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Abstract  

  Canada is globally the third largest natural gas producer with a total production of 13.9 billion 

ft3/day. Natural gas is a naturally occurring mixture consisting of mainly CH4 and varying 

amounts of other gases such as nitrogen. N2 is difficult to remove from natural gas. Cryogenic 

distillation is energy intensive and costly, while pressure swing adsorption only applies to very 

limited cases. Membrane separation is expected to offer a promising alternative process for 

nitrogen removal from natural gas. 

    In this research, a series of Poly(ether block amide) (PEBA) and Poly(dimethyl siloxane) 

(PDMS) membranes were employed to separate nitrogen from methane under different pressures 

and temperatures. These rubbery polymers have a higher methane permeability than nitrogen, 

and the selectivity is presented as the permeability ratio of methane over nitrogen. The study 

involved pure gas permeation tests by using different PEBA membranes (PEBA 2533, PEBA 

1074, PEBA 1657 and PEBA 3000) and PDMS. Based on the gas permeability data, PEBA 2533 

and PEBA 1074 were chosen for further studies. Polymer blending was employed to combine the 

beneficial properties of the two materials. A series of blend polymers of PEBA 2533/1074 were 

used to prepare the membranes for gas permeability tests with pure and mixture gas at different 

operating conditions. At 0.813 MPa and -200C, a blend membrane with the blend ratio of PEBA 

2533/1074 (50/50) showed a CH4/N2 permeability ratio greater than 6, which is better than the 

conventional membrane reported in the literature. 
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Chapter 1 Introduction 

1.1 Background 

  Traditional gas separation processes often involve in a large energy input to maintain a certain 

operating conditions, such as extreme high or low temperatures. With industry’s demand for 

lowering operating costs and increasing separation efficiency, more and more researches are 

being focused on process improvements. Over the past two decades, gas separation using 

polymeric membranes has drawn a great interest since membrane separation processes offer a 

number of advantages in terms of low energy use and capital cost. This is especially true for the 

purification of natural gas. 

  Canada is globally the third largest natural gas producer. When natural gas is extravted, a high 

reservoir pressure is introduced to ensure the flowing of the gases to the production wells and 

then gush to the surface. This procedure often involves increasing the pressure in the natural gas 

reservoirs, which can be done by injecting N2 into a gas pocket. Depending on the geological 

conditions, some of the injected N2 can mix over time with the natural gas during recovery. If the 

N2 content is too high, the natural gas is no longer viable for industrial use. The pipeline 

specification for natural gas requires the total inert content, predominantly N2, to be less than 4 

mol% (Tannehill and Galvin 1993). However, many natural gas reserves contain more than 4 

mol% N2, which do not meet the pipeline specification. Many of these sub-quality high-nitrogen 

gas streams can be diluted with some other high quality gas streams containing little nitrogen to 

fulfill the specifications. However, when the dilution is not available, a N2 removal unit must be 

installed. Cryogenic distillation is the most widely accepted operation to remove N2. Distillation 
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is often used in chemical industry to separate a mixture of components, which involves in 

supplying heat at the bottom of the column to evaporate the mixture and withdrawing heat at the 

top of the column to condense the volatile components (Roffel et al., 2000). Cryogenic 

distillation is similar to the normal distillation, except that an extremely low temperature is used, 

which makes this process energy-intensive, costly. Moreover, this separation technology is only 

suitable for large gas fields (Lokhandwala et al., 2010). As a matter of fact, many current natural 

gas productions are from small, remote or offshore fields, which need a technology that is 

suitable to treat small gas streams (Lokhandwala et al., 1999). One of the separation technologies  

that has been tried with some success is pressure-swing adsorption (PSA), which uses molecular 

sieves to preferentially adsorb N2 (Fatehi et al., 1995). This separation process can be operated at 

ambient temperature. However, the commercialisation of PSA processes for N2 removal is slow 

since it is difficult to find satisfactory sorbents, that possess a reasonable high N2/CH4 selectivity 

(Jayaraman et al., 2004). Another promising technology is the membrane separation. 

  The first large commercialisation of gas separation membrane was launched in 1980 by Permea 

(now a division of air products) using Prism® membrane. It is used for separation and recovery 

of H2 from the purge gas streams of ammonia plants (Baker 2002). These days, with the 

development of polymer materials and membrane fabricating technology, membrane gas 

separation has become one of the most promising separation processes, especially in the natural 

gas industries. Cellulose acetate membranes has been used to separate CO2 from natural gas, and 

silicone rubber membranes can be used to deal with the removal of C3+ hydrocarbons from 

natural gas stream (Baker and Lokhandwala 2008). However, when dealing with N2 removal 

from natural gas, the low selectivities of N2/CH4 (with glassy membranes) and CH4/N2 (with 

rubbery membranes) hinder the development. According to Lokhandwala et al. (2010), the best 
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selectivity of N2/CH4 with glassy membranes was around 2.5, and with rubbery membranes, the 

best selectivity of CH4/N2 was around 3.7. With a single-stage permeation process, a N2-

permeable membrane must have a N2/CH4 selectivity of 17 and a CH4-permeable membrane 

must have a CH4/N2 selectivity of 6 to achieve the target separation (Baker and Lokhandwala 

2008). As a result, both glassy and rubbery membranes currently available cannot achieve the 

goal of N2 removal. However, rubbery membranes are often studied for this application. 

  Poly(dimethyl siloxane) (PDMS) is a silicon rubber, which has received lots of attention 

because of its high intrinsic permeability to gases (Stern 1994). The high permeability of PDMS 

is probably due to its large free volume, which is caused by the flexibility of the siloxane 

linkages (-SiO-) of this polymer. In gas separation, there are two important parameters, 

permeability and selectivity. PDMS is a highly permeable membrane material with a low 

selectivity (Stern 1994). Merkel et al. (2000) reported that the permeability of CH4 and N2 at 

350C are 1200 and 400 Barrer, respectively. The gas permeability is remarkably high, but the 

CH4/N2 selectivity is only around 3.  

  Poly(ether block amide) copolymers (PEBA) is a relatively new thermoplastic elastomers 

produced by Arkema Inc. under the trade name of Pebax®. The polymer consists of soft 

polyether (PE) and hard polyamide (PA) blocks. Many different grades of the copolymers have 

been developed by changing the types and the contents of the PE and PA components. These 

copolymers are commercially used in a wide variety of applications such as textile, construction, 

agriculture, and medical. Bondar et al. (1999) studied gas sorption in five different grades of 

PEBA. They found that gas solubility increases an increase in PE content. Later on, they also 

found that the gas permeability depends strongly on the amount of the PE component and the 

polarity of the PE element (Bondar et al., 2000). However, all the PEBA materials showed a 
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CH4/N2 selectivity of less than 5, which does not meet the target selectivity required for N2 

removal from natural gas using a single stage membrane separation process. One factor that 

arose my interest was that for rubbery membranes, the gas permeability usually decreases with 

decreasing temperatures, but the permeability ratio of a pair of gases often increases. That is, by 

decreasing the operating temperatures, one may be able to obtain a higher permeability ratio that 

may be adequate for N2 removal from natural gas, though the permeability may be compromised.   

  Polymer blending is a unique way to combine the advantages of each polymer into a new 

material. Polymer blending of PEBA with other polymers has been studied. For example, 

PEG/PEBA 1657 blend membranes were prepared for gas transport of H2, N2, CH4, and CO2(Car 

et al., 2008). The permeabilities of CO2, CH4, and N2 were increased, but there were no 

significant changes in CO2/CH4 and CO2/N2 selectivities, while a slight improvement in CO2/H2 

selectivity was observed. Reijerkerk et al. (2010) studied PEBA/PEG-PDMS blend membranes, 

and the permeabilities of gases studied significantly increased, while the selectivity remained 

almost the same. In spite of these studies trying to combine the advantages of PEBA and other 

polymer materials, very few data can be found for blend membranes using different grades of 

PEBA.    

 

1.2 Objectives 

  The main purpose of this research is to evaluate the permeability of N2 and CH4 in PEBA and 

PDMS membranes at different temperatures and pressures. Several different rubbery membranes 

were first tested with pure gas permeation under different pressures and temperatures. Then 

membranes with the best performance were further studied for separation of binary N2/CH4 
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mixtures, which can simulate the real natural gas stream. By changing the operating conditions 

(e.g., composition, feed pressure and temperature), the membrane performance for CH4/N2 

separation was studied.  

 

1.3 Outline of the Thesis 

  This thesis is divided into 5 chapters. To start with, a fundamental understanding of gas 

permeation through membranes, including mass transport mechanism and the polymers, is 

presented in Chapter 2. Mass transport models are described, and the physical properties of 

polymer materials are introduced. Polymer blending, a popular method of combining the 

advantages of two materials into one is also presented. Some operating conditions affecting gas 

permeation are discussed as well. 

  Chapter 3 presents the preparation of single component PEBA membranes. The gas 

permeability in PEBA membranes as well as a PDMS membrane was determined under different 

gas pressures and temperatures. The best performed membranes were employed for further 

studies with permeation of binary CH4/N2 gas mixtures, and the gas permeability in the 

membrane was evaluated under various operating conditions (e.g., feed pressure and 

composition, temperatures). 

  Chapter 4 describes how polymer blending would improve the membranes performance. 

Several blended membranes were produced with different blending ratios. These membranes 

were evaluated with pure gas permeation at different pressures and temperatures, and the effects 

of blend ratio on the membrane permselectivity was also discussed. The best blended membrane 
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was further studied in binary gas separation. The experimental data was fitted to semi-empirical 

model of polymer blending. 

  Finally, the conclusions drawn from this study are presented in Chapter 5, some 

recommendations for further studies are provided as well.  
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Chapter 2 Literature Review 

  Membrane separation technology is rapidly growing in recent years. Several books have been 

published to describe the fundamental principles and applications of membrane technology in 

details (Koros et al., 1988, Mulder 1991, Baker 2012), and some articles have provided reviews 

to membrane structure and formation (Ghosal and Freeman 1994, Pinnau and Freeman 1999)  

 

2.1 Overview of Membrane Separation 

  J. K. Mitchell observed that different gases had different permeation rates when they 

transported through a rubber balloon in 1831 (Paul and Yampol'skii 1993). This was considered 

the first scientific observation related to membrane gas separation. At almost the same time, Fick 

studied gas transport through nitrocellulose membranes and developed his famous law of 

diffusion, which is known today as the Fick’s first law (Paul and Yampol'skii 1993). Later on, 

Graham made the first quantitative measurements of gas permeation rates and proposed the 

solution-diffusion model in 1866, and it is now known as Graham’s law of diffusion (Baker 

2012). In the 1940s to 1950s, modern theories of gas permeation in membranes was established 

by Barrer, Van Amerongen, Stern and other researchers (Paul and Yampol'skii 1993). 

  One of the biggest problems with those early membranes was that the membrane selectivity was 

insufficient and the fluxes were too low for practical applications. Loeb and Sourirajan brought 

the first breakthrough with the introduction of asymmetric membranes in 1960s (Baker 2012). A 

membrane with a very thin dense layer supported on a thick porous sub-layer was produced by 
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the so-called phase inversion process. The thin dense layer was the selective layer, which had the 

ability to achieve the separation, while the thick porous sub-layer provided mechanical support to 

the thin dense layer with negligible resistance to mass permeation. Such a membrane structure 

significantly improved permeation flux, and it was successfully used in water desalination. 

However, it was not suitable for gas separation as the membrane would lose its separation 

functions after drying. Vos and Burris found a solution to such a problem, by adding a surfactant 

to water to reduce the interfacial tension between the walls of the membrane and water 

molecules during membrane formation and drying (Tabe-Mohammadi 1999).     

  During the past two decades, membrane separation technology has been rapidly growing, and 

many different processes have been developed and new processes are constantly emerging. 

Processing of natural gas is one of the largest industrial gas separation applications. The total 

consumption of natural gas is around 95 trillion scf/yr globally, the market for new natural gas 

separation equipment is around 5 billion dollar/yr. However, less than 5% of the market is 

occupied by membrane processes, and almost all of which is for the removal of CO2 from natural 

gas (Baker and Lokhandwala 2008). Grace Membrane Systems, Separex, and Cynara were the 

first companies that commercialized gas separation membrane for CO2 removal from natural gas 

using anisotropic cellulose acetate membranes (Baker and Lokhandwala 2008). As a matter of 

fact, natural gas also contains many other undesirable impurities (e.g., water, hydrogen sulfide 

and nitrogen), which need to be treated in order to meet pipeline specifications. Thus, there are 

still many opportunities for membranes in processing natural gas.  

2.1.1 Types of Gas Separation Membranes  

  There are two types of membranes, as shown in Figure 2.1, which are widely used in the gas 

separation process: isotropic membranes and anisotropic membranes. Isotropic membranes have 
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a uniform composition structure, and they can be either porous or non-porous (dense). The 

resistance to mass transfer in these membranes are determined by the total membrane thickness. 

Anisotropic membranes usually consist of a number of layers, each with different structures and 

permeability. A typical anisotropic membrane has a relatively dense, extremely thin surface layer 

supported on an open, much thicker porous substructure. The resistance to mass transfer is 

determined largely by the thin surface layer (Pinnau and Freeman 1999).      

 

Figure 2.1   Cross section of membrane structures (Mulder 1991) 

  Different raw materials have been used to fabricate membranes, and gas separation membranes 

can be divided into glassy membranes and rubbery membranes.  If the operating temperature is 

below the glass transition temperature of the materials, the polymer chains are rigid and 

segmental motion is limited. These tough and rigid membranes are called glassy membranes. 

The effect of differences in molecular sizes of the permeating gases on their relative mobility in 

the membrane is large (Baker and Lokhandwala 2008). On the contrary, if the operating 

temperature is above the glass transition temperature of the material, the polymer chains have 

sufficient thermal energy to allow limited rotation around the chain backbone, and these 

materials are rubbery polymers and they are soft and flexible. The difference in permeability of 
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different gases mainly depend on the difference of gas condensabilities (Baker and Lokhandwala 

2008).  

  The molecular size and condensability of the principal components in natural gas, relative to 

methane, are shown in Figure 2.2 (Baker and Lokhandwala 2008).  

 

Figure 2.2   Relative size (kinetic diameter) and condensability (boiling point) of the main components of natural gas 

(Baker and Lokhandwala 2008). 

  From Figure 2.2 we know that CO2 is better separated by glassy polymer membranes due to the 

large differences in molecular sizes, whereas N2 is better separated by rubbery polymers because 

the difference in molecular sizes is smaller than the difference in the gas condensabilities, as 

shown in Table 2.1. However, the selectivity of CH4/N2 is pretty low compared with other gas 

pairs (Lokhandwala et al., 1999). Therefore, new membrane materials for better gas separations 

are needed to achieve N2 removal from natural gas. 
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Table 2.1   Some physical properties of N2 and CH4 

 

Gas 

Size Condensability 

Critical volume 

(cm3/mol)a 

Kinetic diameter 

(Å)b 

Normal boiling 

point (K)a 

Critical 

temperature (K)a 

N2 89.8 3.64 77.4 126.2 

CH4 98.6 3.82 111.66 190.56 

a Poling et al., (2001) 

b Breck (1974) 

 

2.1.2 Gas Transport in Membranes 

  The mechanism of gas transport in membranes depends on the pore size of the membranes. For 

porous membranes, the gas flow can be described by three models: convective flow, Knudsen 

diffusion and molecular sieving.  

  When the pore size is relatively large (0.1-10 um), gas transport though the membrane can be 

seen as a convective flow and no separation can be achieved. Knudsen diffusion happens when 

the membrane pore radius are much smaller than the mean free path of the permeating gas. Since 

the mean free path of gases at the atmospheric pressure is in the range of 500-2000 Å, the pore 

radius of the membrane must be typically less than 500 Å for Kundsen diffusion to occur. This is 

illustrated schematically in Figure 2.3. When this occurs, the diffusing gas molecules have more 

chances to collide with the pore walls than among the gas molecules. At every collision with the 

pore wall, the gas molecules are momentarily adsorbed and reflected in a random direction, and 

the gas molecules move independently of others. Hence, a separation is achieved for gas 

molecules with different average velocities. When the pore size decreases to 5-10 Å, the pores 
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begin to separate gases by a molecular sieving effect. Molecules small enough to pass through 

the pores are adsorbed while larger molecules are retained (Baker 2012). 

 

Figure 2.3   Mass transport in porous membranes (Baker 2012) 

  For non-porous membranes, the mass transport can be described by the solution-diffusion 

model, which is based on both the solubility and diffusivity factors. The details of this model are 

discussed in more details in the following section. 

Solution-diffusion model  

  The solution-diffusion model is the most widely accepted mass transport model to describe gas 

permeation within non-porous membranes. According to this model, permeant gas first dissolves 

onto the membrane and then diffuses through the membrane down a concentration gradient as 

shown in Figure 2.4. The separation is achieved by the different amount of penetrant dissolved in 

the membrane and the rate difference of penetrant diffusion through the membrane (Wijmans 

and Baker 1995). The permeation process can be described as: 

1. Adsorption and dissolution of gas molecules at the polymer membrane interface. 

Kundsen diffusion Molecular sieving 

Gases mixtures 
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2. Diffusion of the gas molecules through the bulk polymer. 

3. Desorption of the gas molecules at the downstream interface of the polymer membrane. 

  In order to define the solution-diffusion model, some assumptions are often made (Wijmans and 

Baker 1995). Firstly, the fluids on either side of the membrane are in equilibrium with the 

membrane at the interface, which means that a continuous chemical potential gradient is 

achieved from one side of the membrane to the other. This means that the sorption and 

desorption rates are much higher than the rate of diffusion through the membrane, and thus the 

rate of diffusion within the membrane is the rate-determining step. Secondly, the pressure within 

a membrane is uniform and the chemical potential gradient of a penetrant across the membrane 

may be represented in the form of a concentration gradient (Wijmans and Baker 1995). The 

relationship between the permeation flux (J) and concentration gradient can be described by the 

Fick’s law: 

𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
                                                           (2.1) 

where D is the diffusion coefficient of the penetrant in the membrane, 𝑑𝐶/𝑑𝑥 is the 

concentration gradient across the membrane.  
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Figure 2.4   Schematic description of solution-diffusion mechanism 

  The permeability coefficient (P) can be defined by the following equation (Ghosal and Freeman 

1994): 

𝑃 =
𝐽

(𝑝2−𝑝1)/𝑙
                                                             (2.2) 

where 𝑝2 is the upstream pressure and 𝑝1 is the downstream pressure, and 𝑙 is the thickness of 

the membrane. The permeability coefficient is commonly expressed in Barrer unit (Ghosal and 

Freeman 1994), named after Richard Barrer who developed the first scientific method for 

measuring gas permeation rate: 

1 𝐵𝑎𝑟𝑟𝑒𝑟 = 1 × 10−10 𝑐𝑚3(𝑆𝑇𝑃)∙𝑐𝑚

𝑐𝑚2∙𝑠𝑒𝑐∙𝑐𝑚𝐻𝑔
                                (2.3) 

Applying equation 2.1 into equation 2.2 we have: 

𝑃 = −
𝐷

(𝑝2−𝑝1)
∙ 𝑙

𝑑𝐶

𝑑𝑥
                                              (2.4) 

Upstream Downstream 
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Integrating the equation with boundary conditions 𝐶 = 𝐶2 at 𝑥 = 0 and 𝐶 = 𝐶1 at 𝑥 = 𝑙.  

𝑃 = ∫
𝐷

(𝑝2−𝑝1)

𝐶2

𝐶1
𝑑𝐶 = 𝐷

(𝐶2−𝐶1)

(𝑝2−𝑝1)
                                   (2.5) 

  When the downstream pressure is much lower than the upstream pressure, and the downstream 

gas concentration in the membrane is much lower than the upstream concentration in the 

membrane, the permeability can be viewed as the product of diffusivity (D) and solubility (S) 

(Ghosal and Freeman 1994): 

𝑃 = 𝐷 × 𝑆                                                             (2.6) 

  The diffusion coefficient D describes molecular mobility and is mainly governed by the 

molecular size when it travels through the permanent and transient voids afforded by the free 

volume of the membrane (Zou et al., 2008). The solubility coefficient S is a thermodynamic 

parameter which provides a measurement of the quantity of penetrant molecules taken up by the 

membrane (Zou et al., 2008). 

  The ability of a membrane to separate a mixture is measured by its selectivity.  For a binary gas 

mixtures consisting of components 𝑖 and 𝑗 with the component 𝑖 as the fast permeating species, 

the selectivity can be expressed as (Koros et al., 1988):  

𝛼𝑖𝑗 =
𝑃𝑖

𝑃𝑗
= (

𝐷𝑖

𝐷𝑗
) × (

𝑆𝑖

𝑆𝑗
)                                                 (2.7) 

  The selectivity depends on both the diffusivity selectivity (Di/Dj) and the solubility selectivity 

(Si/Sj). At given operating conditions (e.g., pressure, temperature and feed composition), the 

diffusivity selectivity is governed by the free volume of the membrane as well as the sizes of the 

penetrants (Merkel et al., 2000). It always favors the permeation of smaller molecules through 
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the membrane. The solubility selectivity is affected by the penetrant condensability, and it 

increases with an increase in the difference in condensability between two penetrants in the 

binary mixtures (Merkel et al., 2000). 

 

2.2 Polymers 

  As mentioned before, polymers used to fabricate membranes can be divided into two groups, 

glassy polymers and rubbery polymers. Typically, rubbery polymers contain a large free volume 

because of gaps created by the highly mobile polymer chains (Ghosal and Freeman 1994).  Free 

volume is the portion of volume in a polymer not occupied by the electronic clouds of the 

polymer, which affects penetrant diffusivity (Bernardo et al., 2009).  

  Glassy polymers are rigid and the polymer chains have limited motion, which results in a lower 

free volume fraction. Thus the size difference of the permeating molecules has a significant 

effect on the relative mobility. For rubbery polymers, the polymer chains can move more freely, 

and the diffusivity selectivity decreases. Typically the diffusivity selectivity of 𝐷𝑁2
/𝐷𝐶𝐻4

 is 

between 1.2 and 2.0 for rubbery polymers, and between 3 and 6 for glassy polymers. Meanwhile, 

the solubility selectivity 𝑆𝑁2
/𝑆𝐶𝐻4

 usually lies between 0.2 and 0.4 for both rubbery and glassy 

polymers (Merkel et al., 2006). As discussed before, glassy polymers tend to permeate nitrogen 

preferentially, and the expected permeation selectivity of 𝛼𝑁2/𝐶𝐻4
 is around 2.5. Similarly, 

rubbery polymers tend to permeate methane preferentially, and the expected selectivity of 

𝛼𝐶𝐻4/𝑁2
 is around 3 (Baker and Lokhandwala 2008). 

  Most polymers are semi-crystalline, which contains both amorphous and crystalline regions. 

Crystalline regions are considered to be impermeable, which increase the tortuosity of 
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penetration paths (Ghosal and Freeman 1994). Therefore, diffusion mainly occurs in the 

amorphous regions. As a result, the size and distribution of crystalline regions, degree of 

crosslinking, and the nature of substituents in the polymer affect segmental mobility of the 

polymer chains, and they are important to membrane permeability (Mulder 1991, George and 

Thomas 2001). 

 

2.2.1 Poly(ether block amide) (PEBA) 

  PEBA resins were developed in 1972, but only in 1981 did they begin to be used commercially 

under the trade name Pebax®. PEBA is a group of thermoplastic elastomers with a general 

chemical structure  

 

where PA is an aliphatic polyamide “hard” block (e.g., nylon-6, nylon-12) and PE is a polyether 

“soft” block (e.g., poly(ethylene oxide) [PEO], poly(tetramethylene oxide) [PTMEO]) (Bondar et 

al., 1999). The “hard” polyamide blocks provide the mechanical strength, whereas the polyether 

“soft” blocks provide elastic properties. PEBA 2533, PEBA 1074, PEBA 1657 and PEBA 3000 

were used in this work. Some of their properties are listed in Table 2.2.  

  Only in recent years have the PEBA membranes been studied for separation applications. Rezac 

et al. (1997) investigated the sorption and diffusion properties of water and methanol in four 

different grades of PEBA (2533, 3533, 5533, and 6333), in order to recover methanol from water 

wet air stream, which is relevant to controlling the hazardous air pollutant emissions in the pulp 
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and paper industry. They found that PEBA materials can selectively separate methanol vapor 

form air, but not from water vapor, and PEBA 2533 was the most promising grade among the 

four due to its high permeation rates. 

  Bondar et al. (2000) studied the removal of CO2 from mixtures with hydrogen in synthesis gas 

by four different grades of PEBA (2533, 4033, 1074, and 4011). PEBA was found to have very 

high selectivity on acid or polar/nonpolar gas mixtures with very good permeability. They also 

found that the PE content in the membrane and CO2 permeability are highly correlated. As the 

amount of PE increases, CO2 permeability increases. Marcq et al. (2005) also found that PEBA 

membranes exhibited a high intrinsic permeability due to their elastomer nature, and the CO2/N2 

selectivity is sufficiently high to separate CO2 from flue gas. Among the four different grades of 

PEBA (1074, 6100, 1657, and 3000) tested, PEBA 1657 had the highest permeability to CO2, 

which is almost four times as PEBA 1074 did. PEBA 3000 had the largest permeability to N2, 

which is almost five times larger than PEBA 1074. PEBA 1074, PEBA 6100, and PEBA 1657 

had almost the same CO2/N2 selectivity (about 45), and PEBA 3000 had a lower selectivity of 16 

due to its higher permeability to N2. 

  Although PEBA copolymers have a good gas selectivity for CO2 separation from nonpolar 

gases, they are not very effective for the separation of CH4 from N2 due to the similar physical 

properties of this gas pair. 

  Table 2.2 shows the physical properties of different grades of PEBA. The type and the 

molecular weight of the polyamide segment affect its melting point Tm and chemical resistance 

of the copolymer, while the type of polyether segment influences the glass transition temperature 

Tg. The relative amount of polyamide and polyether segments determines the hardness of the 

polymer (Flesher 1986). 
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Table 2.2   Physical properties of PEBA polymers 

Polymer 

Commerci

al Grade 

PE 

Content 

(wt%) 

Density 

(g/cm3) 

Tg (
0C) 

Tm (PE) 

(0C) 

Tm (PA) 

(0C) 

Crystallinit

y in PA 

Block 

(wt%) 

Hardness 

(D) 

Reference 

PTMEO/P

A12 

2533 80 1.01 -77 9 126 14 25 (Marcq et 

al., 2005) 

 PEO/PA12 1074 55 1.09 -55 11 156 40 40 

PEO/PA12 3000 50 1.02 -60 5 158 36 35 
(Bondar et 

al., 1999) 

 PEO/PA6 1657 60 1.14 -55 49 204 25 40 
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 PEBA has good chemical resistance to acid, basic and organic solvents as well as thermal and 

mechanical stability (Liu et al., 2004). Table 2.3 is the solubility of PEBA in some commonly 

used solvents. 

Table 2.3   Solubility of PEBA in common solvents (Bondar et al., 1999) 

Solvent Solubility 

Methanol Non-soluble 

Ethanol Non-soluble 

Chloroform Non-soluble 

ɣ-butylolactone Non-soluble 

N,N-Dimethyl formamide (NMF) Partially soluble 

N,N-Dimethyl acetamide (DMAc) Partially soluble 

N-methyl-2 pyrrolidone (NMP) Partially soluble 

Trichloroethane Soluble 

Formic acid/sulfuric acid Soluble 

Mixture (3:1) of 1-propanol/1-butanol (800C) Soluble 

 

   

  



 

 

21 

 

  The available gas permeation data for the series of PEBA used in this work are shown in Table 

2.4 

Table 2.4   Previous experimental data for PEBA membranes 

PEBA 

Test Conditions Permeability (Barrer) Selectivity 

T (°C) p (MPa) N2 CO2 CH4 CH4/N2 

1074a 25 0.30 0.58 25.5   

1074b 35 3.04 2.33 120   

1657a 25 0.30 2.04 97.9   

1657c 25 0.30 1.29 89.0   

1657d 35 0.40 1.84 98.0 6.09 3.31 

1657e 30 0.30 1.62 73.0 4.68 2.89 

1657f 25 0.30 1.71 122   

2533g 25 0.35 7.75 254   

2533h 35 0.30 6.40 121   

2533i 30 0.30 4.80  20.0 4.20 

2533c 35 0.30 9.44 221   

3000a 25 0.30 2.86 45.8   
a Marcq et al., (2005); b Bondar et al., (2000); c Ren et al., (2012); d Reijerkerk et al., (2010); e Car 

et al., (2008); f Kim et al., (2001); g Liu et al., (2009); h Scholes et al., (2012); i Blume and Pinnau 

(1990);  

   

  With an increase in the percentage of the “soft” PE block, the membrane permeability to both 

nitrogen and methane increases. This indicates that the “soft” polyether blocks are the locus of 

most of the gas transport while the “hard” nylon blocks provide mechanical strength (Bondar et 

al., 1999).  

 

2.2.2 Poly(dimethyl siloxane) (PDMS) 

  Kammermeyer (1957) first reported that poly(dimethyl siloxane) (PDMS) had a much higher 

gas permeability than other rubbery polymers known at that time. Even now, PDMS is still one 

of the most permeable rubbery polymers. The high permeability of PDMS is attributed to its 
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larger free volume, which may be due to the flexibility of the siloxane linkages in the polymer 

(Stern 1994). PDMS also has the lowest glass-transition temperature (-1200C) among the current 

rubbery polymers. It has a very flexible polymer backbone with long-range segmental motion 

active even at very low temperature (Freeman and Pinnau 1997). PDMS can be used to separate 

VOCs from waste gas streams in industrial processes. Yeom et al. (2002) studied the separation 

of VOC/N2 by PDMS membranes. They found that the selectivity of VOC/N2 is very good, and 

that the VOC permeability increases and the N2 permeability decreases with a decrease in 

temperature, which results in an increase in selectivity at lower temperatures. 

  PDMS has also been considered for the removal of higher hydrocarbons from natural gas. 

Raharjo et al. (2007) studied pure and mixed gas permeabilities of n-C4H10 and CH4 in PDMS 

membranes at different temperatures and pressures. They discovered that the presence of n-

C4H10 in PDMS enhanced the permeability of both CH4 and n-C4H10, while the presence of CH4 

did not affect the permeability of n-C4H10. Therefore, due to the higher permeability of CH4, the 

selectivity of n-C4H10/CH4 is lower than that estimated from pure gas measurements.  

 

2.2.3 Polymer Blending 

  Polymer blending is a versatile tool to combine the beneficial properties of two or more 

components. This method offers an effective way to combine polymers with different separation 

and physicochemical properties to obtain the desired superior properties which are not found in 

individual polymers (Mannan et al., 2013). Polymer blends can be categorised as miscible and 

phase-separated blends (immiscible and partially miscible blends) (Robeson 2010). In the 
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miscible blends, polymers can dissolve in each other and form a homogeneous solution, while in 

phase-separated blends, heterogeneous solution occurs (Mannan et al., 2013).  

  The permeability of miscible blends can be described by: 

𝑙𝑛𝑃𝑏 = ∅1𝑙𝑛𝑃1 + ∅2𝑙𝑛𝑃2               Homogeneous model (2.8) 

where 𝑃𝑏, 𝑃1, and 𝑃2 are the permeability coefficients of the blend and components 1 and 2, 

respectively, and  ∅1 and ∅2 are the respective volume fractions of components 1 and 2 in the 

blend. This relationship predict random copolymer permeability as a function of the blend 

composition (Paul 1984). 

  For phase-separated polymer blends, the permeability-composition relationships are more 

complex since both components 1 and 2 can be the continuous phase. At the extremes of 

composition, the parallel and series models may be employed as the upper and lower bounds of 

the permeability in the blend (Paul 1984). 

𝑃𝑏 = ∅1𝑃1 + ∅2𝑃2                     Parallel model (2.9) 

𝑃𝑏 = 𝑃1𝑃2/(∅1𝑃2 + ∅2𝑃1)               Series model (2.10) 

  Polymer blends are often used in gas separation membranes because of the potential advantages 

of the blended membranes. By blending a less plasticizable polymer, the plasticizing behavior of 

the original membrane will be reduced. Blends can also improve the mechanical and thermal 

properties of the resulting membrane. Moreover, facilitated transport of a certain gas can be 

reached by polymer blending (Mannan et al., 2013). 

  Car et al. (2008) studied the modification of PEBA by adding a low-molecular-weight PEG. A 

simple binary solvent of ethanol/water was used to prepare the membrane, and gas transport was 
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determined for four gases (H2, N2, CH4, and CO2). They found that the permeability of CO2 was 

significantly increased in the membrane with 50 wt.% of PEG. Although the CO2/N2 and 

CO2/CH4 selectivities remained unchanged, an increase in CO2/H2 selectivity was observed. 

Such a polymer blending increased the membrane permeability to gases, but very little 

improvement in selectivity was achieved.  

  Reijerkerk et al. (2010) prepared PEBA/PEG/PDMS blend membranes to take advantages of 

the high selectivity of PEG for CO2 and the high permeability of PDMS. 80 wt.% of PEG and 20 

wt.% of PDMS was used as the PDMS-PEG additive, and four gases (H2, N2, CH4, and CO2) 

were tested in both pure and mixed gas permeation tests. Similar to the research results of Car et 

al. (2008),the gas permeability increased, and the CO2/H2 selectivity slightly increased while the 

CO2/N2 and CO2/CH4 selectivities decreased. 

  Very little work is done on N2 removal from natural gas by blend membranes. Nonetheless, the 

above work appeared to suggest that using proper polymer blending, both CH4 and N2 

permeabilities may increase, and the CH4/N2 selectivity may also be enhanced if the increase in 

N2 permeability is less significant than the increases in CH4 permeability 

 

2.3 Factors Affecting Gas Permeation 

  Permeability coefficient is one of the most important parameter in gas separation, which 

depends on the solubility and diffusivity coefficients. Factors affecting the solubility and 

diffusivity include: operating conditions (temperature, pressure, and feed composition), polymer 

structure, and the properties of permeating species (molecule size, condensability). Some of the 

factors are discussed below.  
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2.3.1 Feed Gas Pressure 

  The effect of feed pressure on the permeability coefficient is due to the competing effects of 

hydrostatic pressure and plasticization (Bondar et al., 2000). Generally speaking, non-

condensable gases are mainly influent by the hydrostatic pressure, while high soluble 

(condensable) gases influences permeability through plasticization (Bondar et al., 2000). 

  Two typical isotherm patterns are often observed for the relationship between permeability and 

pressure in rubbery membranes (Chen et al., 2005): the diffusivity and solubility of low sorbing 

penetrants like N2 and He are independent with the pressure. On the other hand, the permeability 

of an organic vapor may increase linearly or exponentially with an increase in the gas pressure. 

 

2.3.2 Temperature 

  The effects of temperature on the permeability, diffusivity and solubility often follow Arrhenius 

type of relationship (Ghosal and Freeman 1994): 

𝐷 = 𝐷0 ∙ 𝑒
−𝐸𝑑
𝑅𝑇                                                        (2.11) 

𝑆 = 𝑆0 ∙ 𝑒
−∆𝐻𝑠

𝑅𝑇                                                       (2.12) 

𝑃 = 𝑃0 ∙ 𝑒
−𝐸𝑝

𝑅𝑇                                                        (2.13) 
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where 𝐸𝑑 and 𝐸𝑝 are the activation energies of diffusion and permeation, respectively. ∆𝐻𝑠 is the 

enthalpy change of sorption. The activation energy for permeation 𝐸𝑝 can be calculated from the 

𝑙𝑛𝑃 𝑣𝑠. 1/𝑇 plot. As an approximation, 𝑃 = 𝐷 ∙ 𝑆, and thus 𝐸𝑝 is related to 𝐸𝑑 and ∆𝐻𝑠 by:  

𝐸𝑝 = 𝐸𝑑 + ∆𝐻𝑠                                                     (2.14) 

  Gas diffusion coefficient increases with increasing temperature when the polymer does not 

undergo thermal change such as glass transition. Less permeable gases often have a higher 

activation energy than more permeable gases, because the former needs more energy to permeate 

through the membrane. Also increasing temperature can elevate the diffusivity of less permeable 

gases more significantly than the more permeable gases. As a result, the higher the temperature 

is, the lower the diffusivity selectivity will be (Ghosal and Freeman 1994). 

  The dissolution of a penetrant molecule into a polymer matrix can be viewed as a two-step 

thermodynamic process: the condensation and the creating of molecular space to accommodate 

the penetrant molecule. Thus, the enthalpy of sorption can be written as (Ghosal and Freeman 

1994): 

∆𝐻𝑠 = ∆𝐻𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 + ∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔                                (2.15) 

where ∆𝐻𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 and ∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔 are the enthalpy changes associated with the two-step 

process, respectively. For non-condensable penetrants, ∆𝐻𝑠 is governed by ∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔 since 

∆𝐻𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 is very small. Since ∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔 is normally positive, the solubility increases with 

an increase in temperature. For condensable gases, ∆𝐻𝑠 is dominated by ∆𝐻𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 which is 

negative. In this cases, the gas solubility decreases with an increase in temperature. Since 𝑃 =

𝐷 ∙ 𝑆, and diffusivity is generally a stronger function of temperature than the solubility 
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coefficient (i.e.,𝐸𝑝 > |∆𝐻𝑠|), the gas permeability usually increases with temperature (Ghosal 

and Freeman 1994).  

 

2.3.3 Feed Gas Composition  

  Unlike pure gas permeation test, the binary or multi-component gas mixture, where one of the 

permeants has higher permeation flux than the other ones, is more complicated. 

  Liu et al. (2006) discussed interaction of different penetrants in propylene/nitrogen binary gases 

permeation with PEBA/PSf composite membrane. They stated that due to the presence of 

nitrogen, the permeability of propylene is lower compared with the pure propylene permeability, 

meanwhile, the presence of propylene in the binary mixture enhanced the permeation of 

nitrogen(Liu et al., 2006). The decrease in propylene permeability is due to the competitive 

sorption and coupling transport between the two permeants. Therefore, the selectivity for 

propylene/nitrogen is lower than that based on pure gas permeation(Liu et al., 2006). 

  Different tendency occurs when facing the multi-component gases permeation of VOC/N2 with 

PEBA 2533 membrane (Liu et al., 2009). The presence of VOCs not only improves the 

permeance of N2 due to membrane swelling caused by the VOCs, which increases the free 

volume and chain mobility in the polymers, but also enhanced VOC permeability. And the 

increase in VOC permeability was more significantly than the increase in N2 permeability (Liu et 

al., 2009). Therefore, the selectivity of VOC/N2 was increased with an increase in VOC 

concentration in the feed (Liu et al., 2009). 
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Chapter 3 CH4/N2 Separation by PEBA and PDMS 

Membranes 

3.1 Introduction 

  N2 is a common contaminant in natural gas, which is quite hard to remove. N2 lowers the BTU 

value of the gas and makes it unsaleable. BTU value is a traditional unit of energy; it is the 

amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. The 

lower the BTU value is, the less efficient the natural gas will be. Therefore, the removal of N2 is 

necessary. Current technologies for N2 removal, as discussed before, are energy-intensive and 

costly. A more efficient method is needed to remove N2 from natural gas with a low energy 

consumption as well as low operating cost.  

  Membrane process for gas separation has the potential to solve the problem. The “heart” of a 

membrane process is the membrane itself. High selectivity and permeability are always desirable 

since a low driving force and a smaller membrane area will be needed to achieve a given 

separation. Unlike CO2/CH4 separation membranes, where CO2 permeates faster than CH4, CH4 

molecules permeate faster than N2 through the membrane. In a single-stage process, CH4-

permeable membrane with a CH4/N2 selectivity of 6 can achieve the target of N2 removal, while 

for N2-selective membrane, the N2/CH4 selectivity should be 17 (Baker and Lokhandwala 2008). 

However, current studies showed the CH4/N2 selectivity of 3-4 obtained with rubbery 

membranes and the N2/CH4 selectivity of 2.5 with glassy membranes are far below the value 

required. Therefore, it is essential to explore alternative rubbery membrane materials with a 

better ability to separate CH4 and N2.   
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3.2 Experimental 

3.2.1 Materials 

  Samples of Pebax® MV 1074 SA 01, Pebax® 2533 SA 01, Pebax®  MV 3000 SP 01 and Pebax®  

MH 1657 were supplied by Arkema Inc. (Philadelphia, PA) in the form of melt processed pellets 

(2-3 mm in diameter). Reagent grade 1-methly-2-pyrrolidinone (NMP) (99%) and 

dimethylacetyamide (DMAc) (99%) from Sigma Aldrich (Oakville, ON) were used as solvents 

for preparing membrane casting solutions. Nitrogen (N2) and methane (CH4) were provided by 

Praxair Canada Inc. (Mississauga, ON). All materials were used without further purification. 

 

3.2.2 Membrane Preparation 

  The membranes were prepared by the solution-casting method, which involved three major 

steps: formulating the polymer solution, casting the polymer solution to films and drying the cast 

films to produce the final membrane (Siemann 2005).  

  All PEBA pellets were first dissolved completely in a proper solvent with vigorous stirring. 

DMAc was used to dissolve PEBA 2533, and the solution was maintained at 600C with agitation 

for 24 hours yielding a homogenous solution. However, DMAc cannot uniformly dissolve other 

grades of PEBA even at higher temperature for a longer period of time. PEBA 2533 has a higher 

PE content than other PEBA polymers, and the PE segments have good solubility in most 

organic solvents. This may explain that PEBA 2533 can be dissolved in DMAc even at a lower 

temperature and less agitating time, while the other PEBA polymers cannot. NMP was employed 

to dissolve PEBA 1074, PEBA 3000, and PEBA 1657 pellets, and the solutions were maintained 

at 900C with agitation for 34 hours to ensure homogenous solutions were produced. All 
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polymeric solutions were kept at their respective temperatures for 12 hours to degas any bubbles 

formed during the agitation. 

  Flat films of PEBA 2533 and the other PEBA grades were prepared by casting the polymer 

solutions on a heated glass plate at temperatures of 400C and 800C, respectively. The casting was 

performed using a casting knife which was in the form of a glass rod with wires rounded at both 

ends to control the membrane thickness. Then the plates were kept in the oven at 500C for PEBA 

2533 and 800C for the rest PEBA polymers for 24 hours in order to evaporate the solvent. After 

that, membranes were removed from the glass plates by immersing the plates into a deionized 

water bath for 5 minutes. Finally the membranes were dried again in the oven at 500C for 24 

hours. The thicknesses of these membranes ranged from 30 to 70 μm since different wires with 

different diameters were used. The thicknesses reported were the average of measurements taken 

from four quadrants and the center of a membrane sample when it was produced. The 

membranes were stored at room temperature until use. 

  A commercial PDMS membrane (Speciality Silicone Products Inc., Ballston Spa, NY) was 

used without any further modifications, the thickness of which is 63.5 μm. 

  

3.2.3 Gas Permeation Measurements  

  Pure gas permeability tests were performed using the dense PEBA films prepared in the lab and 

the commercial PDMS film. Gas permeability coefficient was measured at pressures varying 

from 0.3013 to 0.8013 MPa absolute, and temperatures varying from 25 to -200C. A membrane 

cell with an effective area of 13.88 cm2 was used. A piece of membrane and Whatman grade 1 

qualitative filter paper was cut and placed inside the cell between the O-rings and a porous metal 

plate (support screen). 
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  The experimental setup for pure gas permeation test was shown in Figure 3.1, which consisted 

of an upstream gas, a membrane cell, a cooling bath and a downstream gas bubble flow meter. 

The gas bubble flow meter used to measure the permeation rate was a Mohr pipette filled with a 

drop of Swagelok Snoop leak detector fluid. The membrane cell was immersed into a cooling 

bath (Polystat® temperature controller from Cole-Parmer, model 12101-31) containing ethylene 

glycol anti-freeze to control and maintain its temperature. The retenate valve was opened prior to 

each run to purge the feed gas remaining in the cell, and during the tests, it remained closed.  

  

Figure 3.1   Schematic diagram of experimental setup for pure gas permeation 

  The permeability (P) of the gas is calculated by: 

𝑃 =
𝑉𝑙

𝐴𝑡Δ𝑝
                                                          (3.1) 

where 𝑉 is the volume of the permeate over a period of time 𝑡, 𝑙 is the thickness of the 

membrane, 𝐴 is the effective membrane area. Δ𝑝 is the pressure difference between the upstream 

Cooling bath 



 

 

32 

 

feed gas and the downstream permeate gas. The permeability ratio of faster gas 𝑖 over the slower 

gas 𝑗 was used to measure the membrane selectivity (permeability ratio): 

𝛼𝑖𝑗 =
𝑃𝑖

𝑃𝑗
                                                            (3.2) 

  The permeability ratio indicates the ability of the membrane to separate these two spices. It is 

sometimes called ideal selectivity. 

  The experimental setup for binary gas mixture permeation tests is shown in Figure 3.2. PEBA 

2533 and PEBA 1074 membranes were mounted in the same membrane cell as used in the pure 

gas permeation tests. The operating pressure was 0.7013 MPa absolute, while the temperature 

varied from 25 to -200C. The feed gas mixture was prepared by using a dynamic gas blending 

system comprised of two Matheson mass flow controllers (Model 8270). The flow rates of the 

permeate and the residue streams were measured by bubble flow meters. A very small stage cut 

(<0.05) was used so that the composition of residue stream was the same as that of the feed. The 

composition of residue (or feed) and permeate streams were analyzed by an online Agilent gas 

chromatograph (Model 6890N) equipped with a Supelco packed column (60/80 mesh Carboxen-

1000, 15’×1/8’) and a thermal conductivity detector. The permeability (Pi) of an individual 

component in the gas mixture through the membrane was calculated by: 

𝑃𝑖 =
𝑉𝑙𝑦𝑖

𝐴𝑡∆𝑝𝑖
=

𝑉𝑙𝑦𝑖

𝐴𝑡(𝑝𝑓𝑥𝑖−𝑝𝑝𝑦𝑖)
                                                (3.3) 

where 𝑥𝑖 and 𝑦𝑖 are the mole fractions of gas 𝑖 in the feed and the permeate, respectively, 𝑝𝑓 is 

the feed pressure, and 𝑝𝑝 is the permeate pressure. The membrane selectivity was measured in 

terms of the CH4/N2 permeability ratio.  
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Figure 3.2   Schematic diagram of experimental setup for binary gas permeation 
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3.3 Results and Discussion 

3.3.1 Pure Gas Permeation Tests 

  Pure gas permeation tests were conducted with N2 and CH4 under different pressures and 

temperatures using membranes fabricated from PEBA 1074, PEBA 2533, PEBA 1657, PEBA 

3000, and a commercial PDMS membrane. PEBA membranes were fabricated in the laboratory 

using the solution casting method, and a commercial PDMS membrane was used without any 

further modification. Three permeability measurements were made at each test condition to 

ensure repeatability. 

 

Effect of temperature 

  Gas permeability through the polymer matrix strongly depends on temperature. In order to 

analyze the temperature influence on gas permeation, the membrane cell was immersed into a 

temperature-controlled oil bath with the temperatures ranging from 25 to -200C. During the tests, 

the permeation flux was measured at different pressures at a given temperature. 

  As discussed in Chapter 2, the effect of temperature on permeability can normally be 

represented by the Arrhenius relationship. Figure 3.3 illustrates a linear relationship between the 

log permeability vs. 1000/T, which agreed with equation (2.13). Clearly, the temperature 

dependence of permeability can be described by the Arrhenius relationship. Generally, the 

permeability decreases with a decrease in temperature. This is because the gas diffusion 

coefficient decreases at a lower temperature, if the polymer does not undergo any 

morphologically change within the range of operating temperatures (Ghosal and Freeman 1994). 

At a lower temperature, the motion of polymer chains is restricted, resulting in less diffusive 
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jumps conducted by the penetrant molecules. Therefore, it is getting harder for the molecules to 

transport across the membrane, and consequently the permeability coefficient is reduced. 

However, in terms of solubility, the solubility of condensable gases increases with a decrease in 

temperature, while the solubility of non-condensable gases decreases with a decrease in 

temperature (Ghosal and Freeman 1994). Unlike CO2, which is considered to be a condensable 

gas, CH4 and N2 are considered to be non-condensable gases, and the insolubilities are expected 

to decrease with a decrease in temperature. The sorption of gases into a membrane is consisting 

of two thermodynamic processes: the first one is the condensation of the molecules, the second 

one is the integration of the molecules into the polymer matrix. The enthalpy change of the 

integration step is the domination step of the non-condensable gases due to the weak interaction 

with the polymer. Therefore, the solubility decreases with a decrease in temperature. Meanwhile, 

for condensable gases like CO2, the dominating step is the condensation step, which will cause 

an increase in its solubility as the temperature decreases. Therefore, both diffusivity and 

solubility of CH4 and N2 decrease with a decrease in temperature, which leads to a decrease in 

permeabilities.  

  Figure 3.4 illustrates an increase in permeability ratio of CH4/N2 with a decrease in temperature. 

Compared with N2, CH4 is more condensable due to its higher normal boiling point and the 

critical temperature. As a result, CH4 will behave more like a condensable gas here, which means 

the solubility of CH4 will decrease less significantly than N2. Although the diffusivity is a 

stronger function of temperature than solubility, the less significant decrease in CH4 solubility 

still plays an important role, and hence the CH4 permeability decreases less significantly than 

that of N2 when temperature decreases. As a result, the CH4/N2 permeability ratio increased. 
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Figure 3.3   Effect of temperature on the permeability coefficients of CH4 and N2 for pure gas permeation through 

membranes. Feed pressure is 0.8013MPa absolute. 
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Figure 3.4   Effect of temperature on CH4/N2 permeability ratio based on pure gas permeation. Feed pressure is 

0.8013 MPa absolute. 
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Figure 3.5   Activation energies for permeation of CH4 and N2. Feed pressure is 0.8013 MPa absolute 
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  Figure 3.5 presents the activation energy of CH4 and N2 permeation in the membranes. The 

activation energy represents the overall energy needed for penetrants to overcome in order to 

permeate through the membrane matrix as well as the extent of temperature influence on the 

permeability coefficient. N2 has a higher activation energy than CH4, which means N2 needs 

more energy to permeate through the membrane than CH4, and it also means the change of N2 

permeability with the temperature is more significantly than the change of CH4 permeability with 

the temperature. PDMS has the lowest activation energy for CH4 and N2 permeation among the 

membranes tested, which means both CH4 and N2 can permeate through PDMS membrane with 

the minimum energy needed, and the gas permeability in PDMS is not easily affected by 

temperature. The calculation of the activation energy can be found in Appendix A.  

 

Effect of polymer structure 

  Figures 3.3 and 3.4 show that PDMS has the highest permeability among all the membranes 

studied here. It also has a relatively good permeability ratio at room temperature. However the 

CH4/N2 permeability ratio slightly increases with a decrease in temperature. PDMS is a rubbery 

material and is unable to sieve penetrant molecules based on their sizes. However, CH4 is 

slightly larger than N2, which makes the CH4/N2 diffusivity selectivity less than one. CH4 is 

more soluble than N2, which leads to a CH4/N2 solubility selectivity higher than one, which 

appears to be large enough to overcome the effect of diffusivity selectivity. As a result, the 

CH4/N2 permselectivity becomes greater than one (Bondar et al., 2000). 

  Among the PEBA membranes tested, PEBA 2533 shows the best permeability to both N2 and 

CH4 at 0.8013 MPa absolute and -200C with the value of 0.083 and 0,487 Barrer, respectively. 

While PEBA 1074 has the best CH4/N2 selectivity of 6.30. The semi-crystalline nylons hard 
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blocks are considered as barriers, which provide mechanical support of the membrane, and the 

PE component is the key to the gas permeation. It is not surprising to see gas permeability 

decreasing with a decrease in PE content, as shown in Table 2.2. PEBA 2533 has the highest PE 

content of 80 wt.%, while PEBA 1657, PEBA 1074, and PEBA 3000 have a PE content of 60 

wt.%, 55 wt.% and 50 wt.%, respectively. PEBA 2533 has the best gas permeability due to its 

highest PE content, whereas PEBA 1074 contains a smaller amount of PE segment but has a 

higher permeability than PEBA 1657. This is because of another important factor that influences 

gas permeation. There is an important difference between PEBA 1074 and PEBA 1657 in their 

PA segments. PEBA 1074 has PA12 as its PA segment, while PEBA 1657 has PA6. PA12 is a 

less polar backbone element, and PA6 is a more polar one. As the content of polar groups in the 

polymer matrix increases, the cohesive energy density increases of the polymer (Bondar et al., 

2000). Cohesive energy density is the energy needed to remove a given molecule from its nearest 

neighbors. An increase in the cohesive energy density means a higher energy is needed for a gas 

molecule to permeate through the membrane, which typically leads to reductions in gas diffusion 

coefficients, resulting in a decrease in the permeability. No specific trend for the permeability 

ratio with respective to the polymer structure can be found from the experimental data. Similar 

observations have been reported by Bondar et al., (2000). 

 

Effect of pressure 

  Gas separation processes are often operated under a wide range of feed pressures, which may 

lead to different behaviors of gas permeation Therefore, it is important to determine the effects of 

feed pressure on CH4 and N2 permeations. Pure gas permeation tests were conducted with those 

gases at different temperatures (25 to -200C) with increasing feed pressure from 0.3013 to 0.8013 
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MPa absolute. During the tests, the permeation fluxes were measured at different feed pressures 

at given temperatures. At least three permeability measurements were made at each pressure to 

ensure the repeatability. 

  As shown in Figure 3.6, the permeability for both N2 and CH4 slightly increased with an 

increase in feed pressures. This is typical of pressure dependence of gas permeabilities in 

rubbery or glassy polymers (Ghosal and Freeman 1994), which can be explained by the 

combined effects of hydrostatic pressure and plasticization. When a large number of penetrant 

molecules are dissolved in a polymer matrix, plasticization of the polymer occurs, which 

increases both the free volume of the polymer matrix and segmental motion of the polymer 

chains, and thus the permeation of penetrants is enhanced. With an increase in feed pressure, 

more and more CH4 molecules dissolved into the membrane matrix, thereby, the membrane 

matrix was swollen, which can cause an increase in permeability. 

  On the other hand, as the pressure increases, the free volume within the polymer matrix 

decreases, thereby reducing the diffusivity of a gas. N2 is a less condensable gas, so N2 

molecules are not able to dissolve into the membrane matrix as CH4 molecules, the effect of 

hydrostatic pressure is dominating over membrane plasticization. Therefore, because of the duel 

effect, the N2 permeability almost remains the same with an increase in feed pressure.  

  Figure 3.7 shows the relationship between the CH4/N2 permeability ratio and the feed pressure. 

The CH4/N2 permeability ratio slightly increases with an increase in the feed pressure for all the 

membranes used in this study. As discussed above, CH4 is more condensable than N2. Thus, the 

permeability of CH4 increased with an increase in feed pressure, while the permeability of N2 

was almost the same. Thereby, a small increase in CH4/N2 permeability ratio was found with an 

increase in feed pressure. Although the permeability for both N2 and CH4 and the permeability 
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ratio increase with an increase in the feed pressure, the difference was not so significant. The 

same behavior can be observed for the in PDMS membrane in the Appendix B. 

  The highest CH4/N2 permeability ratio with PDMS membrane is 4.19, which is far below the 

target CH4/N2 permeability ratio. However the highest CH4/N2 permeability ratio with PEBA 

membrane is 6.30, which can reach the goal of N2 removal from natural gas. Thus, PDMS is less 

effective in terms of N2 removal from CH4, so the PDMS membrane will no longer be discussed 

in the following sections. The operating condition for the highest permeability ratio is the same, 

where the feed pressure is 0.8013 MPa absolute and the temperature is -200C. Among the four 

grades of PEBA polymer membranes, PEBA 2533 has the best permeability, while PEBA 1074 

has the best CH4/N2 permeability ratio. Therefore, PEBA 1074 and PEBA 2533 were chosen to 

be further studied. 
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Figure 3.6   Effects of pressure on CH4 and N2 permeability for pure gas permeation. The operating temperature is -

200C 
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Figure 3.7   Effects of pressure on CH4/N2 permeability ratio for pure gas permeation. The operating temperature is -

200C 
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3.3.2 CH4/N2 Binary Gas Permeation Tests  

  As stated before, PEBA 1074 and PEBA 2533 showed good performance in CH4 and N2 pure 

gas permeation tests. PEBA 2533 had the best permeability to both gases, and PEBA 1074 has 

the best CH4/N2 permeability ratio at a feed pressure of 0.8013 MPa absolute and an operating 

temperature of -200C. Although the gas permeability coefficient is not very high, the CH4/N2 

permeability ratio is fairly good. When it comes to the real world scenario, the separation 

performance may be affected by other factors like the feed gas composition, which generally 

decreases the permeability ratio (Liu et al., 2006). Therefore, the permeability and selectivity of 

the PEBA 1074 and PEBA 2533 membranes to binary CH4/N2 gases mixtures needed to be 

determined. A sample calculation of gas permeability for binary gas permeation can be found in 

the Appendix A.  

  At a feed pressure of 0.7013 MPa, the CH4 permeate concentration as a function of the feed 

CH4 concentration for both PEBA 1074 and PEBA 2533 is shown in Figure 3.8. The mole 

fraction of CH4 in permeate is always greater than that in the feed, which indicates the 

membranes can block N2, and separation of CH4 from N2 was achieved. Moreover, the mole 

fraction of CH4 in the permeate increases with an increase in feed CH4 content. However, when 

the mole fraction of CH4 in feed is sufficiently high, the increase in the permeate CH4 

concentration becomes less significant. For example, when PEBA 2533 was operated at 250C, 

the mole fraction of CH4 in the permeate increased from 0.55 to 0.85 when the CH4 

concentration in feed increased from 0.4 to 0.8. However, a further increases in feed CH4 

concentration to 0.95 led to a moderate increase in mole fraction of CH4 in permeate. This is due 

to the fact that CH4 is more permeable than N2 and a high concentration of CH4 in permeate will 

reduce the driving force for CH4 permeation through the membrane, which affects the permeate 
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concentration negatively. Figure 3.8 also shows that lowering the operating temperature will 

increase the concentration of CH4 in the permeate side, and the influence of temperature 

becomes less significant as the concentration of CH4 in the feed side increases. At a feed CH4 

mole fraction of 0.9, the change in permeate CH4 concentration caused by lowering temperature 

was not significant, especially for PEBA 1074 membrane. Additionally, under the same 

operating conditions, for example, at 250C with 70 mole% of CH4 in feed, the permeate CH4 

mole fraction using PEBA 1074 was over 0.82, which is slightly higher than permeate CH4 

concentration obtained using PEBA 2533.This indicates that PEBA 1074 is more permselective 

to CH4 than PEBA 2533 membrane, which is in agreement with the permeability observed in 

pure gas permeation tests. 
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Figure 3.8   Effect of CH4 feed concentration on permeate concentration. Feed pressure: 0.7013 MPa absolute 
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  The permeability and the permeability ratio for gas mixture permeation at different feed 

compositions are presented in Figure 3.9. In general, PEBA 2533 is more permeable to CH4 and 

N2 than PEBA 1074, whereas the selectivity of PEBA 2533 is lower than PEBA 1074. The same 

as observed in the pure gas permeation tests. When the feed N2 concentration increases, the 

permeabilities of both CH4 and N2 decreases slightly. An increase of N2 concentration in feed 

means a decrease of CH4 concentration in feed. CH4 can dissolve into the membrane more easily 

than N2 and cause the membrane swell. The membrane swelling can facilitate the permeation of 

both gases, therefore with the decrease of CH4 in feed, the membrane swelling was decreased, so 

the permeability of both gases decreased. The CH4/N2 selectivity slightly increases with an 

increase in the feed N2 concentration but the change was so small that can be negligible. This 

indicated that for the permeation of gas mixtures, the membrane swelling caused by CH4 

increases the permeability of both permeating gases to a similar extent. Compared with pure gas 

permeation tests, the CH4/N2 permeability ratio with either PEBA membrane was higher than the 

CH4/N2 selectivity obtained from the binary gas permeation tests. This indicates that the 

separation ability of the membrane was reduced in the binary gas permeation tests. 

  Figure 3.9 also shows that the permeabilities of CH4 and N2 decrease in the binary gas 

permeation tests than in the pure gas permeation tests. As discussed in previous section, the 

permeabilities of both gases in pure gas permeation tests were independent of feed pressure, so 

the values of the permeabilities from the pure gas permeation tests in the figure were the average 

values under different pressures at the temperature of -200C. For pure gas permeation tests 

(CH4), the membrane permeability was determined by the interaction between the membrane 

material and CH4 molecules. When N2 was presented in the feed gas, the permeation was 

complicated by competitive sorption and coupling transport between the two permeating spices. 
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N2 is a slower gas compared with CH4, so the CH4 permeability was reduced by the presence of 

N2. The N2 permeability was slightly higher in binary gas permeation tests than pure N2 

permeation tests. This is because with the presence of CH4, the membrane was swollen by the 

dissolving of CH4, which facilitated the permeation of smeller molecules. Molecules of N2 are 

smaller than the molecules of CH4, so the permeation of N2 was enhanced by the presence of CH4 

in feed. Consequently, the membrane selectivity for CH4/N2 mixture permeation was lower than 

the membrane selectivity based on the pure gas permeation.   
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Figure 3.9   Effect feed N2 concentration on permeability and selectivity. Feed pressure: 0.7013 MPa absolute, 

temperature: -200C.Note: closed marks represent PEBA 1074, open marks represent PEBA 2533 
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  Figure 3.10 shows the effect of temperature on the membrane permeability to CH4/N2 and 

CH4/N2 selectivity. The permeabilities of both gases decrease with a decrease in temperature, 

and the relationship between the gas permeability and temperature follows an Arrhenius 

relationship. The CH4/N2 selectivity is found to increase with a decrease in temperature, and the 

selectivity of PEBA 1074 membrane is higher than the selectivity of PEBA 2533 membrane. 

However, the selectivity obtained with the gas mixtures is lower than that obtained from the pure 

gas permeation. This means that the presence of N2 in the feed decreases the permeability ratio 

of CH4/N2. Figure 3.11 shows the activation energy for CH4 and N2. N2 has a higher activation 

energy than CH4, which indicates that it will be more difficult for N2 to permeate through the 

membrane than CH4. The activation energy of N2 slightly decreases with an increase in N2 

content in feed, and the activation energy of CH4 is essentially independent of the feed N2 

content. 
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 Figure 3.10 Effects of temperature on permeability and selectivity. Feed pressure: 0.7013 MPa absolute, feed 

contains 60% of N2.Note: closed marks represent PEBA 1074, open marks represent PEBA 2533 
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Figure 3.11 Activation energy vs. N2 mole fraction in feed. Feed pressure: 0.7013 MPa absolute. Note: closed marks 

represent PEBA 1074, open marks represent PEBA 2533 
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3.4 Conclusions 

  Membranes were prepared from PEBA 1074, PEBA 2533, PEBA 1657, and PEBA 3000 by the 

solution casting method. The gas permeabilities in these membranes and a commercial PDMS 

membrane were studied. Pure gas permeation tests with CH4 and N2 were conducted at pressures 

ranging from 0.3013 to 0.8013 MPa absolute and temperatures ranging from 25 to -200C. The 

following conclusions can be drawn: 

(1) PDMS had the highest permeability among all the membranes studied used in this work 

for CH4 and N2, but its CH4/N2 permeability ratio was low. 

(2) Among the PEBA materials used, PEBA 2533 had the highest permeability, and PEBA 

1074 had the highest CH4/N2 permeability ratio. At -200C, a CH4/N2 permeability ratio of 

6.3 was obtained.  

(3) The gas permeability through the membranes decreased with a decrease in temperature, 

and temperature dependence of the membrane permeability followed an Arrhenius 

relation. Pressure affected the membrane permeability slightly. 

(4)  The CH4/N2 permeability ratio increased with a decrease in temperature. 

  To evaluate the membrane performance for actual gas separation, PEBA 2533 and PEBA 1074 

were studied for binary CH4/N2 gas mixture permeation under different operating temperatures 

and feed compositions. The following conclusions can be drawn: 

(1)  The permeability and selectivity (actual permeability ratio) showed the same trends with 

temperature as they did for pure gas permeation. 

(2) The permeability of CH4 in the CH4/N2 mixtures was lower than pure CH4 permeability, 

while the permeability of N2 in the feed mixture was slightly higher than pure N2 

permeability. 
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Chapter 4 CH4/N2 Separation by PEBA 2533/1074 Blend 

Membranes 

4.1 Introduction 

  PEBA membranes showed very good performance in the pure gas permeation tests with a 

CH4/N2 permeability ratio over 6 at -200C. However, when the same membranes were operated 

for binary gas permeation, the permeability ratio decreased. Permeability is a property of a 

material that measures the ability to permeate a certain penetrant, and it is the material that 

determines the permeability. In order to fulfill the task of N2 removal from natural gas by 

membrane separation, membranes with both a good permeability and CH4/N2 selectivity are 

desired.  

  Polymer blending is a widely-used approach to combine the advantages of two materials into 

one. This chapter focuses on gas separation with membranes formed from PEBA 2533/1074 

blends. PEBA 2533 is more permeable but less selective to CH4/N2 than PEBA 1074, and their 

blends are expected to produce a balanced permeability and selectivity.    

 

4.2 Experimental 

  Solution-casting method was also employed to fabricate the blend membranes. PEBA 2533 and 

PEBA 1074 pellets were dissolved in NMP at 900C for 72 hours. Agitation was necessary to 

ensure homogeneous solutions was produced. A series of polymer solutions were prepared with 
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different blend ratios. They were kept at the same temperature for 24 hours to degas bubbles 

formed during the agitation. Flat films were prepared by casting the polymer solution on heated 

glass plates at 800C, and the plates were kept in the oven at 800C for 48 hours to evaporate the 

solvent. Then the plates were immersed into a deionized water bath for 5 minutes to remove the 

membranes. Finally, the membranes were dried in the oven at 500C for 24 hours. The thickness 

of these membranes ranged from 50 to 70 μm. The polymer concentration for all the blended 

solutions is 15 wt. %. All the chemicals used here were the same as those described in Chapter 3.  

  The experimental setup and procedure for pure gas permeation tests as well as binary gas 

mixture permeation experiments have been described in Chapter 3. The permeation tests were 

repeated several times with the same membrane samples, and the experimental error was found 

to be within 5%.    

 

4.3 Results and Discussion 

4.3.1 Pure Gas Permeation Tests 

  Several blend polymers were prepared with different PEBA 2533/1074 blend ratio. Pure gas 

permeation tests were conducted with CH4 and N2 under different pressures ranging from 0.3013 

to 0.8013 MPa absolute and temperatures ranging from 25 to -200C. During the tests, the 

permeation flux was measured at different pressures for a given temperatures.  

 

Effect of operating conditions 
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  In pure gas permeation with PEBA constituent membranes, the permeabilities of both CH4 and 

N2 and the CH4/N2 permeability ratio slightly increased with an increase in the pressure, but the 

changes were not significant. Figure 4.1 shows that with the blend polymer membranes, same 

tendency can be found that the CH4 and N2 permeabilities slightly increases with an increase in 

the feed pressure. Membrane with a blend ratio of 93.75/6.25 (PEBA 2533/1074) has the highest 

permeability, while the membrane with a blend ratio of 25/75 has the lowest permeability. With 

an increase in the PEBA 2533 content, the gas permeabilities of both CH4 and N2 increased. The 

permeabilities of CH4 and N2 with PEBA 2533, PEBA 1074, and two PEBA 2533/1074 

(93.75/6.25, 25/75) blend membranes at -200C are listed in Table 4.1: 

Table 4.1   Permeabilities of CH4 and N2 with PEBA 2533, PEBA 1074, and PEBA 2533/1074 (93.75/6.25, 25/75) 

blend membranes at -200C 

Membrane materials CH4 permeability (Barrer) N2 permeability (Barrer) 

0.2 MPa 0.4 MPa 0.7 MPa 0.2 MPa 0.4 MPa 0.7 MPa 

PEBA 2533 0.425 0.453 0.487 0.078 0.082 0.083 

PEBA 2533/1074 (93.75/6.25) 0.343 0.408 0.440 0.059 0.068 0.070 

PEBA 2533/1074 (25/75) 0.202 0.230 0.258 0.033 0.036 0.039 

PEBA 1074 0.172 0.191 0.211 0.030 0.032 0.033 

 

  The permeabilities of CH4 and N2 with PEBA 2533 membrane are always higher than the blend 

membranes while the permeabilities with PEBA 1074 are always lower than the blend 

membranes at the same temperature. A sharp increase occurred when the PEBA 2533 content 

was over 50%. This can be explained that below the blend ratio of 50/50, PEBA 1074 was the 

continuous phase in the blend, which leads the system to perform more like PEBA 1074 that has 

relatively lower permeability. When the blend ratio was above 50/50, PEBA 2533 will dominate 
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the permeation performance of the blend system, resulting in a sharp increase in the permeability 

coefficient. 

  Figure 4.2 shows the CH4/N2 permeability ratio of the blend membranes. Generally speaking, 

the permeability ratio increased with an increase in the feed pressure, which follows the same 

trends as observed in the previous chapter. However the change in permeability ratio did not 

show a clear tendency as the change in permeability with respect to the blend composition. 

Ideally, the CH4/N2 permeability ratio will decrease with an increase in the PEBA 2533 content, 

since the blend membranes will perform more like PEBA 2533, exhibiting a good permeability 

and a lower permeability ratio. When the blend ratio was over 75/25, this tendency can be found 

where the CH4/N2 permeability ratio with PEBA 2533/1074 (75/25) membrane was higher than 

the other two blend membranes (87.5/12.5, 93.75/6.25). However, when the blend ratio was 

below 75/25, this trend was no longer available. The same phenomenon was also observed by 

Bondar et al., (1999), and they suggested that permeability ratio of PEBA membranes for 

CH4/N2 is irrelevant with the PEBA structures. Figure 4.2 also shows a blend ratio of 50/50 had 

the best permeability ratio throughout the pressure range studied, while the blend ratio of 

93.75/6.25 had the lowest permeability ratio. Compared with PEBA 2533 and 1074 membranes, 

the blend membranes showed a better CH4/N2 permeability ratio at the same operating 

temperature.   
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Figure 4.1   Effects of pressure on the permeability coefficient of CH4 and N2 for pure gas permeation through 

PEBA 2533/1074 blend membranes at different PEBA 2533 content. Temperature: -200C 
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Figure 4.2   Effects of pressure on permeability ratio of CH4 to N2 for pure gas permeation through PEBA 

2533/1074 blend membranes at different PEBA 2533 content. Temperature: -200C 
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  Figure 4.3 illustrates the effects of temperature on the permeability coefficients. The 

permeability coefficient decreased with a decrease in temperature, and it followed an Arrhenius 

relationship. Compared with the constituent PEBA membrane, at the same feed pressure, the 

blend membranes showed higher gas permeabilities than PEBA 1074 but lower permeabilities 

than PEBA 2533. More supporting figures can be found in the Appendix B. Therefore, the CH4 

and N2 permeabilities with the blend membranes are always higher than PEBA 1074, but lower 

than PEBA 2533 at the same operating condition (feed pressure and temperature), which means 

by blending PEBA 1074 with PEBA 2533, the permeabilities for both gases with the blend 

membranes were significantly improved. This is in agreement with results of polymer blending 

to fabricate polymeric membranes reported elsewhere (Car et al., 2008) suggesting that, by 

blending a less permeable material with a more permeable one, the permeability of the blend 

material often laid between the permeabilities of the two constituent polymers. A sharp change 

was also found when the blend ratio changed from 50/50 to 62.5/37.5 suggesting the change of 

the continuous phase from PEBA 1074 to PEBA 2533.  

  Figure 4.4 shows the permeability ratio dramatically increased with a decrease in temperature. 

At room temperature (250C) the membrane with a blend ratio of 25/75 has the best CH4/N2 

permeability ratio, and membrane with a blend ratio of 93.75/6.25 has the lowest selectivity. 

However, the changes in the permeability ratio with temperature are different for different 

polymer blends. At -200C, the blend membrane with a PEBA 2533/1074 ratio of 93.75/6.25 still 

has the selectivity, but the membrane with a blend ratio of 25/75 is not the best one under this 

operating condition. Although the difference of the permeability ratios among these membranes 

is not dramatic, the best permeability ratio is over 6.6 when membrane with a blend ratio of 

50/50 was used. This value is about 5% higher than the best permeability ratio that had achieved 
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by the constituent membranes. Therefore, by blending PEBA 2533 with PEBA 1074, the 

separation ability of PEBA 2533 is significantly improved.  

  Figure 4.5 shows the activation energy of blend polymer membranes as well as the constituent 

PEBA 2533 and PEBA 1074 membranes at a pressure of 0.8013 MPa absolute. The higher the 

activation energy is, the harder for the gas to permeate through the membrane. Apparently, the 

activation energy of the gas in blend polymers is not a linear function of the blend composition.  
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Figure 4.3   Effects of temperature on the permeability coefficient of CH4 and N2 for pure gas permeation through 

PEBA 2533/1074 blend membranes at different PEBA 2533 content. Pressure: 0.8013 MPa absolute 
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 Figure 4.4   Effects of temperature on permeability ratio of CH4 to N2 for pure gas permeation through PEBA 

2533/1074 blend membranes at different PEBA 2533 content. Pressure: 0.8013 MPa absolute 
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Figure 4.5   Activation energy for CH4 and N2 for pure gas permeation through PEBA 2533/1074 blend membranes 

at different PEBA 2533 content. Pressure: 0.8013 MPa absolute 
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Effect of blending ratio 

  Figure 4.6 shows the permeabilities of CH4 and N2 and their permeability ratio in membranes 

with different PEBA 2533/1074 blend ratios at 0.8013 MPa, -200C. Compared with single 

component PEBA 2533 and PEBA 1074 membranes, the blend membranes tend to have a 

moderate permeability for CH4 and N2. The permeability of both gases increased with an 

increase in the PEBA 2533 content. And the blend membranes yielded a higher CH4/N2 

permeability ratio than either single component membrane. The maximum permeability ratio was 

observed at a blend ratio of 50/50. 

  PEBA 2533 contains more PE segment than PEBA 1074, and PE segment is important for gas 

molecules to permeate through the membrane (Bondar et al., 1999). Increasing PE content will 

make the polymer chain more flexible, which enhances the permeation of gas. Also, the PE 

segment in PEBA 2533 is PTMEO, which is less polar than PEO, the PE segment in PEBA 

1074. Increasing the polar groups in the polymer matrix tends to decrease the permeability, and 

this will affect the less permeable gas more significantly(Bondar et al., 2000). Therefore, blend 

membranes with more PEBA 1074 content will tend to have a lower permeability, and the N2 

permeability will decrease more significantly than CH4 permeability. The best permeability ratio 

was obtained at a blend ratio is 50/50. A sharp decrease in the permeability ratio was noticed 

when the blended polymer containing more than 70% of PEBA 2533. When the PEBA 2533 

content in the blended solution is sufficiently high, the blended polymer will behave more like 

PEBA 2533, resulting in a higher permeability but a lower permeability ratio for CH4 and N2. 
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Figure 4.6   Performance of membranes with different blend ratios. Temperature: -200C, pressure: 0.8013 MPa 
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  As discussed in the Chapter 2, blend polymers can be classified into two groups: miscible 

polymer blends polymer and immiscible polymer blends. In order to see the behavior of PEBA 

2533/1074 blend polymers, three permeability prediction models were used to fit the 

experimental data. They are the homogenous model, the parallel model and the series model. 

Since the polymer solutions were prepared by using the weight fraction of the two PEBA 

polymers, the volume fraction of PEBA 2533 was calculated by using the density of PEBA 2533 

and PEBA 1074 from Table 2.2. Figure 4.7 shows the relationship between 𝑙𝑛(𝑃) and volume 

fraction of PEBA 2533 at 250C. The experimental data is compared with the homogenous model: 

𝑙𝑛𝑃𝑏 = ∅1𝑙𝑛𝑃1 + ∅2𝑙𝑛𝑃2          Homogenous model (2.8) 

  From the plot we can see that the homogenous model overestimated the permeability, and the 

experimental data did follow a strict straight line. Therefore, the homogenous model fails to 

predict the permeability of the blend membranes, which means the blend solutions were not 

homogenous. This agreed with the previous conclusion that the continuous phase changed from 

PEBA 1074 to PEBA 2533 with the increase in the PEBA 2533 content. 

Figure 4.8 shows a comparison between the experimental data and predicted permeability based 

on the parallel model:  

𝑃𝑏 = ∅1𝑃1 + ∅2𝑃2                     Parallel model (2.9) 

  Again, the model predictions overestimated the gas permeability in the blend membranes. 

  Figure 4.9 shows that permeability predicted by the series model,  

𝑃𝑏 = 𝑃1𝑃2/(∅1𝑃2 + ∅2𝑃1)               Series model (2.10) 
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agreed very well with the experimental data. Among the 3 models tested, the series model 

worked the best to describe the gas permeability in the PEBA 2533/1074 blend membranes.  

 

Figure 4.7   𝑙𝑛(𝑃) vs. volume fraction of PEBA 2533. Pressure: 0.8013 MPa absolute, temperature: 250C. Note: 

open marks indicate experimental data, solid lines indicate the homogenous model predictions 
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Figure 4.8   Permeability coefficient vs. volume fraction of PEBA 2533. Pressure: 0.8013 MPa absolute, 

temperature: 250C. Note: open marks indicate experimental data, solid lines indicate the parallel model 

predictions  
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Figure 4.9   Permeability coefficient vs. volume fraction of PEBA 2533. Pressure: 0.8013 MPa absolute, 

temperature: 250C. Note: open marks indicate experimental data solid lines indicate the series model 

predictions 
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  The above results were for an operating temperature of 250C. The density of PEBA polymers at 

different temperatures are unknown. Therefore, it was decided to determine if there is any 

significant changes in density of PEBA polymers in the temperature range studied here. 

Rearranging Equation 2.10 gives: 

∅1 =
𝑃1(𝑃2−𝑃𝑏)

𝑃𝑏(𝑃2−𝑃1)
                                                            (4.1) 

where ∅1 = 1 − ∅2, ∅1 and ∅2 are the volume fractions of PEBA 1074 and PEBA 2533, 

respectively, 𝑃1 and 𝑃2 are the gas permeability coefficient in PEBA 1074 and PEBA 2533, 

respectively, 𝑃𝑏is the gas permeability coefficient in blend membrane. Both CH4 and N2 

permeabilities were used for all the calculations. The volume fraction of PEBA 1074 at 250C can 

also be calculated by the weight of each polymer and their densities: 

∅1
′ =

𝑉1

𝑉1+𝑉2
=

𝑚1
𝜌1

𝑚1
𝜌1

+
𝑚2
𝜌2

=
𝑚1

𝑚1+𝑚2
𝜌1
𝜌2

                                    (4.2)                                              

where 𝑚1 and 𝑚2 are the weight of PEBA 1074 and PEBA 2533, respectively; 𝜌1 and 𝜌2 are the 

densities of PEBA 1074 and PEBA 2533 at 250C. The weight of each polymer was set when 

preparing the membranes. If ∅1 = ∅1
′ , no significant changes in PEBA 2533/1074 density ratio 

(𝜌1/𝜌2) occur in the temperature ranging from 20 to -200C; if ∅1 ≠ ∅1
′ , it means the PEBA 

2533/1074 density ratio is dependent with temperature. Figure 4.10 showed the calculation 

results for the PEBA 2533/1074 membranes with blend ratios of 25/75, 37.5/62.5, 50/50, and 

62.5/37.5. And Figure 4.11 showed the calculation results for the PEBA 2533/1074 membranes 

with blend ratios of 75/25, 87.5/12.5, and 93.75/6.25. To make it more clear, instead of a single 

label, ∅1
′  was presented as a solid line in the following figures. Labels represented ∅1, which 
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were obtained from Equation 4.1. As we can see, all the volume fractions of PEBA 1074 

calculated by Equation 4.1 were fluctuating around the ∅1
′ , which means the volume fractions of 

PEBA 1074 calculated by Equation 4.1 were almost the same with the values calculated by 

weights and densities of the polymers. Therefore, at the temperature ranging from 25 to -200C, 

the PEBA 2533/1074 density ratio (𝜌1/𝜌2) can be considered as a constant. The densities of 

PEBA 2533 and 1074 were either constants, or at the same changing rate with respect to the 

change of temperatures. 

  The calculated gas permeabilities and the actual permeabilities were shown in Figure 4.12. The 

plot showed that the actual CH4 permeabilities were fluctuating around the calculated 

permeabilities, while the actual N2 permeabilities were slightly lower than the calculated ones, 

especially at lower temperature. The N2 permeabilities were almost the same as the predicted 

ones at -100C. When the temperature dropped to -15 and -200C, the series model tended to 

overestimate the N2 permeability, while the CH4 permeability still followed the series model. As 

a result, the CH4/N2 permeability ratios calculated by the series model were lower than the 

CH4/N2 permeability ratios calculated by the experimental data, as shown in Figure 4.13. 
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Figure 4.10 Volume fraction of PEBA 1074 vs. temperature. PEBA 2533/1074 ratio: 25/75, 37.5/62.5, 50/50, and 

62.5/37.5. Note: labels were the results calculated by Equation 4.1, open marks were using CH4, close 

marks were using N2; solid line was the result calculated by Equation 4.2  
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Figure 4.11 Volume fraction of PEBA 1074 vs. temperature. PEBA 2533/1074 ratio: 75/25, 87.5/12.5, and 

93.75/6.25. Note: labels were the results calculated by Equation 4.1, open marks were using CH4, close 

marks were using N2; solid line was the result calculated by Equation 4.2 
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Figure 4.12 Permeability coefficient of CH4 and N2 vs. volume fraction of PEBA 2533. Pressure: 0.8013 MPa 

absolute. Note: labels indicate experimental data, solid lines indicate model predictions. 
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Figure 4.13 CH4/N2 permeability ratio vs. volume fraction of PEBA 2533. Pressure: 0.8013 MPa absolute. Note: 

labels indicate experimental data, solid lines indicate the Series model predictions. 
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 4.3.2 CH4/N2 Binary Gas Permeation Tests 

  The blend polymers of PEBA 2533/1074 showed good performance in the pure gas permeation 

tests. When they are used for gas mixture permeation, it is unclear if they still perform well. 

Therefore, binary mixtures of CH4 and N2 were used to determine the gas permeability of CH4 

and N2 at various pressures, temperatures and feed compositions using a membrane with a blend 

ratio of 50/50. For convenience of characterizing membrane performance, a small stage cut (less 

than 0.05) was used in all the experiments, which means the concentration of the feed gas on the 

feed side could be considered as a constant along the membrane surface. 

  The operating temperatures showed the similar effect on the gas permeability in the blend 

membrane as they did on PEBA 2533 or 1074 membrane, as shown in Figure 4.14. With a 

decrease in the temperature, the permeabilities of both CH4 and N2 decreased. Compared with 

PEBA 2533 and 1074 membranes, the blend membrane showed a permeability higher than 

PEBA 1074 and lower than that of PEBA 2533. Figure 4.15 shows that the membrane selectivity 

(actual CH4/N2 permeability ratio) has different trends. At a higher temperature (above -50C ), 

the selectivity of the blend membrane is not as good as PEBA 1074; below -50C, the blend 

membrane became more selective than either PEBA 2533 or PEBA 1074. At -200C, the 

selectivity of the blend membrane reached over 6, which appears to be close to the target value 

for N2 removal from natural gas.   
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 Figure 4.14 Effects of temperature on permeability coefficient of CH4 and N2 for binary gas permeation through 

PEBA 2533, PEBA 1074, and a PEBA 2533/1074 (50/50) blend membrane. Pressure: 0.7014 MPa 

absolute, feed composition: 60% N2 
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 Figure 4.15 Effects of temperature on CH4/N2 selectivity for binary gas permeation through PEBA 2533, PEBA 

1074, and a PEBA 2533/1074 (50/50) blend membrane. Pressure: 0.7013 MPa absolute, feed 

composition: 60% N2 
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  Figure 4.16 shows the effect of feed composition on the membrane performance. The blend 

membrane showed a moderate permeability to CH4 and N2 that is higher than PEBA 1074 but 

lower than PEBA 2533. This is similar to the results with pure gas permeation. One thing was 

different from the pure gas permeation was that the selectivity of the blend membrane was higher 

than either PEBA constituents alone, as shown in Figure 4.17. The selectivity of the blend 

membrane increased with an increase in feed N2 concentration. This was because with the 

increase in the feed N2 concentration, both CH4 and N2 permeabilities were reduced, and the 

reduction of N2 permeability was more significantly than CH4 permeability. The reason for that 

was the concentration of N2 on the surface of the membrane would increase with an increase in 

the feed concentration of N2, which would reduce the driving force for N2 to permeate through 

the membrane. Therefore, the N2 permeability decreased more significantly than the CH4 

permeability, which leaded to an increase in CH4/N2 selectivity. 
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Figure 4.16 Effect of feed composition on permeabilities of CH4 and N2 for binary gas mixture permeation in PEBA 

2533, PEBA 1074, and a PEBA 2533/1074 (50/50) blend membrane. Pressure: 0.7013 MPa absolute, 

temperature: -200C 
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Figure 4.17 Effect of feed composition on CH4/N2 selectivity for binary gas permeation through PEBA 2533, PEBA 

1074, and a PEBA 2533/1074 (50/50) blend membrane. Pressure: 0.7013 MPa absolute, temperature: -

200C 
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  As discussed before, density ratio of PEBA 2533 over PEBA 1074 was independent with the 

temperature within the range used in this study. Therefore, in order to see if gas permeability of 

the blend membrane still subjects to the series model, the operating condition was set to be 60% 

of N2 in feed and feed pressure at 0.7013 MPa absolute, the operating temperature was varying 

from 25 to -200C. The volume fraction of PEBA 1074 for the blend membrane PEBA 2533/1074 

(50/50) was calculated using Equation 4.2, and the volume fraction of PEBA 2533 was 

calculated by one minus the volume fraction of PEBA 1074. Gas permeabilities of the blend 

membrane obtained from the gas separation tests was compared with gas permeabilities 

calculated by Equation 2.10 at different operating temperature. CH4/N2 selectivity obtained from 

the binary gas permeation was also compared with the predicted selectivity, where the predicted 

selectivity was calculated by predicted CH4 permeability divided by predicted N2 permeability, 

as shown in Figure 4.18. Generally speaking, both CH4 and N2 permeabilities follows the series 

model. The experimental CH4/N2 selectivity was lower than the predicted selectivity at higher 

temperatures (25, 15, and 50C) but higher at lower temperatures (-5, -10, -15, and -200C). This 

agreed with the observation obtained from Figure 4.15, that only at lower temperature, the blend 

membrane would show a better CH4/N2 selectivity in the binary gas permeation tests. 
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Figure 4.18 Permeability coefficient and CH4/N2 selectivity vs. temperature for binary gas mixture permeation. N2 

concentration in feed: 60%, pressure: 0.7013 MPa absolute. Note: open marks indicate experimental 

data, solid lines indicate the series model predictions 
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4.4 Conclusions 

  PEBA 2533 and PEBA 1074 were used to form polymer blend to fabricate blend membranes. 

In order to find the best blend ratio, a series of solutions were prepared with different blend 

ratios, and then they were used to form membranes. Pure gas permeation tests were conduct 

using these membranes at varying temperatures and pressures, and the gas permeability was 

compared with model predictions. Binary gas mixture permeation was carried out as well to 

evaluate the membrane performance for N2 removal from natural gas. The following conclusions 

can be drawn: 

(1) The operating conditions (pressure and temperature) showed the same effects on the 

permeation of CH4 and N2 gas mixtures through blend membranes as they did on 

permeation through constituent PEBA membranes. 

(2) Blend membranes showed a gas permeability higher than PEBA 1074 and lower than 

PEBA 2533, resulting a CH4/N2 permeability ratio higher than either constituent 

membranes at low temperatures. 

(3) A blend ratio of 50/50 appeared to be suitable to produce a membrane with good CH4/N2 

selectivity. 

(4) Both CH4 and N2 permeabilities of the blend membranes fit the series model very well. 

And the density ratio of PEBA 2533/1074 was independent with temperature within the 

temperature range used in this study. 
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Chapter 5 General Conclusions and Recommendations  

5.1 General Conclusions 

  Permeation of CH4 and N2 through PEBA 1074, PEBA 2533, PEBA 1657, PEBA 3000, a series 

of PEBA 2533/1074 blend membranes, and a commercial PDMS membrane was investigated at 

different temperatures and pressures. Generally speaking, pressure has little effect on the gas 

permeation through these membranes, while the permeabilities of both gases were affected 

significantly by temperature. PDMS membrane showed the highest permeability but its 

selectivity to CH4/N2 was the lowest. Among the PEBA membranes, PEBA 2533 had the highest 

permeability, while PEBA 1074 had the best CH4/N2 selectivity. The blend membranes showed a 

permeability higher than PEBA 1074 and lower than PEBA 2533, and its CH4/N2 selectivity was 

better than either constituent PRBA membranes. At a blend ratio of 50/50, the CH4/N2 

permeability ratio was over 6.6 at 0.8013 MPa and -200C. The permeability coefficient of the 

blend membranes can be predicted by using the series model, and the density ratio of PEBA 

2533/1074 was independent with temperature within the temperature range used in this study. 

  Binary gas permeation through PEBA 1074, PEBA 2533 and a PEBA 2533/1074 blend 

membrane (blend ratio of 50/50) were investigated further at different temperatures and feed 

compositions. The presence of N2 in the feed tended to reduce CH4 permeability, therefore, 

causing the CH4/N2 selectivity lower than that in the pure gas permeation tests. The blend 

membrane exhibited a CH4/N2 selectivity of over 6 at -200C with 60% N2 in feed, which 

appeared to very close to the target selectivity required for N2 removal from natural gas. 
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5.2 Recommendations 

1. This study showed that CH4/N2 selectivity increased with a decrease in temperature, and 

the temperature range studied was 25 to -200C. It would be of interest to use a lower 

temperature in order to improve the membrane selectivity. It is recommended to operate 

the membrane at temperatures lower than -200C to see how the membrane would 

perform.  

2. Homogenous membrane was used in the study, which had a relatively large membrane 

thickness, resulting in low permeation flux. Composite membranes with a thin PEBA 

skin layer supported on a microporous substrate could be prepared to enhance the 

permeation flux without compromising the membrane selectivity.  

3. Flat sheet PEBA 2533/1074 blend membranes were shown to be promising for N2 

removal from natural gas. Hollow fibers with a high packing density may be developed to 

increase the N2 removal efficiency. Hollow fiber membranes may be prepared by dip-

coating the PEBA 2533/1074 blend polymer solution onto a microporous hollow fiber 

substrate. The membrane performance at industrially relevant conditions (pressure, 

composition) for N2 removal from natural gas needs to be determined.  
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Appendix A – Sample Calculations 

 

A.1 Sample Calculations for Pure Gas Permeation 

Calculations of gas permeability 

The permeability of pure gas was calculated from the following data 

Membrane: PEBA 2533; 

Gas: CH4; 

Room temperature: 230C (296.15 K); 

Membrane area: 13.85 cm3; 

Membrane thickness: 4.826*10-3 cm; 

Feed pressure: 0.8013 MPa absolute (601.043 cmHg); 

Downstream pressure: 0.1013 MPa absolute (76 cmHg); 

Permeate flow rate: 2.174*10-3 cm3/s; 

The permeability of CH4 can be calculated as follows: 

𝑃 =
𝑉𝑙

𝐴𝑡∆𝑝

273.15

𝑇0

𝑝0

76
=

2.174 × 10−3 × 4.826 × 10−3

13.85 × (601.043 − 76)

273.15

296.15

76

76
 

= 1.3307 × 10−9 𝑐𝑚3(𝑆𝑇𝑃).
𝑐𝑚

𝑐𝑚2. 𝑠. 𝑐𝑚𝐻𝑔
= 13.307 𝐵𝑎𝑟𝑟𝑒𝑟 

For N2, the calculated permeability at the same conditions is 5.729 Barrer. 

 

Calculation of ideal selectivity 

The ideal selectivity for CH4 over N2 can be calculated as the ratio of CH4 permeability to N2 

permeability. 

𝛼𝐶𝐻4
𝑁2

=
𝑃𝐶𝐻4
𝑃𝑁2

=
13.307
5.729 =2.323
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A.2 Sample Calculations for Gas Mixture Permeation 

Calculation of gas permeability 

The permeability of gas mixtures can be obtained from the calculation detailed below: 

Membrane: PEBA 2533; 

Gas mixture: CH4/N2; 

Room temperature: 230C (296.15 K); 

Membrane area: 13.85 cm2; 

Membrane thickness: 4.826*10-3 cm; 

Total feed pressure: 0.7013 MPa absolute (526.037 cmHg); 

Feed concentration of CH4: 39.98 mol%; 

Permeate concentration of CH4: 55.10 mol%; 

Permeate pressure: 0.1013 MPa absolute (76 cmHg); 

Permeate flow rate: 8.7*10-4 cm3/s 

The permeability of CH4 (𝑃𝐶𝐻4
) in the mixture can be calculated as follows: 

𝑃𝐶𝐻4
=

𝑉𝑦𝐶𝐻4
𝑙

𝐴𝑡(𝑝𝑓𝑥𝐶𝐻4
− 𝑝𝑝𝑦𝐶𝐻4

)

273.15

𝑇0
=

8.7 × 10−4 × 0.5567 × 4.826 × 10−3

13.85 × (526.037 × 0.3998 − 76 × 0.5510)

273.15

296.15
 

= 0.9148 × 10−9 𝑐𝑚3(𝑆𝑇𝑃).
𝑐𝑚

𝑐𝑚2. 𝑠. 𝑐𝑚𝐻𝑔
= 9.148 𝐵𝑎𝑟𝑟𝑒𝑟 

The permeability of N2 (𝑃𝑁2
) in the mixture is: 

𝑃𝑁2
=

𝑉𝑦𝑁2
𝑙

𝐴𝑡(𝑝𝑓𝑥𝑁2
− 𝑝𝑝𝑦𝑁2

)

273.15

𝑇0

=
8.7 × 10−4 × (1 − 0.5567) × 4.826 × 10−3

13.85 × (526.037 × (1 − 0.3998) − 76 × (1 − 0.5567))

273.15

296.15
 

= 0.4458 × 10−9 𝑐𝑚3(𝑆𝑇𝑃).
𝑐𝑚

𝑐𝑚2. 𝑠. 𝑐𝑚𝐻𝑔
= 4.458 𝐵𝑎𝑟𝑟𝑒𝑟 

 

Calculation of selectivity 

The selectivity for CH4 over N2 in the mixture can be calculated as the ratio of CH4 permeability 

over N2 permeability. 
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𝛼𝐶𝐻4
𝑁2

=
𝑃𝐶𝐻4
𝑃𝑁2

=
9.148
4.458

=2.052
 

 

A.3 Temperature Dependence on Permeability 

  The temperature dependence of permeability can be expressed by Arrhenius equation and the 

apparent activation energy can be obtained from 𝑙𝑛𝑃 vs. (1000/𝑇) plot based on the following 

form of the equation: 

𝑙𝑛𝑃 = 𝑙𝑛𝑃0 +
−𝐸𝑎

𝑅

1000

𝑇
 

𝑆𝑙𝑜𝑝𝑒 𝑘 = −𝐸𝑎/𝑅 

  Using the permeability of pure CH4 permeation test with PEBA 2533 membrane at a feed 

pressure of 0.7013 MPa absolute,: 

Temperature (0C) 1000/T (1/K) Permeability (Barrer) 

25 3.354016 13.344 

15 3.470415 7.822 

5 3.595182 3.637 

0 3.660992 3.364 

-5 3.7154 1.860 

-10 3.785728 1.292 

-15 3.858769 0.781 

-20 3.934684 0.479 

 

𝐸𝑎/𝑅 = 5.738 × 103 

𝐸𝑎 = 5.738 × 103 × 8.314
𝐽

𝑚𝑜𝑙
= 47.706 𝑘𝐽/𝑚𝑜𝑙. 
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A.4 Sample Calculations for Polymer Blending Models 

Miscible blending models 

The permeability can be predicted by the calculations detailed below 

Membrane: PEBA 1074/PEBA 2533=50/50; 

Gas: CH4; 

Operating temperature: 250C (298.15 K); 

Feed pressure: 0.8013 MPa absolute (601.043 cmHg); 

Density: 1.09 g/cm3 (PEBA 1074), 1.01 g/cm3 (PEBA 2533); 

Permeability of CH4: 6.281 Barrer (PEBA 1074), 13.387 Barrer (PEBA 2533), 8.761 Barrer 

(PEBA 1074/PEBA 2533=50/50); 

The permeability of the blend membrane can be predicted by the following calculations: 

𝑙𝑛𝑃𝑏 = ∅1𝑙𝑛𝑃1 + ∅2𝑙𝑛𝑃2 

∅1 =
𝑉1

𝑉1 + 𝑉2
=

𝑚1

𝜌1
𝑚1

𝜌1
+

𝑚2

𝜌2

=
𝑚1

𝑚1 + 𝑚2
𝜌1

𝜌2

=
0.5

0.5 + 0.5 ×
1.09
1.01

= 0.481 

∅2 = 1 − ∅1 = 1 − 0.481 = 0.519 

𝑙𝑛𝑃𝑏 = 0.481 × 𝑙𝑛6.281 + 0.519 × 𝑙𝑛13.387 = 2.230 

𝑃𝑏 = 𝑒2.230 = 9.303 𝐵𝑎𝑟𝑟𝑒𝑟 ≠ 8.761 𝐵𝑎𝑟𝑟𝑒𝑟 

 

Immiscible blending models 

The predicted CH4 permeability can be calculated by the series model and parallel model. 

Membrane: PEBA 1074/PEBA 2533=50/50; 

Gas: CH4; 

Operating temperature: 250C (298.15 K); 

Feed pressure: 0.8013 MPa absolute (601.043 cmHg); 

Density: 1.09 g/cm3 (PEBA 1074), 1.01 g/cm3 (PEBA 2533); 

Permeability of CH4: 6.281 Barrer (PEBA 1074), 13.383 Barrer (PEBA 2533), 8.761 Barrer 

(PEBA 1074/PEBA 2533=50/50); 

Volume fraction of PEBA 1074: 0.481 (the same as above) 

Calculation with the parallel model: 
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𝑃𝑏 = ∅1𝑃1 + ∅2𝑃2 = 6.281 × 0.481 + 13.383 × (1 − 0.481) = 9.967 𝐵𝑎𝑟𝑟𝑒𝑟
≠ 8.761 𝐵𝑎𝑟𝑟𝑒𝑟 

Calculation with the series model: 

𝑃𝑏 =
𝑃1𝑃2

∅1𝑃2 + ∅2𝑃1
=

6.281 × 13.383

0.481 × 13.383 + (1 − 0.481) × 6.281
= 8.668 𝐵𝑎𝑟𝑟𝑒𝑟

≈ 8.761 𝐵𝑎𝑟𝑟𝑒𝑟 

 

Calculation of PEBA 2533/1074 density ratio 

As discussed in Chapter 4, the series model is the best one to predict the permeability of the 

PEBA blend membrane. So the volume fraction of PEBA 1074 can be calculated by both 

Equation 4.2 and Equation 2.3. If ∅1 = ∅1
′ , the density ratio of PEBA polymers is independent 

with temperature. 

Membrane: PEBA 2533/1074=50/50; 

Gas: CH4; 

Operating temperature: 00C (273.15 K); 

Feed pressure: 0.8013 MPa absolute (601.043 cmHg); 

Downstream pressure: 0.1013 MPa absolute (76 cmHg); 

Permeability of CH4: 1.220 Barrer (PEBA 1074), 3.452 Barrer (PEBA 2533), 1.839 Barrer 

(PEBA 1074/PEBA 2533=50/50); 

Density of PEBA 1074: 1.09 g/cm3 at 250C; 

Density of PEBA 2533: 1.01 g/cm3 at 250C;   

 

∅1 =
𝑃1(𝑃2 − 𝑃𝑏)

𝑃𝑏(𝑃2 − 𝑃1)
=

1.220 × (3.452 − 1.839)

1.839 × (3.452 − 1.220)
= 0.479 

∅1
′ =

𝑉1

𝑉1 + 𝑉2
=

𝑚1

𝜌1
𝑚1

𝜌1
+

𝑚2

𝜌2

=
𝑚1

𝑚1 + 𝑚2
𝜌1

𝜌2

=
0.5

0.5 + 0.5 ×
1.09
1.01

= 0.481 

∅1 ≈ ∅1
′  



 

 

98 

 

Appendix B – Supporting Figures 

B.1 Pure Gas Permeation Tests with Constituent PEBA and PDMS 

Membranes 

  

 

 

Figure B.1 Effect of temperature on the permeability of the gases permeate through PEBA 1074 membrane. Note the 

applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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Figure B.2 Effect of temperature on the CH4/N2 permeability ratio for PEBA 1074 membrane. . Note the applying 

pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.3 Effect of temperature on the permeability of the gases permeate through PEBA 2533 membrane. . Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute 
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 Figure B.4 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533 membrane. Note the applying 

pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.5 Effect of temperature on the permeability of the gases permeate through PEBA 1657 membrane. . Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.6 Effect of temperature on the CH4/N2 permeability ratio for PEBA 1657 membrane. . Note the applying 

pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.7 Effect of temperature on the permeability of the gases permeate through PEBA 3000 membrane. Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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Figure B.8 Effect of temperature on the CH4/N2 permeability ratio for PEBA 3000 membrane. . Note the applying 

pressure varies from 0.3013 to 0.8013 MPa absolute 
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Figure B.9 Effect of temperature on the permeability of the gases permeate through PDMS membrane. Note the 

applying pressure varies from 0.3013 to 0.8013 MPa absolute 
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 Figure B.10 Effect of temperature on the CH4/N2 permeability ratio for PDMS membrane. . Note the applying 

pressure varies from 0.3013 to 0.8013 MPa absolute 
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B.2 Binary Gas Permeation Tests with PEBA 1074 and PEBA 2533  

 

 Figure B.11 Effect of N2 mole fraction in feed on the permeability of the gases permeate through PEBA 1074 

membrane in binary system. Note the applying pressure is 0.7013 MPa absolute, temperature varies 

from 250C to -200C. 
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 Figure B.12 Effect of N2 mole fraction in feed on CH4/N2 selectivity of PEBA 1074 membrane in binary system. 

Note the applying pressure is 0.7013 MPa absolute, temperature varies from 250C to -200C. 
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 Figure B.13 Effect of N2 mole fraction in feed on the permeability of the gases permeate through PEBA 2533 

membrane in binary system. Note the applying pressure is 0.7013 MPa absolute, temperature varies 

from 250C to -200C. 
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 Figure B.14 Effect of N2 mole fraction in feed on CH4/N2 selectivity of PEBA 2533 membrane in binary system. 

Note the applying pressure is 0.7013 MPa absolute, temperature varies from 250C to -200C. 
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B.3 Pure Gas Permeation Tests with PEBA 2533/1074 Blend Membranes 

 

 Figure B.15 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=93.75/6.25 

membrane. Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.16 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=93.75/6.25 membrane. . 

Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.17 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=87.5/12.5 

membrane. . Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.18 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=87.5/12.5 membrane. . 

Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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Figure B.19 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=75/25 

membrane. . Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.20 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=75/25 membrane. . Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.21 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=62.5/37.5 

membrane. Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.22 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=62.5/37.5 membrane. . 

Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.23 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=50/50 

membrane. . Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.24 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=50/50 membrane. . Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute 
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 Figure B.25 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=37.5/62.5 

membrane. . Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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Figure B.26 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=37.5/62.5 membrane. . 

Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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 Figure B.27 Effect of temperature on the permeability of the gases permeate through PEBA 2533/1074=25/75 

membrane. Note the applying pressure varies from 0.3013 to 0.8013 MPa absolute 
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Figure B.26 Effect of temperature on the CH4/N2 permeability ratio for PEBA 2533/1074=25/75 membrane. . Note 

the applying pressure varies from 0.3013 to 0.8013 MPa absolute. 
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B.4 Binary Gas Permeation Tests with PEBA 2533/1074=50/50 Blend 

Membrane 

 

 Figure B.27 Effect of N2 mole fraction in feed on the permeability of the gases permeate through PEBA 

2533/1074=50/50 membrane in binary system. Note the applying pressure is 0.7013 MPa absolute, 

temperature varies from 250C to -200C. 
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Figure B.28 Effect of N2 mole fraction in feed on CH4/N2 selectivity of PEBA 2533/1074=50/50    membrane in 

binary system. Note the applying pressure is 0.7013 MPa absolute, temperature varies from 250C to -

200C. 
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