Studies on processing additives introduced to increase the efficiency of organic solar cells: selection and mechanistic effects

by

Uyxing VONGSAYSY

A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy

in

Electrical Computer Engineering

Waterloo, Ontario, Canada, 2015

©Uyxing Vongsaysy 2015
Declaration of Authorship

'I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public.'
Polymeric bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted significant interest as a low cost and renewable technology to harvest solar energy. Despite these advantages, their generally low power conversion efficiencies are a barrier for their movement into commercial applications. Controlling the BHJ morphology is a key step in the pursuit of higher OSC efficiencies.

Processing additives have emerged as effective components for controlling and optimizing the BHJ morphology. Despite their widespread use, their mechanistic roles are not yet fully understood, thus appropriate selection remains the result of trial and error experiments. This thesis provides a comprehensive study on the introduction of processing additives in OSC formulation. The semiconductor system under study is based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC_61BM).

First, a systematic method was developed to guide the selection of processing additives from a large range of solvents. This method employs the Hansen solubility parameters to define a set of numerical criteria based on the solubility properties of the semiconductors. The method was successfully applied to the P3HT/PC_61BM-system and resulted in the identification of three new efficient processing additives.

Next, the mechanistic role of additives in influencing the BHJ morphology is investigated by performing structural, electrical and optical characterizations. The results suggested that processing additives lead to the formation of a BHJ with more numerous but smaller polymer crystallites. Also, the effects of additive on OSC performance differed depending on whether the OSC was fabricated in an inverted or in a conventional architecture. Such differences can be explained in terms of variations in electron and hole mobilities caused by the additive.

Furthermore, photo-stability tests, performed on different types of OSCs, showed that processing additives can improve the photo-stability. The results showed that improvement was related to the formation of a more photo-stable interface with the top electrode.

Finally, the scope of this study is extended to two other donor polymers. The effects of processing additives differed from those seen in the P3HT/PC_61BM-system because of the different properties of these polymers.
Acknowledgements

At the end of my engineering school, I had the opportunity to perform this PhD in the field of organic photovoltaics as part of an international program between Canada and France. Back then, I was very excited because I pictured this as a major opportunity in my professional and personal life. Professional, because I was passionate about organic electronics and this PhD was the opportunity to strengthen my knowledge and to contribute scientifically to this innovative field. Personal, because the development of renewable energy is of major importance to me and I was also looking forward to live and work in Canada. Four years later, I am glad to observe that my expectations have been successfully fulfilled and that I gained valuable experiences that were beyond my expectations. I grew up and I learn a lot. This would not have been possible without the large body of people I was lucky and honored to work with and to be friend with. These are the people I want to thank here.

First of all, I would like to thank all my supervisors for giving me the great opportunity to perform this PhD and for their guidance throughout these years. I am highly grateful to Bertrand Pavageau for giving me the opportunity to perform this PhD at LOF and for his constant support and his never fading enthusiasm towards my research and my ideas. I would like to address my sincere gratitude to Pr. Laurent Servant for his contribution and his advice in my research but also when I had administrative issues. His availability and his concern for my PhD helped me to carry out my research in good conditions. I am truly grateful to Pr. Hany Aziz for welcoming me in his group. His guidance and his trust in me pushed me to take risks and to do my best. Particularly, during the writing of my thesis, his patience and his advices highly contributed to its quality. To him, I want to express my respect and my sincere gratitude. Sincere thanks go to Dr. Dario Bassani for his support and for fruitful discussions about my research and my manuscripts.

I would like to address my sincere gratitude to Dr. Guillaume Wantz and Dr. Lionel Hirsch for welcoming me in the Laboratoire d’intégration du matériau aux systèmes (IMS) which is a scientifically great and friendly environment. Special thanks to Guillaume for the discussions; for valuing my work and for always pushing me to be more ambitious.

I would like to address my sincere thanks to Pr. Thomas Heiser from the University of Strasbourg, Pr. Alejandro Briseno from the University of Massachusetts and Pr.
Siva Sivoththaman from the University of Waterloo for accepting to be part of my committee, for reviewing my thesis and for providing valuable comments.

I would like to acknowledge Solvay, the Natural Sciences and Engineering Research Council of Canada as well as the Waterloo Institute for Nanotechnology for funding my PhD research.

As my thesis was performed in a co-tutelle program, I had the pleasure of being part of four different laboratories. In France, I started my work at LOF Solvay. I thank the director at the time, Patrick Maestro for welcoming me at LOF. I thank Simon Rousseau and Samantha Armisen for sharing their valuable expertise and for their help in the determination of the Hansen Solubility Parameters. I would like to thank all the LOF team for welcoming me and more particularly few buddies for their supports and their friendships: Vincent Mansard (now lost somewhere in the west coast), Julie Angly (for her enthusiasm, her optimism and for the tea), Cyril Vidaillac (for all the valuable conversations), Hongyu (for always being smiley, strong and therefore inspiring), Julien Jolly, Ana Maldonado, Marta Romano, Rawad Tadmouri and many more.

In France, I worked in parallel in the Institut des Sciences Moléculaires (ISM). In the group of Nano-structures Organiques, I thank Dr. Debdas Ray and Dr. Chih-Kai Liang who helped with the synthesis of PC_{61}BM. In the group of Spectroscopie Moléculaire, I thank Colette Belin for helping me with the AFM imaging, Thierry Buffeteau and Gwenaelle Lebourdon for their valuable help in the PM-IRRAS experiments on active layer thin films.

Still in France, I had the chance to be part of IMS. I would like to thank Dr. Mamatimin Abbas for fruitful discussions and for helping me with transistor fabrication and measurement (despite my stubbornness). I also thank Dr. Sylvain Chambon for always being available for scientific discussions. I truly appreciated his help and his interest in my research. I also want to thank all the members or ELORGA: Pr. Laurence Vignau (for being the first one to trigger my interest in organic electronic), Pr. Pascal Tardy and all the students who brought a enjoyable atmosphere in the lab: Dargie Daribew (my friend), Elodie Destouesse (for her great help when I first arrived in IMS), Maxime Lebail, Lionel Derue, Frédéric Guillain, Gildas Laurans (pour les caramels au beurre salé et ta bonne humeur au bad entre autres), Léo Peres (malgré tes blagues malheureusement sans fin, merci pour ton soutien), Yolande Murat (la plus gentille en 2015 j’espère), Geoffroy Houin (mon
grand), William Greenbank, Marcin, Damien Thuau, Pierre Henrie, Thérèse Gorisse, Georgio Mattana, Yu-Tang Tsai and Yan-Fang Chen.

In Canada, I was part of the Nanotechnology program of the University of Waterloo in the group of Pr. Hany Aziz. I would like to thank the technical lab managers of the Giga-to-Nanoelectronics lab Richard Barber and Robert Mullins for their role in providing to the students the best working conditions. I would like to address special thanks to Graeme Williams for fruitful discussions and his great help throughout my PhD especially when I first arrived in UW and to Qi Wang for helping me with the adhesion measurements and to achieve a running pace of 5 min/km. Thank you to all the other group members: Afshin Zamani (my coffee buddy), Mike Zhang, Sibi Sutty, Yoshitaka Kajiyama, Anne Bouchauty, Tyler, Thomas, Baolin. They were all unique and inspiring to me in their own way.

This PhD project was part of the IDS funmat program. As part of this program, I had the occasions to meet and to discuss with people from a large variety of scientific and cultural backgrounds. It was enriching and fun, thank you guys and especially: Alex Cunha, Marie Asano, Edgar Cao (we are finally in the same city!), Mathilde Champeau, Camille Legros and An Teaspoon (crazy food and squash buddies) and Annie Cheng (thank you for supporting me through the multiple periods of craziness), Nathacha Kinadjian, Dan (for all the unforgettable cookies), Erin (thank you so much for all the editing, for initiating my passion for yoga and running and for the great time), Medhi, Nhi, Jiang (my bored enemy) and Mylène (finalement je t’ai mise là, merci pour tout le fun et pour ton support! Je crois en toi pour la suite) and many many more.

Last but not least, I would like to thank all my family and Wi for the unconditional support that helped me throughout this journey.

Thank you all so much.
Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

List of Figures x

List of Tables xvi

Abbreviations xviii

Symbols xxi

1 Introduction to organic solar cells 1
 1.1 General introduction 2
 1.2 Functioning of solar cells 7
 1.3 Organic semiconducting materials 9
 1.3.1 Electronic properties of organic semiconductors 9
 1.3.2 Charge carrier generation in organic semiconductors 10
 1.3.3 Charge transport in organic semiconductors 11
 1.4 Organic solar cells 12
 1.4.1 Active layer architectures 12
 1.4.2 Formation of BHJ-OSCs 13
 1.4.3 Functioning of BHJ-OSCs 15
 1.4.4 Factors influencing BHJ-OSC efficiency 16

2 Formulation strategies for controlling BHJ morphology 19
 2.1 Role of solvent 20
 2.2 Effects of post-processing steps 24
 2.3 Use of processing additives in BHJ-OSCs 25
 2.4 Context and objectives of the thesis 29
3 Experimental details

3.1 Fabrication and characterization of OSCs

3.1.1 Materials and substrates

3.1.2 Active layer formulation

3.1.3 Substrate cleaning

3.1.4 Fabrication of OSCs using a conventional architecture

3.1.5 Fabrication of OSCs using an inverted architecture

3.1.6 J–V characteristics measurements of OSCs

3.2 Mobility measurements

3.2.1 Mobility measurement in OTFT configuration

3.2.2 Mobility measurement in single diode configuration

3.3 Characterization of the BHJ morphology

3.3.1 UV-Vis absorption spectroscopy

3.3.2 X-ray diffraction measurements

3.3.3 Atomic force microscopy

3.3.4 Infrared absorption spectroscopy

3.4 Photo-stability tests

4 Determination of selection rules for processing additives

4.1 The Hansen solubility parameters as a method for selecting processing additives

4.2 Determination of the HSPs of P3HT and PC_{61}BM

4.3 HSPs of commonly used processing additives

4.4 Identification of novel processing additives

4.5 Conclusion

5 The influence of processing additives on the formation of the bulk heterojunction

5.1 Effects of processing additives on the efficiency of OSCs

5.2 Characterizations of films prepared from processing additive

5.2.1 UV-Vis absorption spectroscopy

5.2.2 XRD measurements

5.3 Hole mobility measurements

5.4 Mechanistic effects of processing additives on the self-assembly of P3HT

5.5 Conclusions

6 Effect of device architecture on OSCs prepared with additives

6.1 Introduction

6.2 Electrical performance of OSCs using different architectures

6.2.1 OSCs with ODT

6.2.2 OSCs with DPH

6.2.3 Conclusions on OSCs with ODT and DPH

6.3 Measurements of charge carrier mobility using OTFT configuration

6.3.1 Fabrication of OTFTs

6.3.2 Mobility measurements of films prepared from ODT
Contents

6.3.3 Mobility measurements of films prepared from DPH 80
6.4 Origins of additive dependence on OSCs architecture 82

7 The effects of processing additives on the stability of OSCs 85
7.1 Background on the stability issues of OSCs 86
7.1.1 Stability of organic semiconductors 86
7.1.2 Stability of OSCs . 88
7.2 Traces of processing additives in the active layer 89
7.3 Photo-stability tests on OSCs . 93
7.3.1 Photo-stability tests on OSCs in air 93
7.3.2 Photo-stability tests on OSCs in inert atmosphere 94
7.4 UV-Vis absorption spectroscopy of light-irradiated active layers . . . 98
7.5 Photo-stability study on the bottom interface 100
7.6 Photo-stability study on the top interface 102
7.6.1 Photo-stability tests on OSC active layers 102
7.6.2 Effects of light irradiation on the adhesion of the top electrode . 104
7.7 Conclusions . 108

8 Studies on new generation donor polymers 110
8.1 Studies on PDQT . 111
8.1.1 Introduction to DPP based copolymers 111
8.1.2 Performance of OSCs based on PDQT/PC_{61}BM 112
8.1.3 Effects of processing additives . 116
8.1.4 Discussions and conclusion . 118
8.2 Studies on PCDTBT . 119
8.2.1 Introduction to carbazole based copolymers 119
8.2.2 Solubility properties of PCDTBT 121
8.2.3 Performance of OSCs based on PCDTBT/PC_{61}BM 122
8.2.4 PCDTBT/PC_{61}BM/C_{60} ternary blend 125
8.2.5 Conclusions . 132

9 Conclusions and future work 133
9.1 Conclusions . 134
9.2 Future work . 135

A Scientific communications 137

Bibliography 139
List of Figures

1.1 Photovoltaic device efficiency within different families of semiconductors. Reproduced from reference [1]. ... 3
1.2 Photographs of (a) an OSC printed on paper, reproduced from reference [87] with permission of Wiley and (b) a transparent OSC, reprinted with permission from [34]. Copyright (2012) American Chemical Society 4
1.3 Building blocks for device fabrication and the three major axes of performance. ... 5
1.4 Example of a typical solar cell characteristic under light illumination and under dark condition. ... 7
1.5 Equivalent circuit model for a solar cell. ... 8
1.6 AirMass 1.5 Global solar spectrum. ... 9
1.7 Chemical structures of: (a) ethylene, (c) polyacetylene and the overlapping of orbitals in (b) ethylene and (d) polyacetylene. ... 10
1.8 Simplified schematic of (a) a bi-layer active layer and (b) a BHJ-active layer. ... 13
1.9 Top row: examples of A small molecules and bottom row: example of D polymers. ... 14
1.10 Energy diagram in BHJ-OSCs. The figure depicts a situation where the light is absorbed by the D. The photogeneration of the exciton is followed by an electron charge transfer from the LUMO of the D to the LUMO of the A. ... 16

2.1 AFM topography images (2 µm x 2 µm) of as-cast and annealed films of MDMO-PPV-PC$_{61}$BM spin-cast from (a, b) chlorobenzene (CB), (c, d) carbon disulfide, (e, f) chloroform (CF), (g, h) pyridine, (i, j) trichloroethylene, (k, l) toluene and (m, n) 1-methylpyrrole. Reproduced from reference [57] with permission of Wiley. ... 21
2.2 (a) GIXD profiles of P3HT films spin-cast from P3HT/CF solutions containing a range of added acetone; (b) 2θ angle (left axis) of (100) peak and corresponding layer spacing (right axis) as a function of the additional acetone volume ratio. Reprinted with permission from [32]. Copyright (2013) American Chemical Society. ... 22
2.3 Effects of thermal annealing on the crystallinity of P3HT depicted by (a) an appearance of P3HT vibronic bands in UV-Vis absorption spectra (b) an increase in diffraction peak of P3HT in XRD pattern. Figures (a) and (b) are respectively reproduced from references [116] with permission of AIP Publishing LLC and [238] with permission of Elsevier. 24

2.4 Proposed model during spin-coating process. Black wire: P3HT polymer chain; big black dots: PC61BM; blue dots: ODCB molecules; and red dots: ODT molecules. (a–c) correspond to three stages in the spin-coating process when ODCB is the sole solvent; (d–f) correspond to three stages in the spin-casting process when ODT is added in ODCB. Reproduced from reference [234] with permission of Wiley. 26

2.5 Schematic of the role of the processing additive in the self-assembly of BHJ blend materials. Reprinted with permission from [114]. Copyright (2008) American Chemical Society. 27

2.6 Chemical structures of processing additives. 28

3.1 P-type bottom-gate, top-contact OTFT device architecture from a side-view (left) and from a top-view (right). L represents the channel length and W the channel width. 37

3.2 Hole only device structure. 39

4.1 HSPs diagrams showing the good and the poor solvents resulting from solubility tests and the fitted solubility sphere of the compound under study. 45

4.2 Solubility spheres of P3HT and PC61BM. 46

4.3 Molecular structures of: (a) C-PYR, (b) DPH and (c) TRIB. 49

4.4 Positions of C-PYR, DPH and TRIB in the Hansen solubility space with respect to the solubility spheres of P3HT and PC61BM. 49

4.5 UV-Vis absorption spectra of solutions of P3HT in ODCB, C-PYR and TRIB. 50

4.6 Calibration curves obtained from dissolving PC61BM in CB with different concentrations. 50

4.7 Solid state UV-Vis absorption spectra for P3HT/PC61BM blends with varying concentration of processing additives: a) C-PYR, b) DPH and c) TRIB. 52

4.8 Photovoltaic parameters of OSCs with varying concentration of processing additives: (a) V_{oc}, (b) FF, (c) J_{sc} and (d) PCE. 52

5.1 Electrical parameters of OSCs with different concentrations for the three processing additives: a) V_{oc}, b) FF, c) J_{sc} and d) PCE. 57

5.2 Solid state UV-Vis absorption spectra for P3HT/PC61BM blends with various concentration of a) C-PYR, b) DPH and c) ODT. 58

5.3 XRD patterns of P3HT/PC61BM films spin-cast from solutions containing 1.6 vol% of a) C-PYR, b) DPH, c) ODT and d) thermally-annealed film. 59
5.4 Average size of P3HT crystallites as a function of processing additive concentration. .. 60
5.5 XRD patterns of P3HT films spin-cast from solutions containing various concentrations of DPH. .. 61
5.6 (a) Device structure of hole-only device and (b) corresponding energy diagram. .. 62
5.7 J.L3 as a function of applied voltage for hole-only devices prepared from: a) and d) C-PYR, b) and e) DPH, and c) and f) ODT. Figures a - c) depict plots for an applied voltage ranging from 0 to 5 V and figures d - f) depict zoomed-in plots in the region 2 to 5 V. 63
5.8 Calculated SCLC hole mobility as a function of the concentration of processing additive. .. 63
5.9 Evolution of hole mobility and FF as a function of the concentration of processing additive in OSCs prepared with (a) C-PYR, (b) DPH and (c) ODT. .. 64
5.10 Evolution of the RED with P3HT (in black) and with PC$_{61}$BM (in red) as a function of the effective concentration of a) C-PYR, b) DPH and c) ODT. The dotted line at RED of 1 depicts the theoretical RED threshold value separating the regions where the compound is non-soluble and soluble. .. 66
5.11 Schemes representing the BHJ morphology spin-cast from formulations with various concentration of additive. The crystallites of P3HT become more numerous and smaller as the starting concentration or processing additive increases. .. 68
6.1 OSC architecture: (a) inverted and (b) conventional. 71
6.2 Effects of ODT on the electrical parameters in a conventional and in an inverted architecture of OSCs: (a) V_{oc}, (b) J_{sc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}. .. 73
6.3 J-V curves of OSCs with various concentrations of ODT under dark conditions (a) in a conventional configuration and (c) in an inverted configuration and J-V curves under illumination (b) in a conventional configuration and (d) in an inverted configuration. 74
6.4 J-V curves of OSCs with various concentrations of DPH under dark conditions (a) in a conventional configuration and (c) in an inverted configuration and J-V curves under illumination (b) in a conventional configuration and (d) in an inverted configuration. 75
6.5 Effects of DPH on the electrical parameters in a conventional and in an inverted architecture of OSCs: (a) V_{oc}, (b) J_{sc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}. .. 76
6.6 Different scenarios of vertical phase separation in BHJ: (a) no vertical phase separation - homogeneous active layer, (b) BHJ with a P3HT-enriched top and a PC$_{61}$BM-enriched bottom and (c) BHJ with a P3HT-enriched bottom and a PC$_{61}$BM-enriched top. 77
6.7 Transfer characteristics of OTFTs prepared with various concentrations of ODT in: (a) p-type OTFTs and (b) n-type OTFTs. 79
6.8 (a) Mobility values of OTFTs prepared with various concentrations of ODT as a function of V_{GS}-V_{th}: the left side of the graph depicts hole mobility and the right side the electron mobility. (b) Electron and hole mobilities at V_{GS}-V_{th} of $+2$ V and -2 V respectively, as a function of ODT concentration. ... 80

6.9 Transfer characteristics of OTFT prepared with various concentrations of DPH in: (a) p-type OTFTs and (b) n-type OTFTs. 81

6.10 (a) Mobility values of OTFTs prepared with various concentrations of DPH as a function of V_{GS}-V_{th}: the left side of the graph depicts hole mobility and the right side the electron mobility. (b) Electron and hole mobilities at V_{GS}-V_{th} of $+2$ V and -2 V respectively, as a function of DPH concentration. ... 81

6.11 A schematic description of hole and electron transport in OSC without processing additive and subsequent preferential architecture. 83

6.12 A schematic description of hole and electron transport in OSC prepared with 2.4 vol% of additive and subsequent preferential architecture. OSCs with 2.4 vol% depict the case where hole mobility is higher than electron mobility. ... 84

7.1 (a) Normalized UV-Vis absorption (at 500 nm) of MDMO-PPV (\triangle), MDMO-PPV/PC$_{61}$BM (○) and normalized UV-Vis absorption (at 520 nm) of P3HT (●) and P3HT/PC$_{61}$BM (◼) samples during photo-oxidation. (b) Normalized UV-Vis absorption of MDMO-PPV/PC$_{61}$BM (at 500 nm (○)) and P3HT/PC$_{61}$BM (at 520 nm (◼)) samples during photolysis. Reproduced from reference [180] with permission of Elsevier. 87

7.2 Optical microscopy images of P3HT/PC$_{61}$BM layers before and after being thermally annealed at 150°C for 5 hours or 24 hours. Reproduced from reference [222] with permission of Wiley. 87

7.3 Scheme of the procedure for the detection of processing additive in P3HT/PC$_{61}$BM films. ... 89

7.4 (a) ATR spectrum of C-PYR, (b) Zoomed-in PM-IRRAS spectra of P3HT/PC$_{61}$BM films with and without C-PYR (region 1900 - 1600 cm$^{-1}$). ... 90

7.5 (a) ATR spectrum of DPH, (b) Zoomed-in PM-IRRAS spectra of P3HT/PC$_{61}$BM films with and without DPH (region 1820 - 1700 cm$^{-1}$). 91

7.6 (a) ATR spectrum of TRIB, (b) Zoomed-in spectra of the region 1800 - 1700 cm$^{-1}$ of PM-IRRAS spectra of P3HT/PC$_{61}$BM films with and without TRIB. ... 92

7.7 (a) ATR spectrum of ODT, (b) PM-IRRAS spectra of P3HT/PC$_{61}$BM films with and without ODT. ... 92

7.8 Normalized electrical parameters of OSCs subjected to light irradiation in air: (a) J_{sc}, (b) V_{oc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}. 95

7.9 Normalized electrical parameters of OSCs subjected to light irradiation in inert atmosphere: (a) J_{sc}, (b) V_{oc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}. ... 97
List of Figures

7.10 UV-Vis absorption of P3HT/PC$_{61}$BM films before and after light irradiation for 60 hours in air for (a) Thermally annealed, (b) C-PYR, (c) DPH and (d) ODT-treated active layers. .. 98

7.11 UV-Vis absorption spectra of P3HT/PC$_{61}$BM films before and after light irradiation for 60 hours in inert atmosphere for (a) Thermally annealed, (b) C-PYR, (c) DPH and (d) ODT-treated active layers. 99

7.12 Scheme of photo-stability tests on OSC with a C$_{60}$ buffer interlayer. 100

7.13 Energy levels of OSCs containing C$_{60}$ as an interlayer between ZnO and the active layer. .. 101

7.14 Effects of C$_{60}$ thickness on the PCE of OSCs. 101

7.15 Evolution of normalized (a) V_{oc} and (b) PCE as a function of irradiation time for OSCs without (solid line) and with (dashed line) a C$_{60}$ interlayer.102

7.16 Comparison of the normalized (a) V_{oc} and (b) PCE after 40 hours of light irradiation on OSCs without top electrode or with top electrode. . 104

7.17 (a) Schematic drawing of a four-point bend adhesion sample stack. A load P/2 is applied on each side of the sample. (b) A typical load versus displacement characteristic. Figure (b) is reproduced from reference [220] with permission of AIL Publishing LLC. 105

7.18 Load versus displacement characteristics for fresh and irradiated samples for (a) samples with ODT and (b) thermally annealed samples. On (a) the measured force loss (ΔN) is showed. The plots of the irradiated samples were manually vertically down shifted for the clarity of the Figures. ... 106

7.19 AFM topography (1 μm x 1 μm) images of active layers films: (a) thermally annealed and (b) ODT-treated. 108

8.1 On the left: DPP-based conjugated polymers where R is a substituent, Donor 1 and Donor 2 are electron donating building blocks. On the right, examples of electron donating building blocks are depicted. Adapted from reference [121] with permission of the Royal Society of Chemistry . 111

8.2 Chemical structure of PDQT. .. 112

8.3 Solid-state UV-Vis spectrum of PDQT/PC$_{61}$BM in a 1/3 ratio. 112

8.4 Energy levels of PDQT/PC$_{61}$BM - OSC in an inverted architecture. . 113

8.5 Solubility spheres of PC$_{61}$BM and PDQT. 113

8.6 XRD patterns of: (a) pure PDQT and (b) PDQT/PC$_{61}$BM blends in various D/A ratios. .. 115

8.7 AFM images of PDQT/ PC$_{61}$BM in various D/A ratios: (a-d) phase images, (e-h) topography images: (a) and (e) ratio pure PDQT, (b) and (f) ratio 2/1, (c) and (g) ratio 1/2, (d) and (h) ratio 1/4. 115

8.8 Electrical performance of PDQT/PC$_{61}$BM-OSCs as a function of additive concentration: (a) J_{sc}, (b) V_{oc}, (c) FF and (d) PCE. 117

8.9 AFM images of PDQT/PC$_{61}$BM in a 1/3 ratio prepared with various concentrations of additive: (a-c) topography images, (d-f) phase images: (a) and (d) no additive (b) and (e) 5 vol%, (c) and (f) 11 vol%. 118

8.10 Chemical structures of: (a) a carbazole unit and (B) PCDTBT. 120

8.11 Energy levels of PCDTBT/PC$_{61}$BM-OSCs in an inverted architecture. . 120
List of Figures

8.12 Solubility spheres of PCDTBT (in blue) and PC\textsubscript{61}BM (in red) in the Hansen solubility space. 121
8.13 Photovoltaic parameters of OSCs as a function of the thickness for various D/A ratios: (a) \(J_{sc}\), (b) \(V_{oc}\), (c) FF and (d) PCE. 123
8.14 Hansen solubility spheres of PCDTBT and PC\textsubscript{61}BM and the following solvents: DIO (black), ODT (yellow). 123
8.15 Solid-state UV-Vis absorption spectra of PCDTBT/PC\textsubscript{61}BM films (ratio 1/3) prepared without or with DIO. 124
8.16 Solid state UV-Vis spectra of PCDTBT/PC\textsubscript{61}BM\((1-x)/C_{60}(x)\) films with various fraction of \(C_{60}\). .. 125
8.17 (a) Transfer characteristics and (b) Mobility as a function of \(V_{GS}-V_{th}\) for various D/A ratios and for PCDTBT/PC\textsubscript{61}BM\((0.6)/C_{60}(0.4)\). 126
8.18 Energy levels of PCDTBT/PC\textsubscript{61}BM\(/C_{60}-\) OSCs in an inverted architecture. 127
8.19 Electrical parameters of OSCs with various fraction of \(C_{60}\): (a) \(V_{oc}\), (b) \(J_{sc}\), (c) FF and (d) PCE. 128
8.20 Normalized PCE as a function of the time of annealing treatment at 160\(^\circ\)C. ... 130
8.21 Microscopic images of PCDTBT/PC\textsubscript{61}BM\((1-x)/C_{60}(x)\) films thermally treated at 160\(^\circ\)C for 2 hours, 4 hours and 8 hours (magnification 20). . 131
8.22 Microscopic images of PCDTBT/PC\textsubscript{61}BM\((1-x)/C_{60}(x)\) films thermally treated at 160\(^\circ\)C for 2 hours, 4 hours and 8 hours (magnification 50). . 131
List of Tables

1.1 HOMO LUMO levels of acceptor materials. 14
2.1 Boiling points and solubility limits of PC_{61}BM in various solvents. 21
2.2 Effects of processing additives on the PCE of several types of D/A OSCs. 29
4.1 HSPs of P3HT and PC_{61}BM. .. 46
4.2 Characteristics of processing additives: HSPs, RED with P3HT and PC_{61}BM, reported PCEs. ... 48
4.3 Characteristics of processing additives: HSPs, REDs with P3HT and PC_{61}BM and boiling points. 48
4.4 Solubility of P3HT and PC_{61}BM. ... 51
4.5 Photovoltaic properties of OSCs. For each processing additive, the table shows the photovoltaic properties of OSCs containing the processing additive at a concentration giving the best PCE. 53
5.1 Values of the FWHM of P3HT diffraction peak at 5.5° for different active layer compositions. ... 59
6.1 Mobility of holes and electrons as a function of the concentration of ODT. 80
6.2 Mobility of holes and electrons as a function of the concentration of DPH. 82
7.1 Initial electrical performances of OSCs with different types of active layer. 93
7.2 Normalized electrical performance after light irradiation in air: 252 hours of light irradiation for OSCs with processing additives, 90 hours for thermally annealed OSCs. .. 94
7.3 Normalized photovoltaic parameters of OSCs after 393 hours of light irradiation in inert atmosphere. .. 96
7.4 Decrease in optical density measured at 601 nm. 99
7.5 Normalized photovoltaic performance of C-PYR, DPH and ODT-treated OSCs and thermally annealed OSCs subjected to light irradiation in inert atmosphere for 40 hours. 103
7.6 Force loss in the adhesion measurement test of thermally annealed samples. 107
7.7 Force loss in the adhesion measurement test of ODT-treated samples. 107
7.8 Roughness of active layers with different processing additives. 108
8.1 HSPs of PDQT. ... 113
8.2 Photovoltaic parameters of OSCs with various ratios of PDQT/PC_{61}BM. 114
List of Tables

8.3 Diffraction peaks and domain sizes of PDQT/PC_{61}BM with various D/A ratios. .. 114
8.4 Electrical performance of PDQT/PC_{61}BM-OSCs with and without additive. ... 116
8.5 HSPs of PCDTBT. .. 121
8.6 Properties of PCDTBT/PC_{61}BM active layers investigated. ... 122
8.7 Absorption maximum of PCDTBT/PC_{61}BM films with or without processing additive. 124
8.8 Average electron mobility measured in a saturation regime at V_{GS}-V_{th} = 4 V. .. 126
8.9 Normalized photovoltaic parameters of ternary blend OSCs after two hours of thermal treatment at 160 °C. 129
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Acceptor</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AM 1.5</td>
<td>Air Mass 1.5</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Reflection</td>
</tr>
<tr>
<td>BHJ</td>
<td>Bulk Heterojunction</td>
</tr>
<tr>
<td>C$_{60}$</td>
<td>Buckminster fullerene</td>
</tr>
<tr>
<td>CB</td>
<td>Chlorobenzene</td>
</tr>
<tr>
<td>C-PYR</td>
<td>1-cyclohexyl-2-pyrrolidonine</td>
</tr>
<tr>
<td>D</td>
<td>Donor</td>
</tr>
<tr>
<td>DDP</td>
<td>1,4-diketopyrrolo[3,4-c]pyrrole</td>
</tr>
<tr>
<td>DEGDE</td>
<td>di(ethylene glycol)-diethyl ether</td>
</tr>
<tr>
<td>DPH</td>
<td>Dimethyl Phthalate</td>
</tr>
<tr>
<td>DPPBT</td>
<td>Poly(diketopyrrolopyrrole-quaterthiophene)</td>
</tr>
<tr>
<td>DPPT</td>
<td>Poly(diketopyrrolopyrrole-terthiophene)</td>
</tr>
<tr>
<td>ETL</td>
<td>Electron Transport Layer</td>
</tr>
<tr>
<td>FF</td>
<td>Fill Factor</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
<tr>
<td>GIXD</td>
<td>Grazing Incidence X-ray Diffraction</td>
</tr>
<tr>
<td>I_{DS}</td>
<td>Drain source current</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>HSP</td>
<td>Hansen Solubility Parameters</td>
</tr>
<tr>
<td>HTL</td>
<td>Hole Transport Layer</td>
</tr>
<tr>
<td>ICBA</td>
<td>Indene-C$_{60}$ bisadduct</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>IV_{70}BA</td>
<td>Indene-C_{70} bisadduct</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium Tin Oxide</td>
</tr>
<tr>
<td>J</td>
<td>Current density</td>
</tr>
<tr>
<td>J-V</td>
<td>Current density - Voltage</td>
</tr>
<tr>
<td>J_{sc}</td>
<td>Short-Circuit current density</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>MoO_{3}</td>
<td>Molybdenum oxide</td>
</tr>
<tr>
<td>NMP</td>
<td>n-methyl-2-pyrrolidinone</td>
</tr>
<tr>
<td>ODCB</td>
<td>O-Dichlorobenzene</td>
</tr>
<tr>
<td>ODT</td>
<td>1,8-octanedithiol</td>
</tr>
<tr>
<td>OSC</td>
<td>Organic Solar Cell</td>
</tr>
<tr>
<td>OTFT</td>
<td>Organic Thin Film Transistor</td>
</tr>
<tr>
<td>P3HT</td>
<td>Poly-3-hexylthiophene</td>
</tr>
<tr>
<td>PC_{61}BM</td>
<td>[6,6]-phenyl-C60-butyric acid methyl ester</td>
</tr>
<tr>
<td>PCDTBT</td>
<td>Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzo-thiadiazole)]</td>
</tr>
<tr>
<td>PCPDTBT</td>
<td>Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethyl-hexyl)-4H-cyclopenta[2,1-b:3,4-b0][dithiophene-2,6-diyl]]]</td>
</tr>
<tr>
<td>PCE</td>
<td>Power Conversion Efficiency</td>
</tr>
<tr>
<td>PDQT</td>
<td>Diketopyrrolopyrrole (DPP) with β- unsubstituted quaterthiophene (QT)</td>
</tr>
<tr>
<td>PDTSTPD</td>
<td>Poly(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-((5-octyl-thieno[3,4-c]pyrrole-4,6-)-dione)-1,3-diyl]</td>
</tr>
<tr>
<td>Pedot-PSS</td>
<td>Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid)</td>
</tr>
<tr>
<td>PM-IRRAS</td>
<td>Polarization Modulated-Infra Red Reflection Absorption Spectroscopy</td>
</tr>
<tr>
<td>PTB7</td>
<td>Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo</td>
</tr>
<tr>
<td>PVT</td>
<td>Poly(1-vinyl-1,2,4-triazole)</td>
</tr>
<tr>
<td>RED</td>
<td>Relative Energy Difference</td>
</tr>
<tr>
<td>R_{sh}</td>
<td>Shunt Resistance</td>
</tr>
<tr>
<td>R_s</td>
<td>Series Resistance</td>
</tr>
<tr>
<td>SCLC</td>
<td>Space Charge Limited Current</td>
</tr>
<tr>
<td>TRIB</td>
<td>Tributyl o-acetylcitrate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>UltraViolet-Visible</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>Drain source voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate source voltage</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>Open Circuit Voltage</td>
</tr>
<tr>
<td>V_{th}</td>
<td>Threshold Voltage</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc Oxide</td>
</tr>
</tbody>
</table>
Symbols

\(\delta \) Solubility parameter \([\text{MPa}^{1/2}]\)

\(\text{eV} \) Electron Volt

\(\mu \) Mobility \([\text{cm}^2\cdot\text{V}^{-1}\cdot\text{s}^{-1}]\)

\(\Omega \) Resistance \([\text{Ohm}]\)
Chapter 1

Introduction to organic solar cells
1.1 General introduction

The industrial revolution represented a serious transition in humanity’s standard of life leading to significant advances that contributed to higher life expectancy, quality of life and comfort. These developments, along with a growing population, caused exponential growth in energy demand over the past years.

To date, energy demand has mostly been met by burning fossil fuels (oil, gas and coal). However, such processes are not environmentally sustainable due to the emission of green house gases in Earth’s atmosphere, contributing to global warming. Additionally, as fossil fuel is a non-infinite source of energy, the resource depletion causes serious societal and political issues. Alternatives must be developed to satisfy the energy demand in a sustainable way.

In this context, solar energy offers many advantages as a renewable source of energy. One of them is the large amount of energy provided by solar irradiation on Earth: estimations - considering realistic irradiated surface and conversion yield - showed that solar energy could provide up to two times the world’s energy demand [54]. Additionally, the worldwide availability of solar energy could benefit remote regions of the world by means of decentralized production of energy.

Solar radiation is converted into electricity by means of photovoltaic cells, also called solar cells. They have been fabricated from a wide range of materials as shown in the National Renewable Energy Laboratory chart (Figure 1.1). To date, the most prevalent types of photovoltaic panels use crystalline silicon in the monocrystalline or polycrystalline form. At the laboratory scale, conversion efficiencies reach 25% [64], while in commercial products, the efficiencies tend to be around 20% [103]. Crystalline silicon solar cells dominate in terms of efficiency, but suffer from high fabrication costs and restrictive mechanical and physical properties, such as weight and fragility. Therefore, they have not been able to fully compete with fossil fuels. In the pursuit of further lowering module cost and encouraging wide-spread application, other technologies were developed. Thin film technologies (indicated by data in green in Figure 1.1) are a good alternative as they require less material and lower fabrication costs. Organic photovoltaics (depicted in red in Figure 1.1) are also an interesting and exciting route for the prospect of extremely low cost solar panels with additional features such as low weight and flexibility.
Introduction to organic solar cells

Figure 1.1: Photovoltaic device efficiency within different families of semiconductors. Reproduced from reference [1].

The history of organic photovoltaics started with the discovery of conductive properties in polymers by Heeger, MacDiarmid and Shirakawa in 1977 for which they were awarded the Nobel Prize in Chemistry in 2000 [77]. Polymers were traditionally seen as insulating materials, however, the presence of alternating \(\pi \)-conjugated bonds can confer semiconductive properties to polymers. Research and development in the field of organic solar cells (OSCs) are relatively new compared with traditional electronics. The first double-layer type of organic photovoltaic device was demonstrated in 1986 by Tang et al. with a power conversion efficiency of 0.95% [204]. In 1995, solution processed organic photovoltaics were fabricated for the first time from a blend of polymer and oligomer [235]. Until the early 2000s, the maximum power conversion efficiencies of organic photovoltaics remained around 3% [48, 179, 191]. For a long time, these low efficiencies were seen as a significant barrier to commercialization. However, much research was dedicated to improve the fundamental and technical knowledge in the field, which led to significant improvements in performance. Today, organic photovoltaics demonstrate their potential in becoming a market reality by exhibiting efficiencies greater than 10%. Heliatek, a spin-off from a University of Dresden laboratory in Germany is currently holding the power conversion efficiency record of 12% with a multi-junction OSC. Efficiencies approaching 10% were obtained by several groups with
Introduction to organic solar cells

single-junction devices [71, 76, 156]. From a technological point of view, the physico-
chemical properties of organic semiconductors open up a new route in the development
of photovoltaic devices. One of the key properties is the ability to dissolve organic semi-
conductors in solvents, which enables OSCs to be fabricated using solution processes
similar to those used in the printing industry [9, 20, 26, 33, 58, 60, 106, 107, 154].
Such processes mean easier fabrication of large area and low cost photovoltaics and
consequently, a number of innovative devices can be considered, including flexible,
transparent, and light weight devices as depicted in Figure 1.2 [34, 87, 194]. In addi-
tion, the fabrication of OSCs has a lower energy payback time in the long term and a
smaller environmental impact than other technologies [54]. Overall, they represent a
promising technology for low cost, accessible and sustainable energy.

![Figure 1.2: Photographs of (a) an OSC printed on paper, reproduced from refer-
ence [87] with permission of Wiley and (b) a transparent OSC, reprinted with per-
mission from [34]. Copyright (2012) American Chemical Society](image)

To become a competitive technology, OSCs need to improve in three fronts: efficiency,
lifetime and fabrication cost. Research, with the goal of improving in these areas,
has been focused on the synthesis of organic semiconductors, their processing and the
development of smart device architectures. All three topics contribute to the over-
all performance of the final device (Figure 1.3). The past decade was marked by a
tremendous increase in types of organic semiconductors [41, 109], which indubitably
contributed to the current success of organic photovoltaics. However, the structural
properties of materials alone are not sufficient to produce high efficiency devices. The
arrangement, e.g. the morphology, of the materials is of crucial importance in defin-
ing their performance in devices. High efficiency OSCs require a thorough control of
the semiconductor morphology to best assess their potential in a device configuration.

In this context, this thesis addresses the interplay between processing method and
semiconductor morphology and subsequently photovoltaic performance. The effects
of processing are assessed by means of semiconductor formulation and introduction of processing additive in the formulation.

The first chapter of this thesis provides an introduction to fundamental principles of organic semiconductors and to the field of organic photovoltaics. Chapter 2 presents a detailed literature review on the current state of knowledge on formulation strategies to control active layer morphology. Emphasis is placed on the system based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC$_{61}$BM) as it is the main model system in this thesis. The objectives of this thesis are described at the end of Chapter 2.

Chapter 3 details the experimental and analytical methods used throughout the thesis.

Chapter 4 reports a novel method for identifying efficient processing additives to be introduced in the formulation of organic semiconductors. Details about the selection method and results confirming the model are presented.

Chapter 5 focuses on the mechanistic effects of processing additives on the morphology and efficiency. Results of structural, optical and electrical characterizations are reported and a mechanism describing the effects of processing additives on the morphology is proposed.

Chapter 6 presents results on the influence of device architecture on the performance of additive-treated OSCs.
The effects of processing conditions on device stability is addressed in Chapter 7. Results of stability tests performed on OSCs processed under different conditions are reported. Also, investigation on the origin of device degradation is presented.

Chapter 8 reports on the investigation of formulation strategies to increase the efficiency of two polymers, other than the model polymer P3HT discussed in the previous chapters.

Chapter 9 summarizes the results and provides suggestions for future work.
1.2 Functioning of solar cells

Before introducing the concept of OSCs, this section discusses the electrical functioning of solar cells and introduces the parameters that characterize their performance.

The simplified structure of a solar cell consists of two electrodes separated by a photo-active layer which contains a p-n junction. A solar cell without any irradiance (dark characteristic) behaves as a diode as shown in Figure 1.4. When a photon hits the active layer, a bond state of an electron and a vacant site of an electron called a hole is formed. The separation of the bound state, also referred to as exciton, generates charge carriers that can travel across the active layer to be collected by the electrodes. The extraction of these photo-generated charge carriers by an external load constitutes the photo-current (J_{ph}). Under illumination, the diode characteristic shifts by the amount of the photo-current.

![Figure 1.4: Example of a typical solar cell characteristic under light illumination and under dark condition.](image)

The total current density through the solar cell can be analyzed using an equivalent circuit model depicted in Figure 1.5.

The equivalent circuit model consists of four parts: a photo-current source, a diode, a series resistor and a shunt resistor. The diode represents the hole-electron recombination current and the photo-current is the amount of extracted photo-generated charges. The series resistor represents the solar cell internal resistance and the shunt resistor models any leakage current through the device. The total current density J
flowing through the circuit can be described by the following relationship:

\[J = J_D(V) + \frac{V - J R_{\text{serie}}}{R_{\text{shunt}}} - J_{\text{ph}} \]

(1.1)

Where \(R_s \) is the series resistance, \(R_{\text{sh}} \) the shunt resistance and \(J_D \) the current characteristic for a diode.

The electrical parameters that define the efficiency of a solar cell are extracted from the current density-voltage (\(J-V \)) curves measured under light illumination. Devices are characterized by the short-circuit current (\(J_{\text{sc}} \)), the open-circuit voltage (\(V_{\text{oc}} \)) and the fill factor (FF). The \(V_{\text{oc}} \) and the \(J_{\text{sc}} \) are indicated in the typical \(J-V \) curve depicted in Figure 1.4. The \(J_{\text{sc}} \) is defined as the current at which the applied voltage is equal to 0 V. This parameter represents the number of charge carriers that are photo-generated and collected at the electrodes at short-circuit condition. The \(V_{\text{oc}} \) is defined as the voltage at which the current density is 0 mA.cm\(^{-2}\). The FF defines the shape of the \(J-V \) curve and is defined as:

\[FF = \frac{J_mV_m}{J_{\text{sc}}V_{\text{oc}}} \]

(1.2)

where \(J_m \) and \(V_m \) are respectively the current density and the voltage at the point of the maximum output power, as represented in Figure 1.4. Finally, the power conversion efficiency (PCE) of a solar cell can be calculated as follows:

\[PCE = \frac{V_{\text{oc}}J_{\text{sc}}FF}{P_{\text{in}}} \]

(1.3)

where \(P_{\text{in}} \) is the input power density.

Solar cells are typically characterized under 100 mW.cm\(^{-2}\) light of the Air Mass 1.5 Global (AM 1.5 G) solar spectrum. The AM 1.5 G spectrum is presented in Figure 1.6, it corresponds to the solar spectrum through atmosphere, 48.2\(^\circ\) from zenith.
1.3 Organic semiconducting materials

1.3.1 Electronic properties of organic semiconductors

Organic materials are primarily carbon-based. The fundamental property of organic semiconductors is the presence of a conjugated π-electron system within a carbon chain. In such a carbon chain, three out of the four valence electrons of each carbon atom occupy sp2 hybridized orbitals and are involved in covalent σ-bonds. The remaining valence electron occupies a p_z orbital and can form a π-bond with a p_z electron of a neighboring carbon. As a result, the carbon chain exhibits an alternation of single (σ) and double (σ and π) bonds which constitutes the conjugated π-electron system. The simplest example of a π-conjugated system is that of polyacetylene, illustrated in Figure 1.7, which consists of repeating ethylene units.

Within a π-conjugated system, the overlap of the wave functions of the p_z orbitals of the carbon atom (and also of other atoms such as nitrogen, oxygen, sulfur) results in the formation of the π-band (forming the highest occupied molecular orbital (HOMO)) and the π^*-band (forming the lowest unoccupied molecular orbital (LUMO)). Across the conjugated system, the π-electrons are delocalized. The difference between the HOMO and the LUMO levels defines the bandgap of the semiconductor. The gap narrows down as the conjugation length of the polymer chain increases. In molecular solids,
the degree of intermolecular ordering has a large impact on the energetic landscape in these materials and thus affects the band gap. Overall, increased conjugation length and intermolecular ordering cause a greater degree of electron delocalization while short conjugation length and intermolecular disorder localize electrons.

The specific electronic structure of organic semiconductors leads to major differences between the properties of organic and conventional semiconductors. An understanding of these differences, described in brief in the following sections, is essential to provide insights into understanding the design requirements for OSC active layers.

1.3.2 Charge carrier generation in organic semiconductors

Free charge carriers in semiconductors are generated by light, chemical doping, or injection of charge from an electrode. The generation of charge carriers by light occurs when a photon with an energy equal to or higher than the band gap hits the semiconductor, resulting in the photo-generation of an exciton. To generate free charge carriers, the bound electron-hole pair in the exciton must be separated. In a traditional inorganic semiconductor, the large dielectric constant (around 10 \([55]\)) reduces the Coulomb interaction that binds the hole and the electron. This results in a large-sized type of exciton called a Wannier-Mott exciton characterized by an exciton binding energy in the range of \(\sim 0.01 \text{ eV}\). This type of exciton can be dissociated by thermal energy at room temperature as the binding energy is lower than the thermal energy (0.025 eV).

In contrast, in organic semiconductors, the dielectric constant is much smaller (around 3 \([55]\)) causing a strong Coulombic interaction between the hole and the electron. This results in a small-sized exciton with a high binding energy (from hundreds of meV to
1.5 eV [10, 82, 93]) referred to as a Frenkel exciton. This high binding energy prevents the exciton from being dissociated by thermal energy at ambient temperature. One alternative for exciton dissociation is to introduce a second semiconductor with a different electron affinity. In organic semiconductors, the charge separation is generally a two-step process, where excitons are first separated into less strongly bound electron-hole pairs which can subsequently be dissociated.

1.3.3 Charge transport in organic semiconductors

In crystalline inorganic semiconductors with a 3D crystal lattice, atoms are held together by strong covalent bonds. The strong interatomic interaction leads to the formation of a conduction band and a valence band in which the free charge carriers are highly delocalized and can travel freely throughout the bands [196]. In contrast, in disordered organic semiconductors, such as π-conjugated polymers, charge carriers are localized on individual molecules because of poor intermolecular coupling. The charge transport is generally described by the variable-range hopping model [98, 197] which describes systems with mobilities around or below 10^{-2} cm2.V$^{-1}$.s$^{-1}$ [98]. The mobility measures the ease with which the charge carriers move in the system and corresponds to the drift velocity of the charge carrier in an electrical field per unit of electrical field as described in the following equation [21]:

$$\mu = \frac{eD}{K_bT}$$ \hspace{1cm} (1.4)

Where D is the diffusion coefficient, e the charge, K_b the Boltzman constant and T the temperature.

In π-conjugated polymers, the hopping transport is highly influenced by the conjugation length and the degree of intermolecular order [21]. The mobility of charge carriers in organic semiconductors thus appears to be dependent not only on the chemical structure of the semiconductors but also, and just as importantly, on their intermolecular arrangements. Generally, for semiconducting polymers processed from solution, mobilities in the range of $10^{-3} - 10^{-6}$ cm2.V$^{-1}$.s$^{-1}$ are obtained [98]. A control over molecular organization can improve the mobility [200]. In the case of highly-ordered organic molecular crystals, charge carriers are sufficiently delocalized for band transport to occur [154].
1.4 Organic solar cells

1.4.1 Active layer architectures

As previously mentioned, thermal energy is not sufficient to dissociate Frenkel type excitons photo-generated in organic semiconductors. Instead, a junction must be created at which it is energetically favourable for an exciton to dissociate.

The first type of OSCs consisted of single layer of semiconductor that formed a rectifying junction with one of the electrodes [12, 28]. In this architecture, because of the high exciton binding energy and the low exciton diffusion length (1 - 10 nm) in organic semiconductors [72, 141, 199], the charge generation only occurs near the interface between the electrode and the active layer. This resulted in poor photo-generation of charge carriers and high series resistance as one of the charge carriers has to travel across the entire active layer to be collected. These issues were later addressed using a heterojunction between an electron donating material (D) and an electron accepting material (A) to form a so-called bi-layer. In a D/A couple, the A is the material with the largest electron affinity and the D the material with the lowest ionization potential. The energy offset at the D/A interface helps to dissociate excitons. The first heterojunction device, developed in 1986, consisted of a bi-layer of an A (tetracarboxylic derivative) and a D (copper phthalocyanine) material. These bi-layer OSCs demonstrated efficiencies approaching one percent (0.95%) [204]. However, the photo-generation of charges was still limited to occur at one single interface and excitons formed further away from the D/A interface do not dissociate into free charge carriers, therefore recombine, and thus do not contribute to photo-current.

A significant improvement with respect to bi-layer devices is the Bulk Heterojunction (BHJ) concept. A BHJ type of active layer consists of an intimate mixture of a D and an A. Such mixtures result in many D/A interfaces throughout the entire active layer and thereby provide a compromise between the amount of interface for exciton separation and D/A pathways for hole/electron transport. Figure 1.8 depicts the schematic of a bi-layer and a BHJ type of active layer. In 1992, Sariciftci et al. revealed a fast photoinduced charge transfer between poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and buckminsterfullerene (C\(_{60}\)) [183]. In 1995, solution-processed BHJ-OSCs were fabricated using the property of fast charge transfer between MEH-PPV and PC\(_{61}\)BM, a soluble derivative of C\(_{60}\) [235]. A blend of MEH-PPV and PC\(_{61}\)BM was dissolved in xylene and spin-cast to give a thin film consisting
of an interpenetrated network between the two materials: a BHJ. The photovoltaic performance revealed that blending PC$_{61}$BM with MEH–PPV polymer caused the PCE to increase by two orders of magnitude compared with an OSC composed of MEH-PPV only. This BHJ concept is now widely adopted and has been the subject of significant amount of research aimed at increasing the efficiency of solution-processed OSCs.

1.4.2 Formation of BHJ-OSCs

In polymeric BHJs, the D semiconductor is a polymer and the A semiconductor a small molecule. Several examples of A small molecules and D polymers are shown in Figure 1.9.

C$_{60}$ and its derivatives are the most widely used A small molecules. C$_{60}$ is strongly electronegative and can accept up to six electrons. Additionally, it exhibits a small reorganization energy from the ground state to the radical anion upon electron transfer which enables fast photoinduced electron transfer and slows down charge recombination compared to other types of A such as quinone derivatives [67, 88]. As the solubility of C$_{60}$ is low in common organic solvents [189], soluble derivatives such as PC$_{61}$BM are preferred for solution processed applications. Their HOMO LUMO energy levels are shown in Table 1.1. PC$_{61}$BM and other fullerene derivatives such as [6,6]-phenyl-C$_{71}$-butyric acid methyl ester (PC$_{71}$BM) and indene-C$_{60}$bisadduct (ICBA) are the best performing A small molecules to date. Alternatives have been investigated but have not yet been able to compete with them [174, 177]. On the other hand, D polymers have been the subject of much research resulting in a large panel of π-conjugated polymers. Examples are shown in Figure 1.9.
Introduction to organic solar cells

Figure 1.9: Top row: examples of A small molecules and bottom row: example of D polymers.

Table 1.1: HOMO LUMO levels of acceptor materials.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Energy Levels [eV]</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOMO</td>
<td>LUMO</td>
</tr>
<tr>
<td>PC_{60}BM</td>
<td>6.1</td>
<td>4.3</td>
</tr>
<tr>
<td>C_{60}</td>
<td>5.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

To form a BHJ, the D polymer and the A small molecule are generally mixed together in a solvent and the resulting blend is coated on a substrate. The drying process involves various phenomena including self-organization of the materials and phase separation between D and A. The resulting phase separation and degree of order in the BHJ govern the conversion from light absorption to charge collection and are therefore crucial to control. It is noteworthy to point here that few studies in the literature focused on the formation of BHJs with fixed morphology by the mean of various methods such as the use of D or A nanoparticles [61] or nanowires. [228, 229] In these approaches, the domain sizes in the BHJ are mainly determined by the size of the initial objects and are less dependent on the conditions of the drying process. This in turn enables a large degree of control in the BHJ morphology under the condition that the sizes of the initial objects are fully controlled.
1.4.3 Functioning of BHJ-OSCs

Within the interpenetrated network formed by the D and A, the conversion from light to electrical current occurs according to the following steps:

(i) Absorption of photon
(ii) Formation of a Frenkel exciton
(iii) Diffusion of the Frenkel exciton to a D/A interface
(iv) Separation of the exciton via charge transfer between D and A resulting in a charge transfer state
(v) Dissociation of the charge transfer state into free charge carriers
(vi) Transport of free charge carriers: the electrons through the A and the holes through the D
(vii) Collection of the charge carriers at the electrodes.

When an OSC is subject to light illumination, photons with appropriate energy are absorbed and cause the photo-generation of Frenkel excitons in the active layer. Because of its high exciton binding energy, the Frenkel exciton can only dissociate at the interface between D and A. This means that only excitons photo-generated within the exciton diffusion length from a D/A interface can contribute to the generation of free charge carriers. Excitons that are formed within a larger distance from this interface undergo geminate recombination and are lost. At the interface, charge transfer from the D to the A is possible if the energy offset at the interface is sufficiently large. Charge transfer occurs if the LUMO level of the A lies between the HOMO-LUMO levels of the D as shown in Figure 1.10. The energy offset between the LUMO of the D and the LUMO of the A has to be greater than 0.3 eV for charge transfer to occur [190]. At the interface, the exciton dissociates to form the charge transfer state corresponding to the e^-/h^+ pair state in which the electron is located on a neighbor molecule of the molecule on which the hole is located. The dissociation of the charge transfer state generates a free electron and a free hole which are then transported through A or D pathways to their respective electrode under the influence of an internal electric field.

In practice, a hole transport layer (HTL) and/or an electron transport layer (ETL) are inserted between the active layer and the cathode and anode respectively to facilitate the process of charge collection and to prevent additional charge recombination at the electrodes. The general energy band diagram of BHJ-OSCs that describes the above mechanisms is depicted in Figure 1.10.
The microstructure of the BHJ, e.g. the morphology, affects the efficiency of the different mechanisms described above [24]. The morphology of a BHJ is defined by (1) the phase separation between A and D and (2) the molecular organization.

For high performing OSCs, both charge generation and charge collection need to be considered. These two processes are in competition: charge generation requires small D/A domains to provide a large amount of D/A interface, while charge collection requires large pathways that subsequently limit the amount of D/A interfaces. A compromise is obtained when D and A domain sizes are in the range of the exciton diffusion length. The exciton diffusion length, which is in the range of 1 to 10 nm [72, 141, 199] implies that D and A domain sizes of about 10 nm offer a decent compromise [68].

In addition to phase separation, the molecular organization within D or A domains is important. In conjugated polymers, the interlayer spacing between polymer chains, the degree of ordering and the orientation of the chains have an influence on charge carrier mobility. In OSCs, charge carrier mobility is closely related to recombination processes [158, 165]. Studies revealed that charge carrier mobility value along with a balance between electron and hole mobility contribute in improving the performance of OSCs [3, 38, 101, 113, 158].

1.4.4 Factors influencing BHJ-OSC efficiency

The previous sections describe the mechanisms related to the functioning of BHJ-OSC and the importance of the BHJ morphology. This section addresses the parameters characteristic of OSCs.
- \(J_{sc} \)

The \(J_{sc} \) is given by the amount of charge carriers that are collected at the electrodes. This parameter is therefore depends on the amount of photons absorbed and to the loss mechanisms that prevent charge collection. The morphology of the BHJ has a great impact on the amount of photo-generated charges, due to the amount of D/A interface, and on the collection of charges by the presence of D or A pathways. Recent findings have highlighted the important role of the intermixed phase in the BHJ in exciton quenching and charge generation processes [15, 40, 193, 205, 223]. In this intermixed phase, the D and the A are molecularly mixed and form amorphous domains. Studies have shown that it is crucial for these intermixed phases to coexist with the relatively pure D and A domains that stabilize charge separation and enable transport to the electrodes.

- \(V_{oc} \)

Several works have ascribed the dependence of the \(V_{oc} \) to the spectral position of the charge transfer state [111, 133, 209]. The energy of the charge transfer state originates primarily from the energy difference between the HOMO of the D and the LUMO of the A (\(\Delta E_{DA} \)). \(\Delta E_{DA} \) determines the theoretical maximum value of \(V_{oc} \) [22, 185, 224]. Experimentally, the \(V_{oc} \) is observed to be lower than the value set by \(\Delta E_{DA} \) because of several loss mechanisms at the contacts or in the active layer [209, 232]. In their early work, Scharber et al [185] investigated the relationship between the energy levels of the D/A blends and the \(V_{oc} \) in 26 BHJ-OSCs. They found that the \(V_{oc} \) of the OSCs could be estimated by:

\[
V_{oc} = \frac{1}{e} (|E^{\text{Donor HOMO}}| - |E^{\text{PCBM LUMO}}|) - 0.3
\]

(1.5)

where \(e \) is the elementary charge and the value of 0.3 an empirical factor accounting for losses in OSCs.

Regarding the loss at the contacts, the properties of the HTL (energy levels and conductivity) were shown to have an influence on the built-in voltage in the device and subsequently on the \(V_{oc} \) [207]. In the case of ohmic contacts, the loss in \(V_{oc} \) at the contact was attributed to diffusion of charge carriers into the active layer at the interface with the metal electrodes resulting in a reduction of the voltage at which the flat band conditions are reached [210]. Regarding the active layer, several loss mechanisms that affect the charge transfer band position were identified. The charge transfer band was found to be dependent on the electrostatic environment, which can be altered by
the concentration of PC$_{61}$BM nanocrystals because of their high dielectric permittivity [133, 175]. Also, the level of polymer aggregation affects the position of the charge transfer state because of its dependence on intermolecular interactions [172]. Strong intermolecular interactions were shown to result in low V_{oc} whereas low intermolecular interactions - obtained in the case of amorphous polymers, for example - lead to higher V_{oc}.

- FF

The origins of low FF generally arise from space-charge build up. The space-charge regions can arise in the vicinity of the active layer and the contacts, in the case of poor charge extraction at the electrodes. In this context, the nature of the charge transport layers between the active layer and the electrodes have the important role of preventing charge accumulation [163]. Efficient contacts and interlayers facilitate the extraction of charges and reduce bimolecular recombination in the active layer. Space-charge build up can also be observed in the case of increasing light intensity [111, 227], or unbalanced charge carrier mobility [3, 109]. The value of the FF is generally found to be dependent on the values of R_s and the R_{sh} measured in OSCs [97, 172].

This chapter provided an overview of the mechanisms behind OSCs and more specifically of BHJ-OSCs. The next chapter focuses specifically on the formation of that morphology and strategies to control and optimize it.
Chapter 2

Formulation strategies for controlling BHJ morphology
This chapter reviews the benefits and the limitations of three main strategies that can control the morphology of BHJ-active layers: the solvent choice, the use of post-processing steps and the use of processing additives. The objectives of the thesis are presented at the end of the chapter.

2.1 Role of solvent

The BHJ morphology is strongly dependent on thermodynamic and kinetic aspects involved during spin-casting and drying of the material formulation to form the thin film [144, 233]. The thermodynamics of the system is dictated by the intrinsic properties of the D and A materials (their tendency to crystallize, their interactions with each other and their miscibility) and by the properties of the solvent. The kinetics of drying primarily depend on the boiling point and the vapor pressure of the solvent. The effects of the solubility properties and the boiling point of solvents are reviewed below.

- Solubility properties

D and A solubility properties in solvent were found to affect the aggregation of the fullerene derivatives in the D/A films. Table 2.1 displays the solubility limits of PC$_{61}$BM in some conventional solvents including chloroform (CF), chlorobenzene (CB), o-dichlorobenzene (ODCB) and 1,2,4-trichlorobenzene (TCB). The study by Brabec et al. on a blend of MDMO-PPV and PC$_{61}$BM was among the first to bring some insights into the relationship between solvent quality and the morphology of a BHJ [191]. In the D/A system based on MDMO-PPV/PC$_{61}$BM, the size of PC$_{61}$BM aggregates were found to be dependent on the solubility limit of PC$_{61}$BM in the solvent [57, 84, 85]. When poor solvents are used (such as pyridine and toluene), the BHJ exhibits large size aggregates of PC$_{61}$BM in the order of hundreds of nanometers. In the films spin-cast from good solvents, such as CB or ODCB, the large features are absent. Figure 2.1 shows atomic force microscopy (AFM) images that clearly depicts the dependence of PC$_{61}$BM aggregate sizes on solvent quality. This morphology is attributed to the fact that in good solvents, PC$_{61}$BM molecules remain finely dispersed and no over-sized aggregates are formed. Smooth films of MDMO-PPV/PC$_{61}$BM exhibited the highest PCEs, in the order of 2.5%.
Table 2.1: Boiling points and solubility limits of PC$_{61}$BM in various solvents.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Boiling point</th>
<th>Solubility limit of PC$_{61}$BM</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>61 ºC</td>
<td>25 - 26 mg.mL$^{-1}$</td>
<td>[32, 51, 57, 181]</td>
</tr>
<tr>
<td>CB</td>
<td>132 ºC</td>
<td>25 - 59.5 mg.mL$^{-1}$</td>
<td>[32, 51, 57, 181]</td>
</tr>
<tr>
<td>ODCB</td>
<td>183 ºC</td>
<td>42 - 107 mg.mL$^{-1}$</td>
<td>[57, 162]</td>
</tr>
<tr>
<td>TCB</td>
<td>214 ºC</td>
<td>81.4 mg.mL$^{-1}$</td>
<td>[162]</td>
</tr>
<tr>
<td>Toluene</td>
<td>112 ºC</td>
<td>9 - 15.6 mg.mL$^{-1}$</td>
<td>[32, 51, 57, 181]</td>
</tr>
<tr>
<td>Xylene</td>
<td>138 ºC</td>
<td>5 - 22.1 mg.mL$^{-1}$</td>
<td>[32, 51, 57, 181]</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>163 ºC</td>
<td>47 - 48.1 mg.mL$^{-1}$</td>
<td>[32, 51]</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>46 ºC</td>
<td>207 mg.mL$^{-1}$</td>
<td>[57]</td>
</tr>
</tbody>
</table>

Figure 2.1: AFM topography images (2 µm x 2 µm) of as-cast and annealed films of MDMO-PPV-PC$_{61}$BM spin-cast from (a, b) chlorobenzene (CB), (c, d) carbon disulfide, (e, f) chloroform (CF), (g, h) pyridine, (i, j) trichloroethylene, (k, l) toluene and (m, n) 1-methylpyrrole. Reproduced from reference [57] with permission of Wiley.

Similar results were reported with blends of PCDTBT/PC$_{61}$BM [16, 166, 192] and P3HT/PC$_{61}$BM [181, 206]. In a BHJ of P3HT/PC$_{61}$BM, it is well known that thermal annealing causes PC$_{61}$BM to crystallize and to form microcrystals [31, 148]. Several studies revealed that thermally annealed BHJs presented the largest PC$_{61}$BM microcrystals when spin-cast from poor solvents of PC$_{61}$BM [181, 206]. Clearly, when PC$_{61}$BM is blended with P3HT or MDMO-PPV, the crystallization of PC$_{61}$BM molecules...
is governed by its solubility limit. When comparing P3HT and MDMO-PPV, it is worth

to note that the crystallization of PC_{61}BM seems to depend more on solvent quality
when MDMO-PPV is the D. This divergent behavior was attributed to the different
strength of the interactions between the polymer and the fullerene components [187].
Overall, the aggregation of PC_{61}BM is shown to be affected by the D-A interactions
and to be dependent on the type of solvent used.

The effect of the solvent quality on the polymeric component is another important
aspect to consider. A common method to investigate the effects of solvent quality on
the behavior of P3HT chains is to add a poor solvent for the polymer (e.g., acetone or
hexane) to the host solvent in order to reduce the solubility of the polymer in the solvent
system. Keum et al. studied the structural evolution, in solution, of P3HT chains as a
function of the solvent quality, using UV-Vis absorption spectroscopy and small-angle
neutron scattering [95]. They showed that the introduction of a poor solvent caused the
P3HT chains to aggregate and to grow into nanorods in order to reduce the unfavorable
solvent-polymer interactions. As a consequence of the preformed aggregates in solution,
the crystallinity of P3HT in the dry film greatly improved [186]. Chang et al. used
grazing incidence x-ray diffraction (GIXD) to show that the introduction of acetone in
the solvent system increased the crystallinity of P3HT (Figure 2.2) causing as much
as a 4-fold increase in mobility [32]. Overall, poor solvent quality affects the behavior
of the polymer by introducing a driving force for the polymer to aggregate in order to
reach a thermodynamically favorable state.

Figure 2.2: (a) GIXD profiles of P3HT films spin-cast from P3HT/CF solutions con-
taining a range of added acetone; (b) 2\theta angle (left axis) of (100) peak and corre-
sponding layer spacing (right axis) as a function of the additional acetone volume
ratio. Reprinted with permission from [32]. Copyright (2013) American Chemical
Society.
Formulation strategies for controlling BHJ morphology

- **Solvent’s boiling point**

 The organization of the material and the transition from the liquid to the solid state can be affected by the drying kinetics. Using highly volatile solvents, the kinetics of evaporation can be much higher than the kinetics of crystallization. In such cases, the resulting morphology is far from that observed under equilibrium conditions [157]. The effects of the drying kinetics on the amount of polymer chain aggregation have been widely investigated using various deposition techniques [233] and solvents with different boiling points. When P3HT/PC$_{61}$BM films were spin-cast from different solvents, it was generally observed that a high boiling point solvent leads to better efficiency [52]. Ruderer et al. studied the morphology of P3HT/PC$_{61}$BM films spin-cast from four different solvents (CF, CB, toluene and xylene) [181]. Using grazing incidence wide angle x-ray scattering, they showed that the crystallite sizes of P3HT increased with increasing boiling point of the solvent. Similarly, Verploegen et al. showed that films spin-cast from CB gave larger crystal sizes than films spin-cast from CF [211]. This was attributed to the fact that a high boiling point solvent resulted in slow drying that provided time for the self-assembly of polymer chains during solvent evaporation. These results indicate that spin-casting from high boiling point solvents allows the P3HT component to arrange in a lower free-energy state compared with thin films spin-cast from a low boiling point solvent. This phenomenon is also observed with several other D polymers such as PCPDTBT and PTB7 [59, 69].

 The examples above show that the choice of solvents has a large impact on the morphology of the BHJ. During solvent evaporation, the drying kinetics and thermodynamics are in competition. For P3HT/PC$_{61}$BM blends, high boiling point solvents are preferred to provide time for the polymer chains to self-assemble. An appropriate choice of solvent can, therefore, optimize the morphology of a BHJ. However, there is a only a limited number of solvents that can solubilize both D and A components. In the best solvents, as cast P3HT/PC$_{61}$BM-OSCs still exhibit low PCEs generally reported to be below 1.5% [29, 230]. The poor performance is due to fast solvent evaporation caused by the use of spin-coating (or any other deposition technique). The fast solvent evaporation prevents the materials from aggregating and forming proper phase separated domains. As a result, P3HT and PC$_{61}$BM form an intimately mixed network lacking of well defined domains. This, in turn, primarily limits charge collection and results in low J_{sc} and FF. The application of post-processing steps were demonstrated to enable further optimization of the BHJ morphology.
2.2 Effects of post-processing steps

Thermal treatment - also called thermal annealing - on P3HT/PC_{61}BM-films was shown to significantly increase the degree of crystallinity of P3HT. Figure 2.3 shows the effects of thermal annealing on P3HT/PC_{61}BM films observed by UV-Vis absorption spectroscopy and by XRD measurements. UV-Vis absorption spectroscopy represents a useful technique to detect the degree of crystallinity of P3HT because increased crystallinity induces a red-shift in the absorption peak and the appearance of two vibronic peaks around 555 nm and 605 nm [237]. In the XRD pattern in Figure 2.3b, the diffraction peak at 5.5° corresponds to the edge-on orientation of the polymer chains [238]. The appearance of the diffraction peak is a signature of increased crystallinity.

The increased degree of P3HT crystallinity is attributed to the fact that the polymer becomes mobile upon annealing and can self-assemble into crystalline domains. This leads to increased ordering between polymer chains. In parallel to the increased ordering of polymer chains, PC_{61}BM molecules diffuse out of the polymeric matrix and aggregate to form needle-like crystallites that can reach sizes up to a few microns under extensive thermal annealing. Upon moderate thermal annealing, P3HT and PC_{61}BM are subject to phase separation causing an increase in D and A domain sizes. Most studies report thermal annealing for a duration of 1 to 30 minutes at temperatures ranging from 110 °C - 160 °C. Upon controlled thermal annealing, \(J_{sc} \) and FF were shown to significantly increase resulting in PCEs of up to 5% [43, 115, 134, 160, 238].

![Figure 2.3: Effects of thermal annealing on the crystallinity of P3HT depicted by (a) an appearance of P3HT vibronic bands in UV-Vis absorption spectra (b) an increase in diffraction peak of P3HT in XRD pattern. Figures (a) and (b) are respectively reproduced from references [116] with permission of AIP Publishing LLC and [238] with permission of Elsivier.](image-url)
A slow drying approach - or solvent annealing - was also used to control the morphology of P3HT/PC$_{61}$BM-films. This approach generally involves spin-casting the D/A for a short period of time so that the resulting film still contains solvents; the film can then be placed in a solvent saturated environment. In the saturated environment, the solvent evaporation is slowed compared with evaporation during conventional spin-casting. Similarly to what is observed in thermal annealing, the degree of P3HT crystallinity increases and high efficiencies are obtained upon solvent annealing [50, 78, 117]. This approach can be interpreted as an extension of the effects of high boiling point solvents described in section 2.1: during solvent annealing, the polymer chains are given more time to aggregate which results in an overall increase in domain sizes and degree of crystallinity [164, 211].

Post-processing steps can increase the efficiency of P3HT/PC$_{61}$BM-based OSCs. From a fundamental point of view, these approaches also provide insight into the relationship between active layer morphology and photovoltaic performance. In practice, however, thermal annealing is hardly compatible with flexible substrates that require low temperature processing conditions; overall the post-processing steps are difficult to implement in a large area high throughput line of fabrication without impacting the final cost of OSCs. Additionally, these approaches are inefficient for some low band gap polymers [44, 166]. These limitations motivate the need of a different strategy to control the BHJ morphology - specifically the use of processing additives in D/A formulations.

2.3 Use of processing additives in BHJ-OSCs

A processing additive refers to a solvent which is introduced in small proportion (generally a few volume %) into the host solvent used to solubilize the active materials. In 2006 - 2007, Peet et al. showed that introducing 1,8-octanedithiol (ODT) in a D/A solution blend increased the photocurrent and the PCE of OSCs using P3HT or PCPDTBT as D materials [169, 170]. For PCPDTBT/PC$_{70}$BM-based OSCs, the PCE was increased from 2.8% to 5.5%. This pioneering work represented an exciting discovery as processing additives were seen as a new method for improving the photovoltaic performance of OSCs in addition to the conventional post-processing steps.

Further work led to two competing theories regarding the specific properties of what makes a solvent an efficient processing additive. In 2008, Yao et al. proposed that
Formulation strategies for controlling BHJ morphology

processing additives should possess:[234]
(i) a lower vapor pressure than the host solvent and
(ii) a lower solubility limit towards the fullerene derivative acceptor than that of the
host solvent.

They based their selection rules on the P3HT/PC_{61}BM system and suggested that during
spin-casting, the processing additive and the host solvent evaporate with different
rates because of the difference in vapor pressure. The host solvent, with a higher vapor
pressure, would evaporate more quickly causing an increase in the additive concentra-
tion in the solvent mixture. As a consequence, the solvent quality towards PC_{61}BM
would decrease, leading to early formation and precipitation of clusters. This mecha-
nism is illustrated in Figure 2.4. With a smaller amount of PC_{61}BM in the solution,
the P3HT chains would be able to self-organize more easily and form more crystalline
domains at the origin of the improved active layer morphology.

Figure 2.4: Proposed model during spin-coating process. Black wire: P3HT polymer
chain; big black dots: PC_{61}BM; blue dots: ODCB molecules; and red dots: ODT
molecules. (a–c) correspond to three stages in the spin-coating process when ODCB
is the sole solvent; (d–f) correspond to three stages in the spin-casting process when
ODT is added in ODCB. Reproduced from reference [234] with permission of Wiley.

In the same year, Lee et al. proposed a different set of criteria for selecting processing
additives, claiming that an ideal processing additive should have [114]:
(i) a good solubility towards the fullerene derivative acceptor,
(ii) a poor solubility towards the polymer and
(iii) a boiling point higher than that of the host solvent.

The mechanism proposed here is based on the fact that processing additives are good
solvents for the fullerene derivatives and are poor solvents for the D (such as P3HT or
PCDTBT). During the transition from the liquid to the solid states, the high boiling
point of the solvent means that the fullerene derivatives remain longer in the solution state; this enables control of the phase separation between the polymer and the small molecule. Such a mechanism is depicted in Figure 2.5.

This mechanism is therefore based on the differential solubility of the additive towards the polymer and the fullerene derivative whereas the first mechanism accounts for the poorer solubility of the acceptor derivative in the additive compared with the host solvent. So far, however, no clear selection rules for selecting processing additives have emerged.

Experimentally, other solvents were found to increase the PCE of OSCs: alkanedithiol with various alkane chain lengths [159, 169, 182], 1,8-diiodooctane (DIO) [114, 131], 1-chloronaphthalene (CN) [7, 11, 92, 147], nitrobenzene [47], 1-methyl-2-pyrrolidinone (NMP) [234] and 1,8-dichlorooctane [66, 114] among others [125, 128]. Figure 2.6 depicts the chemical structures of some of the processing additives found in literature.

For the D/A system based on P3HT/PC$_{61}$BM, introducing nitrobenzene or alkanedithiols in the D/A solutions increased the PCEs up to 4% [149, 159]. These efficiencies are in the range of those normally obtained with post-processing steps [37, 159]. High efficiency P3HT/PC$_{61}$BM-based OSCs can therefore be fabricated without the use of post-processing steps, which is particularly appealing for the prospect of low fabrication cost and large area OSCs [58]. Literature shows that processing additives can increase the efficiency of OSCs in a wide range of D/A systems by optimizing the active layer morphology [63, 125, 171, 217]. Table 2.2 shows examples of some of these D/A systems along with the PCE values before and after introducing the processing additives. Based on these examples, it is clear that the use of processing additives
Formulation strategies for controlling BHJ morphology represents a widely applicable and efficient approach to optimize a large range of D/A systems.

Figure 2.6: Chemical structures of processing additives.
Table 2.2: Effects of processing additives on the PCE of several types of D/A OSCs.

<table>
<thead>
<tr>
<th>D/A systems</th>
<th>Processing additive</th>
<th>PCE w/o additive [%]</th>
<th>PCE with additive [%]</th>
<th>Phase separation</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3HT/PC_{61}BM</td>
<td>ODT</td>
<td>0.6</td>
<td>2.6</td>
<td>increase</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td>1,6-hexanediol</td>
<td>0.46</td>
<td>3.16</td>
<td>increase</td>
<td>[182]</td>
</tr>
<tr>
<td></td>
<td>Nitrobenzene</td>
<td>1.2</td>
<td>3.94</td>
<td>-</td>
<td>[149]</td>
</tr>
<tr>
<td></td>
<td>Dodecanediol</td>
<td>1.74</td>
<td>4.03</td>
<td>-</td>
<td>[159]</td>
</tr>
<tr>
<td></td>
<td>NMP</td>
<td>0.29</td>
<td>~1.5</td>
<td>-</td>
<td>[234]</td>
</tr>
<tr>
<td>P3HT/IC_{20}BA</td>
<td>DIO</td>
<td>1.15</td>
<td>2.97</td>
<td>decrease</td>
<td>[70]</td>
</tr>
<tr>
<td></td>
<td>ODT</td>
<td>3.09</td>
<td>decrease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCDTBT/PC_{71}BM</td>
<td>DIO</td>
<td>4.89</td>
<td>5.91</td>
<td>increase</td>
<td>[131]</td>
</tr>
<tr>
<td></td>
<td>Alkanedithiol</td>
<td>2.8</td>
<td>5.5</td>
<td>increase</td>
<td>[35]</td>
</tr>
<tr>
<td></td>
<td>DIO</td>
<td>2.6</td>
<td>4.5</td>
<td>increase</td>
<td>[8]</td>
</tr>
<tr>
<td>PCDTBT/PC_{71}BM</td>
<td>ODT</td>
<td>3.35</td>
<td>4.5</td>
<td>increase</td>
<td>[114]</td>
</tr>
<tr>
<td></td>
<td>DIO</td>
<td>3.35</td>
<td>5.12</td>
<td>increase</td>
<td>[114]</td>
</tr>
<tr>
<td></td>
<td>1,8-dibromoocetane</td>
<td>3.35</td>
<td>4.66</td>
<td>increase</td>
<td>[114]</td>
</tr>
<tr>
<td>PCDTBT/PC_{61}BM</td>
<td>ODT</td>
<td>1.68</td>
<td>3.87</td>
<td>increase</td>
<td>[66]</td>
</tr>
<tr>
<td></td>
<td>1,8-dichloroocetane</td>
<td>3.45</td>
<td>3.45</td>
<td>increase</td>
<td></td>
</tr>
<tr>
<td>PTB7/PC_{71}BM</td>
<td>DIO</td>
<td>3.92</td>
<td>7.4</td>
<td>decrease</td>
<td>[124]</td>
</tr>
<tr>
<td>DPPT/PC_{61}BM</td>
<td>DIO</td>
<td>0.6</td>
<td>3.4</td>
<td>decrease</td>
<td>[127]</td>
</tr>
<tr>
<td>DPPBT/PC_{61}BM</td>
<td>DIO</td>
<td>1.0</td>
<td>5.2</td>
<td>decrease</td>
<td>[127]</td>
</tr>
<tr>
<td>PDTSTPD/PC_{61}BM</td>
<td>DIO</td>
<td>1.0</td>
<td>7.3</td>
<td>decrease</td>
<td>[6, 46]</td>
</tr>
</tbody>
</table>

1 The acronyms used for the D and A materials are defined in the Abbreviations section
2 No exact PCE was reported

2.4 Context and objectives of the thesis

High-efficiency OSCs require a controlled and optimized BHJ morphology. Solvent choice in the D/A formulation is of major importance, but has a limited impact on the morphology due to the limited number of good solvents available for organic semiconductors. Also, upon spin-casting, the drying kinetics often dominate over the thermodynamic aspects of the D/A system, which leads to poor phase separation and
Formulation strategies for controlling BHJ morphology

subsequently low PCE in the case of P3HT/PC$_{61}$BM. Post-processing steps were successful in optimizing P3HT/PC$_{61}$BM-based OSCs, but were not efficient in optimizing several systems based on other low band gap polymers. Additionally, post-processing steps are not ideal when thinking towards flexible and low-cost OSCs.

The use of processing additives appears to be a key approach to optimize D/A morphology: it is widely applicable and compatible with large area and high throughput fabrication of OSCs. While many studies have reported the success of processing additives in increasing the PCE of OSCs, fundamental aspects surrounding their use have not been addressed as successfully.

So far, there has been no systematic approach to identify suitable processing additives for a given D/A system. Very few studies have addressed the issue of how to identify or select processing additives from the vast array of available solvents. Consequently, their selection is generally the result of trial and error experiments.

Comparing the different studies in the literature also shows that there is no clear consensus on the mechanistic role of processing additives in influencing and controlling the BHJ morphology. Their effects on D/A phase separation have been the subject of several studies. The results of such studies, summarized in Table 2.2, show that the effects of processing additives on phase separation vary with the type of D/A blend under investigation: in some cases they increase the phase separation while in other cases, they decrease it. In the case of D/A blends based on P3HT, the literature reports contradictory results regarding the effects of additives on phase separation.

Another major aspect not considered in the literature is the effect of additives on the long-term stability of OSCs. As OSC stability is equally important as the PCE, investigating their effects on stability is of major importance.

An in-depth understanding of the effects of processing additives is required to enable and accelerate the development of efficient D/A formulations. This thesis aims to carry out a comprehensive investigation of processing additives, addressing the following objectives:
Formulation strategies for controlling BHJ morphology

1. To establish a predictive method for identifying processing additives for D/A systems with certain given properties.

2. To elucidate the mechanistic role of processing additives in influencing and controlling the BHJ morphology and subsequently, the OSC performance.

3. To determine the impacts of the processing additive approach on the stability of OSCs.

In pursuit of these objectives, the study will primarily focus on the archetypical P3HT/PC_{61}BM system. The last chapter of this thesis deals with the effects of processing additives in systems using other types of D polymers.
Chapter 3

Experimental details
3.1 Fabrication and characterization of OSCs

This PhD thesis being done in the context of a co-tutelle program between the University of Waterloo and the University of Bordeaux, the experimental details differ from experiment to experiment. Experimental details are described according to the laboratory where the studies were conducted.

Experiments reported in Chapters 4, 6 and 8 were performed at the University of Bordeaux laboratory (UB Lab).

Experiments reported in Chapters 5 and 7 were performed at the University of Waterloo Laboratory (UW Lab).

3.1.1 Materials and substrates

The P3HT and PC$_{61}$BM were purchased from Solaris Chem Inc. and used as received. The P3HT has a molecular weight of 53 kDa and a polydispersity index of 1.49. The purity of PC$_{61}$BM is 99.74%.

The PCDTBT is purchased from Solaris Chem Inc., its molecular weight is 85 kDa.

The PDQT was synthesized in UW Lab according to the literature [123]. The average molecular weight is 21100 and the polydispersity index 2.72.

The solvents: 1,2-dichlorobenzene, chlorobenzene were purchased from Sigma Aldrich and used as received. The processing additives: dimethyl phthalate, 1,8-octanediethiol, 1,8-diiodooctane, 1-cyclohexyl-2-pyrrolidinone, tributyl-o-acetyl citrate were purchased from Sigma Aldrich and used as received. 1-chloronaphthalene was purchased from TCI Chemical N.V. and used as received.

Zinc acetate dihydrate was purchased from Sigma Aldrich with a purity above 99.9%.

At UB Lab, the ITO coated substrates used for device fabrication were purchased from Kintec. The resistance of the ITO layer is 10 Ω/square. The shadow masks used for device fabrication enable the fabrication of four OSCs, with a surface area of 8.6 mm2, on each substrate.

At UW Lab, the ITO coated substrates were purchased from Luminescence Technology Corporation. The resistance of the ITO layer is 15 Ω/square. The shadow masks used
for device fabrication enable the fabrication of three OSCs, with surface areas of 10 mm\(^2\), 12.5 mm\(^2\) and 17.5 mm\(^2\), on each substrate.

3.1.2 Active layer formulation

The organic semiconductors are weighed with the desired proportion in vials. Solvent mixtures are introduced to the organic semiconductors to solubilize them. The preparation of solvent mixtures differs as a function of the proportion of processing additive in the host solvent.

For mixtures with a processing additive concentration below 0.8 vol\%, the solvent mixture is prepared separately by blending and stirring the additive and the host solvent for 1 - 2 hours at ambient temperature. The prepared solvent mixture is further introduced in the vial containing the organic semiconducting materials. For solvent mixtures with a processing additive concentration above 0.8 vol\%, the solvent and the processing additive are introduced directly with the desired concentration in the vial containing the organic semiconductors.

The final mixture containing the solvent mixture and the organic semiconductors is first stirred for 15 - 20 minutes at 90 °C in order to ensure an efficient dissolution of the polymer and to avoid large aggregates. The mixture is then stirred at 50 °C. For P3HT/PC\(_{61}\)BM solutions, the mixtures are found to be stable up to at least 6 weeks. Therefore P3HT/PC\(_{61}\)BM solutions were kept and re-used several times. For PCDTBT/PC\(_{61}\)BM and PDQT/PC\(_{61}\)BM solutions, the mixtures were stirred for a maximum period of 12 hours prior to use.

3.1.3 Substrate cleaning

The ITO coated substrates were systematically cleaned in an ultrasonic bath of acetone, ethanol and isopropanol for 15 minutes each. The substrates were then dried using a nitrogen gun and were treated in a UV-ozone oven (in UB Lab) or were treated with O\(_2\) Plasma (in UW Lab).

3.1.4 Fabrication of OSCs using a conventional architecture

For conventional OSCs, the cleaned ITO substrates were treated under UV-ozone for 20 minutes. On top of cleaned ITO coated substrates, a thin layer of PEDOT:PSS
Experimental details

(Baytron P, Bayer AG/Germany) was spin-cast at 4000 rpm for 60 seconds in air. The sample is further dried at 110 °C in a vacuum oven for 20 minutes. The thickness of the PEDOT:PSS layer was determined to be \(~ 50\) nm.

The D/A solution is further deposited by spin-casting in a glovebox environment (O\(_2\) and H\(_2\)O levels < 0.1 ppm). Finally, calcium (20 nm) and aluminum (\(~ 50 - 70\) nm) were thermally evaporated under a secondary vacuum (10\(^{-6}\) mbar) onto the active layer through a shadow mask.

Due to the low stability of conventional OSCs in atmosphere conditions, conventional OSCs are either measured in a glove box environment, or encapsulated (using a photosensitive epoxy glue to glue a glass substrate on top of the top electrode) prior to J–V characterizations measurement in air.

3.1.5 Fabrication of OSCs using an inverted architecture

For inverted OSCs, the cleaned ITO substrates were treated under UV-ozone for 10 minutes or O\(_2\) plasma for 2 minutes. A zinc acetate precursor solution is prepared by dissolving 196 mg of zinc acetate dihydrate in 6 mL of ethanol absolute. 54 µL of ethanolamine is then introduced. The solution is then stirred on a hotplate for 2 hours at 45 °C and subsequently filtered using a 0.45 µm cellulose acetate filter. On top of cleaned ITO coated substrates, the solution of zinc acetate precursor solution is spin-cast at 700 rpm for 60 seconds. The ZnO layer is further thermally annealed on a thermally controlled hot plate at 180 °C for 60 minutes. The D/A solution is further deposited by spin-casting in a glovebox environment (O\(_2\) and H\(_2\)O levels < 0.1 ppm). Finally, molybdenum oxide (7 nm) and silver (70 nm) were thermally evaporated under a secondary vacuum (10\(^{-6}\) mbar) onto the active layer through a shadow mask.

3.1.6 J–V characteristics measurements of OSCs

At UB Lab, J–V analysis was conducted using a K.H.S. SolarCelltest-575 solar simulator with AM1.5G filters set at 100 mW.cm\(^{-2}\) with a calibrated radiometer (IL 1400BL). A LabVIEW-controlled Keithley 2400 SMU enabled the measurement of J–V curves.

At UW Lab, the J–V analysis was conducted on ABET technologies Sun 2000 Solar Simulator with AM1.5G filters set at 100 mW.cm\(^{-2}\). A LabVIEW-controlled Keithley 2400 SMU enabled the measurement of J–V curves.
Experimental details

J_{sc}, V_{oc}, FF and the PCE were extracted from the Labview softwares used for the $J-V$ characterizations. The shunt resistance (R_{sh}) and the series resistance (R_s) can also be extracted from the $J-V$ characteristics.

Three regions of the $J-V$ characteristics can be defined as a function of the value of the applied voltage:

- At low voltage, the $J-V$ characteristic is primarily determined by R_{sh} which can be determined from the slope of the $J-V$ characteristic at $V = 0$ V:

$$\frac{1}{R_{sh}} = \left(\frac{dJ}{dV}\right)_{V=0} \quad (3.1)$$

- At intermediate voltage, the diode parameter dominates.

- At higher voltage, the $J-V$ characteristic is primarily determined by R_s. There are several methods for determining and fitting R_s. One of the simplest is to determine the slope of the $J-V$ curve at high voltage. In the literature, the slope is found to be determined at different voltage values [45, 91, 205, 213]. It is however common to determine the series resistance at V_{oc} in order to be close to the operating conditions:[94, 102]

$$\frac{1}{R_s} = \left(\frac{dJ}{dV}\right)_{V=V_{oc}} \quad (3.2)$$

3.2 Mobility measurements

In this thesis, the measurements of charge carrier mobilities are determined by two methods: the determination of charge carrier mobility in an organic thin film transistor (OTFT) configuration and in a single diode configuration.

3.2.1 Mobility measurement in OTFT configuration

An OTFT is a three-terminal device with a gate, a source and a drain. The current flowing between source and drain (I_{DS}) can be controlled by the applied gate voltage across a thin dielectric film. By applying a gate source voltage (V_{GS}) across the dielectric, a channel of charge carriers is induced in the semiconductor layer at the interface with the dielectric. This channel allows the drain current to flow through the
Experimental details

A semiconductor when another voltage (the drain source voltage V_{DS}) is applied between the drain and the source. If V_{GS} is positive, negative charges will be attracted to the interface between the semiconductor and the dielectric, the channel is called n-type channel. On the contrary, when V_{GS} is negative, positive charges are induced at the interface between semiconductor and dielectric and the channel is a p-type channel. Electron mobility can be extracted from the n-type OTFT, while hole mobility can be extracted from the p-type OTFT.

The OTFT architecture used in this work is bottom gate, top contact as presented in Figure 3.1. The channel length (L) and channel width (W) are respectively 50 μm and 1000 μm. The substrates used are silicon wafer.

A layer of poly(1-vinyl-1,2,4-triazole) (PVT) is used as a dielectric. The PVT solution is prepared by dissolving PVT in ultra-pure water at a concentration of 7 weight%. The solution is filtered and spin-cast at 700 rpm for 60 seconds. The substrates are further dried at 85 °C for 120 min under a primary vacuum. The organic semiconductor materials to study are deposited on top of the dielectric. The deposition of the metals is performed by thermal evaporation. For p-type OTFTs, the electrode is gold. For n-type OTFTs, the electrode is aluminum.

The electrical characterizations are performed in a glovebox environment using a probe station (SUSS Microtec). Micro probes are used to take the contacts. A Labview controlled Keithley 4200 SMU was used for the acquisition of the electrical characteristics. A V_{DS} of +5 V is applied for n-type OTFTs and a V_{DS} of -5 V is applied for p-type OTFTs.

The mobility is extracted from the saturation regime where $|V_{DS}| > |V_{GS} - V_{th}| > 0$.

Figure 3.1: P-type bottom-gate, top-contact OTFT device architecture from a side-view (left) and from a top-view (right). L represents the channel length and W the channel width.
In the saturation regime, the current is given by:

\[I_{DS} = \frac{\mu C_i W}{2L} (V_{GS} - V_{th})^2 \] \hspace{1cm} (3.3)

and the carrier field effect mobility is given by:

\[\mu_{sat} = \frac{2L}{C_i W} \left(\frac{\partial \sqrt{I_{DS}}}{\partial V_{GS}} \right)^2 \] \hspace{1cm} (3.4)

where \(V_{th} \) is the threshold voltage, \(C_i \) the gate dielectric capacitance per unit area (=14.7 nF/cm\(^2\)), \(\mu_{sat} \) the mobility, \(W \) the channel width and \(L \) the channel length.

\(V_{th} \) can be extracted from measurements in the saturation region by plotting \(\sqrt{I_{DS}} \) versus \(V_{GS} \) and extrapolating to \(I_{DS} = 0 \) [226].

3.2.2 Mobility measurement in single diode configuration

In the field of organic semiconductors, the extraction of the mobility using the space charge limited current (SCLC) has emerged as a common method to extract the charge mobility of materials [110]. The SCLC method is applied for single charge carrier devices, so called hole only devices or electron only devices. The example of hole only devices is taken to describe the electrical characteristics of a single charge carrier diode. In hole only devices, holes are injected in abundance by one of the electrode. These charge carriers are not compensated by an equal density of electrons and build up in the semiconductor: a positive space charge is formed in the semiconductor. Further increase of the voltage leads to the space-charge limited current, which is the maximum current that the semiconductor can sustain. Above a certain voltage, the current shows a quadratic behavior and the current density \(J \) can be characterized by the Child’s law (also called Mott-Gurney law):

\[J = \frac{9}{8} \epsilon_r \epsilon_0 \mu \frac{V^2}{L^3} \] \hspace{1cm} (3.5)

where \(\epsilon_0 \) is the permittivity of the vacuum, \(\epsilon_r \) the dielectric constant of the polymer (assumed to be 3, which is a commonly used value for conjugated polymers), \(\mu \) the mobility, \(V \) the voltage drop across the device and \(L \) the thickness of the material under study.
The previous equation assumes that the mobility is field independent. In order to consider a mobility that is field dependent, a modified equation is preferred (also called Murgatroyd equation, [137]) and J can be described by:

$$J = \frac{9 \epsilon \epsilon_0 \mu_0 V^2}{8 L^3} \exp(0.89 \sqrt{\frac{V}{E_0L}})$$ \hspace{1cm} (3.6)$$

where μ_0 is the zero-field mobility and E_0 the characteristic field.

Single charge carrier devices are fabricated and further electrically characterized in order to extract the dark J-V curves. By fitting the J-V curves with the equations 3.5 or 5.2, the mobility can be extracted. In the early years, the Child’s law was used to determine the mobility of single layers of materials such as (phenylene vinylene) derivatives [17, 137, 142], P3HT [203] and PC$_{61}$BM [145]. Later, the use of the SCLC method has been broadened to the determination of single charge carrier mobility of a material blend in a BHJ configuration [143]. In order to assess the mobility of a single charge carrier of a material in a BHJ configuration, the other carrier has to be blocked. For example, for the study of hole mobility, hole only devices have to be fabricated with appropriate electrodes and electron blocking layer in order to inhibit the transport of electrons by the acceptor.

Hole only devices have been fabricated with the following configuration: ITO / MoO$_3$ /Active layer/MoO$_3$/Ag (Figure 3.2). Clean ITO substrates were treated under O$_2$ plasma for 2 minutes. MoO$_3$ (7 nm) is evaporated on the ITO substrate under a secondary vacuum. The D/A solution is further deposited by spin-casting in a glovebox environment. Finally, MoO$_3$ (7 nm) and silver (70 nm) were thermally evaporated under a secondary vacuum (10^{-6} mbar) onto the active layer through a shadow mask.

![Figure 3.2: Hole only device structure.](image-url)
3.3 Characterization of the BHJ morphology

3.3.1 UV-Vis absorption spectroscopy

UV-Vis spectra are recorded using a SAFAS UVMC² spectrophotometer at UB Lab and a Shimadzu UV-2501PC UV-Vis spectrophotometer at UW Lab.

3.3.2 X-ray diffraction measurements

The diffraction patterns obtained from the PDQT study were recorded at UB Lab using a Goniometer Pranatycal X'pert Pro.

The diffraction patterns obtained from the P3HT/PC₆₁BM study were recorded at UW Lab using a Bruker D8 advance diffractometer. The XRD measurements were performed in a reflection mode using Cu Kα₁ radiation at 1.5406 Å.

The average size \(L \) of crystallites can be determined with the full width at half maximum of the diffraction peak using the Scherrer equation:

\[
L = \frac{K\lambda}{\Delta \cos(\theta)}
\]

where \(K \) is the Scherrer’s constant which depends on the crystallite shape and size distribution [112].

3.3.3 Atomic force microscopy

AFM images of PDQT were performed in UB Lab using a Veeco Dimension 3100.

AFM images of P3HT/PC₆₁BM-films were performed in UW Lab using a Dimension 3100 Scanning Probe Microscope.

3.3.4 Infrared absorption spectroscopy

PM-IRRAS spectra were recorded on a ThermoNicolet Nexus 670 FTIR spectrometer at a resolution of 4 cm⁻¹, by coadding several blocks of 1500 scans (30 minutes acquisition time). Experiments were performed at an incidence angle of 75 ° using an external
Experimental details

homemade goniometer reflection attachment, adding a ZnSe photoelastic modulator (PEM, Hinds Instruments, type III) after the polarizer [25].

The ATR spectra of the additives were recorded with a ThermoNicolet Nexus 670 FTIR spectrometer equipped with a liquid nitrogen cooled narrow-band mercury cadmium telluride (MCT) detector using a Silver-Gate (diamond crystal) ATR accessory (Specac). Each spectrum was obtained from the acquisition of 100 scans at a resolution of 4 cm$^{-1}$.

3.4 Photo-stability tests

Photo-degradation tests were carried out with white light provided by a 300 W halogen lamp. The distance between the lamp and the device was adjusted so that the light intensity was 100 mW.cm$^{-2}$. The temperature is kept below 32 °C throughout the experiment using a fan to cool down the OSCs subject to light irradiation. The temperature of the OSCs were monitored with a k-type thermocouple and an Omega panel monitor. All OSCs were kept in inert conditions during light-irradiation and were placed in air during the measurements of the $J-V$ characteristics.
Chapter 4

Determination of selection rules for processing additives
As noted in Chapter 2, processing additives have been widely used for increasing the efficiency of OSCs. However, very few studies have addressed the critical question of how to identify or select processing additives from the vast array of available solvents. In this chapter, guidelines for the selection of processing additives are developed for P3HT/PC$_{61}$BM-based OSCs.

First, the properties of existing processing additives reported in the literature are analyzed. The novelty of the developed approach is to use the theory of the Hansen solubility parameters to analyze these processing additives. This theory is commonly used in the coating and chemical formulation industries to determine the solubility of compounds. Nevertheless, its use in the area of BHJ started only very recently and has so far been limited to the identification host solvents [161, 214], or to correlate the host solvent solubility properties with the active layer morphology [57] and with the performance of OSCs [136]. Here, the Hansen solubility parameters are used to define the interactions between solvent, processing additives and active materials.

4.1 The Hansen solubility parameters as a method for selecting processing additives

The solubility parameter (δ), first used by Hildebrand and Scott, was originally defined as the square root of the cohesive energy density (E_C) over the molar volume of the pure solvent (V):

$$\delta = \sqrt{\frac{E_C}{V}}$$ \hspace{1cm} (4.1)

The Hansen theory is based on substituting the total cohesive energy by three components; E_D, E_P and E_H which describe the energy involved in three principal types of interactions, respectively: (i) dispersion interactions, (ii) permanent dipolar - permanent dipolar molecular interactions and (iii) hydrogen bonding interactions [73]. The parameter δ can therefore be similarly substituted by three components that describe these three interactions:

$$E_C = E_D + E_P + E_H$$ \hspace{1cm} (4.2)
\[\delta^2 = \delta_D^2 + \delta_P^2 + \delta_H^2 \] (4.3)

Where \(\delta_D \), \(\delta_P \) and \(\delta_H \) are the Hansen solubility parameters (HSPs). Graphically, every chemical compound can be represented by its position in a 3D space, the Hansen solubility space, with coordinates defined by the three solubility parameters. The solubility of a solute in a solvent is predicted from similarities in their interactions. Such similarity is quantified by the distance \(R_A \) between the HSPs of the solvent \((\delta_{D1}, \delta_{P1} \text{ and } \delta_{H1}) \) and the HSPs of the solute \((\delta_{D2}, \delta_{P2} \text{ and } \delta_{H2}) \). The distance \(R_A \) between them is calculated using the following equation:

\[R_A^2 = 4(\delta_{D1} - \delta_{D2})^2 + (\delta_{P1} - \delta_{P2})^2 + (\delta_{H1} - \delta_{H2})^2 \] (4.4)

In addition to \(\delta_{D2}, \delta_{P2} \text{ and } \delta_{H2} \), a solute requires a boundary of solubility to define and differentiate between “sufficient” and “non-sufficient” interactions from a solubility standpoint. Therefore a solute is described as a sphere in the Hansen solubility space, the HSPs are the centre of the sphere and \(R_O \) is the radius representing the boundary of solubility. The interactions between a solvent and a solute are considered to be strong only if the distance \(R_A \) is smaller than the radius of the sphere \(R_O \). The relative energy difference (RED) can be used as a numerical parameter to compare \(R_A \) and \(R_O \), and is defined as:

\[RED = R_A / R_O \] (4.5)

If the RED is higher than 1, the solvent is outside the solubility sphere of the solute and can be expected to be a bad solvent. On the other hand, if the RED is between 0 and 1, the solvent is inside the solubility sphere of the solute and is expected to be a good solvent. The HSPs of a wide range of solvents can be found in reference textbooks [73]. They have been calculated using either equations of state derived from statistical thermodynamics or using the group contribution method. The group contribution method predicts the HSPs of a compound by adding the solubility parameters of all the contributing chemical groups or atoms. For a new solute, the HSPs can be also determined experimentally by performing solubility tests. The solute is mixed with a wide range of solvents with different known HSPs. The quality of interactions is scored for each solute-solvent combination. The results are recorded on the Hansen solubility space and are fitted to a sphere with all the good solvents inside the sphere and the poor solvents outside. The HSPs of the compound result from the fitting of
Determination of selection rules for processing additives

deepicts the process of sphere fitting using the software HSPiP 3rd edition.

![Figure 4.1: HSPs diagrams showing the good and the poor solvents resulting from solubility tests and the fitted solubility sphere of the compound under study.](image)

4.2 Determination of the HSPs of P3HT and PC\textsubscript{61}BM.

The HSPs of P3HT and PC\textsubscript{61}BM were already determined by other groups [57, 63, 135, 136]. By comparing the results, it was found that the values can vary depending on the specific material characteristics (molecular weight and polydispersity of the polymer) and the method used in the solubility tests. Therefore, instead of using HSP values extracted from the literature, the HSPs of P3HT and PC\textsubscript{61}BM are determined experimentally. The HSPs were determined by performing solubility tests in which the materials are mixed with various solvents that cover the whole range of the Hansen solubility space. Fifty-four solvents and around ten solvent mixtures were used. In each test, 4 mg of material is diluted in 2 mL of each solvent to obtain a concentration of 2 mg mL-1. Each solution is stirred overnight at room temperature. The quality of solubility is assessed by visual inspection and assigned a score of 1 for good solubility or 0 for poor solubility, depending on whether or not a solid residue can still be detected after the stirring step. These results are used to fit the solubility sphere of the material where all the good solvents (the ones scored 1) are inside the sphere and the bad solvents (the ones scored 0) are outside the sphere. As the data fitting may contain false negative and false positive errors (i.e., bad solvents inside the solubility sphere and good solvents outside the solubility sphere, respectively), the fitting accuracy needs to be estimated. This is usually estimated using a quality of fit function of the form:
DATA FIT = \((A_1 \ast A_2 \ast \ldots \ast A_n)^{1/n}\) \(\text{(4.6)}\)

where \(n\) is the number of solvents used for the solubility tests and \(A_i\) is given by:

\[
A_i = e^{-\text{(Error distance}_i)} \quad \text{(4.7)}
\]

The **Error distance** \(i\) represents the distance of the false positive and false negative solvents from the sphere boundary. The DATA FIT reaches 1 for an ideal fit without any erroneous solvents. The results of the fitting are summarized in Table 4.1. Figure 4.2 depicts the solubility spheres of P3HT and PC\(_{61}\)BM.

Table 4.1: HSPs of P3HT and PC\(_{61}\)BM.

<table>
<thead>
<tr>
<th>Materials</th>
<th>HSP [MPA(^{1/2})]</th>
<th>Fit</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\delta D)</td>
<td>(\delta P)</td>
<td>(\delta H)</td>
</tr>
<tr>
<td>P3HT</td>
<td>19.05</td>
<td>3.3</td>
<td>2.8</td>
</tr>
<tr>
<td>PC(_{61})BM</td>
<td>20.02</td>
<td>5.2</td>
<td>5.88</td>
</tr>
</tbody>
</table>

\(^a\) As determined by the HSPiP software using Equation 4.6.

\(^b\) Number of bad solvents inside the solubility sphere.

\(^c\) Number of good solvents outside the solubility sphere.

Figure 4.2: Solubility spheres of P3HT and PC\(_{61}\)BM.
4.3 HSPs of commonly used processing additives

Next, the solubility properties of some processing additives reported to improve the efficiency for P3HT/PC$_{61}$BM-based OSCs in the literature are examined: ODT, 1,6-hexanedithiol, 1,12-dodecanedithiol, di(ethylene glycol)-diethyl ether (DEGDE), n-methyl-2-pyrrolidinone (NMP) and 4-bromoanisole. With the exception of 4-bromoanisole, which HSPs need to be calculated using the group contribution method, the HSPs of all these processing additives can be obtained from the database supplied by Hansen et al. [73]. After determining the HSPs of the processing additives and the active materials, the RED values are calculated using the equations described above. The results are shown in Table 4.2. For 4-bromoanisole, ODT, hexanedithiol and dodecanethiol, the RED values are found to be < 1 with PC$_{61}$BM and > 1 with P3HT. This is in agreement with the conclusions of Lee et al. that a processing additive should be a good solvent of PC$_{61}$BM and a poor solvent of P3HT. In contrast, NMP and DEGDE exhibit RED values with PC$_{61}$BM that are close to 1. The solubility of PC$_{61}$BM in NMP and DEGDE is reported to be low (~ 0.3 mg.mL$^{-1}$[234]) which may explain their higher RED values. It is also noteworthy to point that DEGDE and NMP seem less effective in improving the efficiency of OSCs in comparison to the other processing additives (PCE: 1.5 % in case of NMP or DEGDE versus 2.6 - 4.0% with the other processing additives) [130, 159, 182]. The observation that can be made from this study is that efficient processing additives possess RED values with PC$_{61}$BM clearly below 1 and RED values with P3HT above 1. This indicates the effectiveness of using the HSPs as a tool to predict novel processing additives for P3HT/PC$_{61}$BM-based OSCs.

4.4 Identification of novel processing additives

Based on the RED values above, the criteria that need to be satisfied by a processing additive for P3HT/PC$_{61}$BM-based OSCs are defined as follows: RED with PC$_{61}$BM < 0.9, RED with P3HT > 1.0 and boiling point 100 °C higher than that of the host solvent. The RED with PC$_{61}$BM is set to < 0.9 instead of < 1 in order to ensure selecting solvents in which PC$_{61}$BM solubility is sufficiently high. The third criterion is based on the general requirement that the boiling point of the processing additive must be higher than that of the host solvent, which in this case is ODCB (boiling point = 180 °C). A processing additive with a boiling point 100 °C higher provides a sufficient latitude for differential evaporation of the two solvents. Additionally, for
Table 4.2: Characteristics of processing additives: HSPs, RED with P3HT and PC₆₁BM, reported PCEs.

<table>
<thead>
<tr>
<th>Materials</th>
<th>HSPs [MPa¹/²]</th>
<th>RED with</th>
<th>PCEs [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δD δP δH R₀</td>
<td>P3HT PC₆₁BM</td>
<td>without</td>
</tr>
<tr>
<td>P3HT</td>
<td>19.05 3.3 2.8 3.9</td>
<td>ND ND</td>
<td>0.29%</td>
</tr>
<tr>
<td>PC₆₁BM</td>
<td>20.02 5.2 5.88 8.4</td>
<td>ND ND</td>
<td></td>
</tr>
<tr>
<td>DEGDE</td>
<td>15.8 4.7 4.4</td>
<td>1.75 1.02</td>
<td>0.29%</td>
</tr>
<tr>
<td>NMP</td>
<td>18 12.3 7.2</td>
<td>2.62 0.99</td>
<td>0.29%</td>
</tr>
<tr>
<td>4-Bromoanisole</td>
<td>19.8 7.7 7</td>
<td>1.61 0.33</td>
<td>1.65%</td>
</tr>
<tr>
<td>ODT</td>
<td>17.4 7.3 5.2</td>
<td>1.47 0.68</td>
<td>0.46%</td>
</tr>
<tr>
<td>Hexanedithiol</td>
<td>17.4 7.6 6.4</td>
<td>1.67 0.69</td>
<td>0.46%</td>
</tr>
<tr>
<td>Dodecanethiol</td>
<td>17.3 5.7 4.1</td>
<td>1.14 0.68</td>
<td>1.74%</td>
</tr>
</tbody>
</table>

⁷) No exact PCE is reported

safety concerns, only solvents that are not carcinogenic are considered. Applying the above selection criteria on an array of 723 solvents with known HSPs that are present in the Hansen software database (HSPIP 3rd edition), three solvents were shown to satisfy the requirements. These are 1-cyclohexyl-2-pyrrolidinone (C-PYR), dimethyl phthalate (DPH) and tributyl o-acetylcitrate (TRIB). The molecular structures of the selected solvents are presented in Figure 4.3. As shown in Table 4.3, they all have REDs with PC₆₁BM < 0.9 and REDs with P3HT > 1.0. Graphically, these three solvents are positioned inside the solubility sphere of PC₆₁BM and outside the sphere of P3HT, as depicted in Figure 4.4.

Table 4.3: Characteristics of processing additives: HSPs, REDs with P3HT and PC₆₁BM and boiling points.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>HSPs [MPa¹/²]</th>
<th>RED with</th>
<th>Boiling point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δD δP δH</td>
<td>P3HT PC₆₁BM</td>
<td></td>
</tr>
<tr>
<td>C-PYR</td>
<td>18.2 6.8 6.5</td>
<td>1.38 0.48</td>
<td>306 °C</td>
</tr>
<tr>
<td>DPH</td>
<td>18.6 10.8 4.9</td>
<td>2.01 0.76</td>
<td>284 °C</td>
</tr>
<tr>
<td>TRIB</td>
<td>16.7 2.5 7.4</td>
<td>1.70 0.87</td>
<td>388 °C</td>
</tr>
</tbody>
</table>
Determination of selection rules for processing additives

For verification, the solubilities of PC_{61}BM and P3HT in these solvents are experimentally tested. P3HT was dissolved in processing additives with a concentration below 0.002 mg.mL^{-1}. For the specific case of DPH, P3HT was observed to float above the solvent, clearly indicating its non-solubility. For C-PYR and TRIB, UV-Vis absorption spectra of the solutions were measured and compared to the spectrum of a solution of P3HT in ODCB (concentration of 0.03 mg.mL^{-1}) where the polymer is expected to be fully solubilized. The UV-Vis absorption spectra of P3HT in ODCB showed a unique absorption peak at 465 nm whereas the UV-Vis absorption spectra of P3HT in C-PYR and TRIB both showed a broad absorption peak extending beyond 650 nm indicating the presence of P3HT aggregates. The UV-Vis spectra are shown in Figure 4.5. These results indicate that P3HT is not soluble at a concentration of 0.002 mg.mL^{-1} in C-PYR and TRIB.
Determination of selection rules for processing additives

Several solutions of PC$_{61}$BM in CB were prepared in various concentrations ranging from 0.01 mg.mL$^{-1}$ to 0.042 mg.mL$^{-1}$. The UV-Vis absorption was measured for each of the solutions in order to trace a calibration curve (Figure 4.6). The calibration curve enables the estimation of the concentration of PC$_{61}$BM in any solution based on optical absorbance data.

![Calibration curve](image)

Figure 4.6: Calibration curves obtained from dissolving PC$_{61}$BM in CB with different concentrations.

Over-saturated solutions of PC$_{61}$BM in C-PYR, DPH and TRIB were prepared and stirred overnight at 50 °C. After a centrifugation step (7000 rpm for 10 min), the supernatants were removed, transferred and further diluted. The supernatants were diluted 1600 to 2000 times for solutions of C-PYR, 80 to 200 times for DPH and 30 to 40 times for TRIB. The absorbance maxima in the UV-Vis spectra of these diluted
Determination of selection rules for processing additives

solutions were measured and the concentrations of initial solutions were determined using the calibration curve. The solubility limits of PC$_{61}$BM in the three solvents are listed in Table 4.4.

Table 4.4: Solubility of P3HT and PC$_{61}$BM.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Solubility limits [mg.mL$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P3HT</td>
</tr>
<tr>
<td>C-PYR</td>
<td><0.002</td>
</tr>
<tr>
<td>DPH</td>
<td><0.002</td>
</tr>
<tr>
<td>TRIB</td>
<td><0.002</td>
</tr>
</tbody>
</table>

The test results in Table 4.4 confirmed the solubility of PC$_{61}$BM and the poor solubility of P3HT in the three solvents. Also, it is noteworthy to mention that the values of the solubility limits appear to be consistent with the trend in the RED values reported in Table 4.3: C-PYR, which exhibited the smallest RED, with PC$_{61}$BM appears to be the best solvent while TRIB, which exhibited the highest RED with PC$_{61}$BM, demonstrates the lowest solubility. The RED values appear to be efficient in predicting the solubility of organic semiconductors in solvents.

Next, to investigate the influence of C-PYR, DPH and TRIB as processing additives on P3HT/PC$_{61}$BM-BHJ morphology, UV-Vis absorption measurements were carried out on a series of P3HT/PC$_{61}$BM films. The films were fabricated by spin-casting solutions of P3HT/PC$_{61}$BM in ODCB that contain a processing additive in one of the following concentrations (by volume): 0.4 vol%, 0.8 vol%, 1.2 vol% and 1.6 vol%. The UV-Vis absorption spectra obtained are displayed in Figure 4.7. For each processing additive, the spectra show an increase in the main P3HT absorption peak (at 520 nm) and the appearance of vibronic bands at 550 nm and 600 nm. The appearance of these bands is indicative of an increase in P3HT crystallinity [238]. Similar bands are known to appear when P3HT/PC$_{61}$BM films are treated by thermal annealing, or solvent annealing. These results suggest that the three processing additives increase P3HT crystallinity and may, therefore, increase the efficiency of OSCs.

To study their effect on the photovoltaic performance, a series of OSCs utilizing formulations that contain various concentrations of these three processing additives are fabricated and tested. For comparison, OSCs utilizing ODT are also fabricated and tested because it is a widely used processing additive known to improve the PCE of P3HT/PC$_{61}$BM-based OSCs. The J-V characteristics of the OSCs are measured using...
Determination of selection rules for processing additives

Figure 4.7: Solid state UV-Vis absorption spectra for P3HT/PC_{61}BM blends with varying concentration of processing additives: a) C-PYR, b) DPH and c) TRIB.

A solar simulator with AM1.5G filters set at 100 mW/cm². Figure 4.8 shows the photovoltaic parameters (\(V_{oc}\), FF, \(J_{sc}\) and PCE) of the OSCs with the different processing additives and their corresponding concentrations. The data in the figures represents the average values obtained from measurements on eight to twelve individual OSCs for each system. The best values for each system are recorded in Table 4.5.

Figure 4.8: Photovoltaic parameters of OSCs with varying concentration of processing additives: (a) \(V_{oc}\), (b) FF, (c) \(J_{sc}\) and (d) PCE.

DPH and C-PYR increase the PCE by respectively 113% and 93% in comparison to control devices devoid of processing additives and any post processing step, resulting in a PCE of 3.2% in case of DPH (at a concentration of 0.8 vol%) and 2.9% in case of C-PYR (at a concentration of 1.6 vol%) (Table 4.5). At a concentration of 1.6...
Table 4.5: Photovoltaic properties of OSCs. For each processing additive, the table shows the photovoltaic properties of OSCs containing the processing additive at a concentration giving the best PCE.

<table>
<thead>
<tr>
<th>Processing additive</th>
<th>Concentration</th>
<th>(V_{oc}) [V]</th>
<th>FF</th>
<th>(J_{sc}) [mA cm(^{-2})]</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No additive</td>
<td></td>
<td>0.63 ±0.01</td>
<td>0.55 ±0.02</td>
<td>4.4 ±0.4</td>
<td>1.5 ±0.1</td>
</tr>
<tr>
<td>C-PYR 1.6 vol%</td>
<td></td>
<td>0.50 ±0.01</td>
<td>0.53 ±0.01</td>
<td>11.0 ±0.7</td>
<td>2.9 ±0.2</td>
</tr>
<tr>
<td>DPH 0.8 vol%</td>
<td></td>
<td>0.53 ±0.01</td>
<td>0.57 ±0.02</td>
<td>10.4 ±0.5</td>
<td>3.2 ±0.2</td>
</tr>
<tr>
<td>TRIB 1.6 vol%</td>
<td></td>
<td>0.54 ±0.01</td>
<td>0.56 ±0.03</td>
<td>8.2 ±0.6</td>
<td>2.5 ±0.1</td>
</tr>
<tr>
<td>ODT 1.6 vol%</td>
<td></td>
<td>0.51 ±0.00</td>
<td>0.50 ±0.02</td>
<td>9.9 ±0.3</td>
<td>2.5 ±0.2</td>
</tr>
</tbody>
</table>

vol\%, the OSCs with ODT and TRIB exhibit efficiencies of 2.5% corresponding to an increase of 67%. The PCE of a control OSC is 1.5% and is in par with what is generally obtained for OSCs fabricated without any thermal or solvent annealing [29, 230]. The main parameter responsible for the increase in PCE is the \(J_{sc} \) which is found to increase significantly on increasing the concentrations for C-PYR, TRIB and ODT. The increase in PCE is, on the other hand, somewhat limited by the negative impact of the processing additives on the \(V_{oc} \) which is observed to decrease as the concentration of the processing additive increases. This change in \(V_{oc} \) is commonly observed for OSCs undergoing solvent annealing or thermal annealing processes [116, 117]. Chen et al. showed that the introduction of ODT in a P3HT/PC\(_{61}\)BM blend increased the crystallinity of P3HT and caused the interlayer spacing between P3HT chains to be shorter [37]. The decrease in \(V_{oc} \) observed with ODT and the other processing additives may be attributed to the increase in P3HT crystallinity, together with the reduction of the interlayer spacing of P3HT which can induce a reduction of the band gap [39]. As a result, the difference between the LUMO of PC\(_{61}\)BM and the HOMO of P3HT becomes somewhat smaller, causing a decrease in \(V_{oc} \) [185]. Clearly, all three additives produce similar trends in terms of their effects on OSC parameters; not unlike those produced by ODT and all lead to significant improvements in the PCE. The results therefore show that the use of HSPs and the specific selection criteria that were defined are indeed successful in screening and identifying processing additives that are capable of improving the performance of BHJ-OSCs.
4.5 Conclusion

In conclusion, the HSPs are shown to be efficient in guiding the selection of processing additives for P3HT/PC$_{61}$BM-OSCs. Using selection criteria based on the HSPs, three novel processing additives for the P3HT/PC$_{61}$BM system have been identified: C-PYR, DPH and TRIB. Through the developed approach, the number of suitable processing additives that can be investigated could be significantly increased. Also, it provides a methodological approach based on the solubility parameters of the active materials and the solvents for selecting processing additives.
Chapter 5

The influence of processing additives on the formation of the bulk heterojunction
This chapter focuses on elucidating the mechanistic effects of processing additives on the formation of the BHJ. To verify the universal aspect of the study, three processing additives of significantly different molecular structures are investigated: C-PYR, DPH and ODT. Optical, structural and electrical characterizations are conducted to understand the effects of processing additives on the formation of the BHJ during spin-casting. Using the results of these characterizations, a general mechanism that explains the role of additive in optimizing the BHJ morphology is proposed.

5.1 Effects of processing additives on the efficiency of OSCs

First, the effects of processing additive concentration on the electrical parameters of the OSCs are studied. A series of OSCs utilizing formulations that contain various concentrations of the three processing additives (from 0 vol% to 4 vol%) in ODCB is fabricated. The $J-V$ characteristics of the OSCs are measured using a solar simulator with AM1.5G filters set at 100 mW.cm$^{-2}$. Figure 5.1 shows the photovoltaic parameters V_{oc}, FF, J_{sc} and PCE of the OSCs with the different processing additives and their corresponding concentrations. The data in the figures represent the average values obtained from six individual OSCs for each system.

The V_{oc} decreases with increasing concentration of processing additive. This loss in V_{oc} is particularly pronounced in the case of the DPH. OSCs with 4 vol% of DPH have an average V_{oc} of 0.44 V which represents a loss of 0.23 V compared to the V_{oc} of OSCs without any processing additive. At a concentration of 4 vol%, C-PYR and ODT demonstrate a loss of only 0.15 V. As already mentioned in the previous chapter, this change in V_{oc} is attributed to an increased crystallinity in P3HT which induces a reduction of the band gap. Therefore, this suggests that processing additives increase the crystallinity of P3HT in the BHJ.

Regarding the J_{sc} and the FF, two regimes are observed: increasing the processing additive concentration first causes an increase in the J_{sc} and the FF until an optimum concentration is reached. A further increase in the concentration leads to a deterioration in these electrical parameters, which is particularly pronounced in the case of DPH: from an optimum J_{sc} of 8.5 mA.cm$^{-2}$, the J_{sc} drops to 7.2 mA.cm$^{-2}$ when the additive concentration reaches 4 vol%.
Overall, the value of the PCE reflects the evolution of the FF. The maximum PCEs are 2.9% for both C-PYR and DPH and 3.0% for ODT.

5.2 Characterizations of films prepared from processing additive

5.2.1 UV-Vis absorption spectroscopy

In order to gain insights into the effects of processing additives on the crystallinity of P3HT, UV-Vis absorption spectroscopy was carried out on a series of P3HT/PC\textsubscript{61}BM-films spin-cast from a solution with varying additive concentrations. The UV-Vis spectra of films prepared with processing additives are presented in Figure 5.2.

In these spectra, the absorption band of P3HT increases on increasing processing additive concentration and the vibronic bands of P3HT at 556 nm and 605 nm become
more intense. These changes in P3HT absorption spectra suggest that the introduction of processing additive in the solvent mixture increases the crystallinity of P3HT in the BHJ, which is in agreement with the V_{oc} trends observed in Figure 5.1.

5.2.2 XRD measurements

In order to further investigate the effects of the processing additives on the crystallinity of P3HT, X-ray diffraction (XRD) measurements were conducted on P3HT/PC$_{61}$BM films. Figure 5.3 depicts the XRD patterns of P3HT/PC$_{61}$BM films with different concentrations of the three processing additives.

The diffraction peak at 5.5° corresponds to the edge-on orientation of the polymer chains [238]. The intensity of the diffraction peak at 5.5° decreases when processing additives are introduced in the solution blend. This result is consistent with earlier observations by Guo et al. who showed that introducing processing additives into a blend of P3HT/indene-C$_{70}$ bisadduct (IC$_{70}$BA) leads to a decrease in the P3HT diffraction peak [70]. They attributed this result to a decrease in phase separation. The average domain sizes of P3HT can be estimated using the Scherrer equation:

$$L = \frac{K\lambda}{\Delta \cos(\theta)}$$ (5.1)

Where L is the average crystallite size of P3HT (1 0 0) plane, λ is the wavelength of the X-ray ($\lambda = 0.154$ nm), Δ is the full width at half maximum (FWHM) of the diffraction peak, θ is the diffraction angle and K the Scherrer’s constant. Using this equation, the FWHM can be correlated to the size of P3HT crystallites. Table 5.1 displays the values of the FWHM for all the films.
Table 5.1: Values of the FWHM of P3HT diffraction peak at 5.5° for different active layer compositions.

<table>
<thead>
<tr>
<th>Type of Processing</th>
<th>0 vol%</th>
<th>0.4 vol%</th>
<th>0.8 vol%</th>
<th>1.6 vol%</th>
<th>2.4 vol%</th>
<th>3.2 vol%</th>
<th>4 vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PYR</td>
<td>0.49</td>
<td>0.42</td>
<td>0.49</td>
<td>0.61</td>
<td>0.71</td>
<td>0.79</td>
<td>0.81</td>
</tr>
<tr>
<td>DPH</td>
<td>0.49</td>
<td>0.51</td>
<td>0.58</td>
<td>0.61</td>
<td>0.77</td>
<td>0.65</td>
<td>0.71</td>
</tr>
<tr>
<td>ODT</td>
<td>0.49</td>
<td>0.51</td>
<td>0.6</td>
<td>0.63</td>
<td>0.64</td>
<td>0.72</td>
<td>0.71</td>
</tr>
<tr>
<td>Thermally annealed</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in Table 5.1, the values of the FWHM of the diffraction peak at 5.5° increase with increasing concentration of processing additives. According to Equation 5.1, the domain size is inversely proportional to the FWHM. Therefore, the increase in FWHM suggests that the introduction of processing additives leads to smaller domains of P3HT crystallites. The average crystallites sizes can be assessed using equation 5.1, providing that the value of K is known which value depends on the crystallite shape and the crystallite-size distribution [112]. The determination of K in a BHJ configuration is beyond the scope of this work but an approximation of the crystallite sizes can nevertheless be assessed. Figure 5.4 depicts the evolution of crystallite sizes as calculated.
The influence of processing additives on the formation of the bulk heterojunction

with equation 5.1 using 0.9 for the value of K (considering crystalline domains as being spherical). The results clearly show that P3HT crystallites decrease with increasing concentration of processing additives.

![Graph showing the relationship between additive concentration and crystallite size](image)

Figure 5.4: Average size of P3HT crystallites as a function of processing additive concentration.

As a comparison, XRD measurements were also conducted on a film of P3HT/PC_{61}BM which was thermally annealed at 110 °C for 15 min (Figure 5.3d). In this case, the diffraction peak of P3HT becomes narrower (FWHM=0.32°) which implies that the P3HT domain sizes increase after thermal annealing. This shows that the BHJ morphology of a thermally annealed P3HT/PC_{61}BM film is fundamentally different from that obtained with processing additives, despite the fact these two methods increase the PCE of OSCs in a similar manner. When a thermal annealing is performed, the domain sizes of P3HT crystallites increase whereas when processing additives are used, the domains sizes of P3HT crystallites decrease.

The previous results in UV-Vis absorption spectroscopy and the trend in V_{oc} suggest that processing additives increase crystallinity of P3HT in the BHJ. The increased crystallinity can be due to two factors: either an increasing crystallite domain sizes and/or an increasing number of crystallite domains. Since the XRD measurements show that the size of the crystallite domains decreases, it is clear that the introduction of processing additives contribute to generate more crystallites of P3HT and smaller in size.

The question that is naturally arising now is whether the processing additives have a direct effect on P3HT crystallinity or they have an effect on PC_{61}BM and the observed crystallinity change in P3HT is a consequence of it. To address this question, XRD measurements were performed on films of sole P3HT spin-cast from solutions with various concentrations of processing additive, in this case DPH. The XRD patterns of
The influence of processing additives on the formation of the bulk heterojunction

P3HT-films, depicted in Figure 5.5, show that the introduction of DPH decreases the intensity of the diffraction peak of P3HT, similar to that observed in P3HT/PC$_{61}$BM films. This result indicates that processing additives have a direct effect on the crystallinity of P3HT by generating more numerous and smaller crystallites.

![Figure 5.5: XRD patterns of P3HT films spin-cast from solutions containing various concentrations of DPH.](image)

In order to determine how this structuring reflects on the transport of holes, the hole mobility across the BHJ is measured.

5.3 Hole mobility measurements

The hole mobility across the BHJ can be determined by using the standard Space Charge Limited Current (SCLC) method [53, 63, 116]. Single carrier devices, in this case hole-only devices, are fabricated using the following structure: ITO/MoO$_3$/active layer/MoO$_3$/silver. The device structure and the related energy diagram are depicted in Figure 5.6.

Above a certain voltage, the transport of holes in this device architecture becomes limited by the space charge that is formed. In this regime, the hole mobility can be extracted from the fitting of the $J-V$ characteristics in the dark using the following equation:

$$ J = \frac{9}{8} \frac{\epsilon \epsilon_0 \mu_0 V^2}{L^3} \exp(0.89 \sqrt{\frac{V}{E_0 L}}) $$

(5.2)

where ϵ_0 is the permittivity of the vacuum, ϵ_r is the dielectric constant of the polymer (assumed to be 3, which is a commonly used value for conjugated polymers), V is the
The influence of processing additives on the formation of the bulk heterojunction

![Device structure diagram](image)

(a) Device structure of hole-only device and (b) corresponding energy diagram.

Figure 5.6: (a) Device structure of hole-only device and (b) corresponding energy diagram.

Voltage drop across the device, L the thickness of the material under study and where μ_0 is the mobility.

Hole-only devices are fabricated from active layers with various compositions. For each type of active layers, the thicknesses are measured using a profilometer. The thickness of the active layer devoid of processing additive is 101 nm and increases up to 121 nm, 135 nm and 113 nm for active layers prepared with 4 vol% of C-PYR, DPH and ODT respectively. To measure the $J-V$ characteristics, a positive bias, defined as the ITO being at a more positive potential relative to the metal electrode, was used. Under such a bias, holes flow across the P3HT/PC$_{61}$BM layer and are collected by the MoO$_3$/Ag electrode. Therefore, the direction of hole transport in these hole-only devices is the same as in the operating mode of inverted OSCs devices. Figure 5.7 shows plots depicting JL^3 as a function of the applied voltage from a series of hole-only devices fabricated from different types and concentrations of additive.

In order to extract the mobility, the $J-V$ characteristics are fitted with Equation 5.2 for voltages ranging from around 2 to 5 V. The starting voltage is found to be appropriate for fitting around 2 V and slightly varies as a function of the composition of the active layer.

Figure 5.8 shows the evolution of the hole mobility as a function of the concentration of processing additive. The data in the figures represent the average values obtained from measurements on two to four individual hole-only devices for each material system.

The average hole mobility in a BHJ without processing additive is 1.4×10^{-4} cm2.V$^{-1}$.s$^{-1}$. For the three processing additives, two regimes appear: the hole mobility increases...
The influence of processing additives on the formation of the bulk heterojunction

Figure 5.7: J.L as a function of applied voltage for hole-only devices prepared from: a) and d) C-PYR, b) and e) DPH, and c) and f) ODT. Figures a - c) depict plots for an applied voltage ranging from 0 to 5 V and figures d - f) depict zoomed-in plots in the region 2 to 5 V.

Figure 5.8: Calculated SCLC hole mobility as a function of the concentration of processing additive.

Initially with increasing concentration of the processing additive, reaching a certain peak value and then starts to decrease upon increasing concentration. The optimum concentration at which this peak value is reached is 0.8 vol% for C-PYR and DPH, at which the hole mobility reaches $1.5 \times 10^{-4} \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ and $2.1 \times 10^{-4} \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$ respectively. For ODT, the optimum concentration is 1.6 vol% and leads to a hole mobility of $2.4 \times 10^{-4} \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$. The two regimes can be explained by the structural modification in the BHJ caused by processing additives. As suggested earlier from the UV-Vis absorption spectra and the XRD measurements above, processing
additives increase the overall crystallinity of P3HT and decrease the crystallite sizes. The initial increase in hole mobility likely reflects the increase in P3HT crystallinity in the BHJ. But alongside with the increased crystallinity, the crystallites get smaller which contributes to reduced sizes of hole transport pathways and the appearance of grain boundaries. The shorter pathways together with the grain boundaries are likely responsible for the decrease in hole mobility at high concentrations of processing additive.

Figure 5.9 displays the evolution of hole mobility as a function of additive concentration along with the FFs of the corresponding OSCs. The graphs show that the variation in hole mobility appears to correlate with the change in FF. For C-PYR and DPH, both the FF and the hole mobility reach their maximum values for an additive concentration of 0.8 vol%. For ODT, the maximums of FF and hole mobility are obtained for a concentration of 1.6 vol%. This suggests that the evolution of FF upon the introduction of processing additive arises from changes in the hole mobility and thus, from the morphological changes caused by the processing additive.

Figure 5.9: Evolution of hole mobility and FF as a function of the concentration of processing additive in OSCs prepared with (a) C-PYR, (b) DPH and (c) ODT.
5.4 **Mechanistic effects of processing additives on the self-assembly of P3HT**

The optical and structural characterizations showed that processing additives have a significant effect on the BHJ morphology. The introduction of processing additives leads to a morphology which is different from that obtained by means of thermal annealing, as revealed by the XRD measurements. With processing additives, the crystallites of P3HT become smaller and more numerous. Such morphological modifications naturally have an effect on the mobility and the electrical performance. In the literature, a number of mechanisms have been proposed for describing the effects of processing additives. For example, Lee et al. suggested that processing additives lead to three separate phases during the process of liquid-liquid phase separation step of the drying process: a fullerene-additive phase, a polymer aggregate phase and a polymer-fullerene phase. As the processing additive has a higher boiling point, the fullerene remains in solution longer which affects the phase separation [114]. Chen et al. proposed that processing additives provide a driving force for the aggregation of polymer chains [37]. However, neither mechanism adequately explains the evolution of the structure of P3HT crystallites and its dependence on the concentration of processing additive. In this section, a mechanism based on the HSPs of the solvent mixture is proposed.

During the process of solvent evaporation, the higher boiling point of the processing additive causes it to evaporate more slowly than the host solvent and hence the effective concentration of processing additive gradually increases in the solvent mixture. Consequently, the solvent quality towards P3HT changes with time. In order to follow the evolution of the solvent quality towards P3HT, the RED values between the solvent mixture and the polymer are measured. The HSPs of the solvent mixture for various concentration of processing additives are calculated by adding the contributions of each of the component (the processing additive and the ODCB), as described in the following equation:

\[
\begin{align*}
\delta D_{mixture} &= \phi_{ODCB}\delta D_{ODCB} + \phi_{additive}\delta D_{additive} \\
\delta P_{mixture} &= \phi_{ODCB}\delta P_{ODCB} + \phi_{additive}\delta P_{additive} \\
\delta H_{mixture} &= \phi_{ODCB}\delta H_{ODCB} + \phi_{additive}\delta H_{additive}
\end{align*}
\]

(5.3)

where:

\(\delta D_{mixture}, \delta P_{mixture}\) and \(\delta H_{mixture}\) are the HSPs of the solvent mixture,
The influence of processing additives on the formation of the bulk heterojunction

δ_{ODCB}, δ_{PODCB} and δ_{HODCB} are the HSPs of ODCB, δ_{additive}, $\delta_{\text{POadditive}}$ and $\delta_{\text{Hadditive}}$ are the HSPs of the additive, ϕ_{ODCB} and ϕ_{additive} are the volume fraction of respectively ODCB and the additive in the solvent mixture.

The plots showing the evolution of the RED of P3HT and PC$_{61}$BM as a function of the effective concentration of the processing additive during film forming are displayed in Figure 5.10. In Figure 5.10, the dotted line at RED of 1 represents the threshold value separating the regions where the compound is soluble (RED < 1) and non soluble (RED > 1) in the solvent mixture.

![Figure 5.10](image)

Figure 5.10: Evolution of the RED with P3HT (in black) and with PC$_{61}$BM (in red) as a function of the effective concentration of a) C-PYR, b) DPH and c) ODT. The dotted line at RED of 1 depicts the theoretical RED threshold value separating the regions where the compound is non-soluble and soluble.

In all cases, the RED values between PC$_{61}$BM and the solvent mixture remain below 1 despite the increasing concentration of additive. Therefore, the solvent mixture remains a good solvent for PC$_{61}$BM for any concentration of additive. The evolution of the RED values between P3HT and the solvent mixtures exhibits a different behavior. For the initial concentration (from 0 to 4 vol%), the RED between P3HT and the solvent mixture is < 1, meaning that P3HT is soluble in the initial solution mixture. As the
The influence of processing additives on the formation of the bulk heterojunction

effective concentration of the additive increases, the RED also increases, eventually reaching the threshold concentration at which the RED becomes 1. The threshold concentrations for C-PYR and ODT are 49 vol% and 44 vol% respectively, whereas for DPH, it is only 18 vol%. When the concentration of additive has reached the threshold concentration, the solvent mixture becomes a poor solvent for P3HT while remaining a good solvent for PC_{61}BM. The change in solvent quality causes the transition of P3HT from the liquid state to the solid state by the formation of nuclei of P3HT. Without processing additive, the transition from the liquid state to the solid state happens when the solubility limit of P3HT is reached [187] and with processing additive, the transition is shifted forward.

The XRD data showed that the size of the P3HT crystallite domains is dependent on the initial concentration of the processing additive. This effect can also be understood using the RED versus processing additive concentration plots. For a formulation with a given concentration of processing additive, a certain volume of the host solvent has to evaporate before reaching the threshold concentration. When the initial concentration of the processing additive is high, a small amount of the host solvent has to evaporate before the threshold concentration is reached. Therefore, the P3HT nucleates in a medium that is fairly dilute. In this case, the P3HT chains are more spread apart and are also given less time to assemble before the nucleation process starts. As a result, the crystallites of P3HT are expected to be more numerous and smaller. On the other hand, when the initial concentration of the processing additive is low, a larger amount of the host solvent needs to evaporate before the threshold concentration is reached. The P3HT chains nucleate in a more concentrated medium and are given more time to aggregate prior to the transition from the liquid to the solid states. Consequently, the crystallites are larger than in the first case. The starting concentration therefore plays a crucial role in the size and the amount of crystallites in the final BHJ morphology. Figure 5.11 illustrates the BHJ morphologies obtained from D/A formulations containing different starting concentrations of processing additive.
The influence of processing additives on the formation of the bulk heterojunction

Without additive

Low concentration

High concentration

Figure 5.11: Schemes representing the BHJ morphology spin-cast from formulations with various concentration of additive. The crystallites of P3HT become more numerous and smaller as the starting concentration or processing additive increases.

5.5 Conclusions

Correlating structural and optical characterizations revealed the mechanistic role of processing additives in improving the BHJ morphology, hence attaining higher OSC efficiency. The characterizations were performed on BHJs with varying concentration of processing additives, investigating, in this pursuit, three processing additives with different chemical structures in order to determine and verify the universality of the behavior.

The evolution of the V_{oc} and of the UV-Vis absorption spectra showed that processing additives increased the overall crystallinity of P3HT in the BHJ whereas XRD patterns revealed that the increased crystallinity is associated with a decrease in the polymer crystallite sizes. These results suggest that processing additives leads to the formation of BHJ with more numerous but smaller polymer crystallites. Studies of charge carrier mobility revealed that this modification in crystallinity caused the mobility to increase at first but ultimately to decrease because of factors accompanying the crystallinity such as the appearance of grain boundaries.

In order to determine how such a morphology can be induced, the role of processing additives during solvent evaporation is identified by studying the evolution of the RED values (e.g. the interactions) between the solvent mixture and the compounds. At the initial stage, both P3HT and PC$_{61}$BM are soluble in the solvent mixture. As the host solvent evaporates, the concentration of processing additive increases until reaching a threshold concentration at which the polymer chains start to nucleate. The nucleation process and the growth of the nuclei are dependent on the initial concentration of processing additive, as illustrated in Figure 5.11. A high initial concentration of the processing additive leads to smaller but more numerous polymer crystallites whereas...
The influence of processing additives on the formation of the bulk heterojunction

a low concentration leads to larger but less numerous crystallites. The morphological changes closely explain the evolution of the electrical parameters of OSCs with processing additives.
Chapter 6

Effect of device architecture on OSCs prepared with additives
6.1 Introduction

In practice, OSCs can be fabricated in two different architectures: conventional or inverted. In the conventional architecture, the photo-generated electrons are collected by the top electrode whereas in the inverted architecture they are collected by the bottom electrode. The structure of the OSCs and the types of interlayers used are depicted in Figure 6.1.

![Figure 6.1: OSC architecture: (a) inverted and (b) conventional.](image)

The previous chapters depicted OSCs that were fabricated exclusively in inverted configurations. Here, the effect of device architecture on the performance of OSCs prepared with additive is studied. The initial motivation behind this study is to determine whether processing additives cause a vertical phase separation of D and A in the BHJ.

Vertical phase separation appears to be an important parameter for the efficiency of OSCs [236], but currently there is no clear consensus on this subject [96, 167, 168]. Vertical phase separation was shown to be dictated by several parameters such as the surface energy of the layer beneath the active layer [27, 62], the application of a thermal annealing treatment [208, 231] and the spin-casting conditions [27]. Overall, the literature suggests that processing conditions affect the vertical phase separation in BHJ and it is therefore natural to verify whether processing additives also play a role in phase separation. In case of vertical phase separation induced by additives, the performance of additive-treated OSCs would be sensitive to the device architecture. Comparing the photovoltaic parameters of OSCs fabricated in inverted and in conventional architectures represents therefore an indirect approach to verify whether such vertical phase separation occurs in the active layer.

The studies presented here are carried out with two processing additives: DPH and ODT.
6.2 Electrical performance of OSCs using different architectures

6.2.1 OSCs with ODT

OSCs prepared with various concentrations of ODT (0 to 2.4 vol%) are fabricated in an inverted and in a conventional architecture. The $J-V$ characteristics of the OSCs are measured and Figure 6.2 shows the photovoltaic parameters (V_{oc}, J_{sc}, FF, PCE, R_s and R_{sh}) of the OSCs as a function of additive concentration. The data in the figures represents the average values obtained from four to eight OSCs for each system.

The V_{oc} and the R_{sh} decrease with increasing concentration of additive independent of the type of architecture used. Apart from V_{oc} and R_{sh}, the other electrical parameters demonstrate significant differences as a function of the type of device architecture. The most significant difference arises from the FF: in conventional OSCs, the FF decreases significantly upon the introduction of the additive while in inverted OSCs, not much change is observed. When OSCs are prepared with 2.4 vol% of ODT, the FF of conventional OSCs drops to 0.31 causing the PCE to decrease to 1.23 % (less than half the PCE of OSC without additive). Significant differences are also observed from the $J-V$ characteristics of OSCs (Figure 6.3). The $J-V$ characteristics under illumination of conventional OSCs prepared with 2.4 vol% of ODT demonstrate a S-shape behavior which is generally associated with charge accumulation [176, 218]. This can be induced by several parameters such as interfacial barriers [42, 218] and unbalanced charge carrier mobilities [176]. In contrast, the $J-V$ characteristics of inverted OSCs do not exhibit this behavior. Clearly, the processing additives give different effects in the different architectures. While ODT is highly beneficial for the performance of inverted OSCs, it demonstrates negative impact on that of conventional OSCs. In order to verify that these trends are not limited to the specific use of ODT only, similar studies are carried out with DPH.
Figure 6.2: Effects of ODT on the electrical parameters in a conventional and in an inverted architecture of OSCs: (a) V_{oc}, (b) J_{sc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}.

Effect of device architecture on OSCs prepared with additives
Effect of device architecture on OSCs prepared with additives

Figure 6.3: J–V curves of OSCs with various concentrations of ODT under dark conditions (a) in a conventional configuration and (c) in an inverted configuration and J–V curves under illumination (b) in a conventional configuration and (d) in an inverted configuration.

6.2.2 OSCs with DPH

Similar to ODT, OSCs prepared with solutions containing various concentrations of DPH are fabricated in an inverted and in a conventional architecture. Figure 6.5 shows the photovoltaic parameters (Voc, Jsc, FF, PCE, Rs and Rs h) of the OSCs and their corresponding concentrations. The data in the figures represents the average values obtained from four to eight OSCs for each system.

The electrical performance shows a similar trend as previously observed with ODT. Voc and Rs h decrease with increasing concentration of DPH regardless of the architecture. The FF and the Jsc exhibit poor values at high DPH concentration in conventional OSCs while in inverted OSCs, the FF remains relatively unchanged and the Jsc is
increased. In the case of DPH, the differences between conventional and inverted OSCs appear to be more pronounced than in the ODT case. Conventional OSCs prepared with 2.4 vol% of DPH exhibit a particularly low efficiency with a FF of 0.23 and an average PCE of 0.12%. This low performance is expected from the non-diode behavior observed in its $J-V$ characteristics depicted in Figure 6.4.

Figure 6.4: $J-V$ curves of OSCs with various concentrations of DPH under dark conditions (a) in a conventional configuration and (c) in an inverted configuration and $J-V$ curves under illumination (b) in a conventional configuration and (d) in an inverted configuration.
Figure 6.5: Effects of DPH on the electrical parameters in a conventional and in an inverted architecture of OSCs: (a) V_{oc}, (b) J_{sc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}.
6.2.3 Conclusions on OSCs with ODT and DPH

Overall, the additives demonstrate different effects on the photovoltaic performance depending on the OSC architecture. The PCE of conventional OSCs decreases significantly upon the introduction of processing additive whereas the PCE increases in the case of inverted OSCs. The difference between the two architectures could be explained by the location where the charge carriers are collected (Figure 6.1). In an inverted architecture, the holes are collected by the top electrode suggesting that the charge transport of holes is facilitated if D pathways are predominantly present in the top of the active layer. In other words, a BHJ with a P3HT-enriched layer on the top and a PC_{61}BM-enriched layer on the bottom is preferred for inverted OSCs. This is depicted in the scheme (b) in Figure 6.6 which shows the schematic illustrations of three scenarios of vertical phase separation. The fact that additives perform better in inverted OSCs compared to conventional OSCs leads to the hypothesis that a vertical phase separation as indicated in (b) takes place.

![Figure 6.6: Different scenarios of vertical phase separation in BHJ: (a) no vertical phase separation - homogeneous active layer, (b) BHJ with a P3HT-enriched top and a PC_{61}BM-enriched bottom and (c) BHJ with a P3HT-enriched bottom and a PC_{61}BM-enriched top.](image)

As the proportions of D and A in the layer are expected to influence the charge carrier mobility, the hypothesis of vertical phase separation is verified by means of hole and electron mobility measurements using an organic thin film transistor (OTFT) configuration. Such technique appears to be suitable for this study as it selectively measures the mobility at the lower part of the active layer.
6.3 Measurements of charge carrier mobility using OTFT configuration

6.3.1 Fabrication of OTFTs

The electron and hole mobilities are respectively measured using n-type and p-type OTFTs. In n-type OTFTs, a positive gate-source voltage leads to the formation of a negative channel at the interface between the semiconductor and the dielectric, where electrons can be injected by the source and collected by the drain. In p-type OTFTs, a negative gate-source voltage is applied to form a positive channel at the interface where hole transport can occur. Source and drain consist of aluminum as a low work function metal for n-type OTFTs, and of gold as a high work function metal for p-type OTFTs.

The transfer characteristic (which is the drain-source current \(I_{DS} \) as a function of the gate-source voltage \(V_{GS} \)) is measured at a drain-source voltage \(V_{DS} \) of +5 V for n-type OTFTs and -5 V for p-type OTFTs. The mobility is extracted from the saturation regime where \(|V_{DS}| > |V_{GS}-V_{th}| > 0\).

In the saturation regime, the current is given by:

\[
I_{DS} = \frac{\mu_{sat}C_i W}{2L} (V_{GS} - V_{th})^2
\]

(6.1)

and the carrier field effect mobility is given by:

\[
\mu_{sat} = \frac{2L}{C_i W \left(\frac{\partial \sqrt{I_{DS}}}{\partial V_{GS}} \right)^2}
\]

(6.2)

where \(V_{th} \) is the threshold voltage, \(C_i \) the gate dielectric capacitance per unit area, \(\mu_{sat} \) the mobility, \(W \) the channel width and \(L \) the channel length.

6.3.2 Mobility measurements of films prepared from ODT

N-type and p-type OTFTs are fabricated with P3HT/PC_{61}BM active layers prepared with various concentrations of ODT (from 0 to 2.4 vol%). The transfer characteristics of the OTFTs are shown in Figure 6.7.
Figure 6.7: Transfer characteristics of OTFTs prepared with various concentrations of ODT in: (a) p-type OTFTs and (b) n-type OTFTs.

In p-type OTFTs, the transfer characteristics show that higher I_{DS} is obtained in films treated with ODT. In contrast, for the n-type OTFTs, no significant change is observed from the transfer characteristics, except those prepared with 1.6 vol% of ODT.

The mobilities are then calculated for different values of V_{GS} using Equation 6.2. The extracted hole and electron mobilities are plotted as a function of $V_{GS} - V_{th}$ in Figure 6.8a. For p-type OTFTs prepared from 0 and 0.4 vol% of ODT, the I_{DS} in the transfer characteristics is so low that the calculated hole mobilities appear to be in the noise margin and can therefore not be considered reliable. For ODT concentrations \geq 1.6 vol%, the hole mobility increases significantly. In order to evaluate clearly the dependence of electron and hole mobilities on ODT concentration, they are extracted and compared at $V_{GS} - V_{th}$ values of + (or -) 2 V for electron (or hole) mobility. The mobility values are depicted as a function of ODT concentration in Figure 6.8b. Table 6.1 shows the corresponding mobility values as well as the ratio of hole mobility (μ_{h+}) over electron mobility (μ_{e-}).

Figure 6.8b clearly shows that hole mobility increases with increasing concentration of ODT while electron mobilities remain relatively unchanged upon the introduction of ODT. Films prepared with concentrations of ODT \leq 1.6 vol% demonstrate a μ_{h+}/μ_{e-} ratio < 1 indicating higher electron mobility. However, OTFTs with an ODT concentration of 2.4 vol%, exhibit a μ_{h+}/μ_{e-} ratio of 7.05 indicating that additives cause the hole mobility to surpass that of electrons.
Effect of device architecture on OSCs prepared with additives

Figure 6.8: (a) Mobility values of OTFTs prepared with various concentrations of ODT as a function of $V_{GS} - V_{th}$: the left side of the graph depicts hole mobility and the right side the electron mobility. (b) Electron and hole mobilities at $V_{GS} - V_{th}$ of +2 V and -2 V respectively, as a function of ODT concentration.

Table 6.1: Mobility of holes and electrons as a function of the concentration of ODT.

<table>
<thead>
<tr>
<th>ODT ratio [vol%]</th>
<th>N-TYPE μ_h [$10^{-4} \text{cm}^2\cdot\text{V}^{-1}\cdot\text{s}^{-1}$]</th>
<th>P-TYPE μ_e [$10^{-4} \text{cm}^2\cdot\text{V}^{-1}\cdot\text{s}^{-1}$]</th>
<th>μ_h/μ_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.04 ±0.06</td>
<td>~0</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>1.47 ±0.07</td>
<td>~0</td>
<td>-</td>
</tr>
<tr>
<td>1.6</td>
<td>1.39 ±0.29</td>
<td>0.78 ±0.03</td>
<td>0.56</td>
</tr>
<tr>
<td>2.4</td>
<td>0.61 ±0.08</td>
<td>4.31 ±0.46</td>
<td>7.05</td>
</tr>
</tbody>
</table>

6.3.3 Mobility measurements of films prepared from DPH

Similarly to ODT, n-type and p-type OTFTs are fabricated with active layers prepared with concentrations of DPH ranging from 0 to 2.4 vol%. Figure 6.9 depicts the transfer characteristics of the n-type and p-type OTFTs. The transfer characteristics of p-type OTFTs, depicted in Figure 6.9a, also demonstrate higher I_{DS} upon increasing DPH concentration.

Next, the OTFT mobilities are calculated at different values of V_{GS} using Equation 6.2. Figure 6.8a depicts the hole and electron mobilities as a function of $V_{GS} - V_{th}$ for OTFTs prepared from various concentrations of DPH and Figure 6.8b shows the evolution of the electron and hole mobility extracted at $V_{GS} - V_{th}$ values of +2 V and -2 V respectively. Similarly to the case of ODT, the hole mobility increases with increasing concentration of DPH. It is found here that the electron mobility decreases upon the
Effect of device architecture on OSCs prepared with additives

The introduction of DPH. The ratios μ_h/μ_e, presented in Table 6.2, are shown to be < 1 in OTFTs prepared with DPH concentrations ≤ 0.8 vol%. This ratio increases and is > 2 for OTFTs prepared with DPH concentrations of 1.6 and 2.4 vol%. This indicates that the introduction of DPH also cause the hole mobility to surpass that of electrons, similar to that observed with ODT.

![Figure 6.9](image-url) Figure 6.9: Transfer characteristics of OTFT prepared with various concentrations of DPH in: (a) p-type OTFTs and (b) n-type OTFTs.

![Figure 6.10](image-url) Figure 6.10: (a) Mobility values of OTFTs prepared with various concentrations of DPH as a function of $V_{GS}-V_{th}$: the left side of the graph depicts hole mobility and the right side the electron mobility. (b) Electron and hole mobilities at $V_{GS}-V_{th}$ of $+2$ V and -2 V respectively, as a function of DPH concentration.
Table 6.2: Mobility of holes and electrons as a function of the concentration of DPH.

<table>
<thead>
<tr>
<th>DPH ratio [vol%]</th>
<th>N-TYPE μ_h [10^{-4}[cm2.V$^{-1}$.s$^{-1}$]]</th>
<th>P-TYPE μ_e [10^{-4}[cm2.V$^{-1}$.s$^{-1}$]]</th>
<th>$\frac{\mu_{h}}{\mu_{e}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.51 \pm0.12</td>
<td>\sim0</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>0.95 \pm0.19</td>
<td>\sim0</td>
<td>-</td>
</tr>
<tr>
<td>0.8</td>
<td>0.40 \pm0.00</td>
<td>0.10 \pm0.03</td>
<td>0.25</td>
</tr>
<tr>
<td>1.6</td>
<td>0.35 \pm0.12</td>
<td>0.93 \pm0.04</td>
<td>2.63</td>
</tr>
<tr>
<td>2.4</td>
<td>0.23 \pm0.02</td>
<td>2.04 \pm0.17</td>
<td>9.02</td>
</tr>
</tbody>
</table>

6.4 Origins of additive dependence on OSCs architecture

In order to explain the higher performance obtained from an additive-treated OSC in an inverted architecture compared to a conventional one, the question of the vertical phase separation with a depleted polymer layer at the bottom was addressed. The results show that OTFTs prepared with processing additives exhibit an enhanced hole mobility compared the OTFTs without the additive. This result suggests that processing additives do not lead to any vertical phase separation that decreases the D concentration in the lower part of the film. In view of the results obtained in OTFT-mobility measurements, it is concluded that the difference between conventional and inverted architectures do not arise from vertical phase separation. This observation is in disagreement with a recent report by Wang et al. where several techniques (transmission electron microtomography, X-ray photoemission spectroscopy and dynamic secondary ion mass spectroscopy) were used to suggest that the introduction of ODT caused the formation of a P3HT-depleted layer at the bottom of the BHJ [216]. However, the OTFT-mobility measurements conducted here show that, even in the hypothetical case of vertical phase separation caused by additives, the electron and hole mobilities are not impacted by it.

Ruling out vertical phase separation effects, the difference between conventional and inverted OSCs may instead be explained in terms of the location where the excitons are formed. In both architectures, the light is received by the OSC through the ITO substrate. Consequently, photon absorption is expected to occur predominantly in the bottom part of the active layer. As a result, charge carriers are also predominantly generated near the bottom. In a conventional architecture, the electrons are collected by the top electrode. In this case, the photo-generated electrons have to traverse across
Effect of device architecture on OSCs prepared with additives

the whole thickness of the organic layer to be collected by the top electrode. In contrast, holes travel a much shorter distance to reach the hole collecting electrode. Therefore, in this configuration, a high electron mobility is more favorable to account for the long distance that the electrons need to travel. In other words, a ratio $\mu_{h^+}/\mu_{e^-} < 1$ is preferred in this configuration. Such a mobility ratio is obtained in films treated with low concentrations of additive. This, in turn, could explain the superior performance of conventional OSCs prepared with low concentrations of additive as depicted in Figure 6.2 and Figure 6.5. An explanatory scheme supporting this proposition is depicted in Figure 6.11.

![Figure 6.11: A schematic description of hole and electron transport in OSC without processing additive and subsequent preferential architecture.](image)

In contrast, in an inverted architecture, most of the photo-generated holes are required to travel a longer distance relative to the electrons. In this configuration, a ratio $\mu_{h^+}/\mu_{e^-} > 1$ can be expected to be more favorable for a more balanced collection. As the introduction of processing additive increases the hole mobility, the inverted architecture is favorable here. An explanatory scheme supporting this proposition is depicted in Figure 6.12.
To conclude, additive-treated OSCs were shown to perform better in inverted OSCs compared to conventional OSCs. The results of OTFT mobility measurements confirmed that vertical phase separation is not responsible for the differences obtained in conventional and inverted OSCs. Instead, the increasing hole mobility with additive concentration indicates that the difference arises from the location where the excitons are formed. Additionally, this analysis indicates that the ratio of electron and hole mobilities appear to play a crucial role in the choice of OSC architecture.
Chapter 7

The effects of processing additives on the stability of OSCs
In this chapter, the question of the effect of the active layer processing conditions on the stability of OSCs is addressed. Commercial application of OSCs is only viable when stability requirements are met. Therefore the research on OSCs cannot be only focused on higher efficiencies, but also on the stability. Much research has focused on several stability related topics that include the identification of degradation factors and mechanisms, and routes for stability improvement. Therefore, before addressing the question of the effect of processing additives on the OSC stability, it is prudent to provide first a brief background on the stability issues of OSCs.

7.1 Background on the stability issues of OSCs

7.1.1 Stability of organic semiconductors

Organic semiconducting materials are known for their relatively poor stability to ambient conditions. Pure P3HT was shown to be susceptible to photo-bleaching in the presence of oxygen in the solution state [4], as well as in the solid state [83, 139, 140]. In the solid state, the degradation occurs by radical oxidation that first occurs at the side chains and further leads to the degradation of the polythiophene ring causing a loss of π-conjugation. Such degradation appears in the form of a decrease in the polymer optical absorption in the UV-Vis absorption spectrum. The photo-oxidation is accelerated in the presence of humidity, light and high temperature [83]. Aside from the light-induced changes in the presence of oxygen, P3HT is also subject to degradation under light irradiation in the absence of oxygen, a phenomenon called photolysis [138]. It is noteworthy to point out that the degradation rate caused by photolysis is much slower. Manceau et al. showed that light irradiation of P3HT in inert atmosphere caused its absorbance to decrease by 20% within 10 000 hours, whereas the same happens in only 20 hours in the presence of oxygen [138].

Despite the severe degradation behavior observed in neat materials, blends of D/A generally exhibit less degradation. The introduction of fullerene derivatives was shown to slow down the rate of photo-oxidation and photolysis of π-conjugated polymers [30, 155, 184]. Figure 7.1 compares the UV-Vis absorption spectra of neat polymer and of polymer/PC_{61}BM blends under light irradiation in the presence or absence of oxygen.
The effects of processing additives on the stability of OSCs

Figure 7.1: (a) Normalized UV-Vis absorption (at 500 nm) of MDMO-PPV (△), MDMO-PPV/PC$_{61}$BM (○) and normalized UV-Vis absorption (at 520 nm) of P3HT (●) and P3HT/PC$_{61}$BM (■) samples during photo-oxidation. (b) Normalized UV-Vis absorption of MDMO-PPV/PC$_{61}$BM (at 500 nm (○)) and P3HT/PC$_{61}$BM (at 520 nm (■)) samples during photolysis. Reproduced from reference [180] with permission of Elsivier.

The comparison demonstrates that the introduction of PC$_{61}$BM reduces significantly the photo-bleaching of P3HT in the presence of oxygen and suppresses it almost completely in the absence of oxygen [180]. In inert atmosphere, the optical properties of P3HT were shown to be stable for periods as long as 5000 hours. The enhanced photo-stability of blends was attributed to radical scavenging property of PC$_{61}$BM and its ability to quench the P3HT singlet state [138].

Thermal stability represents a severe issue in the stability of D/A blends, mainly due to the tendency of PC$_{61}$BM to form micrometer size crystals. Such crystals can be observed in optical microscopy, as depicted in the Figure 7.2 which shows a thermally annealed P3HT/PC$_{61}$BM films exhibiting PC$_{61}$BM crystals.

Figure 7.2: Optical microscopy images of P3HT/PC$_{61}$BM layers before and after being thermally annealed at 150°C for 5 hours or 24 hours. Reproduced from reference [222] with permission of Wiley.
The effects of processing additives on the stability of OSCs

7.1.2 Stability of OSCs

The factors that cause degradation at the material level such as oxygen and light irradiation subsequently cause significant failure at the device level. Additionally, the OSCs under usage conditions can be subject to several other degradation mechanisms such as electrical stress and mechanical stress [23]. The mechanisms of degradation can be categorized in three types:

1. Degradation of D and A materials,

2. Morphological changes in the active layer,

3. Interfacial degradation.

Oxygen was shown to play a key role in degradation mechanisms (1) and (3). The effects of oxygen on mechanism (1) were discussed previously. Additionally, oxygen induces several types of interfacial degradation mechanism especially in conventional OSCs [104, 219]. Inverted OSCs in which holes are collected by the top electrode are more stable, owing in part, to the higher work function of the top electrode [49, 132]. Nevertheless, even in inverted OSCs, oxygen remains one the major factors of degradation because of the severe damages caused to the active layer [188]. In order to prevent deterioration from oxygen and humidity, much work has been done on the use of protection barriers and as a result, OSCs protected with barriers could demonstrate stabilities of several years [74, 105, 108]. To conclude, the issue of oxygen can then (at least partially) be solved by choosing an appropriate device architecture as well as using barriers to encapsulate OSCs.

In the absence of oxygen, light irradiation only does not play a major role on mechanisms 1 and 2. However, several studies did reveal the dependence of the photo-stability of OSCs on the types of interlayers suggesting the presence of photo-degradation at the interfaces (mechanism 3) [212, 225].

As reported in this brief literature review, each component of an OSC is subject to degradation: the electrodes, the interface between active layer and the contacts, and the organic semiconducting materials. These components have to be chosen carefully in order to limit OSCs degradation. On the other hand, the dependence of OSCs stability on the active layer morphology - and subsequently the processing conditions - has not yet been addressed adequately.
The effects of processing additives on the stability of OSCs

In this chapter, the photo-stability of OSCs that are thermally annealed is compared to the photo-stability of OSCs fabricated using additives. Stability tests under light irradiation in air and in inert atmosphere are performed and compared. In order to limit thermal degradation of OSCs, the temperature of the substrates is kept below 32°C during light irradiation.

7.2 Traces of processing additives in the active layer

The boiling points of the processing additives are relatively high (C-PYR: 306 °C, DPH: 284 °C, ODT: 270 °C and TRIB: 388 °C). Therefore, traces of them can be expected to be present in the active layer and to subsequently alter the stability of OSCs.

In order to detect the presence of processing additive in the active layer, infra-red (IR) absorption spectra of the active layers are characterized with Polarization Modulation-Infrared Reflection Absorption Spectroscopy (PM-IRRAS). The PM-IRRAS spectrum is compared to that of the pure additive determined by Attenuated Total Reflectance (ATR) Spectroscopy to detect whether peaks related to the additive are present in the PM-IRRAS spectrum. For each additive, two sets of P3HT/PC_{61}BM films are investigated: one set consists of as cast-films and a second set consists of films that were placed under vacuum at a pressure of \(\sim 5 \times 10^{-6} \text{ mbar} \), which reproduces the vacuum step caused by thermal evaporation of top contacts. Figure 7.3 depicts a scheme explaining the tests. The films of P3HT/PC_{61}BM are spin-cast from solutions containing 1.6 vol% of processing additives on ITO substrates coated with ZnO. A P3HT/PC_{61}BM-film spin-cast without processing additive serves as a control film.

Figure 7.3: Scheme of the procedure for the detection of processing additive in P3HT/PC_{61}BM films.
PM-IRRAS spectra of C-PYR-treated active layers

As depicted in the ATR spectrum of C-PYR in Figure 7.4a, C-PYR exhibits an intense absorption peak at 1683 cm\(^{-1}\) that accounts for the C=O stretching mode. Figure 7.4b shows the PM-IRRAS spectra of P3HT/PC\(_{61}\)BM films, prepared with and without C-PYR, in the 1600 – 1900 cm\(^{-1}\) region. The peak at 1683 cm\(^{-1}\) is absent in the control active layer but is detected in the films prepared with C-PYR. This suggests that, after spin-casting, residual C-PYR is present in the active layer. When the film is placed under vacuum, the intensity of the absorption peak at 1683 cm\(^{-1}\) decreases and is almost not detectable anymore. Therefore, the vacuum is effective in reducing the amount of C-PYR in the active layer.

![ATR spectrum of C-PYR](a)

![Zoomed-in PM-IRRAS spectra of P3HT/PC\(_{61}\)BM films](b)

Figure 7.4: (a) ATR spectrum of C-PYR, (b) Zoomed-in PM-IRRAS spectra of P3HT/PC\(_{61}\)BM films with and without C-PYR (region 1900 - 1600 cm\(^{-1}\)).

PM-IRRAS spectra of DPH-treated active layers

The ATR spectrum of DPH (Figure 7.5a) presents no absorption peak that can be clearly discriminated from the PM-IRRAS absorption spectra of P3HT/PC\(_{61}\)BM films (Figure 7.5b). However, the absorption peak corresponding to the C=O in DPH appears at lower wavelength compared to the C=O peak in P3HT/PC\(_{61}\)BM films. This difference causes a broadening of the peak in DPH-treated active layers (Figure 7.5b). In the spectrum of the control active layer, the FWHM of this peak is 17.1 cm\(^{-1}\) and it increases up to 19.6 cm\(^{-1}\) for DPH-treated films. This suggests that there is a contribution of the C=O from DPH that is remaining in the active layer. The vacuum step reduces the FWHM to 17.7 cm\(^{-1}\). This shows that the vacuum step is effective in removing DPH, but traces of it are still detectable in the active layer.
The effects of processing additives on the stability of OSCs

Figure 7.5: (a) ATR spectrum of DPH, (b) Zoomed-in PM-IRRAS spectra of P3HT/PC61BM films with and without DPH (region 1820 - 1700 cm\(^{-1}\)).

- PM-IRRAS spectra of TRIB-treated active layers

As depicted in the ATR spectrum of TRIB in Figure 7.6a, the additive exhibits an intense absorption peak at 1740 cm\(^{-1}\), which remains visible in the PM-IRRAS spectra of TRIB-treated films (Figure 7.6b). In the active layer prepared with TRIB, the intensity of the peak at 1740 cm\(^{-1}\) is four times more intense than in a control film. The vacuum step reduces the intensity to 41% of the original signal before the vacuum step. Other peaks characteristic for the ATR spectrum of TRIB (at 959 cm\(^{-1}\) and 1076 cm\(^{-1}\)) appear in films prepared with TRIB. The intensity of these peaks decreases after the vacuum step. To conclude, TRIB remains in P3HT/PC61BM film after spin-casting and after the vacuum step.
The effects of processing additives on the stability of OSCs

Figure 7.6: (a) ATR spectrum of TRIB, (b) Zoomed-in spectra of the region 1800 - 1700 cm\(^{-1}\) of PM-IRRAS spectra of P3HT/PC\(_{61}\)BM films with and without TRIB.

- PM-IRRAS spectra of ODT-treated active layers

The peak at 2560 cm\(^{-1}\) in the ATR spectrum of ODT, attributed to S-H, is absent in the PM-IRRAS spectra of ODT-treated films shown in Figure 7.7. Overall, as cast-films and films placed under vacuum prepared from ODT show no significant difference compared to films prepared without additive. This observation suggest that the amount of residual ODT in P3HT/PC\(_{61}\)BM-films is negligible.

Figure 7.7: (a) ATR spectrum of ODT, (b) PM-IRRAS spectra of P3HT/PC\(_{61}\)BM films with and without ODT.
To conclude, the vacuum step was shown to be effective in reducing the amount of additive in as-cast films. Traces of DPH and TRIB are detected in the active layer even after the vacuum step while C-PYR and ODT are not.

7.3 Photo-stability tests on OSCs

7.3.1 Photo-stability tests on OSCs in air

Photo-stability tests are performed on OSCs prepared with different types of active layers. Table 7.1 gives the initial photovoltaic performances (i.e. at $t=0$) of the OSCs under study. Attention was paid to fabricate OSCs with similar efficiencies (between 2.6% and 3.0%) in order to allow for comparison between them to yield accurate conclusions.

<table>
<thead>
<tr>
<th>Initial values annealing</th>
<th>Thermal</th>
<th>C-PYR</th>
<th>DPH</th>
<th>ODT</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{sc} [mA.cm$^{-2}$]</td>
<td>9.2</td>
<td>9.2</td>
<td>8.7</td>
<td>8.9</td>
</tr>
<tr>
<td>V_{oc} [V]</td>
<td>0.56</td>
<td>0.53</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>FF</td>
<td>0.58</td>
<td>0.62</td>
<td>0.66</td>
<td>0.59</td>
</tr>
<tr>
<td>PCE [%]</td>
<td>2.6</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
</tr>
<tr>
<td>R_s [Ohm.cm2]</td>
<td>4.4</td>
<td>2.5</td>
<td>1.4</td>
<td>3.9</td>
</tr>
<tr>
<td>R_{sh} [Ohm.cm2]</td>
<td>8008</td>
<td>8460</td>
<td>8356</td>
<td>7192</td>
</tr>
</tbody>
</table>

The OSCs are prepared and exposed to light irradiation in air. OSCs containing processing additives are exposed to light irradiation for a period of 252 hours while thermally annealed OSCs are exposed for only 90 hours because of the low performance obtained after this period. The $J-V$ curves were measured at several intervals within the duration of the light irradiation. Table 7.2 indicates the normalized electrical parameters of OSCs after light irradiation and Figure 7.8 depicts the evolution of the photovoltaic parameters as a function of irradiation time. The normalized parameters
The effects of processing additives on the stability of OSCs

correspond to the percentage of initial value (at \(t=0 \)) measured before the prolonged light exposure.

Table 7.2: Normalized electrical performance after light irradiation in air: 252 hours of light irradiation for OSCs with processing additives, 90 hours for thermally annealed OSCs.

<table>
<thead>
<tr>
<th>Normalized values [%]</th>
<th>Thermal annealing</th>
<th>C-PYR</th>
<th>DPH</th>
<th>ODT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J_{sc})</td>
<td>49.1</td>
<td>63.2</td>
<td>59.4</td>
<td>85.7</td>
</tr>
<tr>
<td>(V_{oc})</td>
<td>16.7</td>
<td>55.3</td>
<td>48.3</td>
<td>81.5</td>
</tr>
<tr>
<td>FF</td>
<td>22.3</td>
<td>33.2</td>
<td>13.0</td>
<td>51.8</td>
</tr>
<tr>
<td>PCE</td>
<td>1.8</td>
<td>11.8</td>
<td>3.7</td>
<td>36.2</td>
</tr>
<tr>
<td>(R_s)</td>
<td>153.8</td>
<td>1168.8</td>
<td>2642.7</td>
<td>297.3</td>
</tr>
<tr>
<td>(R_{sh})</td>
<td>6.4</td>
<td>34.1</td>
<td>60.7</td>
<td>77.0</td>
</tr>
</tbody>
</table>

For all OSCs, the FF is the parameter that is the most impacted by the degradation. The decrease in FF is likely to be linked to the significant increase in \(R_s \) upon light irradiation. The increase in \(R_s \) suggests either an increase in the internal resistance of the active layer or an increase in the resistance at the contacts.

The photo-stability of OSCs differs significantly as a function of the active layer processing conditions. The thermally annealed OSC is the least photo-stable with a PCE of 1.8% of the initial value after 90 hours of light irradiation. On the other hand, ODT-treated OSCs present the best photo-stability with a PCE remaining at 36.2% of the initial value after 292 hours of light irradiation. The most striking difference between thermally annealed and ODT-treated OSC is the \(V_{oc} \). For thermally annealed OSCs, the \(V_{oc} \) decreases significantly with increasing irradiation time, whereas ODT-treated OSCs demonstrate less than 15% loss in \(V_{oc} \) after the total irradiation time. OSCs with C-PYR and DPH-treated active layers present intermediate stabilities as depicted in Figure 7.8.

7.3.2 Photo-stability tests on OSCs in inert atmosphere

OSC prepared in conditions identical to those previously described are fabricated and irradiated for a period of 393 hours in inert atmosphere. The \(J-V \) curves were measured
The effects of processing additives on the stability of OSCs

Figure 7.8: Normalized electrical parameters of OSCs subjected to light irradiation in air: (a) J_{sc}, (b) V_{oc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}.

at several intervals within the duration of the light irradiation. Table 7.3 reports the normalized photovoltaic parameters of OSCs after 393 hours of light irradiation and Figure 7.9 depicts the evolution of the photovoltaic parameters as a function of the time of light irradiation.

The results depicted in Figure 7.9 show that OSCs photo-stability in inert atmosphere
The effects of processing additives on the stability of OSCs

Table 7.3: Normalized photovoltaic parameters of OSCs after 393 hours of light irradiation in inert atmosphere.

<table>
<thead>
<tr>
<th>Normalized value [%]</th>
<th>Thermal annealing</th>
<th>C-PYR</th>
<th>DPH</th>
<th>ODT</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{sc}</td>
<td>75.4</td>
<td>66.8</td>
<td>67.9</td>
<td>78.9</td>
</tr>
<tr>
<td>V_{oc}</td>
<td>79.2</td>
<td>91.6</td>
<td>78.3</td>
<td>95.6</td>
</tr>
<tr>
<td>FF</td>
<td>52.9</td>
<td>73.7</td>
<td>67.2</td>
<td>94.4</td>
</tr>
<tr>
<td>PCE</td>
<td>32.0</td>
<td>44.9</td>
<td>36.0</td>
<td>71.2</td>
</tr>
<tr>
<td>R_s</td>
<td>128.2</td>
<td>145.1</td>
<td>402.2</td>
<td>119.1</td>
</tr>
<tr>
<td>R_{sh}</td>
<td>33.9</td>
<td>52.8</td>
<td>50.0</td>
<td>77.3</td>
</tr>
</tbody>
</table>

is significantly higher than that in air. This is expected as the inert atmosphere substantially reduces degradation due to photo-oxidation. Interestingly, the dependence of the photo-stability on the processing conditions follows the same trend as observed in air: thermally annealed OSCs exhibit the poorest photo-stability whereas ODT-treated OSCs exhibit the highest photo-stability. OSCs with C-PYR and DPH exhibit intermediate stabilities. Similarly, the V_{oc} is the most discriminant parameter: the thermally annealed OSC has its V_{oc} reduced to 79.2% after 393 hours of light irradiation, whereas the V_{oc} of ODT-treated OSC remains almost unchanged (less than 5 % decrease from the initial value). Along the same line, the decrease in FF is the most significant in thermally-annealed OSC, whereas irradiated ODT-treated OSC demonstrate a FF maintained at 94.4% of the initial value after the total irradiation time. Overall, ODT-treated OSCs are the most photo-stable OSCs with a final PCE of 71.2% of the initial value while the PCE of thermally annealed OSCs is reduced to 32.0% of the initial value.

To conclude, in air and in inert atmosphere, processing conditions have an influence on the photo-stability of OSCs. It is noteworthy to remind here that DPH-treated active layers were shown to retain some additive. However the photo-stability tests show that DPH-treated OSCs have a higher stability than thermally annealed OSCs. This suggests that the remaining additive does not play a major role in OSC photo-degradation.

The following sections aim at identifying the origins of the photo-stability dependence on the processing conditions.
The effects of processing additives on the stability of OSCs

Figure 7.9: Normalized electrical parameters of OSCs subjected to light irradiation in inert atmosphere: (a) J_{sc}, (b) V_{oc}, (c) FF, (d) PCE, (e) R_s and (f) R_{sh}.
7.4 UV-Vis absorption spectroscopy of light-irradiated active layers

To investigate the effects of light irradiation on the optical properties of P3HT/PC$_{61}$BM-films, the UV-Vis absorption spectra of active layer films were measured after being subjected to light irradiation for 60 hours in air. The spectra are shown in Figure 7.10.

![Image](image-url)

Figure 7.10: UV-Vis absorption of P3HT/PC$_{61}$BM films before and after light irradiation for 60 hours in air for (a) Thermally annealed, (b) C-PYR, (c) DPH and (d) ODT-treated active layers.

In air, the intensity of the absorption band of P3HT decreases after light irradiation for all the types of active layers, indicating that photo-oxidation of P3HT occurs in all cases. The loss in optical density at 601 nm is calculated and recorded in Table 7.4.

The decrease in optical density of ODT-treated active layers appears to be in the same range as that of C-PYR and DPH-treated active layers. The higher photo-stability of ODT-treated OSCs seems therefore to be independent of the optical density losses associated with photo-bleaching.
The effects of processing additives on the stability of OSCs

Table 7.4: Decrease in optical density measured at 601 nm.

<table>
<thead>
<tr>
<th>Types of active layers</th>
<th>Loss in optical density [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermally annealed</td>
<td>11.0</td>
</tr>
<tr>
<td>C-PYR</td>
<td>4.8</td>
</tr>
<tr>
<td>DPH</td>
<td>7.0</td>
</tr>
<tr>
<td>ODT</td>
<td>6.4</td>
</tr>
</tbody>
</table>

The UV-Vis absorption spectra of light-irradiated active layers in inert atmosphere are depicted in Figure 7.11.

Figure 7.11: UV-Vis absorption spectra of P3HT/PC_{61}BM films before and after light irradiation for 60 hours in inert atmosphere for (a) Thermally annealed, (b) C-PYR, (c) DPH and (d) ODT-treated active layers.

In inert atmosphere, the absorption spectra do not exhibit significant change after 60
hours of light irradiation indicating that the π-conjugated system as well as the chemical structure of P3HT are not affected by light irradiation. This confirms that OSC photo-degradation in inert atmosphere does not arise from chemical photo-degradation of P3HT.

The results in UV-Vis absorption spectroscopy do not explain the dependence of OSC photo-stability on processing conditions. Besides, the presence of traces of additive does not explain it neither. These two results suggest that the major origin of the photo-degradation is not the active layer. Therefore, the degradation at the interfaces (between the active layer and the top electrode or the bottom electrode) are investigated. As the trends in photo-stability are similar in air and in inert atmosphere, the following studies are carried out in inert atmosphere only.

7.5 Photo-stability study on the bottom interface

Photo-stability tests are carried out on OSCs containing a buffer interlayer which makes the bottom interface independent from the active layer processing conditions. The objective here is to verify if the photo-stability dependence on the processing conditions remains identical after the insertion of the buffer interlayer. To this end, a layer of C_60 is introduced as an interlayer between ZnO and the active layer as depicted in Figure 7.12.

![Figure 7.12: Scheme of photo-stability tests on OSC with a C_60 buffer interlayer.](image)

The energy level diagram, shown in Figure 7.13, suggests that a C_60 interlayer introduces a small energy barrier (0.4 eV) to the transport of electrons from the active layer to the ZnO layer. Therefore, the photovoltaic performance of OSCs with a C_60 interlayer needs to be optimized.
A series of OSCs containing C$_{60}$ interlayers with different thicknesses are fabricated. Figure 7.14 depicts the evolution of the PCEs as a function of the thickness of C$_{60}$. The results show that a C$_{60}$ interlayer with a thickness \leq 10 nm does not alter significantly the PCE of the different types of OSCs whereas 20 nm of C$_{60}$ decreases the PCE of thermally annealed OSC. This decrease is attributed to structural changes in the interlayer caused by the thermal annealing step. As the introduction of a C$_{60}$ interlayer with a thickness \leq 10 nm does not affect the photovoltaic performance of OSCs, they are suitable to be used for photo-stability tests.

Photo-degradation tests in inert atmosphere are performed on OSCs containing a 10 nm interlayer of C$_{60}$. The OSCs are irradiated for 390 hours and the J-V characteristics are measured at several intervals within the duration of light irradiation. Figure 7.15
The effects of processing additives on the stability of OSCs
depicts the evolution of PCE and V_{oc} as a function of the
time of light irradiation for OSCs containing or not a C_{60}
interlayer.

The results show that regardless of the type of processing
conditions, OSCs containing a C_{60} interlayer photo-degrade
following the same trend as OSCs without interlayer. The
unchanged trend in photo-stability indicates that the changes
in photo-stability are not due to variations at the bottom contact
caused by the processing additives.

7.6 Photo-stability study on the top interface

7.6.1 Photo-stability tests on OSC active layers

In order to investigate the role of the top interface (i.e. the
interface between the active layer and MoO_3/Silver),
photo-degradation tests in inert conditions are performed on
samples that contain a stack of ITO/ZnO/Active layer only,
refer to as incomplete OSCs. The incomplete OSCs are light-irradiated in inert atmosphere for 40 hours and
then the fabrication is completed by the thermal evaporation of MoO_3/Silver after that. The photovoltaic performances are measured and compared to those of fresh
OSC. The normalized PCEs are reported in Table 7.5.

OSCs with ODT present a slight increase in J_{sc}, V_{oc} and PCE. The increase in these
parameters can be attributed to external parameters such as the increase in the work
function of silver or internal parameters such as changes in the ZnO layer upon light

Figure 7.15: Evolution of normalized (a) V_{oc} and (b) PCE as a function of irradiation
time for OSCs without (solid line) and with (dashed line) a C_{60} interlayer.
The effects of processing additives on the stability of OSCs

Irradiation. In this experiment, ODT-treated OSCs remain the most photo-stable. On the other hand, the photo-stability of OSCs with DPH, C-PYR and which are thermally annealed all exhibit similar performance loss: their PCEs decrease to around 80% of their initial values after 40 hours of light irradiation. This is in contrast with the trends observed in the photo-stability tests of complete OSCs shown earlier in sections 7.3.1 and 7.3.2 in which the stabilities were different.

Table 7.5: Normalized photovoltaic performance of C-PYR, DPH and ODT-treated OSCs and thermally annealed OSCs subjected to light irradiation in inert atmosphere for 40 hours.

<table>
<thead>
<tr>
<th>Types of OSCs</th>
<th>(J_{sc})</th>
<th>(V_{oc})</th>
<th>FF</th>
<th>PCE</th>
<th>(R_s)</th>
<th>(R_{sh})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermally annealed</td>
<td>86.3</td>
<td>93.3</td>
<td>88.6</td>
<td>82.8</td>
<td>164.4</td>
<td>111.1</td>
</tr>
<tr>
<td>C-PYR</td>
<td>93.4</td>
<td>95.7</td>
<td>92.8</td>
<td>83.0</td>
<td>202.1</td>
<td>48.3</td>
</tr>
<tr>
<td>DPH</td>
<td>100.8</td>
<td>92.8</td>
<td>83.6</td>
<td>78.5</td>
<td>333.6</td>
<td>58.2</td>
</tr>
<tr>
<td>ODT</td>
<td>109.0</td>
<td>101.1</td>
<td>94.5</td>
<td>104.4</td>
<td>153.0</td>
<td>71.3</td>
</tr>
</tbody>
</table>

The photovoltaic parameters of OSCs subjected to photo-degradation in the complete or incomplete way are compared to identify the role of the top electrode in photo-degradation. The normalized photovoltaic performances are compared after 40 hours of light irradiation (for the tests performed on complete OSCs, the electrical performances were determined by the extrapolation of the trends in Figure 7.9 at 40 hours). The normalized \(V_{oc} \) and PCE in the two experiments are shown as a function of the processing conditions in Figure 7.16.

Interestingly, the OSCs subjected to light irradiation without top electrode appear to be more stable than the OSCs irradiated with the top electrode. In the photodegradation tests on complete OSCs, the \(V_{oc} \) is the parameter that discriminates the most the different types of processing conditions, whereas in the tests on incomplete OSCs, the \(V_{oc} \) remains relatively similar for all the types of active layers. Two conclusions can be drawn:

103
The effects of processing additives on the stability of OSCs

Figure 7.16: Comparison of the normalized (a) V_{oc} and (b) PCE after 40 hours of light irradiation on OSCs without top electrode or with top electrode.

1. The higher photo-stability of incomplete OSCs versus complete OSCs suggests that the presence of a top electrode plays a role in the photo-degradation.

2. The fact that the photo-stability of incomplete OSCs is less dependent on the processing conditions than in the case of complete OSCs suggests that the processing conditions affect the photo-stability at the top interface.

Therefore, further investigations are performed on the photo-stability of the top interface.

7.6.2 Effects of light irradiation on the adhesion of the top electrode

Wang et al. demonstrated that light irradiation of an organic/metal stack caused deterioration at the interface by decreasing metal-organic bond density in organic light emitting diodes [220]. This photochemical deterioration at the interface caused a decrease in interfacial adhesion between the metal and the organic layer. In order to investigate the degradation in OSCs at the top electrode, interfacial adhesion measurements are carried out on OSC stacks before and after light irradiation. The adhesion energy at the interface between the active layer and the top contact is measured using a four-point bending test configuration [14, 220]. During the adhesion experiment, a load is applied on the two sides of the sample under study. The load as a function of the displacement is recorded and a typical displacement plot is shown in Figure 7.17. The adhesion is the energy required to cause delamination at the interface between
two layers. Generally, the load first increases linearly with the displacement, which is characteristic for an elastic deformation. If a weak interface is present in the stack, a crack initiated by a pre-notch propagates along the interface. Such propagation causes a release of energy which can be related to the interfacial adhesion strength, G_c expressed as:

$$G_c = \frac{21(1 - \nu^2)P^2l^2}{16Eb^2h^3}$$ \hspace{1cm} (7.1)

With ν the Poisson’s ratio of the glass substrate, E is the elastic modulus of the substrate, P the total force exerted onto the sample, b, h and l geometrical characteristics of the sample and the setup.

The OSC stack configuration is prepared on a rectangular glass substrate (1 cm x 5 cm) in order to be suitable for the four point bending test (Figure 7.17). A second glass substrate is glued on top of the stack and a pre-notch is made on it. During the adhesion measurement test, equal loads are applied on both side of the sample. The loads deform the sample at a constant velocity of 0.25 μm.s$^{-1}$ while the load as a function of the sample displacement is recorded. The adhesion measurement tests are performed on the two OSCs that exhibit the most differences in photo-stability: the thermally annealed and ODT-treated OSCs. Figure 7.18 shows the load versus displacement plots obtained.
The effects of processing additives on the stability of OSCs

Figure 7.18: Load versus displacement characteristics for fresh and irradiated samples for (a) samples with ODT and (b) thermally annealed samples. On (a) the measured force loss (ΔN) is showed. The plots of the irradiated samples were manually vertically down shifted for the clarity of the Figures.

The two samples demonstrate the same evolution: first, the load increases linearly with the displacement and when the displacement reaches 6 to 7 mm, a slight load drop is observed, followed by a linear increase in the load. Ultimately, for higher displacement values, the samples are broken. In case of complete delamination, a complete load drop would be observed (as depicted in Figure 7.17). In Figure 7.18, the plots show that no total delamination occurs. Instead, a small load drop is observed, suggesting that a crack propagates only slightly in the interface without fully delaminating it. At higher load values, the cracks continue to penetrate vertically throughout the stack and ultimately break the entire sample. As no total delamination occurs, the interface adhesion strength cannot be calculated using Equation 7.1. Instead, the load loss during the partial delamination (ΔN) is determined (ΔN is depicted in Figure 7.18). This load loss is related to the energy released during the partial delamination and therefore describes how far the delamination propagates at the interface. Table 7.6 and Table 7.7 show the load loss values before and after degradation for thermally annealed and ODT-treated OSCs respectively. The values represent the average of two samples (except for the case of irradiated OSCs with ODT).
The effects of processing additives on the stability of OSCs

Table 7.6: Force loss in the adhesion measurement test of thermally annealed samples.

<table>
<thead>
<tr>
<th></th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh - TA</td>
<td>0.18</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Irradiated - TA</td>
<td>0.33</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>Percentage increase</td>
<td></td>
<td></td>
<td>76.8 %</td>
</tr>
</tbody>
</table>

Table 7.7: Force loss in the adhesion measurement test of ODT-treated samples.

<table>
<thead>
<tr>
<th></th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh - ODT</td>
<td>0.86</td>
<td>0.59</td>
<td>0.73</td>
</tr>
<tr>
<td>Irradiated - ODT</td>
<td>1.06</td>
<td>-</td>
<td>1.06a</td>
</tr>
<tr>
<td>Percentage increase</td>
<td></td>
<td></td>
<td>46.0 %</td>
</tr>
</tbody>
</table>

* The average takes into consideration the result of Sample 1 only.

Several observations and conclusions can be deduced from the results:

1. Regarding only fresh samples, the load loss in ODT-treated samples (0.73 N) is higher than the load loss in thermally annealed samples (0.16 N). This indicates that the interfacial adhesion is dependent on the processing conditions of the active layer. The AFM images of P3HT/PC_{61}BM-films treated with ODT and thermal annealed are recorded and depicted in Figure 7.19. The roughness measurement show that film treated with ODT presents a higher roughness than thermally annealed films. The difference in surface topography are likely the cause of the differences observed in the adhesion tests.

2. The load loss in photo-degraded OSCs is larger than that observed in fresh OSCs indicating that the interfacial delamination is more severe in photo-degraded OSCs. This, in turn, strongly suggests that the light irradiation affects the OSCs at the top interface by weakening the interfacial adhesion.

3. The percentage of load loss increase in thermally annealed samples is calculated to be 76.8%, whereas in ODT-samples, the increase is only 46.0%. This suggests that the interfacial adhesion is more severely deteriorated in the case of thermally annealed samples.
Table 7.8: Roughness of active layers with different processing additives.

<table>
<thead>
<tr>
<th>Roughness [nm]</th>
<th>Thermally annealed</th>
<th>1.6 vol% of ODT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>7.9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7.19: AFM topography (1 µm x 1 µm) images of active layers films: (a) thermally annealed and (b) ODT-treated.

7.7 Conclusions

In this chapter, the effects of thermal annealing and the use of additive on the stability of OSCs are investigated. The main finding of this chapter is the OSC photo-stability dependence on the active layer processing conditions, a result which is valid for photo-degradation in both inert atmosphere as well as in air. The best photo-stability is obtained with ODT-treated OSCs, followed by C-PYR and DPH-treated OSCs as intermediates, and thermally annealed OSCs as the least stable devices.

The photo-degradation is shown to be unrelated to the remaining traces of additive in the active layer and to chemical degradation in the active layer. Instead, the photo-stability tests presented in Sections 7.5 and 7.6.1 suggest that the photo-degradation occurs primarily at the top interface. By means of adhesion measurements it is confirmed that light irradiation causes interfacial degradation which results in a weaker adhesion of the top electrode upon light irradiation. These results suggest that the increased in R_s observed in the photo-stability tests (in Sections 7.3.2 and 7.3.1) is due to increased contact resistance at the top electrode, which in turn decrease the V_{oc} by affecting the built-in voltage in the device. Additionally, adhesion measurements show that ODT-treated OSCs are in a lower extend subjected to interfacial photo-degradation than thermally annealed OSCs. This is consistent with the fact that the photo-stability of ODT-treated OSCs is better than thermally annealed OSCs.

Overall, processing additives are not detrimental for the photo-stability of OSCs compared to thermally annealed OSCs. In the specific case of ODT, the photo-stability is
The effects of processing additives on the stability of OSCs

even improved. This shows that next to improving the efficiency, additives can also be employed to improve the photo-stability.
Chapter 8

Studies on new generation donor polymers
As suggested in Chapter 2, the selection and the effects of processing additives depend on the type of D/A systems. In order to broaden the scope of the study on processing additive, other types of D semiconductors are investigated. P3HT can be classified as a low mobility semi-crystalline polymer. In this chapter, two other families of D are studied: a high mobility semi-crystalline polymer (a 1,4-diketopyrrolo[3,4-c]pyrrole derivative with a quaterthiophene substituent (PDQT)) and an amorphous polymer (poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole (PCDTBT))].

8.1 Studies on PDQT

8.1.1 Introduction to DPP based copolymers

In the past few years, 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) has attracted considerable attention as an electron acceptor building block in conjugated copolymers for applications in OTFTs [118] and OSCs [79–81, 119–121]. The general chemical structure of DPP-based copolymers, depicted in Figure 8.1, contains an alternation of electron donating and DPP building blocks.

![Figure 8.1: On the left: DPP-based conjugated polymers where R is a substituent, Donor 1 and Donor 2 are electron donating building blocks. On the right, examples of electron donating building blocks are depicted. Adapted from reference [121] with permission of the Royal Society of Chemistry.](image)

The DPP-based copolymer investigated in this work contains a quaterthiophene group as the electron donor to form the PDQT copolymer depicted in Figure 8.2. This copolymer was shown to form films with a high degree of crystallinity due to strong intermolecular π-π stacking. As a result, PDQT was shown to exhibit high hole mobility in OTFT configuration with mobilities up to 0.97 cm²/V·s [122, 123]. Another interesting feature of PDQT is its large absorption spectrum which is extended to the
near IR (≈ 950 nm), as depicted in the UV-Vis absorption spectrum of PDQT/PC$_{61}$BM film in Figure 8.3.

![Figure 8.2: Chemical structure of PDQT.](image)

The HOMO LUMO energy levels of PDQT are estimated to be respectively 5.3 eV and 4.0 eV respectively [152]. Such a LUMO energy level leads to an energy difference of 0.3 eV with the LUMO of PC$_{61}$BM and is therefore suitable for efficient charge transfer. The energy diagram of PDQT/PC$_{61}$BM-based OSC is depicted in Figure 8.4.

8.1.2 Performance of OSCs based on PDQT/PC$_{61}$BM

Prior to the fabrication of OSCs, the HSPs of PDQT are determined in order to verify its solubility in conventional solvents such as CB or ODCB.

The HSPs of PDQT have been determined experimentally by performing solubility tests. The HSPs resulting from the fitting are presented in Table 8.1 and the graphical representation of the PDQT solubility sphere is depicted in Figure 8.5.
Studies on new generation donor polymers

Figure 8.4: Energy levels of PDQT/PC$_{60}$BM - OSC in an inverted architecture.

Table 8.1: HSPs of PDQT.

<table>
<thead>
<tr>
<th></th>
<th>δD [MPa$^{1/2}$]</th>
<th>δP [MPa$^{1/2}$]</th>
<th>δH [MPa$^{1/2}$]</th>
<th>R_O [MPa$^{1/2}$]</th>
<th>FIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDQT</td>
<td>18.28</td>
<td>4.11</td>
<td>3.07</td>
<td>3.2</td>
<td>0.860</td>
</tr>
</tbody>
</table>

Figure 8.5: Solubility spheres of PC$_{61}$BM and PDQT.

Using these HSPs, the RED values between PDQT - CB and PDQT - ODCB are calculated and found to be respectively 0.56 and 0.90. These numbers suggest that PDQT is soluble in both solvents. It was shown in the literature, that PDQT-based OSCs can be fabricated with thick active layers (up to ~ 800 nm) [151]. As such active layers are usually obtained from low boiling point solvents, CB is chosen as the host solvent due to its low boiling point (51 °C below that of ODCB) in order to fabricate thick active layer OSC.

PDQT and PC$_{61}$BM formulations are prepared with a total solid content of 30 mg.mL$^{-1}$
Studies on new generation donor polymers

in CB with various D/A ratio (from 1/1 to 1/4) and spin-cast at a spin speed of 800 rpm to form the active layer. Table 8.2 shows the photovoltaic performance of inverted OSCs prepared from various D/A ratios.

Table 8.2: Photovoltaic parameters of OSCs with various ratios of PDQT/PC₆₁BM.

<table>
<thead>
<tr>
<th>D/A ratio</th>
<th>J<sub>sc</sub> [mA.cm<sup>−2</sup>]</th>
<th>V<sub>oc</sub> [V]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>R<sub>s</sub> [Ohm.cm<sup>2</sup>]</th>
<th>R<sub>sh</sub> [Ohm.cm<sup>2</sup>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>2.6 ±0.1</td>
<td>0.58 ±0.01</td>
<td>0.51 ±0.01</td>
<td>0.8 ±0.0</td>
<td>14.5 ±1.9</td>
<td>1607 ±263</td>
</tr>
<tr>
<td>1/3</td>
<td>3.3 ±0.1</td>
<td>0.60 ±0.00</td>
<td>0.57 ±0.03</td>
<td>1.1 ±0.1</td>
<td>10.1 ±1.7</td>
<td>1698 ±369</td>
</tr>
<tr>
<td>1/2</td>
<td>2.8 ±0.1</td>
<td>0.60 ±0.01</td>
<td>0.51 ±0.03</td>
<td>0.8 ±0.0</td>
<td>14.3 ±2.5</td>
<td>1245 ±99</td>
</tr>
<tr>
<td>1/1</td>
<td>4.8 ±1.4</td>
<td>0.60 ±0.00</td>
<td>0.42 ±0.07</td>
<td>1.2 ±0.2</td>
<td>13.6 ±0.4</td>
<td>501 ±419</td>
</tr>
<tr>
<td>3/1</td>
<td>0.8 ±0.1</td>
<td>0.59 ±0.02</td>
<td>0.50 ±0.07</td>
<td>0.2 ±0.0</td>
<td>78.8 ±33.7</td>
<td>2412 ±624</td>
</tr>
</tbody>
</table>

OSCs with a D/A ratio of 3/1 exhibit a low PCE of 0.24%, mostly due to low J_{sc}. This low J_{sc} is likely to be due to charge transport issues also evident from the high R_s. Overall, the PCEs of OSCs are similar for each D/A ratio, with the exception of the 3/1 one.

XRD measurements are conducted on PDQT/PC₆₁BM-films. The XRD patterns are presented in Figure 8.6. Pure PDQT exhibits a diffraction peak at 4.47° which corresponds to the interlayer spacing d₍₁₀₀₎ between PDQT chains, suggesting a predominant edge-on orientation of the chains. Table 8.3 presents the angles of the maximum diffraction peak and the crystallite domain sizes estimated with Scherrer’s equation for each of the films. For each film, the crystallite domain size is 13 - 14 nm. This result suggests that there is no impact of the proportion of A on the crystallization of PDQT during film formation.

Table 8.3: Diffraction peaks and domain sizes of PDQT/PC₆₁BM with various D/A ratios.

<table>
<thead>
<tr>
<th>D/A system</th>
<th>2θ [°]</th>
<th>Domain sizes [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure PDQT</td>
<td>4.47</td>
<td>14</td>
</tr>
<tr>
<td>Ratio 1/1</td>
<td>4.45</td>
<td>13</td>
</tr>
<tr>
<td>Ratio 1/2</td>
<td>4.45</td>
<td>14</td>
</tr>
<tr>
<td>Ratio 1/3</td>
<td>4.35</td>
<td>13</td>
</tr>
<tr>
<td>Ratio 1/4</td>
<td>4.39</td>
<td>14</td>
</tr>
</tbody>
</table>
The crystalline structure of PDQT can be observed in the AFM images depicted in Figure 8.7. The phase image of pure PDQT exhibits well defined crystallites that appear to be homogeneous in size and fairly flat as suggested by its low roughness of 1.8 nm. In PDQT/PC$_{61}$BM-films, the phase images show large features, heterogeneous in size, suggesting the coexistence of PDQT crystallites and PC$_{61}$BM crystallites. The increase in PC$_{61}$BM proportion also leads to a gradual increase in roughness: the roughness increases from 1.8 nm for pure PDQT to 4.0 nm in blends of PDQT/PC$_{61}$BM prepared in a 1/4 ratio. The fact that the films present such a heterogeneous distribution of crystallite sizes suggests that PDQT and PC$_{61}$BM aggregate independently, explaining the non dependence of PDQT crystallite sizes on the proportion of A.

![Figure 8.6: XRD patterns of: (a) pure PDQT and (b) PDQT/PC$_{61}$BM blends in various D/A ratios.](image)

![Figure 8.7: AFM images of PDQT/PC$_{61}$BM in various D/A ratios: (a-d) phase images, (e-h) topography images: (a) and (e) ratio pure PDQT, (b) and (f) ratio 2/1, (c) and (g) ratio 1/2, (d) and (h) ratio 1/4.](image)
8.1.3 Effects of processing additives

Following the same approach as the one applied to the P3HT/PC$_{61}$BM system, processing additives are selected under the conditions that they are good solvents for PC$_{61}$BM and poor solvents for PDQT. Using the HSPs as a numerical tool to determine such solvents, ODT was found to have RED values with PDQT and PC$_{61}$BM of respectively 1.32 and 0.68. Therefore, ODT is investigated as a processing additive in PDQT/PC$_{61}$BM - OSCs. DIO is also studied as a processing additive because several studies reported on its success in increasing the efficiency of DPP-based copolymer OSCs [120, 195]. The solubility properties of DIO are similar to the ones of ODT in the sense that PDQT has a lower solubility in DIO than in halogenated solvents [195].

OSCs are fabricated utilizing formulations that contain various concentrations of ODT or DIO. The formulations are prepared from a D/A ratio of 1/3 and a total solid content of 30 mg.mL$^{-1}$. Figure 8.8 shows the photovoltaic parameters (V_{oc}, J_{sc}, FF and PCE) of the OSCs with the different processing additives and their corresponding concentrations. The best values for each system are recorded in Table 8.4.

<table>
<thead>
<tr>
<th>Type of additive</th>
<th>J_{sc} [mA.cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF [%]</th>
<th>PCE [%]</th>
<th>R_s [Ohm.cm2]</th>
<th>R_{sh} [Ohm.cm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No additive</td>
<td>4.2 ± 0.3</td>
<td>0.58 ± 0.00</td>
<td>0.62 ± 0.00</td>
<td>1.5 ± 0.1</td>
<td>12.2 ± 0.3</td>
<td>905 ± 43</td>
</tr>
<tr>
<td>ODT - 5 vol%</td>
<td>5.8 ± 0.1</td>
<td>0.62 ± 0.00</td>
<td>0.52 ± 0.01</td>
<td>1.9 ± 0.1</td>
<td>10.1 ± 0.5</td>
<td>604 ± 49</td>
</tr>
<tr>
<td>DIO - 5 vol%</td>
<td>6.2 ± 0.2</td>
<td>0.58 ± 0.00</td>
<td>0.60 ± 0.02</td>
<td>2.1 ± 0.0</td>
<td>11.7 ± 0.3</td>
<td>1040 ± 241</td>
</tr>
</tbody>
</table>

5 vol% of ODT and DIO increase the PCE by respectively 26% and 46% in comparison to control devices devoid of processing additives, resulting in a PCE of 1.85% in case of ODT and 2.14% in the case of DIO. The main parameter responsible for the increase in PCE is the J_{sc}, similarly to the case of P3HT/PC$_{61}$BM - OSCs. The J_{sc} increases with additive concentrations up to 5 vol% but decreases at higher concentrations. In contrast to the case of P3HT/PC$_{61}$BM, no significant change in V_{oc} is observed (except for OSCs fabricated with 11 vol% of ODT). This suggests that processing additives do not lead to significant change in the overall crystallinity, certainly because PDQT is already highly crystalline in PDQT/PC$_{61}$BM-films devoid of processing additives.
XRD measurements are conducted on PDQT/PC$_{61}$BM-films that contain various concentrations of DIO. The measurement of the crystallite sizes using the Scherrer equation shows that the sizes of PDQT crystallites increase upon the introduction of DIO. Films prepared from 5 vol% and 11 vol% of DIO exhibit crystallite sizes of 19 and 21 nm respectively while PDQT/PC$_{61}$BM-films devoid of processing additive exhibit a crystallite size of 14 nm. The appearance of large crystallite sizes are in agreement with the features observed in the AFM images of PDQT/PC$_{61}$BM films depicted in Figure 8.9. Films prepared from 11 vol% of DIO reveal large features which can be attributed to large PDQT crystallites.
8.1.4 Discussions and conclusion

The introduction of ODT and DIO successfully increases the PCE of PDQT/PC_{61}BM-based OSCs. In this system, the selection rules identified previously for P3HT/PC_{61}BM OSCs apply. The additive is a poor solvent for the D and a better solvent for the A. However, the role of the additive in the BHJ morphology depends on the type of D used. In the case of P3HT/PC_{61}BM, processing additives decrease the average crystallite domain size whereas they increase it in the case of PDQT/PC_{61}BM. The origins of the morphological differences between PDQT and P3HT are discussed here.

The AFM images and the XRD measurements show that the molecular arrangement of PDQT chains are significantly different from that of P3HT. When blended with PC_{61}BM, PDQT forms large domains while untreated P3HT is known for intermixing with PC_{61}BM [86]. Clearly, PDQT has a stronger tendency to crystallize than P3HT. The morphological differences can naturally be attributed to the different interactions caused by the difference in polymer backbone. However, the morphology is not dependent solely on the polymer backbone, more general parameters also need consideration. Regarding the molecular weight, several studies in the literature revealed that this parameter significantly affects the aggregation of polymer chains and

Figure 8.9: AFM images of PDQT/PC_{61}BM in a 1/3 ratio prepared with various concentrations of additive: (a-c) topography images, (d-f) phase images: (a) and (d) no additive (b) and (e) 5 vol%, (c) and (f) 11 vol%.
thus the photovoltaic performance [75, 79, 99]. For example, Kline et al. showed that low molecular weight P3HT chains are more ordered than high molecular ones which substantially affects the hole mobility [99]. He et al. showed that the photovoltaic performance and the film morphology of a series of PTB7-based polymers significantly vary with the molecular weight. In their study, high molecular weight (above 150 kg/mol) appears to be necessary for attaining high efficiency [75]. It is noteworthy to point out that the molecular weight of the PDQT used here is much lower than that of P3HT: 21,200 Da for PDQT and 53,000 Da for P3HT. Such large difference in molecular weight can be expected to contribute in explaining the difference in morphological behaviour.

Next, the chemical structure of the polymer side chains also needs consideration. Generally, long side chains are desirable for increasing the solubility of polymers but besides their effects on the solubility, the side chains were also shown to affect the domain sizes of polymer in films. A study from Li et al. on DPP-based polymers showed that increasing side chains length increases the diameter of the D fibrils which was detrimental for the performance. The efficiency of OSCs was best for polymer with small side chain lengths [120]. PDQT possesses large substituents (Figure 8.2) which are consequently also expected to contribute in its aggregation behavior.

Further investigation is required to identify and to understand the influence of the polymer backbone and the more general polymer properties such as the molecular weight and the side chain length on the morphology. The effects of additives on the morphology of diverse D/A system needs to consider the above parameters.

8.2 Studies on PCDTBT

8.2.1 Introduction to carbazole based copolymers

Poly(2,7-carbazole) derivatives represent an efficient family of copolymers for BHJ-OSCs [18, 19]. The carbazole is an electron rich moiety that consists of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring (See Figure 8.10a).

Among all the derivatives, PCDTBT represents a good candidate as a D material in OSCs [19, 46, 166, 201, 215]. Its chemical structure is presented in Figure 8.10b.
Studies on new generation donor polymers

Figure 8.10: Chemical structures of: (a) a carbazole unit and (B) PCDTBT.

One of the interesting features of PCDTBT is the low lying HOMO level (5.5 eV) which is suitable to obtain OSCs with high V_{oc} [166, 213]. Using Scharber’s equation for the estimation of V_{oc} (Equation 1.5) [185], a V_{oc} of 0.9 V is expected. The energy diagram of PCDTBT/PC$_{61}$BM-based OSC is depicted in Figure 8.11.

Figure 8.11: Energy levels of PCDTBT/PC$_{61}$BM-OSCs in an inverted architecture.

Unlike P3HT and PDQT, PCDTBT is an amorphous polymer which was reported to highly mix with PC$_{61}$BM resulting in poor D/A phase separation [36, 221]. Such morphology prevents PC$_{61}$BM to form A domains with sizes that are efficient for charge transport to the electrode. As a result, the efficiency of OSCs is limited by the charge transport. In order to overcome these issues, the active layer generally needs to fulfill two requirements. First, PCDTBT/PC$_{61}$BM active layers are required to be prepared with a high proportion of A in order to exhibit larger A domains. In the literature, efficiencies of 6% to 7% were obtained from formulations containing a D/A ratio between 1/2 and 1/4 [129, 146, 201]. The other requirement for high efficiency PCDTBT based OSCs is a thin active layer, generally ~ 70 - 100 nm [16]. Thicker films exhibit inefficient charge collection and therefore low FF and J_{sc} [146]. However, the D semiconductor is the main absorbing material. Therefore, such active layers (thin and with a high proportion of A) optimize charge collection at the expense of light absorption.
Studies on new generation donor polymers

Optimization of the morphology can help improving charge collection without sacrificing light absorption. To this end, an investigation on formulation strategies is carried out.

8.2.2 Solubility properties of PCDTBT

The HSPs of PCDTBT are determined experimentally by performing solubility tests. The HSP values resulting from the fitting are presented in Table 8.5 and the graphical representation of the PCDTBT solubility sphere is depicted in Figure 8.12.

Table 8.5: HSPs of PCDTBT.

<table>
<thead>
<tr>
<th></th>
<th>δD [MPa(^{1/2})]</th>
<th>δP [MPa(^{1/2})]</th>
<th>δH [MPa(^{1/2})]</th>
<th>R_O [MPa(^{1/2})]</th>
<th>FIT</th>
<th>RED [with PC_{61}BM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCDTBT</td>
<td>19.10</td>
<td>3.50</td>
<td>5.19</td>
<td>5.90</td>
<td>0.98</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Figure 8.12: Solubility spheres of PCDTBT (in blue) and PC_{61}BM (in red) in the Hansen solubility space.

In Figure 8.12, the solubility sphere of PCDTBT visually appears to be relatively close to the one of PC_{61}BM suggesting a certain affinity between them. The RED between PCDTBT and PC_{61}BM can be calculated in order to estimate their affinity.
Graham et al. used this method to predict the extent of phase separation between small molecules [63]. Here, the RED between PCDTBT and PC$_{61}$BM is calculated to be 0.30 MPa$^{1/2}$. For comparison, PC$_{61}$BM has a RED of 0.50 MPa$^{1/2}$ with P3HT and a RED of 0.55 MPa$^{1/2}$ with PDQT. These results suggest that PC$_{61}$BM has a higher affinity with PCDTBT than with P3HT or PDQT, which is in line with the highly mixed interpenetrated network formed between PCDTBT and PC$_{61}$BM.

8.2.3 Performance of OSCs based on PCDTBT/PC$_{61}$BM.

Preliminary optimizations on PCDTBT/PC$_{61}$BM - based OSCs are carried out to define the optimum D/A ratios and film thicknesses. Table 8.6 lists the D/A ratios, the solid contents and the resulting thicknesses investigated.

<table>
<thead>
<tr>
<th>D/A ratio</th>
<th>Solid content</th>
<th>Spin-casting speed</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>15 mg.mL$^{-1}$</td>
<td>1500 rpm</td>
<td>159 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 rpm</td>
<td>322 nm</td>
</tr>
<tr>
<td>1/2</td>
<td>25 mg.mL$^{-1}$</td>
<td>1500 rpm</td>
<td>232 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 rpm</td>
<td>170 nm</td>
</tr>
<tr>
<td>1/3</td>
<td>20 mg.mL$^{-1}$</td>
<td>1600 rpm</td>
<td>108 nm</td>
</tr>
<tr>
<td></td>
<td>25 mg.mL$^{-1}$</td>
<td>800 rpm</td>
<td>266 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 rpm</td>
<td>230 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500 rpm</td>
<td>177 nm</td>
</tr>
<tr>
<td></td>
<td>20 mg.mL$^{-1}$</td>
<td>2000 rpm</td>
<td>137 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700 rpm</td>
<td>113 nm</td>
</tr>
<tr>
<td></td>
<td>25 mg.mL$^{-1}$</td>
<td>1300 rpm</td>
<td>91 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1900 rpm</td>
<td>69 nm</td>
</tr>
<tr>
<td>1/4</td>
<td>20 mg.mL$^{-1}$</td>
<td>700 rpm</td>
<td>83 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300 rpm</td>
<td>51 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1900 rpm</td>
<td>44 nm</td>
</tr>
</tbody>
</table>

Figure 8.13 shows the electrical performance (V_{oc}, FF, J_{sc} and PCE) of OSCs prepared with the parameters listed in Table 8.6. Overall, the results suggest that the electrical parameters are primarily dependent on the thickness. PCEs over 3% can be obtained for active layer thicknesses between 90 nm and 130 nm. The highest PCE of 4.44% is obtained for OSCs with a D/A ratio of 1/2 in an active layer of 108 nm.
Studies on new generation donor polymers

DIO and ODT are investigated as processing additives for the PCDTBT/PC$_{61}$BM system. In contrast to PDQT and P3HT, the HSPs show that DIO and ODT are located inside the solubility spheres of PCDTBT and PC$_{61}$BM as depicted in Figure 8.14.

Figure 8.14: Hansen solubility spheres of PCDTBT and PC$_{61}$BM and the following solvents: DIO (black), ODT (yellow).
In Figure 8.15, the UV-visible absorption spectra of films prepared with and without DIO show that the introduction of DIO leads to a red-shift of PCDTBT absorption peak. The wavelength of PCDTBT absorption maximum is 568 nm in films without DIO and increases to 582 nm in films prepared with 5 vol% of DIO. Similarly, ODT causes a red-shift of the absorption peak (Table 8.7).

This red-shift is similar to the effects of DIO or ODT on other D polymers and is attributed to an increased degree of π-conjugation [5, 66, 89]. The UV-Vis absorption spectra therefore suggest that DIO and ODT are effective in increasing the degree of ordering within PCDTBT chains.

The effects of DIO and ODT on the photovoltaic performance of OSCs are investigated by preparing OSCs from solutions containing DIO or ODT in various concentrations (from 0.5 vol% to 2 vol%). The results show that the introduction of these solvents decreases the performance of OSCs. This suggests that increased order within the polymer chains does not improve the photovoltaic performance of PCDTBT/PC$_{61}$BM-based OSCs.

Next to formulations with DIO and ODT, several other solvent formulations are tested. OSCs are fabricated using the widely used 1-chloronaphthalene as a processing additive,
xylene as a good solvent for both semiconductors, NMP as a good solvent for PC_{61}BM and poor solvent for PCDTBT. None of these formulations were successful in improving the photovoltaic performance of PCDTBT/PC_{61}BM - OSCs. It is now noteworthy to point out that all these approaches are generally used to enhance the aggregation or the crystallinity of D polymers. The fact that all of these approaches are unsuccessful suggests that increasing the ordering of PCDTBT chains is inefficient in increasing the PCE of PCDTBT/PC_{61}BM - OSCs. Next, studies on the aggregation of PC_{61}BM are carried out.

8.2.4 PCDTBT/PC_{61}BM/C_{60} ternary blend.

This next study focuses on the effect of C_{60} as a nucleating agent for PC_{61}BM in the PCDTBT/PC_{61}BM system. Because of the low solubility of C_{60} in ODCB [90, 189], C_{60} is expected to undergo the transition from the liquid state to the solid state at an earlier stage than PC_{61}BM during the process of film formation. The introduction of C_{60} is therefore expected to alter the aggregation of PC_{61}BM. Systems based on a ternary blend of PC_{61}BM and C_{60} as the acceptor components, and PCDTBT as the donor are studied. The resulting active layers are of the type: PCDTBT/PC_{61}BM_{(1−x)}/C_{60}(x) with x the fraction of C_{60} varying from 0 to 1.

The UV-Vis spectra of ternary blends with C_{60} fractions of 0, 0.4 and 0.7 are depicted in Figure 8.16. The UV-Vis spectra show that the introduction of C_{60} causes a blue-shift in the absorption peak of PCDTBT. The wavelength of PCDTBT absorption maximum is 564 nm in films without C_{60} and decreases to 558 nm in PCDTBT/PC_{61}BM_{(0.3)}/C_{60}(0.7) films. In contrast to the red-shift caused by increased ordering within polymer chains, the blue-shift can be interpreted as a reduction of polymer chain ordering.

Figure 8.16: Solid state UV-Vis spectra of PCDTBT/PC_{61}BM_{(1−x)}/C_{60}(x) films with various fraction of C_{60}.

125
Next, the electron mobility in a ternary blend is measured and compared to the electron mobilities of PCDTBT/PC_{61}BM in various D/A ratios. The electron mobilities are measured in OTFT configurations for PCDTBT/PC_{61}BM systems with D/A ratios of 1/4, 1/3 and 1/2 and for the ternary blend PCDTBT/PC_{61}BM_{(0.6)}/C_{60}(0.4) at a D/A ratio of 1/2. Figure 8.17a depicts the transfer characteristics of the resulting n-type OTFTs. The OTFT mobilities are calculated at different values of gate voltage and Figure 8.17b depicts the mobility as a function of $V_{GS}-V_{th}$. Table 8.8 displays the average electron mobility measured from 2 to 4 OTFTs at $V_{GS}-V_{th} = 4$ V.

![Graph](image)

Figure 8.17: (a) Transfer characteristics and (b) Mobility as a function of $V_{GS}-V_{th}$ for various D/A ratios and for PCDTBT/PC_{61}BM_{(0.6)}/C_{60}(0.4).

Table 8.8: Average electron mobility measured in a saturation regime at $V_{GS}-V_{th} = 4$ V.

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Electron mobility [cm^2 V^{-1} s^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio 1/4</td>
<td>1.56 ± 0.29</td>
</tr>
<tr>
<td>Ratio 1/3</td>
<td>1.13 ± 0.09</td>
</tr>
<tr>
<td>Ratio 1/2</td>
<td>0.48 ± 0.08</td>
</tr>
<tr>
<td>Ratio 1/2 in the ternary blend</td>
<td>4.96 ± 0.45</td>
</tr>
</tbody>
</table>

Regarding the effects of processing additives on the electron mobility, the results show that increasing proportion of A in the D/A blend increases the mobility. This result is expected since a high proportion of A leads to an increased amount of A pathways. For a D/A ratio of 1/2, the electron mobility increases significantly with the introduction.
of C_{60}: the ternary blend exhibits an electron mobility six times higher than that of a blend without C_{60} (Table 8.8). Such an increase in electron mobility shows that the introduction of C_{60} has an effect on the aggregation of PC_{61}BM. Interestingly, the mobility of the ternary blend in a 1/2 ratio is also much higher than that of PCDTBT/PC_{61}BM in a 1/4 ratio (which contains more PC_{61}BM). This suggests that the introduction of C_{60} results in a particular electron mobility that cannot be obtained in binary blend, even when fabricated with a high proportion of A.

Series of OSCs are prepared from ternary blends: PCDTBT/PC_{61}BM/(1−x)/C_{60}(x), with a D/A ratio kept constant and x the fraction of C_{60} varied from 0 to 1. The energy levels of such ternary-blend OSCs are displayed in Figure 8.18. Two D/A ratios are studied: 1/3 and 1/2.

Figure 8.18: Energy levels of PCDTBT/PC_{61}BM/C_{60}- OSCs in an inverted architecture.

Figure 8.19 shows the photovoltaic parameters (V_{oc}, J_{sc}, FF and PCE) of ternary OSCs as a function of the fraction of C_{60}.

The J_{sc} and the FF are not severely impacted by the introduction of C_{60}, with the exception of the OSC prepared from only C_{60} at a 1/2 ratio. The PCE remains relatively unchanged for a C_{60} fraction ≤ 0.7 and drops significantly when C_{60} is the only A component. The poor photovoltaic performance obtained in the case of PCDTBT/C_{60}-OSCs can be due to the low solubility of C_{60} in ODCB (23 to 27 mg.mL^{-1} [90, 189]) which is likely to cause coarse aggregates. The V_{oc} is highest in OSCs with only PC_{61}BM as the A component (0.90 V for the 1/2 ratio and 0.91 V for the 1/3 ratio) and decreases with increasing fraction of C_{60}. At a fraction x of 1, the V_{oc} values drop to 0.62 V and 0.79 V for OSCs with D/A ratios of 1/2 and 1/3 respectively. The variation in V_{oc} with the composition of the ternary blends has been the subject of investigation in the literature and remains under debate. Street et al. argued that a ternary blend can be described with an alloy model of D and A with a V_{oc} depending
on the average HOMO LUMO energy levels [198]. Such model fails to describe the present ternary blend because it predicts an increase in V_{oc} with the introduction of C$_{60}$ due to its higher lying LUMO level. As previously introduced in Section 1.4.4 (General factors influencing BHJ-OSC efficiency), presence of fullerene nanocrystals can shift the energy of the charge transfer state. Such shift is reported to decrease the V_{oc} of OSCs [175]. Therefore, the decrease in V_{oc} observed in this experiment suggest that the introduction of C$_{60}$ increases the amount of fullerene nanocrystals (PC$_{61}$BM or C$_{60}$ or a mixture of both). The increase in fullerene aggregation caused by the introduction of C$_{60}$ is consistent with the trend in electron mobility observed from the OTFT mobility measurements, along with the disruption of polymer chain ordering suggested by the blue-shift in the UV-Vis absorption spectra. Such morphological changes caused by C$_{60}$ do not affect the PCE.
The effects of C₆₀ introduction on OSC-stability is then studied. As presented in the literature section on OSC stability in chapter 7-section 7.1, PC₆₁BM is subject to severe thermal degradation. Upon prolonged thermal annealing, PC₆₁BM molecules can form micrometer size aggregates which are profoundly detrimental for the performance of OSCs. In PCDTBT/PC₆₁BM films, Derue et al. showed that thermal annealing above 160 °C causes the formation of micrometer sizes PC₆₁BM [56]. In the literature, several studies were carried out to improve the thermal stability of PC₆₁BM [222]. Among these, few studies reported on the beneficial effect of the introduction of C₆₀ on the thermal stability of D/A blends based on P3HT/PC₆₁BM [178], or poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt thiophene-2,5-diyl](TQ1)/PC₆₁BM [126].

For the study on OSC thermal stability, three types of ternary blend OSCs are fabricated with a D/A ratio kept constant at 1/2 and with a C₆₀ fraction, x, of 0, 0.4 and 0.7. The ZnO layer and the active layer are deposited following the procedure used for the fabrication of inverted OSCs. After the deposition of the active layer, the samples are thermally annealed on a hot plate set at 160 °C for two or four hours. The top electrodes (MoO₃/Ag) are evaporated on top of the thermally annealed samples. The J-V characteristics of these OSCs are measured and the photovoltaic performances are normalized with respect to the parameters of fresh OSCs. Figure 8.20 shows the evolution of normalized PCE as a function of the annealing time. The normalized photovoltaic performances of the OSCs after two hours of thermal treatment are listed in Table 8.9.

<table>
<thead>
<tr>
<th>C₆₀ fraction</th>
<th>Normalized parameters [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J_sc</td>
</tr>
<tr>
<td>0</td>
<td>76.9</td>
</tr>
<tr>
<td>0.4</td>
<td>101.1</td>
</tr>
<tr>
<td>0.7</td>
<td>112.9</td>
</tr>
</tbody>
</table>

After two hours of thermal treatment, the PCE of the binary blend PCDTBT/PC₆₁BM drops to 51.2% of the initial value. Ternary blend OSCs demonstrate a superior thermal stability with PCEs maintained at 83.0% and 94.2% of the initial PCEs for C₆₀ fractions of 0.4 and 0.7 respectively. The thermal treatment decreases primarily the FF and J_sc of binary OSCs likely caused by the aggregation of PC₆₁BM. The ternary blends exhibit a
different trend characterized by less decrease in FF and an increase in J_{sc}. This increase in J_{sc} is unlikely caused by morphological changes but can be attributed to other phenomenon such as the removal of residual solvent in the active layer upon thermal annealing. Overall, ternary blends demonstrate high thermal stability compared to the binary blend. This suggests that thermal annealing does not deteriorate the active layer morphology as severely as in the binary system. Interestingly, the thermal stability is dependent on the fraction of C$_{60}$: superior thermal stability is obtained for the ternary blend with a C$_{60}$ fraction of 0.7 compared to 0.4.

Microscopic images of PCDTBT/PC$_{61}$BM and ternary blend films are analyzed before and after thermal treatment of 2, 4 and 8 hours at 160 °C. The images are depicted in Figure 8.21. Figure 8.22 displays images with higher magnifications of blends with C$_{60}$ fraction of 0 and 0.4. As shown in Figure 8.21, thermally treated PCDTBT/PC$_{61}$BM films demonstrate PC$_{61}$BM crystallites throughout the active layer. On the other hand, films prepared from ternary blends exhibit a surface without the presence of aggregates even after 8 hours of thermal treatment. The introduction of C$_{60}$ in PCDTBT/PC$_{61}$BM blend is here shown to decrease significantly the aggregation of PC$_{61}$BM by thermal treatment. This explains the enhanced thermal stability of OSCs.
Figure 8.21: Microscopic images of PCDTBT/PC$_{61}$BM$_{(1-x)}$/C$_{60(x)}$ films thermally treated at 160 °C for 2 hours, 4 hours and 8 hours (magnification 20).

Figure 8.22: Microscopic images of PCDTBT/PC$_{61}$BM$_{(1-x)}$/C$_{60(x)}$ films thermally treated at 160 °C for 2 hours, 4 hours and 8 hours (magnification 50).
8.2.5 Conclusions

Polymer chain ordering was controlled using processing additives such as DIO and ODT. However, the introduction of these processing additives is inefficient in increasing the performance of PCDTBT/PC$_{61}$BM - OSCs and even decreases it. The use of a ternary blend based on PCDTBT/PC$_{61}$BM$_{(1-x)}/$C$_{60}$(x) appears to alter the aggregation of PC$_{61}$BM and to cause a disruption of PCDTBT polymer chains. Measurements of photovoltaic parameters of ternary blend-OSCs show that the PCE is relatively independent on the C$_{60}$ fraction as long as the fraction is ≤ 0.7. This result is relevant for the prospect of low cost OSCs because PC$_{61}$BM is a relatively expensive material (\sim 10 times more expensive than C$_{60}$ [2]). Around 10 to 30% of the total fabrication costs of organic solar modules is attributed to the organic semiconductors [13, 150], therefore the replacement of a fraction of PC$_{61}$BM by C$_{60}$ would reduce module costs. Also, the introduction of C$_{60}$ was shown to prevent the aggregation of PC$_{61}$BM upon thermal annealing. As a result, the OSCs fabricated from ternary blends demonstrate significant thermal stability compared to the binary blend.
Chapter 9

Conclusions and future work
9.1 Conclusions

This thesis provides a comprehensive study on the introduction of processing additives used to increase the performance of solution-processed BHJ-OSCs.

First, a systematic method for the selection of processing additives was developed. This method uses the Hansen theory to describe the solubility properties of the organic semiconductors under study and to determine numerical figures of merit that can be used for selecting suitable processing additives. This method was successfully applied to the P3HT/PC$_{61}$BM-system. Three novel processing additives, that result in up to a two-fold increase in the PCE, were identified.

The mechanistic role of processing additives in improving the BHJ morphology was elucidated by correlating structural and optical characterizations. Studies of the trends in V_{oc} and UV-visible absorption spectra showed that processing additives increased the overall crystallinity in P3HT in the BHJ whereas XRD patterns revealed that the increased crystallinity is associated with a decrease in the polymer crystallite sizes. These results suggest that processing additives lead to the formation of a BHJ with more numerous but smaller polymer crystallites.

The photovoltaic performances of additive treated-OSCs were shown to significantly depend on the device architecture. These differences were attributed to variations in hole and electron mobilities induced by the introduction of additives. As the excitons are predominantly generated near the bottom of the active layer, holes and electrons are required to travel different distances before their collection by the respective electrodes. As a result, the photovoltaic performance of OSCs is dependent on the ratio between electron and hole mobilities. Since the mobilities are influenced by the processing additives, the device architecture must be considered when additives are used.

As OSC stability is equally important as the PCE, the effects of processing additives on OSC stability were studied by means of photo-stability measurements. Compared to the commonly used thermal annealing technique, the results show that the use of additives improves the photo-stability of OSCs. The best results are obtained with ODT-treated OSCs. Several photo-stability studies, which include adhesion measurements, show that light irradiation causes interfacial degradation. Interestingly, adhesion measurements show that ODT-treated OSCs suffer less from interfacial photo-degradation than thermally annealed OSCs, which could explain the improved life time.
Besides P3HT, two other polymers were studied: the semi-crystalline PDQT and the amorphous PCDTBT. In the case of PDQT, ODT and DIO are successful in increasing the PCE of OSCs, indicating that the additive selection rules identified for P3HT/PC$_{61}$BM also apply to this case. On the other hand, the additive approach appeared to be unsuccessful for PCDTBT-based OSCs, most likely due to the amorphous character of PCDTBT, which does not require control of the crystallinity as is required for than semi-crystalline polymers. These results suggest that the selection rules designed for P3HT/PC$_{61}$BM systems apply for semi-crystalline polymers but not for amorphous polymers.

9.2 Future work

Chapter 8 showed that the use of conventional processing additives failed to improve the performance of PCDTBT-based OSCs. Although additives increased the PCE of PDQT-based OSCs, they appeared to have a different effect on the BHJ morphology than they have on P3HT-based OSCs. Overall, the effectiveness of additives is found to strongly depend on the type of polymer. Therefore, the additive selection method developed in this thesis based on the P3HT/PC$_{61}$BM system needs to be extended to a more general perspective. Not only the solubility properties, but several other aspects of the D polymers need to be considered, namely the tendency to crystallize, the molecular weight, the nature of the side chains and the miscibility with A materials.

A next step would be to identify how processing additives affect the morphology of BHJ-OSCs as a function of the properties of the D polymers. This is an essential step towards a more general applicability of processing additives and a streamlined way to formulate D/A blends for high efficiency OSCs.

The photo-stability tests suggest that additives can be employed to perform a double function: to increase the efficiency and to increase the photo-stability of OSCs. To fully exploit this double function, the specific case of ODT-treated OSCs needs to be understood due to their particularly high photo-stability. Two possible hypotheses about the role of additive in this regard arise: either the increase in interfacial adhesion is due to morphological changes in the active layer or it is due to the presence of additive. Although the PM-IRRAS spectra gave no trace of ODT in the BHJ, remaining traces of ODT may be present in quantities that are below the detection limit of this technique. ODT contains two thiol groups which are known for acting as scavengers for free radicals [202], which can be generated during photo-degradation. Therefore,
the presence of these scavenger groups may prevent free radical reactions that cause degradation. One idea to test the radical scavenging function of ODT would be to introduce another thiol containing molecule in the active layer instead of ODT and to test the OSC photo-stability.

Another stability-related subject raised by this thesis concerns the introduction of C\textsubscript{60} in the active layer. The ternary blend based on PCDTBT/PC\textsubscript{61}BM\textsubscript{x}/C\textsubscript{60}(1-x) was shown to exhibit a higher thermal stability compared with the binary system based on PCDTBT/PC\textsubscript{61}BM. Replacing a fraction of PC\textsubscript{61}BM by C\textsubscript{60} is attractive as a method to increase thermal stability in addition to economic benefits. To fully exploit the beneficial properties of C\textsubscript{60} as an acceptor, a binary system based on PCDTBT/C\textsubscript{60} would be of great interest. However, when a pure PCDTBT/C\textsubscript{60} system was made, it exhibited a low PCE, likely due to morphological issues in the BHJ. Processing additives that can help to improve the morphology of the acceptor in the BHJ should be therefore investigated. To date, processing additives are generally investigated for their effects on the donor polymer. Further work should consider the effects on the acceptor in order to optimize systems such as PCDTBT/C\textsubscript{60}.

136
Appendix A

Scientific communications

Scientific publications

Oral presentations

Poster presentations

Bibliography

poly(3-hexylthiophene) (P3HT) solution and the impact on the crystalline morphology of solution-cast thin film. *CrystEngComm* 15, 6 (2013), 1114.

[200] Sun, B., Hong, W., Yan, Z., Aziz, H., and Li, Y. Record high electron mobility of 6.3 cm² V⁻¹ s⁻¹ achieved for polymer semiconductors using a new building block. Advanced materials (Deerfield Beach, Fla.) 26, 17 (May 2014), 2636–42, 2613.

Bibliography

Three-dimensional nanoscale organization of bulk heterojunction polymer solar

[209] Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., and Manca,
J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells.

Charge-Transfer States in Electron Donor-Acceptor Blends: Insight into the
(June 2009), 1939–1948.

[211] Verploegen, E., Miller, C. E., Schmidt, K., Bao, Z., and Toney,
M. F. Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction
Blends with Solvent Vapor Annealing. Chemistry of Materials (Oct. 2012),
121003154924005.

[212] Voroshazi, E., Verreet, B., Aernouts, T., and Heremans, P.
Long-term operational lifetime and degradation analysis of P3HT:PCBM
photovoltaic cells. Solar Energy Materials and Solar Cells 95, 5 (May 2011),
1303–1307.

[213] Wakim, S., Beaupré, S., Blouin, N., Aich, B.-R., Rodman, S.,
Gaudiana, R., Tao, Y., and Leclerc, M. Highly efficient organic solar
cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry
19, 30 (2009), 5351.

[214] Walker, B., Tamayo, A., Duong, D. T., Dang, X.-D., Kim, C.,
Granstrom, J., and Nguyen, T.-Q. A Systematic Approach to Solvent
Selection Based on Cohesive Energy Densities in a Molecular Bulk

J. K., Park, J. H., Park, O. O., and Heeger, A. J. Enhanced Power
Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic
Devices with Embedded Silver Nanoparticle Clusters. Advanced Energy

Preparation and characterization of MoO3 hole-injection layer for organic solar

165

