (A.17) occurs at t = T , we get

E| sup
t∈[0,T ]

Xπ(t)|2

Doob

≤ 3κ2
S0

{
x2

0 + E

(∫ T

0

|π>(τ)σ(τ)θ(τ)|2 dτ

)
+ 4E

(∫ T

0

π>(τ)σ(τ)dW(τ)

)2
}

Itô
= 3κ2

S0

{
x2

0 + E

(∫ T

0

|π>(τ)σ(τ)θ(τ)|2 dτ

)
+ 4E

∫ T

0

‖ σ>(τ)π(τ) ‖2 dτ

}
(A.18)
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Using the bounds in Remark 2.1.15 and Remark 2.1.18, and the assumption that
π ∈ L2(W), we obtain

E

∫ T

0

|π>(t)σ(t)θ(t)|2 dt ≤ κ2
σκ

2
θE

∫ T

0

‖ π(t) ‖2 dt <∞ (A.19)

and

E

∫ T

0

‖ σ>(t)π(t) ‖2 dt ≤ κ2
σ E

∫ T

0

‖ π(t) ‖2 dt <∞ (A.20)

Applying these bounds to (A.17), we get E
(
supt∈[0,T ] |Xπ(t)|2

)
< ∞. It follows

from this square-integrability, (A.19) and the uniform boundedness of r that rXπ +
π>σθ ∈ L21. From (A.20), we have σ>π ∈ L2(W). Thus Xπ ≡ (x0, rX

π +
π>σθ,π>σ) ∈ A.

Proof of Lemma 2.2.15. First we show that η < ∞. Since 0 ∈ K then A 6= ∅.
Choose π ∈ A. Then from Proposition 2.2.6, the solution Xπ of the wealth equation
(2.28) for the portfolio process π is such that Xπ ∈ A. Using the bounds on random
variable a (see Condition 2.2.9), the square integrability of Xπ (Lemma 2.2.4) and
Hölder’s inequality, we find,

E(J(Xπ(T )))
(2.42)
=

1

2
E
(
a(Xπ(T ))2

)
+ E (cXπ(T )) + q

≤ 1

2
sup
ω∈Ω
{a(ω)}E

(
(Xπ(T ))2

)
+
(
E(c2)

) 1
2
(
E((Xπ(T ))2)

) 1
2 + q

< ∞. (A.21)

Taking the infimum over π ∈ A, we obtain η <∞.
To show η > −∞, we show that E(J(Xπ(T ))) is bounded from below. Using the
strict positivity of random variable a (see Condition 2.2.9), we get

E(J(Xπ(T ))) =
1

2
E
(
a(Xπ(T ))2 + 2cXπ(T )

)
+ q

=
1

2
E

(
a
(
Xπ(T ) +

c

a

)2

− c2

a

)
+ q

≥ 1

2
inf
ω∈Ω
{a(ω)}E

((
Xπ(T ) +

c

a

)2
)
− E

(
c2

2a

)
+ q

≥ −E
(
c2

2a

)
+ q. (A.22)

Taking the infimum over π ∈ A, we obtain η ≥ −E
(
c2

2a

)
+ q > −∞.
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Proof of Lemma 4.1.4:
Claim (1):First we show that map is linear by showing that it is additive and
homogeneous.

Additivity and homogeneity of the map follows easily from the additivity homo-
geneity of the stochastic integral. Therefore the map Ξ is linear.

Claim (2): Fix (y,λ,γ) ∈ R× L2(W)× L2(M). Setting Y ≡ Ξ(y,λ,γ), we have
a.s. for all t ∈ [0, T ],

Y (t) = Ξ(y,λ,γ)(t)

(4.6)
= β(t)

{
y +

∫ t

0

β−1(τ)λ>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)γi,j(τ) dMij(τ)

}
(A.23)

We begin by showing that Y is square-integrable. Expanding (A.23), squaring and
using the fact that β(t) ≤ 1 a.s., we get

|Y (t)|2 ≤

∣∣∣∣∣y +

∫ t

0

β−1(τ)λ>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)γi,j(τ) dMij(τ)

∣∣∣∣∣
2

≤ 3|y|2 + 3

∣∣∣∣∫ t

0

β−1(τ)λ>(τ) dW(τ)

∣∣∣∣2 + 3

∣∣∣∣∣
D∑

i,j=1

∫ t

0

β−1(τ)γi,j(τ) dMij(τ)

∣∣∣∣∣
2

(A.24)

Let κβ be a uniform upper bound on {β−1(t)}. Applying this bound, taking the
supremum over [0, T ] and then expectations, we obtain

E

(
sup
t∈[0,T ]

|Y (t)|2
)
≤ 3|y2|+ 3κ2

βE

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

λ>(τ) dW(τ)

∣∣∣∣2
)

+3κ2
βE

 sup
t∈[0,T ]

∣∣∣∣∣
D∑

i,j=1

∫ t

0

γi,j(τ) dMij(τ)

∣∣∣∣∣
2
 (A.25)

Applying Doob’s L2-inequality to the second and third terms of the right-hand side
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of the above inequality, followed by the Itô isometry, this becomes

E

(
sup
t∈[0,T ]

|Y (t)|2
)

Doob

≤ 3|y|2 + 12κ2
βE

∣∣∣∣∫ T

0

λ>(τ) dW(τ)

∣∣∣∣2

+12κ2
βE

∣∣∣∣∣
D∑

i,j=1

∫ T

0

γi,j(τ) dMij(τ)

∣∣∣∣∣
2

Itô
= 3|y|2 + 12κ2

βE

∫ T

0

‖ λ(τ) ‖2 dτ

+12κ2
βE

D∑
i,j=1

∫ T

0

|γi,j(τ)|2 dMij(τ)

<∞. (A.26)

The finiteness comes from the facts that λ ∈ L2(W) and γ ∈ L2(M). Thus we
have shown that Y is square-integrable.

Using the integration-by-parts formula (Theorem B.2.48) to expand (A.23), we get

Y (t) = y +

∫ t

0

β(τ)

(
β−1(τ)λ>(τ) dW(τ) +

D∑
i,j=1

β−1(τ)γij(τ) dMij(τ)

)

−
∫ t

0

r(τ)Y (τ−) dτ

= y −
∫ t

0

r(τ)Y (τ−)dτ +

∫ t

0

λ>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

γij(τ) dMij(τ). (A.27)

By the uniform boundedness of r and the square integrability of Y , shown above,
we have rY− ∈ L21. Then, as (y,λ,γ) ∈ R× L2(W)× L2(M), we get

Y ≡ (y,−rY−,λ,γ) ∈ B, (A.28)

so that (4.7) holds. Finally, as Y (t) 6= Y (t−) only on a set of Lebesgue measure
zero, we find that

−r(t)Y (t−) = −r(t)Y (t), (P⊗ Leb)− a.e., (A.29)

So that from the definition of B1 in (4.4), we get Y ∈ B1. Hence (4.8) follows.

Claim (3):To show that the map Ξ is bijective, we need to show that it is both
injective and surjective.
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The map Ξ is injective if and only if for all (ym,λm,γm) ∈ R×L2(W)×L2(M), m =
1, 2, we have that

Ξ(y1,λ1,γ1) = Ξ(y2,λ2,γ2) (A.30)

implies y1 = y2, λ1 = λ2 (P⊗ Leb)− a.e. and γ1 = γ2 ν[Mij ] − a.e. Where ν[Mij ] is
defined by (4.2.6).

From (4.6) and (A.30), we have for all t ∈ [0, T ]

β(t)

{
y1 +

∫ t

0

β−1(τ)(λ1)>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)(γ1)i,j(τ) dMij(τ)

}

= β(t)

{
y2 +

∫ t

0

β−1(τ)(λ2)>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)(γ2)i,j(τ) dMij(τ)

}
(A.31)

Thus,

y1 +

∫ t

0

β−1(τ)(λ1)>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)(γ1)i,j(τ) dMij(τ)

= y2 +

∫ t

0

β−1(τ)(λ2)>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)(γ2)i,j(τ) dMij(τ).

From Proposition 2.2.3, we must then have

y1 = y2, λ1 = λ2 (P⊗ Leb)− a.e. (A.32)

γ1 = γ2 ν[Mij ] − a.e. (A.33)

Hence the map Ξ is injective.

The map Ξ is surjective if and only if for each Y ∈ B1, there exists at least
one triple (y,λ,γ) ∈ R × L2(W) × L2(M) such that Ξ(y,λ,γ) = Y . Fix Y ≡
(Y0,ΥY , ξY ,ΓY ) ∈ B1. From the definition of B1 in (4.4), we see that Y has the
particular integral form

Y (t) = Y0 −
∫ t

0

r(τ)Y (τ) dt+

∫ t

0

ξ>Y (τ) dW(τ) +
D∑

i,j=1

∫ t

0

ΓYi,j(τ) dMij(τ) (A.34)
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Now consider an arbitrary triple (y,λ,γ) ∈ R × L2(W), L2(M). By (4.7), we can
express Ξ(y,λ,γ) as

Ξ(y,λ,γ)(t)

q

y −
∫ t

0

r(τ)Ξ(y,λ,γ)(τ−) dτ +

∫ t

0

λ>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

γij(τ) dMij(τ). (A.35)

Setting Y ≡ Ξ(y,λ,γ) and applying Proposition 2.2.3, we must have y = Y0, λ =
ξY (P ⊗ Leb) − a.e. and γ = ΓY ν[M] − a.e. Since (y,λ,γ) = (Y0, ξY ,ΓY ) ∈ R ×
L2(W) × L2(M), we have shown that the map Ξ is surjective. It follows that the
map Ξ is bijective.

Proof of Lemma 4.1.6. Substituting (2.42) into (4.14), we obtain

J∗(y, ω) = sup
x∈R

[xy − J(x, ω)]

= sup
x∈R

{
xy − 1

2
a(ω)x2 − c(ω)x

}
− q

= −1

2
a(ω) inf

x∈R

{
− 2xy

a(ω)
+ x2 +

2c(ω)x

a(ω)

}
− q since a(ω) > 0

= −1

2
a(ω) inf

x∈R

{(
x− y − c(ω)

a(ω)

)2

− (y − c(ω))2

a2(ω)

}
− q

= −1

2
a(ω) inf

x∈R

{(
x− y − c(ω)

a(ω)

)2
}

+
(y − c(ω))2

a2(ω)
− q.

As (x− y−c(ω)
a(ω)

)2 ≥ 0 and, by the strict positivity of the random variable a posited

in Condition 2.2.9, −a(ω)
2
< 0, it follows that the infimum equals zero. Thus we get

J∗(y, ω) =
(y − c(ω))2

2a(ω)
− q. (A.36)

In order to establish Proposition 4.1.7 (explicit calculation of the Lagrangian defined
by (4.11)) we need the following immediate consequence of a technical result due
to Rockafellar (see Theorem F.2.3):

Proposition A.0.28 For the loss function J and its conjugate J∗ we have

sup
u∈L2

(
E[uη]−

∫
Ω

J(u(ω), ω) dP(ω)

)
=

∫
Ω

J∗(η(ω), ω) dP(ω) for η ∈ L2. (A.37)
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Proof. Since L2 is decomposable and the loss function J is a normal convex inte-
grand, the result follows from Theorem F.2.3.

Proof of Proposition 4.1.7: Fix some X ∈ A − D1. From the definition of D1

(i.e. (4.13)), we have either

X 6∈ A1 or X 6∈ D. (A.38)

Suppose X 6∈ A1: then, from (4.12), we have

P [X(T )−B < u2] > 0 for each u2 ∈ L∞, (A.39)

so that (4.2) gives

F (X, u) = +∞, ∀ u ∈ U. (A.40)

On the other hand, when X 6∈ D, (4.2) again gives

F (X, u) = +∞, ∀ u ∈ U. (A.41)

Since

〈(u1, u2)(Y, Z)〉 ∈ R, (A.42)

for all (u1, u2) ∈ U and (Y, Z) ∈ Y, we conclude from (4.11) that

K(X, (Y, Z)) = +∞, (A.43)

for all X ∈ A− D1 and (Y, Z) ∈ Y.

Now fix

X ∈ D1 (i.e.X ∈ D and X(T ) > B + u2). (A.44)

From the definition of Lagrangian (4.11), bilinear form 〈·, ·〉 (4.10) and perturbation
function (4.2) we get for each (Y, Z) ∈ Y,

K(X, (Y, Z)) = inf
(u1,u2)∈U

[〈(u1, u2), (Y, Z)〉+ F (X, u1, u2)]

= inf
(u1,u2)∈U

[E[u1Y (T )] + Z(u2) + EJ(X(T )− u1)]

= inf
u1∈L2

{E[u1Y (T )] + E[J(X(T )− u1)]}+ inf
u2∈L∞

u2≤X(T )−B

Z(u2).

(A.45)
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From Remark D.1.13,

inf
u2∈L∞

u2≤X(T )−B

Z(u2) = −∞, (A.46)

for all Z ∈ L∗∞ such that Z � 0.

Moreover, for each (X, Y ) ∈ D× B1 we also have

inf
u1∈L2

{E[u1Y (T )] + EJ(X(T )− u1)}

= E[X(T )Y (T )]− sup
v1∈L2

{E[v1Y (T )]− EJ(v1)}. (A.47)

This equality follows upon defining v1 := X(T )− u1, and using X(T ) ∈ L2.

From Proposition A.0.28, it follows that

sup
v1∈L2

{E[v1Y (T )]− EJ(v1)} = E[J∗(Y (T ))]. (A.48)

From (A.47) and (A.48),

inf
u1∈L2

{E[u1Y (T )] + EJ(X(T )− u1)} = E[X(T )Y (T )]− E[J∗(Y (T ))]. (A.49)

From (A.45) and (A.49), we get the required expression for Lagrangian for X ∈
D1 and Z ≤ 0 as

K(X, (Y, Z)) = E[X(T )Y (T )]− E[J∗(Y (T ))] + inf
u2∈L∞

u2≤X(T )−B

Z(u2). (A.50)

Proof of Lemma 4.2.1. Fix ζ ∈ L2, and put

ζ1 := S0(T )ζ. (A.51)

By Condition 2.1.9, r is uniformly bounded. Recalling equation (2.19), it follows
that

ζ1 ∈ L2. (A.52)

Hence, from (2.8), (2.9) and the martingale representation theorem (Theorem
G.3.5), there is some ξ̄ ∈ L2(W) and Γ̄ ∈ L2(M) such that

ζ1 = ȳ +
N∑
n=1

∫ T

0

ξ̄n(τ) dWn(τ) +
D∑

i,j=1

∫ T

0

Γ̄i,j(τ) dMij(τ) a.s., (A.53)
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for ȳ := Eζ1.
Let

λ̄(t) := [S0(t)]−1ξ̄(t), (A.54)

and γ̄(t) := [S0(t)]−1Γ̄(t). (A.55)

Hence, from Condition 2.1.9, the fact that ξ̄ ∈ L2(W) and Γ̄ ∈ L2(M) we get

λ̄ ∈ L2(W), (A.56)

and γ̄ ∈ L2(M). (A.57)

From (A.51)(A.53), (A.54) and (A.55) we have

ζ = Ξ(ȳ, λ̄, γ̄)(T ), (A.58)

where Ξ is given by (4.6), and we have used

β(t) = [S0(t)]−1,

(see (4.5)). Put

Y := Ξ(ȳ, λ̄, γ̄). (A.59)

By Lemma 4.1.4

Y ∈ B1. (A.60)

Proof of Proposition 4.2.8. Fix some (X, (Y, Z)) ∈ A×Y. Since E[X(T )Y (T )]
and EJ∗(Y (T )) are R valued (recall Remark 4.1.8) from (4.19) and (4.16) we get

g(Y, Z) = K(X, (Y, Z)) ∈ R (A.61)

iff
X ∈ D1,
Z ≤ 0,
κ(Y, Z) ∈ R,
E[X(T )Y (T )] + κ(Y, Z) + inf

u2∈L∞
u2≤X(T )−B

Z(u2) = 0.

 (A.62)

Moreover from Definition 2.2.26 and Equation (4.16), we have

f(X) = K(X, (Y, Z)) ∈ R (A.63)

iff
X(T )−B ≥ 0,
X ∈ D1,
Z ≤ 0,
E[J(X(T )) + J∗(Y (T ))−X(T )Y (T )] = inf

u2∈L∞
u2≤X(T )−B

Z(u2).

 (A.64)
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From Equation (4.14) it follows that

J(X(T )) + J∗(Y (T ))−X(T )Y (T ) ≥ 0 a.s.. (A.65)

Moreover Z ≤ 0 and X(T ) ≥ B imply

inf
u2∈L∞

u2≤X(T )−B

Z(u2) ≤ 0. (A.66)

From (A.64), (A.65) and (A.66) we get

E[J(X(T )) + J∗(Y (T ))−X(T )Y (T )] = 0, (A.67)

inf
u2∈L∞

u2≤X(T )−B

Z(u2) = 0. (A.68)

Because of the non-negativity of integrand at (A.67), we see that (A.67) holds if
and only if

J(X(T )) + J∗(Y (T ))−X(T )Y (T ) = 0 a.s.. (A.69)

It is also immediate from Lemma B.4.15 (with N = 1) that (A.69) holds if and
only if

X(T ) = (∂J∗)(Y (T )). (A.70)

We then get

f(X) = K(X, (Y, Z)) ∈ R (A.71)

iff
X(T )−B ≥ 0,
X ∈ D1,
Z ≤ 0,
X(T ) = (∂J∗)(Y (T )),

inf
u2∈L∞

u2≤X(T )−B

Z(u2) = 0.


(A.72)

From Definition 2.2.26, we know that

f(X) ∈ (−∞,∞], for allX ∈ D. (A.73)

Since D1 6= ∅ (see Equation (4.13)), from Equation (4.18), we get

κ(Y, Z) ∈ (−∞,∞], for all (Y, Z) ∈ Y, (A.74)

78



and since J∗(Y (T )) is P -integrable for each Y ∈ B1 (recall Remark 4.1.8), Equation
(4.19) gives

g(Y, Z) ∈ [−∞,∞) for all(Y, Z) ∈ Y. (A.75)

Thus for each X ∈ A and each (Y, Z) ∈ Y, we obtain from Remark 4.1.11 the
equivalence that

f(X) = g(Y, Z)

iff

f(X) = K(X, (Y, Z)) ∈ R
and g(Y, Z) = K(X, (Y, Z)) ∈ R.

This equivalence, together with (A.72) and (A.62), proves the result.

Proof of Proposition 4.3.6. From Proposition 2.2.6, for each π ∈ L2(W) we
obtain

Xπ ∈ A, (A.76)

Xπ(0) = x0. (A.77)

(A.78)

Let

ΥXπ
= rXπ + π>σθ, (A.79)

and (ξX
π

)> = π>σ. (A.80)

Recall that for Y ∈ B1 we have

ΥY = −rY. (A.81)

Substituting the values of Equations (A.77)-(A.81) into Proposition 4.3.2 we get
for every Y ∈ B1 and π ∈ L2(W)

M(Xπ, Y )(T ) = Xπ(T )Y (T )− x0Y0 −
∫ T

0

π>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)]dτ.

(A.82)

It also follows from Proposition 4.3.2 that

E[M(Xπ, Y )(T )] = 0, (A.83)
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for all Y ∈ B1 and π ∈ L2(W). It then follows from (A.82) and (A.83) that

E[Xπ(T )Y (T )] = x0Y0 + E

∫ T

0

π>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)]dτ, (A.84)

for all Y ∈ B1 and π ∈ L2(W).

We now calculate the supremum on the left side of (4.45). Using the definition of
D (2.47) we get

sup
X∈D

E[−X(T )Y (T )] = sup
π∈L2(W)

π∈K

E[−Xπ(T )Y (T )]

(4.43)
= sup

π∈L2(W)

{E[−Xπ(T )Y (T )]− E
∫ T

0

δ̄RN (π(τ)|K)dτ}

(A.84)
= −x0Y0 + sup

π∈L2(W)

E

∫ T

0

{−π>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)]

−δ̄RN (π(τ)|K)}dτ, (A.85)

for each Y ∈ B1.

We next evaluate the supremum on the right of (A.85). From Lemma F.1.2 it
follows that the characteristic function δ̄RN (·|K) is a normal convex integrand.

Since L2(W) is decomposable and δRN (·|K) is the convex conjugate of δ̄RN (·|K),
from Theorem F.2.3 we have

sup
π∈L2(W)

E

∫ T

0

{π>(τ)V(τ)− δ̄RN (·|K)}dτ = E

∫ T

0

δ(V(τ)|K)dτ, (A.86)

for V ∈ L2(W).

Now (4.45) follows from (A.85) and (A.86).

Notation A.0.29 1. We use the symbol • to indicate stochastic integration, so
that

(−θ •W) (t) :=

∫ t

0

−θ>(τ) dW(τ). (A.87)

2. Denote by E(−θ •W) the Doléans-Dade exponential of the continuous mar-
tingale (−θ •W) which by Remark B.2.51 and Equation (B.35) satisfies

E(−θ •W)(t) = exp

(
−
∫ t

0

θ>(τ) dW(τ)− 1

2

∫ t

0

‖ θ(τ) ‖2 dτ

)
, (A.88)
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We can then rewrite (4.53) in the more compact form (recall (4.5))

H(t) = β(t)E(−θ •W)(t). (A.89)

The boundedness properties of the exponential at (A.88) are given in the next
proposition.

Proposition A.0.30 For any p ∈ R we have E(−pθ •W) ∈M2({Ft},P).

Proof of Proposition A.0.30. Fix an arbitrary p ∈ R. We begin by showing
that E(−pθ •W) satisfies Novikov’s Criterion (Theorem B.2.53). Consider

Z(t) :=

∫ t

0

−pθ>(τ)dW(τ). (A.90)

The square-bracket quadratic variation process [Z] of Z is

[Z] = p2

∫ t

0

‖ θ(τ) ‖2 d(τ) a.s., ∀t ∈ [0, T ]. (A.91)

Using the constant κθ ∈ (0,∞) which satisfies (2.25), we obtain the bound [Z](t) ≤
(pκθ)2t a.s. for each t ∈ [0, T ]. Hence

E

(
exp

{
1

2
[Z](T )

})
≤ exp

{
1

2
(pκθ)2T

}
<∞. (A.92)

Thus E(−pθ •W) satisfies Novikov’s Criterion (see Theorem B.2.53), and so is a
uniformly integrable martingale for all p ∈ R.
Using Corollary B.2.52, we have

(E(−pθ •W))2 = exp

{
p2

∫ t

0

‖ θ(τ) ‖2 dτ

}
E(−2pθ •W)(t), (A.93)

and as we have just shown that E(−2pθ•W) is a martingale, we get for all t ∈ [0, T ],

E|E(−pθ •W)(t)|2 ≤ exp
{

(pκθ)2T
}
E|E(−2pθ •W)(t)| <∞. (A.94)

Thus E(−pθ •W) is a square-integrable martingale, which holds for all p ∈ R.

For later use we note that

|E(−θ •W)(t)|p = exp

(
−p
∫ t

0

θ>(τ) dW(τ)− 1

2
p

∫ t

0

‖ θ(τ) ‖2 dτ

)
. (A.95)
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Proof of Proposition 4.3.9. Fix t ∈ [0, T ]. From the nonnegativity of the in-
terest rate process {r(t)}, we have [S0(t)]−1 ≤ 1 a.s. for all t ∈ [0, T ]. Expanding
H(t)p using (A.95), we get

|H(t)|p (A.88)
= |[S0(t)]−1E(−θ •W)(t)|p

[S0(t)]−1≤1

≤ |E(−θ •W)(t)|p

(A.95)
= exp

(
−p
∫ t

0

θ>(τ) dW(τ)− 1

2
p

∫ t

0

‖ θ(τ) ‖2 dτ

)
(B.36)

= exp

{
1

4
p(p− 2)

∫ t

0

‖ θ(τ) ‖2 dτ

} ∣∣∣E (−p
2
θ •W

)
(τ)
∣∣∣2 .
(A.96)

Recalling that the process {θ(t)} is uniformly bounded, let κθ ∈ (0,∞) be the
uniform bound for this process. Taking supremum over t ∈ [0, T ] in (A.96), we get

sup
t∈[0,T ]

|H(t)|p ≤ max

[
1, exp

{
1

4
p(p− 2)κ2

θT

}]
sup
t∈[0,T ]

∣∣∣E (−p
2
θ •W

)
(τ)
∣∣∣2 ,(A.97)

where the maximum will equal one if p ∈ (0, 2) and will otherwise equal

exp

{
1

4
p(p− 2)κ2

θT

}
. (A.98)

Upon taking expectations, we get

E

(
sup
t∈[0,T ]

|H(t)|p
)
≤ max

[
1, exp

{
1

4
p(p− 2)κ2

θT

}]
E

(
sup
t∈[0,T ]

∣∣∣E (−p
2
θ •W

)
(τ)
∣∣∣2)

(A.99)
By Proposition A.0.30, E

(
−p

2
θ •W

)
is a square integrable martingale, so upon

applying Doob’s L2-Inequality, we get

E

(
sup
t∈[0,T ]

|H(t)|p
)
<∞. (A.100)

Proof of Proposition 4.3.10. Setting p = 2 in Proposition 4.3.9 shows that H is
square-integrable. Expanding H(t) = [S0(t)]−1E(−θ •W)(t) using the integration
by parts formula (see Theorem B.2.48), we get

H(t) = [S0(t)]−1E(−θ •W)(t)

= 1 +

∫ t

0

E(−θ •W)(τ) d[S0(τ)]−1 +

∫ t

0

[S0(τ)]−1 dE(−θ •W)(τ)

+[S−1
0 , E(−θ •W)](t). (A.101)
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Since [S0(t)]−1 is a continuous, finite variation process, the square bracket quadratic
co-variation term is given by

[S−1
0 , E(−θ •W)](t) = 0 a.s. (A.102)

From (B.33), the Doléans-Dade exponential E(−θ •W) satisfies

E(−θ •W)(t) = 1 +

∫ t

0

E(−θ •W)(τ) d(−θ •W)(τ)

= 1−
∫ t

0

E(−θ •W)(τ)θ>(τ) dW (A.103)

From the definition of S0(t) in (2.19),

d[S0(τ)]−1 = r(τ)S0(τ) dτ (A.104)

Substituting (A.103) and (A.104) in (A.101), we find

H(t) = 1−
∫ t

0

r(τ)[S0(τ)]−1E(−θ •W)(τ) dτ

−
∫ t

0

[S0(τ)]−1E(−θ •W)(τ)θ>(τ) W(τ)

= 1−
∫ t

0

r(τ)H(τ) dτ −
∫ t

0

H(τ)θ>(τ) dW(τ). (A.105)

From the square-integrability of {H(t)} and the fact that the risk free interest
rate process is uniformly bounded, we get −rH ∈ L21. Similarly from the square-
integrability of {H(t)} and the uniform boundedness of {θ(t)}, we obtain −Hθ ∈
L2(W). Hence H ≡ (1,−rH,−Hθ, 0) ∈ A.
Proof of Proposition 4.3.11.
Claim (a): The following proof carries over directly from the argument of (Labbé and
Heunis [25], proof of Lemma 5.1) in which the filtration is generated only by the
Wiener process W. We include all the details, as we wish to ensure that it continues
to hold for our larger filtration generated jointly by the Wiener process W and the
Markov chain α (see (2.8) and (2.9)).

From (4.56)

X(t) = E[H(t)−1ζH(T )|Ft], t ∈ [0, T ]. (A.106)

From Proposition 4.3.9 and Hölder’s inequality, for any p ∈ R we have

E|H(T )H(t)−1|p ≤
(
E|H(T )|2p

) 1
2
(
E|H(t)|−2p

) 1
2 <∞. (A.107)

83



Setting p = 2 in the above equation, we see that H(T )
H(t)

is square-integrable. Using
Hölder’s inequality,

E|ζH(T )H(t)−1| ≤
(
E|ζ|2

) 1
2
(
E|H(T )H(t)−1|2

) 1
2 <∞. (A.108)

Then ζH(T )H(t)−1 is integrable and it follows that X(t) is also integrable.

Now fix real numbers p ∈ (2,∞) and q ∈ (1, 2) which together satisfy 1
p

+ 1
q

= 1.

Applying Hölder’s inequality for conditional expectation at (A.106) gives

|X(t)| ≤
(
E(|H(T )H(t)−1|p|Ft)

) 1
p (E(|ζ|q|Ft))

1
q a.s. (A.109)

Raising all the terms to the power of q, we obtain

|X(t)|q ≤
(
E(|H(T )H(t)−1|p|Ft)

) q
p (E(|ζ|q|Ft)) a.s. (A.110)

We next upper-bound separately the two factors in the product on the right-hand
side.

Expand |H(t)|p using (A.95) and (A.88), we get

|H(t)|p = S0(t)−p exp

{
1

2
p(p− 1)

∫ t

0

‖ θ(τ) ‖2 dτ

}
E(−pθ •W)(t). (A.111)

By the nonnegativity of the risk-free interest rate process {r(t)}, we have [S0(t)]−1 ≤
1 a.s., Consequently for all t ∈ [0, T ],

|H(t)|p ≤ exp

{
1

2
p(p− 1)

∫ t

0

‖ θ(τ) ‖2 dτ

}
E(−pθ •W)(t). (A.112)

Then, recalling the constant κθ which satisfies (2.25), we have

|H(T )|p|H(t)|−p ≤ exp

{
1

2
p(p− 1)

∫ T

0

‖ θ ‖2 dτ +
1

2
p(p+ 1)

∫ t

0

‖ θ ‖2 dτ

}
E(−pθ •W)(T )E(pθ •W)(t)

≤ exp{p2κ2
θT}E(−pθ •W)(T )E(pθ •W)(t). (A.113)

From Proposition A.0.30 E(−pθ •W) is an {Ft}-martingale. Using this fact and
Corollary B.2.52, we obtain

E
(
|H(T )|p|H(t)|−p|Ft

)
≤ exp{p2κ2

θT}E(−pθ •W)(t)E(pθ •W)(t)

= exp{p2κ2
θT}exp

{
−p2

∫ t

0

‖ θ ‖2 dτ

}
(A.114)

≤ exp{p2κ2
θT} (A.115)
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Substituting this bound into (A.110), we get

|X(t)|q ≤ exp{pqκ2
θT} (E(|ζ|q|Ft)) a.s. (A.116)

We now show that (E(|ζ|q|Ft)) is finite. Note first that q ∈ (1, 2), so that we have

E(|ζ|q) < E(|ζ|2) <∞. (A.117)

Now define

N(t) := E(|ζ|q|Ft). (A.118)

Then of course N ∈M({Ft},P). Set

p1 :=
2

q
(A.119)

and note that p1 > 1 as q ∈ (1, 2). Now apply Jensen’s inequality for conditional
expectations to obtain to obtain for all t ∈ [0, T ],

E|N(t)|p1 (A.118)
= E|E(|ζ|q|Ft)|p1 (A.120)

≤ E|E(|ζ|qp1|Ft)| (A.121)
(A.119)

= E|E(|ζ|2|Ft)| (A.122)

= E|ζ|2 <∞. (A.123)

As N is a martingale which is bounded in Lp1(Ω,F ,P) and p1 > 1, we can apply
Doob’s Lp1 inequality to get

E

(
sup
t∈[0,T ]

|N(t)|p1
)
≤
(

p1

p1 − 1

)p1
E|N(T )|p1

(A.123)
< ∞ (A.124)

Substituting N(t) = E(|ζ|q|Ft) into (A.116) and raising both sides of (A.116) to
the power p1 = 2

q
, we get

|X(t)|2 ≤ exp{2pκ2
θT}N(t)p1 . a.s. (A.125)

Taking the supremum over t ∈ [0, T ], followed by expectations, we find

E

(
sup
t∈[0,T ]

|X(t)|2
)
≤ exp{2pκ2

θT}E

(
sup
t∈[0,T ]

|N(t)|p1
)

(A.124)
< ∞. (A.126)
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Claim (b): From Hölder’s inequality and the square integrability of ζ and H(T ),

E|ζH(T )| ≤
[
E|ζ|2

] 1
2
[
E|H(T )|2

] 1
2 <∞. (A.127)

From (4.56) and (A.127) it is immediate that

XH ∈M ({Ft,P}) . (A.128)

For all m ∈ N, let

Tm := inf{t > 0 : |H(t)| > m} ∧ T. (A.129)

Then Tm is an {Ft}-stopping time (by Proposition B.2.23) and Tm ⇑ T a.s. (see
Definition B.2.11), since supt∈[0,T ]{H(t)} is finite a.s. by the pathwise continuity of
H on the compact interval [0, T ].

Fix m ∈ N. Then for all t ∈ [0, T ],

E|X(t ∧ Tm)H(t ∧ Tm)|2
(A.129)

≤ m2E

∣∣∣∣∣ sup
t∈[0,T ]

X(t)2

∣∣∣∣∣ (4.57)
< ∞, (A.130)

showing that XH is locally square integrable. Thus from (A.128) and (A.130) XH
is locally square integrable martingale. As any martingale is also a local martingale,
we have

XH ∈Mloc
2 ({Ft,P}) . (A.131)

Claim (c): Follows from (A.131) and the Martingale representation theorem for
locally square-integrable martingales, Theorem G.3.5.

Claim (d):The predictability of the π̃ is immediate from (4.62). To prove (4.63),
recall the constants κσ ∈ (0,∞) and κθ ∈ (0,∞) from (2.23) and (2.25), respec-
tively. Then∫ T

0

‖ π̃(t) ‖2 dt
(4.62)
=

∫ T

0

‖ [σ>]−1{H−1(t)ξ̃(t) +X(t−)θ(t)} ‖2 dt

≤ 2κ2
σ

∫ T

0

‖ H−1(t)ξ̃ ‖2 dt+ 2κ2
σ

∫ T

0

‖ X(t−)θ(t) ‖2 dt

≤ 2κ2
σ sup
t∈[0,T ]

{H−2(t)}
∫ T

0

‖ ξ̃ ‖2 dt+ 2κ2
σκ

2
θT sup

t∈[0,T ]

|X(t)|2.

(A.132)
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We show that the last line of the above inequality is finite. Since H−2 is pathwise
continuous function on compact interval [0, T ], then not only is the set {H−2(t) :
t ∈ [0, T ]} bounded, but it also attains its bounds. Therefore,

sup
t∈[0,T ]

{H−2(t)} <∞ a.s. (A.133)

We also have from (4.59) that ξ̃ ∈ Lloc2 (W), so there exists a sequence (Sm)m∈N of
{Ft}-stopping times such that Sm ⇑ T a.s. and ξ̃[0, Sm] ∈ L2(W) for all m ∈ N.
Then for each m ∈ N,

E

∫ T∧Sm

0

‖ ξ̃(t) ‖2 dt <∞⇒
∫ T∧Sm

0

‖ ξ̃(t) ‖2 dt <∞ a.s. (A.134)

Since Sm ⇑ T a.s., there exists M(ω) ∈ N such that Sm(ω) = T for all m > M(ω)
for all ω ∈ Ω. Then, letting m→∞ in (A.134), we obtain∫ T

0

‖ ξ̃(t) ‖2 dt <∞ a.s. (A.135)

Moreover, from (4.57), we get

sup
t∈[0,T ]

|X(t)|2 <∞ a.s. (A.136)

From (A.133), (A.135) and (A.136) it follows that last line of Equation (A.132) is
finite.

Claim (e): Begin by defining for t ∈ [0, T ],

Λ(t) := X(t)H(t). (A.137)

Applying the integration-by-parts formula (Theorem B.2.48) to the product X(t) =
H(t)−1Λ(t) and using the continuity of H gives

X(t) = X0 +

∫ t

0

H(τ)−1 dΛ(τ) +

∫ t

0

Λ(τ−) dH−1(τ) + [H−1,Λ](t). (A.138)

Expanding H−1 using Itô’s formula (Theorem B.2.49), we find

H(t)−1 = 1−
∫ t

0

H(τ)−2 dH(τ) +

∫ t

0

H(τ)−3 d[H,H](τ). (A.139)
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From Proposition 4.3.10,

dH(τ) = −r(τ)H(τ) dτ −H(τ)θ>(τ)dW(τ) (A.140)

and d[H,H](τ) = H2(τ) ‖ θ(τ) ‖2 dτ. (A.141)

Substituting (A.140) and (A.141) into (A.139) gives,

H(t)−1 = 1 +

∫ t

0

H(τ)−1(r(τ)+ ‖ θ(τ) ‖2) dτ +

∫ t

0

H(τ)−1θ>(τ) dW(τ).(A.142)

From (A.137) and part (c), we get

dΛ(t) =
N∑
n=1

ξ̃n(τ) dWn(τ) +
D∑

i,j=1

Γ̃i,j(τ) dMij(τ) (A.143)

Substituting (A.142) and (A.143) into equation (A.138) and using the continuity
of H, we find that

X(t) = X0 +

∫ t

0

H(τ)−1

(
N∑
n=1

ξ̃n(τ) dWn(τ) +
D∑

i,j=1

Γ̃i,j(τ) dMij(τ)

)

+

∫ t

0

X(τ−)H(τ)
{
H(τ)−1(r(t)+ ‖ θ(τ) ‖2) dτ +H(τ)−1θ>(τ) dW(τ)

}
+

[
1 +

∫
0

H(τ)−1(r(τ)+ ‖ θ(τ) ‖2) dτ +

∫
0

H(τ)−1θ>(τ) dW(τ) ,

X0 +
N∑
n=1

∫
0

ξ̃n(τ) dWn(τ) +
D∑

i,j=1

∫
0

Γ̃i,j(τ) dMij(τ)

]
(t)

= X0 +

∫ t

0

H(τ)−1ξ̃
>

(τ) dW(τ) +
D∑

i,j=1

∫ t

0

H(τ)−1Γ̃ij(τ) dMij(τ)

+

∫ t

0

X(τ−)r(τ)dτ +

∫ t

0

X(τ−) ‖ θ(τ) ‖2 dτ +

∫ t

0

X(τ−)θ>(τ) dW(τ)

+

∫ t

0

H(τ)−1ξ̃
>

(τ)θ(τ) dτ

+
D∑

i,j=1

N∑
n=1

∫ t

0

H(τ)−1θn(τ)Γij(τ) d[Wn,Mij](τ). (A.144)
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From Lemma G.2.18, we have [Mij,Wn](t) = 0 for all t ∈ [0, T ]. Equation (A.144)
therefore becomes

X(t) = X0

+

∫ t

0

{
r(τ)X(τ−) +

(
H(τ)−1ξ̃

>
(τ) +X(τ−)θ>(τ)

)
θ(τ)

}
dτ

+

∫ t

0

(
H(τ)−1ξ̃

>
(τ) +X(τ−)θ>

)
dW(τ)

+
D∑

i,j=1

∫ t

0

H(τ)−1Γ̃ij(τ) dMij(τ). (A.145)

Substituting the value of π̃ from Equation (4.62) into Equation (A.145) we get

X(t) = X0 +

∫ t

0

{r(τ)X(t) + π̃>(τ)σ(τ)θ(τ)}dτ +

∫ t

0

π̃>σ(τ) dW(τ)

+
D∑

i,j=1

∫ t

0

H(τ)−1Γ̃ij(τ) dMij(τ). (A.146)

Claim (f): For each m ∈ N, let

Rm := inf

{
t > 0 :

∫ t

0

‖ π̃(τ) ‖2 dτ > m

}
∧ T. (A.147)

Then Rm is an Ft-stopping time (by Proposition B.2.23) and Rm ⇑ T a.s., since∫ T
0
‖ π̃(τ) ‖2 dτ <∞ a.s. by (4.63).

For each m ∈ N, let

Sm := inf{t > 0 : |X(t−)|2 > m} ∧ T. (A.148)

Then Sm is an Ft-stopping time since X(t−) is locally bounded and Sm ⇑ T a.s.,
since supt∈[0,T ] |X(t)|2 <∞ a.s. by (4.57).

For m ∈ N, let

Tm := inf{t > 0 : |H(t)−1| > m} ∧ T. (A.149)

Then Tm is an {Ft}− stopping time (by Proposition B.2.23) and Tm ⇑ T a.s., since
supt∈[0,T ]{H(t)−2} is finite a.s. by the pathwise continuity of H−2 on the compact
interval [0, T ].
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Since Γ̃ ∈ Lloc2 (M), there exists a sequence {Um}m∈N, of {Ft}-stopping times such
that Um ⇑ T a.s. and Γ̃[0, Um] ∈ L2(M) for all m ∈ N. Then for all m ∈ N,

E
D∑

i,j=1

∫ T∧Um

0

|Γ̃ij(t)|2 d[Mij](t) <∞. (A.150)

Finally, define

V m := Rm ∧ Sm ∧ Tm ∧ Um. (A.151)

Then V m is an {Ft}-stopping time and V m ⇑ T a.s.

Applying the integration by parts formula (Theorem B.2.48) to (4.64), we can
expand the mapping t → X(t)2. Evaluating the expansion at time t ∧ V m, gives
for all t ∈ [0, T ],

X2(t ∧ V m) = X2(0) + 2

∫ t∧Vm

0

X(τ−) dX(τ) + [X,X](t ∧ V m)

= X2(0) + 2

∫ t∧Vm

0

X(τ−)
(
r(τ)X(τ−) + π̃>(τ)σ(τ)θ(τ)

)
dτ

+ 2

∫ t∧Vm

0

X(τ−)π̃>(τ)σ(τ) dW(τ)

+ 2
D∑

i,j=1

∫ t∧Vm

0

H(τ)−1X(τ−)Γ̃ij(τ) dMij(τ)

+

∫ t∧Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ

+
D∑

i,j=1

∫ t∧Vm

0

H(τ)−2|Γ̃ij(τ)|2 d[Mij](τ).

(A.152)

We show that the dW(τ)- and dMij(τ)-stochastic integrals on the right side of
(A.152) are square-integrable martingales. Recall the constant κσ ∈ (0,∞) satis-
fying (2.23). For the fourth to last term, we have

E

∫ t∧Vm

0

‖ X(τ−)σ>(τ)π̃(τ) ‖2 dτ ≤ κ2
σE

(
sup
t∈[0,T ]

|X(t)|2
∫ t∧Vm

0

‖ π̃(τ) ‖2 dτ

)
(A.147)

≤ κ2
σmE

(
sup
t∈[0,T ]

|X(t)|2
)

(4.57)
< ∞. (A.153)
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Then for each m ∈ N, the fourth to last term in (A.152) is a square integrable
martingale, which is clearly null at the origin, so that for all t ∈ [0, T ],

E

∫ t∧Vm

0

X(τ−)σ>(τ)π̃(τ) dW(τ) = 0 (A.154)

For the third to last term in (A.152), we have

E

D∑
i,j=1

∫ t∧Vm

0

|H(τ)−1X(τ−)Γ̃ij(τ)|2 d[Mij](τ)

= E

D∑
i,j=1

∫ t∧Vm

0

|H(τ)|−2|X(τ−)||Γ̃ij(τ)|2 d[Mij](τ)

(A.148),(A.149)

≤ m2E
D∑

i,j=1

∫ t∧Vm

0

|Γ̃ij(τ)|2 d[Mij](τ)

(A.150)
< ∞. (A.155)

Then for each m ∈ N, the third to last term in (A.152) is a square integrable
martingale, which is clearly null at the origin, so that for all t ∈ [0, T ],

D∑
i,j=1

E

∫ t∧Vm

0

H(τ)−1X(τ−)Γ̃ij(τ) dMij(τ) = 0. (A.156)

Hence the sum of the third and fourth to last terms of (A.152)is a maringale, null
at the origin, and thus has zero expectation for all t ∈ [0, T ]. Evaluating (A.152)
at time t = T , noting that T ∧ V m = V m, and taking expectations, we get

EX2(V m) = EX2(0) + E

∫ Vm

0

2X(τ−)
(
r(τ)X(τ−) + π̃>(τ)σ(τ)θ(τ)

)
dτ

+E

∫ Vm

0

‖ σ(τ)>π̃(τ) ‖2 dτ +
D∑

i,j=1

E

∫ Vm

0

H(τ)−2|Γ̃(τ)|2 d[Mij](τ).

(A.157)

From the nonnegativity of the risk-free interest rate process {r(t)} and X2
−, upon

rearranging (A.157) we obtain the inequality

EX2(V m)− E
∫ Vm

0

2X(τ−)π̃>(τ)σ(τ)θ(τ) dτ

≥ E

∫ Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ +
D∑

i,j=1

E

∫ Vm

0

H(τ)−2|Γ̃ij(τ)|2 d[Mij](τ).

(A.158)
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Now, for arbitrary ν1,ν2 ∈ RN , we have the inequality

ν>1 ν2 ≤
1

2
‖ ν1 ‖2 +

1

2
‖ ν2 ‖2 . (A.159)

Setting ν1 = σ>(τ)π̃(τ) and ν2 = −2X(τ−)θ(τ), we then get

−2X(τ−)σ>(τ)π̃(τ)θ(τ) ≤ 1

2
‖ σ>(τ)π̃(τ) ‖2 +2X2(τ−) ‖ θ(τ) ‖2 . (A.160)

Integrating, taking expectations and adding EX2(V m) to each side of the above
inequality, we get

EX2(V m)− E
∫ Vm

0

2X(τ−)σ>(τ)π̃(τ)θ(τ) dτ

≤ EX2(V m) +
1

2
E

∫ Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ + 2E

∫ Vm

0

X2(τ−) ‖ θ(τ) ‖2 dτ.

(A.161)

Combining (A.158) and (A.161), we get

E

∫ Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ +
D∑

i,j=1

E

∫ Vm

0

H(τ)−2|Γ̃ij(τ)|2 d[Mij](τ)

≤ EX2(V m) +
1

2
E

∫ Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ + 2E

∫ Vm

0

X2(τ−) ‖ θ(τ) ‖2 dτ.

(A.162)

Recall the constant κθ ∈ (0,∞) satisfying (2.25). Rearranging (A.162),

E

∫ Vm

0

‖ σ>(τ)π̃(τ) ‖2 dτ +
D∑

i,j=1

E

∫ Vm

0

H(τ)−2|Γ̃ij(τ)|2 d[Mij](τ)

≤ (1 + 2Tκ2
θ)E

(
sup
t∈[0,T ]

|X(t)|2
)

(4.57)
< ∞. (A.163)

Since V m ⇑ T a.s., and the upper-bound at the first inequality is uniform with
respect to the integer m, upon letting m→∞ in (A.163), we obtain

σ>π̃ ∈ L2(W) and
1

H
Γ̃ ∈ L2(M). (A.164)
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Proof of Lemma 4.3.15. The proof which follows is taken from Donnelly and
Heunis [7], and is included here only for completeness. Existence and uniqueness
of solutions are obtained from the Banach contraction mapping theorem.

As in (2.31) define the norm ‖ · ‖L2(W) on L2(W) by

‖ λ ‖2
L2(W):= E

∫ T

0

‖ λ(t) ‖2 dt. (A.165)

Here ‖ · ‖ after the integral on the right side denotes the usual Euclidean norm on
RN . With the ‖ · ‖L2(W)-norm it is immediate that L2(W) is a Banach space.

Put

η(t) :=
D∑

i,j=1

∫ t

0

γij(s) dMij(s) (A.166)

and Λ(t) := ρ(t)− θ(t)η(t−), t ∈ [0, T ]. (A.167)

For each λ ∈ L2(W) put

Gλ(t) := Λ(t)− θ(t)

∫ t

0

λ>(s) dW(s), t ∈ [0, T ]. (A.168)

Let κθ ∈ (0,∞) satisfy (2.25), so that κθ is uniform bound on ‖ θ ‖. Then

E

∫ T

0

‖ Gλ(t) ‖2 dt

(A.167),(A.168)
= E

∫ T

0

‖ ρ(t)− θ(t)η(t−)− θ(t)

∫ t

0

λ>(s) dW(s) ‖2 dt (A.169)

(A.166)

≤ 3E

∫ T

0

|ρ(t)|2 dt+ 3κ2
θE

∫ T

0

∣∣∣∣∣
D∑

i,j=1

∫ t−

0

γij(s) dMij(s)

∣∣∣∣∣
2

dt

+ 3κ2
θE

∫ T

0

∣∣∣∣∫ t

0

λ>(s) dW(s)

∣∣∣∣2 dt. (A.170)

Using Doob’s L2-inequality (see Theorem B.2.9) for the càdlàg martingale M(t) =
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η(t−) and the Itô isometry for the second last integral of (A.170), we get

E

∫ T

0

|M(τ)|2 dτ ≤ TE

(
sup
s∈[0,T ]

|M(t)|2
)

Doob

≤ 4TE|M(T )|2

= 4TE

∣∣∣∣∣
D∑

i,j=1

∫ T−

0

γij(τ) dMij(τ)

∣∣∣∣∣
2

Itô
= 4T

D∑
i,j=1

E

∫ T−

0

|γij(τ)|2 d[Mij](τ)

= 4T ‖ γ ‖2
L2(M)<∞. (A.171)

Again, using Doob’s L2-inequality and the Itô isometry to evaluate the last integral
of (A.170), we get

E

∫ T

0

∣∣∣∣∣
D∑

i,j=1

∫ t

0

λ>(τ) dW(τ)

∣∣∣∣∣
2

dt ≤ TE

(
sup
s∈[0,T ]

∣∣λ>(τ) dW(τ)
∣∣2)

Doob

≤ 4TE

∣∣∣∣∫ T

0

λ>(τ) dW(τ)

∣∣∣∣2
Itô
= 4TE

∫ T

0

‖ λ>(τ) ‖2 dτ

= 4T ‖ λ ‖2
L2(W) . (A.172)

From (A.171), (A.172) and (A.170), we get

Gλ ∈ L2(W) (A.173)

Now fix λ1 and λ2 ∈ L2(W). Recalling (2.25), it follows from (A.168) and the
Itô isometry that

E ‖ Gλ1(t)−Gλ2(t) ‖2≤ κ2
θ ‖ λ1 − λ2 ‖2

L2(W) . (A.174)

and also for all t ∈ [0, T ] and m = 1, 2, . . . we get

E ‖ Gm+1λ1(t)−Gm+1λ2(t) ‖2≤ κ2
θ

∫ t

0

E ‖ Gmλ1(t)−Gmλ2(t) ‖2 dt. (A.175)
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By induction, for each t ∈ [0, T ] and m = 1, 2, . . . we then have the bound

E ‖ Gmλ1(t)−Gmλ2(t) ‖2≤ κ2m
θ

tm−1

(m− 1)!
‖ λ1 − λ2 ‖2

L2(W) (A.176)

and this in turn gives

‖ Gmλ1 −Gmλ2 ‖2
L2(W)≤ κ2m

θ

Tm

m!
, (A.177)

for all m = 1, 2, . . . and λ1,λ2 ∈ L2(W).

Now one can fix some positive integer m such that

κ2m
θ

Tm

m!
< 1. (A.178)

Then Gm is a contraction on the Banach space L2(W) and the generalized Banach
contraction principle (Theorem B.1.3) establishes that λ(t) = Gλ(t), (P⊗Leb)-a.e.
for some unique λ ∈ L2(W.) The result follows since η(t−) = η(t), (P⊗ Leb)-a.e.

Proof of Lemma 4.3.19. From Remark 4.3.16, (4.71) and Corollary 4.3.13 we
obtain

X̄ ≡ (X̄0, rX̄− + π̄σθ,σ>π̄, H−1Γ̄) ∈ B. (A.179)

From (4.4), each Y ∈ B1 can be written as

Y ≡ (Y0,Υ
Y , ξY ,ΓY ) = (Y0,−rY, ξY ,ΓY ) ∈ B. (A.180)

From Proposition 4.3.2, (A.179) and (A.180), we find that for

M(X̄, Y )(t) := X̄(T )Y (T )− X̄0Y0 −
∫ t

0

π̄>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)] dτ

−
D∑

i,j=1

∫ t

0

H(τ)−1Γ̄ij(τ)ΓYij(τ) d[Mij](τ), (A.181)

we have M(X̄, Y ) ∈ M0({Ft},P). Taking expectations at t = T in (A.181) and
using the fact that E(M(X̄, Y )(T )) = 0, we find

E(X̄(T )Y (T )) = X̄0Y0 + E

∫ t

0

π̄>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)] dτ

+E
D∑

i,j=1

∫ t

0

H(τ)−1Γ̄ij(τ)ΓYij(τ) d[Mij](τ) (A.182)
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From (4.71) we have X̄(T ) = ∂J∗(Ȳ (T )). Hence, from (4.46) of Proposition 4.3.7
and (A.182), we get

(X̄0 − x0)Y0 + E

∫ t

0

π̄>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)] dτ

+E
D∑

i,j=1

∫ t

0

H(τ)−1Γ̄ij(τ)ΓYij(τ) d[Mij](τ)

+E

∫ T

0

δ(σ(τ)[θ(τ)Y (τ) + ξY (τ)]|K)dτ ≥ 0. (A.183)

Proof of Proposition 4.3.20. Claim (a): Fix an arbitrary y ∈ R. From the
uniform boundedness of θ ∈ L2(W), we have that −yθ ∈ L2(W). Applying
Lemma 4.3.15 to (ρ,γ) := (−Y0θ,0) ∈ L2(W) × L2(M), there exists λ ∈ L2(W)
such that

λ(t) + θ(t)

∫ t

0

λ>(τ) dW(t) = −Y0θ(t) a.s. (A.184)

For all t ∈ [0, T ], set

λ̄(t) := β(t)λ(t), (A.185)

where β(t) is given by (4.5). As β is uniformly bounded and λ ∈ L2(W), we have
λ̄ ∈ L2(W). Substituting λ = β−1λ̄ into (A.184) and multiplying across by β(t),
we get

λ̄(t) + β(t)θ(t)

∫ t

0

β−1(τ)λ̄
>

(τ) dW(τ) = −Y0β(t)θ(t) a.s. (A.186)

Rearranging, this becomes

λ̄(t) = −θ(t)

(
yβ(t) + β(t)

∫ t

0

β−1(τ)λ̄
>

(τ) dW(τ)

)
a.s. (A.187)

Recalling Equation (4.6), set

Y (t) := Ξ(Y0, λ̄,0)(t)

= β(t)

{
Y0 +

∫ t

0

β−1(τ)λ>(τ) dW(τ)

}
. (A.188)

From Lemma 4.1.4, we have

Y ≡ (Y0,−rY, λ̄,0) ∈ B1. (A.189)
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Using (A.188) to replace the term in brackets in (A.187) gives

λ̄(t) = −θ(t)Y (t). (A.190)

Substituting (Y0, ξ
Y ,ΓY ) := (Y0, λ̄,0) and λ̄(t) = −θ(t)Y (t) into equation (4.82),

we obtain

(X̄0 − x0)Y0 ≥ 0. (A.191)

Since (A.191) holds for all Y0 ∈ R we must have that X̄0 = x0.

Claim (b) Using the fact that X̄0 = x0, which has just been established in Claim
(a), we can simplify (4.82) to get

E

∫ t

0

π̄>(τ)σ(τ)[θ(τ)Y (τ) + ξY (τ)] dτ

+E
D∑

i,j=1

∫ t

0

H(τ)−1Γ̄ij(τ)ΓYij(τ) d[Mij](τ)

+E

∫ T

0

δ(σ(τ)[θ(τ)Y (τ) + ξY (τ)]|K)dτ ≥ 0. (A.192)

which holds for all (Y0, ξ
Y ,ΓY ) ∈ R× L2(W)× L2(M), for Y = Ξ(Y0, ξ

Y ,ΓY ).

Define

B := {(ω, t) ∈ Ω× [0, T ] : π̄(ω, t) ∈ K (P⊗ Leb)− a.e.}. (A.193)

From Lemma B.1.1 with p := π̄, there exists a predictable mapping νπ̄ : Ω ×
[0, T ]→ RN such that ‖ νπ̄(t) ‖≤ 1 (P⊗Leb)-a.e., |δ(νπ̄(t)|K)| ≤ 1 (P⊗Leb)-a.e.
and

δ(νπ̄(t)|K) + π̄>(t)νπ̄(t) = 0 (P⊗ Leb)− a.e. on B, (A.194)

δ(νπ̄(t)|K) + π̄>(t)νπ̄(t) < 0 (P⊗ Leb)− a.e. on Ω× [0, T ] \B.(A.195)

In order to obtain π̄ ∈ K (P⊗Leb)−a.e., it is sufficient to show (P⊗Leb)(Bc) = 0.

Suppose (P⊗ Leb)(Bc) > 0. It then follows from (A.195) that

E

∫ T

0

{π̄>(τ)νπ̄(τ) + δ(νπ̄(t)|K)}dτ < 0. (A.196)

We are now going to use Lemma 4.3.15 to construct some Y ∈ B1 such that

Y0 = 0, (A.197)

νπ̄(t) = σ(t)[Y (t)θ(t) + ξY (t)], (A.198)

ΓY = 0, (A.199)
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since it then follows from (A.192) that

E

∫ T

0

{π̄>(τ)νπ̄(τ) + δ(νπ̄(t)|K)}dτ ≥ 0, (A.200)

which contradicts (A.196). We therefore get (P ⊗ Leb)(Bc) = 0, and therefore
π̄ ∈ K (P ⊗ Leb) − a.e., as required to establish the first assertion at (4.84). The
second assertion, that π̄ ∈ A, is then immediate from this together with (4.79) and
Definition 2.2.12.

It therefore remains to construct some Y ∈ B1 such that (A.197) - (A.199) holds.
For this we shall again use Lemma 4.3.15 on integral equations. Put ρ = β−1(t)σ−1

(t)νπ̄(t). By the boundedness of β,σ, andνπ̄, we have ρ ∈ L2(W).

Applying Lemma 4.3.15 to (ρ,γ) := (β−1(t)σ−1νπ̄,0) ∈ L2(W) × L2(M), there
exists λ ∈ L2(W) such that for all t ∈ [0, T ],

λ(t) + θ(t)

∫ t

0

λ>(τ)dW(τ) = β−1(t)σ−1(t)νπ̄(t) a.s. (A.201)

For all t ∈ [0, T ], define

λ̄(t) := β(t)λ(t), (A.202)

Then as β is uniformly bounded and λ ∈ L2(W), we have λ̄ ∈ L2(W). Substituting
λ = β−1(t)λ̄(t) into (A.201), multiplying across by σ(t)β(t) and rearranging we
get

νπ̄(t) = σ(t)

(
λ̄(t) + β(t)θ(t)

∫ t

0

β−1(τ)λ̄
>

(τ)dW(τ)

)
= σ(t)

(
λ̄(t) + θ(t)Ξ(0, λ̄,0)(t)

)
. (A.203)

Now put

Y := Ξ(0, λ̄,0). (A.204)

Applying Lemma 4.1.4 to (0, λ̄,0) ∈ S, we have

Y ≡ (0,−rY−, λ̄,0) ∈ B1, (A.205)

with Y0 = 0 and ξY (t) = λ̄(t). Thus

νπ̄(t) = σ(t)[Y (t)θ(t) + ξY (t)] a.e. (A.206)
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This proves Claim (b).

Claim (c) Since we have established (P ⊗ Leb)(Bc) = 0 for Claim (b), it follows
from (A.194) that

δ(νπ̄(t)|K) + π̄>(t)νπ̄(t) = 0 (P⊗ Leb)− a.e. (A.207)

Applying Lemma 4.3.15 to (ρ,γ) := (β−1σ−1νπ̄, β−1H−1Γ̄) ∈ L2(W) × L2(M),
where β is defined by (4.5), there exists η ∈ L2(W) such that

η(t) + θ(t)

∫ t

0

η>(τ) dW(τ)

= β−1(t)σ−1(t)νπ̄(t)− θ(t)
D∑

i,j=1

∫ t

0

β−1(τ)H−1(τ)Γ̄ij(τ) dMij(τ). (A.208)

For all t ∈ [0, T ], define

η̄(t) := β(t)η(t). (A.209)

Since β is uniformly bounded and η ∈ L2(W), we have η̄ ∈ L2(W). Substituting
η = β−1η̄ into (A.208), multiplying across by σ(t)β(t) and rearranging, we get

νπ̄(t) = σ(t)

(
η̄(t) + β(t)θ(t)

∫ t

0

β−1(τ)η̄>(τ) dW(τ)

+β(t)θ(t)
D∑

i,j=1

∫ t

0

β−1(τ)H(τ)−1Γ̄ij(τ) dMij(τ)

)
a.s. (A.210)

Recalling Equation (4.6), set

Y (t) := Ξ(0, η̄, H−1Γ̄)(t)

= β(t)

{∫ t

0

β−1(τ)η̄>(τ) dW(τ) +
D∑

i,j=1

∫ t

0

β−1(τ)H(τ)−1Γ̄ij(τ) dMij(τ)

}
.

(A.211)

From Lemma 4.1.4, we have

Y ≡ (0,−rY−, η̄, H−1Γ̄) ∈ B1. (A.212)

Substituting (A.211) into (A.210), we get

νπ̄(t) = σ(t)(η̄(t) + θ(t)Y (t)) a.s. (A.213)
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Then substituting νπ̄(t) from (A.213) into (A.194), we obtain (P⊗ Leb)-a.e.,

δ(σ(t)(η̄(t) + θ(t)Y (t))|K) + π̄>(t)σ(t)(η̄(t) + θ(t)Y (t)) = 0. (A.214)

Substituting (Y0, ξ
Y ,ΓY ) := (0, η̄,−H−1Γ̄) in equation (A.192) and using (A.214),

we find

E
D∑

i,j=1

∫ T

0

H(t)−2|Γ̄ij(t)|2 d[Mij](t) ≤ 0. (A.215)

However, the left-hand side of (A.215) is the sum of nonnegative terms, so we must
have equality in (A.215), that is

E
D∑

i,j=1

∫ T

0

H(t)−2|Γ̄ij(t)|2 d[Mij](t) = 0. (A.216)

Hence,

H−1Γ̄ = 0 ν[M] − a.e., (A.217)

which in turn implies (since H−1 is strictly positive),

Γ̄ = 0 ν[M] − a.e. (A.218)
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Appendix B

Standard definitions and Results

In this Appendix we summarize for convenience of reference a miscellany of technical
results, terminology and definitions that are needed in the main part of the thesis.

B.1 Miscellaneous Results

B.1.1 Measurable Selection for Support Functions

The following lemma on measurable selections for support functions is a minor
variant of a result of Karatzas and Shreve [22], Lemma 5.4.2. This lemma is an
essential tool for establishing Proposition 4.3.20(b).

Lemma B.1.1 Let K be a nonempty, closed, convex set of RN and let δ be the
support function of the convex set K defined by

δ(z|K) := sup
π∈K
{−π>z} ∀z ∈ RN . (B.1)

Fix some predictable process p : Ω× [0, T ]→ RN and put

B := {(ω, t) ∈ Ω× [0, T ] : p(ω, t) ∈ K}. (B.2)

Then there exists an RN -valued, predictable process ν(·) such that a.s.

‖ ν(t) ‖≤ 1, |δ(ν(t)|K)| ≤ 1, ∀t ∈ [0, T ], (B.3)
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and

δ(ν(t)|K) + p>(t)ν(t) = 0 (P⊗ Leb)− a.e. on B, (B.4)

δ(ν(t)|K) + p>(t)ν(t) < 0 (P⊗ Leb)− a.e. on Ω× [0, T ] \B. (B.5)

Proof. The proof follows that of Karatzas and Shreve [22], Lemma 5.4.2. The
main difference is that Karatzas and Shreve [22], Lemma 5.4.2 is for an {FW

t }-
progressively measurable process p, in place of our {Ft}-predictable p. However,
upon examining their proof, the measurability of p is used only to determine the
measurability of ν. Hence, ν inherits the measurability of p, so we can safely state
that ν(·) is predictable.

B.1.2 Generalized Contraction Mapping Principle

Definition B.1.2 Let (Y, d) be a complete metric space and F be a mapping from
Y into itself. Then y is called a fixed point of F if F (y) = y, i.e. if F carries y into
itself. Suppose there exists a number α < 1 such that

d(F (x), F (y)) ≤ αd(x, y)

for every pair of points x, y ∈ Y . Then F is said to be a contraction mapping.

We next state the generalized Banach contraction principle, the proof of which can
be found in Kolmogorov and Fomin [23], Theorem 1’, page 70. This result is used
to establish Lemma 4.3.15.

Theorem B.1.3 (Banach contraction principle). Let (Y, d) be a complete metric
space and suppose that the mapping F : Y → Y is such that F k : Y → Y is
a contraction mapping for some fixed integer k ≥ 1 (here F k denotes the k-fold
composition of F ). Then F has a unique fixed point u ∈ Y , and F n(y) → u for
each y ∈ Y .

B.1.3 Conditional expectation results

For completeness we first recall Hölder’s inequality (see Theorem 3.2.1 of Friedman
[13]):
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Theorem B.1.4 (Hölder’s inequality)
Let (Ω̃, F̃ , P̃) be a measure space. Let p and q be extended real numbers, 1 ≤
p ≤ ∞, 1 ≤ q ≤ ∞, 1

p
+ 1

q
= 1. If f ∈ Lp(Ω̃, F̃ , P̃), g ∈ Lq(Ω̃, F̃ , P̃), then

fg ∈ L1(Ω̃, F̃ , P̃) and∫
Ω̃

|fg| dµ ≤
(∫

Ω̃

|f |p dµ

) 1
p
(∫

Ω̃

|g|q dµ

) 1
q

. (B.6)

We now state a conditional version of Hölder’s inequality for integration over a
probability space (see Chow and Teicher [4], Theorem 7.2.4):

Theorem B.1.5 (Hölder’s inequality for conditional expectations)
Let (Ω̃, F̃ , P̃) be a probability space and let G be any sub-σ-field of F̃ . Let X, Y
be random variables on (Ω̃, F̃ , P̃) and let p > 1 and q be real numbers such that
1
p

+ 1
q

= 1. Then

E(|XY | | G) ≤ (E(|X|p | G))
1
p (E(|Y |q | G))

1
q . (B.7)

From Elliot [10], Lemma 1.9, we have Jensen’s inequality for conditional expecta-
tions:

Lemma B.1.6 Jensen’s inequality for conditional expectations:
Let (Ω̃, F̃ , P̃) be a probability space and let G be any sub-σ-field of F̃ . Suppose
f : R→ R is a convex map and suppose X is an integrable random variable defined
on (Ω̃, F̃ , P̃) such that f(X) is integrable. Then

f (E(X|G)) ≤ E (f(X)|G) . (B.8)

B.2 Various Classes of Stochastic Processes

B.2.1 Càdlàg stochastic processes

Definition B.2.1 A process X = {X(t) : t ∈ [0,T]} is càdlàg if the sample
function t→ X(t, ω) : [0, T ]→ R is right continuous with finite left-hand limits for
each and every ω.
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Remark B.2.2 If X is càdlàg then we define

X(0−) := X(0)

and X(t−) := lim
s→t
s<t

X(s), ∀ t ∈ [0, T ]. (B.9)

and we define the jump process {4X(t) : t ∈ [0, T ]} as

4X(t) := X(t)−X(t−), ∀ t ∈ [0, T ]. (B.10)

Definition B.2.3 A filtered probability space is a pair ((Ω̃, F̃ , P̃), {F̃t}) consisting
of a probability space (Ω̃, F̃ , P̃) and a filtration {F̃t}t∈[0,T ] on F̃ . A standard filtered

probability space is a filtered probability space ((Ω̃, F̃ , P̃), {F̃t}) with the following
additional properties:

• (Ω̃, F̃ , P̃) is a complete probability space;

• F̃0 includes all P̃ -null events in F̃ ;

• the filtration {F̃t} is right-continuous, that is

F̃t =
⋂
u>t

F̃u for all t ∈ [0, T ).

Notation B.2.4 We write E to denote expectation with respect to the measure P.
If there is any ambiguity about the measure P, we will write EP. If the expectation
is with respect to another measure P̃, we will write EP̃.

Definition B.2.5 A process X = {X(t) : t ∈ [0, T ]} defined on a filtered prob-
ability space ((Ω̃, F̃ , P̃), {F̃t}) is non-decreasing if the mappings t → X(t, ω) are
non-decreasing on [0, T ] for all ω ∈ Ω̃.

B.2.2 Spaces of martingales

In this section we formulate spaces of martingales and local martingales restricted
to the finite closed interval [0, T ] rather than the semi-infinite line [0,∞) since all
processes in this thesis are limited to the interval [0, T ].

Definition B.2.6 A real-valued, {F̃t}-adapted processes M = {M(t) : t ∈ [0, T ]}
on (Ω̃, F̃ , P̃) is called a martingale if
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• EP̃|M(t)| <∞, ∀ t ∈ [0, T ]; and

• EP̃
(
M(t)|F̃s

)
= M(s) P̃-a.s., for all 0 ≤ s ≤ t ≤ T

We shall use M((Ω̃, F̃ , P̃), {F̃t}) to denote the set of {F̃t}-adapted martingales on
(Ω̃, F̃ , P̃).

Remark B.2.7 Usually the measure space on which the space of martingales
M((Ω̃, F̃ , P̃), {F̃t}) is defined is clear. In this case we specify only the filtra-
tion and the probability measure and use the notation M({F̃t}, P̃) instead of
M((Ω̃, F̃ , P̃), {F̃t}).

Definition B.2.8 Given a constant p ∈ (1,∞], a martingale M is called Lp-
bounded when E|M(T )|p < ∞ (we then have supt∈[0,T ]E|M(t)|p < ∞, as follows
from Jensen’s inequality). An L2-bounded martingale is also called square inte-
grable.

A very useful property of Lp-bounded martingales is:

Theorem B.2.9 Doob’s Lp-inequality :
Let p ∈ (1,∞). Let M be a càdlàg martingale relative to the filtered probability
space ((Ω̃, F̃ , P̃), {F̃t}) which is Lp-bounded. Then

EP̃

(
sup
t∈[0,T ]

|M(t)|p
)
≤
(

p

p− 1

)p
EP̃|M(T )|p. (B.11)

We next introduce useful notation for various classes of martingales:

Notation B.2.10 (a) M0({F̃t}, P̃) denotes the set of M ∈ M({F̃t}, P̃) which
are P̃-a.s. null at the origin i.e. M(0) = 0 P̃-a.s.

(b) Mc({F̃t}, P̃) denotes the set of M ∈M({F̃t}, P̃) which are sample-path con-
tinuous.

(c) Mc
0({F̃t}, P̃) :=M0({F̃t}, P̃) ∩Mc({F̃t}, P̃).

(d) M2({F̃t}, P̃) denotes the set of M ∈M({F̃t}, P̃) which are square-integrable.

(e) M0,2({F̃t}, P̃) :=M0({F̃t}, P̃) ∩M2({F̃t}, P̃).
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B.2.3 Spaces of local martingales

Definition B.2.11 For a sequence {Tm}m∈N of {F̃t}-stopping times, we write

Tm ⇑ T (B.12)

to mean that

• 0 ≤ Tm(ω) ≤ Tm+1(ω) ≤ T for all ω ∈ Ω̃ and for all m ∈ N;

• there exists M(ω) ∈ N such that Tm(ω) = T , for all m ≥ M(ω) and for all
ω ∈ Ω̃.

Remark B.2.12 The preceding notion of increasing stopping times ensures that
the right end-point T of the interval [0, T ] is included in the localization, and rules
out the possibility that the Tm are all strictly less than T (i.e. Tm < T ) for all
m = 1, 2, . . . Increasing sequences of stopping times in the sense of Definition B.2.11
occur quite naturally in several proofs.

Definition B.2.13 A real-valued process M = {M(t) : t ∈ [0, T ]} on (Ω̃, F̃ , P̃) is
called an {F̃t}-local martingale if there is a sequence {Tm}m∈N of {F̃t}-stopping
times such that

1. Tm ⇑ T P̃-a.s.; and

2. {M(t ∧ Tm) : t ∈ [0, T ]} ∈ M((Ω̃, F̃ , P̃), {F̃t}) for each m ∈ N.

We shall use Mloc((Ω̃, F̃ , P̃), {F̃t}) to denote the set of {F̃t}-local martingales on
(Ω̃, F̃ , P̃).

Definition B.2.14 A real-valued process M = {M(t) : t ∈ [0, T ]} on (Ω̃, F̃ , P̃) is
called a {F̃t}-locally square integrable martingale if there is a sequence {Tm}m∈N
of {F̃t}-stopping times such that

1. Tm ⇑ T P̃-a.s.; and

2. {M(t ∧ Tm) : t ∈ [0, T ]} ∈ M2((Ω̃, F̃ , P̃), {F̃t}) for each m ∈ N.

We shall use Mloc
2 ((Ω̃, F̃ , P̃), {F̃t}) to denote the set of {F̃t}-locally square inte-

grable martingales on the probability space (Ω̃, F̃ , P̃).
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Remark B.2.15 With reference to Definitions B.2.13 and B.2.14 we say that the
sequence {Tm}m∈N of {F̃t}-stopping times is a localizing sequence for M .

Remark B.2.16 Usually the measure space on which the space of local Martin-
gales Mloc((Ω̃, F̃ , P̃), {F̃t}) is defined is clear. In this case we specify only the
filtration and the probability measure and use the notation Mloc({F̃t}, P̃) instead
of Mloc((Ω̃, F̃ , P̃), {F̃t}).

Notation B.2.17 (a) Mloc
0 ({F̃t}, P̃) denotes the set ofM ∈Mloc({F̃t}, P̃) which

are P̃-a.s. null at the origin.

(b) Mc,loc({F̃t}, P̃) denotes the set of M ∈Mloc({F̃t}, P̃) which are sample-path
continuous.

(c) Mc,loc
0 ({F̃t}, P̃) := Mloc

0 ({F̃t}, P̃) ∩Mc,loc({F̃t}, P̃).

(d) Mloc
0,2({F̃t}, P̃) := Mloc

0 ({F̃t}, P̃) ∩Mloc
2 ({F̃t}, P̃).

From Jacod and Shiryaev [18], Definition I.4.11 we have the following definitions.

Definition B.2.18 Two local martingales N and M are called orthogonal if their
product L = MN is a local martingale.

Definition B.2.19 A local martingale M is called a purely discontinuous local
martingale if M(0) = 0 and if it is orthogonal to all continuous local martingales.
That is, M ∈Mloc({F̃t}, P̃) is a purely discontinuous local martingale whenM(0) =
0 and MN ∈Mloc({F̃t}, P̃) for each N ∈Mc,loc({F̃t}, P̃).

B.2.4 Finite variation processes

Definition B.2.20 A process A = {A(t) : t ∈ [0, T ]} is a process of finite variation
if it is an {F̃t}-adapted, càdlàg process such that each path t→ A(ω, t) is of finite
variation on [0, T ], in other words for all ω ∈ Ω the variation VA(ω, T ) of t→ A(ω, t)
over (0, T ] is finite, in which the variation process is defined by

VA(ω, t) :=

∫
(0,t]

|dA(ω, s)| = sup
n∑
i=1

|A(ω, si)− A(ω, si−1)| <∞. (B.13)

The supremum is taken over all finite partitions 0 = s0 < s1 < . . . < sn = t of [0, t].
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Definition B.2.21 A process A = {A(t) : t ∈ [0, T ]} is a process of integrable
variation if it is a process of finite variation such that

E(VA(ω, T )) <∞, (B.14)

for VA given by (B.13).

Notation B.2.22 The definition of processes of finite variation is very general,
and in particular does not postulate any sample-path regularity of the process. In
practice we are usually interested in processes of finite variation which also have
càdlàg sample paths. We build this into the following notation:

(a) We denote by FV({F̃t}) the set of all real-valued, {F̃t}-adapted, càdlàg processes
on the filtered probability space ((Ω̃, F̃ , P̃), {F̃t}) which are of finite variation.

(b) We denote by FV0({F̃t}) the set of A ∈ FV({F̃t}) which are P̃-a.s. null at
the origin.

(c) We denote by FV+({F̃t}) the set of all real-valued, {F̃t}-adapted, càdlàg
processes on the filtered probability space ((Ω̃, F̃ , P̃), {F̃t}) which are non-
decreasing (and are therefore processes of finite variation i.e. FV+({F̃t}) ⊂
FV({F̃t})).

(d) We denote by FV+
0 ({F̃t}) the set of A ∈ FV+({F̃t}) which are P̃-a.s. null at

the origin.

(e) We denote by IV({F̃t}) the set of A ∈ FV({F̃t}) which are of integrable
variation.

(f) We denote by IV0({F̃t}) the set of A ∈ IV({F̃t}) which are P̃-a.s. null at
the origin.

(g) We denote by IV+({F̃t}) the set of A ∈ FV+({F̃t}) which are integrable,
that is E(A(T )) <∞.

(h) We denote by IV+
0 ({F̃t}) the set of A ∈ IV+({F̃t}) which are P̃-a.s. null at

the origin.

From Jacod and Shiryaev [18], Proposition I.1.28(a), Definition I.1.11(a) and Def-
inition I.1.20a, we have the following proposition which is used repeatedly in the
thesis to construct stopping times:

Proposition B.2.23 If X is an Rn-valued adapted càdlàg process on the standard
filtered probability space ((Ω̃, F̃ , P̃), {F̃t}), and if B is an open subset of Rn, then
S := inf{t : X(t) ∈ B} is an {F̃t}-stopping time.
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B.2.5 Angle bracket processes for locally square integrable
martingales

The definition of the angle bracket quadratic variation and co-variation processes is
motivated by the following theorem from Jacod and Shiryaev [18], Theorem I.4.2:

Theorem B.2.24 For each pair N,M ∈Mloc
2 ({F̃t}, P̃), there exists a real-valued,

càdlàg , {F̃t}-adapted, finite variation process 〈N,M〉, which is unique up to indis-
tinguishability, such that

1. 〈N,M〉(0) = 0 a.s.;

2. 〈N,M〉 is predictable; and

3. NM − 〈N,M〉 ∈ Mloc
2 ({F̃t}, P̃).

IfN,M ∈M2({F̃t}, P̃) then we also have 〈N,M〉 ∈ IV0({F̃t}, P̃) andNM−〈N,M〉
is a uniformly integrable martingale. Furthermore, 〈N,M〉 is non-decreasing when
N = M (in which case we denote 〈N,M〉 by 〈M,M〉 or (more briefly) by 〈M〉; see
Remark B.2.26).

Remark B.2.25 We call 〈N,M〉, which is uniquely determined by Theorem B.2.24,
the angle-bracket quadratic co-variation process of N and M .

Remark B.2.26 For any M ∈ Mloc
2 ({F̃t}, P̃), the process 〈M,M〉 (i.e. the co-

quadratic variation of M with itself) is called the angle-bracket quadratic variation
process of M . We often write 〈M〉 for 〈M,M〉. On the basis of Theorem B.2.24
one can relate the co-quadratic variation 〈N,M〉 (for N,M ∈Mloc

2 ({F̃t}, P̃)) to the
quadratic variation processes of N +M and N −M as follows:

〈N,M〉 =
1

4
(〈N +M,N +M〉)− 〈N −M,N −M〉. (B.15)

Remark B.2.27 A continuous local martingale is locally bounded and therefore
of course locally square-integrable, that is we have

Mc,loc({F̃t}, P̃) ⊂Mloc
2 ({F̃t}, P̃). (B.16)

It follows that the angle-bracket quadratic covariation 〈N,M〉 of the continuous
local martingales N,M ∈Mc,loc({F̃t}, P̃) is also given by Theorem B.2.24.
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B.2.6 Square bracket processes for local martingales

Remark B.2.28 In Theorem B.2.24 it is essential that M and N be locally square
integrable martingales, that is N,M ∈ Mloc

2 ({F̃t}, P̃). If we simply hypothesized
that N,M ∈ Mloc({F̃t}, P̃) i.e. N and M are just local martingales without any
square integrability, then there generally will not exist an angle-bracket quadratic
co-variation process 〈M,N〉 with the properties stated in Theorem B.2.24. In this
section we shall formulate the so-called square-bracket processes which do exist even
when the local martingales are not necessarily square integrable.

From Jacod and Shiryaev [18], equation I.4.46 and Proposition I.4.50 and Rogers
and Williams [32], Theorem VI.36.6 and Theorem VI.37.8, we have the following
theorem.

Theorem B.2.29 For each pair N,M ∈ Mloc({F̃t}, P̃), there exists a càdlàg ,
{F̃t}-adapted process [N,M ] of finite variation, which is unique up to indistin-
guishability, such that

1. [N,M ](0) = 0 a.s;

2. 4[N,M ](t) = 4N(t)4M(t) for all t > 0; and

3. NM − [N,M ] ∈Mloc({F̃t}, P̃).

If N,M ∈ M2({F̃t}, P̃) then [N,M ] ∈ IV0({F̃t}, P̃) and NM − [N,M ] is a uni-
formly integrable martingale. Furthermore, [N,M ] is non-decreasing when N = M ,
in which case we denote [N,M ] by [M,M ] or (more briefly) by [M ] (see Remark
B.2.31).

Remark B.2.30 We call [N,M] the square bracket quadratic co-variation process
of N and M .

Remark B.2.31 For any M ∈ Mloc({F̃t}, P̃), the process [M,M ] is called the
square bracket quadratic variation process of the local martingale M . We will
often write [M ] for [M,M ]. On the basis of Theorem B.2.29 one can relate the
square-bracket [N,M ] (for N,M ∈ Mloc({F̃t}, P̃)) to the square-bracket processes
of N +M and N −M as follows:

[N,M ] =
1

4
([N +M,N +M ]− [N −M,N −M ]). (B.17)
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Remark B.2.32 If N,M ∈ Mloc
2 ({F̃t}, P̃) then of course N,M ∈ Mloc({F̃t}, P̃),

so that both the angle-bracket process 〈M,N〉 and the square-bracket process
[M,N ] exist, and it is natural to enquire how these angle-bracket processes might
be related. Clearly 〈N,M〉 has stronger properties than [M,N ] in that it is a
predictable process (a very strong measurability property) whereas [M,N ] is only
adapted (a much weaker measurability property). Furthermore, the angle-bracket
process partially “smooths out” jumps and therefore does not have any property
comparable with Theorem B.2.29(2). In fact, there are examples of discontinuous
M ∈ Mloc

2 ({F̃t}, P̃) (i.e. ∆M 6= 0) such that 〈M,M〉 is continuous (see e.g. Prob-
lem 4 on page 60 of Liptser and Shiryayev [26]). It can in fact be shown that 〈M,N〉
is the so-called dual predictable projection of [M,N ]. This result plays no role in the
thesis so we shall say no more about it here. Moreover, if M and N are continuous
local martingales (and consequently N,M ∈Mloc

2 ({F̃t}, P̃)), then it turns out that
〈M,N〉 and [M,N ] are actually identical: If M,N ∈Mc,loc({F̃t}, P̃), then

[M,N ] = 〈M,N〉. (B.18)

Again, we shall not require this result in the thesis. Despite the fact that the
square-bracket process lacks some of the properties of the angle-bracket process it
is in fact the preferred entity for general stochastic calculus, where general local
martingales are very common whereas square-integrable local martingales are quite
rare. In particular, it is fortunately possible to formulate the most important single
result in stochastic calculus (the Itô product formula, see Theorem B.2.48 to follow)
just in terms of the square-bracket process.

From Protter [30], Chapter II, Section 6, corollary 3, page 73, we have the following
corollary which gives conditions in terms of the square-bracket process for a local
martingale to be a square integrable martingale:

Corollary B.2.33 Let M ∈ Mloc({F̃t}, P̃). We then have the equivalence M ∈
M2({F̃t}, P̃) iff EP̃[M,M ](T ) < ∞, and in this case EP̃|M(t)|2 = EP̃[M,M ](t),
t ∈ [0, T ].

From Protter [30], Chapter II, Section 6, Corollary 4, page 74, we also have the next
corollary. In our terminology, an L2-bounded martingale corresponds to Protter’s
definition of a square integrable martingale. We use our terminology to state the
corollary.
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Corollary B.2.34 If M = {M(t), t ∈ [0, T ]} ∈ Mloc({F̃t}, P̃) and E[M,M ](T ) <
∞, then M is a L2-bounded martingale (that is supt∈[0,T ]E|M(t)|2 = E|M(∞)|2 <
∞). Moreover

EP̃|M(t)2| = EP̃[M,M ](t) (B.19)

for all t ∈ [0, T ].

B.2.7 Semimartingales and their decomposition

Definition B.2.35 A real-valued {F̃t}-adapted process {X(t) : t ∈ [0, T ]} on
(Ω̃, F̃ , P̃) is called a semimartingale if it can be written in the form

X = X(0) +M + A, (B.20)

for some M ∈Mloc
0 ((Ω̃, F̃ , P̃), {F̃t}) and A ∈ FV0((Ω̃, F̃ , P̃), {F̃t}).

Notation B.2.36 The notation SM((Ω̃, F̃ , P̃), {F̃t}) denotes the set of all {F̃t}-
adapted semimartingales on (Ω̃, F̃ , P̃).

As for the spaces of martingales, if there is no ambiguity about the measurable
space on which the space of semimartingales SM((Ω̃, F̃ , P̃), {F̃t}) is defined, we
will write SM({F̃t}, P̃) instead of SM((Ω̃, F̃ , P̃), {F̃t}).

The decomposition on the right side of (B.20) is generally not unique so that we
can have

X = X(0) + M̃ + Ã (B.21)

for some M̃ ∈ Mloc
0 ((Ω̃, F̃ , P̃), {F̃t}), which is distinct from the M at (B.20), and

for some Ã ∈ FV0((Ω̃, F̃ , P̃), {F̃t}) which is distinct from the A at (B.20). In a
decomposition of the form (B.20) we call M a local martingale part and call A a
finite variation part of the semimartingale X, and we see that the local martingale
part and finite variation part of a semimartingale are generally non-unique.

Although the decomposition at (B.20) is generally not unique there is nevertheless
a type of uniqueness which can still be associated with every such decomposition.
We discuss this next. We need the following result from Jacod and Shiryaev ([18],
Theorem I.4.18) which gives a unique decomposition of a local martingale into a
continuous and a purely discontinuous part:
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Theorem B.2.37 Any local martingaleM ∈Mloc((Ω̃, F̃ , P̃), {F̃t}) admits a unique
(up to indistinguishability) decomposition

M = M(0) +M c +Md, (B.22)

where M c(0) = Md(0), M c ∈Mloc((Ω̃, F̃ , P̃), {F̃t}) is a continuous local martingale
and Md ∈Mloc((Ω̃, F̃ , P̃), {F̃t}) is a purely discontinuous local martingale.

Remark B.2.38 We call M c the continuous part of the local martingale M and
we call Md the purely discontinuous part of the local martingale M. From Theorem
B.2.37 it follows that these entities are unique to within indistinguishability.

With the decomposition of Theorem B.2.37 in mind we have the following result
(see Jacod and Shiryaev [18], Proposition I.4.27):

Proposition B.2.39 Let X ∈ SM({F̃t}, P̃) and fix any two arbitrary decompo-
sitions

X = X(0) +M + A (B.23)

and X = X(0) + M̃ + Ã, (B.24)

for M, M̃ ∈ Mloc
0 ({F̃t}, P̃) and A, Ã ∈ FV0({F̃t}, P̃). Decompose the local mar-

tingales M, M̃ ∈ Mloc
0 ({F̃t}, P̃) (according to Theorem B.2.37) to get the unique

decompositions

M = M(0) +M c +Md, (B.25)

and M̃ = M̃(0) + M̃ c + M̃d, (B.26)

where M c(0) = Md(0) = M̃ c(0) = M̃d(0) = 0, M c, M̃ c are continuous local mar-
tingales and Md, M̃d are purely discontinuous local martingales. Then M c and M̃ c

are indistinguishable.

This proposition can also be stated as follows:

Proposition B.2.40 Let X ∈ SM({F̃t}, P̃). Then there exists some continuous
M∗ ∈Mc,loc

0 ({F̃t}, P̃) with the following property: For every decomposition

X = X(0) +M + A (B.27)

with M ∈ Mloc
0 ({F̃t}, P̃) and A ∈ FV0({F̃t}, P̃), the continuous part of the local

martingale M is indistinguishable from M∗.
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Remark B.2.41 According to Proposition B.2.40 to each X ∈ SM({F̃t}, P̃),
there corresponds a uniquely defined M∗ ∈ Mc,loc

0 ({F̃t}, P̃); this continuous local
martingale is is denoted by Xc, that is Xc denotes the unique (up to indistinguisha-
bility) member ofMc,loc

0 ({F̃t}, P̃) given by Proposition B.2.40. The continuous local
martingale Xc is called the continuous local martingale part of the semimartingale
X. As we shall see, this process is essential for writing down Itô ’s formula for
general semimartingales.

Another essential ingredient for writing down Itô ’s formula for general semimartin-
gales is the so-called square bracket process of a pair of semimartingales which we
now proceed to define. We need the following technical result (see Section 2.1 of
Liptser and Shiryayev [26]):

Proposition B.2.42 If X, Y ∈ SM({F̃t}, P̃) then for each t ∈ [0,∞) one has∑
0≤s≤t

|∆X(s)∆Y (s)| <∞ a.s. (B.28)

Definition B.2.43 Given any X, Y ∈ SM({F̃t}, P̃) put

[X, Y ](t) := 〈Xc, Y c〉(t) +
∑

0≤s≤t

∆X(s)∆Y (s), (B.29)

for all t ∈ [0,∞). Here Xc and Y c denote the continuous local martingale parts X
and Y respectively, which are of course uniquely defined (see Remark B.2.41).

Remark B.2.44 Since Xc, Y c ∈ Mc,loc
0 ({F̃t}, P̃) the first term on the right of

(B.29) is given by Theorem B.2.24 (see Remark B.2.27). As for the series in the
second term on the right of (B.29), this is absolutely convergent in view of Propo-
sition B.2.42.

From Protter [30], Chapter II, Seciton 6, page 71 we have the following definition
and theorem.

Definition B.2.45 Let X be a semimartingale and let Xc denote its continuous
local martingale part. Then X is called a purely discontinuous semimartingale if
〈Xc, Xc〉 = 0.

Theorem B.2.46 If a semimartingale X is adapted, càdlàg , with paths of finite
variation then X is a purely discontinuous semimartingale.

114



Protter uses the term quadratic pure jump for purely discontinuous.

As a special case of Jacod and Shiryaev [18], Theorem I.4.52, we have the following
theorem.

Theorem B.2.47 let X be a purely discontinuous semimartingale. Then for any
semimartingale Y , we have

[X, Y ](t) =
∑

0≤s≤t

4X(s)4Y (s). (B.30)

B.2.8 Itô formula for general semimartingales

From Rogers and Williams [32], Theorem VI.38.3, we have the following Itô integration
by parts formula for semimartingales:

Theorem B.2.48 LetX and Y be semimartingales, that is members of SM({F̃t}, P̃).
Then

X(t)Y (t) = X(0)Y (0) +

∫ t

0

X(τ−) dY (τ) +

∫ t

0

Y (τ−) dX(τ) + [X, Y ](t). (B.31)

From Rogers and Williams [32], Theorem VI.39.1, we have the following Itô’s formula
for semimartingales, which includes the integration by parts formula of Theorem
B.2.48 as a special case:

Theorem B.2.49 Let f : RN → R be a function which has continuous derivatives
up to order two. Suppose X = (X1, . . . , XN) is a semimartingale in RN , that is
Xi ∈ SM({F̃t}, P̃) for all i = 1, 2, . . . , N . Then

f(X(t))− f(X(0)) =
N∑
i=0

∫ t

0

∂f

∂Xi

X(τ−) dX(τ)

+
1

2

N∑
i=0

N∑
j=0

∫ t

0

∂2f

∂XiXj

X(τ−) d[(Xi)
c, (Xj)

c](τ)

+
∑

0≤τ≤t

(
f(X(τ))− f(X(τ−)−

N∑
i=1

∂f

∂Xi

X(τ−)4Xi(τ)

)
,

(B.32)

(Xi)
c denoting the continuous local martingale part of the semimartingale Xi.
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B.2.9 Doléans-Dade exponential results

From Elliott [10], Chapter 13, Theorem 13.5 and Remark 13.6, we have

Theorem B.2.50 Suppose X = {X(t) : t ≥ 0} is a semimartingale which is null
at the origin. Let Xc denote its continuous local martingale part. Then there is a
unique semimartingale Z = {Z(t) : t ≥ 0} such that

Z(t) = 1 +

∫ t

0

Z(τ−) dX(τ). (B.33)

Furthermore, Z(t) is given by the expression

Z(t) = exp

{
X(t)− 1

2
〈Xc, Xc〉

} ∏
τ∈[0,t]

(1 +4X(τ)) exp {−4X(τ)} , (B.34)

for t ≥ 0, where the infinite product is absolutely convergent almost surely.

Remark B.2.51 We will use the notation E(X)(t) to represent Z(t), that is Z(t) =
E(X)(t), and we call E(X) the Doléans-Dade exponential of the semimartingale X.

Clearly, from (B.33), if X is a local martingale then E(X) is also a local martingale.
Furthermore, from (B.34), E(X) is strictly positive if and only if 4X(t) > −1
a.s. for all t ≥ 0. In particular, if X is continuous then, by Remark B.2.32,
[X,X] = 〈X,X〉, and hence

Z(t) = exp

{
X(t)− 1

2
[X,X](t)

}
a.s. (B.35)

From Elliott [10], Chapter 13, Corollary 13.58, we also have the following result.

Corollary B.2.52 If X and Y are semimartingales, then

E(X)E(Y ) = E(X + Y + [X, Y ]) (B.36)

From Protter [30], Chapter III, Section 8, Theorem 45, page 141, we have Novikov’s
Criterion, which gives conditions for the Doléans-Dade exponential of a continuous
local martingale to be a martingale.

Theorem B.2.53 Novikov’s Criterion. Let M be a continuous local martingale
and suppose that

E

(
exp

{
1

2
[M,M ](∞)

})
<∞ (B.37)

Then E(M) is a uniformly integrable martingale.
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B.3 Compensator Results

In the following definitions we localize the notion of integrable variation process
(see Definition B.2.21 and Notation B.2.22).

Definition B.3.1 Recalling Notation B.2.22 we denote by IV loc({F̃t}) the set
of all A ∈ FV({F̃t}) for which there exists a sequence of {F̃t}-stopping times
{Tm}m∈N (depending on A) such that Tm ⇑ T and each stopped process A[0, Tm] ∈
IV({F̃t}). Members of IV loc({F̃t}) are processes of locally integrable variation.

It is immediately clear from this definition that

IV({F̃t}) ⊂ IV loc({F̃t}). (B.38)

Notation B.3.2 Put

IV+
0,loc({F̃t}) = FV+

0 ({F̃t}) ∩ IV loc({F̃t}). (B.39)

That is, members of IV+
0,loc({F̃t}) are processes of locally integrable variation with

sample paths which are null at t = 0 and non-decreasing.

From Jacod and Shiryaev [18], Theorem I.3.17, we have the following basic result:

Theorem B.3.3 Let A ∈ IV+
0,loc({F̃t}, P̃). Then there exists a predictable process

Ap ∈ IV+
0,loc({F̃t}, P̃) such that A−Ap ∈Mloc

0 ({F̃t}, P̃). Moreover, Ap is unique in

the sense that, for any predictable process Â ∈ IV+
0,loc({F̃t}, P̃) such that A− Â ∈

Mloc
0 ({F̃t}, P̃), the process Ap and Â are indistinguishable.

Remark B.3.4 The process Ap is called the compensator (or dual predictable pro-
jection) of the given process A, and is unique to within indistinguishability.

Theorem B.3.5 Let A ∈ IV+
0,loc({F̃t}, P̃). For each predictable process Ā ∈

IV+
0,loc({F̃t}, P̃) the following are equivalent:

1. Ā is the compensator of A, that is Ā = Ap;
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2. for all nonnegative predictable processes H one has

E

∫ ∞
0

H(τ) dA(τ) = E

∫ ∞
0

H(τ) dĀ(τ). (B.40)

Given a local martingale M ∈ Mloc({F̃t}, P̃) we know that [M ] ∈ FV+
0 ({F̃t}, P̃)

(see Theorem B.2.29). The following theorem (from Rogers and Williams [32], The-
orem VI.34.2) establishes conditions on M which ensure that [M ] ∈ IV+

0,loc({F̃t}, P̃)
and shows that [M ]p (the compensator of [M ]) and 〈M〉 are identical in this case:

Theorem B.3.6 Let M ∈ Mloc
0 ({F̃t}, P̃). Then the following statements are

equivalent:

1. M ∈Mloc
0,2({F̃t}, P̃);

2. the increasing process [M ] is locally integrable, that is [M ] ∈ IV+
0,loc({F̃t}, P̃).

Under these equivalent conditions we have

〈M〉 = [M ]p,

that is 〈M〉 is the compensator of [M ] (recall Theorem B.2.24).

B.4 Convex analysis

In this section we summarize some basic definitions and results on convex analysis
in the simplest setting of general vector spaces (without any norm or topology on
the vector spaces involved).

Definition B.4.1 Let U be a real vector space and suppose that ψ : U → [−∞,+∞]
is a given function. The epigraph of ψ is the subset of the vector space R×U defined
by

epiψ := {(α, u) ∈ R× U : α ≥ ψ(u)} (B.41)

and the domain of ψ is the subset of U defined by

domψ := {u ∈ U : ψ(u) < +∞}. (B.42)

The function ψ is said to be convex when epiψ is a convex subset of R×U , that is

λ(α1, u1) + (1− λ)(α2, u2) ∈ epiψ for all λ ∈ [0, 1] and (αi, ui) ∈ epiψ. (B.43)
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Remark B.4.2 It is easily seen that a function ψ : U → [−∞,+∞] is convex if
and only if

ψ(εu+ (1− ε)ū) ≤ εψ(u) + (1− ε)ψ(ū), (B.44)

for all ε ∈ [0, 1] and all u and ū in U such that the right hand side is defined (i.e.
u and ū are such that we do not get ∞−∞).

Remark B.4.3 Elementary definitions of convexity are typically only for R-valued
functions. However, this is not quite general enough for us since we will want to
deal with convex functions which can take the value +∞ to account for constraints
in our optimization problem (see e.g. the primal function f(·) at Definition 2.2.26).
On the other hand, there is usually little interest in convex functions which take
the value −∞ anywhere on U since these functions are degenerate or pathological
in the following sense: if ψ : U → [−∞,+∞] is convex and ψ(ū) = −∞ for some
ū ∈ U then, for every half-line in U starting at ū with direction v ∈ U , that is

HL(ū, v) = {ū+ αv : α ∈ [0,∞)},

one has either ψ(ū+αv) = −∞ for all α ∈ [0,∞), or there exists some α0 ∈ (0,∞)
such that ψ(ū + αv) = −∞ for all 0 < α < α0 and ψ(ū + αv) = +∞ for all
α > α0 (see page 8 of Ekeland and Témam [9] for further discussion of this). Such
pathological convex functions are generally of no interest. Likewise, the function
ψ defined by ψ(u) = +∞ for all u ∈ U , that is domψ = ∅ (recall (B.42)), is
undoubtedly convex but also rather pathological and of very little interest. We
next single out a particularly important class of convex functions on U which avoid
these two pathologies (see Definition 7.1 of Aliprantis and Border [1]):

Definition B.4.4 A convex function ψ : U → [−∞,+∞] defined on the vector
space U is a proper convex function when domψ 6= ∅ and ψ(u) > −∞ for all u ∈ U .

Definition B.4.5 Given two vector spaces U and Y , a mapping ψ : U × Y → R
is a bilinear form on U × Y when

(a) The mapping u→ ψ(u, y) : U → R is linear for each fixed y ∈ Y ,

(b) The mapping y → ψ(u, y) : Y → R is linear for each fixed u ∈ U.
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Remark B.4.6 If U and Y are vector spaces and ψ : U × Y → R is linear, that is

i.e. ψ(α1(u1, y1) + α2(u2, y2)) = α1ψ(u1, y1) + α2ψ(u2, y2)

for all α1 &α2 ∈ R, all (ui, yi) ∈ U × Y,

then ψ is bilinear form on U×Y . However, there are bilinear forms on U×Y which
are not necessarily linear functions on U × Y .

Remark B.4.7 It is customary to use the notation 〈·, ·〉 to denote a given bilinear
form on U × Y for vector spaces U and Y , that is 〈u, y〉 denotes ψ(u, y), (u, y) ∈
U × Y , in the notation of Definition B.4.5. The triple (U, Y, 〈·, ·〉) is called a dual
system.

Remark B.4.8 A particularly simple but important special case of a dual system
(U, Y, 〈·, ·〉) corresponds to U = Y = RN with 〈u, y〉 being the usual inner product
(or “dot” product) of the vectors u, y ∈ RN .

Definition B.4.9 Suppose that (U, Y, 〈·, ·〉) is a given dual system. The 〈U, Y 〉
- convex conjugate of a given function ψ : U → [−∞,∞] is the convex function
ψ∗ : Y → (−∞,+∞] defined by

ψ∗(y) := sup
u∈U

[〈u, y〉 − ψ(u)], y ∈ Y. (B.45)

Remark B.4.10 Note that the function ψ in Definition B.4.9 need not be convex.
However, it is immediate from (B.45) that ψ∗ is always a convex function on Y ,
regardless of the properties of ψ, although ψ∗ is not necessarily a proper convex
function. In fact, if ψ is such that ψ(ū) = −∞ for some ū ∈ U then it is immediate
that ψ∗(y) = +∞ for all y ∈ Y , that is domψ∗ = ∅, and therefore ψ∗ fails to be a
proper convex function. On the other hand, if ψ(u) = +∞ for all u ∈ U , then it is
immediate that ψ∗(y) = −∞ for all y ∈ Y , that is ψ∗ is again a (highly) non-proper
convex function.

Definition B.4.11 Suppose that (U, Y, 〈·, ·〉) is a given dual system. Then the
〈U, Y 〉-bi-conjugate of the given function ψ : U → [−∞,∞] is the convex function
ψ∗∗ : U → [−∞,+∞] defined by

ψ∗∗(u) := sup
y∈Y

[〈u, y〉 − ψ∗(y)], u ∈ U. (B.46)
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Remark B.4.12 Observe that for a given function ψ : U → [−∞,∞] (not neces-
sarily convex), we always have

ψ∗∗(u) ≤ ψ(u), u ∈ U. (B.47)

Definition B.4.13 Suppose that (U, Y, 〈·, ·〉) is a given dual system and ψ : U →
[−∞,+∞] is a given mapping (not necessarily convex). At each u ∈ U such that
−∞ < ψ(u) < +∞ we define the subgradient of ψ at u to be the subset of Y given
by

∂ψ(u) := {y ∈ Y |ψ(u′) ≥ ψ(u) + 〈u′ − u, y〉 all u′ ∈ U}, (B.48)

and ψ is said to be sub-differentiable at u when ∂ψ(u) 6= ∅.

Remark B.4.14 Suppose that ψ : RN → R is a smooth convex function with usual
the vector of partial derivatives Dψ(u) ∈ RN at each u ∈ RN , and (U, Y, 〈·, ·〉) is the
simple duality system at Remark B.4.8. Then it is immediate that the subgradient
of ψ at each u is just the single-point set {Dψ(u)}, that is

∂ψ(u) = {Dψ(u)}, for all u ∈ RN . (B.49)

In this situation we will use ∂ψ(u) to denote the actual vector Dψ(u) itself, rather
than the single-point set which contains the vector Dψ(u).

The next result, which is a very special case of Proposition 5.1 and Corollary 5.2,
page 21-22 of Ekeland and Témam[9], is used in this thesis to construct transver-
sality conditions in Kuhn-Tucker optimality relations:

Lemma B.4.15 Suppose that ψ : U := RN → R is a smooth convex function, and
(U, Y, 〈·, ·〉) is the simple duality system at Remark B.4.8. Then ψ∗ : Y := RN → R
is also a smooth convex function, with the vector of partial derivatives denoted by
∂ψ∗(y) ∈ RN at each y ∈ RN (in accordance with Remark B.4.14). Moreover, for
each u ∈ U := RN and y ∈ Y := RN we have the equivalence

ψ(u) + ψ∗(y) = 〈u, y〉
iff

u = ∂ψ∗(y). (B.50)
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Appendix C

Topological Vector Spaces

This appendix is for supplementary information only, and is not necessary for read-
ing the thesis. We give some elementary definitions and remarks on topological
vector spaces which are used throughout the thesis. For background purposes only
we also state the Mackey-Arens theorem and Mackey theorem since these may help
to promote a greater understanding of the choice of the vector space of dual vari-
ables given by (3.11) and the choice of the bilinear form given by (3.12). With
this choice of bilinear form, the Mackey-Arens theorem together with the Mackey
theorem states that the norm-topology on U is the Mackey topology, as asserted at
Remark 3.1.6.

Definition C.1.1 A topology on a set X is a collection T of subsets of X having
the following properties.

1. ∅ and X are in T ,

2. The union of the elements of any subcollection of T is in T ,

3. The intersection of the elements of any finite subcollection of T is in T .

A Topological space is an ordered pair (X, T ) consisting of a set X and a topology
T on X. Any element of T is called an T -open (or open) subset of X. A subset of
X which is the complement of an element of T is called T -closed.

Definition C.1.2 Let (X, T ) be a topological space and let A ⊂ X. The T -
interior of A, denoted by A◦ is defined to be the union of all subsets of A which are
T -open. The T -closure of A, denoted by Ā, is defined to be the intersection of all
T -closed supersets of A.

122



Remark C.1.3 Given a topological space (X, T ) and some A ⊂ X, we see that
A◦ is the largest open subset of A and Ā is the smallest closed superset of A.

Remark C.1.4 Given a topological space (X, T ) and some x ∈ X, a set U ⊂ X
is a T -neighborhood of x when U◦ 6= φ and x ∈ U◦.

Remark C.1.5 (X, T ) is a Hausdorff space, and T is a Hausdorff topology if dis-
tinct points of X have disjoint neighborhoods. A collection T ′ ⊂ T is a base for T
if every member of T is a union of members of T ′. A collection B of neighborhoods
at point x ∈ X is a local base at x if every neighborhood of x contains a member
of B.

Definition C.1.6 Suppose T is a topology on a vector space X such that the
vector space operations of vector addition and scalar multiplication are continuous
with respect to T . Then T is said to be a vector topology on X, and (X, T ) is a
topological vector space.

To say that vector addition is continuous means, by definition, that the mapping

(x, y)→ x+ y (C.1)

of the cartesion product X×X into X is continuous. This means that, if xi ∈ X for
i = 1, 2, and V is a neighborhood of x1 +x2, then there should exist neighborhoods
Vi of xi, such that

V1 + V2 ⊂ V. (C.2)

Similarly, the assumption that scalar multiplication is continuous means that the
mapping

(α, x)→ αx (C.3)

of φ × X into X is continuous: That is, if x ∈ X, α is a scalar, and V is a
neighborhood of αx, then for some r > 0 and some neighborhood W of x we have
βW ⊂ V whenever |β − α| < r.

Definition C.1.7 If (X, T ) is a topological vector space then the vector topology
T is called locally convex when for each T -neighborhood G of 0 ∈ X there exists a
convex T -neighborhood N of 0 ∈ X such that N ⊂ G. That is, T has a local base
of convex sets at 0 ∈ X.
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Remark C.1.8 X is locally convex if there is local base B whose members are
convex.

Remark C.1.9 Suppose that (U,Y, 〈·, ·〉) is a dual system in the sense of Remark
B.4.7. We do not as yet have any natural topology on either of the vector spaces U
or Y. We denote by S(U,Y) the topology on U which is generated by the mappings

u→ 〈u, y〉 : U→ R for all y ∈ Y,

and call S(U,Y) the weak topology generated on U through the bilinear form 〈·, ·〉.
In an exactly symmetric way we can define S(Y,U), the weak topology generated
on Y through the bilinear form 〈·, ·〉. It is an elementary exercise to check that
S(U,Y) is a locally convex vector topology on U, and similarly for S(Y,U) on Y.

Definition C.1.10 Suppose that (U,Y, 〈·, ·〉) is a given dual system. A locally
convex Hausdorff topology U on U is called compatible with the bilinear form 〈·, ·〉
on U× Y (or 〈U,Y〉-compatible for short) when

(a) The mapping u→ 〈u, y〉 : U→ R is U -continuous for each y ∈ Y,

(b) If Σ : U → R is any U -continuous linear functional then there exists some
y ∈ Y such that Σ(u) = 〈u, y〉 for all u ∈ U.

Remark C.1.11 Given the dual system (U,Y, 〈·, ·〉) it is natural to ask how one
characterizes the 〈U,Y〉-compatible topologies on U. It is immediate from Definition
C.1.10 and Remark C.1.9 that S(U,Y) is a 〈U,Y〉-compatible topology on U, and if
U is another 〈U,Y〉-compatible topology on U then S(U,Y) ⊂ U , that is S(U,Y) is
the weakest among all 〈U,Y〉-compatible topologies on U. It turns out that there is
also a strongest locally convex Hausdorff topology on U which is 〈U,Y〉-compatible,
called the Mackey topology which is defined as follows: Put

S = {A ⊂ Y | A is balanced, convex and S(Y,U)-compact}.

For each A ∈ S define the seminorm qA : U→ [0,∞) as follows:

qA(u) = sup{|〈u, y〉| | y ∈ A}, for all u ∈ U,

and let τ(U,Y) be the locally convex Hausdorff topology on U with the subbase

{u ∈ U | qA(u) < ε} for all ε ∈ (0,∞) and A ∈ S.

Then τ(U,Y) is called the Mackey topology on U derived from the dual system
(U,Y, 〈·, ·〉).
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The significance of this topology is given by the following result of Mackey and
Arens (see e.g. Theorem 9-2-3 of Wilansky [43] or Theorem 5.113 of Aliprantis and
Border [1]):

Theorem C.1.12 (Mackey-Arens) Suppose that (U,Y, 〈·, ·〉) is a given dual sys-
tem. Then the weak topology S(U,Y) and the Mackey topology τ(U,Y) are both
〈U,Y〉-compatible topologies on U. Moreover, if U is any 〈U,Y〉-compatible topol-
ogy on U then

S(U,Y) ⊂ U ⊂ τ(U,Y).

Effectively, Theorem C.1.12 says that the weak topology S(U,Y) and the Mackey
topology τ(U,Y) on U are, respectively, the weakest and strongest among all 〈U,Y〉-
compatible topologies on U, and if U is any 〈U,Y〉-compatible topology on U then
U is stronger than S(U,Y) and weaker than τ(U,Y).

In Remark 3.1.6 it is noted that the most appropriate choice of topology U on U
when using Theorem 3.1.4 is the Mackey topology since it has the largest collection
of open sets. Theorem C.1.13 which follows shows that the norm topology on U is
in fact the Mackey topology (see e.g. Corollary 6.23 of Aliprantis and Border [1]):

Theorem C.1.13 (Mackey) Suppose that (U, ‖ · ‖) is a normed vector space, let
Y = U? be the norm dual of U, and define the dual system (U,Y, 〈·, ·〉) as

〈u, y〉 = y(u), u ∈ U, y ∈ Y.

The Mackey topology τ(U,Y) and the norm-topology on U are identical.

It is Theorem C.1.13 which makes the norm topology the most appropriate choice
of topology on U .
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Appendix D

The Yosida - Hewitt
Decomposition of (L∗∞(S,Σ, ν))

In this appendix we look at the dual space of the normed vector space L∞(S,Σ, ν)
of essentially bounded random variables on the probability space (S,Σ, ν) with the
usual essential-supremum norm. This dual space is rather subtle and is character-
ized in full by the Yosida-Hewitt decomposition theorem. First we recall a simple
definition:

Definition D.1.1 For each constant p ∈ [1,∞] the set of all norm-continuous
linear functionals on Lp(S,Σ, ν) is called the dual or adjoint space, and is denoted
by L∗p(S,Σ, ν).

For 1 ≤ p < ∞, let g ∈ Lq(S,Σ, ν), where q = p
(p−1)

if 1 < p < ∞ and q = ∞ if
p = 1. Let

Zg(f) =

∫
fg dν, f ∈ Lp(S,Σ, ν) (D.1)

It is immediate from Holder’s inequality that Zg is a norm-continuous linear func-
tional on Lp(S,Σ, ν). The next result asserts that every norm-continuous linear
functional on Lp(S,Σ, ν) is of the form (D.1) for some g ∈ Lq(S,Σ, ν):

Theorem D.1.2 (Riesz Representation Theorem) Let 1 ≤ p <∞. Let Z : Lp(S,Σ, ν)→
R be linear and norm-continuous. Then there exists a unique g in Lq((S,Σ, ν) such
that Z = Zg, i.e.

Z(f) = Zg(f) :=

∫
fg dν for all f ∈ Lp(S,Σ, ν), (D.2)
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where, q = p
p−1

for 1 < p <∞ and q =∞ if p = 1.

See Theorem 8 Section 6.4 of Royden [38], Chapter 11, section 7, page 284.

Remark D.1.3 It is immediate from Holder’s inequality that, for each g ∈ L1(S,Σ, ν),
the linear functional Z defined by

Z(f) =

∫
fg dν, for all f ∈ L∞(S,Σ, ν), (D.3)

is a norm-continuous linear functional on L∞(S,Σ, ν) so that

L1(S,Σ, ν) is a vector subspace of L∗∞(S,Σ, ν). (D.4)

Example D.1.4 which follows demonstrates that L1(S,Σ, ν) is a strict vector sub-
space of L∗∞(S,Σ, ν). That is, there are linear functionals Z ∈ L∗∞(S,Σ, ν) which
are not in the form of (D.3) for some g ∈ L1(S,Σ, ν).

Example D.1.4 The fact that there exist linear functionals Z ∈ L∗∞(S,Σ, ν) which
cannot be represented in the form (D.3) for some g ∈ L1(S,Σ, ν) can be seen from
a simple example discussed in Rudin [40], Chapter 6, Exercise 13, page 134. To see
this consider a linear functional

Z : C[0, 1]→ R (D.5)

such that Z(f) = f(0). (D.6)

Then ‖ Z ‖= 1. (D.7)

Z is bounded linear functional on C[0, 1] and C[0, 1] is a norm-closed linear subspace
of L∞[0, 1]. By the Hahn-Banach extension theorem, Z can be extended to a
bounded linear functional (also denoted by Z) on L∞[0, 1] with identical norm.

Suppose there exists g ∈ L1[0, 1] such that

Z(f) =

∫ 1

0

f(t)g(t) dt ∀f ∈ C[0, 1] (D.8)

Now, let {fn} be a sequence of continuous functions on [0, 1] that are norm-bounded
by 1, fn(0) = 1, and are such that fn(t)→ 0 ∀t 6= 0.

Then Z(fn) =
∫ 1

0
fn(t)g(t) dt → 0 (by the dominated convergence theorem), while

Z(fn) = fn(0) = 1 for all n = 1, 2, . . ., giving a contradiction.
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Remark D.1.5 From Example (D.1.4) we see that in general

L1(S,Σ, ν) $ (L∗∞(S,Σ, ν)). (D.9)

With this remark in mind the question of a complete representation of (L∗∞(S,Σ, ν))
arises. This representation is given by the Yosida-Hewitt decomposition [46].

For stating the Yosida-Hewitt decomposition theorem we must first define singular
continuous linear functionals on L∞(S,Σ, ν):

Definition D.1.6 We say that Z ∈ L∗∞(S,Σ, ν) is a singular norm-continuous
linear functional on L∞(S,Σ, ν) if there is a sequence An ∈ Σ, n = 1, 2, . . . , s.t.

An+1 ⊂ An,

lim
n→∞

ν(An) = 0,

and Z(u) = Z(uIAn),

for each u ∈ L∞(S,Σ, ν) and n = 1, 2, . . ..

Remark D.1.7 It is clear from Definition D.1.6 that, if {An} is a decreasing se-
quence of sets associated with a non-trivial Z ∈ L∗∞(S,Σ, ν) (i.e. Z(u) 6= 0 for some
u ∈ L∞(S,Σ, ν)), then ν(An) > 0 for each n = 1, 2, . . ..

Notation D.1.8 We denote by Q(S,Σ, ν) the set of all singular norm-continuous
linear functionals on L∞(S,Σ, ν).

It is easily verified that Q(S,Σ, ν) is a linear subspace of L∗∞(S,Σ, ν).

Remark D.1.9 The members of Q(S,Σ, ν) seem almost counter-intuitive and are
rather hard to grasp intuitively. Indeed, suppose that we take some non-trivial Z ∈
Q(S,Σ, ν) with corresponding sequence {An} ⊂ Σ “shrinking to zero” in accordance
with Definition D.1.6 (i.e. ν(An) → 0), that is the sequence {IAn} ⊂ L∞(S,Σ, ν)
monotonically decreases to the zero element of L∞(S,Σ, ν). Intuitively one would
then expect that Z(IAn)→ 0. However, taking u ∈ L∞(S,Σ, ν) to be the function
with constant unit value (i.e. u ≡ 1 on S) in Definition D.1.6 we see that in fact

Z(IAn) = Z(1) 6= 0 for all n = 1, 2, . . .,

contrary to what seems to be intuitively reasonable. Example D.1.10 due to Yosida
and Hewitt [46] nevertheless shows that non-trivial singular linear functionals def-
initely do exist, that is the vector subspace Q(S,Σ, ν) is non-trivial.
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Example D.1.10 Suppose that (S,Σ, ν) is a probability space which is not finitely
atomic. Then we can fix a sequence An ∈ Σ, such that An+1 ⊂ An, ν(An) > 0 and
ν(An)→ 0 as n→∞.

For u ∈ L∞(S,Σ, ν) Define

Zn(u) := E[uIAn ]/ν(An), (D.10)

where n = 1, 2, . . . Then {Zn, n = 1, 2, . . .} is a subset of the unit ball of {L∗∞(S,Σ, ν)},
hence (by Alaoglu theorem) has a σ(L∗∞, L∞)-accumulation point Z◦ ∈ L∗∞(S,Σ, ν).
Moreover Zn(1) = 1, and, for each fixed m, we have

Zn(uIAm) = Zn(u), (D.11)

for all n ≥ m and u ∈ L∗∞(S,Σ, ν).

Thus for u ∈ L∞(S,Σ, ν) we get

Z◦(1) = 1

and Z◦(uIAm) = Z◦(u), (D.12)

that is Z◦ is a non-trivial member of Q(S,Σ, ν).

The next theorem gives the celebrated Yosida-Hewitt decomposition of the norm-
dual space L∗∞(S,Σ, ν).

Theorem D.1.11 (Yosida-Hewitt) The adjoint space L∗∞(S,Σ, ν) is given by
the direct sum

L∗∞(S,Σ, ν) = L1(S,Σ, ν)⊕Q(S,Σ, ν), (D.13)

in the sense that if Z ∈ L∗∞(S,Σ, ν), then there exists unique

Zr ∈ L1(S,Σ, ν)

and Z◦ ∈ Q(S,Σ, ν),

s.t. Z(u) = E[Zru] + Z◦(u), (D.14)

for all u ∈ L∞(S,Σ, ν).

The decomposition given by Theorem D.1.11 shows that the linear space Q(S,Σ, ν)
complements the space L1(S,Σ, ν) in giving a full characterization of L∗∞(S,Σ, ν).
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Definition D.1.12 The indicator function, IA : S → {0, 1} for a subset A of S is
defined as

IA(x) :=

{
1, if x ∈ A,
0, if x 6∈ A. (D.15)

Remark D.1.13 When Z ∈ L∗∞(S,Σ, ν), the notation Z ≤ 0 indicates that
Z(u) ≤ 0 for each ν-a.s. non-negative u ∈ L∞(S,Σ, ν).

Remark D.1.14 We shall write Z ∈ L∗∞(S,Σ, ν) in the form Z = (Zr, Z
◦) to

indicate that (Zr, Z
◦) is the unique pair in L1(S,Σ, ν) × Q(S,Σ, ν) for which the

representation at (D.14) holds. Following the terminology of [37], Zr is the regular
part and Z◦ is the singular part of continuous linear functional Z.

The following simple and useful result on non-positive members of L∗∞(S,Σ, ν) (see
Remark D.1.13) is typically stated without proof. Since the proof is not completely
trivial we include it here for completeness:

Lemma D.1.15 For each Z = (Zr, Z
◦) ∈ L∗∞(S,Σ, ν), one has

Z ≤ 0 (D.16)

iff

Zr ≤ 0 ν − a.s. and Z◦ ≤ 0. (D.17)

Proof. Suppose (D.17) holds.

Then for u ∈ L∞, u ≥ 0, we get

Zr ≤ 0 ν − a.s. and Z◦ ≤ 0.

⇒ E[Zr] + Z◦(u) ≤ 0.

⇒ Z(u) ≤ 0.

⇒ Z ≤ 0.

Hence

(D.17)⇒ (D.16). (D.18)

Now suppose (D.16) holds(Z ≤ 0).

When Z◦ = 0 we have for all u ∈ L∞, u ≥ 0,

Z(u) = E[Zru] ≤ 0. (D.19)
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Thus Zr ≤ 0-a.s.

Thus (D.16)⇒(D.17) when Z◦ = 0.

Next suppose Z ≤ 0 and Z◦ 6= 0.

Then there exists {An} ⊂ Σ, s.t.

An+1 ⊂ An, ν(An) > 0, ν(An)→ 0,

Z◦(u) = Z◦(uIAn), (D.20)

for all u ∈ L∞, n = 1, 2, . . .

Then for u ∈ L∞, n = 1, 2, . . . we have

Z(u)
(D.14)

= E[Zr] + Z◦(uIAn) (D.21)

Therefore

Z(uIAcn)
(D.21)

= E[ZruIAcn ] + Z◦(uIAcnIAn)

= E[ZrIAcn ]. (D.22)

for all u ∈ L∞, n = 1, 2, . . .

Since Z ≤ 0, for u ∈ L∞&u ≥ 0 we get

Z(uIAcn) ≤ 0
(D.22)⇒ E[ZruIAcn ] ≤ 0. (D.23)

Since Zr ∈ L1, using the fact that P (Acn) → 1 together with Lebesgue dominated
convergence theorem we get

lim
n→∞

E[ZruIAcn ] = E[Zru], (D.24)

for u ∈ L∞.

From (D.23) and (D.24) we get

E[Zru] ≤ 0 for all u ∈ L∞, u ≥ 0

i.e. Zr ≤ 0 a.s. (D.25)

Moreover for u ∈ L∞, n = 1, 2, . . .

Z(uIAn) = E[ZruIAn ] + Z◦(uIAn)

= E[ZruIAn ] + Z◦(u) (D.26)
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Since Zr ∈ L1 and ν(An) → 0, from Lebesgue dominated convergence theorem we
get

lim
n→∞

E[ZruIAn ] = 0, u ∈ L∞ (D.27)

From (D.26) and (D.27)

lim
n→∞

Z(uIAn) = Z◦(u) u ∈ L∞. (D.28)

Now

u ≥ 0 &u ∈ L∞
Z≤0⇒ Z(uIAn) ≤ 0, n = 1, 2, . . .
(D.28)⇒ Z◦(u) ≤ 0.

i.e. Z◦ ≤ 0. (D.29)

From (D.25) and (D.29) we get

(D.16)⇒ (D.17). (D.30)
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Appendix E

Supplement to Chapter 3

In the first section of this appendix we are going to work through an example which
illustrates the application of the Rockafellar-Moreau approach in a very simple
setting. In the second section we discuss proof of Rockafellar-Moreau Theorem.

E.1 Example: Application of R-M Approach

The example that we discuss in this section is motivated by a work of Rockafellar
and Wets [37] on static problems of stochastic convex optimization, and serves as
a guide “in miniature” for addressing the stochastic control QLM Problem 2.2.16.
In fact the application of the Rockafellar-Moreau approach to the simple example
of this section exactly mimics the application of this approach to the much more
challenging QLM Problem 2.2.16 (we point out the similarities in the course of
the following discussion). The example also demonstrates another central point,
namely that singular Lagrange multipliers unavoidably arise in even the simplest
optimization problems with almost-sure inequality constraints, and that these sin-
gular multipliers are in fact the singular parts of elements of L∗∞(S,Σ, ν) (recall
Remark D.1.14). Finally, this simple example also illustrates the effectiveness of
Theorem 3.1.4 in securing existence of Lagrange multipliers.

Given the function

J1(x) :=
1

2
x2, x ∈ R, (E.1)

together with a random variable ς on a probability space (S,Σ, ν), which is uni-
formly distributed over the unit interval [0, 1].
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Define

η := inf
x≥ς a.s.

J1(x). (E.2)

The problem is

determine x̄ ∈ R such that x̄ ≥ ς a.s. and η = J1(x̄). (E.3)

Of course this is a completely trivial problem since one sees by inspection that
the minimizer is x̄ = 1 and the corresponding value of the problem is η = 1/2.
Despite the simplicity of this problem the structure of the Lagrange multiplier
which corresponds to the a.s. constraint x ≥ ς is far from evident. We are going to
see that the Rockafellar-Moreau approach establishes that this Lagrange multiplier
is in fact a singular linear functional on the space L∞(S,Σ, ν), and that there are
clear intuitive reasons why one gets this “strange” Lagrange multiplier.

In problem (E.3) the space of primal variables X1 is clearly

X1 = R. (E.4)

Define the “primal function” f1 : X1 → (−∞,+∞] for problem (E.3) as follows:

f1(x) :=

{
J1(x), when x ≥ ς a.s.,
+∞, otherwise,

(E.5)

for all x ∈ X1. The function f1(·) is clearly convex on X1. The primal problem
(E.3) amounts to minimization of f1(x) over all x ∈ X1.

Remark E.1.1 The primal function f1 at (E.5) clearly mimics (but is obviously
much simpler than) the primal function at (2.48) for the QLM Problem 2.2.16.

We next implement Step I of the Rockafellar-Moreau approach (recall Section 3.1),
that is we define a linear space U1 of perturbations and a perturbation function
F1 : X1 × U1 → [−∞,∞]. According to ([36], Example 1 on page 7 and Example
4 on page 8), this is a matter of perturbing the “infinitely many” constraints at
(E.5). Define

U1 := L∞(S,Σ, ν) (E.6)

and F1(x, u) :=

{
J1(x), when x ≥ ς + u a.s.,
+∞, otherwise,

(E.7)

for all (x, u) ∈ X1 × U1. From (E.5) and (E.7) we have the consistency relation of
the form (3.3), namely

f1(x) = F1(x, 0), x ∈ X1. (E.8)
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Remark E.1.2 The choice of perturbation space U1 and perturbation function
F1 at (E.6) - (E.7) for the primal function (E.5) clearly mimics the perturbation
space U at (4.1) and perturbation function F at (4.2) for the primal function at
(2.48). Notice that, at (E.6) - (E.7), we have nothing comparable to the factor
space L2 at (4.1) and there is nothing comparable to the perturbation by members
u1 ∈ L2 that one has at (4.2). The reason for this is that the very simple primal
function f1 at (E.5) does not feature any constraint analogous to the admissible
wealth constraint X ∈ D built into the primal function f at (2.48); the role of the
variable u1 ∈ L2 at (4.2) is precisely to perturb the constraint X ∈ D, and since
there is no analogue of this constraint in the simple primal function (E.5) there is no
corresponding perturbation by u1 ∈ L2 either. On the other hand, the almost-sure
constraint x ≥ ς a.s. is obviously very analogous to the constraint X(T ) ≥ B a.s.
at (2.48), and is likewise perturbed by functions which are essentially bounded. As
we shall see shortly, it is the use of essentially bounded perturbations of almost-sure
constraints which enables us to use Theorem 3.1.4 to establish existence of Lagrange
multipliers. We emphasize that the need for essentially bounded perturbations of
almost-sure constraints, in order to be able to use Theorem 3.1.4 to secure existence
of Lagrange multipliers, is one of the more profound discoveries of Rockafellar and
Wets. In [37] this principle is established for static problems of stochastic convex
optimization, and one of the main goals of this thesis has been to generalize this to
the dynamic QLM Problem 2.2.16.

We now implement Step II the Rockafellar-Moreau approach (see Section 3.1), that
is we define a vector space of dual variables Y1, a duality pairing of the space of
perturbations U1 with the space of dual variables Y1, a Lagrangian on X1 × Y1,
and a dual function on Y1. To this end put

Y1 := L∗∞(S,Σ, ν), (E.9)

〈u, z〉 := z(u), (u, z) ∈ U1 × Y1, (E.10)

K1(x, z) := inf
u∈U1

[〈u, z〉+ F1(x, u)]

= J1(x) + inf
u∈L∞
u≤x−ς

z(u), (x, z) ∈ X1 × Y1. (E.11)

The definition of K1(x, z) is motivated by (3.4), and the (second) equality at (E.11)
follows from (E.7). From Remark D.1.13, the notation z ≤ 0 (for z ∈ Y1) indicates
that z(u) ≤ 0 for all u ∈ U1 such that u ≥ 0. We then have

inf
u∈L∞
u≤x−ς

z(u) =

{
z(x− ς), when z ≤ 0,
−∞, when z 6≤ 0.

(E.12)
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Using (E.12) in (E.11) then gives the Lagrangian

K1(x, z) =

{
z(x− ς) + J1(x), when z ≤ 0,
−∞, otherwise,

(E.13)

for each (x, z) ∈ X1 × Y1.

Next define the dual function on g1 on Y1 in accordance with (3.5) namely

g1(z) := inf
x∈R

K1(x, z) =

{
−z(ς)− J∗1 (−z(1)), when z ≤ 0,
−∞, otherwise,

(E.14)

for each z ∈ Y1. Here

J∗1 (α) := sup
x∈R

[αx− J1(x)]

=
1

2
α2, α ∈ R, (E.15)

is the usual convex conjugate of J1(·), and the equality at (E.14) is an immediate
consequence of (E.13) together with the elementary identity

z(x) = xz(1) (x, z) ∈ X1 × Y1. (E.16)

In view of (E.14) the dual function is defined by

g1(z) :=

{
−z(ς)− J∗1 (−z(1)), when z ≤ 0,
−∞, otherwise,

(E.17)

for all z ∈ Y1.

In accordance with the discussion at Remark 3.1.3 we must establish that the
duality gap is zero and that there exists some z̄ ∈ Y1 which maximizes g1 over
the space of dual variables Y1. Actually, it is not at all clear from the expression
for g1 at (E.17) that there exists some z̄ ∈ Y1 which maximizes g1. We are now
going to use Theorem 3.1.4 to establish that such a maximizer indeed exists (later
it will be seen that this maximizer is necessarily a singular member of Y1, that is a
member of Q(S,Σ, ν), see Notation D.1.8). We first establish that the conditions
of Theorem 3.1.4 hold:

Fixing some x̃ ∈ (1,∞) and ε ∈ (0, x̃− 1), it follows from the U[0,1]-distribution of
ς that

x̃ ≥ ε+ ς. (E.18)
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From (E.18) and (E.7) it is immediate that

sup
u∈U1

||u||L∞<ε

F1(x̃, u) = J1(x̃) <∞. (E.19)

Now the norm-topology U on U1 is 〈U1,Y1〉-compatible (see (E.6) and (E.9)), thus
Theorem 3.1.4 indeed applies, and gives

inf
x∈R

f1(x) = sup
z∈Y1

g1(z) = g1(z̄) ∈ R for some z̄ ∈ Y1. (E.20)

Remark E.1.3 The argument that we have just used to establish (E.20) mimics,
on the “miniature scale” of problem (E.3), exactly the central ideas that were used
to establish Proposition 4.2.3. Of course, it is significantly less technical than the
proof of Proposition 4.2.3, but this just mirrors the fact that problem (E.3) (with
associated dual function given by (E.17)) is much simpler than the QLM problem
2.2.16 (with associated dual function given by (4.19)). In particular, the choice of
the perturbation space U1 of essentially bounded functions at (E.6), together with
the norm-topology U on Y1, is indispensable for verifying (E.19), which in turn
is the key to using Theorem 3.1.4. This is exactly analogous to the central role
played by the essentially bounded perturbations u2 in verifying the bound (4.30),
which is similarly the key to using Theorem 3.1.4 in the proof of Proposition 4.2.3
(recall Remark 4.2.4). It is worthwhile to note that the Slater Condition 2.2.22 was
essential to establishing the bound (4.30) (again see Remark 4.2.4), for it was on the
basis of this condition that we obtained a primal variable X̃ such that (4.30) holds.
One can reasonably ask why we have not needed to postulate a Slater condition
comparable with Condition 2.2.22 when verifying the bound (E.19). The answer of
course is that problem (E.3) is so simple that any x̃ > 1 will suffice for verifying
(E.19), as is immediately apparent from (E.18).

We are now going to establish a set of Kuhn-Tucker optimality relations between
general primal variables x ∈ X1 and dual variables z ∈ Y1 such that f1(x) = g1(z)
(see Remark 3.1.5 no.3). That is, we show that the condition f1(x) = g1(z) (for
arbitrary (x, z) ∈ X1×Y1) is equivalent to some Kuhn-Tucker optimality relations.

To this end observe from (E.5) and (E.17) that, for each (x, z) ∈ X1 ×Y1, we have

f1(x) ∈ (−∞,∞] (E.21)

and g1(z) ∈ [−∞,∞). (E.22)
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Exactly as in Remark 3.1.3 it follows from (E.8) and (E.17) that

f1(x) ≥ K1(x, z) ≥ g1(z). (E.23)

In light of (E.21), (E.22) and (E.23) we then get

f1(x) = g1(z) (E.24)

m
f1(x) = K1(x, z) ∈ R & g1(z) = K1(x, z) ∈ R, (E.25)

for each (x, z) ∈ X1 × Y1.

In view of (E.13) and (E.17) we see that

g1(z) = K1(x, z) ∈ R (E.26)

m{
(1) z ≤ 0,
(2) J1(x) + J∗1 (−z(1)) = −xz(1)

(E.27)

m{
(1′) z ≤ 0,
(2′) x = (∂J∗1 )(−z(1)),

(E.28)

where ∂J∗1 (·) is the derivative of J∗1 (·) and the equivalence of (2) of (E.27) and (2′)
of (E.28) follows from Lemma B.4.15 (with N = 1).

Moreover, from (E.5) and (E.13) we also have

f1(x) = K1(x, z) ∈ R (E.29)

m
(1) x ≥ ς
(2) z ≤ 0
(3) z(x− ς) = 0.

(E.30)

Combining (E.24), (E.28) and (E.30), we then obtain

f1(x) = g1(z) (E.31)

m
(1) x ≥ ς a.s.,
(2) z ≤ 0,
(3) z(x− ς) = 0,
(4) x = (∂J∗1 )(−z(1)),

(E.32)

for each (x, z) ∈ X1 × Y1.
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Remark E.1.4 Items (1)-(4) of (E.32) are Kuhn-Tucker optimality relations. In
particular (E.32)(1)-(2) are feasibility conditions on the primal and dual variables
x and z respectively . On the other hand, (E.32)(3) relates the primal variable
x, the dual variable z and the constraint x ≥ ς a.s. of the primal problem (E.3),
and is therefore a complementary slackness condition. Finally, (E.32)(4) relates
the primal variable x, the dual variable z and the cost functional J1 of the primal
problem (E.3), and is therefore a transversality condition.

Remark E.1.5 There are clear similarities between the relations (E.32)(1)-(4) es-
tablished for the primal problem (E.3) and the Kuhn-Tucker relations (4.36)-(4.39)
that were established at Proposition 4.2.8 for the QLM Problem 2.2.16. On compar-
ing (1)-(4) of (E.32) with Equations (4.36)-(4.39) we see that condition similar to
X ∈ D1 (in (4.36)) does not appear in (E.32). We also do not have condition given
by Equation (4.38) in (E.32). These conditions do not appear in (E.32) because
we do not have any constraint similar to portfolio constraint of the form X ∈ D1

(see (4.13)) built into primal function given by (E.5) and (4.38) is a complementary
slackness relation for the portfolio constraint X ∈ D (see (2.47)).

It remains to construct an x̄ ∈ R in terms of the dual maximizer z̄ given by (E.20)
such that (x̄, z̄) satisfies (1)-(4) of (E.32), for then f1(x̄) = g1(z̄) and thus x̄ solves
the primal problem. Although it is immediate from problem (E.3) that x̄ = 1, we
shall nevertheless give the construction of x̄ in terms of z̄ in some detail. We do this
because the construction closely mimics the essential features of the construction
in Section 4.3 of the optimal wealth process X̄ in terms of the dual maximizer
(Ȳ , Z̄) ∈ Y (see Proposition 4.2.3) such that (X̄, (Ȳ , Z̄)) satisfies the optimality
relations (4.36) - (4.39) of Proposition 4.2.8. However, in the present instance,
this construction is in the very simple setting of the problem (E.3), and therefore
involves much less technical effort than is required in Section 4.3, in which we must
construct a stochastic process X̄ instead of just a scalar x̄.

To construct x̄ we first obtain necessary conditions which result from the fact that
z̄ ∈ Y1 maximizes the dual function g1 (much as we obtained necessary conditions
resulting from the optimality of (Ȳ , Z̄) in the construction of X̄, see Proposition
4.3.7, Proposition 4.3.22, and Proposition 4.3.25). Motivated by (4) of (E.32) define

x̄ := (∂J∗1 )(−z̄(1)). (E.33)

From (E.5) we have

inf
x∈R

f1(x) > −∞. (E.34)
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It then follows from (E.17) and (E.20) that

z̄ ≤ 0. (E.35)

Also from (E.20), we have the optimality relation

1

ε
[g1(z̄)− g1(z̄ + εz)] ≥ 0, (E.36)

for all ε > 0 and z ∈ Y1.

Fix some z ∈ G1 := {z ∈ Y1 : z ≤ 0}; then, from (E.35) we find that z̄+ εz ≤ 0 for
ε > 0, and therefore from (E.17) and (E.36) it follows that

1

ε
[∂J∗1 (−z̄(1)− εz(1))− ∂J∗1 (−z̄(1))] + z(ς) ≥ 0, (E.37)

for all ε > 0.

Taking ε→ 0 at (E.37) and recalling (E.33), we obtain

z(ς − x̄) ≥ 0 for all z ∈ G1, (E.38)

and thus

x̄ ≥ ς a.s. (E.39)

In view of (E.35) and (E.39) we have verified (1) and (2) of (E.32), and it remains
to verify the relation (3) of (E.32). From (E.35) we have that

(1− ε)z̄ ≤ 0, (E.40)

for all ε ∈ (0, 1).

Upon taking z = −z̄ and using (E.40), we get the following inequality from (E.36)

1

ε
[∂J∗1 (−(1− ε)z̄(1))− ∂J∗1 (−z̄(1))]− z(ς) ≥ 0 (E.41)

Taking ε→ 0 and using (E.33), we obtain

z̄(x̄− ς) ≥ 0. (E.42)

and thus from (E.35), (E.39) and (E.42) we have

z̄(x̄− ς) = 0, (E.43)
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which verifies (3) of (E.32).

From (E.33), (E.35), (E.39), (E.43) we observe that Kuhn-Tucker optimality rela-
tions given by (1)-(4) of (E.32) are satisfied for (x̄, z̄) ∈ R×Y1. Hence from (E.31)
and (E.32) we get

f1(x̄) = g1(z̄). (E.44)

Thus x̄ defined at (E.33) in terms of z̄ minimizes f1(·), and therefore solves problem
(E.3).

Observe that Lagrange multiplier z̄ is a singular element of Y1. In fact, with z̄ =
(z̄r, z̄

◦), from (E.35) and Remark D.1.15, we obtain

z̄r ≤ 0 a.s. and z̄◦ ≤ 0, (E.45)

while (E.43) gives

E[z̄r(x̄− ς)] + z̄◦(x̄− ς) = 0. (E.46)

From (E.45) and (E.39) we get

z̄r(x̄− ς) ≤ 0 a.s. and z̄◦(x̄− ς) ≤ 0, (E.47)

and combining this with (E.46) gives

z̄r(x̄− ς) = 0 a.s. and z̄◦(x̄− ς) = 0. (E.48)

Now by inspection we actually know that x̄ = 1, thus in fact x̄ > ς a.s. (since ς is
U [0, 1]-distributed), whence (E.48) gives

z̄r = 0 a.s. (E.49)

Moreover, using x̄ = 1 together with (E.49), (E.15) and (E.33) we observe that

1 = x̄ = ∂J∗1 (−z̄(1))

= −z̄(1)

= −z̄◦(1) (E.50)

The multiplier z̄ is therefore non-trivial and a singular member of Y1, that is

z̄ = z̄◦ ∈ Q(S,Σ, ν). (E.51)
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Remark E.1.6 The constraint x ≥ ς a.s. in the problem (E.3) is certainly active,
in the sense that removal of the constraint from the problem leads to an uncon-
strained problem with strictly smaller optimal value

η := inf
x∈R

J1(x) = 0, (E.52)

(c.f. (E.2)), but nevertheless is active only on a set of zero probability (since x̄ = 1 >
ς a.s. from the U [0, 1]-distribution of ς). An essential general insight of Rockafellar
and Wets [37] in the study of static problems of stochastic convex optimization
is that such “singularly binding” constraints necessarily lead to singular Lagrange
multipliers, and we see this insight clearly evident in the case of problem (E.3).

E.2 Proof of the Rockafellar-Moreau

Theorem 3.1.4

The Rockafellar-Moreau theorem is established in Rockafellar [36] in extremely
compressed and bare-bones form. Since this result is so important in this thesis,
for completeness we shall now give a more expanded proof along the lines of the
proof in [36] but with all relevant details included.

Definition E.2.1 For the convex perturbation function F : X × U → [−∞,∞],
define the perturbed value function ϕ : U→ [−∞,∞] as follows:

ϕ(u) := inf
x∈X

F (x, u), u ∈ U. (E.53)

From (3.3), we have

ϕ(0) = inf
x∈X

f(x). (E.54)

Lemma E.2.2 Recall Definition B.4.9. For the perturbed value function ϕ : U→
[−∞,∞], given by Definition E.2.1 and the dual function g : Y → [−∞,∞] given
by ((3.5)), one has

−ϕ∗(−y) = g(y). (E.55)
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Proof: From (E.53) and (B.45),

ϕ∗(y) = sup
u∈U

[〈u, y〉 − inf
x∈X

F (x, u)]

= sup
u∈U

[〈u, y〉+ sup
x∈X

(−F (x, u))]

= sup
u∈U

sup
x∈X

[〈u, y〉 − F (x, u)]

= sup
x∈X

sup
u∈U

[〈u, y〉 − F (x, u)].

Now, Y is a vector space, therefore Replacing y with −y, we get

ϕ∗(−y) = sup
x∈X

sup
u∈U

[〈u,−y〉 − F (x, u)].

Using the definition of K(x, y)(3.4) and g(y)(3.5), we find that

−ϕ∗(−y) = inf
x∈X

inf
u∈U

[〈u, y〉+ F (x, u)]

= inf
x∈X

K(x, y) = g(y).

i.e. − ϕ∗(−y) = g(y), y ∈ Y. (E.56)

Recall the Definitions B.4.9, B.4.11 and E.2.1, then we have

ϕ∗∗(0) = sup
y∈Y

[−ϕ∗(y)]

Y is a vector space
= sup

y∈Y
[−ϕ∗(−y)]

LemmaE.2.2
= sup

y∈Y
g(y). (E.57)

We next state without proof the following results on convex analysis from Rock-
afellar [36].

Theorem E.2.3 Recall Definition B.4.9, B.4.11 and B.4.13. Suppose that (U, Y, 〈·, ·〉)
is a given dual system and ψ : U → [−∞,∞] is a given function (not necessarily
convex). We then have the following:

(a) If ψ(u) ∈ R and ∂ψ(u) 6= ∅ at some u ∈ U then ψ(u) = ψ∗∗(u),

(b) If ψ(0) = ψ∗∗(0) ∈ R then
∂ψ(0) = {y ∈ Y |ψ∗(y′) ≥ ψ∗(y) all y′ ∈ Y }.
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Lemma E.2.4 For the perturbed value function ϕ : U → [−∞,∞], given by
Definition E.2.1 and the dual function g : Y→ [−∞,∞] given by ((3.5)),

if ∂ϕ(0) 6= ∅, (E.58a)

then

inf
x∈X

f(x) = sup
y∈Y

g(y) = g(ŷ) for some ŷ ∈ Y. (E.58b)

Proof:
Suppose

∂ϕ(0) 6= ∅. (E.59)

From (E.59) and Theorem E.2.3

ϕ(0) = ϕ∗∗(0). (E.60)

From (E.59) and Theorem E.2.3,

∂ϕ(0) = {y ∈ Y|ϕ∗(y′) ≥ ϕ∗(y)∀y′ ∈ Y}. (E.61)

From (E.60),(E.54) and (E.57),

inf
x∈X

f(x) = sup
y∈Y

g(y). (E.62)

Moreover,

ŷ ∈ −∂ϕ(0) ⇒ −ŷ ∈ ∂ϕ(0).

∴ ϕ∗(y′)
(E.61)

≥ ϕ∗(−ŷ) ∀y′ ∈ Y.
∴ ϕ∗(−y′) ≥ ϕ∗(−ŷ) ∀y′ ∈ Y.

∴ −ϕ∗(−y′) ≤ −ϕ∗(−ŷ) ∀y′ ∈ Y.

∴ g(y′)
from Lemma (E.2.2)

≤ g(ŷ) ∀y′ ∈ Y.
i.e. g(ŷ) = sup

y∈Y
g(y) for each ŷ ∈ −∂ϕ(0). (E.63)

From (E.63), (E.62) and (E.59),

if ∂ϕ(0) 6= ∅ then inf
x∈X

f(x) = sup
y∈Y

g(y) = g(ŷ) for some ŷ ∈ Y. (E.64)

It therefore remains to establish sufficient conditions which ensure that ∂ϕ(0) 6= ∅
holds in order to use the previous result. This calls upon two results from convex
analysis: From Rockafellar ([36], Theorem 8) we have
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Theorem E.2.5 Suppose that (U, Y, 〈·, ·〉) is a given dual system and U is a 〈·, ·〉-
compatible topology on U . Suppose that ψ : U → R̄ is convex, and ψ(0) ∈ R. If
there exists some U -neighborhood G of 0 ∈ U such that supu∈G ψ(u) < ∞ then ψ
is U -continuous at u = 0.

From Rockafellar ([36], Theorem 11) we also have

Theorem E.2.6 Suppose that (U, Y, 〈·, ·〉) is a given dual system and U is a 〈U, Y 〉-
compatible topology on U . Suppose that ψ : U → R̄ is convex and ψ(0) ∈ R. If ψ
is U -continuous at u = 0 then ∂ψ(0) 6= ∅.

On combining Theorem E.2.5 and Theorem E.2.6, we get the next result which
gives sufficient conditions to ensure that ∂ϕ(0) 6= ∅:

Corollary E.2.7 Suppose that (U, Y, 〈·, ·〉) is a given dual system and U is a 〈U, Y 〉-
compatible topology on U . Suppose that ψ : U → R̄ is convex and ψ(0) ∈ R. If
there exists some U -neighborhood G of 0 ∈ U such that supu∈G ψ(u) < ∞ then
∂ψ(0) 6= ∅.

Using Corollary E.2.7 we are finally able to establish the Rockafellar-Moreau theo-
rem:

Proof of Theorem 3.1.4: From (E.53),

ϕ(u) ≤ F (x1, u) allu ∈ U. (E.65)

Then

sup
u∈G

ϕ(u) ≤ sup
u∈G

F (x1, u) <∞. (E.66)

From Corollary E.2.7 with φ := ϕ, we get

∂ϕ(0) 6= 0. (E.67)

Result follows from (E.64).
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Appendix F

Integrals which are Convex
Functionals

In this section we examine integrals having certain convexity properties which can
be analyzed in the light of the theory of conjugate convex functions. The results in
this section are applicable in the study of problems in control theory, as well as for
dealing with integrals of convex or concave loss functions. The arguments in this
section are taken from R.T. Rockafellar [33].

F.1 Normal Integrands

Let T denote a measure space with σ-finite measure µ. Suppose that L is a desig-
nated real vector space of measurable functions u from T to Rn, and L∗ is another
designated real vector space of measurable functions from T to Rn with the prop-
erty that the inner product (u(t))′u∗(t) of the RN -vectors u(t) and u∗(t) gives a
summable function of t for every u ∈ L and u∗ ∈ L∗. It is then immediate that

〈u, u∗〉 =

∫
T

(u(t))′u∗(t) dt, (F.1)

for u ∈ L, u∗ ∈ L∗, defines a duality pairing between L and L∗, that is (L,L∗, 〈·, ·〉)
is a dual system.

Quite often we need to study functionals of the form

If (u) =

∫
T

f(t, u(t)) dt, u ∈ L, (F.2)
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where f : T ×Rn → (−∞,∞] is a normal convex integrand in the following sense:

Definition F.1.1 The function f : T × Rn → (−∞,∞] is a normal convex inte-
grand when f(t, x) is proper, convex and lower semi-continuous in x ∈ Rn for each
t ∈ T , and if further there exists a countable collection U of measurable functions
u from T to Rn having the following properties:

1. for each u ∈ U , f(t, u(t)) is measurable in t;

2. for each t, Ut ∩ domft is dense in domft, where

Ut = {u(t)|u ∈ U}. (F.3)

The proof of Lemma F.1.2 and F.1.3 below can be found in Rockafellar,[33], page
528.

Lemma F.1.2 Suppose f(t, x) = F (x) for all t, where F is a lower semi-continuous
proper convex function from Rn to (−∞,∞]. Then f is a normal convex integrand.

Lemma F.1.3 Suppose f is a convex integrand such that f(t, x) is measurable in t
for each fixed x, and such that, for each t, f(t, x) is lower semi-continuous in x and
has interior points in its effective domain {x|f(t, x) < +∞}. Then f is a normal
convex integrand.

F.2 Conjugate Convex Integrals.

Considering the spaces L and L∗ defined in the beginning of this appendix, the
main question treated in this section is whether the conjugate of a convex functional
If : L→ (−∞,∞] (see (F.2)) is in the form of a functional Ig : L∗ → (−∞,∞] for
some normal convex integrand g : T ×Rn → (−∞,∞]. The question is significant,
because this theory of convex functions is concerned with conjugates.

Suppose that f(t, x) is a convex integrand which is proper and lower semi-continuous
in x for each t. Define f ∗(t, x∗) by taking conjugates in x ∈ Rn for each t, that is

f ∗(t, x∗) = sup
x∈Rn

[〈x, x∗〉 − f(t, x)], x∗ ∈ Rn.

Then f ∗ is another convex integrand, proper and lower semi-continuous in its convex
argument. We call it the integrand conjugate to f . The conjugate of the conjugate
is the original integrand f .

The principal fact brought out in Theorem F.2.3 is that conjugate integrands f and
f ∗ usually furnish conjugate functionals of L and L∗.
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Definition F.2.1 We shall say that the vector space L is decomposable when it
satisfies the following conditions:

1. L contains every bounded measurable function from T to Rn which vanishes
outside a set of finite measure;

2. if u ∈ L and E is a set of finite measure in T , then L contains IE · u, where
IE is the indicator function of E.

An identical definition of decomposability holds for the vector space L∗.

These conditions guarantee that one can alter functions in L arbitrarily in a bounded
manner on sets of finite measure. (subtract IE ·u from u, and then add any bounded
measurable function vanishing outside E).

Remark F.2.2 It can be shown that the vector spaces Lp(S,Σ, ν), p ∈ [1,∞] are
decomposable, and in fact these are the most important cases of decomposable
vector spaces. On the other hand, if T is a compact Hausdorff space carrying a
finite Borel measure µ on its Borel σ-algebra then the space C(T ) of all real-valued
continuous functions on T is definitely not decomposable.

From Rockafellar,[33], Theorem 2, page 532, we have the following.

Theorem F.2.3 Let spaces L and L∗ defined in the beginning of Section F.1 be
decomposable. Let f : T ×Rn → (−∞,∞] be a normal convex integrand such that
f(t, u(t)) is summable in t for at least one u ∈ L, and f ∗(t, u∗(t)) is summable in t
for at least one u∗ ∈ L∗. Then

sup
u∈L

[∫
T

(u(t))′u∗(t) dt−
∫
T

f(t, u(t)) dt

]
=

∫
T

f ∗(t, u∗(t))dt, (F.4)

for each u∗ ∈ L∗.

Remark F.2.4 Theorem F.2.3 really says formally that the outside supremum
over u ∈ L on the left can be shifted to after the integral over T and becomes a
supremum over x ∈ Rn, that is

sup
u∈L

[∫
T

[(u(t))′u∗(t) dt− f(t, u(t))] dt

]
=

∫
T

sup
x∈Rn

[〈x, u∗(t)〉 − f(t, x)]dt

=

∫
T

f ∗(t, u∗(t))dt,

for each u∗ ∈ L∗. In this result it is absolutely essential that spaces L together with
L∗ be decomposable.
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Appendix G

The canonical martingales of the
Markov chain

The basic market model is formulated in terms of the joint filtration of an in-
dependent Brownian motion W and continuous time finite state Markov chain α
defined on the common probability space (Ω,F ,P) over the interval t ∈ [0, T ] (see
Section 2.1). The goal of this appendix is to summarize basic properties of finite
state Markov chains needed for the thesis, and to indicate that the basic results
on Markov chains, in particular Dynkin’s formula, trivially extend from the self-
filtration of the Markov chain to the joint filtration of the Markov chain and the
Brownian motion. We also state martingale representation theorem for square in-
tegrable martingales and locally square integrable martingales since it is used in
some of the results.

G.1 The finite state space Markov chain

Throughout this thesis the basic filtration is defined by

Ft := F◦t ∨N (P), ∀t ∈ [0, T ], (G.1)

in which

F◦t := σ{W(s), α(s) : s ∈ [0, t]} ∀t ∈ [0, T ]. (G.2)

(see (2.9) and (2.8)), and we define the augmented self-filtration of the Markov
chain α in the usual way namely

Fαt := σ{α(s) : s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ]. (G.3)
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Since α and W are independent, for any FαT -measurable and integrable random
variable ξ on (Ω,F ,P) we have, by elementary properties of conditioning and inde-
pendence, that

E(ξ|Ft) = E(ξ|Fαt ), for all t ∈ [0, T ]. (G.4)

We recall from Section 2.1 that the continuous time finite state Markov chain
α = {α(t) : t ∈ [0, T ]} defined on the probability space (Ω,F ,P) takes values in the
finite state space

I = {1, 2, . . . , D} (G.5)

and that the Markov chain α is always assumed to start in a non-random initial
state i0 ∈ I, so that

α(0) = i0 a.s. (G.6)

The Markov property of α is expressed by the usual relation

E[f(α(t))|Fαs ] = E[f(α(t))|α(s)], for all 0 ≤ s ≤ t ≤ T , (G.7)

for every function f : I → R. In view of (G.4) we can write this as

E[f(α(t))|Fs] = E[f(α(t))|α(s)], for all 0 ≤ s ≤ t ≤ T . (G.8)

Associated with the Markov chain α is a generator Q which is a D × D matrix
Q = (qij)

D
i,j=1 with the properties

qi,j ≥ 0, ∀i 6= j and − qii =
∑
j 6=i

qij. (G.9)

Definition G.1.1 The Markov transition function {Pt} on I is defined in terms
of generator Q as

Pt := exp{tQ} ∀t ∈ [0, T ]. (G.10)

In particular, P0 is the D ×D identity matrix.

Remark G.1.2 From Rogers and Williams [32], equation IV.21.11, the Markov
chain α makes finitely many jumps in the finite time interval [0, T ]. Thus the
Lebesgue measure of the set of times where α(t) 6= α(t−) is zero and this observation
will allow us to write, for example,∫ T

0

f(α(s−)) ds =

∫ T

0

f(α(s)) ds (G.11)

for any Borel measurable integrable function f : I → R.
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Proposition G.1.3 The Markov property of the Markov chain α can be formu-
lated as follows: for all functions f : I → R, for all 0 ≤ s ≤ t ≤ T, one has

E(f(α(t))|Fs) = (Pt−sf)(α(s)), (G.12)

where (Ptf)(j) =
∑

k∈I Pt(j, k)f(k).

Proof. First we prove the case when f is an indicator function.
Suppose f = Ij, then

E(f(α(t))|Fs) = E(Ij(α(t))|Fs)
= P (Ij(α(t)) = 1|Fs)
= P (α(t) = j|Fs)
= P (α(t) = j|α(s)) (see (G.8))

= Pt−s(α(s), j). (G.13)

(Pt−sf)(α(s)) = (Pt−sIj)(α(s))

=
∑
k∈I

Pt−s(α(s), k)Ij(k)

= Pt−s(α(s), j). (G.14)

From (G.13) and (G.14) the relation (G.12) holds when f is an indicator function.
When f is not an indicator function, f can be written as

f(α(s)) = βjIj(α(s)) =

{
βj, whenα(s) = j,
0, otherwise.

(G.15)

∴ f(α(s)) =
∑
j∈I

βjIj(α(s)). (G.16)

(Pt−sf)(α(s)) =
∑
k∈I

Pt−s(α(s), k)f(k)

=
∑
k∈I

Pt−s(α(s), k)
∑
k∈I

βjIj(k)

=
∑
k∈I

Pt−s(α(s), k)βk. (G.17)

151



E[f(α(t))|Fs] = E

[∑
j∈I

βjIj(α(t))|Fs

]
=

∑
j∈I

βjE [Ij(α(t))|Fs]

=
∑
j∈I

βjP (Ij(α(t)) = 1|Fs)

=
∑
j∈I

βjP (α(t) = j|Fs)

=
∑
j∈I

βjPt−s(α(s), j). (G.18)

Hence from (G.17) and (G.18), the result holds for any f : I → R.

Proposition G.1.4

d

dt
(Pt) = QPt = PtQ. (G.19)

Proof. See Norris [29], Theorem 2.1.1.

The following Proposition is a simple consequence of Proposition G.1.4.

Proposition G.1.5 For every f : I → R and t ∈ [0, T ] we have

d

dt
(Ptf) = QPtf, (G.20)

where (Ptf)(j) =
∑

j∈I Pt(j, k)f(k) and (QPtf)(i) =
∑

j∈I qij(Ptf)(j).

Proof.

d

dt
((Ptf)(j)) =

∑
k∈I

d

dt
(Pt(j, k)f(k))

(G.19)
=

∑
k∈I

(QPt)(j, k)f(k) = (QPtf)(j).
(G.21)
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Theorem G.1.6 Dynkin’s formula. If f : I → R then

f(α(t))− f(α(0))−
∫ t

0

(Qf)(α(s)) ds ∈M0((Ω,F ,P),Ft). (G.22)

Proof. Fix a function f : I → R and define

M(t) := f(α(t))− f(α(0))−
∫ t

0

(Qf)(α(s)) ds. (G.23)

By the boundedness of the function f , M(t) is integrable for all t ∈ [0, T ].

We first show that the martingale property holds for M . First note that upon
integrating (G.20), we obtain for all t ∈ [0, T ] and each i ∈ I,

(Ptf)(i)− f(i) =

∫ t

0

(QPuf)(i) du. (G.24)

From (G.23) it follows that for 0 ≤ s ≤ t ≤ T , we have

E(M(t)−M(s)|Fs) = E(f(α(t))− f(α(s))|Fs)− E
(∫ t

s

(Qf)(α(u)) du|Fs
)

(G.12)
= (Pt−sf)(α(s))− f(α(s))− E

(∫ t

s

(Qf)(α(u)) du|Fs
)

(G.24)
=

∫ t−s

0

(QPuf)(α(s)) du− E
(∫ t

s

(Qf)(α(u)) du|Fs
)
.

Applying Fubini’s theorem for conditional expectations (see Ethier and Kurtz[12],
Chapter 2 Proposition 4.6 and Remark 4.7), we obtain

E(M(t)−M(s)|Fs) =

∫ t−s

0

(QPuf)(α(s)) du−
∫ t

s

E((Qf)(α(u))|Fs) du

(G.12)
=

∫ t−s

0

(QPuf)(α(s)) du−
∫ t

s

(Pu−sQf)(α(s)) du

(G.19)
=

∫ t−s

0

(QPuf)(α(s)) du−
∫ t

s

(QPu−sf)(α(s)) du

=

∫ t−s

0

(QPuf)(α(s)) du−
∫ t−s

0

(QPuf)(α(s)) du.

Thus M ∈M0((Ω,F ,P),Ft).
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G.2 Martingale properties of finite state Markov

chains

In this section we summarize a variety of useful martingale properties possessed by
a finite state Markov chain α.

Definition G.2.1 For each i, j = 1, . . . , D, define a mapping Rij : Ω× [0,T]→ N0

by

Rij(ω, t) :=

{ ∑
0<s≤t χ[α(s−) = i](ω)χ[α(s) = j](ω), for i 6= j,

0, for i = j.
(G.25)

for all (ω, t) ∈ Ω× [0,T].

Remark G.2.2 For i 6= j, Rij(t) counts the number of jumps between distinct
states i and j up to time t.

Remark G.2.3 Rij = {Rij(t) : t ∈ [0, T ]} is an {Ft}-adapted, non-decreasing,
càdlàg process which is null at the origin.

Definition G.2.4 For each i, j = 1, . . . , D, define a mapping R̃ij : Ω × [0,T] →
[0,∞) by

R̃ij(ω, t) :=

{
qij
∫ t

0
χ[α(s) = i](ω) ds, for i 6= j,

0, for i = j.
(G.26)

for all (ω, t) ∈ Ω× [0,T].

Remark G.2.5 For i 6= j, R̃ij/qij measures the time that the Markov chain α
spends in state i up to time t.

Remark G.2.6 R̃ij = {R̃ij(t) : t ∈ [0, T ]} is an {Ft}-adapted, non-decreasing,
continuous process which is null at the origin. Since R̃ij is continuous, it is pre-
dictable.

Finally we define the set of processes {Mij} which turn out to be the canonical
martingales of the Markov chain α.
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Definition G.2.7 For each i, j ∈ I, define a process Mij : Ω× [0,T]→ [0,∞) by

Mij(ω, t) = Rij(ω, t)− R̃ij(ω, t). (G.27)

Remark G.2.8 As Rij and R̃ij are {Ft}-adapted, càdlàg processes which are null
at the origin, then Mij is an {Ft}-adapted, càdlàg processes which is null at the
origin.

Remark G.2.9 Upon expanding (G.27) by using the definitions of Rij and R̃ij

given in (G.2.1) and (G.2.4), we obtain for i = 1, 2, . . . , D

Mij(t) =

{ ∑
0<s≤t χ[α(s−)]χ[α(s) = j]− qij

∫ t
0
χ[α(s) = i] ds for i 6= j

0 for i = j

(G.28)

We next state a standard result which asserts that the Mij are local martingales
(see Lemma IV(21.12) of Rogers and Williams [32]).

Lemma G.2.10 For all i, j = 1, . . . , D,

Mij ∈Mloc
0 ((Ω,F ,P), {Ft}). (G.29)

Now we examine the integrability properties of the processes Rij and R̃ij. We will
see that these are finite-variation processes which have strong integrability proper-
ties, and in particular are square integrable. This will enable us to strengthen the
previous result and show that the Mij are actually square-integrable martingales.

Lemma G.2.11 For all i, j ∈ I, E
(
R̃ij(t)

)n
<∞ for all t ∈ [0, T ] and n ∈ N.

Proof. For i = j, Rij = 0 and the result is trivial. So assume that i 6= j. Then

R̃ij(t) = qij

∫ t

0

χ[α(s) = i](ω) ds ≤ tqij ≤ Tqij a.s. (G.30)

Thus we obtain E
(
R̃ij(t)

)n
≤ T nqnij <∞.

Remark G.2.12 It is immediate from Lemma G.2.11 and the fact that R̃ij is a
non-decreasing process that R̃ij has paths of finite variation over compact intervals,
that is

VR̃ij(t) = R̃ij(t) <∞, t ∈ [0, T ]. (G.31)
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The proof of the next result is standard, and can be found for example in Rogers
and Williams [32], Section IV.21.

Lemma G.2.13 For all i, j ∈ I we have E (Rij(t))
n <∞ for all t ∈ [0, T ] and each

n ∈ N.

Remark G.2.14 It is immediate from Lemma G.2.13 and the fact that Rij is a
non-decreasing process that Rij has paths of finite variation over compact intervals,
namely

VRij(t) = Rij(t) <∞, a.s. (G.32)

Remark G.2.15 As Rij and R̃ij have paths of finite variation over compact inter-
vals so also does Mij = Rij − R̃ij.

We can now improve Lemma G.2.10 and establish that the Mij are actually square
integrable martingales:

Lemma G.2.16 For all i, j ∈ I,Mij ∈M0,2((Ω,F ,P),Ft).

Proof. From Lemma G.2.10, Mij is a local martingale which is null at the origin.
We show that Mij is L2-bounded. For all t ∈ [0, T ],

E|Mij(t)|2
(G.29)

= E|Rij(t)− R̃ij(t)|2

≤ 2E(Rij(t))
2 + 2E(R̃ij(t))

2 (G.33)

≤ 2E(Rij(t))
2 + 2E(R̃ij(t))

2. (G.34)

Thus

supt∈[0,T ]E|Mij(t)|2 ≤ 2E(Rij(T ))2 + 2E(R̃ij(T ))2. (G.35)

The finiteness of E(Rij(T ))2 and E(R̃ij(T ))2 coming from Lemmas (G.2.13) and
(G.2.11). Applying Corollary B.2.34, we have that Mij is an L2-bounded martin-
gale.

Remark G.2.17 Applying Theorem B.2.46 toMij, which is {Ft}-adapted, càdlàg and
has paths of finite variation on compact intervals, we have that Mij is a purely dis-
continuous square integrable martingale. Then, from Theorem B.2.47,

[Mij,Mij](t) =
∑

0≤s≤t

(4Mij(s))
2 a.s. (G.36)
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Lemma G.2.18 For all t ∈ [0, T ],

[Mij,Wn](t) = 〈Mij,Wn〉(t) = 0 a.s. (G.37)

for i, j = 1, 2, . . . , D and n = 1, . . . , N .

Proof. For i = j, Mij = 0 and trivially [Mii,Wn](t) = 〈Mii,Wn〉(t) = 0 for i =
1, . . . , D and n = 1, . . . , N , for all t ∈ [0, T ]. So assume i 6= j. Applying Theorem
B.2.47 to the martingale Wn and the purely discontinuous martingale Mij, we have

[Wn,Mij](t) =
∑

0<s≤t

4Wn(s)4Mij(s) (G.38)

As Wn is continuous, 4Wn = 0 and substituting this into (G.38), we get the result.

Lemma G.2.19 1. [Mij,Mij](t) = Rij(t) a.s.

2. For all t ∈ [0, T ] and i, j, a, b ∈ I, [Mij,Mab](t) = 0 a.s. if {(i, j)} 6= {(a, b)}.

Proof. Suppose first that i 6= j. Recalling from Remark G.2.6 that R̃ij is a contin-
uous process, we have

4Mij(t)
(G.27)

= 4Rij(t)−4R̃ij(t)

= 4Rij(t)
(G.25)

= χ[α(t−) = i]χ[α(t) = j]. (G.39)

Note from (G.39) that (4Mij(t))
2 = 4Mij(t). Substituting (G.39) into (G.36), we

obtain

[Mij,Mij](t) =
∑

0≤s≤t

(4Mij(s))
2

(G.39)
=

∑
0≤s≤t

χ[α(s−) = i]χ[α(s) = j]
(G.25)

= Rij(t) a.s. (G.40)

Since Mii(t) = 0 a.s., trivially [Mii,Mii](t) = 0 a.s. for all t ∈ [0, T ]. Now consider a
square-bracket quadratic co-variation process of Mij and Mab, for {(i, j)} 6= {(a, b)}.

[Mij,Mab](t)
(G.38)

=
∑

0≤s≤t

4Mij(s)4Mab(s)

(G.39)
=

∑
0≤s≤t

χ[α(s−) = i]χ[α(s) = j]χ[α(s−) = a]χ[α(s) = b]

= 0 a.s. (G.41)
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Remark G.2.20 From Lemma G.2.19 and Theorem B.2.29, M2
ij − Rij is a uni-

formly integrable martingale.

Having shown that Rij is the square-bracket quadratic variation process of Mij, we
show next that R̃ij is the angle-bracket quadratic variation process of Mij.

Lemma G.2.21 For all t ∈ [0, T ] and i, j, a, b ∈ I, the following hold

1. 〈Mij,Mij〉(t) = R̃ij(t) a.s.

2. 〈Mij,Mij〉(t) = 0 a.s. for {(i, j)} 6= {(a, b)}.

Proof. Suppose i 6= j and note that the angle-bracket quadratic variation pro-
cess 〈Mij,Mij〉 of Mij exists by the result in Lemma G.2.16 applied to Theorem
B.3.6. We show that R̃ij satisfies all the conditions of being the angle-bracket
quadratic variation process of Mij, as given by Theorem B.2.24. We have the R̃ij

is predictable, continuous, {Ft}-adapted, non-decreasing and null at the origin. It
remains to show that M2

ij − R̃ij is a martingale.

From Remark G.2.20, M2
ij − Rij is a martingale. From Lemma G.2.16, Mij =

Rij − R̃ij ∈M0,2({Ft},P), so Rij − R̃ij is certainly a martingale. Then(
M2

ij − R̃ij

)
+
(
Rij − R̃ij

)
= M2

ij − R̃ij (G.42)

is also a martingale.

Since Mii(t) = 0 a.s., trivially 〈Mii,Mii〉(t) = 0 a.s.

Similarly, as [Mij,Mab](t) = 0 a.s. then trivially 〈Mij,Mab〉(t) = 0 a.s. for {(i, j)} 6=
{(a, b)}.

Remark G.2.22 The processes Rij and R̃ij were useful in constructing the canon-
ical martingales {Mij} of the Markov chain α. However, as we see from Lemma
G.2.19 and Lemma G.2.21, Rij is the square bracket quadratic variation process of
Mij and R̃ij is the angle bracket quadratic variation process of Mij. From now on,
we will cease to use the notation Rij and R̃ij, and, instead we will use the standard
notation to represent these processes. In other words, we will use [Mij] to represent
the square-bracket quadratic variation process of Mij and 〈Mij〉 to represent the
angle-bracket quadratic variation process of Mij.
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Remark G.2.23 From Lemma G.2.16, Mij ∈ M0,2((Ω,F ,P), {Ft}). Then from
Theorem B.3.6, 〈Mij〉 is the compensator of [Mij]. It then follows from Theorem
B.3.5 that for any nonnegative predictable process H we have

E

∫ T

0

H(t) d[Mij](t) = E

∫ T

0

H(t) d〈Mij〉(t). (G.43)

Remark G.2.24 The measures that we define next are used to specify the degree
of uniqueness of the stochastic integrands of the stochastic integrals which have
Mij as integrator.

Definition G.2.25 On the measurable space (Ω × [0, T ],P∗) and for each i, j ∈
I, i 6= j, define a measure ν〈Mij〉 by

ν〈Mij〉[A] := E

∫ T

0

χA(ω, t) d〈Mij〉(ω, t) ∀A ∈ P∗ (G.44)

and a measure ν[Mij ] by

ν[Mij ][A] := E

∫ T

0

χA(ω, t) d[Mij](ω, t) ∀A ∈ P∗. (G.45)

Lemma G.2.26 Recalling that Leb represents Lebesgue measure, we have for each
i, j ∈ I, i 6= j,

ν[Mij ] = ν〈Mij〉 on P∗, (G.46)

ν[Mij ] << P⊗ Leb on P∗. (G.47)

Proof. Fix i 6= j. Applying Fubini’s theorem to obtain the joint measure, we get
from (G.44), for all A ∈ P∗

ν〈Mij〉[A] = E

∫ T

0

χA(ω, t) d〈Mij〉(ω, t)

LemmaG.2.21
= E

∫ T

0

χA(ω, t) dR̃ij(ω, t)

(G.2.4)
= E

∫ T

0

χA(ω, t)qijχ[α(t) = i](ω) dt

=

∫
Ω×[0,T ]

χA(ω, t)qijχ[α(t) = i](ω) d(P⊗ Leb)

=

∫
A

qijχ[α(t) = i](ω) d(P⊗ Leb). (G.48)
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This shows that the measure ν〈Mij〉 is absolutely continuous with respect to the
measure (P⊗ Leb) on P∗, in other words

ν〈Mij〉 << (P⊗ Leb) onP∗. (G.49)

For all A ∈ P∗, we have

ν〈Mij〉[A]
(G.44)

= E

∫ T

0

χA(ω, t) d〈Mij〉(ω, t)

(G.43)
= E

∫ T

0

χA(ω, t) d[Mij](ω, t)

= ν[Mij ][A]. (G.50)

Hence ν〈Mij〉 = ν[Mij ] on P∗ and it immediately follows from this and (G.49) that
ν[Mij ] << (P⊗ Leb) on P∗.

G.3 Martingale Representation Theorem

Notation G.3.1 For a process H and {Ft}-stopping time S, put H[0, S](ω, t) :=
H(ω, t) when t ∈ [0, S(ω)], and H[0, S](ω, t) := 0 when t > S(ω).

Notation G.3.2 S(m) ⇑ T indicates that (S(m))m∈N is a sequence 0 ≤ S(m) ≤
S(m+1) ≤ T of {Ft}-stopping times and for each ω there is an integer M(ω) such
that S(m)(ω) = T for all m ≥ M(ω). Such increasing sequences of stopping times
arise naturally in later arguments.

Definition G.3.3 Define the spaces of integrands

L2
loc(W) := {λ : Ω× [0, T ]→ RN | there exists a sequence of {Ft} − stopping times(

S(m)
)
m∈N such thatS(m) ⇑ T andλ[0, S(m)] ∈ L2(W) for allm ∈ N

}

L2
loc(M) := {γ = {γij}Di,j=1 : Ω× [0, T ]→ RD×D| there exists a sequence of {Ft}−

stopping times
(
S(m)

)
m∈N such thatS(m) ⇑ T andγ[0, S(m)] ∈

L2(M) for all m ∈ N}
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Definition G.3.4 The R-valued process {Z(t); t ∈ [0, T ]} is a locally-square inte-
grable {Ft}-martingale when there exists a sequence of {Ft}-stopping times

(
S(m)

)
m∈N

such that S(m) ⇑ T and {Z(t ∧ S(m)), t ∈ [0, T ]} is a square integrable {Ft}-
martingale for each m ∈ N.

We shall need the following martingale representation theorem which is an imme-
diate consequence of Definition G.3.4 and Elliot ([11], 1976, Theorem 5.1)

Theorem G.3.5 (a)(MRT for locally-square integrable martingale.)

Suppose {Z(t); t ∈ [0, T ]} is a locally-square integrable {Ft}-martingale and null
at the origin. Then there exists a process ξ = (ξ1, . . . , ξN)> ∈ L2

loc(W) and Γ =
(Γij)

D
i,j=1 ∈ L2

loc(M) such that Z has the stochastic integral representation

Z(t) =
N∑
n=1

∫ t

0

ξn(s) dWn(s) +
D∑

i,j=1

∫ t

0

Γi,j(s) dMij(s), ∀ t ∈ [0, T ], a.s. (G.51)

In view of the orthogonality relations in Lemma G.2.18 the integrands ξ and Γ at
(G.51) are (P⊗ Leb)-a.e. unique and ν[M]-a.e. unique respectively.

(b)(MRT for square integrable martingale.)

Suppose Y ∈M0,2 ((Ω,F ,P), {Ft}) . Then there exists

ξ = (ξ1, . . . , ξN)> ∈ L2(W) and Γ = (Mij)
D
i,j=1 ∈ L2(M) (G.52)

such that Y has the representation

Y (t) =
N∑
n=1

∫ t

0

ξn(τ) dWn(τ) +
D∑

i,j=1

∫ t

0

Γij(τ) dMij(τ) a.s., ∀t ∈ [0, T ], (G.53)

with the square-bracket quadratic variation process of Y given by

[Y ](t) =
N∑
n=1

∫ t

0

ξ2
n(τ) dτ +

D∑
i,j=1

∫ t

0

Γ2
ij(τ) d[Mij](τ) a.s., ∀t ∈ [0, T ]. (G.54)

Moreover, ξ and Γ are unique in the sense that if ξ̄ = (ξ̄1, . . . , ξ̄N)> ∈ L2(W) and

Γ̄ =
(
Γ̄ij
)D
i,j=1

∈ L2(M) are such that (G.53) holds with ξn replaced by ξ̄n and Γij

replaced by Γ̄ij, then ξ̄ = ξ (P⊗ Leb)− a.e. and Γ̄ = Γ ν[M] − a.e.
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Glossary

[M ], [M,M ] square-bracket quadratic variation process of M , page 110

[N,M ] square-bracket quadratic co-variation process of N and M , page
110

〈M〉, 〈M,M〉 angle-bracket quadratic variation process of M , page 109

〈N,M〉 angle-bracket quadratic co-variation process of N and M , page
109

a random variable, page 24

A set of admissible portfolios, page 25

A subspace of B, page 22

A1 set of Itô processes (subset of A), page 40

α markov chain, page 12

b mean rate of return process, page 18

β discounting process, page 39

B product space of integrands, page 22

B1 subspace of the space B, page 38

〈·, ·〉 bilinear form, page 40

c random variable, page 24
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D set of admissible wealth processes, page 30

D1 set of Itô processes (D ∩ A1), page 40

δ support function, page 101

δ̄ characteristic function, page 47

E Doléans-Dade exponential, page 80

η primal value, page 25

F perturbation function, page 38, 34

f primal function, page 31

F◦,Ws raw filtration generated by Wover [0, s], page 13

F◦,αT raw σ-algebra generated by α over [0, T ], page 13

F◦,WT raw σ-algebra generated by Wover [0, T ], page 13

F◦t raw filtration, page 14

Ft standard filtration, page 14

FW
t augmented standard filtration generated by W, page 14

Fαt augmented standard filtration generated by α, page 64

FV set of processes of finite variation, page 108

FV0 set of processes of finite variation and null at the origin, page
108

FV+ set of processes which are non-decreasing, page 108

FV+
0 set of processes which are non-decreasing and null at the origin,

page 108
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g dual function, page 41, 34

G Subset of L∗∞, page 38

H State price density, page 49

IV set of processes in FV of integrable variation, page 108

IV0 set of processes in FV0 of integrable variation, page 108

IV+ set of processes in FV+ which are integrable, page 108

IV+
0 set of processes in IV+ which are null at the origin, page 108

IV loc processes of locally integrable variation, 117

IV+
0,loc set of processes in FV+

0 which are of locally integrable variation,
117

J quadratic loss function, page 24

J∗ convex conjugate, page 40

K Lagrangian, page 40

κσ uniform-bound for σ, page 19

κθ uniform-bound for θ, page 19

L∗∞ dual space of L∞, page 37, 129

Lp Vector space, page 37

L21 space of integrands, page 22

L2(W) space of L2 integrands, page 22

L2(M) space of L2 integrands, page 22

M set of martingales, page 104
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M0 set of martingales null at the origin, page 105

Mc set of continuous martingales, page 105

Mc
0 set of continuous martingales null at the origin, page 105

M2 set of square-integrable martingales, page 105

M0,2 set of square-integrable martingales null at the origin, page 105

Tm ⇑ T increasing stopping times, page 106

Mloc set of local martingales, page 106

Mloc
0 set of local martingales null at the origin, page 107

Mc,loc set of continuous local martingales , page 107

Mc,loc
0 set of continuous local martingales null at the origin, page 107

Mloc
2 set of locally square-integrable martingales, 106

Mij canonical martingale associated with Markov chain α, page 15

|| · ||U maximum norm, page 43

ν[Mij ] Doléans measure, page 16

P∗ predictable σ-algebra, page 15

π portfolio process, page 21

π̄ candidate optimal portfolio process, page 53

qij (i, j)th entry of the generator of the Markov chain, page 13

θ market price of risk, page 19

σ volatility process, page 18

U linear space of perturbations, page 38
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q a constant, page 24

Q generator of the Markov chain, page 13

Q set of singular norm-continuous linear functionals on L∞, page
128

u1 element of L2, page 38

u2 element of L∞, page 38

κ function of (Y, Z), page 42

W Brownian Motion, page 13

X̄ candidate optimal solution to the primal problem, page 53

Xπ solution to the wealth equation for π, page 21

Ξ linear, bijective map, page 39

Y linear space, page 40

Z an element of L∗∞, page 40

• denotes stochastic integration, page 80
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Index

admissible portfolio, 25
admissible wealth process, 30
angle bracket quadratic variation, 16
angle-bracket quadratic co-vatiation, 109

Banach contraction principle, 102
base, 123
bi-conjugate, 120
bilinear form, 40, 119
Brownian motion, 13

càdlàg process, 103
candidate optimal portfolio, 53
candidate optimal process, 53
canonical martingales, 15
characteristic function, 47
compensator results, 117
conjugate integrand, 147
contraction mapping, 102
convex conjugate, 120
convex conjugate of loss function, 40
convex function, 118

decomposable, 148
Doléans-Dade exponential, 116
domain of a function, 118
Doob’s Lp inequality, 105
dual function, 41
dual system, 120
duality pairing, 146
Dynkin’s formula, 153

epigraph, 118

filtered probability space, 104
finite variation, 107
finite variation process, 16
fixed point, 102

generator of Markov chain, 150
generator of the Markov chain, 13

Hölder’s inequality, 103
Hahn-Banach extension theorem, 127
Hausdorff space, 123
Hausdorff topology, 123

Indicator function, 15, 130
integrable variation, 108
integration by parts formula, 115
Itô’s formula, 115

Jensen’s inequality, 103

Kuhn-Tucker, 36

Lagrangian, 40
local base, 123
locally convex, 123, 124
loss function, 24

Mackey topology, 124
Mackey-Arens, 125
market coefficients, 18
Markov chain, 12
Martingale representation theorem, 160
maximum norm, 43
mean rate of return, 18
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neighborhood, 123
norm-topology, 43
normal convex integrand, 147
Novikov’s Criterion, 116

orthogonal, 107

perturbation function, 38
portfolio process, 21
predictably measurable, 15
primal function, 31
primal value, 25
proper convex function, 119
purely discontinuous semimartingale, 114

QLM, 25
quadratic loss minimization, 20

raw filtration, 14
regime states, 12
Riesz Representation Theorem, 126
Riesz representation theorem, 43
risk-free interest rate, 17

semimartingale, 112
seminorm, 124
singular norm-continuous linear functional,

128
Slater type, 28
square bracket quadratic co-variation pro-

cess, 110
square bracket quadratic variation, 16
standard filtered probability space, 104
state price density, 49
state space, 12
sub-differentiable, 121
subgradient, 121
support function, 101

time homogeneous, 12
topological space, 122

topology, 122

vector topology, 123
volatility process, 18

weak topology, 124
wealth equation, 21
wealth process, 21

Yosida-Hewitt decomposition, 128
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