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Abstract

As we experience life, we are constantly creating new memories, and the hippocampus
plays an important role in the formation and recall of these episodic memories. This thesis
begins by describing the neural mechanisms that make the hippocampus ideally suited
for memory formation, consolidation and recall. We then describe a biologically plausible
spiking-neuron model of the hippocampus’ role in episodic memory. The model includes
a mechanism for generating temporal indexing vectors, for associating these indices with
experience vectors to form episodes, and for replaying the original experience vectors in
sequence when prompted. The model also associates these episodes with context vectors
using synaptic plasticity, such that it is able to retrieve an episodic memory associated
with a given context and replay it, even after long periods of time. We demonstrate the
model’s ability to experience sequences of sensory information in the form of semantic
pointer vectors and replay the same sequences later, comparing the results to experimental
data. In particular, the model runs a T-maze experiment in which a simulated rat is forced
to choose between left or right at a decision point, during which the neural firing patterns
of the model’s place cells closely match those found in real rats performing the same task.
We demonstrate that the model is robust to both spatial and non-spatial data, since the
vector representation of the input data remains the same in either case. To our knowledge,
this is the first spiking neural hippocampal model that can encode and recall sequences of
both spatial and non-spatial data, while exhibiting temporal and spatial selectivity at a
neural level.
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“I read that it’s important to sleep. While you sleep, the hippopotamus in your brain
replays things that happened during the day, e.g. what you studied. So therefore it
remembers it for you.” - Jaclyn Moriarty, The Ghosts of Ashbury High
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Chapter 1

Introduction

The hippocampus is one of the most highly studied parts of the brain, yet there is still
a surprising amount of debate as to its exact function. Many researchers over the years
have performed studies on both humans and animals in attempts to discover its function.
In particular, two separate views of hippocampal function have gained prominence. In
humans, the hippocampus was found to be important to episodic memory, which is the
memory of events or ‘episodes,’ while other groups of researchers found evidence linking
the hippocampus to cognitive mapping and spatial learning, particularly in rats.

In 1957, the hippocampus was implicated in episodic memory in a famous study when
Henry Molaison (until recently known as patient HM to preserve his anonymity while he
was alive) had both hippocampi removed in an operation to relieve seizures [90]. Neuro-
scientists then had the opportunity to perform tests on HM, finding that his short-term
working memory functioned as normal, but he was unable to form new episodic memories.
Any previous memories he had acquired before the surgery were retained, but any new
experiences from after the surgery were unable to be consolidated into long-term memory.

In particular, when introduced to a person, he would say “hello,” but not “nice to meet
you.” [47]. He had become accustomed to not acknowledging whether or not he knew a
person, since he could not remember whether he was just meeting them for the first time
or if he had known them for many years. This loss of ability for HM to form new memories
naturally supported the hypothesis that the hippocampus is involved in episodic memory
formation.

Later, in 1971, Nobel Prize winning neuroscientist John O’Keefe and Jonathon Dostro-
vsky [78] were developing an alternate theory of hippocampal function. They discovered
place cells, which are neurons in the hippocampus whose firing rates are correlated with a
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specific location, or place, in an environment. This led to the theory that the hippocam-
pus plays the role of a cognitive map [79], by which people and animals maintain maps of
environments. This hypothesis, along with Morris’ later findings that the hippocampus is
involved in spatial learning [72], seemingly conflicted with the episodic memory evidence
found in HM.

Further studies on patient HM [70] [19] and other patients like him [86] contributed to
the prevalence of the episodic memory theory, eventually leading to a more general theory
of the hippocampus encoding both spatial and non-spatial information [29] [66] [26] [64].
This view stated that the hippocampus does indeed help us form cognitive maps, but that
it does so as part of a more general memory formation process [30], and that in addition
to place cells, it also represents higher level conceptual memories.

The purpose of this thesis is to detail a neural model of episodic memory formation and
recall in hippocampus. As we will go on to describe, the neural engineering framework, or
NEF [33], gives us a natural way of representing either spatial or non-spatial information
in a vector space to represent episodic memories in a biologically plausible way. We also
use semantic pointers, or SPs [32] to represent concepts as HRR vectors in spiking neural
networks. We will give the background required to construct the model and an overview
of the results of running simulations on the model.

1.1 Thesis Organization

Chapter 2, Episodic Memory and the Hippocampus, goes into more detail about
the definition of episodic memory and how it differs from other types of memory. It also
gives details about how episodic memory functionality is thought to map onto mammalian
neural anatomy, particularly the anatomy of the hippocampal formation, and it describes
some phenomena associated with episodic memory in the hippocampus.

Chapter 3, Background Methods, gives an overview of the background methods
used in the model, including concept representation with SPs, vector representation in
spiking neurons with the NEF, memory in the NEF, and the Nengo modelling software.

Chapter 4, A Neural Model of the Hippocampus, describes the steps taken
to construct the neural model of episodic memory formation, and each of the functional
elements in detail.

Chapter 5, Simulations and Results, details the simulations performed, a variety
of hippocampal experiments, and gives comparisons between our simulation results and
those experiments.

3



Finally, Chapter 6, Discussion and Future Work, gives some comments on our
results and some options for future extensions of the project.
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Chapter 2

Episodic Memory and the
Hippocampus

2.1 Episodic memory

Cognitive science has given way to several distinct ways of describing what we colloquially
refer to as ‘memory.’ The episodic memory system, one particular form of memory, was
first defined by Endel Tulving in 1972 [99], as a system that “receives and stores information
about temporally dated episodes or events.” This definition by Tulving can be contrasted
to semantic memory, which is general knowledge about the world [98]. For example,
remembering the events that happened during a walk home from work the previous day is
a kind of episodic memory, while remembering that Ottawa is the capital of Canada is a
semantic memory.

The consensus among memory researchers points to the existence of multiple memory
systems in our brains [100], often distinguishing between working memory, which is what
we use to actively keep recent information in our minds [5], and long-term memory, which
is further subdivided into episodic memory, semantic memory, and procedural memory [16],
which is knowledge about how perform a task, such as riding a bicycle. There is still no
clear agreement as to where to draw the lines between the various memory systems in
our brains, but this breakdown fits well with both subjective experience and neurological
evidence [30]. Figure 2.1 shows a subdivision of the brain’s memory systems.

Since Tulving’s original definition, the concept of episodic memory has evolved to in-
clude details about context and recall that have since been observed [47]. It is generally
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Figure 2.1: Taxonomy of memory systems. Long-term memory is divided into declarative
and non-declarative memory, while declarative is further subdivided into semantic and
episodic memory. Non-declarative memory includes procedural memory, classical condi-
tioning, which is a more instinctual form of memory related to utility, and priming, which
is an unconscious regognition of words or objects that is seperate from semantic memory.
Short-term memory includes temporary storage in the sensory and motor areas of cortex,
as well as a phonological loop (working memory rehearsal) and a visuospatial sketchpad,
which is thought of as a short-term storage space for image ‘snapshots.’ Adapted from
[10].

accepted that retrieval of an episodic memory will answer the questions, “What was ob-
served at time T in context C?” As we will now describe, the anatomy of the hippocampus
makes it well-suited to encode information in a way that will allow us to answer queries of
this form.

2.2 Hippocampal Anatomy

The hippocampus is a seahorse-shaped part of the forebrain, located in the medial temporal
lobe. Extensive research has been performed on the hippocampus determining its critical
role in declarative, and specifically episodic memory along with the entorhinal cortex [101]
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Figure 2.2: Diagram showing neural connectivity from neocortex to entorhinal cortex (PHR
or parahippocampal region) to hippocampus (HF or hippocampal formation). The perirhi-
nal (PER) and postrhinal (POR) cortices provide parallel input streams to the lateral
(LEC) and medial (MEC) entorhinal cortex. Layers II and III of LEC and MEC project
to all hippocampal subregions via the perforant path, while regions CA1 and SUB project
back to layer V of LEC and MEC. From [21].

[94] [6]. It is strongly connected to the entorhinal cortex (EC) and is further subdivided into
four primary regions: dentate gyrus (DG), CA3, CA1, and subiculum (SUB). Information
flows roughly in a loop through the hippocampal subregions, following the order EC →
DG→ CA3→ CA1→ SUB → EC. Figure 2.2 gives a connectivity diagram between the
various subregions of the hippocampal formation and its cortical connections.

2.2.1 Entorhinal Cortex

Entorhinal cortex (EC) is the primary input to and output from hippocampus, and is
often considered a part of the hippocampal formation. It can be thought of as a bridge
between the neocortex and the hippocampus proper. There is a distinction made between
the medial (MEC) and lateral (LEC) parts of EC, with the lateral part receiving input from
the perirhinal and olfactory cortices and amygdala, and the medial part having projections
from the postrhinal and visual association cortices [107]. There are projections from EC
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to all parts of the hippocampus through the perforant path, and projections from areas
CA1 and SUB back to EC’s ‘output’ pathways.

The entorhinal cortex is thought to contain a representation of highly processed sensory
information, with a division between spatial information in MEC and non-spatial informa-
tion in LEC [27]. A number of functionally specialized cell types exist in EC. In addition
to grid cells in MEC, which we will go on to describe below, neurons have been found that
encode the velocity of the animal and the direction the animal is facing (head direction)
[89]. It has recently been shown that these functionally specialized neurons such as grid
cells do in fact project directly into hippocampus [109].

2.2.2 Dentate Gyrus

The dentate gyrus is a part of the hippocampal formation containing small granule cells. It
receives input from the entorhinal cortex (LEC II and MEC II) and projects into CA3 via
mossy fibres. It is one of only two brain areas in which adult neurogenesis takes place [1].
It is thought that these newly formed neurons help the dentate gyrus perform its theorized
function of pattern separation, or sparsification [106] [7] [25]. That is, it has a large number
of sparsely firing neurons that are sensitive to very particular patterns, that can for example
allow us to differentiate between two similar but not identical environments.

2.2.3 CA3

CA3 is the ‘deepest’ part of the hippocampus, in that it is located furthest from the
entorhinal cortex. It is composed of pyramidal cells similar to those found in neocortex.
CA3 is distinguished from the other hippocampal subregions by its strongly recurrent
connections, which are not present elsewhere in the hippocampus [48]. It projects into area
CA1 through the Schaffer collaterals. The recurrent connections, along with considerable
evidence that CA3 pyramidal cells exhibit synaptic plasticity in the form of long-term
potentiation (LTP) and long-term depression (LTD) [61] [24], suggest that CA3 is heavily
involved in the learning and formation of new episodic memories. The many forms of
synaptic plasticity, including LTP and LTD are described in more detail in section 3.2.5.

2.2.4 CA1

Next we have CA1, which is located in between CA3 and SUB. It takes input from the CA3
Schaffer collaterals and from EC via the perforant path [54], and along with CA3 is thought
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to play a role in the formation and recall of episodic memories [74]. It is also sometimes
theorized to perform a comparison function between the EC input and the CA3 input [49]
[95], possibly restricting incomplete or incorrect memory retrieval from propagating back
to EC. Place cells (see section 2.3.1) are found both here and in CA3.

2.2.5 Subiculum

The subiculum is located between area CA1 and layer V of entorhinal cortex. Its function
is not well understood, other than that it is involved in spatial navigation along with CA3
and CA1 [81], possibly performing path integration [91]. Because of this, its only function
in our model is that of a communication channel between CA1 and the EC output, but
see [18] for a related model of path integration in the NEF.

2.2.6 Medial Septum

While not actually part of the hippocampal formation, the medial septum merits mention
because of its cholinergic and GABAergic projections into hippocampus. These excitatory
and inhibitory connections are thought to regulate the hippocampal theta rhythm and
possibly provide control over learning and memory encoding in the hippocampal network
[85].

2.3 Hippocampal Phenomena

2.3.1 Grid Cells and Place Cells

The most well-known type of neuron to exist in the hippocampus is the place cell, first
discovered in rats by O’Keefe and Dostrovsky [78]. They were first discovered in CA1, but
later found to exist in CA3, DG and subiculum as well [3]. Place cells are neurons that
exhibit spatially correlated firing patterns. That is, they are neurons that are tuned to fire
only when an animal is in a particular region of two-dimensional space called a place field.
Their tuning curves typically look like two-dimensional Gaussian functions. The existence
of place cells were the foundation of the belief that the hippocampus is used to form a
spatial map of the environment.

Another cell type was discovered in 2005 that came to be known as grid cells [45] [13].
Grid cells are found in the entorhinal cortex, and like place cells exhibit spatially correlated
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Figure 2.3: Recordings from a place cell and a grid cell as a rat runs freely around a
square environment. The lines represent the rat’s position in the environment, while the
red dots represent a spike from the neuron being recorded from. a) The place cell fires
most frequently in a single location and less frequently as the position moves away from
this location. b) The grid cell fires most frequently in a hexagonal grid pattern within the
environment.

Figure 2.4: Activity packet of a group of place cells arranged by spatial tuning. The data
was taken from a rat randomly foraging for food in a square environment. The cells tuned
to the center of the environment are currently firing, indicating the rat’s current position.
From [88].
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firing patterns. However, grid cells fire in multiple locations within an environment in a
hexagonal grid pattern. Different grid cells have different distances between coordinates
in the grid. Several models have proposed explanations for how how grid cells can be used
to encode spatial maps and combine to create place cells [104] [82]. Figure 2.3 shows an
example of the firing patterns of a place cell and a grid cell in a rat as it explores a test
environment [73].

2.3.2 Remapping

One potential problem when dealing with episodic memory is that of memory interference.
It is desirable that two separate but similar memories occupy distinct representational
space. Navigation can pose a similar concern, as navigating through the same environment
on two different occasions can be extremely different. For example, navigating a car through
a large city can be very different depending on whether or not it is rush hour. Likely
for this reason, hippocampal place cells are remapped depending on context [17], firing at
different locations for different environments, or even the same environment under different
conditions.

Two place cells do not remain consistent from one environment to the next. In 2005,
Leutgeb et al performed an experiment recording from the same place cells while rats were
placed into different environments [60]. In one set, they varied the colour of the environment
while keeping the location the same (variable-cue constant-place), and in another set, they
kept the colour the same while varying the location (constant-cue variable-place). They
found that in the variable-cue case, the locations of the place cells remained the same but
their firing rates differed, while in the variable-place case, the locations of the place cells
changed completely. These two cases are known as rate remapping and global remapping
(see figure 2.5).

2.3.3 Time cells and other hippocampal cell types

Since the discovery of place cells, several other types of cells have been discovered in the
hippocampus, including head direction cells [96], border cells [92], odor sensitive cells [26],
and time cells [64], which are neurons that fire periodically independant of location or
behaviour. These time cells are evidence of temporal coding in the hippocampus, which
might provide a mechanism for encoding the sequential nature of episodic memories. Figure
2.6 shows evidence of time cells in hippocampal recordings from rats.
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Figure 2.5: Rate remapping (left) and global remapping (right). The left columns repre-
sent firing rates in the first environment and the center columns represents rates in the
second environment. The right columns are versions of the center columns that have been
scaled for their new mean firing rates. The black numbers represent the mean firing rates
of the left column, and the blue numbers the mean firing rates of the center/right columns.
In the variable-cue case, the place cell locations remain constant but scaled (rate remap-
ping). In the variable-location case the place cell locations have changed completely (global
remapping). From [60].

2.3.4 Replay

Episodic replay, or just replay is the phenomenon of hippocampal cells firing in a certain
pattern once during an experience, and then firing again in the same sequence at a later
time. This replay effect has been found to occur in rats in anticipation of an experiment
[28], during slow-wave sleep [105], during an experiment at a decision point [56], and even at
seemingly unexplained times [44]. Although replay is often linked to immediate experience,
it can also occur minutes or even hours after the original experience. It has been observed
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Figure 2.6: Time cell recordings exhibiting temporally correlated firing patterns taken from
neurons in four separate rats [64].

in cells in both CA3 and CA1. The fact that replay occurs during sleep is thought to be
important for consolidation of episodic memories into long-term memory storage.

The majority of replay-focused studies have involved recordings from rats in a maze.
The rat performs the experiment while LFP recordings are taken from place cells, then
using statistical inference the replayed firing patterns can be used to reconstruct the spatial
trajectory that the rat took during the experiment, showing evidence that the rat is recall-
ing a memory of that sequence. Figure 2.7 shows results from one such experiment. There
have also been studies on humans showing similar effects, where recall of a specific mem-
ory triggers activation of sequences of hippocampal cells in the order that they were active
during the original experience [38]. This evidence leads to the belief that hippocampal
replay takes place during memory recall.

In addition to forward replay, reverse replay of firing patterns is also a commonly
observed occurrence [35]. In rats, it often (but not always [44]) occurs immediately after a
reward, and could arise from persistent neural activity, rather than any long-term memory
consolidation. Although our model’s representation of memory is compatible with reverse
replay, for simplicity’s sake we focus on modelling forward replay only, with reverse replay
left as a possible extension to the model.
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Figure 2.7: Place cell recordings showing lookahead (replay) at the decision point of a
T-maze, particularly visible at 160 and 240 ms. The position reconstructions during this
period are obtained from statistical inference on data from previous runs through the maze.
The rat pauses for approximately 600 ms at the decision point and recalls its previous
experiences down both paths. From [102].

2.3.5 Theta Rhythm

In 1954, Green and Arduini [43] found evidence of large-amplitude oscillations in the overall
ambient voltage (local field potential) of the mammalian hippocampus using EEG record-
ings. In rats, theta rhythm is strongly associated with movement, and has a frequency of
between 6 and 10 Hz [12], while in other mammals it is thought to occur when the animal
is focused on sensory input, such as stalking prey or avoiding predators [87]. It is slower in
larger mammals, oscillating at between 4 and 6 Hz. There is also a considerable amount of
evidence linking theta rhythm to learning and time-dependant memory encoding in both
humans and other animals [41]. In working memory tasks performed on both rats and
humans, a theta phase reset has been found to occur immediately after the presentation of
a stimulus, indicating the involvement of theta in encoding of memories related to sensory
input [97]. In humans, theta effects have been found to occur strongly during recall of and
navigation through complex environments [57], suggesting theta rhythm’s involvement in
regulating the dynamics of memory encoding and retrieval [46].

In 1993, O’Keefe and and Recce [80] made a discovery that linked theta rhythm in
rats to place cells. They found that when a rat first entered a place field, the place cell
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would fire late in the theta cycle, but as the rat remained in the same place field, the cell
would fire progressively earlier. This phenomenon is known as theta phase precession, and
is important in that it shows evidence of temporal coding in place cells. It also provides
evidence for a continuous spatial code, since the firing patterns of place cells relative to
theta oscillations differ depending on the rat’s location within the place field at the time.
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Chapter 3

Background Methods

This chapter gives an overview of the computational methods that were used in our model.
The majority of the chapter focuses on detailing the NEF, a framework that allows us to
perform computation with simulated spiking neurons. We detail the basics of represen-
tation, transformation, and dynamics in the NEF, and discuss methods for implementing
memory and learning, two techniques that our model makes use of. First, we discuss vec-
tor symbolic architectures and semantic pointers, which we use to represent concepts and
episodic memories in our model.

3.1 Representing Concepts as Vectors

Because the hippocampus deals with forming associations and structure from compressed
sensory information, we need methods for representing and giving structure to high-level
concepts. Vector Symbolic Architectures (VSAs) are a class of methods that allow us
to do just that, providing the ability to represent single or multiple concepts as vectors
and associatively bind concepts together with a set of vector operations. VSAs have been
shown to fulfill Jackendoff’s linguistic challenges [37], proving to be sufficient for concept
representation in a set of non-trivial tasks important to both linguistics and cognitive
neuroscience as a whole. In addition, a method has recently been proposed for learning
VSAs [36], and it has been shown that the binding operation can be learned by spiking
neural networks [8], giving credence to the plausibility of their use in the brain.

The particular VSA implementation we will use is Holographic Reduced Representa-
tions (HRRs) [83]. HRRs use vector addition as an addition operator, and circular convo-
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lution as a binding operator. Both of these operations have nice properties, which will be
explained in further detail below.

3.1.1 Semantic Pointers

Semantic pointers, or SPs [32] are the implementation of HRR vectors employed by the
NEF to represent concepts as vectors using spiking neurons. We will show how we can
implement the convolution operation as a vector transformation and the addition operation
as a memory module in sections 3.2.2 and 3.2.4. For our purposes, we will use the term
semantic pointer to refer to any high-dimensional HRR vector representation of a concept.

SPs represent each atomic concept by a different D-dimensional vector in a vocabulary.
In practice, we usually randomly generate these vectors, making sure that no two are
within some similarity threshold. Assuming the constraint that all vectors are normalized
(so that their Euclidean length is 1) and that there is a minimum distance between any two
concepts in our vocabulary, our maximum vocabulary size increases exponentially with D,
since the surface area of a D-dimensional sphere is also exponential in D. Thus, a large
enough D will allow us to represent an enormous vocabulary with minimal overlap between
concepts. For now, for illustrative purposes however, we will let D = 3. Then, let us define
the following concepts:

blue = [0.0, 1.0, 0.0]

red = [0.0, 0.0, 1.0]

circle = [0.8, 0.6, 0.0]

square = [0.3, 0.3, 0.91]

In this case, we could represent multiple concepts, such as “A circle and a square” as
the Euclidean norm of the vector circle+ square, or [0.65, 0.54, 0.54], which ends up being
a vector somewhat similar to both circle and square.

The true strength of SPs is that they allow us to represent structure in a vector encoding.
HRRs and SPs, in particular, ensure that the dimensionality of the vector space does not
increase with the structure. This ensures efficient use of resources, but also results in
a ‘lossy’ encoding. Suppose we want to represent the concept “A blue circle and a red
square.” Simply adding the four concept vectors together will result in ambiguity. If we
are given the vector (blue+ red+ circle+ square), how do we know what colour the circle
was? So instead, we use a binding, or circular convolution [83] operator and represent the
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above relations as the vector (blue~circle+red~square), forming an association between
blue and circle and between red and square.

Note that these operations are also sufficient for representing ordered sequences. Given
a set of concepts C0, C1, ..., we can define vectors for position indices P0, P1, ..., and thus
represent the sequence with

(P0 ~ C0) + (P1 ~ C1) + ...

This will form the basis for our representation of an episodic memory.

3.2 The NEF

Now that we’ve seen how to represent sequences of concepts, we need a way of representing
these vectors with populations of spiking neurons. For this purpose, we employ a set of
modeling techniques collectively called the Neural Engineering Framework, or NEF [33].
The NEF proposes a set of methods for performing large-scale computations using popula-
tions of spiking neurons. It allows for encoding of vector values by populations of neurons,
and computation of optimal decoders that allow the approximation of linear or nonlinear
functions between neural ensembles. This allows us to perform arbitrary computations on
vector or scalar quantities using simulated neurons. The following paragraphs go on to
describe our computational methods and the NEF in more detail.

3.2.1 Vector Representation

Many empirical studies have found that neural populations in mammalian brains can en-
code real-world stimuli [51] [39] [23]. The NEF allows us to replicate this effect by encoding
vector-valued stimuli with populations of simulated neurons, or neural ensembles.

Encoding

In the NEF, every neuron in an ensemble responds most strongly to a particular stimulus
vector ei, known as that neuron’s preferred direction or encoding vector. Each neuron
will receive more ionic current J when responding to its encoding vector, and receive less
current the further away the stimulus vector x is from ei. So given a vector stimulus as
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input to a population, x = (x1, x2, ..., xn), we can relate the activity of a single neuron ai
in the ensemble to the stimulus by

ai(x) = Gi

[
J(x)

]
(3.1)

= Gi

[
αi(ei · x) + J biasi

]
(3.2)

where Gi is the nonlinear (spiking or non-spiking) function specific to our neuron model,
αi is a scalar gain factor, and J biasi is a background bias current. The dot product ei · x
ensures the activity of neuron i is correlated with the similarity of that neuron’s encoding
vector to its input x.

Figure 3.1 shows a population of neurons encoding a sine wave, and gives a spike raster
showing the firing of each individual neuron in the population over time.

Decoding

In addition to being able to encode stimulus values across neural ensembles, we also would
like to be able to recover the original stimulus given an ensemble’s firing pattern. This
allows us to build a representation (both encoding and decoding) for arbitrary stimuli using
neural ensembles. The simplest way to do this is to make the assumption that the stimulus
is a linear combination of the neural activities, which turns out to be quite accurate if we
have enough1 neurons in our representation. That is, we assume our stimulus vector x̂ can
be represented by

x̂ =
N∑
i=1

ai di (3.3)

with N being the number of neurons in the ensemble and di being a vector of decoding
weights for neuron i. If we know x, it is possible to find the optimal set of linear decoders
d that minimize the squared error between x and x̂. This is a common problem in linear
algebra, and can be solved as follows:

d = Γ−1v (3.4)

Γij =
∑
x

aiaj

vj =
∑
x

ajf(x) .

1representation error decreases at a rate of approximately 1/N, where N is the number of neurons [33].
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Figure 3.1: Plots showing a neural ensemble representing a sine wave (f(x) = sin(5x)).
Graphs show the decoded value from the ensemble (top) and a spike raster showing when
each neuron in the population spikes (bottom). In the 1-dimensional case, each neuron’s
encoding vector is either 1 or -1, so approximately half of the neurons in the population
spike most frequently when the input value is close to 1, and the other half spike most
frequently when the input is close to -1.

where the inverse is a Moore-Penrose pseudo-inverse. Solving for the optimal linear de-
coders, d, allows us to recover an estimate of the original stimulus vector given a neural
ensemble’s activity. To do this, we simply set f(x) = x in the bottom equation, although it
is also possible to decode functions of x. As we will see, this decoding allows us to directly
compute the neural connection weights in order to perform a computation between two
ensembles.

Neuron Model

Our model uses the leaky integrate-and-fire (LIF) neuron as our single cell model. Figure
3.3 shows the tuning curve of an example LIF neuron. The behaviour of a LIF neuron
(with parameters τRC and R) with current membrane potential V and input current J is
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Figure 3.2: Tuning curves of 20 one-dimensional LIF neurons. Each neuron’s preferred
direction vector is either 1 or -1. The curves’ x-intercepts are determined by the J bias

parameter, and the steepness of the curves are determined by the α (gain) parameter.

governed by the following differential equation.

dV

dt
=
−1

τRC

(V − JR) (3.5)

This behavior holds up until the neuron hits a threshold voltage Vth (and corresponding
threshold current Jth), at which point it generates a spike. In the LIF model, we take a
spike to be a discrete event, after which the membrane potential drops and the neuron
enters a refractory period for τref seconds. This distills the concept of a spiking neuron
down to the basic idea of a cell that emits spikes based on input voltage, but abstracts
away details of biological neurons such as ion channel currents. The NEF is compatible
with any neuron model, and it has been shown that comparable results can be achieved
with a wide variety of neuron models [33].

Under a constant input current J , the activity of a LIF neuron ai(J) can be thought
of as its steady state firing rate, and is given by

ai(J) =
[
τref − τRC ln

(
1− Jth

J

)]−1

(3.6)
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Figure 3.3: Tuning curve of a two-dimensional LIF neuron. Firing rate increases as the x
component of the input increases, and the y component decreases. This neuron’s preferred
direction vector would be ‖(1,−1)‖. The firing rates at the corners of the figure are
undefined because the neuron is set to represent vectors with radius less than or equal to
one, so the value (1, 1) would fall outside of the representational space. Adapted from
[108].

where Jth is the threshold current of the neuron, τref is the refractory period for the neuron,
and τRC is the membrane time constant for the neuron. Using these in conjunction with
equation 3.1 fully specifies our system of encoding and decoding.
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Temporal Representation

Note that thus far, our model of neural activity ai(x) has referred to a neuron’s firing rate.
In order to run simulations of spiking networks in the NEF in real time, we need a model
of synaptic dynamics. When decoding from a spiking population, we apply a model of
post-synaptic current, or a post-synaptic filter h(t) to each spike by convolving it2 with
ai(x(t)), where x is now time-dependant. Our decoding equation then becomes

x̂(t) =
N∑
i=1

h(t) ∗ ai(x(t)) di (3.7)

For h(t), we use a post-synaptic current curve, which is meant to model the sharp rise and
exponential decay in neural voltage caused by the release of a neurotransmitter when a
neuron spikes.

h(t) =
1

τPSC
e−t/τPSC (3.8)

Here τPSC is a post-synaptic time constant controlling the speed at which current is deliv-
ered. This allows our model to exhibit biologically realistic dynamics, and hence empirically
constrained timing data.

3.2.2 Vector Transformation

Now that we have defined a way of encoding and decoding stimulus values, we will describe
how to perform computations between neural ensembles using our encoding and decoding
vectors. Suppose we want to have an ensemble B encode some function of the value another
ensemble A is encoding, x. i.e. y = f(x), where y is the value encoded by ensemble B.
We simply compute the decoders for x as in equation 3.4, setting f(x) to our desired
function instead of just using x when computing vj. Then in order to encode our desired
function, we multiply our new functional decoding weights d by our encoding weights for
population y, yielding a new set of weights between the populations that generate the
desired transformation,

ωij = αj(di · ej) (3.9)

2using linear convolution, not circular convolution
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where αj is a gain term associated with neuron j. Once we have our connection weights,
we can use them to encode the desired transformation in population B, determining the
neural activity of population B, bj(x(t)), given input x(t) to population A.

bj(x(t)) = Gj

[ N∑
i=1

h(t) ∗ ai(x(t))ωij + J biasj

]
(3.10)

Note that this technique works well for nonlinear functions as well as linear ones, as we
are in effect projecting into a higher dimensional space than our representation, effectively
turning a nonlinear function into one that is linear in the weight space. The only difference
for nonlinear functions is that the population computing the function in its decoders must
encode each argument to the function. So if, for example, we wanted to perform multipli-
cation of two scalar values (f(x, y) = xy), we would need to first project x and y into an
intermediary two-dimensional population, and have that population’s decoders compute
the multiplication.

3.2.3 Population Dynamics

The NEF also defines a way of computing functions defined over time, or dynamic func-
tions. Incorporating time-dependance is important in understanding and modelling neural
responses, since in the real world, neural activity is of course taking place in real-time. In
general, we describe a linear dynamic function by

x(t) = Ax(t) +Bu(t) (3.11)

where x(t) is the value currently being represented, and u(t) is an input value from another
ensemble.

One useful example of such a function is an integrator, defined simply by A =
(
1 0
0 1

)
, B =(

τ 0
0 τ

)
, where τ is the integrator’s post-synaptic time constant. This system adds whatever

input value it receives to its currently stored value, integrating the total input over time.
τ controls the speed of this integration. When given no input, it simply holds its current
value, acting as a simple form of memory. To have an ensemble exhibit this behavior, we
simply define a recurrent connection from a population to itself in the same manner as if
we were defining a normal connection between two populations.
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3.2.4 Memory in the NEF

As seen above, one way of storing values over time in the NEF is through the use of
neural integrators, a type of recurrently connected neural network. Integrators attempt to
hold their value over time when not given any additional input, but are subject to neural
dynamics. A recurrently connected population of LIF neurons is an attractor network,
and attractor networks have stable fixed points [31]. For a one-dimensional integrator, a
fixed point will occur whenever the decoded estimate is exactly equal to the target value
being represented, i.e x̂ = x. Of these fixed points, exactly half will be stable fixed points,
depending on which direction the estimate crosses over the target value. The number of
these stable points will depend on how well our ensemble estimates the target value, which
depends on the number of neurons used in the representation.

Figure 3.4: Graph of the original input value x vs. an integrator’s decoded estimate of the
input x̂. Errors in the representation will cause drift over time, as the recurrent connection
is fed back into the integrator as input, until the representation reaches a stable point
(green dot).

When we move into higher dimensional space however, our representational space be-
comes a curved surface in hyperspace rather than a line. There are very few points (or
none) at which our decoding is perfect, and thus the integrator’s ability to hold its value
suffers. For this reason, whenever we are working with an integrator as a memory for a
high-dimensional semantic pointer, we will use multiple one-dimensional integrators instead
of one multi-dimensional one.
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One other useful feature we want to add to an integrator is the ability to load and unload
values from it. For example, say we have a one-dimensional integrator currently holding
the value 0.5, and we want to set it to 0.2. We could give the integrator the value -1 for
exactly 0.3 seconds, but this reliance on precise timing will inevitably cause drift. Instead,
we can use a gated difference unit, which is a convenient method for loading and storing
values. This is an integrator paired with another ensemble. There is a connection from
the integrator to the difference population, and another connection from the difference
ensemble back to the integrator with weight -1. This difference ensemble is gated with
inhibitory connections from a third gate population, which prevent neurons in the difference
population from firing when the gate population is active. This way we can keep the gating
population active most of the time, which will cause the unit to remember its current value,
and deactivate the gate when we want to load a new value into the integrator. Figure 3.5
shows the populations and connections in a gated difference unit, and figure 3.6 shows the
results of using one to store values.

Figure 3.5: Architecture of a gated difference unit. When the gate signal is high, the
difference population is inhibited and the unit retains its value because of the recurrent
connections in the integrator. When the signal is low, the Input value is loaded into
the Integrator and the negative projection from the Integrator back into the Difference
population cancels out the integrator’s recurrent connection. Circles represent inhibitory
connections.
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Figure 3.6: Plot showing results of using a gated difference unit. An input value of 0.8 is
given at t = [0.5, 1.5] and an input of -0.5 is given at t = [2.0, 3.0]. This value is loaded
into the integrator, which holds its value when no input is given. Notice the small amount
of drift in intervals t = [1.5, 2.0] and t = [3.0, 4.0].

3.2.5 Learning, Memory, and Synaptic Plasticity

While the brain uses neural activity as a form of working memory [42], in order to create
more permanent memories information must be stored in neural connection weights [68].
The brain accomplishes this through synaptic plasticity, which is the modification of synap-
tic strengths between neurons according to their activity. The first mathematical model
of synaptic plasticity was based off of a theory by Donald Hebb in 1949 [50]. He proposed
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that neurons that are connected by a synapse and are active together will increase their
connection strength. More formally:

∆ωij = νaiaj

where ωij is the connection weight between presynaptic neuron i and postsynaptic neuron
j, ai and aj are some measure of activity of neurons i and j (e.g. spike rate), and ν is
a learning rate parameter. A more stable version of this rule was later formulated [58],
taking the derivative of aj instead:

∆ωij = νaiȧj

Despite a lack of experimental evidence supporting the theory at the time, it eventually
became evident that Hebb’s postulate was a reasonable model for synaptic modification in
the brain, and it became known as Hebbian learning.

The first experimental evidence of synaptic plasticity was long-term potentiation, dis-
covered by Bliss and Lømo in 1973 [11]. They discovered that by stimulating neurons in the
rabbit hippocampus and recording from downstream neurons, the correspondence between
firing rates grew over time. A few years later an opposite effect, long-term depression,
was found. Lynch et al found that downstream neurons could also become less correlated
with firing rates of upstream neurons over time [63]. Finally, a temporal correlation was
discovered in 1983 by Levy and Stewart in the hippocampus [61], that was later described
by Markram as spike-time dependant plasticity, or STDP [67] and found to occur through-
out most brain areas. Between a presynaptic and postsynaptic pair of neurons, A and B,
STDP causes the connections between A and B to strengthen when A fires immediately
before B, and it causes the connections to weaken when B fires immediately before A. In
all cases, there is evidence that synaptic plasticity is the brain’s form of long-term storage
for memory and learning [71].

In 1989, Erkki Oja proposed a different formalization of Hebbian learning, which also
does a good job of explaining synaptic modifications in parts of the brain [76]. The formula
for modification of connection weights between neurons i and j, called Oja’s rule, is

∆ωij = νaj(ai − ajωij) (3.12)

This rule is useful in that it is stable, meaning connection strengths will not continue to
increase or decrease indefinitely, and in that it allows a neuron to learn to better compute
the principal component of its input over time.
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Synaptic plasticity in the NEF

In the NEF, we model syaptic plasticity as changes in connection weights (the ω matrix)
over time based on the activities of the neurons involved. MacNeil and Eliasmith sug-
gested a simple error-modulated Hebbian learning rule that allows populations of neurons
to change their connection weights to minimize an error signal [65], thus learning a trans-
formation. If we take E to be the difference between the represented value x̂ and the
desired value x, then the change in decoder values of neuron i at each timestep is

∆di = νEai (3.13)

To express this rule in terms of connection weights we simply multiply by the encoders
of the postsynaptic neuron and use equation 3.9.

∆di · ejαj = νEai · ejαj
∆ωij = νEai · ejαj (3.14)

We also have a way of representing a vectorized version of Oja’s rule in the NEF, thanks
to recent work done by Voelker [103]. This is useful particularly in building associative
memories, since it allows populations to modify their encoding vectors on the fly to better
represent the input.

These learning rules allow us to incorporate synaptic plasticity in our simulation, al-
lowing for a model of long-term memory storage and learning.

3.3 Nengo

Our model was developed using version 2.0 of the Nengo neural modelling software [9].
Nengo is a software package that implements the algorithms in the NEF and gives an
interface between the model specification and the low level implementation details. For
example, using the Nengo GUI, a modeller can drag and drop populations into a model,
connect them, specify a function for them to compute, and connect an input signal to
them. Nengo would then take care of generating each individual neuron, calculating the
optimal decoders as in equation 3.4, and calculating connection weights between popula-
tions. Nengo also provides a python scripting interface that allows for programmatic model
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generation. Finally, Nengo allows for the simulation of our neural models, generating and
plotting spikes and decoded values as the network runs. More information about Nengo
can be found at http://nengo.ca.

30



Chapter 4

A Neural Model of the Hippocampus

4.1 Motivation

While there exist many neural memory models of hippocampus already [2, 49, 75, 69], to
the best of our knowledge none of them have both the functional power to imitate real-
world human memory behaviour, while still being biologically plausible and replicating
experimentally observed neural phenomena. One notable hippocampal model that simu-
lates replay through biologically plausible learning rules is that of Levy et al [62]. Their
model also includes mechanisms for both online and offline sequence compression, mod-
elling the consolidation of memories from the hippocampus into long-term cortical storage.
However, their model does not provide a mechanism to explain context switching, and does
not generalize their sequence representation to multi-modal (both spatial and non-spatial)
information. More recently, Hasselmo’s comprehensive hippocampal memory model [47]
provides an explanation for how multi-modal information can be stored in memory, repre-
senting an episodic memory as a spatial trajectory and also unifying experimental data on
place cells and theta phase procession. While his model focuses on providing biologically
realistic representations of neural phenomena in the hippocampus, it does not attempt
to use a high-level unified representation scheme for episodic memories as ours does. Fi-
nally, Wu [108] used the NEF and Hessian-free learning to train a hippocampal model that
could perform sequence learning and both forward and reverse replay. While powerful, the
Hessian-free learning algorithm used in his model is not biologically plausible.

Our goal is to create a functional hippocampal model that can encode and replay
sequences of information, while obeying experimentally observed constraints to maintain
biological plausibility. We also want to use the semantic pointer architecture in order to be
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compatible with Spaun, the recently published large-scale brain model by Eliasmith et al
[34]. Spaun included a working memory module in order to store sequential information for
tasks such as serial-order recall, but did not include any method for longer term memory
storage of episodic memories. We want our simulation to give a more complete picture of
episodic memory storage and recall, while still being compatible and useful to integrate with
the existing SPA architecture used in Spaun (i.e. visual system, reinforcement learning,
etc).

4.2 Model Description

Our Nengo model is engineered primarily with functionality in mind. We want our model
to be able to take a context and sequences of data as input, remember them, and associate
them correctly such that it can later recreate the same sequence of data for the given
context. We have built our model with biological constraints in mind, but choose to
adhere to functionality over biological accuracy when a tradeoff is necessary.

4.2.1 Model Overview

Our model takes 4 signals as input. First of all, we have two sensory experience signals
coming from EC, context and experience. These are semantic pointers, or in our case, 64
dimensional vectors. These signals represent high-level (compressed) sensory information
coming from various parts of the brain. Note that we take this to include both spatial and
non-spatial information. Our model does not differentiate between spatial and conceptual
information, but later we will show spatially correlated neural firing patterns (place cells)
result from interpreting these input signals in a spatial manner.

The other two input signals are control signals from the medial septum. Both are 1-
dimensional on/off toggles, one of which switches the network between encoding and recall
mode, while the other is a ‘reset’ signal, which resets the network back to its initial state
and clears the currently stored memory by resetting the neural activity in our memory
integrator.

The model gives only a single output signal, a result signal. During encoding, this
signal should simply mimic the sensory input signal, but during retrieval it should match
whatever was previously stored in memory for the given context and current ordinal index.

The model has 5 primary components:
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Figure 4.1: A high level overview of our hippocampal model, showing connectivity and
function of each part of the model.

1. DG performs pattern separation on the context signal.

2. Then we have sequence generation in CA3. A neural oscillator is used as a kind of
‘clock’, and inhibitory connections allow a pair of difference units to count through
a sequence of unitary position vectors.

3. Next we have an associator, which binds the current sensory experience with the
index coming out of CA3. This is theorized to take place in a different region of
CA3, getting the sensory input from EC and the position/index input from CA3.
These associations are then stored in an integrator, or working memory, which stores
a sum of the bound sensory experiences.

4. In CA1 we have a deconvolution network, which deconvolves whatever is currently
stored in the working memory with the index from CA3, giving a result. During
encoding, this result should just be the same as the sensory input, but during recall,
this result population should cycle through the same series of sensory vectors as it
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was originally given, giving a forward replay effect.

5. Finally, we have a second associative memory, this one making use of rapidly learned
connection weights. This memory associates the current context (from DG) with
the complete memory sequence (in CA1/EC). This association from a context to a
compressed version of a complete memory episode is what allows for later recall of
previously stored memories and eventual memory consolidation into cortex.

We will go on to describe each component of our model in more detail.

4.2.2 Sparsification (DG)

The dentate gyrus part of our model takes the context signal from EC and represents it
with a separate neural population. This connection is simply a communication channel,
representing the same value as the input signal. The difference is that the neurons in the
DG population are tuned to represent their value more sparsely. We do this by setting
the distribution of intercepts for the neurons in this population uniformly in the interval
[0.3, 1.0], as opposed to [−1.0, 1.0]. This means neurons in this population will only fire
for input values whose dot product is very close to their preferred direction vector.

This sparse representation helps to differentiate similar contexts. The DG population
will have far fewer neurons firing at any time, but each neuron will be more selective, only
firing for inputs that it is tuned to. Although our model does not simulate neurogenesis,
we theorize that newly formed neurons in DG can be tuned to uniquely identify newly
experienced contexts, whether they be new environments or new experiences (episodes) in
known environments. Figure 4.2 shows the difference in representational sparsity between
EC and DG.

4.2.3 Index Generation (CA3)

The sequence generation part of our model relies on recurrent connections, and thus is
theorized to reside in CA3. The purpose of this network is to generate a temporal indexing
system, similar to hypothesized function of the time cells described by MacDonald et al in
2011 [64].

First we build a 2D neural oscillator to act as a timer for the network. Oscillators in
the NEF are simply dynamical systems defined by a recurrent connection and a transform
matrix, and can be implemented similar to the way that integrators were described in
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Figure 4.2: Representation of context and neural spike trains in EC vs. DG. Two context
vectors, C0 and C1, are given as input for 0.5 seconds each. Both EC and DG populations
represent the context vectors equally well (top two graphs), but the DG population does
so more sparsely, with neurons tuned to represent a single context. In EC there are many
neurons that fire for both contexts, but neurons in DG fire for only one or the other (bottom
two graphs).

3.2.3. The oscillator is by default tuned to oscillate with a frequency of 2Hz, making it a
recurrently connected population with transform matrix A =

(
1 −2τ
2τ 1

)
, where τ is a time

constant (we use τ = 0.05). We also add a control input to the oscillator, allowing for
control over its oscillation frequency. This input simply adds the transform

(
0 −x
x 1

)
to the

recurrent A matrix. One dimension of the oscillator is then connected to a seperate clock
ensemble, which is simply a step function, 0 if the oscillator value is negative and 1 if the
oscillator value is positive. This clock will serve as a timing mechanism for two inhibitory
gating connections that will act as a flip-flop, as we will see.
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The rest of the CA3 circuit is responsible for the temporal indexing functionality of the
model, which is accomplished by sequentially counting through list indices. We define se-
mantic pointers representing the concepts ONE and ADD1, allowing us to compute TWO
= ONE ~ ADD1, THREE = TWO ~ ADD1, etc. We have two gated difference integra-
tors storing these indices, a current and a next population. The output of the current unit
is connected to the input of the next unit with a transform matrix computing the trans-
formation defined by convolving with the ADD1 vector. The next unit is then connected
back to the current unit via a communication channel (identity transformation). We have
a population, one, that simply always stores the value ONE. To begin the simulation, and
every time the reset input coming from medial septum is on, the one population projects
into both current and next, erasing their current value and loading the value ONE into
both integrators. When the reset signal is off, an inhibitory gating signal is sent to these
projections, turning them off and allowing the difference units to function as integrators. In
addition to the reset signal, our clock population serves as an additional control, toggling
the gated inhibition on and off between the main two difference units. This allows the
network to initialize the sequence to ONE when necessary, and then when left alone, begin
to count through the sequence of indices at a frequency equal to that of the oscillator. The
circuit with the gated difference units connected to each other recurrently is based on a
similar sequential memory circuit described and implemented in the NEF by Choo [14].

Although the circuit works as described, the representation accuracy of the counting
degrades due to integrator drift and representation error. To solve this problem, we use a
cleanup memory [93]. We attach a cleanup memory to each of the connections between the
gated difference units, such that the connections become current → cleanup1 → next →
cleanup2 → current. The cleanup memory serves to compare the dot product of the vector
fed in as input to a predefined vocabulary, in our case, the set ONE, TWO, THREE, ...,
and outputs the value of the closest match in a winner-take-all. If there are no matches
close enough past some threshold (we set it to 0.5), the zero vector is output. These cleanup
memory units work by using one population per vector in the vocabulary to calculate the
dot product between the input vector and that population’s vocabulary vector. Once this
is done, we approximate the nonlinear function

f(x) = x : x ≥ t

f(x) = 0 : x < t

where t is the threshold over which we want an output value. Finally, to allow for a
winner-take-all output, we include inhibitory connections from each population to each
other population, allowing for only one population to be active at a time. The addition of
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the cleanup memory networks allows the circuit to function as intended, counting through
indices without any decay or drift.

As can be seen in figure 4.3, this part of the model makes use of recurrence, both in
the dynamical systems used in the oscillator and integrator (difference unit) components
and in the overall cyclical nature of the network. The output of this subnetwork is a
semantic pointer indicating the current index in a sequence. The inputs are control signals
from the medial septum: a reset signal telling the network to reset back to ONE, and a
frequency signal controlling the speed of the oscillator. This frequency controlled oscillator,
previously implemented in the NEF in [53] and [82], provides a mechanism for speeding
up and slowing down the sequence indexing to simulate the temporal compression effect
seen in rat replay [4]. Not included, but implementable would be the ability to reverse the
sequencing, allowing the rest of the network to exhibit reverse replay [35]. See chapter 6 for
further discussion on reverse replay. Figure 4.4 shows the activity of different populations
in this subnetwork during sequence generation.

4.2.4 Associative Memory (CA3)

Now that we have a mechanism for counting through sequences, we’re able to bind these
sequence indices with the sensory input coming from EC. We do this with a circular con-
volution network, taking index from CA3 and sensory from EC as inputs. To implement
circular convolution with neurons, we note that the convolution operation A~B is equiv-
alent to the element-wise product of A and B in the frequency domain, so we can take the
Discrete Fourier Transform (DFT) of A and B, element-wise multiply them, and perform
an inverse DFT on the result. A DFT can be performed as a linear transformation, defined
by the W matrix.

Wab = cos
−2πab

d
+ i sin

−2πab

d
(4.1)

So to compute this value in neurons, we set the decoders of a population to compute
the above transformation1. We take the resulting frequency domain vectors and multiply
their results using a second population, and finally use a third population to compute the
inverse DFT of the result.

The output of the circular convolution network leads to a recurrently connected memory
population acting as an integrator that stores the current memory sequence. Given a

1For efficiency reasons, the computation is divided into computing both the real and imaginary terms
of this equation and adding them together in a separate population
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Figure 4.3: CA3 indexing architecture. The network counts through a sequence of unitary
vectors in the recurrent loop Difference1 → Cleanup1 → Difference2 → Cleanup2 → Dif-
ference1. A clock signal governs the temporal frequency of the network. Circles represent
inhibitory connections.

sequence of sensory inputs S0, S1, S2, ..., (and a sequence of position vectors P0, P1, P2, ...
from CA3) the integrator stores the convolved output along with whatever was previously
stored. After a sequence has been experienced, the value stored in this population will be
the HRR vector (P0 ~ S0) + (P1 ~ S1) + (P2 ~ S2) + .... The population can also be
inhibited by a reset signal coming from septum, allowing for this memory to be cleared as
necessary. Figure 4.5 shows the neural populations and connections in this subnetwork.
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Figure 4.4: Counting through a sequence in the CA3 indexing network. Graphs show
the decoded value being represented by each population over time. For the populations
representing semantic pointers, values shown are the comparisons (dot products) between
the decoded value and the vectors in the vocabulary. The network is being driven by
an oscillator with frequency 2 Hz. The Reset signal is high at time t = 0 and t = 2.5,
resetting the index stored in the integrators to P0. Position is the output from this part
of the model.

4.2.5 Unbinding (CA1)

The deconvolution part of our model takes the current sequence in memory and convolves it
(via circular convolution) with the inverse (involution [83]) of the current position vector.
This convolution is done in the exact same manner as the above binding convolution,
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Figure 4.5: CA3 memory architecture. The index signal from the indexing part of the
model is convolved with the sensory input and added into the memory integrator. If we
instead are in recall mode, this new binding is inhibited, and memory is loaded directly
from the signal coming from the learning part of the model. Circles represent inhibitory
connections.

except that we invert one input before the convolution is performed. This allows us to
reconstruct the originally encoded sensory input for that position in a result population.
For example, if our current position input is P1 and the memory populations contain the
sequence M = (P0 ~ S0) + (P1 ~ S1) + (P2 ~ S2) + ..., then M ~ P1−1 = S1 + noise.

We also employ a cleanup memory here, implemented in the same manner as the one
used in CA3. The cleanup memory outputs a winner-take-all between the dot product
of the possible concept vectors and the resulting value is stored in the result population,
allowing us to retrieve a cleaned up version of the result vector. Figure 4.6 shows the
neural populations and connections in this subnetwork.

4.2.6 Learning for Consolidation (CA3)

Up to this point, we’ve described how our network can count through a sequence, bind
indices in this sequence with sensory inputs, store them in a working memory, and recall
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Figure 4.6: CA1 unbinding architecture. The current index is deconvolved with whatever is
loaded into memory, giving back a sensory vector. The vector is then fed through a cleanup
memory, yielding the original vector that was bound with that index, in that memory.

and replay them. However we have not yet detailed how our model would consolidate these
memories into longer-term storage in connection weights rather than neural activity. The
synaptic modification part of our model does this.

We implement a hetero-associative memory as described in [103]. This subnetwork
works by employing the vectorized Oja rule to allow a population to learn to sparsely
represent a set of keys. The encoders in this population start out uniformly distributed
around the space, but as it receives input, any neurons that fire strongly (their encoders
are in a vector space close to the input vector), they will shift to better represent that
input vector. This allows the population to uniquely represent a set of discrete keys. We
can think of these keys as indices in a map that get associated with corresponding values.

The reason that we need learning here, rather than using a circuit similar to the cleanup
memory, is that we want to be able to learn associations involving context and sensory
vectors, which are not part of some predefined vocabulary, they are inputs given at ‘run-
time.’ At the same time as the encoder learning, a standard error-modulated learning rule
is used to shift the population’s decoders to compute the transform key → value.

We use this associative memory subnetwork to associate the context signal coming
from DG with the value stored in the memory population, allowing us to perform context
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Figure 4.7: CA3 learning architecture. The context signal from DG is associated with the
current memory. Encoders in the Memory population use Oja’s rule to learn to better
represent the input, while decoders in the memory population learn the transformation
between Key and Value via error modulated learning. The Learning input is taken from
Septum, and can just be the inverse of the Recall signal mentioned in figure 4.5 (i.e. when
Recall is 1, Learning is 0 and vice verse). The Recall output gets sent to the CA3 Memory
module to be loaded into memory, if necessary. Squares represent modulatory connections.

switching, associating multiple different contexts with different memory sequences associ-
ated with those contexts. We also have a control signal coming from medial septum to
toggle this part of the model between encoding and recall mode. During encoding mode,
learning is turned on and the connections between the convolution and memory popula-
tions are enabled, allowing the memory to be built up and learned as we encounter new
experiences. Conversely, during recall mode, learning in the heteroassociative memory is
turned off (the neurons in the error modulating population are inhibited), the connections
between the convolution and memory populations are disabled, and a new connection is
enabled between the output of the heteroassociator and the memory population. This
allows the memory corresponding to the current context to be loaded and replayed. All
toggling of connections is accomplished through the use of inhibitory gating signals. Figure
4.7 shows the neural populations and connections in this subnetwork.
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4.2.7 Functional Overview

Figure 4.8 gives a simplified view of the populations and connections that comprise the
entire hippocampal model.

Figure 4.8: Simplified functional overview of hippocampal model. During encoding, the
sensory input from EC is bound with the current index and stored in the working memory
integrator. At the same time, the contents of the integrator is associated with the sparsified
context input from EC (via DG) in the learned memory subnetwork. During recall, the
working memory is loaded from the learned memory network, and this signal is unbound
with the current index and output through CA1. The septum inputs provide control for
the network, regulating the clock speed and controlling whether the network is in encoding
or recall mode.
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4.2.8 Neural Parameters

Table 4.1 outlines the various parameters used in different parts of the model.

Ensemble Num neurons Dimensions Max firing rates (Hz) Intercepts PSTC (s)
1) ECContext 3200 64 [100, 200] [-1.0, 1.0] 0.01
1) DGContext 12800 64 [100, 200] [0.3, 1.0] 0.01
2) Oscillator 2000 2 [200, 400] [-1.0, 1.0] 0.05
2) Clock 200 1 [200, 400] [-1.0, 1.0] 0.01
2) One 3200 64 [200, 400] [-1.0, 1.0] 0.01
2) Difference1 6400 64 [200, 400] [-1.0, 1.0] 0.1
2) Difference2 6400 64 [200, 400] [-1.0, 1.0] 0.1
2) Cleanup1 500 64 [200, 400] [-1.0, 1.0] 0.01
2) Cleanup2 500 64 [200, 400] [-1.0, 1.0] 0.01
2) Index 3200 64 [200, 400] [-1.0, 1.0] 0.01
3) Conv 12800 64 [200, 400] [-1.0, 1.0] 0.01
3) NewBinding 3200 64 [200, 400] [-1.0, 1.0] 0.01
3) Recall 3200 64 [200, 400] [-1.0, 1.0] 0.01
3) Memory 19200 64 [200, 400] [-1.0, 1.0] 0.1
4) DeConv 12800 64 [200, 400] [-1.0, 1.0] 0.01
4) Result 3200 64 [200, 400] [-1.0, 1.0] 0.01
4) CleanResult 3200 64 [200, 400] [-1.0, 1.0] 0.01
5) Key 3200 64 [200, 400] [-1.0, 1.0] 0.01
5) Value 3200 64 [200, 400] [-1.0, 1.0] 0.01
5) Memory 1000 64 [200, 400] [-1.0, 1.0] 0.01
Total 103400

Table 4.1: Neural parameters used in the model. The number before each ensemble refers to
the numbered subnetworks in figure 4.1. Intercepts refers to the distribution of x-intercepts
in the neurons’ LIF tuning curves (see figure 3.3). For recurrently connected populations,
the recurrent PSTC is given.
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Chapter 5

Simulations and Results

This chapter details the simulations we ran on our model and the resulting neural spike
and decoder data gathered from Nengo. Our aim is to show that the model can encode and
recall sequences of both spatial and non-spatial data, and do so in a biologically plausible
manner that generates similar neural phenomena to those found in experimental research.

5.1 Replay of Concept Vectors

5.1.1 Replay from Neural Activity

First we demonstrate the basic functionality of the memory part of the model by encoding
a sequence, resetting the indexing, and replaying that sequence in the absense of sensory
input. Figure 5.1 shows the results of running a replay simulation. The model is run for
5.5 seconds. From t = 0 to t = 2.5 seconds, a sequence of five 46-dimensional sensory input
vectors, A through E, are shown for 0.5 seconds each. At the same time, the indexing part
of the model is counting through a sequence, also with period 0.5s. During this time, the
sensory input is being convolved with the index and added into our memory integrator.
For t = 2.5 to t = 3.0, the reset input is high, causing the indexing to reset. Then from
t = 3.0 to t = 5.5, the index resumes counting through the sequence of position vectors, the
contents of the memory are deconvolved with the current position vector, and the result is
fed through a cleanup memory to reconstruct the original input sequence.
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Figure 5.1: The original input sequence is replayed by the Result and CleanResult popu-
lations at time t = 3.0 to 5.5. Graphs show the decoded value being represented by each
population over time. For the populations representing semantic pointers, values shown
are the comparisons (dot products) between the decoded value and the vectors in the vo-
cabulary. Position is the output of the CA3 indexing part of the model. Also shown is a
spike raster for 30 neurons in the Result population. Note the similarity between spikes
when the same value is being represented, e.g. t = 0.5 to 1.0 and t = 3.5 to 4.0.

5.1.2 Replay from Connection Weights

Next we demonstrate the functionality of the learning part of the module, which learns
to associate contexts with whole memories. We run a simulation where two sequences are
given as input consecutively with two different context vectors also being given as input.
The learning part of the model modifies its connection weights to learn the association
between each context and the entire sequence in memory at the time. The two sequences
are of length 5 and 7, and are presented for 2.5s and 3.5s respectively, then the recall input
is turned on and the model replays the two sequences. The results are shown in figure 5.2,
in this case making one error in the length 7 sequence. This shows the model’s ability to
switch back and forth between contexts, as has been demonstrated in rats [60].

We also run a simulation of remote replay, which is the replay of a sequence long after
the original experience. Figure 5.3 shows spike trains from our model compared to spike
trains taken from rats during sleep in an experiment performed by Ji et al [55].
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Figure 5.2: Two input sequences are experienced with two different contexts. Graphs show
the decoded value being represented by each population over time. For the populations
representing semantic pointers, values shown are the comparisons (dot products) between
the decoded value and the vectors in the vocabulary. For the first 2.5 seconds the model is
given CONTEXT1 and [A, B, C, D, E] as input, then for 3.5 seconds it is given CONTEXT2
and [G, F, E, D, C, B, A] as input. The model is then given CONTEXT1 and Recall as
input for 2.5 seconds, and the sequence [A, B, C, D, E] is replayed. Then it is given
CONTEXT2 and Recall, and it replays the sequence [G, E, E, D, C, B, A] (one error). A
one second gap is left between each phase to reset the position input and clear the memory
integrator.

Accuracy vs. Sequence Length

As the length of the sequences increase, the performance of the model degrades, as is to be
expected. This error is caused primarily by the noise introduced by adding so many bound
vectors together into one integrator. When the deconvolution occurs to get our Result
vector, if there is too much noise, the model will be unable to clean up the result vector
accurately. To test how representation accuracy varies with sequence length, we perform
10 simulations each of sequences of length 3 to 8, clearing the memory after the sequence
input and recalling from the learning part of the model each trial. Figure 5.4 shows the
resulting tradeoff between sequence length and recall accuracy in our model.
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Figure 5.3: Spike train data taken from Result population in model (A) vs. data taken
from rats in [55] (B). In the rats, the replay takes place during sleep, at a remote instance
in time. In the model, we simulate this by clearing the working memory and running the
model for 20 seconds on different input. The replay event is triggered by setting the recall
signal to true and giving the same context input as the original experience.

Figure 5.4: Graph of sequence length vs. recall accuracy. Accuracy is calculated per
element in a sequence, so if 4/5 elements were recalled correctly, that would correspond to
80%.
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5.2 Replay of a Spatial Trajectory

We have now shown that our model can encode and recall sequences of concept vectors,
but what about spatial trajectories? The hippocampus has been shown to be important
in spatial navigation, so our model needs a way of representing positional information. It
turns out that because of our system of vector representation, we don’t need to change
anything in our model for these input vectors to represent spatial information vs. concep-
tual information. As we will show, we can simply interpret some of the dimensions of our
vectors as spatial data.

The critical difference between representing spatial data and representing high-level
conceptual data is the number of dimensions (64 vs 2). So, we can have a subset of
neurons in a population only represent two dimensions by setting their encoding vectors
to 0 in dimensions 2-64, effectively splitting the population up into place cells and concept
cells. We can do this with every population in the model that represents either sensory
or contextual information (i.e. the inputs from EC), allowing us to effectively build a 2D
spatial circuit in parallel to our 64D conceptual one, linking spatial and conceptual vectors
together in the model. In fact, we can represent both concepts and spatial information in
a single 64D signal by simply setting the first two dimensions of the vector to represent
spatial information scaled down to a value in the interval [−0.1, 0.1]. The information loss
from the two dimensions is small enough that our recalled concept vectors will still be
robust when fed back through a cleanup memory.

The following experiment similar to work done by Johnson et al [56] simulates a rat
navigating through a simple T-maze (figure 5.5). The semantic pointers to be used as input
are chosen such that they have a spatial component in their first two dimensions. Three
trials are performed, in which the rat chooses the left path, the right path, and then pauses
at the decision point evaluating both paths. In the first trial (the left path), for t = 0 to
3.0, the context input is RUN, followed by CHOICE1, for 1.5 seconds each. The sequence
of sensory vectors experienced is A, B, C, then C, D, E for 0.5 seconds each. In the second
trial, for t = 4.0 to 7.0, the context input is RUN and CHOICE2, and the sensory input is
A, B, C, then C, F, G. In the third trial (the right path), for t = 8.0 to 11.0, the context
is RUN, CHOICE1, CHOICE2, and the recall input is turned on at t = 9.5, to allow the
model to replay the sequences learned for the contexts CHOICE1 and CHOICE2. At this
point, the indexing circuit is sped up, allowing for temporal compression when recalling
the learned sequences. The memory integrator is reset in between trials, so results are not
dependant on time between trials. Experimental results are shown in figure 5.6.

By plotting the decoded output from our spatially sensitive neurons, we can obtain a
reconstruction of the rat’s position while the recall input is turned on. Figure 5.7 shows this
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Figure 5.5: Structure of the simulated T maze. The rat starts at point A (0, 1), and moves
upward to the decision point C (0, -1). It then makes a decision to go left or right, ending
the run at either point E (-1, -1) or point G (1, -1).

reconstructed position over time during the period when the rat is paused at the decision
point, in comparison with experimental results from [56].

5.3 Time Cells

There are neurons in the CA3 indexing part of our model that exhibit temporal selectivity
similar to the time cells described by MacDonald et al in [64]. They found that these
time cells would fire in sequence both during memory tasks and in delay periods between
tasks in rats. The indexing model’s sequence generation populations are temporally cycling
through their sequence of unitary vectors, so individual neurons in the model will fire at
a point in the sequence when a vector similar to their encoder is being represented. We
record the spikes from neurons in the Position population in the CA3 indexing part of the
model in a 5 second simulation and compare them to the time cells found in rats. The
results are shown in figure 5.8.
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Figure 5.6: Results of running the simulated T maze experiment. During the recall period
from t = [9.5, 11.0], the Result population replays the sequences previously experienced
at t = [1.5, 3] and t = [5.5, 7]. Graphs show the decoded value being represented by
each population over time. For the populations representing semantic pointers, values
shown are the comparisons (dot products) between the decoded value and the vectors in
the vocabulary. The bottom three graphs show the 2D component of the input signals:
Context and Sensory, and the output signal: Result.
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Figure 5.7: Reconstructed position in both rat (bottom, from [56]) and model (middle) at
the decision point of a T maze. Although the time scale is different, forward replay effects
are visible in both experimental results and model as the rat ponders which branch of the
maze to take. Blue numbers label comparable position reconstructions between rat and
model.
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Figure 5.8: Temporally correlated firing patterns in the Position population of the model
vs. that found in rats. The top plot shows the decoded value of this population in the
model. The middle plot shows spike trains of individual neurons in the population, and the
bottom 4 plots are heat maps of firing rates found in the hippocampus of rats. The model
was initialized with a reset signal for 0.2 seconds, then left to run with no further input
for 5 seconds. Rat data is taken from [64]. For the rat data, panels A-D each represent a
different rat. Neurons are sorted by latency of firing rate.
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5.4 Theta

The oscillator serving as a neural ‘clock’ controls the temporal dynamics of the model,
leading to theta-like oscillations in CA3. The oscillations arise from inhibitory connections
in the indexing part of the model, suppressing the firing of certain populations when the
clock signal is on or off. In effect, these oscillations determine the time scale for both
encoding and recall: as our clock frequency increases, the model encodes or recalls sensory
experiences more quickly.

In rats, theta rhythm is correlated with movement, increasing in frequency when the
rat moves more quickly [47]. In other animals, including humans, theta is associated with
sensory stimuli [87] and spatial memory [57]. While the exact function of biological theta
rhythm is still unclear, there is enough evidence to suggest that just like in our model, it
is involved in (or arises from) temporal control of memory encoding and recall. Figure 5.9
gives a comparison between theta rhythm in our model vs. that found in experimental
studies in rats during exploration.
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Figure 5.9: Comparison of theta oscillations in CA3 indexing populations (difference units)
in model (top) vs. that found in rats (bottom-left [12] and bottom-right [40]). Model data
is collected from voltage probes of neurons in the difference units in the CA3 indexing
part of the model. Frequency of theta oscillations in the model fluctuate depending on the
frequency control input to the oscillator. Shown are oscillations of 2 Hz (t = [0.0, 2.0]) and
4 Hz (t = [2.0, 4.0]).
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Chapter 6

Discussion and Future Work

6.1 Contribution

To the best of our knowledge, this is the first biologically plausible spiking neural model
to take into account both timing and sensory tuning of hippocampal cells, while exhibiting
the ability to recall previously experienced sequences. In addition, it operates on arbitrary
sensory vectors as input, thus not constraining the model to spatial or non-spatial infor-
mation and allowing it to be extended to perform spatial navigation tasks. While other
neural hippocampal models exist, they either do not provide a consistent representation
for multi-modal data [62, 47], or are not biologically plausible [108].

The primary contribution of this thesis is to provide a ‘first attempt’ at creating a
modular hippocampal model that performs episodic memory encoding and recall. We use
the NEF as a way of unifying low-level neural phenomena with high-level behaviour, and
semantic pointers as a convenient vector representation of sensory data. We hope the
model can be extended and integrated with other NEF models in the future to give a more
complete picture of the hippocampus’ role in the brain.

Rasmussen’s recent NEF model of heirarchical reinforcement learning [84] is one poten-
tial integration point for our model. In a Morris water maze environment [72], for example,
our hippocampal model could be used for navigation, remembering sequences of paths and
whether or not there was a reward at the end of them, while the reinforcement learning
model determines which path to take. Another interesting integration point is Hunsberger’s
visual system model [52], which could be used to provide more realistic sensory input to
our model, instead of the randomly generated input vectors we use in testing.
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6.2 Potential Model Extensions

While our model is able to encode and recall sequences and replicate some phenomena
found in the hippocampus, by no means is it complete. We do not attempt to model
reverse replay; our version of theta oscillations are not quite the same as those found in
the brain, and omitted from the model is the extraction of spatial data from entorhinal
grid cells. This section outlines some of these possible extensions to the model.

One issue that our model leaves unaddressed is the fact that the cleanup memory
used to disambiguate our result vector requires the possible sensory vectors to be known
beforehand. For sensory experiences that have been previously experienced, this isn’t a
problem, as something like Crawford’s NEF knowledge representation model [20] could be
used to disambiguate concepts. But what about novel sensory experiences that are being
encoded for the first time? We hypothesize that neurogenesis in the dentate gyrus could be
involved in creating neural representations of novel experiences that could be added to our
knowledge base and thus used in cleanup memory, but exactly how this is done is outside
the scope of our model.

We also do not attempt to explain the mechanisms by which place cells extract spatial
data from entorhinal grid cells; that is left to other models. Orchard’s recent NEF model
is a good example of this [82], and could be combined with our model to provide a more
biologically realistic place cell representation for both the sensory and context inputs.

In addition to the forward replay effects that we see in our model, experimental evi-
dence also points to the existence of reverse replay in the hippocampus, often seen in rats
immediately following a reward [35]. In order to implement reverse replay in our model,
we would need a way of allowing our indexing circuit to count backwards in addition to
counting forwards. Mathematically, this would simply mean inverting the linear transfor-
mation performed by convolving with the ADD1 vector in the CA3 indexing part of the
model. Implementing this would require providing a second route through which the two
difference units in that part of the model could interact, and inhibiting one route or the
other based on a control signal.

6.3 Further Discussion

One of the most interesting implications of our model is the use of theta rhythm as a
control signal for encoding/recall speed. We use this as a method for performing temporal
compression during recall, as well as for controlling the model’s memory encoding speed.
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We can even slow our clock’s frequency to zero, which turns off theta oscillations completely
and tells the model to not encode anything. This is consistent with theta rythms observed
in rats, where theta increases in speed as the animal moves around its environment more
quickly, and disappears completely during periods of inactivity such as grooming, where
presumably no information about the environment would need to be encoded. Our model
would make the prediction that theta (or some sort of network oscillation) occurs during
replay as well as during encoding, which seems to be true in humans [57] and REM sleep
in rats [59], but not necessarily for normal recall events in rats [22]. In any case, the use
of theta as a control signal for our model seems to be an incomplete explanation, and
is something to keep in mind when discussing extensions to the model. We also do not
include explanations for theta phase precession [80], or for gamma oscillations or ripple
events in hippocampus.

When we think about episodic memories intuitively, we often make unconscious distinc-
tions between higher-level and lower-level memories. For example, one can think about
their memory of getting ready for work in the morning. The memory could be the se-
quence: get out of bed, shower, eat breakfast, leave the house. Each of these elements
of the memory would be associated with a location in space. However, each of these el-
ements could also be broken down into sub-elements. Eat breakfast, for example, could
be composed of the sequence: walk to kitchen, fill bowl with cereal, pour milk in bowl,
consume cereal. Each of these sub-components could be broken down into even smaller
sub-sub-components, with spatial information about the exact position in the kitchen that
the event took place. This suggests that the process of episodic memory encoding and recall
(in humans at least) could be a heirarchy, with complete low-level memories as elements of
higher-level memories. If we make this assumption, our model’s compressed representation
of memories as vectors with dimensionality equal to that of their components provides a
natural way of re-using memories as modular components of other memories. We believe
that this is a strong argument in favour of our representation of memories as semantic
pointer vectors.

Memories are an integral part of our humanity. Although we may never fully understand
exactly how our brains form and recall memories, we hope that our work here has provided
a small step towards a better understanding of memory, and towards the greater goal of
understanding the human brain.
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