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Abstract

Flow around a cluster of three equally spaced cylinders with a spacing ratio of P/D =
1.35 was studied experimentally and numerically. The main focus of this investigation
is the effect of cluster orientation on flow characteristics. Two Reynolds numbers were
investigated: ReD = 100 and ReD = 2100. Experiments were conducted at the University
of Waterloo water flume facility at ReD = 2100 for a range of cluster orientation angles
0◦ ≤ α ≤ 60◦ using hydrogen bubble technique, particle image velocimetry, and laser
Doppler velocimetry. The flow was modeled numerically at ReD = 100 and ReD = 2100
for α = 0◦ and 60◦. A laminar model was used for ReD = 100 and a RANS model was
used for ReD = 2100. For the RANS case, four turbulence models were evaluated: SST,
k − ω, k − ε, and LRR-IP.

For all cluster orientations, the experimental results show large scale vortex shedding,
similar to single bluff body flows, beyond x/D = 5. Wide and narrow wakes are produced
downstream of the cluster due to jets, that form in the passages between the cylinders,
exiting the cluster. Small scale vortices are shed from shear layers bounding the narrow
wake(s). For α = 0◦, a bistable wake development is present, in which the jet exiting the
cluster is directed towards either one of the two downstream cylinders. The asymmetry
in the wake development about y = 0 decreases as α increases from 0◦ to 60◦. For α =
60◦, the wake development is symmetric, consisting of two narrow wakes behind the two
upstream cylinders and a wide wake behind the downstream cylinder. For all orientations,
interactions between the inner shear layer of the wide wake and small scale vortices shed
from the shear layers bounding the narrow wake occur. As a results, each large scale
structure forming on this side of the wake axis encompasses smaller scale vortices with
opposite vorticity sense, which reduces the coherence of the large scale vortices compared
to that of their counterparts on the opposite side of the wake for 0◦ ≤ α < 60◦. The
small scale vortex shedding frequency increases with increasing α for 0◦ ≤ α ≤ 60◦. For
all orientations, the large scale vortex shedding frequency, when scaled by the projected
height of the cluster, is equal to that for a single cylinder at the same Reynolds number,
suggesting that the cluster behaves like a single bluff body.

For ReD = 100, the numerical results show a symmetric wake development for α = 0◦

and 60◦. No bistable wake development is present for α = 0◦. Also, there is no presence
of small scale shedding in the near wake of the cluster for both orientations. The Strouhal
number based on the projected height of the cluster is equal for both cluster orientations
and to that expected for a single cylinder at the same Reynolds number. The total drag
on the cluster for α = 0◦ and 60◦ is CP ≈ 1.35 and CP ≈ 1.5, respectively. The maximum
drag occurs on the two upstream cylinders for α = 60◦, and is approximately 10% larger
than that on a single cylinder. The drag coefficient on all other cylinders is at least 25%
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lower than that on a single cylinder. Mean lift forces are produced on the two downstream
cylinders for α = 0◦ and the two upstream cylinders for α = 60◦. The total RMS for the
cluster for α = 0◦ and 60◦ is CL

′ ≈ 0.3 and CL
′ ≈ 0.5, respectively. The maximum lift

RMS occurs on the downstream cylinder for α = 60◦ and is approximately 35% larger than
that for a single cylinder.

Numerical results for ReD = 2100 show that, out of the four turbulence models tested,
the SST and k−ω models perform the best overall when compared to experimental results.
Based on the results of the SST model, for α = 0◦ (i.e., the bistable case), the maximum
drag occurs on the cylinder producing the narrow wake. For α = 60◦, the maximum
drag occurs on cylinders 1 and 3. For both orientations, the total drag coefficient for the
cluster is approximately 15% smaller than that for a single cylinder case. Also, the mean
lift forces are generated only on the two downstream cylinders for α = 0◦ and the two
upstream cylinders for α = 60◦.
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Chapter 1

Introduction

Fluid flow interaction with cylindrical bodies is seen in multiple engineering applications

and is important for their design and/or operation. These examples range from flow

through tube bundles in heat exchangers to noise generation from flow over cylindrical

structures on aircraft landing gears. Thus, flow over single uniform circular cylinders has

been studied in vigorous detail over several decades (e.g., [1–5]). The vortex shedding

phenomenon has been the primary focus of such investigations. The periodic pressure

fluctuations in the flow field due to this phenomenon result in oscillating forces on the

cylindrical body. Previous studies have shown that parameters such as Reynolds num-

ber [5, 6], free-stream turbulence [7, 8], and surface roughness [8] impact vortex shedding

characteristics. There is numerous literature available present day to characterize flows

around single uniform cylinder bodies.

There is only a limited number of studies, in comparison to those performed on flows

over a single uniform cylinder, that have investigated flows over multiple cylinder configu-

rations (e.g., triangular cluster of three cylinders). Such flows are seen in heat exchangers,

1



P

T

S

x
y

α
U0

D

Figure 1.1: Triangular cluster geometry definition.

cluster of cooling towers, support structures, and chimney stacks. For the case of a trian-

gular cluster of three cylinders (Figure 1.1), only a few studies have involved quantitative

measurements (e.g., [9–12]). Previous results show that the characteristics of the vortex

shedding phenomenon and forces exerted on the cylinders depend strongly on the spac-

ing between the cylinders, cluster orientation relative to the flow direction, and Reynolds

number.

Flows through a triangular cluster of three cylinders involve complex vortex interactions

and multiple frequency-centered activities in the wake [9, 12]. For some combinations of

the cylinder spacing, cluster orientation, and Reynolds number, vortex shedding can be

suppressed behind one or more cylinders in the cluster. For example, at low Reynolds

numbers (60 < ReD < 300) and for α = 0◦, a single vortex street is produced behind the

cluster for 2 ≤ P/D ≤ 6 and three individual streets form for P/D > 6 [9]. Sayers [10]

and Price & Paidoussis [11] investigated both the single and three individual vortex street
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regimes. They measured forces exerted on each cylinder and suggested that each cylinder

behaved similar to an isolated cylinder for P/D > 5. Lam & Cheung [12] visualized the

flow through an equispaced triangular cluster of three cylinders using dye injection and

observed a bistable phenomenon at ReD = 2100 for α = 0◦ and 1.27 ≤ P/D ≤ 2.29.

In this flow regime, the gap flow forming between the two downstream cylinders can be

stably biased towards the wake of either of the two downstream cylinders, resulting in a

narrow wake and a wide wake behind the cluster. Lam & Cheung [12] noticed that there

was no intermittent switching in the gap flow direction and that the biased direction was

dependent on the initial conditions of their experiment. This observation is different from

the bistable mode detected for flow over two cylinders in a side-by-side arrangement [13],

in which there is intermittent switching in the biased direction during operation.

For the case of α = 60◦, no bistable phenomenon occurs for the cluster [12]. The

presence of the downstream cylinder prevents the formation of a bistable wake. The wake

consists of a narrow wake behind each of the upstream cylinders which are symmetric

about the y = 0 and equal in size and a wide wake behind the downstream cylinder.

Previous studies provide a detailed qualitative description of the flow topology for flow

through an equispaced triangular cluster of three cylinders [9, 12]. However, quantitative

flow field measurements are needed to gain further insight into the wake development. The

present work aims to investigate flows through an equispaced triangular cluster of three

cylinders, focusing on wake development and vortex dynamics. The aim of the study is to

assess the effect of cluster orientation on the near-wake development via quantitative field

measurements. To obtain such measurements, an experimental and numerical investigation

at the University of Waterloo was conducted. The specific objectives of this work are as
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follows:

1. Experimentally investigate flow through an equispaced triangular cluster of three

cylinders and effects of cluster orientation on the near-wake development, primarily

focusing on wake vortex dynamics at ReD = 2100 and P/D = 1.35. These operating

parameters are common in various industrial applications.

2. Numerically model the flow through the cluster for (a) laminar and (b) turbulent

flow conditions:

(a) solve unsteady Navier-Stokes equations and analyze the vortex shedding phe-

nomenon in the laminar flow regime (ReD = 100), and

(b) solve Reynolds-Averaged Navier-Stokes equations and evaluate the performance

of various turbulence models at ReD = 2100.

Chapter 2 provides an overview of the relative literature. The experimental and nu-

merical setup details are described in Chapters 3 and 4, respectively. A comprehensive

analysis of the results is given in Chapters 5 and 6, followed by concluding remarks and

recommendations in Chapters 7 and 8, respectively.
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Chapter 2

Background

This chapter provides a detailed overview of previous investigations and their findings re-

lated to flow over single and multiple cylinder configurations. The first section describes

studies of flow past a single uniform circular cylinder, focusing primarily on vortex shed-

ding in the cylinder wake and Reynolds number effects on the overall flow characteristics.

Section 2.2 describes the flow topology when an additional cylinder is present. The main

purpose of this specific part of the review is to highlight the effects of interactions between

two cylinders on the flow. Lastly, previous investigations on flow through a triangular

cluster of three cylinders are reviewed and discussed in Section 2.3.

2.1 Flow around a uniform circular cylinder

As a fluid flows past a single uniform circular cylinder, boundary layers form on both sides of

the cylinder surface (Figure 2.1). Due to an adverse pressure gradient, the boundary layers
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Figure 2.1: Flow over a single uniform circular cylinder.

separate from the surface and form separated shear layers. At sufficiently high Reynolds

number (ReD > 50) [5], these shear layers roll-up into large vortical structures which are

shed downstream. This shedding process is periodic and occurs at a fixed frequency. Figure

2.1 shows a typical flow topology for flow past a uniform circular cylinder. The shedding

phenomenon produces a notable structure in the wake of the cylinder, known as a von

Kármán vortex street (Figure 2.1).

Flow around a uniform circular cylinder is strongly dependent on the Reynolds number,

ReD = ρU0D/µ. Williamson [5] and Zdravkovich [6] identify distinct flow regimes for a

wide range of Reynolds numbers. For 0 < ReD < 45, the wake of the cylinder is steady,

laminar, and two-dimensional. For 5 < ReD < 45, two steady counter rotating eddies are

present in the near-wake [14]. These eddies grow in size in the streamwise direction with

increasing ReD. Oscillations in the wake are first visible far downstream when ReD ≈ 45

and a two-dimensional von Kármán vortex street is present for 45 < ReD < 190 (also

knows as the periodic laminar regime) [5]. Gerrard [3] suggests that the continuous supply
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of vorticity from the shear layer to the growing vortex becomes strong enough to draw the

opposite shear layer across the wake. The approach of this shear layer with oppositely-

signed vorticity across the wake cuts off further supply of circulation to the vortex, and

the vortex is then convected downstream by the flow. The streamwise extent of the vortex

formation region is dependent on the Reynolds number [15, 16]. Griffin & Votaw [16]

defined the vortex formation length to be the distance from the center of the cylinder to

the location of the maximum fluctuations in the streamwise velocity component along the

wake axis. The length of the formation region decreases with increasing Reynolds number

in the periodic laminar regime [15,16].

Figure 2.2 schematically shows laminar and turbulent flow regions in the wake, sep-

arated shear layers, and boundary layers, occurring at higher Reynolds numbers. For

190 < ReD < 350, transition to turbulence takes place in the wake (Figure 2.2a) and

three-dimensional deformations of the main spanwise rollers occur in two modes [5]. The

first mode (Mode A) sets in at ReD ≈ 190 and is associated with the deformation of the

shed vortices, resulting in the formation of streamwise vortex pairs with a spanwise spac-

ing of approximately 3 to 4 diameters [5]. Mode B starts at ReD ≈ 240, and involves

the formation of smaller scale streamwise vortices with a spanwise distance of approxi-

mately 1D [5]. At the onset of Mode A, there is a sudden drop in the Strouhal number,

StD = fD/U0. As the Reynolds number increases, a gradual energy transfer from the first

mode to the second mode leads to a rise in StD [5]. In this regime, the separated shear

layers and boundary layers are still laminar and two-dimensional.

Transition to turbulence in the shear layers occurs for 1 × 104 < ReD < 2 × 105

[5]. Transition moves upstream along the shear layers with increasing ReD. The Kelvin-
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Figure 2.2: Transition from laminar to turbulent in the (a) wake, (b) shear layers, and
(c) boundary layers. Reynolds number increases from (a) to (c). L = Laminar and T =
Turbulent. Adapted from [6].

Helmholtz instability is present in the shear layers in this flow regime, as seen in Figure 2.3.

Bloor [17] was the first to measure the frequency of these structures within the shear layers

and found that the ratio of the shear layer instability frequency to the vortex shedding

frequency is approximately proportional to Re
1/2
D . Prasad & Williamson [18] reanalyzed

this relation and showed that the ratio scales more accurately with Re0.67D .

For ReD > 2 × 105, transition moves upstream along the boundary layer on each side

of the cylinder surface (Figure 2.2c). For 2 × 105 < ReD < 7 × 106, a separation bubble

exists on both sides of the cylinder surface due to the reattachment of the separated shear

layers. The separation bubble forms at irregular intervals in this flow regime [6]. When

the bubble forms, the boundary layer separates further downstream, resulting in a reduced

wake width, as compared to the previous flow regime. Also, there is a sudden drop in

the drag when the separation bubble is present. Beyond ReD ≈ 7 × 106, periodic vortex

shedding is present with separation occurring further upstream, resulting in a wider wake

and increased drag, compared to the range of 2× 105 < ReD < 7× 106.
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Figure 2.3: Shear layer transition vortices. Based on the results of [19]

2.2 Flow over two circular cylinders

Fluid flow over two circular cylinder geometries is seen in a wide range of engineering appli-

cations (e.g., pair of chimney stacks, structural members, electrical transmission lines, and

twin cooling towers) and numerous investigations (e.g., [13, 19–23]) have been performed

for this geometry. Figure 2.4 shows three relative arrangements of two cylinders commonly

studied in various industrial applications. The spacing between the two cylinders and their

orientation relative to the flow direction, β, play a significant role in the flow patterns for

this geometry. Zdravkovich [23] defines four types of interference flow regimes observed for

various arrangements of the two cylinders for 350 < ReD < 2×105: (i) wake, (ii) proximity,

(iii) wake and proximity, and (iv) no interference. For case (i), upstream separated shear

layers or vortices shed from the upstream cylinder interact with the downstream cylinder.

Proximity interference (case (ii)) occurs when the two cylinders are relatively close to each

other such that there is interaction between the two inner shear layers. Case (iii) is a

combination of (i) and (ii), in which both types of interference are present. For case (iv),

the cylinders are spaced relatively far apart such that there is no interference between

them and each cylinder behaves like a single isolated cylinder. For a detailed map of the
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Figure 2.4: Definition of two cylinder arrangement.

interference flow regimes, the reader is directed to [23].

2.2.1 Tandem arrangement

Figure 2.5 shows typical flow topology observed for flow over two tandem cylinders in

the wake interference flow regimes. For this geometrical configuration, two possible out-

comes occurs, depending on ReD and S/D: (i) suppression of vortex shedding behind the

upstream cylinder (Figures 2.5a and 2.5b) or (ii) a vortex street behind each cylinder (Fig-

ure 2.5c) [23]. Reattachment of the upstream separated shear layers on the downstream

cylinder surface is seen for a range of S/D within flow regime (i).

Single vortex street

Biermann & Herrnstein Jr. [13] were one of the first to study the impact of flow interference

on the drag coefficient for each cylinder in a tandem arrangement. They performed experi-

ments for 2.5× 104 < ReD < 1.4× 105 and 1 ≤ S/D ≤ 9. The results showed significantly

lower values of drag for the downstream cylinder, with respect to a single cylinder case.
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Figure 2.5: Typical flow patterns for tandem cylinders. Based on the results of [23].

The drag coefficient on the upstream cylinder is not significantly affected by the presence

of the downstream cylinder. For S/D < 4, the shedding behind the upstream cylinder is

suppressed due to the presence of the downstream cylinder. The drag coefficient on the

downstream cylinder decreases with decreasing S/D, and, for S/D < 3, the drag on the

downstream cylinder is negative. The reason for the reduced drag is that the downstream

cylinder is submersed in the wake of the upstream cylinder. Vortices forming from the shear

layers of the upstream cylinder grow and impinge on the back surface of the downstream

cylinder, producing a force opposite to the free-stream direction [13].

Kostic & Oka [24] performed surface pressure measurements on the tandem cylinders

for 1.2× 104 < ReD < 4.0× 104 and 1.6 ≤ S/D ≤ 9. They observed reattachment of the

upstream separated shear layers on the surface of the downstream cylinder for S/D < 3.8.

For this range of S/D, the surface pressure distribution for the downstream cylinder dif-

fers significantly compared to that on a single cylinder. The pressure distribution on the

downstream cylinder shows a peak on both sides of the downstream cylinder surface indi-
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cating the locations of shear layer reattachment. The reattachment points move upstream

along the downstream cylinder surface with decreasing S/D. Zdravkovich & Stanhope [25]

supported the findings of Kostic & Oka [24] by obtaining velocity profiles in the gap region

(i.e., wake of the upstream cylinder). They found that the flow in the gap region was

stagnant in this flow regime.

For S/D < 4, Igarashi [26] used surface oil visualization and pressure measurements and

classified four different types of shear layer reattachment behaviors: (i) no reattachment,

(ii) alternate reattachment, (iii) quasi-steady reattachment and (iv) intermittent vortex

shedding. For very small spacings (e.g., S/D ≈ 1.03), the upstream separated shear

layers do not reattach on the downstream cylinder surface (Figure 2.5a). The downstream

cylinder is bound by the separated shear layers of the upstream cylinder. A single vortex

street forms behind the tandem cylinders. For case (ii), only one of the two upstream shear

layers reattaches on the downstream cylinder surface at a time. When one of the separated

shear layers reattaches, the opposite one rolls into a vortex. Once the vortex is shed, the

reattached shear layer detaches from the downstream cylinder and starts to rolls up into a

vortex; whereas, the opposite separated shear layer reattaches on the downstream cylinder

surface. This alternating process occurs at the vortex shedding frequency. As the spacing

increases further, quasi-steady vortices form in the gap (case (iii)). For case (iv), near the

critical spacing of S/D ∼= 3.8, intermittent shedding in the gap region is present.

Despite the suppression of vortex shedding behind the upstream cylinder for S/D < 3.8,

vortex shedding occurs for all S/D behind the downstream cylinder [26,27]. For S/D < 3.8,

the Strouhal number for the downstream cylinder decreases with increasing S/D. At

S/D = 3.8, there is vortex shedding present behind the upstream cylinder. Ishigai et
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al. [28] noticed that shedding in the gap region was bistable at S/D = 3.8 and it switched

intermittently between shedding and no shedding. Ishigai et al., further investigated this

behavior by comparing the Strouhal number values for the upstream cylinder to the case

of a single cylinder with a splitter plate [29]. The results showed that both the splitter

plate and the downstream cylinder in the tandem arrangement create a closed wake flow

pattern directly behind the upstream cylinder, which suppresses vortex shedding [28].

Zdravkovich [30] performed smoke visualizations of the tandem wakes for 40 < ReD <

250 and 1 < S/D < 12 and made comparisons to a single isolated cylinder. The results

show suppression of transition to turbulence in the wake for S/D < 4. The transition

to turbulence is delayed as the spacing between the tandem cylinders decreases. For a

particular case of S/D = 1, the wake behind the two cylinders remains laminar until

approximately twice the transition Reynolds number for a single cylinder. Zdravkovich [30]

suggests that this delay is due to the increased base pressure on the downstream cylinder.

Dual vortex street

Thomas & Kraus [20] studied the interaction of the vortex streets for two cylinders in a

tandem arrangement for 3.6 < S/D < 16 at ReD = 62. For S/D > 10, vortices shed from

the upstream and downstream cylinders coalesce to form one street about 20D downstream.

For 3.6 < S/D < 8.5, the tandem wake expands and contracts (in the transverse direction)

periodically at a lower frequency than the vortex shedding frequency. Also, when S/D is

an odd multiple of half the longitudinal spacing of the vortices in the wake, contractions

or cancellations of vortex streets occur downstream of the two tandem cylinders.

Koboyashi [31] performed flow visualization at ReD = 104 for 3 < S/D < 8 and used
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red and blue dye to trace vortices shed from the upstream and downstream cylinder. For

3.8 < S/D . 5, the shed vortices from the upstream cylinder move around the downstream

cylinder sides and pair with the vortices shed from the downstream cylinder, forming a

binary vortex street [31, 32], as shown in Figure 2.5c. For S/D > 5, the vortices from the

upstream and downstream cylinder are shed at different frequencies and do not form a

binary vortex street behind the downstream cylinder [32].

Drag and lift forces on both cylinders in tandem arrangement depend on both S/D

and ReD [13, 24, 27]. For S/D > 3.8, the drag coefficient on the upstream cylinder is

approximately equal to that of a single cylinder at the corresponding Reynolds number.

Thus, the downstream cylinder has minimal effect on the drag of the upstream cylinder.

There is, however, a strong effect of ReD on the drag of the downstream cylinder. The drag

of the downstream cylinder approaches that of the upstream cylinder for ReD . 104. At

high Reynolds numbers (∼ 105), the drag of the downstream cylinder decreases significantly

with increasing ReD [24,27]. Also, as the spacing between the cylinders increases, the drag

of the downstream cylinder increases [24]. The effect of ReD and S/D on the drag of the

downstream cylinder in a tandem arrangement is analogous to the effect of free-stream

turbulence level on the drag of a single cylinder [8].

The transition Reynolds number in the tandem wake is different when compared to that

for a single cylinder and is dependent on the spacing between the cylinders. Zdravkovich

[30] notes that there is promotion of transition for 8 < S/D < 12. For 4 < S/D < 8,

however, the transition occurs at the same Reynolds number as for the single cylinder

case.
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Figure 2.6: Typical flow patterns for side-by-side cylinders. Based on the results of [23].

2.2.2 Side-by-side arrangement

Depending on the spacing between the two side-by-side cylinders (T/D), three different

flow patterns occur due to proximity interference, as shown in Figure 2.6: (i) formation of

a single vortex street, (ii) bistable gap flow, and (iii) parallel coupled streets [23].

Single vortex street

For relatively small spacing ratios (1 < T/D < 1.1− 1.2), a single vortex street is present

behind the two cylinders (Figure 2.6a) [23]. The velocity of the flow between the small

gap is relatively low. Spivack [33] investigated the shedding frequency behind the tandem

cylinders for 1 ≤ T/D < 6 at 5 × 103 < ReD < 9.3 × 104. At ReD = 2.8 × 104, only

one vortex street is present in the wake for 1 ≤ T/D < 1.09. The Reynolds number and

Strouhal number, based on the height of the projected area of the two cylinder arrangement

(i.e., ≈ 2D), is equal to that of a single cylinder whose diameter equals to the height of

the project area at the given Reynolds number. Thus, in the regime, the geometry is

analogous to a single bluff body, in terms of large scale shedding characteristics. Bearman
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& Wadcock [21] supported the findings of Spivack [33] by measuring the base pressure for

both cylinders simultaneously and found the same for both cylinders in this flow regime.

Bistable flow phenomenon

Biermann & Herrnstein Jr. [13] were the first to notice bistable flow behavior for a specific

range of spacing ratios. For 1.1 < T/D < 2.2, the flow through the gap between the

two cylinders becomes biased towards one of the two cylinders, as seen in Figure 2.6b.

The biased gap flow forms a narrow and a wide wake behind the side-by-side cylinders.

The direction of the gap flow is bistable (i.e., it switches irregularly) [23]. The different

size of wakes results in different size of shed vortices and shedding frequency behind the

cylinders. The small vortices shed from the narrow wake coalesce with the vortices shed

from the wider wake [23]. The vortices from the narrow wake are shed at a frequency

higher than that of the vortices shed in the wide wake. However, far downstream, a

single Strouhal number value is present corresponding to the frequency of the large scale

structures [34]. The narrow wake produces larger Strouhal number. Also, the drag and

lift forces on the cylinder producing the narrow wake is larger, relative to the values for

the opposite cylinder [23]. Bearman & Wadcock [21] noticed that the low and high drag

values always add up to less than twice the value for the single cylinder case.

The source of this biased gap flow has been hypothesized in several previous studies,

but is still uncertain. Ishiqai et al. [28] suggests that the bistable flow phenomenon is a

consequence of the Coanda effect [35], which is seen in the case of a jet deflecting when

attached to a curved surface. This hypothesis was proven incorrect by Bearman & Wadcock

[21] who used side-by-side flat plates and observed bistable flow even though the surface of

16



the objects were not curved. Zdravkovich [36] proposed that this phenomenon occurs due

to the initial stage of the interference in the gap. He suggested that a small deflection or

disturbance in the gap flow disrupts the balance of opposite sign vorticity in the inner shear

layers which causes one of the shear layers to start rolling up. This imbalance leads to an

increase of vorticity towards the bias side. The random switching can also be explained

by observing the behavior at the initial stage of gap interference. If a small disturbance at

the initial stage of the gap interference causes an imbalance towards the opposite side of

the bias, the shear layer on that side will start to roll up and shift the bias to the other

side of the wake.

Parallel vortex streets

For 2.2 < T/D . 5, bistable flow behavior disappears and the two vortex streets behind

the side-by-side cylinders are coupled (Figure 2.6c) [23]. The coupled streets are synchro-

nized in frequency and phase. Figure 2.7 shows the two possible modes of flow patterns

in this regime. Landweber [37] proposed a model for two parallel vortex streets based on

Kármán’s single vortex street theory and specified two conditions: (i) transverse-induced

velocity component must be zero for the four vortex rows to be aligned and (ii) the stream-

wise velocity of the vortices in each row must be the same. These conditions must hold

for a stable flow pattern to convect downstream. Applying these requirements results in

two possible flow patterns, as seen in Figure 2.7. Landweber [37] also showed that the

strength of the outer and inner vortices cannot be equal. For the out-of-phase case, the

strength of the vortices in row (2) must be greater than that of row (1). For the other

case (Figure 2.7b), the strength of the vortices in row (1) must be greater than that of
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row (2). Williamson [19] used flow visualization techniques to study the flow development

in the wake of two side-by-side cylinders and showed the occurrence of both modes. The

out-of-phase mode is predominant; however, it is possible for the flow to intermittently

switch to the other mode. Both modes behave differently far downstream. The out-of-

phase streets keep its form for large distances downstream, however, for the in-phase case,

the parallel streets are in-phase only in the near-wake region. In this mode, both parallel

wakes combine to form a single binary vortex street far downstream, similar to the case

of two tandem cylinders for 3.8 < S/D . 5 [31]. The single street is similar to a Kármán

street, however, each row of vortices consists of a pair of vortices of equal sign.

2.2.3 Staggered arrangement

According to [38], three main types of flow development over two cylinders in a staggered

arrangement are as follows: (i) single bluff body shedding, (ii) shear layer reattachment,

and (iii) synchronized vortex shedding. Figure 2.8 shows the typical flow patterns for each

of these cases. The most common observation for such flows is the presence of a narrow and

wide wake behind the upstream and downstream cylinder, respectively [28]. The degree of

bias in the gap flow and difference in size of the two wakes both decreases with increasing

spacing (P/D).

Single bluff body shedding

For 1 < P/D < 1.25 and at all values of β, the two staggered cylinders behave similar to

a single bluff body [38]. A single vortex street is present behind the pair of cylinders. For
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Figure 2.7: Two possible modes of coupled vortex streets: (a) out-of-phase and (b) in-
phase. Based on the results of [37].

0◦ < β < 45◦, the length of the separated shear layer on each side is notably different. The

length of the shear layer from the upstream cylinder is larger. This shear layer is more

unstable and usually develops Kelvin-Helmholtz instabilities [38]. As the angle is increased

to 45◦ < β < 90◦, the difference between the two shear layers is minimal and instabilities

observed (if any) appear in both shear layers. The small gap flow between the cylinders

penetrates the near-wake region which leads to an increase in the vortex formation length,

in comparison to the case when the two cylinders are in contact (i.e., no gap flow). Also,

this gap flow typically results in a wider near-wake region behind the two cylinders [38].
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Figure 2.8: Typical flow patterns for staggered cylinders. Adapted from [38].

Shear layer reattachment

For 1.1 < P/D < 4 and 0◦ < β < 20◦, shear layer reattachment is present along with

a single vortex street behind the two cylinders [38], as seen in Figure 2.8b. There is no

shedding directly behind the upstream cylinder. The inner shear layers from the upstream

cylinder reattach onto the downstream cylinder surface. Behind the two cylinders, only a

single vortex street is present. Gu & Sun [39] also observed shear layer reattachment on

the downstream cylinder surface at high Reynolds numbers (∼ 105). The reattachment of

the shear layer causes the surface pressure at the reattachment point on the downstream

cylinder to increase. Similar to the previous flow regime, the two separated shear layers

forming the single street behind the two cylinders still have different lengths. The longer
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shear layer is more unstable and has a tendency to develop Kelvin-Helmholtz instabilities.

Synchronized vortex shedding

For 1.5 < P/D < 5 and 15◦ < β < 90◦, the two wakes behind both cylinders are syn-

chronized in frequency and phase [38]. The deflection in the gap flow forms two different

sized near-wake regions behind the two cylinders. The gap vortices on either side pair

up and are synchronized in their shedding process. The flow behavior is similar to that

of two coupled streets for a pair of side-by-side cylinders (Figure 2.7); however, only the

out-of-phase mode is seen for the case of two cylinders in a staggered configuration, as

illustrated in Figure 2.8c.

2.3 Flow through triangular cluster of three cylinders

The geometry definition for a triangular cluster of three cylinders is shown in Figure 1.1.

Flow development over this geometry depends on Reynolds number, the spacing ratios,

P/D, S/D, and T/D, and cluster orientation relative to the free-stream flow direction, α.

2.3.1 Effect of spacing ratios

Zdravkovich [9] studied the effect of longitudinal and transverse spacing ratios using smoke

visualization for 5 ≤ S/D ≤ 21, 2 ≤ T/D ≤ 10, and 0◦ ≤ α ≤ 60◦ at low Reynolds num-

bers (60 < ReD < 300). He identified two distinct flow interference patterns at α = 0◦:

(i) a single vortex street forms behind the cluster for 2 ≤ T/D ≤ 6 and (ii) three indi-
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vidual streets form for T/D > 6, as seen in Figure 2.9. For case (i), the length of the

formation region where initial roll up of the shear layers occurs varies with the transverse

spacing. The length of this region decreases as the spacing between the downstream cylin-

ders decreases. Also, the single vortex street downstream of the cluster shows significant

expansion (i.e., the vortex rows on either side diverge from the wake axis at a considerable

angle). Zdravkovich [9] compares this expansion in the vortex street to the wake of a single

vibrating cylinder [40,41]. He suggested that the expansion in the wake of the three cylin-

der cluster for 2 ≤ T/D ≤ 6 is a consequence of oscillations in the flow approaching the two

downstream cylinders produced by the upstream cylinder. For case (ii) (T/D > 6), there

is minimal interaction between the three vortex streets immediately downstream of the

cluster; however, vortex interactions between the three vortex streets further downstream

trigger considerable variation in the spatial arrangement of the middle vortex street. The

opposite sense vortices on each side of the middle street gradually cross the center line of

the wake, briefly forming a single row of vortices, and then continuing to the opposite side

of the wake axis.

Different flow patterns were also observed by Zdravkovich [9] for various S/D values at

α = 0◦. A traditional von Kármán vortex street exists behind the upstream cylinder for

S/D exceeding some critical value, which depends on the Reynolds number [9]. For S/D

larger than this critical value, interaction between the upstream vortex street and the two

downstream cylinders occurs. As S/D decreases below the critical value, no vortex street

is visible behind the upstream cylinder and the cluster behaves like a single bluff body.

Sayers [10] and Price & Paidoussis [11] measured the forces exerted on the three cylin-

ders in a triangular cluster at ReD = 3.18 × 104 and ReD = 5.1 × 104, respectively.
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U0

(b) T/D > 6

Figure 2.9: Flow development for various T/D at α = 0◦. Based on the results of [42].

Sayers [10] found that the drag coefficient on the cylinders is equal to that of a single

isolated cylinder for P/D > 4. For P/D > 4, there is minimal interaction between the

three cylinders in the cluster. For a particular case of P/D < 4 and α = 0◦, the drag

coefficient on the upstream cylinder decreases with decreasing P/D due to the interaction

between the wake of the upstream cylinder and the two downstream cylinders. Price &

Paidoussis [11] noticed the drag coefficient on the cylinders for all cluster orientations is

equal to that of a single cylinder for P/D > 5. The difference in the reported lower bound

for P/D by [10] and [11], for which all three cylinders in the cluster behave similar to an

isolated single cylinder, may be due to difference in the operating Reynolds number in both

experiments.

2.3.2 Effect of cluster orientation

The cluster orientation angle, α, is another parameter which influences the flow for this

geometry. Lam & Cheung [12] investigated the effects of orientation angle for an equilateral
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Figure 2.10: Flow development for various orientations between 1.27 ≤ P/D ≤ 2.29. Based
on the results of [12].

triangular cluster for 1.27 ≤ P/D ≤ 5.43 at ReD = 2100 and 3.5× 103. Figure 2.10 shows

the typical flow development observed in [12]. For α = 0◦, a bistable wake exists, as

shown in Figure 2.10a. For a range of orientation angles (0 < αs < 30), the downstream

cylinder is fully shielded by the separated shear layers from the upstream cylinder (Figure

2.10b) [12]. Figure 2.10c shows a symmetric wake development for α = 60◦.

For α = 0◦ and 1.27 ≤ P/D ≤ 2.29, flow patterns behind the cluster are similar to

the bistable case observed in flow past two cylinders in a side-by-side arrangement [23]. A

narrow and a wide wake exist behind the downstream cylinders, as seen in Figure 2.10a.

Lam & Cheung [12] have characterized this flow regime as bistable. The gap or jet flow

(i.e., flow exiting between the two downstream cylinders) is biased towards either side of

the two downstream cylinders. The biased direction of the jet flow is dependent on the

initial conditions. Lam & Cheung [12] did not notice any intermittent switching during

experimentation, as observed for the two cylinder in a side-by-side arrangement case [23].

The shedding frequency for the narrow wake is larger than for the wide wake. For the

upstream cylinder, the Strouhal number can vary between 0.4 to 0.6. Lam & Cheung [12]
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suggested that such high StD values for the upstream cylinder are due to the ”compression”

of the separated shear layers emanating from the upstream cylinder in the gap between the

two downstream cylinders. This effect leads to an increase in vortex shedding frequency.

As the spacing ratio increases to 2.29 < P/D < 4.65, the bistable phenomenon does not

occur. Also, the Strouhal number for the upstream cylinder decreases with increasing P/D.

For P/D ≤ 4.65, vortex shedding from the upstream cylinder is suppressed at some

angle below 30◦. This angle is defined by Lam & Cheung [12] as the angle of fully shielded

flow, αs. At α = αs, the downstream cylinder is fully shielded by the separated shear

layers from the upstream cylinder, as seen in Figure 2.10b. The angle of fully shielded flow

increases as P/D increases, reaching αs = 30◦ at P/D = 4.65. For α = 20◦, no shedding

occurs behind the upstream cylinder for the range 2.29 < P/D < 3.00. As α increases

from αs to 60◦, the StD values for cylinder 1 approach the values of cylinder 3 and no

significant changes are seen in the StD values for cylinder 2.

At α = 60◦, for 1.27 ≤ P/D ≤ 5.43, the bistable flow behavior disappears completely

even though the two upstream cylinders are in a side-by-side arrangement [12]. The pres-

ence of the downstream cylinder prevents the formation of wide and narrow wakes, pro-

ducing two symmetric wakes behind the upstream cylinders, as shown in Figure 2.10c.

For 1.27 ≤ P/D ≤ 2.29, the flow patterns are similar far downstream at all orientation

angles. Entrainment, and subsequent merging, of the vortices shed in the narrow wake(s)

leads to the formation of larger vortices 5 to 6 diameters downstream of the cluster [12].

The Strouhal number, based on the height of the projected area of the cluster, Dh, in this

region is approximately equal to that of a single isolated cylinder with equivalent diameter,

suggesting that the cluster behaves like a single bluff body in terms of the large scale
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shedding characteristics. Also, for all orientations, the StD values behind each cylinder is

approximately equal to the single cylinder case for P/D & 5.

In addition to the differences in the Strouhal number with varying α, variations in

the drag coefficient for each cylinder are observed at different values of α [10]. The drag

on each cylinder is dependent on the cylinder position in the cluster. For example, for

1.25 ≤ P/D ≤ 5 at ReD = 3.18 × 104, the minimum drag at α = 30◦ occurs for the

most downstream cylinder (cylinder 2) [10]. This configuration consists of the downstream

cylinder positioned directly inline with the upstream cylinder. However, the drag coefficient

of the downstream cylinder is still higher than compared to that for the two cylinder tandem

arrangement [11].
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Chapter 3

Experimental methodology

3.1 Experimental facility

Figure 3.1 shows an illustration of the re-circulating water flume facility in the Fluid

Mechanics Research Laboratory at the University of Waterloo. As shown in Figure 3.1,

flow exiting the settling chamber is conditioned via one honeycomb structure and five

screens, resulting in a free-stream turbulence intensity of less than 1% and flow uniformity

within 3%. A gate valve is implemented to make adjustments to the flow rate in the test

section. The test section walls are made from 19 mm thick glass for optical access. The

test section is 2.4 m long with a cross-sectional area of 1.2 m by 1.2 m. The water level

is maintained at 0.8 m from the bottom of the channel with the assistance of a perforated

plate placed downstream of the test section.
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Head tank Flow conditioning

Figure 3.1: University of Waterloo water flume facility.

3.2 Model specifications

The triangular cluster of three cylinders was mounted at the midspan of the test section

of the water flume. Figure 3.2 shows the cluster geometry mounted at the base of the

test section. The cluster consisted of three equally spaced circular cylinders, 25.4 mm in

diameter, D. Each cylinder was made from two aluminum rods with fluorinated ethylene

propylene (FEP) inserts filled with water at the midspan (Figure 3.2). FEP was selected

for the inserts because its index of refraction of 1.344 is approximately equal to that of

water (1.333). This allowed to virtually eliminate refraction of the laser sheet passing

through the inserts during the experiments. The three cylinders, each approximately 16D

long, were equally spaced with a spacing ratio of P/D = 1.35 and mounted between two

endplates. The FEP inserts were 2D long with a wall thickness of D/32. The aluminum

rods were polished using 500 grit sandpaper and painted black to minimize laser light

reflections. The cluster was mounted on a cylindrical base via a precision drive shaft and

sleeve bearing. The tolerance for the shaft diameter was ±0.001”, which resulted in a
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Figure 3.2: Experimental arrangement of triangular cluster at α = 0◦.

sliding fit connection and allowed the cluster to rotate about the origin (Figure 3.2b).

Figure 3.3 shows the two circular acrylic endplates which were mounted at the ends

of the three cylinders. A digital level was used to ensure the horizontal alignment of

both end plates to ±0.1◦. The endplates had an outer diameter of 14D, following the

recommendations of Fox and West [43]. On both endplates, the outer edges were chamfered

at an angle of 60◦. The thickness of each endplate was D/8. On the top endplate, a section

of the chamfered edge was not implemented, as seen in Figure 3.3a. This minimized

optical distortions in the images captured from above the cluster during experiments. The

chamfered edge was removed within a sector (Figure 3.4), such that it was not visible at

all cluster orientations of interest. To rotate the cluster, a scotch yoke mechanism was

constructed and attached to the top endplate (Figure 3.4). The yoke, controlled by a

stepper motor (not shown in Figure 3.4), moved on a linear guide rail. A stud mounted

on the top endplate, and placed in the slot of the yoke, moved inside the slot, causing the
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Figure 3.3: Top view of top and bottom endplates at α = 0◦.

cluster to rotate about the origin (Figure 3.4).
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(a) α = 0◦ (b) α = 30◦ (c) α = 60◦

Figure 3.4: Illustration of scotch yoke rotating mechanism.

3.3 Hydrogen bubble flow visualization

A hydrogen bubble technique was used to visualize the wake of the cluster. Werlé and

Gallon [44] were one of the first to use this method for flow visualization. Figure 3.5

shows the hydrogen bubble experimental setup in the water flume. The cathode was a

0.004D thin stainless steel wire positioned horizontally, approximately 1.35D upstream

and at the midspan of the cluster. The Reynolds number based on the wire diameter was

approximately eight, so that no vortex shedding occurred behind the wire [6]. A Nd:YLF

laser (not shown in Figure 3.5) was used to illuminate the horizontal sheet of hydrogen

bubbles in the image plane. A high-speed 1024x1024 pixels Photron SA4 camera equipped

with a 50 mm focal length Nikon lens was used to capture images of the cluster wake

at an acquisition rate of 100 Hz. The size of the hydrogen bubbles is directly related to

the amount of voltage applied [45]. As the applied voltage increases, the size of hydrogen

bubbles also increases which provides greater visibility; however, this increases buoyancy of

the bubbles [46]. Preliminary tests showed that hydrogen bubbles have a negligible raising
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Figure 3.5: Front and top view of hydrogen bubble experimental setup.

velocity for 40 VDC or less. The applied voltage during operation was 15 VDC, which

resulted in a clearly visible bubble sheet, with negligible buoyancy effects within the flow

region of interest.

3.4 Velocity measurements

Two-component, time-resolved particle image velocimetry (TR-PIV) was used to measure

wake velocity fields. A detailed explanation of working principles of TR-PIV can be found

in Raffel et al. [47], Mayinger & Feldmann [48], Adrian [49], and Westerweel [50]. Figure

3.6 shows the setup of PIV experiments in the water flume. The flow was seeded with

with small neutrally buoyant hollow glass sphere particles with an average diameter of
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10µm. To capture particle images within a large field of view (FOV) and at a high

spatial resolution, two high-speed 1024x1024 pixels Photron SA4 cameras with 50 mm

focal length Nikon lenses were installed above the cluster. One was centered at the origin

to allow velocity measurements between the cylinders, and the other was positioned further

downstream such that there was approximately 20% overlap between the two FOVs (Figure

3.6). The resulting joined FOV is approximately 13D in streamwise and 7D in transverse

directions. The glass particles were illuminated with a Nd:YLF laser at the midspan of

the cluster. The thickness of the sheet within the FOV was approximately 2 mm (0.08D).

During the experiments, sets of 5457 single frame images were acquired at an acquisition

rate of 100 Hz (approximately 50 times larger than the largest frequency of interest).

Synchronization of the laser pulses and image acquisition was carried out using LaVision

DaVis 8 software. The acquired data sets were also processed in LaVision DaVis 8 software.

An iterative, multi-grid, multi-pass correlation scheme was used to compute the velocity

fields. The final window size was 16x16 pixels, with 75% overlap, resulting in a vector

pitch of approximately 32 velocity vectors per cylinder diameter. For joining the two

velocity fields from the two cameras, a cross-correlation algorithm was applied within the

overlapping region between the FOV of the two cameras. The resultant vectors in the

overlapping region were calculated using a weighted average with a linear blending factor

between the two sets of velocity vectors (one from each camera).

One component laser Doppler velocimetry (LDV) was used to obtain local velocity mea-

surements in the cluster wake. For the present study, a Measurement Science Equipment

(MSE) miniLDV system (a dual-beam configuration) was used to perform LDV measure-

ments of the streamwise velocity component in the cluster wake (Figure 3.7). The miniLDV
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Figure 3.6: Front and top view of the PIV experimental setup. The hatched window in (b)
indicates the overlap region between the two field of views at the midspan of the cluster.
Note, the two cameras are not shown in (b) for clarity.

system consists of a 140 mW Argon-Ion laser (628 nm wavelength), Bragg cells, and de-

tection system. The size of the probe volume is x = 0.15 mm, y = 1.24 mm, and z = 0.15

mm (x/D = 0.006, y/D = 0.050, and z/D = 0.006), as illustrated in Figure 3.7. The

probe volume distance from the sensor was 600 mm. The streamwise velocity component

was measured at x/D = 12.8 and y/D = −1.5. The accuracy of the probe position was ±1

mm (±0.04D) in both transverse and streamwise directions. The flow was seeded with the
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Figure 3.7: LDV experimental setup. Probe located at the midspan in the cluster wake.

same seed particles used for PIV experiments. The average acquisition rate for all cases

was greater than 30 Hz. The number of samples for each case was 214. To facilitate spectral

analysis, the velocity signals were re-sampled at 15 Hz (approximately 8 times greater than

the largest frequency of interest) using a sample-and-hold technique described by Adrian

& Yao [51].

3.4.1 Data analysis

After re-sampling LDV results, each signal was partitioned into 16 segments, each consist-

ing of 1024 data points with 0% overlap. The fast Fourier transform (FFT) was computed
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for each individual segment and then averaged. The frequency bandwidth resolution for

the spectra was ±0.002fD/U0.

Experimental uncertainty for both PIV and LDV experiments is discussed in Appendix

D. For PIV experiments, the random error was estimated to be ±1.5 mm/s (±0.017U0).

Appendix D.2 also discusses measures which were taken during the experiments to minimize

errors in computing particle displacements. For LDV, the bias error was estimated to be

±1.6 mm/s (±0.019U0). The MSE miniLDV system has a repeatability uncertainty of

0.1% and an accuracy of 99.7% according to the manufactures specifications [52].

Lumley [53] introduced the method of proper orthogonal decomposition (POD), initially

to assist in defining coherent structures in turbulent flows. POD is a transformation of

velocity fluctuations in the flow field characterizing the most apparent realizations (i.e.,

energy content) [54]. POD was performed on the PIV results to investigate the formation

and evolution of the most energetic structures in the cluster wake. POD allowed filtering

of low energy modes in the wake. The procedure solves the integral eigenvalue problem

(i.e., Fredholm equation [55]) and decomposes the fluctuating component of the velocity

to

~v′(x, y, t) =
N∑
n=1

an(t)~φn(x, y) (3.1)

where an and φn are temporal and spatial modes, respectively. The solved eigen values

are sorted in decreasing order with mode 1 corresponding to the largest eigen value (i.e.,

the mode with the largest energy content). A reduced-order model of the flow field can

be formulated comprising of the first several modes to remove smaller scale turbulent

fluctuations. For further reading on the methodology, the reader is referred to the works of
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Holmes et al. [56], Berkooz et al. [57], Chatterjee [58], Oudheusden et al. [59], and Druault

et. al [60]. In the present work, a reduced-order model comprising of the first 40 modes,

which contain, 75% to 90% (depending on α) of the total wake energy (i.e., energy of the

velocity fluctuations in the wake) (Figure 5.23a) was simulated to study the formation,

evolution, and interaction of vortex structures shed from narrow and wide wakes.
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Chapter 4

Numerical model

Flow through the equispaced triangular cluster was modeled numerically using ANSYS

CFX 13.0. The simulations were performed for two different flow conditions: (a) ReD = 100

and (b) ReD = 2100. The cases of ReD = 100 and ReD = 2100 correspond to two

different vortex shedding regimes. Figure 4.1 shows the computational domain used for

simulations. The domain size for the present geometry is selected based on prior results

for a single cylinder case (Table 4.1). To facilitate an adequate comparison between the

two geometries, a cluster diameter, Dc, is defined as the diameter of a circumscribed circle

that is tangent to the three cylinders (Dc ≈ 2.6D). Using this parameter, the domain

size, relative to the cluster origin, is set at approximately 17Dc for the upstream distance,

23Dc for the downstream distance, and 14Dc for the transverse distance. For the selected

domain size, the maximum solid blockage is approximately 2.8%. Figure 4.1 shows the

domain size in terms of Dc and the diameter of one cylinder in the cluster (i.e., D). The

dimensions shown in terms of Dc (Figure 4.1) are larger than the values listed in Table 4.1.
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Table 4.1: Domain size recommendations for numerically modeling a single circular cylinder
for laminar and turbulent flow regimes.

Direction Distance from origin

Upstream 8D [61], 9D [62], 10D [63]

Downstream 14.5D [64], 15D [63], 17D [62], 22D [61]

Transverse 6D [62], 8D [61, 65], 10D [63]

(36D)

(36D)

(45D) (60D)

Top

Bottom

OutflowInflow

17Dc 23Dc

14Dc

14Dc

Figure 4.1: Computational domain.

4.1 Vortex shedding at ReD = 100

A laminar model was used to simulate vortex shedding at ReD = 100. From literature, it is

well known that transition to mode A shedding for a single cylinder occurs at ReD ≈ 200 [5].
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For the present cluster geometry, ReD = 100 corresponds to a Reynolds number,ReDh
=

235, based on the maximum height of the projected area of the cluster on the plane

perpendicular to the incoming flow. This is slightly larger than the transition Reynolds

number for a single cylinder. However, previous studies have shown that the error in

the main performance parameters introduced by the two-dimensional model for a single

cylinder at ReD = 235 is less than 2% for StD [5, 66, 67], 1% for CD [67], and 6% for

C ′L [66, 67]. Therefore, for the purpose of this study, vortex shedding at ReD = 100

is modeled as two-dimensional. Figure 4.2 shows the structured 2D mesh used for the

laminar model. First, a mesh refinement was carried out. Table 4.2 shows the results for

four different mesh cases using data pertaining to α = 60◦ at ReD = 100. The error in the

drag coefficient, lift RMS, and Strouhal number between case C and D for each cylinder

was less then 1%. Therefore, mesh case C was selected. For the selected mesh, the face

sizing in the square section near the cluster (Figure 4.2b) was 0.02D, which resulted in

a spatial resolution of approximately 160 elements on the surface of each cylinder in the

cluster. Near the surface of each cylinder, 12 inflation layers were inserted with a growth

rate of 1.25 such that at least 10 elements resolved the boundary layer. Using mesh case

C, computations were performed on a single cylinder for validation. Table 4.3 shows the

comparison between mesh case C results and experimental data. The drag coefficient, lift

RMS, and Strouhal number all fall within the expected range reported in experiments.

The following boundary conditions were applied at each domain surface. For the top

and bottom surfaces, a free-slip wall boundary condition was applied (i.e., v = 0, ∂u
∂n

= 0,

and ∂P
∂n

= 0). At the inlet, a uniform inlet velocity, U0, was prescribed. At the outlet, the

relative static pressure was set to zero and ∂u
∂n

= ∂v
∂n

= 0. At each cylinder surface, a no
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Figure 4.2: Laminar model computational mesh.

Table 4.2: Mesh refinement study for α = 60◦ at ReD = 100.

Case Nodes CD1 CD2 CD3 C ′L1
C ′L2

C ′L3
StDh

A 40386 1.55 0.36 1.56 0.062 0.184 0.063 0.191

B 87364 1.58 0.36 1.57 0.063 0.192 0.063 0.191

C 149748 1.58 0.36 1.57 0.060 0.198 0.061 0.191

D 267910 1.58 0.36 1.57 0.060 0.199 0.061 0.191

slip boundary condition was applied (i.e., u = v = 0 and ∂P
∂n

= 0).

The time step was selected such that the Courant-Friedrichs-Lewy (CFL) number

was less than one. A high resolution scheme was used for the advection term in the

Navier-Stokes equations. For the transient term, a second order backward Euler scheme

was applied. The convergence criteria was set to a RMS residual target of 10−4. The

computations were initialized with u = 0, v = 0, and P = 0 at t = 0. It is common to

apply a perturbation to decrease computation time required to initiate vortex shedding
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Table 4.3: Numerical and experimental comparison using mesh case C on a single cylinder
at ReD = 100.

CD C ′L StD

Numerical 1.32 0.22 0.168

Experimental 1.26-1.35 [1, 62] 0.18-0.24 [66,68] 0.165-0.170 [5, 69]

process [70, 71]. For the present model, the simulation was first performed on a coarse

mesh (13700 nodes) to allow numerical errors to initiate the global instability in the near

wake. Once the shedding process was established, the simulation was stopped, and the

results were used as initial conditions for the selected refined mesh (i.e., mesh case C). All

of the data was sampled after the shedding process was quasi-steady. The sample time

was set to 40 vortex shedding cycles. The frequency resolution for the velocity spectra was

±0.009fD/U0.

4.2 Simulations at ReD = 2100

Reynolds-Averaged Navier-Stokes (RANS) equations were used to model the turbulent

shedding regime. RANS is commonly used in industry for modeling flows in various types

of engineering applications to obtain steady state solutions. It is of interest to evaluate

the performance of different turbulence models commonly used in RANS for the present

geometry. For the turbulent shedding case, the same computational domain size as that

used for the laminar model (Figure 4.1) was employed. The turbulence models evaluated

in this study are k − ε [72], k − ω [73], Shear Stress Transport (SST) [74], and LRR-IP

Reynolds stress models [75]. The k − ε model is one of the most popular models used in
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industry due to its fast convergence rate (i.e., low computational costs) [72]. The k − ω

model is more accurate than k − ε when modeling separated flows; however, it requires

more computational resources than the k − ε model [72, 73]. The SST model is a hybrid

of k − ε and k − ω and is more accurate than both k − ε and k − ω [76]. The LRR-IP

model requires the most computational resources out of these four models and is used to

solve flows with high strain rates [75]. Direct comparisons with experimental results is

performed to evaluate the accuracy of each of these turbulence models.

A mesh refinement study, similar to that in Section 4.1, was conducted using the SST

model. Table 4.4 shows the results from various mesh cases. Acceptable convergence

is achieved for mesh case F with the difference in the drag coefficient for each cylinder

between mesh cases M and N being less than 1%, as shown in Table 4.4 and Figure 4.3.

The structured mesh for case M is shown in Figure 4.4. The face sizing in the square

region near the cluster was 0.012D, resulting in approximately 260 elements on the surface

of each cylinder in the cluster. Near the surface of each cylinder, 20 inflation layers with a

growth rate of 1.15 were inserted. The same boundary conditions were applied to each of

the surfaces in the domain as those described in Section 4.1 (Figure 4.1). For the advection

term, a high resolution scheme was applied. The equations from the turbulence models

are discretized using a first order upwind advection scheme. The convergence criteria was

set to an RMS residual target of 10−4. For all turbulence models, default values for the

model coefficients set in ANSYS CFX 13.0 were used.

Mesh case M was tested by performing computations on a single cylinder for all the

turbulence models investigated. Table 4.5 shows the comparison between the numerical

results and experimental data. The drag results from SST and k − ω model agree well
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Table 4.4: Mesh refinement study for α = 60◦ at ReD = 2100 using the SST model.

Case Nodes CD1 CD2 CD3

A 251314 0.901 0.317 0.887

B 317482 0.909 0.331 0.904

C 384094 0.930 0.341 0.909

D 467006 0.967 0.346 0.943

E 541560 0.950 0.362 0.953

F 630526 0.992 0.372 0.991

G 686294 0.983 0.380 0.993

H 742966 0.972 0.380 0.989

I 789600 0.964 0.375 0.966

J 824626 0.944 0.385 0.960

K 869568 0.950 0.382 0.951

L 905140 0.940 0.386 0.951

M 938586 0.950 0.387 0.953

N 978794 0.946 0.384 0.949
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Figure 4.3: Mesh convergence for each cylinder for α = 60◦.

(within 3%) with experimental data. The errors for the k − ε and LRR-IP models are

approximately 10%. Despite the errors with the k− ε and LRR-IP models, it is of interest

to evaluate the performance of all four turbulence models for the present study.
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(a) Full domain (b) Near the cluster

Figure 4.4: RANS model computational mesh.

Table 4.5: Validation of turbulence models on a single cylinder case.

SST k − ε k − ω LRR-IP Experimental [77]

CD 0.90 0.85 0.94 1.01 0.92

Error [%] 1.2 7.6 2.5 10.2 -
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Chapter 5

Experimental results

In this chapter, the results of flow visualization experiments and quantitative velocity

measurements are analyzed and discussed. All experiments were performed at ReD =

2100, P/D = 1.35, and for 0◦ ≤ α ≤ 60◦. First, an overview of flow development from

qualitative flow visualization is provided in Section 5.1. Section 5.2 illustrates the mean flow

characteristics and Root-Mean-Square (RMS) contours of the streamwise and transverse

velocity component for all orientations investigated. Vortex shedding in the cluster wake

is visualized using time sequences of vorticity contours in Section 5.3. Also, Section 5.3

studies shedding frequency of vortex structures in the wake of the cluster using LDV

measurements. For further insight, wake regions corresponding to such frequency-centered

activities are investigated using spectral energy maps from PIV measurements for various

band-pass filtered frequencies. Lastly, POD analysis is performed in Section 5.4 to analyze

energy content of periodic structures in the wake and visualize near-wake development.
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5.1 Flow visualization

Figures 5.1 to 5.8 depict flow visualization image sequences of the cluster wake development

for a full shedding cycle of the large scale structures for each cluster orientation. The image

sequences show large scale vortex shedding beyond x/D ≈ 5 for all orientation angles.

Behind the two most downstream cylinders, two asymmetric wakes are present for all α,

except for α = 60◦. The gap flow exiting the cluster (i.e., flow exiting from between the two

most downstream cylinders) is deflected towards one side of the wake axis, resulting in a

narrow and wide wake behind the cluster. In the vicinity of the cluster, notable differences

in the flow development occur for each cluster orientation.

At α = 0◦, the most evident observation is the presence of a bistable wake development

behind the two downstream cylinders (labeled as cylinders 1 and 2 in Figures 5.1a and 5.2a).

Specifically, two quasi-steady wake configurations exist, each consisting of two different

sized wakes behind the cluster. Figures 5.1 and 5.2 show both of these configurations, with

the gap flow (or jet flow) being directed towards the wake of either of the two downstream

cylinders. In Figure 5.1, the gap flow is directed towards the wake of cylinder 2, resulting

in a wide wake behind cylinder 1 and a narrow wake behind cylinder 2. The opposite

behavior is observed for the other configuration (Figure 5.2). This bistable wake behavior

was also reported by Lam & Cheung [12], who studied flow over equispaced triangular

cluster of three cylinder using flow visualization via dye injection. It should be noted that

during experiments, no intermittent switching between the two bistable wake configurations

occurred. Both bistable cases for α = 0◦ were achieved in two different ways. The first

approach involved starting and shutting down the water supply. The initial conditions
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of the setup deflect the gap flow to one side of the wake axis, resulting in one of the

bistable wake configurations. Multiple iterations of this approach showed presence of both

bistable wake configurations at α = 0◦. The second method involved rotating the cluster,

with the water supply on, from α = ±10◦ to α = 0◦. For example, if the cluster is

rotated from α = 10◦ to 0◦, the narrow and wide wakes would form behind cylinder 1 and

cylinder 2, respectively, for α = 0◦, similar to α = 10◦ (Figure 5.3). The origin of this

bistable phenomenon is still unknown. Lam & Cheung [12] suggested that the onset of

this instability is strongly dependent on the small deflection or disturbance in the gap flow

caused by the initial conditions of the experiment. A small deflection disrupts the balance

of vorticity between the inner shear layers of cylinders 1 and 2, resulting in an increase of

vorticity towards one side. The presence of a narrow and wide wake results in different

wake vortex dynamics on either side of the wake axis (y = 0). For example, in Figure 5.1,

large and small scale structures are present on either side of the wake axis. The leftmost

separated shear layer rolls up into a vortex at x/D ≈ 5 & y/D ≈ 1, which is then shed

downstream, as shown in the image sequence in Figure 5.1. On the opposite side of the

wake, formation of smaller scale vortices occur at x/D ≈ 2 & y/D ≈ −1, which result

in complex vortex interactions at the interface between the narrow and wide wakes. The

narrow wake produces vortex structures (≈ 0.5D in diameter) which are smaller in size

and shed at a higher frequency compared to the larger structures on the opposite side of

the cluster wake. However, on both sides of the cluster wake, vortices form from the outer

shear layers of cylinders 1 and 2 within 2 < x/D < 5 and show oscillatory wake behavior

reminiscent of a bluff body shedding at and beyond x/D ≈ 5.

As the orientation angle is increased to α = 10◦, the bistable wake phenomenon is no
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longer present (Figure 5.3). The asymmetry in the cluster geometry directs the gap flow

towards the wake of cylinder 1, producing a narrower wake behind cylinder 1 as compared

to that behind cylinder 2 (Figure 5.3). The right shear layer bounding the wide wake (i.e.,

the rightmost shear layer) sheds large scale vortices which do not interact with the small

scale structures forming on the opposite side of the wide wake. It should be noted that the

shear layers bounding the wide wake originate from the surface of cylinder 3 (Figure 5.3).

These shear layers do not reattach to the surface of cylinder 2. This configuration represents

the fully shield case (α = αs) [12], in which cylinder 2 is fully shielded by the separated

shear layers of cylinder 3. This result agrees with the findings of Lam & Cheung [12], who

found αs to range from 8◦ − 10◦ for the present spacing ratio (P/D = 1.35) and Reynolds

number (ReD = 2100).

For α = 20◦ to 60◦, the asymmetry in the wake development about the wake axis (i.e.,

y = 0) decreases with increasing α (Figures 5.4 to 5.8). Specifically, the streamwise extent

of the recirculation region behind cylinder 1 decreases with increasing α. For α = 60◦, the

wake development is symmetric about y = 0 with two equally sized recirculation regions

behind the two upstream cylinders.

In particular, for α = 30◦, the image sequences show Kelvin-Helmholtz vortices within

the separated shear layers of cylinder 2 (Figures 5.5d and 5.5e). This shear layer instability

occurs for the case of single circular cylinders in the shear layer transition flow regime (1×

104 < ReD < 2× 105) [17,19]. Also, the flow visualization results show that the separated

shear layers of cylinder 2 flap periodically (at the large scale shedding frequency) in the

transverse direction. During the flapping cycle, the Kelvin-Helmholtz vortices are present

when the separated shear layers are approximately parallel to the free-stream direction, as
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illustrated in the sequence of images in Figure 5.5. These Kelvin-Helmholtz vortices were

only observed for the case of α = 30◦.
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Figure 5.1: Flow visualization of the cluster wake development at α = 0◦ with the gap
flow directed towards the wake of cylinder 2. T is the shedding period of the large scale
structures.
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Figure 5.2: Flow visualization of the cluster wake development at α = 0◦ with the gap flow
directed towards the wake of cylinder 1.
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Figure 5.3: Flow visualization of the cluster wake development at α = 10◦.
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Figure 5.4: Flow visualization of the cluster wake development at α = 20◦.
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Figure 5.5: Flow visualization of the cluster wake development at α = 30◦.
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Figure 5.6: Flow visualization of the cluster wake development at α = 40◦.
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Figure 5.7: Flow visualization of the cluster wake development at α = 50◦.
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Figure 5.8: Flow visualization of the cluster wake development at α = 60◦.
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5.2 Mean flow statistics

Figure 5.9 shows the mean streamwise velocity contours for all cluster orientations. All

cluster orientations investigated, except for α = 60◦, show an asymmetric wake develop-

ment about y = 0. The degree of asymmetry in the wide and narrow wakes is correlated

with the orientation of the high-speed jet relative to the free-stream direction. The results

show that, with increasing α from 0◦ to 60◦, the streamwise extent of the recirculation

region behind cylinder 1 decreases from x/D ≈ 2.5 to x/D ≈ 1 and the streamwise extent

of the recirculation region behind cylinder 3 increases from x/D ≈ 0 to x/D ≈ 1, respec-

tively. The two quasi-steady wake configurations for α = 0◦ are illustrated in Figures 5.9a

and 5.9b. The results show the two bistable flow regimes observed at α = 0◦, with the

high-speed jet directed towards either of the two downstream cylinders. For α = 30◦, cylin-

ders 2 and 3 are in a tandem arrangement (relative to the flow direction). Previous studies

(e.g., [13, 24, 27]) show that, for the case of two tandem cylinders in cross-flow under the

present operating conditions (i.e., P/D = 1.35 and ReD = 2.1×103), cylinder 2 is bounded

by the separated shear layers of cylinder 3. However, for the cluster of three cylinders at

α = 0◦, cylinder 2 is not shielded by the shear layers of cylinder 3 (Figure 5.9e). For the

three cylinder cluster, the shielded cases occurs at α = 10◦. The difference is attributed

to the presence of cylinder 1, causing the formation of high-speed jet that displaces the

recirculation region behind cylinder 3 towards the right side of the wake axis (y = 0).

Figure 5.10 shows the streamwise extent of the recirculation region of the wide and

narrow wakes for all the cluster orientations investigated. The length of the recirculation

region, Lf , is defined as the distance from the cluster origin to the furthest downstream
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location where zero mean velocity in the narrow and wide wakes occurs. For the narrow

wake (i.e., the wake of cylinder 1), Lf decreases as the angle is increased from α = 10◦ to

60◦. For the wide wake (i.e., the wake of cylinder 2), Lf decreases as the angle is increased

from α = 10◦ to 40◦ and then increases again from α = 40◦ to 60◦. In both cases, Lf

decreases from α = 10◦ to 0◦. For the narrow wake, the observed trend can be explained

by the change in the trajectory of the jet exiting between cylinders 1 and 2 with increasing

α. As α increases from 0◦ to 60◦, the angle between the jet and y-axis increases, which

results in delayed separation of the inner shear layer of cylinder 1. This decreases the

streamwise extent of the recirculation region of the narrow wake. For the wide wake, the

changes in Lf can be explained by the change in the projected height of the cluster, Dh,

and flow rate, Q, through the gap in the cluster, Dg = P −D, with increasing α. Figure

5.11 shows the variation in Dh and Q with α. On one hand, the streamwise extent of

the recirculation region is proportional to the solid blockage of the cluster, Dh, similar to

bluff body flows for 350 < ReD < 3.2 × 103 [17]. On the other hand, similar to flow over

porous bodies with bleed flow [78–80], the streamwise extent of the recirculation region is

expected to be inversely proportional to the flow rate through the cluster. For α increasing

from 10◦ to 30◦, Dh decreases and Q increases (Figure 5.11), so that the length of the

recirculation region for the wide wake decreases, as expected. For α increasing from 30◦ to

60◦, both Dh and Q increase (Figure 5.11), producing two competing effects on Lf . While

Dh is minimum at α = 30◦, the presence of the bleed flow through the cluster shifts the

minimum Lf to α = 40◦. The variation of flow rate through the cluster also explains the

change in Lf between 10◦ to 0◦ (Figure 5.10). Compared to α = 10◦, there is increased

flow rate through the cluster at α = 0◦ (Figure 5.11), causing a decrease in Lf observed in

63



Figure 5.10.

The comparison of the wake width with respect to the downstream distance and the

cluster orientation is presented in Figure 5.12. The parameter used to quantify the width

of wake is the half wake width, b. The half wake width is defined as the transverse distance

between two points on the velocity profile where the streamwise velocity deficit is equal to

50% of the maximum local velocity deficit [81]. Figure 5.12a shows that the wake width

increases with x/D and scales approximately with
√
x, similar to the trend expected for

far wakes of bluff bodies [81]. Figure 5.12b illustrates the variation in b with increasing α

at two different downstream locations. The width of the wake is proportional to Dh (i.e.,

the vertical extent of the cluster) (Figure 5.11). As the physical blockage of the cluster

increases, the wake width also increases, and vice versa.

The contours of the RMS of the streamwise and transverse velocity components for

all α are shown in Figures 5.13 and 5.14, respectively. For the streamwise component,

several regions of high velocity fluctuations are present for all orientations within 1 <

x/D < 3 and further downstream (x/D > 3). For x/D > 3, two regions of high velocity

fluctuations are present on both sides of the wake axis. These fluctuations are produced

due to the formation and shedding of the large scale vortical structures, seen in qualitative

and quantitative visualizations. On the average, the maximum magnitude of these velocity

fluctuations increases with increasing α. Immediately downstream of the cluster, notable

velocity fluctuations occur within the shear layers bounding the narrow wake and the inner

shear layer of the wide wake. According to the flow visualization, these velocity fluctuations

are associated with the shedding of small scale vortices. On the average, the maximum

magnitude of the velocity fluctuations within the shear layers bounding the narrow wake
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of cylinder 3 increases with increasing α. For the transverse RMS component (Figure

5.14), high velocity fluctuations are present in the shear layers bounding the narrow wake

(1 < x/D < 3) and further downstream (x/D > 3) along the wake center line. For

x/D > 3, high transverse velocity fluctuations are induced by large scale shedding. For

1 < x/D < 3, high transverse velocity fluctuations are produced due to small scale vortex

shedding, seen in the flow visualization. Both the streamwise and transverse RMS figures

for α = 60◦ and x/D > 1.5 are similar to that of a single cylinder [82].
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Figure 5.9: Mean streamwise velocity contours with velocity vectors. Masked region is
shaded in gray and cylinder contours are outlined by dashed black lines.
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Figure 5.14: RMS contours of the transverse velocity.
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5.3 Characteristics of coherent structures

Figures 5.15-5.17 and A.1-A.5 show a sequence of instantaneous vorticity fields for one

large scale shedding cycle for all angles investigated. For all α, periodic large scale and

smaller scale shedding occur in the cluster wake, similar to the qualitative visualizations

discussed in Section 5.1. Large and smaller scale vortices are produced due to the roll up

of the shear layers bounding the wide and narrow wakes, respectively. For all orientations,

large scale shedding is observed at and beyond x/D = 5. In all asymmetric cases, more

coherent large scale vortices are formed on the opposite side of the high-momentum jet

direction. On the side of the jet direction, smaller scale vortices are produced due to the

roll up of shear layers bounding the narrow wake. These smaller scale vortices merge with

the shear layer of the wide wake of same vorticity sense, producing weaker large scale

vortices, compared to the ones forming on the opposite side of the wake axis.

Instantaneous vorticity fields for the bistable configuration at α = 0◦ are shown in

Figures 5.15 and 5.16. When the jet is directed towards cylinder 2 (Figure 5.15), the outer

shear layer of the wide wake starts to roll up at approximately x/D = 3 (Figure 5.15b).

The vortex grows to a size of approximately 1.5D just before it is shed, as seen in Figure

5.15d. The large scale structures on the opposite side of the wake are produced due to

the roll up the inner shear layer of the wide wake and its interaction with smaller scale

vortices shed from the narrow wake of cylinder 2. The small scale vortices grow to a size

of approximately 0.3D and are shed at x/D ≈ 2.5 (Figure 5.15c). The interaction between

the inner shear layer of the wide wake and the small scale vortices is discussed in detail in

Section 5.4. The large scale vortices on this side of the wake axis consists of smaller scale
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structures. These large scale structures are weaker than the ones formed on the opposite

side of the wake axis. Both structures on either side of the wake axis are shed periodically

at the same frequency. On the average, the size of the large scale structures forming from

the outer shear layers of the wide wake decreases with increasing α until α = 30◦, and then

increases with increasing α for 30◦ ≤ α ≤ 60◦. For the smaller scale structures shed from

the narrow wake, their size decreases with increasing α for 0◦ ≤ α ≤ 60◦. This variation

in the size of the large scale and smaller scale vortices correlates with the variation of

the length of the formation region of the wide and narrow wakes with α (Figure 5.10).

At α = 60◦ (Figure 5.17), both large scale structures on either side of the wake axis are

symmetric and consist of smaller scale structures that are shed from the narrow wakes at

x/D ≈ 1.
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Figure 5.15: Vorticity contours for α = 0◦ with the gap flow directed towards cylinder 2.
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Figure 5.16: Vorticity contours for α = 0◦ with the gap flow directed towards cylinder 1.
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Figure 5.17: Vorticity contours for α = 60◦.
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The flow visualization and time-resolved PIV results suggest the presence of multiple

frequency-centered activities in the wake of the cluster at all orientation angles investigated.

Spectral analysis of the wake velocity fluctuations was performed to identify shedding

frequencies of the large scale and smaller scale structures in cluster wake. The signals

were acquired using an LDV system. For the large scale structures, the LDV probe was

positioned at x/D = 13 and y/D = 1.5. The results presented thus far show that large scale

shedding occurs beyond x/D = 5 for all orientations. Therefore, the probe was positioned

at a downstream location where the large scale structures were fully formed and convected

by the flow. Figure 5.18 shows the velocity spectra obtained for all cluster orientation

angles investigated. In the figure, adjacent spectra are offset by one order of magnitude

for clarity. In all spectra, clear dominant peaks exist and are attributed to the shedding

of the large scale structures. The secondary peaks also appear for some orientations (e.g.,

α = 20◦) at the second harmonic of the large scale shedding frequency. The average StDh

is presented by the dashed line in Figure 5.18. The results show that, when scaled with the

height of the projected area of the cluster, Dh, non-dimensional frequency remains constant

at StDh
≈ 0.21. This Strouhal number value is approximately equal to that expected for a

single cylinder with equivalent diameter [66]. Thus, the present geometry behaves similar

to a single bluff body in terms of its large scale shedding characteristics, regardless of the

orientation angle.

In the near-wake region of the cluster (1.5 < x/D < 3.5), smaller scale structures are

formed in the narrow wake region, as seen in the qualitative and quantitative results. It is of

interest to quantify their characteristic frequencies and the associated energy content. For

this purpose, spectral analysis was performed in the near-wake region using PIV results.
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Figure 5.18: Velocity spectra of the streamwise velocity component at x/D ≈ 13 and
y/D ≈ 1.5. The two spectra for α = 0◦ correspond to the bistable case. Dh is the height
of the projected area of the cluster at each α. The dashed line shows the average StDh

.

Representative spectra of the streamwise velocity component are shown in Figure 5.19.

The measurement locations corresponding to the spectra for each α are shown in Table

5.1. These specific locations were selected based on the high velocity fluctuations observed

in the near-wake region of cluster in Figure 5.13. The results show two peaks (indicated

by markers in Figure 5.19), associated with significant energy content for all orientation

cases. The lower frequency peaks are attributed to the velocity fluctuations induced by

the large scale shedding. The higher frequency peaks are attributed to the smaller scale
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shedding in the narrow wake. The dashed line in Figure 5.19 shows the non-dimensional

shedding frequency expected for a single cylinder at the same Reynolds number. For all

orientations, the large and small scale Strouhal number are lower and higher, respectively,

than that for a single cylinder. This difference in the Strouhal number between the cluster

wakes and the wake of a single cylinder can be related to the differences in the length of

the formation region. The length of the formation region scales inversely with the Strouhal

number [5]. For ReD = 2100, the length of the formation region for a single circular

cylinder is approximately 2.3D [17]. Figure 5.10 shows that the length of the formation

region is larger for the wide wake and smaller for the narrow wake than that for the single

cylinder wake for all orientations. Therefore, it is expected that the Strouhal number for

the large and small scale shedding be smaller and larger, respectively, than that for a single

cylinder.
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Figure 5.19: Velocity spectra of the streamwise velocity component measured in the near-
wake region of the cluster. The triangle and circle filled markers locate the frequencies of
the large scale and smaller scale shedding phenomenon, respectively, at each orientation
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79



Table 5.1: Locations of the spectra measurments in the near-wake reigon of the cluster.
For α = 0◦, both bistable cases are listed and indicated by the direction of the jet exicting
the cluster relative to the wake axis.

α x/D y/D

0◦ (left) 3.57 0.95

0◦ (right) 3.40 -0.95

10◦ 2.91 1.80

20◦ 3.01 1.47

30◦ 2.95 1.51

40◦ 1.60 1.93

50◦ 1.44 1.93

60◦ 1.60 1.60

Figure 5.20 shows the relationship between the shedding frequency of the smaller scale

structures and the cluster orientation angle. On the average, the results shows that the

Strouhal number decreases with increasing α for 0◦ ≤ α ≤ 10◦, and increases with increas-

ing α for 10◦ ≤ α ≤ 60◦. The variation in Strouhal number is inversely proportional to

the variation in the streamwise extent of the formation region of the narrow wake (Figure

5.10) with α. The values agree reasonably well with the results of Lam & Cheung [12] who

estimated shedding frequencies in the near-wake region of the cluster at the same spacing

ratio and Reynolds number using flow visualization images.

Spectral analysis of band-pass filtered velocity signals was performed to identify regions

in the cluster wake associated with the large scale and smaller scale frequency-centered

activities. First, the spectra of the streamwise velocity component at each vector location
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Figure 5.20: Strouhal number relationship with the cluster orientation. Results from Lam
& Cheung [12] are presented for a triangular cluster with P/D = 1.35 and ReD = 2100.

in the flow field was computed using PIV results. Then, an average energy content with

a frequency band of width ±0.015StD centered at the corresponding shedding frequency

was computed. Figures 5.21 and 5.22 show energy maps corresponding to large and small

scale shedding frequencies, respectively. In Figure 5.21, notable velocity fluctuations at

the large scale shedding frequency occur in the shear layers bounding the narrow and wide

wakes, as well as two regions downstream of x/D > 3 on each side of the wake axis. For

x/D > 3, the high velocity fluctuations for each orientation correspond to the formation

of large scale vortices, as seen in the flow visualization. Figure 5.21 shows that there is

significant energy content within the shear layers bounding the narrow wake at the large

scale shedding frequency. Similar to Figure 5.13, the maximum u′f occurs on the same side

81



of the wake as the direction of the high speed jet. On the average, as α increases from 0◦

to 60◦, the maximum u′f increases.

Figure 5.22 shows contours of the energy content associated with the small scale shed-

ding frequency. For all orientations, high velocity fluctuations at the small scale shedding

frequency take place primarily at the downstream end of the narrow wake (x/D ≈ 2).

This is associated with the shedding of the small scale vortices, seen in qualitative and

quantitative results presented thus far. Relative to Figure 5.21, the energy content within

the shear layers bounding the narrow wake is low. Also, the results in Figure 5.22 show

that significant energy content associated with the small scale shedding frequency persists

into the formation region of the large scale structures. Thus, there are interactions be-

tween the large and small scale structures within the formation region of the large scale

structures, which agrees with previous observations from the sequence of vorticity fields

for all orientations.
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Figure 5.21: Spectral energy map using a band-pass filter of width ±0.015StD at the large
scale shedding frequency for all cluster orientations.
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Figure 5.22: Spectral energy map using a band-pass filter of width ±0.015StD at the small
scale shedding frequency for all cluster orientations.
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5.4 POD analysis

For all orientations, POD was performed to analyze the development of large and small scale

structures in the cluster wake and their interactions using reduced-order models. Figure

5.23 shows the cumulative mode energy and mode energy distribution for the first 500

modes and all orientation angles investigated. Figure 5.23a demonstrates that the first 500

modes capture approximately 98% of the total energy content. The energy content of the

first two modes is approximately 45% to 70%, depending on α. This mode pair is expected

to capture the characteristics of the large scale shedding for bluff body flows [59,83,84]. On

the average, the cumulative mode energy for the first two modes increases with increasing

α. Figures 5.24 to 5.29 show the first two temporal coefficients and spatial modes for α = 0◦

and 60◦. Appendix B presents similar plots for 10◦ ≤ α ≤ 50◦. The first two temporal

coefficients display strong periodic signals with a phase offset of 90◦. The frequency of the

signals matches the large scale shedding frequency (Figure 5.18). The combined first two

spatial modes along with their temporal coefficients illustrate the evolution of the large

scale structures, similar to the case of a circular cylinder [83–85].
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Figure 5.23: Mode energy distribution for all cluster orientations.
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Figure 5.24: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to large scale shedding for the bistable case (i.e., α = 0◦).

y/D
-1 -212 03 -3

Flow

1 2

3-1

-2

1

2

3

4

5

6

7

8

9

10

x/D

(a) φ1

y/D
-1 -212 03 -3

1 2

3

(b) φ2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

velocity m/s

Φ/U0

0.1 0.2 0.3 0.4 0.6 0.7 0.8 1.0 1.10.5 0.90

Figure 5.25: First and second spatial modes corresponding to large scale shedding for the
bistable case (i.e., α = 0◦), in which the jet is directed to cylinder 1.
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Figure 5.26: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to large scale shedding for the bistable case (i.e., α = 0◦).
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Figure 5.27: First and second spatial modes corresponding to large scale shedding for the
bistable case (i.e., α = 0◦), in which the jet is directed to cylinder 2.
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Figure 5.28: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to large scale shedding for α = 60◦.
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Figure 5.29: First and second spatial modes corresponding to large scale shedding for
α = 60◦.
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To identify modes associated with the small scale shedding observed in the narrow wake

of the cluster in previously discussed results, spectral analysis of the temporal coefficients

was performed. Modes associated with the small scale shedding were identified as those for

which a peak in the spectra at the small scale shedding frequency was detected, excluding

modes with less than 1% of the total wake energy content. The identified modes are

shown in Figures 5.30 to 5.35 for α = 0◦ and 60◦ and the results for 10◦ ≤ α ≤ 50◦ are

shown in Appendix B. For α = 0◦ (Figure 5.30), the spectra of a14 and a15 show a single

peak and the spectra of a16 and a17 show multiple peaks. For a14 and a15, the peak is

centered at the small scale shedding frequency; whereas, for a16 and a17, peaks occur at

the small scale shedding frequency and at the first harmonic of the large scale shedding

frequency. Figure 5.31 shows the spatial modes for the corresponding temporal coefficients

for α = 0◦. The spatial modes for the first mode pair (φ14 & φ15) show similar features

in the narrow wake as those seen in the spatial modes for the large scale shedding for

the cluster (Figure 5.21b) and the wake of a single cylinder [83–85]. The spatial modes

for the second mode pair (φ16 & φ17) show features of small scale shedding in the narrow

wake and first harmonic of the large scale shedding frequency. For α = 60◦, the modes

associated with the small scale shedding are modes 33, 34, 36, and 37. The spectra of the

corresponding temporal coefficients show clear peaks at the small scale shedding frequency

for α = 60◦ (Figure 5.34). The spatial modes in Figure 5.35 display features of small

scale shedding in the narrow wake, similar to α = 0◦, and other periodic activity in the

wide wake. As α increases from 0◦ to 60◦, the energy content associated with small scale

shedding decreases from 4% to 1%. This effect is linked to the changes in the length of the

formation region for the small scale vortices and their physical size. As α increases from 0◦
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to 60◦, the length of the formation region and the size of the small scale vortices decreases,

resulting in the reduction of the energy content associated with these structures. It should

be noted that, for all orientations, the energy content of the small scale vortices is only 2%

to 9%, depending on α, of that of the large scale vortices.
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Figure 5.30: Temporal coefficient (a) & (b) signal and (c) & (d) spectra for modes corre-
sponding to the small scale shedding for the bistable case (i.e., α = 0◦), in which the jet is
directed to cylinder 2.
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Figure 5.31: Spatial modes corresponding to the small scale shedding for the bistable case
(i.e., α = 0◦), in which the jet is directed to cylinder 2.
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Figure 5.32: Temporal coefficient (a) & (b) signal and (c) & (d) spectra for modes corre-
sponding to the small scale shedding for the bistable case (i.e., α = 0◦), in which the jet is
directed to cylinder 1.
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Figure 5.33: Spatial modes corresponding to the small scale shedding for α = 0◦.
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Figure 5.34: Temporal coefficient (a) & (b) signal and (c) & (d) spectra for modes corre-
sponding to the small scale shedding for α = 60◦.
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Figure 5.35: Spatial modes corresponding to the small scale shedding for α = 60◦.
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The previous analysis showed that modes 1 and 2 capture large scale shedding, while

the first 40 modes capture both large and small scale shedding for all orientations. Based

on this, two different reduced-order models were produced. The first reduced-order model,

consisting of the first two modes, was produced to analyze large scale shedding for all

orientations. The second reduced-order model consists of the first 40 modes, capturing

75% to 90%, depending on α, of the total energy content of the wake. The purpose of this

model is to analyze the interactions between the large and small scale structures. Figures

5.36 to 5.38 show the reconstructed flow using the first two modes for α = 0◦ and 60◦. The

results for 10◦ ≤ α ≤ 50◦ are shown in Appendix B. For α = 0◦ (Figure 5.36), the outer

shear layer of cylinder 1 rolls up into a vortex within 3 < x/D < 5. On the opposite side

of the wake axis, the inner shear layer of cylinder 1 interacts with the outer shear layer

of cylinder 2. Figures 5.36a-5.36b show the start of the roll up of the inner shear layer of

cylinder 1. As this shear layer rolls up, it merges with the outer shear layer of cylinder

2, forming a large scale vortex, as seen in Figures 5.36b and 5.36c. The vortex is being

shed and convects downstream in Figures 5.36d and 5.36e, while the outer shear layer of

cylinder 1 forms into a new vortex on the opposite side of the wake centerline. The results

show that vortices forming downstream of cylinder 2 are less coherent than those forming

downstream of cylinder 1. For α = 60◦, shear layers of cylinder 2 merge with the outer

shear layers of cylinders 1 and 3 as they roll up, similar to α = 0◦ case.

The results for the second reduced-order model consisting of the first 40 modes are

illustrated in Figure 5.39 for α = 0◦. The results for other cases are presented in Appendix

B. Figure 5.39 shows one half of the large scale shedding cycle. On the left hand side in

Figure 5.39, large scale vortices shed due to the roll up of the outer shear layer of cylinder
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1. Formation of another large scale vortex is expected on the right hand side, similar to the

results from the previous reduced-order model (Figure 5.36). The results show complex

interactions involved during the formation of the large scale structure on the right hand

side of the wake axis (Figure 5.39). Specifically, the ratio between the small and large

scale vortex shedding frequencies is approximately four, so that four small scale vortices

are shed while one large scale vortex is rolling up. For example, the sequence in Figure 5.39

begins at the start of the roll up of the inner shear layer of cylinder 1. As this shear layer

rolls up into a vortex within 2 < x/D < 3, it merges with the small scale vortex of same

vorticity sense forming due to the roll up of the outer shear layer of cylinder 2, as seen in

Figures 5.39a-5.39h. While this merging process occurs, the inner shear layer of cylinder 2

rolls up into a small scale vortex of opposite sense, relative to the inner shear layer of the

wide wake, within 1.5 < x/D < 2 (Figures 5.39a-5.39c). This opposite sense vortex cuts

further supply of circulation from the outer shear layer of cylinder 2 and is then shed into

the formation region of the large scale vortex, as seen in Figures 5.39d-5.39h. The process

during one small scale shedding cycle is repeated in Figures 5.39h-5.39o, and four of these

events occur during the formation of the large scale vortex. The fully formed large scale

vortex on the right hand side of the wake in Figure 5.39 encompasses four smaller scale

vortices with opposite vorticity sense. Thus, the large scale vortices on the right hand

side of the wake axis are less coherent than those formed on the left hand side. Similar

interactions between the inner shear layer of the wide wake and vortices shed from the

narrow wake occur for all orientations.
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Figure 5.36: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 0◦ (gap flow directed towards cylinder 2).
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Figure 5.37: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 0◦ (gap flow directed towards cylinder 1).
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Figure 5.38: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 60◦.
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Figure 5.39: (See next page for figure caption)
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Figure 5.39: Vorticity contours of the reduced-order model consisting of the first forty
modes for one half of the large scale shedding cycle for α = 0◦ (gap flow directed towards
cylinder 2).
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Chapter 6

Numerical results

In this chapter, the laminar and RANS simulation results for flow over the equispaced

triangular cluster are analyzed and discussed. Section 6.1 shows the laminar simulation

results. Similar to the experimental results, first an overview of the flow development for

the vortex shedding regime at ReD = 100 is provided. The mean and RMS fields of the

streamwise and transverse velocity components are discussed, followed by frequency and

force analyses. Section 6.2 presents results from the RANS simulations. In this section,

results from four turbulence models are compared: (i) SST, (ii) k − ε, (iii) k − ω, and

(iv) LRR-IP. The mean flow field is analyzed and compared between all turbulence models

investigated and the experimental results. Also, mean pressure contours and aerodynamic

forces for all turbulence models are computed and discussed.
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6.1 Simulations at ReD = 100

6.1.1 Overview of flow development

Figures 6.1 and 6.2 show the flow development at ReD = 100 for the triangular cluster at

α = 0◦ and 60◦, respectively. For both orientations, the wake development is symmetric

about y = 0 and is dominated by the shedding of large scale structures. Large scale vortex

shedding is present beyond x/D ≈ 4 for both orientations, similar to that for a single

cylinder [6]. For α = 0◦ (Figure 6.1), the shear layers emanating from cylinder 3 impinge

on the surfaces of cylinders 1 & 2 and merge with the boundary layers of same vorticity

sense. The outer shear layers of cylinders 1 and 2 roll up into vortices at approximately

x/D = 2.5D. The jet between cylinders 1 and 2 fluctuates periodically in the transverse

direction due to the large scale vortex shedding. Specifically, the jet is directed towards

the side of the wake where the vortex is being formed (i.e., the side of the wake axis with

larger circulation within the formation region). Unlike the case of ReD = 2100, there is no

bistable wake development at α = 0◦ for ReD = 100. Due to the absence of the bistable

phenomenon, no smaller scale shedding is present in addition to the shedding of the main

vortices.

For α = 60◦ (Figure 6.2), the flow development behind the cluster is similar to α = 0◦

case. The outer shear layers of cylinders 1 and 3 merge with the same sense shear layers

of cylinder 2, producing large scale vortices at approximately x/D = 3. The size of these

vortices is larger than that for α = 0◦. The jets exiting the cluster between cylinders 1 & 2

and 3 & 2 do not fluctuate appreciably with the shedding frequency, contrary to the case

of α = 0◦. Compared to ReD = 2100, the inner shear layers of cylinders 1 and 3 do not
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roll up into smaller scale vortices for ReD = 100.

Multiple tests were performed to ensure there is no bistable wake development for

α = 0◦ at ReD = 100. Previous studies (e.g., [19]) show that a bistable wake configuration

occurs behind two cylinders in a side-by-side arrangement at a Reynolds number as low

as 55. Hence, the model was tested for a two cylinder setup in a side-by-side arrangement

(i.e., α = 0◦) under the present conditions to verify that a bistable wake is achieved.

The streamwise mean velocity fields for the two cylinder setup, presented in Appendix

C.1, show a bistable wake development. For the triangular cluster, a finite transverse

velocity component in both directions was applied to the initial velocity field to force the

narrow wake behind either of the two downstream cylinders. Also, tests with small cluster

orientations (i.e., −3◦ ≤ α ≤ 3◦) were performed to force the bistable wake development.

The results for some of the tests are shown in Appendix C.1. Streamwise mean velocity

fields for all tests showed no bistable wake. Thus, it is concluded that there is no bistable

wake development for a triangular cluster at the present spacing ratio for α = 0◦ and

ReD = 100.
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Figure 6.1: Vorticity contours for one large scale shedding cycle for α = 0◦ at ReD = 100.
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Figure 6.2: Vorticity contours for one large scale shedding cycle for α = 60◦ at ReD = 100.
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6.1.2 Mean statistics

The mean velocity fields for α = 0◦ and 60◦ are presented in Figure 6.3. The results show

a symmetric wake development about y/D = 0 for both orientations. For α = 0◦, one

large recirculation region is present behind the two downstream cylinders. The streamwise

velocity of the jet between cylinders 1 and 2 decreases rapidly with increasing x/D due to

the reverse flow in the recirculation region. For α = 60◦ (Figure 6.3b), symmetric narrow

wakes are produced behind cylinders 1 & 3 and a wide wake forms behind cylinder 2,

similar to the experimental results at ReD = 2100.

Table 6.1 shows the downstream extent of the recirculation region, Lf , defined as the

distance from the origin of the cluster to the point of zero velocity along the wake axis,

for α = 0◦ and 60◦. The results show that Lf for α = 0◦ is approximately 10% smaller

than that for α = 60◦. This decrease in Lf is attributed to the high speed jet exiting

the cluster (Figure 6.3). For the case of α = 0◦, there is increased flow rate from the

jet between cylinders 1 and 2 into the recirculation region (Figure 6.3). As discussed in

Chapter 5, the length of the recirculation region is inversely proportional to the amount of

bleed flow added to the recirculation region. Therefore, for the cluster, it is expected that

Lf should be smaller for the case of α = 0◦ than that for α = 60◦ (Figure 6.3). Table 6.1

also shows the comparison of Lf with Reynolds number for both cluster orientations. For

both orientations, Lf increases with ReD. However, the increase in Lf is greater for α = 0◦

than that for α = 60◦. In comparison to α = 0◦ at ReD = 2100 (Figure 5.9), the bleed

flow entering the recirculation region is greater for ReD = 100 because the jet is directed

towards either of the downstream cylinders for ReD = 2100.
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Figure 6.3: Mean streamwise velocity contours for α = 0◦ and 60◦ at ReD = 100.

The RMS fields for the streamwise and transverse velocity component are presented

in Figure 6.4. The results for the streamwise component show two symmetric regions of

relatively high velocity fluctuations located approximately within 2 < x/D < 5 for both

orientations. These fluctuations are associated with the wake vortex shedding. For α = 0◦,

the maximum u′ occurs at x/D ≈ 3 and y/D ≈ ±1, which is associated with location of

vortex formation. The inner shear layers of cylinders 1 & 2 have higher velocity fluctuations

than the outer ones. This is due to the flapping of the inner shear layers seen previously

in the sequence of vorticity fields (Figure 6.1). For α = 60◦, the maximum u′ occurs at

x/D ≈ 3.5 and y/D ≈ ±1, which is also associated with location of vortex formation. The
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Table 6.1: Length of the recirculation region for α = 0◦ and 60◦ at ReD = 100 and
ReD = 2100.

α Lf/D (ReD = 100) Lf/D (ReD = 2100)

0◦ 2.62 5.56

60◦ 2.91 3.69

transverse RMS field for both orientations (Figure 6.4c and 6.4d) shows a single region along

the centerline of high velocity fluctuations induced by the shedding. The transverse RMS

fields for both orientations shows similar features; however, the magnitude of the maximum

fluctuation for α = 60◦ is lower. For both orientations, the streamwise and transverse RMS

fields show similar features to those for the wake of a single cylinder [82, 86].
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Figure 6.4: Contours of the RMS of the streamwise and transverse velocity component for
α = 0◦ and 60◦ at ReD = 100.

6.1.3 Frequency analysis

Figure 6.5 shows the velocity spectra of the streamwise velocity component measured

downstream of the vortex formation region for α = 0◦ and 60◦. Both spectra show a

dominant peak associated with the vortex shedding at StDh
≈ 0.2. Other spectral peaks

with lower energy content are associated with the harmonics of this shedding frequency.

Table 6.2 compares the Strouhal number (normalized by the projected height of the cluster,

Dh) for ReD = 100 (ReDh
= 235) and ReD = 2100 (ReDh

= 4.9× 103). The results show

that the Strouhal number for the large scale shedding is approximately equal to that for
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Figure 6.5: Velocity spectra of the streamwise velocity component at x/D = 13 and
y/D = −1.5 for α = 0◦ and 60◦ at ReD = 100.

a single cylinder at the same Reynolds number for both orientations, suggesting that the

cluster behaves like a single bluff body in terms of shedding frequency characteristics,

regardless of the cluster orientation. Also, as the Reynolds number increases from ReDh
=

235 to 4.9× 103, StDh
increases by approximately 5%, similar to the increase expected for

a single cylinder.
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Table 6.2: Strouhal number comparison when normalized by the projected height of the
cluster.

Case StDh
(ReDh

= 235) StDh
(ReDh

= 4.9× 103)

α = 0◦ 0.20± 0.005 0.21± 0.005

α = 60◦ 0.20± 0.005 0.21± 0.005

Single cylinder [66] 0.20 0.21

6.1.4 Aerodynamic forces

Figures 6.6, 6.9 and 6.10 show the mean drag coefficient, mean lift coefficient, and RMS

lift, respectively, for each cylinder in the cluster for α = 0◦ and 60◦ at ReD = 100. In

Figures 6.6 and 6.10, a dashed line represents the corresponding results expected for a

single cylinder in uniform cross-flow at ReD = 100. For the drag coefficient (Figure 6.6),

both the maximum and minimum drag occur on individual cylinders within the cluster at

α = 60◦. The maximum drag occurs on cylinders 1 & 3, and the minimum drag occurs

on cylinder 2. Also, the drag on cylinders 1 & 3 for α = 60◦ is approximately 10% larger

than that for a single cylinder. For α = 0◦, the drag on any of the cylinders is lower by at

least 25% than the drag on a single cylinder. The mean pressure contours for α = 0◦ and

60◦ are shown in Figure 6.7. For α = 0◦, there is a relatively high base pressure (CPb ≈ 0)

on cylinder 3. This is higher than CPb = −0.7 expected for a single cylinder [5]. The

higher base pressure is due to the presence of the two downstream cylinders, and leads

to a reduction in drag on cylinder 3 compared to that for a single cylinder. For the two

downstream cylinders, the highest pressure at the front of the cylinders is CP ≈ 0.5 and

the base pressure is CPb ≈ −0.7. The reduced pressure at the front of the cylinders is due

115



0 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
D

Cylinder 1
Cylinder 2
Cylinder 3
Single cylinder

α = 60°

α = 0°

α

3

1

2

1

3

2

Figure 6.6: Mean drag coefficient of each cylinder for α = 0◦ and 60◦ at ReD = 100.
Dashed line represents result for the single cylinder case [77].

to the presence of the blockage from the upstream cylinder. This results in a lower drag

coefficient for both downstream cylinders than that for a single cylinder. For α = 60◦,

the stagnation pressure (CP ≈ 1) and base pressure (CPb ≈ −0.7) on the two upstream

cylinders are the same as those expected for a single cylinder. However, the extent of the

low pressure region in the aft portion of the two upstream cylinders is larger (Figure 6.7b)

due to earlier separation of the outer boundary layer (≈ 80◦) compared to that expected

for a single cylinder at the same ReD (≈ 115◦ [70]). This produces a larger drag on the

upstream cylinders in the cluster compared to a single cylinder. The stagnation pressure

on cylinder 2 is CP ≈ 0 and the base pressure is CPb ≈ −0.7. Similar to α = 0◦, the

relatively low stagnation pressure is due to the blockage from the two upstream cylinders.

Therefore, the drag coefficient for cylinder 2 is lower than that for a single cylinder.
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The total mean drag coefficient, based on the projected height of the cluster, is shown

in Figure 6.8 for both orientations. The results show that the total drag coefficient on the

cluster is approximately 13% higher for α = 60◦ than that for α = 0◦. Also, the total drag

coefficient for α = 0◦ and 60◦ is approximately 6% lower and 8% higher, respectively, than

that for a single cylinder at the same Reynolds number (ReDh
= 235).

Figure 6.9 shows the mean lift coefficient for each cylinder in the cluster. As expected

from the symmetry of the geometry about y = 0, there is no mean lift on cylinder 3 for

α = 0◦ and cylinder 2 for α = 60◦. However, for all the other cylinders in the cluster, a

mean lift force is produced due to the asymmetric pressure distribution on the cylinders
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Dashed line represents result for the single cylinder case [77].

(Figure 6.7). For α = 0◦, the outer boundary layer of the two downstream cylinders

separate earlier than the inner boundary layer, producing a lower pressure region on the

outer sides of the downstream cylinders. This results in positive and negative mean lift

forces on cylinders 1 and 2, respectively. For α = 60◦, the flow in the gap stagnates due

to the presence of the downstream cylinder, producing a higher pressure region in the gap

between cylinders 1 and 3. Thus, there is a mean lift force produced on the two upstream

cylinders. However, for both α = 0◦ and 60◦, the total mean lift force on the cluster is zero

due to symmetry of the flow about y = 0.

Figure 6.10 shows the RMS of the fluctuating lift coefficient for each cylinder. The

maximum RMS lift occurs on cylinder 2 for α = 60◦ and is approximately 35% higher than
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Figure 6.9: Mean lift coefficient of each cylinder for α = 0◦ and 60◦ at ReD = 100.

that expected for a single cylinder. All other RMS lift forces are at least 45% lower than

that for a single cylinder. The RMS lift is due to fluctuations in the pressure field induced

by vortex shedding. The magnitude of the corresponding fluctuations is expected to be

related to the length of the formation region and the strength of the vortices. For both

orientations, cylinders positioned closer to the vortex formation region (i.e., cylinders 1 &

2 for α = 0◦ and cylinder 2 for α = 60◦) have higher RMS lifts than those for the upstream

cylinder(s). Cylinders 1 & 2 for α = 0◦ have smaller RMS lift than cylinder 2 for α = 60◦

because cylinder 2 experiences high pressure fluctuations on both sides (Figure 6.12b);

whereas, high pressure fluctuations on cylinders 1 & 2 for α = 0◦ occur only on the outer

sides (Figure 6.12a). Also, the RMS lift on cylinder 2 at α = 60◦ exceeds the value of that

expected for a single cylinder. The distance between cylinder 2 and the vortex formation

region is approximately the same as that compared to a single cylinder [87]; however, the
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size of vortices forming behind the cluster are larger than those expected for the single

cylinder case because they scale with the projected height of the cluster (Dh = 2.35D).

Therefore, the RMS lift on cylinder 2 at α = 60◦ is larger than that expected for a single

cylinder.

The total RMS lift coefficient, based on the projected height of the cluster, is shown in

Figure 6.11 for both orientations. The results show that the total RMS coefficient on the

cluster is approximately 70% higher for α = 60◦ than that for α = 0◦. Also, the total RMS

coefficient for α = 0◦ and 60◦ is approximately 30% lower and 20% higher, respectively,

than that for a single cylinder at the same Reynolds number (ReDh
= 235).
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6.2 RANS simulations at ReD = 2100

Four turbulence models were investigated for the present geometry: (i) SST, (ii) k− ε, (iii)

k − ω, and (iv) LRR-IP. Figures 6.13, 6.14, and 6.15 show the mean streamwise velocity

contours for α = 0◦ and 60◦ for each turbulence model. At α = 0◦, the bistable case

was induced by prescribing u = 0.1U0 and v = ±0.1U0 as initial conditions. Only the

SST and k − ω models show a bistable wake, in which the jet is directed towards either

one of the two downstream cylinders. The k − ε and LRR-IP models show a symmetric

wake development about the wake axis. From the experimental results at the same setup

conditions, a bistable wake development was observed for α = 0◦ (Figures 5.1 and 5.2). For

α = 60◦ (Figure 6.15), all the models predict a symmetric wake development, as expected

from experimental results. However, the size of the recirculation regions behind each of

the cylinders varies for each model. For both α = 0◦ and 60◦, the streamwise extent of the

recirculation region behind each of the cylinders is smaller for k − ε & LRR-IP and larger

for SST & k − ω when compared to the experimental results (Figure 5.9).

For a direct comparison between the results from the turbulence models and experimen-

tal results, mean streamwise velocity profiles were extracted. Figures 6.16, 6.17, and 6.18

shows the comparison at x/D = 2, 4, 6, and 8 for α = 0◦ and 60◦. For α = 0◦, the profiles

at x/D = 2 and 4 from the SST and k − ω results agree well with the experimental data.

Beyond x/D = 4, the SST and k − ω under-predict the mean streamwise velocity. This is

also seen in the mean streamwise velocity contours for the SST and k−ω models (Figures

6.13 and 6.14), in which the streamwise extent of the recirculation region is approximately

2 times larger than the experimental results (Figure 5.9). Also, beyond x/D = 4, the
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Figure 6.13: Mean streamwise velocity contours for α = 0◦ with the jet deflected towards
cylinder 1 at ReD = 2100 for each turbulence model.

results from the k− ε model agree well with the experimental results. The LRR-IP model

over-predicts the velocity at each location. For α = 60◦ (Figure 6.18), all the models fail

to accurately reproduce the mean streamwise velocity at the near wake of the cluster (i.e.,

x/D = 2).

The mean drag and lift coefficients for each cylinder and turbulence model are shown

in Figures 6.19, 6.20, and 6.21. Experimental results of sectional lift and drag coefficients

for an equispaced cluster with P/D = 1.25 for ReD = 3 × 104 [10] and P/D = 1.39 for

ReD = 6.2×104 [88] are shown for comparison in these figures. It should be noted that the
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Figure 6.14: Mean streamwise velocity contours for α = 0◦ with the jet deflected towards
cylinder 2 at ReD = 2100 for each turbulence model.

purpose of these results is not a direct comparison; instead, they are presented to compare

general trends. Also, a dashed line representing the results for a single cylinder case is

shown in these figures for comparison purposes. In both orientations, the variation of the

aerodynamic loads on each cylinder in the cluster follow the general trend in experimental

data for the results from SST and k−ω. For the other two models, the results do not follow

the general trends of the experimental data. The evaluation of the four turbulence models

thus far suggests that overall the results of SST and k − ω model show better agreement

(within ≈ 25%) with experimental data. Thus, for clarity, the following discussion of forces
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Figure 6.15: Mean streamwise velocity contours for α = 60◦ at ReD = 2100 for each
turbulence model.

will be based on the results from the SST model.

Figure 6.22 shows the mean pressure contours near the cylinders in the cluster. For

α = 0◦, the maximum drag occurs on the cylinder that produces the narrow wake (i.e.,

cylinder 1 in Figure 6.19 and cylinder 2 in Figure 6.20). For the case when the narrow wake

is behind cylinder 1 (Figure 6.19), the base pressure on cylinder 1 (CPb ≈ −0.7) is lower

than that of cylinder 2 (CPb ≈ −0.4), leading to a higher drag on cylinder 1. The drag on

cylinder 3 is approximately the same as that on the cylinder producing the wide wake (i.e.,

cylinder 2 in Figure 6.19 and cylinder 1 in Figure 6.20). This is due to the stagnation and

125



−1 0 1
−3

−2

−1

0

1

2

3

x/D = 2

y/
D

U/U
0

−1 0 1

x/D = 4

U/U
0

−1 0 1

x/D = 6

U/U
0

−1 0 1

x/D = 8

U/U
0

 

 

SST
k−ε
k−ω
LRR
Experimental

Figure 6.16: Profiles of the mean streamwise velocity component for all turbulence models
at four downstream locations for α = 0◦ with the jet deflected towards cylinder 1.

base pressure of cylinder 3 are both being higher by the same ∆CP than the stagnation

and base pressure of the cylinder producing the wide wake. Also, for ReD = 2100, the drag

coefficient of all cylinders for this orientation is at least 20% smaller than that expected for

a single cylinder [77]. This is similar to ReD = 100; however, there are differences between

the results for ReD = 100 and ReD = 2100 attributed to the absence of the bistable regime

at the lower ReD. Specifically, the drag on both downstream cylinders is not equal for

ReD = 2100; instead, the drag on the downstream cylinder producing the wide wake is

approximately the same as that on the upstream cylinder.

For α = 60◦, the trends in drag of the three cylinders in the cluster at ReD = 2100 are

the same as those observed for ReD = 100. The maximum drag in the cluster occurs on

cylinders 1 and 3. Figure 6.22 shows that the base pressure on the upstream cylinders is
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Figure 6.17: Profiles of the mean streamwise velocity component for all turbulence models
at four downstream locations for α = 0◦ with the jet deflected towards cylinder 2.

smaller by CPb ≈ 0.3 than that on the downstream cylinder. Also, the stagnation pressure

is greater on the upstream cylinders. Therefore, the drag on the upstream cylinders is

greater than that on cylinder 2. The stagnation pressure on the upstream cylinders is the

same as that for a single cylinder case; however, due to the presence of the downstream

cylinder, the base pressure on the upstream cylinders is greater than that on a single

cylinder [5]. This produces a smaller drag on the upstream cylinders than that on a single

cylinder. The drag on the downstream cylinder is smaller than that on a single cylinder

because of the higher base pressure (CPb ≈ 0) on the downstream cylinder.

Similar to ReD = 100, mean lift forces are produced on the two downstream cylinders

for α = 0◦ and the two upstream cylinders for α = 60◦ for ReD = 2100 (Figure 6.21). The

lift on cylinder 3 and 2 for α = 0◦ and 60◦, respectively, is zero due to the flow symmetry
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Figure 6.18: Profiles of the mean streamwise velocity component for all turbulence models
at four downstream locations for α = 60◦.

about y = 0. Unlike ReD = 100, the bistable nature of the flow leads to non-symmetric lift

forces produced on the two downstream cylinders for α = 0◦. The direction of the forces

also differs from that in the case of ReD = 100. Specifically, the stagnation point is shifted

towards the outer sides of cylinders 1 and 2, which leads to lift forces being directed towards

y = 0. For α = 60◦, lift forces on cylinders 1 and 3 are equal and opposite in direction,

similar to ReD = 100. However, the magnitude of the lift coefficient for ReD = 2100 is

approximately 70% lower. This is due to the lower base pressure on the upstream cylinders

for ReD = 100.

The total drag for the cluster for α = 0◦ and 60◦ is shown in Figure 6.23. The total

drag is approximately the same for both orientations and is approximately 15% smaller

than that for a single cylinder at an equivalent Reynolds number (ReDh
= 4.9× 103).
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Figure 6.19: Mean drag and lift coefficients for each cylinder in the cluster for α = 0◦ with
the jet deflected towards cylinder 1. The filled-square markers show data for an equilateral
cluster with P/D = 1.39 at ReD = 6.2 × 104 [88]. The dashed line represents the results
for a single cylinder case at the same Reynolds number (ReD = 2100) [77].
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Figure 6.20: Mean drag and lift coefficients for each cylinder in the cluster for α = 0◦ with
the jet deflected towards cylinder 2. The filled-square markers show data for an equilateral
cluster with P/D = 1.39 at ReD = 6.2 × 104 [88]. The dashed line represents the results
for a single cylinder case at the same Reynolds number (ReD = 2100) [77].
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Figure 6.21: Mean drag and lift coefficients for each cylinder in the cluster for α = 60◦.
The filled-square markers show data for an equilateral cluster with P/D = 1.39 at ReD =
6.2×104 [88]. The filled-circle markers show data for an equilateral cluster with P/D = 1.25
at ReD = 3× 104 [10]. The dashed line represents the results for a single cylinder case at
the same Reynolds number (ReD = 2100) [77].
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4.9× 103. Dashed line represents result for the single cylinder case [77].
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Chapter 7

Conclusions

Flow development through a cluster of three equally spaced cylinders was investigated

experimentally and numerically at P/D = 1.35. The main objective was to investigate

the effects of cluster orientation on flow characteristics. Experiments were performed for

0◦ ≤ α ≤ 60◦ at ReD = 2100 using hydrogen bubble flow visualization, particle image

velocimetry, and laser Doppler velocimetry. The flow was numerically modeled for α = 0◦

and 60◦ using laminar and RANS simulations at ReD = 100 and ReD = 2100, respectively.

For ReD = 2100, the SST, k− ω, k− ε, and LRR-IP turbulence models were evaluated by

comparing to experimental results.

The experimental results for ReD = 2100 show periodic large scale vortex shedding

beyond x/D ≈ 5 in the cluster wake for all orientations. The Strouhal number, based on

the projected height of the cluster, is StD ≈ 0.2 for all orientations and to that expected for

a single cylinder at the same Reynolds number. Experiments at α = 0◦ showed a bistable

wake development behind the cluster. The jet exiting the cluster can orient towards either
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of the two downstream cylinders, producing a narrow and a wide wake behind the cluster,

with no intermittent switching. Small scale vortices shed from the narrow wake interact

with the inner shear layers of the wide wake, producing less coherent large scale structures

as compared to the vortices forming on the opposite side of the wake. As α increases from

0◦ to 60◦, the asymmetry in the wake development about y = 0 decreases. For α = 60◦,

a symmetric wake development is achieved, with two narrow wakes forming behind the

upstream cylinders and a wide wake behind the downstream cylinder. The length of the

recirculation region of the narrow and wide wakes both vary with the cluster orientation.

For the narrow wake, the streamwise extent of the recirculation region is related to the

trajectory of the jet exiting between cylinders 1 and 2. For the wide wake, it is proportional

to the projected height of the cluster, Dh, and inversely proportional to the flow rate

through the cluster. Also, the half wake width downstream of the recirculation region is

proportional to Dh.

POD analysis showed that the first two modes are associated with large scale shedding

for all orientations. Depending on α, the first two modes capture 45% to 75% of the total

energy content in the wake. Modes associated with small scale shedding comprise of only

1% to 4%, depending on α, of the total energy content. The reduced-order model consisting

of the first 40 modes illustrates the iteration between the large and small scale structures.

During one small scale shedding cycle, three features were identified: (i) merging of the

outer shear layer of the narrow wake and the inner shear layer of the wide wake, (ii)

cancellation of supply of circulation from the outer shear layer of the narrow wake due

to vortices forming from the inner shear layer of the narrow wake, and (iii) convection of

vortices shed from the inner shear layer of the narrow wake into the formation region of the
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large scale structures. Depending on the ratio between the small and large scale shedding

frequencies, approximately four to six interactions from (i) to (iii) occur for one large scale

shedding cycle. This process results in the formation of a large scale structure encompassing

smaller scale vortices with opposite sense, which reduces its coherence relative to the large

scale vortices forming on the opposite side of the wake.

Numerical results for ReD = 100 show a symmetric wake development for both α = 0◦

and 60◦. No bistable wake is present for α = 0◦ at ReD = 100. For both orientations,

there is no small scale shedding present, as compared to that for ReD = 2100. The

Strouhal number, based on the projected height of the cluster, is approximately the same

(StD ≈ 0.2) for both orientations and as that expected for a single cylinder at the same

Reynolds number. The length of the recirculation region for α = 0◦ is smaller than that for

α = 60◦ due to the increased flow rate into the recirculation region from the jet between

cylinders 1 and 2 for α = 0◦.

The force analysis for ReD = 100 shows that the drag on all cylinders for α = 0◦ is at

least 25% lower than that on a single cylinder. For α = 60◦, the drag on the two upstream

cylinders is approximately 10% larger than that on a single cylinder. The total drag on the

cluster for α = 0◦ and 60◦ is CP ≈ 1.35 and CP ≈ 1.5, respectively. The total drag on the

cluster is approximately 6% smaller and 8% higher for α = 0◦ and 60◦, respectively, than

that expected for a single cylinder. Mean lift forces are generated on the two downstream

cylinders for α = 0◦ and the two upstream cylinders for α = 60◦. However, the total mean

lift for the cluster is zero for both orientations. The total RMS for the cluster for α = 0◦

and 60◦ is CL
′ ≈ 0.3 and CL

′ ≈ 0.5, respectively. The maximum RMS lift is produced

on the downstream cylinder for α = 60◦ and is approximately 35% larger than that for
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a single cylinder. The RMS lift forces for all other cylinders is at least 45% smaller than

that for a single cylinder.

RANS simulations at ReD = 2100 show that, overall, the results from the SST and k−ω

models have better agreement (within ≈ 25%) with the experimental data and at the two

model that predict the bistable wake development. The k− ε and LRR-IP model predict a

symmetric wake development for α = 0◦ and under predicts the streamwise extent of the

recirculation region for both orientations.

For clarity, the force analysis focused on the results from the SST model. For α = 0◦,

the maximum drag occurs on the cylinder producing the narrow wake. Differences between

the results for ReD = 2100 and ReD = 100 are attributed to the absence of the bistable

phenomenon at ReD = 100. For α = 60◦, the maximum drag occurs on the two upstream

cylinders. The relative trends in the aerodynamic loads on each cylinder in the cluster

are similar for both ReD = 2100 and ReD = 100. The drag coefficient for all cylinders in

both orientations is at least 20% lower than that expected on a single cylinder. For both

orientations, the total drag coefficient for the cluster is approximately 15% smaller than

that for the single cylinder case. Mean lift forces are produced only on the two upstream

cylinders for α = 60◦ and the two downstream cylinders for α = 0◦.
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Chapter 8

Recommendations

While accomplishing the main objectives of this investigation, current work has encoun-

tered some unsolved questions. The following recommendations are provided for further

research to address these questions:

1. It is of interest to investigate the bistable flow regime, which occurs for α = 0◦

at ReD = 2100. The bistable wake development consists of two asymmetric wakes

behind the cluster, resulting in complex vortex dynamics in the cluster near wake

and different loading on the two downstream cylinders. The results showed that the

bistable regime occurred at ReD = 2100, but not at ReD = 100. It is important to

identify the onset of this instability for this geometry. One possible way to achieve

this would be to perform numerical simulations for 100 < ReD < 2100.

2. The effects of cluster orientation on spanwise flow characteristics should be investi-

gated. The present investigation was strictly focused on two-dimensional results. It
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is recommended to perform flow visualization and quantitative measurements in the

x− z plane.

3. For further evaluation of the turbulence models, URANS should be performed. For

improved accuracy, the domain should be modeled as three-dimensional and it is of

interest to evaluate the same turbulence models based on the unsteady flow charac-

teristics.

4. It is of interest to conduct a parametric study based on the spacing ratio, Reynolds

number, and cluster orientation using qualitative and quantitative measurements.

This will provide a more detailed map of various flow regimes for different combina-

tions of flow and geometric parameters.

5. Qualitative and quantitative measurements should be performed with the yawed

cluster. Industry applications of triangular clusters comprise of free-stream flow with

both axial and cross-flow velocity components. It is of interest to understand the

effects of the yaw angle on the flow characteristics.
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Appendix A

Vorticity contours

The following figures show the sequence of vorticity fields for one large scale shedding

period for 10◦ ≤ α ≤ 50◦. The discussion based on these figures is given in Chapter 5.
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Figure A.1: Vorticity contours for α = 10◦.
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Figure A.2: Vorticity contours for α = 20◦.
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Figure A.3: Vorticity contours for α = 30◦.
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Figure A.4: Vorticity contours for α = 40◦.
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Figure A.5: Vorticity contours for α = 50◦.
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Appendix B

POD results

The following figures show the results from the POD analysis for 10◦ ≤ α ≤ 50◦. The

temporal and spatial modes corresponding to the large and small scale shedding, as well

as the results from the reduced-order models for 10◦ ≤ α ≤ 50◦ are shown in the following

figures. The discussion based on all these figures is given in Chapter 5.
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Figure B.1: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to the large scale shedding for α = 10◦.
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Figure B.2: First and second spatial modes corresponding to the large scale shedding for
α = 10◦.
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Figure B.3: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to the large scale shedding for α = 20◦.
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Figure B.4: First and second spatial modes corresponding to the large scale shedding for
α = 20◦.
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Figure B.5: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to the large scale shedding for α = 30◦.
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Figure B.6: First and second spatial modes corresponding to the large scale shedding for
α = 30◦.
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Figure B.7: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to the large scale shedding for α = 40◦.
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Figure B.8: First and second spatial modes corresponding to the large scale shedding for
α = 40◦.
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Figure B.9: Temporal coefficient (a) signal and (b) spectra for the first two modes corre-
sponding to the large scale shedding for α = 50◦.
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Figure B.10: First and second spatial modes corresponding to the large scale shedding for
α = 50◦.
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Figure B.11: Temporal coefficient (a) signal and (b) spectra for the sixth and seventh modes
corresponding to 2nd order harmonic of the large scale shedding frequency for α = 0◦.
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Figure B.12: Sixth and seventh spatial modes corresponding to 2nd order harmonic of the
large scale shedding frequency for α = 0◦.
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Figure B.13: Temporal coefficient (a) signal and (b) spectra for the fourth and fifth modes
corresponding to 2nd order harmonic of the large scale shedding frequency for α = 60◦.
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Figure B.14: Fourth and fifth spatial modes corresponding to 2nd order harmonic of the
large scale shedding frequency for α = 60◦.
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Figure B.15: Temporal coefficient (a) signal and (b) spectra for modes corresponding to
the small scale shedding for α = 10◦.
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Figure B.16: Spatial modes corresponding to the small scale shedding for α = 10◦.
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Figure B.17: Temporal coefficient (a) & (b) signal and (c) & (d) spectra for modes corre-
sponding to the small scale shedding for α = 20◦.
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Figure B.18: Spatial modes corresponding to the small scale shedding for α = 20◦.
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Figure B.19: Temporal coefficient (a) signal and (b) spectra for modes corresponding to
the small scale shedding for α = 30◦.
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Figure B.20: Spatial modes corresponding to the small scale shedding for α = 30◦.
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Figure B.21: Temporal coefficient (a) & (b) signal and (c) & (d) spectra for modes corre-
sponding to the small scale shedding for α = 40◦.
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Figure B.22: Spatial modes corresponding to the small scale shedding for α = 40◦.
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Figure B.23: Temporal coefficient signal for modes corresponding to the small scale shed-
ding for α = 50◦.
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Figure B.24: Spatial modes corresponding to the small scale shedding for α = 50◦.
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Figure B.25: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 10◦.
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Figure B.26: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 20◦.
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Figure B.27: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 30◦.
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Figure B.28: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 40◦.
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Figure B.29: Vorticity contours of the reduced-order model consisting of the first two modes
for α = 50◦.

181



1 2

3

y/D
-1 -212 03 -3

-1

-2

1

2

3

4

5

6

7

8

9

10

x/D

Flow

(a) t1

y/D
-1 -212 03 -3

(b) t1 + T/5

y/D
-1 -212 03 -3

(c) t1 + 2T/5

y/D
-1 -212 03 -3

(d) t1 + 3T/5

y/D
-1 -212 03 -3

(e) t1 + 4T/5

-0.0009

-0.0008

-0.0007

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

R
O

T
-Z

 [
1/

s]

ωD/U0

-3.00

-2.25

-1.50

-0.75

0

0.75

1.50

3.00

2.25

-3.75

3.75

Figure B.30: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 0◦ (gap flow directed towards cylinder 2).
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Figure B.31: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 0◦ (gap flow directed towards cylinder 1).
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Figure B.32: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 10◦.
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Figure B.33: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 20◦.
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Figure B.34: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 30◦.
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Figure B.35: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 40◦.
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Figure B.36: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 50◦.
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Figure B.37: Vorticity contours of the reduced-order model consisting of the first forty
modes for α = 60◦.
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Appendix C

Check for bistability

Figure C.1 shows some of the cases tested to ensure no bistable wake for α = 0◦ at

ReD = 100. The case with the two cylinder setup show a bistable wake development,

whereas the results for triangular cluster, under the same conditions, do not. The discussion

based on these figures is given in Chapter 6.
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Figure C.1: Mean streamwise velocity field for two cylinder setup for α = ±0.5◦ and
triangular cluster for α = 1◦ and α = −3◦.
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Appendix D

Experimental uncertainty

This section provides an uncertainty analysis for the techniques used in the present study.

D.1 Laser Doppler velocimetry

Measurement error and uncertainty in LDV can arise from multiple sources. The most

important and common error is bias in the velocity data [89]. The quantity of collected data

points are proportional to the velocity of the seed particles crossing the probe volume. This

introduces bias towards the higher velocities from the average local velocity. McLaughlin &

Tiederman [90] proposed an order-of-magnitude estimate for such a bias, which is expressed

as

Um

U
≈ 1 +

u′2

U
2 (D.1)

where Um is the raw measured mean streamwise velocity and U is the real value. The real

value can be found by iteratively solving for U in Equation D.1. For computing the velocity
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bias in the LDV measurements, a velocity signal in the wake (x/D = 13 and y/D = −1.5)

of the cluster at α = 60◦ was investigated. For this particular case, the re-sampled mean

velocity was 65.12 mm/s and the real value was 63.5 mm/s (Equation D.1), resulting in a

velocity bias error of 1.62 mm/s. The MSE miniLDV probe is a dual-beam configuration

with special optics inside the enclosure to ensure the two beams are parallel and cross at

the same plane. Therefore, uncertainty due to fringe divergence [89] is negligible in the

present setup. As stated in the manufacturers specifications, the sensor has a repeatability

uncertainty of 0.1% and an accuracy of 99.7%. The total error, εt, due to velocity bias,

sensor repeatability, and accuracy was found using a root-sum-square method [91]

εt =

(
N∑
k=1

ε2k

)1/2

(D.2)

where εk is the error from each individual source. The resulting total error was approxi-

mately 2.6%.

Other sources of errors in the LDV setup include horizontal alignment of the sensor,

measurement location (i.e., location of probe volume), and variability in seed particle size.

The LDV probe was aligned horizontally with care using digital level to an uncertainty

within 0.1◦. The position of the probe volume was measured using images from the high-

speed camera. The uncertainty in both x and y directions was approximately ±0.008D.

Lastly, the seed particles used have variable size and shape as they cross the probe volume.

The average seed particle diameter is 10 µm with a variable range from 0 to 20 µm, resulting

in random error in the velocity measurements.
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D.2 Particle image velocimetry

When performing PIV experiments, several conditions must be satisfied for obtaining ac-

curate measurements. Random errors in the average particle displacement for each interro-

gation window arise from variations in seed particle size and shape, acquisition procedure,

noise in image output, or cross-correlation algorithm. Adrian [49] related the random errors

to a proportionately constant, c, and the particle-image diameter, dτ , as

ε =
cdτ
∆X

(D.3)

where ∆X is the average particle displacement. The random error is inversely proportional

to the particle displacement (or velocity). Typical values of c range from 0.05 to 0.1 [92,93].

The particle-image diameter, dτ , is expressed as [49]

dτ =
√
M2d2p + d2s (D.4)

where M = 0.1 is the magnification and dp = 10µm is the seed particle diameter. The

diffraction limited diameter, ds is [49]

ds = 2.44(1 +M)f#λ (D.5)

where f# = 5.6 is the focal ratio and λ = 532 nm is the wavelength of the laser sheet.

All PIV experiments were conducted at an acquisition rate of 100 Hz (∆t = 0.01 s). For

evaluating the random error, an average value for c of 0.075 was selected. The near-wake
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region of the cluster is comprised of velocities ranging from approximately 5% to 110%

of the free-stream velocity (86 mm/s), resulting in a range of particle displacements from

0.04 mm to 0.95 mm. The particle-image diameter is computed to 8.1µm. Therefore, the

random error in the velocity measurements in the cluster wake ranges from 1.5 mm/s to

0.064 mm/s.

Previous studies (e.g., [47,49,50,94]) suggest the following to minimize errors in particle

displacements:

1. Ni = Cp∆z0d
2
i /M

2 > 10 (seeding density), where Ni is the image-density parameter,

Cp is the particle concentration, ∆z0 is the light sheet thickness, and di is the length

of the interrogation window. This allows the evaluation of a stronger correlation

peak between images. Larger signal-to-noise ratio provides less ambiguous detection

of the peak.

2. ∆X < di/4 (temporal resolution). It is important to perform this check when select-

ing the interrogation window size. The smaller the interrogation window, the higher

risk in the particles leaving the window between frames.

3. dτ/dx > 2 (pixel locking), where dx is the pixel size of the camera sensor. Pixel

locking can lead to bias error in the velocity results because there will be bias toward

an integer-pixel value during cross-correlation. In the present work, the ratio of

dτ/dx ≈ 0.6, which does not satisfy the condition. Overmars et al. [95] suggested that

pixel locking can be avoided if the image is slightly defocused. This procedure was

conducted during experimentation, such that the particle-image diameter is greater

than 2 pixel units.
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Figure D.1: Relationship between the orientation angle and yoke translation.

D.3 Scotch yoke mechanism

The rotating mechanism for the cluster was controlled by a scotch yoke mechanism. The

yoke piece was attached on a linear guide rail, which was controlled by a stepper motor.

Due to the slot in the yoke, the linear motion of the yoke rotated the top endplate. The

orientation of the cluster was calculated using

α = sin−1
(
y∗

5.5

)
+ 30 (D.6)

where y∗ is the yoke translation (Figure D.1). The maximum travel of the yoke to cover

the desired orientations is 5.5 in. With this mechanism, the error in the accuracy of

the orientation angle is ±0.7◦. Also, multiple iterations showed that the repeatability

uncertainty is 0.3◦.
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