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Abstract 

Aging is associated with a loss of skeletal muscle mass, known as sarcopenia, which 

results in numerous degenerative alterations and decreased strength. One of the major 

mechanisms influencing muscle wasting in aged skeletal muscle is through augmented apoptotic 

signaling. Altered apoptotic signaling can result in cell dysfunction, and degradation of muscle 

contractile proteins and loss of myonuclei; ultimately contributing to muscle atrophy and 

contractile dysfunction. Apoptosis repressor with caspase recruitment domain (ARC) is an anti-

apoptotic protein that is highly expressed in terminally differentiated tissue (heart and skeletal 

muscle) which can regulate several apoptotic pathways. Interestingly, ARC knockout (KO) mice 

display morphological and phenotypic differences, as well as altered protein expression of a 

number of key apoptotic regulatory factors in skeletal muscle compared to wild-type (WT) mice. 

Currently, the influence of ARC in aging skeletal muscle has not been studied. Therefore, the 

current work examined the role of ARC protein on age-related muscle wasting, and apoptosis by 

utilizing an ARC-deficient mouse (along with age-matched WT controls) model at several time-

points throughout the lifespan (18-week, 1 year, and 2 years). Slow (oxidative) and fast 

(glycolytic) muscle was used to compare differences between ages and genotypes. Soleus 

weight, CSA, type I and IIA CSA, and total fiber number decreased in the 2 year animals, with a 

fiber shift towards a slower MHC expression. Contractility measurements revealed a higher rate 

of contraction and relaxation in the 2 year animals. No differences were found in pro-apoptotic 

proteins, and caspase and calpain activity; however, four anti-apoptotic proteins were increased 

in the 2 year animals. However, the Bax:Bcl-2 ratio, and ARC expression decreased in the 2 year 

animals. Subfractionation analysis in the RQ revealed increased cytosolic SMAC in the 2 year 

animals and increased mitochondrial Bax in the 18 week animals. Furthermore, the 2 year KO 
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vs. WT mice had an increased release of mitochondrial housed pro-apoptotic proteins and an 

increased Bax:Bcl-2 ratio. Additionally, ARC KO mice display a decreased total fiber number. 

Plantaris weight, CSA, type IIA, IIX, and IIB CSA, and total fiber number decreased in the 2 

year animals, with a fiber shift towards a faster MHC expression. Contractility measurements 

revealed lower contraction and relaxation rates in the 2 year animals. Similar to the soleus, three 

anti-apoptotic proteins increased, and the Bax:Bcl-2 ratio decreased in the 2 year animals, with 

no differences in caspase and calpain activity. In the WQ cytosolic AIF decreased in the 18 week 

animals, whereas cytosolic SMAC increased in the aged animals. The effects influenced 

exclusively by genotype were a decreased plantaris weight, and an increased Bcl-XL expression 

in the KO group. Overall, these results indicate that aged mice display increased muscle atrophy 

despite an increase in anti-apoptotic protein expression, as well as altered force characteristics. 

With aged ARC KO mice displaying several altered protein expressions. This work provides a 

better understanding of the role of cell death signaling and ARC protein in the skeletal muscle 

morphological and functional alterations observed during the aging process.   
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Introduction 

Apoptosis 

 The maintenance of tissues within the body is critical for normal development, growth, 

and preserving tissue function. One important regulator of cellular homeostasis is apoptosis. 

Apoptosis is a highly regulated form of programmed cell death that is critical for the removal of 

damaged and unneeded cells1. The importance of apoptosis is seen through its essential role in 

cell differentiation and tissue remodeling. For example, the removal of the webbing of skin 

between the digits of the hand is accomplished by selective deletion of interdigital cells through 

apoptotic signaling2. Additionally, during the early stages of myogenic differentiation, there is an 

increase in the anti-apoptotic protein Bcl-2, which is required for the formation of healthy 

myotubes3. Also, erythrocyte differentiation is prevented when caspase-3 activity is inhibited, 

limiting DNA fragmentation and nucleus removal4. Dysfunction in apoptosis is also a common 

feature of diseases such as cancer5, myocardial infarction6, autoimmune disorders7, sarcopenia8, 

and diabetes9.  

 

Apoptotic Pathways 

Apoptosis occurs through three main signaling pathways; the death receptor, 

mitochondrial-mediated, and the endoplasmic reticulum (ER) stress pathway. A key event during 

apoptosis is the activation of a class of proteolytic enzymes known as caspases. Caspases are 

aspartate-specific cysteine proteases that cleave target proteins resulting in destruction of the 

cell. These include both initiator caspases, such as caspase-8, which activate and cleave 

executioner caspases, such as caspase-310. Executor caspases can cleave other proteases, 

cytoskeletal proteins, and multiple cellular substrates, ultimately leading to dysfunction and/or 
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death of the cell11.  

  Death receptor signaling, results from an extracellular ligand binding to a cell surface 

receptor. These include Fas ligand (FasL) and tumor necrosis factor (TNF), which bind to a 

death receptor, such as Fas receptor or TNF-α receptor (TNFR) causing death domains on the 

receptors to become activated. This recruits and binds the adaptor proteins, Fas-associated 

protein with a death domain (FADD) and tumor necrosis factor receptor type 1-associated death 

domain (TRADD), which then forms the death-inducing signaling complex (DISC), activating 

caspase-8, and ultimately leading to the activation of caspase-312,13.  

The mitochondrial pathway is predominantly regulated by the B-cell lymphoma 2 (Bcl-2) 

family. The primary members of this family are the pro-apoptotic Bcl-2 associated X protein 

(Bax) and the anti-apoptotic protein Bcl-211. In response to cellular stress, pro-apoptotic proteins, 

such as Bax, migrate from the cytosol and insert into the outer mitochondria membrane. This 

contributes to mitochondria outer membrane permeabilization (MOMP), which allows entry of 

cytosolic proteases into the mitochondria to cleave specific substrates, resulting in the release of 

pro-apoptotic proteins from the inter-mitochondrial membrane space into the cytosol14. 

Additionally, a pre-existing mitochondrial channel called the permeability transition pore 

(mPTP) contributes to MOMP. In response to sustained cellular stress such as increased Ca2+ 

levels, adenine nucleotide translocator (ANT), voltage-dependent ion channel (VDAC), and 

Cyclophilin D proteins come together and form the mPTP15,16. This causes solutes to leak into 

the mitochondria from the cytosol, causing mitochondria swelling, and depolarization of the 

membrane potential, resulting in rupture of the membrane and release of pro-apoptotic proteins 

into the cytosol17.  These pro-apoptotic proteins include cytochrome c (Cyto-c), second 

mitochondrial derived activator of caspase (SMAC), apoptosis inducing factor (AIF), and 
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endonuclease G (EndoG). Once released, Cyto-c can bind to dATP and apoptotic protease-

activating factor (APAF1) forming the apoptosome, which leads to the activation of caspase-9, 

and ultimately cleavage and activation of caspase-318. In addition to caspase-mediated cell death, 

apoptosis can be triggered through caspase-independent pathways. Once released into the 

cytosol, AIF and EndoG translocate to the nucleus causing DNA fragmentation and chromatin 

condensation independent of caspase activation17. Caspases can be indirectly activated through 

SMAC, as SMAC release from the mitochondria causes inhibition of X-linked inhibitor of 

apoptosis protein (XIAP), which normally blocks caspase-9 and caspase-3 activity19. 

The endoplasmic reticulum (ER) stress pathway initiates apoptosis through its regulation 

of calcium. Apoptosis is triggered when the ER releases cytotoxic levels of calcium into the 

cytosol, activating calcium dependent proteases known as calpains. Calpains can cleave both 

structural proteins (including skeletal muscle contractile proteins) and caspases, such as caspase-

1220. Induction of this pathway occurs as a consequence of increased cellular stress and an 

accumulation of misfolded proteins in the ER, resulting in the initiation of the unfolded protein 

response (UPR). The activation of this pathway increases the number of protein foldases and 

attenuates the rate of protein translation in an attempt to lessen the damage of increased 

misfolded proteins21. If this response fails or if the stress is prolonged, the UPR can induce 

apoptosis22,23. 

 

Apoptosis in Skeletal Muscle 

Skeletal muscle is a long-lived, post mitotic tissue that is highly resistant to apoptotic 

stimuli24. Given its unique and diverse morphology, skeletal muscle requires special 

consideration with respect to apoptosis. Firstly, skeletal muscle is multinucleated, and under goes 
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a process known as myonuclear apoptosis whereby individual nuclei are lost rather than the 

entire cell being destroyed 41. In this process, the loss of the nuclei also results in loss of its 

associated cytoplasmic domain25. Given the important role of myonuclei in the maintenance of 

gene and protein synthesis for the muscle, a loss of nuclei through elevated apoptotic signaling 

can lead to skeletal muscle atrophy, whereas the addition of nuclei results in muscle 

hypertrophy26. In addition, caspase and calpains are known to directly degrade several contractile 

proteins such as actin, myosin, titin, and nebulin42. 

Secondly, skeletal muscle is unique in that it is a diverse tissue consisting of several fiber 

types, which differ in their metabolic function, morphology, mitochondrial content, and 

apoptotic protein expression and apoptotic susceptibility24,27. For example, different fiber types 

express varying protein expression such that the level of key apoptotic proteins such as ARC, 

Bcl-2, and caspase-3 are higher in type I fibers24. In addition, given the role of the mitochondria 

in apoptosis, changes in the number of mitochondria can influence apoptotic signaling28. For 

example, since mitochondria house many important pro-apoptotic proteins, oxidative fibers with 

higher mitochondrial content, show differences in apoptotic signaling. As well, mitochondria can 

produce reactive oxygen species (ROS), which may lead to fiber type differences in apoptotic 

signaling24. These factors contribute to variations in apoptotic resistance between slow (red) and 

fast (white) muscle. One study demonstrated that in the red gastrocnemius muscle of rats, there 

was an increase in both pro- and anti-apoptotic proteins, increased ROS generation and increased 

mitochondrial mediated apoptotic events24. 

 

Aging 

Sarcopenia is defined as a decrease in both skeletal muscle mass and function, which can 
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ultimately increase an individual’s risk for adverse health outcomes29. Sarcopenia is a steadily, 

progressive condition, frequently seen with advancing age8. Aging is accompanied by atrophy of 

skeletal muscle, with a 1% loss of skeletal muscle mass per year after the age of 5030. Although 

this occurrence has been well documented the mechanisms leading to sarcopenia are not fully 

understood. Muscle atrophy is an outcome of both a reduction is muscle fiber size and number31. 

The development of muscle atrophy with increasing age leads to a sizeable decrease in type II 

fibers with less of an effect on the more oxidative type I fibers32. The etiologies of age-related 

skeletal muscle atrophy include an increase in nuclear apoptotic signaling26, increased oxidative 

stress, and decreased satellite cell content or regenerative ability30. Collectively, these changes 

lead to increased protein degradation33 and an attenuated rate of protein synthesis in aging 

skeletal muscle26.  

Increased oxidative stress has been demonstrated with aging. Aged animals display 

higher basal levels of ROS in skeletal muscle, which can be involved in the mitochondrial 

dysfunction commonly observed in aging34. Given the important role of mitochondria during 

apoptosis, mitochondrial dysfunction with age may ultimately lead to an increase in apoptotic 

signaling. Furthermore, since myonuclei are post-mitotic and incapable of undergoing cell 

division, satellite cells are essential for regeneration and hypertrophy of skeletal muscle. If 

skeletal muscle becomes damaged, satellite cells can proliferate and help with this repair; 

however, aging results in a decreased number of satellite cells, slowed activation, and decreased 

proliferation35. Thereby decreasing the regenerative ability of the muscle, resulting in damaged 

sections being removed through apoptosis26. 

Increased DNA fragmentation, a hallmark of apoptosis, is commonly reported in aging 

skeletal muscle36. Additionally, the expression of apoptotic proteins becomes altered with age. 
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Basel levels of pro-apoptotic proteins such as Bax, are higher in skeletal muscle of aged vs. 

young animals. As well, aged animals show an increased Bax:Bcl-2 ratio, and caspase-3  

levels26. Supporting this, Song et al. reported an age-associated increase in the Bax:Bcl-2 ratio in 

both the white gastrocnemius and the soleus muscle of aging rats43. Additionally, increased 

cytosolic and nuclear levels of AIF and EndoG have been reported in aged rats37. 

Anti-apoptotic proteins are also up-regulated with aging. For example, FLICE-like 

inhibitory protein (FLIP) which is highly expressed in skeletal muscle and known to inhibit the 

death-receptor pathway, is increased with aging38. Even with the attempt to increase anti-

apoptotic proteins, this is ineffective at attenuating the myonuclear loss in aged muscles31. 

Hindlimb suspension, used to induce skeletal muscle atrophy, increases AIF and EndoG 

translocation from the mitochondria to the nucleus in aged but not of young rats37. Thus, in 

response to a stress, aged muscle demonstrates increased apoptotic signaling in skeletal muscle 

vs. young muscle39.  

Certain fiber types also exhibit differences in apoptotic signaling with age. For example, 

Bax content was found to be elevated in the EDL but not the soleus, yet an increase in TUNEL 

staining was shown in both muscles of aged animals, indicating DNA fragmentation was still 

occurring40. In another study, TNF-α, FADD, and caspase-8 content were higher in the 

superficial vastus lateralis, composed mainly of type II fibers, but not the soleus of aged rats44. 

However, others have observed differences in a number of apoptotic factors in both slow and fast 

muscle. Aged rats demonstrated increases in DNA fragmentation, caspase-3, and caspase-8 in 

both the soleus and plantaris, but significant correlations between these measures and the muscle 

weight was found only in the plantaris38. Overall, this data suggest that apoptosis is a common 

feature of aging muscle that may significantly contribute to muscle wasting and contractile 
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dysfunction with age. However, many of the key proteins that regulate these responses in aging 

muscle have not been closely studied. Furthermore, the apoptotic signaling pathways responsible 

for the observed DNA fragmentation and muscle wasting may be different in slow vs. fast 

muscle. 

 

ARC 

 A particularly unique anti-apoptotic protein is apoptosis repressor with caspase 

recruitment domain (ARC). ARC is highly expressed in long-lived terminally differentiated 

tissue, such as skeletal, and cardiac muscle as well as neurons, but is absent is most other tissues. 

Accordingly, these tissues display a high resistance to apoptotic signaling. ARC is also unique 

because it is one of the only proteins that can act as an inhibitor of all three major apoptotic 

pathways (Figure 1). In the death receptor pathway, ARC can interact with Fas and FADD 

impairing death receptor activation, DISC assembly and, caspase-8 activation41. ARC can also 

directly bind and inhibit procaspase-8, preventing the mature caspase-8 from interacting with 

DISC assembly. Although ARC can bind caspases-2 and -8, it does not directly interact with any 

other caspases42. In the mitochondrial apoptotic pathway, ARC can inhibit Bax activation and 

translocation to the mitochondria. As well, ARC can bind to upstream Bax activators, such as 

Bcl-2 associated death promoter (Bad) and p53 upregulated modulator of apoptosis (PUMA), 

thereby preventing mitochondrial Bax pore formation43. ARC can also prevent MOMP by 

inhibiting mitochondrial fission. Dynamin-related protein-1 (Drp-1) is a fission protein that 

translocates from the cytosol to accumulate on the mitochondria to initiate fission once activated. 

Drp-1 accumulation requires PUMA, and ARC can inhibit this interaction44. Furthermore, ARC 

can antagonize p53-induced apoptosis by directly inhibiting the tetramerization domain of p53, 
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disabling p53’s transcriptional function and exposing a p53 nuclear export signal that relocates 

p53 to the cytoplasm45. p53 can also inhibit ARC transcription43 and promote ARC degradation 

through mouse double mutant 2 (MDM2) 46. The extrinsic pathway can also activate 

mitochondrial-mediated apoptosis. This occurs through caspase-8-mediated cleavage of Bcl-2 

homology3-interacting death domain agonist (BID) resulting in its activation and contribution to 

MOMP though its activation of Bax14. Additionally, ARC can inhibit ER-stress-induced cell 

death by buffering harmful signaling ions, such as cytosolic free calcium47. ARC’s structure 

permits its many mechanisms of action. ARC is a 30 kDa protein with an n-terminal caspase 

recruitment domain (CARD), and an acidic-proline/glutamine (P/E) rich c-terminal. The P/E rich 

domain allows the binding of cytosolic free Ca2+, and the CARD domain enables ARC to bind 

and inhibit many other apoptotic signaling proteins containing similar domains42. 

ARC expression changes with different metabolic states. Decreased ARC levels have 

been found in the soleus in states such as hypertension48, in the heart in ischemia-reperfusion 

injury49, and in skeletal muscle in states such as hypoxia and oxidative stress50. Conversely, 

increased ARC expression has been demonstrated in many cancers5,50. Interestingly, these 

conditions are associated with increased and decrease apoptosis, respectively. Furthermore, in 

healthy cells, ARC normally resides in the cytosol and the mitochondria, but in cancer ARC 

translocates to the nucleus where it inhibits the tumor suppressor p53-meditated apoptosis45. 

Therefore, not only is the presence/absence or expression of ARC important in regulating 

apoptosis in cells, but its localization may also be critical.   

 Moreover, ectopic expression of ARC in numerous cell types results in an increased 

resistance to apoptosis51,52. When no apoptotic stimulus is given, ARC knockdown in H9c2 cells 

causes spontaneous Bax activation and cell death41,53, indicating that ARC is required for a basal 
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level of apoptotic resistance. Interestingly there is decreased ARC levels in heart failure; 

however, overexpressing ARC in adult rat hearts reduces ischemia-reperfusion-induced 

apoptosis and infarct size53. In contrast, ARC KO mice show a 50% increase in infarct size 

following ischemia-reperfusion injury and display increased Bax activation49. Additionally, the 

level of ROS can influence ARC expression. Varying levels of H2O2 have been shown to affect 

ARC differently. High and/or prolonged levels of H2O2 promote ARC degradation, by p53 

prompting the transcription of MDM2, whereas low levels of H2O2 result in p53 inhibiting its 

transcription43,46.  

 

ARC and Aging 

 ARC expression has been measured in many studies, yet few have examined this in an 

aging model. These few studies have shown varying levels of ARC expression in different 

tissues and in its localization with aging. For example, in mouse ventricles ARC was shown to 

increase with age54, whereas in the cytosolic fraction of rats frontal brain cortices, ARC 

decreases with age. In the same study, lifelong caloric restriction of the aged rats, actually 

increased the expression of ARC, thereby attenuating the increased mitochondrial apoptosis seen 

in aging, by decreasing the amount of Cyto-c release55. Total ARC expression did not change in 

rat gastrocnemius muscle, but decreased in the cytosolic fraction and increased in the 

mitochondrial fraction with age56. Given that the expression and localization of ARC changes 

with age, which may influence-aged associated muscle atrophy, further examination of ARC’s 

role in aging skeletal muscle is necessary.    
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ARC in Skeletal Muscle 

 ARC has a vital role in skeletal muscle differentiation, with ARC content being 

undetectable in mono-nucleated myoblasts but with ARC content dramatically increasing as 

myoblasts differentiate into multi-nucleated myotubes57. Interestingly, this increased ARC 

expression in myotubes is associated with increase apoptotic resistance58. Recent work in our lab 

has demonstrated ARC’s important role in skeletal muscle morphology. ARC has been shown to 

be fiber type specific, with type I fibers displaying a higher ARC content compared to type II 

fibers48. Red muscle contains a higher percentage of type I fibers compared to white skeletal 

muscle, therefore also having an increased ARC content. Work from our lab has also found that 

adult ARC KO mice display a fiber type shift towards a faster phenotype, along with decreased 

fiber cross sectional area and increased DNA fragmentation in soleus muscle. Additional 

findings using subfractionation of red quadriceps, demonstrated an increased Bax:Bcl-2 in 

isolated mitochondrial fractions, as well as an increased cytosolic AIF protein content. 

Furthermore, mitochondria from adult ARC KO animals are more susceptible to calcium-

induced mPTP formation and mitochondrial membrane depolarization, two early events during 

mitochondria-mediated apoptotic signaling. Another study, found decreased ARC protein levels 

in the soleus of hypertensive rats, along with increased DNA fragmentation and nuclear AIF59. 

Given the critical role of ARC in apoptotic signaling, and the current evidence showing altered 

morphology, basal apoptosis, and mitochondrial apoptotic susceptibility in skeletal muscle in 

ARC-deficient animals, it is of interest to examine the role of ARC in aging-related apoptosis 

and wasting.  
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Figure 1. Diagram of ARC’s anti-apoptotic influence. Adapted from Ludwig-Galezowska et al., 
201142. 
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Purpose  

 ARC is an anti-apoptotic protein shown to influence a number of apoptotic signaling 

pathways; however, most research has focused on ARC’s role in cardiac muscle and cancer. 

Previous research has examined the content of ARC in skeletal muscle, with more recent work in 

our lab having revealed ARC’s important role in apoptotic signaling and morphology in skeletal 

muscle. Aging is associated with muscle wasting, resulting from an increased apoptotic 

signaling. Currently, there is no research examining the influence of ARC on aging-related 

skeletal muscle apoptosis and wasting.  

Therefore, the purpose of this thesis was to examine the role of ARC in aging skeletal 

muscle and to specifically study ARC’s influence on apoptosis, muscle wasting, contractile 

function, and muscle fiber distribution. Experiments were performed between wild-type and 

ARC-deficient mice at three different ages (Figure 2) and outcomes were measured in both 

oxidative and glycolytic muscles containing different fiber type compositions. Morphological 

and phenotypic measurements included muscle weights, muscle cross sectional area, fiber type 

composition, and fiber-specific cross sectional area. Apoptotic signaling examination included 

the expression of a number of key apoptotic proteins and proteases, both in whole muscle and 

subcellular fractions. In addition, muscle contractility measurements were conducted in both the 

soleus and plantaris. 

 

Figure 2. Experimental design. 
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Hypothesis 

 The hypotheses for this work were as follows: 

• There will be greater skeletal muscle atrophy in animals as they age, with two year old 

animals displaying the greatest changes 

o Aging WT mice will display a decrease in type I fiber cross sectional area with a 

greater decrease in type II fibers. 

o Since ARC is an anti-apoptotic protein we hypothesize that as ARC KO mice age 

they will display a greater decrease in fiber cross sectional area in both type II and 

type I fibers. 

o Since ARC is highly expressed in type I fibers, the fiber atrophy will be further 

exacerbated in type I fibers.  

o Aging WT mice will also display a shift toward a slower myosin heavy chain 

expression. This fiber type shift will be attenuated in aging ARC KO mice. 

• Apoptotic signaling will increase in the skeletal muscle as mice age with two year old 

mice displaying the greatest changes 

o Aging WT mice will display an increase in pro-apoptotic signaling in both slow 

and fast muscle, but to a greater extent in fast muscle. 

o We hypothesize that as ARC KO mice age they will display the greatest increase 

in pro-apoptotic signaling in both fast and slow muscle. 

o  Since ARC is highly expressed in type I fibers, the pro-apoptotic signaling will 

be further exacerbated in slow muscle. 

• The greater apoptotic signaling seen with increasing age will be mediated by the 

mitochondrial pathway in animals as they age, with the two year old animals displaying 
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the greatest changes 

o We hypothesize that aging WT mice will display increased mitochondrial levels 

of Bax and increased cytosolic levels of AIF, and cytochrome c. 

o We hypothesize that aging ARC KO mice will display higher levels of 

mitochondrial Bax and higher cytosolic levels of AIF, and cytochrome c. 

• The greater apoptotic signaling and skeletal muscle atrophy demonstrated with increasing 

age, will result in decreased force production and fatigue resistance in mice as they age, 

with the 2 year old mice displaying the greatest changes 

o Aging WT mice will display decreased force production in both soleus and 

plantaris, but a greater decrease in the plantaris. 

o Aging ARC KO mice will display the greatest decrease in force production in 

both the soleus and plantaris. 

o Since ARC is highly expressed in the soleus, the decreased force production will 

be further exacerbated in the soleus. 
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Methods 

Animals 

 ARC KO mice were obtained from Dr. Rudiger VonHarsdorf and Dr. Stefan Donath and 

were derived from C57BL/6 mice (Charles River). ARC KO mice were crossbred with C57BL/6 

mice to generate mice heterozygous for wild-type (WT) and disrupted ARC alleles. Breeding 

pairs were established with heterozygous mice to produce male pups homozygous for the WT or 

ARC KO allele, which were used for the analyses. Three age groups were examined: a young 

adult group (WT-18.74±1.27 weeks, KO-18.56±2.28 weeks), a middle age adult group (WT-

53.48±3.83, KO-55.72±3.32 weeks), and an old adult group (WT-103.03±1.58, KO-102.51±3.06 

weeks). Littermates were used whenever feasible. Mice are housed with littermates on a 12:12hr 

reverse light-dark cycle in a temperature (20-21°C) and humidity (≈50%) controlled 

environment. Mice were provided with standard rodent lab chow and tap water ad libitum. All 

animal procedures were approved and performed in accordance with the guidelines established 

by the University of Waterloo Animal Care Committee. 

 

Genotyping  

Mice were genotyped at four weeks of age using an ear notch, snap frozen in liquid 

nitrogen. Using Purelink DNA extraction kit (Invitrogen), the DNA was extracted, purified and 

stored at 4°C for less than 48 hours. A mixture of RedTaq Polymerase (Sigma-Aldrich), H20, and 

the forward and reverse primers were added to the DNA. Sequences of the WT ARC allele 

forward and reverse primers are 5’GATACCAGGAGATCTCTCAAAATT3’ and 

5’CAGCGCATCCAAGGCTTCGTACTC3’, respectively. The disrupted ARC allele forward 

and reverse primers are 5’GATACCAGGAGATCTCTCAAAATT3’ and 
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5’GATTGGGAAGACAATAGCAGGCATGC3’, respectively. Samples were placed in a 

thermal cycler (BIO-RAD) and denatured at 93°C for two minutes, followed by 1 minute of 

annealing at 55°C and five minutes of extension. Subsequently, samples underwent 28 cycles of 

denaturing for 30 seconds at 93°C, annealing for 30 seconds at 55°C, and extension for three 

minutes at 72°C. Lastly, samples underwent extension for seven minutes at 72°C. Samples were 

then separated on a 1% agrose gel containing 0.01% ethidium bromide (BioShop) and imaged 

using ChemiGenius 2 Bio-Imaging System (Syngene). Verification of genotyping was completed 

using western blot analysis for ARC protein expression. 

 

Isolation of Skeletal Muscle 

 At the appropriate age, mice were weighed and anesthetized with pentobarbital sodium 

and euthanized by removing the heart. The soleus, plantaris, extensor digitorum longus (EDL), 

heart, gastrocnemius, tibialis anterior (TA), and quadriceps were removed, placed on ice and 

weighed. Whole quadriceps, TA and gastrocnemius were separated into red and white portions. 

The mid-belly of the soleus, plantaris, and EDL was mounted in OCT (Tissue-Tek) embedding 

media, frozen in liquid nitrogen cooled isopentane, and stored at -80°C until sectioned for 

immunohistochemistry. All remaining muscles were snap frozen in liquid nitrogen and stored at -

80°C until analysis.  

 

Muscle Contractility Measurements 

 For contractile measures, intact soleus and plantaris muscle were isolated from opposing 

hind limbs of the mice and held in a Tyrode’s dissecting solution (136.5 mM NaCl, 5.0 mM KCl, 

11.9 mM NaHCO3, 1.8 mM CaCl2, 0.4 mM NaH2PO4, 0.1 mM EDTA, and 0.5 mM MgCl2; pH 
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7.5) on ice, until experimentation. Muscles were mounted vertically in a 1200A in vitro test 

system (Aurora Scientific Inc.) as previously described115. The distal end of soleus muscles 

clamped at the calcaneus, while the proximal end was tied and super glued to a 10-0 silk suture 

loop attached to a stainless steel hook. The hook was attached to a dual mode model 300C 

servomotor (Aurora Scientific Inc.), which was used to measure force. The plantaris was 

mounted in an inverted position with the calcaneus tied to the hook with a suture loop, while the 

proximal end of the muscle was left attached to the knee and the bone was clamped to hold the 

muscle in place. Experiments were performed in an oxygenated (95% O2, 5% CO2) Tyrode’s 

solution (121 mM NaCl, 5.0 mM KCl, 24 mM NaHCO3, 1.8 mM CaCl2, 0.4 mM NaH2PO4, 5.5 

mM glucose, 0.1 mM EDTA, and 0.5 mM MgCl2; pH 7.3) maintained at 25°C via a jacked water 

bath. A model 701C stimulator (Aurora Scientific Inc.) applied computer controlled stimulation 

via flanking plate field stimulus electrodes at supramaximal voltage, 0.2 ms pulse width. Muscles 

were stimulated at 100 Hz for 0.35 s to take up any slack in the system prior to and following 

determination of optimal length for twitch force production (Lo), where all subsequent 

experiments were performed. A force-frequency relationship was generated for each muscle 

using select frequencies between 1 and 100 Hz, applied at 60 s intervals. This was followed by a 

5 minute fatiguing protocol consisting of 350 ms volleys of 70 Hz stimulation applied once every 

1.5 s, following which tendon-free muscle mass was recorded. Fatigue indices included the 

number of contractions required for 70 Hz force to be reduced by 50%, and the percent decline in 

70 Hz force between the first and final contractions in the 5 minute protocol. 

 

Immunofluorescence Analyses 

 OCT embedded soleus and plantaris skeletal muscles were cut into 10 µm thick serial 
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cross sections with a cryostat (Thermo Electronic) maintained at -20°C as previously  

described48. Myosin heavy chain (MHC) expression was analyzed using immunofluorescence 

staining as previously described60. Slides were blocked with 10% goat serum, and then incubated 

with primary antibodies against MHCI (BA-F8), MHCIIa (SC-71), and MHCIIb (BF-F3) 

(Developmental Studies Hybridoma Bank). Sections were washed 3 x 5 minutes in PBS and 

incubated with anti-mouse isotype-specific Alexa Fluor 350, Alexa Fluor 488, and Alexa Fluor 

555 secondary antibodies (Molecular Probes). Sections were washed 3 x 5 minutes in PBS, than 

coverslips mounted using Prolong Gold antifade reagent (Molecular Probes). This resulted in 

detection of type I fibers (blue), type IIA fibers (green), type IIB fibers (red), and type IIX fibers 

(unstained). Background staining was previously tested using only fluorescent-conjugated 

secondary antibody cocktails60. Slides were visualized using an Axio Observer Z1 fluorescent 

microscope equipped with an AxioCam HRm camera and associated AxioVision software 

(CarlZeiss). Fiber type number and percentage were analyzed by examining whole muscle 

composites of 20X magnification by counting all fibers within the section. Whole muscle and 

individual fiber cross sectional area was determined by counting 30 fibers per fiber type per 

section using Image Pro-Plus imaging software. 

 

Preparation of Whole Muscle Lysates and Subcellular Fractions 

 Whole muscle lysates of soleus and plantaris were homogenized in ice-cold muscle lysis 

buffer (20 mM HEPES, 10 mM NaCl, 1.5 mM MgCl, 1 mM DTT, 20% glycerol and 0.1% 

Triton X100; pH 7.4) and protease inhibitors (Complete Cocktail; Roche Diagnostics) using a 

glass mortar and pestle. Homogenates were then centrifuged at 1000 x g for 10 minutes at 4°C, 

and the supernatant was collected.  
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 Subcellular fractions were prepared as previously described24. Briefly, red and white 

quadriceps muscle was gently homogenized on ice using a glass mortar and pestle in a 

subcellular fractionation buffer (250 mM sucrose, 20 mM HEPES, 10 mM KCl, 1 mM EDTA, 1 

mM DTT; pH 7.4) with protease inhibitors (Complete Cocktail; Roche Diagnostics). The 

resulting homogenates were centrifuged at 800 g at 4°C for 10 min, yielding a pellet (P1) and 

supernatant (S1). The S1 fraction was then centrifuged at 800 g at 4°C for 10 min again, and the 

supernatant was transferred to a new tube (S2). The S2 fraction was centrifuged at 20,800 g at 

4°C for 20 min, yielding a pellet containing mitochondria (M1) and the cytosolic supernatant 

(C1). The M1 pellet was washed with subcellular fractionation buffer and centrifuged at 16,000 g 

at 4°C for 20 min. This pellet resulted in the mitochondrial-enriched fraction. The cytosolic (C1) 

supernatant was centrifuged at 20,800 g at 4°C for 20 min to ensure that it contained no residual 

mitochondria. The resulting supernatant was the cytosolic-enriched fraction. The P1 pellet was 

washed and centrifuged three more times at 800 g at 4°C for 10 min. Lysis buffer (200 µl) and 5 

M NaCl (27.7 µl) was added to the resulting pellet and rotated for one hour at 4°C, following 

which the samples were centrifuged at 20,800 g at 4°C for 15 min. This supernatant resulted in 

the nuclear-enriched fraction. Whole and subcellular fraction protein content was determined 

using the BCA protein assay. The purity of each subcellular fraction was verified by immunoblot 

analysis using antibodies against adenine nucleotide translocase (ANT) (Santa Cruz 

Biotechology) for the mitochondrial fraction, copper zinc superoxide dismutase (CuZnSOD) 

(Stressgen Bioreagents) for the cytosolic fraction, and histone H2B (Santa Cruz Biotechnology) 

for the nuclear fraction (Figure 26). 
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Immunoblot Analyses 

 Equal amounts of protein were loaded and separated on 12% or 15% SDS-PAGE gels, 

with each gel containing two samples from each group. Gels were then transferred onto PVDF 

membranes (Bio-Rad Laboratories), and blocked in 5% milk-TBST for one hour at room 

temperature. Membranes were incubated either overnight at 4°C or for one hour at room 

temperature with primary antibodies against: apoptosis inducing factor (AIF) (1:2000, sc-13116), 

adenine nucleotide translocase (ANT) (1:1000, sc-11433), apoptosis repressor with caspase 

recruitment domain (ARC) (1:1000, sc-11435), Bcl-2 associated X protein (Bax) (1:1000, sc-

493), B-cell lymphoma 2 (Bcl-2) (1:150, sc-7382), B-cell lymphoma-extra large (Bcl-XL) 

(1:250, sc-8392), BH3 interacting-domain death agonist (BID) (1:500, sc-11423), cytochrome c 

(Cyto-c) (1:3000, sc-13156), histone H2B (1:500, sc-8650) (Santa Cruz Biotechnology); catalase 

(1:2000: mAb 12980), dynamin-related protein 1 (Drp1) (1:300, mAb 8570) (Cell Signaling); 

second mitochondrial activator of caspase (SMAC) (1:2000, ADI-905-244) (Assays Designs); 

copper zinc superoxide dismutase (CuZnSOD) (1:3000, ADI-SOD-101), heat shock protein 70 

(Hsp70) (1:2000, ADI-SPA-810), manganese superoxide dismutase (MnSOD) (1:7500, ADI-

SOD-110), and X-linked inhibitor of apoptosis (XIAP) (1:1000, ADI-AAM-050-E) (Stressgen 

Bioreagents). Membranes were washed with TBST and incubated with the appropriate 

horseradish peroxide (HRP)-conjugated secondary antibody (1:5000) (Santa Cruz 

Biotechnology) for one hour at room temperature. Proteins were visualized using the Amersham 

Enhanced Chemiluminescence Western Blotting detection reagents (GE Healthcare) and the 

ChemiGenius 2 Bio-Imaging System (Syngene). After imaging, to ensure equal loading and 

quality of protein transfer, membranes were stained with Ponceau S (Sigma-Aldrich). To account 

for any variations between gels, a standard was loaded with each gel and all samples normalized 
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relative to this standard.   

 

Caspase and Calpain Activity 

 The enzymatic activity of caspase-2, caspase-3, caspase-8, and caspase-9 were 

determined in duplicate in muscle homogenates using the substrates, Ac-VDVAD-AMC (Alexis 

Biochemicals), Ac-DEVD-AMC (Alexis Biochemicals), Ac-IETD-AMC (Sigma-Aldrich), and 

Ac-LEHD-AMC (Alexis Biochemicals), respectively24. Briefly, muscle was homogenized in ice-

cold muscle lysis buffer, without protease inhibitors, and centrifuged at 1000 x g for ten minutes 

at 4°C. The supernatants were then incubated in duplicate with the appropriate substrate at room 

temperature for two hours. During this time, the florescence was measured every 15 minutes 

using SPECTRAmax Gemini XS microplate spectrofluorometer (Molecular Devices) with 

excitation and emission wavelengths of 360 nm and 440 nm, respectively. Control experiments 

included samples containing purified active enzymes and specific caspase inhibitors (caspase-2, 

Ac-VDVAD-CHO; caspase-3, Ac-DEVD-CHO; capsase-8, Ac-IETD-CHO; caspase-9, Ac-

LEHD-CHO). Caspase activity was normalized to total protein content and expressed as mean 

fluorescence intensity in AU per mg of protein. 

 Calpain activity was determined using muscle homogenates (processed as above) and the 

samples were incubated in duplicates at 37°C with the substrate, Suc-LLVY-AMC (Enzo Life 

Sciences) with or without the specific calpain inhibitor, Z-LL-CHO (Enzo Life Sciences). 

Fluorescence was measured using a SPECTRAmax Gemini XS microplate spectrofluorometer 

(Molecular Devices) with excitation and emission wavelengths of 380 nm and 460 nm, 

respectively. The fluorescence was subtracted from the sample with the calpain inhibitor, from 

the sample without the calpain inhibitor to determine calpain activity, as previously described45. 
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Statistical Analysis 

 All data is represented as means ± SEM. All data was analyzed using two-way analyses 

of variance (ANOVA) with p<0.05 considered statistically significant and p<0.10 considered a 

trend. Significant interaction effects were assessed using the Tukey HSD post-hoc test. All 

statistical analyses were performed using Prism 5 statistical software. 
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Results 

ARC KO Mouse Model 

 Transgenic mice with a mutated ARC gene were used to examine the role of ARC in 

skeletal muscle. Firstly, PCR analysis was used to determine that the wild type ARC allele was 

absent from KO mice (Figure 3A). Western blotting was subsequently performed for ARC 

protein to verify the lack of ARC expression in both the soleus and plantaris muscles of KO mice 

(Figure 3B). ARC protein expression was found to be higher in the soleus versus the plantaris 

muscle when normalized for total protein content in previous studies24. 

 

 

Morphological Characteristics 

Body and muscle weights were examined to determine changes in size (Table 1). There 

was a main effect of age (p<0.0001) for body weight, with the 18 week group having 

significantly lower weights than the 1 and 2 year groups (p<0.0001). Heart weight relative to 

kidney weight was not different between groups. However, there was a trend towards a main 

effect of genotype (p=0.084) for heart weight relative to body weight, with the KO group having 

a higher ratio. There was also a main effect of age (p<0.0001), with the 1 year group having a 
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significantly lower ratio then the 18 week (p<0.05) and 2 year groups (p<0.0001). Additionally, 

a significantly lower ratio was found in the 18 week compared to the 2 year group (p<0.05). 

There was a main effect of genotype (p<0.05) for kidney weight relative to body weight, with the 

KO group having a higher ratio. There was also a main effect of age (p<0.0001), with the 1 year 

group having a significantly lower ratio then the 18 week (p<0.05) and 2 year groups 

(p<0.0001). There was a trend (p=0.06) towards a main effect of genotype on soleus weight, with 

decreased weights in the KO group. There was also a main effect of age (p<0.0001), with the 2 

year group having significantly decreased weights compared to the 18 week (p<0.01) and 1 year 

groups (p<0.0001). There was a main effect of age (p<0.0001) for soleus weight relative to body 

weight, with the ratio decreasing with age. The 18 week group had a significantly increased ratio 

compared to the 1 and 2 year groups (p<0.0001), as well as the 1 year group having a 

significantly increased ratio compared to the 2 year group (p<0.05). There was a main effect of 

genotype (p<0.05) for soleus weight relative to kidney weight, with the ratio lower in the KO 

group. There was also a main effect of age (p<0.0001), with the ratio decreasing with age. The 

18 week group had a significantly increased ratio compared to the 1 and 2 year groups 

(p<0.0001), as well as the 1 year group having a significantly increased ratio compared to the 2 

year group (p<0.0001). There was a main effect of genotype (p<0.05) for plantaris weight, being 

decreased in the KO group. There was also a main effect of age (p<0.0001), with the 2 year 

group having a significantly lower weight than the 18 week (p<0.001) and 1 year groups 

(p<0.0001). There was a decreased ratio for the 2 year (p<0.0001) compared to the 18 week and 

1 year groups for plantaris weight relative to body weight. There was also an increased ratio in 

the 1 year KO compared to the 1 year WT group (p<0.0005). There was a main effect of 

genotype (p<0.001) for plantaris weight relative to kidney weight, with the ratio being decreased 
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in the KO group. There was also a main effect of age (p<0.0001), with the ratio significantly 

decreasing with age. The 18 week group had a significantly increased ratio compared to the 1 

and 2 year groups (p<0.0001), as well as the 1 year group having a significantly increased ratio 

compared to the 2 year group (p<0.0001). 

 

Total cross-sectional area (CSA) of both soleus and plantaris muscles were measured 

through histological staining (Figure 5 and 8). There was a main effect of age (p<0.0001) on 

CSA of the soleus, with significantly decreased CSA in the 2 year compared to the 18 week 

(p<0.01) and 1 year groups (p<0.0001). Further, there was a trend towards a decreased size with 

genotype in the KO group (p=0.092) (Figure 4A). There was a main effect of age (p<0.0001) on 

CSA of the plantaris, with the 2 year group being significantly smaller compared to the 18 week 

and 1 year groups (p<0.0001) (Figure 4B).  

 

There was a main effect of age (p<0.0001) for total fiber number in the soleus, with the 2 

year group having significantly fewer number of fibers compared to the 18 week (p<0.0001) and 

1 year groups (p<0.001). There was also a main effect of genotype (p<0.05), with KO mice 

having fewer fibers (Appendix Figure 1A). In the plantaris there was a main effect of age 

(p<0.01), with the 2 year group having significantly fewer fibers compared to the 18 week 

(p<0.01) and 1 year groups (p<0.05) (Appendix Figure 1B). 

 

To more closely examine the changes in total CSA and fiber number, fiber type-specific 

CSA and distribution were examined. In the soleus, there was a main effect of age (p<0.0001), 

with the 2 year group having a significant decrease in type I fiber CSA compared to the 18 week 
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(p<0.05) and 1 year groups (p<0.0001) (Figure 6A). There was a main effect of age (p<0.001), 

with the 1 year group having a significant increase in type IIA fiber CSA compared to the 18 

week (p<0.001) and 2 year groups (p<0.01) (Figure 6B). There was a trend towards a decrease in 

type IIX CSA with age (p=0.055) (Figure 6C), and no differences in type IIB CSA (Figure 6D). 

In the plantaris, there were no differences in type I fiber CSA between groups (Figure 9A); 

however, a main effect of age was found in type IIA CSA (p<0.01), with the 2 year group having 

a significant decrease in CSA compared to the 1 year group (p<0.01) (Figure 9B). There was a 

main effect of age (p<0.0001), with the 2 year group having a significant decrease in type IIX 

fiber CSA compared to the 18 week (p<0.01) and 1 year groups (p<0.0001) (Figure 9C). There 

was a main effect of age (p<0.0001), with the 2 year group having a significant decrease in type 

IIB fiber CSA compared to the 18 week and 1 year groups (p<0.001) (Figure 9D). 

In the soleus, the percentage of type I fibers was significantly higher in 2 year compared 

to the 18 week (p<0.0001) and 1 year groups (p<0.01) (Figure 7A). Type IIA fiber percentage 

was not different between groups (Figure 7B). Type IIX fiber percentage was significantly 

higher in the 18 week group than the 1 year (p<0.05) and 2 year groups (p<0.0001) (Figure 7C). 

Type IIB fiber percentage was significantly higher in the 18 week group compared to the 1 and 2 

year groups (p<0.05) (Figure 7D). In the plantaris, the 18 week group had a significantly higher 

percentage of type I fibers than the 2 year group (p<0.001) (Figure 10A). Type IIA fiber 

percentage was significantly lower in the 2 year group than the 18 week (p<0.01) and 1 year 

groups (p<0.05) (Figure 10B). Type IIX fiber percentage was not different between groups 

(Figure 10C). Type IIB fiber percentage was significantly higher in the 2 year compared to the 

18 week and 1 year groups (p<0.01) (Figure 10D). 
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18#Week 1#Year 2#Years Significance

WT KO WT# KO WT KO Age Genotype

Age#(weeks) 18.74&±&1.27 18.56&±&2.28 53.48&±&3.83 55.72&±&3.32 103.03&±&1.58 102.51&±&3.06

Body#Weight#(g) 30.98&±&1.98 29.04&±&2.72 41.60&±&6.97 40.51&±&8.22 37.46&±&4.14 38.92&±&5.97 18&(p<0.0001)&vs&1&and&
2&

Heart#Weight#(mg) 121.78&±&12.01 125.55&±&9.44 146.49&±&22.43 151.05&±&16.09 163.72&±&19.76 167.6&±&27.73 18&vs&1&and&2&
(p<0.0001),&1&vs&2&
(p<0.001)

Kidney#Weight#(mg) 178.85&±&16.68 185.55&±&18 213.24&±&31.62 229.06&±&25.07 232.57&±&30.28 241.9&±&28.41 18&vs&1&and&2&
(p<0.0001),&1&vs&2&
(p<0.05)

Heart#Weight#(mg)/#
Body#Weight#(g)

3.92&±&0.36 4.16&±&0.07 3.55&±&0.36 3.83&±&0.65 4.4&±&0.56 4.34&±&0.55 18&vs&1&and&2&(p<0.05),&
1&vs&2&(p<0.0001)

Heart#Weight#(mg)/#
Kidney#Weight#(mg)

0.68&±&0.25 0.68&±&0.05 0.69&±&0.07 0.66&±&0.06 0.71&±&0.04 0.69&±&0.07

Muscle#Weight#(mg) Soleus 8.69&±&1.02 8.47&±&1.36 9.27&±&1.5 8.52&±&1.41 7.76&±&1.25 7.35&±&0.98 2&vs&18&(p<0.01)&and&1&
(p<0.0001)

Plantaris 18.06&±&2.15 17.60&±&1.37 18.27&±&2.29 17.64&±&2.06 16.48&±&1.73 15.22&±&2.04 2&vs&18&(p<0.001)&and&
1&(p<0.0001)

p<0.05&vs&WT

Muscle#Weight#(mg)/#
Body#Weight#(g)

Soleus 0.28&±&0.03 0.29&±&0.04 0.23&±&0.04 0.21&±&0.03 0.21&±&0.04 0.19&±&0.03 18&vs&1&and&2&
(p<0.0001),&1&vs&2&
(p<0.05)

Plantaris 0.58&±&0.06 0.61&±&0.06 0.44&±&0.05 0.79&±&0.23 0.44&±&0.05 0.4&±&0.06 2&(p<0.0001)&vs&18&and&
1

1&KO&vs&1&WT&
(p<0.001)

Muscle#Weight#(mg)/#
Kidney#Weight#(mg)

Soleus 0.05&±&0.004 0.05&±&0.01 0.04&±&0.006 0.04&±&0.005 0.03&±&0.007 0.03&±&0.005 18&vs&1&and&2,&1&vs&2&
(p<0.0001)

p<0.05&vs&WT

Plantaris 0.10&±&0.01 0.1&±&0.01 0.09&±&0.008 0.078&±&0.007 0.07&±&0.01 0.06&±&0.009 18&vs&1&and&2,&1&vs&2&
(p<0.0001)

p<0.001&vs&WT

Table&1.&Biometric&characteristics&of&WT&and&ARC&KO&animals.&Data&are&expressed&as&means&±&SEM&(n=12Q22).
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Force Characteristics 

 In the soleus, there was no significant differences in force at 100 Hz, percent peak force 

remaining after 5 minutes of contraction, and number of contractions to 50% force reduction 

(Figure 11F, G, and H); however, the rate of twitch contraction showed a main effect of age 

(p<0.01), with the 2 year group demonstrating a significantly increased rate compared to the 18 

week (p<0.05) and 1 year groups (p<0.01) (Figure 11A). The rate of twitch relaxation was 

significantly increased in the 2 year compared to the 18 week group (p<0.05) (Figure 11B). One-

half relaxation time was significantly increased in the 2 year compared to the 18 week group 

(p<0.05) (Figure 11C). Time to peak tension was significantly increased in the 2 year compared 

to the 18 week group (p<0.01) (Figure 11D). Twitch to tetanus ratio was significantly increased 

in the 2 year compared to the 18 week and 1 year groups (p<0.0001) (Figure 11E). In the 

plantaris there were no significant differences in twitch to tetanus ratio, percent peak force 

remaining after 5 minutes of contraction, and the number of contractions to 50% force reduction 

(Figure 12E, G, and H). However, the rate of twitch contraction was significantly decreased in 

the 2 year compared to the 1 year group (p<0.01) (Figure 12A). The rate of twitch relaxation was 

significantly decreased in the 2 year compared to the 1 year group (p<0.05) (Figure 12B). One-

half relaxation time was significantly increased in the 2 year compared to the 18 week group 

(p<0.01) (Figure 12C). Time to peak tension was significantly increased in the 2 year compared 

to the 18 week (p<0.0001) and 1 year groups (p<0.05) (Figure 12D). Lastly, there was a main 

effect of age (p<0.05) for force at 100 Hz (Figure 12F). Force-frequency curves were completed 

for both the soleus and plantaris (Appendix Figure 2).
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Apoptotic Signaling and Protease Activity 

No significant differences for age or genotype were found in either the red (Figure 13) or 

white gastrocnemius (Figure 14) muscle for total enzymatic activity (area under the curve; AUC) 

(data not shown) or maximal enzymatic activity for caspase-2, -3, -8, -9, and calpains. 

 

Apoptotic Protein Expression 

Total muscle content of mitochondrial housed proteins were measured in both soleus and 

plantaris muscles. Analysis of pro-apoptotic proteins in the soleus revealed a trend towards 

decreased Cyto-c with age (p=0.095) (Figure 15C). AIF and SMAC were not different between 

groups (Figure 15A and E). In the plantaris, there were no differences in AIF and SMAC (Figure 

15B and F); however, Cyto-c was significantly increased in the 1 year compared to the 18 week 

group (p<0.05) (Figure 15D). 

 

In the soleus, the 2 year WT group had significantly decreased ARC expression 

compared to the 18 week WT group (p<0.05) (Figure 16A). The 2 year group also had 

significantly increased expression of Bcl-2, Bcl-XL, Hsp-70, and XIAP compared to the 18 week 

and 1 year groups (Figure 16B, 16C, 16D, 18C). In the plantaris there were no significant 

differences in ARC or Hsp-70 between groups (Figure 17A and C). However, the 2 year group 

had significantly increased expression of Bcl-2, Bcl-XL, and XIAP compared to the 18 week and 

1 year groups (Figure 17B, 17D, 19C). 
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The pro-apoptotic proteins Bax and Bid were not significantly different in the soleus 

between groups (Figure 18A and D). However, t-Bid was higher in the WT animals (Figure 

18B). In the plantaris there was no significant differences in Bax, Bid, or t-Bid (Figure 19 A, B, 

and D). The Bax:Bcl-2 ratio in the soleus was significantly lower in the 2 year compared to the 

18 week group (p<0.05) (Figure 18E). In the plantaris the Bax:Bcl-2 ratio was significantly 

higher in the 18 week compared to the 1 and 2 year groups (p<0.01) (Figure 19E). 

 

Since ROS can influence cell death, antioxidants were examined. In the soleus there were 

no differences in CuZnSOD and Catalase (Figure 20A and C); however, MnSOD was 

significantly decreased in the 2 year compared to the 1 year group (p<0.05) (Figure 20E). In the 

plantaris, there were no differences in CuZnSOD or MnSOD (Figure 20D and F); however, there 

was a trend toward an increase in Catalase with age (p=0.051) (Figure 20B). 
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Subfractionation analysis was conducted in red (RQ) and white (WQ) quadriceps muscle. 

In the cytosolic-enriched fractions of the RQ, no differences were observed in AIF, and Drp-1 

(Figure 21A, and C); however, Cyto-c was significantly different in the 2 year ARC KO mice 

compared to the 2 year WT mice (p<0.01) (Figure 21B). In addition, the 2 year group had 

significantly increased cytosolic SMAC levels compared to the 1 year group (p<0.01) (Figure 

21D). There were no differences in mitochondrial Drp-1 (Figure 23D); however, mitochondrial 

Bcl-2 was significantly different in the 2 year ARC KO mice compared to the 2 year WT mice 

(p<0.05) (Figure 23A). Further, mitochondrial Bax was significantly higher in the 18 week 

compared to the 1 year group (p<0.01) (Figure 23B). The mitochondrial Bax to Bcl-2 ratio was 

also significantly increased in 18 week compared to the 1 year (p<0.01) and 2 year (p<0.05) 

groups (Figure 23C). There were no differences in nuclear AIF between groups (Figure 25A).  

 

There were no differences in cytosolic Cyto-c, and Drp-1 between groups in the WQ 

(Figure 22B, and C); however, AIF was significantly lower in the 18 week compared to the 1 and 

2 year groups (p<0.05) (Figure 22A). Further, cytosolic SMAC was significantly increased in the 

2 year compared to the 18 week and 1 year groups (p<0.05) (Figure 22D). There were no 

differences in mitochondrial Bax and Drp-1 (Figure 24B and D); however, Bcl-2 was 

significantly higher in the 2 year compared to the 18 week group (p<0.05) (Figure 24A). The 

mitochondrial Bax to Bcl-2 ratio was also significantly lower in the 2 year compared to the 18 

week group (p<0.01) (Figure 24C). There were no differences in nuclear AIF between groups in 

the WQ (Figure 25B). Fraction purity was completed in cytosolic, mitochondrial, and nuclear-

enriched fractions (Figure 26).
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Discussion 

The objective of this study was to examine morphological characteristics and apoptotic 

signaling measures in aging skeletal muscle and the role of apoptosis repressor with caspase 

recruitment domain (ARC). These measures were conducted in hindlimb skeletal muscle of 

young, middle age, and old WT and ARC-deficient (ARC KO) mice. Given that skeletal muscle 

atrophy occurs in aging, it was hypothesized that aged mice would display greater muscle 

wasting. Since increased atrophy is associated with an increase in apoptotic signaling, it was 

hypothesized that aged mice would also have a higher degree of apoptosis. Additionally, because 

ARC is a potent anti-apoptotic protein that regulates mitochondrial-mediated apoptotic signaling, 

it was hypothesized that the increased atrophy and apoptosis in the aged mice, would be 

exacerbated in the ARC KO mice and the increased apoptotic signaling would be mediated by 

the mitochondrial pathway. Further, we hypothesized that skeletal muscles and fibers with a 

higher ARC content would display greater atrophy in the ARC KO mice. Lastly, it was 

hypothesized that aged ARC KO mice would have decreased force production and fatigue 

resistance. 

 In the soleus, which has a relatively high ARC content, we expected that both 

morphological and apoptotic measures would be exacerbated. There were significant deceases in 

soleus weight, CSA, CSA in type I and IIA fibers, and a shift toward a slower phenotype in the 2 

year animals. Along with the reduction in muscle size, contractility measures revealed higher 

rates of force development and relaxation rates in the 2 year animals, with no differences in 

fatigability. While caspase and calpain activity and whole tissue pro-apoptotic proteins were not 

altered in aged mice, expression of many anti-apoptotic proteins increased and mitochondrial 

release of pro-apoptotic proteins increased in the RQ. Surprisingly, the Bax:Bcl-2 ratio decreased 
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in the 2 year animals. Lastly, the effect of genotype on the soleus muscle was a decreased total 

fiber number and T-bid expression in ARC KO mice; however, 2 year KO mice displayed 

increased release of mitochondrial housed Cyto-c. 

 The plantaris is comprised mostly of type II glycolytic fibers and has a lower ARC 

content. We expected an attenuated response in both morphological and apoptotic changes in 

comparison to the soleus. There were significant decreases in weight, CSA, CSA in type IIA, 

IIX, and IIB fibers, and a shift toward a faster phenotype in the 2 year animals. Along with the 

increased atrophy and increased percentage of fast, glycolytic type IIB fibers, there were altered 

force characteristics in aged mice. The rate of force development and relaxation decreased, one-

half relaxation time became longer, and the FFC decreased in aged mice. Similar to the soleus, 

anti-apoptotic protein expression increased and mitochondrial release of pro-apoptotic proteins 

increased in the WQ, Bax:Bcl-2 ratio decreased, and no differences were observed for caspase 

and calpain activity in the aged mice. As well, decreased plantaris weight and increased Bcl-XL 

expression were the only genotype effects observed in fast muscle of ARC KO mice. 

 

Apoptotic Signaling in Skeletal Muscle 

 Through ARC’s many interactions with apoptotic signaling proteins and molecules 

involved in the initiation of apoptosis, ARC is able to inhibit all three apoptotic signaling 

pathways. Several measurements from our results indicate the involvement of the mitochondrial-

mediated apoptotic pathway in the 2 year animals as well as in ARC KO animals. Also, since we 

did not see any change in caspase-8 activity or calpain activity, this suggests no involvement of 

the death-receptor pathway or the ER-stress pathway. 

 ARC has been shown to inhibit the death-receptor pathway by directly binding to 
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caspase-2, and -842. Nevertheless, the activity of caspase-2, and -8 were not different in both the 

RG and WG between ages or genotypes, suggesting a lack of involvement of this pathway. 

Additionally, activated caspase-8, is known to cleave Bid, resulting in its activation (truncated 

form, T-Bid), which can interact with the mitochondrial pathway by activating Bax14. In the 

soleus, T-Bid expression was decreased in KO animals, indicating decreased activation of this 

pathway. It has been well documented that levels of circulating cytokines, such as TNF-α, 

increase with age, which enhances binding to TNFR and activation of the death-receptor 

pathway61. These measurements were not conducted in this study, but none of our results 

indicate increased involvement of this pathway. As well, studies have suggested that caspase-

independent cell death may play a larger role in aging than caspase-dependent pathways37. These 

results suggest no major differences in the involvement of the death-receptor pathway as a result 

of age or genotype. 

 ARC can inhibit the activation of the ER-stress pathway by binding to excess cytosolic 

Ca2+ thereby preventing calpain activation42. Overexpression ARC models have shown 

decreased Ca2+ transients, whereas decreasing ARC leads to Ca2+-induced cell death47. 

Furthermore, increased resting cytosolic Ca2+ levels have been shown in the soleus and EDL of 

aged muscle, which could activate calpains62. Our results would indicate that the ER-stress 

pathway was not altered between ages or genotype; however, this was not a complete evaluation 

of this pathway as increased cytosolic Ca2+ can also activate caspase-1220. Additionally, skeletal 

muscle apoptosis can occur when elevated ER-stress activates CCAAT/enhancer-binding protein 

homologous protein (CHOP) 63. Although none of our measures indicate an elevated level of 

apoptotic signaling through the ER-stress pathway between ages or genotype, previous work in 

our lab found no differences in calpain activity, yet the mitochondria were more susceptible to an 
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increased cytosolic Ca2+ level in 18 week ARC KO mice. Since increased Ca2+ levels can cause 

mPTP formation, and lead to mitochondrial-mediated apoptosis15, elevated ER-stress still may be 

contributing to the altered morphology and apoptotic protein expression in the aged and ARC 

KO mice.   

ARC directly and indirectly influences many signaling proteins involved in 

mitochondrial-mediated apoptosis. ARC can directly interact with Bax and inhibit pore 

formation at the mitochondria43. It was hypothesized that increased activation of this pathway 

would be seen in aged ARC KO animals; however, we only found a decreased mitochondrial 

Bax in the RQ of aged mice. Previous work in young ARC KO mice found increased Bax in the 

soleus, similar to what we saw in our 18 week group, with no change in Bcl-2. Given that Bcl-2 

directly inhibits Bax activation, and we found increased Bcl-2 in the soleus, plantaris, and WQ 

mitochondrial fraction in the 2 year animals, this may suggest that Bax activity is attenuated in 

our aged mice. Additionally, previous work has shown cells become resistant to ROS and Ca2+ 

by overexpressing Bcl-264. Bcl-2 can also interact with RyR allowing a slow Ca2+ leak from the 

SR, thereby attenuating a SR-stress mediated apoptotic insult65. Therefore, the increased Bcl-2 

expression in the aged mice may be a compensatory mechanism to reduce the age-associated 

increase in resting Ca2+ and ROS production. Furthermore, there was a decreased mitochondrial 

Bcl-2 in the RQ in the 2 year KO vs. WT mice. Given that ARC is known to inhibit Bad and 

PUMA, both of which can inhibit Bcl-243, we speculate that a decrease in Bcl-2 activity might be 

seen in the aged ARC KO mice. As well, other studies in rats have shown that red skeletal 

muscle displays higher levels of pro- and anti-apoptotic proteins, ROS, and mitochondrial 

apoptosis24, which would explain why the decreased Bcl-2 in the 2 year ARC KO mice was only 

seen in the RQ. 
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The Bax:Bcl-2 ratio is used as a marker of a cell’s susceptibility to apoptosis, with earlier 

studies having found this ratio to be increased in the aged31. Previous work in our lab also found 

an increased Bax:Bcl-2 ratio in young ARC KO mice in the mitochondrial-enriched RQ (we also 

saw this in the 18 week ARC KO mice), as well as increased susceptibility to mitochondrial 

swelling and loss of membrane potential (two apoptotic events) after the addition of Ca2+. 

Surprisingly, this ratio was lower in all tissues of the 2 year animals. Although an increased 

Bax:Bcl-2 ratio with aging has been shown in many studies, this is not always the case, and seem 

to depend on the muscle studied and the age of their ‘old’ animals66. One study found increased 

mitochondrial Bcl-2 and Bax expression yet no change in the Bax:Bcl-2 ratio in the 

gastrocnemius of 37 month old rats37. However, in this study there was a trend for the Bax:Bcl-2 

ratio to decrease in aging. Whereas, another study found increased Bax and Bcl-2 expression in 

the EDL, yet in the soleus there was no change in Bax and increased Bcl-2 expression only in the 

36 (not 30) month old rats40. Other studies have found increased Bcl-2 expression in both slow 

and fast muscle of aged rats67. In addition, this study found an increased Bcl-2 expression in 

gastrocnemius of 30 month old rats, with an further increase in Bcl-2 expression with an added 

stress, such as hindlimb suspension67. Thus, increased Bcl-2 expression may be a compensatory 

action in an attempt to counter the atrophy and apoptotic signaling occurring in skeletal muscle 

in aging. 

 

Anti-apoptotic Proteins  

To compensate for a lack of ARC, as well as to counter the increased apoptotic signaling 

and atrophy associated with aging, we believed there might be an increased expression of anti-

apoptotic proteins. We found many of the anti-apoptotic proteins increased in the aged mice, 
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with fewer being influenced by genotype. In the soleus Bcl-XL, Hsp-70, and XIAP all increased 

in the 2 year animals, with ARC actually decreasing with age (in WT). Since these proteins have 

a higher expression in type I fibers, this increased protein expression may in part be caused by 

the shift towards a slower phenotype in aged mice. Although few studies have examined ARC 

expression over the lifespan, previous work found no differences in total ARC expression in 

gastrocnemius muscle of 30 month old rats67, yet decreased cytosolic and increased 

mitochondrial ARC in gastrocnemius muscle of 26 month old rats56. ARC normally resides in 

the cytosol, but when phosphorylated by protein kinase CK2 at threonine-149, it translocates to 

the mitochondria, where it can exert its anti-apoptotic function68. However, under physiological 

conditions only a small amount of ARC is phosphorylated, inhibiting caspase activation68. 

Therefore, the previous study suggests an increased activation of ARC in aged rats. Although we 

did not measure ARC expression in subcellular fractions or phosphorylation status, we found no 

differences in total ARC expression in the plantaris of aged animals. Hsp-70 can inhibit Bax 

translocation to the mitochondria and AIF translocation to the nucleus, inhibit Apaf-1 from 

forming the apoptosome, prevent caspase-8 from activating Bid, as well as assisting in protein 

folding to alleviate ER-stress69. Additionally, XIAP can block caspase-9 activation19. Previous 

work has found increased expression of XIAP56 and Hsp-7031 in the gastrocnemius of rats 26 and 

29 months old, respectively. These results suggest that an increased anti-apoptotic expression in 

aged mice may be an attempt to counteract the age-induced atrophy and apoptotic signaling. 

Interestingly no anti-apoptotic proteins were exclusively influenced by the lack of ARC in the 

soleus.  

In the plantaris, the only anti-apoptotic protein alterations observed with age (2 year) 

were that of increased Bcl-XL, and XIAP. Interestingly, only the anti-apoptotic protein Bcl-XL 
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increased due to a lack of ARC protein in the plantaris. Bcl-XL is a mitochondrial 

transmembrane protein that prevents mPTP formation70. Without ARC inhibiting Bax activation, 

Bax can sequester Bcl-XL allowing pores to form70. In conditions of atrophy, such as 

denervation, Bcl-XL expression increases in rat facial muscle71. Therefore, it is likely that Bcl-

XL expression increased to compensate for a lack of ARC in the KO animals, as well as to 

reduce apoptotic signaling seen in the 2 year animals. 

Mitochondria are a major producer of free radicles, with increased ROS levels seen in the 

aged leading to increased oxidative damage, mDNA mutations72, mitochondrial dysfunction, and 

apoptotic signaling73. In aging this could be attributed to decreased antioxidant defenses such as 

MnSOD and Catalase. Previous studies show mixed results, with increased enzyme activity 74 in 

aged rat muscle, whereas others show decreased activity in aged rat hearts75, and decreased 

MnSOD protein content and activity in aged human vastus lateralis76. Additionally, transgenic 

mice lacking CuZnSOD display rapid aging, muscle atrophy, and increased oxidative 

modification to proteins77. In the soleus MnSOD protein expression was decreased in the 2 year 

animals, with no differences in the plantaris. Since we found no differences in the expression of 

the mitochondrial marker, ANT, in the 2 year animals, we can assume that the decreased 

MnSOD protein expression was not due to a decreased mitochondrial content. Although, other 

studies have found no differences in ANT in the gastrocnemius of 37 month old rats; however, 

an upward trend was found for Cyclophilin D with age37. Cyclophilin D resides within the 

mitochondrial matrix and contributes to mPTP formation. Thus, an increased Cyclophilin D 

content may reveal an increase in mitochondrial-mediated apoptotic signaling. This may suggest 

that increased ROS in aged mice without adequate increases in antioxidant proteins may lead to 

increased mitochondrial stress. Furthermore, aged animals display decreased mitochondrial 
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biogenesis78, impaired clearance of damaged mitochondria, and increased fission79. 

Mitochondrial fission contributes to MOMP80. In H2O2-induced apoptosis, fission was prevented 

by overexpressing ARC in cardiomyocytes81. ARC inhibits PUMA, which is required for Drp-1 

translocation and accumulation on the mitochondrial membrane to initiate fission44. We found no 

differences in cytosolic or mitochondrial Drp-1 between ages or genotypes.  

 

Pro-apoptotic Proteins 

Although the decreased Bax:Bcl-2 ratio seen in our aged mice suggests a diminished 

susceptibility of apoptotic signaling at the mitochondria, which has been suggested in a few 

studies56, other measures performed in this study do not support this notion. In response to 

mitochondrial-mediated apoptotic signaling, mitochondrial housed AIF can be released into the 

cytosol, translocate to the nucleus, and cause DNA fragmentation independent of caspase 

activation17. Previous studies have shown increased cytosolic and nuclear levels of AIF in 

gastrocnemius of 29 and 37 month old rats37; however, others have shown only increased 

cytosolic, but not nuclear AIF in the gastrocnemius of 26 month old rats56, as well as no increase 

in cytosolic or nuclear AIF in the gastrocnemius of 30 month old rats67. Since our aged mice 

showed increased Hsp-70 expression, which is known to inhibit AIF translocation from the 

cytosol to the nucleus, this may explain why we only observed an increased cytosolic, but not 

nuclear AIF in the WQ in aged mice. In addition to its role in apoptotic signaling, AIF has a role 

mitochondrial function and dysfunction82. AIF has been suggested to have a role in 

mitochondrial energy metabolism as well as in preventing ROS generation83. For example, in 

mouse muscle, tissue-specific deletion of AIF results in impaired oxidative phosphorylation and 

functional deficits in complex 1 activity and content82. Thus, if AIF is being released into the 
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cytosol, mitochondrial electron transport may be affected, leading to reduced mitochondria 

function and ROS generation. Previous work in our lab found an increased cytosolic AIF in the 

RQ in young ARC KO mice, with our 18 week KO mice displaying increased cytosolic AIF in 

the WQ. Overall our findings show a slight increase in caspase-independent apoptotic signaling 

in fast muscle of aged mice. 

Differences were also observed in our study with caspase-dependent signaling. 

Increased67 cytosolic Cyto-c content has been found in the gastrocnemius of 30 month old rats. 

However, decreased56 cytosolic Cyto-c levels were also found in the gastrocnemius of 26 month 

old rats. Additionally, a transient increase in caspase-9 activity over the lifespan was reported37. 

We found a similar result with total Cyto-c in the plantaris increasing in the 1 year vs. 18 week 

animals, with a decline at 2 years. This may be due to an increased mitochondrial content in the 1 

year animals and a decreased content in the 2 year animals. However, as stated before, we found 

no differences in ANT expression in the 2 year animals; therefore, this is likely do to specific 

alterations in Cyto-c expression. In the RQ and WQ there was increased cytosolic SMAC in the 

2 year animals. An increase in SMAC would block the inhibitory actions of XIAP19. In 

agreement with our results, increased SMAC was shown in the gastrocnemius of 30 month old 

rats67. Furthermore, examination of the 2 year ARC KO mice vs. WT revealed an increased 

Bax:Bcl-2 ratio, nuclear AIF, cytosolic Cyto-c, and cytosolic SMAC in the RQ. Given that ARC 

is able to inhibit Bax, preventing the release of pro-apoptotic proteins from the mitochondria, this 

coincides with our hypothesis that the 2 year ARC KO animals would display an increased 

mitochondrial-mediated apoptotic signaling. 
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Skeletal Muscle Morphological and Phenotypic Changes 

 Advancing age is associated with skeletal muscle atrophy, decreased fiber CSA and 

number, as well as a shift toward a slower phenotype32. Previous work on young ARC KO mice 

showed altered CSA and fiber distribution in both the soleus and plantaris. We found both 

morphological differences, in muscle CSA, as well as phenotypic differences, in fiber type 

distribution in both soleus and plantaris muscle. Numerous other apoptotic proteins are involved 

in the regulation of skeletal muscle size during development and formation. For example, 

skeletal muscle differentiation is reduced in cultured myoblasts by overexpressing Bcl-XL, 

preventing increases in caspase-384. Additionally, myotubes display enhanced apoptotic cell 

death when differentiated from low Bcl-2 expressing C2C12 cells85. Furthermore, under 

conditions of stress, such as immobilization, caspase-3 KO mice show attenuated decreases in 

muscle mass in both the soleus and gastrocnemius86. Additionally, one study examined muscle-

specific overexpression of the anti-apoptotic Hsp-70 in adult mice and surprisingly found a 

decrease in both body and muscle mass87. Whereas, another study of overexpression found that 

after 7 days of immobilization there was decreased CSA of type II fibers in the EDL and type I 

and II fibers from soleus; however, after 7 days of recovering only the mice overexpressing Hsp-

70 recovered muscle size88. Together, these studies suggest that apoptotic signaling proteins alter 

skeletal muscle morphology, with their expression changing in development and under 

conditions of stress. These factors may contribute to alterations in force development in both the 

aging process, as well as a result of a lack of ARC protein. 

 

Changes in Cross-Sectional Area 

 Total CSA decreased in the 2 year animals in both the soleus and plantaris, with a trend 
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towards a decrease in KO animals in the soleus. Since ARC is higher in type I and IIA fibers 

which comprises around 80% of the soleus, it was expected that total CSA would be lower in KO 

animals. As well, previous work in our lab found a smaller soleus CSA, but a larger plantaris 

CSA in young ARC KO mice, with our results revealing similar findings in 18 week KO mice. 

Therefore, it is not surprising that the total CSA of the plantaris did not decrease in our ARC KO 

animals. In the soleus type I, IIA, and IIX fiber CSA decreased in the 2 year animals, whereas a 

decrease was seen in CSA of type IIA, IIX, and IIB fibers in the plantaris. Similar to our 

plantaris results, aging studies demonstrate atrophy of type II fibers with little change in type  

I32. Furthermore, there appeared to be a wide range of both large and very small fiber sizes in the 

2 year animals, which may not have been represented in the averages of specific fiber type CSA. 

Literature has shown large variations in fiber sizes among individuals with this being 

exacerbated with age89. It has been speculated that this results from the denervation-

reinnervation in the aged90, allowing denervated fibers to atrophy while others may hypertrophy 

to compensate91. Furthermore, conditions of stress, other than aging, can result in specific fibers 

atrophying. One such condition being inactivity, which causes a decrease in CSA of type I and 

IIA fibers92. Although this was not a study of inactivity or of forced disuse, such as hindlimb 

suspension, the mice were cage bound with no access to a running wheel over their lifespan. 

Since the literature has shown that C57/B6 mice with access to a running wheel run an average 

of 4 km per day93, our model could lead to a more sedentary lifestyle (and be a chronic model of 

inactivity), possibly influencing the differences seen in fiber-specific CSA. This may have 

blunted the effects of aging on a lack of ARC, resulting in a larger decrease in type I and IIA 

CSA then would usually be seen in aging. There were no differences in specific fiber CSA with 

respect to genotype. As well, previous work in our lab showed a decreased CSA of type I and 
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IIA fibers in the soleus of young ARC KO mice; however we did not see this in our 18 week KO 

mice. As well, in the plantaris of young ARC KO mice previous work found an increase in type 

IIB fiber CSA; however we saw a decreased type I fiber CSA in 18 week KO mice. Overall, we 

found a decrease in the CSA of all type II fibers in the 2 year animals, reflecting what is seen in 

aging, as well as a decrease in type I CSA in the soleus during aging. 

 

Changes in Skeletal Muscle Fiber Type 

 Along with alterations in CSA, we also found shifts in fiber type distribution with aging. 

In the soleus, aged mice display a higher percentage of type I fibers and a decreased percentage 

of type IIX and IIB fibers, resulting in a shift towards a slower phenotype. In the plantaris, aged 

mice display a lower percentage of type I and type IIA fibers, and an increased percentage of 

type IIB fibers, resulting in a shift towards a faster phenotype. Even though there was an increase 

in type IIB fiber percentage, the CSA of those fibers were smaller. One study on aged C57/B6 

mice found similar results with a shift toward a slower phenotype in the soleus and a faster 

phenotype in the EDL94. A number of conditions result in fiber type switching95. Aging results in 

a shift towards a slower phenotype, whereas inactivity is associated with a slow to fast shift96. 

Although this study was not an inactivity model as stated before, these animals were cage-bound 

their entire life, possibly influencing the shift in fiber types93. Therefore the shift towards a 

slower MHC in aging may have been blunted, resulting in a heightened shift towards a faster 

MHC, increasing the influence of a lack of ARC. Thus, the soleus revealed a shift towards a 

slower fiber type composition, commonly seen in aging, yet the faster shift in the plantaris more 

closely resembles an inactive model. The fiber type shift in our aged ARC KO mice likely 

reflects a balance between a slower phenotype shift in aging, and a faster phenotype shift due to 
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ARC-deficiency, as seen previously in young ARC KO mice in our lab as well as in the soleus of 

our 18 week ARC KO mice. Although we found no effect of genotype in either muscle, the 

dramatic fiber type switching in normal aging may “washout” any effects of a lack of ARC 

protein.  

In addition to ARC’s anti-apoptotic role in skeletal muscle maintenance, ARC also has an 

important role in skeletal muscle development, remodeling with exercise and in disease. Previous 

work in our lab and others have demonstrated ARC’s role in skeletal muscle differentiation58. 

ARC protein content was found to be low in myoblasts but becomes upregulated during 

differentiation into myotubes58. Whereas, overexpression of ARC in pre-differentiated H9c2 

cells, prevented these cells from differentiating57. Therefore, ARC has a central role in the 

formation of healthy muscle during development. Furthermore, ARC also has an important role 

in adaptations to exercise. For example, ARC becomes upregulated in response to exercise 

training in rat soleus muscle97, with exercise also known to decrease apoptosis. Additionally, 

ARC expression has been shown to change in disease states. For example, ARC localization 

changes in muscular dystrophy98, whereas ARC expression decreases in hypoxia50, and 

ischemia-reperfusion injury49. Transgenic overexpression of ARC in dystrophic muscles of 6 

week old mice was found not to be protective, possibly resulting from a functional saturation of 

ARC99. Whereas, ARC deficiency in dystrophic muscle resulted in increased Bax, elevated Ca2+, 

and a lower threshold of the mPTP98. Thus, these studies show that under various conditions of 

stress, that the regulation and expression of ARC differs, with our aging study showing a 

decrease in the expression of ARC in the soleus of our 2 year WT mice despite the shift to a 

slower phenotype.  
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Changes in Force Characteristics 

 There is a progressive decline in both muscle mass and function with increasing age. 

Studies have shown that in addition to a decreased fiber size and number with aging94, increasing 

age results in fiber denervation (especially of fast α-motorneurons) and reinnervation100, 

structural alterations, and a decrease in force generating capacity66. The decline in force 

generating capacity is around a 40% decrease from age 20 to 80 years in humans101, although in 

mice the decrease is about 20%66. Our results revealed a higher rate of both contraction and 

relaxation and twitch:tetanus ratio in the soleus of the 2 year animals, indicating an increased 

twitch force and smaller tetanic contraction in aged mice. The plantaris revealed slower 

contraction and relaxation rates, decreased tetanic contraction, as well as the force-frequency 

curve was shifted downwards in the 2 year animals. This is likely due to a decreased CSA of 

type IIB fibers, as well as a decrease in whole muscle CSA. Decreased tetanic force with age has 

been documented in previous studies102. With age, the decline in force may not just be due to 

atrophy, but a loss of force per unit cross-sectional area, resulting from extracellular non-

contractile tissue in muscle103. As well, the specific force of individual fibers decreases with age, 

which may be from changes in excitation contraction coupling and/or alterations to myosin and 

actin104. This can result from increased damage to the mitochondria and ER, by increased 

ROS105, and apoptotic changes, such as an increase in enzymes that can cleave structural and 

contractile proteins. For example, in mice the overexpression of the antioxidant catalase in the 

mitochondria reduced the normal age decline in force generating capacity106. Both the soleus and 

plantaris demonstrated slower one-half relaxation rates, with the soleus also having slower time 

to peak tension in the 2 year animals. This could be the result of a higher percentage of slow type 

I fibers in the soleus, as well as slower uptake of Ca2+ into the SR by the sarco/endoplasmic 
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reticulum Ca2+ ATPase (SERCA) in increasing age, in both muscles106. However, measures of 

fatigue were not different between groups. Previous work also found no differences in the EDL 

of aged mice107. We can speculate that the lack of differences in fatigability of both soleus and 

plantaris muscles in our study, may be due to motor unit switching or a decreased proportion of 

fiber area from type IIB fibers in the soleus. Additionally, there is evidence that the increased 

fatigue, usually seen in aged humans108 and mice109, is central fatigue. Since we used isolated 

muscles we were not able to test or to attribute differences to either central or peripheral fatigue. 

In our measures, we found no significant effect with respect to genotype. Previous work in 18 

week ARC KO mice found that maximum twitch contraction rates were decreased in the soleus, 

and that the plantaris showed decreased fatigability. We found similar results when only 

comparing our 18 week animals. Differences in apoptotic signaling and skeletal muscle 

morphology were minimal between genotypes in the aged mice, which may have resulted in the 

lack of an effect seen in the contractile measures. Also, since age has a dramatic effect on muscle 

function, any significant differences in genotype may have been ‘washed out’ by the effects of 

age, if any changes did occur. Overexpression of other apoptotic proteins in mice has shown 

improvements in contractile function with age. For example, when aged mice were given 

damaging lengthening contractions, muscle-specific overexpression of Hsp-70 resulted in faster 

recovery, better Ca2+ handling, and maintenance of specific force, in overexpressing mice87. 

Although these mice still demonstrated age-related skeletal muscle atrophy, they were able to 

maintain the same force per unit of cross-sectional area. Overall, although studies on young ARC 

KO mice found an effect of genotype, we did not observe the same effects over the lifespan; 

however, we demonstrated significant age-related alterations in force generating capacity and 

rate, with no differences in fatigability. 



!
!

71!

Satellite cell content has been reported to decrease in the aged35, and this correlates with a 

decreased regenerative ability110. This loss of satellite cells in sarcopenia is also greater in type II 

fibers111. There is speculation that the myonuclear domain size changes in aging112. Some 

suggest that in aged a decrease in satellite cell number, slowed activation, and decreased 

proliferation leads to nuclei not being replaced and an increase113 or decrease114 in myonuclear 

domain size. Since the myonuclear domain supports protein synthesis and gene maintenance 

within the muscle, changes in size may impact function. Regardless, aged muscles display 

decreased regenerative ability, increased protein degradation, and an attenuated rate of protein 

synthesis. These combination of factors than ultimately lead to atrophy and functional 

alterations. 
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Conclusion 

 There is significant skeletal muscle mass and strength loss in the elderly resulting in 

impaired mobility. Elucidating the mechanisms that influence muscle loss over the lifespan may 

lead to improved function and health. Using an ARC KO mouse model at three different ages we 

examined the role of ARC in the maintenance of skeletal muscle over the lifespan. Specifically 

we found alterations in skeletal muscle morphology in both fast and slow muscle, including 

differences in muscle size and fiber distribution during the aging process. Furthermore, we also 

found alterations in force production, an upregulation of proteins involved in apoptotic signaling, 

but no differences in proteolytic enzymes in aged mice. Although differences were seen from a 

lack of ARC over the lifespan, the morphological and apoptotic alterations seen in aging were 

more overt, suggesting ARC may have a larger influence during skeletal muscle development 

rather than during aging, and possibly in situations with greater additional stress. Overall, this 

study illustrates the morphological, apoptotic, and functional alterations in skeletal muscle of 

aged mice, with only a few differences in aged ARC KO mice. 
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Limitations 

 The transgenic ARC KO mouse model used in this study was a global KO and therefore 

it was not specific to only skeletal muscle. This may have affected the regulation of other tissues 

within the body, which may have influenced these results. ARC is primarily in skeletal muscle, 

cardiac muscle, and brain; therefore, the resulting effects from these tissues may have had an 

influence on our outcomes. 

 The soleus and plantaris muscles were used for morphological measures and protein 

expression, but due to their small size, other representative slow (red gastrocnemius and 

quadriceps) and fast (white gastrocnemius and quadriceps) muscles were used for measures of 

protein expression in subcellular fractions and enzymatic activity. These muscles have different 

fiber type compositions and may have lead to discrepancies when making muscle comparisons. 

Additionally, whole muscle homogenates were used which are a heterogeneous mixture of fiber 

types, thereby conclusions about fiber type-specific protein expression cannot be conducted from 

our results. Also, changes in fiber type composition could affect the protein expression of other 

apoptotic factors. Furthermore, atrophy, denoted by decreased fiber type-specific CSA, did not 

occur in all fiber types. Therefore, we cannot infer that all fiber types may be contributing to the 

altered apoptotic signaling in skeletal muscle. 
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Future Directions 

 While some differences were found as a result of a lack of ARC protein over the aging 

process, future work is needed to further examine the role of ARC over the lifespan. Firstly, the 

mice had no access to a running wheel in their cages possibly producing a more sedentary 

lifestyle than would be normal. This could be avoided by allowing the mice access to a running 

wheel. Additionally, by employing a forced disuse model (hindlimb suspension or denervation), 

we could determine whether these phenotypic differences become exacerbated in the skeletal 

muscle of aged mice. Furthermore, an exercise study could be of interest, since exercise is 

associated with a decrease in apoptotic signaling and an increase in ARC expression97. 

Determining if the protective effects of exercise are mediated through ARC by using an ARC 

KO mouse model in an exercise training study would help to further elucidate the role of ARC 

under different conditions of stress. 

 Secondly, an ARC overexpression study in mice would be of interest to determine if 

increased ARC expression can attenuate the age associated decrease in skeletal muscle mass. 

Previous work has found that overexpression of other anti-apoptotic proteins results in decreased 

apoptotic signaling and attenuated decreases in force production with age87. 

 Lastly, previous aging studies implementing caloric restriction have demonstrated 

protective effects against increases in apoptotic signaling, as well as muscle atrophy. One study 

showed that lifelong caloric restriction increased ARC expression, thereby decreasing 

mitochondrial-mediated apoptotic signaling55. Therefore, combining caloric restriction with an 

ARC KO mouse model may be of importance for future studies. These experiments would 

increase the knowledge of ARC’s role in the regulation of fiber-specific muscle morphology, 

adaptation to exercise, and apoptotic signaling in disease. 
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