
 
 

 

 
 

Ring Resonator Photonic Sensing Device 
 

 

 

by 

Andrew Llewellyn Evans 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Masters of Science 

in 

Physics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2015 

 

© Andrew Llewellyn Evans 2015



 
 

~ ii ~ 
 

 

 

 

 

 

 

 

 

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions 
included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted 
by my examiners.  

I understand that my thesis may be made electronically available to the public. 

  



 
 

~ iii ~ 
 

 
 
 
 
 
Statement of Contributions 
 

The work presented in this thesis was done so under the co-supervision of doctors David Yevick and 
Paul Jessop. The facilities used to perform the sensor testing was provided by Wilfrid Laurier University.  

The sensor chip tested in this thesis was designed by Jason Ackert and provided by Andrew Knights lab 
at McMaster University. One script used in the data collection was written by Andrew Knights’ lab at 
McMaster University. 

  



 
 

~ iv ~ 
 

 
 
 
 
 
Abstract 
 

This thesis studies a micro ring resonator sensor structure built using the silicon-on-insulator (SOI) 
platform. The sensor detects changes in index of refraction with a sensitivity of 21 nm/RIU (RIU stands 
for refractive index unit), in close agreement to the predicted sensitivity, from computer simulations, 
of 24.4 nm/RIU. A study of thermal effects and residue layers was performed and a future sensor design 
capable of measuring layer thickness during evaporation is proposed.  

Background material relevant to the modelling of passive optical devices and a general overview of 
sensor design is presented. The sensitivity of various waveguide structures to changes in cover index of 
refraction are studied using computer simulations. The change in free spectral range (FSR) of the 
resonator sensor was characterized and was used to extend the active range of the device. 
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1 Introduction  

1.1 Silicon on Insulator (SOI) Chips 

Semiconductor design and manufacture has been one of the most researched areas of the last 50 years 
and is pervasive in all modern technology. Semiconductor manufacturing processes are also employed 
to produce chips that transmit optical, instead of electrical, power. Highly developed manufacturing 
techniques enable operation at performance limits while minimizing form factor and device feature 
size.  

The fabrication of SOI devices starts with the production of large, high purity, silicon crystals. Cooling a 
liquid state sample is not practical because thermal stresses cause defects. A more complex method, 
the Czochralski method, has made the mass production of high quality crystals possible. In the 
Czochralski method a starter crystal, which is cleaved and carefully oriented along its crystal axis, is 
dipped in a sample of molten silicon. The starter crystal is slowly pulled upward allowing for the 
formation of new crystal structure below the cleaved starter due to the surface tension of the liquid 
surface. The pull rate, rotation rate, and the temperature gradient during cooling are all chosen to 
maximise the purity of the product.  

Once the bulk crystal has been produced it is cut into thin wafers and the oxide layer, which has a lower 
index of refraction than silicon, is produced. The oxide layer is made after the cleaving process either 
by bonding an oxidised wafer to an unoxidised one, or using ion implantation and annealing. In either 
case, the product is a three layer structure composed of Si, SiO2, and Si, all with precise thicknesses. The 
fabrication of waveguide structures is done by carefully controlling which regions of the Si crystal are 
exposed to the effects of various steps in the manufacturing step. A polymer cover is first applied to the 
whole chip and then areas are selectively exposed to ultraviolet light. The exposed areas are chemically 
altered when interacting with ultraviolet light. Then, depending on the polymer and the solvent used, 
either the exposed or unexposed regions of the cover are removed. The remaining polymer components 
act as a barrier for the effects of the manufacturing step, such as ion implantation, chemical etching, or 
vapour deposition. The remaining polymer is then removed and the process is repeated until the 
structure is fully fabricated.  

1.2 Sensing Devices 

Sensors are a ubiquitous part of modern society. In industrial processes, knowledge of the environment 
or chemical properties critically impacts production efficiency. There has always been a need for the 
development of new sensors, with precision, portability, and power consumption being the driving 
factors. Commonly used structures in the optical communication field can be adapted to become 
sensors if the response to changes in environment can be characterized. The highly developed 
manufacturing techniques allow for highly sensitive SOI sensors to be realized with a small physical 
footprint and low power consumption.    

Sensors quantify a particular environmental property value, the measurand, through changes in the 
transmission spectrum of the sensing device. They can be used to, among other things, track chemical 
reaction rates, detect viruses, or measure material stress depending on the waveguide structure used 
as the sensor. Attaining higher accuracy makes the area of sensor design a constantly active area of 
research. With the SOI platform, various structures can be devised to exploit phenomena creating 
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unique transmission spectra. Interferometer, resonator, bending loss, and surface plasmon resonance 
sensors can all be realized using the SOI platform.  

1.3 Goal 

In this thesis a resonator structure will be employed as a sensor for changes in refractive indices. 
Changes in the cover index of refraction affect the nature of the bound modes supported by the 
waveguide structure and therefore the transmission spectrum of the device. This effect is characterized 
through computer simulations and the predicted sensitivity can be compared to the measured value 
for the device used in the tests. The effects of temperature change, caused by an evaporating sample, 
as well as residues deposited by evaporating samples, are studied. Using the conclusions drawn from 
these studies, a model of a sensor that could measure surface layer thickness of a sample during 
evaporation is devised.  

This thesis is organized as follows. To begin, background information regarding guided waves and 
passive optical devices is given. Various methods of mode calculation and passive structures, as well as 
computational tools used to analyse them, will be discussed. Next, the predicted performance of a ring 
resonator sensor is calculated using computer simulation data. The ring structure is then tested and the 
sensitivity of the device is determined. Possible future work is presented along with a brief look into 
current sensor design and sensitivity.    
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2 Background Theory 

2.1 Optical Propagation in Waveguide Structures 

Waveguide Structures 

The critical concept behind the design of waveguide structures is to have a material with a large index 
of refraction (relative to the surroundings), shaped in such a way as to allow standing electromagnetic 
waves to form. When this occurs the frequency of light, waveguide geometry, and values of refractive 
indices dictate the nature and number of modes a particular structure can support. The analysis of these 
structures has been examined thoroughly in literature and a brief summery will be presented here. The 
most commonly used structures that support guided modes are the buried, strip, rib and fibre (shown 
in Figure 1). These waveguide structures continue to make up the vast majority of waveguides in the 
field of optical communications.  

 
Figure 1: Cross-Section of waveguide structures. 

Strip, Buried, Rib and Fibre. High index regions marked in dark areas. 

Ray Patterns in Three-Layer Planar Waveguide  

The simplest interpretation of guided modes in three slab waveguides is provided by ray tracing and 
internal reflection. Though a range of angles are subject to internal reflection in a slab waveguide, only 
the angles that provide paths whose phase difference leads to constructive interference after two 
reflections form the bound modes. Since total internal reflection is critical to the formation of modes, 
the index of refraction in region 2 of Figure 2 must be larger than that of its surroundings. The analysis 
below, described by Figure 2, is two dimensional with the guiding structure being invariant in the 𝑥 
direction. The mode propagates in the 𝑧 direction and the dielectric is stacked in the 𝑦 direction.  
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Figure 2: Diagram of three layer slab waveguide. 

High index area, n2, indicated by darker region.  

For rays that satisfy the condition for constructive interference, the propagation constant for the mode 
is related to the free space wavelength by 𝛽 = 𝑛2𝑘0 sin(𝜃) where 𝛽 is the component of the wave 
vector in the direction of the propagation of the mode. The transverse dependence of the mode is ℎ =
𝑛2𝑘0 cos(𝜃) through a similar geometric argument. The dependence of the propagation constant on 
the free space wavelength is called the dispersion relation. 

The polarization of light can be examined at this point. A transverse electric (TE) wave has no electric 
field component in the direction of the modal field propagation. Likewise, a transverse magnetic (TM) 
wave has no magnetic field component in the propagation direction. Because of the different 
interactions of the tangential electric and magnetic fields at the dielectric boundary, these two types of 
modes behave slightly differently there.  A superposition of TE and TM modes can create any EM field 
distribution.   

A plane TE wave bound by the guiding structure in Figure 2, with the assumed electric field component 
of  𝐸𝑥(𝑥) = exp (𝑖(𝜔𝑡 − 𝛽𝑧 − ℎ𝑥)) , propagating through the waveguide in the 𝑧  direction would 
accumulate a total phase of  𝜔𝑑𝑡 − 𝛽𝑑𝑧 − 2ℎ𝑇 + 2Φ  over two reflections. The mode travels a 
distance 𝑑𝑧 during a time 𝑑𝑡 over the two reflections, T is the total thickness of the waveguide structure 
and 𝛷 is the Fresnel phase shift from reflection. 𝛷 depends on the ratio of refractive indices at the 
boundary and is given by equations ( 1 ) and ( 2 ) for TM and TE modes respectively. We know that for 
a mode travelling in the 𝑧 direction, 𝑤𝑑𝑡 − 𝛽𝑑𝑧 = 0 by the definition of phase velocity. This leads to 
the relation 2ℎ𝑇 + 2Φ = 2mπ describing constructive interference for modes formed by reflecting 
rays. Here m is the mode number, 𝑛 is given by equation ( 3 ). From [1]. 

 

𝝓𝑻𝑴 =

{
 
 

 
 
𝝅;                                                                       𝜽 < 𝜽𝑷

′

𝟎;                                                           𝜽𝒑
′ < 𝜽 < 𝜽𝑪

𝟐 𝒕𝒂𝒏−𝟏 (
√𝒔𝒊𝒏𝟐 𝜽 − 𝒏𝟐

𝒏𝟐 𝒄𝒐𝒔 𝜽
);                          𝜽 > 𝜽𝒄

 

( 1 ) 

 

𝝓𝑻𝑬 = {

𝟎;                                                                       𝜽 < 𝜽𝒄

𝟐 𝒕𝒂𝒏−𝟏 (
√𝒔𝒊𝒏𝟐 𝜽 − 𝒏𝟐

𝒄𝒐𝒔 𝜽
) ;                         𝜽 > 𝜽𝒄

 

( 2 ) 
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𝒏 =

𝒏𝟏
𝒏𝟐

 
( 3 ) 

The sum 2ℎ𝑇 +  2𝛷 relates the high index material and its thickness to the internal reflection angle, 𝜃, 
required to generate the mode.  Different integers of m (the mode number) produce the bound modes 
of the structure. Since  𝑘0 depends on the free space wavelength, 𝜆 = 2𝜋/𝑘0 , a single waveguide 
structure will support a spectrum of bound modes, each with their own corresponding free space 
wavelength and propagation constant.  

Maxwell’s Equations in Planar Waveguide Structure 

Now we seek to analyse bound modes in Figure 2 using Maxwell’s equations. In the planar waveguide 
structure, modes will propagate in the 𝑦 −  𝑧 plane and, by symmetry, their propagation properties will 
be the same for an isotropic medium. The invariant nature of the dielectric in this plane means that any 
wave propagating in the 𝑧 direction will have no variation in its EM field components in the 𝑦 direction 
- all derivatives with respect to 𝑦 are zero. The converse is also true for a wave propagating in the 𝑦 
direction. The two curl Maxwell’s equations, assuming the electric field behaves as equation ( 4 ), 
produce equations ( 5 ) through ( 10 ), from [2]: 

 𝑬𝒊(𝒓, 𝒕) = 𝑬𝒊(𝒙, 𝒚)ⅇ
𝒊(𝝎𝒕−𝜷𝒛);   𝒊 ∈ (𝒙, 𝒚, 𝒛) ( 4 ) 

 𝝏

𝝏𝒚
𝑬𝒛 + 𝒊𝜷𝑬𝒚 = −𝒊𝝎𝝁𝟎𝑯𝒙 

( 5 ) 

 
−𝒊𝜷𝑬𝒙 −

𝝏

𝝏𝒙
𝑬𝒛 = −𝒊𝝎𝝁𝟎𝑯𝒚 

( 6 ) 

 𝝏

𝝏𝒙
𝑬𝒚 −

𝝏

𝝏𝒚
𝑬𝒙 = −𝒊𝝎𝝁𝟎𝑯𝒛 

( 7 ) 

 𝝏

𝝏𝒚
𝑯𝒛 + 𝒊𝜷𝑯𝒚 = 𝒊𝝎𝜺𝟎𝜺𝒓𝑬𝒙 

( 8 ) 

 
−𝒊𝜷𝑯𝒙 −

𝝏

𝝏𝒙
𝑯𝒛 = 𝒊𝝎𝜺𝟎𝜺𝒓𝑬𝒚 

( 9 ) 

 𝝏

𝝏𝒙
𝑯𝒚 −

𝝏

𝝏𝒚
𝑯𝒙 = 𝒊𝝎𝜺𝟎𝜺𝒓𝑬𝒛 

( 10 ) 

The equations break into two groups describing, TE and TM modes, by substituting their definitions into 
the curl equations. Two differential equations, one for each polarization of light, are found. For a TE 
mode 𝐸𝑥 is the only electric field component and the coupled DEs reduce to equation ( 12 ) describing 
it, as a function of 𝑥 with 𝐸𝑧 = 𝐻𝑦 = 𝐸𝑦 = 0. For a TM mode, 𝐻𝑥 is the only magnetic field component 

and a similar DE is produced but instead for 𝐻𝑦, with 𝐻𝑧 = 𝐸𝑦 = 𝐻𝑦 = 0. The nonzero field components 

can be calculated from relations derived from the curl equations.  

 𝑬𝒚(𝒙, 𝒛, 𝒕) = 𝑬𝒎(𝒙)ⅇ
𝒊(𝝎𝒕−𝜷𝒛) ( 11 ) 

 
(
𝝏𝟐

𝝏𝒙𝟐
+
𝝏𝟐

𝝏𝒛𝟐
+ 𝒌𝟎𝒏

𝟐(𝒙))𝑬𝒙(𝒙, 𝒛, 𝒕) = 𝟎 
( 12 ) 
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𝑬𝒎(𝒙) = {

𝑪𝟐 𝒄𝒐𝒔(𝜸𝟐𝒙) + 𝑪𝟑 𝒔𝒊𝒏(𝜸𝟐𝒙) ;     𝒓ⅇ𝒈𝒊𝒐𝒏 𝟐

𝑪𝟏ⅇ
𝜸𝟏𝒙;                                              𝒓ⅇ𝒈𝒊𝒐𝒏 𝟏

𝑪𝟒ⅇ
−𝜸𝟑(𝒙−𝒘);                                    𝒓ⅇ𝒈𝒊𝒐𝒏 𝟑

 

( 13 ) 

 
𝜸𝟏
𝟐 = 𝒌𝟎

𝟐 ((
𝜷

𝒌𝟎
)
𝟐

− 𝒏𝟏
𝟐) 

( 14 ) 

 
𝜸𝟐
𝟐 = 𝒌𝟎

𝟐 (𝒏𝟐
𝟐 − (

𝜷

𝒌𝟎
)
𝟐

) 
( 15 ) 

 
𝜸𝟑
𝟐 = 𝒌𝟎

𝟐 ((
𝜷

𝒌𝟎
)
𝟐

− 𝒏𝟑
𝟐) 

( 16 ) 

The solutions of equation ( 11 ) are either exponential or sinusoidal functions, depending on the sign of 
(𝑘0𝑛)

2 − 𝛽2 which changes with 𝑥 depending on the material in that region. This leads to solutions of 
the form in equation ( 13 ). The continuity of 𝐸 and 𝐻 at either side of the planar waveguide limits the 
number and shape of the bound modes that the structure can support. If the solution in region 2 is a 
decaying exponential, because of the choice of either 𝜔 or 𝑛, the only solution which satisfies the 
boundary conditions is 0 and therefore a bound mode is not supported. This strictly forces 𝑛1 and 𝑛3 
to be less than 𝑛2 for a mode to be bound in region 2, agreeing with the assertion from the total internal 
reflection model.  

The boundary conditions at the discontinuities of the dielectric constant require the tangential 

magnetic and electric fields to be continuous. Since 𝐻𝑧 is proportional to 
𝑑

𝑑𝑦
𝐸𝑥  , this is equivalent to 

forcing 𝐸𝑥  to be smooth and continuous. Applying continuity of 𝐸𝑥  and its derivative at the two 
boundaries gives four equations relating the solution amplitudes in the three regions and the 
propagation constant 𝛽. When these are solved, a relation between the thickness and propagation 
constant is found. This is solved numerically and the relation for TM modes is found by following the 
same procedure but solving for 𝐻𝑥 instead of 𝐸𝑥. Equation ( 17 ) describes the dispersion relation for a 
TE mode and equation ( 18 ) represents the dispersion relation for a TM mode.  

 
𝒕𝒂𝒏(𝜸𝟐𝒉) =

𝜸𝟏 + 𝜸𝟑

𝜸𝟐 (𝟏 −
𝜸𝟏𝜸𝟑
𝜸𝟐
𝟐 )

 
( 17 ) 

 
𝒕𝒂𝒏(𝜸𝟐𝒉) =

𝒌(𝜸𝟏̅̅ ̅ + 𝜸𝟑̅̅ ̅)

𝜸𝟐
𝟐 − 𝜸𝟏̅̅ ̅𝜸𝟑̅̅ ̅

 
( 18 ) 

 
With                𝜸𝒊̅ =

𝒏𝟐
𝟐

𝒏𝒊
𝟐 𝜸𝒊 

( 19 ) 

Three Dimensional Waveguide Structure, Marcatili Method 

This analysis of waveguide modes can be extended into three dimensions using the Marcatili method. 
For TE mode bound in the structure described by Figure 3, 𝐸𝑦 is zero and the curl equations can be 

arranged to express all the electric and magnetic field elements in terms of 𝐸𝑥. 𝐸𝑥 is found to obey the 
two dimensional Helmholtz equation ( 24 ). Applying separation of variables leads to a solution in the 
five regions and applying boundary conditions at each of the four edges gives the mode confinement 
conditions. This analysis does not consider any field components in the hatched region of Figure 3.  
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Figure 3: Diagram of Marcatili Method  

The origin is in the centre of region 1, the high index region. Region 1 has a height of 2b and width of 2a. 

𝑯𝒚 =
𝟏

𝝎𝝁𝟎𝜷

𝝏𝟐

𝝏𝒙𝝏𝒚
𝑬𝒙 

( 20 ) 
𝑯𝒛 =

𝟏

𝒊𝝎𝝁𝟎

𝝏

𝝏𝒙
𝑬𝒙 

( 21 ) 

𝑯𝒙 =
𝟏

𝝎𝝁𝟎𝜷
(𝜷𝟐𝑬𝒙 −

𝝏𝟐

𝝏𝒚𝟐
𝑬𝒙) 

( 22 ) 
𝑬𝒁 =

𝟏

𝒊𝜷

𝝏𝑬𝒙
𝝏𝒚

 
( 23 ) 

 
[
𝝏𝟐

𝝏𝒙𝟐
+
𝝏𝟐

𝝏𝒚𝟐
+ 𝒌𝟎

𝟐 (𝜺𝒓 − (
𝜷

𝒌𝟎
)
𝟐

)]𝑬𝒙 = 𝟎 
( 24 ) 

 

𝑬𝒙 =

{
 
 
 

 
 
 

𝑪𝟏 𝒄𝒐𝒔(𝒌𝒙𝒙 + 𝜶𝟏) 𝒄𝒐𝒔(𝒌𝒚𝒚 + 𝜶𝟐);  𝒓ⅇ𝒈𝒊𝒐𝒏 𝟏

𝑪𝟐 𝒄𝒐𝒔(𝒌𝒙𝒙 + 𝜶𝟏) ⅇ𝒙𝒑 (−𝜸𝒚(𝒚 − 𝒃)) ; 𝒓ⅇ𝒈𝒊𝒐𝒏 𝟐

𝑪𝟑 ⅇ𝒙𝒑(−𝜸𝒙(𝒙 − 𝒂)) 𝒄𝒐𝒔(𝒌𝒚𝒚 + 𝜶𝟐) ; 𝒓ⅇ𝒈𝒊𝒐𝒏 𝟑

𝑪𝟒 𝒄𝒐𝒔(𝒌𝒙𝒙 + 𝜶𝟏) ⅇ𝒙𝒑 (𝜸𝒚(𝒚 + 𝒃)) ; 𝒓ⅇ𝒈𝒊𝒐𝒏 𝟒

𝑪𝟓 ⅇ𝒙𝒑(𝜸𝒙(𝒙 + 𝒂)) 𝒄𝒐𝒔(𝒌𝒚𝒚 + 𝜶𝟐) ; 𝒓ⅇ𝒈𝒊𝒐𝒏 𝟓

 

( 25 ) 

Imposing the boundary conditions at 𝑦 =  ± 𝑏 yields a relation for 𝑘𝑦, and likewise the boundaries at 

𝑥 =  ± 𝑎 give a relation for 𝑘𝑥. These equations are solved numerically. It is interesting to note that 
the relation for 𝑘𝑦 is the same as for that of a TE mode in a 3 layer waveguide and 𝑘𝑥  is similarly related 

to the TM mode confinement relation. These two relations are described by equations ( 26 ) and ( 27 ) 
respectively. The final relation between 𝑘𝑥, 𝑘𝑦, 𝛽 and, 𝑘0 can be found by substituting the solution in 

region 1 into equation ( 24 ). This is the same relation as derived from the geometric ray treatment and 
is shown in equation ( 28 ). A similar set of steps can be taken to find the relation for a TM field. The 
unknown values in equation ( 25 ) can be found from the relations in the boundary conditions.  

 
𝒌𝒚𝒃 = 𝒕𝒂𝒏

−𝟏 (
𝜸𝒚

𝒌𝒚
) +

𝟏

𝟐
(𝒏 − 𝟏)𝝅 

( 26 ) 
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𝒌𝒙𝒂 = 𝒕𝒂𝒏−𝟏 (

𝒏𝟏
𝟐

𝒏𝟐
𝟐

𝜸𝒙
𝒌𝒙
) +

𝟏

𝟐
(𝑴 − 𝟏)𝝅 

( 27 ) 

 𝒌𝒙
𝟐 + 𝒌𝒚

𝟐 + 𝜷𝟐 = 𝒌𝟎
𝟐𝒏𝟏

𝟐 ( 28 ) 

Effective Index Method 

The effective index method is the application of the separation of variables to equation ( 24 ). If we 
assume that the solution for 𝐸𝑥 for a TE mode can be represented as a product of a function of only 𝑥 
and another function of only 𝑦 then some simplifications to the differential equation can be made. 
When separating the PDE we first solve the separation constant as a function of 𝑥, equation ( 31 ), 
following from the previous study of three layer slab waveguide structure. This breaks the region into 
three regions, each a slab waveguide in the 𝑦 direction, giving the separation constant as a function of 
𝑥. The y dependence of the two dimensional PDE is then solved as a three layer TM mode, equation       
( 32 ), in a similar way and the value of 𝛽 is calculated.  

 
Figure 4: Diagram of effective index method 

 

 𝑬𝒙  𝒎,𝒏 = 𝑿𝒎(𝒙)𝒀𝒏(𝒚) ( 29 ) 

 𝟏

𝑿

ⅆ𝟐𝑿

ⅆ𝒙
+
𝟏

𝒀

ⅆ𝟐𝒀

ⅆ𝒚𝟐
+ 𝒌𝟎

𝟐 (𝜺(𝒙, 𝒚) −
𝜷𝟐

𝒌𝟎
𝟐
) = 𝟎 

( 30 ) 

 ⅆ𝟐𝒀

ⅆ𝒚𝟐
+ 𝒌𝟎

𝟐(𝜺(𝒙, 𝒚) − 𝑵𝟐(𝒙))𝒀(𝒚) = 𝟎 
( 31 ) 

 ⅆ𝟐𝑿

ⅆ𝒙𝟐
+ 𝒌𝟎

𝟐 (𝑵𝟐(𝒙) −
𝜷𝟐

𝒌𝟎
𝟐)𝑿 = 𝟎 

( 32 ) 

This separation constant found in the first step of the method can be used to implement a 2D FDTD or 
beam propagation simulations of a 3D structure.  This saves memory, thus allowing the simulation of 
larger, more complicated, devices. Two dimensional simulations predict the same phenomena 
(coupling, resonance, etc.) as their three dimensional counterparts do, but the results of the latter are 
more accurate. The simulations are performed by replacing the dielectric constant with the calculated 
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separation constant and then simulating a TM wave. We solve for a TM wave in the second step of the 
effective index method because the polarization of the electric field remains the same when the 
equation is separated. The electric field is perpendicular to the dielectric boundary, meaning that a TM 
mode is produced.  

Solving for the propagation constants and mode structures of TM waves bound in Figure 4 using this 
method is handled as with the previous analysis but separating Hx instead. The separation constant is 
found using a TM three slab analysis and the propagation constant from a TE analysis using the 
separation constant.  

2.2 Coupled Mode Theory 

Basic Principles 

Coupled mode theory is the application of perturbation theory to model the effects caused by changes 
in the dielectric constant’s structure. It can predict resultant phenomena such as power exchange 
between modes of adjacent, or even the same, waveguide(s). The analysis is analogous to the time 
dependent perturbation of bound electrons by an external electromagnetic field, but in this case the 
perturbation appears in the dielectric constant instead of the potential function.  

Assuming that the solutions, and the corresponding propagation constants, to the wave equation of the 
unperturbed structure are known we seek to find a solution to the DE with the addition of a 𝑧-varying 
perturbation of the dielectric constant. The solution can be approximated by equation ( 34 ), a sum of 
the solutions to unperturbed DE which satisfy equation ( 33 ). 𝐸𝑚(𝑥, 𝑦) is the 𝑥  component of the 
electric field of the 𝑚th TE mode. The amplitudes of the modes in the sum of the approximate solution 
are functions of the propagation direction and it is the evolution of these coefficients that describes the 
solution to the perturbed DE. When this approximation is substituted into equation ( 12 ), with equation 
( 35 ) as the dielectric function, a set of equations describing the amplitudes of the modes, 𝐴𝑚(𝑧), is 
found. The relation is described by equation ( 36 ), after the slowly varying envelope approximation, 
equation ( 37 ), has been applied.  

 
(
𝝏𝟐

𝝏𝒙𝟐
+
𝝏𝟐

𝝏𝒚𝟐
+𝝎𝟐𝝁𝟎𝜺𝒖(𝒙, 𝒚) − 𝜷𝒎

𝟐 )𝑬𝒎(𝒙, 𝒚) = 𝟎 
( 33 ) 

 
𝑬(𝒓) =∑𝑨𝒎(𝒛)𝑬𝒎(𝒙, 𝒚)ⅇ

−𝒊𝜷𝒎𝒛

𝒎

 
( 34 ) 

 𝜺(𝒓) = 𝜺𝒖(𝒙, 𝒚) + 𝜟𝜺(𝒓) ( 35 ) 

 
−𝟐𝒊∑𝜷𝒎

ⅆ

ⅆ𝒛
𝑨𝒎(𝒛)𝑬𝒎(𝒙, 𝒚)ⅇ

−𝜷𝒎𝒛

𝒎

= −𝝎𝟐𝝁𝟎∑𝜟𝜺(𝒓)𝑨𝒏(𝒛)𝑬𝒏(𝒙, 𝒚)ⅇ
−𝒊𝜷𝒏𝒛

𝒏

 
( 36 ) 

 ⅆ𝟐

ⅆ𝒛𝟐
𝑨𝒎 ≪ 𝜷𝒎

ⅆ

ⅆ𝒛
𝑨𝒎 

( 37 ) 

We can then express the dielectric perturbation as a Fourier series in the 𝑧 direction as in equation            
( 38 ). This allows the inner product of the basis functions with the dielectric perturbation, to be used 
to further simplify equation ( 36 ), while adding an additional term to the phase mismatch element in 
the DE. Equation ( 39 ) describes the evolution of the mode amplitude coefficient functions after the 
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inner products of the 𝑚th mode on the left is applied. In equation ( 39 ) 𝑚 and 𝑛 are summed over the 
modes in the analysis, 𝑎 is summed over the Fourier components of the perturbation, and Λ is the 
periodicity of the perturbation.  

 
𝜟𝜺(𝒓) =∑𝜟𝜺𝒂(𝒙, 𝒚)ⅇ

−𝒊𝒂
𝟐𝝅
𝜦
𝒛

𝒂

 
( 38 ) 

 
⟨𝒎|𝒎⟩

ⅆ

ⅆ𝒛
𝑨𝒎(𝒛) =

𝝎𝟐𝝁𝟎
𝟐𝒊𝜷𝒎

∑⟨𝒎|𝜟𝜺𝒂|𝒏⟩𝑨𝒏(𝒛)ⅇ
𝒊(𝜷𝒎−𝜷𝒏−𝒂

𝟐𝝅
𝜦
)𝒛

𝒏,𝒂

 
( 39 ) 

 
⟨𝒎|𝒎⟩ = ∫ 𝑬𝒎

∗ ⋅ 𝑬𝒎 ⅆ𝒙ⅆ𝒚 =
𝟐𝝎𝝁𝟎
|𝜷𝒎|

 
( 40 ) 

 
𝑲𝒎,𝒏 =

𝝎

𝟒
⟨𝒎|𝜟𝜺|𝒏⟩ =

𝝎

𝟒
∫ 𝑬𝒎

∗ ⋅ 𝜟𝜺𝑬𝒏 ⅆ𝒙ⅆ𝒚 
( 41 ) 

For a particular Fourier component of the perturbation the phase mismatch term,  𝛽𝑘 − 𝛽𝑛 − 𝑎
2π

𝛬⁄ ,  

and the spatially dependent integral, ⟨𝑚|𝛥𝜀𝑎|𝑛⟩, determine the behaviour of the system. This integral’s 
value describes the magnitude of the interaction between the fields of the two modes that exchange 
power, 𝑚 and 𝑛, in the perturbation region, and is denoted by 𝐾𝑚,𝑛, and in a two mode, level, system 
it is simply denoted K. Whenever the phase mismatch condition is not zero, the net coupling of one 
mode to the other is negligible. This is akin to conservation of energy in the analogy to the electron in 
an oscillating electric field. Off resonant solutions do exist but the change in amplitude of the solution 
functions, 𝐴𝑚(𝑧) is decreased. The power carried by each mode is proportional to the square of the 
amplitude.  

Power couplers 

To adapt this analysis to the power exchange between two modes of adjacent waveguides we treat the 
dielectric perturbation as the presence of a neighbouring identical waveguide and the second, coupled, 
mode as the mode in this neighbouring waveguide. Since the two modes that exchange power are 
identical, the phase mismatch term will be zero for the 0th order Fourier component of the perturbation, 
i.e. a perturbation of a constant value such as the presence of an adjacent identical waveguide. A side 
view of a power coupler, with the perturbation region labelled, is shows in Figure 5. 

Labelling the modes bound in the perturbation and original regions as numbers 2 and 1 respectively, 
the relation derived from equation ( 39 ) describing the evolution of the amplitude of mode 1 is given 
by equation ( 42 ).  The overlap integral ⟨1|𝛥𝜀𝑎|1⟩ is negated because the mode has a small magnitude 
in the perturbation region in comparison to the second overlap integral, ⟨1|𝛥𝜀𝑎|2⟩, in the sum. The 
reverse view, changing the waveguide structure to be considered as the perturbation, yields equation  
( 43 ) describing the evolution of the amplitude of mode 2. In equations ( 42 ) and ( 43 ), the 0th Fourier 
component is used in the overlap integral to calculate 𝐾. 
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Figure 5: Side view of power coupler 
Perturbation region in dashed area. 

Uncoupling the system of differential equations is done by differentiating either one of equations               
( 42 ) or ( 43 ) and substituting the result into the other. The solution to the phase matched DE are 
cosine and sine functions with angular frequency 𝐾, the overlap integral discussed above. For one mode 
initially excited at z = 0, the 𝑧-dependent solutions are given by equations ( 44 ) and ( 45 ): 

 ⅆ

ⅆ𝒛
𝑨𝟏 = −𝒊𝑲𝑨𝟐 

( 42 ) 

 ⅆ

ⅆ𝒛
𝑨𝟐 = −𝒊𝑲∗𝑨𝟏 

( 43 ) 

 𝑨𝟏(𝒛) = 𝑨𝟏(𝟎) 𝒄𝒐𝒔(|𝑲|𝒛) ( 44 ) 

 
𝑨𝟐(𝒛) = −𝒊𝑨𝟏(𝟎)

𝑲∗

|𝑲|
𝒔𝒊𝒏(|𝑲|𝒛) 

( 45 ) 

Adding a periodic structure to the waveguide can allow power to be transferred to a mode with a 
different propagation constant if the periodicity of the perturbation is chosen such that the phase 
matching condition is met.  

Diffraction gratings  

The addition of a periodic pattern to a waveguide (a diffraction grating) is employed in optical devices 
such as mode converters, Bragg reflectors, filters, and grating couplers. Their performance can be 
modelled using coupled mode theory.  

A mode converter employs the phase matching condition to couple power between two modes in the 
same waveguide. Since the modes are orthogonal, power transfer between them is impossible without 
some form of perturbation. Power transfer is maximised when the phase matching condition is met and 
the overlap integral’s magnitude and interacting length are correctly chosen.  The two coupled modes 
are traveling in the same direction.  
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Bragg reflectors make use of the periodic perturbation to couple power between a forward traveling 
mode and the same mode propagating in the opposite direction. The periodicity can be chosen so that 
some wavelengths are allowed to pass through while others are reflected, creating a Bragg filter.  

Periodic structures on the surface of a waveguide can also be used to couple power into and from an 
optical waveguide to a free wave. This will be discussed in the next section.  

2.3 Coupling Power From a Free Space Wave into a Waveguide 

Transferring optical power to and from a SOI chip cannot be accomplished by shining a laser at the 
waveguide. A ray incident on the surface of a 3-slab structure at any angle will simply refract through 
the high index medium and exit through the other side. A ray incident from the leading edge of the 
waveguide can excite a mode. This is called butt end coupling. Another common method used to excite 
modes in waveguide structures will be discussed below.   

Grating Coupling  

Placing a periodic perturbation on top of a waveguide structure can couple power out of the waveguide 
into radiative modes (free waves) which satisfy the phase matching condition. Since this analysis is 
completely linear the reverse process is also realizable - a grating coupling can couple power from free 
waves into modes of a waveguide. These grating couplings are easy to manufacture during an etching 
process and can be protected with an oxide layer to make the component more durable. In the case of 
a grating coupler (Figure 6) the periodic perturbation is obtained by removing a small portion of the 
dielectric from the surface of the waveguide.  

 
Figure 6: Side view of grating coupler 

Mode propagates in z direction  

When relating a bound mode to a refracted incident free wave the propagation constant employed in 
the coupled mode equations is the 𝑧  component of the wave vector, the same direction as the 
propagation of the excited mode, in the medium it is entering. The phase matching condition, equation 
( 46 ), relates the periodicity of the perturbation to the propagation constant of the mode and the free 
space wavelength. 𝛽0is the propagation constant of the bound mode and 𝑘z = 𝑛1𝑘0sin (𝜃𝑖) is the z 
component of the free wave vector if it were to refract without the presence of the perturbation. θ is 
the refracted angle of the free wave. 
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𝜷𝟎 − 𝒌𝒛 −

𝒂𝟐𝝅

𝜦
= 𝟎 

( 46 ) 

These structures can be designed to operate over large wavelength ranges. They are designed for 
maximal coupling at a specific frequency and input angle, usually 10° to avoid crowding. The chips used 
in these experiments all used grating couplings to transfer optical power to and from the laser and 
optical power sensor.  

2.4 Numerical Simulations 

The algebraic models developed so far are useful for understanding the behaviour of basic structures 
used in the field of photonics, but ultimately the relations represent idealized cases of the device layout. 
Couplers, for example, do not have a well-defined interaction length. For example, as the waveguides 
are brought into proximity with one another the overlap integral 𝐾  will change. A first principles 
simulation of the spectral response of these structures is therefore a useful tool in fine-tuning their 
performance.  

Beam propagation 

Beam propagation simulations are a powerful tool for predicting power outputs of waveguide 
structures as well as power coupling between modes [3]. They can also be adapted to accurately 
calculate the propagation constants and mode structure of complex waveguides. Similar to coupled 
mode theory, we start with the assumption that the 𝑧 and 𝑡 dependence of the electric field are known 
and factored out, as well as that the second derivative of 𝑢, the envelope function, with respect to 𝑧 is 
negligible compared to the first.  

 𝑬(𝒓, 𝒕) = 𝒖(𝒓)ⅇ𝒊𝒘𝒕−𝒊𝜷𝒛 ( 47 ) 

 𝝏𝒖

𝝏𝒛
=
−𝒊

𝟐𝜷
(
𝝏𝟐

𝝏𝒙𝟐
+
𝝏𝟐

𝝏𝒚𝟐
+ (𝒏𝟐(𝒙, 𝒚, 𝒛)𝒌𝟐 − 𝜷𝟐))𝒖(𝒓) 

( 48 ) 

If 𝑢(𝑟, 𝑧 = 0) is a mode of the waveguide structure (so that equation ( 48 ) is zero for the waveguide 
cross-section) then this simulation will track the amplitude of the mode as it progresses down a 
waveguide structure. The value of 𝑘𝑛, which depends on the index of refraction, will change for each 𝑧 
segment of the numerical integrator, depending on the nature of the waveguide structure being 
simulated. Simple applications of this method accurately predict the power exchange between 
waveguides but do not yield accurate results for devices, like resonators, which change direction 
significantly, unless higher order methods are employed.  

The beam propagation method can be adapted to calculate mode structures and propagation 
constants. This is an important tool because the numerical scheme does not revolve around root finding 
and can be used on any arbitrarily complex waveguide geometry.  

Summary of BEAMPROP Mode Calculation Numerical Method: 

Step 1 Initialize electric field with arbitrary distribution. When this initial distribution is 
decomposed into the modes of the waveguide, equation ( 49 ), the initial excitation of 
the waveguide must include the mode that you wish to study.  
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Step 2 Using equation ( 48 ), evolve the electric field in the negative 𝑖𝑑𝑧 direction. The mode 
with the largest propagation constant will increase the most in this step.  

Step 3 The electric field is normalized and equation ( 50 ) is used to calculate the current 
approximation of the propagation constant.  

Step 4 Test for tolerance of change in propagation constant. If condition is not met, return to 
step 2. 𝑝, in equation ( 50 ), is the output electric field distribution of the iteratively 
evolved and normalized process. 

 

 
𝑬(𝒙, 𝒚, 𝒛) = ∑𝒄𝒎𝒖𝒎(𝒙, 𝒚) ⅇ

−𝒊𝜷𝒛 
( 49 ) 

 
𝜷𝒑 = ∫(𝒑

∗ (
ⅆ𝟐𝒑

ⅆ𝒙𝟐
+
ⅆ𝟐𝒑

ⅆ𝒚𝟐
+ 𝒌𝟐𝒑))ⅆ𝒙 ⅆ𝒚 ∫(𝒑𝒎

∗ 𝒑𝒎)⁄ ⅆ𝒙 ⅆ𝒚 
( 50 ) 

Propagating a mode in the imaginary 𝑧 direction (as opposed to the real 𝑧 direction), will cause a change 
in amplitude (instead of phase) related to the propagation constant. Since the equations describing 
mode propagation are linear, any superposition of modes will evolve independent of one another. If 
some superposition of modes, say a Gaussian profile, is propagated in the negative imaginary direction 
( −𝑖𝑑𝑧), using a numerical integrator, the mode with the largest propagation constant will grow the 
most. If then at every step in the integration the optical power is normalized, the steady state solution 
of this iterative procedure will be the bound mode of the waveguide structure with the largest 
propagation constant. The propagation constant can be calculated by using inner products of the 
Helmholtz equation shown in equation ( 50 ). The approximate value of 𝛽 calculated at each step is 
used by equation ( 48 ) to evolve the field at each step in the integration.  

Forward Difference Time Domain (FDTD) 

A first principles simulation of Maxwell’s equations can be realized by employing the two curl 
relationships. The spatial derivatives of the magnetic and electric fields provide the temporal evolution 
of the electric and magnetic fields, respectively. To initiate a continuous wave FDTD simulation, the 
mode structure and propagation constant must be known ahead of time as they are crucial to the 
boundary values on the edge where the wave is incident.  

This type of simulation can incorporate structures of any geometry and light pulses of any polarization. 
Use of FDTD simulations for resonator structures is instructive as resonator structures require the 
formation of standing waves in the ring structure which take the light pulse multiple trips around the 
resonator to form. The output of a one wavelength simulation of a ring structure is shown in Figure 7 

The main drawback of this method is that it is very memory intensive. Using the Crank Nicholson 
method, a three dimensional simulation requires inverting a 3𝑁3 by  3𝑁3  matrix (where 𝑁  is the 
number of simulated points). For large choices of N this becomes difficult. Crank-Nicholson integrators 
are typically used as a numerical technique because of their long-term stability.  
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Figure 7: 3D FDTD simulation of resonator structure. 

The two monitor values show the transmitted power in green and the circulated power in the ring structure in blue. The 
simulation was run with a continuous wave input until the steady state solution was reached. 3D ring resonator structure 

with strip waveguide. Height 300 nm, width 500 nm.  

FDTD continuous wave simulations can be repeated for a spectrum of input wavelengths, provided that 
their corresponding mode structures have been approximated beforehand. The spectral response of 
the structure is found by plotting the transmitted power vs the input wavelength from each simulation. 
This structure geometry was present on one of the chips, but was not used as a sensor. This simulation 
was used to study the change in coupling coefficient, causing a change in peak shape, as the cover index 
of refraction was changed.  

Boundary Conditions  

Boundary conditions are required to generate a unique solution of any differential equation. When 
considering waveguide structures in reality any power that escapes from a waveguide will propagate 
unhindered as it travels outside the simulation volume. In a computer simulation, the boundary 
conditions in the simulation must allow this to happen so that these stray rays do not interfere in any 
way with the data collected. Simply forcing the boundary to a constant value generates reflected rays 
and is undesirable as these rays affect power measurements. Continuous boundary conditions, allowing 
rays that exit one edge of the simulation to re-enter from the opposite side, are undesirable for the 
same reason.   

One way to mimic the natural behaviour of light rays radiating out of the simulation area is to simulate 
an absorbing medium on the boundary of the simulation volume. This will dissipate power from these 
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rays and minimise their interaction with the simulation. This can be undesirable for simulations of larger 
structures because of the added computational memory required by the insulating volume. 

Transparent boundary conditions are another way to mitigate the effects of stray waves on FDTD 
simulations. The idea behind this method is to dynamically change the boundary values to mimic any 
outgoing rays, allowing them to “pass outside” the simulation volume. This method uses less memory 
than simply including an absorbing area in the simulation.  
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3 Passive Optical Structures 

3.1 Common Passive Optical Structures  

Now that some background of propagation of modes in optical waveguides has been presented, a brief 
summary of some optical component of interest to sensor applications will be presented. In the field of 
optical communication, multiplexing and de-multiplexing is of crucial importance to the efficient 
transfer of data. Multiplexing is the process of adding a signal, modulated on a particular wavelength, 
to an existing EM wave, de-multiplexing is the process of removing a modulated signal from an EM 
wave. When analysing multiplexed signals in a linear medium, each wavelength must be analysed 
separately.  

Most passive optical devices can be modelled using the relations discussed earlier. While active optical 
devices (which make use of imbedded electrical components such as heaters or electrically active 
materials to tune devices’ spectral response) exist, this thesis focuses solely on passive devices and their 
sensor applications. To better analyse how passive devices (and large arrangements of them) behave it 
is convenient to represent the evolution of the modal field distributions in the device as matrix 
equations. This allows light propagation through a series of devices to be modelled by the 
multiplication, on the left, of the corresponding matrix representation of each passive waveguide 
component to the input power. 

Power splitter 

The device described in Figure 8 is a power splitter. It can divide power from one input to both outputs. 
The spectral response of this device’s output ports is accurately modelled by coupled mode theory.    

 
Figure 8: Diagram of Power splitter 

 

From the solution of coupled mode amplitude for adjacent waveguides, equations ( 44 ) and ( 45 ), the 
complex amplitude inputs, 𝐴1 and 𝐴2, are related to the outputs, 𝐵1 and 𝐵2, over an interaction length 
𝐿 by equation ( 51 ), assuming that both waveguides are identical.  

 
[
𝑩𝟏
𝑩𝟐
] = [

𝒄𝒐𝒔(|𝑲|𝑳) 𝒊 𝒔𝒊𝒏(|𝑲|𝑳)

𝒊 𝒔𝒊𝒏(|𝑲|𝑳) 𝒄𝒐𝒔(|𝑲|𝑳)
] [
𝑨𝟏
𝑨𝟐
] 

( 51 ) 
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The overlap integral 𝐾does not experience a great deal of spectral dependence. When being used as a 
power splitter, the interaction length 𝐿 is chosen so that 𝐾𝐿 = (𝑛 + 1 2⁄ )𝜋 2⁄  forcing all the elements 

in the transfer matrix to have magnitude 1 √2⁄ .  An input wave at A1 with magnitude 1 will produce two 

output waves, each with magnitude 1 √2⁄ . The power carried by the waves at B1 and B2, proportional 
to the square of the amplitude, each have a value of 1 2⁄ .  This same choice of 𝐿 will also evenly divide 
power from path A2 among the outputs. This is a 50/50 power splitter. 

Mach-Zehnder Interferometer  

From a power splitter and two isolated waveguides of different lengths we can create an interference 
pattern. Using the known 𝑧  dependence of isolated modes, the propagation constant, the matrix 
describing the evolution of non-interacting identical modes over different distances is given by equation 
( 52 ). 

 
[
𝑩𝟑
𝑩𝟒
] = [ⅇ

−𝒊𝜷𝑳𝟏 𝟎
𝟎 ⅇ−𝒊𝜷𝑳𝟐

] [
𝑩𝟏
𝑩𝟐
] 

( 52 ) 

 

 
Figure 9: Diagram of Mach-Zehnder Interferometer 

 

The full matrix expression of the device in Figure 9 is given by equation ( 53 ). Both power splitters used 
in this equation were 50/50. When solving for a single excitation from port A1, the solutions for ports 
B1 and B2 are given in equations ( 54 ) and ( 55 ). taken from [4]. 

 
[
𝑩𝟓
𝑩𝟔
] = [

𝟏/√𝟐 𝒊𝟏/√𝟐

𝒊𝟏/√𝟐 𝟏/√𝟐
] [ⅇ

−𝒊𝜷𝑳𝟏 𝟎
𝟎 ⅇ−𝒊𝜷𝑳𝟐

] [
𝟏/√𝟐 𝒊𝟏/√𝟐

𝒊𝟏/√𝟐 𝟏/√𝟐
] [
𝑨𝟏
𝑨𝟐
] 

( 53 ) 

 
|
𝑩𝟓
𝑨𝟏
|
𝟐

=
𝟏

𝟐
(𝟏 − 𝒄𝒐𝒔(𝜷(𝑳𝒂 − 𝑳𝒃))) 

( 54 ) 

 
|
𝑩𝟔
𝑨𝟏
|
𝟐

=
𝟏

𝟐
(𝟏 + 𝒄𝒐𝒔(𝜷(𝑳𝒂 − 𝑳𝒃))) 

( 55 ) 

This structure exploits a path length difference to achieve spectral response from the input. This design 
can be used to split two signals carried on two wavelength bands. If the path difference is chosen so 
that 𝛽1(𝐿𝑎 − 𝐿𝑏) = (2𝑚 + 1)𝜋  and 𝛽2(𝐿𝑎 − 𝐿𝑏) = 2𝑛𝜋 , then any signal composed of these two 
modes incident on port A1 will be split to ports B1 and B2 respectively. This structure can also be used 
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to add two signals, one carried on wavelength 𝛽1  at port A1 the other with 𝛽2  at port A2. If 
𝛽1(𝐿𝑎 − 𝐿𝑏) = (2𝑚 + 1)𝜋 and 𝛽2(𝐿𝑎 − 𝐿𝑏) = (2𝑛 + 1)𝜋  then both signals will be output on port B1. 
These structures are popular for sensing strain because the long path length lends itself to high 
sensitivity of the measurand [5] [6].  

If one of the paths of the interferometer is open to changes in the environment then any effects on 𝛽 
of this path will be reflected in the transmitted power. Influences such as temperature changes, stress, 
and changes to the guiding structure of the sensing arm of the interferometer would affect the 
transmitted power. Modelling and characterization of the environmental effects allow the device to be 
used as a sensor. This will be discussed more with the ring resonator structure studied and tested in 
this thesis.  

Ring Resonators 

 
Figure 10: Diagram of ring resonator 

 

Resonator structures can be created from a power coupler by connecting the second output of the 
coupler to its second input. A pictorial representation of a ring resonator is given in Figure 10. This 
creates two separate waveguide pathways which interact in a small region, described by the power 
coupler. The length of the closed waveguide (referred to as a ring or racetrack), is the critical factor in 

this device’s frequency response. The change in amplitude per round trip in the ring is 𝛼 = 𝑒−𝑖𝑎𝐿 with 
𝑎 being the complex component of the medium’s refractive index. 

A coupler structure has a more general representation. Defining the coupling and the through coupling 
coefficients as 𝑡 = cos (𝐾𝐿)  and  𝑘 = sin(𝐾𝐿) , respectively, gives the matrix relation for a power 
coupler in the form of equation ( 56 ) for an arbitrary interaction of length 𝐿. The solution for the 
through power of the resonator structure is described by equation ( 58 ), using equation ( 57 ) to relate 
the field amplitude at B2 and A2. Studying the transmittance relation on resonance, when the phase 
𝛽𝐿 = 2𝑚𝜋, the critical coupling condition is found by plotting the equation ( 58 ) as a function of 𝑡 for 
a fixed value of 𝛼. A plot of the on resonance transmission for α=0.95 is given in Figure 11. When 𝑡 =
 𝛼, the field amplitude at port B1 on resonance is zero.  

 
[
𝑩𝟏
𝑩𝟐
] = [

𝒕 𝒊𝒌
𝒊𝒌 𝒕

] [
𝑨𝟏
𝑨𝟐
] 

( 56 ) 

 𝑨𝟐 = 𝜶ⅇ−𝒊𝜷𝑳𝑩𝟐 ( 57 ) 
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|
𝑩𝟏
𝑨𝟏
|
𝟐

=
𝜶𝟐 + 𝒕𝟐 − 𝟐𝜶𝒕 𝒄𝒐𝒔 (𝜷𝑳)

𝟏 + 𝜶𝟐𝒕𝟐 − 𝟐𝜶𝒕 𝒄𝒐𝒔 (𝜷𝑳)
 

( 58 ) 

The variables 𝛼 and 𝑡, and hence 𝑘, affect the nature of the resonator transmission spectrum. The 
round trip loss coefficient decreases as the length of the resonator increases. The radius of curvature 
of the curves in the structure also affects the round trip loss, as smaller radius bends have lower 
transmitted power. The coupling coefficient can be approximated by numerically evaluating an overlap 
integral in the perturbation region as well as controlling the interaction length. In the algebraic model 
of the resonator structure, there was no way to account for non-constant coupling parameters during 
the interaction length of the power splitter. More accurate resonator transmission simulations come 
from FDTD programs as detailed later in this section.  

 
Figure 11: On resonance transmittance  

Relative output power as a function of coupling t value. Round trip loss 𝛼 = 0.95. 

Studying the off-resonant equation shows the possible peak shapes that this structure is capable of 
producing. For a resonator designed such that 𝛼 = 𝑡 , increasing 𝑡  (and hence 𝛼 ) increases the 
narrowness of the resonance peaks. The plots in Figure 12 show various spectral responses a resonator 
structure is capable of producing. Resonators with narrow peaks (high finesse), have very low loss and 
large 𝑡 values.  

Apart from the location of a resonance peak, the distance between peaks (the free spectral range or 
FSR) is also a characteristic of the resonator structure. This is not a constant value, but rather it changes 
depending on the wavelength range used, though the value does not vary greatly from peak to peak. 
For a resonator of length L a resonant wavelength produces a propagation constant that satisfies 
equation ( 59 ). Assuming that the effective index is constant between peaks, the propagation constant 
follows equation ( 60 ) and , the FSR of a resonator is described by equation ( 61 ).  

 𝜷𝟏𝑳 = 𝟐𝒎𝝅 ( 59 ) 

 
𝜷 =

𝟐𝝅𝒏ⅇ𝒇𝒇
𝝀
⁄  

( 60 ) 
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 𝑭𝑺𝑹 = 𝝀
𝟐

𝒏ⅇ𝒇𝒇𝑳
⁄  ( 61 ) 

  
𝜶=0.5 𝜶=0.8 

  
𝜶=0.95 𝜶=0.975 

Figure 12: Resonator peak shape 
Relative power output as a function of propagation constant and coupling coefficient 𝑡. For various loss values 

This structure’s performance can be further refined by placing a power coupler on the ring structure 
opposite the first resonator or by coupling two resonators together. Both designs are shown in Figure 
13. Placing a coupler that only takes away a small portion of the power in the ring will create a structure 
that behaves as a wavelength selective switch. The circulating power of a resonator, the power trapped 
in the ring of the device described in Figure 10, is given by equation ( 62 ). This function experiences a 
maximum when the through power of the resonator, equation ( 58 ), is at a minimum. Adding another 
waveguide near the ring, as in the left side of Figure 13, allows some of the circulating power to exit the 
ring. The resonator can be designed to remove a specific wavelength from the incoming signal at port 
A1 while leaving other wavelengths unaffected. The time reversal of these passive structures allows this 
to be adapted to add a signal carried on a wavelength to an existing input.  
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Multiple rings placed in series increases the FSR of the device drastically through the Vernier effect. The 
FSR of a resonator is proportional to the path length. The series arrangement allows devices with small 
footprints to achieve spectral responses normally reserved for larger devices 

 
Figure 13: Resonator structures 

Structure on the left measures circulating power in resonator. Structure on the right exploits Vernier effect to achieve large 
FSR. 

  
|
𝐁𝟐
𝐀𝟏
|
𝟐

=
𝛂𝟐(𝟏 − 𝒕𝟐)

𝟏 + 𝛂𝟐𝐭𝟐 − 𝟐𝛂𝐭 𝐜𝐨𝐬 (𝛃𝐋)
 

( 62 ) 

3.2 Sensing Devices 

Optical sensors employ changes in transmission properties caused by environmental effects, measured 
against some baseline value, to deduce the value of an environmental property. When mathematically 
modelling a sensing device the property that the sensor is measuring is called the measurand. The 
sensor tracks observable changes in either relative power transmission at a fixed wavelength or a broad 
spectrum sweep to infer the value of the measurand. The passive optical device models presented 
above are sufficient to model the performance of sensing devices. The sensitivity of a sensor is defined 
as the change in the measured output divided by the corresponding change in measurand [7]. 

The sensor structure tested in this thesis is simplistic, a single ring resonator partially exposed to the 
air, but is a good proof of concept for the viability of the SOI platform for sensors. A two ring resonator 
structure exploited the Vernier effect to achieve a sensitivity of 1300 nm/RIU. A resonator-
interferometer structure achieved sensitivity of 1000 𝜇𝑚/𝑅𝐼𝑈  [8], another compound structure 
reported a sensitivity of 688.3 𝑛𝑚/𝑅𝐼𝑈 [9]. More complex phenomena can also be studied using SOI 
chips, a surface plasmon MZI sensor reported a sensitivity of 102 nm/RIU over a small active sensing 
region [10]. Exotic waveguide structures experience increased sensitivity to changes in refractive index, 
a study of a slot waveguide resonator structure yielded a sensor with sensitivity of 300 nm/RIU [11]. A 
whispering gallery mode resonator tested in [12] achieved a sensitivity of 120 𝑛𝑚/𝑅𝐼𝑈 . Photonic 
crystal structures are highly sensitive to changes in the surrounding index of refraction [13] [14] [15]. 

Types of Sensors 

Attenuation 

As discussed before, part of the EM field of any bound mode exists outside the high index area of a 
waveguide. This evanescent field will interact with the material that surrounds the waveguide. Figure 
14 is a simple diagram of such a sensor. An attenuation sensor can be described as a power source 
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leading to a power splitter and two paths, each ending in an optical power meter. One path, the 
reference arm, is isolated from changes in the measurand while the other path, the sensing arm, is not. 
If the interaction of the measurand on the sensing arm affects the attenuation of the mode then the 
change in output power of the sensing arm, relative to the reference arm, is an indicator for change in 
the measurand. For example, if the sensing arm has a break in it and is unsupported then a slight change 
in alignment of this break would result in a change in transmitted power. One example of an application 
of this type of sensor is in accelerometers, where the displacement of the sensing arm is proportional 
to the acceleration of the chip by Hooke’s Law.  

 
Figure 14: Basic Single Frequency Sensor Diagram. 

Attenuation in waveguides can also be modified by increasing bending along the path. A pressure sensor 
can be realized by placing a fibre in between an interlocking pattern so that as the interlocking pattern 
is compressed bends in the fibre become more pronounced. Increasing pressure increases the bending 
loss of the fibre, making the changes in output power an indication of pressure. In [16], bending loss 
was measured in an array of fibres to map applied pressure. Chemical coatings are used to change the 
loss in an optical waveguide, and indicate changes in gas concentration [17].  

Phase 

The phase difference exploited in the transfer function of an MZ interferometer (see Figure 9) is 𝛷 =
𝛽1𝐿1 − 𝛽2𝐿2. With path one as a reference, 𝐿1 and 𝛽1 being constant, any changes in either 𝛽2 or 𝐿2 
will affect the output power. Sensors that make use of phase measurements have periodic 
transmittance functions and thus possess a limited rage of operation dictated by the sensitivity. If a 
wavelength is chosen so that no power is transmitted, (i.e. equation ( 54 ) is zero), then the measurand 
can only affect the product 𝛽2𝐿2 by a maximum shift of 𝜋 in either direction without generating an 
ambiguous reading.  

The MZ interferometer can be designed to measure stress. If the sensing arm stretches for a large 
distance in one direction then any changes in length caused by applied stress in that direction would 
affect the transmission power. While an applied stress in the perpendicular direction will also change 
the transmission power, this effect is small compared to a stress applied parallel to the sensing arm.  
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Wavelength 

Sensors can utilize a spectrum of light to determine the location of a transmission feature and track its 
location with changes to the measurand. Resonator structures are examples of wavelength modulated 
sensors and will be explored in detail. 

All types of sensors operate according to Figure 15. The form of 𝐹(𝑥, 𝛽), the transfer function of the 
sensing structure, includes any dependence on the measurand 𝑥. The way the measurand affects the 
modes supported in the waveguide can be used as an indicator of changes in the measurand. Measuring 
changes in transmitted power due to variable loss is an example of a way changes in mode can indicate 
changes in the measurand. This relation is described by the function 𝛽(𝑥, 𝜆). Using mode calculation 
techniques coupled with the passive waveguide structure analysis discussed above, a mathematical 
description of a sensor's expected output and sensitivity can be studied. 

 
Figure 15: Pictorial Representation of a Sensor  

Sensors that make use of a single frequency light source have their dimensions and the frequency of 
light chosen so that any variations in transmission power with respect to the measurand are maximised, 
maximising sensitivity. Any periodicity in the transmission spectrum must be accounted for as it will 
limit the active sensing range of the device. 

One way to tune these devices is to limit the interaction area over which the measurand can affect the 
device. If the interaction of the measurand is limited to a portion of the path, 𝑙, then phase accumulated 
in the sensing arm of an MZ interferometer is replaced by 𝛽1(𝐿2 − 𝑙) + 𝛽2𝑙, decreasing sensitivity but 
increasing active sensing range. In a similar way, the changes that a measurand causes in the 
propagation constant can be controlled by waveguide geometry choices such as the thickness of the 
waveguide cover. Since these modifications to the waveguide in the manufacturing step are not entirely 
precise, it is best to calibrate such sensors rather than use the simulated values.  

Thermally tuned devices can also be manufactured and are often used in industry. These chips have a 
resistor buried near the waveguide with connected copper contacts placed elsewhere on the chip. 
When a voltage between the contacts is applied, the power dissipated by the resistor as heat causes 
the chip to expand, in turn causing a change in path length for any optical device near this buried 
resistor. These components are used in the operation of tuneable communication devices such as filters 
and switches.  In order to maximise performance, they are calibrated and then kept in thermal isolation. 
Fine tuning of a device’s spectral response is possible after the manufacturing step [18]. 

A wavelength dependent sensor requires a tuneable light source. Further, the measurand value should 
not vary significantly over the period of time required to accurately sample the transmission spectrum 
of the sensor. In some cases this is acceptable but for other measurands, such as acceleration, the value 
can change too quickly to make swept measurements meaningful. The algebraic sensitivity analysis of 
wavelength dependent sensors, such as the resonator structure, is performed by tracking the values of 
constant phase, 𝛽𝐿 = 2𝑀𝜋, as the measurand is varied. Since the path length is constant the behaviour 
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of the indicator, the wavelength required to generate a resonance peak, is dictated by the dispersion 
relation 𝛽(𝑥, 𝜆). 

Sensitivity Calculations 

For a single wavelength sensor, the measured output is a ratio of optical powers from the sensing and 
reference arms of the device. The measured output for a wavelength dependent sensor is the 
wavelength of a defining feature of the device’s transmission spectrum, such as a resonance peak. 
Predicting the sensitivity of a sensor is done by differentiating the measured output with respect to the 
measurand. This derivative is the predicted sensitivity.  Sensors are optimized before manufacture to 
maximise this value by changing device dimensions, input wavelength and waveguide geometry. The 
uncertainty of a sensor is the variance in the predicted output. It is determined by the accuracy with 
which the measured output can be determined as well as any uncertainty in the modelled relation used 
to determine the measurand value.  
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4 Theoretical Results 

The device considered for the remainder of this thesis is a high-finesse ring resonator, with half of the 
ring path open to the air. Fluids with different refractive indices placed on the surface of a chip affect 
the bound modes of the guiding structure, changing the overall phase accumulated in the exposed 
portion of the ring. By tracking the shift in wavelength required to generate a transmission peak with a 
frequency swept laser, the index of refraction of the material covering the resonator can be calculated.   

By calculating the propagation constant using numerical approximations and then using the resultant 
model in the passive waveguide structures discussed previously, we seek to predict the direction and 
magnitude of the shifts in resonance peak of a resonator due to changes in mode structure. Assuming 
that the sensing experiments will take place in thermal isolation, so that the length of the resonator is 
constant, the only effect on the transmission peaks will come from changes in propagation constant. 
High precision index matching fluids can be used to calibrate the sensor and test the computer models’ 
accuracy.   

4.1 Mode Calculation 

In this section we will investigate how waveguide geometry, waveguide cover index, and spectrum of 
wavelengths affect the propagation constant of the modes supported by waveguide structures. The 
method by which the peak location and FSR is calculated from simulation outputs is the same for every 
type of simulation.  

Given a particular waveguide geometry, cover index of refraction, and free space wavelength each 
model can be numerically solved for a predicted propagation constant. Multiple runs of these 
simulation with varied parameters can generate data points that are used to create a 3D interpolating 
function. This is used to predict the relation 𝛽 has on the free space wavelength and the cover index of 
refraction. In a resonator, the peak location shift is determined by level sets of the interpolating 
function. Since the resonator structure can be made to have an arbitrary length, any β could be a 
resonance peak and so the particular value of β used in this analysis is inconsequential, as long as it is a 
value supported by a bound mode in the structure.  

The change in FSR can also be quantified with the interpolating function. Two adjacent resonance peaks 
can be found by choosing a path length 𝐿 and two values, 𝛽1 and 𝛽2, on the dispersion relation that 
satisfy 𝛽1𝐿 − 𝛽2𝐿 = 2𝜋 . Repeating the process described above for both these 𝛽  values yields the 
predicted change in FSR.  

Three Layer Slab 

The determination of the propagation constant and EM field structure of TE modes in a three layer slab 
waveguide can be reduced to solving equation ( 17 ) numerically for 𝛽. For convenience equation ( 17 ) 
is shown again below as equation ( 63 ). Because 𝑛2 is greater than 𝑛1and 𝑛3 the square of 𝛽 must be 

greater than the largest of 𝑘0𝑛1
2 and 𝑘0𝑛3

2 as well as less than 𝑘0𝑛2
2.  

 
𝒕𝒂𝒏(𝜸𝟐𝒉) =

𝜸𝟏 + 𝜸𝟑

𝜸𝟐 (𝟏 −
𝜸𝟏𝜸𝟑
𝜸𝟐
𝟐 )

 
( 63 ) 
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𝛾1, 𝛾2 and 𝛾3 from equations ( 14 ), ( 15 ), and ( 16 ) all depend on 𝛽, the free space wavelength, and 
the corresponding index of refraction. The left hand side of equation ( 63 ) depends on the thickness of 
the slab, and increasing ℎ increases the number of periods of the tangent function that will appear in a 
plot versus 𝛽, thereby increasing  the number of bound modes supported by the structure.  

  
Thickness of 150nm Thickness of 800nm 

Figure 16: Three layer slab confinement condition 
Plots of equations on left (dashed) and right (undashed) hand side of equation ( 63 ). Intersection of these curves are 

propagation constants of bound modes. Cover index of refection 1.5, core index of refraction 3.5.   

The right hand side of equation ( 63 ) has a discontinuity over the region of accepted values of 𝛽. The 
intersection of the functions on the left and right of equation ( 63 ) is calculated numerically and these 
intersections describe the even and odd solutions. Plots of the confinement relation are shown in Figure 
16 for two slab waveguides of different thicknesses. The values of the index of refraction were 1.5 for 
the top and bottom layer and 3.5 for the middle layer. The unknown coefficients of the electric field 
function can be found using algebraic relations at the boundary.  

 
Figure 17: Three layer slab simulated propagation constant 

Propagation constant vs cover index of refraction and wavelength. 200nm thickness. SiO2, Si, vacuum layers  

Figure 17 shows a contour plot of a three slab propagation constant simulation with varied cover index 
of refraction and wavelength. The contour lines of this plot track the wavelength required to produce a 
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resonance peak for a cover index of refraction 𝑁. The three slab simulation indicates that the resonance 
peaks will shift upwards as the cover index of refraction is increased. The sensitivity analysis of a ring 
device using simulation data will be performed later.  

Beam Propagation Mode Calculation 

Rsoft is a software package which includes beam propagation simulation tools that can be employed to 
determine the modal field patterns and propagation constants of arbitrary optical waveguides. The 
software package provides an environment for point-and-click layout of waveguide structures in the 
CAD software as well as allowing for series of simulations with varied parameters such as free space 
wavelength and material properties or changes in the geometry of the waveguide. This allows the user 
to simulate how changes in design parameters or the measurand will affect the spectral response of a 
passive waveguide structure. This is particularly useful because the beam propagation simulation 
technique is largely independent of the waveguide geometry and input wavelength. 

 
Figure 18: Beam propagation mode calculation  

Rsoft 3D vector BEAMPROP simulation for a buried rectangular waveguide. Colour map shows the magnitude of 
corresponding electric field. Height of 300 nm, width of 500 nm.  

Figure 18 is the output of one beam propagation simulation. For a given waveguide structure, cover 
index, height, width, and free space wavelength, a beam propagation simulation can be run and the 
propagation constant and EM field structures of the first bound mode found. For our studies, these 
simulations were run in parallel each with a slight variation. Six structures were simulated this way to 
study the predicted sensitivity of each type of guiding structure - a strip waveguide, two rib waveguides 
with varied slab height, and three buried waveguides with varied oxide cover thickness. 

The beam propagation simulation results for four waveguide structures are shown in Figure 19. Visually, 
the buried waveguide structure experiences the smallest shift in propagation and the strip waveguide 
possess the largest as the cover index of refraction is increased. The simulated waveguide structures 
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have the same height and width (300 nm and 500 nm respectively). As with the 3-slab simulations, every 
waveguide structure is predicted to show an increase in peak location with increasing cover index of 
refraction. The critical factor of the magnitude of these shifts is the type of guiding structure used.  

  
Strip waveguide Rib height of 0.1 𝝁𝒎 

  
Rib height of 0.15 𝝁𝒎 Buried, no oxide layer 

Figure 19: BEAMPROP propagation constant simulations 
Propagation constant vs wavelength (𝜇𝑚) and cover index on the x and y axes, respectively. All propagation constants were 
calculated through a 3D vector beam propagation simulation. All of the simulated structures have the same height (0.3 𝜇𝑚) 

and width (0.5 𝜇𝑚). 

4.2 Resonator Sensor Structure Analysis  

Peaks 

The resonator transmission equation, ( 64 ), possesses a minimum when 𝛽𝐿 =  2𝑚𝜋 corresponding to 
constructive interference for a round trip in the ring structure. In the idealized spectrum the dispersion 
relation is approximated by 𝛽 = 2𝜋𝑛𝑒𝑓𝑓 𝜆⁄ . Figure 20 shows the idealized transmission spectrum of a 

resonator with path length 120 μm and a constant effective mode index of 2.5.  If we assume that the 



 
 

~ 30 ~ 
 

device is thermally isolated then only changes in the propagation constant will result in changes in the 
transmission spectrum.  The sensing arm of a resonator device is the ring path.  As a constant multiplier 
to the effective index is increased, increasing the effective index, resonance peaks shift to the right. This 
is the direction of shift we expect from the sensor corresponding to an increase in propagation constant 
due to changing cover index of refraction. 

 
|
𝒃𝟏
𝒂𝟏
|

𝟐

=
𝒂𝟐 + 𝒕𝟐 − 𝟐𝒂𝒕 𝒄𝒐𝒔 (𝜷𝑳)

𝟏 + 𝒂𝟐𝒕𝟐 − 𝟐𝒂𝒕 𝒄𝒐𝒔 (𝜷𝑳)
 

( 64 ) 

 
Figure 20: Idealized resonator transmission 

L=120 um t=0.91 α=0.95 effective index 2.5, with a constant shift applied to the propagation constant 

In order to use the peak location of a resonator as an indicator for changes in cover index of refraction, 
this effect must be further studied to find ways to control sensitivity. The beam propagation and three 
layer slab simulation data will be used to model the effects of changing cover index. From the simulation 
data we seek to quantify the expected shift in peak location resulting from changes in the cover index 
of refraction.  

Peak Location 

The movement of the resonance peaks is predicted by level sets of the dispersion relation with varying 
cover indices of refraction and free space wavelengths. As the cover index of refraction is increased 
both the beam propagation and three layer slab simulations predict an increase in 𝛽. The results of 
these simulations are shown in Figure 19. The sensitivity is strongly dependent on the waveguide 
geometry, with structures that have more evanescent field exposed to the air having larger sensitivities. 
All of the expected shifts in resonance peak are positive.  

When used as a sensing device the resonator is not physically changing its shape. The length is constant 
and the new minimum will occur at a wavelength that produces a mode with the same propagation 
constant as when the cover index of refraction was unchanged. This ensures that the bound mode 
accumulates the same phase change over one path length of the resonator, equation ( 65 ). The 
expected sensitivity for a resonator sensor is the slope of the level sets of the dispersion relation and is 
given by equation ( 67 ). These partial derivatives can be numerically evaluated with the simulated data.  
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 𝜷(𝝀,𝑵)𝑳 = 𝟐𝒎𝝅 ( 65 ) 

 
𝑫𝜷 = 𝟎 =

𝝏𝜷

𝝏𝑵
ⅆ𝑵 +

𝝏𝜷

𝝏𝝀
ⅆ𝝀 

( 66 ) 

 
ⅆ𝝀

ⅆ𝑵
= −

(
𝝏𝜷
𝝏𝑵

)

(
𝝏𝜷
𝝏𝝀
)

 

( 67 ) 

For a resonator device with a fraction 𝑥 of the resonator path exposed to changes in cover index, the 
phase gained over one round trip is given by equation ( 68 ). The subscript 𝑐 represents the covered 
portion of the resonator path, not affected by changes in the measurand, and the subscript 𝑣 
represents the exposed portion. A first order expansion of the propagation constant functions yields 
the expected sensitivity, equation ( 70 ). The presence of 𝑥 in the numerator is the major difference 
between this and equation ( 67 ). The particular resonator tested in this thesis has half of the resonator 
path exposed to the air. The interferometer studied in [19] examined the trade-off between layer 
thickness and sensor sensitivity, showing a 10% change in sensitivity with the presence of a 10 𝑛𝑚 SiO2 
layer.  

 𝜷𝒄(𝝀)𝑳(𝟏 − 𝒙) + 𝜷𝒗(𝝀, 𝑵)𝑳𝒙 = 𝟐𝒎𝝅 ( 68 ) 

 ⅆ𝜷𝒄
ⅆ𝝀

ⅆ𝝀 𝑳(𝟏 − 𝒙) + (
𝝏𝜷𝒗
𝝏𝝀

ⅆ𝝀 +
𝝏𝜷𝒗
𝝏𝑵

ⅆ𝑵) 𝑳𝒙 = 𝟎 
( 69 ) 

 ⅆ𝝀

ⅆ𝑵
= −𝒙 (

𝝏𝜷
𝒗

𝝏𝑵
) (

ⅆ𝜷
𝒄

ⅆ𝝀
(𝟏 − 𝒙) +

𝝏𝜷
𝒗

𝝏𝝀
𝒙)⁄  

( 70 ) 

 
 

  
Height 0.3 𝝁𝒎, width 0.5 𝝁𝒎, rib height 0.1 𝝁𝒎 Height 0.22 𝝁𝒎, width .5 𝝁𝒎, slab height 0.05 𝝁𝒎 

Figure 21: Simulated waveguide sensitivity 
Rib waveguide sensitivity to cover refractive index change. Units of graph are 𝜇𝑚/RIU. Data came from 3D vector BEAMPROP 

simulations. 

Figure 21 shows the expected sensitivity, from equation ( 67 ), for two of the waveguide structures 
simulated. From this figure the beam propagations simulations predict an increase in sensitivity as the 
cover index increases as well as an increase in sensitivity with increased wavelength.  
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The interpolating function can be used to track the location of a particular value of 𝛽, and hence a 
resonance peak, as the cover index is changed. Figure 22 shows the shift, measured from the original 
wavelength, of three propagation constants against the change in cover index of refraction for various 
waveguide geometries. All simulations predict a positive shift in peak location as the cover index of 
refraction is increased, and that the defining factor in the magnitude of the shift is the geometry of the 
exposed waveguide. The strip waveguide expected a sensitivity of 45 𝑛𝑚/𝑅𝐼𝑈 while the 1 𝜇𝑚 buried 
waveguide predicts a sensitivity of only 2 𝑛𝑚/𝑅𝐼𝑈. [20] studies the effect of waveguide geometry and 
coupling distance on a ring resonator sensor’s sensitivity. The ring resonator structure tested in [21], a 
rib waveguide with a height of 220 𝑛𝑚, width of 450 𝑛𝑚 and rib height of 27 𝑛𝑚, reported a sensitivity 
of 70 𝑛𝑚/𝑅𝐼𝑈. A sensor composed of two resonators in series reported a sensitivity of 1300 𝑛𝑚/𝑅𝐼𝑈 
in [22]. 

  
Buried waveguide Rib waveguide 

  
Strip waveguide 3 Layer waveguide 

Figure 22: Shift in peak location vs cover index of refraction 
Covered, rib, and strip waveguide and three layer slab simulated dispersion relations. Three values of 𝛽 were arbitrarily 

chosen, and their respective wavelength with cover index 1.0 are given in the legend. Data came from 3D vector BEAMPROP 
simulations.  

Free Spectral Range 

Along with the peak location, the FSR can also be measured with the same sweep measurements. In 
terms of the dispersion relation the FSR can be found by choosing two values of β that satisfy  𝛽1𝐿 =
2𝜋𝑚 and 𝛽2 = 2𝜋(𝑚 + 1). Just as we tracked the movement of one resonance peak with interpolating 
functions, the FSR (as a function of cover index) can be extracted from the beam propagation 
simulations. The predicted change in FSR from BEAMPROP simulations for various waveguide structures 
are shown in Figure 23. 
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Figure 23: FSR vs cover index from BEAMPROP simulations 

The nearest peak to 1550 𝑛𝑚 was chosen for each dataset. Data came from 3D vector BEAMPROP simulations. 

All simulations, with the exception of the covered waveguide, predict an increase in FSR of a magnitude 
that is detectible by a swept laser. This change can be used to decrease the sweep range required to 
make measurements, removing ambiguity caused by the periodic nature of the transmission of the 
resonator structure.  

4.3 Predictions  

The beam propagation simulations for varied waveguide structures suggest that the strip wave guide is 
more sensitive to variations in cover index of refraction than the buried or rib waveguides. It had a 
predicted sensitivity of 45nm/RIU and also has the largest variation of FSR with changes to cover index. 
The predicted shift of the resonance peak is independent of the length of the resonator.  

Figure 24 shows the expected shift of resonance peak for a waveguide with the dimensions of those 
tested in this thesis as a function of cover index or refraction. It was a rib waveguide with height 220 
nm, width 500 nm, and slab height of 50 nm. The expected sensitivity is 48.8 nm/RIU at a wavelength 
of 1557 nm. However, since only half of the resonator structure is exposed to the air, the predicted 
sensitivity of this sensor is 24.4 nm/RIU. Compared to a taller rib waveguide, the shorter structure is 
expected to have a higher sensitivity.  

 
Figure 24: Expected shift of waveguide structure 

From BEAMPROP simulation of waveguide dimensions used in sensor. Data comes from 3D vector BEAMPROP simulation.   
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5 Results 

5.1 Experimental Setup 

Data was collected with an automated labview program which controlled a tuneable laser while making 
simultaneous measurements of optical output power. The resonator structures, along with connecting 
waveguides and grating couplers, were etched on a silicon wafer. Bare fibre cores, held securely to 
micro manipulators, are positioned above the silicon chip and held at 10° so that laser light can be 
coupled between the fibre core and the grating coupler. Given a specified optical range and wavelength 
step size the labview program generates the transmission spectrum of the connected structure.  

The angle and quality of cut of the bare fibre are critically important to the quality of the power 
transmission at the two couplers on the device. The inspection of the fibre cuts as well as their initial 
positioning was done visually with the aid of a microscope. Once the laser is turned on, if the initial 
positioning of the fibres is close enough to the grating couplers, the optical power meter will read power 
exiting the chip. Small adjustments are made to both the input and output fibre coupling positions to 
maximize the transmitted power.  

Once the baseline measurements of the device are made for a cover index of refraction of 1, different 
liquids can be placed on the chip and the change in peak location can be observed. If the chip moves as 
the sample liquid is placed on its surface, preventing light coupling through the grating, then the chip 
must be cleaned and the process restarted. The diffraction caused by the presence of the liquid makes 
it impractical to visually align the bare fibres on top of the grating coupler.  

The chip was cleaned by pipetting alcohol onto the chip multiple times, in multiple directions, wiping 
away excess with a delicate tissue and blow drying it. The chip can then be reconnected to the 
experimental equipment to see how close the measured resonator peaks are to the baseline values. 
Some of the index matching fluids were removed easily, while others did not entirely come off the chip 
at all. A second chip was used to complete the last half of the sensing trails because the index matching 
fluid in the second trial did not clean off well.  

5.2 Device Geometry 

The structure to be tested as a sensor is a ring resonator. Ten nearly identical structures were 
manufactured on the silicon chips used. Of these, the fourth one down had the most consistently good 
power coupling, and so was the used in the trials.  
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Figure 25: Cross section of waveguide 
Geometry of waveguide in SOI chip tested as sensor.  

 

Figure 26: Screen capture of chip’s CAD file 
Array of manufactured rings on one SOI chip. Grating couplers omitted. 

 
Figure 27: Close-up of ring structure  

30.5 𝜇𝑚 in diameter, coupling distance of 0.24 𝜇𝑚 with strip waveguide. Half exposed to air.  
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Both chips used in this study had rib waveguides fabricated on top of a 2 𝜇𝑚 oxide layer. The total 
height of the rib waveguide is 220 nm, with a rib height of 50 nm and width of 500 nm shown in Figure 
25. A 70 nm secondary etch formed the grating couplers. The chips were produced in France by CEA-
LETI using a 193 nm deep UV lithography. The index of refraction of silicon is near 3.44 and the refractive 
index of silicon dioxide is near 1.43. The ring resonator structures used in the study are shown in Figure 
26 and Figure 27. The diameter of the rings was 30.5 𝜇𝑚 and the smallest coupling distance was 240 
nm.  

5.3 Resonator Peaks 

With the output power plotted on a log scale, the location of the resonator peaks is clearly visible. The 
positive shift predicted by the simulations was observed. The wavelength sweep of the experiment was 
from 1550 nm to 1565 nm in steps of 0.05 nm. Three power outputs were averaged per input 
wavelength to create one data point on the wavelength sweep. The dwell time for each measurement 
was 50 ms. Figure 28 shows the baseline response of the resonator structure.  

 
Figure 28: Initial frequency response of resonator for chip #1 



 
 

~ 37 ~ 
 

 
Figure 29: Swept response with various liquids for chip #1 

Figure 29 shows the baseline spectrum response and the shifted response due to the presence of two 
index matching fluids on the surface of the chip. The uncertainty in the stated refractive index of the 
index matching fluids was 0.0002 RIU. The 1.4 index matching fluid was not easily cleaned off so a 
second resonator structure, of the same geometry, was employed for further tests. Its base spectrum 
is shown below in Figure 30. The chip was etched on a piece of silicon from a different position of the 
wafer, and its impurity level is slightly different than the first chip tested. This may account for the 
slightly different resonance peak locations. Figure 31 shows the shifted response due to the presence 
of the remaining two liquids tested, with N=1.5 RIU and N=1.6 RIU.  
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Figure 30: Initial frequency response of resonator for chip #2 

 
Figure 31: Swept response with various liquids for chip #2 

 

The shift of the resonance peaks exceeds both the FSR of the ring and the sweep range of the test for 
tests on the second chip. The scan spectrum was chosen to be slightly larger than twice the ring's FSR 
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so that at least two peaks are always visible. The location of the peaks was determined by choosing the 
wavelength reading with the lowest transmitted power, or by averaging between adjacent values if the 
output power is of the same magnitude. Shifts beyond the scan range were tracked by finding the 
location of the nearest peak and adding the measured baseline FSR.  

When drying the chip between applications of the index matching fluid the most accurate procedure 
for establishing if the chip’s sensing area is clean was to compare the peak location to a baseline value. 
The more times the chip was washed and dried the closer to baseline value the measured peak became. 
These plots allow us to see the unshifting of the sensor as the residue layer deposited by the index 
matching fluid is slowly removed.  

Figure 32 details the recovery of the resonator sensor as a function of the number of times the chip was 
dried. As the time spent drying increases the peak location gradually shifts back toward the baseline 
value. The peak location for the 7th and 8th drying steps did not change between cleanings, but was 
observed to shift closer to the base value after approximately 12 hours of waiting. The shift observed 
between the 8th and 9th drying measurement is due to the residual heat from the cleaning step. 

Even after five cleanings the shift in resonance peak was significant - even the final test was not exactly 
in line with the baseline value. This shows that this device is very sensitive to residue, most likely due 
to the shape in which the oxide layer was etched away from the ring.  

 
Figure 32: Resonator spectrum during cleaning  

Series differentiates the number of times the chip was cleaned then dried with a blow-dryer 
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5.4 Shift vs Cover Index  

Tracking the peak at 1555.9 nm, we observe an increase in the peak location to 1561.8 nm and 1564.2 
nm when liquids with indices of refraction with values of 1.3 RIU and 1.4 RIU respectively are applied. 
The peak at 1554.75 nm on the second chip increases to 1565 nm and 1567.4 nm when cover indices 
of 1.5 RIU and 1.6 RIU respectively are applied. When these shifts are plotted they show a clear linear 
relationship. The uncertainty of the measurement can be calculated from the laser step size and the 
slope uncertainty.  

Cover index Start (nm) Shifts to (nm)  Shift of (nm) 

1 1555.9±0.025 1555.9±0.025 0±0.04 

1.3 1555.9±0.025 1561.82±0.025 5.92±0.04 

1.4 1555.9±0.025 1564.18±0.025 8.28±0.04 

Peak analysis of first chip 

Cover index Start (nm) Shifts to (nm) Shift of (nm) 

1 1554.75±0.025 1554.75±0.025 0±0.04 

1.5 1554.75±0.025 1558.45±0.025+6.55±0.04 10.25±.05 

1.6 1554.75±0.025 1560.8±0.025+6.55±0.04 12.60±.05 

Peak analysis of second chip 

 
Figure 33: Resonator peak shift vs cover index of refraction 

 

The experimental relation between the peak shift and cover index is shown in Figure 33. In particular, 
the slope (sensitivity) of the structure for the wavelength region 1550 nm to 1565 nm was measured to 
be 21 nm/RIU with an uncertainty of 0.44 nm/RIU  (2.1%) and the 𝑟2 value of the linear fit was 0.998. 
This is in good agreement with the expected sensitivity of 24.4 nm/RIU.  



 
 

~ 41 ~ 
 

5.5 Free Spectral Range Change 

Beyond observing the shift in resonance peak relative to baseline values, adding an index matching fluid 
produced an observable increase in the FSR of the device in good agreement with the simulation 
predictions.  

Cover Index Peak 1 (nm) Peak 2 (nm) FSR (nm) 

1 1562.3±0.025 1555.9±0.025 6.4±0.04 

1.3 (next peak to the left)  1561.82±0.025 1555.4±0.025 6.42±0.04 

1.4 1564.18±0.025 1557.7±0.025 6.48±0.04 

1 1561.2±0.025 1554.75±0.025 6.45±0.04 

1.5 (two peaks to the left) 1558.45±0.025 1551.925±0.025 6.55±0.04 

1.6 1560.8±0.025 1554.2±0.025 6.6±0.04 

Table of FSR shift 

 
Figure 34: FSR change as a function of cover index of refraction 

Different series distinguish the change in FSR for each pair of peaks within the swept area. Blue series is original pair of peaks 
in swept range, Red is second pair of peaks and yellow is the third.  

Figure 34 displays the FSR of the peaks observed in the sensor sweep for each application of the index 
matching fluid. The blue series shows the baseline measurement of chip 1. The application of the 1.3 
RIU index fluid displaces the rightmost peak beyond the sweep range and the red series distinguishes 
this pair of peaks from the baseline value. Similarly, the application of the 1.5 RIU index matching fluid 
displaces the baseline by an amount such that the FSR measurement made is that of the second pair of 
peaks to the left of the baseline of the second chip, and is shown by the yellow data series. The unshifted 
FSR was obtained from the data in Figure 35. The BEAMPROP simulations predicted an increase of about 
0.2 nm with the application of a 1.6 RIU index matching fluid. This is in close agreement with the 
observed shift of 0.25 nm.  
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The benefit gained by the sensor from measuring the FSR, in addition to the shift in resonance peak, is 
that this change, which is also dependent on the cover refractive index, can be used as an indicator to 
remove the ambiguity of a shifted spectrum beyond the FSR of the ring. The two high value index 
matching fluids used to calibrate the sensor produced readings that could be misinterpreted as liquids 
of refractive index lower than 1.3 RIU. The change in FSR in these measurements removes this 
ambiguity.  

 
Figure 35: Spectral response of resonator on chip #2 

Broad spectrum sweep with step size 0.05𝑛𝑚 

5.6 Temperature Effect Due to Evaporation 

Earlier in the data collection another resonator structure was tested. This chip had identical 
components (grating couplings and a ring resonator with path length 205 𝜇𝑚) but had a much thicker 
oxide protective cover layer. When the experiments outlined above were performed on this chip with 
alcohol as the liquid, a shift in resonance peak was observed despite the cover being too thick for 
changes in the surface index of refraction to influence the propagation constant of the bound modes of 
the waveguide.  These findings are summarized in Figure 36. This effect was found to be caused by the 
temperature change due to the evaporation of the alcohol. This was discovered when tests with the 
index matching fluids (which do not evaporate at room temperature) caused no change in the location 
of the resonance peaks.  
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Figure 36: Shift observed due to temperature change  

Temperature change caused by alcohol evaporating from the surface. 

Since evaporation is an endothermic reaction the surface of the chip, and therefore the ring structure, 
cools off and will contract as a result. Since the geometry induced phase change is 𝛽𝐿 the resonance 
peaks will occur at wavelengths that produce larger 𝛽, corresponding to a negative shift in wavelength.  

The change in path length can be deduced from the shift in wavelength. Assuming the propagation 
constant is given by 2𝜋𝑛𝑒𝑓𝑓 𝜆⁄ , any change in length of the resonator can be approximated by equation 

( 71 ). If 𝐿2 is less than 𝐿1, as with the case for a shrinking resonator, we would expect the new 
resonance peak to occur at a lower wavelength. This approximation of the change in path length can 
be employed in conjunction with the spectral measurements to eliminate any temperature effects from 
the environment or the evaporating sample as it provides a new baseline value.   

 
𝑳𝟐 = 𝑳𝟏

𝝀𝟐

𝝀𝟏
 

( 71 ) 

Using the change in resonance peak and the thermal expansion coefficient of silicon, 2.6 ∗ 10−6 𝐾−1 
[23], the change in surface temperature is approximately 81 degrees.  
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Figure 37: Power vs time for wavelength adjacent to resonance peaks  
Temperature change caused by alcohol evaporating from the surface. 

This shift was further examined by tracking the output power of the structure as a function of time for 
a wavelength in-between the baseline and shifted peak locations caused during cooling by the 
evaporating alcohol (Figure 37). Since this chip was not designed with a reference arm it is difficult to 
interpret these measurements as a practical measurement method for evaporation rate, but the peak 
position clearly shifts downward as time progresses and back up after the evaporation ceased at 8000 
ms.  

Such measurements, when compared to a reference power, can be used to measure small changes in 
the resonance peak location. The measurement of transmitted power of a wavelength in the path of 
the shift in resonance wavelength indicates the magnitude of this shift with a very high accuracy. For a 
sensor with a reference arm the measured value used to determine the measurand is the ratio of power 
in the reference and sensing arms. A narrower peak (greater finesse) will cause a larger change in the 
observed power ratio when compared to a broader peak for the same shift in peak location.  

5.7 Uncertainty  

The linear dependence of the resonance wavelength on cover index (equation ( 72 )) can be employed 
to determine the cover index of refraction according to equation ( 73 ). 𝑁  is the cover index of 
refraction, 𝑀 is the slope of the linear fit used to calibrate the sensor and 𝛥λ is the predicted shift in 
resonance peak.  

 ∆𝝀 = (𝑵 − 𝟏)𝑴 ( 72 ) 

 𝑵 = 𝜟𝝀
𝑴⁄ + 𝟏 ( 73 ) 
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The uncertainty of the device, the precision with which the measurand can be determined, for a sweep 
step of 0.05 nm, is dominated by the uncertainty in the slope. The percentage uncertainty in wavelength 
measurements is, in the wavelength range tested, 0.025 nm/1550nm or .0016%. From the data 
collected, this ring resonator has a sensitivity of 2.1% for a measurement of a liquid of index 1.3 RIU the 
uncertainty is 2.1% of 1.3 or 0.027 RIU.  
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6 Conclusion 

In this thesis the shift in spectral response of a SOI ring resonator due to changes in cover index of 
refraction was characterized in order to establish the viability of the structure as a sensor. This was 
demonstrated both through computer simulations and experimental measurements. A simple sensor 
composed of a ring resonator, half exposed to the air, was tested and the measured sensitivity was in 
close agreement with the computer simulations. The observed sensitivity of the half covered ring 
structure was 21 nm/RIU, close to the predicted value of 24.4 nm/RIU from BEAMPROP simulations.  

It was also demonstrated that the change in FSR, resultant from the increase in cover index of refraction, 
was detectable on the SOI chip tested. This change in FRS is a second indicator for changes in the 
measurand of the sensor. When used in conjunction with the shift in peak location, the change in FSR 
can be used to extend the measurement range of the sensor beyond the FSR, eliminating a sacrifice in 
sensitivity to increase operational range. Computer simulations of the basic waveguide structures 
suggest that strip waveguides have the highest sensitivity to both peak location and FSR due to changes 
in cover index of refraction. 

From the analysis of the variation in resonance wavelength due to temperature changes caused by 
evaporation, a ring resonator device could be designed to measure cover thickness during evaporation 
by making use of both covered and uncovered sensors. The covered portion would indicate changes in 
temperature and therefore path length, and the uncovered sensor will measure changes in propagation 
constant and therefore layer thickness. Since the covered sensor’s output is only affected by changes 
in temperature, any influence of the temperature on the measurement can be isolated, assuming that 
the change in temperature is the same for both portions of the sensor.  Finally we found, from drying 
the resonator multiple times, that impurities deposited from the drying of a sample on the sensing area 
are detectable.  

Though the sensor structure studied in this thesis is not novel and the sensitivity not large, the computer 
simulations yielded accurate predictions for the sensor’s performance. Tracking the change in FSR of 
the ring and using this to extend the active range of the sensor is a new development in the field. The 
model of a double ring sensor capable of making measurements during temperature changes is also an 
exciting development. 
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7 Future Work 

Further work to develop sensing devices could include examining alternative waveguides and 
wavelength regimes. Papers studying whispering gallery resonators, band gap waveguides, photonic 
crystals and more narrow waveguide geometries all reported improved performance over that 
observed in this thesis.   

Since neither of the chips tested possessed a reference arm, no power dependent sensor could be 
tested. Small changes in transmission spectrum could be detected if a reference power signal is 
available, resulting in high sensitivity measurements.  

More complicated waveguide structures composed of resonators and interferometer in series could 
improve sensitivity, though at the expense of requiring a larger spectral range. Silicon nanoparticles 
suspended in a medium can be used as resonator structures as well [24]. Suspending nanoparticles in a 
liquid over the sensing area of the ring would be akin to coupling a second resonator [25].  Triangular 
resonators that can excite surface plasmons have also been designed to be sensors. Sensors typically 
are designed to have a cascade of sensing structures, allowing for averages of output values to decrease 
the uncertainty.  
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