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Abstract

The power cost of running a data center is a significant portion of its total annual oper-
ating budget. Although the hardware subsystems, namely, processors, memory, disk, and
network interfaces of a server actually consume power, it is the software activities that
drive the operations of the hardware subsystems leading to varying dynamic power cost.
With the aim of reducing power bills of data centers, “Green Computing” has emerged
with the primary goal of making software more energy efficient without compromising the
performance. Developers play an important role in controlling the energy cost of data
center software while writing code. Bearing green principles in mind during design and
coding stages of the software life-cycle can have a great impact on the energy efficiency of
the final software product. There are a number of ways to optimize application programs
at their design stages but it is difficult for the developers to analyse their applications in
terms of power cost on the real servers. Reading big data, moving large amount of data
from one server to another, compressing data to gain storage space, and decompressing it
back are some key operations that are performed extensively on large scale servers in data
centers.

In the first part of this thesis, we present the design of an automated test bench to
measure the power cost of an application running on a server. We show how our test
bench can be used by software developers to measure and improve the energy cost of two
Java file access methods. Another benefit of our test bench has been demonstrated by
comparing the energy footprint measurements of compression and decompression features
provided by two popular Linux packages: 7z and rar. This information will be helpful in
choosing a Green Software among others to perform a desired function.

In the second part, we show how software developers can contribute to energy efficiency
of servers by choosing energy efficient APIs (Application Programming Interface) with the
optimal choice of parameters while implementing file reading, file copy, file compression and
file decompression operations in Java. We performed extensive measurements of energy
cost of those operations on a Dell Power Edge 2950 machine running Linux and Windows
servers. Measurement results show that energy costs of various APIs for those operations
are sensitive to the buffer size selection. The choice of a particular Java API for file reading
with different buffer sizes has significant impact on the energy cost, giving an opportunity
to save up to 76%. To save energy while copying files, it is important to use APIs with
tunable buffer sizes, rather than APIs using fixed size buffers. In addition, there is a trade
off between compression ratio and energy cost: because of higher compression ratio, xz
compression API consumes more energy than zip and gzip compression APIs.
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The third part of the thesis presents a design of a framework in which one developer
generates energy cost models for the common design options. Afterwords, other developers
can make use of those models to find the energy costs for the same design options instead
of direct measurements.

Overall, this thesis makes a contribution to reduce the perception gap between high
level programs and the concept of energy efficiency.
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Chapter 1

Introduction

Electrical energy is a key resource consumed by all computing platforms [33][35]. The
increasing demand of computing resources of today’ s data centers lead to important issues
in energy management as the power cost to run a data center is a significant portion of
its total annual operating cost. The total electricity used by data centers in 2010 was
about 1.3% of all electricity consumed in the world, and about 2% of all electricity used
in the United States [27]. The energy cost is expected to be even higher in the future.
Xu et al. [51] claimed that electricity consumed by the servers and cooling systems in a
typical data center accounts for about 20% of the total operating cost. In addition to the
high cost of operations and maintenance of data centers, such huge power consumption
is also detrimental to the environment. Modern data centers hosting big applications
like Google Search, Facebook, Google Mail (Gmail), Amazon Web Services, Twitter, etc.
consume a major portion of world’s electrical energy because these applications are centred
on processing large data. In addition, those cloud serving systems have large-scale data
storage requirements and are being used in social networking, music downloads, video-on-
demand, telephony, business intelligence and web 2.0 services. The results of one report
[32] are shown in the Figure 1.1 which tells that amongst all the leading cloud services,
Facebook has the largest data center power usage.

To reduce the cost of data centers, much progress has been made in improving the
energy efficiency of hardware and operating systems [22][40]. However, in the last few years
researchers started focussing to the energy impact of software because software activities
have a direct influence on the energy consumption of hardware underneath [9, 36]. It is
the software activities that drive the operations of the hardware subsystems namely, disk,
CPU, and memory; leading to varying dynamic power cost. As a result, the term “Green
Computing” has emerged with the primary goal of making software more energy efficient
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Figure 1.1: Data Centers Power Usage (Source: http://www.engadget.com/2011/04/26/
visualized-ring-around-the-world-of-data-center-power-usage)

without compromising the performance. Green Computing involves a mixture of new
approaches for power and cooling with energy-efficient hardware, virtualization, software,
and power and workload management [21]. Adel et al. [14] analyzed all the activities
of life-cycle of software development and recommended that green principles should be
followed in all the activities of software development life-cycle to reduce the impact of
software on energy cost. Therefore, Energy Efficiency has become a key factor in software
development.

1.1 Problem Statement

The design of a software application has a significant impact on the power consumption
[41][3]. Various techniques have been suggested to reduce the power consumption of mobile
devices in general [34] and software systems in particular [41][7]. Considering the fact that
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power bill accounts for a significant portion of the cost to run a data center, it is useful
to analyse and minimize the energy cost of applications running on large systems, namely,
servers. Although there are a number of ways to optimize the application at its design
stage, developers generally do not consider the energy cost of their software while making
important design decisions. They find it difficult to measure the energy cost incurred by
their workload and know how it behaves on real servers inside data centers. In addition
to this, the measurement process takes a lot of human effort and time. The main problem
that we are trying to tackle through this thesis is:

How developers can accurately evaluate the energy performance of appli-
cations for the various design choices on a server during the coding stage of
software lifecycle?

1.2 Solution Strategy and Contributions

We develop an automated test bench to measure the power cost of an application running
on a server. The test bench comprises a high precision power meter, a monitoring computer
to acquire power readings from the power meter, and a newly developed control software:
PAST to synchronize the metering system with the load running on the server. Our test
bench can be used by developers to measure the energy cost of their applications for the
various design choices and can come up with an energy efficient design. Another benefit
of test bench is that it can be used to measure and compare the energy footprints of the
same functionality provided by two different applications. This is useful in choosing the
energy efficient software applications among others to use in data centers.

Following are the main contributions of our work:

1. showing the importance of our test bench to developers in measuring the energy cost
of their applications for the various design choices and can come up with an energy
efficient design.

2. studying the impact of developer choices of Java APIs and buffer size in implementing
file reading, file copy, file compression and decompression operations on the energy
cost of servers.

3. presenting a design of framework which avoids repeated energy measurements for the
common design by making use of mathematical models of the energy costs.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present a comprehensive
literature review of energy measurement approaches and compare our test bench with those
approaches. In addition, various techniques to save energy costs of data centers and exist-
ing research on the energy efficiency of software applications are discussed. System model,
implementation details and usefulness of automated test bench for energy measurement of
software applications have been explained in Chapter 3. In Chapter 4, we show how devel-
oper choices can impact the energy costs of servers by choosing energy efficient APIs with
the optimal choice of parameters while implementing file reading, file copy, file compression
and decompression operations in Java. Chapter 5 presents a design of a framework which
avoids repeated direct energy measurements for the common design options by making use
of mathematical models of the energy costs. Some concluding remarks, limitations of the
thesis and future work are provided in Chapter 6.
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Chapter 2

Literature Review

2.1 Energy Measurement Approaches

Energy consumption measurement and estimation is a key requirement for providing better
insight of how and where the energy is being spend in software. A deeper understand-
ing of power costs of computing subsystems, namely, memory, processor, hard disk, and
other peripherals, enables better use of storage encryption, virtualization, and application
sandboxing [50][30]. The techniques for understanding the power cost of servers can be
categorized into four major groups:

• direct measurement by means of instrumentation of the hardware [47]. Hardware
measurement offers high precision but requires additional hardware whether embed-
ded or not. In LEAP platform [47], additional hardware sensors are embedded in all
the power rails to monitor the energy used by each hardware resource; whereas it is
infeasible for anybody to do this in computer or server systems, except for the manu-
facturer of motherboard. Therefore, the main limitation of embedded approach is the
inability for evolution and the difficulty to scale. Another way of direct measurement
by measuring the current and voltage from the AC power supply to a whole comput-
ing system or to individual components without any modification to the underlying
hardware. This later approach has been used by Zehan et. al in [11] to measure
the power of main computer components with fine time granularity. They measured
the current and voltage across all the wires of Advanced Technology Extended(ATX)
power supply and figured out which wires power the main components, namely, CPU,
hard disk and memory.
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• estimation by means of power models [29][49]. Power models provide models to
calculate or estimate the energy consumption of hardware and software. In power
modelling, various software and hardware counters are used to predict power con-
sumption after suitable training on an appropriately instrumented platform. The
accuracy of modelling is the key for profiling the power. John et. al in [29] evaluated
the effectiveness of model based power characterisation. They showed that linear
regression modelling techniques work well only in restricted environment settings.
Models are either too generic and course-grained [26][39], or platform dependent(in
particular Java) [44]. They exhibit high prediction error in modern computing plat-
forms due to many complexities such as multiple cores, hidden device states, and
dynamic power components.

• software measurement by means of various tools and application programming in-
terface (APIs). The main approach in software measurement is energy application
profiling. Profilers help in understanding the system and decomposing the energy con-
sumption of each hardware resource. They use software statistical sampling or soft-
ware code instrumentation. Various profiling tools like PowerTop, Energy Checker,
Joulemeter, ptop are discussed in detail in [37]. PowerScope does not offer energy
information in real time unlike pTop. It first collect resources information at runtime
and then calculates energy values of resources at a later stage of the measurement
whereas ptop provides real time measurements and using them for dynamic energy-
aware adaptations.

• hybrid approaches include frameworks composed of both software and hardware com-
ponents. The hardware components include sensors, meters and data acquisition
devices that enable direct power measurement and instrumentation. The software
components include drivers for various meters and sensors, and user level APIs for
controlling power profiling and code synchronization. We have also used this same
approach in implementing an automated test bench for energy performance evalua-
tion of software applications on servers. PowerPack [18] and pmlib software [6] are
some of those frameworks, have automated the energy profiling of parallel scientific
workloads by software code instrumentation. These tools have a set of user level
APIs which one can insert before and after the code region of interest to create its
energy profile. Both these tools did not talk about the applicability of their APIs to
the target code of all programming languages. PowerPack requires additional sensing
resistors for each of the power lines in addition to the power meter. Moreover, these
tools can not be used to measure the energy cost of closed source applications. In
contrast, our framework does not need the manual modification of source code of the
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application for its energy measurement.

Although direct measurement of power consumption is expensive, it gives more accu-
rate results than estimation models [29]. Our work also falls in the category of direct
measurement.

In reference [37], a comprehensive survey of different energy measurement approaches
has been done. Based on this survey, the authors have come up with four recommendations
for the efficient energy measurement approaches:

• accurate measurements for better precision.

• fine-grained power models to trace how and where the energy is being used in soft-
ware.

• reduce user experience impact - the measurement tools should not require manual
modifications of source code of the applications. Approaches implementing energy
models and formulas need to be invisible for the user, the application and the under-
lying system.

• software-centric approaches for better evolution and flexibility.

In another recent work [15], the authors designed a framework called software energy
footprint lab, which executes the software of interest on the server and output the power
consumed during the execution on a separate machine. Their approach requires manual
effort to start the software under test and sending the commands to their Data Acquisition
System right before the software is executed and another one right after it terminates, for
synchronization. Our approach is different from them as PAST controls both the execu-
tion of the software as well as the measurement process. The process of synchronization
between the server and the meter is automated in our approach. In addition, the mea-
surement process of the same application can be repeated a number of times for statistical
significance.

2.2 Techniques to save energy costs of Data Centers

To reduce the power bills of large data centers, researchers have proposed a wide range of
energy saving techniques. These techniques include reducing cost at:
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• hardware level by using power efficient cores, efficient memory and cache redesigning
[22]. The ”tickless idle” approach presented in [46] highlighted the limitation of CPU
clock ticks happening irrespective of the status of the processor, i.e., regardless of it
being busy or idle. The authors addressed this drawback by removing clock ticks in
only idle processors. There is also a significant research work done in the area of high
performance computing, for example assigning threads to a subset of the processors
and enable sleep mode for unused processors while maintaining performance. Schall
et. al in [43] enhanced the energy efficiency of database applications by using Solid
State Drives(SSD) in place of conventional hard drives. They observed a significant
drop in energy by using SSD. Mehta et al. in [31] developed a technique to reduce
a processor’s power consumption by reducing the power of the instruction registers.
The number of memory operands can be reduced by using compilation policies that
use the registers more effectively, which in turn lead to power savings, showed by
Davidson and Jinturkar in [12].

• operating System level by: reducing the operating voltage and frequency for executing
a particular task, known as Dynamic Voltage and frequency scaling (DVFS) [40],
spin-down policies, adaptive placement of memory blocks, efficient use of component
devices and energy aware routing [47]. The main focus here is to determine the
policies that switch idle devices into low power states by predicting when the full
capacity of the devices is not needed. The design of power aware operating system
known as ECOSystem has been presented in [52]. In ECOSystem, power is managed
as a system resource and is explicitly allocated to competing applications to achieve
improvements in battery lifetime.

• power management level by decreasing the number of active servers to consolidate
workload [54]. Workload consolidation is an effective way of saving power by turn-
ing off spare servers. This technique is mainly incorporated with virtual machines,
which are migrated from many physical machines into a smaller number of physical
machines.

• software level. Much research has been done to improve the energy efficiency of soft-
ware at the compiler level by optimizing code to use fewer instructions or a more
efficient ordering of instructions. Fraser et al. associate energy costs, with instruc-
tion patterns and then generate code through pattern matching using an algorithm
that tries to find a cover of the pattern that minimizes the overall cost [17]. Research
on the effects of application software activities on the energy consumption of servers
is gaining momentum [9][36][48], because it is the software activities that drive the
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operational cost of hardware, leading to varying dynamic power cost. Software ap-
plications designed with power cost in mind consume 40% less energy than other
applications with the same functionality [48]. Nowadays there are many software
applications intended to deliver the same functionality. For a particular task, user
choice of applications has a great impact on energy consumption. Chenlei et al. [53]
claimed that if users have the knowledge of different energy consumption behaviours
among applications in the same category, they can choose the energy efficient ones
among others that also provides the expected quality of service. They showed that
by typing the document in gedit, then spellchecking it with Libre-Office, and finally
uploading it to Google Docs can save much energy compared to doing all the tasks
on Google Docs directly. Literature review of the existing research on the energy
efficiency of software applications has been discussed in detail in next section.

2.3 Existing Research on the energy efficiency of soft-

ware applications

Abdullah and Sanjeeda presented an energy efficient software development framework in
[4]. Their framework defines a number of tasks that are grouped together into four dif-
ferent phases of the software development processes namely, develop, adopt, measure and
optimize. The authors also presented several tools and techniques like Pipelining, Data
parallelism and Task parallelism for improving performance and energy and related those
techniques to different phases of the presented framework.

The authors of the paper [9] claimed that greater use of external libraries and applica-
tion development environments would lead to higher energy cost of large scale applications.
Their results showed that open source Java ERP system “Adempiere” (using Java Hiber-
nate as an external library) consumes more energy than its counterpart “OpenBravo”
(using plain SQL instructions), even though both the systems have same functionality.
Therefore, developer’s choice of API’s and libraries in implementing a particular function-
ality has much impact on the energy cost of the software. The same authors in the another
paper [8] experimentally showed that faster applications may also lead to higher CPU
utilization which in turn can increase energy cost.

Ardito et al. in [5] developed the concept of introducing the energy efficiency into
SQALE (Software Quality Assessment based on Lifecycle Expectations); one of the soft-
ware quality models to monitor the impact of software on energy consumption during its
development. They identified some energy efficient software guidelines and translated them
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into measurable requirements of the model. Our work is different from them as we mainly
focus on reducing energy cost in the coding stage of the software life-cycle.

Adel et al. in [14] observed that the energy cost of the same algorithm varies from
language to language. They measured the energy cost of different implementations of Tower
of Hanoi problem in C, C++, Java, Perl and Prolog and showed that implementation in
C is most energy efficient among all. However, it is not practical for the developers to
implement a feature in various programming languages and evaluate their energy cost,
because it needs much expertise and IT companies might not afford this. We focus on
exploring different ways of energy savings in a particular programming language.

High-level design and implementation choices of software engineers can play an impor-
tant role in reducing the power consumption of application they code. The tools used by
developers to measure the energy cost of their applications rarely exist. Cagri et. al in [42]
developed a new tool for mapping software design to power consumption and describe how
these mappings are useful for the software designers and developers in developing more
energy efficient solutions. They studied in detail the impacts on energy usage on applying
design patterns to an application. Their results showed that usage of design patterns can
both increase and decrease the energy consumption of an application.

Hazem et. al in [19] presented a unique top-down approach for developing energy-
aware software algorithms based on energy profiling. Their idea is to first identify and
then measure the components of code with high energy consumption, known as kernels;
which are frequently used operations in an algorithm. Their energy evaluation method
involves isolated code with assembly injection.

Nattachart and Peraphon in [23] proposed a technique to reduce energy consumption
of computer programs written in C using cohesion measure. Cohesion is a measure of
how strongly related each piece of functionality expressed by the source code of a software
module is. In other words, it refers to the degree to which the elements of a module belong
together. The authors observed that higher the level of cohesion with in a program, the
more power it consumed.

The impact of code refactoring techniques on the energy consumption of software has
been studied by Jae-Jin et. al in [38]. Code refactoring techniques are meant to improve
software performance, reliability as well as maintainability. The authors measured and
analysed the power consumption of all the refactoring techniques developed by M Fowler
[16]. Their results showed that among 63, only 33 techniques are energy efficient.

Various compression tools and compression formats on Linux servers have been com-
pared in [28] as compression of data is a common operation in today’s data centers. On
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the other hand, in our work, we have compared the various IO, compression and decom-
pression APIs available in Java programming language in terms of their energy cost. With
the knowledge of energy behaviour of these APIs, developer can choose energy efficient
APIs among others while implementing the file reading, file copy, file compression and
decompression operations.
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Chapter 3

Automated Test Bench for energy
measurement of software applications

This chapter presents the design of an automated test bench to measure the power cost of
an application running on a server. The test bench comprises a high precision power meter,
a monitoring computer to acquire power readings from the power meter, and a newly de-
veloped control software (PAST) to synchronize the metering system with the load running
on the server. We show how our test bench can be used by software developers to measure
and improve the energy cost of two Java file access methods, namely, FileInputStream
(M1) and BufferedInputStream (M2). Much energy can be saved by introducing a buffer
of an appropriate size in both these methods. Another benefit of our test bench has been
demonstrated by comparing the energy costs of compression and decompression features
provided by two popular Linux packages: 7z and rar.

3.1 System Model of Test Bench

The system model of the automation framework has been shown in Figures 3.1 and 3.2.
The definitions of all the terms used in the figures are given below.
Server: A system for which we are interested in evaluating the energy cost of running an
application.
Load: A software application that runs on the server, and we measure the energy cost of
running that application.
Power Meter: A data acquisition unit used for measuring power. We used a Lab-Volt
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Figure 3.1: System Model for Desktop where power lines to Disk, Memory and CPU are
identifiable

Figure 3.2: System Model for Server where power lines to individual subsystems are not
identifiable
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9063-00 Data Acquisition and Control Interface as a power meter.
Wall Power: Supplies AC power to the Server.
Monitoring Station: A computer equipped with the PAST system which controls both
the Server and Meter. A programmer is developing the application on this machine and
can run PAST to upload the application to the Server and measure its cost. By running
PAST on a separate machine, it starts executing the Load on the Server as well as starts
the Meter to record current and voltage values simultaneously.

The Monitoring Station is connected to the Meter via an USB (Universal Serial Bus)
interface and to the Server through a LAN (Local Area Network).

Our test bench can be used to measure:

• the power consumed by a server’s individual subsystems, namely, memory, disk, and
processor, if their power lines are easily accessible (Figure 3.1); and

• the total power cost of a server. Only the total power can be measured for a server
where one cannot identify the power lines to its individual subsystems (Figure 3.2).

To set up the test bench for power measurement of individual subsystems, we examined the
different power lines from the ATX 24 pin connector which powers the whole motherboard
of desktop computer. The power lines to the processor (CPU: central processing unit)
operate at 12V , first fed to the voltage regulator module which converts the voltage to the
actual voltage required by the processor [24]. From the 24 wires of ATX connector, one
yellow wire of 12V is feeding power to the processor. The other two yellow wires are from
the ATX 4 pin 12V Power Connector (ATX v2.2) dedicated for the processor. The disk
(Hard Disk) is getting power from a Molex 4 pin power supply connector which operates
at two voltage levels, 5V and 12V . The memory (RAM: random access memory) system
is getting power over three lines from the 24 pin connector, and the voltage level is 3.3V .
The total power cost can be measured from the AC (Alternating Current) power lines to
the server power supply.

If one is interested in measuring the power cost of individual subsystems, namely,
processor, memory, and disk, it is important to identify the number of separate power lines
to monitor for two reasons:

1. data acquisition systems come with a small number of input channels.

2. each subsystem of a computer receives power over multiple power lines. For example,
the data acquisition system that we used in our test automation has four power input
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channels, and the memory subsystem of the desktop computer alone, that we used
for measurement, has three power lines.

Therefore, measuring the total power of a server is easier than measuring the power for
individual subsystems.

3.2 Automated Test Bench

In our test bench, we use a Lab-Volt 9063-00 Data Acquisition and Control Interface
system, known as the Meter in this paper. To read power samples from Meter, the device
supports APIs in the form of Microsoft Dynamic Link Library (DLL). Therefore, the PAST
is developed in Visual Basic. In the remainder of this section, we explain the design of
PAST by means of its behaviour, which is represented as a message sequence chart then
we explain the key problems faced in the design of the PAST, and describe the PAST in
pseudocode form.

3.2.1 Message Sequence Chart

Figure 3.3 shows the sequence of steps of the PAST executed during the whole process of
measurement.

PAST is a multi-threaded system, with three threads: MainThread, LoadThread and
MeterThread. The PAST is launched on the Monitoring station with the location of the
configuration file as its input parameter. A configuration file is a text file that is stored
on the Monitoring Station, it contains both the Server and Meter information. Figure 3.4
shows some entries from configuration file. The behaviours of the three threads is described
below:

MainThread: MainThread first reads the configuration file for the server ipaddress,
username, password and the location on the server (server app loc) where the devel-
oper wants to upload the application. Launch app command contains the command to
start an application on the server. meter inputs in the configuration file tells which cur-
rent and voltage input channels of the Meter and at what sampling frequency (meter
sampling freq) the Meter should produce those values. It then starts the LoadThread
and waits for the other threads to finish.
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LoadThread: This first uploads the application onto the server. It stops the process
if the application is not uploaded successfully. If upload is successful, then it initializes the
Meter with the meter information being read from the configuration file. If the Meter is
ready to read then it starts a new thread MeterThread and starts the application on the
Server.

MeterThread: This starts recording the current and voltage values from the Meter by
using meter API calls. LoadThread ensures that the MeterThread is recording the values
till the application is running on the server. And finally it saves all the values in to the file
inside directory (Recording dir) on the Monitoring Station.

:Main Thread Server
Power
Meter

At Ti

 Start Load At Ti       Start 
 Recording

:LoadThread

Load Executed

At T0, 
New

Sequence Diagram

Stop  Stop Recording

Record Output

PAST

:MeterThread

Upload Application

Status of Upload

New

If Status  =   ‘OK’

Figure 3.3: Message Sequence Chart

From the recorded current and voltage values, energy cost of running an application on
Server is computed by using the expression

Energy cost =
∑
∀i

V (i).I(i).∆t

where V (i) and I(i) are the ith voltage and current samples, respectively, and ∆t is the
sampling interval.
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sampleconfig.txt[11/Apr/2014 4:06:00 PM]

server_ipaddress=192.168.1.148 
username=developer
password=developer
local_application=C:\MyApp.jar
server_app_loc=/home/jasmeet/
Launch_app_command=java - jar MyApp.jar 
iterations=5
component=CPU
tunable_parameter=BufferSize
tunable_parameter_array=128,256....
Recording_dir=C:\Power\Results
server=linux
meter_sampling_freq=1000
meter_inputs=E1,I1,I2,I3

Figure 3.4: Sample Configuration file

3.2.2 Key Challenges

There are some practical problems in measuring the energy cost of an application at the
subsystem level, namely, processor, memory, and hard disk. There are only 4 current and
voltage inputs to the meter. Therefore, at a time only 4 power channels can be measured.
However, in case of our desktop, for all the three components (processor, memory and hard
disk), there are a total of 8 power lines needed to be monitored. Therefore, we measure
the power cost of the three subsystems in three repeated experiments.

3.2.3 Pseudocode of PAST

Algorithm 1 illustrates the pseudocode of PAST. Line #1-5 declare all the variables meant
to store the Server and Meter information. Two thread objects, LoadThread and Me-
terThread are declared initially and then later the job of executing the Load and mea-
surement are assigned to them respectively. An object Load Proc of type process is also
declared to create a new process which is responsible for starting the Load.

MainThread: (Line #6-24) The location (loc) of the configuration file is given as
an input argument to the MainThread. Configuration file is a text file that is stored
on the Monitoring Station, contains both the Server and Meter information. Variables
IPADDRESS, PASS, SERV ER PLAT of configuration file corresponds to the ipad-
dress, username and password of the Server respectively. APP is application used as a
Load on Server and PARAM ARRAY is the tunable parameter array. This array contains
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all the values of the tunable parameter for which we want to run the application. Param-
eter METER INPUTS tells which current and voltage input channels of the Meter to
read and SAMPL FREQ is sampling frequency at which the Meter is producing those
values. If the configuration file does not exist on the location specified, MainThread stops
the PAST after raising an Exception. If the file exists, it first reads both the information
and stored in to variables that are accessible to the other two threads. It then starts the
LoadThread and waiting for the other threads to finish.

LoadThread: (Line #25-46) It first checks the Server Platform and sets up the new
Windows Process (Load Proc) information differently for the Linux and Windows Server
platform. Two windows utilities, psexec and plink that are used by Load Proc to execute
the Load on the Windows and Linux servers respectively. Then it initializes Meter with the
sampling frequency and current and voltage input channels to read by calling a function
InitializeMeter(). If the Meter is ready to read then it starts a new thread MeterThread
and parallely starts the process Load Proc. Load Proc stops when the Load finish exe-
cuting on the Server.

INITIALIZEMETER(): (Line #47-55) It contains all the calls to the Power Meter
API. initDevice() checks that the Power Meter is connected to the Monitoring Station and
initializes it to read the votlage and current channels specified in METER INPUTS. It
returns 0 if the meter is properly initialized, otherwise return −1.

MeterThread: (Line #56-65) It starts recording the current and voltage values from
the Meter by using meter API calls. LoadThread ensures that the MeterThread is recording
the values till the Load Proc is running through a common variable RECORDING.
LoadThread sets RECORDING to true while the Load Proc is running and make it false
when it finishes and MeterThread is read the values while the RECORDING is true. And
finally save all the values in to the file inside directory specified in RECORD DIR on the
Monitoring Station.

This complete process of executing the Load and recording the current and voltage
values is done for each value of the tunable parameter array. And for each value, this
process is repeated for the number of times equal to ITERATIONS parameter specified
in the Configuration File.
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Algorithm 1 PAST

1: string ITERATIONS,RECORD DIR, SERV ER PLAT
2: string METER INPUTS, SAMPLING FREQ
3: string APP ATTR[4]
4: LoadThread,MeterThread← New Thread
5: Load Proc← New Process
6: function MainThread(loc)
7: CONF FILE ← loc
8: if exists(CONF FILE) = true then
9: IPADDR,APP ← read(CONF FILE)

10: UNAME,PASS ← read(CONF FILE)
11: PARAM ARRAY ← read(CONF FILE)
12: ITERATIONS ← read(CONF FILE)
13: RECORD DIR← read(CONF FILE)
14: SERV ER PLAT ← read(CONF FILE)
15: METER INPUTS ← read(CONF FILE)
16: SAMPL FREQ← read(CONF FILE)
17: APP ATTR = {IPADDR,UNAME,PASS,APP}
18: StartMeasurement← LoadThread.job()
19: MainThread.wait()
20: PRINT ”Measurement Process Done”
21: else
22: EXCEPTION ”No Configuration file”
23: end if
24: end function
25: function startMeasurement
26: if SERV ER PLAT = Windows then
27: Load Proc.info(psexec,APP PARAMS)
28: else
29: Load Proc.info(plink,APP PARAMS)
30: end if
31: for each PARAM in PARAM ARRAY do
32: for i← 1, ITERATIONS do
33: STATUS ← InitializeMeter()
34: if STATUS = 0 then
35: StartRecording ← MeterThread.job()
36: Load Proc.start()
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37: while !Load Proc exited do
38: RECORDING← true
39: end while
40: RECORDING← false
41: LoadThread.wait()
42: end if
43: end for
44: end for
45: MainThread.notify()
46: end function
47: function InitializeMeter
48: if meter.initDevice() = 0 then
49: meter.set(METER INPUTS)
50: meter.set(SAMPL FREQ)
51: return 0
52: else
53: return −1
54: end if
55: end function
56: function StartRecording
57: LIST ← new ArrayList
58: while RECORDING = true do
59: TEMP ← readIandV(METER INPUTS)
60: LIST .add(TEMPARRAY )
61: end while
62: meter.closeDevice()
63: write(LIST ,RECORD DIR)
64: LoadThread.notify()
65: end function
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3.3 Experiments

In this section, we show how software developers can use our test bench to evaluate the
energy performance of running an application on a server with various design options. We
compare the energy cost of two Java file access methods: (i) M1 using FileInputStream
only and (ii) M2 using BufferedInputStream. Ardito et al. [5] intuitively claim about the
energy efficiency of these two methods without any measurements. First, we validate their
claim by measuring the energy cost of the methods on our test bench. Then we revise the
two methods by introducing a buffer into them and measure their energy cost with varying
buffer sizes. We also compare the revised methods to read extremely large files in terms of

Table 3.1: Server Machines Configuration

Parameter
Desktop

(ASUS P4P800-VM)

Real Server

(Dell PowerEdge 2950)

Processor
Intel Pentium 4,

3.2 GHz

7x Intel Xeon, 3 GHz,

4 cores per processor

Hard Disk 80 GB IDE 1.7 Tera Bytes SAS

Main Memory 2 GB DIMM 32 GB DIMM

Operating System Linux (Ubuntu 13.10) Linux (Ubuntu 13.10)

their energy cost. Next, we compare the energy performance of two packages 7z and rar
with respect to compression and decompression. Table 3.1 shows the configurations of two
machines used in our experiments.

3.3.1 Example of using test bench to make important design de-
cisions

Listing 1 and Listing 2 in Figure 3.5 describe M1 and M2, respectively. We measure the
energy cost of CPU, memory and disk for reading a video file of size 512 MB (Mega Bytes)
with M1 and M2 on a desktop machine. Figure 3.5 shows the results of our measurements
by comparing the energy cost of all the three components for both M1 and M2. The reason
behind the less energy consumption by M2, for all the components is that it reads a file

21



Listing 2. M2: File Reading using BufferedInputStream 

FileInputStream fis = new FileInputStream(fileName); 

BufferedInputStream bis = new BufferedInputStream(fis); 

int b,cnt = 0; 

while ((b = bis.read()) != -1) 

{ 

if (b == ’\n’) 
cnt++; 

} 
fis.close(); 

Listing 1. M1: File Reading using FileInputStream 

FileInputStream fis = new FileInputStream(fileName); 

int b,cnt = 0; 

while ((b = fis.read()) != -1) 

{ 

if (b == ’\n’) 
cnt++; 

} 
fis.close(); 
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Figure 3.5: Energy cost evaluation of CPU, Memory and Disk for M1 and M2 on the
Desktop

1 FileInputStream fis = new
FileInputStream(fileName);

2 byte[] buffer = new byte[bufferSize];
3 int b,cnt = 0;
4 while ((b = fis.read( buffer )) != 1)
5 {
6 if (b == ’\n’)
7 cnt++;
8 }
9 fis.close();

Listing 3: M1’: Introducing user buffer
in M1

1 FileInputStream bis = new
FileInputStream(fileName);

2 byte[] buffer = new byte[bufferSize];
3 BufferedInputStream bis = new

BufferedInputStream(fis);
4 int b,cnt = 0;
5 while ((b = fis.read( buffer )) != 1)
6 {
7 if (b == ’\n’)
8 cnt++;
9 }

10 fis.close();

Listing 4: M2’: Introducing user buffer
in M2

of any size in larger chunks equal to the size of its internal buffer from the disk, whereas
M1 reads a single byte of data in one read operation. It is clear from the results that CPU
consumes the maximum energy in reading a file.

We further study the impact of introducing a programmer defined buffer into both the
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Figure 3.6: Total energy cost by M1’ and M2’ with different buffer sizes on the Desktop

methods. Listing 3 and Listing 4 describe the modified code of the two methods, and they
are denoted by M1’ and M2’ corresponding to M1 and M2, respectively. In both M1’ and
M2’, line #2 shows the definition of buffer as an array of type byte, and its size is equal
to bufferSize. Line #4 and #5 of M1’ and M2’ respectively, show that in one call read
operation reads several bytes of data of size, bufferSize. Therefore bufferSize is a tunable
parameter which the developer can vary and run these methods to read a file. We measure
the energy cost of CPU, memory and Disk for both M1’ and M2’ with buffer size ranging
from 1 Byte to 64 Mega Bytes (MB).

Figure 3.6 shows the evaluation of the total energy cost of all the three components for
both M1’ and M2’. The results in Figure 3.6 show that after introducing a programmer
buffer into M1 and M2, the total energy cost of all the three components, is maximum at
buffer size 1 byte. It started decreasing with the increase in the buffer size till 128 bytes.
We expanded the graphs of Figure 3.6 in Figure 3.7 to show the energy cost of individual
components along with their total energy cost at the buffer sizes from 128 bytes to 64 MB.

Figures 3.7(a), 3.7(b) and 3.7(c) show the energy cost of CPU, memory and disk respec-
tively, and their total energy cost in 3.7(d). The energy cost behaviour between M1’ and
M2’ is same as between M1 and M2 for buffer sizes from 128 bytes to 8KB; in other words,
energy cost of M2’ remains less than M1’. Then, energy is constant for both the methods
ranging from 8KB to 128KB, except that there is a sharp increase at 32KB by M1’ for
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Figure 3.7: Energy cost of M1’ and M2’ with different buffer sizes on the Desktop

disk. It started increasing from 128KB to 1 MB then decreases and remains constant till
64MB. Both M1’ and M2’ consume almost the same energy for all the three components
from 8KB to 64MB and consumes minimum energy at 16KB. Moreover, this energy is even
less than M2.

Therefore, it is clear from our measurements that there is a further opportunity to
decrease the energy cost of M1 and M2 by introducing a programmer buffer into them.
Both the methods consume almost the same energy at buffer sizes ranging from 8K to 64
MB which contradicts the claim by Ardito et. al [5] that M1 always consumes more energy
than M2. In addition to this, 16K is the optimal buffer size for all the three components.

To gain additional insights into the behaviours of M1’ and M2’ while reading extremely
large files, we perform the experiments on the same desktop machine to read files ranging
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Figure 3.8: Energy cost of M1’ and M2’ for different file sizes on the Desktop

from 1MB to 32 Giga Bytes(GB), while keeping the buffer size fixed at 16KB. Figure 3.8
shows the graphs plotted for the total AC (Alternating Current) energy cost as function
of different file sizes for both the methods at 16KB buffer size. It is clear from the graph
that both the methods consume the same energy at 16KB buffer size. The initial portion
of Figure 3.8 has been zoomed in Figure 3.9 for the file size ranging from 1MB to 512
MB. The energy cost gradually increases for the file sizes from 1MB to 512MB but there
is a significant increase in energy cost from 512MB to 32 GB. The sharp rise in energy for
large file sizes needs to be further investigated on a server with large memory. We close
this section by noting the above results enable the developer to chose the right method for
reading a file with appropriate buffer size during the design stage.

3.3.2 Using the test bench in function level energy cost measure-
ment

The test bench can also be used to measure the energy cost of a specific function of an ap-
plication software whether it is open source or closed source. To validate this functionality
of our test bench we conducted the experiments on a real server (Table 3.1) from a data
center. We consider two popular compression packages, namely, 7z and rar to compress
and decompress files on both Linux and Windows operating systems but same hardware
platform. Both the packages output compressed files in .rar, .7z and .zip formats and can
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Figure 3.10: Energy cost of compression and decompression functions of rar and 7z pack-
ages on the real server (Table 3.1)
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decompress the same to the original files. Figures 3.10, 3.11, 3.12 shows comparison of
various combinations of OS (Windows and Linux), Compression packages (rar and 7z ),
and output formats ( .rar, .zip, and .7z ) for 2 GB mp4, 370 MB pdf, 370 MB excel files
respectively. The entries within the parentheses on the X-axis represent the format of the
output produced by the compression packages. Each bar represents the energy cost of
compression and decompression performed on a respective files on a Dell server.

The measurement results show that:

• For the three types of files (.mp4, pdf and .xlsx), both the packages behave similar
in terms of energy cost on Linux and Windows OS.

• rar package consumes less energy on Windows as compare to on Linux in producing
all the three formats (.rar, .zip and .7z ). On the other hand using 7z on Linux is
more energy efficient than using it on Windows.

• rar package consumes same energy in producing three formats whereas 7z consumes
minimum energy in producing .zip format.

• Overall, 7z on both Linux and Windows, is most energy efficient in compressing the
files to .zip format as compare to other output formats.

Further investigation is required to find the causes of energy cost differences of the same
operations of two packages.

3.4 Summary

In this paper we presented an automation framework to measure the energy cost of servers
while running software applications. The framework’s infrastructure mainly contains a
power meter, target server and control software (PAST) for synchronization and monitor-
ing. By using the test bench, we performed actual measurements to verify the claim in a
previously published paper [5] that energy cost of reading files by the method FileInput-
Stream (M1) is greater than the BufferedInputStream (M2) method. However this claim
is not valid in certain cases, if we introduce a programmer buffer in both the methods. It
holds good for buffer sizes ranging from 128 bytes till 8KB, but these two methods con-
sume almost the same energy at buffer sizes from 8KB to 64MB. Also, the introduction of
buffer in M2 has further reduced its energy cost. Finally, we compared the energy costs

27



Figure 3.11: Energy cost of compression and decompression functions of rar and 7z pack-
ages on the real server (Table 3.1)

of the same functionality provided by different software applications by measuring the en-
ergy costs of compression and decompression features of two Linux packages: 7z and rar.
The 7z package consumes more energy than rar in compressing and decompressing files.
The automation framework can be used by programmers to evaluate the energy cost of
their applications. More work is required to be done to find out why the energy cost rises
significantly for extremely large file sizes (Figure 3.8)
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Figure 3.12: Energy cost of compression and decompression functions of rar and 7z pack-
ages on the real server (Table 3.1)
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Chapter 4

Impact of developer choices on
energy consumption of software
applications

With the growth in cloud computing, data-intensive computing has emerged which in-
volves processing large volumes of data, commonly referred to as big data. The increasing
demand for high performance reading and writing of big data leads to the high usage of
computing resources in data centers which results in high power bills. To analyze and pro-
cess big data, various big data and cluster computing frameworks have been proposed in
the past. Those frameworks include Apache Hadoop, Pregrine, Apache Spark and Dryad.
All these frameworks have been integrated with most of the high level programming lan-
guages namely, Java, Python, and C# for performing input/output (IO) operations. These
IO operations mainly include reading big data, transferring huge data from one server to
another, compressing data to gain storage space, and decompressing the data to use it.
Within a particular programming language, there are various methods and Application
Programming Interface (APIs) available to carry out these operations. If developers are
aware of the power consumption of these APIs, they can choose energy efficient APIs and
their optimal parameters while implementing these operations.

In this Chapter, we analyze the various APIs available in Java programming language
to implement common operations, namely, file reading, file copy, file compression and file
decompression on large servers from the energy viewpoint. There are some APIs in Java
which have a tunable parameter, buffer size, which developers can change according to
their choice and use the APIs to perform those operations. By measuring the energy cost
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of the tunable APIs with different buffer sizes, we show much energy can be saved by
choosing a particular buffer size. For the comparison, we measure the energy cost of those
APIs which do not have any tunable parameter. Specifically, we evaluate the following
scenarios on both Linux and Windows servers running on the same hardware platform:

• file reading with three APIs, namely, traditional FileInputStream and BufferedIn-
putStream and the latest Java 7, FileChannel with different buffer sizes.

• file copy by Streams (FileOutputStream and BufferedOutputStream) with different
buffer sizes.

• comparison of minimum and maximum energy costs of file copy by using Streams at
a particular buffer size with the energy cost of other available copy methods includ-
ing Java 7 Files.copy method, Apache FileUtils.copyFile and FileChannel transfer
method in which buffer size is fixed.

• file compression in zip, gzip and xz formats and their decompression by using Java
APIs.

4.1 Methodology

We have used the same automated test bench presented in Chapter 3, for measuring the
energy cost of an application running on a sever. We measure the total AC (Alternating
Current) power cost of a server as the power lines to individual subsystems, namely, hard
disk, CPU and memory cannot be identified on commercial large scale servers.

4.1.1 Choosing key operations on Servers

Key operations on Cloud based software systems in data centers include:

• Reading and processing huge data from files. Several thousands of Hadoop job in-
stances are required for reading a big database index file to memory, and do a run-time
look up to base the index. Therefore, energy efficient IO is required to reduce energy
cost.[45][13].

• Transfer (Copy) big files from one server to another.
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• Data compression to save disk space and to improve performance which in turn saves
energy [28].

• Data decompression to process and analyse the compressed data.

In this study, we choose to explore various APIs and methods available in Java to carry
out these operations. We analyzed these operations from the energy viewpoint by reading,
copying, compressing and decompressing large files on a large scale server by using the
appropriate APIs in Java. Java is chosen because the most commonly used big data
frameworks are either written in Java or they have the support for Java to perform IO
operations, data compression and decompression.

4.1.2 Various Input/Output API’s in Java for File Reading and
File Copying

In Java programming, IO has been carried out using Streams (standard input/output)
until new input/output (NIO) library (block oriented) was introduced with JDK 1.4. The
most important distinction between the original IO library (found in java.io.*) and NIO
has to do with how data is packaged and transmitted. Following are the main points which
highlight the differences between the traditional IO and NIO in Java:

1. A stream-oriented IO system deals with the movement of data one or more bytes
at a time, through an object called a Stream. A single byte or multiple bytes of
data can be explicitly read from or written to streams by a programmer defined
byte array. This array can be called a buffer which improves the energy efficiency
by reducing the disk access operations, whereas block-oriented IO system deals with
data in blocks. Each operation produces or consumes a block of data in one step.
Instead of streams, all data that goes from anywhere (or comes from anywhere) must
pass through a Channel object. By default, all data is handled with buffers. But this
buffer is more than just an array; its contents occupy the same physical memory used
by the underlying operating system for its native IO operations, thus enabling the
most direct transfer mechanism and eliminating the need for any additional copying.

2. Java IO’s various streams support blocking operations. In other words, when a thread
invokes a read() or write(), that thread is blocked until there is some data to be read
or the data is fully written. On the other hand, in asynchronous NIO, a thread can
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Table 4.1: Various File Reading APIs in Java

I/O

System
API(s) Notation API Usage in a Program

java.io.* FileInputStream.read() M1

1 FileInputStream fis =
2 new FileInputStream(fileName);
3 byte[] buffer = new byte[bufferSize];
4 int b,cnt = 0;
5 while ((b = fis.read( buffer )) != 1)
6 {
7 cnt++;
8 }
9 fis.close();

java.io.* BufferedInputStream.read() M2

1 InputStream fis =
2 new FileInputStream(fileName);
3 byte[] buffer = new byte[bufferSize];
4 BufferedInputStream bis =
5 new BufferedInputStream(fis);
6 int b,cnt = 0;
7 while ((b = bis.read( buffer )) != 1)
8 {
9 cnt++;

10 }
11 fis.close();

java.nio.* FileChannel.read() M3

1 RandomAccessFile file = new
2 RandomAccessFile(fileName, ”r”);
3 FileChannel inChannel =
4 file.getChannel();
5 ByteBuffer buffer =
6 ByteBuffer.allocate(bufferSize);
7 while(inChannel.read(buffer) > 0)
8 {
9 buffer.flip();

10 buffer.clear();
11 }
12 inChannel.close();
13 file.close();
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request that some data be written to a Channel, but not wait for it to be fully written.
In the meantime, the thread can proceed on performing IO on other channels; i.e. a
single thread can now manage multiple channels of input and output.

3. NIO moves the most time-consuming I/O activities (namely, filling and draining
buffers) back into the operating system, thus allowing for a increased speed.

Tables 4.1 and 4.2 shows the various APIs available in Java based on standard IO and
NIO system for file reading and file copy operations, respectively. The third column of
the tables shows the main API(s) being used to perform an operation, the fourth column
contains the notation that we use to represent the usage of these APIs by means of Java
methods, and the fifth column (API usage in a Program) contains the actual implementa-
tion of the programs to carry out file reading and file copy operations. All M1, M2 (from
standard Java IO) and M3 (from NIO) can read a large file in chunks (buffer) of size equal
to bufferSize but buffer in M1 and M2 is different from M3’s buffer as explained in the first
paragraph. Line #2 of M1 and M2 and Line #4 of M3 from the fifth column of Table 4.1
show the definition of buffer. Line #4, #6 and #5 of M1, M2 and M3, respectively, show
that in one call, read operation reads several bytes of data of size bufferSize. Therefore,
in all file reading methods (M1, M2 and M3), bufferSize is a tunable parameter which
developers can change according to their choice.

The file copy methods MC1 and MC2 in Table 4.2 also use the same APIs as M1 and
M2, respectively. On the other hand, MC3, MC4 and MC5 do not have any parameter
which can be varied in contrast to MC1 and MC2 where the size of the buffer can be
defined by a developer. In addition, MC3 is a part of NIO introduced in JDK 1.7; it uses
platform’s File System providers to copy files from one location to another. MC5 uses NIO
file Channels to transfer files. Further, Apache FileUtils library method is used in MC4
which in turn uses NIO file Channels similar to that of MC5. This library method has a
simpler interface for file copy operation as compare to that of file Channel.

34



Table 4.2: Various File Copy APIs in Java

I/O
System

API(s) Notation API Usage in a Program

java.io.*
FileInputStream.read()

FileOutputStream.write()
MC1

1 File source = new File(srcFile);
2 File dest = new File(destFile);
3 OutputStream os =
4 new FileOutputStream(dest);
5 InputStream is =
6 new FileInputStream(source);
7 byte[] buffer =
8 new byte[bufferSize];
9 int length;

10 while((length=is.read(buffer))>0)
11 {
12 os.write(buffer, 0, length);
13 }

java.io.*
BufferedInputStream.read()

BufferedOutputStream.write()
MC2

1 File source = new File(srcFile);
2 File dest = new File(destFile);
3 OutputStream dst =
4 new FileOutputStream(dest);
5 InputStream src =
6 new FileInputStream(source);
7 BufferedOutputStream os =
8 new BufferedOutputStream(dst);
9 BufferedInputStream is =

10 new BufferedInputStream(src);
11 byte[] buffer = new byte[bufferSize];
12 int length;
13 while ((length = is.read(buffer)) > 0)
14 {
15 os.write(buffer, 0, length);
16 }

java.io.* Files.copy() MC3

1 File source = new File(srcFile);
2 File dest = new File(destFile);
3 Files.copy(source.toPath(),
4 dest.toPath());

Continued on next page
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Table 4.2 – Continued from previous page
I/O

System
API(s) Notation API Usage in a Program

java.io.* apache.FileUtils.copyFile() MC4

1 import apache.commons.io.FileUtils
2 File source = new File(srcFile);
3 File dest = new File(destFile);
4 FileUtils.copyFile(source,dest);

java.nio.* FileChannel.transferFrom() MC5

1 File src = new File(srcFile);
2 File dest = new File(destFile);
3 FileChannel srcChan = new
4 FileInputStream(src).getChannel();
5 FileChannel destChan = new
6 FileOutputStream(dest).getChannel();
7 destChan.transferFrom(srcChan,
8 0,srcChan.size());

4.1.3 Data Compression and Decompression APIs in Java

The Java platform has mainly two APIs for compressing data: (i) ZipOutputStream writes
the data out in a compressed zip format; and (ii) GZipOutputStream compresses data in
the gzip format. Both the APIs are part of java.util.zip package and use Deflate as a data
compression algorithm. The Deflate algorithm is a combination of the LZ77 algorithm
and Huffman coding. The third compression API that we studied is XZOutputStream,
which can compress data in xz format. This API is based on open source LZMA SDK and
is a part of XZ Utils project [2]. It uses the LZMA compression algorithm. Compress-
ing data before storage can help in efficiently utilizing available storage space and before
transmission can save network bandwidth. Table 4.4 shows the details of all the above
Java compression APIs, MCOM1 (zip), MCOM2 (gzip) and MCOM3 (xz ) along with their
respective decompression APIs, MDECOM1, MDECOM2 and MDECOM3. Table 4.4 also
contains the usage of these APIs by means of Java methods in the fifth column. Buffer size
is a parameter which can be specified by a developer while using these APIs for compression
and decompression.
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Table 4.3: Various Compression APIs in Java

Format API(s) Notation API Usage in a Program

zip ZipOutputStream MCOM1

1 OutputStream os = new FileOutputStream(compFile);
2 OutputStream zos = new ZIPOutputStream(os);
3 InputStream fis = new FileInputStream(srcFile);
4 byte buffer[] = new byte[bufferSize];
5 int bytes read;
6 while((bytes read = fis.read(data,0,bufferSize))!=−1)
7 {
8 zos.write(buffer, 0, bytes read); }
9 fis.close();

10 zos.close();

gzip GZipOutputStreamMCOM2

1 OutputStream os = new FileOutputStream(compFile);
2 OutputStream gos = new GZIPOutputStream(os);
3 InputStream fis = new FileInputStream(srcFile);
4 byte[] buffer = new byte[bufferSize];
5 int bytes read;
6 while((bytes read = fis.read(buffer))>0) {
7 gos.write(buffer, 0, bytes read); }
8 fis.close();
9 gos.finish();

10 gis.close();

xz
org.tukaani.xz

.XZOutputStream
MCOM3

1 InputStream fis = new FileInputStream(srcFile);
2 OutputStream fos = new FileOutputStream(compFile);
3 InputStream bis = new BufferedInputStream(fis);
4 LZMA2Options opts = new LZMA2Options();
5 opts.setPreset(5);
6 XZOutputStream xzos =
7 new XZOutputStream(fos,opts);
8 byte[] buffer = new byte[bufferSize];
9 int bytesRead;

10 while((bytesRead = bis.read (buffer))!=−1) {
11 xzos.write (buffer, 0, bytesRead); }
12 xzos.close();
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Table 4.4: Various Decompression APIs in Java

Format API(s) Notation API Usage in a Program

zip ZipInputStream MDECOM1

1 ZipFile zipfile = new ZipFile(zipfile);
2 ZipEntry entry = ZipEntry.nextElement();
3 InputStream is = new BufferedInputStream
4 (zipfile.getInputStream(entry));
5 OutputStream fos = new
6 FileOutputStream(entry.getName());
7 OutputStream bos = new BufferedOutputStream(fos);
8 byte[] buffer = new byte[bufferSize];
9 int count;

10 while ((count = is.read(buffer)) != −1) {
11 bos.write(buffer, 0, count); }
12 bos.close();
13 is.close();

gzip GZipInputStreamMDECOM2

1 InputStream fis = new FileInputStream(gzipFile);
2 GZIPInputStream gis = new GZIPInputStream(fis);
3 OutputStream fos = new FileOutputStream(newFile);
4 byte[] buffer = new byte[bufferSize];
5 int len;
6 while((len = gis.read(buffer)) != −1)
7 {
8 fos.write(buffer, 0, len);
9 }

10 fos.close();
11 gis.close();

xz
org.tukaani.xz

.XZInputStream
MDECOM3

1 InputStream fis = new FileInputStream(xzFile);
2 OutputStream fos = new FileOutputStream(output);
3 InputStream bis = new BufferedInputStream(fis);
4 XZInputStream xzIn = new XZInputStream(bis);
5 OutputStream bos = new BufferedOutputStream(fos);
6 byte[] buffer = new byte[bufferSize];
7 int bytesRead;
8 while((bytesRead = xzIn.read(buffer)) != −1) {
9 bos.write (decoded, 0, bytesRead) ; }

10 xzIn.close();
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Table 4.5: Server Machine Configuration

Type Dell PowerEdge 2950

Processor
7x Intel Xeon, 3 GHz,

4 cores per processor

Hard Disk 1.7 Tera Bytes SAS

Main Memory 32 GB DIMM

Operating System
Linux(Ubuntu 14.04 LTS)

Windows Server 2008

Java JDK1.7.0

4.2 Experiments and Results

In this section, we show how developer’s choice of APIs along with choosing an appropriate
buffer size in performing file reading, file copy and file compression operations can impact
the energy cost of the server. First, the energy cost of M1, M2, and M3 is measured with
varying buffer sizes for reading a large file. Next, we evaluate the energy performance
of MC1 and MC2 with different buffer sizes by copying a large file from one location to
another. Next, we measure the energy cost of file copy by MC3, MC4, and MC5, and
compare their energy costs with the the minimum and maximum energy costs of MC1 and
MC2 at particular buffer sizes. Each buffer size in all the experiments is kept as a power
of 2. The reason behind this as the most file systems are configured to use disk block sizes
of 4096 or 8192. For example if buffer is configured to read 4100 bytes at a time, each
read would require 2 block reads by the file system. Just few bytes (4) more than block
size will be read in another read operation leads to inefficiency. That is why, most buffers
sized as a power of 2 and generally larger than (or equal to) the disk block size. Then, the
energy costs of MCOM1, MCOM2, and MCOM3 are compared by compressing a large pdf
document. Finally, we measure the energy costs of decompression methods, MDECOM1,
MDECOM2, and MDECOM3. All the experiments are performed on a Windows Server
and a Linux Server. Table 4.5 shows the configuration of a rack mountable server along
with the operating system details used to carry out the experiments.
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Figure 4.1: Energy cost of File Reading Methods M1, M2 and M3 with different buffer
sizes

4.2.1 File Reading

We measure the total AC energy cost of a server for reading a 20 GB video file from a
disk by using M1, M2 and M3 with different buffer sizes. A buffer size has been varied
from 1KB (Kilo Byte) to 1 GB (Giga Byte). For every buffer size, each method is run
5 times and the average is taken to represent the energy cost for that particular buffer
size. Figure 4.1 shows the energy cost of all the methods versus buffer size on both the
platforms, Linux and Windows. It is clear from the graph, that all the methods follow
the same trend in energy cost for the different buffer sizes on both the platforms. The
energy cost started decreasing significantly from buffer size 1KB to 64KB, because with
the increase in buffer size, a file will be read in big chunks thereby reducing the number of
disk accesses. And in the range 1KB–32KB, M3 consumes more energy than M1 followed
by M2. However, there is a sharp rise in the energy cost from 256KB to 4MB minimizing
the effect of increased buffer size on energy cost. Then it remains constant till the buffer
size is increased to 1GB. In the range 256KB–1GB, M2 consumes much more energy than
M1 and M3. As the figure shows, at 64KB, all the methods consume almost equal and
minimum energy. This energy cost patterns of all the File access methods are the same on
both the operating systems. The reason behind the sharp rise in energy cost after 128KB
is that the data from the disk is first copied into RAM, then into L2 cache, next into L1
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cache and finally from L1, data is read by the CPU. For the large buffer sizes, the data of
the buffer from one read call does not fit into L1 cache. Therefore it takes extra calls to
transfer complete data from L2 to L1 cache in one read operation, increasing the waiting
time between the consecutive read calls. However, the small buffer sizes fit into L1 cache;
decreasing the latency between L2 and L1 caches.

Figure 4.2: (a) Energy cost of file copy methods MC1 and MC2 with different buffer sizes
on both Windows and Linux; (b) Comparsion of maximum and minimum energy cost of
MC1 and MC2 at 256KB and 1GB buffer sizes, respectively, with the energy cost of MC3,
MC4 and MC5.

4.2.2 File Copy

Figure 4.2(a) shows the energy performance evaluation of file copy methods, MC1 and MC2
at buffer size ranging from 1KB to 1GB. Energy cost is measured to copy a 20GB video file.
The energy cost behaviour of MC1 and MC2 is similar to file reading methods, M1 and M2,
respectively, as both are based on similar APIs (FileInputStream and BufferedInputStream,
respectively). However, the minimum energy cost of MC1 and MC2 is at 256KB buffer size
on both the operating systems. Next, we use the methods MC3, MC4 and MC5 to copy
the same video file and measure the energy cost. A developer does not have any control
over these methods as they do not have any tunable parameter which can be changed.
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Figure 4.2(b) shows a bar graph which compares the energy cost of MC3, MC4 and MC5
with the minimum and maximum energy costs of MC1 and MC2. It is clear from the
results that although it is easy for developers to use MC3, MC4 and MC5 to perform file
copy operation, they consumes more energy than MC1 and MC2 with optimal buffer size,
256KB. After reading the source code of MC3 and MC5, it was found that these methods
internally use buffers of fixed size of 2MB and 8MB, respectively, while copying files. This
is the reason behind their more energy costs than the minimum energy cost of MC1 and
MC2 at 256 KB. Developers might choose the APIs which are simpler to use without caring
about their energy efficiency.

4.2.3 File Compression and Decompression
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Figure 4.3: Energy cost of Compression APIs MCOM1, MCOM2 and MCOM3 with dif-
ferent buffer sizes on both Windows and Linux
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Figure 4.4: Energy cost of Decompression APIs MDECOM1, MDECOM2 and MDECOM3
with different buffer sizes on both Windows and Linux

The results of the measurement of energy cost of compressing a 1.2 GB pdf document
by using MCOM1, MCOM2 and MCOM3 with different buffer sizes on both Windows and
Linux servers has been shown in Figure 4.3. The change in the energy cost of MCOM1 and
MCOM2 with varying buffer size is similar to that of file reading and file copy methods.
However, for MCOM3 the energy trend is different; after 16 MB buffer size there is sharp
rise in energy, after 64 MB, the energy started decreasing, and at 512 MB the energy
cost becomes equal to the energy cost at 1KB buffer size. In addition, the energy cost
is maximum for MCOM3. Energy consumption mainly depends on the effectiveness of
compression, which is typically measured by Compression Ratio (CR) as defined below:

CR =
Originalfilesize

Compressedfilesize

Table 4.6 shows the compression ratios of all the three compression APIs. MCOM1 and
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MCOM2 have the same compression ratio. In other words, the size of the compressed files

Table 4.6: Compression Ratio of Different Methods

Method CR

MCOM1 1.22

MCOM2 1.22

MCOM3 1.47

produced by these methods are the same. That is why there is not much difference in their
energy costs. In contrast, MCOM3 has a better compression ratio, which is the reason for
more energy cost. Further, it is clear from Figure 4.3 that choosing 64K buffer size for
all the methods MCOM1, MCOM2 and MCOM3 leads to minimum energy compression
on both the platforms. Similarly, Figure 4.4 shows the energy measurement results for
decompression methods MDECOM1, MDECOM2 and MDECOM3 for decompressing the
zip, gzip and xz files, respectively with, different buffer sizes. The graphs of the Figure
4.4 clearly show that decompressing a zipped file (MDECOM1) is most energy efficient on
both the platforms, and MDECOM3 has maximum energy cost among all the methods.
Even though MCOM1 and MCOM2 has almost the same energy cost, their respective
decompression methods MDECOM1 and MDECOM2 have a large energy difference.

Then we calculate the percentage variation in the energy costs of all the methods with
respect to buffer size by using the expression defined as below:

variation =
Emax − Emin

Emax

∗ 100

where Emax and Emin are the maximum and minimum energy costs of a certain file reading
method, respectively, at particular buffer sizes. Table 4.7 shows the calculated variation
in the energy costs of all the file reading, file copy, file compression and file decompression
methods on both the platforms. The variation in the energy cost of file reading method,
M2 is more as compare to methods, M1 and M3. For file copy, the energy cost of MC1
is more sensitive to the buffer size selection than of MC2. Next, from all the compression
methods, the variation in energy cost with respect to buffer size is more for MCOM1 than
for MCOM2 and MCOM3. Similarly, decompression by MDECOM1 is more sensitive to
the choice of buffer size. It is evident from the Table 4.7, that developers need to be careful
in selecting the buffer size while using methods, having high variation in energy costs with
respect to buffer size.
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Table 4.7: Perecntage variation in the energy costs of file reading methods

Method
%variation

Windows Server

%variation

Linux Server

M1 73% 74.2%

M2 73.2% 76.4%

M3 73% 69.8%

MC1 73.2% 37%

MC2 69% 41.33%

MCOM1 6.6% 6.1%

MCOM2 4.5% 3.4%

MCOM3 4.2% 6.23%

MDECOM1 79.6% 41.5%

MDECOM2 3.9% 8.7%

MDECOM3 33% 7.8%

4.3 Summary

We close this chapter by noting that in the real world, these operations (file reading, file
copy, data compression and decompression) are being used million times on the data centers
and choosing the right API with appropiate buffer size for a particular operation can lead
to energy savings.

45



Chapter 5

Framework for estimating the energy
cost of software applications on
servers for various developer choices

5.1 Introduction

Large scale software applications running on servers need to be designed with power ef-
ficiency in mind. Although there are a number of ways to optimize the application at
its design stage, as we described in Chapter 4; developers generally do not consider the
energy cost of their software while making important design decisions. They find it dif-
ficult to measure the energy cost incurred by their workload and know how it behaves
on real servers inside data centers. In addition to this, the measurement process takes a
lot of human effort and time. As a result, modern data centers hosting big applications
like Facebook, Gmail, Google, twitter etc. consume a major portion of world’s electrical
energy. Profiling the energy consumed in executing a particular task is essential to help
software developers to build an energy efficient software applications. The measurement of
power consumption of a server in data center is not good enough. It is important to know
how much power a single application uses. Energy efficient application development needs
information about the energy costs of hardware subsystems at the application level [20][26]
and this can be accomplished by developing hardware and application profiles. Hardware
profile tells about the energy consumption of hardware components by means of mathemat-
ical models, in contrast, for a given application, application profile provides information
about the use of hardware subsystems. In real world, software applications are developed
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Figure 5.1: Framework

by a team of developers. For the energy efficient development, all the developers in a team
need to choose energy efficient design options. If all the developers measure the energy
for every design choice, it takes lot of human effort and time. To solve this problem, we
present a framework in which for the common design options, only one developer measures
the energy cost on a real server and develop energy cost models from the measurements.
Other developers do need to measure the energy for the same options, they can use the
models to estimate the energy consumption for those options.
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5.2 Framework Description

1. Software Application: An application of which the developer is interested in mea-
suring the energy cost on a real server for the various design choices. After estimating
the energy cost, among all the choices, an energy efficient choice can be selected in
final implementation of application.

2. Energy Measurements from Automated Test Bench: The main step in frame-
work is to measure the actual energy cost of the application for the various design
choices. For this, our automated test bench presented in Chapter 3: Figure 3.1 can
be used. Among a team of developers, one developer known as Model developer can
be assigned a task of preparing energy profiles of different design choices i.e taking
energy measurements of all the design choices.

3. Estimation Models: When all the energy measurements are done, Model developer
then prepares a mathematical models which estimate the energy cost of the applica-
tions for the various design choices. These models can then be used by application
developers to predict the energy consumption for the same design option instead of
taking direct measurements.

5.3 Example of using Framework in estimating the

energy cost of File Reading Methods with differ-

ent buffer sizes

In this section, we explain the usage of our framework in estimating the energy costs of all
the file reading methods described in Chapter 4 with tunable parameter buffer size. We
are interested in finding the energy costs of all the three file reading methods with different
buffer sizes ranging from 1 KB to 1 GB. Once a model developer prepares mathematical
models of the energy costs of reading methods with different buffer sizes using actual
measurements from test bench, application developers can use those models to find the
energy costs without taking actual measurements. In this way, application developers can
decide on the buffer size for which the energy cost of file reading method is minimum.
By using framework, the actual measurements are just needed once to build mathematical
models after that in future, other developers deciding on the same design decisions do not
need to spend time on measurements. They use the models to estimate the energy costs.
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5.3.1 Energy measurements from test bench

The first step in the framework, is to measure the real energy costs from test bench. We
take the example of file reading method FileInputStream (M1) described in Chapter 4 to
demonstrate the usefulness of framework. First the energy cost of M1 is measured with
different buffer sizes ranging from 1K–512MB using our automated test bench. Figure 5.2
shows the energy measurement results of the API in the form of graph.

Figure 5.2: Energy cost of File Reading Method M1 with different buffer sizes on Linux
Server

5.3.2 Modelling energy costs from measurements

In this section, we estimate the energy costs of APIs with different buffer sizes on a par-
ticular platform by means of regression modelling. We model the energy costs using two
techniques: Polynomial regression and Splines which are discussed below:

1. Polynomial Regression : Polynomial regression is a form of multiple regression
technique in which the relationship between the independent variable x and the
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dependent variable y can be modelled as an nth degree polynomial. For x and y, the
polynomial equation can be written as:

y = C0 + C1x + C2x
2 + C3x

3 + C4x
4 + · · ·+ Cnx

n,

where n is the degree of the polynomial and Ci, 0 ≤ i ≤ n, is a constant In our
case, the independent variable is buffer size and dependent variable is energy cost.
Therefore, in terms of buffer size (b), the energy cost can be modelled as:

EnergyCostb = C0 + C1b + C2b
2 + C3b

3 + C4b
4 + · · ·+ Cnb

n.

We use the Matlab function polyfit to compute the constants in the polynomial
equation.
Function polyval(p, x) returns the value (energy cost) of a polynomial (p) of degree
n evaluated at x (buffer size).

Assessing Goodness of Fit: The quality of the fit requires assessing of goodness
of fit. It involves a least-squares approximation; the distance of the entire set of data
points from the fitted curve. The normalization of the residual error minimizing the
square of the sum of squares of all residual errors. The norm of the residuals indicates
a better fit as its value approaches zero.

Listing 5.1 contains the Matlab code for modelling the experimental data using poly-
nomial regression. The residual norm and indicate goodness of fit. Line# 1 and 2
generates the polynomial coefficients for the experimental data for given degree N.
Lines #3, 4 and 5 calculate the variation of predicted data from the original data.
Line# 7 shows code for calculation of norm. The closer that norm is to 0, the more
completely the fitted model explains the data.

Listing 5.1: Matlab code for modelling the data by Polynomial Regression

1 PN = polyfit(x,y,N);
2 ypred = polyval(PN,x); %Predicted Data
3 dev = y − mean(y); %deviations − measure of spread
4 SST = sum(dev.ˆ2); %total variation to be accounted for
5 resid = y − ypred; %residuals − measure of mismatch
6 SSE = sum(resid.ˆ2); %variation NOT accounted for
7 normr = sqrt(SSE); %the 2−norm of the vector of the residuals for the fit

To apply the polynomial regression to the energy cost data, we try with the different
degrees of polynomials and we finalize the model whose norm is minimum. Figures
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Figure 5.3: Energy Cost Estimation of M1 (File Reading Method) on Linux Server by
Polynomial of degree 8 with norm=1767.6

5.3, 5.4, 5.5 shows measured energy costs as well as predicted energy costs with
polynomials of degrees 8, 9 and 10 respectively for M1(FileInputStream) method on
Linux platform. Calculated norm for the three degrees is also shown is captions of
figures. The norm for tenth degree polynomial is minimum, therefore its coefficients
make the energy profile for M1 method on Linux Server which can be written as:

Energy Profile = (3.3261e-05 -0.00341 0.14943 -3.6605 55.15 -531.1 3305.9 -13166
32539 -46468 34870)

2. Spline : Sometimes a single polynomial is not good enough to model a data, there-
fore a solution is to use several polynomials pieced together. A spline is a numeric
function that is piecewise-defined by polynomial functions, and which possesses a
sufficiently high degree of smoothness at the places where the polynomial pieces
connect; known as knots [1]. Cubic spline interpolation is made of different cubic
polynomials. “spline” function of curve fitting toolbox is used model the energy cost
of M1 for different buffer sizes . Figure 5.6 shows the estimated energy cost along
with measured cost of M1 method by spline interpolation.

Spline interpolation gives accurate estimation of energy cost as the norm of residuals
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Figure 5.4: Energy Cost Estimation of M1 (File Reading Method) on Linux Server by
Polynomial of degree 9 with norm=1660.6

Figure 5.5: Energy Cost Estimation of M1 (File Reading Method) on Linux Server by
Polynomial of degree 10 with norm=1276.5
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Figure 5.6: Energy Cost Estimation of M1 (File Reading Method) on Linux Server by
Spline interpolation with norm=0

is 0 than the polynomial regression modelling.

5.3.3 Making models available to the other developers

Once the model for energy costs for File Reading method has been prepared by model
developer then that model will be available to application developers. While deciding on
the buffer size to use for M1, developers estimate the energy cost by using model instead
of wasting time on direct measurements.

5.4 Summary

In this Chapter, we presented a design of a framework in which one developer generates
energy cost models for the common design options. Afterwords, other developers can make
use of those models to find the energy costs for the same design options instead of direct
measurements.
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Chapter 6

Conclusion and Future Work

The design of a software application has a significant impact on the power consumption.
With the aim of reducing power bills of data centers, “Green Computing” has emerged
with the primary goal of making software more energy efficient without compromising the
performance. Developers play an important role in controlling the energy cost of data
center software while writing code. In Chapter 2, we provide a comprehensive literature
review of energy measurement approaches and compared our approach with them. In
addition, various techniques to save energy costs of data centers and existing research on
the energy efficiency of software applications are discussed.

In Chapter 3,we presented an automation framework to measure the energy cost of
servers while running software applications. The framework’s infrastructure mainly con-
tains a power meter, target server and control software (PAST) for synchronization and
monitoring. By using the test bench, we performed actual measurements to verify the
claim in a previously published paper [5] that energy cost of reading files by the method
FileInputStream (M1) is greater than the BufferedInputStream (M2) method. However
this claim is not valid in certain cases, if we introduce a programmer buffer in both the
methods. It holds good for buffer sizes ranging from 128 bytes till 8KB, but these two
methods consume almost the same energy at buffer sizes from 8KB to 64MB. Also, the
introduction of buffer in M2 has further reduced its energy cost. Finally, we compared
the energy costs of the same functionality provided by different software applications by
measuring the energy costs of compression and decompression features of two Linux pack-
ages: 7z and rar. The 7z package consumes more energy than rar in compressing and
decompressing files. However, rar consumes more energy in compressing to .7z format
than to .rar format. The automation framework can be used by programmers to evaluate
the energy cost of their applications while making important design decisions.
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In Chapter 4, we showed by means of experiments that developers can make coding
decisions to reduce the energy cost of software by choosing energy efficient APIs with
optimal choice of parameters for performing a particular operation. We performed actual
power measurements of various APIs available in Java to carry out four categories of
operations, file reading, file copy, file compression and decompression, on a real server
Dell Power Edge 2950, using our automated test bench. These operations are prevalent in
large-scale data-intensive computing applications running in modern data centers. For all
the methods, which have buffer size as tunable parameter, energy cost is measured with
different buffer sizes. Our results show that:

• The choice of a particular API for file reading only matters for the buffer size ranges,
1KB–32KB and 128KB–1GB because at 64KB buffer size, all the file reading APIs,
FileInputStream, BufferedInputStream and FileChannel, consume minimum energy.
In addition, the energy costs of all the methods are sensitive to the buffer size selection
because the variation in their energy costs lie in the range 73%–76.4% with respect
to buffer size

• A developer choice of BufferedOutputStream (MC2) at 256 KB buffer size for file
copy is more energy efficient than FileOutputStream (MC1) and methods using fixed
size buffers, namely, Java 7 Files.Copy, Apache FileUtils.copyFile, and FileChannel
transfer method.

• The compression ratio of xz compression is larger than the compression ratios of
zip and gzip, thereby consuming more energy. Similarly, decompression from xz
file is least energy efficient. However, the energy costs of zip compression and its
decompression are more sensitive to a particular choice of buffer size.

In Chapter 5, we presented a design of a framework in which one developer generates
energy cost models for the common design options. Afterwords, other developers can make
use of those models to find the energy costs for the same design options instead of direct
measurements.

6.1 Limitations and Future Work

In this section, we provide some of the limitations of the this thesis. In addition, we also
highlight a scope for future work to overcome these limitations. Following are the points
which discuss about the limitations and future work.
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• We presented an automated test bench whereby developers can measure the energy
costs of their applications on a server during the coding stage of software life-cycle. At
present, the monitoring station has to be physically connected to the meter and test
server. Also, developer has to be at the same location where server and meter resides.
In future, this limitation can eliminated by making the monitoring station to collect
the readings from the meter and control the server over the network. Therefore, from
any location developers would measure the energy cost of their code by controlling
the server and meter over the network.

• More work is required to validate the effects of cache size, block size and memory
page size on the energy costs of APIs with different buffer sizes. We can perform the
experiments on the different machines with different cache sizes.

• Our proposed framework for estimating the energy costs of APIs can integrated with
our automated test bench to offer it as an online service to developers. Therefore,
developers would be able to evaluate their code for power consumption.

• More work is required to prepare energy efficient guidelines which programmers can
refer while developing applications.

56



References

[1] Spline(mathematics). http://www.wikipedia.org.

[2] Xz utils. http://tukaani.org/xz/, 2011.

[3] A. Abogharaf and K. Naik. Client-centric data streaming on smartphones: An energy
perspective. In Mobile and Wireless Networking (MoWNet), 2013.

[4] Abdullah Al Hasib and Sanjeeda Sharmin. Green software: Recent trends and tech-
niques for software design and development. International Journal of Advanced Re-
search in Computer Engineering & Technology (IJARCET), 2(1):pp–077, 2013.

[5] Luca Ardito, Giuseppe Procaccianti, Antonio Vetro, and Maurizio Morisio. Introduc-
ing energy efficiency into sqale. In ENERGY 2013, The Third Intl. Conf. on Smart
Grids, Green Communications and IT Energy-aware Technologies, pages 28–33.

[6] Sergio Barrachina, Maria Barreda, Sandra Catalán, Manuel F Dolz, Germán Fabregat,
Rafael Mayo, and Enrique S Quintana-Ort́ı. An integrated framework for power-perf.
analysis of parallel scientific workloads. In ENERGY 2013, The Third Intl. Conf.
on Smart Grids, Green Communications and IT Energy-aware Technologies, pages
114–119.

[7] David J Brown and Charles Reams. Toward energy-efficient computing. Communi-
cations of the ACM, 53(3):50–58, 2010.

[8] Eugenio Capra, Giulia Formenti, Chiara Francalanci, and Stefano Gallazzi. The im-
pact of mis software on it energy consumption. 2010.

[9] Eugenio Capra, Chiara Francalanci, and Sandra A Slaughter. Is software green? ap-
plication development environments and energy efficiency in open source applications.
Information and Software Technology, 54(1):60–71, 2012.

57



[10] Qiaozhen Chai, Zhongzhi Luan, Depei Qian, Ming Xie, and Wei Chen. Empowering
designers to estimate function-level power for developing green applications. In 2013
International Conference onCloud and Service Computing (CSC), pages 57–62. IEEE,
2013.

[11] Zehan Cui, Yan Zhu, Yungang Bao, and Mingyu Chen. A fine-grained component-
level power measurement method. In International Conference on Green Computing
and Workshops (IGCC), pages 1–6. IEEE, 2011.

[12] Jack W Davidson and Sanjay Jinturkar. Memory access coalescing: a technique for
eliminating redundant memory accesses. In ACM SIGPLAN Notices, volume 29, pages
186–195. ACM, 1994.

[13] Carpe Diem. Java fast io using java.nio api.
http://www.idryman.org/blog/2013/09/28/java-fast-io-using-java-nio-api/, 2011.

[14] Krisztina Erdelyi. Special factors of development of green software supporting eco
sustainability. In 2013 IEEE 11th International Symposium on Intelligent Systems
and Informatics (SISY), pages 337–340. IEEE, 2013.

[15] Miguel A Ferreira, Eric Hoekstra, Bo Merkus, Bram Visser, and Joost Visser. Seflab:
A lab for measuring software energy footprints. In 2nd Intl. Workshop on Green and
Sustainable Software(GREENS), pages 30–37. IEEE, 2013.

[16] Martin Fowler. Refactoring: Improving the design of existing code, 1997.

[17] Christopher W Fraser, David R Hanson, and Todd A Proebsting. Engineering a
simple, efficient code-generator generator. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(3):213–226, 1992.

[18] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W
Cameron. Powerpack: Energy profiling and analysis of high-performance systems and
applications. IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671,
2010.

[19] Hazem Hajj, Wassim El-Hajj, Mehiar Dabbagh, and Tawfik R Arabi. An algorithm-
centric energy-aware design methodology.

[20] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. Estimating mobile
application energy consumption using program analysis. In 2013 35th International
Conference on Software Engineering (ICSE), pages 92–101. IEEE, 2013.

58



[21] Robert Harmon, Haluk Demirkan, Nora Auseklis, and Marisa Reinoso. From green
computing to sustainable it: Developing a sustainable service orientation. In 2010
43rd Hawaii International Conference on System Sciences (HICSS), pages 1–10. IEEE,
2010.

[22] Chen-Wei Huang and Shiao-Li Tsao. Minimizing energy consumption of embedded
systems via optimal code layout. IEEE Transactions on Computers, 61(8):1127–1139,
2012.

[23] Nattachart Ia-Manee and Peraphon Sophatsathit. Reducing engergy consumption in
programs using cohesion technique. International Journal of Computer Theory and
Engineering, 5(4):621–625, 2013.

[24] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end proces-
sors: Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 93. IEEE Computer Society,
2003.

[25] Jasmeet Singh, Kshirasagar Naik and Veluppillai Mahinthan. Automation of energy
performance evaluation of software applications on servers. In Proceedings of SERP’14:
International Conference on Software Engineering, Research and Practice, Las Vegas
Nevada, US, page 7, 2014.

[26] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware applica-
tion design. ACM SIGMETRICS Performance Evaluation Review, 36(2):26–31, 2008.

[27] J Koomey. My new study of data center electricity use in 2010. Koomey. com, 2011.

[28] Rachita Kothiyal, Vasily Tarasov, Priya Sehgal, and Erez Zadok. Energy and perfor-
mance evaluation of lossless file data compression on server systems. In Proceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference, page 4. ACM, 2009.

[29] John C McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kup-
puswamy, Alex C Snoeren, and Rajesh K Gupta. Evaluating the effectiveness of
model-based power characterization. In USENIX Annual Technical Conf, 2011.

[30] Dustin McIntire, Kei Ho, Bernie Yip, Amarjeet Singh, Winston Wu, and William J
Kaiser. The low power energy aware processing (leap) embedded networked sensor
system. In Proceedings of the 5th intl. conf. on Information processing in sensor
networks, pages 449–457. ACM, 2006.

59



[31] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen, and Debashree
Ghosh. Techniques for low energy software. In Proceedings of the 1997 international
symposium on Low power electronics and design, pages 72–75. ACM, 1997.

[32] Donald Melanson. My new study of data center electricity use in
2010. http://www.engadget.com/2011/04/26/visualized-ring-around-the-world-of-
data-center-power-usage/, 2011.

[33] Trevor Mudge. Power: A first class design constraint for future architectures. In High
Perf. Computing, pages 215–224. Springer, 2000.

[34] K. Naik. A survey of software based energy saving methodologies for handheld wireless
communication devices. In Dept. of Electrical and Computer Eng., Technical Report,
TR-2010-13.

[35] Kshirasagar Naik and David SL Wei. Software implementation strategies for power-
conscious systems. Mobile Networks and Apps, 6(3):291–305, 2001.

[36] Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Seinturier. A pre-
liminary study of the impact of software engineering on greenit. In 2012 First In-
ternational Workshop on Green and Sustainable Software (GREENS), pages 21–27.
IEEE, 2012.

[37] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review of energy mea-
surement approaches. ACM SIGOPS O.S. Review, 47(3):42–49, 2013.

[38] Jae-Jin Park, Jang-Eui Hong, and Sang-Ho Lee. Investigation for software power
consumption of code refactoring techniques.

[39] Luigia Petre. Energy-aware middleware. In 15th Annual IEEE International Con-
ference and Workshop on the Engineering of Computer Based Systems, 2008, ECBS
2008, pages 326–334. IEEE, 2008.

[40] Vijay Raghunathan, Cristiano L Pereira, Mani B Srivastava, and Rajesh K Gupta.
Energy-aware wireless systems with adaptive power-fidelity tradeoffs. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 13(2):211–225, 2005.

[41] Manuj Sabharwal, Abhishek Agrawal, and Grace Metri. Enabling green it through
energy-aware software. IT Professional, pages 19–27, 2013.

60



[42] Cagri Sahin, Furkan Cayci, James Clause, Fouad Kiamilev, Lori Pollock, and Kristina
Winbladh. Towards power reduction through improved software design. In Energytech,
IEEE, pages 1–6, 2012.

[43] Daniel Schall, Volker Hudlet, and Theo Härder. Enhancing energy efficiency of
database applications using ssds. In Proceedings of the Third C* Conference on Com-
puter Science and Software Engineering, pages 1–9. ACM, 2010.

[44] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption framework
for distributed java-based systems. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 421–424. ACM,
2007.

[45] Jeffrey Shafer, Scott Rixner, and Alan L Cox. The hadoop distributed filesystem:
Balancing portability and performance. In IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), 2010, pages 122–133. IEEE, 2010.

[46] Vaidyanathan Srinivasan, Gautham R Shenoy, Srivatsa Vaddagiri, Dipankar Sarma,
and Venkatesh Pallipadi. Energy-aware task and interrupt management in linux. In
Ottawa Linux Symposium, 2008.

[47] Thanos Stathopoulos, D Mclntire, and William J Kaiser. The energy endoscope: Real-
time detailed energy accounting for wireless sensor nodes. In International Conference
on Information Processing in Sensor Networks, 2008. IPSN’08, pages 383–394. IEEE,
2008.

[48] B Steigerwald and Abhishek Agrawal. Developing green software. Intel White Paper,
2011.

[49] Yuwen Sun, Lucas Wanner, and Mani Srivastava. Low-cost estimation of sub-system
power. In Intl. Green Computing Conference (IGCC), pages 1–10. IEEE, 2012.

[50] Peter AH Peterson Digvijay Singh William, J Kaiser, and Peter L Reiher. Investigating
energy and security trade-offs in the classroom with the atom leap testbed. 2011.

[51] Zichen Xu. Building a power-aware database management system. In Proceedings
of the Fourth SIGMOD PhD Workshop on Innovative Database Research, pages 1–6.
ACM, 2010.

[52] Heng Zeng, Carla S Ellis, Alvin R Lebeck, and Amin Vahdat. Ecosystem: Manag-
ing energy as a first class operating system resource. In ACM SIGPLAN Notices,
volume 37, pages 123–132. ACM, 2002.

61



[53] Chenlei Zhang, Abram Hindle, and Daniel M German. The impact of user choice on
energy consumption. Software, IEEE, 31(3):69–75, 2014.

[54] Xiao Zhang, Jian-Jun Lu, Xiao Qin, and Xiao-Nan Zhao. A high-level energy con-
sumption model for heterogeneous data centers. Simulation Modelling Practice and
Theory, 39:41–55, 2013.

62


	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Solution Strategy and Contributions
	Thesis Organization

	Literature Review
	Energy Measurement Approaches
	Techniques to save energy costs of Data Centers
	Existing Research on the energy efficiency of software applications

	Automated Test Bench for energy measurement of software applications
	System Model of Test Bench
	Automated Test Bench
	Message Sequence Chart
	Key Challenges
	Pseudocode of PAST

	Experiments
	Example of using test bench to make important design decisions
	Using the test bench in function level energy cost measurement

	Summary

	Impact of developer choices on energy consumption of software applications
	Methodology
	Choosing key operations on Servers
	Various Input/Output API's in Java for File Reading and File Copying
	Data Compression and Decompression APIs in Java

	Experiments and Results
	File Reading
	File Copy
	File Compression and Decompression

	Summary

	Framework for estimating the energy cost of software applications on servers for various developer choices
	Introduction
	Framework Description
	Example of using Framework in estimating the energy cost of File Reading Methods with different buffer sizes
	Energy measurements from test bench
	Modelling energy costs from measurements
	Making models available to the other developers

	Summary

	Conclusion and Future Work
	Limitations and Future Work

	References

