
An Adaptive Context-Aware Publish–

Subscribe Component Metamodel

by

Luis Blanco

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2015

©Luis Blanco 2015

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

There are plenty of solutions in which the functionality for context awareness is separated from the

domain-specific functionality. Also, there are multiple ways of modeling, gathering, and processing

context-related information; however there are only two main types of context dissemination, also

known as context propagation: event based, or query based.

This means that most context-aware systems use events and require publish–subscribe mechanisms.

However, a few include context as part of the event-propagation process; also, a few context models

and metamodels consider events when modeling context-related data, even though such data are

propagated though events.

This document proposes a metamodel that introduces the publish–subscribe logic of distributed

event-based systems (DEBSs) to the modeling of context-related information and to the modeling of

context-dependent interactions and adaptations. This approach has two main advantages: on one

hand, no assumptions need to be made regarding the type of context or the domain of the application

when considering interactions and adaptations that depend on context.

On the other hand, by introducing context-related elements when considering event propagation,

the DEBS middleware can filter events based on context and stop their propagation. Also, including

other features of DEBSs such as event enrichment and transformations, will make for a more efficient

dissemination mechanism.

The metamodel suggested here could be used to model context, and context interaction between

components. It can also be used when designing DEBS middleware that would take into account

context when propagating events.

iv

Acknowledgements

First and foremost I would like to thank Professor Paulo Alencar, for his guidance, support, and

understanding during this very difficult time. It has been a true honor working under his tutelage and I

am looking forward to continuing working with him in the future. I would also like to thank Eduardo

Barrenechea and Rolando Blanco, for their help, feedback, and ideas. Also thanks to Professor Daniel

Berry for serving as co-supervisor; and Professors Donald Cowan and Professor Ladan Tahvildari for

agreeing to read this thesis and for their valuable feedback.

Special thanks to my beautiful Wife for her unconditional love, support, and patience; and to my

family: my parents German and Consuelo, and my brothers Rolando and Mauricio, also for their

support.

Finally, thanks to my best friend Mauricio Chavez for his words of wisdom and encouragement. I

hope the tough times are soon left behind.

v

Dedication

Dedicated to my amazing wife Golnar.

vi

Table of Contents

AUTHOR'S DECLARATION.. ii

Abstract... iii

Acknowledgements ..iv

Dedication...v

Table of Contents ...vi

List of Figures ..viii

Chapter 1 Introduction...1

1.1 Related Areas ..2

1.1.1 Adaptive, Mobile, and Ubiquitous Technologies ...2

1.1.2 Context-aware systems..3

1.1.3 DEBSs ..3

1.2 Problem...4

1.3 Proposed Approach..5

1.4 Thesis Outline..5

Chapter 2 Related Work ..6

2.1 Context Modeling ..6

2.1.1 Key-Value Based ..6

2.1.2 Markup Language Based...6

2.1.3 Graphic Based...7

2.1.4 Object Oriented Based...7

2.1.5 Ontology Based...7

2.2 Context Dissemination...7

2.3 Proposed Approach..8

Chapter 3 An Adaptive Context-Aware Publish–Subscribe Component Metamodel9

3.1 General Requirements..9

3.2 Components and Environments..10

3.3 Event Schemas and Events...11

3.4 Context and Context Elements ...18

3.5 Features, Features Profiles, and Feature Selectors...21

Chapter 4 Case Studies ..27

4.1 Cellphone Behavior Adaptation Case Study ...27

vii

4.1.1 Description: .. 27

4.1.2 Participants: .. 27

4.1.3 Interaction via Events: .. 27

4.1.4 Modeling: ... 28

4.2 Cellphone as Controller Case Study... 43

4.2.1 Description: .. 43

4.2.2 Participants: .. 43

4.2.3 Interaction via Events: .. 44

4.2.4 Modeling: ... 46

Chapter 5 Conclusion and Future Work... 71

Bibliography ... 73

viii

List of Figures

Figure 1 Components and Environments..11

Figure 2 Event Schemas ..13

Figure 3 Events ...15

Figure 4 Event Contracts ...17

Figure 5 Event Filters ..18

Figure 6 Context..20

Figure 7 Features and Features Sets ...22

Figure 8 Features Profiles..24

Figure 9 Feature Profile Selectors ..26

1

Chapter 1

Introduction

Dey [1] defines a context-aware system as a system that “uses context to provide relevant

information and/or services to the user, where relevancy depends on the user’s task”. Dey also defines

context as “any information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves” [1]. According to Shilit et al. [2]: “such

context-aware systems adapts according to the location of use, the collection of nearby people, hosts,

and accessible devices, as well as to changes to such things over time”. Finally, according to Brown

[3]: “the adjective ‘context-aware’ is attached to applications that are mainly driven by the user’s

context. They tend to be mobile applications, because it is here that the user’s context changes most

rapidly and it is here that there is the greatest need for context-aware behavior”. Brown [3] also

defines context as: “location, identities of the people around the user, the time of day, season,

temperature, etc.”

In conclusion, context-awareness makes reference to the ability of monitoring context, and a

context-aware system is capable of adapting its behavior depending on variables and situations that

are dynamic.

A distributed event-based system (DEBS) is middleware that allows independent components to

communicate via events. Components called publishers advertise events, while components called

subscribers, express their interest in an event via subscriptions. Subscribers will only receive

notifications of events to which they have subscribed. [4, 5]

This thesis focuses on modeling context and adaptation to that context, using the publish–subscribe

logic from DEBSs as the mechanism to define and propagate context information and trigger

adaptation to context.

The rest of this first chapter introduces terms and technologies closely related to context-

awareness; then provides a more detailed overview of context-aware systems and DEBSs. After the

introduction to related areas, the thesis delimits the problem it concentrates on, introduces the

proposed approach to alleviate the problem and enumerates the contributions brought by the proposed

solution; the chapter concludes with an overview of the structure of the rest of this thesis.

2

1.1 Related Areas

1.1.1 Adaptive, Mobile, and Ubiquitous Technologies

Adaptive computing is a very vast field that includes context-aware systems; in general adaptive

computing makes reference to systems that can adapt by themselves as result of changes to their

environments [6]. Examples of adaptive computing can be found everywhere and in a wide range of

domains such as: the dynamic allocation of hardware resources and immediate system migration

depending on the demands of software systems [7], chips that can change their configuration at run-

time [8], and systems that assist patients in everyday tasks [9].

Another technology closely related to context-aware systems is that of ubiquitous computing, also

known as pervasive computing. The term ubiquitous computing was first introduced in 1991 by Mark

Weiser [10] and states: “ubiquitous computing is the method of enhancing computer use by making

many computers available throughout the physical environment, but making them effectively

invisible to the user.”

Thanks to the access that a multitude of devices now have to the internet, and particularly to

wireless access, and also thanks to advances in electronics, computing is no longer limited to

computers, but also to devices such as appliances, smartphones, devices implanted in humans and

animals, wearable computers, etc. These devices are continuously connected and adapt constantly to

their environment.

Some devices used in ubiquitous computing may be restricted to specific locations due to limited

internet access or the need to be close to other devices, such as readers or other computers. In mobile

computing, devices do not have this location restriction making them almost constantly available;

however mobile devices are limited by what Sanaei et al. [11] call resource poverty, which makes

reference to limitations in storage, processing capabilities, power supply, etc. Some of these

limitations can be circumvented up to certain degree by concepts such as Mobile Cloud Computing

(MCC) [11]. These type of technologies open the door for future extra functionality such as complex

communication and data sharing between devices. However, they also introduce additional

complexity in the design and implementation of applications.

Another interesting concept in the field of ubiquitous computing is that of the Internet Of Things

(IoT) [12, 13] that encompasses the concept that not only devices that interact with end users connect

to the internet, but devices embedded everywhere have the capability of communicating with each

3

other with little or no user interaction. The vision is to have environments where anything identifies

itself, anything communicates, and anything interacts, anywhere, at any time; with the ultimate goal

of having objects that “know what we like, what we want, and what we need and act accordingly

without explicit instructions” [14].

1.1.2 Context-aware systems

Context-aware applications can be classified into three groups depending on the approach followed to

represent and deal with context [15]: in an application with no context model, the context-related code

is intertwined with the application code; an application with an implicit context model uses libraries

and toolkits to support context awareness; and an application with an explicit context model has a

well-defined context manager middleware. In applications that follow the implicit context model

approach, even though the code related to context awareness is separated from the domain-specific

code, the calls to that context-related code are inside the domain-specific code, which makes the two

tied together, and still hard to separate. The third option is the preferred one for distributed and

mobile applications, since it allows for more flexible changes to the context logic, and easier addition

of components to the system.

In order to provide context awareness, in particular in ubiquitous systems where context acquisition

is an important aspect, the following areas need to be supported [15, 16]: context modeling, context

acquisition and preprocessing, context dissemination, and context reasoning. These areas are referred

to as the context life cycle, and even though there are variations on what areas are included in the

context life cycle, the ones mentioned here encompass sub-areas included by other definitions.

It is worth mentioning that context reasoning makes reference to the ability of deducing new and

useful information from context-related data [17]. It also deals with issues such as context security

and privacy, and inconsistency resolution.

Even though there are multiple ways of specifying context, see the “Related Work” chapter, there

are basically just two ways of propagating context: using DEBSs or using queries.

1.1.3 DEBSs

As mentioned earlier on this chapter, a DEBS facilitates the interaction, via events, between

independent components. In particular, a DEBS implements the publish–subscribe scheme.

4

Events are generated by publishers and received by subscribers. The existence of events is

announced by publishers via advertisements; and subscribers express their interest on events via

subscriptions. Both advertisements and subscriptions can be complemented with filters: events will

only be published if the condition on the advertisement filter allows it; and a subscriber will be

notified of the occurrence of an event if the condition on the subscription filter is satisfied.

The main characteristics of DEBSs include [5, 18]: space, time, and synchronization decoupling.

Space decoupling means that the publisher and the subscriber don’t need to be in the same

environment or location. Even more, they don’t even need to be aware of the existence of each other.

Time decoupling means that the publisher and the subscriber don’t have to interact at the same

time. Even more, they don’t even communicate directly: it is the event-based middleware that

regulates the flow of event information from publishers to subscribers.

Synchronization decoupling means that the communication between publishers and subscribers is

not direct. Publishers don’t have to wait for any response from subscribers and vice versa.

As well, based on the way subscribers specify the events they are interested in, publish–subscribe

systems can be [18, 19]: topic, content, and type based.

In topic-based systems events are organized by topic, and subscribers that expressed their interest

in a topic will receive the events belonging to that topic. That interest is expressed via subscriptions.

In content based systems subscribers express their interest in events depending on the possible

values of the attributes of the events. That interest is expressed via content filters.

In type based systems subscribers express their interest in an event depending on the type of the

event as well as on possible values of the attributes of the event.

1.2 Problem

In current context-aware systems, there is a disconnect between the modeling of context-related data

and the propagation of that data. On one hand, context-aware applications don’t take advantage of the

benefits of events when modeling context-aware data, more specifically when modelling interactions

and adaptations that depend on context.

On the other hand, event-based middleware layers do not take advantage of filtering context data

when propagating events; or features such as event enrichment and transformation. Barrenechea [20]

5

already considers the notion of having events and context together as part of the event-based

middleware that propagates context. This idea is taken and developed into a metamodel that can be

used to assist in the design of such middleware, or to introduce publish–subscribe concepts into the

modeling of context-aware related data.

1.3 Proposed Approach

The metamodel is based on the principle that events and context elements are not necessarily foreign

concepts to each other. An attribute of an event can be calculated from the values of context elements

or from the values of attributes of other events. A context element can be calculated from event

attributes or from other context elements. Finally, events can be filtered based on context elements or

other events.

No assumptions are made as to what type of situations will be modeled, and though that

assumption may make the models more complex, the metamodel could be used to model more types

of interactions. This means there are no predefined context elements such as location, time,

temperature, etc.

1.4 Thesis Outline

Chapter 2 presents work related to the two areas of context awareness that are the focus of this thesis,

namely context modeling, and context dissemination. In the first area, the chapter enumerates the

main types of available context models. In the second, the chapter concentrates on the mechanisms

used to propagate context-related data, and emphasizes event-based middleware. Chapter 3 introduces

the proposed metamodel: first outlining its requirements, and then introducing the elements that

comprise it. Chapter 4 uses the metamodel to model the context interactions between components

present in two case studies. Chapter 5 finishes this thesis by providing conclusions, outlining this

work’s contributions, and giving suggestions for future work.

6

Chapter 2

Related Work

As mentioned in Chapter 1, in order to provide context-awareness, four major areas need to be

supported, namely context modeling, context acquisition and preprocessing, context dissemination,

and context reasoning. Since this thesis contributes to context modeling, and context dissemination,

this chapter concentrates in related work on those two areas.

2.1 Context Modeling

Context models make reference to tools used to represent context-related information. One way of

classifying context models is based on the way data is represented, more specifically, on the type of

data structure used to represent context-related data [13, 16, 21]. Using this approach models can be

grouped as follows:

2.1.1 Key-Value Based

These type of models use combinations of basic key-value pairs to represent context data [2]. An

example of these types of systems is Mobisaic, a system that uses variables and values to represent

context; variables are tied to dynamic URLs for easy access from mobile phones [22]. The main

advantages of these type of models is that they are easy to modify at the conceptual level: adding,

removing elements, is straightforward; but modeling complex structures is difficult and cumbersome.

This approach was one of the first used to model context, and it is now rarely used.

2.1.2 Markup Language Based

These type of models use markup languages are based on the Standard Generalized Markup

Language standard, such as XML. Validation is supported through schema definitions. Two widely

used models of these type are CC/PP and UAProf. CC/PP (Composite Capabilities/Preference

Profiles) is a standard that is used for specifying capabilities and preferences that can be applied to

user agents, also known as devices [23]. UAProf (User Agent Profile) is another standard based on

the user agent concept, and it is oriented towards wireless devices [24].

The main advantages of these types of models is that they allow easy data retrieval and sharing.

However they are limited when trying to model reasoning mechanisms [13].

7

2.1.3 Graphic Based

It uses standard tools to model context and relationships between the different context elements.

Some of the standard tools that can be used are UML (Unified Model Language), ERM (Entity-

Relationship Model), and ORM (Object Role Model).

Their main advantage is that they capture relationships together with the specification of context

elements.

2.1.4 Object Oriented Based

It uses concepts of object-oriented programming such as inheritance, encapsulation, and re-usability.

The main advantage of this approach is that models can easily be integrated to existing systems

written in programming languages that support object-oriented concepts. However no ability to

reason can be modeled [13].

One example of a system modeled using this modeling approach is GUIDE; a location based

system used to provide context aware guide to tourists. The system interacts with the user via their

local browser [25].

2.1.5 Ontology Based

Gomez-Perez et al. define ontologies as mechanisms that: “provide a common vocabulary of an area

and define, with different levels of formality, the meaning of the terms and the relationships between

them” [26].

Tools that support the definition and specification of ontologies, such as OWL (Web Ontology

Language) [27], have been used to define context models.

One of the systems that use OWL is CoBrA (Context Broker Architecture), which provides a

central context broker that manages individual and independent domain brokers. Each domain broker

represents a part of the context-model [28, 29].

2.2 Context Dissemination

Most context-aware systems use one of two methods to propagate context: query based or event based

[13]. In query-based propagation context dissemination is initiated by the interested party, called the

consumer, which makes an explicit request in terms of a query.

8

In event-based propagation consumers express their interest by subscribing to events, and they will

be notified when an event of that type occurs and satisfies any filters at both the advertisement and

subscription levels. This is the area where DEBSs are used in context awareness.

2.3 Proposed Approach

As mentioned earlier, this thesis presents a metamodel that uses specific concepts from DEBSs. The

metamodel will fall into the Markup Language Based model category: it uses XML and XML

Schema Definitions. What makes this metamodel unique, and different to related work, is precisely

the integration of the concepts from DEBSs at the metamodel level.

Introducing these context dissemination concepts as modeling tools provides a different approach

to context-awareness modeling, with the following advantages:

1. It guarantees that context awareness modeled using the metamodel has the same

advantages of DEBSs, namely space, time, and synchronization decoupling.

2. It provides a great deal of flexibility by allowing the mixture of events with context

elements.

3. A unique characteristic, compared to other markup language based models, is that, by

using concepts from DEBSs, the metamodel provides a mechanism to model not only

context data but also the flow of context. That flow is modeled via advertisements,

subscriptions, and filters.

4. By introducing the concept of features, the metamodel also provides a mechanism to

specify adaptation to context.

5. When designing a context-aware DEBS middleware layer, the metamodel provides a guide

as to what elements and functionality may be required.

9

Chapter 3

An Adaptive Context-Aware Publish–Subscribe Component

Metamodel

This chapter presents a metamodel for adaptive, context-aware publish–subscribe components. It is

fitting to use XML Schema Definitions (.xsd files) to specify the metamodel. Then, in Chapter 4, the

.xsd files are used in XML documents to model specific case studies.

3.1 General Requirements

The metamodel has to provide the means to identify the elements that interact via context and events.

Those elements are components and environments.

It also needs to provide elements to define events, and allow components to advertise or subscribe

to such events. Events are defined via events and event schemas, and event contracts are the

mechanisms used by components to advertise events or to subscribe to events.

In order to provide as much flexibility as possible, calculated event attributes are introduced. A

calculated event attribute allows for the definition of an event attribute that depends on other events

or context elements. A calculated event attributes also allows for the specification of enrichment, and

transformation of existing events and context elements. Enriching means adding extra information to

existing event attributes and context elements; transforming means the new event attribute is the

result of operations applied to existing event attributes and context elements.

In conjunction with events the model must have elements to model context. Context elements,

provide that capability. A context element can be calculated via events, and via other context

elements.

In order to model adaptation to context and events, components expose features and those features

are grouped in feature profiles. Environments select, depending on context or event filter conditions,

the proper feature profiles using a feature profiles selector.

The final requirement to provide adaptation is to allow filtering at the event, context, and profiles

selector level.

Even though a metamodel is being specified, i.e.: the elements in the metamodel represent classes,

elements that actually represent instances of classes are also included. This is done so filters, and

10

context elements can be modeled. See the “Event Schemas and Events” section below for more

details.

The rest of the chapter provides details on the elements just described, and introduces other

auxiliary elements.

3.2 Components and Environments

The first element of the metamodel is the component element. A component is used to define the

elements whose context is relevant and that interact via context and events with other components. It

is also used to expose features so its behavior can adapt to events and context from other components.

The second building block are environments; an environment is a special type of component: it

contains other components and provides logical regions that restrict the scope of context elements and

events. This means a context element is only relevant inside the environment in which it is defined.

Also, events are only propagated and visible to components and environments contained in the parent

environment. This also means that the context of an element is relevant only to the environment that

contains the context element. However, there should be no limitations on how many environments to

which a component can belong to; also, environments can be nested inside other environments.

Figure 1 shows the specification of components and environments.

11

Figure 1 Components and Environments

3.3 Event Schemas and Events

All communication between components is done via events: either directly through advertisements

and subscriptions, or indirectly through feature profiles and context elements. In the case of a context

12

element, its values are calculated from events and other context elements; and in the case of a features

profile, the conditions to select which profile to activate will depend on events and context elements.

Events are specified using event schemas. An event schema consists of a name and one or more

event attribute schemas. An event attribute schema represents the definition of an attribute of an

event. In its simplest form (simple event attribute schema) an event attribute consists of a name and a

type. However in order to model more complicated attributes, in addition to simple event attributes,

the following event attribute schemas are also provided:

Nested event attribute schema: It allows the definition of nested attributes, that is, attributes that

contain other attributes. For example, in the “Case Studies” chapter the Location attribute consists of

two children attributes: Latitude and Longitude. In general, a nested attribute consists of a parent

event attribute schema and one or more child event attribute schemas.

Calculated event attribute schema: This type of schema allows for the definition of attributes

whose values require calculations. This calculations may involve the values of other event attributes

and context elements. Having calculated event attributes allows for the simulation of event operations

such as event enrichment, where the calculated attribute adds extra information to an existing event

attribute or context element; and event transformation and interpretation, where the calculated

attribute is the result of operations to existing event attributes and context elements.

Originally, in order to model calculations, the metamodel contained a set of classes representing

arithmetical operations, however these classes cluttered the model, so those objects were replaced

with xquery expressions. This de-clutters the metamodel, and it doesn’t reduce its effectiveness. In

summary, calculated attributes consist of a name, a type, and a calculation expression.

Subsequent event attribute schema: Sometimes it may be required to remember previous values of

an event attribute; for instance in the second case study in Chapter 4, it is needed to tell if a cellphone

is moving away from a specific point, so subsequent event attributes store the previous values of the

location of the cellphone and if the distance to the specific point is increasing it is determined that the

cellphone is moving away.

Subsequent event attributes consist of a name, a type, and information about the attribute whose

values need to be remembered: source event name, source event attribute schema, and occurrence

index.

Figure 2 shows the specification of event schemas and event attribute schemas.

13

Figure 2 Event Schemas

14

Conceptually, events are instances of event schemas, however, and in order to facilitate their use to

specify filters and context elements, events are defined as a name, and a collection of event attributes.

An event attribute, with the exception of nested attributes, contains a reference to its schema and a

value. A nested attribute contains a reference to its parent attribute and a collection of references to

its children attributes. Figure 3 shows the specification of events and event attributes.

15

Figure 3 Events

16

Components expose event schemas using advertisements and components express their interest in

an event schema with subscriptions. Advertisements and subscriptions are types of event contracts. In

the case of an advertisement the contract specifies the event’s name, the component advertising the

event, the event’s schema, and, if needed, event filters, so the event will be published only in certain

cases. For example, don’t propagate an event if today is not a working day.

In the case of a subscription, the contract specifies the component that wants to subscribe to an

event and the actual event; filters can also be added inside subscriptions, so the component that

subscribes to an event will only be notified of the event in certain cases and not every time the event

is published.

Advertisements and subscriptions are at the class level, however to represent actual instances of the

event publications and notifications classes are defined. These classes are included so models created

with the metamodel can be evaluated. Figure 4 shows the specification of event contracts.

17

Figure 4 Event Contracts

18

As mentioned, advertisements and subscriptions can specify event filters. Event filters were

designed to make them as simple to use and as powerful as possible: filtering expressions can make

reference to attributes of the event being filtered, to attributes of other events, or to context elements.

This way both content and context filtering are offered.

An event filter consists of a name, a collection of references to the events (source events) and to the

context elements (source context elements) used inside the xquery expression that filters the event

(filtering expression). Figure 5 shows the structure of event filters.

Figure 5 Event Filters

3.4 Context and Context Elements

As shown in Chapter 1, there is not a unique definition of context, and the meaning of context may

vary depending on the application or system to be designed. Because of this, when defining elements

19

to model context, the objective is to be generic, and make as few assumptions as possible. Following

this principle, a context element is specified as a value that can be calculated via events and other

context elements. With this simple concept complex conditions and situations can be modeled. For

instance, a context element could to tell if the cellphone of a user is home based on an event

published by the phone with its location.

More specifically, a context element contains a name, a value type, a collection of references to the

events (source events) and to the context elements (source context elements) used inside the xquery

expression that calculates the value of the context element.

Context elements are then grouped into a context set, which can be then referenced by an

environment. Figure 6 shows the structure of context sets and elements. Notice that the figure also

contains definitions for context element values and context value sets, these represent instances of

objects of type context element and context set. These classes are included so models created from the

metamodel can be evaluated.

20

Figure 6 Context

21

3.5 Features, Features Profiles, and Feature Selectors

Behavior adaptation can be modeled two ways: by selecting features depending on context or event

filter conditions; or by a component subscribing to events. The first approach is followed in the first

case study in the “Case Studies” chapter, while the second case study follows the second approach.

Components expose features, which represent either actions, or settings. For instance a cellphone

may expose email or phone call features. Features can be of different types:

A simple feature consists of a name and a type. A range feature is numeric and consists of a name

and a minimum and a maximum value. An enumerated feature consists of a name and a list of possible

values. A single value enumerated feature is an enumerated feature that can have only one value,

while a multiple value enumerated feature can have multiple values. Finally, a compound feature

consists of a collection of features of any type; for instance a phone call feature may contain volume,

ring tone, and vibration mode features.

The features of a component are grouped in a component feature set. Figure 7 shows the

specification of features and component feature sets.

22

Figure 7 Features and Features Sets

23

The next step is to define feature profiles. A feature profile is a collection of feature instances. A

feature instance is a specific value for a specific feature.

For instance if a cellphone exposes a phone call compound feature, that consists of volume, ring

tone, and vibration mode features; a user busy features profile could set the volume to zero, the ring

tone to none and vibration mode to on.

Features profiles are then grouped by component in a component features profile set; and those

component sets into a single environment features profile set.

Figure 8 shows the specification of features profiles and sets.

24

Figure 8 Features Profiles

25

The final step in the specification of features consists on defining a mechanism that can be used, by

environments, to select the proper feature profile depending on given conditions. Those conditions

will be calculated using the values of events and context elements.

That mechanism is called a profile selectors. A profile selector consists of a name and a collection

of feature profile conditions. Feature profile conditions have a condition name and a reference to the

features profile to be selected if the condition is true. The conditions can be of three types:

A feature profile if condition contains, in addition to the attributes of the base type, a conditional

expression and a collection of the events and context elements needed to calculate if the condition is

true or not.

A feature profile not condition contains a reference to a feature profile if condition. So if the if

condition is false, then the features profile specified inside this not-condition will be selected.

A feature profile default condition: the features profile specified inside this condition will be

selected, if no other condition is true.

Figure 9 shows the structure of features profiles selectors and features profile conditions.

The introduction of features concludes the design of the metamodel. The next chapter uses the

metamodel to model two case studies.

26

Figure 9 Feature Profile Selectors

27

Chapter 4

Case Studies

This chapter applies the metamodel to two separate case studies. Each case represents a situation in

which context is a primary factor.

As mentioned in the previous chapter, xquery expressions are used to model mathematical

expressions; however, since some of the expressions are quite complex and it is outside the scope of

this document to show the power of xquery, in such cases, only the purpose of the xquery function

instead is noted of having also the actual xquery expression.

4.1 Cellphone Behavior Adaptation Case Study

4.1.1 Description:

In this case study, the cellphone’s behavior adapts to the context of the same cellphone. Here the

concept of profiles is explored: what features to activate depends on context. To demonstrate the

power of the metamodel when implemented at the operating system level, it is assumed that the

device has the capability of adapting to context via events without the need of running a local

application.

The scenario to be considered is as follows: the user is at work, and his or her calendar indicates a

meeting has just started. The cellphone’s profile is changed to in business meeting, and the behavior

of the phone when receiving phone calls changes according to the user’s preferences.

4.1.2 Participants:

User’s Cellphone

Calendar application

4.1.3 Interaction via Events:

- The Calendar application detects a meeting has just started:

o A MeetingStartedEvent event is generated by the Calendar application, and the

user’s Cellphone receives the event. This event will be used to calculate the

value of the context element InBusinessMeetingContextElement. This context

element tells if a business meeting is in progress and the user is at work.

28

- The location of the Cellphone has changed:

o A LocationEvent is generated by the phone. This event will also be used to

calculate the value of the context element InBusinessMeetingContextElement

- A phone call comes in:

o A IncomingCallEvent is generated

o The Cellphone:

 Receives the IncomingCallEvent.

 If there is a meeting going on and the user is at work, i.e., the

InBusinessMeetingContextElement context element has a value of true:

 If the call is from somebody not in the preferred callers list:

o To deal with the call the actions specified by the proper

features profile (BusinessMeetingProfile) are followed.

The options are: ignore the call, go directly to voice mail,

or put the call through with the proper settings such as

ring tone, vibration mode, and volume.

 If the call is from somebody in the preferred callers list:

o Follow the actions specified by the Exception features

profile (BusinessMeetingPreferredCallerProfile).

 If no meeting is going on or the user is not at work:

 Handle the call as usual (NotInMeetingProfile)

4.1.4 Modeling:

4.1.4.1 Components:

In this case study there is a single environment: the user’s Cellphone. The environment contains an

additional component besides itself: the Calendar application. Below is the specification for the

Cellphone environment:

<?xml version="1.0" encoding="UTF-8"?>

<Environment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Component.xsd">

<Name>UserCellphone</Name>

<ComponentFeatureSetName>

29

UserCellphoneComponentFeatureSet

</ComponentFeatureSetName>

<ContainedComponent>

<Name>CalendarApplication</Name>

</ContainedComponent>

<EnvironmentFeaturesProfilesSetName>

UserCellphoneEnvironmentFeaturesProfileSet

</EnvironmentFeaturesProfilesSetName>

<EventContractSetName>UserCellphoneEventContractSet</EventContractSetName>

<ContextSetName>UserCellphoneContextSet</ContextSetName>

<FeaturesProfileSelectorName>

UserCellphoneEnvironmentFeaturesProfileSelector

</FeaturesProfileSelectorName>

</Environment>

4.1.4.2 Events:

The Calendar application doesn’t subscribe to any events and has a single advertisement. The

advertisement is for the MeetingStartedEvent event. The Cellphone advertises two events: one for the

location of the cellphone, LocationEvent, and one when an incoming call is detected,

IncomingCallEvent. Since all events are processed at the environment level no subscriptions are

specified for events of interest to the environment. The Cellphone itself subscribes to the

IncomingCallEvent. This subscription doesn’t require any filters either.

The MeetingStartedEvent event is used to calculate the MeetingInProgressContextElement context

element; while the LocationEvent event is used to calculate the DistanceToWorkContextElement

context element. Both, MeetingInProgressContextElement and DistanceToWorkContextElement,

context elements are then used to calculate a third context element:

InBusinessMeetingContextElement which tells if a business meeting is in progress and the user is at

work.

The advertisements, including the corresponding event schemas, and subscriptions for this case

study are specified as follows:

<?xml version="1.0" encoding="UTF-8"?>

<EventContractSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventContract.xsd">

30

<Name> UserCellphoneEventContractSet </Name>

<EventContract xsi:type = "Advertisement">

<Name>MeetingStartedEventAdvertisement</Name>

<ComponentName>CalendarApplication</ComponentName>

<EventSchemaName>MeetingStartedEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>MeetingStartedEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>MeetingName</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Date</Name>

<TypeName>xs:date</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>StartTime</Name>

<TypeName>xs:time</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Duration</Name>

<TypeName>xs:decimal</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>LocationEventAdvertisement</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>LocationEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>LocationEvent</Name>

<EventAttributeSchema xsi:type = "NestedEventAttributeSchema">

<Name>Location</Name>

31

<ChildEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Latitude</Name>

<TypeName>xs:double</TypeName>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Longitude</Name>

<TypeName>xs:double</TypeName>

</ChildEventAttributeSchema>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>IncomingCallEventAdvertisement</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>IncomingCallEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>IncomingCallEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>CallerName</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>CallingNumber</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>IncomingCallEventCellphoneSub</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>IncomingCallEvent</EventSchemaName>

</EventContract>

</EventContractSet>

32

4.1.4.3 Context:

In this case study there are three context elements: the cellphone’s distance to work

DistanceToWorkContextElement; if a meeting is in progress, MeetingInProgressContextElement; and

an element that combines the two and tells if the cellphone is at work and a meeting is in progress,

InBusinessMeetingContextElement.

DistanceToWorkContextElement is calculated using the LocationEvent event,

MeetingInProgressContextElement is calculated using the MeetingStartedEvent, and

InBusinessMeetingContextElement is calculated using the other two context elements. Below is the

specification of all context elements:

<?xml version="1.0" encoding="UTF-8"?>

<ContextSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ContextSet.xsd">

<Name>UserCellphoneContextSet</Name>

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>DistanceToWorkContextElement</Name>

<ValueType>xs:double</ValueType>

<SourceEventName>LocationEvent</SourceEventName>

<!-- Formula to calculate distance from two latitude/longitude points: -->

<CalculationExpression>

Cellphone_DistanceToWorkContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>UserCellphone</EnvironmentName>

</ContextElement>

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>MeetingInProgressContextElement</Name>

<ValueType>xs:boolean</ValueType>

<SourceEventName>MeetingStartedEvent</SourceEventName>

<!-- Formula to check if a meeting is still in progress: -->

<CalculationExpression>

Cellphone_MeetingInProgressContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>UserCellphone</EnvironmentName>

33

</ContextElement>

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>InBusinessMeetingContextElement</Name>

<ValueType>xs:boolean</ValueType>

<SourceContextElementName> DistanceToWorkContextElement

</SourceContextElementName>

<SourceContextElementName>MeetingInProgressContextElement</SourceContextElementName>

<!-- Formula to check if the value of DistanceToWorkContextElement is less than 1

and MeetingInProgressContextElement is true: -->

<CalculationExpression>

Cellphone_InBusinessMeetingContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>UserCellphone</EnvironmentName>

</ContextElement>

</ContextSet>

And the expressions to calculate the context elements are:

- Cellphone_DistanceToWorkContextElementCalculationExpression.xquery:

(: Calculate distance to work using CellphoneLocationEvent :)

declare function local:distance-to-work-in-kms

($latitude as xs:double, $longitude as xs:double, $reflatitude as xs:double, $reflongitude as

xs:double) as xs:double? {

1

} ;

(: From the values of the Location Event, return the distance to work :)

let $doc := fn:doc("CellphoneLocationEvent.xml") (: Document with the values of the current instance

of the event :)

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "NestedEventAttribute" and

ParentAttributeSchemaName = "Location"]

let $lat_child := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute" and

./SimpleEventAttributeSchemaName = "Latitude"]

34

let $lat := $lat_child/Value

let $lon_child := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute" and

./SimpleEventAttributeSchemaName = "Longitude"]

let $lon := $lat_child/Value

return local:distance-to-work-in-kms($lat, $lon, 43.47, -80.54)

- Cellphone_MeetingInProgressContextElementCalculationExpression.xquery:

(:Get the event if it is happening on a weekday, between 9am and 5pm:)

(:day-of-week function adapted from: http://www.functx.com/ :)

declare function local:day-of-week

($date as xs:anyAtomicType?) as xs:integer? {

if (empty($date))

then ()

else xs:integer((xs:date($date) – xs:date(‘1901-01-06’))

div xs:dayTimeDuration(‘P1D’)) mod 7

} ;

(: Working day and time :)

(: If the date is a weekday and the time is between 9am and 5 pm, return true :)

declare function local:working-time

($date as xs:anyAtomicType?, $time as xs:anyAtomicType?) as xs:34oolean {

let $dow := local:day-of-week($date)

return

if (($dow!= 0) and ($dow != 7)) then

if ((xs:time($time) >= xs:time(“09:00:00”))

and

(xs:time($time) <= xs:time(“17:00:00”))) then

true()

else false()

else false()

};

35

(: adapted from: http://www.functx.com/ :)

declare function local:getDayTimeDuration

($days as xs:decimal? ,

$hours as xs:decimal? ,

$minutes as xs:decimal? ,

$seconds as xs:decimal?) as xs:dayTimeDuration {

(xs:dayTimeDuration(‘P1D’) * $days) +

(xs:dayTimeDuration(‘PT1H’) * $hours) +

(xs:dayTimeDuration(‘PT1M’) * $minutes) +

(xs:dayTimeDuration(‘PT1S’) * $seconds)

} ;

(: If the current time falls in between a meeting, return true :)

let $doc := fn:doc(“CellphoneMeetingStartedEvent.xml”) (: Document with the values of the current

instance of the event :)

let $event := $doc/Event

let $event_attribute_start_time := $event/EventAttribute[@xsi:type = “SimpleEventAttribute” and

SimpleEventAttributeSchemaName = “StartTime”]

let $event_attribute_start_date := $event/EventAttribute[@xsi:type = “SimpleEventAttribute” and

SimpleEventAttributeSchemaName = “Date”]

let $event_attribute_duration := $event/EventAttribute[@xsi:type = “SimpleEventAttribute” and

SimpleEventAttributeSchemaName = “Duration”]

let $start_datetime := fn:dateTime(xs:date($event_attribute_start_date),

xs:time($event_attribute_start_time))

let $end_datetime := $start_datetime + local:getDayTimeDuration(0,

0,

xs:decimal($event_attribute_duration),

0)

let $curr_time := fn:current-dateTime()

return (: working day and time :)

local:working-time($event_attribute_start_date, $event_attribute_start_time) and

(: current time is bigger than $start_datetime and smaller than $end_datetime :)

36

$curr_time >= $start_datetime and

$curr_time <= $end_datetime

- Cellphone_InBusinessMeetingContextElementCalculationExpression.xquery:

(:Tell if there is a business meeting going on and the user is at work:)

let $doc_dist := fn:doc("CellphoneDistanceToWorkContexElementValue.xml") (: Document with the

current value of the Distance To Work context :)

let $doc_in_bus := fn:doc("CellphoneMeetingInProgressContextElementValue.xml") (: Document with

the current value of the Meeting In Progress context :)

let $dist := $doc_dist/Value

let $in_bus := $doc_in_bus/Value

return $in_bus = true() and ($dist < 1)

4.1.4.4 Features:

The Cellphone exposes the following features:

<?xml version="1.0" encoding="UTF-8"?>

<ComponentFeatureSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeatureSet.xsd">

<Name>UserCellphoneComponentFeatureSet</Name>

<ComponentName>UserCellphone</ComponentName>

<ExposedFeature xsi:type= "CompoundFeature">

<Name>PhoneCall</Name>

<Feature xsi:type= "RangeFeature">

<Name>Volume</Name>

<MinValue>0</MinValue>

<MaxValue>10</MaxValue>

</Feature>

<Feature xsi:type= "SingleValueEnumeratedFeature">

<Name>VibrationMode</Name>

<PossibleValue>On</PossibleValue>

<PossibleValue>Off</PossibleValue>

</Feature>

<Feature xsi:type= "SingleValueEnumeratedFeature">

<Name>Ringtone</Name>

37

<PossibleValue>Ringtone1</PossibleValue>

<PossibleValue>Ringtone2</PossibleValue>

</Feature>

<Feature xsi:type= "SingleValueEnumeratedFeature">

<Name>Action</Name>

<PossibleValue>Ignore</PossibleValue>

<PossibleValue>VoiceMail</PossibleValue>

<PossibleValue>ReceiveCall</PossibleValue>

</Feature>

</ExposedFeature>

</ComponentFeatureSet>

Features are then grouped into profiles so a single profile can consist of multiple features, for

instance let the phone ring at a certain volume and vibrate at the same time. For this example the set

of available profiles are:

<?xml version="1.0" encoding="UTF-8"?>

<EnvironmentFeaturesProfilesSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeaturesProfileSet.xsd">

<Name>UserCellphoneEnvironmentFeaturesProfileSet</Name>

<ComponentFeaturesProfileSet>

<Name>UserCellphoneFeaturesProfileSet</Name>

<ComponentName>UserCellphone</ComponentName>

<FeaturesProfile>

<Name>BusinessMeetingProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>PhoneCall</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Action</FeatureName>

<Value>VoiceMail</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>BusinessMeetingPreferredCallerProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

38

<FeatureName>PhoneCall</FeatureName>

<FeatureInstance xsi:type= "RangeFeatureInstance">

<FeatureName>Volume</FeatureName>

<Value>3</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>VibrationMode</FeatureName>

<Value>On</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Ringtone</FeatureName>

<Value>Ringtone2</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Action</FeatureName>

<Value>ReceiveCall</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>NotInMeetingProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>PhoneCall</FeatureName>

<FeatureInstance xsi:type= "RangeFeatureInstance">

<FeatureName>Volume</FeatureName>

<Value>8</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>VibrationMode</FeatureName>

<Value>On</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Ringtone</FeatureName>

<Value>Ringtone1</Value>

</FeatureInstance>

39

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Action</FeatureName>

<Value>ReceiveCall</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

</ComponentFeaturesProfileSet>

</EnvironmentFeaturesProfilesSet>

What to do after the call is received is decided based on the specified feature profile selector. The

selector stores a set of profiles and the conditions that must be true for each profile to be selected. In

this case, as specified above, there are three profiles and their corresponding conditions: one profile,

BusinessMeetingPreferredCallerProfile, is used if InBusinessMeetingContextElement is true, and the

caller is in the preferred callers list; another profile, BusinessMeetingProfile, to be selected if

InBusinessMeetingContextElement is also true but the caller is not in the preferred callers list; and

one, NotInMeetingProfile, if no meeting is taking place or we are outside business hours.

As mentioned in the section where the metamodel is introduced, the conditions to select the proper

profile can be of three types: if condition, not condition, and default condition. For this case study

there will be two if conditions and one default condition:

The first condition depends on InBusinessMeetingContextElement and the IncomingCallEvent

event and will check if the user is in a business meeting and the caller is in the preferred callers list:

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>BusinessMeetingPreferredCallerProfileCondition</ConditionName>

<FeaturesProfileName>BusinessMeetingPreferredCallerProfile</FeaturesProfileName>

<ReferredEventName>IncomingCallEvent</ReferredEventName>

<ReferredContextElementName>

InBusinessMeetingContextElement

</ReferredContextElementName>

<ConditionExpression>

CellphoneIncomingCallEvent_CallerInListFilteringExpression.xquery

</ConditionExpression>

</FeaturesProfileCondition>

40

The condition (xquery expression) that filters the event is

CellphoneIncomingCallEvent_CallerInListFilteringExpression.xquery:

(:Tell if there is a business meeting going on and the user is at work and

the caller is in a predefined list::)

let $doc := fn:doc("CellphoneIncomingCallEvent.xml") (: Document with the values of the current

instance of the event :)

let $doc_in_bus := fn:doc("CellphoneInBusinessMeetingContextElementValue.xml") (: Document

with the values of the current instance of the In Business Meeting context :)

let $in_bus := $doc_in_bus/Value

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "CallerName"]

let $list_names := ('Michael Smith', 'Other Caller 1', 'Other Caller 2')

return

if ($list_names = xs:string($event_attribute/Value)) then

if ($in_bus = true()) then

true()

else false()

else

false()

The second if condition also depends on InBusinessMeetingContextElement and the

IncomingCallEvent event and will check if the user is in a business meeting and the caller is NOT in

the preferred callers list:

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>BusinessMeetingNotPreferredCallerProfileCondition</ConditionName>

<FeaturesProfileName>BusinessMeetingProfile</FeaturesProfileName>

<ReferredEventName>IncomingCallEvent</ReferredEventName>

<ReferredContextElementName>

InBusinessMeetingContextElement

</ReferredContextElementName>

<ConditionExpression>

CellphoneIncomingCallEvent_CallerNotInListFilteringExpression.xquery

41

</ConditionExpression>

</FeaturesProfileCondition>

The condition (xquery expression) that filters the event is

CellphoneIncomingCallEvent_CallerNotInListFilteringExpression.xquery:

(:Tell if there is a business meeting going on and the user is at work and

the caller is NOT in a predefined list::)

let $doc := fn:doc("CellphoneIncomingCallEvent.xml") (: Document with the values of the current

instance of the event :)

let $doc_in_bus := fn:doc("CellphoneInBusinessMeetingContextElementValue.xml") (: Document

with the values of the current instance of the In Business Meeting context :)

let $in_bus := $doc_in_bus/Value

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "CallerName"]

let $list_names := ('Michael Smith', 'Other Caller 1', 'Other Caller 2')

return

if ($list_names = xs:string($event_attribute/Value)) then

if ($in_bus = false()) then

true()

else

false()

else

false()

Finally, the default condition: no meeting is going on, or we are outside business hours, so just

process the call as usual, is:

<FeaturesProfileCondition xsi:type = "FeaturesProfileDefaultCondition">

<ConditionName>ElseCondition</ConditionName>

<FeaturesProfileName>NotInMeetingProfile</FeaturesProfileName>

</FeaturesProfileCondition>

The full specification of the features profile selector is:

<FeaturesProfileSelector xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeaturesProfileSelector.xsd">

42

<Name>UserCellphoneEnvironmentFeaturesProfileSelector</Name>

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>BusinessMeetingPreferredCallerProfileCondition</ConditionName>

<FeaturesProfileName>BusinessMeetingPreferredCallerProfile</FeaturesProfileName>

<ReferredEventName>IncomingCallEvent</ReferredEventName>

<ReferredContextElementName>

InBusinessMeetingContextElement

</ReferredContextElementName>

<ConditionExpression>

CellphoneIncomingCallEvent_CallerInListFilteringExpression.xquery

</ConditionExpression>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>BusinessMeetingNotPreferredCallerProfileCondition</ConditionName>

<FeaturesProfileName>BusinessMeetingProfile</FeaturesProfileName>

<ReferredEventName>IncomingCallEvent</ReferredEventName>

<ReferredContextElementName>

InBusinessMeetingContextElement

</ReferredContextElementName>

<ConditionExpression>

CellphoneIncomingCallEvent_CallerNotInListFilteringExpression.xquery

</ConditionExpression>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileDefaultCondition">

<ConditionName>ElseCondition</ConditionName>

<FeaturesProfileName>NotInMeetingProfile</FeaturesProfileName>

</FeaturesProfileCondition>

</FeaturesProfileSelector>

43

4.2 Cellphone as Controller Case Study

4.2.1 Description:

In this case study, instead of the cellphone adapting to context, the cellphone initiates the context

adaptation of other devices. In this case study the use of independent environments will be illustrated,

so instead of an environment controlling all behavior adaptation via feature profiles, events will be

used to notify the proper sub-environment that components inside that sub-environment need to

adapt.

As per the previous example, it is assumed that the device has the capability of filtering events

depending on context, or adapting to context without the need of running a local application. Here, as

well, the scenario will first be described, and the interaction that is taking place between the different

components will be modeled.

The scenario is as follows: The user’s alarm goes off, zz minutes later the user’s car is started. The

user receives confirmation the car computer controller has started the car. After getting ready to leave,

the user gets in the car and as he or she is driving off the security alarm system is engaged and the

temperature of the home set to a specific temperature. The user receives confirmation the smart home

controller has engaged the alarm system and set the temperature of the home.

4.2.2 Participants:

User’s Cellphone

Alarm application

True Remote Control Application (TRCA)

Smart Home Controller Unit (SHCU): For simplicity it is assumed there is a single unit that controls

the different devices of the home. In this case the SHCU will control the temperature controller and

the security alarm system

Home Security System

Home Climate Control Unit

Car Computer Controller Unit (CCCU): For simplicity it is assumed there is a single unit that controls

the different devices of the car. In this scenario the Car Computer Controller Unit will control the

engine starter (CCCU) (environment)

44

Car Engine Starter

Since the purpose of this scenario is to emphasize the use of context, and the use of independent

environments; the interaction between controller units and components whose context is irrelevant is

omitted. In this case, the interaction between the Smart Home Controller Unit and the specific

elements of the home (the Security System and the Climate Control Unit) is omitted, as well as the

interaction between the Car Computer Controller Unit and the Engine Starter. These interactions

could be modeled using Features and Features Profiles: the Components exposing features and the

proper controller selecting them (using a features profile selector), the same way it was done in the

first case study.

4.2.3 Interaction via Events:

This scenario is divided in two parts: in the first part, the user’s alarm goes off, zz minutes later the

user’s car is turned on. The user receives confirmation the Car Computer Controller has started the

car.

In the second part, the user gets in the car and as he or she is driving off the security alarm system

is engaged and the temperature of the home set to a specific temperature. The user receives

confirmation the Smart Home Controller has engaged the alarm system and set up the temperature of

the home.

Part one:

- The Alarm application detects the alarm has gone off:

o An AlarmGoesOffEvent is generated by the Alarm application. This event will be

used to calculate the context element MustStartCarEngineContextElelement. This

context element belongs to the True Remote Control Application environment.

- The cellphone detects the time has changed (a minute has elapsed)

o A CellphoneTimeChangedEvent is generated. This event is also used to calculate the

MustStartCarEngineContextElelement context element.

- The location of the cellphone has changed:

o A CellphoneLocationEvent is generated by the phone. This event will also be used to

calculate the value of the context element MustStartCarEngineContextElelement.

- The User’s device alarm has gone off, zz minutes have passed, and the user is at home, i.e.,

MustStartCarEngineContextElelement is true:

45

 A RemoteStarterActionEvent event is generated by the smartphone’s True

Remote Control Application.

- The Car Computer Controller Unit (CCCU) receives the RemoteStarterActionEvent event:

o The CCCU tries to start the car via the engine starter, then it sends a

ResultOfRemoteStarterActionEvent event containing a flag indicating if the car was

successfully started or not.

- The True Remote Control Application receives the ResultOfRemoteStarterActionEvent event:

o It generates a NotifyUserOfCarEngineStartedEvent event.

- The user’s mobile device receives the event NotifyUserOfCarEngineStartedEvent and the user

is notified of the result of the attempt to start the car’s engine. The notification is delivered

via the notification methods selected by the user (alarm, email, a message box, etc.) The

notification methods depend on the result of the attempt.

Part two:

- The user gets in the car and starts driving away from home:

o Two TriggerHomeActionEvent events are generated by the True Remote Control

Application. The first one instructs the Smart Home Computer Controller Unit

(SHCCU) to set the temperature to a certain value, and the second to engage the

security alarm.

- The Smart Home Computer Controller Unit (SHCCU) receives both events, the order in

which the events are received is not important:

o The SHCCU sets the temperature of the home via the home’s temperature controller,

then it sends a ResultOfHomeActionEvent event containing a flag indicating the result

of trying to set the temperature of the home at a certain value.

o The SHCCU engages the security alarm system, and then it sends a

ResultOfHomeActionEvent event containing a flag indicating if the alarm system was

successfully engaged.

- The True Remote Control Application receives both ResultOfHomeActionEvent events:

o It generates two NotifyUserOfHomeActionEvent events. Two events are generated in

case the user wants different notification methods depending on the type of action to

be performed, and the result of each action.

46

- The user’s mobile device receives the NotifyUserOfHomeActionEvent events and the user is

notified of the result of the attempt to set the home’s temperature and the attempt to engage

the security alarm system.

4.2.4 Modeling:

In the previous case study the context was used as part of the conditions to select the proper feature

profiles. In this case study the context will be used to filter events that trigger actions.

4.2.4.1 Components:

In this case study there are four environments: the user’s Cellphone, the True Remote Control

Application (TRCA), the Smart Home Controller Unit (SHCU), and the Car Computer Controller

Unit (CCCU).

As components there is the Alarm application on the user’s Cellphone; for the home there are the

Home Security System, and the Home Climate Control Unit; and for the car, the Car Engine Starter.

The user’s Cellphone environment deals with notifying the user of result of actions using features

profiles. The Cellphone environment is specified as follows:

<?xml version="1.0" encoding="UTF-8"?>

<Environment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Component.xsd">

<Name>UserCellphone</Name>

<ComponentFeatureSetName>

UserCellphoneComponentFeatureSet

</ComponentFeatureSetName>

<ContainedComponent>

<Name>AlarmApplication</Name>

</ContainedComponent>

<EnvironmentFeaturesProfilesSetName>

UserCellphoneEnvironmentFeaturesProfileSet

</EnvironmentFeaturesProfilesSetName>

<FeaturesProfileSelectorName>

UserCellphoneEnvironmentFeaturesProfileSelector

</FeaturesProfileSelectorName>

</Environment>

47

Since the interaction between controllers and components is being omitted, the Smart Home

Controller Unit (SHCU) environment is specified as:

<?xml version="1.0" encoding="UTF-8"?>

<Environment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Component.xsd">

<Name>SmartHomeControllerUnit</Name>

<ContainedComponent>

<Name>HomeSecuritySystem</Name>

</ContainedComponent>

<ContainedComponent>

<Name>HomeClimateControl</Name>

</ContainedComponent>

</Environment>

The Car Computer Controller Unit environment is specified as:

<?xml version="1.0" encoding="UTF-8"?>

<Environment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Component.xsd">

<Name>CarComputerControllerUnit</Name>

<ContainedComponent>

<Name>CarEngineStarter</Name>

</ContainedComponent>

</Environment>

Finally, the True Remote Control Application is the environment that controls the propagation of

events, so it must contain all components and environments that advertise or subscribe to events:

<?xml version="1.0" encoding="UTF-8"?>

<Environment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Component.xsd">

<Name>TrueRemoteControlApplication</Name>

<ContainedComponent>

<Name>AlarmApplication</Name>

</ContainedComponent>

<ContainedComponent>

<Name>UserCellphone</Name>

48

</ContainedComponent>

<ContainedComponent>

<Name>SmartHomeControllerUnit</Name>

</ContainedComponent>

<ContainedComponent>

<Name>CarComputerControllerUnit</Name>

</ContainedComponent>

<EventContractSetName>

TrueRemoteControlApplicationContractSet

</EventContractSetName>

<ContextSetName>

TrueRemoteControlApplicationContextSet

</ContextSetName>

</Environment>

4.2.4.2 Events:

Part One:

The advertisements for part one of this case study are: the Alarm application has a single

advertisement, and it is for the AlarmGoesOffEvent event. The Cellphone advertises two events, one

for the location of the cellphone, CellphoneLocationEvent, and one when the time of the cellphone

changes, CellphoneTimeChangedEvent. These two events are used when calculating the

MustStartCarEngineContextElelement, see the context section for more details on

MustStartCarEngineContextElelement.

The True Remote Control Application (TRCA) also advertises two events:

RemoteStarterActionEvent, and NotifyUserOfCarEngineStartedEvent.

The Car Computer Controller Unit (CCCU) advertises the ResultOfRemoteStarterActionEvent

event.

The subscriptions for this part of the case study are: the Alarm application doesn’t subscribe to any

events. The Cellphone subscribes to the NotifyUserOfCarEngineStartedEvent event. The True Remote

Control Application (TRCA) subscribes to ResultOfRemoteStarterActionEvent; and in order to

calculate the MustStartCarEngineContextElement context element, it subscribes to AlarmGoesOff,

49

CellphoneLocationEvent and CellphoneTimeChangedEvent. Finally, the Car Computer Controller

Unit (CCCU) subscribes to RemoteStarterActionEvent.

Part two:

The advertisements for part are: as per on part one, the Cellphone advertises its location, however, in

order to calculate if the Cellphone is moving away from home, i.e.: if the distance from home is

increasing, an event, CellphoneSubsequentLocationEvent, that keeps subsequent values of the

CellphoneLocationEvent event is used. See the Context section for more details on how

MustTriggerHomeActionsContextElement is calculated.

The True Remote Control Application (TRCA) advertises two events: TriggerHomeActionEvent,

and NotifyUserOfHomeActionEvent.

The Smart Home Controller Unit (SHCU) advertises the ResultOfHomeActionEvent event.

The subscriptions for this part of the case study are: the Cellphone subscribes to the

NotifyUserOfHomeActionEvent event. The True Remote Control Application (TRCA) subscribes to

ResultOfHomeActionEvent; and in order to calculate the MustTriggerHomeActionsContextElement

context element, it subscribes to CellphoneSubsequentLocationEvent. Finally, the Smart Home

Controller Unit (SHCU) subscribes to TriggerHomeActionEvent.

The advertisements, including the corresponding event schemas, and subscriptions for this case

study are specified as follows:

<?xml version="1.0" encoding="UTF-8"?>

<EventContractSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventContract.xsd">

<Name>TrueRemoteControlApplicationContractSet</Name>

<!-- Advertisements for Part One: -->

<EventContract xsi:type = "Advertisement">

<Name>AlarmGoesOffEventAdvertisement</Name>

<ComponentName>AlarmApplication</ComponentName>

<EventSchemaName>AlarmGoesOffEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>AlarmGoesOffEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

50

<Name>DateTime</Name>

<TypeName>xs:dateTime</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>CellphoneLocationEventAdvertisement</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>CellphoneLocationEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>CellphoneLocationEvent</Name>

<EventAttributeSchema xsi:type = "NestedEventAttributeSchema">

<Name>Location</Name>

<ChildEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Latitude</Name>

<TypeName>xs:double</TypeName>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Longitude</Name>

<TypeName>xs:double</TypeName>

</ChildEventAttributeSchema>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>CellphoneTimeChangedEventAdvertisement</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>CellphoneTimeChangedEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>CellphoneTimeChangedEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>DateTime</Name>

<TypeName>xs:dateTime</TypeName>

51

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>RemoteStarterActionEventAdvertisement</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>RemoteStarterActionEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>RemoteStarterActionEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Action</Name> <!--StartEngine, StopEngine-->

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>NotifyUserOfCarEngineStartedEventAdvertisement</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>NotifyUserOfCarEngineStartedEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>NotifyUserOfCarEngineStartedEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Result</Name>

<TypeName>xs:boolean</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>ResultOfRemoteStarterActionEventAdvertisement</Name>

<ComponentName>CarComputerControllerUnit</ComponentName>

<EventSchemaName>ResultOfRemoteStarterActionEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

52

<Name>ResultOfRemoteStarterActionEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Action</Name> <!--StartEngine, StopEngine-->

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Result</Name>

<TypeName>xs:boolean</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<!-- Advertisements for Part Two: -->

<EventContract xsi:type = "Advertisement">

<Name>CellphoneSubsequentLocationEventAdvertisement</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>CellphoneSubsequentLocationEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>CellphoneSubsequentLocationEvent</Name>

<EventAttributeSchema xsi:type = "NestedEventAttributeSchema">

<Name>Location</Name>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Latitude0</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Latitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>0</OccurrenceIndex>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Latitude1</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

53

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Latitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>1</OccurrenceIndex>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Latitude2</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Latitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>2</OccurrenceIndex>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Longitude0</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Longitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>0</OccurrenceIndex>

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Longitude1</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Longitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>1</OccurrenceIndex>

54

</ChildEventAttributeSchema>

<ChildEventAttributeSchema xsi:type = "SubsequentEventAttributeSchema">

<Name>Longitude2</Name>

<TypeName>xs:double</TypeName>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<SourceEventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Longitude</Name>

<TypeName>xs:double</TypeName>

</SourceEventAttributeSchema>

<OccurrenceIndex>2</OccurrenceIndex>

</ChildEventAttributeSchema>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>TriggerHomeActionEventAdvertisement</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>TriggerHomeActionEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>TriggerHomeActionEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Action</Name> <!--AlarmSystem, SetTemperature-->

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Value</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>NotifyUserOfHomeActionEventAdvertisement</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>NotifyUserOfHomeActionEvent</EventSchemaName>

55

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>NotifyUserOfHomeActionEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Action</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Value</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Result</Name>

<TypeName>xs:boolean</TypeName>

</EventAttributeSchema>

</EventSchema>

</EventContract>

<EventContract xsi:type = "Advertisement">

<Name>ResultOfHomeActionEventAdvertisement</Name>

<ComponentName>SmartHomeControllerUnit</ComponentName>

<EventSchemaName>ResultOfHomeActionEvent</EventSchemaName>

<EventSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="EventSchema.xsd">

<Name>ResultOfHomeActionEvent</Name>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Action</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Value</Name>

<TypeName>xs:string</TypeName>

</EventAttributeSchema>

<EventAttributeSchema xsi:type = "SimpleEventAttributeSchema">

<Name>Result</Name>

<TypeName>xs:boolean</TypeName>

56

</EventAttributeSchema>

</EventSchema>

</EventContract>

<!-- Subscriptions for Part One: -->

<EventContract xsi:type = "Subscription">

<Name>NotifyUserOfCarEngineStartedEventSub</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>NotifyUserOfCarEngineStartedEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>AlarmGoesOffEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>AlarmGoesOffEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>CellphoneLocationEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>CellphoneLocationEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>CellphoneTimeChangedEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>CellphoneTimeChangedEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>ResultOfRemoteStarterActionEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>ResultOfRemoteStarterActionEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>RemoteStarterActionEventSub</Name>

<ComponentName>CarComputerControllerUnit</ComponentName>

<EventSchemaName>RemoteStarterActionEvent</EventSchemaName>

</EventContract>

<!-- Subscriptions for Part Two: -->

57

<EventContract xsi:type = "Subscription">

<Name>NotifyUserOfHomeActionEventSub</Name>

<ComponentName>UserCellphone</ComponentName>

<EventSchemaName>NotifyUserOfHomeActionEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>ResultOfHomeActionEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>ResultOfRemoteStarterActionEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>CellphoneSubsequentLocationEventSub</Name>

<ComponentName>TrueRemoteControlApplication</ComponentName>

<EventSchemaName>CellphoneSubsequentLocationEvent</EventSchemaName>

</EventContract>

<EventContract xsi:type = "Subscription">

<Name>TriggerHomeActionEventSub</Name>

<ComponentName>SmartHomeControllerUnit</ComponentName>

<EventSchemaName>TriggerHomeActionEvent</EventSchemaName>

</EventContract>

</EventContractSet>

4.2.4.3 Context:

In part one of this case study there is one main context element: MustStartCarEngineContextElement.

This context element depends on multiple conditions: the alarm has gone off, zz minutes have passed

since the alarm went off, and the user is at home.

In order to make the calculation of the context element easier the context element is divided into

two other context elements: first, ActivationTimeHasElapsedContextElement, which depends on the

AlarmGoesOffEvent event and the CellphoneTimeChangedEvent event, and indicates if zz minutes

have passed since the alarm went off; and second, CellphoneAtHomeContextElelement, which

depends on the CellphoneLocationEvent event and indicates if the cellphone is at home. So

MustStartCarEngineContextElement hence depends on ActivationTimeHasElapsedContextElement

and CellphoneAtHomeContextElelement.

58

In part two there is one context element MustTriggerHomeActionsContextElement, which depends

on the CellphoneSubsequentLocationEvent event, and indicates if the Cellphone’s location started at

home, and is moving away from the home. CellphoneSubsequentLocationEvent stores subsequent

values of the CellphoneLocationEvent, those values are used to calculate the distance of the cellphone

to the home, if those distances are increasing it is deduced the cellphone is moving away from the

home.

Here is the specification of all context elements:

<?xml version="1.0" encoding="UTF-8"?>

<ContextSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ContextSet.xsd">

<Name>TrueRemoteControlApplicationContextSet </Name>

<!-- Context Elements for Part One: -->

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>ActivationTimeHasElapsedContextElement</Name>

<ValueType>xs:boolean</ValueType>

<SourceEventName>AlarmGoesOffEvent</SourceEventName>

<SourceEventName>CellphoneTimeChangedEvent</SourceEventName>

<CalculationExpression>

CellAsContrl_ActivationTimeHasElapsedContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>TrueRemoteControlApplication</EnvironmentName>

</ContextElement>

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>CellphoneAtHomeContextElelement</Name>

<ValueType>xs:boolean</ValueType>

<SourceEventName>CellphoneLocationEvent</SourceEventName>

<!-- Formula to check if the distance of the cellphone to home is less than 1 -->

<CalculationExpression>

CellAsContrl_CellphoneAtHomeContextElelementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>TrueRemoteControlApplication</EnvironmentName>

</ContextElement>

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>MustStartCarEngineContextElement</Name>

59

<ValueType>xs:boolean</ValueType>

<SourceContextElementName>

ActivationTimeHasElapsedContextElement

</SourceContextElementName>

<SourceContextElementName>

CellphoneAtHomeContextElelement

</SourceContextElementName>

<!-- Formula to check if the cell phone is at home

and enough time has passed since the alarm went off: -->

<CalculationExpression>

CellAsContrl_MustStartCarEngineContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>TrueRemoteControlApplication</EnvironmentName>

</ContextElement>

<!-- Context Elements for Part Two: -->

<ContextElement xsi:type = "EnvironmentContextElement">

<Name>MustTriggerHomeActionsContextElement</Name>

<ValueType>xs:boolean</ValueType>

<SourceEventName>

CellphoneSubsequentLocationEvent

</SourceEventName>

<!-- Formula to check if the cell phone was at home, and it is

now moving away: -->

<CalculationExpression>

CellAsContrl_MustTriggerHomeActionsContextElementCalculationExpression.xquery

</CalculationExpression>

<EnvironmentName>TrueRemoteControlApplication</EnvironmentName>

</ContextElement>

</ContextSet>

And the expressions to calculate the context elements are:

- CellAsContrl_ActivationTimeHasElapsedContextElementCalculationExpression.xquery:

(:Tell if a specific number of minutes has elapsed since the alarm went off:)

(: adapted from: http://www.functx.com/ :)

60

declare function local:getDayTimeDuration

($days as xs:decimal? ,

$hours as xs:decimal? ,

$minutes as xs:decimal? ,

$seconds as xs:decimal?) as xs:dayTimeDuration {

(xs:dayTimeDuration('P1D') * $days) +

(xs:dayTimeDuration('PT1H') * $hours) +

(xs:dayTimeDuration('PT1M') * $minutes) +

(xs:dayTimeDuration('PT1S') * $seconds)

} ;

let $doc_alarm := fn:doc("AlarmGoesOffEvent.xml") (: Document with the current value of the Alarm

Goes Off event :)

let $event_alarm := $doc_alarm/Event

let $event_attribute_alarm_dt := $event_alarm/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "DateTime"]

let $alarm_dt := $event_attribute_alarm_dt/Value

let $doc_time := fn:doc("CellphoneTimeChangedEvent.xml") (: Document with the current value of the

Cellphone Time Changed event :)

let $event_time := $doc_time/Event

let $event_attribute_time_dt := $event_time/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "DateTime"]

let $curr_dt := $event_attribute_time_dt/Value

let $elapsed_datetime := xs:dateTime($alarm_dt) + local:getDayTimeDuration(0,

0,

xs:decimal(15),

0)

return if ($alarm_dt) then

$elapsed_datetime <= xs:dateTime($curr_dt)

else

false()

61

- CellAsContrl_CellphoneAtHomeContextElelementCalculationExpression.xquery:

(: Calculate distance to home :)

declare function local:distance-to-home-in-kms

($latitude as xs:double, $longitude as xs:double, $reflatitude as xs:double, $reflongitude as

xs:double) as xs:double? {

1

} ;

(: From the values of the Location Event, return if the distance to home is less than 1 :)

let $doc := fn:doc("CellphoneLocationEvent.xml") (: Document with the values of the current instance

of the event :)

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "NestedEventAttribute" and

ParentAttributeSchemaName = "Location"]

let $lat_child := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute" and

./SimpleEventAttributeSchemaName = "Latitude"]

let $lat := $lat_child/Value

let $lon_child := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute" and

./SimpleEventAttributeSchemaName = "Longitude"]

let $lon := $lat_child/Value

return local:distance-to-home-in-kms($lat, $lon, 43.47, -80.54) < 1

- CellAsContrl_MustStartCarEngineContextElementCalculationExpression.xquery:

(:Tell if the cell phone is at home and enough time has passed since the alarm went off:)

let $doc_home := fn:doc("CellphoneAtHomeContexElementValue.xml") (: Document with the current

value of the Cellphone At Home context :)

let $doc_enough_elapsed_time := fn:doc("ActivationTimeHasElapsedContextElementValue.xml") (:

Document with the current value of the Meeting In Progress context :)

let $at_home := $doc_home/Value

let $enough_time := $doc_enough_elapsed_time/Value

return ($at_home = true()) and ($enough_time = true())

62

- CellAsContrl_MustTriggerHomeActionsContextElementCalculationExpression.xquery:

(: Calculate distance to home :)

declare function local:distance-to-home-in-kms

($latitude as xs:double, $longitude as xs:double, $reflatitude as xs:double, $reflongitude as

xs:double) as xs:double? {

1

} ;

(: From the value of the first occurrence of the Location Event tell if the distance to home is less than

1,

and in subsequent occurrences the distance to home has increased :)

let $doc := fn:doc("CellphoneSubsequentLocationEvent.xml") (: Document with the values of the

current instance of the event :)

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "NestedEventAttribute" and

ParentAttributeSchemaName = "Location"]

let $lat_child0 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Latitude0"]

let $lat0 := $lat_child0/Value

let $lat_child1 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Latitude1"]

let $lat1 := $lat_child1/Value

let $lat_child2 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Latitude2"]

let $lat2 := $lat_child2/Value

let $lon_child0 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Longitude0"]

let $lon0 := $lon_child0/Value

let $lon_child1 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Longitude1"]

let $lon1 := $lon_child1/Value

63

let $lon_child2 := $event_attribute/ChildEventAttribute[@xsi:type = "SimpleEventAttribute"

and ./SimpleEventAttributeSchemaName = "Longitude2"]

let $lon2 := $lon_child2/Value

let $dist0 := local:distance-to-home-in-kms($lat0, $lon0, 43.47, -80.54)

let $dist1 := local:distance-to-home-in-kms($lat1, $lon1, 43.47, -80.54)

let $dist2 := local:distance-to-home-in-kms($lat2, $lon2, 43.47, -80.54)

return

($dist0 < 1)

and

($dist1 > $dist0)

and

($dist2 > $dist1)

4.2.4.4 Features:

For this case study only the Cellphone exposes features, and there are used to notify the user of results

of actions initiated by the True Remote Control Application:

<?xml version="1.0" encoding="UTF-8"?>

<ComponentFeatureSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeatureSet.xsd">

<Name>UserCellphoneComponentFeatureSet</Name>

<ComponentName>UserCellphone</ComponentName>

<ExposedFeature xsi:type= "CompoundFeature">

<Name>Email</Name>

<Feature xsi:type= "SimpleFeature">

<Name>To</Name>

<TypeName>xs:string</TypeName>

</Feature>

<Feature xsi:type= "SimpleFeature">

<Name>From</Name>

<TypeName>xs:string</TypeName>

</Feature>

<Feature xsi:type= "SimpleFeature">

64

<Name>Subject</Name>

<TypeName>xs:string</TypeName>

</Feature>

<Feature xsi:type= "SimpleFeature">

<Name>Message</Name>

<TypeName>xs:string</TypeName>

</Feature>

</ExposedFeature>

<ExposedFeature xsi:type= "CompoundFeature">

<Name>MessageBox</Name>

<Feature xsi:type= "SimpleFeature">

<Name>Title</Name>

<TypeName>xs:string</TypeName>

</Feature>

<Feature xsi:type= "SimpleFeature">

<Name>Message</Name>

<TypeName>xs:string</TypeName>

</Feature>

</ExposedFeature>

<ExposedFeature xsi:type= "CompoundFeature">

<Name>SMS</Name>

<Feature xsi:type= "SimpleFeature">

<Name>From</Name>

<TypeName>xs:string</TypeName>

</Feature>

<Feature xsi:type= "SimpleFeature">

<Name>Message</Name>

<TypeName>xs:string</TypeName>

</Feature>

</ExposedFeature>

<ExposedFeature xsi:type= "CompoundFeature">

<Name>Alarm</Name>

<Feature xsi:type= "SimpleFeature">

<Name>Message</Name>

<TypeName>xs:string</TypeName>

65

</Feature>

<Feature xsi:type= "SingleValueEnumeratedFeature">

<Name>Sound</Name>

<PossibleValue>Sound1</PossibleValue>

<PossibleValue>Sound2</PossibleValue>

</Feature>

</ExposedFeature>

</ComponentFeatureSet>

Features are then grouped into profiles so a single profile can consist of multiple features, for

instance, send an email and a SMS.

For this example the set of available profiles are:

<?xml version="1.0" encoding="UTF-8"?>

<EnvironmentFeaturesProfilesSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeaturesProfileSet.xsd">

<Name>UserCellphoneEnvironmentFeaturesProfileSet</Name>

<ComponentFeaturesProfileSet>

<Name>UserCellphoneFeaturesProfileSet</Name>

<ComponentName>UserCellphone</ComponentName>

<FeaturesProfile>

<Name>CarEngineStartedProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>SMS</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>From</FeatureName>

<Value>True Remote Control</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Message</FeatureName>

<Value>Car Engine has been successfully started</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>CarEngineNOTStartedProfile</Name>

66

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>MessageBox</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Title</FeatureName>

<Value>WARNING</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Message</FeatureName>

<Value>Car Engine has NOT been started</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>HomeTemperatureSetProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>SMS</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>From</FeatureName>

<Value>True Remote Control</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Message</FeatureName>

<Value>The home temperature was set successfully</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>HomeTemperatureNOTSetProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>MessageBox</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Title</FeatureName>

<Value>WARNING</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

67

<FeatureName>Message</FeatureName>

<Value>The home temperature was NOT set successfully</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>HomeAlarmEngagedProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>SMS</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>From</FeatureName>

<Value>True Remote Control</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Message</FeatureName>

<Value>The home alarm has been engaged successfully</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

<FeaturesProfile>

<Name>HomeAlarmNOTEngagedProfile</Name>

<FeatureInstance xsi:type = "CompoundFeatureInstance">

<FeatureName>MessageBox</FeatureName>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Title</FeatureName>

<Value>WARNING</Value>

</FeatureInstance>

<FeatureInstance xsi:type= "SingleValueEnumeratedFeatureInstance">

<FeatureName>Message</FeatureName>

<Value>The home alarm was NOT engaged successfully</Value>

</FeatureInstance>

</FeatureInstance>

</FeaturesProfile>

</ComponentFeaturesProfileSet>

</EnvironmentFeaturesProfilesSet>

68

Finally, the feature profile selector stores what to do depending on the success or failure and the

type of action triggered by the True Remote Control Application (TRCA).

The selector stores a set of profiles and the conditions that must be true for each profile to be

selected: in this case study the selector is pretty straight forward, there is a profile for each successful

action triggered by the TRCA, and the corresponding not conditions in case the actions were not

successful:

<?xml version="1.0" encoding="UTF-8"?>

<FeaturesProfileSelector xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ComponentFeaturesProfileSelector.xsd">

<Name>UserCellphoneEnvironmentFeaturesProfileSelector</Name>

<!-- Part One: -->

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>CarEngineStartedProfileCondition</ConditionName>

<FeaturesProfileName>CarEngineStartedProfile</FeaturesProfileName>

<ReferredEventName>NotifyUserOfCarEngineStartedEvent</ReferredEventName>

<ConditionExpression>

NotifyUserOfCarEngineStarted_EnginedStartedSuccessfully.xquery

</ConditionExpression>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileNotCondition">

<ConditionName>CarEngineNOTStartedProfileCondition</ConditionName>

<FeaturesProfileName>CarEngineNOTStartedProfile</FeaturesProfileName>

<ConditionToNegateName>CarEngineStartedProfileCondition</ConditionToNegateName>

</FeaturesProfileCondition>

<!-- Part Two: -->

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>HomeTemperatureSetProfileCondition</ConditionName>

<FeaturesProfileName>HomeTemperatureSetProfile</FeaturesProfileName>

<ReferredEventName>NotifyUserOfHomeActionEvent</ReferredEventName>

<ConditionExpression>

NotifyUserOfHomeActionEvent_TemperatureSet.xquery

</ConditionExpression>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileNotCondition">

69

<ConditionName>HomeTemperatureNOTSetProfileCondition</ConditionName>

<FeaturesProfileName>HomeTemperatureNOTSetProfile</FeaturesProfileName>

<ConditionToNegateName>HomeTemperatureSetProfileCondition</ConditionToNegateName>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileIfCondition">

<ConditionName>HomeAlarmEngagedProfileCondition</ConditionName>

<FeaturesProfileName>HomeAlarmEngagedProfile</FeaturesProfileName>

<ReferredEventName>NotifyUserOfHomeActionEvent</ReferredEventName>

<ConditionExpression>

NotifyUserOfHomeActionEvent_AlarmEngaged.xquery

</ConditionExpression>

</FeaturesProfileCondition>

<FeaturesProfileCondition xsi:type = "FeaturesProfileNotCondition">

<ConditionName>HomeAlarmNOTEngagedProfileCondition</ConditionName>

<FeaturesProfileName>HomeAlarmNOTEngagedProfile</FeaturesProfileName>

<ConditionToNegateName>HomeAlarmEngagedProfileCondition</ConditionToNegateName>

</FeaturesProfileCondition>

</FeaturesProfileSelector>

The three conditions are specified as follows:

- NotifyUserOfCarEngineStarted_EnginedStartedSuccessfully.xquery:

(:Tell if the car has been started successfully:)

let $doc := fn:doc("NotifyUserOfCarEngineStartedEvent.xml") (: Document with the value of the

current instance of the event :)

let $event := $doc/Event

let $event_attribute := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "Result"]

let $res := $event_attribute/Result

return $res

- NotifyUserOfHomeActionEvent_TemperatureSet.xquery

(:Tell if the temperature was set successfully:)

let $doc := fn:doc("NotifyUserOfHomeActionEvent.xml") (: Document with the value of the current

instance of the event :)

let $event := $doc/Event

let $event_attr_action := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

70

SimpleEventAttributeSchemaName = "Action"]

let $action := $event_attr_action/Value

let $event_attr_res := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "Result"]

let $res := $event_attr_res/Value

return ($action = xs:string("Temperature"))

and

($res = true())

- NotifyUserOfHomeActionEvent_AlarmEngaged.xquery:

(:Tell if the alarm was engaged successfully:)

let $doc := fn:doc("NotifyUserOfHomeActionEvent.xml") (: Document with the value of the current

instance of the event :)

let $event := $doc/Event

let $event_attr_action := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "Action"]

let $action := $event_attr_action/Value

let $event_attr_value := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "Value"]

let $value := $event_attr_value/Value

let $event_attr_res := $event/EventAttribute[@xsi:type = "SimpleEventAttribute" and

SimpleEventAttributeSchemaName = "Result"]

let $res := $event_attr_res/Value

return ($action = xs:string("Alarm"))

and

($value = xs:string("on"))

and

($res = true())

71

Chapter 5

Conclusion and Future Work

This document has defined a metamodel capable of modeling context awareness and behavior

adaptation using the publish–subscribe principles of distributed event-based systems. The metamodel

includes all elements needed to model scenarios where context plays a primary role. It also allows for

the use of event-based system features such as event filtering, event enrichment, and event

transformations.

Even though the concept of such a metamodel has been previously suggested in the literature, the

rough idea was taken and matured to a point where modeling of complex cases is possible. In

addition, by allowing context elements to depend on events and vice versa; and by defining context as

a generic concept, the metamodel gains the flexibility of not being domain specific. It also provides

options on how to model the flow of context-related information. Finally, it provides mechanisms,

such as feature profiles selectors and event propagation, to model adaptation.

The main contribution of this metamodel is to open the possibility of making the design, and

ultimately the development of context-aware applications, easier: if the basic concepts are

implemented on the operating system level of mobile devices, and a GUI or an easy-to-use API is

provided; as well as having a DEBS middle-layer on the cloud that could be accessible by the

devices, the development of context-aware applications on mobile devices would be simplified

immensely. If this point is reached, there is the potential to provide a platform for regular developers

to include context awareness into their applications, or inspire them to create new context-aware

applications altogether without the difficulty that this type of application presents today.

Finally, providing tools to facilitate the design and implementation of context-aware applications

may become even more important as new concepts such as mobile cloud computing emerge. These

concepts reduce the limitation of mobile devices, but may increase the complexity of designing and

implementing applications. So if the design of context awareness can be simplified and its

implementation provided by external tools like the ones suggested in this chapter, the design and

development processes can concentrate on domain-specific functionality.

In addition to the long term plans for implementation, more immediate suggestions for future work

are provided. First, besides features, and events, other mechanisms to trigger the behavior adaptation

of a component can be defined. During the design of the case studies using the metamodel, translating

72

actions or instructions to features proved difficult and a little bit unnatural. Introducing the concept of

actions can be a good complement to features. Features work well with simple adaptations, such as

how a phone call is received, but in the future, differentiating between features and actions may prove

useful in the quest of facilitating the design of context aware applications.

Second, another potential improvement is to introduce additional DEBS concepts into the

metamodel such as access roles to control the propagation of context-related information. Access

roles restrict the power of certain components to subscribe to particular events [4]. However,

environments can provide such functionality for now. Finally, the concept of time-to-live, can also be

introduced as a mechanism to enhance security and privacy of context data.

73

Bibliography

[1] A. K. Dey. Understanding and Using Context. Personal and ubiquitous computing, vol. 5.1,
pages 4-7, 2001.

[2] B. Schilit, N. Adams, and R. Want. Context‐aware computing applications. In Proceedings of

IEEE Workshop on Mobile Computing Systems and Applications, pages 85‐ 90. IEEE

Computer Society Press. Santa Cruz, California, Dec 1994.
[3] P. J. Brown, J. D. Bovey, X. Chen. Context‐aware applications: from the laboratory to the

marketplace. IEEE Personal Communications, vol: 4.5. Oct 1997.
[4] R. Blanco, P. S. C. Alencar. Towards Modularization and Composition in Distributed Event-

Based Systems Technical report, David R. Cheriton School of Computer Science, University
of Waterloo, CS-2009-08.

[5] R. Blanco. Process Models for Distributed Event-Based Systems. PhD thesis, David R.
Cheriton School of Computer Science, University of Waterloo, 2010.

[6] J. C. Georgas, R. N. Taylor. Policy-Based Architectural Adaptation Management: Robotics
Domain Case Studies. In Software Engineering for Self-Adaptive Systems, pages: 89-108,
Springer Berlin Heidelberg, 2009.

[7] Adaptive Computing Concept - Adaptive Computing Controller in SAP NetWeaver. Aug
2012. Retrieved from: http://scn.sap.com/docs/DOC-8725 and:
https://help.sap.com/saphelp_nwpi71/helpdata/en/46/0714a4e3f34f08e10000000a114a6b/fra
meset.htm. Accessed on: Dec 2014

[8] K. Pocek, R. Tessier, and A. DeHon. Birth and Adolescence of Reconfigurable Computing: A
Survey of the First 20 Years of Field-Programmable Custom Computing Machines. In
Highlights of the First Twenty Years of the IEEE International Symposium on Field-
Programmable Custom Computing Machines. 2013

[9] J. Hoey, C. Boutilier, P. Poupart, P. Olivier, A. Monk, and A. Mihailidis. People, sensors,
decisions: Customizable and adaptive technologies for assistance in healthcare. ACM
Transactions on Interactive Intelligent Systems (TiiS) - Special issue on highlights of the
decade in interactive intelligent systems archive. vol: 2.4, Dec 2012.

[10] M. Weiser. The Computer for the Twenty-First Century. Scientific American, vol:265.3,
pages: 94–104, 1991.

[11] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya. Heterogeneity in Mobile Cloud Computing:
Taxonomy and Open Challenges. IEEE Communication Surveys and Tutorials, vol. 16.1,
2014

[12] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things: Vision,
applications and research challenges. Ad Hoc Networks, vol: 10. 7, pages 1497-1516, Sep
2012.

[13] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos. Context Aware Computing for
The Internet of Things: A Survey. IEEE Communication Surveys and Tutorials, vol. 16.1,
2014

[14] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier. The internet of things
for ambient assisted living. In Information Technology: New Generations (ITNG), 2010
Seventh International Conference on, pages: 804-809. 2010.

74

[15] P. Hu, J. Indulska, and R. Robinson. An autonomic context management system for
pervasive computing. In Pervasive Computing and Communications, 2008 Sixth Annual
IEEE International Conference, pages : 213 –223, Mar 2008.

[16] D. Zhang, H. Huang, C. Lai, X. Liang, Q. Zou, M. Guo. Survey on context-awareness in
ubiquitous media. Multimedia Tools and Applications, vol: 67.1, pages 179-211. 2013.

[17] P. Nurmi and P. Floréen. Reasoning in Context-Aware Systems. Position paper, Helsinki
Institute for Information Technology (HIIT) - Basic Research Unit (BRU), Dec 2004.

[18] E. S. Barrenechea, P. S. C. Alencar, R. Blanco, D. Cowan. Context-Awareness and
Adaptation in Distributed Event-Based Systems. Technical report, David R. Cheriton School
of Computer Science, University of Waterloo, CS-2011-14.

[19] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, vol. 35.2, pages: 114-131, 2003.

[20] E. S. Barrenechea. A Context-Aware Publish–Subscribe Scheme. 29th ACM SYMPOSIUM
ON APPLIED COMPUTING, Gyeongju, Korea, Mar 2014.

[21] E.Castillejo, A. Almeida, D. López-de-Ipiña. Modelling users, context and devices for
adaptive user interface systems. International Journal of Pervasive Computing and
Communications, vol. 10.1, pages 69-91, Emerald Group Publishing Limited, UK, Apr 2014.

[22] G. M. Voelker, B. N. Bershad. Mobisaic: An information system for a mobile wireless
computing environment. Mobile Computing, pages: 375–395, 1996.

[23] WWW Consortium. User agent profile (uaprof). 2001. Retrieved from:
http://www.w3.org/2002/02/DIWS/presentations/nilsson/nilsson.pdf?q=uaprof. Accessed on:
Dec 2014.

[24] WWW Consortium. Composite capability/preference profiles: structure and vocabularies
2.0—W3C working draft. 2007. Retrieved from: http://www.w3.org/TR/2007/WD-CCPP-
struct-vocab2-20070430/. Accessed on Dec. 2014.

[25] K. Cheverst, K. Mitchell and N. Davies. Design of an object model for a context sensitive
tourist GUIDE. Computers and Graphics, vol. 23.12, pages: 883-891, 1999

[26] A. Gomez-Perez, O. Corcho, and M. Fernandez-Lopez. Ontological Engineering : with
examples from the areas of Knowledge Management, e-Commerce and the Semantic Web.
First Edition (Second Printing). Springer, July 2004

[27] WWW Consortium Web Ontology Language (OWL). Retrieved from:
http://www.w3.org/TR/owl-features/. Accessed on: Dec. 204.

[28] H. Chen, T. Finin, A. Joshi. An intelligent broker architecture for context-aware systems.
Adjunct proceedings of Ubicomp., vol. 3. 2003.

[29] H. Chen, T. Finin, A. Joshi. Using OWL in a pervasive computing broker. DTIC Document.
2005.

