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Abstract 

   The sense of touch commences when afferent sensory signals from the periphery 

ascend via the spinal cord to the cortex.  At the cortical level, incoming peripheral signals 

are susceptible to neuronal modulation at the primary somatosensory cortex; the principle 

region responsible for tactile perception.  This modulation is largely influenced by two 

attentional mechanisms: 1) Bottom-up attention whereby salient stimuli automatically 

capture attention; and/or, 2) Top-down or selective attention, whereby relevant sensory 

signals are voluntarily selected for in-depth cognitive processing, while irrelevant signals 

are ignored.  Selective attention to both task-relevant stimuli as well as to crossmodal 

sensory interactions can facilitate neuronal responses at very early stages in modality-

specific sensory regions.  Efforts to understand the mechanisms underlying top-down 

attention suggest that the prefrontal cortex (PFC) has a critical role in the modulation of 

modality-specific regions by gating or suppressing irrelevant sensory information.  Recent 

evidence suggests that an acute bout of moderate intensity aerobic exercise upregulates 

PFC excitability thereby facilitating cognitive tasks requiring top-down attentional control, 

particularly in older populations.  However, the specific contribution of each sensory 

system during attentional processing and, importantly, how these interact with the 

required behavioural motor goals remains unclear.  It is also unclear whether acute bouts 

of moderate intensity aerobic exercise modulate cortical regions downstream from the 

PFC, such as the somatosensory cortex.  This thesis will aim to address these questions in 

order to gain a better understanding of the neural mechanisms underlying somatosensory 

processing, and whether aerobic exercise can be used as a plausible intervention strategy 

for sensory processing impairments that are often associated with normal aging. 
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Chapter 1 – Introduction 
 
1.1 Overview of thesis proposal 

Chapter 1 outlines the general objectives of the thesis, followed by a review of 

relevant literature pertaining to the anatomy and physiology of somatosensory cortex, the 

sensory-gating role of the prefrontal cortex in modulating task‐relevant sensory 

information in modality-specific sensory regions, and how aerobic exercise influences 

attention-related cortical activity during sensory processing.  Chapters 2-5 detail the 

rationale, hypotheses, methods, results, discussion, and conclusions of the research studies 

to the thesis.  Chapter 6 includes a general discussion of the findings of the thesis, its 

limitations, and future directions for study.   

 
1.2 General objective of thesis 

 The general objective of this thesis is to probe the sensory-gating role of the 

prefrontal cortex (PFC) to examine the neural mechanisms underlying top-down 

attentional control on modality-specific somatosensory cortex.  On a larger scale, 

investigating factors that up-regulate or enhance neuronal activity in the PFC is critical for 

gaining a better understanding of the well-documented impairments in cognitive control 

and sensory processing often observed in elderly populations.  Research in animal models 

and patients with focal lesions in the PFC have provided compelling evidence for the 

sensory-gating role of the PFC in the suppression of task-irrelevant sensory information 

(Jacobson et al., 1935; Skinner and Yingling, 1976; Yingling and Skinner, 1976; Yamaguchi 

and Knight, 1990; Chao and Knight, 1998; Knight et al., 1999).  In all of these studies, PFC 

damage resulted in the disinhibition of distractor stimuli in a range of sensorimotor and 

cognitive processes.  These findings provide support for the “distractibility hypothesis of 
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PFC function”, first proposed in 1942 by Malmo, and later again by Bartus and Levere in 

1977.  As stated by Knight et al. (1999), this hypothesis implies that the PFC exerts 

“selective and parallel inhibition and excitation control to remote brain regions during a 

variety of behaviours”.  Notably, inhibitory control impairments such as: inhibiting 

proponent responses that are no longer task relevant and ignoring distractor stimuli in the 

environment are among the most consistently reported in older adults (Rabbitt, 1965; 

Kausler and Hakami, 1982; Hasher and Zacks, 1988; Yamaguchi and Knight, 1990; Fabiani 

et al., 2006; Reuter-Lorenz and Park, 2010; Bolton and Staines, 2012).  Neuroimaging data 

has shown that with increasing age, atrophy of frontal lobe regions is disproportionately 

greater relative to other brains areas (Haug and Eggers, 1991), with the greatest shrinkage 

occurring in medial temporal areas of the frontal lobe (Raz, 2000). Collectively, these 

findings suggest that the distractibility hypothesis of PFC function may also explain 

inhibitory control impairments seen in elderly populations.    

 Studies investigating multimodal integration suggest that top-down attentional 

control is critical for driving modulation of early stages of cortical processing during a 

sensory to motor integration task (Dionne et al., 2010, 2013).  Moreover, growing evidence 

suggests that acute bouts of aerobic exercise selectively enhance neuronal excitability in 

frontal lobe regions, thereby facilitating cognitive performance in tasks involving executive 

functions (Hillman et al., 2004; Hatta et al., 2005; Themanson et al., 2006; Hillman et al., 

2008, 2009; Kamijo et al., 2010; Yanagisawa et al., 2010).  Although crossmodal integration 

or aerobic exercise are not the only factors that seem to influence PFC excitability, the 

studies presented in this thesis seek to investigate whether enhanced attentional control, 

mediated likely via the PFC, will enhance somatosensory ERPs generated over modality-
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specific and multimodal cortices during selective attentional processing of tactile 

information.  The interaction of vision and touch is of particular interest since information 

from these modalities is often used to guide motor behaviour.  Effects of vision on 

somatosensory event‐related potential (ERP) components suggest that vision may 

modulate excitability in SI (as inferred by modulation of somatosensory ERP components) 

during a tactile acuity task, and that this modulation is associated with an improvement in 

acuity (Taylor-Clarke et al., 2002).  It is known that stimulus relevance and selective 

attention can modulate early stages of somatosensory processing (Dionne et al., 2010, 

2013).  The purpose of this thesis is to further explore somatosensory processing by 

investigating whether factors such as bottom-up sensory-sensory interactions, behavioural 

context, or aerobic exercise, also modulate neuronal responses in modality-specific SI.  

 

1.3 Background research 

1.3.1 Functional organization of somatosensory cortex 
 
 The somatosensory cortex is the brain region responsible for processing somatic 

signals related to the body (i.e. touch, temperature, pain, position).  Somatosensory 

information is represented in multiple brain regions, but the primary and secondary 

somatosensory cortices (SI and SII) are the principal regions for tactile perception 

(Johansen-Berg et al., 2000).  SI is located caudal to the central sulcus in the postcentral 

gyrus of the parietal lobe, while SII is found in the most lateral portion adjacent to the 

Sylvian fissure.  SI is arranged in a somatotopically organized map with feet and face 

representations lying most medial and lateral, respectively.  Four functionally and 

anatomically distinct Brodmann areas comprise SI: 3a, 3b, 1 and 2, with area 3a located 
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anterior and area 2 located to posterior along the postcentral gyrus.  Somatosensory 

processing occurs when peripheral inputs from the dorsal column‐medial lemniscal system 

reach Brodmann areas via thalamic sensory nuclei.  The majority of thalamic fibres 

terminate in areas 3a and 3b, while surrounding cells send small projections to areas 1 and 

2.  Independent thalamocortical inputs generated by cutaneous afferents are received by 

areas 3b and 1.  Proprioceptive inputs from peripheral muscle and joint afferents are 

received by areas 3a and 2.  The input to 3b is primarily thalamocortical, however input 

from 3b to areas 1 and 2 consist of thalamocortical and cortico-cortical projections.  Lesion 

studies in primate have shown that damage to: area 1 impairs texture discrimination, area 

2 impairs contour recognition, while global somatic deficits are produced following damage 

to area 3b since it is the main pathway for cutaneous input to areas 1 and 2 (Randolph and 

Semmes, 1974; Carlson, 1981).  Furthermore, the removal of neural connections in the 

hand area of SI resulted in abolished SII activation, while removal of SII regions had no 

effect on SI neuronal responses following stimulation to the hand.  Each Brodmann area in 

SI is extensively interconnected so that processing in adjacent, higher-order sensory 

regions, including SII, can refine the information of a single sensory modality.  

 SII (also known as the parietal operculum) receives thalamocortical and cortico-

cortical projections from thalamic somatosensory nuclei and post-central somatosensory 

areas, respectively.  Somatotopic mapping of the body surface is less precise in SII and 

lesions in this area tend to produce more complex somatosensory disorders than lesions of 

SI (Garcha and Ettlinger, 1978).  This is in line with the role of SII in executing higher‐order 

somatosensory functions including tactile discrimination, memory and learning, as well as, 

somatosensory engagement of the motor system at the cortical level (Burton et al., 1997; 
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Mima et al., 1998; Johansen-Berg et al., 2000; Fujiwara et al., 2002). Studies indicate 

bilateral SII activation during somatosensory stimulation, although larger SII responses are 

typically found in regions contralateral to stimulation (Johansen-Berg et al., 2000; Nelson 

et al., 2004).  However, several studies have demonstrated that SI cortical activity is also 

modulated by higher-order processes including selective attention (Meyer et al., 1991; 

Johansen-Berg et al., 2000; Popovich et al., 2010; Roland, 2012).   

 Higher-order sensory areas also send refined output information to multimodal 

association areas that, in turn, have the capability to integrate sensory information from 

multiple sensory modalities and co-ordinate goal-oriented behavioural responses.  The 

posterior parietal cortex (Brodmann areas 5, 7), is considered to be a multimodal 

association area that receives input from SI and sends projections to the motor areas of the 

frontal lobe.  Area 5 integrates tactile information from the skin’s mechanoreceptors of 

both hands with proprioceptive signals from underlying muscles and joints.  Area 7 

receives and integrates tactile and visual proprioceptive inputs.  Thus, the PPC is believed 

to have an important role in sensory integration and in the guidance and execution of 

motor actions.  

 

1.3.2 Cortical somatosensory processing of tactile information 
 
 The somatosensory cortex, SI in particular, receives a wide range of somatic signals 

from different peripheral receptors including: mechanoreceptors for touch, vibration 

and/or pressure, thermoreceptors for thermal sensations, and nociceptors for pain.  

Humans possess four types of cutaneous afferent fibers which are classified based on how 

they adapt to constant skin indentation (Vallbo and Johansson, 1984).  Slowly‐adapting 
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(SA) fibers are associated with Merkel cells and Ruffini receptor endings, which during 

constant skin indentation and increased indentation, exhibit sustained discharge and 

increased firing rates, respectively.  Rapidly‐adapting (RA) fibers are associated with 

Meissner and Pacinian mechanoreceptors, which exhibit robust neuronal responses to the 

onset and offset of indentation.  Notably, each of these fibres selectively responds to 

different spatiotemporal features of the stimulus (Talbot et al., 1968; Mountcastle et al., 

1972).   

 Before the brain can process somatic signals received at one of these receptors, 

peripheral input must travel via afferent nerve fibres to dorsal root ganglion neurons in the 

dorsal root of spinal nerves.  At the level of the spinal cord is where sensory pathways to 

the cortex diverge such that touch and proprioceptive inputs are transmitted via refined 

large diameter axons, while small axons send information regarding temperature and pain.  

Due to the potentially harmful nature of sensory information regarding temperature and 

pain, these peripheral signals follow a different, more direct pathway to the cortex.  The 

sense of touch commences when peripheral signals carrying information about tactile 

stimuli impinge on the body’s surface via mechanoreceptors of the skin.  These signals are 

transmitted via central axons of dorsal root ganglion cells that convey information about 

the properties of mechanical contact (i.e. place, mode, intensity), before they enter the 

ipsilateral dorsal columns of the spinal cord, and travel to dorsal column nuclei of the 

medulla via the dorsal-column medial lemniscus pathway.  At the medulla, somatosensory 

signals synapse onto secondary sensory neurons, which cross-over or decussate, to the 

contralateral side of the medulla before projecting to and terminating at, the ventral 

posterior lateral (VPL) region of the thalamus.  VPL thalamic neurons receiving these 
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inputs then send projections to somatosensory regions, whereby the most thalamic input 

terminates in Brodmann areas 3a and 3b, which in turn project to 1 and 2.  The VPL 

thalamic neurons also send some sparse but direct projections to areas 1 and 2.   

 SI is functionally organized with neuronal columns specified for peripheral 

stimulation mode and location, thereby ensuring that the integrity of somatic signals is 

maintained as peripheral input travels from receptor to cortex (Mountcastle, 1997).  In 

order to optimize neuronal efficiency, intracortical projections connect functionally related 

columns.  SI neurons exhibit similar firing rates to cutaneous afferents thus can also be 

classified as rapidly or slowly adapting mechanoreceptors (Talbot et al., 1968; Mountcastle 

et al., 1972).  A separate somatotopic representation of body form is associated with each 

of the four somatosensory areas, whereby a direct relationship between peripheral 

innervation density and cortical representation exists.  As sensory information progresses 

through SI (i.e. area 3b to 1), modality and spatial specificity shifts to a more universal 

convergence of information to inform higher order processing.  Once SI processes 

thalamocortical input, it sends cortico‐cortical projections to posterior parietal, temporal, 

and frontal lobes (Kandel et al., 1991).  

 

1.3.3 Task-relevant selective attention modulations in somatosensory cortex 
 
 Two cognitive processes can mediate attention.  Bottom-up attention refers to when 

salient stimuli automatically capture attention.  Top-down or selective attention describes 

when relevant sensory signals are selected for further in-depth cognitive processing, while 

irrelevant signals are ignored.  Neurophysiological primate studies provide evidence that 

selective attention to somatosensory information enhances neurophysiological responses 
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in modality-specific somatosensory cortical regions.  Hsiao et al. (1993) trained monkeys to 

perform separate tactile and visual discrimination tasks.  In the tactile task, rewards were 

delivered only after the monkey correctly identified whether a letter displayed on a 

monitor matched the pattern of an embossed letter rotated against their fingertip.  In the 

visual task, the same tactile pattern was delivered to the fingertip, but rewards were 

delivered only after the monkey correctly identified when one of three light-emitting diode 

displays dimmed.  Results showed that neuronal responses elicited during the tactile 

versus visual discrimination task only produced increased SI firing rates, while both 

increased and decreased firing rates were observed in SII (Hsiao et al., 1993). Similarly, 

Chapman et al. (1994) found that performance of a tactile discrimination task increased 

neuronal responses in the SI of monkey cortex.  Nelson et al. (1991), recorded vibratory 

stimulus-related responses from monkey SI while the animal performed either a: 1) 

movement task, whereby vibratory stimuli acted as a go-cue for wrist movement, or 2) no-

movement task, whereby the same vibratory stimuli required no movement.  Deep 

receptive field neurons located in Brodmann areas 3a, 3b, and 1, and cutaneous receptive 

fields in area 3b of the SI, showed enhanced firing rates during the movement task relative 

to the no-movement task (Nelson et al., 1991).   

 Additional studies investigating attentional effects in SI using tactile stimuli, have 

failed to report such an association (Hyvärinen et al., 1980; Poranen and Hyvärinen, 1982; 

Hämäläinen et al., 2002).  Differences in the nature of the task used to examine SI 

attentional effects may be responsible for these oppositional findings.  For example, in a 

functional magnetic resonance imaging (fMRI) study by Nelson et al. (2004), both 

attentional demand requirements and the physical characteristics of the tactile stimuli 
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were manipulated.  During the attend condition, participants detected slight variations in 

the stimulus amplitude of the tactile stimuli, while in the ignore condition, trains of similar 

tactile stimuli were ignored.  Due to the variations in attentional demand and stimulus 

attributes, it is possible that the greater habituation effects observed in SI during ignore 

versus attend conditions may have inflated the activation differences between the 

conditions.  Conversely, a fMRI study by Hamalainen et al. (2002), found no attentional 

effects in SI using an oddball paradigm comprised of ignore and attend conditions, but 

during the ignore condition, tactile stimuli were passively ignored and no further task was 

given.  Johansen-Berg and Lloyd (2000) argue that it is difficult to control attentional focus 

when no distractor stimuli are used in ignore conditions to ensure disengagement from the 

tactile stimuli.  Thus, the lack of SI attentional effects found in this study may be a result of 

the passive nature of the ignore condition.  

 Human neuroimaging studies, using Positron Emission Tomography (PET), or fMRI, 

have shown that somatosensory discrimination tasks increased regional blood flow in SI 

and SII regions during task-relevant versus irrelevant stimuli (Roland, 1981; Meyer et al., 

1991; Pardo et al., 1991; Burton et al., 1999; Johansen-Berg et al., 2000; Nelson et al., 2004; 

Sterr et al., 2007).  Using fMRI, Nelson et al. (2004), reported a significant increase in 

percent signal change and activation volume in SI with attention, while Johansen-Berg et al. 

(2000) and Staines et al. (2002), reported increased brain activity, as measured by the 

blood oxygenated level dependent (BOLD) signal changes in SI and SII of equal magnitude, 

during attended versus unattended tactile conditions.  Decreased SI activity has been 

observed when attention is guided towards a different spatial location of the body (Drevets 

et al. 1995), or to a different sensory modality (Haxby et al., 1994; Kawashima et al., 1995; 
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Fiez et al., 1996).  Yet, some neuroimaging studies have failed to report any attentional 

effects in SI (Backes et al., 2000; Hoechstetter et al., 2000; Hämäläinen et al., 2002), or have 

reported diminished attention-related SI activation compared to that generated in SII 

(Mima et al., 1998; Fujiwara et al., 2002; Chen et al., 2008).  It is likely that these opposing 

findings are due to differences in the characteristics of the tactile stimuli employed or in 

the attentional demand of the task.  Another possibility for these discrepant findings may 

be that the neuroimaging technique used may not be sensitive enough to detect discrete 

changes in neuronal modulation.  Thus, techniques equipped with exquisite temporal 

resolution, such as electroencephalography (EEG) and magnetoencephalography (MEG) 

may be better-suited to understanding the neural mechanisms underlying attentional 

effects in modality-specific cortices. 

Attention-related enhancements of SI activity using these techniques are well-

documented, with reports of increased modulation occurring at early components of 

somatosensory evoked potentials (SEPs) (Desmedt et al., 1983; Desmedt and Tomberg, 

1989; Josiassen et al., 1990; Garcia-Larrea and Lukaszewicz, 1995), somatosensory evoked 

fields (SEFs) (Iguchi et al., 2001, 2002) , and somatosensory event-related potentials 

(ERPs) (Michie, 1984; Michie et al., 1987; Staines et al., 2002; Schaefer et al., 2005; 

Schubert et al., 2008).  Robust evidence suggests SI plays a central role in gating sensory 

information at early stages of somatosensory perception by amplifying neural signals 

conveying task-relevant tactile information and suppressing task-irrelevant distractor 

stimuli (Meyer et al., 1991; Staines et al., 2002; Nelson et al., 2004; ; Sterr et al., 2007; 

Dionne et al., 2013; Popovich and Staines, 2014).  By contrast, SII is believed to be involved 

in higher-order somatosensory processes including: identifying and/or comparing 



11 

 

stimulus attributes (i.e. roughness, length, shape) (Ledberg et al., 1995; Hadjikhani and 

Roland, 1998; Burton et al., 1999), and sensorimotor integrations (Huttunen et al., 1996; 

Binkofski et al., 1999).  Overall, attentional effects in SI suggest that top-down control 

processes, such as task-relevancy, can influence cortical modulation in modality-specific 

somatosensory cortices.  

 Crossmodal integration of sensory information also facilitates attentional 

modulation in modality-specific sensory cortices.  Functional imaging studies performed in 

monkey auditory cortex have shown distinct regions receptive to the presentation of visual 

plus auditory stimulation, and somatosensory plus auditory stimulation (Kayser et al., 

2005, 2007).  Lakatos et al. (2007) found that simultaneous presentation of somatosensory 

and auditory stimuli versus auditory stimuli alone enhanced neuronal responses in 

auditory cortex (Lakatos et al., 2007).  Ghazanfar et al. (2005), found increased activity in 

auditory cortex when auditory and visual stimuli were presented together, as well as some 

auditory cells that responded only to visual stimuli (Ghazanfar et al., 2005).  Similar effects 

have also been reported in the somatosensory cortex, whereby SI neurons showed 

increased firing in response to visual stimuli previously paired with tactile stimuli (Zhou 

and Fuster, 2000).  Functional MRI studies have found enhancements in modality-specific 

BOLD responses, due to the mere presence of stimuli from another sensory modality 

(Calvert et al., 1997; Calvert, 2001; Foxe et al., 2002; Macaluso et al., 2000, 2002; Lehmann 

et al., 2006; Pekkola et al., 2006; Schürmann et al., 2006; Meehan and Staines, 2009).  

However, in a study using a continuous motor-tracking task, it was shown that the 

presence of crossmodal (visual and tactile) stimuli produced differential modulation in 

contralateral SI when tactile information was relevant versus irrelevant.  Here, a greater 
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increase in SI volume relative to the rest condition was found when the vibrotactile 

stimulus was task-irrelevant compared to the increase in volume when the same stimulus 

was task-relevant (Meehan and Staines, 2007).  The authors offered several possible 

explanations for their findings, one of which concluded that the behavioural requirements 

of the crossmodal task may determine the nature of SI modulation, and in this case, the 

continuous motor-tracking demands and presence of a crossmodal distractor may have 

been mitigating factors for the observed SI suppression.    

Other studies have shown crossmodal enhancement in modality-specific sensory 

cortex only occurs when both stimuli events are relevant for behaviour (Dionne et al., 2010, 

2013).  For example, in an fMRI study by Dionne et al. (2010), relevant unimodal (visual or 

tactile) and crossmodal stimuli (visual+tactile) were randomly presented and participants 

were instructed to summate both stimuli by squeezing a pressure-sensitive bulb.  Prior to 

the experiment,  subjects completed a brief sensorimotor training session, whereby, 

learned associations between the amplitude of visual and vibrotactile stimuli were 

established so that graded motor response representing the perceived amplitude of the 

stimuli could be performed.  Results revealed a common network of activation in frontal-

parietal regions across all conditions, regardless of stimulus modality.  Enhanced BOLD 

responses were elicited in SI during crossmodal versus unimodal interactions, suggesting 

that combining visual-tactile information relevant for behaviour enhances modality-

specific excitability in SI (Dionne et al., 2010).  Several studies using multisensory 

integration tasks have shown increased BOLD activity in higher-order frontal and parietal 

cortical regions including the: dorsolateral prefrontal cortex (DLPFC), temporal parietal 

junction, superior temporal sulcus, and intraparietal sulcus (McDonald et al., 2000; Calvert, 
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2001; Downar et al., 2001; Beauchamp et al., 2004, 2008).  It is believed that the DLPFC is 

particularly involved in top-down modulation of crossmodal interactions.    

 EEG studies have shown that crossmodal attention facilitates early stages of sensory 

processing.  Giard and Peronnet (1999), found that visual modulation for audio-visual 

stimuli, occurred as early as 40 ms post-stimulus onset (Giard and Peronnet, 1999), while 

audio-tactile modulation has been found at 50 ms (Foxe et al., 2000; Molholm et al., 2002).  

Kennett et al. (2001), found modulation of visual ERPs by irrelevant but spatially aligned 

tactile stimuli at approximately 140 ms post visual onset (Kennett et al., 2001), while  

McDonald et al. (2000), reported modulation of visual ERPs was possible with spatially 

aligned auditory stimuli (McDonald et al., 2000). Schürmann et al. (2002) reported 

enhancements in evoked-potentials over midline and ipsilateral electrode sites at 75 ms 

when visual stimuli were paired with median nerve stimulation (Schürmann et al., 2002). 

Lastly, in a recent EEG study using the same crossmodal stimuli and pressure-sensitive 

bulb paradigm (refer to Dionne et al., 2010), it was shown that task-relevant crossmodal 

interactions between vibrotactile and visual stimuli enhanced the P50 somatosensory 

event-related component, generated in SI, at contralateral parietal electrode sites.  In 

addition, the amplitude of the P100, likely generated in SII, increased bilaterally at parietal 

electrode sites during presentation of crossmodal stimuli but was not sensitive to the task-

relevance of the stimuli.  Although, ERP studies have shown attention-related modulation 

of the P100 component (Desmedt et al., 1983; Josiassen et al., 1982; Michie et al., 1987; 

Eimer and Forster, 2003a; Schubert et al., 2006), studies investigating crossmodal effects 

on mid-latency components fail to report any effects on this potential (Eimer and Driver, 

2000; Eimer, 2001). These studies employed oddball detection tasks with different 
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attentional demands from those utilized by Dionne et al. (2013) whereby participants had 

to monitor both hands for deviant stimuli in one sensory modality while ignoring the other, 

and report them with a verbal response.  However, the lack of P100 modulation across 

crossmodal paradigms suggests that the P100 is sensitive to the presence, but not the 

attentional relevance, of crossmodal stimuli. These results suggest that crossmodal 

modulation occurs at very early stages in the somatosensory processing stream if both 

stimuli are relevant for behaviour (Dionne et al., 2013).  Collectively, these findings suggest 

that crossmodal processing is likely mediated by both bottom-up sensory-sensory 

interactions and top-down attentional mechanisms in order to allow for the selection, 

amplification, and integration of sensory input relevant for initiating goal-oriented 

responses. 

 

1.3.4 The role of the prefrontal cortex in gating of sensory information  
 
 In 1935, Charles Jacobsen discovered what is considered today to be a landmark 

observation in our current understanding of the functional role of the PFC in cognitive 

processing.  His work revealed that monkeys with bilateral frontal lobe damage, including 

the sulcus principalis, a region analogous to the DLPFC in humans (Rajkowska and 

Goldman-Rakic, 1995a,b) demonstrated severe impairments in tasks involving delayed 

responses.  Decades later, Skinner and Yingling’s work in cat models, provided the first 

physiological evidence of a PFC inhibitory pathway responsible for regulating the flow of 

sensory signals through thalamic relay nuclei.  Cryogenic blockade of the cat PFC produced 

increased evoked response amplitudes in primary sensory cortex, while stimulation of the 

thalamic reticular nucleus (TRN); a “shell-like” shield that encapsulates thalamic sensory 



15 

 

neurons, produced neural suppression in modality-specific primary cortex (Skinner and 

Yingling, 1976; Yingling and Skinner, 1976).  The existence of a prefrontal-thalamic 

inhibitory system offered the first evidence that suppression of task-irrelevant or 

distractor input(s) can occur at very early stages of sensory processing in modality-specific 

cortices.  It is thought that this inhibitory system is modulated via excitatory input from the 

PFC to the TRN, which in turn, sends inhibitory GABAergic projections to sensory relay 

nuclei ensuring that irrelevant sensory signals are not received or processed by modality-

specific cortices (Guillery et al., 1998). 

 Prefrontal lesion studies further support the role of the PFC in gating of sensory 

information.  Reports of severe cognitive impairments and/or aberrant cortical responses 

in patients have been found during tasks involving: selective attention, inhibitory control, 

lexical processing, or working memory (Knight et al., 1981; Janowsky et al. 1989a; 

Janowsky et al., 1989b; Yamaguchi and Knight, 1990; Richer et al., 1993; Chao and Knight, 

1995, 1998; Knight et al., 1999).  Work by Yamaguchi and Knight (1990) revealed that 

during passive median nerve stimulation, patients with focal lesions to the DLPFC, relative 

to controls, displayed enhanced neuronal responses in several early SEPs with known 

generators in postcentral, post-rolandic, and frontal areas.  Yet, SEPs generated in spinal 

cord and brainstem areas were unaffected.  The authors suggested that inhibitory 

modulation of sensory inputs may be governed by corticocortical PFC-parietal connections 

(Yamaguchi and Knight, 1990).  Thus, sensory gating impairments observed in PFC patients 

may stem from abnormalities in either the prefrontal-thalamic or prefrontal-sensory cortex 

mechanism.   
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Delayed-match-to-sample tasks are commonly used to investigate higher-order top-

down cognitive processing. In these paradigms, participants are required to indicate 

whether a initial “target” stimulus (S1), matches a subsequent “cue” stimulus (S2), 

following an arbitrary time delay.  Using an auditory version of this task, Chao and Knight 

(1995) compared data from patients with lesions to the DLPFC, the temporal-parietal 

junction (TPJ), or the posterior hippocampus, to controls.  Here, the silent period between 

S1 and S2 varied between 4 to 12.5 seconds, which was or was not interrupted by a series 

of distractor tones.  Significant impairments in the suppression of task-irrelevant stimuli 

were observed in DLPFC patients at all delay times, while TPJ patients only displayed 

impairments at longer delay times, and patients with posterior hippocampal damage 

performed similarly to controls.  Concluding remarks suggested that the damage to DLPFC 

produces an inability to suppress irrelevant information which leads to difficulties in target 

detection following a time delay.  Lesion studies using visual inspection tasks support this 

notion, whereby patients with frontal damage exhibit impairments detecting visual targets 

embedded among distractors (Richer et al., 1993), and diminished modulation of visual 

event-related potentials (Knight, 1999). In healthy controls, transient inhibition to the 

DLPFC using continuous theta burst stimulation (cTBS), produced disinhibition of task-

irrelevant stimuli at early stages of somatosensory processing (Bolton and Staines, 2012). 

Using EEG and a tactile discrimination task, participants were divided into one of three 

groups: 1) cTBS, 2) sham-cTBS, or 3) no simulation, and pre-post measures of cortical 

activity were collected.  Participants received vibrotactile stimuli to the index and pinky 

fingers of the left hand and were instructed to report target stimuli on one digit only. 

Results revealed that in the non-attend versus attend conditions, the sham-cTBS and no 
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stimulation groups, showed reductions in the amplitude of the P100 component, while no 

such effect was found in the cTBS group.  These findings are in accord with those reported 

in patients with focal lesions in DLPFC, thus supporting the role of the DLPFC in the gating 

of task-irrelevant sensory input at very early stages of cortical processing.  

 Research suggests that task-relevant modulation in modality-specific SI is regulated 

by top-down control of the PFC.  Using fMRI and a vibrotactile task, Staines et al. (2002) 

found that task-relevant somatosensory stimuli increased BOLD responses in contralateral 

SI and the right PFC, as well as decreased activity in ipsilateral SI regions in healthy adults.  

This finding is suggestive that, a frontal-parietal sensory gating mechanism, capable of 

regulating the flow of relevant sensory information to modality-specific somatosensory 

cortices, exists.  A recent MEG study using the Tower of Hanoi task; a higher-order 

cognitive control task known from patient and imaging studies for its recruitment of frontal 

and prefrontal cortices (Baker et al., 1996; Dagher et al., 1999; Anderson and Douglas, 

2001), further supports that task-relevant modulation of SI is regulated by frontal regions, 

namely the PFC (Schaefer et al., 2005).  In this study, healthy participants had tactile stimuli 

attached to distal portions of the index (D1) and pinky (D5) fingers of both hands and in 

separate blocks were instructed to: 1) complete the Tower of Hanoi (ToH) task, 2) perform 

the ToH using the same movements but with no specific instructions, or 3) rest.  Results 

showed that, during the ToH task, the spatial representation of D1 and D5 in SI was 

significantly greater upon comparison to the other two tasks, suggesting that plastic 

changes in SI occurred only during the higher-order cognitively demanding ToH task. 

Although, the nature of this experiment failed to explicitly measure PFC activity, the 

authors concluded that their findings supported the notion presented by Staines et al. 
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(2002) of a prefrontal sensory gating mechanism responsible for regulating task-relevant 

modulation in SI.  Recent fMRI and EEG studies investigating the effects of task-relevancy 

during crossmodal processing, further support the idea that top-down attentional control 

facilitates somatosensory processing in modality-specific SI (Dionne et al., 2010, 2013).  

 Cognitive impairments commonly observed in healthy aging populations share 

striking similarities to those reported in prefrontal patient data.  Behavioural findings 

report age-related impairments during tasks involving inhibitory control (Rabbitt, 1965; 

Kausler and Hakami, 1982; Hasher and Zacks, 1988; Reuter-Lorenz and Park, 2010; Bolton 

and Staines, 2012), and inhibiting proponent responses that are no longer task-relevant 

(Hasher and Zacks, 1988; Yamaguchi and Knight, 1991; Fabiani et al., 2006).  Furthermore, 

neuroimaging data has shown that atrophy of frontal lobe regions is disproportionately 

greater relative to other brains areas in older adults (Haug and Eggers, 1991), with the 

greatest shrinkage occurring in medial temporal areas (Raz, 2000).  In a fMRI study using a 

selective working memory task, young and older adults were required to remember images 

of faces and ignore scenery images or vice versa.  Results showed that both groups 

displayed increased activation patterns during task-relevant stimuli, however, older adults, 

relative to younger adults, showed diminished suppression of task-irrelevant stimuli 

(Gazzaley et al., 2005). Gazzaley et al. (2007) replicated these results using EEG, by 

showing deficits in the suppression of the N170 latency shift in older adults.  The N170 

component is a face-sensitive visual ERP localized to posterior occipital electrodes (Bentin 

et al., 1996).  Collectively, these results suggest that age-related inhibitory control deficits 

may be related to alterations in blood flow and/or neuronal response activation.   
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 Recent EEG work by Bolton and Staines (2012), suggests that age-related 

impairments in top-down attentional control may explain diminished modulation at very 

early stages of somatosensory processing in the elderly.  Using the same tactile 

discrimination task previously described, these authors showed that older adults, relative 

to their younger counterparts, showed attention-related: 1) reductions in the amplitudes of 

the P100 and P300 components, 2) increases in the P300 latency, and 3) behavioural 

impairments in target detection.  Both the P100 and P300 ERP components are modulated 

by attentional processes (Desmedt and Robertson, 1977; Desmedt et al., 1983; Michie et al., 

1987; Polich and Kok, 1995; Linden, 2005; Bolton and Staines, 2011; Dionne et al., 2013).  

The latency of the P300 component reflects stimulus evaluation time such that shorter 

latencies reflect more efficient cognitive processing (Donchin & Coles, 1988).  Thus, the 

authors concluded that older adults showed age-related loss in the attentional processing 

of somatosensory information (Bolton and Staines, 2012).  Extensive research suggests 

that various physiological, cognitive, and behavioural deficits typically observed in patients 

with PFC damage, are also seen in older adult populations.  As a result, some aging theorists 

believe that age-related deficits may also be explained by the distractibility hypothesis of 

PFC function. 

 

1.3.5. Aerobic exercise effects on cortical activity and cognition  
 
 A growing body of evidence suggests that a beneficial relationship between exercise 

and cognition exists.  However, the findings suggest that the underlying mechanisms 

behind exercise effects on cognition are multifactorial and depend on various factors, some 

of which include: exercise duration (i.e. acute versus chronic), exercise intensity (i.e. light, 
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moderate, or strenuous), cardiovascular fitness of the participants, as well as the type of 

psychological task used to investigate cognitive performance.  How some of these factors 

influence cognition will be discussed in the following sections. 

1.3.5.1. Chronic aerobic exercise effects on cognition 

 It is thought that aerobic exercise training over an extended period of time (i.e. 

chronic interventions) produces neurophysiological alterations in brain physiology.  Non-

human studies have allowed researchers to examine the underlying neural and cellular 

mechanisms influenced by exercise training (Hillman et al., 2008).  Several rodent studies 

have reliably shown that exercise training increases cell proliferation and survival in the 

dentate gyrus of the hippocampus, an area involved in learning and memory processes 

(Van Praag et al., 1999; Brown et al., 2003).  Exercise-induced cell proliferation has also 

been shown to promote angiogenesis in the motor cortex (Swain et al., 2003), cerebellum 

(Black et al., 1990), and striatum (Ding et al., 2004), which may be dependent on the up-

regulation and release of molecules such as: vascular endothialial growth factor (VEGF); 

important for blood vessel formation and development, insulin growth factor 1 (IGF-1); a 

regulator of VEGF and important for blood vessel formation, or brain derived neurotrophic 

factor (BDNF); a long-term potentiation neural transmission signal needed for memory 

formation (Cotman and Berchtold, 2002; Cotman et al., 2007).  Rhyu et al. (2010) 

investigated the effects of aerobic exercise training on cortical vascularity and cognitive 

functions in primates.  In this study, adult female monkeys were divided into either an 

exercise group (trained to run on a treadmill for 1 hour/day, 5 days/week, for 5 months) or 

a sedentary group (sat on an immobile treadmill), and then performed the Wisconsin 

General Testing Apparatus during the 5th week of training.  Groups were further delineated 
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into age-related populations (mature versus young) to investigate whether age influenced 

any cognitive benefits associated with exercise training.  A subset from the exercise group 

also performed a 3 month sedentary period following exercise training, in order to examine 

the longevity of any exercise-induced benefits on cortical vascularisation.  Results showed 

that the exercise group learned the cognitive task significantly quicker than the sedentary 

group regardless of age.  However, at the end of exercise training, only the mature monkey 

exercise group showed increased cortical vasculature in the motor cortex and these effects 

did not persist after the 3 month sedentary period.  These findings suggest that aerobic 

exercise training increased learning across all ages, as well as the blood flow in the cerebral 

cortex of mature monkeys, but that these effects were contingent on exercise maintenance 

(Rhyu et al., 2010).  In summary, animal research has shown that chronic exercise training 

induces beneficial effects on cognitive function by promoting neurogenesis and synaptic 

plasticity in various brain regions.  These studies may help researchers understand the 

neural and cellular mechanisms that moderate the relationship between aerobic exercise 

training and cognitive function in humans (Hillman et al., 2008).  

 Novel findings in human research have provided convincing evidence that aerobic 

chronic exercise induces neurophysiology alterations in brain activity and cognitive 

performance, particularly in older adults.  Results of a meta-analysis of aggregated 

longitudinal data from 1966-2001, showed that older adults who engaged in physical 

fitness training programs significantly improved cognitive performance, especially, on 

tasks requiring cognitive control (Colcombe and Kramer, 2003).  Colcombe et al. (2004) 

used fMRI to examine the effects of cardiovascular fitness training (CFT) on cortical 

circuitry in older adults using a modified version of the flanker task.  In the first cross-
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sectional study, participants were divided into high fit and low fit groups, based on their 

current levels of cardiorespiratory fitness (i.e. VO2 max uptake assessment), and received 

no CFT intervention.  Results indicated that the older adults in the high fit group showed 

significantly less activation of the ACC, greater recruitment of attention-related cortical 

areas including the middle frontal gyrus and inferior parietal lobules, and less behavioural 

conflict, relative to the low fit group.  The second study involved a randomized 6-month 

clinical intervention wherein participants were assigned into either a CFT group (i.e. 45 

minutes of aerobic exercise performed 3 times/week) or a control group (i.e. 45 minutes of 

stretching/toning exercises performed 3 times/week).  Imaging scans were collected one 

week pre- and post- intervention.  Results replicated and extended those reported in the 

first study with the CFT group showing less ACC activation, greater recruitment of 

attention-related cortices, and less behavioural conflict overall (Colcombe et al., 2004).  

Thus, maintaining higher levels of physical fitness may induce beneficial changes in the 

neural circuitry of the brain by recruiting areas involved in selective attention (i.e. medial 

temporal lobes, inferior parietal lobe), while reducing the demand on areas involved in 

conflict interference (i.e. ACC activation), in order to make behavioural performance more 

efficient. Another study by Colcombe et al. (2003), reported significantly less grey matter 

loss in the frontal, parietal, and temporal lobes and significantly less tissue loss in anterior 

and posterior white matter pathway tracts in high fit older adults relative to low fit older 

adults, using a high resolution voxel-based morphometric analysis approach.   

 Unlike acute exercise effects, chronic exercise effects on cognition are not limited to 

PFC regions involved in executive control processes. Erikson et al. (2011) found a 2% 

increase in hippocampal volume in older, sedentary adults who participated in a one year 
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moderate intensity aerobic exercise training program.  Increased hippocampal volumes 

were also related to improvements in spatial memory and increased levels of serum BDNF. 

Furthermore, recent work by Chapman et al. (2013) found that even a 12 week aerobic 

exercise training program increased resting cerebral blood flow in the hippocampus and 

was associated with improved memory performance in sedentary older adults, suggesting 

that shorter term aerobic exercise facilitates brain health in sedentary adults. 

1.3.5.2. Acute effects of aerobic exercise on cognition 

 Cognitive neuroimaging studies have reliably shown that regions of the frontal 

lobes, specifically the PFC and ACC, are involved in mediating executive control processes 

including: selective attention, inhibitory control, decision-making, and error monitoring 

(Miller and Cohen, 2001).  Notably, studies investigating the effects of acute aerobic 

exercise on cognition report enhanced neuronal responses particularly in these brain 

regions and performance improvements on tasks requiring executive control (Ekkekakis, 

2009; Hillman et al., 2009; Yanagisawa et al., 2010; Endo et al., 2013).  However, these 

results seem to be dependent on exercise intensity prescribed. Using a go/nogo task, 

Kamijo and colleagues (2004) showed variable modulation of the P300 component 

depending on aerobic exercise intensity prescribed, whereby P300 amplitudes: increased 

following moderate intensity exercise, decreased following hard intensity exercise, and 

showed no change following light intensity exercise.  Similar results were found using a 

version of the Erikson flanker task, whereby P300 amplitudes increased after light and 

moderate intensity aerobic exercise and decreased following strenuous exercise. 

Additional findings revealed decreased reaction times and P300 latencies to incongruent 

trials across all exercise intensities (Kamijo, Nishihira, Higashiura, & Kuroiwa, 2007).  The 
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P300 component is generated over fronto-central electrodes sites in response to task-

relevant target stimuli (Pfefferbaum et al., 1985).  The amplitude of the P300 is thought to 

reflect the amount of attentional resources devoted to a given task, while the latency 

reflects stimulus evaluation (Donchin and Coles, 1988).  Thus, these studies suggest that 

acute bouts of moderate intensity aerobic exercise facilitated attentional processing in 

healthy young adults.  Based on these and various other studies ( Levitt and Gutin, 1971; 

Sjöberg, 1975; Chmura et al., 1994; Grego et al., 2004; Kamijo et al., 2004), it is proposed 

that improvements in cognitive performance immediately after acute exercise follow the 

Yerkes and Dodson inverted U-shape arousal model, whereby when arousal states increase 

with physical exertion, cognitive performance improves to an optimal point after which 

further increases in physical exertion cause decreased arousal levels resulting in 

decrements in performance (Tomporowski, 2003a).  

 Acute exercise studies using moderate intensity exercise protocols have shown 

enhancements in neuronal profiles, particularly of the P300 component (Nakamura et al., 

1999; Hillman et al., 2009; Hillman et al., 2003).  However, recently, Yanagaisawa et al. 

(2010) used functional near infra-red spectroscopy (fNIRS) and the Stroop task to compare 

cortical activation patterns pre versus post an acute bout of moderate exercise in healthy 

young adults.  Functional NIRS is a non-invasive neuroimaging technique with excellent 

spatial resolution that measures changes in cerebral blood flow (i.e. hemodynamic 

response) related to neural activity in the brain.  Participants were randomly assigned into 

either an exercise group (15 minutes of recumbent biking) or a control group (15 minutes 

of rest) and then completed the Stroop task.  To examine exercise-related PFC activation 

imaging scans were collected before and after the bout of aerobic exercise or rest period. 
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Results showed decreases in reaction time and increases in Stroop-interference-related 

cortical activation post training in the exercise group, relative to the control group.  In 

particular, the left DLPFC showed greater activation in the exercise group post training. 

These results suggest that the left DLPFC may be the brain region responsible for improved 

behavioural performance post exercise training (Yanagisawa et al., 2010). 

1.3.5.3. The impact of cardiovascular fitness on cognition  

 EEG work examining the relationship between cardiovascular fitness and cognitive 

control suggest that maintaining cardiovascular health throughout the lifespan plays the 

critical role in producing beneficial neurophysiological changes in the brain.  For instance, 

Themanson and Hillman (2006) used the Eriksen flanker task and a cardiovascular fitness 

paradigm to investigate differences in the amplitude of the error-related negativity (ERN) 

component in high fit versus low fit individuals.  The ERN is a negative peak generated in 

the ACC that occurs 50-100 ms following an erroneous response and is associated with 

error detection and monitoring.  Neuroelectric (i.e. ERN amplitudes) and behavioural (i.e. 

response speed, accuracy, post-error slowing) indices of action monitoring were assessed 

following a 30 minute acute bout of treadmill exercise or following 30 minutes of rest in 

healthy young adults.  Participants were divided into higher fit and lower fit groups based 

on assessment of individual cardiorespiratory fitness levels using a graded maximal 

exercise (i.e. respiratory exchange ratio and 30s averages for maximal oxygen uptake; VO).  

Results indicated that higher-fit adults showed reduced ERN amplitudes and increased 

post-error slowing compared to lower-fit adults.  Notably, the acute exercise session was 

not related to any of the dependent measures.  A follow-up EEG study by Themanson et al. 

(2008) investigated the relationships between fitness and neuroelectric and behavioural 
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indices of action monitoring in conjunction with task instructions emphasizing either speed 

or accuracy. They hypothesized that “a strengthening of the relationships between ERN 

amplitudes and post-error behaviour (accuracy, reaction time) with fitness when accuracy 

was stressed (compared with when speed was stressed) would indicate that higher fitness 

increases one’s ability to flexibly modulate the recruitment and interpretation of cognitive 

control in response to salient task parameters”.  Results showed that higher fit individuals 

exhibited greater ERN amplitudes and post-error accuracy, relative to their less fit 

counterparts, during tasks emphasizing accuracy, as well as greater modulation of these 

indices across task instruction conditions (Themanson et al., 2008).  In light of these 

findings, the authors concluded that higher cardiovascular fitness, and not acute bouts of 

aerobic exercise per se, may promote more efficient neural processing during tasks that 

involve error monitoring by enhancing cognitive flexibility and top-down attentional 

control (Themanson and Hillman, 2006; Themanson et al., 2008).  

  
 Collectively, these neurophysiological findings are provocative, and suggest that a 

beneficial relationship between exercise and cognition exists, but the underlying 

mechanisms producing the effects depend on the type exercise intervention used.  In 

general, cognitive benefits following acute aerobic exercise seem to be greatest in frontal 

lobe regions involved in top-down attentional control (Kamijo et al., 2004; Kamijo et al., 

2007; Hillman et al., 2009; Yanagisawa et al., 2010), while chronic exercise effects influence 

various regions some of which include the: PFC (Colcombe and Kramer, 2003; Colcombe et 

al., 2004;),  hippocampus (Van Praag et al., 1999; Brown et al., 2003), and motor cortex 

(Rhyu et al., 2010; Swain et al., 2003).  These findings may be particularly relevant for older 

adults since advancing age is associated with structural deterioration particularly in frontal 
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lobe and hippocampal regions resulting in attentional and working memory deficits 

(Hasher and Zacks, 1988; Reuter-Lorenz and Park, 2010; Bolton and Staines, 2012). 
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1.4 Specific research objectives 

1.4.1. Research Objective 1 

To examine the relative contributions of visual priming (bottom-up sensory input) and task-

relevance (top-down attention) on influencing early somatosensory cortical responses, 

namely the P50 somatosensory ERP generated in SI. 

 Research has shown that crossmodal interactions across sensory modalities can 

influence SI excitability, even if only one modality is task-relevant (Meehan and Staines, 

2007).  However, recent fMRI findings suggest that simultaneous presentation of 

crossmodal visual and tactile stimuli enhance SI and PFC excitability when both stimuli are 

task-relevant (Dionne et al., 2010), while EEG findings using the same paradigm imply that 

these crossmodal effects occur as early as 50 ms post-stimulus onset over SI regions 

(Dionne et al., 2013).  Collectively, these results suggest that crossmodal interactions may 

occur via bottom-up sensory-sensory interactions and top-town attentional processes. 

Research Objective 1 sought to determine the relative contributions of visual information 

and attentional relevance on modulating modality-specific SI activity.  Using EEG, it was 

hypothesized that if bottom up and top-down mechanisms influence early somatosensory 

ERPs in contralateral SI, then the amplitude of the P50 component generated over SI 

regions should be greatest for relevant crossmodal (visual+tactile) interactions with a brief 

temporal delay between stimulus onsets and smallest for the irrelevant unimodal (tactile-

tactile/visual-visual) conditions.  To test whether bottom-up mechanisms influence 

crossmodal modulation of the P50 component, we manipulated the temporal onsets of 

visual and tactile events in two crossmodal conditions.  In one condition, visual stimuli 

preceded tactile stimuli by 100 msec to examine whether the presentation of relevant 
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visual information prior to tactile information influenced crossmodal modulation of the 

P50 component.  In another condition, tactile stimuli preceded visual stimuli by 100 msec 

which acted as a control to the previously described condition since the onset of the P50 

component would have already occurred prior to the presentation of visual information, 

thus P50 modulation in this condition would not be influenced by the presentation of task-

relevant visual stimuli.  
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1.4.2 Research Objective 2 

To examine the relative contributions of visual priming, attentional relevance and task-

specific sensory-motor requirements to the enhancement of somatosensory cortical responses. 

 Findings from Study 1 imply that SI excitability is modulated by both top-down 

attentional mechanisms and bottom-up sensory-sensory interactions by showing that the 

amplitude of the P50 component was significantly greater during crossmodal 

(visual+tactile) interactions where task-relevant visual information preceded tactile 

information (Popovich and Staines, 2014).  Yet, modulation of the P50 is thought to be 

mediated by the degree of attentional demand required by the type of task employed, such 

that tasks with greater attentional demand are more successful in driving P50 modulation 

(Schubert et al., 2008).  The purpose of Research Objective 2 was to follow-up the findings 

of Study 1 as well as to determine the influence of task-relevant sensory-motor 

requirements on modulating the P50 component.  Based on the results of the first study in 

this thesis, it was hypothesized that SI activity would be sensitive to the temporal order of 

task-relevant crossmodal (visual-tactile) stimuli and that the degree of modulation would 

depend on the difficulty of the associated motor task demands.  Specifically, it was 

hypothesized that modulation of the P50 component would be greatest during relevant 

crossmodal (visual+tactile) interactions where visual information preceded tactile 

information (100 ms delay), and participants were required to produce a force-graded 

motor response representing the summation of both stimulus amplitudes versus a button 

press representing the detection of the presence of both stimuli.   
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1.4.3 Research Objective 3 & 4 

To examine if increases in PFC activity, following an acute bout of moderate intensity aerobic 

exercise, would enhance attention-based modulation of tactile ERPs generated at early and 

later stages of somatosensory processing in healthy young and older adults. 

 Research suggests that aerobic exercise enhances neuronal activity, particularly in 

frontal lobe regions, and improves cognitive performance during higher-order attentionally 

demanding tasks (Colcombe et al., 2004; Hatta et al., 2005; Themanson and Hillman, 2006; 

Themanson et al., 2008; Kamijo et al., 2009; Pontifex et al., 2009; Yanagisawa et al., 2010). 

Yet, few studies have administered cognitive tests designed to elicit neuronal activity 

downstream from the PFC in modality-specific sensory regions.  This poses an important 

limitation to the current understanding of the relationship between exercise and cognitive 

function since the circuitry of the PFC is complex, with corticocortical and thalamocortical 

connections with parietal cortices, making it an important structure for modulating 

modality-specific cortical regions via attentional mechanisms.  Research Objectives 3 and 4 

sought to determine whether the attention-related exercise effects would modulate 

neuronal activity in somatosensory regions downstream from the PFC during a tactile 

discrimination task across different age groups (i.e. young and older adults).  It was 

hypothesized that an acute bout of moderate intensity exercise preceding performance of 

the tactile odd-ball discrimination task would increase PFC excitability resulting in more 

efficient sensory-gating of irrelevant versus relevant tactile information.  More efficient 

sensory-gating would be reflected by greater suppression of unattended, task-irrelevant 

tactile information and/or greater enhancement of attended, task-relevant tactile 



32 

 

information following exercise in young and older adults as well as performance 

improvements particularly in the elderly population. 
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Chapter 2 ‐ Study 1: The attentional relevance and temporal dynamics of visual-
tactile crossmodal interactions differentially influence early stages of 
somatosensory processing. 
 
Adapted from: Popovich C. & Staines WR. (2014). The attentional relevance and temporal 
dynamics of visual-tactile crossmodal interactions differentially influence early stages of 
somatosensory processing. Brain and Behaviour, 4 (2), 247-260. 
 

2.1 Overview  

 Crossmodal interactions between relevant visual and tactile inputs can enhance 

attentional modulation at early stages in somatosensory cortices to achieve goal-oriented 

behaviors.  However, the specific contribution of each sensory system during attentional 

processing remains unclear.  We used EEG to investigate the effects of visual priming and 

attentional relevance in modulating somatosensory cortical responses.  Healthy adults 

performed a sensory integration task that required scaled motor responses dependent on 

the amplitudes of tactile and visual stimuli.  Participants completed an attentional 

paradigm comprised of 5 conditions that presented sequential or concurrent pairs of 

discrete stimuli with random amplitude variations: 1) tactile-tactile (TT), 2) visual-visual 

(VV), 3) visual-tactile simultaneous (SIM), 4) tactile-visual delay (TVd), and 5) visual-tactile 

delay (VTd), each with a 100 ms temporal delay between stimulus onsets.  Attention was 

directed to crossmodal conditions and graded motor responses representing the 

summation of the 2 stimulus amplitudes were made.  Results of somatosensory ERPs 

showed that the modality-specific components (P50, P100) were sensitive to i) the 

temporal dynamics of crossmodal interactions, and ii) the relevance of these sensory 

signals for behaviour. 
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2.2 Introduction 

 It is well-known that attention can modulate neurophysiological responses in 

modality-specific cortices including: visual (Motter, 1993; Gazzaley et al., 2007; Andersen 

et al., 2008), auditory (Woldorff et al., 1993; Jäncke et al., 1999; Petkov et al., 2004), and 

somatosensory cortices (Josiassen et al., 1990; Hsiao et al., 1993; Johansen-Berg et al., 

2000; Staines et al., 2002).  However, recent investigations have begun to examine whether 

attention influences neural responses across sensory modalities when sensory input from 

more than one modality is present.  Behavioral studies have shown that crossmodal input 

can also improve performance as indexed by faster reaction times (Hershenson, 1962; 

Gielen et al., 1983), improved detection of weak stimuli (Frens and Van Opstal, 1995; 

Driver and Spence, 1998; McDonald et al., 2000), and improved sensory-perception of 

illusory effects such as the ventriloquist or McGurk illusions (Howard and Templeton, 

1966; McGurk and MacDonald, 1976).  Human and animal studies have shown that the 

mere presence of additional sensory input even when it is irrelevant for performance of a 

task can enhance neural excitability in the attended sensory modality (Calvert et al., 1997; 

Macaluso et al., 2000; Calvert, 2001; Foxe et al., 2002; Kayser et al., 2005; Pekkola et al., 

2006; Lehmann et al., 2006; Kayser et al., 2007; Lakatos et al., 2007; Meehan and Staines, 

2009), suggesting that interactions between modality-specific cortical representations 

exist.  By contrast, other studies have shown crossmodal enhancement in modality-specific 

sensory cortex occurs only when both stimuli events are relevant for behavior (Dionne et 

al., 2010, 2013).  These findings suggest that crossmodal processing is likely governed by 

both bottom-up sensory-sensory interactions and top-down attentional mechanisms in 

order to allow for the selection, amplification, and integration of sensory input relevant for 
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initiating goal-oriented responses.  Bottom-up interactions can occur when salient stimuli 

from an unattended sensory modality influence neural excitability in the attended 

modality, while top-down processing occurs when attention is voluntarily directed toward 

relevant stimuli in the presence of environmental distracters.  However, while both these 

attentional mechanisms can modulate neural responses in modality-specific sensory 

cortex, it remains unclear how these attentional mechanisms interact during sensory 

processing of crossmodal stimuli. 

 Neurophysiological research in the primary auditory cortex of monkeys has 

provided evidence that sensory-to-sensory interactions exist.  Recent studies have shown 

that neural responses in regionally distinct areas of the primary auditory cortex are 

enhanced when visual and/or tactile stimuli are paired with auditory stimuli (Kayser et al., 

2005, 2007).  Lakatos et al. (2007) showed that presentation of somatosensory stimuli 

increased auditory neural responses when the two stimuli were simultaneously combined 

versus when the auditory stimulus was presented in isolation.  Furthermore, Bizley et al. 

(2007) reported a 15% neuronal increase in the ferret primary auditory cortex following 

simultaneous presentation of visuo-auditory stimuli (Bizley et al., 2007). 

 Neuroimaging studies in humans complement the sensory-to-sensory interactions 

reported in animal findings by showing that the presence of crossmodal input can 

modulate neural excitability in modality-specific sensory cortices.  For example, several 

functional magnetic resonance imaging (fMRI) studies have reported increased blood 

oxygenation level-dependent (BOLD) responses in modality-specific cortices due to the 

mere presence of stimuli from another modality.  These interactions have been found 

between: visual and auditory cortices (Calvert et al., 1997; Calvert, 2001; Lehmann et al., 
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2006; Pekkola et al., 2006), auditory and somatosensory cortices (Foxe et al., 2002; 

Schürmann et al., 2006), as well as visual and somatosensory cortices (Macaluso et al., 

2000, 2002).  However, a recent fMRI study investigated crossmodal effects on BOLD 

responses generated in the primary somatosensory cortex (SI) when both stimuli were 

relevant for guiding a motor response.  Here, relevant unimodal (visual or tactile) and 

crossmodal stimuli (simultaneous visual + tactile) were presented and participants were 

required to summate both stimuli by squeezing a pressure-sensitive bulb.  In order to 

ensure that stimulus associations were successfully learned prior to testing, participants 

completed a brief sensorimotor training session that required them to judge the amplitude 

of visual and vibrotactile stimuli and make a graded motor response representing the 

perceived amplitude of the stimuli.  Results showed that the greatest BOLD responses were 

elicited in SI during crossmodal versus unimodal interactions suggesting that combining 

visual-tactile information relevant for behavior enhances modality-specific excitability in SI 

(Dionne et al., 2010).  In a follow-up study, Dionne et al. (2013); used 

electroencephalography (EEG) and the same sensory-to-motor task to investigate the time 

course of crossmodal effects in SI.  Results showed that crossmodal interactions between 

vibrotactile and visual stimuli enhanced the amplitude of the somatosensory P50 

component, generated in SI, at contralateral parietal electrode sites only when both stimuli 

were task-relevant.  By contrast, the amplitude of the P100, likely generated in SII, 

increased bilaterally at parietal electrode sites during presentation of crossmodal stimuli 

but was not sensitive to the task-relevance of the stimuli.  These findings suggest that 

crossmodal modulation occurs at very early stages in the somatosensory processing stream 

if both stimuli are relevant for behavior (Dionne et al., 2013). 
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 Several other EEG studies support the finding that crossmodal stimuli can modulate 

neural excitability at very early stages of sensory processing.  For example, Giard and 

Peronnet (1999) found that visual modulation for audio-visual stimuli, occurred as early as 

40-msec post stimulus onset, while audio-tactile modulation has been found at 50 msec 

(Foxe et al., 2000; Molholm et al., 2002).  Kennett et al. (2001) found modulation of visual 

event-related potentials (ERPs) by irrelevant but spatially aligned tactile stimuli at 

approximately 140-msec post visual onset, while McDonald et al. (2000) reported 

modulation of visual ERPs was possible with spatially aligned auditory stimuli.  In 

summary, crossmodal interactions can improve behavioral performance and enhance 

neural excitability at early stages in modality-specific cortices to achieve goal-oriented 

behaviors (Dionne et al., 2010, 2013).  However, the specific contribution of each sensory 

system during attentional processing in modality-specific sensory cortices remains unclear. 

In this study, we manipulated the attentional relevance and temporal onsets of visual and 

tactile stimuli to examine whether both top-down and bottom-up mechanisms can 

modulate early stages of somatosensory processing. 

 The specific aim of this study was to explore the relative contributions of visual 

priming (bottom-up sensory input) and task-relevance (top-down attention) on influencing 

early somatosensory cortical responses, namely the P50 somatosensory ERP generated in 

SI.  We hypothesized that somatosensory activity would be modulated based on the 

temporal onset and stimulus order of task-relevant crossmodal (visual-tactile) events.  To 

test whether bottom-up sensory-sensory interactions influence crossmodal modulation of 

the P50 component, we manipulated the temporal onsets of visual and tactile events in two 

crossmodal conditions. In one condition, visual stimuli preceded tactile stimuli by 



38 

 

100 msec to examine whether the presentation of relevant visual information prior to 

tactile information influenced crossmodal modulation of the P50 component.  In the other 

condition, tactile stimuli preceded visual stimuli by 100 msec.  This condition acted as a 

control to the previously described condition since the onset of the P50 component would 

have already occurred prior to the presentation of visual information, thus P50 modulation 

in this case would not be influenced by the presentation of task-relevant visual stimuli.  If 

bottom-up and top-down mechanisms influence early somatosensory ERPs in contralateral 

SI, then the P50 amplitude should be greatest for relevant crossmodal interactions where 

visual information preceded tactile information and smallest for the irrelevant unimodal 

interactions. 

2.3 Methods 

2.3.1. Participants  

 EEG was collected from 20 self-reported right-handed healthy participants (mean 

age = 26, 10 males).  Five subjects were excluded due to either excessive artifacts found 

during inspection of the raw EEG collection, or the absence of clearly defined 

somatosensory ERPs of interest (i.e., P50 and/or P100 components).  The final sample 

consisted of 15 healthy participants (mean age = 27.5, 7 men).  Experimental procedures 

were approved by the University of Waterloo Office of Research Ethics.  All subjects 

provided informed written consent. 

2.3.2. Behavioural task 

 The behavioral paradigm consisted of five conditions that presented pairs of 

discrete visual and/or tactile stimuli with random amplitude variations.  Stimuli were 

always presented in pairs, either sequentially (unimodal conditions) or simultaneously 
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(crossmodal conditions): (1) tactile-tactile (TT; 500 msec each, 30-msec interstimulus 

interval [ISI]), (2) visual-visual (VV; 500 msec each, 30-msec ISI), (3) visual-tactile 

simultaneous (SIM; 1000 msec concurrent), (4) visual-tactile with a 100-msec temporal 

delay between stimulus onsets (visual-tactile delay, [VTd]; 500 msec each, visual presented 

first), and (5) tactile-visual with a 100-msec temporal delay between stimuli (tactile-visual 

delay, [TVd], tactile presented first) (refer to Fig. 2.1 A–D).  Participants were instructed to 

only attend to the crossmodal stimuli (i.e., TT/VV conditions were ignored), judge the 

amplitude of the two stimuli, and then make a graded motor response representing the 

sum of these amplitudes by squeezing a pressure-sensitive bulb with their right hand 

(Fig. 2.1E).  Prior to the EEG collection, participants underwent a 5-min training session 

with visual feedback in a sound attenuated booth to learn the relationship between the 

amplitudes of the stimuli and the corresponding force required to apply to the bulb.  During 

training, a horizontal target bar appeared on the computer monitor and subjects were 

instructed to squeeze the pressure-sensitive bulb with enough force to raise another visual 

horizontal bar to the same level as the target bar.  At the same time, as subjects applied 

force to the bulb with their right hand the vibrotactile device vibrated against the volar 

surface of their left index finger with corresponding changes in amplitude.  In other words, 

as they squeezed harder on the bulb the amplitude of the vibration increased 

proportionately. Subjects were instructed to pay attention to these changes in amplitude as 

they related to the force they were applying to the bulb.  This training allowed subjects to 

become familiar with the relationship between the vibrotactile stimulus amplitude and the 

corresponding force applied to the bulb.  To control for force related trial to trial 

differences, stimulus amplitudes were scaled such that no single stimulus required a 
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squeeze of more than 25% of an individual's maximum force, thus the response for adding 

two stimuli was never more than 50% of an individual's maximum force.  Stimuli were 

always presented in pairs, either unimodally (two visual or two tactile) presented 

sequentially, or crossmodally (one visual and one tactile), presented simultaneously or 

with a 100-msec temporal offset between each stimuli. 

2.3.3. Experimental design 

 During the experiment, participants sat comfortably in a sound attenuated booth 

and were instructed to visually fixate on the computer monitor, rest the volar surface of 

their left index finger gently on the vibrotactile device, and hold the pressure-sensitive 

response bulb in their right hand (Fig. 2.1F).  Participants were instructed to attend only to 

crossmodal interactions, judge the amplitude of both the visually presented horizontal bars 

and the vibrotactile stimuli, and produce force graded motor responses using the pressure-

sensitive bulb that represented the summation of both stimulus amplitudes.  Stimuli were 

presented for 1 sec after which participants were required to make their motor response 

immediately following presentation of the crossmodal stimuli during a 2.5 sec window 

prior to the start of the next trial, for a total of 3.5 sec per trial.  Each condition was 

randomized and performed in six blocks of 120 trials with each block lasting approximately 

5 min.  The order of the conditions was counterbalanced across each block and all subjects 

performed the same six blocks in sequential order. 

2.3.4. Stimuli 

 Visual stimuli consisted of a centrally presented horizontal bar (6 cm wide), which 

raised to varying heights on a computer monitor positioned 50 cm in front of the subject 

and represented different visual amplitudes.  Vibrotactile stimuli consisted of discrete 
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vibrations delivered by a custom made vibrotactile device applied to the volar surface of 

the left index finger.  Vibrotactile stimulation was controlled by converting digitally 

generated waveforms to an analog signal (DAQCard 6024E; National Instruments, Austin, 

TX) and then amplifying the signal (Bryston 2BLP, Peterborough, Ontario, Canada) using a 

custom program written in LabVIEW (version 8.5; National Instruments).  Varying the 

amplitude of the driving voltage to the vibrotactile device produced proportional changes 

in vibration of the device on the finger.  The amplitude of each discrete vibration was 

constant within a trial and varied randomly between trials.  The average stimulus 

amplitude across all trials including a tactile stimulus did not differ between 

the experimental conditions.  The frequency of the vibration was held constant at 25 Hz. 

Participants received 70 db whitenoise (Stim2; Neuroscan, Compumedics USA, Charlotte, 

NC) throughout the training session and the experiment to prevent auditory perception of 

the vibrotactile stimulus. 

2.3.5. Data acquisition & recording parameters 

 EEG data were recorded from 64 electrode sites (64-channel Quick-Cap, Neuroscan, 

Compumedics USA) in accordance with the international 10–20 system for electrode 

placement, and referenced to the linked mastoids (impedance <5 kOhms).  EEG data were 

amplified (20,000×), filtered (DC-200 Hz), and digitized at 512 Hz (Neuroscan 4.3, 

Compumedics USA) before being saved for subsequent analysis.  Individual traces were 

visually inspected for artifacts (i.e., blinks, eye movements, or muscle contractions) and any 

contaminated epochs were eliminated before averaging.  On average a minimum of at least 

80 trials per condition were analyzed for each participant. 
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 Event-related potentials were averaged to the onset of each stimulus relative to a 

100-msec pre-stimulus baseline.  Somatosensory ERPs were measured from individual 

participant averages for each task condition.  Mean ERP amplitudes and latencies were 

computed for each subject within specified time windows selected around the post 

stimulus latencies of early somatosensory ERP components: P50 (40–70 msec), P100 (90–

125 msec).  Figures 2.2 and 2.4 illustrate the distribution of these potentials over parietal 

electrode sites.  Figure 2.3 illustrates the voltage distribution across the scalp at the latency 

of the P50.  On the basis of these topographies, the amplitude of each potential was 

measured from pre-selected electrode sites corresponding to scalp locations showing 

maximal voltage during the corresponding latency window.  Thus, the P50 component was 

measured from sites centered around CP4 (C4, CP4, P4), roughly overlying right sensory-

motor cortex and contralateral to the vibrotactile stimulus.  The P100 is typically observed 

bilaterally at parietal electrode sites thus amplitude and latency of this component was 

measured from P3, PZ, and P4.  All amplitudes were measured as raw voltage relative to 

the pre-stimulus baseline. 

2.3.6. Data analysis 

 To test the hypothesis that the temporal onset and stimulus order of task-relevant 

crossmodal (visual-tactile) events would contribute to the modulation of early modality-

specific somatosensory ERPs, a one-way repeated measures analysis of variance (ANOVA) 

with condition as a factor was carried out on the amplitude and latency of the P50 

component at electrode sites C4, CP4, and P4 (regions contralateral to vibrotactile 

stimulation).  These ANOVAs were followed by a priori contrasts performed to test the 

hypothesis that modulation of the P50 would be greatest for the task-relevant crossmodal 
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visual-tactile task with a 100-msec temporal delay between stimulus onsets (VTd) and 

smallest for the irrelevant unimodal tactile-tactile (TT) task.  Our statistical approach to the 

P100 component had to exclude analysis of the VTd condition since the 100-msec temporal 

delay between the visual and tactile stimuli produced an interaction with the visual ERPs 

over the time window (90–125 msec) chosen for the P100 peak amplitude.  A one-way 

repeated measures ANOVA with condition as a factor was also computed on the amplitude 

and latency of the P100 at electrodes sites P4, PZ, and P3.  Tukey's post hoc tests were 

carried out on any main effects to investigate whether relevant crossmodal conditions 

would be associated with greater amplitudes compared to the irrelevant unimodal 

conditions. 

 Behavioural data were analyzed by summing the amplitudes of the two target 

stimuli and comparing this to the amplitude of the response, i.e. the force applied to the 

pressure-sensitive bulb.  The percent difference between the summed target stimulus 

amplitude and the actual response amplitude was calculated and a repeated measures 

ANOVA was conducted to assess statistical differences across the experimental conditions. 

 

2.4 Results 

2.4.1. The P50 component 

 All subjects demonstrated a clear P50 component (mean latency 53 ± SE 2 msec) in 

response to vibrotactile stimuli presented to the left index finger.  Figure 2.2 shows the 

grand averaged waveforms for all conditions at electrode sites C4, CP4, and P4 

approximately overlying contralateral somatosensory cortex (centered at CP4).  Scalp 

topography maps representing group averaged data were created by averaging neural 
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responses generated over the 30 msec time window (40–70 msec) centered around the 

P50 peak to observe task-specific differences in cortical modulation (refer to Fig. 2.3).  As 

illustrated in Figure 2.2, all conditions including vibrotactile stimuli (i.e., TT, SIM, TVd, VTd) 

elicited robust neural activity in somatosensory regions contralateral to stimulation. 

Notably, the VTd condition also elicited robust activation in modality-specific visual cortex, 

while the VV condition showed minimal activation overall. Statistical results using a one-

way repeated measures ANOVA showed a main effect of condition on the modulation of the 

P50 amplitude at electrode CP4 (F3,42 = 2.81, P = 0.05) as well as a trend toward 

significance for electrode P4 (F3,42 = 2.49, P = 0.07), but no effect at electrode C4 

(F3,42 = 1.53, P = 0.22).  A priori contrasts showed that modulation of the P50 amplitude was 

greater in the VTd condition compared to the TT condition for all three electrode sites (C4 

(F1,14 = 4.44, P = 0.041; CP4 (F1,14 = 8.20, P = 0.007); P4 (F1,14 = 6.20, P = 0.017)).  It was also 

shown that P50 amplitude was significantly greater in the VTd versus the TVd condition at 

electrode P4 (F1,14 = 4.87, P = 0.033) with a strong trend toward significance for the same 

effect at CP4 (F1,14 = 3.37, P = 0.07) (refer to Fig. 2.5A).  Analysis of the P50 latency using a 

one-way repeated measures ANOVA revealed a main effect of conditions at electrodes CP4 

(F3,42 = 3.08, P = 0.04) and P4 (F3,42 = 3.52, P = 0.02).  Tukey's post hoc analysis on these 

electrodes both showed that the latency of the P50 amplitude occurred earlier in the VTd 

condition than the TT condition (VTd mean latency = 50 msec versus TT mean 

latency = 57 msec).  No main effect of condition was found at electrode 

C4(F3,42 = 2.19, P = 0.1). 
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2.4.2. The P100 component 

 The P100 component was present in all conditions with vibrotactile stimulation. 

However, we omitted analysis of the VTd condition since the fixed temporal delay of 100 

ms between the visual and tactile stimuli created an interaction whereby the visual ERPs 

overlapped the specified time window of 90–125 msec centered around the P100 peak 

amplitude.  As seen in Figure 2.4, the grand averaged P100 waveforms (mean latency 

118 ± 4 msec) for the remaining three conditions (SIM, TVd, TT) displayed a bilateral 

distribution at parietal sites and maximal amplitude at electrode site PZ.  Results showed a 

main effect of condition observed at electrode sites P4 (F2,28 = 7.95, P = 0.002), PZ 

(F2,28 = 5.97,P = 0.007), and P3 (F2,28 = 10.73, P < 0.001).  Tukey's post hoc tests showed 

that for each electrode site, the amplitude of the P100 was larger in the SIM compared to 

the TVd task (P < 0.05) and the TT task (P < 0.05, Fig. 2.5B).  A main effect of condition was 

found for the P100 latency at electrode P4 using separate one-way repeated measures 

ANOVA (F2,28 = 3.64, P = 0.04).  However, Tukey's post hoc analysis revealed no statistically 

significant differences between conditions.  Furthermore, no main effect of condition was 

found for electrodes PZ (F2,28 = 1.02, P = 0.37) or P3 (F2,28 = 0.36, P = 0.7). 

2.4.3. Behavioral Data 

 Figure 2.6 shows the behavioral means and standard error bars for each task-

relevant crossmodal condition: SIM (mean = 92, SE = 3.3), VTd (mean = 83, SE = 2.9), TVd 

(mean = 98, SE = 3.4).  A one-way repeated measures ANOVA was performed on the error 

differences represented as a percent score across all conditions and showed that there was 

a main effect of condition (F2,16 = 8.45, P = 0.003).  Post hoc Tukey's test showed that 

performance in the VTd condition was significantly different than the TVd task. 
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Participants tended to produce lesser force than the ideal target in the VTd condition. 

There were no other differences between conditions. 

 

2.5 Discussion 

 In this study, we used EEG and crossmodal stimuli (visual + vibrotactile) to examine 

the roles of visual information and attentional relevance in modulating early cortical 

responses generated in SI.  To test the influence of bottom-up sensory-sensory interactions 

and top-down attentional processes on early modality-specific cortical responses, we 

devised a novel experimental protocol that manipulated the temporal onsets of task-

relevant crossmodal (visual + tactile) interactions.  In one condition, visual stimuli 

preceded the onset of tactile stimuli by 100 msec (i.e., VTd), in order to observe the 

influence of the visual modality on the P50 component generated in SI. In another 

condition, tactile stimuli preceded the onset of visual stimuli by 100 msec (i.e., TVd), in 

which case, the P50 would have been elicited prior to the onset of visual information and 

modulation would not reflect crossmodal effects.  We hypothesized that both bottom-up 

interactions and top-down attentional mechanisms influence early somatosensory ERPs, 

whereby, modulation (mainly of the P50 component) would be greatest for the relevant 

crossmodal condition where visual events occurred 100 msec prior to tactile events (VTd), 

and smallest, for irrelevant tactile unimodal condition (TT).  Our results confirmed our 

hypotheses by showing that early somatosensory ERPs, namely the P50 and P100 

components were sensitive to (i) the temporal dynamics of crossmodal interactions, and 

(ii) the relevance of these sensory signals for behavior.  Specifically, modulation of the P50 

amplitude depended on the temporal onset of crossmodal stimuli with the greatest effects 
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seen when visual events preceded tactile events (VTd condition), followed by similar 

modulation between the other crossmodal conditions (SIM and TVd), and lastly the 

smallest modulation was seen for the irrelevant unimodal tactile condition (TT).  As 

expected, there was no P50 modulation for the unimodal visual condition (VV) since no 

tactile events occurred and no behavioral response was required. 

 It is of particular importance to highlight the differences in P50 modulation between 

the crossmodal conditions. In crossmodal conditions with a 100 msec temporal delay 

between the onset of visual and tactile stimuli (VTd and TVd conditions), we showed 

that P50 modulation was greater in the VTd condition relative to the TVd condition.  This 

finding was expected since in the TVd condition, the P50 component would have already 

occurred before presentation of the visual information.  Our topographic maps (Fig. 2.3) 

complement our P50 results by showing that only conditions including vibrotactile 

stimulation (i.e., TT, SIM, TVd, VTd) elicited neural activation in somatosensory regions 

contralateral to stimulation, while the VV condition showed minimal activation overall. 

However, a prominent difference in neural activity specific to the VTd condition was 

revealed, whereby robust neural activation was elicited not only in somatosensory cortex 

but in visual areas as well.  These results imply that presentation of relevant visual 

information for upcoming movement modulates somatosensory processing as early as SI.  

Moreover, the lack of SI activity seen in the VV condition implies that the activation of the 

visual cortex during the VTd condition was not simply due to volume conduction via 

additional sensory input, but instead, was specific to the task-relevance of the visual 

information in performing goal-oriented behavior.  Lastly, the amplitude of the P100 

component was enhanced during the SIM condition and suppressed during the TVd 
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condition and TT condition.  This finding suggests that enhancement of the P100 

component depended on the attentional relevance and temporal alignment of visual-tactile 

events.  Overall, this study shows that early somatosensory ERPs generated in modality-

specific cortical regions are modulated by both bottom-up sensory interactions between 

visual and somatosensory modalities and top-down attentional influences.  Thus, both the 

attentional requirement and the neural networks that control modality-specific sensory 

processing are necessary for crossmodal interactions to occur (Dionne et al., 2013). 

 The P50 component is a somatosensory ERP observed maximally in parietal cortices 

near the post-central sulcus contralateral to tactile stimulation, and typically varies in 

latency between 40 and 60 msec post stimulus onset (Desmedt et al., 1983).  It can be 

elicited via somatosensory stimuli (tactile, vibratory, peripheral nerve stimulation) in most 

subjects whereby changes in the amplitude of the response are believed to reflect changes 

in SI excitability (Allison et al., 1989; Zhu et al., 2007).  However, the precise role of the P50 

component in processing somatosensory information remains elusive. It has been 

suggested that the P50 component reflects a preattentional inhibitory filter mechanism 

critical for sensory gating of irrelevant stimuli, and the integrity of higher order functions 

(Freedman et al., 1987, 1991; Jerger et al., 1992; White and Yee, 2006).  Studies in patient 

populations support this theory with findings showing diminished P50 gating 

in neurological illnesses associated with inhibitory control deficits including: Alzheimer's 

dementia (Thomas et al., 2010), posttraumatic stress disorder (Karl et al., 2006), 

schizophrenia (Adler et al., 1982; Patterson et al., 2008), and bipolar I disorder (Schulze et 

al., 2007; Lijffijt et al., 2009).  However, Schubert et al. (2008) suggested that the 

modulation of the P50 is dependent on the attentional demands of a task, such that tasks 
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with higher degrees of difficulty are more successful in driving facilitation of the P50 

amplitude.  If this supposition is true, then enhancement of P50 component may instead 

reflect cognitive strategies applied during perceptual stages of sensory processing whereby 

relevant sensory signals are amplified via thalamo-cortical gating mechanisms (Yingling 

and Skinner, 1976; Desmedt and Tomberg, 1989; Brunia, 1993), before they can be relayed 

to higher order association cortices for further processing. 

 The P100 component has a relatively broad scalp distribution and is thought to be 

generated in bilateral secondary somatosensory cortex (SII) (Hari et al., 1983, 1984; Mima 

et al., 1998; Zhu et al., 2007).  Bilateral activation is typically maximal over contralateral 

posterior parietal electrode sites and somewhat less robust at ipsilateral sites (Desmedt 

and Robertson, 1977; Desmedt and Tomberg, 1989; Hämäläinen et al., 1990).  The P100 is 

similar to the P50 component, in that it is elicited by tactile and vibratory stimuli (Goff et 

al., 1977), and is modulated by attention (Desmedt et al., 1983; Michie, 1984; Michie et al., 

1987; Josiassen et al., 1990; Eimer and Forster, 2003a/b; Kida et al., 2004; Schubert et al., 

2006).  Selective attention studies have reported increased P100 amplitudes in attended 

versus unattended tactile stimuli with effects being greater than earlier ERP responses 

generated in SI (Desmedt et al., 1983; Josiassen et al., 1990; Bolton and Staines, 2011).  

Overall, attention influences both the P50 and P100 amplitudes, but modulatory changes 

may be related to differences in experimental paradigms used and/or psychological factors 

(Desmedt and Robertson, 1977; Goff et al., 1977). 

2.5.1. Attentional modulation in somatosensory cortex 

 Studies investigating the effects of sustained tactile-spatial attention have shown 

that attention to task-relevant versus irrelevant spatial locations enhances processing of 
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tactile stimuli and modulates somatosensory cortex (SI and SII) (Desmedt and Robertson, 

1977; Michie, 1984; Michie et al., 1987).  Several functional neuroimaging studies have 

found that sustained spatial attention to one hand versus the other during bilateral tactile 

stimulation enhances hemodynamic responses within contralateral SI and sensorimotor 

regions (Macaluso et al., 2000; Meador et al., 2002).  A positron emission tomography 

(PET) study reported that the anticipation of tactile stimulation can increase activity in 

contralateral SI even in the absence of any stimuli (Roland, 1981).  Furthermore, EEG 

investigations comparing somatosensory ERPs elicited by tactile stimulation applied to the 

hands, have reported that attending to the location of tactile stimulation modulates both 

early and late somatosensory ERPs (N80, P100, N140) with increased amplitudes for the 

attended versus unattended tactile location (Desmedt and Robertson, 1977; Michie, 1984; 

Michie et al., 1987; García-Larrea et al., 1995).  However, SI responses as early as 45–

50 msec post stimulus onset have been reported using an attentional vigilance task (Zopf et 

al., 2004).  Notably, a recent study using simultaneous EEG and fMRI recordings found that 

sustained spatial attention during bilateral tactile stimulation (Braille) modulated early 

somatosensory ERPs (P50, N80, P100, and the long latency potential (LLP)) as well as 

increased BOLD signals in SI, SII, the inferior parietal lobe and frontal areas.  Correlation 

results showed that attentional modulation of SI was found to be positively correlated with 

attentional effects for the P50 and the LLP components (Schubert et al., 2006).  The LLP 

component has multiple neural generators from broadly distributed locations, and is often 

seen as a sustained positivity occurring approximately 200–500 msec post stimulus 

(Michie et al., 1987; Hämäläinen et al., 1990).  The precise role of this later positivity 

remains unclear; however, several attention-based tactile ERP studies have implied that 
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the LLP may share functional similarities to the P300 component, such that increases in the 

LLP amplitude is thought to reflect the amount of attentional resources devoted to a given 

task (Desmedt and Robertson, 1977; Michie et al., 1987; Desmedt and Tomberg, 1989).  

These findings imply that sustained tactile attention modulates neural activity generated in 

SI at both early and later stages of tactile processing (Schubert et al., 2008). 

2.5.2. Crossmodal input modulates somatosensory cortex 

 It is well-documented that attention modulates modality-specific sensory cortex, 

however, little is known about how multiple sensory inputs across modalities are 

integrated for purposeful goal-oriented behaviors.  Recently, researchers have begun to 

investigate how attention operates across sensory modalities with examination focused on 

the crossmodal links between touch and vision.  Eimer and Driver (2000) used a tactile-

spatial attention task whereby participants were required to attend and respond to target 

stimuli presented to the primary modality (touch) while ignoring distractor stimuli 

presented at the unattended hand and stimuli shown in the task-irrelevant modality 

(vision).  Results showed enhanced somatosensory ERPs to tactile stimuli presented at the 

attended locations and increased modulation of early visual ERPs elicited by irrelevant 

visual stimuli presented at task-relevant tactile locations.  These findings suggest that 

sustained attention to one modality can influence neural excitability in another spatially 

congruent modality (Eimer and Driver, 2000).  In a behavioral study, it was reported that 

visualization of the finger improved acuity judgments of tactile gratings applied to the 

fingertip (Taylor-Clarke et al., 2004), while a separate EEG study showed modulation of 

somatosensory ERPs as early as 80 msec post-stimulus when participants viewed 

stimulation of their own arm (Taylor-Clarke et al., 2002).  In another EEG study, Meehan 
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and Staines (2009) examined crossmodal effects on somatosensory evoked potentials 

elicited via median nerve stimuli.  Results showed that enhancement of P50 amplitude was 

greatest when crossmodal stimuli (visual + vibrotactile) were presented in spatiotemporal 

alignment but attention was directed only to vibrotactile events.  These results suggest that 

the presence of visual information that is spatiotemporally congruent to relevant tactile 

information enhanced the amplitude of the P50 component.  However, it was uncertain if 

participants were aware that crossmodal events were synchronous, therefore, alterations 

in cognitive strategy to perform the task are unknown (Meehan and Staines, 2009).  Lastly, 

Dionne et al. (2013) showed that the amplitude of P50 was sensitive to simultaneous 

presentation of crossmodal stimuli, but only when both crossmodal events were relevant 

for behavior, and not when one event was irrelevant (i.e., when participants only 

responded to one modality).  Specifically, the presence of visual stimuli, alone, did not 

enhance the P50 amplitude, suggesting that modulation of this component is mediated by 

top-down sensory gating mechanisms.  Results also showed that enhancement of P100 

amplitudes were greatest during simultaneous presentation of crossmodal 

(visual + vibrotactile) stimuli relevant for behavior versus task-irrelevant unimodal stimuli.  

Despite these P100 results and the findings reported in this study, crossmodal effects on 

this component are variable, and seem to depend on the spatial location of attention.  For 

example, studies using EEG and sensory oddball tasks have investigated crossmodal links 

in spatial attention between vision and touch. In tactile manipulations, participants 

responded to tactile ‘oddball’ targets at attended spatial locations (primary modality) while 

ignoring visual stimuli (secondary modality).  Results showed that attended, relative to 

unattended tactile stimuli, enhanced the negativity of the somatosensory N140 component, 
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but failed to produce attentional effects at earlier stages of somatosensory processing 

(Eimer and Driver 2000).  However, recent work by Jones and Forster (2013) showed that 

engaging in a visual task while performing an exogenous tactile attention task diminished 

cortical modulation at early stages of somatosensory processing.  Here, subjects either 

performed a tactile exogenous attention task while either just watching a visual stream of 

letters (single task), or were required to perform the tactile task and detect targets within 

the visual stream (dual task).  ERP results showed diminished modulation of the N80 and 

P100 somatosensory components during the dual task suggesting that early stages of 

somatosensory processing are sensitive to crossmodality effects (Jones and Forster, 2013).  

Plausible explanations for the inconsistent crossmodal effects on early stages of 

somatosensory processing may be differences in the attentional tasks employed (i.e., 

crossmodal sensory integration task versus tactile spatial attention task), and/or in the 

attentional demands required between studies (i.e., graded force response representing the 

summation of visual and tactile stimuli with the hand versus vocal response made when 

target stimuli were presented at attended spatial locations) (Eimer and Driver, 2000; 

Eimer, 2001; Dionne et al., 2013; Jones and Forster, 2013). 

 Crossmodal interactions between relevant sensory inputs can facilitate perceptual 

processing in modality-specific sensory cortex to achieve goal-oriented behaviors.  Studies 

have shown that the presence of an additional (but task-irrelevant) modality can enhance 

neural excitability in the attended modality (Calvert et al., 1997; Macaluso et al., 2000; 

Calvert, 2001; Foxe et al., 2002; Kayser et al., 2005; Pekkola et al., 2006; Lehmann et al., 

2006; Schürmann et al., 2006; Kasyer et al., 2007; Lakatos et al., 2007; Meehan and Staines, 

2009), suggesting that attention within one modality can modulate neural excitability (to 
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some extent) in another sensory modality.  Furthermore, recent neuroimaging studies have 

found that relevant crossmodal stimulation (i.e., tactile and visual sensory input) increases 

neurophysiological responses in SI relative to unimodal stimulation (i.e., either visual or 

tactile sensory input) (Dionne et al., 2010, 2013).  Taken together, these studies suggest 

that both bottom-up (i.e., the presence of an additional sensory modality) and top-down 

attentional mechanisms (i.e., task-relevance) work together to process and integrate 

relevant sensory signals for successful execution of goal-oriented behaviors.  However, the 

neural mechanisms underpinning the contribution of each sensory system during 

crossmodal attentional processing remains unclear.  In this study, we examined the relative 

contribution of visual information in modulating early somatosensory ERPs by 

manipulating the temporal parameters of relevant visual-tactile interactions.  Results 

showed that modulation of the P50 component varied based on the temporal delay 

between relevant bimodal stimuli, with greatest enhancement seen when visual 

information occurred 100 msec prior to the onset of tactile information.  In addition, the 

P100 component was enhanced during simultaneous bimodal interactions relevant for 

behavior, but not during bimodal interactions where tactile information occurred 100 msec 

prior to visual information, or during irrelevant unimodal interactions suggesting that the 

P100 component was increased only when visual-tactile events occur in temporal 

synchrony and require selective attention.  Lastly, behavioral results revealed differences 

between the sensory-motor responses produced during the VTd versus the TVd conditions, 

such that, participants tended to under-squeeze the pressure-sensitive bulb when 

summating VTd stimuli.  It is plausible that participants may have employed different 

cognitive strategies to facilitate processing of these crossmodal conditions. It certainly is 
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possible that such modulation of these modality-specific regions would have some 

behavioral benefits in terms of the efficient sensorimotor transformation.  However, since 

participants were not explicitly asked whether they used a specific strategy to aid their 

sensorimotor judgments, we can only speculate potential factors that may have produced 

the differences in behavior found in our study.  There are some notable limitations in the 

design of the experimental paradigm used in this study which must be considered.  

Although the crossmodal conditions with 100-msec temporal delays between the onset of 

visual or tactile stimuli events (i.e., TVd and VTd), were advantageous for interpreting 

crossmodal effects on the P50 component, the temporal delay interfered with the timing of 

some early (i.e., the P100 component for the VTd condition) and all later onset ERPs (i.e., 

N140) beyond typical latency boundaries, thus crossmodal effects could not be discussed 

for these components.  Second, the behavioral results of this study suggest that participants 

may develop different cognitive strategies in order to facilitate perceptual processing of 

crossmodal stimuli with temporal delays between the onsets of each stimulus.  Previous 

studies using the same stimuli described in this study have reported no differences in 

behavior during unimodal (TT, VV) conditions versus simultaneous presentation of 

crossmodal (visual + vibrotactile) conditions, suggesting that performance accuracy was 

similar across all conditions (Dionne et al., 2010, 2013).  Indeed, the discrepancy between 

these behavioral results compared to the results of this study reveal a need for future 

studies to investigate if a potential relationship between these early changes in neural 

excitability and behavioral responses exists.  

 Notwithstanding these limitations, the results of this study are novel and suggest 

that presentation of visual information relevant for upcoming sensory-guided movement 
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can facilitate tactile processing at very early stages in SI.  Our findings complement 

previous observations reporting that crossmodal attention effects can occur at early stages 

in modality-specific sensory ERP components (Eimer and Driver, 2000; Taylor-Clarke et al., 

2002; Dionne et al., 2013).  Notably, this study extends the current literature by showing 

that crossmodal modulation of early somatosensory ERPs is facilitated by bottom-up 

sensory interactions between visual-tactile cortical associations and top-down sensory 

gating mechanisms.  Overall, this research offers novel and important information about 

how the brain merges sensory input from multiple modalities in order to execute goal-

oriented behaviors. 

2.6 Conclusions 

Modulation of the P50 amplitude depended on the temporal onset of crossmodal stimuli 

with the greatest facilitation seen when visual events primed tactile events (VTd 

condition), followed by similar modulation between the other crossmodal conditions (SIM 

and TVd), and lastly the smallest modulation was seen for the irrelevant unimodal tactile 

condition (TT).  The amplitude of the P100 component was enhanced during the SIM 

condition and suppressed during the TVd condition and TT condition.  This finding 

suggests that facilitation of the P100 component depended on the attentional relevance 

and temporal alignment of visual-tactile events.  Overall, this study showed that early 

somatosensory ERPs generated in modality-specific cortical regions are modulated by both 

bottom-up sensory interactions between visual and somatosensory modalities and top-

down attentional influences. 
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2.7 Figures 

 

Figure 2.1. Experimental paradigm 

A)  shows the unimodal conditions (VV, TT), B) shows the crossmodal condition with 
simultaneously presented visual-tactile stimuli, C) shows the crossmodal condition where 
tactile stimuli are presented 100ms before visual stimuli (TVd), D) shows the crossmodal 
condition where visual stimuli are presented 100ms before tactile stimuli (VTd) between 
visual-tactile condition (VT). Participants were required to ignore all unimodal conditions 
and only respond to the crossmodal conditions. To depict the behavioural task, the columns 
are intended to represent examples the temporal onset and amplitudes of stimulus events 
amplitudes while the dotted trace is a schematic of the corresponding force applied to the 
squeeze-bulb when making the motor response to those stimuli. E) shows an example a 
bimodal simultaneous condition (SIM) and a unimodal tactile-tactile condition (TT). F) 
Subjects were to attend only to bimodal conditions and make a graded motor response 
with a pressure bulb representing the summation of each stimuli. (ITI; Intertrial interval, 
ISI; Interstimulus interval). 
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Figure 2.2. Grand averaged P50 waveforms 

Grand average waveforms all for conditions are shown for parietal electrode sites 
contralateral to vibrotactile stimulation (C4, CP4, P4). The P50 ERP component is labeled 
on the trace for electrode site C4. Black and light gray solid traces show VTd, SIM, dark gray 
dotted traces show TVd conditions, while gray and black dashed traces show TT and VV 
conditions, respectively. 
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Figure 2.3. P50 scalp topography maps 

Inset shows modulation of the P50 ERP waveforms in response to bimodal and unimodal 
conditions. The P50 ERP component is labelled on the trace for electrode site CP4. Solid 
black and light gray traces show VTd and SIM conditions, dotted dark gray traces show TVd 
conditions, while gray and black dashed traces show TT and VV conditions, respectively. 
Below images show group averaged data of peak areas of cortical activity generated over a 
30 ms time window (40-70ms) centered around the P50 ERP peak. All values are in 
microvolts (uV). 
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Figure 2.4. Grand averaged P100 waveforms 

Grand average P100 waveforms are shown for parietal electrode sites (P3, PZ, P4) for SIM, 
TVd, and TT conditions. The P100 ERP component is labelled on the trace for electrode site 
P3. Solid light and dotted dark grey traces show SIM, TVd conditions, respectively, while 
dashed light grey traces show the TT condition. 
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Figure 2.5. Group ERP means 

Group means for A) P50 and B) P100 ERP components. Solid black bars represent group 
data for the crossmodal condition where presentation of visual stimuli preceded tactile 
stimuli (VTd), dark gray bars with dotted lines represent group data for the crossmodal 
condition where presentation of tactile stimuli preceded visual stimuli (TVd), solid light 
gray bars represent group data for the crossmodal condition where visual+tactile stimuli 
were presented simultaneously (SIM), dashed light gray bars represent group data for the 
unimodal tactile condition (TT). Error bars show SEM, * denotes significance p<0.05. (A) 
Mean P50 amplitude measured at CP4, (B) depicts the mean P100 amplitude at PZ, 
respectively. 
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Figure 2.6. Behavioural performance 

The solid light gray bar graph represents group data for the visual + tactile simultaneous 
condition (SIM), the dotted dark gray bar graph represents group data for the condition 
where tactile stimuli were presented 100ms before visual stimuli (TVd), and the solid black 
bar graph represents group data for the condition where visual stimuli are presented 
100ms before tactile stimuli (VTd) between visual-tactile condition (VT). Error bars show 
SEM. 
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Chapter 3 ‐ Study 2: Early modality-specific somatosensory cortical regions are 
modulated by attended visual stimuli; interaction of vision, touch, and behavioural 
intent. 

 

Adapted from: 

Staines WR, Popovich C, Legon JK, Adams MS. (2014). Early modality-specific 
somatosensory cortical regions are modulated attended visual stimuli; interaction of 
vision, touch, and behavioural intent. Frontiers in Psychology, 5(351), 1-11.  

 

3.1 Overview  

 Crossmodal interactions between relevant visual and tactile inputs can facilitate 

attentional modulation at early stages in somatosensory cortices to achieve goal-oriented 

behaviours.  However, the specific contribution of each sensory system during attentional 

processing and importantly, how these interact with required a behavioural motor goal 

remains unclear.  Electroencephalography was used to test the hypothesis that activity 

from modality-specific somatosensory cortical regions would be enhanced with task-

relevant crossmodal stimuli (visual+tactile), and that the degree of modulation would 

depend on the difficulty of the associated sensory-motor task demands.  Tactile stimuli 

were discrete vibrations to the index finger and visual stimuli were horizontal bars on a 

computer screen, both with random amplitudes.  Streams of unimodal (tactile) and 

crossmodal (visual+tactile) stimuli were randomly presented and participants were 

instructed to attend to one type of stimulus (unimodal or crossmodal).  Responses involved 

either an indication of the presence of an attended stimulus (detect), or the integration and 

summations of two stimulus amplitudes using a pressure-sensitive ball (grade).  Force-

amplitude associations were learned in a training session with no performance feedback 

while ERPs were time-locked to tactile stimuli and extracted for early modality-specific 

components (P50 and P100). Results showed enhancement of the P50 during the 
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presentation of attended, crossmodal stimuli.  This was maximal when the motor 

requirements involved integration of the two stimuli in the grade task and when the visual 

stimulus occurred before (100 ms) the tactile stimulus.  These results suggest that visual 

information relevant for movement modulates somatosensory processing as early as SI and 

that the motor behavioural context influences this likely through interactions of top-down 

attentional and motor preparatory systems with more bottom-up crossmodal influences. 

 

3.2 Introduction 

 Selective attention is often classified as a top-down cognitive process whereby 

attentional resources are voluntarily directed towards sensory stimuli relevant for goal-

oriented behaviour.  Neurologically, animal and human studies have shown that selective 

attention enhances neuronal responses in corresponding modality-specific regions of the 

brain (Josiassen et al., 1990; Hsiao et al., 1993; Motter, 1993; Woldorff et al., 1993; Jäncke 

et al., 1999; Johansen-Berg et al., 2000; Staines et al., 2002; Petkov et al., 2004; Gazzaley et 

al., 2007; Andersen et al., 2008).  However, the presence of salient sensory stimuli in the 

environment can also capture attentional resources; a process referred to as bottom-up 

attention.  Neuroimaging studies have reported that the presentation of a task-relevant 

stimulus when paired with another task-irrelevant stimulus from a different sensory 

modality also enhances neuronal responses in the attended modality (Calvert et al., 1997; 

Macaluso et al., 2000; Calvert, 2001; Macaluso and Driver, 2001; Molholm et al., 2002; 

Lehmann et al., 2006; Pekkola et al., 2006; Schürmann et al., 2006; Meehan and Staines, 

2007, 2009).  Animal work by Zhou and Fuster (1997) has shown that neurons in SI fire in 

response to visual stimuli that has been previously paired with tactile stimuli.  Moreover, 
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recent investigations have shown that neuronal responses in modality-specific cortex are 

enhanced when the crossmodal stimuli are task-relevant for behaviour.  For example, 

previous neuroimaging studies by Dionne et al. (2010, 2013), showed that simultaneous 

presentation of relevant visual and tactile stimuli increased neuronal activity in modality-

specific SI within 50 ms post stimulus onset.  Popovich and Staines (2014) compliment 

these top-down crossmodal effects on SI, and extend them by showing that presentation of 

relevant visual stimuli 100 ms prior to the onset of tactile stimuli produced the greatest 

P50 facilitation, suggesting that meaningful vision can exert modulatory effects on 

modality-specific SI activity.  Taken together, these studies imply that crossmodal 

processing is likely governed by both bottom-up sensory-sensory interactions and top-

down attentional mechanisms in order to allow for the selection, amplification, and 

integration of sensory input relevant for initiating goal-oriented responses.  However, 

while both these attentional mechanisms can modulate neural responses in modality-

specific sensory cortex, it is unclear how these attentional mechanisms interact during 

sensory processing of crossmodal stimuli.  

 Excitability of somatosensory cortex is modulated by the relevance of stimuli to 

behavior, with the goal of facilitating the extraction of relevant sensory information for 

further cortical processing.  The modulation of somatosensory information during 

movement provides evidence that the primary somatosensory cortex (SI) is sensitive to the 

relevance of somatosensory stimuli to behavior.  Inhibition of afferent information 

ascending to the cortex is seen when somatosensory evoked potentials (SEPs) to passive 

somatosensory stimuli are attenuated during movement, a phenomenon often called 

movement-related gating (Cheron and Borenstein, 1991; Chapman, 1994; Brooke, 2004), 
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this gating effect is lifted, at least partially, when the stimuli are made relevant to the 

performance of a task (Staines et al., 1997, 2000).  

 In a non-gating context, recent findings using event-related potentials (ERPs) 

provide evidence that task-relevance of stimuli facilitates crossmodal modulation of early 

and mid-latency somatosensory-specific ERP components, namely the P50, a positive 

potential peaking at approximately 50 ms after presentation and generated in the primary 

somatosensory cortex (Hämäläinen et al., 1990), as well as the P100 and N140 (Dionne et 

al., 2013; Popovich and Staines, 2014) generated in secondary somatosensory cortex 

(Mima et al., 1998; Frot and Mauguière, 1999; Gu, 2002).  These results are novel as 

crossmodal effects on the somatosensory P50 have not been previously reported, and even 

attentional modulation of this potential is not consistently observed (Desmedt and 

Robertson, 1977; Michie et al., 1987; Eimer and Forster, 2003a/b; Zopf et al., 2004; 

Schubert et al., 2008).  Part of the difficulty in reconciling the inconsistent reports of P50 

modulation can be attributed to a lack of clarity in what it represents.  Although the P50 is 

typically thought to reflect S1 excitability, early reports have suggested that the latency of 

this potential makes it unlikely to reflect processing of the evoking stimulus, but instead is 

more likely to represent the application of cognitive strategies to stimulus processing 

(Desmedt and Tomberg, 1989).  If this is the case, then modulation of the P50 could be 

highly dependent on elements of the task that contribute to the strategy used by the 

subject, which could account for the lack of consensus on modulation of this potential 

across different tasks and paradigms.  Early interactions have also been shown between 

auditory and somatosensory cortices in tasks with simultaneous stimulus presentation 

(Foxe et al., 2000).  Further, Foxe and Simpson (2002) showed that early modality-specific 
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visual cortex is active as early as 56 ms after stimulus onset with evidence of dorsolateral 

frontal cortex by 80 ms.  Neuroimaging studies in humans complement the sensory-to- 

sensory interactions reported above by showing that the presence of crossmodal input can 

modulate neural excitability in modality- specific sensory cortices.  Several functional 

magnetic resonance imaging studies have reported increased blood oxygenation level 

dependent (BOLD) responses in modality-specific cortices due to the mere presence of 

stimuli from another modality.  These interactions have been found between: visual and 

auditory cortices (Calvert et al., 1997; Calvert, 2001; Lehmann et al., 2006; Pekkola et al., 

2006), auditory and somatosensory cortices (Foxe et al., 2002; Schürmann et al., 2006), as 

well as visual and somatosensory cortices (Macaluso et al., 2000, 2002).  In addition, 

Dionne et al. (2010) investigated crossmodal effects on BOLD responses generated in SI 

when both stimuli were relevant for guiding a motor response.  Here, relevant unimodal 

(visual or tactile) and crossmodal stimuli (simultaneous visual + tactile) were presented 

and participants squeezed a pressure-sensitive bulb with a force that was dependent on the 

summation of both stimuli. Results showed that the greatest BOLD responses were elicited 

inS1during crossmodal versus unimodal interactions suggesting that combining visual-

tactile (VT) information relevant for behavior enhances modality-specific excitability in S1 

(Dionne et al., 2010). 

 The objective of the current study was to investigate the role of specific task 

requirements in mediating the previously observed crossmodal modulation of early 

modality-specific somatosensory cortical responses, represented by the P50.  Importantly, 

this crossmodal modulation occurred when both the visual and tactile target stimuli were 

attended to and necessary for an impending motor task.  The current study investigates the 
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role of the motor requirements of the impending task.  Based on the findings of Dionne et 

al. (2010, 2013) and Popovich and Staines (2014), it was hypothesized that activity from 

modality-specific somatosensory cortical regions would be enhanced with task-relevant 

crossmodal (visual-vibrotactile) stimuli and that the degree of modulation would depend 

on the difficulty of the associated motor task demands (i.e. sensory-motor integration task 

or detection task).  Specifically, it was hypothesized that crossmodal enhancement of the 

amplitude of the P50 component would be greatest when the onset of relevant visual 

information occurred prior to the onset of tactile information and required a sensory-

motor integration response, and smallest during the detection of unimodal (tactile) stimuli. 

  

3.3. Methods 

3.3.1 Participants 

 EEG was collected from 10 healthy self-reported right-handed participants (mean 

age=24 years, 5 males).  All participants provided informed written consent and the 

experimental procedure was approved by the University of Waterloo Office of Research 

Ethics. 

3.3.2. Behavioural task 
 
 The behavioural task consisted of 3 conditions that presented pseudo-randomized 

pairs of discrete tactile or visual and tactile stimuli with random amplitude variations.  

Stimuli were always presented in pairs, either sequentially (unimodal conditions) or 

simultaneously (crossmodal conditions): 1) tactile-tactile (TT; 500 ms each, 30 ms ISI), 2) 

visual-tactile simultaneous (SIM; 1000 ms concurrent), 3) visual-tactile with a 100 ms 

temporal delay between stimulus onsets (VTd; 500 ms each).  Streams of unimodal (tactile) 
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and crossmodal (visual-tactile) stimuli were presented in each block.  In separate blocks, 

participants were verbally instructed to attend to one type of stimulus interaction (i.e. 

unimodal or crossmodal) and produce a motor response which represented either the: i) 

indication of the presence of an attended stimulus (detect), or (ii) integration and 

summation of 2 stimulus amplitudes (grade). In this way, attentional and motor response 

state was established prior to each experimental block. In each motor task condition, 

participants were required to make their response using a pressure-sensitive ball in order 

to keep the relative nature of the motor response similar across conditions.  Stimuli were 

presented for 1 second after which participants were required to make their motor 

response immediately following presentation of the crossmodal stimuli during a 2.5 second 

window prior to the start of the next trial, for a total of approximately 5 seconds per trial.  

Crossmodal grade and detect conditions were randomly presented in 5 blocks of 90 

stimulus events each (30 each of TT, SIM, and VTd), totaling 10 blocks of 900 stimulus 

events in total, with each block lasting approximately 6 min.  Unimodal grade and detect 

conditions occurred in two blocks of 150 stimulus events each for a total of four blocks of 

600 stimulus events in total (refer to Fig. 3.1.).  

 Prior to the EEG collection participants underwent a 5‐minute training session with 

visual feedback to learn the relationship between the amplitudes of the stimuli and the 

corresponding force required to apply to the bulb.  During training, a horizontal target bar 

appeared on the visual display and subjects were instructed to squeeze the 

pressure‐sensitive bulb with enough force to raise another visual horizontal bar to the 

same level as the target bar.  At the same time, as subjects applied force to the bulb with 

their right hand the vibrotactile device vibrated against the volar surface of their left index 
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finger with corresponding changes in amplitude, i.e. as they squeezed harder on the bulb 

the amplitude of the vibration increased proportionately.  Subjects were instructed to pay 

attention to these changes in amplitude as they related to the force they were applying to 

the bulb.  This training allowed subjects to become familiar with the relationship between 

the vibrotactile stimulus amplitude and the corresponding force applied to the bulb.  To 

control for force‐related trial‐to‐trial differences, stimulus amplitudes were scaled such 

that no single stimulus required a squeeze of more than 25% of an individual’s maximum 

force, thus the response for adding two stimuli was never more than 50% of an individual’s 

maximum force.  Stimuli were always presented in pairs, either unimodally (two tactile), 

presented sequentially or crossmodally (one visual and one tactile), presented 

simultaneously or with a 100ms temporal offset between each stimuli.  

3.3.3. Stimuli 

 Visual stimuli consisted of a centrally‐presented horizontal bar (6 cm wide) at 

varying heights representing different amplitudes.  Visual stimuli were displayed on a 

computer monitor positioned 50 cm in front of the subject.  Vibrotactile stimuli consisted of 

discrete vibrations delivered by a custom‐made vibrotactile device applied to the volar 

surface of the left index finger.  Vibrotactile stimulation was controlled by converting 

digitally generated waveforms to an analog signal (DAQCard 6024E, National Instruments, 

Austin, Texas) and then amplifying the signal (Bryston 2B‐LP, Peterborough, Ontario) using 

a custom program written in LabVIEW (version 8.5, National Instruments, Austin, Texas).  

Varying the amplitude of the driving voltage to the vibrotactile device produced 

proportional changes in vibration of the device on the finger.  The amplitude of each 

discrete vibration was constant within a trial and varied randomly between trials.  The 
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average stimulus amplitude across all trials including a tactile stimulus did not differ 

between the experimental conditions.  The frequency of the vibration was held constant at 

25 Hz. Participants received 70 dB whitenoise (Stim2, Neuroscan, Compumedics USA, 

Charlotte NC) throughout the experiment to prevent auditory perception of the vibrotactile 

stimulus. 

3.3.4. Data acquisition & recording parameters 

 EEG data was recorded from 32 electrode sites (64 channel Quick‐Cap, Neuroscan, 

Compumedics USA) in accordance with the international 10‐20 system for electrode 

placement, and referenced to the linked mastoids (impedance <5 kohms).  EEG data were 

amplified (20 000x), filtered (DC‐200 Hz) and digitized at 500 Hz (Neuroscan 4.3, 

Compumedics USA) before being saved for subsequent analysis. Individual traces were 

band‐pass filtered (1-30Hz) and visually inspected for artifacts (i.e. blinks, eye movements, 

or muscle contractions).  Any contaminated epochs were eliminated before averaging. 

Event‐related potentials were averaged to the onset of each stimulus relative to a 100 ms 

pre‐stimulus baseline.  Somatosensory ERPs were measured from individual participant 

averages for each task condition.  Mean ERP amplitudes and latencies were computed for 

each subject within specified time windows centered around the post stimulus latency of 

somatosensory P50 component (40‐70ms).  Figure 3.2 illustrates the distribution of these 

potentials.  Amplitude and latency of the P50 component was measured from C4, CP4, and 

P4 electrode sites, located over right sensory‐motor and parietal cortex, contralateral to the 

vibrotactile stimulus.  All P50 amplitudes were measured as raw voltage relative to the 

pre‐stimulus baseline.  
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3.3.5. Data analysis 

 A repeated measures ANOVA was carried out on P50 amplitudes with the following 

within subject factors: motor task (two levels: detect, grade), attended modality (two 

levels: unimodal, crossmodal) and stimulus type (three levels: TT, SIM, VTd).  Tukey’s post 

hoc tests were carried out following a main effect of stimulus type.  Our statistical approach 

was restricted to the P50 component since the constant 100 ms temporal delay between 

the visual and tactile stimuli in the VTd condition produced an interaction with the visual 

ERPs over the time windows used to quantify any later somatosensory components (i.e. the 

P100 and N140).   Previous work using the same temporal delay between the visual and 

tactile stimuli as used here showed that the distribution of visual-locked ERPs spread to the 

central-parietal electrodes that overlap the time of the P100 but not the P50 (Popovich and 

Staines, 2014).  

 Behavioural data were analyzed for each motor requirement (i.e. detect and grade 

tasks). For the detection task, the number of hits and misses were counted.  For the grade 

task, behavioural analysis was conducted by summing the amplitudes of the two target 

stimuli and comparing this to the amplitude of the response, i.e. the force applied to the 

bulb.  The percent difference between the summed target stimulus amplitude and the 

actual response amplitude was then calculated.  Paired t-tests were used to assess 

statistical differences between unimodal and crossmodal stimuli for each task. 
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3.4. Results 

3.4.1. Early ERP components (P50)  

 ERP analyses was focused on the P50 because the constant 100 ms temporal delay 

between the visual and tactile stimuli in the VTd condition produced an interaction with 

the visual ERPs over the time window (90–125ms) chosen for the P100 peak amplitude.  

All subjects demonstrated a clear P50 component in response to vibrotactile stimuli 

presented to the left index finger.  Figure 3.2 shows the grand averaged waveforms for the 

VTd stimuli in all conditions at electrode site CP4 approximately overlying the contralateral 

somatosensory cortex. Ignore VTd represents ERPs to VTd stimuli (time locked to the 

tactile stimulus) when participants were responding to unimodal (TT) stimuli.  Scalp 

topography maps representing group averaged data were created by averaging neural 

responses generated over the 30 ms time window (40–70ms) centered around the P50 

peak to observe task-specific differences in cortical modulation (Figure 3.3).  As illustrated 

in Figure 3.2, all conditions including vibrotactile stimuli elicited robust neural activity over 

somatosensory regions contralateral to stimulation.  Notably, the VTd conditions also 

elicited robust activation over modality- specific visual cortex.  Statistical results showed a 

main effect of the stimulus type (F2,99 = 11.1, p < 0.0001) and the post hoc Tukey’s test 

revealed that the P50 amplitude was largest in the VTd conditions where the visual 

stimulus preceded the tactile stimulus by 100 ms compared to both the simultaneous 

(VT/SIM) or unimodal tactile (TT) conditions at electrode CP4 (p < 0.05).  Figure 3.2 shows 

P50 amplitudes for the Grade and Detect tasks for both VTd and TT stimulation.  P50 

amplitude was maximal in the condition where participants graded their force to the 

crossmodal stimuli and the visual stimulus preceded the stimulus by 100 ms. 
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3.4.2. Behavioral data  

 Paired t-tests were carried out on the behavioral data for each task to test whether 

the unimodal task differed from the crossmodal task.  Figure 3.5 shows response percent 

accuracy scores for each motor task. The percentage scores exceeding 100% accuracy in 

the grade conditions signifies that participant’s tended to over-squeeze the pressure bulb 

when attention was directed towards either unimodal stimuli (TT Grade) or 

simultaneously presented crossmodal stimuli (SIM Grade).  Statistical results showed that 

participant performance in the graded task was significantly more accurate in the VTd 

compared to the unimodal task (p = 0.02).  No other significant differences were found for 

any of the other task conditions (Figure 3.5). 

 

3.5. Discussion 

 This study set out to probe the role of behavioral task requirements in mediating 

crossmodal modulation of early modality-specific somatosensory cortical processing 

represented by early ERP components.  The greater purpose was to provide insight into 

what the somatosensory P50 may represent by testing the hypothesis that it would be 

sensitive to changes in task set despite identical stimulus parameters.  It was predicted that 

P50 modulation would be sensitive to task demands, specifically, that crossmodal 

modulation would be maximal in the grade task, when the relationship between stimulus 

attributes and motor response was greatest.  More importantly this condition required 

cortical networks involved in motor preparation and selective attention to both be active.  

In addition, it was hypothesized that having the visual target information onset slightly 

earlier, allowing sufficient processing time for the potential interaction between the 
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sensory modalities, would enhance such crossmodal modulation.  Overall, the hypotheses 

were supported by the data.  Responses from modality-specific somatosensory cortex (SI) 

were greatest when the required motor task was dependent on extracting stimulus details 

in order to accurately carry out the execution of the specific movement.  Such a task 

involves attention directed to the sensory target modalities as well as preparation in the 

cortical motor areas.  This enhancement of the modality-specific cortical response was 

further enhanced when the temporal arrangement of the crossmodal stimuli allowed for 

interaction between the visual and somatosensory modalities. 

3.5.1. Early modality-specific effects 

 In the present study, crossmodal modulation of the P50 was replicated as in 

previous studies when the behavioral task required a graded motor response linked to the 

amplitude of the stimuli.  Yet this modulation was not observed when the task 

requirements were changed despite the stimuli being identical.  This finding provides fairly 

compelling evidence that crossmodal effects on the P50 are mediated by the demands of 

the task.  The detection and graded tasks represent varying requirements to extract 

sensory information in order to make the appropriate motor response, with the detection 

task being the least demanding and the graded task the most demanding.  In support of this 

argument, the behavioral data show that the detection task was performed with near 

perfect accuracy, whereas the graded task was associated with less accurate performance, 

which would suggest it was the most difficult to perform.  When the conditions were 

altered such that the visual stimulus was available prior to the tactile target there was an 

association between behavioral performance and the excitability of early somatosensory 

responses.  As shown in Figure 3.4, performance in the VTd grade task was significantly 
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more accurate than in the unimodal task while the P50 amplitude was significantly 

enhanced relative to the others.  

 Considering all these findings together, some interesting possibilities arise about 

what the somatosensory P50 might represent.  The lack of crossmodal effects in the 

detection and discrimination tasks argues strongly against the idea of a global crossmodal 

facilitation in response to visual and tactile stimuli.  The finding that crossmodal effects 

only emerge under specific task requirements suggests that this potential is likely to reflect 

cognitive strategies being applied to the processing of the sensory inputs at an early stage, 

as was suggested by Desmedt and Tomberg (1989) in their discussion of what they termed 

the cognitive P40, which showed a similar topographical distribution to the P50 recorded 

in this experiment.  A study by Schubert et al. (2008) provides support for this idea and 

suggests that early sensory-specific modulations are associated with more demanding 

tasks.  Such enhancements are presumably mediated via reciprocal thalamocortical 

networks that act to bias processing towards selected inputs (Yingling and Skinner, 1976; 

Brunia, 1993).  

 It is important to note that in all cases the somatosensory ERPs are time-locked to 

the onset of the tactile stimuli.  In addition, in the case when the visual stimulus precedes 

the tactile stimulus by 100 ms (VT Grade) shown in Figure 3.2 (red trace) there is some 

indication of alpha-like activity.  The absence of this in the ERPs time-locked to the 

unimodal, tactile stimulus in the same block, suggests that this was not inherent to the task.  

In addition, the presentation of visual information prior to tactile stimuli did not permit 

observation of crossmodal effects on the P100 component since the constant 100 ms 

temporal delay between the visual and tactile stimuli in the VTd condition produced an 
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interaction with the visual ERPs over the time windows used to quantify later components 

(i.e. P100 and N140).  The P100 is bilaterally distributed over parietal electrode sites and is 

thought to be generated in bilateral SII (Mima et al., 1998; Gu, 2002).  Several studies 

report sensitivity of this potential to effects of attention (Josiassen et al., 1982; Desmedt et 

al., 1983; Michie et al., 1987; Eimer and Forster, 2003a/b; Kida et al., 2004; Schubert et al., 

2006), and functional imaging studies show modulation of SII when attention is directed 

towards TT stimuli (Meyer et al., 1991; Johansen-Berg et al., 2000; Staines et al., 2002; 

Nelson et al., 2004).  While the effects of attention on the P100 appear fairly consistent, 

studies investigating crossmodal influences on mid-latency components are mixed.  Studies 

employing an oddball detection task that required subjects to monitor both hands for 

deviant stimuli in one modality while ignoring the other and reporting detections with a 

verbal response also failed to find crossmodal effects on this potential (Eimer and Driver, 

2000; Eimer, 2001).  Dionne et al. (2013) reported that the P100 was sensitive to the 

presence of crossmodal stimuli but not to the task- relevance of those stimuli during the 

performance of a graded motor task, yet that same effect was not observed in the current 

study.  However, there are differences in the design of these two experiments that may 

account for this discrepancy.  In the current study the stimuli received by participants were 

intermixed pairs of either tactile (TT) or visual and tactile (VT) stimuli, and they were 

required to attend to either the unimodal (TT) or crossmodal (VT) events, essentially a 

crossmodal oddball task with varying motor requirements.  In the previous experiment, 

pairs of crossmodal or unimodal stimuli were presented in different blocks while 

participants performed the same task.   
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3.6. Conclusion 

 Crossmodal effects on early somatosensory cortical processing, represented by the 

P50 component, depends on the engagement of the attentional system and on the specific 

requirements of the behavioral task, suggesting this component may reflect the application 

of cognitive strategies to sensory processing and extraction of relevant features.  There 

may be functional interaction of systems responsible for attention, multimodal sensory 

integration and motor preparation that contribute to modulation of modality-specific 

somatosensory cortex.   
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3.7. Figures 

 

 

Figure 3.1. Experimental paradigm 

(A) and (B) illustrate the task blocks in which participants attended and responded to 
crossmodal visual-tactile stimuli. Responses were either scaled to the summed amplitudes 
of the two stimuli (Grade) or simply indicated the presence of the attended stimuli 
(Detect). (C) and (D) illustrate the presentation of the same stimuli; however, in these 
blocks participants attended and responded to the unimodal tactile stimuli. Each block of 
trials lasted approximately 6 min. 
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Figure 3.2. Grand averaged P50 waveforms 

Grand average waveforms for the crossmodal VTd conditions at electrode CP4. The P50 
ERP component is labeled on the trace for electrode site CP4.  Red, blue, and black traces 
show VTd stimuli in the detect, grade or when attention was directed to the unimodal 
stimuli (Ignore VTd), respectively. The gray trace shows the ERP time-locked to the TT 
stimuli when participants were responding to the crossmodal stimuli in the Grade response 
condition (Ignore TT-Grade). 
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Figure 3.3. P50 scalp topography maps 

 Inset shows modulation of the P50 ERP waveforms in response to conditions in 1A. Images 
show group averaged data of peak areas of cortical activity generated over a 30 ms time 
window (40–70 ms) centered around the P50 ERP peak. All values are in microvolts (μV). 
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Figure 3.4. Group means for P50 amplitudes  

P50 mean amplitudes measured at CP4 for the Grade and Detect tasks for both VTd and TT 
stimulation. P50 amplitude was maximal in the condition where participants graded their 
force to the crossmodal stimuli and the visual stimulus preceded the tactile stimulus by 100 
ms (Attend VTd-Grade; red bar). Red and blue bars represent group data for the 
crossmodal visual + tactile conditions (VTd) in which subjects graded their force for the 
response (Grade) or indicated detection of the target stimulus (Detect). The black bar 
represents the same VTd condition during blocks where attention was directed to the 
unimodal (TT) stimuli (grey/white bars). Error bars show SEM. 
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Figure 3.5. Behavioural performance 

Performance is shown for the crossmodal visual + tactile task condition where the stimuli 
were presented simultaneously (VT, white bars) or with a 100 ms delay (VTd, gray bars). 
Black bars represent group data for the unimodal tactile condition (TT). Error bars show 
SEM, * denotes significance p < 0.05. 
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Chapter 4 ‐ Study 3: Acute aerobic exercise enhances attentional modulation of 
somatosensory event-related potentials during a tactile discrimination task 
 

Adapted from: 

 Popovich C. and Staines WR. (2015). Acute aerobic exercise enhances attentional 
modulation of somatosensory event-related potentials during a tactile discrimination task. 
Behavioural Brain Research, 281, 267-75.  
 
 
4.1. Overview 
 
 Neuroimaging research has shown that acute bouts of moderate intensity aerobic 

exercise can enhance attention-based neuronal activity in frontal brain regions, namely in 

the PFC, as well as improve cognitive performance.  The circuitry of the PFC is complex 

with extensive reciprocal corticocortical connections, yet it remains unclear if enhanced 

PFC activity following exercise can also assist cognitive processing in modality-specific 

sensory cortices.  To test this, we used a tactile discrimination task to compare tactile 

event-related potentials (ERPs) prior to and following an acute bout of moderate intensity 

aerobic exercise.  We hypothesized that exercise preceding performance of task would 

increase PFC excitability resulting in more efficient sensory-gating of irrelevant/non-

attended and enhancement of relevant/attended sensory information, respectively.  

Participants received vibrotactile stimulation to the second and fifth digit on the left hand 

and reported target stimuli on one digit only.  ERP amplitudes for the P50, P100, N140 and 

long latency positivity (LLP) were quantified for attended and non-attended trials at FC4, 

C4, CP4 and P4 while P300 amplitudes were quantified in response to attended target 

stimuli at electrodes CZ, CPZ and PZ. Results showed no effect of attention on the P50, 

however, both P100 and LLP amplitudes were significantly greater during attended, task-

relevant trials, while the N140 was enhanced for non-attended, task-irrelevant stimuli.  
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Moreover, unattended N140 amplitudes over parietal sites were significantly greater post 

versus pre-exercise, while modulation of LLP varied with greater unattended amplitudes 

post exercise over frontal sites and greater attended amplitudes post exercise over parietal 

sites.  These results suggest that a single session of moderate intensity aerobic exercise 

facilitated the sensory-gating of task-irrelevant tactile stimuli so that relevant sensory 

signals could be enhanced at later stages of somatosensory processing. 

 
4.2. Introduction 
 

 Selective attention is commonly referred to as a higher-order executive process that 

requires conscious allocation of cognitive resources towards relevant information in the presence 

of environmental distracters.  Attention-related neuroimaging studies have shown that attending 

to task-relevant sensory information can activate a widespread neural network consisting of 

cortical and subcortical structures (Corbetta, 1998; Hopfinger et al., 2000), as well as enhance 

neuronal responses in modality-specific sensory cortices (Motter, 1993; Petkov et al., 2004; 

Popovich and Staines, 2014). It is thought that attentional control is mediated by the prefrontal 

cortex (PFC) which operates as an inhibitory-control filtering mechanism, suppressing irrelevant 

sensory information so that relevant sensory signals can be amplified and passed on for further 

processing in modality-specific brain regions(Skinner and Yingling, 1976; Yingling and Skinner, 

1976).  Indeed, neuroimaging findings in healthy adults have shown attention-related neuronal 

enhancement of task-relevant tactile stimuli in frontal and modality-specific somatosensory 

regions (Staines et al., 2002; Dionne et al., 2010), while studies in patients with focal frontal lobe 

lesions have found that PFC damage produces disinhibition of distractor stimuli during a range 

of sensorimotor and cognitive processes (Knight et al., 1999). Furthermore, a recent imaging 
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study in healthy young adults showed that transient disruption to neuronal activity in dorsolateral 

PFC via continuous theta burst stimulation (cTBS), produced disinhibition of task-irrelevant 

stimuli at early and later stages of somatosensory processing during a tactile discrimination task 

(Bolton and Staines, 2011).  A follow-up study in PFC patients using the same tactile 

discrimination task showed similar aberrations in the neuronal profile of some of the same early 

and late somatosensory ERPs found following cTBS to the dorsolateral PFC (Bolton and Staines, 

2014). Collectively, these studies support the notion that the PFC has a critical role in mediating 

attentional control over incoming sensory information by suppressing irrelevant sensory signals 

so that attended task-relevant information may be amplified in modality-specific sensory regions.  

  Notably, a growing body of evidence suggests that a single bout of acute aerobic exercise 

improves cognitive performance and produces neurophysiological changes, particularly in frontal 

lobe regions, during tasks requiring selective attention (Ekkekakis, 2009; Yanagisawa et al., 

2010; Endo et al., 2013).  Moreover, studies examining acute exercise-induced effects on 

cognition report that the greatest increases in neuronal activity are found in frontal regions 

following moderate bouts of aerobic exercise when tasks requiring higher-order attentional 

control are utilized (Kamijo et al., 2004, 2007; Hillman et al., 2009; Kamijo et al., 2009).  These 

exercise effects on attentional processing support the inverted U-shape arousal hypothesis first 

proposed by Yerkes and Dodson (1908), which states that as arousal states increase with physical 

exertion, cognitive performance improves to an optimal point after which further increases in 

physical exertion cause decreased arousal levels resulting in decrements in performance 

(Tomporowski, 2003).  However, the majority of human neuroimaging studies have employed 

psychological tasks tailored to examine the effects of exercise on PFC function (i.e. the Erikson 

Flanker, Stroop, or go/nogo tasks).  As a result, it remains unclear if acute aerobic exercise 



87 

 

modulates cortical activity downstream from the PFC in modality-specific sensory regions.  

Investigating the effects of aerobic exercise on frontoparietal interactions is an important avenue 

of the exercise and cognition research to pursue since the circuitry of the PFC is complex with 

reciprocal corticocortical and thalamocortical connections involved in modulating modality-

specific sensory regions via attentional mechanisms.  Determining whether acute bouts of 

aerobic exercise can improve attentional regulation over modality-specific sensory cortices 

provides an additional perspective regarding how exercise may transiently improve cognitive 

function perhaps via more efficient modulation between corticocortical networks.  Notably, an 

EEG study performed in soccer athletes and non-athletes using a lower limb somatosensory 

stimulation oddball task showed that the athletic group demonstrated increased P300 amplitudes 

and decreased latencies over central-parietal electrode sites compared to the non-athletic group 

(Iwadate et al., 2005).  These findings imply that long-term physical activity that requires 

selective attention and skilled motor responses may induce plastic changes in somatosensory 

processing during the execution of goal-oriented behaviours (Iwadate et al., 2005). However, no 

exercise intervention was implemented in this study, thus a causal link between the effects of 

exercise on somatosensory processing cannot be determined.  

 The purpose of the present study was to use EEG and a well-established tactile 

discrimination task to examine whether an acute bout of moderate intensity aerobic exercise, 

would enhance attention-based modulation of somatosensory ERPs generated at early and later 

stages of somatosensory processing in healthy young adults. Based on the findings of Bolton and 

Staines (2011), our first hypothesis was that early and later somatosensory ERPs would be 

modulated by attentional relevance (Bolton and Staines, 2011).  Specifically, we hypothesized 

that an acute bout of moderate intensity aerobic exercise preceding performance of a tactile 
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discrimination task would result in more efficient sensory-gating of irrelevant/non-attended and 

enhancement of relevant/attended sensory information.  Therefore, improvements in sensory-

gating would be observed as increased neural suppression of task-irrelevant stimuli and 

enhancement of relevant sensory information post- relative to pre-exercise. 

 

2. Methods. 

2.1. Participants  

EEG was collected from 16 healthy participants (aged 21-28, 6 males).  One participant 

was excluded due to the absence of clearly defined somatosensory event-related potentials of 

interest (i.e. P50, P100, N140, LLP components).  The final sample consisted of 9 females and 6 

males (mean age = 25.2 years).  Participants were self-reported right-handed individuals with no 

medical history of any major neurological illness, and no heart or blood pressure conditions that 

could be exacerbated with aerobic exercise.  Each participant provided informed consent and 

confirmed that they were physically able to engage in 20 minutes of moderate intensity aerobic 

activity on a recumbent bicycle.  Experimental procedures were approved by the University Of 

Waterloo Office Of Research Ethics.  

 

2.2. Behavioural Task 

 Subjects were seated in a sound-attenuating booth (Industrial Acoustics, 120A, NY), 

facing a blank computer screen and instructed to look directly ahead throughout testing.  Tactile 

stimuli were delivered via 2 blunt plastic probes contacting the fingertips of the second and fifth 

digits on the left hand as depicted in Figure 4.1.  These probes (approximately 1 cm diameter) 

were vibrated using piezo-electric actuators at a rate of 25 Hz for 125 ms during each stimulus.  
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Vibrotactile stimulation was delivered by digitally generated waveforms converted to an analog 

signal (DAQCard 6024E, National Instruments, Austin, TX, USA) and then amplified (Bryston 

2B-LP, Peterborough, ON, Canada).  The amplitude of vibration was set so that minimal values 

(i.e. small amplitude targets) exceeded sensory threshold for all subjects.  These stimuli were 

presented randomly to each finger (but never simultaneously) with random interstimulus 

intervals in the range of 500–1500 ms.  An oddball paradigm was employed whereby 17% of the 

trials for each finger consisted of the deviant stimulus.  These deviant stimuli represented the 

targets to which attention was paid and the amplitude of these targets was set to 25% the 

standard (non-target) amplitude (i.e. deviant stimuli, 105% of perceptual threshold; standard 

stimuli, 120% perceptual threshold).  The two experimental conditions required subjects to either 

(a) attend to the second digit (Attend D2; Attend Index) on the left hand while ignoring all 

stimuli delivered to the fifth digit, or (b) attend to the fifth digit (Attend D5; Ignore Index) on the 

left hand while ignoring all stimuli to the second digit.  Subjects reported target stimuli on the 

attended finger by pressing a button with the right hand.  Subjects were instructed to gently rest 

their hand on the probes to ensure consistent hand pressure throughout testing.  Headphones 

delivering white noise were worn throughout the experiment to block sound from the vibration 

device.  Trials requiring attention to either D2 or D5 were randomly presented to subjects in 3 

min blocks followed by a rest period of approximately 1 min.  There were a total of 6 testing 

blocks with 3 blocks attending to D2 and 3 blocks attending to D5.  Approximately 600 standard 

(non-target) stimuli were applied to each digit over the entire experiment with each testing block 

consisting of approximately 100 standard and 20 target stimuli. 
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2.3. Exercise protocol 

 Upon task completion, participants were seated comfortably on a cycle ergometer while a 

measure of their resting heart rate was taken using a Polar heart rate monitor.  Participants were 

instructed to begin pedaling on the ergometer to reach their target heart rate (60% of age-

predicted maximum heart rate; [220-age] x 0.60), and maintain this exercise intensity for the 

remainder of the 20 minute aerobic session.  For each participant, the ergometer resistance level 

was always set to its minimum value (level 1).  To ensure that participants adhered to the 

exercise protocol, frequent heart rate monitor checks were recorded, as well as two self-reported 

measures of the participant’s perceived rating of exertion were recorded after 10 and 20 minutes 

of exercise using the 10 point Borg Scale.  After the exercise session, participants were seated 

back into the sound proof booth where electrode impedances were checked to ensure that all 

recorded sites were below 5 kohms and a final heart rate measure was recorded to ensure that 

participants’ heart rates were within 10% their original resting heart rate (approximately 5 minute 

duration).  Participants were then instructed to repeat the tactile discrimination task again.  

 

2.4. Recording and analysis 

 EEG data was recorded from 32 electrode sites according to the international 10-20 

system for electrode placement and referenced to bilateral mastoids.  All channel recordings had 

impedance values below 5kohms.  EEG data were amplified (20,000×), filtered (DC-200 Hz, 6 

dB octave roll-off) and digitized (1000 Hz, SynAmps2, Scan 4.5, Compumedics Neuroscan, 

Charlotte, NC) before being stored for off-line analysis.  Somatosensory ERPs to tactile stimuli 

were averaged relative to a 100 ms pre-stimulus baseline for each attention condition.  Data were 
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band-pass filtered (1–30 Hz) and trials with artefacts (i.e. eye blinks, muscle activity) were 

identified by visual inspection and were excluded from further analysis.  Since stimulation of the 

fifth digit did not result in consistently clear ERP components, analysis was restricted to non-

target stimuli (i.e. large amplitude vibrations) delivered to the second digit (i.e. index finger).  

Several somatosensory ERP components were evaluated in this study focusing on the peak 

amplitude for each defined ERP component.  Somatosensory ERPs were measured from 

individual participant averages for each task condition.  Mean ERP amplitudes were computed 

for each subject within specified time windows selected around the post stimulus latencies of 

each ERP component of interest: P50 (40-70 ms), P100 (85-125 ms), N140 (125-165 ms), LLP 

(175-250 ms), and the P300 (300-600 ms).  Clearly defined components and peaks were required 

for inclusion.  Separate two-way ANOVAs with factors attention (Attend index, Ignore index) 

and time (Pre-Exercise, Post-Exercise) were calculated for each component of interest at the 

electrode sites as follows: P50 (C4, CP4), P100 (P4, CPZ, P3), N140 (FC4, CP4, P4), LLP (FC4, 

CP4, P4) and P300 (FCZ, CZ, CPZ).  Pre-planned contrasts were performed to test the 

hypotheses that ERP modulation would show greater suppression of task-irrelevant distractor 

stimuli (i.e. Ignore Index conditions) and greater enhancement of task-relevant stimuli (Attend 

Index conditions), post-exercise relative to pre-exercise.  

 The P50 ERP component has been shown to be generated in the primary somatosensory 

cortex (SI) (Schubert et al., 2008), while studies examining early somatosensory evoked 

potentials (SEPs) typically show more robust over central-parietal electrodes contralateral to 

stimulation in SI areas (Hämäläinen et al., 1990; Allison et al., 1992), thus the P50 was analyzed 

at electrode sites C4 and CP4 positioned over SI, contralateral to vibrotactile stimulation.  We 
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analyzed the P100 component at electrode sites P4, CPZ, and P3 since the P100 amplitude has 

known neural generators in bilateral secondary somatosensory cortices (SII) (Hämäläinen et al., 

1990), with maximal activation typically seen in contralateral posterior parietal sites, but with 

enhancements also extending to ipsilateral and frontal sites (Desmedt and Robertson, 1977;  

Desmedt and Tomberg, 1989; Hämäläinen et al., 1990).  For the later components, both the N140 

and the LLP have shown increased activation in frontal regions during attentionally-demanding 

tasks resulting in continued engagement of modality-specific cortices (Pasternak and Greenlee, 

2005), thus we analyzed these ERPs at frontoparietal electrode sites contralateral to stimulation 

(FC4, CP4, P4).  Lastly, attention-based modulation of the P300 component typically occurs at 

fronto-central electrodes sites in response to task-relevant target stimuli (Pfefferbaum et al., 

1985), thus for this component, we analyzed electrode sites FCZ, CZ, CPZ in response to target 

stimuli.  Here, we time-locked and averaged somatosensory ERPs to the target stimuli (i.e. 

smaller vibrations) delivered to the index finger during the Attend Index conditions only, and a 

one-tailed paired t-test was performed to test whether exercise would increase attention-based 

modulation of this somatosensory ERP. 

  Behavioural performance was evaluated by determining the number of targets hit relative 

to the overall number of targets that were presented for each subject.  This success rate was 

expressed as a percentage and compared using a two-way repeated measures ANOVA with 

factors attention (Attend Index, Ignore Index), and time (Pre-Exercise, Post-Exercise).  The 

significance level was set at p≤0.05 for all comparisons. 
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3. Results. 

3.1. Early ERP components: P50 & P100 

Figure 4.2 shows waveforms at electrode sites contralateral to vibrotactile stimulation 

(i.e. FC4, CP4, and P4) with the components of interest specified (i.e. the P50, P100, N140, and 

LLP).  Results for the P50 amplitude revealed no main effects or significant interaction at any of 

the electrode sites analyzed.  Results for the P100 component showed a main effect of attention 

whereby P100 amplitudes were enhanced by task-relevant stimuli (i.e. Attend Index) compared 

to task-irrelevant stimuli (i.e. Ignore Index) (P4: F1,14 = 14.0, p=0.001; CPZ: F1,14 = 6.73, p=0.02; 

P3: F1,14 = 9.38, p=0.01).  However, no other P100 results reached statistical significance (refer 

to Figure 4.4A).  

3.2. Later ERP components: N140, LLP, & P300 

 A main effect of attention was found for the N140 component at all electrode sites 

analyzed whereby N140 amplitudes were increased during task-irrelevant conditions (i.e. when 

tactile stimuli were delivered to the index and attention was directed towards another spatial 

location (i.e. Ignore Index condition) (FC4: F1,14 = 14.35, p=0.002; CP4: F1,14 = 9.58, p=0.01; P4 

F1,14 = 8.49, p=0.01).  A significant attention* time interaction was also found for the N140 

amplitude at P4 (F1,14 = 9.96, p=0.01), and a trend towards significance was found at CP4 (F1,14 = 

3.85, p=0.07).  Pre-planned contrasts at these electrode sites revealed that the amplitude of the 

N140 component was significantly greater post- relative to the pre-exercise session when stimuli 

delivered to the index finger were irrelevant (P4: F1,14 = 18.46, p=0.001; CP4: F1,14 = 4.62, 

p=0.05) (refer to Figure 4.4B).  

 A main effect of attention was found for the LLP component at all electrode sites 

measured whereby LLP amplitudes were enhanced by task-relevant stimuli (i.e. Attend Index) 
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compared to task-irrelevant stimuli (i.e. Ignore Index) (FC4: F1,14 = 5.67, p=0.03; CP4: F1,14 = 

11.45, p=0.01; P4: F1,14 = 10.23, p=0.01).  Significant attention*time interactions were also found 

at all electrode sites analyzed for the LLP component (FC4: F1,14 = 7.40, p=0.02; C4: F1,14 = 6.56, 

p=0.02; CP4: F1,14 = 8.11, p=0.01; P4: F1,14 = 5.02, p=0.04).  Pre-planned contrasts also showed 

that at electrodes CP4 and P4, the LLP amplitude was enhanced post- relative to the pre-exercise 

session when attention was directed towards relevant tactile stimuli (CP4: F1,14 = 6.67, p=0.02; 

P4: F1,14 = 5.56, p=0.03).  Pre-planned contrasts revealed that at frontal electrode site FC4, the 

LLP amplitude was decreased post-exercise versus pre-exercise during the task-irrelevant 

condition (F1,14 = 4.77, p=0.05) (Figure 4.4C/D).  

 Lastly, analysis of the P300 amplitude revealed no statistical differences between the 

P300 amplitude when attention was directed towards relevant tactile stimuli post- versus pre-

exercise at any electrode sites analyzed (FCZ: t14= 0.362, p > 0.05; CZ: t14=0.35, p > 0.05; CPZ: 

t14= 0.36, p > 0.05).  Results for the P300 latency also revealed no statistical differences pre- 

versus post-exercise during the Attend Index conditions (FCZ; t14= 0.1, p > 0.05; CZ: t14=0.36, p 

> 0.05; CPZ: t14= 0.17, p > 0.05) (refer to Figure 4.3 for P300 traces). 

3.3. Behavioural Results 

 Behavioural analysis showed a main effect of attention with success rates being higher 

when attention was directed towards the index finger versus away from it suggesting that 

participants were slightly less accurate in detecting target stimuli presented to the pinky finger 

(F1,14 = 9.66, p=0.01) (Figure 4.5). 
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4. Discussion. 

 Evidence suggests that acute aerobic exercise selectively up-regulates excitability in 

frontal lobe regions, thereby promoting greater top-down attentional control during executive 

functioning tasks (Ekkekakis, 2009; Yanagisawa et al., 2010; Endo et al., 2013).  However, the 

effects of acute exercise in cortical areas downstream from the PFC in modality-specific cortices 

are not well understood.  This study examined how an acute bout of moderate intensity aerobic 

exercise modulated neuronal activity in somatosensory cortices using a tactile discrimination 

task.  Our ERP results, particularly for the LLP component, suggest that an acute bout of 

moderate intensity aerobic exercise facilitated the sensory-gating role of the PFC by suppressing 

neuronal responses to unattended, task-irrelevant stimuli at frontal regions and amplifying 

attended, task-relevant signals at modality-specific somatosensory regions contralateral to 

stimulation.  Furthermore, our N140 results suggest that an acute bout of moderate intensity 

aerobic exercise may improve selective attentional processing by enhancing involuntary shifts of 

attention by showing greater enhancement of the N140 component to task-irrelevant stimuli post- 

relative to the pre-exercise session.  Our findings are in line with current literature examining the 

inverted U-shape relationship between aerobic exercise and cognitive function by demonstrating 

that a single bout of moderate intensity exercise modulates frontoparietal interactions during a 

tactile discrimination task and facilitates selective attentional processing of tactile information in 

healthy young adults.  

 

4.1. Neural mechanisms of attention-based modulation in somatosensory cortices 

 The P100 component is modulated by vibrotactile stimulation (Goff et al., 1977) and 

attentional processes (Desmedt et al., 1983; Josiassen et al., 1990; Eimer and Forster, 2003b), but 
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it is thought to have bilateral neural generators in SII regions (Gu, 2002; Mima et al., 1998).  

Selective attention studies have reported increased P100 amplitudes to attended versus 

unattended tactile stimuli with effects being greater than earlier ERP responses generated in SI 

(Desmedt et al., 1983; Josiassen et al., 1990; Bolton and Staines, 2011, 2012), but these effects 

may also be task-specific and/or due to inter-individual differences in P100 modulation (Goff et 

al., 1977).   

 Using the same tactile discrimination task as reported in this study, Bolton and Staines 

(2011) revealed no modulation of the P50 component, but increased P100 amplitudes to task-

relevant versus task-irrelevant stimuli.  It was also found that transient disruption to the 

dorsolateral PFC via cTBS produced disinhibition of the P100 component to task-irrelevant 

stimuli, suggesting that this region plays an important role in the gating of task-irrelevant tactile 

information during selective attentional processing (Bolton and Staines, 2011).  Our results were 

similar to previous findings using the same task, in that there was no attention-related 

modulation of the P50 component, but the P100 amplitude was enhanced to attended, task-

relevant versus unattended, task-irrelevant tactile stimuli (Bolton and Staines, 2011).  Failure to 

drive modulation of the P50 component using tactile stimulation paradigms is not uncommon, 

and task-difficulty may be an important factor required for driving modulation at early stages of 

somatosensory processing (Schubert et al., 2008).  Based on previous work using the same tactile 

paradigm (Bolton and Staines, 2011, 2012, 2014), it seems likely that the cognitive demand of 

this particular task may not be sufficient for driving attentional modulation of the most primary 

measures of somatosensory processing.  There were also no exercise-related changes in the 

modulation of the P100 amplitude when attention was directed towards the index finger (i.e. no 

differences Attend Index Pre-Exercise versus Post-Exercise).   
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The N140 component has been observed over frontal electrode sites contralateral to 

stimulation and along midline and ipsilateral sites (Desmedt and Tomberg, 1989), but is thought 

to have bilateral generators in SII regions with the hemisphere contralateral to stimulation online 

earlier (Frot and Mauguière, 1999).  Although the neural generators of this ERP are not well 

understood, Allison et al. (1992) suggested that bilateral activation of the frontal lobes may 

generate the frontal N140 component.  The frontal N140 may also reflect PFC activation and 

reciprocal neural communication with posterior and subcortical structures (Desmedt and 

Tomberg, 1989).  If this supposition is true, then the N140 component would be an important 

electrocortical marker of PFC activation during situations when relevant sensory information 

must be maintained and retrieved to execute behavioural goals (Allison et al., 1992; Desmedt and 

Tomberg, 1989).  However, unlike earlier modality-specific ERPs, modulation of the N140 

component involves activation of multimodal cortical generators, thus making direct inferences 

about how attention modulates this component is somewhat nebulous.  Several EEG studies 

investigating attentional modulation of the N140 component have found that the presentation of 

transient stimuli at a to-be-ignored spatial location can involuntarily direct attention towards that 

unattended, task-irrelevant side (Kida et al., 2004a, 2004b, 2006; Adler et al., 2009).  Kida et al. 

(2004b, 2006) compared the influence of deviant stimuli on attentional modulation of the P100 

and N140 somatosensory evoked potential when deviants were embedded in an oddball task to 

when they were presented in isolation. Subjects were instructed to either count the number of 

deviants presented, press a button indicating the detection of deviants (active attention tasks), or 

to ignore all tactile events and read a book (passive attention task).  Results showed that 

attentional enhancement of N140, but not the P100, was greater when deviants were presented in 

isolation versus when they were embedded in an oddball sequence which was not the case for the 
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P100 component. The authors concluded that isolated deviants capture more attentional 

resources relative to when they are embedded in an oddball discrimination task.  Adler et al. 

(2009) complemented these findings by showing that N140 enhancement was greatest for 

distracter stimuli presented to the to-be-ignored spatial location but only when the discrimination 

task involving the to-be-attended finger was relatively easy.  It was suggested that the 

presentation of distracter stimuli at an unattended spatial location can involuntarily pull attention 

towards that body location under low, but not high, cognitive load demands. Similarly, Bolton 

and Staines (2011, 2012) found enhanced N140 amplitudes to task-irrelevant versus relevant 

tactile stimuli presented to the index finger using the same tactile discrimination task adopted in 

this study and surmised that their findings may relate to the interpretation proposed by Adler and 

colleagues (Adler et al., 2009).  In our study, we showed consistent results for the N140 

component across sensorimotor electrode sites contralateral to vibrotactile stimulation (i.e. CP4, 

P4), whereby the N140 amplitude was statistically greater post-exercise relative to pre-exercise, 

when attention was directed away from the index finger and towards another spatial location (i.e. 

Ignore Index).  These findings suggest that the ability to involuntarily shift attention towards 

task-irrelevant tactile stimuli was more efficient following a single bout of acute moderate 

intensity aerobic exercise. More efficient involuntary shifts in attention towards and away from 

distracter stimuli in the environment may have, in turn, facilitated sensory processing of task-

relevant stimuli observed at later stages of somatosensory processing.   

 The LLP has multiple neural generators from broadly distributed locations, and is often 

seen as a sustained positivity occurring approximately 200-500 ms post-stimulus (Hämäläinen et 

al., 1990).  Several tactile ERP studies have reported variable attention-related effects on LLP 

modulation (Desmedt and Tomberg, 1989; Eimer and Forster, 2003b; Bolton and Staines, 2011, 



99 

 

2012).  These discrepancies are likely due to differences in attentional requirements or demands 

of the task employed.  The precise role of this later positivity remains unclear; however, several 

attention-based tactile ERP studies have implied that the LLP may share functional similarities to 

the P300 component (Desmedt and Robertson, 1977; Desmedt and Tomberg, 1989).  The P300 

component is typically observed during higher-order cognitive functions and is thought to have 

roles in selective attention and resource allocation, whereby the P300 amplitude is proportional 

to the amount of attentional resources engaged in processing a given stimulus (Donchin and 

Coles, 1988).  EEG studies in healthy young and older adults using the same tactile 

discrimination task have reported increased LLP amplitudes during attended, task-relevant 

stimuli compared to non-attended, irrelevant tactile stimuli (Bolton and Staines, 2011, 2012).  

Notably, ERP data from PFC patients using the same tactile paradigm revealed aberrations, 

particularly, in the neuronal profile of the LLP component, with increased amplitudes elicited by 

task-irrelevant tactile stimuli (Bolton and Staines, 2014).  This finding along with cTBS work by 

the same authors suggests that the PFC plays an integral role in sensory gating of early (i.e. 

P100) and later (LLP) stages of somatosensory processing in order to ensure that relevant 

sensory signals are amplified in sensory-specific cortices (Bolton and Staines, 2011; 2014).  In 

our study, the amplitude of the LLP was suppressed at contralateral frontal and ipsilateral 

centroparietal sites, post- relative to pre-exercise, during the task-irrelevant condition, and was 

enhanced over modality-specific somatosensory cortices contralateral to stimulation.  If the LLP 

arises from frontal generators and shares functional similarities with the P300 component, then 

our results suggest that an acute bout of moderate intensity exercise may have facilitated the 

sensory gating role of frontal networks by suppressing irrelevant sensory signals so that relevant 

tactile information could be passed on and amplified in modality-specific somatosensory cortex.  
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4.2. Exercise-related benefits on cognition 

 Acute aerobic exercise has been shown to induce neuromodulatory changes in PFC 

activity and improve cognitive performance during tasks requiring higher-order attentional 

control (Ekkekakis, 2009; Yanagisawa et al., 2010; Endo et al., 2013). Our study supports this 

idea and provides novel information about the effects of exercise on cortical areas downstream 

from the PFC.  Our most interesting results occurred for the N140 and LLP components, 

whereby an acute bout of moderate intensity aerobic exercise potentially assisted involuntary 

shifts of attention towards and away from distractors in the environment so that relevant sensory 

signals could be enhanced at later stages of sensory processing over modality-specific 

somatosensory cortices.  These findings suggest that an acute bout of moderate intensity aerobic 

exercise in healthy young adults facilitated selective attentional processing of somatosensory 

information. 

 In the present study, an acute bout of moderate intensity exercise did not drive significant 

modulation of early somatosensory ERPs of interest (i.e. the P50/P100 components), nor of the 

later P300 component.  EEG studies have shown that the amplitudes of these earlier 

somatosensory ERPs are typically enhanced when attention is directed towards task-relevant 

sensory information (Eimer and Forster, 2003b; Schubert et al., 2008; Bolton and Staines, 2011, 

2012; Popovich and Staines, 2014).  However, failure to drive modulation of the P50 component 

is not uncommon in tactile literature and seems to be heavily dependent on the attentional 

demand of the cognitive task used (Schubert et al., 2008).  Previous findings using the same 

tactile discrimination task as reported here have also failed to drive attention-related P50 

modulation (Bolton and Staines, 2011, 2012).  Thus, we have reason to infer that our chosen task 

may not be attentionally demanding enough to drive modulation at the most primary stage of 
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somatosensory processing.  Our behavioural results further support this supposition since 

participants performed the task with success rates of approximately 80%, suggesting that the 

attentional task was relatively easy.  Furthermore, the absence of exercise-induced modulation of 

the P300 component may also be a result of the tactile discrimination task used.  The majority of 

studies reporting exercise-induced effects on the P300 component in healthy young adults have 

used attentional tasks including: the flanker, the Stroop, or a go/nogo inhibitory control task 

(Kamijo et al., 2004, 2007; Hillman et al., 2009; Kamijo et al., 2009).  These tasks reliably elicit 

P300 responses, while previous studies using sensory oddball tasks report mixed exercise-

induced effects on the P300 component (Polich and Lardon, 1997; Nakamura et al., 1999; Yagi 

et al., 1999; Grego et al., 2004).  The observation that P300 amplitudes were reduced post-

exercise relative to pre-exercise in our healthy young adults is contrary to most exercise studies 

using attentional tasks requiring greater cognitive demand (Kamijo et al., 2004, 2007; Hillman et 

al., 2009; Kamijo et al., 2009) and the argument could be made that learning or practice effect 

may account for this result. However, behavioural results suggest that no change in cognitive 

performance across exercise sessions, thus we have reason to believe that the reduction in P300 

amplitude post-exercise is not a reflection of practice or learning effects. Instead, it is plausible 

that this sensory oddball task may not be an advantageous paradigm for examining exercise-

related effects on the P300 component in healthy young adults.  Lastly, the absence of 

discernible ERPs from stimulation of the fifth digit hindered our ability to examine whether 

exercise-induced attentional effects would extend to a different spatial location of the same hand.  

However, this absence of neuronal modulation following vibrotactile stimulation of this digit is 

not unusual.  The main purpose of this condition was to direct attention to a different spatial 

location than the index finger and in this way served as an attentional control.  Previous work 
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using the same task also failed to elicit discernible ERPs from the fifth digit (Bolton and Staines, 

2011, 2012, 2014), while a recent fMRI study reported an absence in the hemodynamic 

responsiveness, particularly, of the fifth digit to vibrotactile stimulation, suggesting that there 

may be digit-specific differences in the activation of neuronal responses (Schweizer et al., 2008).  

Furthermore, electrophysiology recordings in owl and squirrel monkeys have shown that the 

neuronal representation of the fifth digit in area 3b of SI is the smallest when compared to the 

remaining four digits (Merzenich et al., 1987).  

 

5. Conclusion 

 Our results suggest that an acute bout of moderate intensity aerobic exercise facilitated 

selective attentional processing of somatosensory information by improving: i) the efficiency of 

involuntary attentional shifts towards task-irrelevant environmental distracters over modality-

specific somatosensory regions, and ii) attentional control of somatosensory input at later stages 

of sensory processing over frontoparietal regions.  These findings imply that an acute bout of 

moderate intensity exercise is also capable of influencing attentional regulation of somatosensory 

information perhaps via enhanced top-down attentional control over modality-specific 

somatosensory cortices. Future studies will use TMS neuroimaging techniques better suited to 

examining the direct effect of exercise on modulating frontoparietal interactions.  
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4.7 Figures 

 

 

 

Figure 4.1. Experimental paradigm 

This figure depicts how participants received vibrotactile stimulation to their second digit 
(D2) on the left hand, or (b) attend to the fifth digit (D5) on the left hand. Subjects reported 
target stimuli on the attended finger by pressing a button with the right hand. Subjects 
were instructed to gently rest their hand on the probes to ensure consistent hand pressure 
throughout testing. Headphones were worn throughout the experiment to deliver white 
noise and block sound from the vibration device. Trials requiring attention to either D2 or 
D5 were randomly presented to subjects in 3min blocks followed by a rest period of 
approximately 1 minute. There were a total of 6 testing blocks with 3 blocks attending to 
D2 and 3 blocks attending to D5, both prior to and following an acute aerobic exercise 
session, respectively. 
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Figure 4.2. Grand averaged waveforms 

Grand average waveforms all for conditions are shown for parietal electrode sites 
contralateral to vibrotactile stimulation (C4, CP4, P4). The P100, N140, and LLP ERP 
components are labeled on the trace for each electrode site. Black solid and dashed traces 
show Attend D2 and Attend D5 conditions, respectively, prior to exercise. Grey solid and 
dashed traces show Attend D2 and Attend D5 conditions, respectively, following exercise.  



105 

 

 
 

Figure 4.3. Grand averaged P300 waveforms 

Grand average waveforms all for conditions are shown for centroparietal electrode sites 
(FCZ, CZ, CPZ). Black solid and dashed traces show Attend D2 and Attend D5 conditions, 
respectively, prior to exercise. Grey solid and dashed traces show Attend D2 and Attend D5 
conditions, respectively, following exercise.  
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Figure 4.4. Group ERP means   

Group means for A) P100, B) N140, and C) LLP ERP components at electrodes C4, CP4, and 
PZ. Black solid and dashed bars represent group data for the Attend D2 and the Attend D5 
condition prior to exercise, respectively. Grey solid and dashed bars represent group data 
for the Attend D2 and the Attend D5 condition following exercise, respectively. Error bars 
show SEM, * denotes significance p<0.05.  
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Figure 4.5. Behavioural performance  

Behavioural performance was evaluated by determining the number of targets hit relative 
to the overall number of targets that were presented for each subject, and this success rate 
was expressed as a percentage. Black solid and dashed bars represent group data for the 
Attend D2 and the Attend D5 condition prior to exercise, respectively. Grey solid and 
dashed bars represent group data for the Attend D2 and the Attend D5 condition following 
exercise, respectively. Error bars show SEM, * denotes significance p<0.05. 
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Chapter 5 ‐ Study 4: Acute aerobic exercise enhances attentional processing of task-
relevant tactile stimuli in older adults. 
 
 
5.1 Overview 

 Neuroimaging data in older adults has shown that atrophy of frontal lobe regions is 

disproportionately greater relative to other brains areas.  The frontal lobes have a well-

established role in various executive function tasks, thus discovering strategies that work 

to preserve the integrity of this brain region are imperative for ensuring that the quality of 

life in elderly populations is maintained across the life span.  Neuroimaging research has 

revealed that acute bouts of moderate intensity aerobic exercise can enhance cortical 

activity, specifically in frontal lobe areas, during executive functioning.  However, findings 

from Study 3 revealed that in healthy young adults, an acute bout of moderate intensity 

aerobic exercise modulated neuronal activity overlying frontoparietal regions during 

performance of a tactile discrimination task.  Using the identical paradigm, the following 

study examined if exercise-induced increases in PFC activity would enhance attention-

based modulation of tactile ERPs during somatosensory processing in healthy older adults.  

We hypothesized that exercise preceding performance of the odd-ball task would increase 

PFC activity thereby enhancing ERPs to attended tactile stimuli and suppressing those to 

unattended stimuli. Results showed increased amplitudes of the P100, LLP, and P3a/b 

components, as well as a decreased P3b latency to attended versus unattended stimuli post 

exercise.  These findings suggest that exercise enhances neural responses to and cognitive 

processing of task-relevant information at frontocentral and centroparietal electrode sites 

in healthy older adults. 
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5.2 Introduction 

Aging is associated with various physiological, cognitive, and behavioural deficits.  

Cross-sectional and longitudinal studies have shown variability in the onset of age-related 

impairments in tasks involving perceptual, cognitive, and motor functions, with some 

deficits seen early, while others appear in later adulthood (Schaie, 2000; Park et al., 2002).  

However, age-related decrements in brain structure and function do not occur uniformly.  

Aging studies have shown that older adults typically demonstrate difficulties ignoring task-

irrelevant stimuli (Rabbitt, 1965; Kausler and Hakami, 1982), and inhibiting proponent 

responses that are no longer task-relevant (Hasher and Zacks, 1988; Yamaguchi and 

Knight, 1991; Fabiani et al., 2006).  Neuroimaging data in older adults has shown that 

atrophy in frontal lobe regions is disproportionately greater relative to other brain areas 

(Haug and Eggers, 1991), with the greatest shrinkage occurring in medial temporal areas 

(Raz, 2000).  The frontal lobes have a well-established role in ensuring successful 

completion of executive control functions (i.e. selective attention, interference or conflict 

control, error monitoring, or task coordination) (Kramer et al., 1999, 2000; DiGirolamo et 

al., 2001).  Specifically, it is thought the PFC reflects a sensory-gating system responsible 

for suppressing task-irrelevant distracter stimuli so that relevant sensory signals may be 

enhanced in modality-specific sensory cortices.  Animal research has provided compelling 

neurophysiological evidence in support of this theory, with reports that the PFC is 

responsible for producing a net inhibitory influence onto cortical and subcortical 

structures in: dorsal column nuclei (Ghez and Pisa, 1972), thalamic structures (Tsumoto et 

al., 1975), and primary somatosensory cortices (Chapin and Woodward, 1981; Yamamoto 

et al., 1988).  Moreover, studies in frontal lobe lesion patients have shown significant 
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deficits in the ability to ignore environmental distracters and suppress neural activity in 

response to task-irrelevant sensory information (Knight et al., 1999).  Recent work by 

Bolton and Staines (2011) supports these findings by reporting that transient disruption of 

the dorsolateral prefrontal cortex (DLPFC), using transcranial magnetic stimulation (TMS), 

produced disinhibition of the P100 somatosensory component to task-irrelevant distractor 

stimuli in healthy young adults.  Follow-up work by the same authors extended these cTBS 

findings by showing similar sensory-gating impairments in older adult and prefrontal 

patient populations (Bolton and Staines, 2012, 2014), thereby supporting previous findings 

that older adults show similar sensory-gating impairments as those reported in frontal lobe 

lesion patients (Alain and Woods, 1999; Golob et al., 2001; Fabiani et al., 2006).  Given 

these results, it is not surprising then, that the cognitive impairments observed in elderly 

populations are greatest for higher-order executive functioning tasks dependent on PFC 

function (Kramer et al., 1994).  

 Novel findings in neuroscience research have provided convincing evidence that 

aerobic exercise induces neurophysiology alterations in brain activity and cognitive 

performance, particularly in older adults.  Findings of a recent meta-analysis of aggregated 

longitudinal data from 1966-2001, showed that older adults who engaged in aerobic 

exercise significantly improved cognitive performance especially on tasks requiring 

executive control (Colcombe and Kramer, 2003).  Functional MRI results have found 

greater task-related activity in prefrontal and parietal brain regions during inhibitory 

control processes in high-fit or aerobically trained older adults when compared with low-

fit or nonaerobic controls (Colcombe et al., 2004).  Additional work by Colcombe and 

colleagues also found that older adults, with higher levels of aerobic fitness, displayed 
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significantly less grey matter loss in frontal, parietal, and temporal lobes, as well as 

significantly less tissue loss in anterior and posterior white matter pathway tracts relative 

to their lower fit counterparts (Colcombe et al., 2003, 2006).  Aerobic exercise also has 

proven to enhance specific ERPs, namely the P300 component and the error-related-

negativity (ERN), in both young and older adults (Hatta et al., 2005; Themanson and 

Hillman, 2006; Themanson et al., 2008; Hillman et al., 2009; Pontifex et al., 2009; Kamijo et 

al., 2010).  These results suggest that individuals with higher levels of aerobic fitness 

employ greater top-down attentional control during tasks involving error processing 

(Themanson and Hillman, 2006).    

  It is hypothesized that exercise-induced effects on cognition support the inverted U-

shape arousal hypothesis first proposed by Yerkes and Dodson (1908), which states that as 

arousal states increase with physical exertion, cognitive performance improves to an 

optimal point after which further increases in physical exertion cause decreased arousal 

levels resulting in decrements in performance (Tomporowski, 2003).  Behavioural and 

neuroimaging studies investigating the impact of exercise intensity on cognition support 

this model by reporting performance improvements following moderate exercise 

intensities relative to low and high intensities (Kamijo et al., 2004, 2007, 2009).  In fact, 

these studies have reported minimal to no cognitive improvements following low exercise 

intensities and decrements in performance following strenuous intensities, suggesting that 

moderate levels of aerobic exercise may be the optimal aerobic prescription for cognitive 

function.   

 One limitation to the current findings on the relationship between exercise and 

cognition is that the majority of psychological tasks used to investigate exercise-induced 
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effects on cognition are all considered to be classical measures of frontal lobe function (i.e. 

the Erikson Flanker, Stroop, or Go/Nogo tasks).  Thus, it is perhaps not surprising that the 

exercise-induced enhancements in neuronal activity are primarily observed in PFC regions.  

However, the circuitry of the PFC is complex with extensive and reciprocal corticocortical 

connections, making it an important structure for modulating modality-specific cortical 

regions via attentional mechanisms.  These neuroanatomical connections are particularly 

relevant for studies examining the relationship between exercise and cognition in older 

adults since atrophy of PFC regions likely governs the sensory-gating impairments 

observed in modality-specific sensory regions (Bolton and Staines, 2012).  Despite this, few 

studies have administered cognitive tests designed to elicit neuronal activity downstream 

from the PFC in modality-specific sensory regions.  Using EEG and a lower limb 

somatosensory oddball task, Iwadate et al. (2005) showed that soccer athletes 

demonstrated increased P300 amplitudes and decreased latencies over central-parietal 

electrode sites compared to the non-athletic group, suggesting that long-term physical 

activity requiring selective attention and skilled motor responses, induces neuroplastic 

changes in modality-specific somatosensory regions during goal-oriented behaviours 

(Iwadate et al., 2005).  Moreover, Popovich and Staines (2014) found that an acute bout of 

moderate intensity aerobic exercise facilitated the sensory-gating role of the PFC by 

suppressing neuronal responses to unattended, task-irrelevant stimuli at frontal regions 

and amplifying attended, task-relevant signals at modality-specific somatosensory regions 

contralateral to stimulation.  These findings may be particularly relevant in older adults for 

improving the inhibitory control impairments observed during attentional processing of 
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sensory information (Hasher and Zacks, 1988; Reuter-Lorenz and Park, 2010; Bolton and 

Staines, 2011). 

 In this study, we used EEG and the same tactile discrimination task used by Bolton 

and Staines (2011, 2012, 2014) and Popovich and Staines (2014), to examine if increases in 

PFC activity, following an acute bout of moderate intensity aerobic exercise, would enhance 

attention-based modulation of somatosensory ERPs generated at early and later stages of 

somatosensory processing in healthy older adults.  Based on the findings of Popovich and 

Staines (2014), our first hypothesis was that early and later somatosensory ERPs would be 

modulated by attentional relevance.  Specifically, we hypothesized that an acute bout of 

moderate intensity aerobic exercise preceding performance of a tactile discrimination task 

would result in either more efficient sensory-gating of irrelevant/non-attended and/or 

enhancement of relevant/attended sensory information.  Therefore, improvements in 

attentional regulation would be observed as increased neural suppression of task-

irrelevant stimuli and enhancement of relevant sensory information post-exercise relative 

to pre-exercise. 

 

5.3. Methods. 

5.3.1. Participants  

EEG was collected from 16 healthy participants (aged 58-68, 3 males).  Three 

participants were excluded: one due to the absence of clearly defined somatosensory 

event-related potentials of interest (i.e. P50, P100, N140, LLP components), the second did 

not meet the inclusion criterion, and the third demonstrated poor performance of the 

discrimination task.  Thirteen participants comprised the final sample (10 females and 3 
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males, mean age = 63 years).  Participants were self-reported right-handed individuals 

with no medical history of any major neurological illness, and no heart or blood pressure 

conditions that could be exacerbated with aerobic exercise.  Each participant provided 

informed consent and was pre-screened using the Physical Activity Readiness 

Questionnaire (PAR-Q) to ensure that they were physically able to engage in 20 minutes of 

moderate intensity aerobic activity on a recumbent bicycle.  Prior to collection, each 

participant completed a cognitive assessment using the Montreal Cognitive Assessment 

questionnaire (MoCA), and a physical activity assessment using the General Practice 

Physical Activity questionnaire (GPPAQ).  Experimental procedures were approved by the 

University Of Waterloo Office Of Research Ethics.  

5.3.2. Behavioural task 

 Subjects were seated in a sound-attenuating booth (Industrial Acoustics, 120A, NY), 

facing a blank computer screen and instructed to look directly ahead throughout testing.  

Tactile stimuli were delivered via 2 blunt plastic probes contacting the fingertips of the 

second and fifth digits on the left hand as depicted in Figure 5.1.  These probes 

(approximately 1 cm diameter) were vibrated using piezo-electric actuators at a rate of 25 

Hz for 125 ms during each stimulus.  Vibrotactile stimulation was delivered by digitally 

generated waveforms converted to an analog signal (DAQCard 6024E, National 

Instruments, Austin, TX, USA) and then amplified (Bryston 2B-LP, Peterborough, ON, 

Canada).  The amplitude of vibration was set so that minimal values (i.e. small amplitude 

targets) exceeded sensory threshold for all subjects.  These stimuli were presented 

randomly to each finger (but never simultaneously) with random interstimulus intervals in 

the range of 500–1500 ms.  An oddball paradigm was employed whereby 17% of the trials 
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for each finger consisted of the deviant stimulus.  These deviant stimuli represented the 

targets to which attention was paid and the amplitude of these targets was set to 25% the 

standard (non-target) amplitude.  The two experimental conditions required subjects to 

either (a) attend to the second digit (D2; Attend Index) on the left hand, or (b) attend to the 

fifth digit (D5; Ignore Index) on the left hand.  Subjects reported target stimuli on the 

attended finger by pressing a button with the right hand.  Subjects were instructed to 

gently rest their hand on the probes to ensure consistent hand pressure throughout testing.  

Headphones delivering white noise were worn throughout the experiment to block sound 

from the vibration device.  Trials requiring attention to either D2 or D5 were randomly 

presented to subjects in 3 min blocks followed by a rest period of approximately 1 min.  

There were a total of 6 testing blocks with 3 blocks attending to D2 and 3 blocks attending 

to D5.  Approximately 600 standard (non-target) stimuli were applied to each digit over the 

entire experiment with each testing block consisting of approximately 100 standard and 20 

target stimuli. 

5.3.3. Exercise protocol 

 Upon task completion, participants were seated comfortably on a cycle ergometer 

while a measure of their resting heart rate was taken using a resting Polar heart rate 

monitor.  Participants were instructed to begin pedalling on the ergometer to reach their 

age-predicted target heart rate ([220-age] x 0.60), and maintain this exercise intensity for 

the remainder of the 20 minute aerobic session.  For each participant, the ergometer 

resistance level was always set to its minimum value (level 1).  To ensure that participants 

adhered to the exercise protocol, frequent heart rate monitor checks were recorded, as 

well as two self-reported measures of the participant’s perceived rating of exertion were 
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recorded after 10 and 20 minutes of exercise using the 10 point Borg Scale.  After exercise, 

participants were seated back into the sound proof booth where a final heart rate measure 

was recorded followed by instructions to repeat the tactile discrimination task again 

(approximately 5 minute duration prior to post-testing).  

5.3.4. Recording and analysis 

 EEG data was recorded from 32 electrode sites according to the international 10-20 

system for electrode placement and referenced to bilateral mastoids.  All channel 

recordings had impedance values below 5 koms.  EEG data were amplified (20,000×), 

filtered (DC-200 Hz, 6 dB octave roll-off) and digitized (1000 Hz, SynAmps2, Scan 4.3, 

Compumedics Neuroscan, Charlotte, NC) before being stored for off-line analysis.  

Somatosensory ERPs to tactile stimuli were averaged relative to a 100 ms pre-stimulus 

baseline for each attention condition.  Data were band-pass filtered (1–30 Hz) and trials 

with artefacts (i.e. eye blinks, muscle activity) were identified by visual inspection and 

were excluded from further analysis.  Since stimulation of the fifth digit did not result in 

consistently clear ERP components, analysis was restricted to non-target stimuli (i.e. large 

amplitude vibrations) delivered to the second digit (i.e. index finger).  Several 

somatosensory ERP components were evaluated in this study focusing on the peak 

amplitude for each defined ERP component.  Somatosensory ERPs were measured from 

individual participant averages for each task condition.  Mean ERP amplitudes were 

computed for each subject within specified time windows selected around the post 

stimulus latencies of each ERP component of interest: P50 (40-70 ms), P100 (85-125 ms), 

N140 (125-165 ms), LLP (175-250 ms), and the P300 (300-600 ms).  Clearly defined 

components and peaks were required for inclusion.  Separate two-way ANOVAs with 
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factors attention (attend index, ignore index) and time (pre-exercise, post-exercise) were 

calculated for each component of interest at the electrode sites as follows: P50 (C4, CP4), 

P100 (P4, PZ, P3), N140 (FC4, CP4, P4), LLP (FC4, CP4, P4) and P300 (FCZ, CZ, CPZ).  Based 

on previous findings using the same experimental paradigm (refer to Popovich and Staines, 

2014), pre-planned contrasts were performed to test the hypotheses that ERP modulation 

would show greater suppression of task-irrelevant distractor stimuli (i.e. Ignore Index 

conditions) and greater enhancement of task-relevant stimuli (Attend Index conditions), 

post-exercise relative to pre-exercise.  

 The P50 ERP component has been shown to be generated in the primary 

somatosensory cortex (SI) (Schubert et al., 2008), while studies examining early 

somatosensory evoked potentials (SEPs) typically show greater neuronal responses over 

central-parietal electrodes contralateral to stimulation in SI areas (Hämäläinen et al., 1990; 

Allison et al., 1992), thus the P50 was analyzed at electrode sites C4 and CP4 positioned 

over SI, contralateral to vibrotactile stimulation.  We analyzed the P100 component at 

electrode sites P4, PZ, and P3 since the P100 amplitude has known neural generators in 

bilateral secondary somatosensory cortices (SII) (Hämäläinen et al., 1990), with maximal 

activation typically seen in contralateral posterior parietal sites, but with enhancements 

also extending to ipsilateral and frontal sites (Desmedt and Robertson, 1977; Desmedt and 

Tomberg, 1989; Hämäläinen et al., 1990).  For the later components, both the N140 and the 

LLP have shown increased activation in frontal regions during attentionally-demanding 

tasks resulting in continued engagement of modality-specific cortices (Pasternak and 

Greenlee, 2005), thus we analyzed these ERPs at electrode sites contralateral (FC4, CP4, 

P4).  Lastly, attention-based modulation of the P300 component typically occurs at fronto-
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central electrodes sites in response to task-relevant target stimuli (Pfefferbaum et al., 

1985). Thus for this component, we observed changes in P300 modulation across midline 

electrode sites FCZ, CZ, PZ in response to target stimuli.  To produce P300 waveforms, we 

time-locked and averaged somatosensory ERPs to the target stimuli (i.e. smaller 

vibrations) delivered to the index finger during the Attend Index conditions only.  To test 

the hypothesis that exercise would enhance attentional processing of task-relevant 

somatosensory stimuli, one-tailed paired t-tests were performed on peak P3a/b 

amplitudes and latencies at frontocentral electrode CZ. This electrode site was chosen 

because it demonstrated discernible and maximal peak amplitudes relative to electrodes 

FCZ and CPZ. 

 Behavioural performance was evaluated by determining the number of targets hit 

relative to the overall number of targets that were presented for each subject.  This success 

rate was expressed as a percentage and compared using a two-way repeated measures 

ANOVA with factors attention (attend index, ignore index), and time (pre-exercise, post-

exercise).  The significance level was set at p≤0.05 for all comparisons. 

 

5.4. Results. 

5.4.1. Early ERP components: P50 & P100 

Figure 5.2 shows waveforms at electrode sites contralateral to vibrotactile 

stimulation (i.e. FC4, CP4, and P4) with the components of interest specified (i.e. the P50, 

P100, N140, and LLP).  Results for the P50 amplitude revealed no main effects or 

significant interaction at any of the electrode sites analyzed.  Results for the P100 

component showed a main effect of attention whereby P100 amplitudes were enhanced by 
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task-relevant stimuli (i.e. Attend Index) compared to task-irrelevant stimuli (i.e. Ignore 

Index) (P4: F1,12 = 33.25, p<0.001; PZ: F1,12 = 54.42, p<0.001; P3: F1,12 = 43.77, p<0.001).  

Moreover, a significant attention* time interaction was found at electrode PZ (F1,12 = 4.37, 

p=0.05).  Pre-planned contrasts revealed that the amplitude of the P100 was significantly 

larger post-exercise relative to pre-exercise when attention was directed towards attended, 

task-relevant information (F1,12 = 6.48, p=0.03).  No other P100 results reached statistical 

significance (refer to Figure 5.4A).  

5.4.2. Later ERP components: N140, LLP, & P300 

 A main effect of attention was found for the N140 component at all electrode sites 

analyzed whereby N140 amplitudes were increased during task-irrelevant conditions (i.e. 

when tactile stimuli were delivered to the index and attention was directed towards 

another spatial location (i.e. Ignore Index condition)) (FC4 (F1,12 = 12.55, p=0.004), 

CP4(F1,12 = 11.06, p=0.01), and P4 (F1,12 = 20.09, p=0.001)).  No further results for the N140 

amplitude reached statistical significance. 

 A main effect of attention was found for the LLP component at all electrode sites 

measured whereby LLP amplitudes were enhanced by task-relevant stimuli (i.e. Attend 

Index) compared to task-irrelevant stimuli (i.e. Ignore Index) (FC4: F1,12 =32.91, p<0.001; 

CP4: F1,12 =35.76, p<0.001; P4: F1,12 =34.78, p<0.001).  Significant attention*time 

interactions were also found at electrode sites FC4 (F1,12 = 4.69, p=0.05) and CP4 (F1,12 = 

9.42, p=0.01), while a trend towards significance was found at electrode P4 (F1,12 = 3.84, 

p=0.07).  Pre-planned contrasts showed that at electrode FC4 and CP4, the LLP amplitude 

was enhanced post-exercise relative to the pre-exercise session when attention was 

directed towards relevant tactile stimuli (FC4 (F1,12 = 7.10, p=0.02), CP4 (F1,12 = 5.25, 
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p=0.04)).  Furthermore, a trend towards significance for the LLP component was found at 

CP4 (F1,12 = 4.19, p=0.06) suggesting that post- relative to pre-exercise, the LLP amplitude 

was suppressed when attention was directed away from the index finger (i.e. Ignore Index). 

(Figure 5.4C/D).  

 The P300 component was delineated into the P3a/b amplitudes.  Amplitude results 

for P3a component measured over central electrode site CZ revealed a trend towards 

significance for the P3a component (t12= 1.66, p=0.06), indicating that the P3a mean 

amplitude was larger post-exercise (mean = 2.88 uV) relative to pre-exercise (mean = 2.05 

uV) when attention was directed towards task-relevant information.  The P3b amplitude at 

electrode CZ was statistically greater post- versus pre-exercise when attention was 

directed towards task-relevant information (t12= 2.07, p=0.03).  Latency results revealed a 

marginally significant effect for the P3b component at electrode CZ (t12= 1.67, p=0.06), 

suggesting that the onset of the P3b amplitude peak occurred earlier post-exercise relative 

to pre-exercise.  No significant effects were found for the P3a latency (t12= 0.68, p=0.26) 

(refer to Figure 5.3 for P300 traces).   

5.4.3. Behavioural results 

 Behavioural analysis showed a main effect of attention with success rates being 

higher when attention was directed towards the index finger versus away from it (F1,13 = 

7.69, p=0.02) (Figure 5.5). 

 

5.5. Discussion 

 Evidence suggests that aerobic exercise improves cognitive function on tasks 

involving these higher-order attentional control processes, in healthy young and older 
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adults (Colcombe et al., 2004; Hatta et al., 2005; Themanson and Hillman, 2006; 

Themanson et al., 2008; Kamijo et al., 2009; Pontifex et al., 2009; Yanagisawa et al., 2010).  

Moreover, these exercise-induced benefits seem to be greatest in the PFC; a brain region 

susceptible to age-related decline (Raz, 2000).  However, a limitation in our current 

understanding of the exercise-cognition relationship is whether exercise modulates 

neuronal activity in regions downstream from the PFC.  Previous EEG work in healthy 

young adults has shown that habitual long-term physical exercise, as well as, an acute bout 

of moderate intensity aerobic exercise enhanced neuronal activity in modality-specific 

somatosensory regions during goal-oriented behaviours (Iwadate et al., 2005; Popovich 

and Staines, 2014).  Therefore, the purpose of this study was to determine whether a single 

bout of moderate intensity aerobic exercise performed by older adults would modulate 

neuronal activity in prefrontal and somatosensory cortices using a tactile discrimination 

task.  Based on Popovich and Staines’ (2014) findings, we hypothesized that exercise 

preceding performance of a tactile discrimination task would result in either more efficient 

sensory-gating of irrelevant/non-attended and/or enhancement of relevant/attended 

sensory information. More efficient attentional regulation of somatosensory input would 

be demonstrated by increased neural suppression of task-irrelevant stimuli and 

enhancement of relevant sensory information post- relative to pre-exercise.  Results 

showed increased P100 and LLP amplitudes at fronto-parietal regions contralateral to 

stimulation post-exercise relative to the pre-exercise session, as well as increased P3a/b 

amplitudes and shorter P3b latencies along midline electrode sites during attended, task-

relevant conditions.  Collectively, these findings support the inverted U-shape model for 

exercise-induced effects on cognition and suggest that a single session of moderate 
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intensity exercise facilitated cognitive processing of attended, task-relevant tactile 

information in healthy older adults. 

5.5.1. Exercise effects on attentional modulation of somatosensory ERPs 

 The P100 component is bilaterally distributed over parietal electrode sites with 

neural generators believed to be located in SII (Hari et al., 1983; Mima et al., 1998; Gu, 

2002).  It is modulated by both vibrotactile stimulation (Goff et al., 1977) and attentional 

processes, with amplitudes typically enhanced during attended versus unattended tactile 

stimuli (Desmedt et al., 1983; Michie et al., 1987; Josiassen et al., 1990; Eimer and Forster, 

2003a/b; Kida et al., 2004).  Despite neural generators in SII, recent cTBS work has shown 

that attention-based modulation of this component to task-irrelevant stimuli was 

significantly disinhibited following transient disruption of the dorsolateral PFC during a 

tactile discrimination task (Bolton and Staines, 2012).  Similar results were found in 

separate follow-up studies performed in older adults and patients with PFC lesions using 

the identical tactile discrimination task, whereby in both groups, disinhibition of the P100 

component over somatosensory cortices occurred during unattended, task-irrelevant 

tactile stimuli (Bolton and Staines, 2014).  Collectively, these findings suggest that the 

functional integrity of the PFC is crucial for gating irrelevant sensory information so that 

relevant tactile inputs may be amplified in modality-specific cortices, and that age-related 

loss in attentional control may occur via disruption or atrophy of prefrontal brain regions.  

By contrast, our study showed that a single session of moderate intensity aerobic exercise 

in older adults significantly enhanced the amplitude of the P100 component to attended, 

task-relevant tactile stimuli relative to the pre-exercise session.  Previous work in healthy 

young adults showed no statistically significant exercise-related attentional effects on the 
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P100 component (Popovich and Staines, 2014).  These variations in P100 modulation 

between age groups, suggest that a single session of moderate intensity aerobic exercise 

was sufficient in driving modulation of early modality-specific somatosensory areas in 

older, but not younger adults. Although the acute exercise session enhanced task-relevant 

ERPs in older adults, it was not sufficient in driving modulation of the N140 component to 

task-irrelevant stimuli as was observed in the younger adult group (refer to Popovich and 

Staines, 2014).  Age-related attentional differences in neuronal modulation despite 

similarities in behavioural performance suggest that aging may recruit alternative neural 

networks during sensory processing. Indeed, neuroimaging studies have shown that in 

some instances, older adults who perform similarly to their younger counterparts display 

more local neural information processing while younger adults show more distributed 

neural processing (Cabeza et al., 2004; Davis et al. 2008).  Moreover, Heisz et al. (2014) 

showed that physically active older adults also engaged in more local neural information 

processing which was associated with improved executive function performance. The authors 

suggested that physical activity may help to improve aspects of cognitive function in older adults 

by biasing the neural system toward local information processing.  Since the structure and 

function of PFC regions is particularly susceptible to age-related decline, it is plausible that 

following exercise, older adults may have engaged in more local neural information 

processing of attended, task-relevant information, thus modulation occurred for attended, 

task-relevant but not unattended, task-irrelevant tactile ERPs.  

 The LLP component is a broadly distributed sustained positivity with multiple 

neural generators that typically occurs 200-500 ms post stimulus (Michie et al., 1987; 

Hämäläinen et al., 1990).  The precise role of the LLP remains a matter of debate since 
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several ERP studies have shown variable attentional effects on modulation of the 

component (Michie et al., 1987; Desmedt and Tomberg, 1989; Eimer and Forster 2003a; 

Bolton and Staines, 2011, 2012, 2014).  Typically, amplitude enhancements are observed 

during attended versus unattended stimuli, but the degree of LLP modulation seems 

somewhat dependent on the type of task used and the attentional demand required.   

Attention-related ERP studies reporting attentional effects on the LLP suggest that it is a 

P300-like component (Desmedt and Robertson, 1977; Michie et al., 1987; Desmedt and 

Tomberg, 1989), whereby increased ERP amplitudes reflect an increased amount of 

attentional resources engaged in processing a given stimulus (Donchin and Coles, 1988).  

Previous aging work in our lab has shown decreased LLP amplitudes to attended stimuli in 

older relative to younger adults (Bolton and Staines, 2012); a similar effect is seen upon 

comparison of our older adult data set to that of young adults who participated in the same 

experimental paradigm whereby older adults showed smaller LLP amplitudes relative to 

younger adults to attended stimuli (Popovich and Staines, 2014).  Bolton and Staines 

(2014) also found a complete loss of LLP modulation in PFC patients whereby patients 

showed larger LLP amplitudes to unattended stimuli perhaps due to structural aberrations 

in PFC.  These findings suggest that the integrity of the PFC: i) is a critical factor in 

modulating this later ERP component, and ii) may be compromised with increasing age.  

However, in this study an acute bout of moderate intensity exercise significantly enhanced 

the amplitude of the LLP component over frontoparietal regions contralateral to the 

vibrotactile stimulation in response to attended, task-relevant information presented to the 

index finger.  This finding is in accord with work using the same experimental paradigm in 

a group of healthy young adults (Popovich and Staines, 2014), thereby supporting the 
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notion that acute aerobic exercise enhances PFC activity, and thereby facilitates cognitive 

processing of sensory information across the life span.  

 The P300 is a large positivity occurring approximately 300-800 ms post stimulus 

onset and reflects attentional processing.  It can further be subdivided into two distinctive 

subcomponents, the “P3a” and the “P3b”, both of which represent different but related 

neural processes (Pontifex et al., 2009).  The P3a component is elicited in the absence of 

experimental instructions by an infrequent or physically novel distracter stimulus.  It has a 

fronto-central topographic distribution, short peak latency, and is believed to be involved 

in the selection of stimulus information mediated by attentional orienting (Knight, 1984; 

Kok, 2001), with increased amplitudes indicative of greater attentional focus (Polich, 

2007).  Generation of the P3b component occurs over parietal cortices during sensory 

oddball discrimination tasks, when participants are required to respond to infrequently 

presented target stimuli (Johnson, 1993).  Here, the amplitude of the P3b component is 

driven by the allocation of attentional resources when working memory is updated 

(Donchin and Coles, 1988), thus the larger P3b amplitudes reflect more attentional 

resources devoted to stimulus processing (Polich, 1987; Polich and Heine, 1996).  The peak 

latency of the P3b component is independent of response selection and behavioural intent 

(Verleger, 1997), and is believed to represent stimulus evaluation and classification speed 

(Kutas et al., 1977), such that earlier latencies reflect more efficient stimulus processing.  

ERP aging studies using multiple psychological tasks have shown that both subcomponents 

of the P300 are useful neuroelectric markers of cognitive decline with age-related 

reductions in amplitude as well as latency slowing (Anderer et al., 1996; Fjell and Walhovd, 

2001; Bolton and Staines, 2012).  However, moderate bouts of aerobic exercise seem to 
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reverse the typical neuronal profile seen in older adults with increased amplitudes and/or 

decreased latencies observed across various tasks (Hatta et al., 2005; Kamijo et al., 2007, 

2009; Pontifex et al., 2009), suggesting that exercise has a positive influence on cognitive 

aging.  Our findings support this association by showing increased P3a/b amplitudes over 

central electrode sites, suggesting that greater attentional focus and more attentional 

resources may have occurred during attended conditions post- relative to the pre-exercise 

session.  Furthermore, results indicated that P3b latencies may also quicker following the 

exercise intervention implying that cognitive processing overall was more efficient. 

 

5.5.2. The role of aerobic fitness on cognitive decline 

 Normal aging causes structural alterations in several regions of the brain including: 

decreased grey matter volume in the prefrontal, orbitofrontal, and parietal cortices (Raz, 

2000; Salat et al., 2004), decreases in the quantity and quality of white matter tracts 

(Sullivan et al., 2001; Ota et al., 2006), and compromised neurotransmitter availability 

(Kaasinen et al., 2000; Kaasinen and Rinne, 2002).  As a result, these age-related changes in 

brain physiology are believed to be the cause of several cognitive impairments typically 

observed in elderly populations.  Deficits in tasks involving higher-order executive 

functioning, particularly those involving attentional control, are among the most 

consistently reported in older adults.  However, neuroimaging research investing the 

relationship between cardiovascular fitness and cognitive-decline have found that older 

adults who maintain a physically active lifestyle show preservation of neuroantomical 

structures susceptible to age-related decline as well as improved cognitive performance 

relative to inactive counterparts.  Functional fMRI techniques have found that higher fit 
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versus lower fit, or aerobically trained versus non-aerobically trained older adults, display 

structural differences in brain integrity including: less grey matter loss in frontal, temporal, 

and parietal cortices, and less tissue loss in the anterior and posterior white matter tracts 

(Colcombe et al. 2003, 2006); as well as increased activity in PFC and parietal cortices 

(Colcombe et al., 2004).  EEG studies examining the effects of exercise on the P300 

component, have reported that aerobically trained individuals, or those with higher levels 

of physical activity, display increased P300 amplitudes and shorter latencies relative to 

their sedentary counterparts (Dustman et al., 1984; Hillman et al., 2004, 2006), suggesting 

greater allocation of attentional resources with aerobic exercise (Polich and Lardon, 1997; 

McDowell et al., 2003; Hatta et al., 2005).  A similar relationship between exercise and the 

ERN exists. The ERN is generated in the dorsal portion of the anterior cingulate cortex 

(ACC) following an erroneous response (Van Veen and Carter, 2002), and shares functional 

connectivity with the prefrontal cortex during action monitoring processes and corrective 

actions (Gehring and Knight, 2000).  EEG studies have shown smaller ERN amplitudes and 

post-error slowing, following error commission in higher-fit older and younger adults, 

when compared to their lower-fit counterparts (Themanson and Hillman, 2006; 

Themanson et al., 2006).  Similarly, the majority of older age participants collected in our 

study were classified as either being active or moderately active according to the General 

Practice Physical Activity Questionnaire, thus it can be deduced that our older adult 

population consisted of higher-fit individuals which may have been an important factor 

responsible for the enhanced neuroelectric profiles of ERP components to task-relevant 

tactile stimuli post-exercise.  Taken together, these studies suggest that habitual exercise 

training in older adults may preserve the structural integrity of grey and white matter 
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tracts, as well as enhance cortical activity in brain regions involved in higher-order 

attentional control processes. 

 

5.5.3. Attention-related somatosensory ERPs unaffected by exercise 

 Similar to previous work in healthy adults using the same tactile discrimination 

task, we did not find any exercise-induced attentional effects on the P50 component, 

generated over primary somatosensory cortices (Popovich and Staines, 2014).  The P50 is 

the earliest somatosensory ERP elicited by vibrotactile stimulation with amplitude 

enhancements observed during attended versus unattended conditions (Meehan and 

Staines, 2007; Dionne et al., 2013; Popovich and Staines, 2014; Staines et al., 2014).  

However, failure to drive attentional modulation of this component with tactile stimulation 

paradigms is not uncommon and previous work in our lab using the same tactile paradigm 

has consistently failed to drive attentional modulation of the P50 (Bolton and Staines, 

2011, 2012, 2014; Popovich and Staines, 2014).  Schubert et al. (2008) proposed that task-

difficulty may be an important factor required for driving modulation in the early stages of 

somatosensory processing.  Recent work investigating crossmodal effects on 

somatosensory processing support this theory with studies showing enhanced P50 

amplitudes to attended, task-relevant crossmodal stimuli when participants were required 

to produce a force-graded response representing the summation of stimuli amplitudes 

(Dionne et al., 2013; Popovich and Staines, 2014; Staines et al., 2014).  However, several 

studies using the tactile discrimination task described in this study have failed to enhance 

attentional modulation of the P50 component (Bolton and Staines, 2011, 2012, 2014), thus 
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we believe that the cognitive demand of this particular task is not sufficient for driving 

attentional modulation of the earliest stage of somatosensory processing.    

 Exercise did not influence attentional modulation of the N140 component in older 

adults.  The N140 component is observed over frontal electrode sites contralateral to 

stimulation and along midline and ipsilateral sites (Desmedt and Tomberg, 1989), but is 

thought to have bilateral generators in SII regions with the hemisphere contralateral to 

stimulation online earlier (Frot and Mauguière, 1999).  Attention-based modulation of the 

N140 is variable with studies showing enhanced negative amplitude in response to attend 

versus unattended stimuli (Desmedt and Robertson, 1977; Desmedt and Tomberg, 1989; 

García-Larrea et al., 1995; Eimer and Forster, 2003a), while other studies, including several 

using the same tactile task used in this study, report increased N140 amplitudes to 

unattended, task-irrelevant versus relevant tactile stimuli (Nakata et al., 2004; Nakata et al, 

2005; Bolton and Staines, 2011, 2012, 2014; Popovich and Staines, 2014).  However, several 

EEG studies investigating attentional modulation of the N140 component have suggested that 

this component reflects involuntary shifts of attention since findings have shown N140 

enhancement to the presentation of transient stimuli at a to-be-ignored spatial location (Kida et 

al., 2004, 2006; Adler et al., 2009).  Popovich and Staines (2014) found exercise-induced 

attentional effects on the N140 amplitude over parietal regions in healthy young adults, 

such that the neural responses to task-irrelevant tactile stimuli were larger post- versus 

pre-exercise.  They concluded that exercise facilitated selective attentional processing of 

somatosensory information by improving the efficiency of involuntary attentional shifts from 

task-irrelevant environmental distracters so that attended, task-relevant somatosensory input 

could be amplified at later multimodal stages of sensory processing.  In this study, the N140 
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amplitude was greater during unattended versus attended conditions in older adults, 

although the degree of this modulation between attentional conditions was minimal.  Our 

behavioural results showed higher success rates (i.e. accurate target detection) when 

attention was directed towards the index finger rather than away from it, suggesting that 

older adults had greater difficulty ignoring distracter stimuli delivered to the index finger 

when attention was directed towards their pinky finger.  Participants also reported greater 

difficulty detecting target stimuli presented to the pinky finger versus the index finger 

which perhaps is the reason for the decline in behavioural performance during the Ignore 

Index condition.  Bolton and Staines (2012) reported statistically larger negative N140 

amplitudes and greater differences between attended versus unattended conditions in 

younger versus older adults, implying that the capacity for sensory-gating in older adults 

was lost at the N140.  Behaviourally, older adults also exhibited lower success rates and an 

inability to ignore irrelevant stimuli compared to younger counterparts (Bolton and 

Staines, 2012).  The inability to efficiently direct attention towards relevant tactile stimuli 

delivered to the pinky while ignoring distractor stimuli presented to the index finger may 

be explained by digit-specific differences in tactile acuity and cortical representation in 

modality-specific somatosensory cortices.  For example, using fMRI, Schweizer et al. (2008) 

reported an absence in the hemodynamic responsiveness, particularly, of the pinky finger 

to vibrotactile stimulation, while Merzenich et al. (1987), found that neuronal 

representation of the pinky finger in area 3b of SI of owl and squirrel monkeys is the 

smallest when compared to the remaining four digits. 
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5.6. Conclusions 

 Our findings support and extend current literature on the relationship between 

exercise and cognition. Results suggest that an acute bout of moderate intensity aerobic 

exercise, improved attention-related modulation of tactile information at both early and 

later stages of somatosensory processing, in older adults.  Specifically, our findings suggest 

that exercise facilitated selective attentional processing of task-relevant information by 

amplifying neuronal responses representing attended stimuli across frontoparietal and 

centroparietal brain regions.  These results mimic some of the findings in healthy young 

adults using the same experimental paradigm (Popovich and Staines, 2014), but also 

produced provocative exercise-induced age-related differences in attentional modulation 

of somatosensory informative. These findings are in accord with the work by Heisz et al. 

(2014), by demonstrating that older adults may have engaged in more local neural 

processing of attended, task-relevant information while younger adults may have been 

more efficient at task-switching between attended and unattended stimuli following 

aerobic exercise.    Overall, these results imply that aerobic exercise has global rather than 

region-specific effects on brain function, and suggest that aerobic exercise and maintaining 

a physically active lifestyle may offer a promising cost-efficient, non-invasive approach for 

improving attention-related deficits in sensory processing typically observed in elderly 

populations (Reuter-Lorenz and Park, 2010; Bolton and Staines, 2011, 2012). 

 

 

 



132 

 

5.7. Figures 

 

 

 

 

Figure 5.1. Experimental paradigm 

This figure depicts how participants received vibrotactile stimulation to their second digit 
(D2) or the fifth digit (D5) on the left hand. 
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Figure 5.2. Grand averaged waveforms 

 Grand average waveforms all for conditions are shown for: parietal electrode sites 
contralateral to vibrotactile stimulation (CP4, P4) and a contralateral frontal site (FC4). (B) 
Tactile ERP traces of interest (P100, N140, and LLP) for electrode sites overlying frontal 
and somatosensory regions contralateral to stimulation. Black solid and dashed traces 
show Attend Index and Ignore Index conditions, respectively, prior to exercise. Grey solid 
and dashed traces show Attend Index and Ignore Index conditions, respectively, following 
exercise.  
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Figure 5.3. Grand averaged P300 waveforms                                                                                                          
 
Grand average waveforms time-locked to target stimuli (i.e. smaller vibrations) delivered 
to the index finger are shown for the P300 component at midline electrodes FCZ, CZ, CPZ 
for all conditions. Black solid and dashed traces show Attend Index and Ignore Index 
conditions, respectively, prior to exercise. Grey solid and dashed traces show Attend Index 
and Ignore Index conditions, respectively, following exercise. 
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Figure 5.4. Group ERP means  
 
Group means for A) P100, B) N140, and C/D) LLP, ERP components at electrodes of interest 
(FC4, CP4, P4).  Black solid and outlined bars represent group data for the Attend Index and 
the Ignore Index condition prior to exercise, respectively. Grey solid and outlined bars 
represent group data for the Attend Index and the Ignore Index condition following 
exercise, respectively. Error bars show SEM, * denotes significance p<0.05. 
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Figure 5.5. Group ERP means at frontocentral electrode CZ 
Group means for A) P3a mean amplitude, B) P3b mean amplitude, and C) P3b mean 
latency.  Black solid bars represent group data for the Attend Index condition prior to 
exercise. Grey solid bars represent group data for the Attend Index condition following 
exercise. Error bars show SEM, * denotes significance p<0.05. 
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Figure 5.6. Behavioural performance  

Behavioural performance was evaluated by determining the number of targets hit relative 
to the overall number of targets that were presented for each subject, and this success rate 
was expressed as a percentage. Black solid and outlined bars represent group data for the 
Attend Index and the Attend Index condition prior to exercise, respectively. Grey solid and 
outlined bars represent group data for the Attend Index and the Ignore Index condition 
following exercise, respectively. Error bars show SEM, * denotes significance p<0.05. 
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Chapter 6 

6.1. General Discussion 

 The objective of this thesis was to investigate the sensory-gating role of the PFC to 

examine the neural mechanisms underlying top-down attentional control on modality-

specific somatosensory cortex.  The crossmodal findings of this thesis show that SI 

excitability is modulated by top-down attentional control, bottom-up sensory-sensory 

interactions, behavioural intent. Meanwhile, the effects of aerobic exercise on 

somatosensory processing suggest that acute moderate intensity exercise modulated 

multimodal neuronal activity generated at later stages of sensory processing in healthy 

young and older adults, as well as, early modality-specific SII regions in healthy older 

adults. 

 The aim of the first study was to determine the relative contributions of visual 

priming (bottom-up sensory input) and task-relevance (top-down attention) on influencing 

early somatosensory cortical responses, namely the P50 somatosensory ERP generated in 

SI.  Previous fMRI work has shown increased neuronal activity in dorsolateral PFC and SI 

regions in response to attended versus unattended tactile and visual+tactile stimulation 

(Staines et al., 2002; Dionne et al., 2010).  Moreover, EEG work showed that the amplitude 

of the somatosensory P50 component, generated in modality-specific SI was greatest 

during presentation of visual + tactile stimuli when both stimuli were relevant for 

upcoming motor responses (Dionne et al., 2013).  Given these findings, in Study 1, we 

hypothesized that somatosensory activity would be modulated based on the temporal 

onset and stimulus order of task-relevant crossmodal (visual-tactile) events.  Furthermore, 

we hypothesized that if bottom up and top-down mechanisms influence early 
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somatosensory ERPs in contralateral SI, then the P50 amplitude should be greatest for 

relevant crossmodal (visual+tactile) interactions with a brief temporal delay between 

stimulus onsets and smallest for the irrelevant unimodal (tactile-tactile/visual-visual) 

conditions.  To test whether bottom-up sensory-sensory interactions influenced SI activity, 

we incorporated two crossmodal conditions with variations in the temporal order of visual 

and tactile stimuli.  In one condition, visual information preceded presentation of tactile 

information by 100 ms (VTd), while another condition reversed the order of the 

presentation of crossmodal stimuli so that tactile information preceded visual information 

by 100 ms (TVd).  The purpose of this manipulation was to test the influence of bottom-up 

sensory-sensory interactions on modulation of SI activity since in the TVd condition, the 

P50 amplitude would have occurred prior to the onset of the visual information, thus 

modulatory effects elicited by this condition would not be influenced by the presentation of 

task-relevant visual stimuli.  ERP results revealed that the P50 amplitude was greater 

during the attended crossmodal conditions versus unattended unimodal conditions, and 

greatest overall during the VTd crossmodal condition.  This study provides evidence that 

crossmodal modulation of modality-specific SI is sensitive to both top-down attentional 

control and bottom-up sensory-sensory interactions. 

 Based on the findings of Study 1, the purpose of Study 2 was to determine if SI 

excitability would be modulated by behavioural intent in association with attentional 

relevance and the temporal onset and stimulus order of crossmodal stimuli.  Specifically, it 

was hypothesized that crossmodal enhancement of the amplitude of the P50 component 

would be greatest when the onset of relevant visual information occurred prior to the 

onset of tactile information and required a sensory-motor integration response, and 



140 

 

smallest during the detection of unimodal (tactile) stimuli.  ERP results showed that 

overall, the P50 amplitude was greater during the task-relevant crossmodal condition 

where visual information preceded tactile information (100 ms temporal delay), and the 

degree of this modulation was significantly greater during the sensory-motor integration 

task relative to the detection task.  These findings supported the results of Study 1 by 

confirming that top-down attentional control and bottom-up sensory-sensory interactions 

modulate primary stages of somatosensory processing, and extended previous work by 

showing that P50 modulation is also dependent on the difficulty of the associated motor 

task demands.  

Considering the crossmodal findings that P50 modulation was greatest during 

attended, force-graded versus detection conditions, and the exercise findings showing an 

absence of attentional P50 modulation during an oddball detection task, the somatosensory 

P50 component may represent top-down attentional strategies applied during the 

processing of task-relevant information during complex, cognitively demanding tasks 

(Desmedt and Tomberg, 1989).  EEG-fMRI work by Schubert et al. (2008) supports this 

notion with results showing that attention-related P50 modulation was localized to 

contralateral SI regions during a cognitively demanding, bilateral tactile stimulation task.  

The authors suggested that discrepant findings regarding attentional modulation of the 

early modality-specific modulations may depend on the difficulty of task demands, and our 

P50 results support this theory.  

The objective of Study 3 and 4 sought to determine whether exercise-induced 

increases in PFC activity influence attention-based modulation of somatosensory ERPs in 

healthy young and older adults.  Imaging work in humans has shown that acute bouts of 
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moderate intensity exercise increase neuronal activity in PFC regions during attentionally 

demanding tasks, particularly in aging populations.  Transcranial magnetic stimulation 

work by Bolton and Staines (2011), revealed that transient disruption to the DLPFC 

produced disinhibition of the P100 component generated in bilateral SII regions, while 

aging work by the same authors (2012) revealed an age-related reduction in attention-

based modulation of somatosensory ERPs, suggests that the structural integrity of the PFC 

is crucial in mediating modality-specific modulations.  Thus in both Study 3 and 4, we 

hypothesized that an acute bout of moderate intensity aerobic exercise preceding 

performance of a tactile discrimination task would result in more efficient sensory-gating 

of irrelevant/non-attended and enhancement of relevant/attended tactile information.  

Therefore, improvements in sensory-gating would be observed as increased neural 

suppression of task-irrelevant stimuli and enhancement of relevant sensory information 

post- relative to pre-exercise in young and older adults.  ERP results for the younger adult 

group post- relative to pre-exercise showed greater enhancement of the N140 component 

to unattended/task-irrelevant stimuli over frontoparietal electrode sites, as well a 

reduction in the LLP amplitude over frontal sites during unattended conditions and 

enhancement of the LLP amplitudes over parietal sties during attended conditions.  By 

contrast, exercise effects in older adults revealed increased: P100 amplitudes over parietal 

sites, LLP amplitudes over frontoparietal sites contralateral to stimulation, P3a/b 

amplitudes over frontocentral electrode site CZ, as well as a decreased P3b latency to 

attended-task-relevant tactile stimuli.  There were attentional but no exercise effects on the 

N140 component in the older adult group such that the N140 amplitude was larger during 

unattended versus attended tactile stimuli.  Overall, these studies confirm that acute 
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moderate intensity aerobic exercise influences the PFC’s attentional role on modality-

specific somatosensory cortices, but in different ways in young and older adults.  Based on 

our ERP findings, younger adults showed enhanced neuronal responses to unattended and 

attended tactile stimuli at later stages of sensory processing post-exercise versus pre-

exercise (i.e. significantly greater N140 and LLP amplitudes to unattended, task-irrelevant 

and attended task-relevant stimuli, respectively), while older adults showed enhanced 

processing of attended tactile stimuli (i.e. significantly greater P100, LLP, P300 amplitudes 

to attended, task-relevant stimuli). Notably, behavioural performance was similar across 

attentional conditions and age groups (i.e. no exercise effects on performance but higher 

accuracy scores when attention was directed towards the index versus pinky finger). These 

findings are in accord with neuroimaging evidence suggesting that despite similar 

performance, older adults recruit different neural networks reflective of more local neural 

information processing than younger adults (Cabeza et al., 2002; Davis et al. 2008).  

Moreover, our findings also support recent research showing that older adults who were 

more physically active engaged in more local neural information processing (Heisz et al., 

2014).  However, Heisz et al. (2014) found that the shift to more local information 

processing in physically active older adults was associated with improved executive 

function performance, while no exercise-related improvements in behavioural 

performance were observed in our older adult group.  This discrepancy may be accounted 

for by our use of a relatively easy cognitive task with seemingly low attentional demand as 

suggested by the high accuracy rates (approximately 80% accuracy for attend index 

conditions). Future work may seek to further explore these findings by increasing the 

attentional difficulty of the tactile discrimination task.  
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 The fact that our crossmodal effects in SI and our aerobic exercise effects on 

modality-specific SII and multimodal cortices depended on attentional relevance suggests 

involvement of the dorsal fronto-parietal attention network, which has nodes in the DLPFC 

and posterior parietal cortex, and relies on perceptual and motor sets to bias processing 

towards selection of task-relevant sensory inputs.  Research implies that reciprocal 

thalamo-cortical connections, namely between the thalamic reticular nucleus (TRN) and 

the PFC, are presumably responsible for attentional modulation of modality-specific 

sensory cortices by biasing processing towards the selection and amplification of attended, 

task-relevant sensory inputs (Yingling and Skinner, 1976; Brunia, 1993).  The TRN is a 

shell-like structure that encapsulates the thalamus and is believed to act as a gatekeeper by 

modulating the activity of thalamocortical signals via inhibition or disinhibition of the 

associated sensory relay thalamic nuclei that it projects to.  The state of the TRN gate 

determines whether or not sensory information reaches primary sensory areas for initial 

processing, and if so, whether the signals sent are altered or left unchanged.  Zikopoulos 

and Barbas (2007) hypothesize that attentional regulation or sensory-gating of salient 

stimuli occurs via open or closed loop circuits depending of the relevance of the stimuli.  In 

their model, an open loop circuit occurs when activation of the TRN produces disinhibition 

of the relevant/attended sensory thalamic nuclei and surround inhibition of the 

irrelevant/unattended sensory thalamic nuclei.  This may be considered a potential 

mechanism for top down attentional processing since voluntary control of attention 

towards relevant stimuli in the presence of distractor stimuli is required for successful 

execution of goal-directed behaviours.  By contrast, a closed loop circuit would only allow 

temporary access of salient stimuli to the cortex before increased activity from the TRN 
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produced feedback inhibition on the associated sensory thalamic nuclei thereby shunting 

the flow of information to the cortex for further processing.  This may occur during bottom-

up attentional processing wherein unexpected salient stimuli may temporarily capture 

attention and interrupt ongoing cognitive processing.  It is thought that the best case 

scenario for attentional processing of relevant versus irrelevant sensory information 

occurs in an open loop circuit where the TRN selectively permits the transmission of 

salient/relevant stimuli thereby allowing prolonged access to the cortex for optimal 

processing while simultaneously producing surround inhibition of the 

irrelevant/unattended sensory thalamic nuclei (Zikopoulos and Barbas, 2007).  

The TRN and prefrontal cortex have a unique neural circuitry which is thought to 

facilitate attentional processing.  First, the PFC has widespread connections to the TRN 

which extend beyond its thalamic relay nuclei (in the mediodorsal thalamus) to sensory 

areas thus may assist in the attentional processing of sensory information.  Second, the PFC 

has terminations on the TRN which may enhance information transfer to other cortical 

regions.  Lastly, the mediodorsal thalamic nucleus, which receives the majority of its input 

from the PFC, also has vast connectivity with the TRN making it another plausible reason 

why PFC activity is hypothesized to be the main driving influence on TRN activity 

(Zikopoulos and Barbas 2007).  This connectivity between the PFC, the mediodorsal 

thalamic nucleus, and the TRN make it a likely candidate for efficient attentional processing 

of relevant sensory information transfer to primary sensory areas for further cognitive 

processing.  

According to the attentional model proposed by Skinner and Yingling (1977), the 

TRN works as an ‘attentional spotlight’ that enhances and integrates relevant signals 
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generated in the brain to allow efficient neural transmission of salient stimuli.  This model 

proposes that attentional processing occurs via a frontothalamic mechanism whereby 

selective lack of TRN activation governed by the PFC, produces disinhibition on associated 

sensory thalamic relay nuclei, resulting in a local opening of the gate for the attended 

sensory modality.  Given the findings of this thesis, enhancement in SI excitability likely 

occurred via a prefrontal-thalamic-cortical loop whereby PFC pathways to the TRN drive 

enhanced transmission of relevant signals and suppression of irrelevant distracters 

(Zikopoulos and Barbas, 2007).  

However, our crossmodal findings that SI excitability was greatest during 

crossmodal interactions with a temporal delay between visual and tactile stimuli suggests 

that attended, task-relevant visual information may influence modality-specific neuronal 

responses generated in SI perhaps via feedforward cortico-cortical mechanisms.  

Anatomical evidence for such connections in primates were reported by Cappe and Barone 

(2005), who using retrograde tracers, found the existence of visuo-somatosensory 

projections originating from visual areas towards somatosensory areas 1/3b.  In addition, 

Foxe and Scroeder (2005) have suggested that crossmodal effects may occur in a 

feedforward manner via visual connections influencing somatosensory cortices.  Dionne et 

al. (2013) showed that simultaneous presentation of visual + tactile stimuli enhanced the 

P50 component.  The authors concluded that these effects were primarily driven by a top-

down attentional network, rather than from projections from visual cortex since the 

earliest VI response occurs within the same time window as the somatosensory P50 

component at approximately 45-60 ms post stimulus-onset (Foxe and Simpson, 2002).  

However, simultaneous presentation of visual and tactile information does not permit 
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investigation of the relative contribution of each sensory system in modulating the P50 

component, thus it is possible that crossmodal facilitation of the P50 in this study might 

have also occurred in a feedforward manner.  By manipulating the temporal onset of visual 

and tactile crossmodal interactions to better address the influence of visual priming on SI 

excitability, our crossmodal findings found that P50 modulation was greatest when task-

relevant visual information preceded tactile information. Moreover, findings from Study 2 

showed that the mere presence of visual information prior to tactile information even 

when it was irrelevant for behaviour enhanced P50 modulation relative to attended 

unimodal conditions (refer to Figures 3.2 and 3.3). These findings support the notion that 

while top-down attentional mechanisms influence SI excitability, it is likely that projections 

from visual cortex may also facilitate crossmodal modulation in modality-specific SI in a 

feedforward manner. 

With regards to the exercise findings reported in this thesis, the reticular activating 

hypofrontality (RAH) model proposed by Dietrich (2011) offers a promising mechanistic 

explanation for the acute exercise effects on cognition.  Here, it is believed that the brain 

has limited resource capacity whereby neuronal processing occurs on a competitive basis, 

such that during exercise, local increases in activation occurs for brain regions responsible 

for coordinated controlled bodily motion (i.e. sensorimotor cortices, autonomic nervous 

system, and cerebellum), while fewer resources are left available for brain functions not 

computing critical functions at the time.  The model suggests that exercise-induced effects 

on cognition are a cascading, two-stage process.  First, the arousing effects of aerobic 

exercise increase activation of the reticular-activating system (RAS) via somatosensory 

feedback of limb movements during exercise (Cooper, 1973; McMorris et al., 2008), which 
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increases the production and release of several catecholamines in the brain including: 

dopamine, noradrenaline, and serotonin.  Second, since the brain has limited capacity of 

available resources, during exercise the brain must shift metabolic resources to neural 

structures sustaining movement while disengaging higher-order functions of the PFC.  

Converging exercise research supports this model, with various neuroimaging studies and 

cerebral blood flow studies in animal models showing marked increases in activation of 

motor, sensory, and autonomic regions of the brain during aerobic exercise (Gross et al., 

1980; Vissing et al., 1996; Holschneider et al., 2003).  Furthermore, EEG studies have 

consistently shown that exercise is associated with increases in alpha and theta cortical 

rhythm activity, particularly in the frontal cortex (Petruzzello and Landers, 1994; Kubitz 

and Pothakos, 1997; Nybo and Nielsen, 2001).  Increases in alpha activity are a well-

recognized indicator of decreased brain activity (Petruzzello and Landers, 1994; Kubitz 

and Pothakos, 1997).  Neurophysiological recordings in exercising cats found increased 

activity from 63 PFC neurons responsible for the control of movement during locomotion 

while other PFC neurons decreased their discharge rate (Criado et al., 1997).  Lastly, a 

plethora of studies have shown that cognitive function during tasks involving higher-order 

executive control processes tend to be impaired when combined with an aerobic exercise 

session (Adam et al., 1997; Dietrich and Sparling, 2004; Hillman et al., 2007; Audiffren et 

al., 2009; Davranche and McMorris, 2009; Del Giorno et al., 2010).  Collectively, there is 

compelling evidence in support for the RAH model and when taken into consideration with 

the sensory-gating role of the PFC, a theoretical approach to the attention-related exercise-

induced findings of this thesis can be proposed.  First, increased arousal via somatosensory 

feedback of limb movement during exercise engages the RAS to increase production and 
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release of several monoamines in the brain. Second, during the exercise session, the CNS 

requires increased activation in region-specific brain structures necessary for motor 

control, and decreased activation in higher-order PFC regions not critically required for the 

execution of aerobic performance.  Third, once a higher-order cognitive task is employed 

following exercise, a switch in the brains metabolic demand is enforced which re-engages 

PFC activation and the uptake of monoamines, particularly dopamine and noradrenaline.  

Fourth, increased monoamine uptake by the PFC exerts greater cognitive control over the 

TRN leading to an improved signal-to-noise ratio over incoming sensory inputs from the 

periphery, resulting in greater attentional regulation effects in modality-specific 

somatosensory cortex.    

   

6.2. Conclusions 

Findings from Studies 1 and 2 of this thesis imply that modality-specific 

somatosensory cortex is sensitive to the attentional relevance and temporal dynamics of 

crossmodal (visual+vibrotactile) stimuli, and the magnitude of SI modulation depends on 

the required motor response.  These findings are suggestive that crossmodal modulation of 

SI excitability occurs via: 1) top-down mechanisms, likely mediated by the sensory-gating 

role of the PFC on the TRN, which allow for the enhancement of attended, task-relevant 

crossmodal stimuli, and 2) bottom-up sensory-sensory interactions whereby visual cortex 

influences somatosensory processing in a feed-forward manner.  

Findings from Studies 3 and 4 of this thesis imply that aerobic exercise enhances 

frontoparietal interactions during a tactile discrimination task in young and older healthy 

adults.  It is believed that the mechanisms underlying the enhancement of attention-related 
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somatosensory ERPs are mediated by the RAH model for acute exercise effects on 

cognition, which exerts increased top-down attentional control over incoming sensory 

information.  

 

6.3. Limitations 

 A prominent methodological limitation to the crossmodal studies documented in 

this thesis was the inability to measure whether crossmodal interactions modulated 

somatosensory ERPs generated at later stages of somatosensory processing (i.e. P100, 

N140 components).  The nature of this problem stems from the crossmodal conditions with 

100-msec temporal delays between the onset of visual or tactile stimuli events (i.e., TVd 

and VTd).  Here, the temporal delays interfered with the timing of some early (i.e., the P100 

component for the VTd condition) and all later onset ERPs (i.e., N140) beyond typical 

latency boundaries, thus crossmodal effects could not be discussed for these components.  

Moreover, although the 100-msec temporal delay was advantageous for investigating 

crossmodal effects on P50 modulation, it remains unclear if this is the optimal temporal 

delay for investigating the influence of visual information on SI excitability.  Thorpe et al., 

(1996) found that the earliest cortical VI response generated during a highly demanding 

cognitive task was 150 msec.  This finding suggests that a longer temporal delay may 

promote greater crossmodal effects on SI excitability. 

 The exercise studies in this thesis also present significant methodological 

limitations. Perhaps the most notable limitation was the use of the age-predicted heart rate 

max (HRmax) formula to set the exercise prescription parameters for our exercise session 

intensity.   The age-predicted HRmax formula (220-age) is considered to be the most 
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common and popular heart rate prediction formula, likely due to its simplicity and 

convenience, since it does not require sophisticated and/or expensive equipment for 

computation.  However, despite its popularity, a review by Roberts and Landwehr (2002) 

noted that there is minimal empirical research in support of this model largely due to the 

large variability associated with it.  Sources of this variability stem from differences in the 

first number chosen in the formula with equations ranging from a low of 186 to a high of 

226 (Robergs and Landwehr, 2002).  Moreover several formulas include an “age” modifier 

in the equation which also range from 0.41 to 1.07 (Robergs and Landwehr, 2002).  Age 

variations in the population sample are another considerable limitation to using this 

equation with overestimations and underestimations of HRmax depending on whether the 

participants are younger or older adults.  Lastly, exercise mode seems to have an effect on 

HRmax prediction formulas which are often ignored (Robergs and Landwehr, 2002).  

 Recently, maximal exercise tests measuring or predicting maximum oxygen 

consumption (VO2 max) are considered to be the optimal standard for determining and 

assessing exercise prescription against which to compare other measures (Shephard et al., 

1968; Bruce et al., 1973).  However, research using percentage of VO2max as an index of 

exercise intensity is not without its own limitations.  For instance, several studies report 

inter-individual day-to-day variability of 4-6% in healthy individuals with no known 

cardiopulmonary pathology or impairment (Shephard, 1984; Jones, 1988).  In addition, the 

possibility for fitness assessment inconsistencies also exists with regards to what VO2 

measure is actually being utilized for exercise prescription.  For example, when a maximal 

VO2 test is performed to determine an exercise prescription, but the criteria for VO2max is 

not met, the maximal VO2 achieved is termed a “VO2peak” (Zeballos and Weisman, 1994).  
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From a clinical perspective, assessing maximal exercise performance using VO2max is 

dependent on the individual’s ability to attain a VO2max without fatiguing prematurely, or 

being limited by musculoskeletal impairments (Noonan and Dean, 2000).  Furthermore, 

psychological factors such as an individual’s motivation level may determine the likelihood 

of their ability to attain their true VO2max.         

 Since the purpose of the exercise studies in this thesis was not to determine what 

the optimal exercise prescription for modulating frontoparietal interactions, but rather, to 

investigate whether exercise would modulate somatosensory cortices at all, the use of 

prediction formula to determine a target range for modulating cortical activity proved to be 

sufficient for our experimental intentions.    

 Another possible limitation was the usage of EEG for all thesis studies, which offers 

exquisite temporal resolution (ms-level), but is significantly limited by its poor spatial 

resolution.  As a result, inferences made regarding the influence of frontal cortices on 

somatosensory processing as a result of increase top-down attentional control, as well as 

those suggesting sensory-sensory interactions between visual and somatosensory cortices 

are merely speculative based on previous literature using high-resolution imaging 

techniques (Staines et al., 2002; Dionne et al., 2010).    

Despite these limitations, the crossmodal and exercise findings in this thesis 

contribute to the mechanistic understanding of cortical and subcortical networks involved 

in attentional modulation of SI excitability, as well as potential factors such as behavioural 

intent and aerobic exercise that influence frontoparietal interactions.  
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6.4. Future Directions 

 Given the crossmodal findings that SI excitability was greatest when visual 

information preceded tactile information by 100 ms, the next logical question may be: is 

there an optimal temporal delay between visual and tactile stimuli for enhancing SI activity, 

and if so, what is it?  Future studies may wish to further explore the temporal dynamics of 

visual+tactile interactions in order to establish whether a longer temporal delay results in 

greater P50 modulation.  Such research may provide promising results further 

substantiating the possibility that visual cortices influence somatosensory cortices in a 

feedforward manner.  An alternative study may seek to determine the frontal contribution 

of crossmodal effects on SI excitability by using an EEG-cTBS approach to transiently 

suppress the PFC’s influence of incoming sensory input, and measure whether 

physiological changes in the magnitude of the P50 component as well as behavioural 

consequences occur.  

 Similarly, with regards to the exercise studies presented in this thesis, future 

research should investigate whether acute aerobic exercise has neuro-protective effect on 

the PFC using an EEG-cTBS paradigm.  In other words, can engaging in a single session of 

moderate intensity aerobic exercise reverse transient suppression of PFC regions? 

Previous work by Bolton and Staines (2011) showed that cTBS to the DLPFC in healthy 

young adults produced disinhibition, particularly of the somatosensory P100 component, 

during a tactile discrimination task.  Based on the exercise results shown in this thesis, it 

would be fascinating to see if an acute exercise session could reverse such effects.  Another 

potential avenue of research to explore may include examining the dose-response 

relationship between exercise intensity and cognition using more stringent measures of 
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fitness assessment and exercise prescription, or the effects of chronic exercise on the 

modulation of frontoparietal interactions.  Lastly, future research using the tactile 

discrimination task reported in this thesis may consider slightly modifying the 

experimental setup, by creating stimulus competition between index fingers of separate 

hands rather than between the index and pinky finger of the same hand since 

somatosensory ERPS time-locked to tactile stimuli presented to the pinky finger did not 

produce discernible ERPs.     
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