
Scheduling of Overload-Tolerant
Computation and Multi-Mode
Communication in Real-Time

Systems

by

Akramul Azim

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Akramul Azim 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Real-time tasks require sufficient resources to meet deadline constraints. A component
should provision sufficient resources for its workloads consisting of tasks to meet their
deadlines. Supply and demand bound functions can be used to analyze the schedulability of
workloads. The demand-bound function determines the maximum required computational
units for a given workload and the supply-bound function determines the minimum possible
resources supplied to the workload. A component will experience an overload if it receives
fewer resources than required. An overload will be transient if it occurs for a bounded
amount of time. Most work concentrates on designing components that avoid overloads by
over-provisioning resources even though some computational units such as control system
components can tolerate transient overloads. Overload-tolerant components can utilize
resources more efficiently if over-provisioning of resources can be avoided.

First, this dissertation presents the design of an efficient periodic resource model for
scheduling computation of components that can tolerate transient overloads under the
Earliest Deadline First (EDF) scheduling policy. We propose a periodic resource model
for overload-tolerant components to address three problems: (1) characterize overloads
and determine metrics of interest (i.e., delay), (2) derive a model to compute a periodic
resource supply for a given workload and a worst-case tolerable delay, and (3) find a peri-
odic resource supply for given control system specifications with a worst-case delay. The
derived periodic resource supply can be used to derive an overload-tolerant component
interface. Overload-tolerant real-time components can connect with each other in a dis-
tributed manner and thus require communication scheduling for reliable and guaranteed
transmissions. Moreover, applications may require multi-mode communication for efficient
data transmission.

Second, this dissertation discusses communication schedules for multi-mode distributed
components. Since distributed multi-mode applications are prone to suffer from delays in-
curred during mode changes, good communication schedules have low average mode-change
delays. A key problem in designing multi-mode communication in real-time systems is the
generation of schedules to move away the complexity of schedule design from the devel-
oper. We propose a mechanism to generate multi-mode communication schedules using
optimization constraints associated with timing requirements. We illustrate a workflow
from specifications to the generation of communication schedules through a real-time video
monitoring case-study. Experimental analysis for the case-study demonstrates that sched-
ules generated using the proposed method reduce the average mode-change delay compared
to a randomized algorithm and the well-known EDF scheduling policy.

iii

Finally, this thesis discusses the synthesis of schedules for computation and communi-
cation to achieve not only performance but also separation of concerns for reducing com-
plexity and increasing safety. To integrate overload-tolerant components using real-time
communication, we derive specifications of component interfaces using the characterization
of overloads and the proposed periodic resource model. The generation of communication
schedules uses the specifications of interfaces which include timing requirements of possi-
ble transient overloads. A walk-through case-study explains the steps necessary to gen-
erate communication schedules using component interfaces. The interfaces provide safety
through isolation of transient overload-tolerant components and the generated communi-
cation schedules provide high performance as a result of their low average mode-change
delay.

iv

Acknowledgements

I would like to express my sincere gratitude and profound indebtedness to my supervisor
Prof. Sebastian Fischmeister for his constant guidance, insightful advice, helpful criticism,
valuable suggestions, commendable support, endless patience, and numerous reviews to-
wards the completion of this dissertation. I feel very proud and satisfied to have worked
with him. Without his inspiring enthusiasm, encouragement, and financial support, it
would not be possible to complete the thesis.

A very special thanks to Prof. Shreyas Sundaram and Prof. Rodolfo Pellizzoni for their
passionate guidance and effective reviews to solve important research problems. I would
also like to thank Prof. Hiren Patel, Prof. William Cowan, and Prof. Nathan Fisher for
giving valuable feedback and suggestions on the dissertation. I would like to thank all the
research partners who contributed financial assistance throughout the completion of this
dissertation.

A huge thanks to the all past and present members of real-time embedded software
group who have provided me valuable suggestions and comments. I would like to give
a special thanks to Gonzalo Carvajal and Ahmed Alhammad for helping me in various
situations towards the completion of this dissertation.

I am very much thankful to all my family members. My parents have made invaluable
sacrifices throughout the period of my study and I feel proud to mention their sacrifices.
I lost my father Md. Lokiot Ullah in 11.11.11 when I was in Canada during the course
of my doctoral study. I would like to thank again Prof. Sebastian Fischmeister to give
me immediate support and allow me to stay with my mother Bilkis Begum during those
toughest days ever in my life. My father always inspired me to obtain higher studies and
it may not have been possible without his support, inspiration, and sacrifice. My mother
has always taken care me to give her best possible support. I am grateful to my mother
for her support, inspiration, and sacrifice. I would like to thank my elder brother Anwarul
Azim and cutest sister Sanjid Mahiba for their support and inspiration. Without them,
I would not feel the importance of having brother and sister in someone’s life. Finally,
I am very much thankful to my wife Rafia Islam for his patience, support, sacrifice, and
inspiration. She has given me mental support in my days when I needed her inspiration
the most. I would like to thank all my well-wishers who have prayed for my success and
helped me and my family directly or indirectly.

v

Dedication

This thesis is dedicated to my beloved departed father Md. Lokiot Ullah and my mother
Bilkis Begum.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Overload-Tolerant Computation . 1

1.2 Multi-Mode Communication . 3

1.3 Synthesis of Computation and Communication 4

1.4 Contributions . 5

1.5 Organization of the Thesis . 6

2 Fundamentals 8

2.1 Scheduling of Real-Time Computation . 8

2.2 Scheduling of Real-Time Communication 10

3 Scheduling of Overload-Tolerant Computation 18

3.1 Problem Statement . 19

3.2 Feedback Control Systems With Delays . 19

3.3 Overloads in Supply and Demand Curves 22

3.3.1 Supply and Demand Bound Functions 22

3.3.2 Characterizing Overloads . 24

vii

3.3.3 Computing the Points of Interest 29

3.3.4 Schedulability Analysis with Overloads 30

3.4 Finding an Efficient Resource Supply . 31

3.5 Experimental Analysis of A Control System 39

3.6 Related Work . 40

3.7 Discussion . 42

4 Scheduling of Multi-Mode Communication 45

4.1 Formal Definitions . 46

4.2 Schedule Generation Workflow . 49

4.2.1 Workflow Overview . 49

4.2.2 Application Example and Assumptions 51

4.2.3 Component-Level Description . 52

4.2.4 State Analysis . 52

4.2.5 Schedule Generation . 54

4.3 Related Work . 59

4.4 Discussion . 59

5 Coscheduling of Computation and Communication 61

5.1 Problem Statement . 63

5.2 System Model . 63

5.3 Scheduling Computation and Communication 65

5.4 Specification and Design of Component Interfaces 67

5.4.1 Specification and Design . 67

5.4.2 Finding Component Interfaces . 69

5.5 Generation of State-Based Schedules . 70

5.5.1 Optimization Model . 71

5.5.2 Determining Valid Schedules . 73

viii

5.5.3 Determining Delays . 74

5.5.4 Construction of State-based Schedules 76

5.5.5 Experimental Evaluation . 76

5.6 Related Work . 77

5.7 Discussion . 79

6 Conclusions 80

7 Future Work 82

References 88

ix

List of Tables

3.1 Partitioned Scheduling vs Global Scheduling 44

4.1 Timing requirements for different video qualities 53

4.2 Feasible modes with messages specifications 54

5.1 Timing requirements for computation of video components 68

5.2 Timing requirements for communication 69

5.3 Feasible modes with messages specifications 69

5.4 Average mode-change delay analysis . 77

5.5 Optimizer execution information for the video case-study 77

x

List of Figures

2.1 A state-based schedule for a patient monitoring system 15

2.2 State-based representation of a Triple Modular Redundancy (TMR) appli-
cation . 16

3.1 Proposed workflow to use resource supply 22

3.2 dbf(t) for W = {τ1(6, 1), τ2(12, 2)} . 23

3.3 sbf(t) for λ = 3 and θ = 1 . 24

3.4 An example of sbf and dbf where ∀t: sbf(t) ≥ dbf(W, t, EDF) 25

3.5 An example of an overload (∃t : sbf(t) < dbf(W, t, EDF)) 26

3.6 A detailed view of an overload shown in Figure 3.5 27

3.7 Finding intersection points for a given dbf and δ∗ 33

3.8 Two of the candidate solutions for Example 1 with input delay one 37

4.1 Overlapped message assignments in slot 1 form group G1
1 47

4.2 An alternative schedule with an additional overlap in slot 2 48

4.3 Proposed workflow to generate state-based schedules 50

4.4 Environment for the example application 51

4.5 Representation of the states for each camera 52

4.6 An optimized best-effort oriented schedule using decomposition 58

4.7 Average mode-change delay in generated schedules using randomized, EDF-
based, and optimized xkml assignments . 58

xi

5.1 An example model of isolation between two computational components and
the shared communication medium . 65

5.2 Finding specification for component interfaces 71

5.3 Analysis on δr values in mode k . 75

xii

Chapter 1

Introduction

Real-time systems are usually time-sensitive and consist of time-critical distributed appli-
cations. If the computation is based on outdated data, incorrect result may appear. For
example, a counter counts the number of occurrences of some specified external event and
has to output the result. A timing failure on the input in observing the events can cause
a functional failure on the output.

Generally, two types of real-time systems exist: soft real-time and hard-real time sys-
tems. Hard real-time systems must meet the deadline of every task, never failing to respond
within a specified time. Conversely, soft real-time systems can tolerate some amount of late
response to events. Due to the possibility of system failure in hard real-time systems, they
must meet all timing constraints under fault and load conditions. Therefore, developers
must carefully design and implement hard real-time systems to guarantee that deadlines
are met.

1.1 Overload-Tolerant Computation

Real-time applications require sufficient resources, both computation and communication,
to meet their timing requirements. Given a set of applications, various schedulability tests
exist to evaluate whether each application receives the required resources. For instance,
in hard real-time systems, a schedulability test, based on supply and demand bound func-
tions [76, 12, 64, 59], show that insufficient resources are available when the supply-bound
function (sbf) drops below the demand bound function (dbf) for a given time interval.
However, this condition is too conservative for systems such as soft real-time systems or

1

firm real-time systems that can tolerate the occurrence of overloads (i.e., situations where
the application requires more resources than are available) with a bounded duration. For
example, if the system can tolerate dropping or delaying tasks, the schedulability test
will accept a system whose supply bound function intermittently drops below the demand
bound function.

Overloads can be either transient or permanent. A transient overload always has a
bounded time span until its resolution and can occur because of excessive task execution
times, or because of the simultaneous arrival of asynchronous events. A permanent overload
always has an unbounded time span and will occur if the system is badly designed and
unschedulable. A large class of systems can tolerate the occurrence of overloads with
a specified duration. For example, while control systems require a certain measure of
reliability in their feedback loops to function correctly, these systems are usually robust to
short delays in their control updates (depending on the dynamics of the system) [89, 44].
Other applications that fit into this category are classic soft real-time applications such as
video-on-demand that can show a static image for a few frames when overloaded, or audio
applications.

Compositionality is a way to convert multiple independent timing requirements of differ-
ent components of a system into a single real-time system timing requirement. Satisfying
timing requirements together with logical correctness can make a real-time system pre-
dictable, guaranteeing that it will operate correctly when deployed. Abstracting timing at
the higher level of system design permits designers to model the system by eliminating the
low-level timing requirements of different components in cyber-physical systems. Since it is
often preferable to work at higher levels of abstraction, compositionality analysis facilitates
design productivity.

Motivated by feedback control systems that are robust to small delays in the feedback
loop, [11] investigates an efficient periodic resource supply model for workloads that can
tolerate transient overloads and delays and extends dbf and sbf -based techniques to analyze
such systems. This dissertation discusses the relationship between characterization of
overloads and the worst-case delay. This characterization is used to derive methods for
finding a suitable resource to meet desired delay constraints.

This dissertation presents the analysis of periodic resource models using the supply and
demand bound functions described in [75] by introducing overloads. Consequently, this
extended model can find the resource supply required for a hierarchical or compositional
system with transient overloads. In this dissertation, we mainly focus on the application to
control systems. The workflow of the application to control systems is the following: (1) a
control engineer models a physical system and defines the control objective, (2) the control

2

engineer designs a feedback controller for the plant based on a given sampling period, (3)
the control engineer determines the maximum tolerable delay in calculating and applying
the feedback inputs, based on the dynamics of the system, and (4) the system provisions
the computational resources required to perform the computations within the given delay.

1.2 Multi-Mode Communication

Distributed real-time systems require reliable communication networks for the exchange
of time-critical data. As the number and complexity of distributed stations increase in
modern applications, traditional fieldbuses are quickly becoming obsolete due to reduced
bandwidth and incompatible protocols that limit scalability and integration of multiple
domains. Support for mixed-criticality and higher bandwidth will be mandatory for next-
generation distributed systems, and these requirements are pushing towards the definition
of a generic network capable of integrating multiple real-time domains with traditional
computers in a single infrastructure.

Increasing interest on Real-Time Ethernet (RTE) provides strong evidence of this
trend [32]. After years of research on exploring the real-time capabilities of Ethernet
devices, some solutions are finally providing experimental evidence for hard real-time com-
munication on top of Ethernet infrastructure [4, 3]. These solutions rely on enhanced de-
vices with specific modules based on the Time Division Multiple Access (TDMA) approach
typically used in safety-critical fieldbuses. Custom hardware implementations enable exe-
cution of predefined TDMA schedules with high synchronization accuracy while operating
at the high-speed of Ethernet links.

State-based scheduling [36, 8, 10] is an alternative arbitration technique for hard real-
time systems. State-based schedules allow developers to describe multiple operational
modes, or states, and encode transitions from one state to another based on conditions
that change at runtime. This property increases the flexibility, enables quick responses to
changing operational conditions, and improves bandwidth utilization compared to static
TDMA configurations, while keeping the system analyzable and verifiable. Multiple case
studies show the advantages of this approach in domains such as control theory [86], hybrid
systems [6], hierarchical scheduling [34], and in general bursty demand models [67]. The
Network Code framework [38] provides a complete development environment including an
expressive language to describe TDMA schedules with conditional branching, tools to verify
the schedules before runtime, and a powerful hardware-accelerated platform to deploy and
test solutions in practical scenarios [23]. However, a big limitation of this approach is that
developers must still write the program at low-level, requiring a good understanding of the

3

underlying technology and runtime environment, and perform fine tuning of configuration
parameters to fit particular application requirements. This approach is time-consuming,
prone to errors, and inadequate for medium/large-scale systems, specially since conditional
transitions add a new level of complexity to the schedule design and verification.

This dissertation presents a model-driven approach [8] to generate state-based schedules
from high-level descriptions, which are then mapped to verified executable abstractions
based on Network Code. The designer must provide an architectural description of the
system, state-machine representations of the individual components and their interactions,
and timing specifications. The proposed workflow then finds the system states, performs
reachability and schedulability analysis, and generates abstract representations of state-
based schedules based on specific design and application constraints. Designers can then
use Network Code specific tools to translate these abstractions to Network Code programs,
and generate synthesizable Hardware Description Language (HDL) code that optimizes the
utilization of logical resources and power consumption for each distributed communication
processor according to the generated schedule.

1.3 Synthesis of Computation and Communication

Computation and communication in safety-critical applications have to be completely sep-
arated and isolated from one another. The conservation of complexity is a justification of
separation of concerns. With the growing focus on safety-critical systems, the principle
of separation is increasingly important for adaptive embedded systems. Adaptive and re-
configurable embedded systems that integrate safety-critical and non-critical components,
or that integrate safety and adaptive behaviours require separation of concerns to control
system complexity. Resource dependencies can be minimized by factoring out the reserva-
tion and consumption parts into separate programs. The approach of splitting the whole
program into a minimal set of resource dependencies makes the programs easier to under-
stand and analyze. They can then be joined in a deterministic manner through specified
timed interactions such as timed interfaces.

In an interface-based design, an interface describes how a component can be used. A
well-designed component interface provides sufficient information to connect other compo-
nents in a system [84]. Since an interface-based design of components in the system allows
separation of concerns, scheduling mechanisms for computation and communication can
differ. For example, in a computational component, a number of tasks execute on pro-
cessors based on widely-used CPU scheduling algorithms such as EDF or Rate Monotonic

4

(RM) [76], and message transmission occurs from one component to another using a real-
time network scheduling algorithm such as static TDMA or state-based TDMA [38]. An
efficient CPU scheduling algorithm is not necessarily suitable for networks because of the
differences in characteristics. In a system that supports multiple communication modes,
state-based scheduling has lower average mode-change delay than EDF [8], which sched-
ules tasks based on deadlines. Moreover, state-based TDMA schedules are suitable for
achieving predictability, reliability, and safety in real-time networks [38]. However, finding
a state-based schedule for a time-triggered architecture to satisfy the timing requirements
of tasks is challenging, because the scheduler has to consider not only the requirements
on each component, but also the global requirements of system-wide behaviour, including
messages transmitted on the networks.

1.4 Contributions

This dissertation provides a novel approach for scheduling computation and computation
through separation of concerns. Throughout the course of my thesis research, co-authors
and I have made contributions on scheduling of computation and communication. The
dissertation concentrates on a subset of them. In the context of scheduling of computation,
co-authors and I have the following contributions:

C1 We characterize transient overloads for workloads under the EDF scheduling policy
for a given resource supply [11]. We also derive a periodic resource supply model
for periodic workloads with transient overloads [11] under the assumption that tasks
deadlines are equal to their periods. We demonstrate that a control application can
use the resource model to calculate the sufficient amount of resources even in the
presence of tolerable overloads.

C2 We introduce the concept and design considerations for a mode-change technique that
may use completed tasks stored in checkpoints to avoid unnecessary re-execution and
reduce the mode-change delay incurred while switching between modes [9].

In the context of scheduling of communication, co-authors and I have the following
contributions:

C3 We characterize the design considerations of high-confidence real-time communica-
tion [36] and demonstrate that state-based schedules have such characteristics.

5

C4 We exhibit the relationship of clocked graphs and state-based scheduling [69]. We
show that clocked graphs can be used as an input language of state-based scheduling.

C5 We discuss using state-based scheduling [10] in an unreliable network, specially in a
wireless environment.

C6 We discuss using state-based scheduling [27, 28] in networked control systems.

C7 We validate the technical feasibility of state-based schedules [27, 28] by implementing
a plugin for TrueTime, which is a Matlab/Simulink-based simulator for real-time
control systems.

C8 We propose a workflow from high-level specifications to find whether a valid and
feasible state-based schedule exists for multi-mode communication which has low
average mode-change delay [8].

In the context of scheduling both computation and communication together, co-authors
and I have the following contributions:

C9 We analyze end-to-end delay for scheduling tasks and messages in a system [65].

C10 We define interfaces of overload-tolerant components using the derived periodic re-
source model in [11] and generate state-based schedules using the component inter-
faces.

This dissertation discusses C1, C3, C8, and C10 to present closely related contribu-
tions for scheduling of overload-tolerant computation and multi-mode communication in
real-time systems through separation of concerns. This separation of concerns not only is
advantageous for safety certification but also ensures good performance.

1.5 Organization of the Thesis

The structure of the these is the following:

• Chapter 2 presents the background of real-time scheduling theory. This chapter
discusses some of the known scheduling schemes for computation and communication
along with an illustration of state-based scheduling.

6

• Chapter 3 presents the supply and demand bound analysis for overload-tolerant soft
real-time systems through characterizing overloads in terms of overload metrics. This
chapter presents schedulability conditions for overload-tolerant systems and an ap-
proach towards finding a suitable resource supply for a given workload and tolerable
worst-case delay.

• Chapter 4 presents a model-driven design to allow generation of schedules from high-
level specifications for practical implementation of state-based TDMA and leveraging
the branching capabilities.

• Chapter 5 discusses overload-tolerant component interfaces that can be specified
using the resource supply and characterization of transient overloads. A workflow
discusses the steps necessary to generate state-based schedules using component in-
terfaces for scheduling of both computation and communication through separation
of concerns.

• Chapter 6 presents concluding remarks for scheduling of overload-tolerant compu-
tation and multi-mode communication through generation of state-based schedules
using component interfaces.

• Chapter 7 presents some future works that can be done as extensions to improve and
extend the work presented in this dissertation.

7

Chapter 2

Fundamentals

Applications require resources to operate. Such resources include computation time (i.e.,
access to a processing unit to execute instructions), memory (i.e., temporary or permanent
data storage), and communication bandwidth (i.e., access to a shared medium to transmit
information to remote stations). Before an application uses such resources, it must acquire
them. A scheduling mechanism can control the access of resources given to applications.
For example, the dispatcher in the operating system decides at each scheduling point which
process that is ready to run to give access to the processing unit.

Real-time systems are time-sensitive and consist of time-critical distributed applica-
tions. If the computation is based on outdated data, incorrect result may appear. For
example, a counter counts the number of occurrences of some specified external event and
has to output the result. A timing failure on the input in observing the events can cause a
functional failure on the output. This chapter presents an overview of scheduling schemes
used for processors and network in real-time systems.

2.1 Scheduling of Real-Time Computation

Real-time systems are characterized by timing constraints that must be met to achieve the
expected behaviour. Real-time systems execute tasks to perform the desired computational
activity. Real-time tasks are usually of two types: hard and soft. A task will be said to be
hard if the failure occurs because of missing the task deadline. Conversely, a task will be
said to be soft if the system performance degrades but no failure occurs because of missing
the task deadline. A number of parameters such as arrival time, execution time, start time,

8

completion time, deadline, response time, and slack characterize a task. Arrival time of a
task is the time at which it becomes ready for execution, also referred as the release time.
Execution time of a task is the time required to execute the task’s computation without
interruption. Start time of a task is the time at which it starts execution. Completion time
of a task is the time at which it finishes execution. A task’s typical timing constraint is
one of two types of deadline: absolute and relative. The absolute deadline is specified with
respect to time zero, and the relative deadline is specified with respect to the arrival time.
Response time of a task is the difference between the completion time and the release time.
Slack time of a task is the maximum time that the task can be delayed without missing
its deadline.

A scheduling problem consists of a set of tasks with timing properties, and a set of
resources (i.e., processors). In addition, precedence constraints among the tasks may exist.
In this context, scheduling refers to assigning the processors and resources to tasks in
order to complete the execution of all tasks without violating the timing requirements. A
scheduling algorithm guarantees this. In the following, we present some of the traditional
scheduling algorithms.

The RM [60] algorithm schedules a set of periodic independent hard real-time tasks
based on priorities. RM scheduling assigns the priorities based on the task periods. The
task with the shortest period is assigned the highest priority, and the task with the longest
period gets the lowest priority. The scheduler selects the task with the highest static
priority to run next.

EDF is a dynamic preemptive scheduling policy [60] that assigns priorities to tasks
based on the earliest completion time. Therefore, the task with the earliest deadline is
scheduled first, and the task with the longest deadline is scheduled last. The priorities are
assigned dynamically based on the remaining time to the deadline of tasks. The scheduler
selects the task with the highest priority to run next in the same way as RM.

The Least Laxity First (LLF) scheduling algorithm makes the same assumptions as the
EDF algorithm. The scheduler chooses the task that has the shortest laxity. Laxity is the
difference between a task deadline and the computation time of the task. Therefore, the
task with the shortest laxity is assigned the highest priority.

Many variations of RM and EDF scheduling algorithms exist in the literature. Research
work [31] on partitioned multiprocessor scheduling examined the use of EDF and RM,
combined with bin-packing heuristics such as First-Fit, Next-Fit, Best-Fit, and Worst-Fit.
The global multiprocessor scheduling [31] also exists in the literature such as global EDF,
global LLF, Proportionate Fair (PFair), and Largest Local Remaining Execution Time
First (LLREF) permits tasks to migrate from one processor to another.

9

In real-time systems, overloads can occur which cause different scheduling techniques
to perform differently [22]. An overload is categorized into two types: transient and perma-
nent. A transient overload can occur because of the excess demand of the execution time
of tasks. This type of overload can occur from the simultaneous arrival of asynchronous
events. If the utilization of the processor exceeds one for reasons like activation of a new
periodic task or increasing the activation rate of existing tasks, then a permanent overload
will occur for a uniprocessor system. For a multiprocessor system, the utilization must be
no greater than the number of processors to avoid permanent overloads.

Another term related to overloads is called overrun. Overruns occur when a task
execution time exceeds the expected time. This situation may occur for two reasons:
(1) new jobs arrive more frequently than expected or (2) computation time exceeds its
expected value. The difference between overload and overrun is that the latter is related
to a single job whereas the overload is related to the processor. A single task overrun does
not necessarily cause an overload in the system.

2.2 Scheduling of Real-Time Communication

Scheduling schemes for processors and for networks that permit distributed access to re-
sources are different. Processor scheduling relies on network scheduling for the distributed
access to resources. In addition, one difference between the processor scheduling and net-
work scheduling is that the basic scheduling unit in network scheduling is a packet or
message that contains information. The packet transmission cannot be preempted. The
length of the packet defines the required time for transmission.

The Time-Triggered Protocol (TTP) [53, 54] integrates time-triggered communication
with temporal error detection, a fault-tolerant clock-synchronization service, and a mem-
bership service. The schedules are generated off-line, and the parameters for the transmis-
sion slots are determined a priori.

An extension of switched Ethernet is Time-Triggered Ethernet (TTEthernet). TTEth-
ernet [52] supports standard Ethernet traffic and provides a deterministic message trans-
port. A TTEthernet switch supports two types of messages: (1) standard Event-Triggered
Messages (ET-messages) and (2) deterministic Time-Triggered Messages (TT-messages).
The formats of ET-messages and TT-messages follow the Ethernet standard, and the con-
tents of the Ethernet type field or header make the difference between these two types
of messages. The TTEthernet switch transmits TT-messages with a constant amount of
small delay and ET-messages are transmitted when no TT-messages are transmitted. Dif-

10

ferent conflict resolution strategies exist for handling conflicts between ET-messages and
TT-messages.

FlexRay [68] is a communication protocol for safety-critical applications designed by
the FlexRay consortium. FlexRay is a combination of a time-triggered protocol and an
event-triggered protocol. FlexRay uses a fault-tolerant clock synchronization that is similar
to clock synchronization in TTP except for the membership service. The FlexRay event-
triggered protocol is similar to the ARINC 629 mini-slotting protocol. FlexRay has two
successive intervals: one for the time-triggered communication and the other one for the
event-triggered communication.

Many researchers have proposed dynamic methods for the co-design of network schedul-
ing and control applications. For example, Lluesma et al. [61] develop Jitterbug as a tool to
analyze real-time control performance under the network induced jitter. Ji et al. [50] lever-
ages a stochastic optimal method to analyze the communication time delay in the network,
but focuses on the Networked Control System (NCS) with only one control application.
Velasco et al. [80] propose a bandwidth allocation algorithm by adjusting the sampling
period of the control application locally at run time to optimize the overall control perfor-
mance. However, the algorithm needs accurate knowledge of the bandwidth utilization at
run time as a prerequisite. Walsh and Ye [82] present a dynamic arbitration technique to
grant network access to the control loop with the highest error using the Maximum-Error-
First with Try-Once-Discard (MEF-TOD) scheme. Yepez et al. [88] propose a Largest
Error First (LEF) scheduling algorithm based on the continuous feedback from the Qual-
ity of Service (QoS) of the control applications. Similar to [88], Xia et al. [87] propose a
scheduling algorithm based on the importance of each control application. However, these
dynamic scheduling algorithms in [87] focus on priority-based networks like CAN, and need
a centralized scheduler to make the schedule decision. Branicky et al. [19] applied the RM
algorithm to schedule a set of control applications in NCS, and the optimal scheduling
algorithm was formulated that took both the RM constraints and the NCS-stability con-
straints into consideration. Ren et al. [72] propose a QoS management scheme for parallel
NCSs. Hong [45] proposes a scheduling algorithm to adjust the data sampling time such
that the performance requirement of each control loop is satisfied while the utilization of
network resource is significantly increased. Later, an extension of this algorithm for the
bandwidth allocation applies to the Controller Area Network (CAN) protocol [46], which
can satisfy the performance requirements of real-time application systems and fully uti-
lize the bandwidth of CAN. Rehbinder and Sanfridson [71] propose an optimal off-line
scheduling method using the control theory. However, these algorithms are static without
considering the workload variation.

State-Based Scheduling. A state-based schedule is a tree-like structure with a root

11

and a set of leaves where each vertex in the structure specifies a message to be transmitted
and each edge a possible state transition. Edges contain enabling conditions. At run time,
for each vertex exactly one edge is enabled at any given time. Whenever an execution
reaches a leaf of the tree, it will loop back to the root. Figure 2.1 shows a state-based
schedule for a patient monitoring system.

State-based schedules can still lead to unbounded communication delays, because the
schedule itself may encode collisions on the medium which force retransmission. Develop-
ers must choose the right type of communication to prevent this. State-based schedules
can model and execute two different types of traffic: guaranteed and best effort. Also,
developers can increase the level of detail by either communicating individual variables or
using general message passing. The difference between these types of communication lies
within the ownership of the queues, meaning which stations know the different types of
queues.

For example, the communication type of guaranteed variable updates will occur, if only
one station transmits in that state of the state-based schedule and the transmission is
specifically bound to a variable. The update is guaranteed since no other station will
transmit and thus the communication will be free of collisions. Conversely, best effort
messaging will occur, if more than one station is permitted to transmit data from their
send queue in the state of the state-based schedule. If more than one station has a message
in its send queue, then communication problems such as collisions or packets drop might
occur. These different types of communication are visible from the specification of the
state-based schedule, and the system also directly executes the state-based schedule as it
gets encoded in the Network Code language [37].

Since the system will execute the state-based schedule at run time, developers can use
the state-based schedule itself and state-space exploration on the schedule as evidence that
the system works correctly. The schedule enables developers to provide upper bounds on
the resource allocations for specific applications. Therefore, the developer can set and
claim that certain variables will always receive bandwidth and stations will always receive
updated values.

An Illustrative Example. Lets assume a distributed patient monitoring system in
which body sensors transmit physiological parameters to the patient monitor. When the
Pulmonary Vascular Resistance (PVR) of the patient passes a given threshold, the patient
monitor will send an alarm message to the nurse station within bounded time.

PVR is the resistance in the pulmonary vascular bed against which the right ventri-
cle must eject blood. To calculate the pulmonary vascular resistance, the patient moni-
tor requires the Left Atrial Pressure (LAP) or the Pulmonary Capillary Wedge Pressure

12

(PCWP), the Pulmonary Artery Pressure (PAP), and the Cardiac Output (CO). PCWP
provides an indirect estimate of LAP. PCWP is measured by wedging a catheter into a
small pulmonary artery tightly enough to block flow from behind. LAP can be measured
by placing a special catheter into the right atrium and then pushing through the inter-atrial
septum. Since the patient monitor only requires the LAP or the PCWP, several modes
can be created for the operation of the monitor:

• Configuration 1: The patient monitor uses the PAP, CO, and LAP.

• Configuration 2: The patient monitor uses the PAP, CO, and PCWP.

• Configuration 3: The patient monitor uses the PAP, CO, and LAP. If an alarm is
pending, then the monitor will make a safety check and also acquire the PCWP,
before signaling the nurse alarm. This will lower the number of false alarms as it
eliminates the problem of incorrect LAP measurements.

• Configuration 4: This is similar to configuration 3, but the patient monitor first uses
PAP, CO, and PCWP, and then uses LAP for the fail safe.

The calculation of the pulmonary vascular resistance is processed as a single transaction.
This means that the system should always complete all data transmissions that the patient
monitor requires before reconfiguring (e.g., changing configuration). This assumption is
important, because the model assumes setting the configuration with a physical button
which the nurse can press with a frequency of at most once in a fixed amount of time. In
addition, the patient monitor must signal the nurse alarm within a bounded time when
the pulmonary vascular resistance exceeds a specific threshold.

Based on the specifications, a designer will be able to find a state-based schedule.
The system model assumes that communicating one value takes one time unit, and the
inter-arrival time of the button pressed events is set accordingly. Figure 2.1 shows the
state-based schedule that implements the specification. A vertex labeled ε takes zero time,
and this is used to encode branches with more than two choices or for early termination
of the schedule. The PVR monitoring station can operate in four configurations. In any
of the four configurations, the monitoring system at first receives the value of the PAP
from the circulatory system to calculate the PVR. If the received value is out of the
normal range for PAP values (i.e. 10-20 mmHg), the system will enter the safety interlock
state. In the safety interlock state, the system checks the important functions of the
human cardiovascular system such as the patient’s pulse rate while resting (60-100 beats
per minute) to determine the patient’s safety. This assumption is implicit and not shown

13

in the Figure 2.1. After receiving the value of CO within the normal range (4 L/min-8
L/min), the system can either receive LAP (normal range 6-12 mmHg) or PCWP (normal
range 6-12 mmHg) based on the current configuration. The patient monitor will receive
PCWP after PAP, if the system uses configuration 3. On the other hand, the monitor
will receive LAP after the PAP, if the system runs in the default configuration (i.e., any
configuration other than 1, 2, and 3). The system will enter into the safety interlock state
for out of the normal range of CO, LAP, or PCWP. The system will generate an alarm
and notify the nurse, when the PVR exceeds normal value (> 250 dyn.s/cm5). The nurse
can change the configuration of the monitoring system at any point in time but not in the
middle of a transaction.

Guards g1 and g2 define the enabling conditions whether the PVR value of the patient
exceeds the defined threshold thr. Guards g3 to g6 are enabling conditions depending on
the configuration setting. Assume that configuration 4 is the default configuration.

For demonstration purposes, let’s walk through a configuration that assumes conf = 4
and PVR ≥ thr. In the root location labeled ε0, only g6 will be enabled. The state-based
schedule specifies that the next three messages on the bus will be PAP, CO, and PCWP.
At that point, PV R exceeds the threshold thr (PVR ≥ thr), so g1 is true, and the patient
monitor will also receive the LAP measurement. Finally, g1 will again be true, and the
patient monitor will signal an alarm before the state-based schedule restarts at its root
location.

The Network Code Framework. The Network Code framework provides the nec-
essary abstractions and execution entities to describe and run state-based schedules for
distributed real-time systems. The framework targets control at the Medium Access Con-
trol (MAC) layer using three components: (1) an assembly-like domain-specific language
to represent state-based schedules, (2) a compiler with a verification engine that translates
the programs into verified executable abstractions, and (3) a runtime entity that executes
the schedules.

Network Code is a domain-specific programming language for the implementation of
distributed real-time systems with TDMA communication systems. The language consists
of a small set of assembly-like instructions with well defined operational semantics. Be-
sides software prototypes, Network Code has been implemented as a hardware-accelerated
special processor [38] on top of Ethernet and inside a network switch [24].

Listings 2.1, 2.2, and 2.3 show the Network Code programs that implement the schedule
for the simple TMR system in Fig. 2.2. In a typical setup for TMR, three sensors transmit
independent samples of the same variable in consecutive messages σ1, σ2, and σ3. A voting
controller receives these messages and performs a majority vote to determine the final

14

g2

g1g5

g4

g3

g6

g1

ǫ1

ǫ2

ǫ4

ǫ3

ǫ5

ǫ6

ǫ0

LAP

g4 ← (conf = 2)

g5 ← (conf = 3)

g6 ← (conf 6= 1) ∧ (conf 6= 2) ∧ (conf 6= 3)

CO

CO

CO

CO LAP

PCWP

LAP

PCWP

PCWP

Nurse

Nurse

Nurse

Nurse

g2 ← (PVR < thr)

g1 ← (PVR ≥ thr)

g3 ← (conf = 1)

PAP

PAP

PAP

PAP

g2

g2

g1

g1

g1

g1

g2

g2

g2

Figure 2.1: A state-based schedule for a patient monitoring system

value. On the one hand, in a static TDMA configuration, the sequence of transmitted
messages is determined only by the progression of time, and then the stations will always
transmit the three messages, even if σ1 and σ2 are already decisive for the voting. On the
other hand, a state-based schedule can perform a preliminary voting after receiving the
first two samples, and if the voting is already decisive, then the slot associated to the third
sample can be empty, leaving the medium available for other purposes such as best-effort
traffic. Fig. 2.2 illustrates this behavior. The system can operate in two modes: mode 1
considers that the system needs to communicate the three messages, and mode 2 considers
that the vote is already decisive after the second message. The system starts in mode 1,
and after transmitting σ2 it checks the guard g : σ1 6= σ2 to decide whether to transmit a
message or leave the slot empty (ε) and available for other messages (such as best-effort
data). After the third slot, a new round starts and the system resets to mode 1.

For simplicity, the system model assumes that all stations start execution at the same
time and share a global time base. Network Code defines slots using the instructions future

and halt. The instruction future(dl,L) starts a countdown timer with initial value dl. The
instruction halt() stalls the program execution waiting for the expiration of this timer, and

15

σ2σ1 σ3

σ2σ1 ɛ

slot 1 slot 2 slot 3

σ1

σ1

slot 1

g

g

Communication Round

t

state 1

state 2

Figure 2.2: State-based representation of a TMR application

then resumes execution of the program at label L. The timespan of the countdown timer
encodes the length of the slots. Instructions between future-halt blocks represent the actions
for each slot.

Transmission of values is driven by create-send sequences. The branch(g, L) instruction
enables the encoding of on-the-fly decisions. The guard g checks for specific conditions
based on values of buffers, execution history, flags, etc. If the evaluated guard returns
TRUE, the schedule will continue execution at the specified label L; otherwise, the schedule
will continue with the next instruction. In the example, the third sensor verifies the
transmitted values from the other sensors in the previous slots in the round. For simplicity,
we assume that the station performed the corresponding receive instructions during the
slot labeled L0.

Listing 2.1: Network Code program for sensor 1 in TMR example

L0 : f u tu r e (3 , L0) ; % jump to L0 a f t e r 3 time un i t s
c r e a t e (T1) ; % c r e a t e message T1 from l o c a l data
send () ; % send message T1
ha l t () ; % s t a l l and wait f o r the t imer

Listing 2.2: Network Code program for sensor 2 in TMR example

L0 : f u tu r e (1 , L1) ; % jump to L1 a f t e r 1 time un i t
ha l t () ; % s t a l l and wait f o r the t imer

L1 : f u tu r e (2 , L0)
c r e a t e (T2) ;
send () ;
ha l t () ;

Listing 2.3: Network Code program for sensor 3 in TMR example

L0 : f u tu r e (2 , L1) ; % r e c e i v e T1 and T2

16

ha l t () ;
L1 : f u tu r e (1 , L0) ;

i f (T1=T2 , L2) ; % jump to L2 i f T1=T2
ha l t () ;

L2 : c r e a t e (T3) ;
send () ;
ha l t () ;

The Network Code framework includes a powerful hardware-accelerated open-source
platform that allows researchers to deploy and test their own solutions with tight timing
guarantees in multi-segmented Ethernet networks [23]. However, while the framework
offers tools to verify the schedules before runtime, developers must still write the program
at low-level, requiring a good understanding of the underlying technology, and perform
fine tuning of configuration parameters to fit particular application requirements.

17

Chapter 3

Scheduling of Overload-Tolerant
Computation

Real-time applications have deadline constraints. The system should provision sufficient
resources for the application to meet the deadlines, and use supply and demand bound func-
tions to analyze the schedulability of workloads. The demand bound function determines
the upper bound on the resources required by the application, while the supply-bound
function specifies the lower bound on the resources supplied to the tasks. If the system
provides fewer resources than required, the application will experience an overload. Most
work concentrates on designing systems that cannot experience short periods of overloads.

This chapter presents analysis of resource provisioning for control applications that
can tolerate overloads. It introduces analysis techniques for supply and demand bound
functions that specifically consider overloads and delays in a periodic resource model. With
this extended model, we address three problems: (1) determine the worst-case delay for
a given resource demand and supply under a periodic resource model, (2) find a periodic
resource supply for a given workload and worst-case tolerable delay, and (3) for a control
system with a given robustness criterion, identify a periodic resource supply with a worst-
case delay.

The remainder of this chapter is structured as follows: Section 3.1 presents an overview
of the problem, and the motivating application of control systems is presented in Sec-
tion 3.2. This produces a set of computational and tuning requirements, along with a
specification on the maximum overload (i.e., delay) that can be tolerated. Section 3.3
presents the system model and shows how to characterize overloads using supply and de-
mand bound functions. Section 3.4 presents methods on calculating a suitable resource

18

supply to meet the workload timing requirements in the presence of overloads. Section 3.5
demonstrates the use of the workflow for state feedback control of two plants. Section 3.6
presents some related work on schedulability analysis, specifically using supply and de-
mand bound functions. Section 3.7 discusses what parameters in the system model affect
the overloads.

3.1 Problem Statement

A supply bound function (sbf) and demand bound function (dbf) convert the timing re-
quirements of the workload and the resource supply into a single timing requirement.
Traditionally and informally, the dbf must stay below the sbf at all time intervals in or-
der to avoid overloads. When permitting overloads, the sbf can remain below the dbf for
bounded time intervals. Overloads then cause delays as the application must wait to receive
sufficient resources. The worst-case delay δ∗ is the maximum delay that tasks experience
before they receive their requested resources.

In the context of control systems, a scheduling framework that supports overloads
can help control engineers to design efficient and safe systems. A control system task-
specification might include the worst-case tolerable delay in all time intervals. One can
design an efficient resource supply to exploit the robustness of a given set of tasks to delays.
Then, the following problem identifies the resource supply that the system designer needs
to provide for the control application that permits overloads:

Goal: Given a control system workload W = {τ1, τ2, . . . , τn} and a worst-case delay
(δ∗), find the resource supply such that W is schedulable under the EDF scheduling policy
and experiences a worst-case delay of at most δ∗.

A solution to this problem is applicable to hard, soft, and firm real-time systems. For a
hard real-time system, δ∗ must be zero. Soft real-time systems might specify some bound
for δ∗. Firm real-time systems [63] may specify a δ∗ with a probability of occurring.

3.2 Feedback Control Systems With Delays

Consider a physical system (plant) modeled as a linear time-invariant system of the form

ẋ(t) = Ax(t) +Bu(t), (3.1)

19

where t is the time variable, x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control
input applied via the actuators, and matrices A and B are of appropriate dimensions. This
model is obtained from the physical processes governing the system under consideration.
A typical objective is to choose the input u(t) so that the system is stable in the following
sense.

Definition 1 The system (3.1) is said to be asymptotically stable if limt→∞ x(t) = 0 for
any initial condition x(0).

When the full state x(t) is measurable and the pair (A,B) satisfies an algebraic property
known as stabilizability [26], it is possible to find a state-feedback control input of the form
u(t) = Kx(t) such that the system is asymptotically stable (where K is an appropriate
m × n gain matrix). When the plant is controlled over a network, however, stabilization
is complicated by issues such as sampling, delays and packet drops. There has been a
large amount of research devoted to characterizing conditions under which stabilization is
possible, for various assumptions on the system and the network [89, 44, 30, 48, 42, 73, 66].
This work follows the approach in [30], which presented a general and computationally
efficient method to obtain bounds on the delays that can be tolerated by a given control
system.

First, we assume that the plant state is sampled every p seconds to produce the state
measurements x(tk), where tk = kp for k ∈ N. These state measurements are then sent
over the network to the controller (i.e., a computational resource), which calculates the
control input u(tk) = Kx(tk) and sends this value to the plant’s actuators, where it is
held until the next input is received. There is a delay µk incurred between measuring the
plant’s state at time tk and applying the input u(tk). Thus, as in [30], the system evolves
as follows:

ẋ(t) = Ax(t) +BKx(tk), t ∈ [tk + µk, tk+1 + µk+1).

Let µ∗ be the maximum possible delay over the network (i.e., µ∗ = supk∈N µk). The
following result from [30] provides a method to determine whether the system will be
stable with a given worst-case delay and feedback gain K.

Theorem 1 ([30]) For a given scalar η and matrix K, if there exist matrices P > 0,
T > 0, Ni and Mi (i = 1, 2, 3) of appropriate dimensions such that Equation 3.3 is true,
then the system is asymptotically stable with the state feedback input u(t) = Kx(tk), t ∈
[tk + µk, tk+1 + µk+1), as long as the sampling period p and worst-case delay µ∗ satisfy

p+ µ∗ ≤ η. (3.2)

20


N1 +NT

1 −M1A−ATMT
1 NT

2 −N1 −ATMT
2 −M1BK NT

3 −ATMT
3 +M1 + P ηN1

∗ −N2 −NT
2 −M2BK −KTBTMT

2 −NT
3 +M2 −KTBTMT

3 ηN2

∗ ∗ M3 +MT
3 + ηT ηN3

∗ ∗ ∗ −ηT

 < 0.

(3.3)

For a square symmetric matrix P , the notation “P > 0” in the above theorem indicates
that the matrix is positive definite. The matrix in (3.3) is symmetric, and to save space,
the ∗ symbols are used as placeholders for the appropriate matrix elements. When η is
a fixed constant, the above expression is a Linear Matrix Inequality, which can be solved
efficiently for the unknown matrices P, T,Ni and Mi using convex programming software
such as CVX [17, 41]. One can find the largest value of η for which the system will be stable
by using bisection.

To relate the above characterization of stability to the characterization of overloads or
delays, we note that the worst-case delay δ∗ represents the longest length of time after the
end of any task’s period that would be required for the necessary computational resources
to become available. Thus, from the perspective of the control system, the longest possible
delay seen by a packet generated at time tk would be µ∗ = p + δ∗ (i.e., the length of one
period plus the maximum additional time required to obtain the desired resources). Thus,
once we find a worst-case value for η from Theorem 1, we can obtain an upper bound on
δ∗ from Equation (3.2) as

δ∗ = η − 2p.

Figure 3.1 outlines how developers can use the results of this work. After the control
engineer designs the system, she computes the dbf of the application, and specifies the
upper bound on the worst-case delay (for example, using the technique described above).
Second, using our algorithms as specified in Section 3.4, the engineer finds a resource
supply for the resource of interest (e.g., the processor). Third, the engineer analyzes the
sbf , the dbf , and the control system to determine whether the found supply is sufficient
for the system (e.g., worst-case delay remains below the specified bound). If the found
supply fits the system, then in the fourth step, the engineer can use the supply to deploy
the system; otherwise, the engineer can tweak the constraints on the supply generation
and find a different supply.

21

Stability condition satisfied?

Stability condition violated? Compute metrics

Design control and find δ∗

Compute DBF with δ∗

Find resource supply demand with δ∗

Analyze SBF, DBF

Run system

Figure 3.1: Proposed workflow to use resource supply

3.3 Overloads in Supply and Demand Curves

The system model consists of a periodic resource model and a periodic workload, consisting
of a set of tasks (e.g., the tasks to process the feedback control signals). A task τi is
characterized by a tuple (pi, ei) where pi is the period and ei is the worst-case execution
time. We assume the deadline di of task i is equal to pi. A set of tasks or a workload is
characterized by a set of tuples: {(p1, e1), . . . , (pn, en)}. This work assumes that all n tasks
in the system are fully preemptive and have a known tolerable delay. The hyperperiod of
all tasks’ periods forms the cycle at which the system repeats its behaviour. A periodic
resource model indicates resource replenishment in each period. Given a periodic resource
model R(λ, θ), tasks are allocated for θ time units in every interval [kλ, (k + 1)λ], k ∈ N.
A scheduling model M consists a workload W , a resource model R, and a scheduling
algorithm A. This work uses the EDF scheduling policy.

3.3.1 Supply and Demand Bound Functions

Supply and demand bound functions are used to determine schedulability under a partic-
ular scheduling policy. Supply and demand bound functions facilitate exact schedulability
analysis during all time intervals, rather than sufficient analysis. A demand bound function
is used to find the maximum resource demand during a time interval. On the other hand,
a supply bound function is used to calculate the minimum resource supply during a time
interval.

For a given workload, the dbf is the maximum possible resource demand in any time
interval t. Obtained from [76], Equation 3.4 shows how to calculate the resource demand

22

for n tasks for the EDF scheduling scheme for a time interval (Fig. 3.2) of length t:

dbf(W,EDF, t) =
∑
τi∈W

⌊
t

pi

⌋
ei. (3.4)

0

2

4

6

8

10

0 5 10 15 20 25 30

D
u
ra

ti
o
n

Time interval

resource demand

Figure 3.2: dbf(t) for W = {τ1(6, 1), τ2(12, 2)}

A periodic resource supply R(λ, θ) provides θ time units in every λ time units. The
supply bound function calculates the minimum resource supply during any time interval
t. Using Equation 4.1 from [76], it is possible to find the minimum resource supply during
any time interval (Fig. 3.3) of length t as:

sbf(t) =


(t− (k + 1)(λ− θ)) if t ∈ [k1, k2]

(k − 1)θ otherwise

(3.5)

with k1 = (k + 1)λ− 2θ, k2 = (k + 1)λ− θ, and k as

k = max(d(t− (λ− θ))/λe, 1).

Note that, the value of k is greater than or equal to 1.

Since a periodic resource R(λ, θ) guarantees a supply of at least θ time units in every
interval [kλ, (k + 1)λ], k ∈ N, the model leaves open how the guaranteed θ time units are

23

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

S
u
p
p
ly

Time interval
0 1 2 3 4 5 6 7 8 9 10

Worst-case instance

Figure 3.3: sbf(t) for λ = 3 and θ = 1

distributed over a time interval of size λ. An instance of the periodic resource is a time
trace of resource allocations that satisfies the guarantee (λ, θ).

For a given scheduling model M(W,R,EDF), if the resource demand of W is no greater
than the resource supply of R during any time interval, then M is schedulable. Therefore,
M is schedulable if ∀t : dbf(t) ≤ sbf(t).

Example 1 Consider a periodic resource supply R(3, 1) and scheduling model M(W,R,EDF)
that has two tasks in the workload, W = {τ1(6, 1), τ2(12, 2)}. Fig. 3.4 shows the computed
sbf and dbf. This workload is not schedulable with the given resource if the workload cannot
tolerate any delay, because the supply is not always greater or equal than the demand.

3.3.2 Characterizing Overloads

While previous work on the periodic resource model [78] only discusses resource supplies
and demands for which the sbf is always less than the dbf , our work focuses on using the
periodic resource model in systems for which the dbf can be greater than the sbf for some
time intervals. Figure 3.5 shows such overloads. Figure 3.6 shows a more detailed view of
a single overload.

24

0

2

4

6

8

10

0 5 10 15 20 25 30

Time interval

D
ur

at
io

n

Resource demand

Resource supply

Figure 3.4: An example of sbf and dbf where ∀t: sbf(t) ≥ dbf(W, t, EDF)

Definition 2 (Overload) An overload is said to occur in a time interval of length t when
∃t > 0 : dbf(t) ≥ sbf(t).

Example 2 Slightly changing the workload to W = {τ1(6, 1), τ2(12, 2)} makes the system
infeasible to schedule if the periodic resource supply is R(3, 1). Figure 3.5 shows the new
dbf. The system is infeasible because in a time interval of t = 12, the system can experience
an overload, since the dbf is greater than the sbf.

An overload starts and ends at a specific time interval at which the sbf and the dbf
intersect before the dbf becomes greater than the sbf . The points at which this intersection
happen are called points of interest.

Definition 3 (Points of Interest) A point t is an overload point (to) if

∃π > 0 : ∀ε ∈ (0, π] sbf(t− ε) ≥ dbf(t− ε)
and sbf(t) < dbf(t). (3.6)

25

0

2

4

6

8

10

0 5 10 15 20 25 30

Time interval

D
ur

at
io

n

Resource demand

Resource supply

 Overload

 Overload

Figure 3.5: An example of an overload (∃t : sbf(t) < dbf(W, t, EDF))

A point t is a recovery point (tr) if

∃π > 0 : ∀ε ∈ (0, π] sbf(t− ε) < dbf(t− ε)
and sbf(t) = dbf(t). (3.7)

In this work, an overload point to is the earliest possible integer point that Equation 3.6
satisfies. This overload point is associated with a recovery point tr, which is the earliest
integer point Equation 3.7 satisfies.

We use these points of interest to define the duration and severity of an overload. The
first recovery point with a time interval greater than an overload point is the associated
recovery point. Informally, this is the point at which the sbf catches up to the dbf again.

Definition 4 (Overload Duration) For a given overload point to and its associated re-
covery point tr such that to ≤ tr, the duration of an overload is tr − to when to ≥ t, or
t− to when to ≤ t ≤ tr, where t is the length of the time interval under consideration.

26

2

3

4

5

6

11 12 13 14 15

time interval

du
ra

tio
n

2

3

4

5

6

11 12 13 14 15

Time interval

D
ur

at
io

n

Resource demand

Resource supply

Recovery pointOverload point

 Delay

Figure 3.6: A detailed view of an overload shown in Figure 3.5

The duration of an overload is a useful metric when designing the system. The existence
of a given overload point to and its associated recovery point tr means there exist time
intervals of length tr in which the system may be overloaded. However, at the same time,
for time intervals greater or equal to tr, the system no longer experiences an overload.
Thus the difference tr − to specifies the delay that tasks experience when waiting for their
resources. However, if no such recovery point tr exists, the delay is taken to be t − to,
where t is the time interval under consideration.

Observation [Duration=Delay]: For a given overload point to and its associated re-
covery point tr, the duration of the overload tr − to or t − to characterizes the delay that
tasks experience during the overload before receiving their demanded resource.

Definition 5 (Worst-case Delay) For a scheduling model M(W,R,EDF) with a peri-
odic resource R(λ, θ) and a workload W , then under the EDF policy, the maximum of all
overload durations will be the worst-case delay (δ∗) of any task.

The following observations limit the locations of points of interest:

27

1. For an overload point to, the dbf can only exceed the sbf at points t where the dbf
increases. The dbf only increases at t = m · pi for some positive integer m and task
period pi. Thus, if the system contains overload points, then they must be values in
the set {mpi : m ∈ N+}.

2. For a recovery point tr, the sbf can only be equal to or greater than the dbf at points
t where the sbf is increasing, i.e., at t = cλ+2(λ−θ)+r, where c is a positive integer
and 1 ≤ r ≤ θ. Thus, if the system contains recovery points, then they must be of
this form.

We now show that when the resource utilization is equal to the workload utilization,
the overload characteristics of the system are periodic. In the process, we characterize the
length of the largest time interval that has to be considered to analyze the system. To do
this, we define the function

f(t) = sbf(t)− dbf(t), t ∈ R≥0. (3.8)

Note that the values of t for which f(t) < 0 correspond exactly to time intervals where the
system is experiencing an overload.

Theorem 2 Consider a system with workload utilization UW =
∑

i
ei
pi

and resource uti-

lization UR = θ
λ

. If UR = UW , then after t = 2(λ − θ), the function f(t) is periodic with
period LCM(λ, p1, . . . , pn), i.e.,

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= f(2(λ− θ) + t), ∀t ∈ R≥0,∀k ∈ N.

Proof First, one can verify from Equations (3.4) and (4.1) that dbf(t) and sbf(t) satisfy

dbf(t+ kLCM(p1, . . . , pn)) = dbf(t)+

kLCM(p1, . . . , pn)UW ,∀t ∈ R≥0,∀k ∈ N
sbf(2(λ− θ) + t+ kλ) = sbf(2(λ− θ) + t) + kθ,

∀t ∈ R≥0,∀k ∈ N.

28

Using these identities, we obtain

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

− dbf(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t) + kLCM(λ, p1, . . . , pn)UR

− dbf(2(λ− θ) + t)− kLCM(λ, p1, . . . , pn)UW .

When UR = UW , this expression becomes

f(2(λ− θ) + t+ kLCM(λ, p1, . . . , pn))

= sbf(2(λ− θ) + t)− dbf(2(λ− θ) + t)

= f(2(λ− θ) + t),

which proves the theorem.

The function f(t) fully captures the relative behavior of the supply bound function and
the demand bound function, and the entire function f(t) is characterized by its values in
the interval [0, 2(λ− θ) + LCM(λ, p1, . . . , pn)). Thus, we only need to analyze the system
for intervals up to this length to determine schedulability. We will use this fact in the rest
of the chapter.

Algorithm 1 Finding all overload points in intervals of length up to t

Output: Ordered list of overload points Lo
1: for every i→ 1, . . . , |W | do
2: for every 1 ≤ m ≤ b t

pi
c do

3: if mpi satisfies (3.6) then
4: Lo ← Lo ∪mpi
5: end if
6: end for
7: end for

3.3.3 Computing the Points of Interest

Overloads can only occur at the points where the dbf increases, because the sbf is a
monotonically increasing function. A recovery can only occur at points where the sbf

29

increases and the dbf remains flat. Since overload points and recovery points are located
at intersection points, it is possible to find these points by solving the equation sbf(t)=
dbf(t): 

∑
τi∈W b

t
pi
cei = (t− (k + 1)(λ− θ)) if t ∈ [k1, k2]

∑
τi∈W b

t
pi
cei = (k − 1)θ otherwise.

(3.9)

We use the algorithms (Algorithm 1 and Algorithm 2) to find the overload and recovery
points to Equation 3.9. Algorithm 1 identifies all overload points in any interval of length
t. Algorithm 2 computes the recovery points associated with each overload point. The
algorithm uses Equation 3.7 to determine the points.

Algorithm 2 Finding all (to, tr) pairs in intervals of length up to t

Output: List of (to, tr) pairs Lr
1: for every i→ 1, . . . , |W | do
2: for every tuple of consecutive tio, t

j
o ∈ {Lo ∪ t} do

3: if ∃tr with tio < tr < tjo which satisfies (3.7) then
4: Lr ← Lr ∪ 〈to, tr〉
5: end if
6: end for
7: end for

Example 3 Continuing from Example 1, three overload points (to) and three recovery
points (tr) exist in all time intervals t of length 0 < t ≤ (LCM(6, 12) + 2(3− 1)) as defined
in Theorem 5.7. The overload and associated recovery points up to the hyperperiod are:
(12, 14). Hence, the worst-case delay is two units. Figure 3.6 shows a tuple of an overload
and a recovery point where the worst-case delay occurs.

A system enters into continuous overload if ∃to : ∀t > to sbf(t) < dbf(t). If the resource
utilization is less than the workload utilization, the system will eventually experience con-
tinuous overload.

3.3.4 Schedulability Analysis with Overloads

Schedulability analysis is one of the key requirements in real-time systems. A hard real-time
system will be schedulable if sbf(t)≥ dbf(t) at any time interval t. However, the schedu-

30

lability condition sbf(t) ≥ dbf(t) in any time interval t is not applicable for soft real-time
system that can tolerate overloads. Therefore in the following, the schedulability analysis
condition for EDF is defined in the presence of overloads (Theorem 3), characterized by
the maximum tolerable delay.

Theorem 3 Given a system workload W = {τ1, τ2, . . . , τn} with tolerable δ∗ and a given
resource model, W is schedulable if and only if the resource demand in any time interval
exceeds the resource supply during the same time interval for no more than δ∗ consecu-
tive time units. Furthermore, this only has to be checked for time intervals up to length
LCM(p1, . . . , pn, λ) + 2(λ− θ).

Theorem 5.7 establishes the proof of Theorem 3, because f(t) = sbf(t)−dbf(t) repeats
after LCM(p1, . . . , pn, λ) + 2(λ− θ).

Since searching up to LCM(p1, . . . , pn, λ) + 2(λ− θ) for each possible λ and θ will lead
to different bounds on time intervals to search for suitable resource supplies, the following
over-approximated observation can be used as a bound to search for λ .

Observation [Search Interval] Considering possible overloads at every instance of
task period and recovery at the distance of maximum tolerable delay δ∗ from overload
points, the time interval to search for valid and feasible λ and θ is no greater than
LCM(p1, . . . , pn) + δ∗.

3.4 Finding an Efficient Resource Supply

For a given system specification consisting of a workload and a worst-case delay, the objec-
tive of the developer is to provision the system with an applicable resource supply. In [78],
the authors show how to calculate θ under the EDF scheduling policy with a given demand
and resource period λ. Since our approach permits overloads, the technique specified in [78]
is inapplicable. Furthermore, our target is to find θ without a pre assumed λ.

Since many possible resource supplies exist for a given workload, our method of cal-
culating an efficient resource supply uses a cost function to choose one resource supply
among many. The resource period λ and the supply θ are the parameters of the cost
function. Our approach not only focuses on increasing the system throughput by lowering
the resource usage (corresponding to a small θ/λ), but also reducing the number of con-
text switches (corresponding to a large λ). A larger λ will decrease the number of context

31

switches because the resource accounting mechanism in the operating system may preempt
the workload less frequently.

Assuming tasks with periods equal to deadlines, periodic transient overloads (UW =
UR), and a periodic resource model, we propose an efficient periodic resource supply model
and calculate λ and θ using the following lines:

• the diagonal lines (e.g., lines 0, 1, 2, and 3 in Figure 3.7) that pass through the points
where sbf(t) increases,

• the horizontal lines (e.g., lines 4, 5, and 6 in Figure 3.7) that are parallel to the x-axis
and pass through the dbf(t) where dbf(t) > 0,

• the vertical lines (e.g., lines 7, 8, and 9 in Figure 3.7) that pass through the points
where dbf(t) might equal to sbf(t) after an overload occurred at t− δ∗.

The diagonal, horizontal, and vertical lines intersect (as shown in Figure 3.7) for a
certain λ and the corresponding θ. The calculation of the lines of interest is as follows.

Calculating diagonal lines: The diagonal lines as shown in Figure 3.7 intercept the
points where sbf(t) increases at periodic intervals after an initial time-interval offset of
2(λ− θ). The sbf increases by θ in each time interval of length λ after the initial offset. At
each t = 2(λ− θ) + k(λ− θ), k ∈ N, the slope of sbf (t) is 1 (this assumes a uniprocessor
system). The diagonal lines are of interest because they represent all the points where the
sbf increases. Equation 3.10 represents the set of all diagonal lines.

{yk(t) = (t− (k + 2)(λ− θ)), k ∈ N, t ∈ N, k ≤ LCM({pn}) + δ∗, t ≤ LCM({pn}) + δ∗} .
(3.10)

Example 4 Using the workload W = {τ1(6, 1), τ2(12, 2)} presented in Example 1, the
tolerable worst-case delay δ∗ = 2, and Equation 3.10, the following equations correspond to
the four diagonal lines such that k = 0, . . . , 3 which are no greater than the search interval
LCM(p1, . . . , pn) + δ∗ = 14.

y0(t) = t− 2(λ− θ), (3.11)

y1(t) = t− 3(λ− θ), (3.12)

y2(t) = t− 4(λ− θ), (3.13)

y3(t) = t− 5(λ− θ). (3.14)

32

0

2

4

6

8

10

0 5 10 15 20 25 30

D
u

ra
ti
o

n

Time interval

Resource demand Resource supply

4

1 2

7 8 9

5

6

0 3

Figure 3.7: Finding intersection points for a given dbf and δ∗

Calculating horizontal lines: The horizontal lines shown in Figure 3.7 intercept the
y-axis at the sum of the execution time units of a currently executing instance of a task and
the execution time of all the preceding periodic instances of the current task and higher
priority tasks. The y-intercept points are from the horizontal lines drawn on the dbf(t)
such that dbf(t) > 0. The horizontal lines are of interest because they contain the points
where sbf(t) may be equal to dbf(t).

To devise an equation for representing the horizontal lines that intercept the y-axis, we
assume a vector v containing the execution times of all tasks (i.e., v = (e1, e2, . . . , en)). We
also define C as a set of indices that refer to the possible number of instances of a task up
to the search interval.

C =

{
(α1, . . . , αn) | ∀pi ∈ W, t = mpi,m ∈ N+ : αi =

⌊
t

pi

⌋
, t ≤ LCM(p1, . . . , pn) + δ∗

}
.

(3.15)

33

Equation 3.16 represents the set of horizontal lines that originate from y-intercept
points.

D =
{
y | y = αvT , α ∈ C

}
. (3.16)

(Continuing Example 4). In the following, the horizontal lines may represent the lines
at the y-intercept points using Equation 3.16 for Example 4 until search interval (i.e.,
t = 14).

C = {(1, 0), (2, 1)},
D = {y0 = e1, y1 = 2e1 + e2}.

Calculating vertical lines: Finally, the solid vertical lines shown in Figure 3.7 in-
tercept the x-axis at the positive integer multiples of pi of each task Ti. Since the time
intervals pi represent the time intervals where an overload might have occurred, the recov-
ery points will be located δ∗ distance to the overload points. Therefore, these vertical lines
will be shifted right by an amount of the worst-case delay δ∗ (e.g., lines 7 , 8, and 9) that
may pass through the recovery points where sbf(t) = dbf(t) when there is an overload at
time interval t− δ∗.

The dbf increases at time intervals of length piωi where ωi ∈ N+ for τi ∈ W . Equa-
tion 3.17 represents the set of the vertical lines where sbf(t) = dbf(t).

S =

{
x | x = piωi + δ∗, pi ∈ W,ωi ∈ N+, ωi ≤

⌊
LCM(p1, . . . , pn) + δ∗

pi

⌋}
. (3.17)

(Continuing Example 4). In the following, the horizontal lines represent the first few
lines drawn at the x-intercept points where sbf(t) might equal to dbf(t) using Equation 3.17
for Example 4.

S = {x0 = p1 + 2, x1 = 2p1 + 2, x2 = p2 + 2},
S = {x0 = 8, x1 = 14, x2 = 20}.

To find λ and θ, our method uses the intersection points of diagonal, horizontal, and
vertical lines resulting from these equations. First, we solve Equation 3.10 with Equa-
tion 3.16. This yields,

t− (k + 2)(λ− θ) = αvT .

34

Then we replace θ and t using
∑

ei
pi

= θ
λ

(i.e., UW = UR) and Equation 3.17,

t = piωi + δ∗.

This yields,

λ = θ −
(
αvT − t
(k + 2)

)
=
∑ ei

pi
λ−

(
αvT − t
(k + 2)

)
=
∑ ei

pi
λ−

(
αvT − piωi − δ∗

(k + 2)

)

∴ λ =
αvT − piωi − δ∗

(k + 2)(
∑

ei
pi
− 1)

. (3.18)

Equation 3.18 represents a set of equations for different αvT and piωi. Therefore we
may find many λ values that are suitable.

(Continuing Example 4). By combining Equations 3.11 − 3.14 with Equation 3.16 and
replacing θ = 1

3
λ because UW = 1

3
, we get the following set of equations which later are

replaced by Equation 3.17 to deduce λ and θ.

{λ1 =
3

4
(t− αvT)} (using Equation 3.11),

{λ2 =
1

2
(t− αvT)} (using Equation 3.12),

{λ3 =
3

8
(t− αvT)} (using Equation 3.13),

{λ4 =
3

10
(t− αvT)} (using Equation 3.14).

Using the possible values of ωi, and α until LCM(p1, . . . , pn, λ) + 2(λ− θ), we will get
a set of (λ, θ). Using these assignments we can calculate δ∗ using Algorithms 1 and 2,

35

and check for the validity of the resource supply with respect to the workload demand.
Thus the algorithm based on our proposed resource supply calculation model finds a list of
resource supplies that allow the worst-case delay to be less than or equal to the value δ∗.
For the example, the diagonal, horizontal, and vertical lines intersect at λ = 3 and θ = 1,
which is a valid resource supply.

Algorithm 3 Finding resource supply

Input: number of tasks n, tasks execution time (e1, . . . , en), tasks periods (p1, . . . , pn),
tolerable delay δ∗, list (α1, . . . , αn), list (ω1, . . . , ωn)

Output: list of valid resource supply L(R)
1: UW ←

∑n
i=1

ei
pi

, supplyList L(R) = {φ},m = 1

/* looping steps on the demand of each task (i.e., horizontal lines) */
2: for i = 1 . . . n do
3: for m = 1 . . . bLCM(p1,...,pn)+δ∗

pi
c do

/* looping steps on the duration of each task (i.e., vertical lines)*/
4: for i = 1 . . . n do
5: for ωi = 1 . . . bLCM(p1,...,pn)+δ∗

pi
c do

/* looping steps on the supply (i.e., diagonal lines) */
6: for k = 1 . . .LCM(p1, . . . , pn) + δ∗ do

/* using Equation 3.18 */

7: λ = αvT−piωi−δ∗
(k+2)(

∑ ei
pi
−1)

8: calculate θ = UWλ
9: calculate δ using Algorithm 1, 2

10: if δ∗ ≥ δ then
11: L(R) = L(R) ∪ {(λ, θ)}
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for
18: traverse list L(R) for a suitable (λ, θ)

To find an efficient resource supply, the workflow is as follows for a given set of tasks: the
utilization of the resource supply is kept the same as the workload utilization as transient
overload occurs when UW = UR. The algorithm based on the supply calculation model
searches for resource supplies that have recovery points at t = δ∗+ωipi (i.e., time intervals

36

that denote the recovery of overloads) and calculates a fitting resource period if one exists.
However, a resource supply that contains the recovery point may still be unusable, because
the supply might have a worse δ∗ at a later or earlier part of the sbf . Therefore, the
algorithm searches for different supplies and checks them based on the method described
in Section 3.3.2. Figure 3.4 shows multiple resource supplies for the Example 1 workload
with δ∗ = 1; e.g., λ = 1.5 (blue color line in Figure 3.4) and λ = 1.12 (red color line in
Figure 3.4). Our framework then selects from these candidates the one that has the largest
λ to reduce the number of context switches.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Time interval

D
ur

at
io

n

Figure 3.8: Two of the candidate solutions for Example 1 with input delay one

Theorem 4 Given that dbf(t) is schedulable, the sbf(t) for λ = θ always satisfies the dbf(t)
with a given tolerable delay δ∗.

Proof The sbf(t) is a line with slope 1 for λ = θ, which characterizes the maximum possible
resource supply in a single processor system. Assume that there exists a case when the

37

assignment of λ = 1 and θ = 1 do not satisfy dbf(t) with a given tolerable delay δ∗. Hence,
the utilization of resource supply is UR = 1 and UR < UW . This yields, UW > 1 which is
violates the assumption of a single processor system. Therefore, the sbf(t) for λ = 1 and
θ = 1 always satisfies the dbf(t) with a given tolerable delay δ∗.

Lemma 1 Using the proposed resource supply calculation model (Eq. 3.10, 3.16, and 3.17),
Algorithm 3 can find a valid resource supply, if there exists one.

Proof In the proposed resource supply calculation model or Line 7 of Algorithm 3, the
denominator of Equation 3.18 is only increased by the value k ∈ N, because the utiliza-
tion of the workload is constant and k is independent on the numerator of the equation.
Therefore, the supply calculation proceeds by decreasing λ because of increasing k, which
automatically decreases θ as UW = UR. The value k is incremented up to the search inter-
val, LCM(p1, . . . , pn) + δ∗. With a small enough λ and θ, the sbf will become similar to
a line as discussed in Theorem 4 such that the δ∗ constraint is preserved. The proposed
model will always find a valid resource supply, if one exists for the given inputs. In Al-
gorithm 3, k is incremented in integers rather than real numbers. However, Algorithm 3
ensures that a suitable resource supply is found because k is incremented up to the search
interval. Therefore, Algorithm 3 does not necessarily find an optimal resource supply but
finds at least a suitable resource supply.

Corollary 1 The algorithm based on the proposed resource supply calculation model to
find a valid resource supply is sound.

Proof The proposed algorithm to find valid resource supplies is sound, because they are
checked for validity using supply and demand bound functions as defined in Line 9 and 10
of Algorithm 3.

Feasibility analysis refers to whether a task set is feasible under a resource model for
a given scheduling policy. Feasibility ensures that there exists a resource supply that
can satisfy the requirements of the tasks. Theorem 5 denotes that the output of the
proposed resource supply calculation algorithm is feasible under a periodic resource model
for workloads with bounded overloads.

Theorem 5 Given a system workload W = {τ1, τ2, . . . , τn} with tolerable δ∗, the output
of the proposed algorithm is feasible if and only if there exists a resource supply such that
the resource demand in any time interval exceeds the resource supply during the same time
interval for no more than δ∗ consecutive units of time.

38

Proof Theorem 4 establishes the proof of Theorem 5, because there always exist a resource
supply such that maximum delay is bounded by δ∗.

The following observations are used to derive the complexity of the search algorithm
that finds a valid resource supply.

• Vertical lines pass through multiples of tasks periods up to LCM(p1, . . . , pn) + δ∗.

• Horizontal lines pass through the summation of tasks execution time up to LCM(p1, . . . , pn)+
δ∗.

• Diagonal lines depend on k which increases up to LCM(p1, . . . , pn) + δ∗. The value
k is an integer value as defined in the sbf(t) equation.

The complexity of the proposed algorithm as shown in Algorithm 3 to find suitable resource
supplies with respect to the number of tasks and the worst-case delay isO(n3(LCM(p1, . . . , pn)+
δ∗)5). In Algorithm 3, the upper bound of for loop in Line 2 is O(n), in Line 3 is
O(LCM(p1, . . . , pn)+δ∗), in Line 4 is O(n), in Line 5 is O(LCM(p1, . . . , pn)+δ∗), and in Line
6 is O(LCM(p1, . . . , pn) + δ∗). The upper bound in Line 7 is O(n(LCM(p1, . . . , pn) + δ∗)2)
because of using Algorithm 1 and 2.

3.5 Experimental Analysis of A Control System

We developed a MATLAB-based application called sbFinder based on the results shown in
this work. To demonstrate the utility of our technique for designing the resource supply in
the context of a control system, we consider the problem of simultaneously stabilizing two
plants with a single computational resource. The first plant, denoted by Ω1, is an inverted
pendulum mounted on a cart, and is given by the following linearized dynamical system
[62]:

ẋ(t) =


0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0


︸ ︷︷ ︸

A

x(t) +


0

1.8182
0

4.5455


︸ ︷︷ ︸

B

u(t). (3.19)

The state feedback controller for this system is designed (under nominal delay-free condi-
tions) as

u(t) =
[
2.6939 3.5571 −23.5576 −4.462

]︸ ︷︷ ︸
K

x(t).

39

The plant is sampled every p1 = 0.02 seconds. Using Theorem 1, the maximum value of η
is 0.0732. The worst-case delay in this system then is δ1 = η − 2p1 = 0.032 seconds.

The second plant, denoted Ω2, is a chemical distillation column modeled as a linearized
system with 8 states and 4 inputs; the exact model can be found in [79], and we omit
the details here to save space. The nominal state feedback controller is designed to place
the closed loop poles at −1,−1.1,−1.2,−1.3,−1.4,−1.5,−1.6,−1.7, and this produces the
control gain K. The plant is sampled every p2 = 0.15 seconds. Once again applying
Theorem 1, the maximum value of η is 0.3340, and thus the maximum delay for obtaining
computational resources that can be tolerated by this control system is δ2 = η−2p2 = 0.034
seconds.

The computation of both control inputs is done by a single processor. Thus, to maintain
stability, the processor must guarantee that the worst-case delay for calculating any control
input is δ∗ = min(δ1, δ2) = 0.032 seconds. We take our unit of time to be 0.01 seconds,
and assume that the processor can compute the control input for either plant within this
length of time. Thus, in terms of this time-unit, the period and execution time for the
first plant are p1 = 2 and e1 = 1, respectively, and the period and execution time for the
second plant are p2 = 15 and e2 = 1, respectively. The maximum tolerable delay δ∗ for
both systems is δ∗ = 3.

With this workload and delay specifications, our proposed model produces a list of 138
solutions that are valid. The list contains 132 different assignments of resource supply that
have the minimum utilization. Traversing the list for the maximum resource period yields
λ = 2.5, θ = 1.4167, δ∗ = 1.8, and utilization = 0.5667.

3.6 Related Work

Shin and Lee present schedulability analysis [76] based on the sbf [77] and the dbf [12, 58]
for the compositional real-time scheduling framework. This framework can be used to
establish global (system level) timing properties by composing individual timing prop-
erties. The authors present schedulability conditions for the standard Liu and Layland
periodic resource task model and propose a periodic resource model under EDF and RM
scheduling that allows the composition of multiple timing requirements into a single tim-
ing requirement. In the related work [76], the authors analyze schedulability of a bounded
delay resource partition model in terms of the sbf and the dbf . Deducing a single tim-
ing requirement out of multiple timing properties creates some new challenges which have
been solved in a number of subsequent works [74, 77]. As a variant of the system model

40

from [76], Shin et al. also propose algorithms that define optimal interfaces for the sub-
systems which may share resources. Integrating subsystems into a system having optimal
interfaces motivates the development of adaptive and reconfigurable systems.

An important aspect of using the sbf and the dbf is the optimized use of the resources.
Easwaran et al. [35] show that selecting a particular resource model that minimizes the
collective resource requirements facilitate systems to change components on the fly. Lee et
al. propose an optimization framework for maximizing the QoS under K random failures
on schedulability. The authors use Langarian duality [57] for distributed computation that
results in optimal solutions.

Mok, Feng, and Chen [64] introduce the concept of a supply function to measure the
minimum amount of computing resources provided to a static partition. Wandler and
Thiele [83] propose the concept of interface-based design that uses real-time calculus and
modular performance analysis to compute the supply curves. Lipari and Bini [59] derive a
set of supply functions that are feasible to schedule an application. Later Bini et al. propose
an optimization framework [15] to select the minimum bandwidth required of a EDF task
set. These works use the fraction of computing resource supplied by the processor and the
initial delay of the resource to ensure that minimum bandwidth is given to the workload
demand, but do not consider delays due to the transient overloads that the tasks may
tolerate and the existence of a periodic resource model (a special class of supply functions)
that Shin and Lee [75] introduce.

Devi and Anderson [33] introduce tardiness bounds under global EDF scheduling on a
multiprocessor for soft real-time systems. However, the tardiness bounds are not derived
in terms of the supply and demand bound functions for a compositional framework as
discussed in [76]. Kumar et al. [55] propose a model to compute the resource with a given
delay bound from a stream of jobs characterized by an input arrival trace. However, the
arrival jobs are not specified with a certain delay bound that we assume in this work to
characterize application-specific tasks that can tolerate overloads or delays. Moreover, the
delay is calculated in terms of time rather than the time intervals that we follow because
we attempt to calculate the delay from the supply and demand bound as defined in [76, 77]
which are functions of time intervals. Buttazzo et al. [40] introduce elastic scheduling that
allows to vary the period of a task based on its flexibility specified in the task model. This
model inherently allows to tolerate overloads to a certain amount but does not use the
concept of supply and demand bound functions we use to compute an efficient periodic
resource model towards building a compositional system. Hence our work is in-line with
the other work in the literature but differs in finding an efficient resource model due to the
time-interval analysis of supply and demand bound functions for systems that can tolerate
bounded transient overloads.

41

3.7 Discussion

Compositionality. A compositional framework can combine different specifications and
build up a schedule that satisfies the workload demands. The system calculates the most
suitable resource supply for each of the specification’s demands. Each resource supply
turns into the workload demand while using the compositional framework. Earlier work on
the periodic resource model [76] assumes no overloads or delays in the workload. Using our
work to extend [76], it is possible to deal with workloads with bounded transient overloads.
Definition 6 describes the composition method in the context of transient overloads.

Definition 6 (Composition method) Given a number of scheduling models M1 . . .Mn,
a compositional scheduling model MP (WP , RP , EDF) can be derived by mapping the re-
source model of a child scheduling model Ri(λi, θi) to its periodic task τi(pi, ei) and including
any new tasks (τ ′i) such that WP = {τ1(λ1, θ1), . . . , τn(λn, θn)} ∪ {τ ′i(p′i, e′i)}.

Relation between overload duration and overload severity. In this dissertation,
the severity of the overload is defined as dbf(to) − sbf(to). The duration and the severity
of an overload are related.

1. A large overload severity implies a long overload duration and thus a long delay.

2. A long overload duration (and thus a long delay) does not necessarily imply a large
overhead severity.

These two observations originate from the fact that the best possible resource supply
is R(1, 1) in which the system receives all resources in a uniprocessor system. In such a
scenario, the slope of the sbf is 1. Thus, the overload delay is always at least equal to the
overload severity. Hence, a large overload severity implies a long overload duration.

On the other hand, the worst possible resource supply is R(x, 1) where x→ 0. In this
scenario, the slope of the sbf is close to 0. Thus, even a small overload severity can result
in a long overload duration.

Multiprocessor systems. The way to deal with multiprocessor systems is to use parti-
tioning algorithms [13]. EDF is not guaranteed to be optimal for multiprocessor systems,
although it is optimal for uniprocessor systems. Therefore, prior to running the EDF

42

scheduling policy for uniprocessor systems, a partitioning algorithm can distribute the
tasks statically to different processors.

Table 3.1 presents a comparative analysis between two types of multiprocessor schedul-
ing: partitioned and global. From the analysis, it is certain that partitioned scheduling
is a good choice for multiprocessor systems. Our uniprocessor analysis can be used upon
a multiprocessor platform after partitioning a set of tasks into processors using an algo-
rithm [13].

43

Table 3.1: Partitioned Scheduling vs Global Scheduling

Aspect Partitioned scheduling Global scheduling
Schedulability The total utilization is at most m

upon a m-processor platform in the
hard real-time domain after parti-
tioning tasks into processors. Par-
titioning overhead exists to assign
tasks to processors.

Global scheduling (i.e., G-EDF) en-
sures tardiness bounds for soft real-
time applications as long as the total
system utilization is at most m [14].
Global scheduling tests are too pes-
simistic [14].

Implementation
complexity

Low implementation complexity
compared to global scheduling.
Heavy utilization tasks (utilization
higher than 0.5) strongly affect task
partitioning heuristics [14].

Task partitioning complexity does
not exist. Global schedulers, spe-
cially those are optimal, are difficult
to implement in practice.

Predictability Highly predictable if new tasks are
added into the system. May suffer
more delays to execute newly admit-
ted tasks in the assigned processor
than another processor.

Newly admitted tasks can run on
any of the processors which is avail-
able based on priorities. Less pre-
dictable on the migrations of dynam-
ically added tasks.

Isolation High isolation because tasks are par-
titioned into processors and do not
migrate.

Cluster disciplines can provide isola-
tion and also provide migration. Iso-
lation is limited due to allowing mi-
gration.

OS overhead OS scheduling and release overhead
is low [14]. Overhead due to task
partitioning under heavy utilization
tasks is high.

Scheduling and release overhead for
clustered disciplines is similar to
partitioned scheme [14]. OS schedul-
ing and release overhead is high due
to the cost of frequent cache line mi-
grations and heavy bouncing [14].

Cache overhead For light tasks (utilization between
.001 and .1), weighted schedulability
is better than global disciplines with
respect to cache overhead [14]. For
heavy tasks, weighted schedulability
is worse than global disciplines with
respect to cache overhead [14].

Cache overhead is low with respect
to the ratio of schedulable task
sets for global schemes under heavy
tasks [14]. Migration may cause
cache misses and thus extra de-
lays [14].

Resource sharing Less synchronization required com-
pared to global schemes when shar-
ing resources. In case of having a
high-available resource, schedulabil-
ity is very poor unless task utiliza-
tions are high [18].

In case of having a high-available re-
source, schedulability is better than
partitioned scheme [18]. Synchro-
nization overhead and errors may
become a bottleneck and synchro-
nization maintenance may become
complex.

44

Chapter 4

Scheduling of Multi-Mode
Communication

A key problem in designing multi-mode real-time systems is the generation of schedules to
reduce the complexities of transforming the model semantics to code. Moreover, distributed
multi-mode applications are prone to suffer from delays incurred during mode changes. We
therefore aim to generate communication schedules that have low average mode-change
delay for multi-mode real-time distributed applications.

This dissertation discusses the use of optimization constraints associated with timing
requirements to generate state-based schedules for multi-mode communication systems,
and illustrates the workflow for generating schedules from specifications through a real-time
video monitoring case-study. Experiments in the case-study demonstrate that schedules
generated using the proposed method reduce the average mode-change delay in relation to
a randomized algorithm and the well-known EDF scheduling algorithm.

Current trends in distributed systems push the boundaries of existing real-time net-
works. Increased number and complexity of distributed devices and integration of multiple
real-time domains with traditional computers in a single network are quickly making legacy
fieldbuses obsolete due to their limited bandwidth and incompatible protocols.

Increasing interest in RTE, for example, provides strong evidence of this trend [32]. In
recent years, both industry and academia have reported experimental evidence for hard
real-time communication on top of Ethernet infrastructure [4, 3]. A common characteristic
among the proposed solutions is the use of enhanced devices with specific modules for
TDMA arbitration. To provide real-time guarantees, TDMA networks require careful
planning of time-critical communication tasks, which must be scheduled and verified in

45

advance. In practice, static TDMA schedules are complex to design, and lead to inefficient
bandwidth utilization, since they reserve time slots to handle the worst case, even though
it rarely occurs.

Generating real-time schedules for efficient utilization of the available bandwidth, with
data dependencies and conditional execution is a challenging and relevant problem for
next-generation distributed systems. This work proposes a novel methodology for generat-
ing state-based communication schedules from a high-level specification of the distributed
components, moving the complexity of schedule design away from the developer. Starting
from a state machine description of the distributed tasks, the proposed workflow gener-
ates abstract representations of state-based schedules for any feasible system, which can
then be mapped to executable entities. This chapter walks through the individual steps
using an example case-study based on real-time video streaming over an Ethernet network,
which is a recurrent application in the automotive domain. The results demonstrate that
the generated schedules meet the real-time guarantees, while minimizing the average delay
to switch from one operational mode to another with respect to a set of valid schedules
generated using both EDF and random mapping of messages to time slots. The analysis
from the particular case-study can be easily generalized to any network based on TDMA.

The remainder of the chapter is structured as follows: Section 4.1 describes formal
definitions of state-based scheduling, and introduces relevant terminology for the schedule
generation workflow. Section 4.2 illustrates the steps for the generation of state-based
schedules from component-level specifications using a video streaming case-study. Sec-
tion 4.3 provides a brief overview of related work. Section 4.4 briefly discusses the advan-
tages of state-based schedules in transmitting mixed critical traffic consisting of best-effort
and real-time.

4.1 Formal Definitions

A state-based schedule is an abstract representation of communication systems based on
TDMA with on-the-fly decisions. A TDMA communication system consists of a set of
stations that exchange messages through a broadcast network. The concepts of state-
based schedules are discussed in Chapter 2.

TDMA schedules divide time into non-overlapped slots and rounds. Each slot is defined
by a start point and a slot length. A scheduler performs a message-to-slot mapping based
on the timing requirements for the system. A linear schedule maps a slot to either only
one message or leaves it empty. A communication round refers to a sequence of messages
that repeats endlessly as the system executes.

46

σ1
k

k ϵ {1,2}

l = 1 l = 2 l = 3 l = 4

k ϵ {1}

Round 1

G1
1

G2
2

σ2
k

σ4
k

G1
2

σ3
k

σ2
k σ3

k

σ4
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1} σ1
k

k ϵ {1,2}

l = 1 l = 2 l = 3 l = 4

k ϵ {1}

G1
1

G2
2

σ2
k

σ4
k

G1
2

σ3
k

σ2
k σ3

k

σ4
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}

Round 2

Figure 4.1: Overlapped message assignments in slot 1 form group G1
1

An operational mode describes a system state and specifies the messages that the system
needs to communicate when running in the associated mode. Each operational mode
is associated to a predefined linear schedule that meets the timing requirements for the
messages. State-based schedules encode a set of linear schedules associated to different
modes using a global-time base. As a result, different messages from different modes can
be mapped to the same slot, but only one mode can be active at any slot during runtime.
The schedules can encode guarded transitions that allow the system to change from one
mode to another between consecutive slots within a single communication round.

Let us consider a set of messages {σm} where m ∈ N. Each message σm has an
associated period πm, transmission time em, and deadline equal to period, all represented
as entire multiples of an atomic time unit γ. Let us also consider a set V representing
the operational modes, each one associated to a linear schedule. Considering a slot length
of γ, the communication round will have LCM{πm} slots, where LCM{πm} is the Least-
Common-Multiple of periods of all the messages, i.e., the hyperperiod of the system. We
say that the state-based schedule has an overlap in slot l = 1, . . . ,LCM{πm} when different
modes map the same message to that slot. Overlapped messages at slot l can be combined
into a group Gl

x where 1 ≤ x ≤ |V |. A state-based schedule is a tree-like structure where
each branch represents a transition from a group in slot l to one or more groups in slot
l + 1.

A valid state-based schedule is one that meets the timing requirements for each linear
schedule and the possible transitions between them. A particular system can have multiple
valid schedules, and then different number of overlaps and groups. Figure 4.1 and Figure 4.2
show an example of two different schedules for a system with two modes and LCM{πm} = 4.
For illustrative purposes, let us assume that both schedules are valid for the particular
system. The notation σki indicates that mode k maps σi to the corresponding slot. The

47

σ1
k

k ϵ {1,2}

l = 1 l = 2 l = 3 l = 4

Round 1

G1
1

σ4
k

σ3
k σ4

k

σ3
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}σ2
k

k ϵ {1,2}

G1
2

σ1
k

k ϵ {1,2}

l = 1 l = 2 l = 3 l = 4

Round 2

G1
1

σ4
k

σ3
k σ4

k

σ3
k

G1
3

G2
3 G2

4

G1
4

k ϵ {2} k ϵ {2}

k ϵ {1}k ϵ {1}σ2
k

k ϵ {1,2}

G1
2

Figure 4.2: An alternative schedule with an additional overlap in slot 2

schedule in Figure 4.1 has an overlap for σ1 in l = 1, which can be represented in group
G1

1. Figure 4.2 shows an alternative schedule with an additional overlap for σ2 in slot 2,
which is represented in G2

1.

A mode-change in a state-based schedule is a timed event that triggers a guarded
transition to move from an old mode vs ∈ Gl

x to a new mode vd in the next slot at the cost
of a mode-change delay δ(vs, vd) defined as:

δ(vs, vd) =


0 if vd ∈ Gl

x

LCM{πm} − l otherwise

(4.1)

where LCM{πm} − l represents the time until the next communication round starts. The
mode-change can occur immediately if a transition exists between mode vs and vd. If not,
the mode-change occurs when a new communication round starts. Reducing the number
of transitions decreases the number of groups which lowers the average mode-change delay
(Theorem 6).

Theorem 6 Given a set of valid state-based schedules for a particular system, the schedule
with the fewest number of groups in a communication round will minimize the average
mode-change delay δ for a uniform probability of mode-changes.

Proof Our proof is based on contradiction. Let us consider two valid schedules S and S ′

for a particular system, with S ′ having fewer groups per communication round. Let us
assume that δS′ > δS. The value |V −Gl

x| represents the number of modes that do not
belong to Gl

x. Since a maximum number of |Gl
x| modes can request a mode-change to the

48

modes that do not belong to Gl
x, the average mode-change delay ∆ for all slots for all

possible groups at runtime is:

Since the system executes all the transitions with uniform probabilities, then the average
mode-change delay ∆ for all slots for all possible groups at runtime is:

∆ =

∑
l

∑
x(LCM{πm} − l)(|V −Gl

x|)|Gl
x|

Γ|⋃l(
⋃
xG

l
x)|

.

The average delay in the state-based schedule δS′ for a uniform possibility of mode
changes is less than δS, because S ′ has fewer groups than that in S and therefore the value
|V −Gl

x| is less than that of in S. This contradicts that the average mode-change delay in
S is lower than the average mode-change delay in S ′.

This following section describes a workflow for schedule generation that uses the concept
of groups to address the problem of message-to-slot mapping for state-based schedules, such
that the resulting valid schedule minimizes the average mode-change delay.

4.2 Schedule Generation Workflow

This section walks through an example case-study to illustrate the necessary steps to
generate state-based schedules from a component-level description.

4.2.1 Workflow Overview

Figure 4.3 illustrates the steps for the proposed workflow to generate state-based schedules.
The designer specifies a component-level description consisting of state machine descrip-
tions and timing requirements for each task generating messages. Given that the system is
correctly described and feasible, the proposed workflow will generate a valid schedule that
minimizes the average mode-change delay.

The first step in the workflow is an analysis that combines the states of the individual
components and obtain the operational modes of the system. This step also considers
a feasibility test to verify that it is possible to meet the timing requirements for all the
operational modes. If any of the operational mode is unfeasible (e.g., due to bandwidth

49

State Analysis

State-Based Schedule

Operational Modes

Schedule Generation

Executables
and Runtime

Component-Level
Description

Feasible?

Yes

No

Designer
Modifications

Figure 4.3: Proposed workflow to generate state-based schedules

limitations), then the designer must modify the system specifications. For feasible systems,
the next step is the generation of a valid schedule that minimizes the average mode-change
delay.

The previous steps generate an abstract representation describing the message-to-slot
mapping for the system. These descriptions can then be translated into a programming
language to generate executable abstractions. Previous work illustrates this process by
mapping schedules designed by hand for simple applications to the Network Code frame-
work, which offers a domain-specific programming language with conditional branching
capabilities and a powerful hardware environment for real-time communication over Eth-
ernet [23].

The rest of this section provides details for each step in the workflow using an example
case-study based on the demonstration setup described in [23]. The application considers
the real-time streaming of multiple video sources on top of Ethernet, which can change
the resolution according to specific operational conditions for efficient utilization of the
bandwidth.

50

Figure 4.4: Environment for the example application

4.2.2 Application Example and Assumptions

Let us consider an embedded video monitoring system for mining trucks. Drivers need
some kind of monitoring system for increased security when sharing the road with smaller
vehicles and people because of the dimensions of these trucks (typically over 7 mt. high).
The system uses four video cameras, each one transmitting a stream of the surroundings of
each wheel to displays located in the driver’s cabin. All devices connect through a real-time
capable Ethernet network operating at 1[Gbit/s] [23].

The cameras operate in two states that differ in the number of Frame-Per-Second (FPS)
: Standard Quality (SQ) and High Quality (HQ). The cameras operate in SQ by default.
Each wheel includes a sensor that detects proximity to surrounding objects. When a sensor
activates, the cameras switch to HQ. An additional condition is that the sensors activate
according to the movement of the truck: front sensors only activate if the truck is moving
forward, and rear sensors only activate if the truck is moving backwards.

For the analysis we only consider the scheduling of the video streams, and assume that
all distributed components are synchronized to a global clock reference. In practice, the

51

model specification must also consider the scheduling of periodical sensor readings and
synchronization messages, which require much less bandwidth than the video data [23].

4.2.3 Component-Level Description

Figure 4.5 shows a state machine representation and transition table for the camera at-
tached to the front right wheel. The inputs Front Right (FR), Front Left (FL), Rear Right
(RR), and Rear Left (RL) represent the status of the sensors attached to each wheel; and
sk and sk+1 represent the current and next state, respectively. The designer must provide
a similar representation for each camera, together with the timing requirements for each
state (addressed in Section 4.2.4).

Alternatively, the designer can use high-level languages such as Architecture Analy-
sis and Design Language (AADL) [56] or Unified Modelling Language (UML) profile for
Modelling and Analysis of Real-Time and Embedded Systems (MARTE) [81] to specify the
system behavior, and use a parser to extract the transition tables and timing specifications.

Sensor
active

Sensor
inactive

HQ

SQ

(a) State Machine

FCR, FCL, RCR, RCL sk sk+1

1, 0, 0, 0 X HQ
1, 1, 0, 0 X HQ
others X SQ

(b) Transition Table

Figure 4.5: Representation of the states for each camera

4.2.4 State Analysis

The algorithm presented in [47] allows us to compute the operational modes of the system
as the cross products of the state machines for the individual components. In the case-

52

Table 4.1: Timing requirements for different video qualities
Nominal [ms] Normalized

FPS Comp. Time Period Comp. Time Period
15 7600 66700 1 8
30 7600 33350 1 4
60 7600 16720 1 2

study, the condition that front and rear cameras cannot operate at HQ at the same time
leaves only seven possible operational modes out of the sixteen possible.

Table 5.2 shows the parameters of interest to perform feasibility analysis for the case-
study. These parameters must be encoded together with the transition tables. The nominal
transmission time represents the time required to transmit a single video frame of 640x480
pixels, with a pixel-width of 32 bits, over a 1[Gbit/s] link. Since the maximum payload
for a standard Ethernet frame is 1500 bytes, video frames are transmitted as a sequence of
Ethernet frames. The reported time accounts for the overhead related to Ethernet headers
and Inter-Frame Gap (IFG). For simplicity, we omit the propagation latency and additional
processing in the path between cameras and displays, which will depend on the physical
configuration of the network. In practice, designers must provide a worst-case value for
these parameters and consider them in the total transmission time for each message. The
table also shows the periods associated to different FPS. Considering an atomic unit for
the schedule equal to the minimum transmission time for a message, we normalize the
timing specifications to this time unit, and floor the normalized period. This processing
over-estimates the actual requirements, but allows us to represent all the timing as multiple
integers of the time unit.

For the system to be feasible, the total channel utilization for each operational mode
cannot be greater than the available bandwidth for scheduled traffic. This is:

U(vk) =
∑
σm∈vk

cm
πm
≤ B

L
(4.2)

where B is the bandwidth assigned to scheduled messages, and L is the link capacity, with
B ≤ L.

Table 4.2 summarizes the utilization test for all operational mode when setting the SQ
mode to 15[FPS], and the HQ mode to either 30[FPS] or 60[FPS]. Considering that all link
capacity is available for the video streams, the feasibility test will be U(vk) ≤ 1. We see
if the HQ mode is set to 60[FPS], there are two modes that fail the feasibility test (bold

53

Table 4.2: Feasible modes with messages specifications
ID Mode Utilization (SQ=15[FPS])

(FCR, FCL, RCR, RCL) HQ=30[FPS] HQ= 60[FPS]
1 (SQ,SQ,SQ,SQ) 0.5 0.5
2 (SQ,SQ,SQ,HQ) 0.625 0.875
3 (SQ,SQ,HQ,SQ) 0.625 0.875
4 (SQ,SQ,HQ,HQ) 0.75 1.25
5 (SQ,HQ,SQ,SQ) 0.625 0.875
6 (HQ,SQ,SQ,SQ) 0.625 0.875
7 (HQ,HQ,SQ,SQ) 0.75 1.25

numbers), and then the designer must either need to change the specifications or modify
the system. In this case, reducing the quality of the HQ mode to 30[FPS] makes the system
feasible.

4.2.5 Schedule Generation

To find an optimal state-based schedule with respect to minimizing the number of groups,
this work uses Integer Linear Programming (ILP) to find optimal assignments of messages
to slots. Minimizing the number of groups provides the optimal assignments of messages
to slots, which are based on the constraints on timing requirements of messages of each
mode and the characteristics of state-based schedules.

In addition to the parameters of the system model, the ILP model uses some variables
to find the optimal assignments of messages to slots. The variable αkm represents the

number of instances for every σkm until the hyperperiod such that αkm =
|Γk|
πk
m

where Γk =

{1, . . . ,LCM{πkm}}. The variable xkml represents the usage of a time slot for m ∈ N, l ∈ Γk,
and k ∈ V . Therefore,

xkml =


1 if message σkm is allocated to slot l in mode k

0 otherwise.

The number of groups in a state-based schedule will increase if different messages of
different modes are allocated to the same slot and the previous slots. The variable skml is

54

used to reduce the possibilities of such assignments of messages to slots. The value of skml
is set to 1 if a message σkm of mode k is allocated to a slot l, and there exists the same σm
message of any other modes that is allocated to the same slot l. Therefore,

skml =


1 if xkml = 1∧
∃xvul, st : u 6= m ∧ v 6= k ∧ xvul = 1

0 otherwise.

The variable wkml is used to determine whether different messages of other modes are
allocated to the same slot l if a message σm of mode k is already allocated to slot l. The
ILP model shown below minimizes the number of groups by calculating the assignments of
required time slots to messages for each mode k in the Γk. Since the decrease in number
of groups not only depend on allocating different messages of other modes in the current
slot but also in the earlier time slots, the objective function assigns weights such that the
overlaps can occur earlier than later.

min
∑

∀m∈N,l∈Γk,k∈V

skml × (Γk − l) +
∑

∀m∈N,l∈Γk,k∈V

xkml × l.

st. C1{∀m ∈ N, k ∈ V} :

gπk
m+πk

m∑
l=gπk

m+1

xkml ≥ ckm , g = 0, . . . αm − 1;

C2{∀l ∈ Γk, k ∈ V} :∑
xkml ≤ 1,

C3{∀m ∈ N, l ∈ Γk,

k ∈ V,u ∈ N− {m}, v ∈ V− {k}} :

wkml ≥ xvul,
C4{∀m ∈ N, l ∈ Γk, k ∈ V} :

skml ≥ xkml + wkml − 1,

C5{∀m ∈ N, l ∈ Γk, k ∈ V} :

skml ≥ 0,

In the ILP model, a number of constraints represent the characteristics of the optimized
schedule. Constraint C1 specifies that all messages at least get the computation units in

55

their periods. Constraint C2 and C5 are bounds to guarantee xkml and skml being binary.
Constraint C3 and C4 compute skml. These constraints manage to find optimal assign-
ments of xkml that the decomposition method (Definition 7) uses to construct a state-based
schedule.

Definition 7 (Decomposition method) Given all schedulable and reachable groups at
any time slot, a decomposition method derives all groups in the next time slot from xkml
followed by a labelled transition (i.e., guard).

Using the decomposition method as defined above, it is possible to generate an op-
timized schedule either based on provisioning empty slots to transmit best-effort traffic
or allowing messages to execute more than their timing requirements. In the latter, the
schedule has fewer groups and therefore faster average mode-change delay, but lower band-
width for best-effort traffic. This dissertation presents the use of best-effort traffic to gain
the full advantage of using state-based schedules. According to Definition 7, we define a
method (Algorithm 4) to construct a state-based schedule from the values of xkml based
on provisioning empty slots. Using xkml, the method finds all groups from l = 1 onwards,
along the slots, up to slot

∣∣Γk∣∣, where a group contains modes that either have overlapped
messages or nothing (ε) to transmit. A group G initially contains all messages and uses the
decomposition method to create groups Gk

ml. Figure 4.6 shows the state-based schedule
for the case-study prioritizing best-effort traffic.

To demonstrate that the solution to the described optimization problem assigns the
messages to slots efficiently, we use random assignments of xkml that also meet the timing
requirements of messages of each mode. Figure 4.7 shows the difference in the mode-
change delays between the 10000 randomized schedules and the optimized schedule for a
hyperperiod of 4, 8, 12, 16, 20, 24, 28, and 32 time slots using the case-study through
changing the period of the SQ message. The average mode-change delay for the generated
schedule using optimized xkml is also significantly less (Figure 4.7) than the delay in the
schedules generated using either randomized or EDF-based xkml.

We implemented a set of open-source scripts for each step of the workflow. Users can
download these scripts [2] and verify the results for the case-study included as an example,
or start with new system specifications. The current version of the workflow scripts are
based on Matlab and use the AMPL/GUROBI optimization problem solver.

56

Function 4 schedGen(k, l,m, xkml)

Input: All k modes, all l slots, all m messages, all xkml assignments
Output: All Gk

ml groups
/* find all the overlaps and form groups for each slot */

1: for each slot l do
2: for each mode k do
3: if k is the first mode and xkml = 1 then
4: form a new group Gk

ml

5: else
6: check if it is required to form a new group
7: set isRequired=true
8: for each group Gk

ml do
9: if mode k belongs to both group Gk

ml and group Gk
m(l−1) then

10: set isRequired=false
11: break;
12: end if
13: end for
14: if isRequired==false then
15: add mode k to the last group created
16: else
17: form a new group Gk

ml

18: end if
19: end if
20: end for
21: end for

/* create branches using the formed groups */
22: for each slot l do
23: for each group Gk

ml do
24: check membership of Gk

ml with all groups in the previous slot
25: create a link between group Gk

ml and the overlapped group Gk
m(l−1)

26: end for
27: end for

57

Slots 1,…,6 Slot 7 Slot 8

σ2
k ɛ

k ϵ {1,2,3,4,5,6,7}

σ2
k

k ϵ {5}

ɛ

k ϵ {1}

σ4
k

k ϵ {2}

σ3
k

k ϵ {3,4}

σ1
k

k ϵ {6,7}

ɛ

k ϵ {1}

ɛ

k ϵ {2}

ɛ

k ϵ {5}

ɛ

k ϵ {3}

σ4
k

k ϵ {4}

ɛ

k ϵ {6}

σ2
k

k ϵ {7}

σ1
k σ3

k σ4
k ɛ

Figure 4.6: An optimized best-effort oriented schedule using decomposition

4 8 12 16 20 24 28 32
0

10

20

30

40

Number of Slots

A
v
e

ra
g

e
 T

ra
n

s
it
io

n
 D

e
la

y
 [

m
s
]

Optimized Schedule

Random Schedules

EDF Schedule

Figure 4.7: Average mode-change delay in generated schedules using randomized, EDF-
based, and optimized xkml assignments

58

4.3 Related Work

Traditional real-time networking protocols allow limited control to the applications over
the communication behaviour at runtime. For example, developers must assign message
priorities statically on a CAN bus to ensure that the priorities are unique [16]. FlexRay [39]
follows a static TDMA approach with a specific slot for dynamic traffic at the end of each
round. Stations must wait for that specific slot to transmit dynamic messages, and its
timing is not guaranteed.

Some recent work explore the concepts of state-based schedules, but they lack any
generation technique of schedules from high-level specifications. For example, in [86], the
authors demonstrate the advantage of state-based scheduling for control systems, but using
a small scale system, and the schedules are not necessarily optimized. Moreover, the work
uses timed automata [5] to express the schedule using regular expressions. This work
uses the notion of slots and communication rounds to reduce complexity for analysis and
verification. In [69], the authors propose mechanisms to synthesize clocked graphs [70]
with the Network Code framework, but avoids generation and optimization of state-based
schedules.

4.4 Discussion

Complexity Characterization. The problem of minimizing the number of groups is an
optimization problem to find optimal assignments xkml of all possible m messages to all
possible l slots in all possible k modes. The constraints of this problem include timing
requirements of messages. For the sake of complexity characterization, the decision version
(D) of the problem can be defined as, “Given all messages with timing requirements and a
non-negative integer z, decide whether there exist assignments to all slots in all modes such
that the number of groups is no greater than z”. The problem D is in NP, because given
xkml assignments of all m messages to all l slots in all m modes with timing specifications
and a non-negative integer z value, it is possible to check whether the input is valid or
not by verifying timing requirements and calculating overlaps. Moreover, a well-known
NP-complete problem, SAT can be used to show that D is NP-hard. An instance of SAT
is identical to an instance of D and vice versa. The reduction can be done in polynomial
time. Our problem of minimizing the number of groups requires finding a minimum z value
and therefore the problem is harder than D.

Mixed-Criticality Communication. A mixed-criticality system must support the
communication of both best-effort and time-critical data in the same network. Traditional

59

TDMA systems provide hard real-time guarantees at the cost of high penalization in the
effective bandwidth utilization, since the schedules assign slots to specific stations even
when they do not have new data to transmit. In general, static TDMA schedules are
designed to handle the worst-case scenario, even though the worst-case rarely occur in
practice. The state-based scheduling approach described in this chapter enables a better
utilization of empty slots which can be used to communicate best-effort traffic, providing
a more efficient utilization of the bandwidth with respect to static TDMA, while keeping
the timing guarantees for real-time messages. The execution hardware for the Network
Code framework provides mechanisms to leverage this property. The enhanced switches
propagate best-effort frames from stations with traditional interfaces using any gap between
real-time messages, without requiring any configuration step [23].

60

Chapter 5

Coscheduling of Computation and
Communication

With the growing demand in real-time systems, safety (i.e., hard real-time) and non-safety
(i.e., soft real-time) critical components are integrated together. However, mixing critical
tasks with non-critical tasks in adaptive and reconfigurable embedded systems creates
challenges to guarantee that the safety-critical units complete their tasks correctly on
time.

Separation of concerns is required to decrease complexity of a system and also to guar-
antee safety. To leverage separation of concerns, isolation among computation components
and communication medium is essential. We achieve separation of concerns using compo-
nent interfaces for communication. Using a walk-through study, we also show the steps to
generate communication schedules using component interfaces. The component interfaces
provide safety through isolation and the generated communication schedules provide high
performance because of efficient control on communication and low average mode-change
delay.

This chapter presents generation of state-based schedules using component interfaces
to provide separation of computation and communication. Specifications of component
interfaces are computed using local information of tasks. Tasks execution inside each
component remain isolated from communication because of generating its schedules using
the derived component interfaces.

A demand bound function (dbf) and supply bound function (sbf) [76] analyze tim-
ing requirements of the workload (i.e., tasks) and the resource supply to guarantee that
sufficient amount of resource is available to satisfy the demand. The dbf(t) refers to the

61

maximum resource demand during a time interval t by the tasks and the sbf(t) determines
the minimum resource supply during t. For hard real-time systems, dbf(t) is no greater
than the sbf(t). However, this condition does not need to hold [11] for systems that can
tolerate bounded amount of delays.

The sufficient resource supply for a component with workload specifications converts
into the demand to find a resource supply with additional workload. To satisfy the demand
of a component workload, its interface has a particular resource supply derived using
sbf(t) and dbf(t). These interfaces are particularly useful for compositionality of multiple
components [76].

As discussed in Chapter 3, it is shown how to find efficient resource supplies using sbf
and dbf for workloads with a tolerable system delay, which is experienced by any task at
a given time. This avoids over-provisioning of resource supply because it allows the sbf(t)
to go below the dbf(t) for a bounded amount of delay, which is added to each component
rather than its tasks.

A state-of-the-art research in safety-critical real-time systems is the analysis of coschedul-
ing of computational units and communication medium because of the necessity of sep-
aration of concerns and design optimization. Separation of concerns requires isolation of
components and the communication medium to reduce the domino effect. The domino
effect is a chain reaction that occurs when a small change causes a similar change nearby,
which will then cause another similar change, and so on in linear sequence. Design opti-
mization requires suitable scheduling policies to use for computation and communication,
and schedules of which are necessarily not the same. This chapter discusses the synthesis
of communication and computation schedules.

The remainder of the chapter is structured as follows: Section 5.1 describes the prob-
lem statement and the system model is presented in Section 5.2. Section 5.3 discusses
coscheduling of computation and communication. As part of proposed coscheduling of
computation and communication, Section 5.4 illustrates the steps to specify and design of
component interfaces using the video streaming case-study. Section 5.5 discusses the gen-
eration of communication schedules using the derived component interfaces. Section 5.6
provides an overview of related work. Finally, Section 5.7 discusses the advantages of
proposed approach.

62

5.1 Problem Statement

Distributed real-time systems require reliable networking solutions for the exchange of
time-critical data in addition to the processors. The Network Code framework [38] is one
of the real-time Ethernet-based networking solutions that supports a language to describe
state-based schedules, which are TDMA-based but have the ability to make on-the-fly
decisions. This on-the-fly decision making capability in schedules facilitates low average
delay while changing modes. Faster mode-change also depends on how the messages are
scheduled. In state-based schedules, mode-change delay will become less if more mes-
sages of different states can be allocated to a time slot. The assignments of messages is
an optimization to generate a state-based communication schedule with a less number of
branches. State-based schedules also allow to transmit best-effort traffic if no real-time
traffic is present. The generation of such communication schedules is discussed in Chap-
ter 4, but coscheduling of computation and communication is not discussed. Therefore, the
delays introduced by computational units affect the scheduling of communication. This
work aims to interconnect computational units through derived interfaces and generated
communication schedules, even in the presence of delays introduced in components.

Goal: “Given a set of component interfaces with period, duration, a worst-
case delay, generate a multi-mode communication schedule that has low average
mode-change delay”.

5.2 System Model

The system model consists of a periodic resource model and periodic workload for each
of the computational components connected through a shared communication medium.
For each computational component, the periodic workload has a set of tasks and a set of
messages for communication. The specifications of tasks and messages are derived from a
physical model. In this work, we assume tasks and messages have implicit deadlines, and
therefore deadline is equal to period. Tasks of a component are scheduled using EDF. Each
component has a maximum tolerable delay that can be experienced by any of its tasks at
a given time. For each component, the tasks in the system repeats its behaviour after
the hyperperiod and the resource model replenishes available supply of resources in each
period, which is the demand of computational component interface. The utilization of the
workload (UW) and the resource supply (UR) are equal for the minimum resource usage

63

where transient overloads occur periodically, because the overload becomes permanent if
UW > UR or temporary if UW < UR.

Computational units (i.e., components) are characterized by the following:

• {Cj} = a set of components where j ∈ N+

• {τ ji } = a set of tasks of component j where i ∈ N+

• pji = period of task i of component j

• eji = execution time of task i of component j

• (pji , e
j
i) = characteristics of task i of component j

• Wj = workload of component j consisting of a set of tasks

• δ∗j = worst-case tolerable delay of component j

• Rj(λj, θj) = θj resource supply in every λj period for component j

• Ij(λj, θj, δj) = interface of component j characterized by period λj, duration θj, and
worst-case delay δj

and a state-based communication schedule is characterized by the following as discussed
in Chapter 4:

• V = set of all communication modes

• {σkm} = a set of messages in communication mode k where m ∈ N+

• ckm = communication time of message σm in mode k

• πkm = period of each message σi in mode k

• (πkm, c
k
m) = characteristics of message m in communication mode k

• αm instances for every message σm up to the end of communication round

• vs ∈ V denotes the current mode

• Vd ⊆ V denotes the set of possible destination modes

64

• E is a set of tuples 〈vs, gx, λ, vd〉 representing transitions from mode vs to mode
vd ∈ Vd. The guard gx is an enabling condition and λ is a set of updates on clock
values. The set of transitions must be free of cycles

• B is the bandwidth assigned to scheduled messages

• L is the link capacity, with B ≤ L.

Figure 5.1 shows an example model for two computational components with interfaces
R1 and R2 connected through a shared bus. Each component has two tasks τ1 and τ2.

Processor 1

BUS

Processor 2

InterfaceInterface

τ 11 τ 12 τ 21 τ 22

I1 I2

Figure 5.1: An example model of isolation between two computational components and
the shared communication medium

5.3 Scheduling Computation and Communication

Scheduling computation has been extensively studied for real-time systems. Amongst them,
the mostly used scheduling algorithms are EDF and RM. In [22], an extensive comparison
between EDF and RM is shown. EDF is preferred over RM for better system utiliza-
tion. Moreover, EDF performs reasonably well in transient overload situations. Transient
overload occurs when the system needs more computing resource than available in order
to be able to complete all tasks before their deadlines. Predicting Worst-Case Execution
Time (WCET) is hard and sometimes inefficient, which might lead to transient overloads.
Therefore, it is more realistic to design systems that can tolerate transient overloads. This
work uses EDF to schedule tasks of components of the system.

65

As discussed in Chapter 3, an overload can be characterized as the delay that a compo-
nent can suffer [11]. A periodic transient overload occurs for a certain amount of time and
is repeated after the hyperperiod. In this work, we consider the periodic transient overloads
which can be recovered. This delay is calculated as the difference when the overload occurs
and it becomes resolved. The worst-case delay is the maximum delay that the system can
suffer in the hyperperiod.

Component interfaces facilitate connecting computation and communication in a dis-
tributed system. These interfaces abstract the timing requirements of the workload of
components. Using the supply and demand bound function analysis, interfaces can be
derived, which provide the worst-case timing demand of all tasks in a component. We get
the period and duration of an interface from the periodic resource supply that meets the
demand of the workload in a component. Interfaces have an additional timing property,
which is the worst-case delay that the component can experience. For example, a speci-
fication of an interface is (3, 1, 2) where period, execution time, and worst-case delay are
3,1, and 2 respectively.

Coscheduling processors and network is challenging because of different specifications
and requirements for each of them. If a processor scheduling is centralized and the network
scheduling is distributed, the scheduling techniques are different. Moreover, a processor
scheduling may not necessarily work well for the network. Therefore, it is a state-of-the-art
challenge to synthesize scheduling techniques for computation and communication without
violating the timing guarantees.

Different communication modes are usual in a distributed system. Switching modes at
run time can cause delays in the system. We define mode-change delay as the time required
to switch from one mode to another. One of the major advantages of using state-based
schedules is the low average mode-change delay [8]. A key advantage of coscheduling EDF
and state-based schedules is the low average mode-change delay for communication.

This chapter discusses interconnection of EDF with state-based scheduling with an
assumption that overloads can occur in components which cause delays in communication.
This work also aims to provide isolation of components through its interfaces and allows
to interconnect them using state-based communication schedules for better bandwidth
utilization, increased safety, and mixed-critical data transmission.

66

5.4 Specification and Design of Component Interfaces

This work introduces a model-driven approach to generate state-based schedules from
interface specifications of components. The interface specifications are derived from high-
level specifications, which we assume to write in a design language such as AADL [56].
The designer must provide an architectural description of the components in the system,
state-machine representations of the types of communication with their interactions, and
timing specifications.

The designer (1) specifies the details of components (i.e., tasks, resources, and their
timing demand), transmission states and their interactions with timing requirements, (2)
performs schedulability analysis and uses mechanisms to find out interfaces specifications
from components information, (3) uses mechanisms not only to perform reachability and
schedulability analysis, but also generates state-based schedules using components inter-
faces based on the application design and constraints.

A smart networked video monitoring system for collision avoidance is considered as
a case-study (similar to the one discussed in Chapter 4), which is effective in different
transportation systems. A mining truck is an example of such system. Mining trucks are
typically over 7 meters high and need a monitoring system to avoid collisions when running
with small vehicles. The monitoring system consists of four cameras connected to wheels
to transmit videos of surroundings. The cameras are labelled as front camera right (FCR),
front camera left (FCL), rear camera right (RCR), and rear camera left (RCL). All cameras
are connected through 1[Gbit/s] Ethernet link.

5.4.1 Specification and Design

Correct specification of the components and the communication is necessary to build an
efficient real-time system. Engineers can follow guidelines of a common standard to specify
requirements such as AADL, or can have their own standard to write specifications. Users
specify high-level abstract constructs to represent software components (processes, threads,
data), hardware components (processors, memory, buses), and their interactions. Real-time
properties such as period, deadline, and execution time associated to processes are mapped
to hardware components. Having a unified model to specify both hardware and software
components simplifies architectural representation of complex systems.

Computation specifications. Specifications of components depend on the tasks
that they perform and characteristics of applications. In the case study, four sensors in the
wheels are embedded along with the cameras. The cameras transmit two types of videos:

67

Table 5.1: Timing requirements for computation of video components

Nominal [ms] Normalized
Task Comp. Time Period Comp. Time Period
τd 5 32 1 6
τc 10 64 2 12

standard quality (SQ) and high quality (HQ). When a sensor detects an object, the attached
camera transmits HQ video. Sensors activate according to the movement of the truck:
front sensors only activate if the vehicle is moving forward, and rear sensors only activate
if the vehicle is moving backwards. We assume that the sensors perform a computation
task to detect objects and the direction of the vehicle (τd), and the cameras perform
a computation task to buffer and manage video (τc). Therefore, each video component
has two computation tasks to schedule under the EDF scheduling policy. Considering
deadline is equal to the period and the components can tolerate delays, Table 5.1 shows the
timing specifications of computation tasks for each of the video components. In specifying
requirements, we consider that the rate of task τc (30 frames per second) is higher than
task τd to ensure that enough data is available. Assuming an atomic unit for the schedule
equal to the minimum computation time for a task, we normalize the timing specifications
to this time unit, and floor the normalized period. The normalization may overestimate
the actual requirement, but allows us to represent all the timing requirements as multiple
integers of the time unit. We assume that the timing specifications allow video components
to tolerate a delay of 2 time units in the worst-case, which is within the tolerable delay
range of video broadcasting for a QoS as discussed in [29]. This case-study assumes to
transmit the raw video, leaving the use of encoder (e.g. MPEG-2) and different frames
(i.e., I, P, B) as discussed in [25] for the future work. Instead of determining the tolerable
delay based on a particular QoS, a control component can have a maximum delay tolerance
depending on stability metrics as discussed in [11].

The display component is located near the vehicle driver to receive data periodically
from the network. We assume that the display component has a single task that executes
faster than other tasks and therefore the computation time and period are set to 2 and 4
time units respectively. We assume that the display component can tolerate a delay of 1
time unit.

Communication specifications. Specifications of communication define its opera-
tional requirements for an application. For the case study, the specifications of the cameras

68

Table 5.2: Timing requirements for communication

Nominal [µs] Normalized
FPS Comm. Time Period Comm. Time Period
15 7600 66700 6 48
30 7600 33350 6 24

Table 5.3: Feasible modes with messages specifications
ID Mode Utilization

(FCR, FCL, RCR, RCL)
1 (SQ,SQ,SQ,SQ) 0.5
2 (SQ,SQ,SQ,HQ) 0.625
3 (SQ,SQ,HQ,SQ) 0.625
4 (SQ,SQ,HQ,HQ) 0.75
5 (SQ,HQ,SQ,SQ) 0.625
6 (HQ,SQ,SQ,SQ) 0.625
7 (HQ,HQ,SQ,SQ) 0.75

transmission characteristics are taken from [8]. Each of the four cameras operate in two
states based on the FPS. The SQ frames are transmitted by default and cameras switch
to transmitting HQ frames once an object is detected. Moreover, either front cameras or
rear cameras can transmit HQ frames after an object is detected.

The possible configurations of the communication is calculated as the cross products of
the state machines. The timing requirements of different types of video transmission (i.e.,
HQ and SQ) as shown in Table 5.2 are calculated using pixel specification (640 × 480) of
frames [8] and network bandwidth (1Gbit/s). To find the feasible communication modes
without considering computation delays, schedulability analysis can be performed using
Equation 4.2 as defined in Chapter 4. Table 5.3 shows feasible communication modes for
the video case-study where B

L
= 1.

5.4.2 Finding Component Interfaces

A component has a workload consisting of tasks with timing specifications and can use an
interface to specify the resource requirement. Under the EDF scheduling policy, a suitable

69

resource supply (i.e., period and duration) is calculated using the characteristics of supply
and demand bound functions [11]. To ensure finding an efficient resource supply Rj for
a component j, the utilization of the resource supply is kept the same as the workload
utilization. Figure 5.2 shows the workflow to find suitable resource supplies. The algo-
rithm based on the supply calculation model [11] searches for resource supplies that have
recovery points at δ∗j distance from possible overload points (periods of tasks) and validates
calculated resource supplies using supply and demand bound functions. After getting a set
of valid supplies, one of them is chosen as an efficient resource supply based on application
characteristics. An efficient resource supply becomes the first two parameters in the spec-
ification of an interface I. The delay that the component experiences because of using the
suitable resource supply becomes the third parameter of the interface specification.

A suitable resource supply meets the specifications of the workload and avoids over-
provisioning of resources. For example, if the display component has the workload (3, 1),
then a resource supply (4, 2) does not meet specification because the worst-case delay is
greater than 1. However, the resource supply (2, 1) meets the specification and avoids
over-provisioning of resources compared to (1, 1). For each of the components located in
the wheels, the interface specification is (3, 1, 2), where 3 is the period, 1 is the duration,
and 2 is the worst-case delay that the component can experience.

5.5 Generation of State-Based Schedules

To generate state-based schedules, the first step is to extract internal state representations
of communication for each of the components as discussed in the previous sections. We
refer the cross product of the states that are reachable as communication modes. A schedu-
lability test is required to find communication modes that can meet timing requirements.
To characterize a good state-based schedule, we use the properties of state-based schedules
as defined in Chapter 4.

Component interfaces provide additional information in generating state-based sched-
ules for communication. In particular, delays in computation have an impact on com-
munication and its schedules. Because, delays in computation cause the data to become
available late for transmission and perhaps require the component to operate in a different
communication mode to meet the timing requirements.

70

No

Workload with tolerable delay δ∗j

Calculate dbf(t)

Calculate sbf(t)

Calculate supply

Calculate delay δj

Store solution

δj ≤ δ∗j

recovery points searched?

Are all overload and

Pick suitable specification

Yes

No

Yes

Figure 5.2: Finding specification for component interfaces

5.5.1 Optimization Model

The problem of finding an optimal state-based schedule with respect to minimizing the
number of groups can be solved using ILP. To do this, the model has a constraint on
computation time of each message to obtain at least the required time slots. A boolean
variable xkml is set to 1 if a message m is allocated to a slot l in mode k, and 0 otherwise.
A computation delay that results a message m in mode k to be transmitted late is char-
acterized using δkm. We discuss mechanisms to choose to a delay value in Section 5.5.3.
The number of overlaps for a slot l can be increased if same message m is allocated to the
previous slots in all modes. A constraint using a variable skml enforces this. To ensure the
occurrence of overlaps earlier than later, a weight (l) is multiplied to each slot assignment
xkml in the objective function. Minimizing the sum of values of variables skml and xkml which
are multiplied by weights provides the minimum number of groups in the schedule. The
objective of using weights to assign xkml as early as possible and vice versa for skml. We
minimize the number of groups to find out the assignments of messages to slots to generate
a state-based schedule that has low average mode-change delay.

71

• xkml coefficient determines the usage of a time slot for m ∈ N , l ∈ {1, . . . ,LCM{πkm}}
and k ∈ V , where N represents the set of messages and V represent the number of
modes. These coefficients are defined as follows:

xkml =


1 if message σm uses the slot in mode k

0 otherwise.

• skml coefficient determines the overlaps. The variable skml is set to 1 if a message m is
allocated a slot l in mode k, and other messages except m are allocated at the same
slot l in modes except k.

skml =


1 if xkml = 1∧
∃xvul, st : u 6= m ∧ v 6= k ∧ xvul = 1

0 otherwise.

• wkml determines overlaps. This determines whether different messages of other modes
are allocated to the same slot l if a message m of mode k is already allocated to slot
l.

• δkm is an input delay value for message m in mode k.

• Γk = {1, . . . ,LCM{πkm}} is the set of all slots until the hyperperiod of mode k.

72

min
∑

∀m∈N,l∈Γk
m,k∈V

skml × (Γkm − l) +
∑

∀m∈N,l∈Γk
m,k∈V

xkml × l.

st. C1{∀m ∈ N, k ∈ V} :

gπk
m+πk

m∑
l=gπk

m+1

xkml ≥ ckm + δkm , g = 0, . . . αm − 1;

C2{∀l ∈ Γkm, k ∈ V} :∑
xkml ≤ 1,

C3{∀m ∈ N, l ∈ Γkm,

k ∈ V, u ∈ N− {m}, v ∈ V− {k}} :

wkml ≥ xvul,
C4{∀m ∈ N, l ∈ Γkm, k ∈ V} :

skml ≥ xkml + wkml − 1,

C5{∀m ∈ N, l ∈ Γkm, k ∈ V} :

skml ≥ 0,

Constraint C1 specifies that all messages at least get the computation units in their
periods even though a delay occurs. Constraint C2 specifies that no two messages are
assigned to the same slot at the same mode. Constraint C3 enforces overlaps. Constraint
C4 and C5 enforces skml to be non-negative and binary. The objective function includes xkml
to assign overlaps as early as possible in the hyperperiod for less number of branches in
the generated state-based schedule.

5.5.2 Determining Valid Schedules

Computational delays may cause the optimization model unable to find a state-based com-
munication schedule where messages can meet the timing constraints during the hyperpe-
riod. If a valid schedule is absent for a given set of messages with timing constraints, the
optimization model reports on infeasibility. Therefore, it is sufficient to use the optimiza-
tion model for schedulability analysis of a set of messages that can experience computation
delays.

73

Definition 8 (Schedulability with delays) A given set of communication messages {m}
in a set of modes {k} up to slot l = 1 . . . ,LCM{πk

m} will be schedulable for a given de-
lay specification if the optimization model returns an assignment of xkml for a given set of
communication messages {m} in all modes {k} upto l = 1 . . . ,LCM{πk

m}.

5.5.3 Determining Delays

Interfaces provide specifications of maximum tolerable delays of components. Thus, if δ∗

is the maximum delay and δr is a delay that components may experience, then δr will be
no greater than δ∗. Since state-based communication schedules have the ability to make
decisions at runtime, it is possible to switch between schedules at run time for different
delays. Considering a set of delays as dynamic possible values of δr no greater than the
maximum tolerable delay may provide a greater range of schedulability with an increase of
number of generated schedules. In contrast, a system may use the maximum of tolerable
delays of all components as the static value of δr to generate a state-based schedule. Using
the static value of δr may reduce the schedulability of operational modes but provides
guarantees that the schedule is valid for all dynamic values of δr.

Dynamic delays

To consider dynamic values of delays, we assume a set ∆r of finite number of non-negative
delays up to the maximum delay (Equation 5.1). Therefore, if δt is the delay that a com-
ponent experiences at run time, then δt ≤ δr, where δt ∈ R≥0. Different δr values may
be feasible to generate a state-based schedule for components running in a communication
mode. Figure 5.3 shows an example of different δr values for which a state-based commu-
nication schedule can be generated for component C1 and C2 in mode k. We can reduce
the cardinality of ∆r by choosing a local maximum of δr as shown in Figure 5.3 to generate
state-based schedules for a less number of δr values.

∆r = {δr | (δr < δ∗) ∪ (δr = δ∗), δr ∈ N≥0} . (5.1)

Example 5 Consider two components with a worst-case tolerable delay of 3 time units for
the communication specification as shown in Table 5.2 and 5.3. Under the assumption of
dynamic delays, δr can be set to 0, 1, 2, and 3. State-based schedules are generated for the
δr values that the optimizer can use to produce a feasible solution. Thus, if components are

74

Maximum infeasible δr values

C1 delay

Feasible region of δr values

Local maximum feasible δr values

C2 delay

Figure 5.3: Analysis on δr values in mode k

running in mode 7 and experience a delay δt ≤ 2, it can still operate in the same mode.
However, if 2 < δt ≤ 3, then the components can switch to other feasible modes such as
mode 1 to continue operation using valid schedules.

Static delay

Each component j may experience a delay δ∗j in the worst-case, which not necessarily the
maximum delay among all components in the system. Under the static delay assumption,
the value of δr is the maximum of all delays that components can experience in the worst-
case (Equation 5.2).

δr = max
j
δ∗j . (5.2)

In the case-study, the worst-case delay that the components can suffer in each hy-
perperiod is 2 time units. Under the assumption of dynamic delays, the δr values are
non-negative values up to 2 time units. In contrast, the δr value is 2 time units under the
assumption of static delay.

75

5.5.4 Construction of State-based Schedules

Optimization model provides assignments of messages to slots for each of the communica-
tion mode if a state-based schedule can be generated. To construct the schedule that has
messages timing requirements met within the hyperperiod, groups are formed using over-
laps. However, to guarantee timing requirements upon a mode change, separate groups are
formed for messages scheduled in the current slot but not in the previous slot. The decom-
position method as discussed in Chapter 4 uses the optimal assignments of xkml (messages
to slots) to construct a state-based schedule.

5.5.5 Experimental Evaluation

For the case-study, we consider the static delay assumption in choosing δr, because the
optimizer can output valid assignments of messages to slots. That is, the schedule generated
for the static value of δr is applicable to dynamic values of δr. Moreover, the static (i.e.,
worst-case) delay makes use of the communication bandwidth no less than dynamic delays.
This yields robust experimental analysis.

Mode-change delay analysis

To demonstrate that our optimizer assigns the slots to messages efficiently with respect
to minimizing the number of groups in the generated schedule, we use random assign-
ments of xkml that also meet the timing requirements of messages in each state. For the
video-streaming case study with the maximum delay of 2 time units, Table 5.4 shows the
difference in the average mode-change delay for the generated schedule using optimization
constraints and the best-case of 10000 times generated randomized but valid schedules.
The average mode-change delay in the generated optimized schedule is found significantly
better than the randomized schedules. Moreover, to construct a state-based schedule, we
also assign messages to slots based on deadlines as used in the EDF scheduling policy,
which also results higher average mode-change delay than the optimized schedule.

Scalability analysis

Scalability is important because it represents the magnitude of a system. A large-scale
system may have significant volume of specifications of different components. Although
the schedule is generated off-line, our optimization model can find a solution quickly for

76

Table 5.4: Average mode-change delay analysis

Types of assignments Delay [in ms]
Optimized 27.77
Randomized 33.13 (Best=30.62, Worst=35.03)
EDF-assigned 29.45

Table 5.5: Optimizer execution information for the video case-study

Modeling language AMPL
Optimization solver Gurobi 4.6.1
Time elapsed 308 (in seconds)
Objective 6253
Simplex iterations 1430739
Branch-and-cut nodes 6371

a reasonable number of slots. This also motivates to use a different range of δr values in
generating state-based schedules. Table 5.5 shows the details including timing to solve
the optimization problem of the video case-study that has 48 time slots in a hyperperiod
using a well-known mathematical programming language, A Mathematical Programming
Language (AMPL) and the solver GUROBI [1]. In this case-study, two of the modes (ID
4 and 7) utilize the communication medium 100% when the worst-case delay is 2 time
units. Despite this, the solver produces results in about 5 minutes, which indicates high
scalability of the proposed solution.

5.6 Related Work

Separation of concerns has been gaining increasing attention because of the safety require-
ments in many real-time systems [85]. Separation of concerns has already been discussed
in some research [49] but not precisely in separating computation and communication.
Several protocols such as Giotto [43] attempt to reduce the resource interdependency by
separating the resource usage in layers. Giotto separates the value and execution domain.
In Giotto, program execution is independent of the reading and writing of values. A

77

TTP [51] or state-based [37] schedule separates the communication from computation so
that sending and receiving messages are independent of the tasks running on the stations.
In PEACOD [7], the authors provide a framework for specifying resource consumptions for
small pieces of code to provide determinism.

Separation of concerns allows to have different scheduling policies exist together. A
computational component may have different tasks scheduled under multiple scheduling
policies such as EDF and RM. Timing requirements of tasks scheduled under different
scheduling policies are converted into a single requirement. In [77], the authors propose
a compositional real-time scheduling framework for real-time systems which can be used
to establish global (system level) timing properties of a component from individual timing
properties of tasks running on a resource. The authors present schedulability conditions
for a periodic task model and propose a periodic resource model under EDF and RM
scheduling. This periodic resource model can compute a single timing demand from mul-
tiple timing requirements using supply and demand bound functions. In another related
work [76], the authors analyze compositional schedulability of a bounded delay resource
partition model. In [76], the authors propose algorithms to define optimal interfaces for the
subsystems which may share resources. Integrating subsystems into a system having opti-
mal interfaces provides isolation in developing adaptive and reconfigurable systems. In [84],
the authors propose a compositional analysis framework that uses real-time calculus and
assume/guarantee interfaces.

Traditional real-time communication protocols allow limited control to the applica-
tions over the communication behaviour at runtime. For example, application developers
have to assign message priorities statically on a CAN bus to ensure that the priorities are
unique [16]. FlexRay [39] follows a TDMA approach, assigning an specific slot at the end
of each round for dynamic and arbitrary traffic. However, stations must always wait for
that specific slot to transmit dynamic messages, and the timing of the messages transmit-
ted during that slot is not guaranteed. Using state-based communication schedules [38],
stations can make decisions at runtime and timing of the messages transmitted during
that slot can be guaranteed. This provides flexibility as well as predictability in message
transmissions.

A recent work [8] discusses a workflow for generating state-based schedules from high-
level specifications, but avoids considering computational specifications such as task delays.
Since the system model in [8] assumes that messages cannot be delayed, the generation
technique will not apply for connected computational components that are delay-tolerant.
This work therefore aims to synthesize computation and communication through isolation
and generation of communication schedules from derived component interfaces.

78

5.7 Discussion

One of the key advantages of using state-based communication schedules is predictability,
which is required in safety-critical systems. Predictable communication scheduling can have
deterministic behaviour. Behaviour of a communication scheduling depends on not only
functionality but also architectural and execution properties such as resource consumption
and timing. Defining all possible behaviours prior communication is necessary to guarantee
determinism. In generating state-based schedules, all possible behaviours are analyzed and
specified a priori. This avoids non-determinism and makes the execution of communication
predictable. Using component interfaces, the determinism in communication scheduling
holds even in the presence of delays.

Lemma 2 Given a system with a number of components connected through a commu-
nication medium using interfaces and state-based schedules, the communication delay is
bounded.

Proof The amount of delays that a component experiences is bounded, transient, and
periodic in nature, because of Theorem 2 in Chapter 3. Consider a component j with

workload utilization U j
W =

∑
i
eji
pji

and resource utilization U j
R = θj

λj
, where task i executes

for eji in every pji and resource Rj provides θj units of time in every λj. If U j
R = U j

W , then
after t = 2(λj − θj), the function f(t) that represents overloads using sbf(t) and dbf(t) is
periodic with period LCM(λ, pj1, . . . , p

j
n), i.e.,

f(2(λj − θj) + t+ yLCM(λ, pj1, . . . , p
j
n))

= f(2(λj − θj) + t), ∀t ∈ R≥0, ∀y ∈ N.

However, the delays that components can experience in the worst-case are within the
delay tolerance, because this is guaranteed through calculating an efficient resource sup-
ply [11]. Therefore, the communication delay depends on the mode-change delay in the
worst-case. Since, the communication schedule repeats after the hyperperiod, the commu-
nication delay is bounded to the hyperperiod of all messages transmitted in the network.

This chapter illustrates the design and schedule generation process for multi-mode
communication using component interfaces. A major reason in generating an optimized
state-based schedule is to allow the system to switch between communication modes at run
time, while meeting the real-time requirements of all messages. This ability of switching
modes facilitates low average mode-change delays.

79

Chapter 6

Conclusions

Current real-time systems are inherently complex and built with heavy over-provisioning of
resources to compromise between safety and functionality, because transient overloads can
lead to failure due to missing deadlines. For example, the first flight of the space shuttle was
delayed because of a transient overload during system initialization on one of the processors
dedicated to the control of the shuttle [21]. However, balancing safety and functionality
requirements is required to maximize the performance of a system. Some systems such
as control systems can tolerate transient overloads (i.e., bounded delays) and thus would
not need such high over-provisioning. This will then allow lower overall resource usage or
running more functionality. A complex real-time system is, in fact, a multi-mode system
that facilitates high functionality, but also demands guarantees on safety requirements.

Model-driven development is complex for time-critical systems not only because of
meeting deadlines at runtime, but also the effectiveness of generated schedules that repre-
sent the runtime behaviour. A well understood approach of model-driven development is
to create a system-level design and generate schedules specific to the execution framework.
In the system model, an architecture represents both processor and network. Therefore, in
this dissertation, we analyzed both processor and network scheduling techniques that are
suitable for a complex system design.

A well-known scheduling policy for processors is EDF. This dissertation presented a
comprehensive analysis to characterize overloads under the EDF scheduling policy using
overload points and recovery points for systems experiencing transient overloads. To un-
derstand the impact of overloads, we defined overload metrics such as the worst-case delay
and the worst-case severity. Using the analysis of overloads, we proposed an efficient
resource supply model for a given workload and a tolerable worst-case delay. Control en-

80

gineers can use the framework for feedback control systems, which was demonstrated by
simultaneously stabilizing two plants with a single computational resource.

A suitable scheduling policy for networks is state-based scheduling. In this thesis,
we presented a workflow with an illustration of a real-time video streaming case-study to
implement higher level abstractions through generating state-based schedules that facilitate
conditional executions at runtime. We also demonstrated that the generated schedules
using constraints through a linear optimization solver are better than schedules generated
using EDF and a randomized algorithm because of lower average mode-change delays.

The complexity of real-time systems is increasing and therefore safety is becoming a
major challenge and concern in next-generation distributed systems. Several standards in
different domains require evidence to certify that a system is safe. In these circumstances,
separation of concerns is an effective design methodology to increase safety because of
reducing complexity and dependency. This dissertation argued to use EDF for processor
scheduling and state-based schedules for network scheduling to achieve both performance
and safety through separation of concerns. This dissertation presented a workflow to
implement higher level component abstractions using interfaces and generate state-based
schedules that facilitate conditional executions at run time. Therefore, the work in this
thesis can be used for safety through isolation and also to provide high performance due
to efficient control on communication and low average mode-change delay.

81

Chapter 7

Future Work

This thesis discusses the characterization of transient overloads under EDF scheduling.
However, overloads are also relevant to analyze using supply and demand bound functions
for other scheduling policies. For these different scheduling policies it is also necessary to
derive a resource supply model to reduce overprovisioning of resources for workloads that
can tolerate overloads. Therefore, the analysis of overloads and its impacts on providing
resource supplies is also useful in case a different scheduling policy than EDF is preferred.

In this thesis, transient overloads are characterized as bounded delays for control sys-
tems, but this observation can also be applied to other real-time systems that experience
bounded transient overloads. An example is a multi-mode car component running info-
tainment applications where delays can occur while changing modes. An efficient resource
supply can be derived for the multi-mode component to reduce overprovisioning of resources
that guarantee meeting timing requirements of tasks.

This dissertation presents analysis of transient overloads under the preemptive EDF
scheduling policy for a uniprocessor or partitioned multiprocessor system. However, the
problem statement is also applicable to using other scheduling schemes that are static
priority-based, global, or non-preemptive in multicore or manycore systems. Therefore,
extensions of overload analysis to these areas can also become potential future work.

The proposed resource supply model can be extended to handle different types of tasks
such as sporadic tasks. Sporadic tasks have a minimum inter-arrival time. Therefore, the
dbf for sporadic tasks is different from periodic tasks. For sporadic tasks, dbf(W, t,EDF) =∑
τi∈W

max(0, (
⌊
t−di
pi

⌋
+ 1)ei). In the worst case, sporadic tasks can arrive periodically based

on their inter-arrival time and our model can still handle such workloads.

82

The resource supply searching algorithm presented in this dissertation increases the
value of k in integers rather than real numbers to reduce the time complexity of finding
a suitable resource supply. However, due to the increase of k in integers rather than real
numbers, the algorithm cannot guarantee to find an optimal resource supply. Finding
an optimal resource supply can be considered as a potential future work to increase the
efficiency of resource usage.

The hyperperiod grows exponentially as a function of the longest period, number of
tasks, and co-primeness of the period of the tasks [20]. Task period selection to minimize
the hyperperiod is a potential future work related to this thesis. In general, a shorter
hyperperiod is preferable over a longer hyperperiod, because the shorter the hyperperiod
the lower the complexity of searching a valid and feasible resource supply.

A hierarchical scheduling in each component is also possible where different specifica-
tions in each level are combined together to get a single timing requirement. The resource
supply turns into demand in each level and continues until no workload specification is left
to combine. A compositional framework uses hierarchical scheduling to reduce complex-
ity by abstracting subcomponents in a component. Therefore, using compositionality can
reduce the number of interfaces.

This thesis presents state-based scheduling based on Ethernet, but results are also
relevant for real-time communication in general. State-based scheduling is applicable to
other technologies operating at layers one and two of the OSI model. Therefore, if industry
shifts the interest to a different communication media in the future, we will be able to port
the developed cores for time-triggered coordination by simply replacing the Ethernet core
with the proper interfacing to the underlying MAC.

In this dissertation, the experimental analysis section of generating state-based sched-
ules assumes uniform distribution of mode changes. An effective extension would be to
apply different distributions on mode changes following practical models. However, this
requires to find mode-change patterns which highly depend on the types of applications.
Several statistical models can also be applied using stochastic processes.

The scope of this work considered as modelling and design, and therefore we avoid
the details on hardware infrastructure for the efficient and reliable execution of generated
schedules. Although we have a framework [2] implemented to generate state-based sched-
ules from a high-level specification, a gap remains to run them in the existing hardware and
try different hardware platforms. This additional work will greatly improve the usability
of the system, and the results would be relevant for the real-time and embedded software
domains.

83

List of Symbols

{Cj} = a set of components where j ∈ N+

{τ ji } = a set of tasks of component j where i ∈ N+

pji = period of task i of component j

eji = execution time of task i of component j

(pji , e
j
i) = characteristics of task i of component j

Wj = workload of a component consisting of a set of tasks

δ∗j = maximum tolerable delay of component j

Rj(λj, θj) = θj resource supply in every λj period for component j

Ij(λj, θj, δj) = interface of component j characterized by period λj, duration θj, and worst-
case delay δj

V = set of all communication modes

{σkm} = set of messages in communication mode k where m ∈ N+

ckm = communication time of message σm in mode k

πkm = period of each message σi in mode k

(πkm, c
k
m) = characteristics of message i in communication mode k

αm = number of instances for every message σi up to the end of communication round

vs = the current mode

84

Vd = the set of possible destination modes

B = the bandwidth assigned to scheduled messages

L = the link capacity, with B ≤ L

85

Acronyms

AADL Architecture Analysis and Design Language.

AMPL A Mathematical Programming Language.

CAN Controller Area Network.

CO Cardiac Output.

EDF Earliest Deadline First.

ET-messages Event-Triggered Messages.

FPS Frame-Per-Second.

IFG Inter-Frame Gap.

ILP Integer Linear Programming.

LAP Left Atrial Pressure.

LEF Largest Error First.

LLF Least Laxity First.

LLREF Largest Local Remaining Execution Time First.

MAC Medium Access Control.

MARTE Modelling and Analysis of Real-Time and Embedded Systems.

MEF-TOD Maximum-Error-First with Try-Once-Discard.

86

NCS Networked Control System.

PAP Pulmonary Artery Pressure.

PCWP Pulmonary Capillary Wedge Pressure.

PFair Proportionate Fair.

PVR Pulmonary Vascular Resistance.

QoS Quality of Service.

RM Rate Monotonic.

RTE Real-Time Ethernet.

TDMA Time Division Multiple Access.

TMR Triple Modular Redundancy.

TT-messages Time-Triggered Messages.

TTEthernet Time-Triggered Ethernet.

TTP Time-Triggered Protocol.

UML Unified Modelling Language.

WCET Worst-Case Execution Time.

87

References

[1] AMPL—A Mathematical Programming Language. www.ampl.com. Visited November.
2014.

[2] Open-source scripts. http://www.mathworks.com/matlabcentral/fileexchange/

44716. Visited November. 2014.

[3] Profinet. http://www.profibus.com. Visited November. 2014.

[4] Time-Triggered Ethernet. http://www.tttech.com. Visited November. 2014.

[5] R. Alur and G. Weiss. Regular Specifications of Resource Requirements for Embedded
Control Software. In Proceedings of the 2008 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 159–168, Washington, DC, USA,
2008.

[6] M. Anand, S. Fischmeister, Y. Hur, J. Kim, and I. Lee. Generating Reliable Code
from Hybrid Systems Models. IEEE Transactions on Computers, 59(9):1281–1294,
2010.

[7] M. Anand, S. Fischmeister, and I. Lee. Resource Scopes: Toward Language Sup-
port for Compositional Determinism. In Proceedings the 12th IEEE International
Symposium on Object/component/service-oriented Real-time Distributed Computing
(ISORC), pages 295–304, Tokyo, Japan, March 2009.

[8] A. Azim, G. Carvajal, R. Pellizzoni, and S. Fischmeister. Generation of Communica-
tion Schedules for Multi-Mode Distributed Real-Time Applications. In Proceedings of
Design, Automation and Test in Europe (DATE), pages 293:1–293:6, Dresden, Ger-
many, March 2014.

[9] A. Azim and S. Fischmeister. Rollback to reduce mode-change delays.
https://bitbucket.org/aazim/mode-change/downloads. Visited November. 2014.

88

www.ampl.com
http://www.mathworks.com/matlabcentral/fileexchange/44716
http://www.mathworks.com/matlabcentral/fileexchange/44716
http://www.profibus.com
http://www.tttech.com

[10] A. Azim and S. Fischmeister. Resolving State Inconsistency in Distributed Fault-
Tolerant Real-Time Dynamic TDMA Architectures. In International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–9, Toulouse, France,
September 2011.

[11] A. Azim, S. Sundaram, and S. Fischmeister. An Efficient Periodic Resource Supply
Model for Workloads with Transient Overloads. In Proc. of the Euromicro Conference
on Real-Time Systems (ECRTS), pages 249–258, Paris, France, July 2013.

[12] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized Multiframe Tasks. Real-
Time Systems, 17(1):5–22, 1999.

[13] S. Baruah and N. Fisher. The Partitioned Multiprocessor Scheduling of Deadline-
Constrained Sporadic Task Systems. IEEE Transactions on Computers, 55:918–923,
2006.

[14] A. Bastoni, B.B. Brandenburg, and J.H. Anderson. An Empirical Comparison of
Global, Partitioned, and Clustered Multiprocessor EDF Schedulers. In IEEE Real-
Time Systems Symposium (RTSS), pages 14–24, San Diego, USA, Nov 2010.

[15] E. Bini, G. Buttazzo, and Y. Wu. Selecting the Minimum Consumed Bandwidth of
an EDF Task Set. In Proc of 2nd Workshop on Compositional Theory and Technology
for Real-Time Embedded Systems (CRTS), Washington, D.C, USA, December 2009.

[16] Bosch. CAN Specification, Version 2. Robert Bosch GmbH, September 1991.

[17] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[18] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev, and J.H. Anderson. Real-
Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or
Spin? In Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 342–353, St. Louis, USA, April 2008.

[19] M.S. Branicky, S.M. Phillips, and W. Zhang. Scheduling and Feedback Co-Design for
Networked Control Systems. In Proceedings of the 41st IEEE Conference on Decision
and Control, volume 2, pages 1211–1217, Las Vegas, USA, December 2002.

[20] V. Brocal, P. Balbastre, and R. Ballester. Task Period Selection to Minimize Hyper-
period. In IEEE Emerging Technologies and Factory Automation (ETFA), pages 1–4,
Toulouse, France, September 2011.

89

[21] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS, Santa
Clara, CA, USA, 2004.

[22] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems,
29(1):5–26, January 2005.

[23] G. Carvajal, M. Figueroa, R. Trausmuth, and S. Fischmeister. Atacama: An Open
FPGA-based Platform for Mixed-Criticality Communication in Multi-segmented Eth-
ernet Networks. In Proc. of the 21st IEEE Int. Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 121–128, Seattle, USA, 2013.

[24] G. Carvajal and S. Fischmeister. A TDMA Ethernet Switch for Dynamic Real-Time
Communication. In Proc. of the 18th IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pages 119–126, Charlotte, USA, May 2010.

[25] S. Chakraborty, T. Mitra, A. Roychoudhury, L. Thiele, U.D. Bordoloi, and
C. Derdiyok. Cache-Aware Timing Analysis of Streaming Applications. In 19th Eu-
romicro Conference on Real-Time Systems (ECRTS), pages 159–168, Pisa, Italy, July
2007.

[26] C.T. Chen. Linear Systems, Theory and Design. Oxford University Press, 1999.

[27] X. Chen, A. Azim, X. Liu, and S. Fischmeister. CSS: Conditional State-based Schedul-
ing for Networked Control Systems. In International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 78–87, Seoul, Ko-
rea, August 2012.

[28] X. Chen, A. Azim, X. Liu, S. Fischmeister, and J. Ma. DTS: Dynamic TDMA schedul-
ing for Networked Control Systems. Journal of Systems Architecture, 60(2):194–205,
2014.

[29] Y. Chen, T. Farley, and N. Ye. QoS Requirements of Network Applications on the
Internet. Information Knowledge Systems Management, 4(1):55–76, January 2004.

[30] Q.-L. Han D. Yue and C. Peng. State Feedback Controller Design for Networked
Control Systems. IEEE Transactions on Circuits and Systems – II: Express Briefs,
51(11):640–644, November 2004.

[31] R. I. Davis and A. Burns. A Survey of Hard Real-time Scheduling for Multiprocessor
Systems. ACM Computing Surveys, 43(4):1–44, 2011.

90

[32] J.-D. Decotignie. The Many Faces of Industrial Ethernet. IEEE Industrial Electronics
Magazine, 3(1):8 –19, March 2009.

[33] U.M.C Devi and J.H Anderson. Tardiness Bounds under Global EDF Scheduling on
a Multiprocessor. In IEEE Real-Time Systems Symposium (RTSS), pages 330–341,
Miami, USA, December 2005.

[34] A. Easwaran, M. Anand, and I. Lee. Compositional Analysis Framework Using EDP
Resource Models. In Proceedings of the 28th IEEE International Real-Time Systems
Symposium (RTSS), pages 129–138, Washington, D.C., USA, 2007.

[35] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental Schedulability Analysis of
Hierarchical Real-time Components. In R. Shelton, ORMSC/970609, Open Engineer-
ing, pages 272–281. ACM Press, 2006.

[36] S. Fischmeister and A. Azim. Design Choices for High-Confidence Distributed Real-
time Software. In Proc. of the International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA), pages 327–342, Crete, Greece,
October 2010.

[37] S. Fischmeister, O. Sokolsky, and I. Lee. A Verifiable Language for Programming Com-
munication Schedules. IEEE Transactions on Computers, 56(11):1505–1519, Novem-
ber 2007.

[38] S. Fischmeister, R. Trausmuth, and I. Lee. Hardware Acceleration for Conditional
State-Based Communication Scheduling on Real-Time Ethernet. IEEE Transactions
on Industrial Informatics, 5(3):325–337, 2009.

[39] FlexRay Consortium. FlexRay Communications System — Protocol Specification,
June 2004. Version 2.0.

[40] G. C. Buttazzo and M. Caccamo and L. Abeni. Elastic Scheduling for Flexible Work-
load Management. IEEE Transactions on Computers, 51:289–302, 2002.

[41] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming,
version 1.21. http://cvxr.com/cvx/, April 2011.

[42] V. Gupta, A. F. Dana, J. Hespanha, R. M. Murray, and B. Hassibi. Data Transmission
Over Networks For Estimation and Control. IEEE Transactions on Automatic Control,
54(8):1807–1819, August 2009.

91

[43] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-Triggered Language
for Embedded Programming. Proceedings of the IEEE, 91(1):84–99, January 2003.

[44] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in Networked
Control Systems. Proceedings of the IEEE, 95(1):138–162, January 2007.

[45] S.H. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Commu-
nication and Control Systems. IEEE Transactions on Control Systems Technology,
3(2):225–230, 1995.

[46] S.H. Hong and W.H. Kim. Bandwidth Allocation Scheme in CAN Protocol. IEEE
Proceedings Control Theory and Applications, 147(1):37–44, 2000.

[47] S. C. Hsieh. Product Construction of Finite-State Machines. In Proc. of the World
Congress on Engineering and Computer Science, pages 141–143, San Francisco, USA,
2010.

[48] O. C. Imer, S. Yuksel, and T. Basar. Optimal Control of LTI Systems Over Unreliable
Communication Links. Automatica, 42(9):1429–1439, September 2006.

[49] D. Jackson and E. Kang. Separation of Concerns for Dependable Software Design. In
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research,
FoSER, pages 173–176, New Mexico, USA, 2010.

[50] K. Ji and W. Kim. Stochastic Optimal Control and Network Co-design for Networked
Control Systems. Proceedings of International Journal of Control Automation and
Systems, 5(5):515, 2007.

[51] H. Kopetz. Real-time Systems: Design Principles for Distributed Embedded Applica-
tions. Kluwer Academic Publishers, 1997.

[52] H. Kopetz. The Rationale for Time-Triggered Ethernet. In Real-Time Systems Sym-
posium (RTSS), pages 3–11, Barcelona, Spain, 2008.

[53] H. Kopetz, G. Bauer, and S. Poledna. Tolerating Arbitrary Node Failures in the
Time-Triggered Architecture. SAE 2001 World Congress, March 2001, Detroit, MI,
USA, March 2001.

[54] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a Federated to An Inte-
grated Architecture for Dependable Embedded Real-time Systems. In Technische
Univ. Wien, Vienna, Austria. Rep. 22, 2004.

92

[55] P. Kumar, J. Chen, L. Thiele, A. Schranzhofer, and G.C. Buttazzo. Real-Time Analy-
sis of Servers for General Job Arrivals. In International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 251–258, Toyama,
Japan, August 2011.

[56] G. Lasnier, T. Robert, L. Pautet, and F. Kordon. Behavioral Modular Description of
Fault-Tolerant Distributed Systems with AADL Behavioral Annex. In Conference on
New Technologies of Distributed Systems, pages 17–24, Tozeur, Tunusia, 2010.

[57] J. Lee, I. Shin, and A. Easwaran. Online Robust Optimization Framework for QoS
Guarantees in Distributed Soft Real-time Systems. In Proceedings of the ACM in-
ternational conference on Embedded software, EMSOFT, pages 89–98, Arizona, USA,
2010.

[58] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments. In IEEE Real-Time Systems Symposium (RTSS),
pages 261–270, San Jose, USA, 1987.

[59] G. Lipari and E. Bini. Resource Partitioning Among Real-Time Applications. In
15th Euromicro Conference on Real-Time Systems (ECRTS), pages 151–158, Porto,
Portugal, 2003.

[60] J. W. S. Liu. Real-Time Systems. Prentice Hall publishers, 2000.

[61] M. Lluesma, A. Cervin, P. Balbastre, I. Ripoll, and A. Crespo. Jitter Evaluation of
Real-Time Control Systems. In Proceedings of 12th IEEE International Conference
on Embedded and Real-Time Computing Systems and Application, pages 257–260,
Sydney, Australia, 2006.

[62] B. Messner and D. Tilbury. Control Tutorials for MATLAB and Simulink.
http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html,Visited
November. 2014.

[63] A. Mok. Firm Real-time Systems. ACM Computing Surveys, 28, 1996.

[64] A. K. Mok and A. Feng. Towards Compositionality in Real-Time Resource Partition-
ing Based on Regularity Bounds. In IEEE Real-Time Systems Symposium (RTSS),
pages 129–138, 2001.

[65] A. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-RES: Correct
Transitive Distributed Service Sharing. In Proc. of the Work-in-Progress Session of the

93

Conference on Emerging Technologies and Factory Automation (ETFA), Barcelona,
Spain, 2014.

[66] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam. The Wireless Control Net-
work: A New Approach For Control Over Networks. IEEE Transactions on Automatic
Control, 56(10):2305–2318, October 2011.

[67] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan. A Multi-Mode Real-Time Cal-
culus. In Proc. of the 29th IEEE Real-Time Systems Symposium (RTSS), Barcelona,
Spain, 2008.

[68] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing Analysis of the FlexRay
Communication Protocol. Real-Time Systems, 39:205–235, August 2008.

[69] D. Potop-Butucaru, A. Azim, and S. Fischmeister. Semantics-Preserving Implementa-
tion of Synchronous Specifications Over Dynamic TDMA Distributed Architectures.
In Proc. of the International Conference on Embedded Software (EMSOFT), pages
199–208, Scottsdale, Arizona, USA, October 2010.

[70] D. Potop-Butucaru, R. de Simone, Y. Sorel, and J. Talpin. Clock-driven Distributed
Real-time Implementation of Endochronous Synchronous Programs. In Proceedings
of the 7th ACM International Conference on Embedded Software (EMSOFT), pages
147–156, Grenoble, France, 2009.

[71] H. Rehbinder and M. Sanfridson. Integration of Off-line Scheduling and Optimal
Control. In Proceedings of the 12th Euromicro Conference on Real-Time Systems
(ECRTS), pages 137–143, Stockholm, Sweden, 2000.

[72] X. Ren, S. Li, Z. Wang, M. Yuan, and Y. Sun. A QoS Management Scheme for
Paralleled Networked Control Systems with CAN Bus. In Proceedings of the 29th
Annual Conference of the IEEE Industrial Electronics Society (IECON), pages 842–
847, Busan, Korea, 2004.

[73] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry. Foundations
of Control and Estimation over Lossy Networks. Proc. of the IEEE, 95:163–187, 2007.

[74] I. Shin, M. Behnam, T. Nolte, and M. Nolin. Synthesis of Optimal Interfaces for Hier-
archical Scheduling with Resources. In IEEE Real-Time Systems Symposium (RTSS),
pages 209–220, Barcelona, Spain, 2008.

94

[75] I. Shin and I. Lee. Periodic Resource Model for Compositional Real-time Guarantees.
In Real-Time Systems Symposium (RTSS), pages 2–13, Cancun, Mexico, 2003.

[76] I. Shin and I. Lee. Compositional Real-Time Scheduling Framework. In IEEE Real-
Time Systems Symposium (RTSS), pages 57–67, Lisbon, Portugal, 2004.

[77] I. Shin and I. Lee. Compositional Real-time Scheduling Framework with Periodic
Model. ACM Transactions Embedded Computing Systems, 7:1–39, May 2008.

[78] I. Shin and I. Lee. Periodic Resource Model for Compositional Real-time Guarantees,
2010. Technical Report.

[79] S. Skogestad and I. Postlewaite. Multivariable Feedback Control. Wiley, 1996.

[80] M. Velasco, J.M. Fuertes, C. Lin, P. Marti, and S. Brandt. A Control Approach to
Bandwidth Management in Networked Control Systems. In Proceedings of the 30th
Annual Conference of IEEE Industrial Electronics Society (IECON), pages 2343–2348,
Busan, Korea, 2004.

[81] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet. A Co-design Ap-
proach for Embedded System Modeling and Code Generation with UML and MARTE.
In Design, Automation Test in Europe Conference Exhibition (DATE), pages 226–231,
Nice, France, 2009.

[82] G.C. Walsh and H. Ye. Scheduling of Networked Control Systems. IEEE Control
Systems Magazine, 21(1):57–65, 2001.

[83] E. Wandeler and L. Thiele. Real-time Interfaces for Interface-based Design of Real-
Time Systems with Fixed Priority Scheduling. In Proceedings of the 5th ACM In-
ternational Conference on Embedded Software (EMSOFT), pages 80–89, New Jersey,
USA, 2005.

[84] E. Wandeler and L. Thiele. Interface-Based Design of Real-Time Systems with Hi-
erarchical Scheduling. In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 243–252, San Jose, USA, April 2006.

[85] A. Wassyng, M. Lawford, and T. Maibaum. Separating Safety and Control Systems
to Reduce Complexity. In Conquering Complexity, pages 85–102. Springer, 2012.

95

[86] G. Weiss, S. Fischmeister, M. Anand, and R. Alur. Specification and Analysis of
Network Resource Requirements of Control Systems. In In Proc. of the 12th Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC), pages
381–395, San Fransisco, USA, April 2009.

[87] F. Xia, X. Dai, Z. Wang, and Y. Sun. Feedback Based Network Scheduling of Net-
worked Control Systems. In Proceedings of International Conference on Control and
Automation(ICCA), pages 1231–1236, Budapest, Hungary, 2005.

[88] J. Yépez, P. Mart́ı, and J.M. Fuertes. Control Loop Scheduling Paradigm in Dis-
tributed Control Systems. In Proceedings of the 29th Annual Conference of the IEEE
Industrial Electronics Society (IECON), pages 1441–1446, Virginia, USA, 2003.

[89] W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of Networked Control Systems.
IEEE Control Systems Magazine, 21(1):84–99, 2001.

96

	List of Tables
	List of Figures
	Introduction
	Overload-Tolerant Computation
	Multi-Mode Communication
	Synthesis of Computation and Communication
	Contributions
	Organization of the Thesis

	Fundamentals
	Scheduling of Real-Time Computation
	Scheduling of Real-Time Communication

	Scheduling of Overload-Tolerant Computation
	Problem Statement
	Feedback Control Systems With Delays
	Overloads in Supply and Demand Curves
	Supply and Demand Bound Functions
	Characterizing Overloads
	Computing the Points of Interest
	Schedulability Analysis with Overloads

	Finding an Efficient Resource Supply
	Experimental Analysis of A Control System
	Related Work
	Discussion

	Scheduling of Multi-Mode Communication
	Formal Definitions
	Schedule Generation Workflow
	Workflow Overview
	Application Example and Assumptions
	Component-Level Description
	State Analysis
	Schedule Generation

	Related Work
	Discussion

	Coscheduling of Computation and Communication
	Problem Statement
	System Model
	Scheduling Computation and Communication
	Specification and Design of Component Interfaces
	Specification and Design
	Finding Component Interfaces

	Generation of State-Based Schedules
	Optimization Model
	Determining Valid Schedules
	Determining Delays
	Construction of State-based Schedules
	Experimental Evaluation

	Related Work
	Discussion

	Conclusions
	Future Work
	References

