Primary and Auxiliary Subunits of Sodium Channel $\mathrm{Na}_{\mathrm{v}} 1$ in Lymnaea Stagnalis

by

Julia E. Fux

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Biology

Waterloo, Ontario, Canada, 2014
© Julia E. Fux 2014

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

Abstract

Voltage gated sodium channels $\left(\mathrm{Na}_{\mathrm{v}}\right)$ are major contributors in the neuronal signal transduction, responsible for the action potential upstroke. They are members of the large 4×6 ion channel family, which also include the voltage gated calcium channels, and NALCN channels. The evolution of sodium selectivity in ion channels predates the development of the nervous system and sodium channels can be found in almost all animal lineages, including the most ancestral ones, like Placozoa and Apusozoa phylums.

Two types of sodium channels, $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$, are differentiated mainly based upon the structure of the inner pore, which dictates the ion selectivity of the channel. $\mathrm{Na}_{\mathrm{v}} 1$, which is represented in humans by 9 subtypes, $\mathrm{Na}_{\mathrm{v}} 1.1-9$, carries a selectivity filter motif DEKA which makes it highly selective for sodium ions. $\mathrm{Na}_{\mathrm{v}} 2$ which is ancestral to $\mathrm{Na}_{\mathrm{v}} 1$ has been lost in the vertebrate lineage but is found in the majority of invertebrates. Despite the structural homology with $\mathrm{Na}_{\mathrm{v}} 1$, the selectivity filter DEEA makes the $\mathrm{Na}_{\mathrm{v}} 2$ channel calcium selective. We have sequenced, cloned and identified splice variants in sodium channel $\mathrm{Na}_{\mathrm{v}} 1$ from a pulmonate fresh water snail, Lymnaea stagnalis. We also identified the sequence of the Lymnaea $\mathrm{Na}_{\mathrm{v}} 2$ channel, which is possibly expressed in the snail external sensory organs.

Unlike the highly conserved α - subunits, the multifunctional auxiliary subunits of human sodium channel, $\beta 1-4$, have no structural analogs among invertebrates, although insectal Tip-E and TEH have a similar function. We have identified putative molluscan sodium channel auxiliary subunits, $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 1-4$, which are secreted proteins with a conserved CUB domain, analogous to the CAM like immunoglobulin V-folds in mammalian β subunits. CUB domains are found in auxiliary subunits of nematode and mammalian ligand gated channels, such as kainite receptors and acetylcholine receptors. Our hypothesis is that the $\mathrm{Na}_{\mathrm{v}} \beta$ subunits are an example of convergence, which evolved independently in different invertebrates and vertebrate groups to serve similar functions.

Acknowledgements

First and foremost I would like to express my sincere gratitude to my mentor Prof. J. David Spafford. David has not only guided me through the challenging, at times frustrating, but on the whole exciting process of research for three years, but also encouraged and inspired me when things didn't go smoothly.

My warmest thanks go to the colleagues, who have been working alongside me during these years. Emily Irving 'showed me the ropes', Adrienne Boone generously shared with me her vast experience and knowledge of molecular biology. I also want to thank Adriano Senatore, whose thorough approach to scientific research set the standards to follow and Wendy Guan, who spent hours patiently guiding me through the confusing world of electrophysiology.

A separate 'thank you' to Neil Hsueh who did an amazing job making antigens for the snail sodium channel and thus greatly helped in advancing my project. And to Amrit Mehta and Rob Stevens who, although not directly involved in my research were always there to hear me rant about it.

I would like to thank Dr Ke Dong of Michigan State University and Dr Lory Isom from University of Michigan who not only generously shared with me the plasmids needed for my experiments, but also provided an unique outside perspective on my field of research.

I would also like to thank my committee members, Dr Bernard Dunker and Dr Bruce McKay for taking the time to thoroughly read and understand my project and for providing a valuable input to shape and perfect my thesis.

Finally, I would like to thank my husband, Vadim Fux, who pushed me, believed in me and stood by me every step of the way. I cannot see myself completing this project without his continuous and unwavering support.

Dedication

To my mom who never stops being curious
To my dad who never stops being kind

Table of Contents

AUTHOR'S DECLARATION ii
Abstract iii
Acknowledgements iv
Dedication v
Table of Contents vi
List of Figures X
List of Tables xii
Chapter 1 . Introduction 1
1.1 Sodium channels properties and role in neuronal signaling 1
1.2 Neuronal components of signal transduction 4
1.3 Molecular structure of α-subunit. 6
1.4 Evolution of sodium selectivity in the ion pore 13
1.5 Toxin sensitivity of α-subunits 16
1.6 Multiple roles of sodium channel auxiliary subunits 18
1.7 Lymnaea stagnalis as a model organism 21
Chapter 2. Materials and methods 25
2.1 Sequencing and cloning Lymnaea Stagnalis mRNA 25
2.1.1 Tissue preparation: 25
2.1.2 TRIzol RNA extraction. 25
2.1.3 Reverse Transcription (RT-PCR) 26
2.1.4 Sequence amplification and visualization 27
2.1.5 Gel extraction 27
2.1.6 Ligation 27
2.1.7 Electrocompetent Stbl2 cell preparation 28
2.1.8 Electroporation and Growth 28
2.1.9 Plasmid isolation 29
2.1.10 Sequencing 30
2.1.11 Construction of the sodium channel α-subunit 30
2.2 Protein Expression in HEK 293 cells 31
2.2.1 Expression vectors 31
2.2.2 Cell Culture and Transfection 31
2.2.3 HEK 293-harvesting the protein 32
2.2.4 SDS-Page and Western Blotting 32
2.2.5 Electrophysiology 33
2.3 Antigen Production and Antibody Purification. 34
2.3.1 Antigen production and purification 34
2.3.2 Antibody expression 34
2.3.3 Serum preparation 35
2.3.4 Antibody purification 35
2.4 Co-Immunoprecipitation 36
2.4.1 Snail organ homogenate preparation. 36
2.4.2 Pre -clearing step. 36
2.4.3 Purification of α / β subunit complex 37
2.4.4 Preparation of sample for Mass Spectrometry 37
Chapter 3 . Sodium channels $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$: Results and Discussion 38
3.1 Sodium channel α-subunit from Lymnaea Stagnalis: sequencing and cloning 22
3.1.1 Step by step identification of the snail sodium channel α subunit 48
3.1.2 Splice variants found in α-subunit 40
3.1.3 The construction of the full length α-subunit clone 42
3.2 Analysis of calcium selective sodium channel LNav2 45
3.3 Notable features from the gene structure of snail LNav1 and LNav2 channels 48
3.3.1 Conserved voltage sensors 48
3.3.2 Conserved fast inactivation motif in the III-IV linker of sodium channels. 49
3.3.3 Conservation of eight core cysteines in extracellular turrets of all 4 x 6 cation channels 50
3.3.4 Conserved PDZ binding motif in ion channel C-termini 52
3.3.5 Conserved C-terminal IQ motif 53
3.3.6 Cytoplasmic I-II linker of $\mathrm{LNa}_{\mathrm{v}} 1$ is most homologous to nervous system-specific human sodium channels such as $\mathrm{Na}_{\mathrm{v}} 1$ 54
3.3.7 Cytoplasmic II-III linker sequence of $\mathrm{LNa}_{\mathrm{v}} 1$ channel shows little homology with human
$\mathrm{Na}_{\mathrm{v}} 1$ channels, where a sodium channel ankyrin binding motif is located 56
3.4 Discussion 56
3.4.1 Characterization of the Lymnaea sodium channel gene $\mathrm{LNa}_{\mathrm{v}} 1$ 56
3.4.2 The dual evolution of sodium-selectivity of the $\mathrm{Na}_{\mathrm{v}} 1$ channel in the brain and the Cav3sodium channel outside the brain in invertebrates.57
3.4.3 The localization of invertebrate sodium channels along the axonal surface 58
3.4.4 Characterization of the $\mathrm{LNa}_{\mathrm{v}} 2$ channel gene 64
3.4.5 Common conserved domains in $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$ 65
Chapter 4 . Sodium channel auxiliary subunit $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$: Results and Discussion 66
4.1 Putative auxiliary snail sodium channel subunit: results 66
4.1.1 $\mathrm{LNa}_{\mathrm{v}} 1$ specific polyclonal antibody 66
4.1.2 Making the antigen 66
4.1.3 Antibody production 67
4.1.4 Co-Immunoprecipitation. 69
4.1.5 Identifying the amino acid sequence of the putative β-subunit of $\mathrm{LNa}_{\mathrm{v}} 1$ 72
4.1.6 Secondary and tertiary structure of the $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ proteins 75
4.1.7 Homologs of $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ in other closely related species 78
4.1.8 Comparison of snail accessory β-subunit with other members of the CUB family 80
4.1.9 Cloning of the accessory β subunit for the analysis of its functional regulation of sodium channels 84
4.1.10 The pulldown of the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$ subunit with the putative β-subunit. 86
4.2 Discussion 87
4.2.1 Structural identity of snail auxiliary subunit homologs $\mathrm{LNa}_{\mathrm{v}} \beta$. 87
4.2.2 Comparison between $\mathrm{LNa}_{\mathrm{v}} \beta$ and other CUB domain proteins 88
4.2.3 $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits, mammalian $\mathrm{Na}_{\mathrm{v}} 1 \beta$-subunits and Drosophila Tip-E/TEH 89
4.2.4 The significance of $\mathrm{LNav} \beta$ subunits possessing a cbCUB domain 90
Chapter 5 . Conclusions and future directions 91
5.1 Proposed experiments related to $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$ 92
5.1.1 Substitution of the mutually exclusive exon 92
5.1.2 Insertion of human II-III linker into snail sodium channels 93
5.1.3 Using Xenopus oocytes as a vehicle for $\mathrm{LNa}_{\mathrm{v}} 1$ expression 93
5.1.4 Unique features that we will examine for in vitro expressed $\mathrm{LNa}_{\mathrm{v}} 1$ channels 94
5.1.5 We will examine the localization of $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels within snail brains. 95
5.1.6 Cloning and expression of snail $\mathrm{LNa}_{\mathrm{v}} 2$ channel in vitro and evaluation of its pattern of expression in snail tissues. 95
5.2 Proposed experiments related to putative $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ subunits 96
5.2.1 Real-time, quantitative PCR to analyze tissue specific expression of $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 1$ 96
5.2.2 Pulling down the α-subunit using β - subunit specific antibodies 96
5.2.3 Calcium binding properties of $\mathrm{LNa}_{\vee} \beta 1$ 96
5.2.4 Investigating of the $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ homologs 97
Appendix A. Primer sequences 98
Appendix B. Vector maps 102
Appendix C. Sequence alignments 107
Appendix D. Genomic regions of sodium channels 119
Bibliography 121

List of Figures

Figure 1.1. Action potential of giant squid axon, recorded by Hodgkin and Huxley 1
Figure 1.2. Activation states of the sodium channel. ... 2
Figure 1.3. The topography of the action potential. ... 3
Figure 1.4. Signal propagation down the axon. ... 4
Figure 1.5. Membrane topography of the sodium channel in the node of Ranvier............................... 6
Figure 1.6. Sodium channels structure based on the bacterial sodium channel NavAb from Arcobacter
butzleri. ... 8
Figure 1.7. Features of the sodium channel. ... 9
Figure 1.8. Molecular structure of the human sodium channel. .. 9
Figure 1.9. The composition of the selectivity filter defines the ionic selectivity of the pore. 10
Figure 1.10. Effects of posttranslational modifications on mammalian $\mathrm{Na}_{\mathrm{v}} 1$. 10
Figure 1.11. Clustering of sodium channel at the axon initial segment in Lamprey fish. 15
Figure 1.12. Sodium channel and Hox genes coevolving in vertebrates. .. 15
Figure 1.13. Evolution of high field strength site in calcium (Cav), sodium (Nav) and cation
(NALCN) pore selectivity filters of eukaryotes... 16
Figure 1.14. Central nervous system of Lymnaea stagnalis (Benjamin, 2008)................................. 22
Figure 3.1 The order of fragment amplification and sequencing of PCR fragments of the Lymnaea
Nav1 sodium channel. .. 23
Figure 3.2 Fragments of Lymnaea sodium channel α subunit amplified by PCR.............................. 23
Figure 3.3 Open reading frame of LNav1 α-subunit.. 38
Figure 3.4 Selectivity filter of the sodium channel $\mathrm{Na}_{\mathrm{v}} 1$. .. 39
Figure 3.5. Alignment of the mutual exclusive exon 4a/4b splicing in Domain I, segment 1 of molluscan sodium channels, compared to the homologous exon region in human Nav1 channels..... 41
Figure 3.6 Optional exon 21 in molluscan and human sodium channel α-subunit............................. 42
Figure 3.7. Amplification of four overlapping fragments coding for the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit. 43
Figure 3.8. Vector map of pIRES2 -EGFP with $\mathrm{LNa}_{\mathrm{v}} 1$ insert. ... 44
Figure 3.9 Quantitative PCR analysis of Lymnaea stagnalis internal organs for the presence of $\mathrm{LNa}_{\mathrm{v}} 1.45$

Figure 3.10. PCR amplification of snail sodium channel $\mathrm{LNa}_{\mathrm{v}} 2$ fragment and sequence of a full
length amino acid contig formed out of snail genomic sequence 46
Figure 3.11. Alignment of pore selectivity filters residues in calcium-selective $\mathrm{Na}_{\mathrm{v}} 2$ channels 48
Figure 3.12 Alignment of voltage-sensing $S 4$ segments containing positive charges (R / K) every third amino acids in $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ channels. 49
Figure 3.13. Key triplet residues forming the hinged lid associated with fast N-type inactivation of sodium channels 50
Figure 3.14 Extracellular S5P and PS6 turret regions of Na_{v} and other channels. 51
Figure 3.15 Groupings of sodium and calcium channels according to apparent C-terminal PDZ binding motifs 53
Figure 3.16 Comparison of the IQ motif among eukaryotic ion channels 54
Figure 3.17 Overall structural relationship between $\mathrm{LNa}_{\mathrm{v}} 1$ and the ten human sodium channels. 55
Figure 3.18. Evolution of myelin sheath in bilateria. 59
Figure 3.19 Residues responsible for tetrodotoxin resistance/sensitivity of sodium channels. 62
Figure 3.20 The comparison of Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ against the sodium channel sequences of other organisms. 63
Figure 4.1 Expression of fusion protein 67
Figure 4.2 Western blot of II-III linker polyclonal antibody 67
Figure 4.3 Testing of an LNav1 specific antibody using Western Blotting. 68
Figure 4.4 Comparison of $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit affinity between final bleed serum and purified antibody. 69
Figure 4.5 Isolating the β subunit using $\mathrm{LNa}_{\mathrm{v}} 1$ specific antibody. 71
Figure 4.6. Structures of sodium channel beta subunits. 76
Figure 4.7. Alignment of Lymnaea sodium channel β-subunits with predicted secondary structure derived from the Phyre 2 algorithm. 77
Figure 4.8. The Gene tree of the four sodium channel beta subunits from pulmonate freshwater snails, Lymnaea and Biomphalaria. 80
Figure 4.9. Members of the CUB domain family. 81
Figure 4.10. Calcium binding CUB domain alignment. 83
Figure $4.11 \mathrm{LNa}_{\mathrm{v}} \beta 1$ colony PCR. 84
Figure 4.12 Co-transfection of LNav1.a(+) and LNav $\beta 1$ in HEK cells. 85
Figure 4.13 Recording of human sodium channel with human and snail β-subunit. 86

List of Tables

Table 1.1. Human SCN genes nomenclature 11
Table 4.1. Protein sequence tags identified by ESI tandem mass spectrometry (MS/MS), that code for a novel Lymnaea protein, LNavbeta1. 73
Table 4.2. Overview of protein sequence tags identified by ESI MS/MS mass spectrometry 74
Table 4.3 Combinations of plasmid vectors used in transfection 85
Table 5.1.Primers for $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit sequencing 98
Table 5.2. Primers for full length α-subunit contig construction in pIRES vector 98
Table 5.3. A list of primers used in the construction of two expression vectors (antigen production) 99 99
Table 5.4. Primers used for LNav B1 sequencing, amplification and cloning 99
Table 5.5. Primers for cloning LNav2 100
Table 5.6. Vectors used for cloning 101

Chapter 1. Introduction

1.1 Sodium channels properties and role in neuronal signaling

Voltage gated sodium channels play an important role in signal transduction along neurons and muscle. These are pore forming proteins that activate in response to membrane depolarization to allow a rapid surge of sodium ions into the cytosol. Sodium channels are located along the axon, where they are responsible for the rising phase of action potential.

The identification of currents through the voltage gated sodium channels $\left(\mathrm{Na}_{\mathrm{v}}\right)$ first began with Alan Hodgkin and Andrew Huxley, with their groundbreaking work on squid giant axon (Figure 1.1). In the series of articles published between 1939 and 1952, they described the changes in membrane permeability to sodium and potassium ions in response to electric stimulation. Hodgkin and Huxley were also the first major users of the voltage clamp technique (Hodgkin \& Haxley, 1952). Another breakthrough in electrophysiology came when Bert Sackmann and Erwin Neher developed the patch clamp technique to obtain single channel recording (Neher, 1988). This technique allowed a researcher to study individual characteristics of ion channels and to see how the chemical components of the environment affect channel gating functions.

Figure 1.1. Action potential of giant squid axon, recorded by Hodgkin and Huxley (Hodgkin \& Huxley, 1945).

The biophysical properties of the Na_{v} channel have been studied extensively. The sodium channels have characteristic properties in all cells where they are expressed. Na_{v} channels are found in one of the three major states: active, inactive and resting (deactivated). The active state is the only ion conducting state, and only lasts for a few milliseconds. Activation is triggered by depolarization of the
membrane, and it is immediately followed by inactivation (refractory period), when the pore is occluded by the "hinged lid" on the cytosolic side and the sodium current stops abruptly (Catterall W. A., 1993). The resting state follows, when the whole channel changes conformation. The hinged lid no longer obstructs the pore but the arrangement of the channel's inner pore segments prevents the ions from passing through the central cavity. The membrane has to be hyperpolarized for the Na_{v} channel to transform from the refractory to the resting state (Yu \& Catterall, 2003). Ion channel states are stochastic and at any given moment ion channels can exist in any of the active, inactive or resting states. As the voltage across the membrane drops, the probability of the channel switching to an active state increases. Na_{v} channel gates open and sodium ions move into the cytosol, promoting further membrane depolarization, which in turn activates more channels. The influx of sodium ions accelerates the rise in membrane potential and brings the action potential to its overshoot (Catterall, 2000). The overshooting action potential excites the adjoining membrane, to become a self- propagating wave which moves unidirectionally along the axon at speeds of up to $200 \mathrm{~m} / \mathrm{s}$ (Hartline \& Colman, 2007). The intracellular surge of sodium ions during the action potential is closely followed by a repolarizing wave of potassium ions moving out through the potassium channels. Voltage gated potassium channels work in perfect synchrony with Na^{+}channels and bring about the descending phase of the action potential. By moving out of the cell, K^{+}ions hyperpolarize the membrane, restoring the membrane potential to the resting state (Yu \& Catterall, 2003) (Figure 1.4).

Figure 1.2. Activation states of the sodium channel.
The pore becomes permeable to sodium ions in response to membrane depolarization. The channel can spontaneously switch between resting and inactivated states, but channels can only open from the resting state.

Figure 1.3. The topography of the action potential.
The combined effects of sodium and potassium currents shape the action potential. A sufficient number of $\mathrm{Na}_{\mathrm{v}}{ }^{+}$channels have to open for the voltage threshold to be reached and the action potential to be generated. The rectifying potassium current rises through the middle of the rising phase of the action potential, but has greater influence after the sodium channels are reduced in their contribution during the falling phase of the action potential. In the top left diagram: red depicts the action potential, the sodium current is shown in blue and the potassium current is shown in green.

$$
V_{\text {Eq. }}=\frac{R T}{z F} \ln \left(\frac{[X]_{\text {out }}}{[X]_{\text {in }}}\right)
$$

The Nernst equation is used to describe the resting state of the membrane in mathematical terms. V_{eq} is set by the electrochemical gradient of ion [X] which is in turn determined by the transmembrane concentration gradients and valence of the ion.

Although there are several ions that contribute to the resting membrane potential, it is almost equivalent to the potassium equilibrium potential, because potassium ions are the most permeable ion at rest (50 times more permeable than sodium ions.

A modified version of Nernst equation is the Goldman-Hodgkin - Katz equation takes into account the relative permeability of potassium, sodium and chloride ions in the establishment of the membrane potential.

$$
V_{\mathrm{m}}=\frac{R T}{F} \ln \left(\frac{p_{\mathrm{K}}\left[\mathrm{~K}^{+}\right]_{\mathrm{o}}+p_{\mathrm{Na}}\left[\mathrm{Na}^{+}\right]_{\mathrm{o}}+p_{\mathrm{Cl}}\left[\mathrm{Cl}^{-}\right]_{\mathrm{i}}}{p_{\mathrm{K}}\left[\mathrm{~K}^{+}\right]_{\mathrm{i}}+p_{\mathrm{Na}}\left[\mathrm{Na}^{+}\right]_{\mathrm{i}}+p_{\mathrm{Cl}}\left[\mathrm{Cl}^{-}\right]_{\mathrm{o}}}\right)
$$

The letter p symbolizes the membrane permeability of each ion (Hille, 1975).

Figure 1.4. Signal propagation down the axon.
The action potential speeds down the unmyelinated axon due to the large number of ion channels distributed over the membrane. In myelinated axons the action potential propagates so quickly under myelinated regions that there is an appearance of the action potential jumping from one node of Ranvier to the next (saltatory conduction).

1.2 Neuronal components of signal transduction

To fully understand how the sodium channel works we must look at the environment in which sodium channels are operating.

Sodium channels are embedded in a network of interacting proteins in vivo, that traffic and target sodium channels to their proper position and stabilize Na_{v} channels along the axon. Among those proteins are the auxiliary sodium channel β-subunits, which are discussed later in this chapter. Ankyrin G, in combination with spectrin, binds the sodium channel at the intracellular loop between $2^{\text {nd }}$ and $3^{\text {rd }}$ domain, an anchoring motif that tethers channels to the actin cytoskeleton of the cell (Garrido, et al., 2003) (Figure 1.5). It has been reported that the sodium channels are uniformly inserted into the neuronal membrane, but only the ankyrin bound α-subunits in the axon initial segment (AIS) and nodal regions of the axon are retained, while the rest of the sodium channels are eliminated by endocytosis
(Fache, et al., 2004). Another important participant in ion channel localisation, Nf186, is required for maintenance of the axon initial segment (AIS) region in mature neurons. Nf186 null mice, that initially displayed normal topology in the neural AIS region, showed rapid loss of sodium channels after 4 weeks (Zonta, et al., 2011).

We know very little about the organisation of unmyelinated axonal regions, and how Na^{+} channels are targeted to different membranal domains, such as the AIS. Even less is known about the targeting and localisation of sodium channels in the unmyelinated neurons of invertebrates. Although it has been shown that the invertebrate sodium channels cluster at the axon initial segment, and are expressed throughout the length of an axon, the tethering mechanism is still unknown.

In addition to neurons, sodium channels populate other electrically excitable tissues, such as skeletal muscles, cardiomyocytes, endocrine cells and glia (Catterall, Goldin, \& Waxman, 2005). In humans, $\mathrm{Na}_{\mathrm{v}} 1.4$ is the principal skeletal muscle α-subunit and $\mathrm{Na}_{\mathrm{v}} 1.5$ is responsible for cardiac action potentials which generate contractions in cardiac cells (Yu \& Catterall, 2003). Cells that are not electrically excitable sometimes express sodium channels too. For example human embryonic kidney (HEK293) cell line which is widely used for functional expression of ion channels, has been shown to display native voltage activated sodium currents (He \& Soderlund, 2010).

Figure 1.5. Membrane topography of the sodium channel in the node of Ranvier.
a. Localization of ion channels on the myelinated axon. Top image depicts an axon surrounded by multiple layers of myelin sheath with the small opening that encircles the axon known as nodes of Ranvier. Middle image (same fragment) shows the sodium channels (magenta) concentrated in the node of Ranvier. The lower image indicates the location of potassium channels in paranodal regions (green). Overlaid images based on laser scanning confocal micrographs of adult mouse sciatic nerve. Adapted from (Pedraza, Huang, \& Colman, 2001) (Arroyo \& Scherer, 2000).
b. \quad Sodium channel α - and β - subunit associate with ankyrin, contactin, neurofascin (Nf 186) and neuron-glia cell adhesion molecule (NrCAM) to form macrocomplexes at the node of Ranvier. Adapted from (Lai \& Jan, 2006).

1.3 Molecular structure of the α-subunit

Voltage gated sodium channels are members of an extensive ion channel family, which also includes calcium and potassium channels and NALCN. Sodium channel α-subunits are approximately 2000 amino acid long and 260 kDa large, heavily glycosylated, with intracellular N - and C - terminus and inter-domain linkers (Catterall, 2000). Sodium channels consist of four domains, D I-D IV, with six segments S1-S6 within each domain (Figure 1.8). The $5^{\text {th }}$ and the $6^{\text {th }}$ segments of each domain comprise
the pore, and a re-entrant linker that connects them (the P-loop) forms the inner lining of the pore. Located in the P-loop of each domain is the selectivity filter (SF) which, in the folded protein, takes up the narrowest part of the pore and defines the ionic selectivity of the channel. The sequence DEKA is highly selective for sodium ions (Yu \& Catterall, 2003) (Catterall, 2014) (Figure 1.9).

The voltage sensing mechanism of the voltage gated ion channels includes segments S1-4 and resembles that of the Hv1 voltage-gated proton channel which does not possess a pore domain (Payandeh, Scheuer, Zheng, \& Catterall, 2011). The voltage sensors consist of a pattern of positively charged residues (arginines/lysins) every third amino acid on the $S 4$ of each domain. There are between four to six repeats that results in a positively charged band along one side of the S 4 helix (Yu \& Catterall, 2003). Upon change to the membrane electric field (depolarization/ hyperpolarization), it is hypothesized that the charged S 4 helices slide out and in the membrane along a series of counter-charges formed by S2 and S3 segments. The sliding of the S 4 segments in the voltage-sensing domain acts upon a short S4-S5 amphipathic helix running perpendicular to the membrane, which serves as a lever for movements of the pore domain spanning S5-S6, including the pore constriction (channel closure and Ctype inactivation) and opening (activation) involving the inner lining of S6 residues (McCusker, Bagne, Naylor, Cole, \& D'Avanzo, 2012) (Figure 1.7).

Sodium channels have a very rapid channel inactivation involving a "hinged lid" formed by the short linker ($54+/-2$ amino acids) formed between Domains III and IV. The fragment that occludes the pore is a conserved hydrophobic patch, a characteristic IFM (Ile-Phe-Met) motif that is mostly conserved in $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ channels (Figure 1.8).

The large size of voltage-gated sodium channels, consisting of 24 membrane segments, with many intrinsically disordered regions, precludes crystallization and determination of structural details using X-ray crystallography. Our understanding of the structures of sodium channels is derived from the known crystal structures of potassium channels ($\mathrm{KcSA}, \mathrm{K}_{\mathrm{v}} 1.2$) and the bacterial sodium channels resembling NaChBac (Yue, et al 2002), NavAb (Payandeh, Scheuer, Zheng, \& Catterall, 2011) or NavRh (Zhang, et al., 2012). Both the bacterial sodium channels and potassium channels form symmetrical homo-tetramers of four identical subunits of six segments, and they are at least four times smaller than the asymmetrical eukaryotic sodium channels consisting of twenty-four segments. We have learned from the bacterial sodium channel that it possesses a wider and shorter pore than the potassium channel. In potassium channels, backbone carbonyl oxygen atoms contributed by selectivity filter residues create four positions that are optimally designed for accommodating dehydrated potassium ions
in the pore. The sodium channel has a shorter pore, with a carboxylate side chain residue projecting into the pore center which is a key residue at the pore constriction point for governing sodium selectivity (Payandeh, Scheuer, Zheng, \& Catterall, 2011). The accepted model of the sodium channel selectivity filter was first proposed by Hille (Hille, 1975). According to this model, sodium ions enter the outer vestibule of the pore in a single file, fully hydrated. As the ion approaches the selectivity filter, it loses layers of the hydration shell and forms a high energy transition complex with the oxygens on the carboxylic acid residues. The sodium ion then moves further into the central cavity, regaining the hydration shell in the process (Hille, 1975). This model explains why sodium channels, despite having a larger pore than potassium channels are far more permeable to sodium then to potassium. Sodium ions are favored over potassium ions because the carboxylate side chain residue in the high field strength site partially dehydrates the waters surrounding sodium channels, and does this more rapidly and efficiently for the smaller ionic radius of the sodium ion than for the larger potassium ion (Payandeh, Scheuer, Zheng, \& Catterall, 2011).

Figure 1.6. Sodium channel structure based on the bacterial sodium channel NavAb from Arcobacter butzleri.
a. 3D structure of the sodium channel pore based on the X-ray crystallography image. The grey rod in the middle reflects the shape of the pore. Red circle indicates the selectivity filter region. P-loop (P and P2-helices) stabilizes cations in the central cavity. $\mathrm{P}-2$ helix is found in Na^{+}and Ca^{2+} channels, but not potassium channels.
b. Location of individual segments within the channel. S1N is the cytosolic N -terminus attached to the DIS1. P refers to the P-loop. Segments 1, 2, 3 and 4 form the voltage sensing domain that comprises the outer part of the channel, while 5 and 6 form the pore lining center with the P -loop forming the innermost region of the pore.
c. One of the four subunits comprising the bacterial channel tetramer. Adapted from (Payandeh, Scheuer, Zheng, \& Catterall, 2011) (Yu \& Catterall, 2003).

Figure 1.7. Features of the sodium channel.
a. Positively charged side chains shown as brown dots. S4 helix movement during membrane depolarization. The helix shifts upward with a clockwise rotation. This shift causes the change in conformation of the rest of the helical segments (Yu \& Catterall, 2003).
b. Motif for fast N-type inactivation motif, a feature unique to sodium channels. The IFM sequence (I1488, F1489 and M1490) sits atop a rigid helix, the III-IV linker moves up to occlude the pore. The IFM motif is set in motion by the same mechanism that controls the opening of the pore which limits the channel opening to 2-3 ms. Adapted from (Catterall, 2000).

Figure 1.8. Molecular structure of the human sodium channel.
The size of the loops in the picture is proportional to the actual size of the linkers. Circled P indicates the sites of phosphorylation by cAMP-dependant protein kinase A. P in the diamond shape indicates sites of phosphorylation by protein kinase C. ψ shows the sites of glycosylation. β-subunits shown as folded Ig domains, with possible α-subunit binding site for $\beta 1$. Adapted from (Catterall, 2000).

Figure 1.9. The composition of the selectivity filter defines the ionic selectivity of the pore.
Lysine in the DIII (K) is particularly important in defining sodium selectivity. Substitution with Lysine $(\mathrm{K}) \rightarrow$ Glutamic acid (E) creates a calcium selective sodium channel (Heinemann, Terlau, Stühmer, Imoto, \& Numa, 1992).

Adult DRG neuron

Neonatal DRG neuron
a.

b.

Figure 1.10. Effects of posttranslational modifications on mammalian $\mathbf{N a} \mathbf{v} \mathbf{1}$.
a. The effects of glycosylation on the sodium channel gating properties; neonatal dorsal root ganglia neurons contain heavily glycosylated sodium channels while in adult neuron glycosylation is reduced. While the amplitude of the peak current remains the same, the inactivation kinetics is
noticeably faster. The negative charges present on the sialic acid residues affect the dynamics of the pore (Tyrrell, Renganathan, Dib-Hajj, \& Waxman, 2001).
b. The effect of phosphorylation on the sodium channel properties. Top image shows sodium current in the presence of activated protein kinase C vs. control. Synthetic diacylglycerol oleylacetylglycerol (OAG) was used to activate protein kinase C.
Bottom image shows sodium current in the presence of cAMP-dependant protein kinase (cA-PK) vs. control. Note that in both cases phosphorylation by protein kinase reduces the amplitude of the peak current. Adapted from (Tyrrell, Renganathan, Dib-Hajj, \& Waxman, 2001) (Catterall W. A., 1993).

Table 1.1. Human SCN genes nomenclature

| Channel | Gene
 name | Chromosome number | Expression |
| :---: | :--- | :--- | :--- | :--- |
| $\mathrm{Na}_{\mathrm{v}} 1.1$ | SCN1A | 2 | CNS, cardiac myocytes |
| $\mathrm{Na}_{\mathrm{v}} 1.2$ | SCN2A | 2 | CNS, PNS |
| $\mathrm{Na}_{\mathrm{v}} 1.3$ | SCN3A | 2 | CNS, PNS, cardiac myocytes |
| $\mathrm{Na}_{\mathrm{v}} 1.4$ | SCN4A | 17 | Skeletal muscle |
| $\mathrm{Na}_{\mathrm{v}} 1.5$ | SCN5A | 3 | Cardiac myocytes, skeletal muscle, CNS, gastrointestinal
 smooth muscle cells |
| $\mathrm{Na}_{\mathrm{v}} 1.6$ | SCN8A | 12 | CNS, PNS, Dorsal root ganglia, glia |
| $\mathrm{Na}_{\mathrm{v}} 1.7$ | SCN9A | 2 | Sympathetic neurons, Schwann cells, and neuroendocrine
 cells |
| $\mathrm{Na}_{\mathrm{v}} 1.8$ | SCN10A | 3 | Dorsal root ganglia |
| $\mathrm{Na} \mathrm{Sa}_{\mathrm{v}} 1.9$ | SCN11A | 3 | Dorsal root ganglia |
| Na | SCN7A | 2 | Glial cells, heart, uterus |

This table is based on the data from (Widmark, Sundstrom, Daza, \& Larhammar, 2010) and (Catterall, Goldin, \& Waxman, 2005)
$\mathrm{Na}_{\mathrm{v}} 1.1,2,3,7$ and Na_{x} are located on chromosome 2. Except for Na_{x} these sodium channels are closely related to one another. They are all sensitive to nanomolar concentration of toxin produced by bacterial genus Vibrio, tetrodotoxin (TTX), and are prominent in neurons (Catterall, Goldin, \& Waxman, 2005). $\mathrm{Na}_{\mathrm{v}} 1.4$ and 1.6 which lie on chromosomes 17 and 12 , respectively, exhibit 85% similarity to the chromosome 2 group and share in the high TTX sensitivity. $\mathrm{Na}_{\mathrm{v}} 1.5, \mathrm{Na}_{\mathrm{v}} 1.8$ and $\mathrm{Na}_{\mathrm{v}} 1.9$ are clustered on chromosome 3 and they are highly homologous to one another but only 75% identical to the
chromosome 2 group. The Chromosome 3 grouped channels are less sensitive to TTX, with $\mathrm{Na}_{\mathrm{v}} 1.8$ and $\mathrm{Na}_{\mathrm{v}} 1.9$ being resistant to micromolar concentrations of TTX (Lopreato, et al., 2001).

Invertebrates have only one gene coding for $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel, but some achieved functional diversity through alternative splicing (Tan, Liu, Nomura, Goldin, \& Dong, 2002). The laboratories of Dong and Baines report 15 alternative exons and 27 unique splice variants for the Drosophila para $\mathrm{Na}_{\mathrm{v}} 1$ channel (Lin, Right, Muraro, \& Bains, 2009) (Dong, 2007). Alternative splicing in the voltage-gated sodium channel DmNav transcript, known as para for its paralytic mutant phenotype generates distinct activation/inactivation patterns (Lin, Right, Muraro, \& Bains, 2009). Differing variants can influence channel expression, drug resistance, kinetics and post-translational modification (Tan, Liu, Nomura, Goldin, \& Dong, 2002).

The cytoplasmic linkers connecting Domains I and II and between Domains II and III are much longer (6 and 3.5 fold larger) than the $54+/-2$ amino acids between Domains III and IV of sodium channels. For example, in snail LNav1 and human Nav1.1 and Nav1.7 channels, the I-II linker and II-III linkers, respectively are 327-337 amino acids long and 187-221 amino acid long. A hotbed of serine and threonine phosphorylation sites in sodium channels is located in the I-II linker, where critical sites include serine 554, 573, 576, 610, 623, 655 and 687 (Scheuer, 2011). The consequence to phosphorylation by protein kinase $\mathrm{C}(\mathrm{PKC})$ or protein kinase $\mathrm{A}(\mathrm{PKA})$ is a decrement in the amplitude of sodium currents (Yu \& Catterall, Overview of the Voltage-Gated Sodium Channel Family, 2003). The proximal I-II linker contains a modified leucine zipper motif for binding of PKA anchoring protein (AKAP15), which tethers protein kinase A to the I-II linker of vertebrate sodium channels (Cantrell, et al., 2002). There is also a PKC site located in the III-IV linker (position 1506) (Catterall, et al., 2006).

The α-subunits are also glycosylated, some of them heavily. The carbohydrate content adds from 5% (Nav 1.5) up to $30 \%\left(\mathrm{Na}_{\mathrm{v}} 1.1, \mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3\right)$ to the overall mass of the protein (Tyrrell, Renganathan, Dib-Hajj, \& Waxman, 2001). Glycosylation affects the voltage dependence of the steady state inactivation and acts as a developmental regulator, altering the channel kinetics during maturation (Figure 1.10). Other important functions, such as proper folding of the principal subunit and its interaction with β-subunits are also attributed to glycosylation (Tyrrell, Renganathan, Dib-Hajj, \& Waxman, 2001)

The effects of these post translational modifications might appear subtle on the scale of individual channel, or individual neuron, but when applied to a community of interconnected neurons, these can dramatically alter the signalling patterns and lead to disease. Posttranslational modifications
can be tissue-specific and the channel characteristics in vitro might not accurately reflect its behaviour in the different signalling systems in vivo.

1.4 Evolution of sodium selectivity in the ion pore

Comparative analysis of basal animal lineages indicates that sodium selectivity evolved independently on at least 2 separate occasions (Liebeskind, Hillis, \& Zakon, 2011). A cation channel with the first resemblances to voltage-gated sodium channels appears in Thecamonas trahens, which is a unicellular eukaryote before the animal-fungal split. An $\mathrm{Na}_{\mathrm{v}} 2$ homolog is also found in the eukaryotic Opisthokonts after the animal-fungal split, such as coanoflagellates, Monosiga brevicollis and Salpingoeca rosetta, and in the simplest multicellular organisms, such as the ctenophore, warty comb jelly, Mnemiopsis leidyi, sponge Amphemidon queenslandica, and placozoan, Trichoplax adhaerens(Gur Barzilai, et al., 2012). The $\mathrm{Na}_{\mathrm{v}} 2$ homologs have a DEEA or DEES (Thecamonas spp.) selectivity filter (Zakon, 2012).

The evolution of $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels involves the introduction of a lysine in the $2^{\text {nd }}$ or $3^{\text {rd }}$ position of the selectivity filter. Within cnidarians, the $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels have a DKEA selectivity filter, and non-trematode flatworms, like Schmitea mediterranea or Dugesia japonica have the lysine residue in the third position as a DEKG selectivity filter which in more advanced protostome invertebrates and vertebrates is a DEKA selectivity filter. Both the cnidarians DKEA and standard vertebrate DEKA selectivity filters confer highly sodium selective channels.(Gur Barzilai, et al., 2012). (Figure 1.13)

The evolution of sodium channels not only predates the evolution of nervous system, but could also be an important contributor to nervous system development (Liebeskind, Hillis, \& Zakon, 2011). An ankyrin binding motif (discussed earlier on page 4) is a good example of adaptation in sodium channels during evolution. The conserved ankyrin binding motif in the II-III linker, necessary for Na+ channel clustering in the nodes of Ranvier and axon initial segment (AIS), appears before the evolution of myelin sheath (Hill, et al., 2008). Comparative analysis of anchor motifs indicates that it first appears in Amphioxus after the emergence of chordates (Hill, et al., 2008). This suggests that the ankyrin motif was initially used to cluster sodium channels at the AIS, where their high density facilitates the generation of action potentials. The first myelinated neurons appear in jawed fish (craniates), but the
mechanism for channel clustering using ankyrin motifs was in place before then (Figure 1.11) (Liebeskind, Hillis, \& Zakon, 2011).

Several rounds of duplication of sodium channel gene occurred in vertebrates, leading to a variety of $\mathrm{Na}_{\mathrm{v}} 1$ channels, 9 to10 in tetrapods and 8 in teleosts (Zakon, 2012). As the nervous system and other excitable tissues became more sophisticated, the sodium channel subtypes differentiated and adapted features specific for differing tissues. Despite being highly homologous, each of the ten sodium channel subtypes has unique biophysical properties, which allows diversity in their function (Goldin, 2002).

The comparison of non-vertebrate and vertebrate Na_{v} channel gene sequences allows researchers to speculate about the timing of chromosomal duplication that led to multiple sodium channels. It was established that the first round of duplications occurred early in the chordate history, predating the split of tetrapod and teleost lineages. The second round of chromosomal duplication occurred in parallel in those classes, followed by gene duplications within the same chromosome (Lopreato, et al., 2001). The double duplication theory is supported by the presence of a neighbor gene, HOX, which appears to have gone through the similar duplication events (Hill, et al., 2008) (Figure 1.12). There is a possible link between the co-evolution of homeotic (HOX) genes, responsible for the developmental patterning, and Na^{+}channel genes which enabled the evolution of sophisticated nervous systems in modern vertebrates. This grouping between the differing vertebrate sodium channels and the Hox cluster include the following: $\mathrm{Na}_{\mathrm{v}} 1.1, \mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3$ and $\mathrm{Na}_{\mathrm{v}} 1.7$ are linked with HoxD on Chromosome 2, whereas Nav1.5, 1.8 and 1.9 are linked with HoxA on Chromsome 3. $\mathrm{Na}_{\mathrm{v}} 1.6$ is associated with HoxC on Chromosome 12 and $\mathrm{Na}_{\mathrm{v}} 1.4$ is associated with HoxB on Chromsome 17 (Figure 1.12) (Widmark, Sundstrom, Daza, \& Larhammar, 2010).

Figure 1.11. Clustering of sodium channel at the axon initial segment in Lamprey fish.
Lamprey fish have unmyelinated axons. Immunolabeling with Nav1 specific antibodies was used in combination with fluorescent dye to highlight the sodium channel clusters in the axon initial segment. Adapted from (Hill, et al., 2008).

Figure 1.12. Sodium channel and Hox genes coevolving in vertebrates.
Both fish and mammalian sodium channels are linked to the 4 Hox loci, located on 4 chromosomes. Although the numbering of the teleost Na^{+}channels differs from that of mammals, all the channels in both fish and mammals belong to the Nav1 group. Adapted from (Lopreato, et al., 2001)

Figure 1.13. Evolution of high field strength site in calcium (Cav), sodium (Nav) and cation (NALCN) pore selectivity filters of eukaryotes.
All 4x6TM originate from single cell eukaryotes and are calcium selective channels (red color). Sodium selectivity evolved in the pores of the T-type channels, NALCN and sodium channels are in metazoans. $\mathrm{Na}_{\mathrm{v}} 2$ channels are referred to as sodium channels since they show more structural similarity with $\mathrm{Na}_{\mathrm{v}} 1$ group than with calcium channels, but they are mainly calcium selective.

1.5 Toxin sensitivity of α-subunits

Sodium channels are a choice target for both animal and bacterial toxins, since disabling them causes rapid paralysis. A number of toxins targeting $\mathrm{Na}_{\mathrm{v}} 1$, derived from both bacteria and venomous animals, have been identified. Among them are tetrodotoxin (TTX), produced by Pseudomonas and

Vibrio species of bacteria, saxitoxin (STX) from dinoflagellate species, Gymnodinium, Pyrodinium, and Alexandrium, μ - and δ-conotoxin from the cone snails, as well as some tarantula and scorpion toxins (Cusick \& Sayler, 2013). Small variations in toxin receptor sequences on the sodium channel can determine how susceptible the channel is to a specific toxin, and there are many examples where animals not only developed resistance to bacteria made toxins, but also used them for protection, accumulating the toxin in their bodies to deter predators. For example, some vertebrate sodium channels are highly sensitive to TTX but TTX carrying animals, like puffer fish and bivalve mollusks, have a TTX resistant copy of $\mathrm{Na}_{\mathrm{v}} 1$, requiring up to x 100 increase in concentration to block them by TTX (Yoshida, 1994) (Twarog, Hidaka, \& Yamaguchi, 1972). Toxins have been a useful tool for probing the pore structure of voltage gated channels, with the level of TTX sensitivity being widely used as a means to classify $\mathrm{Na}_{\mathrm{v}} 1$ subtypes (Cestele \& Catteral, 2000).

While neurotoxins evolved as weapons and defense mechanisms, the selective and reversible block of sodium channels can also be used for therapeutics. There are many applications for therapeutic $\mathrm{Na}+$ channel agents: anaesthetics, anticonvulsants and antiarrhythmics all work by blocking ion channels pores and/or modifying gating properties. Sodium channel subtypes $\mathrm{Na}_{\mathrm{v}} 1.7, \mathrm{Na}_{\mathrm{v}} 1.8$ and $\mathrm{Na}_{\mathrm{v}} 1.9$, which are dorsal root ganglia (DRG) specific, are a target for non-selective local anaesthetics, like lidocaine (Moldovan, Alvarez, Rosberg, \& Krarup, 2013). A recently identified agent, $\mu \mathrm{O}-$ conotoxin MrVIA is able to selectively block $\mathrm{Na}_{\mathrm{v}} 1.8$, the channel associated with nociception, without inhibiting other, TTX sensitive CNS sodium channels or calcium channels. Unfortunately $\mu \mathrm{O}$-conotoxin MrVIA only works in murine models (Ekberg, et al., 2006).

Antiepileptic drugs, such as carbamazepine, lamotrigine and phenytoin, are channel blockers that preferentially bind channels in an inactivated state. They are non-selective and block all TTX sensitive Na+ channel subtypes (Kuo, 1998). Such drugs can be highly effective against some types of epileptic seizures. However, in other cases they can exacerbate the symptoms, by blocking the GABAergic neurons which could otherwise suppress the seizures (Catterall W. , 2014). Epileptic seizures can be caused by loss of function (such as loss of function mutations in $\mathrm{Na}_{\mathrm{v}} 1.1$, expressed in GABAergic neurons) or gain of function (such as mutations causing increased sensitivity to voltage changes in Nav1.2). There is an ongoing effort to develop subtype specific sodium channel modulators though no such agents have been found to date (Catterall W. , 2014).

1.6 Multiple roles of sodium channel auxiliary subunits

In addition to the principal pore-forming α subunit, there are also auxiliary β-subunits associated with the sodium channels. The mammalian α-subunit can operate independently as a pore forming subunit regulated by its own voltage sensing domains, so the role of the β-subunits is sometimes overlooked. I will explain why the auxiliary subunits matter.

Sodium channels, calcium channels and NALCN all resemble each other, with 4 repeats of 6 transmembrane segments. The auxiliary ion channel subunits exhibit much greater variety in shape, size and numbers, with at least 10 unrelated gene families regulating different ion channels (Yu , et al., 2003). Vertebrate calcium channels have four β-, eight γ-, and four $\alpha_{2}-\delta$-subunits in addition to the pore forming α-subunit (Catterall W. A., 1993). The beta subunit of calcium channels is a member of the membrane associated guanylate-kinase (MAGUK) superfamily with SH3 and guanylate kinase domains, and variable numbers of PDZ domains (Arikkath \& Campbell, 2003). The shared homology of calcium channel accessory β subunits extends to the earliest single cell animals to have a $\mathrm{Ca}_{\mathrm{v}} 1$ calcium channel, the coanoflagellates (Dawson, et al., 2014). Sodium channels possess four β-subunits which are not homologous with any of their Ca_{v} counterparts and their lineage is limited to vertebrate species (Wollner, Messner, \& Catterall, 1987). The vertebrate sodium channel beta subunits are related to the neural cell adhesion molecules (CaMs) with a V-set Immunoglobulin extracellular loop (Isom, et al., 1995).

Human β-subunits, labelled $\beta 1-4$, are small glycosylated proteins ($\sim 22 \mathrm{KDa}$) with an intracellular C-terminus, one transmembrane helix and a single CAM-like (cell adhesion molecule-like) Ig V-fold domain (Isom, et al., 1995). $\beta 1$ B is a completely soluble, alternatively spliced form of the $\beta 1$ gene transcript, where an intron retention containing a stop codon generates an alternative C -terminus. $\beta 1 \mathrm{~B}$ lacks the last exon, exon 4 which contains the transmembrane domain, but still retains the extracellular CAM like immunoglobulin V-fold (Kazen-Gillespie, et al., 2000). Each pore forming α-subunit is associated with one β-subunit through a disulfide link (β-2or $\beta-4$), and another β-subunit through a noncovalent bond ($\beta 1$ or $\beta 3$) (Messner \& Catterall, 1986) (Yu, et al., 2003). Despite the overall structural similarities, each of the β-subunits affects the Na^{+}channel in a unique way. $\beta-1$ and $\beta-3$ affect the biophysical features of the sodium channel, by altering the voltage of activation and the time constant of inactivation decay(Laedermann, Syam, Petrin, Decosterd, \& Abriel, 2013). $\beta-4$ in general promotes greater excitability and $\beta 1$ acts in an inhibitory manner, although there are some discrepancies concerning the way the channels are affected, since both the type of the tissue where the channel is
expressed and the channel subtype affect the results (Brackenbury \& Isom, 2011). While $\beta-2$ and $\beta-4$ do not appear to affect the gating functions of the sodium channel, they upregulate the surface expression of the α-subunit, by chaperoning it toward the membrane (Patino \& Isom, 2010).

In addition to modulating the gating and expression of the channel, β-subunits are involved in a wide range of activities, with each one playing a unique role even though they have a rather high sequence homology to one another (Brackenbury \& Isom, 2011).

The $\beta-1$ subunit has been shown to promote neurite extension in cerebellar granule cells (Davis, Chen, \& Isom, 2004). Extracellular domains of different $\beta 1$ subunits dimerize, causing the activation of sodium channels which in turn stimulates the localized secretion of growth promoting molecules, leading to greater neurite extension (Davis, Chen, \& Isom, 2004). In addition to their self association, $\beta 1$ subunits also bind other CAM-containing proteins, such as contactin, ankirin, NrCAM and N -cadherin (Leterrier, Brachet, Fache, \& Dargent, 2010) (Brackenbury \& Isom, 2011). $\beta 1$ are also expressed in skeletal muscles, where they are likely to play a primary role in cell adhesion(Laedermann, Syam, Petrin, Decosterd, \& Abriel, 2013). $\beta 1$ null mice mutants experience a range of problems, which reflect deficiencies both in the development of the nervous system and muscle. Those problems include ataxia, stunted growth, seizures and up to 97% reduction in lifespan (Patino \& Isom, 2010). Mutations in human $\beta 1$ lead to Dravet syndrome- also known as Severe Myoclonic Epilepsy of Infancy (Patino, et al., 2009). It is a rare and catastrophic form of intractable epilepsy that manifests itself in the first year of life.

Levels of $\beta 3$ subunit are high in fetal brain, and decrease after birth. $\beta 3$ has overlapping functions with $\beta 1$. It is likely that $\beta 1$ compensates for the lack of $\beta 3$, explaining why $\beta 3$ null mice exhibit a normal phenotype and a normal life span. (Hakim, et al., 2008). Both $\beta 1$ and $\beta 3$ bind the sodium channel α-subunit in the Golgi apparatus and are believed to both affect the glycosylation of the sodium channel and ensure its proper targeting to the nodes of Ranvier and axon initial segment (Laedermann, Syam, Petrin, Decosterd, \& Abriel, 2013).

Whereas $\beta 1$ is found outside of the nervous system in tissues like skeletal muscle, $\beta 2$ is limited to expression in neurons (Wollner, Messner, \& Catterall, 1987). The extracellular region of $\beta 2$ subunit contains regions homologous to contactin, also a member of CAM (cell adhesion molecule) family. Contactin is involved in formation of axon connections during embryonic development. Contactin also regulates myelination and the organization at nodes of Ranvier (Shimoda \& Watanabe, 2009). The similarities between $\beta 2$ extracellular region and contactin suggest a functional kinship (Isom, et al.,
1995). $\beta 2$ binds extracellular matrix proteins, such as tenascin, as well as other $\beta 1$ and $\beta 2$ subunits (Shimoda \& Watanabe, 2009).
$\beta 2$ subunits are subject to cleavage by secretase family enzymes. Once cleaved, the free intracellular domain acts as a transcriptional regulator for alpha-synuclein (SNCA) genes (Brackenbury \& Isom, 2011). When co-expressed with α-subunit in-vitro, $\beta 2$ consistently increases the current density, without changing biophysical properties of sodium channels in a manner that $\beta 1$ and $\beta 3$ subunits do. Evidently $\beta 2$ promotes an increase in the number of surface expressed channels (Isom, et al., 1995). $\beta 2$ null mice are highly susceptible to seizures and have an increased sensitivity to heat (Patino \& Isom, 2010), but display no visible physical abnormalities and their lifespan length is close to normal.
$\beta 4$ is the most recently discovered sodium channel auxiliary subunit. $\beta 4$, like $\beta 2$ is expressed in excitable tissues only. Although the tissue pattern of $\beta 2 / \beta 4$ expression overlaps in some parts of nervous system, other parts only express one isoform or the other. The differential expression of certain beta subunits in particular tissues is consistent with preferential association of specific α subtypes with either $\beta 2$ or $\beta 4$ (Yu, et al., 2003). Murine models and human patients with Huntington disease exhibit a significant reduction in $\beta 4$ expression. $\beta 4$ may be one of the downstream targets for the polyQ protein associated with the Huntington's disease phenotype (Oyama, et al., 2006).

The only auxiliary sodium channel subunits that have been reported outside the vertebrates are Tip-E and TEH1-4 (Tip-E homologs 1-4), identified in fruit flies (D melanogaster) (Littleton \& Ganetzky, 2000). Tip-E mutant flies have the same paralytic phenotype as mutant flies of the sodium channel, indicating the importance of Tip-E for the expression and functional effects of the sodium channel. TipE and TipE homologs (Teh1, Teh2, Teh3, Teh4) have been identified in insects and crustaceans, but not outside of these groups within the arthropods (Derst, Walther, Veh, Wicher, \& Heinemann, 2006). Tip-E and Tip-E homologs (TEH 1-4) are 65 kDa glycosylated proteins, with 2 transmembrane helices, extracellular loop and cytosolic N - and C - termini, with overall similarities closest to Slo-beta or BK-beta subunit family for vertebrate big-conductance calcium-activated potassium (BKCa) channels (Li, Waterhouse, \& Zdobnov, 2011). Epidermal growth factor (EGF)-like domains in the extracellular loop regions of Teh3 and Teh4 proteins are not found in Tip-E, Teh1 and Teh2 gene family members, and may be adaptations to interact with extracellular matrix components (Derst, Walther, Veh, Wicher, \& Heinemann, 2006). Functional co-expression of these proteins with insect sodium channel α-subunit in oocytes leads to a sharp increase in the peak current and faster channel gating reminiscent of mammalian $\beta 1$ and $\beta 3$ effects on sodium channels (Dong, 2007).

Based on the functionally similar role of beta subunits with completely different structures in insects/crustaceans and vertebrates, different protein structures have likely evolved as beta subunits within different animal phyla. The co-opting of differing protein groups as beta subunits for sodium channels is different than the calcium channel beta subunits, which are homologous in all animal groups containing calcium channels including the single cell coanoflagellates (Dawson, et al., 2014). The overall common feature of beta subunits in sodium channels and calcium channels is their regulation of gating properties and expression of ion channels, but also possessing extracellular or intracellular interacting domains that are associated with development of nervous systems, (For example SH3 and GK domains, CAM-like immunoglobulin V-fold for cell adhesion and EGF-like domains) (Dawson, et al., 2014).

1.7 Lymnaea stagnalis as a model organism

Lymnaea stagnalis, the giant pond snail, is an aquatic pulmonate gastropod mollusk, found in freshwater bodies all over the northern hemisphere (Kemenes \& Benamin, 2009).

Lymnaea stagnalis has been a popular model organism for neurobiologists, used for studying mechanisms behind memory formation, embryonic neuron development and simple behaviours. Lymnaea neurons are large, and form robust synaptic connections in vitro, which makes them especially suitable for constructing and examining neural circuits in cell culture (Syed, Ridgway, Lukowiak, \& Bulloch, 1992).

The CNS of Lymnaea stagnalis consists of $\sim 20,000$ neurons in eleven ganglia forming a circle behind and atop the buccal gland. Projections from the ganglia are thick unmyelinated axons extending towards the foot, the internal organs and the external sensory organs (lips, tentacles, eyes) which are especially well innervated. The ganglia have been mapped extensively, with many individual neurons attributed to specific functions (Feng, et al., 2009)(Nakamura, et al., 1999).

A complete transcriptome analysis of the L. stagnalis central nervous system was completed in 2012 by a Japanese group using Next-Generation Sequencing (NGS) with an Illumina sequencer (Sadamoto, et al., 2012). . At approximately the same time, Angus Davison (UK) sequenced the whole snail genome by RAD sequencing (Dawson, et al., 2014).

The genome and transcriptome analysis reveals the evolutionary relationships of genes in Lymnaea stagnalis with other mollusks and vertebrates, but it also significantly simplifies the search for
novel proteins expressed in Lymnaea central nervous system. The snail genome and transcriptome data has greatly facilitated the identification of snail LNav 1 and LNav 2 sodium channel subunits, and the accessory subunits to sodium channels.

Figure 1.14. Central nervous system of Lymnaea stagnalis (Benjamin, 2008). C stands for cerebral ganglion, Pe for pedal ganglion, Pl stands for pleural ganglion, V/P for visceral and parietal ganglia. The top picture shows the buccal ganglia (B).

1.8 Data obtained through 499 undergraduate project on Lymnaea sodium channel $\mathrm{LNa}_{\mathrm{v}} 1$

1.8.1 Sodium channel α-subunit from Lymnaea Stagnalis: sequencing

The first 0.8 kb cDNA fragment (yellow color in
Figure 1.15) of the $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel from the pond snail, Lymnaea stagnalis was isolated by Dr. Spafford as a post-doctoral fellow in Amsterdam in 2001 by degenerate PCR of aligned sodium channel sequences.

Two sets of degenerate primers were designed by Dr Spafford based on the known fragment and regions that are highly homologous in previously described molluscan sodium channels (See Appendix1 for molluscan channel alignment). The isolated fragments, B and D, were 533 bp and 1759 bp in size. Fragments A, C and E followed, with primers based on newly found sequences.

Step 3
F 0.3 Kb

Figure 1.15.The order of fragment amplification and sequencing of PCR fragments of the Lymnaea Nav1 sodium channel.

The first cDNA fragment (shown in yellow color) was isolated by degenerate PCR by Dr. Spafford in 2001. In Step 1, Fragments B and D were identified, followed by fragments A, C and E spanning the full contiguous sequence of the snail LNav1 sodium channel. Fragment F was amplified to reveal the region spanning PCR sequences where the forward and reverse strands of Fragment C did not overlap.

Two sets of PCR primers were designed based on this known fragment in addition to degenerate PCR (polymerase chain reaction) primers based on flanking regions that are highly homologous in sequenced molluscan Nav1 sodium channels (See Appendix3 for molluscan Nav1 channel alignment). The newly isolated cDNA fragments isolated from snail brains by PCR were fragments B and D of 533 bp and 1759 bp in size, respectively (see Fig. 3.1, Fig. 3.2). We walked along the gene using the information from PCR fragments B and D to isolate the flanking and middle sequence of the snail $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel, dubbed fragments A, C and E (see Fig. 3.2) using PCR primers designed on the newly found sequences by PCR.

Figure 1.16 Fragments of Lymnaea sodium channel α subunit amplified by PCR.
Same gel ruler, Gene Ruler 1 Kb plus (Thermo Scientific) was used for all gels. The gels are aligned in the same order the sequences are located on the α-subunit. Closely set double bands in fragment D indicate a length variation in the channel sequence.

The full-length $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel coding sequence was found to be 6180 bp long, with an optional 174 bp deletion in the II-III linker region and two mutually exclusive exons in Domain I, S1 segment. During the final stages of sequencing, the full length cDNA sequence from transcriptome shotgun assembly (TSA), of Lymnaea brain was sequenced by Illumina Genome Analyzer IIx, and available on NCBI, with the full snail $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel, identified as GenBank Accession Number:
FX180203.1, published by (Sadamoto, et al., 2012). We were able to confirm the full length contig generated by PCR sequencing from brain cDNA with the published reference sequence isolated by transcriptome shotgun assembly (See list of primers, Appendix 1). The annotated amino acid translated sequence is illustrated in Figure 3.3 below. The characteristic feature that govern sodium-selective filter is the high field strength site, DEKA, where one residue is contributed by each domain in the re-entrant pore. DEKA is one of the defining features of the $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel. Figure 3.2 demonstrates that almost all $\mathrm{Na}_{\mathrm{v}} 1$ channels from protostome invertebrates to human channels have a DEKA selectivity filter, where critically, a lysine residue is present in the third domain. The simplest organisms to have a nervous system are the cnidarians. They are classified as the simplest eumetazoans and diploblastic, with two primary germ layers in the embryo compared to three in more complex animals. The cnidarians uniquely have a DKEA selectivity filter, where the lysine is present in Domain II. Sodium currents in motor neurons of the hydrozoan Polyorchis penicillatus and the scyphozoan Cyanea capillata, demonstrate Na^{+}-selective voltage-gated ion currents (Anderson, Holman, \& Greenberg, 1993) (Spafford, Grigoriev, \& Spencer, 1996), confirming the high sodium selectivity of the DKEA selectivity filter. Transfer of the complete pore (P-)loops of the DKEA Nav1 selectivity filter onto a DEEA selectivity filter generates highly sodium selective channels out of calcium-selective ones, but it requires the full pore loop substitution not just the lysine for the complete ion selectivity transformation. Flatworms (platyhelminthes) have an unusual DEKG selectivity filter where glycine (G) replaces alanine (A) in the fourth domain of the selectivity filter.

Chapter 2. Materials and methods

2.1 Sequencing and cloning Lymnaea Stagnalis mRNA

2.1.1 Tissue preparation:

Lymnaea stagnalis, giant pond snails, were bred and raised in an in-house vivarium in B1-177, University of Waterloo. This system provides 20% new daily artificial freshwater, with 80% recirculating freshwater filtered by means of mechanical and biological filtration. Snails were exposed to a 12 hr : 12 hr light dark cycle and were fed homegrown lettuce from seed in a growth chamber at the University of Waterloo, as well as supplemented with spirulina flakes and fish food.

In preparation to dissection, the snails were placed for 30 minutes in aquarium water with 10% Listerine which served as anaesthetic as recommended by Woodall and colleagues (Woodall, et al., 2003). Once the animals became unresponsive, the shells were carefully removed without damaging the internal organs using Vannas spring scissors.

Snails were pinned down on a resin filled plate with $10 \mathrm{ml} 10 \%$ Listerine distilled water and dissected under a Zeiss Discovery V8 dissecting microscope. The organs were placed in 1.5 ml Eppendorf microtubes and flash frozen in liquid nitrogen immediately after removal, then placed in -80 ${ }^{\circ} \mathrm{C}$ for storage.

2.1.2 TRIzol RNA extraction

Frozen tissues were resuspended in TRIzol $®$ Reagent at 1 ml per 100 mg sample and homogenized with sterile pestle mounted on the hand-held homogenizer. The tubes were then vortexed, incubated at room temperature for 5 minutes, and centrifuged at $4^{\circ} \mathrm{C}, 10,000 \mathrm{~g}$ for 10 minutes to separate colorless aqueous phase containing RNA (top layer) from the red organic phenol-chloroform phase containing protein and lipids (bottom layer). The aqueous phases were then transferred to new tubes and $200 \mu \mathrm{l}$ of chloroform was added to each tube. The samples were then briefly vortexed, incubated at room temperature for 10 minutes and centrifuged at $4^{\circ} \mathrm{C}, 12,000 \mathrm{~g}$ for 10 minutes. The upper aqueous phases were transferred to the fresh tubes that already contained $500 \mu \mathrm{l} 2$-propanol in each tube. To precipitate the RNA, the tubes were centrifuged at $4 \mathrm{C}^{\circ}, 13,000 \mathrm{~g}$ for 10 minutes after 10 minutes of incubation at room temperature. The ethanol was then decanted and the pellets were washed with 70% ethanol and prepared using diethylpyrocarbonate (DEPC)- treated water. Air -dried pellets were resuspended in

DEPC Milli-Q water. The next step involved precipitation with ice cold 5 M LiCl , which was added to the samples at the volume of 86μ. The tubes were vortexed and incubated at $4^{\circ} \mathrm{C}$ overnight.

The next morning, RNA was pelleted by centrifugation at $4^{\circ} \mathrm{C}, 13,000 \mathrm{~g}$ for 20 minutes, and the supernatant was decanted. The pellets were washed with $500 \mu 170 \%$ ethanol in DEPC treated water, and resuspended in $200 \mu \mathrm{l}$ DEPC Milli-Q water. To precipitate oligosaccharides, $20 \mu \mathrm{l}$ of 2 M potassium acetate, pH 5.5 , prepared with DEPC treated water was added to each sample. The tubes were briefly vortexed and centrifuged at $4{ }^{\circ} \mathrm{C}, 13,000 \mathrm{~g}$ for 10 minutes. Supernatants were then transferred to new tubes which contained $600 \mu \mathrm{l}$ of 100% ethanol and after leaving the samples in $-20^{\circ} \mathrm{C}$ for 10 minutes, RNA was pelleted by centrifugation at $4{ }^{\circ} \mathrm{C}, 16,000 \mathrm{~g}$ for 20 minutes. The ethanol was decanted and the pellets were again washed in 70\% ethanol (DEPC) and after being thoroughly air-dried, each sample was resuspended in 50ul DEPC Milli-Q water.

RNA samples were then quantified and assessed for purity using aNanoDrop Specrtophotometer with the expected absorbance wavelength $260 / 280$ ratio of 2.0 . The samples were then stored at $80^{\circ} \mathrm{C}$ until further use.

2.1.3 Reverse Transcription (RT-PCR)

To generate complementary DNA strands (cDNA) from RNA, Superscript III RT (Invitrogen) was used. This is a modified version of the protocol provided by Invitrogen. $6 \mu \mathrm{l}$ total RNA was combined in 1.5 m Eppendorf microcentrifuge tube with $1 \mu \mathrm{l}$ of $1 \mu \mathrm{M}$ Random Hexamer Primers, $1 \mu \mathrm{l}$ of $10 \mu \mathrm{M}$ dNTP and $4 \mu \mathrm{l}$ nuclease free water. The mixture was briefly centrifuged, incubated at $25^{\circ} \mathrm{C}$ for 5 minutes then placed on ice. While on ice, the following ingredients were added to the tube: $4 \mu \mathrm{l}$ of 5 x first strand buffer, $1 \mu \mathrm{l}$ of 0.1 M Dithiothreitol (DTT), $1 \mu \mathrm{l}$ of RNAse inhibitor and $1 \mu \mathrm{l}$ of Superscript III RT. The tubes were than incubated at $42^{\circ} \mathrm{C}$ for 30 min and heated up to $85 \mathrm{C}^{\circ}$ for 5 minutes. Total cDNA was then precipitated by adding $2 \mu \mathrm{l}$ of glycogen, $34 \mu \mathrm{l}$ of 10 M ammonium acetate and $80 \mu \mathrm{l}$ of 100% ethanol to the tube, followed by 1 minute of centrifugation at maximum speed $(21,000 \mathrm{~g})$. The pellet was then washed with 70% ethanol and resuspended in 20μ l Milli-Q water. The sample was then stored in a $-20^{\circ} \mathrm{C}$ freezer.

2.1.4 Sequence amplification and visualization

Total adult brain cDNA was used to determine the sequence of Lymnaea stagnalis sodium channel α and β subunits. Nesting primer sequences were designed using Primer3 and OligoCalc (Oligonucletide properties calculator). The primers were ordered from Eurofin MWG Operon (Table 1). Taq polymerase (Thermo-Scientific) was used for DNA amplification. The Polymerase chain reaction protocol was carried out using the protocol supplied by Thermo Scientific, however the annealing temperature and elongation time were modified each time to accommodate the appropriate conditions for different DNA fragments.

Following the polymerase chain reaction, the samples were mixed with 6 x gel loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol $\mathrm{FF}, 30 \%$ glycerol in DI water) loaded on $1 \% \mathrm{TAE}$ agarose gel supplemented with $200 \mathrm{ng} / \mathrm{ml}$ ethidium bromide and placed in an electrophoresis chamber, where 110 V current separated the samples into bands according to the fragment size (DNA electrophoresis). PCR gels were placed in a UV chamber, where, at 365 nm , ultraviolet light bands were visualized and/or excised from the gel for subsequent DNA extraction.

2.1.5 Gel extraction

An E.Z.N.A. gel extraction kit (Omega Bio-Tek) was used to isolate purified DNA from the agarose gel. The protocol supplied with the gel extraction kit was used.

2.1.6 Ligation

A pGEMt®-T Easy kit (Promega) which included a pGEMt vector, 2 x ligation buffer and T4 ligase was used in ligation protocols. Alternatively T4 ligase and 10x T4 ligation buffer from Thermo Scientific were used.

To ensure uniform sequencing results, each DNA fragment was ligated into a pGEMt®-T Easy vector prior to sequencing. Purified PCR products were mixed with $1 \mu \mathrm{l}$ vector and $10 \mu \mathrm{l}$ x Ligation buffer in a 20μ l reaction mix. $1 \mu \mathrm{l} 4$ ligase was added to each mixture and the tubes were incubated in a DNA thermo cycler at $16^{\circ} \mathrm{C}$ for 6.5 hours followed by 1 degree decrease every hour until the $4{ }^{\circ} \mathrm{C}$ was reached. The tubes were then heated up to $65^{\circ} \mathrm{C}$ for 10 minutes to inactivate the ligase.

Alternatively, when proofreading Pfu polymerase was used for amplification, the resultant DNA strands had blunt ends, as opposed to A- overhangs generated by Taq Polymerase. To ensure proper
ligation two methods were employed successfully. One method consisted of generating A-overhangs by incubating purified PCR product with Taq polymerase in the presence of dATP for 30 min at $72^{\circ} \mathrm{C}$. The other method was to clone PCR products into PCR Blunt II TOPO plasmid (Life Technologies) with built in topoisomerase. While more expensive, this method was highly efficient and worked well when only small amounts of product were available.

2.1.7 Electrocompetent Stbl2 cell preparation

Starter cells were grown on an agarose plate overnight in a $30^{\circ} \mathrm{C}$ incubator and a smaller sized colony was selected for inoculation. Bacterial culture was grown in a glass tube with 10 ml SuperBroth ${ }^{1}$ (30 g yeast extract, 10 g Tryptone powder, 5 g NaCl , per $1 \mathrm{~L} \mathrm{dH}_{2} \mathrm{O}$), after inoculation with the selected colony with overnight incubation in a shaker incubator at $30{ }^{\circ} \mathrm{C}$. The next morning, the contents of the tube were transferred into 250 ml of SuperBroth and the culture was allowed to grow until OD of 0.6 was reached (Since OD above 0.5 cannot be measured accurately, the sample was diluted $1: 1$ with clear SuperBroth and an expected result of 0.3). After the desired turbidity was reached, the cells were cooled on ice for 30 minutes and centrifuged at $4^{\circ} \mathrm{C}, 4000 \mathrm{~g}$ for 10 minutes. The resultant pellet was resuspended in 300 ml ice cold 10% glycerol, prepared and sterilised by filtering ahead of time. The centrifugation-resuspension step was repeated three more times; the first time with 300 ml , the second time with 20 ml and third time with 2 ml of 10% ice cold glycerol. The concentrated cells were then aliquoted into autoclaved PCR microcentrifuge tubes ($30 \mu \mathrm{l}$ per tube) and flash frozen in liquid nitrogen before being placed in $-80^{\circ} \mathrm{C}$ freezer.

2.1.8 Electroporation and Growth

To introduce vectors into bacterial cells for amplification, the electroporation technique was used. Electrocompetent $\mathrm{Stb12}$ cells were prepared ahead of time and kept at $-80^{\circ} \mathrm{C}$. Eppendorf Electroporator 2510 was set to 1200 V . $5 \mu \mathrm{l}$ of circularized vector was added to 30 ul frozen cells and the tube was left on ice for 15 minutes. A sterile 1 mm electroporation cuvette (VWR), chilled to $-20^{\circ} \mathrm{C}$, was filled with a cell/vector mixture using pre-chilled pipette tips. After electroshock in the electroporator, cells were immediately transferred into microtubes filled with 500 ul room temperature

[^0]SuperBroth, and set to incubate at $30^{\circ} \mathrm{C}$ on a rotating platform. Following a 1 hour incubation period, the cells were centrifuged at 3000 rcf . The pellet was resuspended in $50 \mu \mathrm{l}$ SuperBroth and the mixture was spread on a previously prepared agar plate containing $100 \mu \mathrm{l} / \mathrm{ml}$ ampicillin under aseptic conditions. The bacteria were grown on agar plates overnight in a $30^{\circ} \mathrm{C}$ incubator. The next day, 10 ml SuperBroth glass tubes were supplemented with the appropriate antibiotic and inoculated with colonies from the plate. The glass tubes were placed on a shaker at $30^{\circ} \mathrm{C}$ and left overnight. In the morning the turbidity of the culture was assessed visually and if a sufficient amount of cells were present in the medium, DNA plasmid mini-preps were performed.

2.1.9 Plasmid isolation

Plasmid isolation protocol was adapted by A. Senatore, from (Birnboim \& Doly, 1979). Plasmid isolation from the cell culture, referred to as either maxi-pre or mini-prep depending on the cell culture volume, was performed with alkaline lysis. The cell culture (Stbl 2 cell line) was incubated in SuperBroth in a shaker incubator at $30^{\circ} \mathrm{C}$ until the appropriate density was reached(OD600 >0.6). The culture was then centrifuged at low speed to collect the cells and the pellet was resuspended in one part of physiological buffer (50 mM glucose, 25 mM Tris $\mathrm{pH} 8,10 \mathrm{mM}$ EDTA), and 2 parts of alkaline solution ($1 \% \mathrm{SDS}, 0.2 \mathrm{~N} \mathrm{NaOH}$) was added to the tube to lyse the cells. After 5 minutes of room temperature incubation, 1.5 parts of neutralizing solution (5 M potassium acetate, glacial acid) was added to the lysate and the tube was briefly vortexed and centrifuged at 10000 g to separate plasmids from chromosomal DNA and the rest of the cell material.

The supernatant was collected and mixed with 0.6 volumes of 2- propanol to precipitate the plasmid DNA. The tube was incubated at -20° for 15 minutes, then centrifuged at maximum speed for 10 minutes. The pellet was dried and resuspended in MilliQ water. The solution was mixed with icecold 5M Lithium chloride to separate the RNA out of the solution mix. The mixture was incubated for one hour at $4^{\circ} \mathrm{C}$ and spun at maximum speed for 10 minutes. The supernatant was collected and mixed with equal amount of 2-propanol. After 10 minutes of centrifugation at maximum speed, the pellet was resuspended in 200μ l water and RNAse A was added to a concentration of $50 \mathrm{ug} / \mathrm{ml}$. The tube was left at $4^{\circ} \mathrm{C}$ overnight or, alternatively at $37^{\circ} \mathrm{C}$ for 1 hour. The incubation was followed by Phenol/chloroform extraction, where $400 \mu \mathrm{l}$ of 50:50 phenol chloroform mixture was added to the solution and the tube was briefly vortexed and spun at 10000 rcf for 1 minute. The upper aqueous layer
was carefully transferred to a new tube, while the bottom layer was discarded. This step was repeated until there was no white precipitate in the interphase between the aqueous and organic layers. The aqueous solution was then mixed with 400μ l of pure chloroform to remove any remnants of phenol. After thorough vortexing the tube was again centrifuged for 1 minute at 10000 g and the upper layer was transferred to a new tube. $2 \mu \mathrm{l}$ glycogen, $20 \mu \mathrm{l}$ of 10 M ammonium acetate pH 5.5 and $800 \mu \mathrm{l} 100 \%$ ethanol were added to the solution, the tube was vortexed and placed in $-20^{\circ} \mathrm{C}$ for $15-30$ minutes. The solution was then centrifuged at maximum speed for 10 minutes to pellet the plasmid DNA. The pellet was washed with 70% ethanol and allowed to dry for 2 minutes. The plasmid was then resuspended in autoclaved Milli-Q water. The concentration of the plasmid was assessed using the NanoDrop Spectrophotometer, and restriction digest analysis was performed to ensure the presence of the plasmid.

2.1.10 Sequencing

DNA sequencing was done by the TCAG facility at the Sick Kids Hospital in Toronto. To prepare DNA for sequencing, the samples were diluted to $40 \mathrm{ng} / \mu \mathrm{l}$ and mixed with a primer according to specifications found at the TCAG site (http://www.tcag.ca/facilities/dnaSequencingSynthesis.html)

Sequence analysis was carried out with Sequencher $® 5.1$ and GeneConstruction Kit $\circledR^{\circledR} 4.0$, with the former to evaluate an error free, full length contig, and the latter to generate and archive vector maps containing plasmid inserts.

2.1.11 Construction of the sodium channel α-subunit vector

Once a consensus sequence of the full length α-subunit open reading frame was created, and confirmed by at least 3 independently made PCR products of every cDNA segment, the coding sequence was divided into four regions; AS, SH, HE, and EX, and primers were deigned to create overlapping fragments corresponding to those regions. The inner fragments (SH and HE) contained naturally occurring restriction sites. The outer fragments (AS and EX) were engineered to have restriction sites flanking the α-subunit to facilitate the construction of a contiguous insert coding for the full length sodium channel within the polylinker of the vector.

When amplifying consensus sequences, precaution was taken to minimize exposure to mutagens and eliminate polymerase induced errors. High fidelity polymerase Pfu turbo AD (Agilent Technologies) was used for amplification to reduce the error rate. Crystal Violet (Invitrogen) was used to visualize the gel bands, instead of Ethidium Bromide and UV light, known DNA mutagens. The Blunt II TOPO plasmid (Life Technologies) was used to create constructs caring the fragments (AS, SH, HE, EX) and these fragments were then concatamerized within pIRES2-EGFP plasmid vector.

2.2 Protein Expression in HEK 293 cells

2.2.1 Expression vectors

Confirmed sequences were ligated into expression vectors pIRES2-EGFP and pIRES2 dsRED: plasmids designed for expression in mammalian cells, with a strong mammalian promoter and an internal ribosomal entry site (IRES) sequence, enabling the expression of EGFP/dsRED protein and the gene of interest in HEK 293 cells.

2.2.2 Cell Culture and Transfection

Human Embryonic Kidney (HEK) cells were grown in 10 cm flasks in DMEM medium with 10% Fetal Serum Albumin (FBS), 1% sodium pyruvate and a 0.05% Penicillin/Streptomycin combination. Each tissue culture was grown at $37^{\circ} \mathrm{C}$ until confluent, then split 1:4. The cells were allowed to settle at $37^{\circ} \mathrm{C}$ for 4 hours, then transfected by calcium phosphate precipitation for the purpose of both electrophysiological recording experiments and Western blotting. $600 \mu \mathrm{l}$ of solution containing 6 -9 mg pIRES vector, $30 \mu \mathrm{l}$ of $2.5 \mathrm{M} \mathrm{CaCl}_{2}$ and $300 \mu \mathrm{l}$ of HES buffer ($280 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{KCl}, 12 \mathrm{mM}$ dextrose, 50 mM HEPES, 1.5 mM Na2HPO4) was added to the tissue culture. The flasks were left for 18 hours at $37^{\circ} \mathrm{C}$, then washed with 3 volumes of DHEM media and left in 6 ml media for another 2 hours, before being transferred into $28^{\circ} \mathrm{C}$ incubator. The fluorescent protein expression of reporter proteins allowed for visual conformation of the transfection success rate. The cells were recorded/harvested 72 hours post transfection.

2.2.3 HEK 293-harvesting the protein

Harvesting and protein homogenization were carried out by a modified version of a protocol found in (Harlow \& Lane, Using Antibodies: A Laboratory Manual, 1999).Transfected cells designated for Western blotting were incubated at $28^{\circ} \mathrm{C}$ to allow for sufficient protein expression. Time between transfection and harvest was loosely based on the size of the protein (4 days for an α-subunit, 2 days for a β subunit). Prior to homogenization, MG-132 (Sigma) dissolved in dimethyl-sulfoxide was added to each flask to a concentration of $5 \mu \mathrm{M}$ in order to suppress protein degradation. After 8 hours of exposure to MG-132, the DMEM media was removed from the flasks and the cell layer was washed 3 times with room temperature PBS pH7.4 ($137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4} \mathrm{O}, 2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4} \mathrm{O}$). The tissue culture was then placed on ice and 0.5 ml pre-chilled RIPA lysis buffer $(150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris, $\mathrm{pH} 7.4,5 \mathrm{mM}$ EDTA, 1% Nonidet P-40, 1% sodium deoxicholate and 0.1% SDS), supplemented by Sigma Protease Inhibitor Cocktail (DMSO diluted) was then added to each flask. The flasks were incubated on a rocking platform at $4^{\circ} \mathrm{C}$ for 1 hour. The buffer/lysate mixture was then collected and centrifuged at $4^{\circ} \mathrm{C}$ to precipitate the cellular debris. The supernatant was stored in a $-20^{\circ} \mathrm{C}$ freezer.

2.2.4 SDS-Page and Western Blotting

Protein homogenate samples were mixed with $6 x$ Laemmli sample buffer (100 mM Tris- Cl pH $6.8,4 \% \mathrm{w} / \mathrm{v}$ SDS, $0.2 \% \mathrm{w} / \mathrm{v}$ Bromophenol blue, 20% glycerol, $200 \mathrm{mM} \beta$-mercaptoethanol) and heated up to $95^{\circ} \mathrm{C}$ in order to denature the proteins. 8 to 10% polyacrylamide gel was used for SDS-PAGE electrophoresis to separate the proteins. To visualise the protein bands, gels were stained with Coomassie Brilliant Blue for 1 hour, then destained overnight in high methanol destaining solution. For the Western blotting, the bands were transferred onto nitrocellulose membrane (Whatman®), using a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad). For the transfer, the transfer cell was placed overnight at $4^{\circ} \mathrm{C}$ and set at 25 V . The transfer buffer was prepared fresh each time and contained 48 mM Tris, 39 mM glycine and $20 \% \mathrm{v} / \mathrm{v}$ methanol. Once the transfer was complete, the membrane was briefly stained with Ponceau stain to visualise the bands, then placed on the rocking platform in a bath containing TBS buffer (10 mM Tris- $\mathrm{Cl}, \mathrm{pH} 7.5150 \mathrm{mM} \mathrm{NaCl}$) to facilitate destaining. Nitrocellulose membranes containing the transferred proteins were washed two more times in TBS buffer (10 minutes each wash), then incubated in blocking buffer (TBS buffer and 5\% w/v milk powder) for 1 hour. Membranes were then washed twice in TBST buffer ($0.05 \% \mathrm{v} / \mathrm{v}$ Tween 20 in TBS) and once in TBS buffer. After the wash the membranes were incubated for 1 hour with $1 / 1000$ diluted α-LNav1 sodium
channel specific anti-rabbit antibody in blocking buffer. Following the incubation, excess antibody was washed off the membrane twice in TBST buffer and once in TBS buffer. Membranes were then incubated for 1 hour with secondary antibody diluted $1 / 5000$ in blocking buffer ($10 \% \mathrm{w} / \mathrm{v}$ milk powder). The secondary antibody used was a goat anti-rabbit antibody coupled to Horseradish peroxidise (HRP), ordered from Jackson ImmunoResearch Laboratories, Inc. After washing the membrane three times in TBST, a chemiluminescence reaction was performed to detect the presence of antigen on the membrane. To induce chemiluminescence, two solutions were made in separate flasks. Solution 1 ($200 \mu \mathrm{l}$ of 250 mM DMSO dissolved luminol, $100 \mu \mathrm{l}$ of 90 mM p-cumaric in 20 ml 0.1 M Tris-Cl) and Solution $2(12 \mu \mathrm{l}$ of 30% hydrogen peroxide in $20 \mathrm{ml} 0.1 \mathrm{M} \mathrm{Tris-Cl}$) were mixed in the dark room and the membrane was immediately submerged in the mixture. After removing the excessive fluid, the membrane was exposed to Kodak X-ray paper for the time increments between 5 to 30 seconds.

2.2.5 Electrophysiology

The external bath solution used for whole cell patch clamp recording contained $130 \mathrm{mM} \mathrm{NaCl}, 2$ $\mathrm{mM} \mathrm{CaCl} 2,1.2 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM} \mathrm{CsCl}, 10 \mathrm{mM}$ HEPES, 5 mM glucose, titrated to pH 7.4 with Cs OH . The internal recording solution contained $60 \mathrm{mM} \mathrm{CsCl}, 70 \mathrm{mM}$ CsAspartate, 11 mM EGTA, 1 mM $\mathrm{MgCl}_{2}, 1 \mathrm{mM} \mathrm{CaCl} 2_{2}, 10 \mathrm{mM}$ HEPES and 5 mM Na 2 -ATP, titrated to pH 7.2 with CsOH .

Borosilicate glass pipettes with filament (1.5 mm outer diameter, 0.86 mm inner diameter) were pulled with Sutter P-1000 and fire polished with MicroForge -830 immediately prior to use. The pipette resistance was maintained at $2-4 \mathrm{M} \Omega$. The ground electrode was filled with 3 M CsCl . Analog electrophysiology signals were sampled through a Digidata1440a A/D converter (Molecular Devices) using an Axopatch 200B amplifier (Molecular Devices) controlled through pClamp 10 software on a PC computer. HEK cells were recorded in the whole cell mode, at room temperature. Medium size, round cells with weak to medium auto-luminescence were found to produce the optimal recording.

2.3 Antigen Production and Antibody Purification

2.3.1 Antigen production and purification ${ }^{2}$

Two antigens for antibody production were created based on the I-II and II-III linkers of the Lymnaea sodium channel α - subunit. Primers were designed with restriction enzyme sites (See Appendix 1), in order to insert PCR amplified cDNA sequences into pET22b vector, which provided an in-frame 6xHistidine tag. The vectors were transformed into Rosetta TM (DE3)pLysS competent cells for protein expression. Protein production was induced by isopropyl-1-thio- β-D-galactopyranoside (IPTG) to a final concentration of 0.3 mM 5 hours prior to cell harvest. The cells were pelleted in $4^{\circ} \mathrm{C}$ centrifuge and resuspended in PBS buffer (20 mM sodium phosphate, 300 mM sodium chloride, pH 7.4) with an addition of 25 mM imidazole. The cells were then lysed by 3 freeze/thaw cycles with subsequent sonification by Sonicator® 3000 (Giltron). The lysates were centrifuged at $4^{\circ} \mathrm{C}$, at maximum speed for 25 minutes, then the supernatant was collected and added to 1.5 ml of Ni-NTA agarose beads (Thermo Scientific). The lysate/bead slurry was incubated for 1 hour at $4^{\circ} \mathrm{C}$ on a rocking platform then transferred to the gravity column. The column was washed twice with 6 ml of 25 mM imidazole in PBS pH 7.5 , then 3 more times with 6 ml of 45 mM imidazole in PBS pH 7.5 to wash out the unbound proteins. The Histidine tagged proteins were then eluted from the column with 250 mM imidazole in PBS pH 7.5. The eluted proteins were then separated in the SDS-PAGE gel and the bands containing I-II and II-III linkers were excised. The proteins were then extracted from the gel with the use of electroeluter (Bio-Rad) fitted with 10 kDa caps. Concentrations of the isolated proteins were established using Nanodrop ND1000. The final concentration was found to be $11.74 \mathrm{mg} / \mathrm{ml}$ for I-II linker and $24.38 \mathrm{mg} / \mathrm{ml}$ for II-III linker of LNav1 sodium channel. The proteins were stored in $-80^{\circ} \mathrm{C}$ until they were used for antibody production.

2.3.2 Antibody expression ${ }^{3}$

For LNav1specific antibody production, two New Zealand White (NZW) rabbits were ordered from Charles River and housed in the Central Animal Facility in the University of Waterloo. Freund's

[^1]adjuvant- both complete and incomplete- were ordered from Thermo Fisher Scientific. The rabbits were allowed to acclimatise for 3 weeks prior to peptide injections. For the first antigen injection, 75 mg of antigen was mixed with complete Freund's adjuvant. For each subsequent injection, same volume of incomplete Freund's adjuvant was used. The emulsion was mixed using 2 glass syringes connected by a double-hub needle. The mixing process began 10 minutes prior to injection and continued until the emulsion became viscous. Each immunogen had a designated needle and set of syringes. 10 ml blood was taken from each rabbit prior to each injection and used for serum extraction. Overall 4 injections were performed, each 20 days apart, before the animals were exsanguinated. The serum collected prior to the first injection was labeled `pre bleed` serum and used as a negative control. The serum samples collected after subsequent injections were used to test the progress of antibody production. After the final bleed, 150 ml blood was harvested from each animal.

2.3.3 Serum preparation

Centrifuge tubes filled with 10 ml animal blood was left at $37^{\circ} \mathrm{C}$ for 1 hour, mixed with glass rod to separate the clot from the walls of the tube and left overnight at $4^{\circ} \mathrm{C}$. The next morning the serum (the liquid fraction) was decanted into a fresh tube and centrifuged at 6000 g for 10 minutes. The serum was tested both against the antigen and the clone of LNav1 α-subunit raised in HEK cells in Western blots. Serum aliquots of $500 \mu \mathrm{l}$ were stored at $-20^{\circ} \mathrm{C}$ for further use.

2.3.4 Antibody purification

Polyclonal antibody separation from blood serum was done using the SulfoLink Immobilization
Kit (Thermo Scientific). Four serum aliquots (2 ml) were thawed until the samples reached room temperature. The serum was then mixed with 17.8 ml MilliQ water and 0.2 ml 1 M Tris pH 7.5 to the final volume of 20 ml and filtered through a $0.45 \mu \mathrm{~m}$ syringe filter. The Sulfolink column was washed 4 times with one volume (2 ml) of TBS buffer. One volume of sample was added to the column and it was then incubated on a rocking platform at room temperature .Following 15 minutes of incubation, the column was centrifuged to remove the flow through. This step was performed nine more times until 20 ml of sample had passed through the column. The resin was then washed twice with one volume TBS buffer, then the antibody was eluted with 2 ml acidic elution buffer ($0.1-0.2 \mathrm{M}$ glycine- $\mathrm{HCl}, \mathrm{pH} 3.0$) into a microtube containing $100 \mu 1$ neutralising buffer (1 M Tris- $\mathrm{HCl}, \mathrm{pH} 8.5$). The elution step was repeated
three times and all fractions were collected. Antibody purity was tested with SDS-PAGE gel. Antibody activity was tested against the antigen, the clone of LNav1 α-subunit raised in HEK cells and snail brain lysate by Western blotting. The purified antibody was aliquoted into $25 \mu 1$ samples and stored in a $-80^{\circ} \mathrm{C}$ freezer.

2.4 Co-Immunoprecipitation

2.4.1 Snail organ homogenate preparation

RIPA buffer was used initially to lyse snail organs, before it was substituted with a more gentle CHAPS buffer (30 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \% \mathrm{v} / \mathrm{w}$ CHAPS from Thermo Scientific) which is better suited for co-immunoprecipitation experiments. Twenty snail brains were extracted from adult snails (see section 2.1.1 for details). The brains were submerged in 400μ buffer ($20 \mu 1$ per brain), supplemented with $4 \mu \mathrm{l}$ protease inhibitor cocktail (Sigma-Aldrich). The sample was incubated on ice for 10 minutes, and a mini pestle was used to grind the tissue. After another 10 minutes on ice, the sample was centrifuged at $4^{\circ} \mathrm{C} 10000 \mathrm{~g}$ for 10 minutes; the supernatant was collected and used for downstream applications.

2.4.2 Pre -clearing step

A pre-clearing step was performed on the lysate samples to eliminate proteins that unselectively bound antibodies with a protocol adapted from (Harlow and Lane, 1999). For this step, pre-bleed serum (serum collected from the same animal prior to antigen injection) was added to the lysate in a 1:20 ratio ($95 \mu \mathrm{l}$ lysate, $5 \mu \mathrm{l}$ serum). The mixture was incubated on a rocking platform at $4^{\circ} \mathrm{C}$ for 1 hour. SAC (Staphylococcus aureus Cowan strain) was used as a source of protein A. $100 \mu 1$ of fixed SAC (SigmaAldrich) was centrifuged at 10000 g for 30 seconds and the pellet was resuspended in $100 \mu \mathrm{CHAPS}$ buffer by mixing the pellet with the pipette tip. The sample was centrifuged again and the buffer removed. The SAC pellet was resuspended in lysate/serum mixture. The resulting slurry was incubated on ice for 30 minutes, then centrifuged at 10000 g for 15 minutes at $4^{\circ} \mathrm{C}$. The supernatant was transferred to a new microtube.

2.4.3 Purification of α / β subunit complex

The supernatant collected in step 2.3.3 ($\sim 500 \mu \mathrm{l}$) was mixed with the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit specific antibodies. For the antibody source, both final bleed serum ($1 \mu \mathrm{l}$) and Sulfolink purified antibody ($5 \mu \mathrm{l}$) were used and they both produced the same results. The sample was incubated on ice for 1 hour. Meanwhile, 100μ l of protein A agarose beads in saline buffer (Sigma-Aldrich) was centrifuged and resuspended in CHAPS buffer in a 1:10 ratio. The lysate-antibody reaction was added to the protein A suspension to a total volume of $\sim 1.5 \mathrm{ml}$ and the sample was incubated at $4^{\circ} \mathrm{C}$ on a rocking platform. Following the incubation, the agarose beads were collected by brief centrifugation and washed three times with CHAPS buffer. After complete removal of CHAPS buffer with the last wash, the protein complexes were eluted from the beads by adding $50 \mu \mathrm{l}$ of 1 x Laemmli sample buffer to the pellet, heating the sample to $85^{\circ} \mathrm{C}$ for 10 minutes and collecting the supernatant. The sample was then loaded onto the SDS-PAGE gel directly to analyse the results of co-immunoprecipitation. Negative controls used in α / β complex purification included snail foot tissue (qPCR indicates that snail foot tissue does not express $\mathrm{LNa}_{\mathrm{v}} 1$-subunit) and lysed HEK cells transfected with LNav1/pIRES2 EGFP vector (expresses $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$ but not β).

2.4.4 Preparation of sample for Mass Spectrometry

Once the candidate band was localised, the purification of $\mathrm{LNa}_{\mathrm{v}} 1 \alpha / \beta$ subunit complex was repeated, but this time precautions were taken to avoid keratin contamination. The working surfaces, including the SDS-PAGE rig and glass plates were wiped with 100% ethanol, a new lab coat was obtained and sterile 15 cm Petri plates with closed lids were used for staining and destaining. The band excision was performed in the laminar fume hood with a new sterile scalpel blade. The gel band was submerged in $40 \mu \mathrm{l}$ of 1% acetic acid in Milli-Q and shipped to SPARC BioCenter (Sick Kids Hospital) for trypsin digest analyses and determination of protein size and sequence using electrospray ionization and tandem mass ($\mathrm{ms} / \mathrm{ms}$) spectrometry.

Chapter 3. Sodium channels $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$: Results, Analysis and Discussion

The contig of the newly sequenced $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel was converted into an amino acid sequence and functionally important regions of the channel were identified. Those include twenty four transmembrane domains, four conserved voltage sensor motifs, fast inactivation motif MFM and selectivity filter with characteristic inner and outer sodium selectivity rings (Figure 3.1).

> MEEETVERTPFRLFTRESLFNIERRIAEEEAAKHAEKVKPESDDEDDDDASQNEETLKPNPKLEAGRKLPPSLEDYPREYIGKP LEDLDEFYHNQKTFVVLNKDKAIFRFSATNAIFLLSPFNPIRRTAIYILTHPGFSLLVMLTILVNCASMAITSWTPPPYVEHIF LGIYTVEAFIKTLSRGFILKPFTYLRDPWNWLDFFVISIAYMTMAIKSLGNLSALRTFRVLRALKTISVIPGLKTIVGALLEAV RRLRDVMILTIFVLSIFALVGMQLYSGSLRRKCIKNYRIFYGANISHDEWWEWVNNESNWRTDHYNEIQVCGNNSGAGQCGNNT FNGTAEYECLPGIGKNPNFDFTSFDNFGMALLCAFRLMTQDYWESLYRLVLRAEGMAHCLYFVLVILLGSFYLVNLILAIVAMS YDETQKQDQADAEEEAAERQEEEARKEALSIMTKSPSNSSWNNDFFAGVRTAGDKAEEKERLSLTSDHSATSAHLKPSRLNQKR HSLSLPGSPYIHRRNSRGSQYSWRKPVPTAKRSPYCPDRQPLVHHTLENLPLPFADDSAAVTPSSEDLCNFSFIRNMPNGRRFS FASQRRPDGTGRSGSRRSSFASNHSRASRTSRGSGQGDRTKTQTLLNFKKGKVPDVVLDKSKLDDDQDSVSSGGSGHCPEKDKA SESNPFLSNTPGGPNVEMKDVMVLKDILDQASGHRRSFVSMASIQQKTMKDIMWKYFCTWDCNPNFQKLQRLVSLFIMDAFVDL FITVCIVVNTLFMAMDHYNMDKNLQDISSQANEVFTAIFAAEAFLKILAMSPVVYFKDGWNIFDSLIVALSIMELSMKELPGLS VLRAFRLLRVFKLAKSWPTLNMLIAIVARTMGALGNLIIVLAIVIFIFAVMGQQLFSTHYAIYLYKELDNGTKVYDIDNMPRWN FNDFLHSFMIVFRVLCGEWIESMWWCHKAAGWPCVPFFLLTYIIGNLVVLNLFLALLLSSFGGESLSRSESADEPNKIAEAIDR FKRFGNWVKVKIIVCIKVKLQRQKNWRPSVPPSKLPELNGKENAFGDGTVIAMEKTPDDFPDGAMEPDDCFCYSLTKRCTWCLV IEKPPIGRAWWALRCFMYRLAEHRYFDTFIIVMILLSSCALALEDAYLHEKPLLKEILEYMDKVFTVIFIVEMLVKWFAFGFKT YFTDAWCWLDFCIVMLSIMMLMADMMASADGHGGGKMGAMRSIRTLRALRPLRAVSRWEGMRVVVNALFKAIPSICNVLLVCLV FWLIFGIMGVQLFNGKFHACVCENGTRCEPDVIPNRTVCELQGYNWTNAQINFDNVIAAYLALFQVATYKGWVDIMNNAIDARE IGVQPKREENIYSYLFFVLFIIFGSFFTLNLFIGVIIDNFNSQKKKAGGSLEMFMTDDQKKYYNAMKRMKSKSPQKSIPRPKYK LAALVFDITTDQKFDIVIMIIIILNMLTMMFEYEDMSKQMKDILGIFNLVFITIFTAECVLKLFGLRWYYFKVPWNVFDFIVVV LSIMASSLDEFEDSFFISPTLLRVIRVFRVGRVLRLVKSAKGIRTLLFSLAVSLPALFNIGLLLGLVMFIYAIMGMNFFQGYPQ TFGMDDAFNFDTFLSSFILLFQMCTSAGWSDVLNALISPCPPTGSCSHYNKATLYLATYLIISFLVVVNMYIAVILENFSQATE DVQQGLTPDDFDMYYEKWEKYDPKATKYIPLDQLSDFVDYLEEPLRLPKPNHFILVKLDIPICEGDKCYCRDILDALTKNFLGT SETADIPIKETDKEKEEYTPISSTLRRQKEHYAARIIQKAYRNYKGLTISEVSYGHEDVMDSYSQDNDDDRDSGGSSGRNLDKS FPSPPSSYKSDKKPPENGTKEKKSEDSSKKAKDKKDKGKDKKAKSDKKDDGKKKKDASKPPNGLSKTTRSKESAAITLIMKRTV ELGPDSGVVA

Figure 3.1 Open reading frame of LNav1 α-subunit.
The protein sequence has been analyzed with ExPasy(SIB Bioinformatics Portal) to reveal 24 transmembrane segments (in turquoise color) grouped into four repeat domains. The voltage sensing $4^{\text {th }}$ segment of each domain carries a string of positively charged amino acids (in purple). The components of the selectivity filter are shown in yellow. Shown in red is the rapid N-type inactivation motif. Dark grey indicates the sites of splice variations.

Figure 3.2 Selectivity filter of the sodium channel $\mathbf{N a}_{\mathbf{v}} \mathbf{1}$.
Pore loop selectivity filter residues of four domains of $\mathrm{Na}_{\mathrm{v}} 1$ contribute to the characteristic DEKA the ion selectivity filter, characteristic of most Nav1 sodium channels. Downstream of DEKA there is a EEDD consensus sequence which forms the outer ring of the selectivity filter and together with other residues highlighted in yellow is known to be involved in TTX sensitivity(Catterall W. A., 2005).

The full alignment of Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ amino acids sequences with highly homologous channels identified from other mollusks is shown in Appendix 3 (Alignment 1) and a comparison with representatives of the closest homologs of human sodium channels (Nav1.1 and Nav1.7) are shown in Appendix 3 (Alignment 2).

3.1.1 Splice variants found in α-subunit

3.1.1.1 Mutually exclusive exon in LNav1 sodium channel α-subunit coding for Domain I, segment 1 .

Mutually exclusive exons were identified coding for Domain I S1 domain, coded as exon 4 a and exon 4 b , and these are found side by side in Lymnaea genomic sequence provided by Angus Davison (University of Nottingham) (Liu, et al., 2013). See Appendix 4. Genomic region 1 for the sequence of LNav1 from Lymnaea stagnalis.

Exon 4 a : 78 bp of novel sequence found by PCR cloning:

GGTTTTAGTCTTTTGGTGATGCTGACCATTTTAGTAAACTGCGCCTCTATGGCCATAACTTCGTGGACACCCCCGCCC Exon 4b:
75 bp of novel sequence identified in published Lymnaea transcriptome, GenBank Accession \# FX180203.1

TTGTTTAGTTTGACTGTTATGATCACCATCATCACCAACTGTGTCTTTATGGCTCGCGCTGAAAATCCGCCAGAA
Exon 4 a is one amino acid longer then 4 b .
Amino acids:

```
4a GFSLLVMLTILVNCASMAITSWTPPP
4b LFSLTVMITII TNCVFMARAEN_PPE
```

Lymnaea LNav1 sodium channel was aligned with genomic regions for exons 4a/4b of Nav1 sodium channels from closely related species Biomphalaria glabrata (pulmonate freshwater snail), Aplysia californica (California sea hare) Lottia gigantea (giant owl limpet) and Loligo bleekeri (spear squid) along with human sodium channels (Figure 3.5). The alignment analysis indicates that homologous, mutually-exclusive exons 4a/4b are identifiable in other molluscan Nav1 sodium channels.

Gastropod snails, Lymnaea, Biomphalaria, Aplysia have both exons 4a/4b but Lottia sodium channel α subunit, otherwise highly homologous to Lymnaea, posesses only exon 4b, which suggests possibly that exon 4 b variant is ancestral to exon 4 a isoform. Splice variations in this region are not found in nonmolluscan species to date.

The functional difference between these two variants is unknown, but since it codes the region spanning the first of 24 segments, it may facilitate membrane insertion or trafficking. We have not succeeded in cloning an LNav1cDNA with exon 4b yet.

Figure 3.3. Alignment of the mutual exclusive exon 4a/4b splicing in Domain I, segment 1 of molluscan sodium channels, compared to the homologous exon region in human Nav1 channels.
Exon 4 b differs in possessing two to three extra charged amino acids that are missing in exon 4 a . These extra charges could be connected to the functional differences associated with expression of the two exons.

3.1.1.2 Optional exon in II-III linker region (optional exon 21) found in LNav1 sodium channel α-subunit

The optional exon region is 174 bp long and translates into 58 a.a. and is inserted at a phase 0 splice site where the exon splices into the reading frame without disturbing the reading frame.

The optional exon 21 is found in the distal portion of the II-III cytoplasmic linker, upstream of which is an ankyrin binding motif found only in vertebrate Nav1 channels that promotes clustering of Nav1 channels at nodes of Ranvier of myelinated vertebrate axons. This exon possesses an unusually high amount of serins, some of them conserved among different molluscan species (Figure 3.4).
a
IVSRAGSIYSTKDLKSPLGSHSGSSHCSSCSSLSDSAQTKKIDLEGDHEINEVEIVYAKE P D D C

b
Figure 3.4 Optional exon 21 in molluscan and human sodium channel α-subunit.
a. The amino acid sequence of optional exon 21(adjacent exons shown in green). There are 14 serines concentrated in the 35 a.a. stretch of the exon (red).
b. Optional exon 21 is conserved among gastropods Lymnaea, Biomphalaria and Aplysia but only the distal part of it is conserved in more distant mollusks Loligo (squid) and Lottia (limpet snails). Two serines are conserved among all gastropods compared, while 5 more are somewhat conserved.

LNav1 α /pIRES clones both with and without the II-III fragment were made. They are referred to as LNav1 $\alpha(-)$ and $\mathrm{LNav} 1 \alpha(+)$.

3.1.2 The construction of the full length α-subunit clone

Once we had confirmed the reference mRNA sequence of the snail LNav1 sodium channel, we split up the snail Nav1 channel coding region into four equal parts, put together with unique restriction sites into mammalian expression vector pIRES2-EGFP fitted with an adaptor to accommodate the four unique restriction sites (See Appendix 1Table 5.2. Primers for full length α-subunit contig construction in pIRES vector for primer sequences). The adaptor consisted of two self-annealing 50 bp linker sequences
spanning XhoI and XmaI overhang and containing four internal restriction sites for cloning, MluI, SpeI, HindIII and EcoRI:

Figure 3.5. Amplification of four overlapping fragments coding for the $\mathbf{L N a}_{\mathbf{v}} \mathbf{1} \boldsymbol{\alpha}$ - subunit.
Overlapping cDNA fragments amplified with unique restriction sites : 1.MluI-SpeI, 2.SpeI-HindIII, 3.HindIII-EcoRI, 4.EcoRI-EcoRI ${ }^{4}$. The level of PCR amplification varied with differing PCR primer sets but all PCR products were successfully ligated into TOPO Blunt vector and transformed to collect sufficient amount of cDNA inserts for construction of the final full length Navl α-subunit cDNA clone. See the sequence of the full length LNav1 α in Appendix 2. See the vector map of pIRES2 -EGFP with $\mathrm{LNa}_{\mathrm{v}} 1$ insert below.

[^2]

Figure 3.6. Vector map of pIRES2 -EGFP with $\mathrm{LNa}_{\mathbf{v}} 1$ insert.
The electrophysiological recordings of HEK cells transfected with LNav1 α - both with (+) and without (-) optional exon 21, with exon 12a, failed to demonstrate any sodium current above $\sim 100 \mathrm{pA}$, that could be accounted above the low level of contaminating, native human Nav1.7 α-subunit that has been detected in HEK-293T cells. Attempts to record the snail LNav1 channel in combination with cotransfected human $\mathrm{Na}_{\mathrm{v}} 1$ channel beta subunit homolog $\beta 1^{5}$ and Drosophila beta subunit homolog, TipE^{6} did not generate any positive results either.

Although we did not obtain expression characteristics of the snail LNav1 α subunit, there were a number of things we identified about the expressed gene. qPCR analysis revealeds that the Lymnaea Nav1 is limited to the brain and is not expressed in internal organs. We have not yet separated different sensory organs to assess whether Nav1 is also present in sensory organs such as lips, eyes and tentacles.

[^3]
LNav1 α expression

Figure 3.7 Quantitative PCR analysis of Lymnaea stagnalis internal organs for the presence of $\mathbf{L N a}_{\mathbf{v}} \mathbf{1}^{7}$.
Expression of $\mathrm{LNa}_{\mathrm{v}} 1$ in internal organs and whole animals at various developmental stages (embryo, juvenile, adult) were analyzed with qPCR. $50 \%-75 \%$ embryos taken 5-6 days after the egg mass was deposited. 100% embryos were taken when the snails were fully formed inside the eggs, just prior to hatching: 10-11days after the egg mass was deposited. The state of the snail embryonic development and maturation was based on the schedule established by (Nagy \& Elekes, 2002).This diagram demonstrates the prevalence of $\mathrm{Na}_{\mathrm{v}} 1$ in the brain, both adult and juvenile but not anywhere else.

The sequences of the two major variants of $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$ subunit were submitted to GenBank and received the following accession numbers:

LNav1 exon $4 \mathrm{a}+\mathrm{KM} 283185$ (coding for LNav1 exon 4a and + optional exon 21)
LNav1 exon 4b + KM283186 (coding for LNav1 exon 4b and + optional exon 21)

3.2 Analysis of calcium selective sodium channel LNav2

In parallel with cloning a sodium selective $\mathrm{Na}_{\mathrm{v}} 1$ channel, I was attempting to sequence and analyse the expression of the snail calcium-selective $\mathrm{Na}_{\mathrm{v}} 2$ channel. This is a more ancestral version of a sodium channel, found in a simple single cell eukaryote, before the fungal-animal split (Thecamonas trahens) to most invertebrate phyla but notably absent in vertebrates. The Nav2 channel has been associated with sensory systems.

I used primers designed by Dr Spafford (see Appendix 1). The PCR primer sequences were originally based on homologous regions in genomic sequences spanning Nav2 channel exons in other

[^4]gastropod snails, Lottia, Aplysia and Biomphalaria, and later compared with Lymnaea genomic sequence once the first cDNA fragments were isolated from PCR reactions. After the initial success of finding N-terminal sequence in mRNA from snail tentacles, I was not able to find a fully expressed LNav 2 in any of the snail organs that were tested. The project of cloning $\mathrm{LNa}_{\mathrm{v}} 2$ was therefore abandoned in favor of other research directions.

MSEMKIVPLAFRPFTEESH KALLEREAELNQRDLHRAR HAQDAHLVDGELKFGSQED EDTLPPENPDLKEGNALTK AYGRFPNRLLGCPIEEIDP GIRDKFVVIGSRFGKKFIY RFTATKSLFILAPWHSLRR LTLRIATNQFFDLCIFLTI IVNCVFLAVPYLPIAENIE YLFLAIYTLECIIKIMARG FVTHKHTYLFDPWNWLD

Abstract

MSEMKIVPLAFRPFTEESHKALLEREAELNQRDLHRARHAQDAHLVDGELKFGSQEDEDTLPPENPDLKEGNALTKAYGRF PNRLLGCPIEEIDPGIRDKFVVIGSRFGKKFIYRFTATKSLFILAPWHSLRRLTLRIATNQFFDLCIFLTIIVNCVFLAVP YLPIAENIEYLFLAIYTLECIIKIMARGFVTHKHTYLFDPWNWLDFIVIVTAYMTIVLQLVSQEMTVGNLQGLRTFRVLRA LKTVSIVPGLKTMVSALLRAFKMLFEVILLTFFCLMVFAMFGLQIYMGAFRNKCVMNVTGYVENPSQTYDDYYAKWIRNPD KWHQADGEYIICGNLSGSGTCPDSYICLAGIGDNPRFGYLSFDHFGWALLSCFQLITLDFWEDIYNKAIRATGPWNVIFFI IVIFFGSFYLINLMLAVVSMSYEEEAADELIDPDIGALEGQVIDRNCDCCERWMCLYIPFLKMQNHFYVFVSDPLFDLIIT FCIFINTLFLSLEHHNQSSTLTTTLTVSNIIFTCVFILEAFCKIIGLGKYYFMVGWNIFDLVIALASLLDLGLEQVDGLNV LRTFRLLRVFKLAQSWPTMRLLLTIIVSTLGALGNLCLILCIVIYIFAVIGLQLFRTQYTAENFGKDGVPRWHFKDFYHAM LMIFRVLCGEWIEPLYDCMKASSELCMVVFLPALVFGNFIVLNLFLALLLNAFASDSLDKHRESSTERSKLMEGFDRLQQL FCCCFTCPNGKVGPAGNTTQNASQGEADADSLNDTAFGRNWHLFRVFIKRIVDHRFFELCVLIMILGSSLSLAFEDIYLYQ RPTMMYVLGICNITFSVLFTIEMILKWIGLGLTEYFTNFWTILDFFIVFISLLGLIGDYIGLGSVAAFRSLRTLRSLRPLR AISRWQGMKIVVNALMNAIPAI INVLLVCMVFWLIFSIMGVQFFKGRFYKCKNTTSLTVFDASVVPNKNVCLAVGGAWENS NVNFDNSAVGFLALFQVATFEGWMEVMRDAVDSTSVTNLYAYLYFIVFIVFGSFFSLNLFIGVI IDNFNVLKKRYEGSYLD AFLTQSQRNYYNTLKKLGKKKPQKTIKRPKNKFQLFFYNLSMSSKFEISIVLLIFCNMVNMAVEHYHESGAVTDGLEMINL LFTAVFTLEAVVKILGLRHHYFRFLWNLFDFTIVTVSLFAELFNFVMDNLFVTPTLLRVIRVFRIGRILRLIKGAKGIRKL LFALIISLPAIFNIGALLFLIMYMYAIIGMSSFIHVRVNGVMTEIINFQTFGNSFMLLLRLATSAGWNDILEALLISPPYC NPNFYTLPDGTMKESVYGDCGTPYLAIPYMVSYIIIVWLIVINMYIAVILENFSQAHEQEEVGITEYDFDMFYVTWEKYDP LATQFIKFDQLANFVGDLEQPLQIPKPNEIALVSFNIPIMEGEKMHCLDILIALVRNVLSDVEESEELKTLKEQMEAKFAE NFPARVNITVKSSTLQRKKEDVAARTLQRAWRSYKAHKAMRNITALAVQLKIRKAGNAGLRSRSEAIRNLDTNLTSALTYF NNRDPNANPESSDMNVSENALSRQIQVKTMSEISSPASQQPSKVHTEPL

Figure 3.8. PCR amplification of snail sodium channel $\mathrm{LNa}_{\mathbf{v}} 2$ fragment and sequence of a full-length amino acid contig formed out of snail genomic sequence .
a. A 280 bp amino terminus encoding region spanning the start codon of snail LNav2 was amplified from juvenile snail central nervous system cDNA and sequenced. The 280 bp fragment is contained in Exon 1 in the genomic region of LNav2, identified in Lymnaea genome sequence available from Angus Davison (Liu, et al., 2013).
b. Using newly designed primers, a 650 bp amino terminal encoding fragment including region downstream of the first fragment was isolated from eye (1) and tentacle (5) tissue. The fragment spans
the first two exons 1 and 2, thus confirming that the source of the amplified sequence in eye and tentacle mRNA but not genomic DNA, which could have been the source of the first 280 bp fragment. c. Amino acid sequence of the amino-terminus fragment. Exon 1 and exon 2 shown respectively, in grey and yellow. (See Appendix 4, Genomic region 2).
d. Proposed sequence of Nav2 formed by contiguous spliced exons identified from genomic DNA. The transmembrane domains are shown in blue, Voltage sensors are indicated in purple and ion selectivity pore is highlighted yellow. The proposed hinged lid motif (AFL) responsible for fast inactivation in sodium channels is shown in red. The hydrophobic region analysed to find the transmembrane regions was performed with ProtScale in ExPASy (SIB Bioinformatics Resource Portal) and TMPred(Hofmann \& Stoffel, 1993).

The Nav2 sodium channel has been cloned and expressed from German cockroach Blatella germanica and fruit fly Drosophila melanogaster (Zhang, et al., 2013) as well as sea anemone Nematostella vectensis (Gur Barzilai, et al., 2012). It is a calcium-selective sodium channel, with a DEEA selectivity filter which lacks the lysine in the pore that confers sodium selectivity. Replacement of the pore-loop from Domain II not just including the lysine residue in DKEA will generate a sodium selective channel out of the calcium selective one.

Below is the comparative alignment of the pore loop sequences of invertebrate Nav2 channels. Most of the Nav2 channel sequences have DEEA in the pore selectivity filter, except notably the simplest one, Thecamonas which has a DEES selectivity filter. The alignment of full length molluscan $\mathrm{Na}_{\mathrm{v}} 2$ homologs is illustrated in Appendix 3 (Alignment 6).

The genomic contig of the $\mathrm{LNa}_{\mathrm{v}} 2$ exon sequence was submitted to GenBank and received the accession number 282660.

Figure 3.9. Alignment of pore selectivity filters residues in calcium-selective $\mathbf{N a}_{\mathbf{v}} \mathbf{2}$ channels
The inner, high field strength (HFS) site in selectivity filters is boxed. The outer ring is highlighted in yellow color. Nav2 channel HFS site is typically DEEA. There is a variations in the apusozoans (preanimal fungi/split) with a DEES pore. Cephalochordate, Branchiostoma is DDQA, and there are unusual DEET and DETE pore of second Nav2 isoforms from Nematostella and Ciona.

3.3 Notable features from the gene structure of snail LNav1 and LNav2 channels

3.3.1 Conserved voltage sensors

All voltage-gated ion channels including 1x6TM potassium channels, and $4 \times 6 \mathrm{TM}$ channels like sodium channels (Nav1 and Nav2) as well as calcium channels (Cav1, Cav2 and Cav3) and NALCN have voltage-sensing S 4 segments. The human Na_{x}, which is not voltage sensitive, contains mutations in DI and DIII voltage sensor regions, which are almost identical in other sodium channels in different species. The homology of the S 4 region is evidence for the conservation of voltage sensitivity associated with most Na_{v} channels.

Figure 3.10 Alignment of voltage-sensing $S 4$ segments containing positive charges (R / K) every third amino acid in $\mathbf{N a}_{\mathbf{v}} \mathbf{1}$ and $\mathrm{Na}_{\mathbf{v}} \mathbf{2}$ channels.
Positive charges every third amino acid in S4 segments lie on one side of an alpha-helix. Voltagesensing for ionic channels conferred by sliding helix rotating outwards upon membrane depolarization and operating through a lever action of the amphipathic S4-S5 linker, drive opening of the channel pore domain.

3.3.2 Conserved fast inactivation motif in the III-IV linker of sodium channels.

The rapid inactivation motif located on the III-IV linker serves as a putative hinge-lid responsible for rapid N-type inactivation characteristic of sodium channels (Catterall, 2000).

It consists of three key hydrophobic amino acids, which often form the sequence IFM, but V, L, and A substitutions are also possible. See full alignment in (Appendix 3 Alingment 4).

Cnidarians	Nematostella	$\mathrm{Na}_{1} 1$	F L L	Coanoflagellates	Salpingoeca	$\mathrm{Na}_{4}{ }^{2}$	V L L
Platy helminth	Schmidtea	$\mathrm{Na}_{1} 1$	M F M	Coanoflagellates	Monosiga	$\mathrm{Na}_{4} 2$	L F L
Arthropods	Drosophila	$\mathrm{Na}_{\mathrm{v}} 1$	M F M	Ctenophorans	Mnemiopsis-a	$\mathrm{Na}_{4}{ }^{2}$	V L L
Annelids	Capiltella	$\mathrm{Na}_{1} 1$	M F M	Ctenophorans	Mnemiopsis-b	$\mathrm{Na}_{\mathrm{v}} 2$	V L L
Annelids	Helobdella	$\mathrm{Na}_{\mathrm{v}} 1$	M L M	Placozoan	Trichoplax-a	$\mathrm{Na}_{\mathrm{v}}{ }^{2}$	L F M
Mollusks	Lymnaea	$\mathrm{Na} \mathrm{v}_{1}$	M F M	Placozoan	Trichoplax-b	$\mathrm{Na}_{\mathrm{v}} 2$	1 L L
Urochordate	Halocynthia	$\mathrm{Na}_{1} 1$	1 FM	Cnidarians	Nematostella	$\mathrm{Na}_{2} 2$	1 F L
Cephalochordate	Branchiostoma-a	$\mathrm{Na}_{\mathrm{v}} 1$	L F M	Arthropods	Drosophila	$\mathrm{Na}_{2} 2$	$V \mathrm{~F}$ L
Cephalochordate	Branchiostoma-b	$\mathrm{Na}_{\mathrm{v}} 1$	L F M	Mollusks	Lymnaea	$\mathrm{Na}_{2} 2$	A F L
Vertebrate	human	Nav1.1	1 FM	Echinoderms	Stronglyocentrotus	$\mathrm{Na}_{5} 2$	M L L
Vertebrate	human	Nav1.2	1 FM	Hemichordates	Saccoglossus	$\mathrm{Na}_{4} 2$	M F L
Vertebrate	human	Na, 1.3	1 FM	Urochordate	Halocynthia	$\mathrm{Na}_{2} 2$	A F L
Vertebrate	human	Nav1.6	1 FM	Cephalochordate	Branchiostoma	$\mathrm{Na}_{2} 2$	1 FL
Vertebrate	human	Nav1.7	1 F M				
Vertebrate	human	Nav1.5	1 F M				
Vertebrate	human	Nav1.8	1 FM				
Vertebrate	human	Nav1.9	1 FM				
Vertebrate	human	Na, 1.4	1 FM				
Vertebrate	human	Nax	1 F I				

Figure 3.11. Key triplet residues forming the hinged lid associated with fast \mathbf{N}-type inactivation of sodium channels.
Snail LNav1 and LNav2 have "MFM" and "AFL" motifs, in lieu of the "IFM" motif in human Nav1 channels.

3.3.3 Conservation of eight core cysteines in extracellular turrets of all 4×6 cation channels

All known four domain cation channels (Nav2, Nav1, Cav1, Cav2, Cav3 and NALCN) possess eight core cysteines shared in the extracellular turret regions. Between S5 segment and the pore loop (S5P region), Domain I has four cysteines and Domain III has two cysteines. Domain IV has two core cysteines in the region between the pore loop and the S 6 segment (PS6 region). These cysteines are likely fundamental for the integrity of $4 \times 6 \mathrm{TM}$ ion channel types, supporting the P -loop structure.

Figure 3.12 Extracellular S5P and PS6 turret regions of $\mathrm{Na}_{\mathbf{v}}$ and other channels.
Illustrated in the alignment are Thecamonas trahens Nav2, Lymnaea Cav1, Cav2 and all human Nav1 channels. The segments are shown in blue and the pore loop regions are shown in brown. Deviated from
the core 8 cysteines are 2 or 3 extra turret cysteines in some human Na_{v} channels in Domain II S5P turret. $\mathrm{Na}_{\mathrm{v}} 1.9$ has two extra cysteines in Domain IS5P. Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ has two extra cysteines in Domain III S5P turret.

3.3.4 Conserved PDZ binding motif in ion channel C-termini.

PDZ domains are widespread, conserved sequence motifs preserved in most eukaryote species. PDZ domains are between 80 and 90 amino acids long with a tertiary structure of a six stranded beta sandwich with 2 alpha helices(Ranganathan \& Ross, 1997). These structures were named after proteins PSD-95 (PSD stands for postsynaptic density), the Drosophila septate junction protein Discs-large, and the epithelial tight junction protein Z $\underline{O}-1$ (Sheng M. , 1996), and they are found in most signaling proteins, where they are involved in protein-protein interaction (Lee \& Zheng, 2010). By analyzing a total of 72 PDZ domains corresponding to 2,998 ligands, Tonikian and colleagues suggested that there are 16 classes of PDZ domains, which are defined by the sequence of the C-terminal motifs that they associate with (Tonikian, et al., 2008). The analysis of the C-terminal tails of sodium and calcium channels reveals that human and molluscan $\mathrm{Na}_{\mathrm{v}} 1$ channels have differing C-terminal motifs that can be grouped according to their overall relatedness. Chromosome 2 sodium channels Nav1.1, Nav1.2, Nav1.3, Nav1.6 and Nav1.7 mostly end in a " K ", whereas molluscan $\mathrm{Na}_{\mathrm{v}} 1$ channels have a different motif ending in a "V". All Cav 2 calcium channels have a conserved C-terminal "C". Interestingly, the most ancient sodium channel $\left(\mathrm{Na}_{\mathrm{v}} 2\right)$ and the most ancient Ca_{v} channel $\left(\mathrm{Ca}_{\mathrm{v}} 1\right)$ both have a similar C terminal "L", that suggest a common regulatory mechanism of different channels through interaction with PDZ domain containing proteins.

Figure 3.13 Groupings of sodium and calcium channels according to apparent C-terminal PDZ binding motifs.

3.3.5 Conserved C-terminal IQ motif

Both sodium and calcium channels possess a single C-terminal calmodulin binding IQ motif (Van Petegem, Lobo, \& Ahern, 2012). Through electrophysiological experiments (Kung, et al., 1992) shows the importance of Ca^{2+} calmodulin modulation on the calcium dependant potassium and sodium currents in Paramecium and other early eukaryotes.
$\mathrm{Ca}_{\mathrm{v}} 2$ channels have a calcium-dependent facilitation that involves calmodulin association with the C-terminus, but the IQ motif is not completely conserved. $\mathrm{Na}_{\mathrm{v}} 1$ channels on the other hand, possess a conserved C-terminal IQ motif, but the regulation of $\mathrm{Na}_{\mathrm{v}} 1$ channels by calmodulin is variable. There is no calcium-calmodulin regulation of cardiac $\mathrm{Na}_{\mathrm{v}} 1.5$ channels, while currents generated by brain $\mathrm{Na}_{\mathrm{v}} 1.2$ and skeletal muscle $\mathrm{Na}_{\mathrm{v}} 1.4$ channels are regulated by calcium (Feldkamp, Yu, \& Shea, 2011). $\mathrm{Na}_{\mathrm{v}} 1.4$ channels bear a fast calcium regulation as measured by the rapid kinetics of $\mathrm{Ca} 2+$ photorelease into the cytosol. Transplanting the $\mathrm{Na}_{\mathrm{v}} 1.4$ carboxy terminus onto $\mathrm{Ca}_{\mathrm{v}} 1$ channels recreates the Ca^{2+} regulation of sodium channels in calcium channels (Ben-Johny, et al., 2014).

	$\mathrm{Na}_{\mathrm{v}} 2$ channels		$\mathrm{Cav}^{1} 1$ channels		$\mathrm{Na}_{\mathrm{v}} 1$ channels		Cav2 channels
Thecamonas trahens	alrivewy	Salpingoeca rosetta	lqeiyren	Nematostella vectensis	ASVIQRTF	Trichoplax adhaerens	ALII YEYY
Salpingoeca rosetta	AISIQRFF	Paramecium tetraurelia	AVLIQQNA	Schmidtea mediterranea	AKVIVKym	Hydra magnipapillata	Aklmweny
Monosiga brevicollis	Arrlarhv	Mnemiopsis Leidyl	tlmiakfy	Drosophila melanogaster	ARLIQNAW	Clonorchis sinensis-a	gllitenw
Mnemiopsis Leidyl-A	AIVLQKaf	Trichoplax adhaerens	ALIIYEYY	Lymnaea stagnalis	ARIIQKAY	Clonorchis sinensis-b	SYLIIENW
Mnemiopsis Leidyl-B	AIVLQKal	Nematostella vectensis	TYLIQEYF	human $\mathrm{Na}_{\mathrm{v}} 1.1$	AVII QRAY	Caenorhabditis elegans	GLLILENY
Trichoplax adhaerens-A	AVIIQray	Cyanea capillata	TFLIQEYF	human $\mathrm{Na}_{\mathrm{v}} 1.2$	Al\|IQRAY	Lymnaea stagnalis	GLLISENW
Trichoplax adhaerens-B	akvigray	Amphimedon queenslandica	ALFIQQFW	human $\mathrm{Na}_{\mathrm{v}} 1.3$	AAIIQRNF	Capitella teleta	glliamew
Nematostella vectensis	ASIIQKCY	Lymnaea stagnalis	TFLIQDYF	human $\mathrm{Na}_{\mathrm{v}} 1.6$	AVVLQRAY	Drosophila melanogaster	gFlitesw
Drosophila melanogaster	arviaray	Drosophila melanogaster	TYLIQDYF	human $\mathrm{Na}_{\mathrm{v}} 1.7$	ATVIQRAY	ngylocentrotus purpuratus	ALliyetw
Lymnaea stagnalis	artlaraw	Branchiostoma floridae ।	TYLIQDYF	human $\mathrm{Na}_{\mathrm{v}} 1.5$	AMVIQRAF	Ciona intestinalis	AMLVYEHW
itrongylocentrotus purpuratus	AKIVQRAY	human $\mathrm{Ca}_{\mathrm{v}} 1.1$	TFLIQEHF	human $\mathrm{Na}_{\mathrm{v}} 1.8$	ATVIQKAY	Branchiostoma floridae	Allihdyf
Saccoglossus kowalevskii	VLKIQKAY	human $\mathrm{Cav}_{\mathrm{v}} 1.2$	TFLIQEYF	human $\mathrm{Na}_{\mathrm{v}} 1.9$	AAIIQKAF	human $\mathrm{Ca}_{\mathrm{v}} 2.1$	Ammimeyy
Halocynthia roretzi	AKIIQVAW	human $\mathrm{Cav}_{\mathrm{v}} 1.3$	TFLIQDYF	human $\mathrm{Na}_{\mathrm{v}} 1.4$	AIKIQRAY	human $\mathrm{Cav}_{\mathrm{v}} 2.2$	ALMIFDFY
Branchiostoma floridae	avtiqraf	human $\mathrm{Cav}^{1} 1.4$	TFLIQDYF	human Nax	atil Qray	human $\mathrm{Cav}_{\mathrm{v}} 2.3$	AMMIMDYY

Figure 3.14 Comparison of the IQ motif among eukaryotic ion channels.
The IQ motif is conserved in $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Ca}_{\mathrm{v}} 1$ channels but shows variations in $\mathrm{Na}_{\mathrm{v}} 2$ and $\mathrm{Ca}_{\mathrm{v}} 2$. In molluscan $\mathrm{Na}_{\mathrm{v}} 2$ the IQ motif is represented by LQ sequence.

3.3.6 Cytoplasmic I-II linker of $\mathrm{LNa}_{\mathrm{v}} 1$ is most homologous to nervous system-specific human sodium channels such as $\mathbf{N a}_{\mathbf{v}} \mathbf{1}$.

Snail LNav1 sodium channel shows no overall amino acid sequence similarity across the fulllength 2007 amino acid protein, for any one of the ten Nav1 sodium channels. However, the comparative alignment of human and snail channels (especially the I-II linker region) suggests that snail $\mathrm{LNa}_{\mathrm{v}} 1$ does resemble the TTX-sensitive, neuronal sodium channels on human chromosome 2, linked to Hox D: Nav1.1, $\mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3$ and $\mathrm{Na}_{\mathrm{v}} 1$ 1.7. $\mathrm{LNa}_{\mathrm{v}} 1$ also somewhat resembles Nav1.6, which is structurally similar to these other sodium channels located on chromosome 2, but is located on chromosome 12, and linked to Hox C. Snail $\mathrm{Na}_{\mathrm{v}} 1$ is not found outside the brain, so it is not surprising that it is less similar to skeletal muscle specific sodium channel, Nav1.4 (chromosome 17), linked to Hox B, or heart-specific (Nav1.5) or Nav1.8 or Nav1.9 which are peripheral nervous system specific channels, linked to Hox A (Lopreato, et al., 2001).

Figure 3.15 Overall structural relationship between $\mathrm{LNa}_{\mathbf{v}} 1$ and the ten human sodium channels.
The unrooted phylogenetic tree represents the degree of homology among human sodium channels and the snail sodium channel. Different colors refer to different localization of the channel genes on different human chromosomes (h.ch). $\mathrm{Na}_{\mathrm{v}} 1.1, \mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3, \mathrm{Na}_{\mathrm{v}} 1.7$ are found on Chromosome 2 (green). Na_{x} is also on Chromosome 2, but is a highly modified sodium channel, that is reported to serve as a salt receptor in the hypothalamus. $\mathrm{Na}_{\mathrm{v}} 1.6$ is found on Chromosome 12 (brown) and resembles the cluster of Na_{v} channels on Chromosome 2. $\mathrm{Na}_{\mathrm{v}} 1.5, \mathrm{Na}_{\mathrm{v}} 1.8, \mathrm{Na}_{\mathrm{v}} 1.9$ are clustered on human Chromosome 3(purple). $\mathrm{Na}_{\mathrm{v}} 1.4$ is found alone on Chromosome 17 (red).

As mentioned above, the similarity of snail LNav1 channels to human nervous system specific channels is evident in the more divergent cytoplasmic regions, such as the I-II cytoplasmic linker. Exon 11, in particular, contains two conserved protein kinase A regulatory sites (serine: 573 and 623) and a protein kinase C regulatory site (serine 576). These are shared amongst snail $\mathrm{LNa}_{\mathrm{v}} 1$ and human $\mathrm{Na}_{\mathrm{v}} 1.1$, $\mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3, \mathrm{Na}_{\mathrm{v}} 1.7$ and $\mathrm{Na}_{\mathrm{v}} 1.6$ channels, but not other mammalian sodium channels $\left(\mathrm{Na}_{\mathrm{v}} 1.5\right.$, $\left.\mathrm{Na}_{\mathrm{v}} 1.8, \mathrm{Na}_{\mathrm{v}} 1.9, \mathrm{Na}_{\mathrm{v}} 1.4\right)$. Phosphorylation at these serine residues reduces the peak current of mammalian neuronal sodium channels (Cantrell, et al., 2002), and may be an ancient feature shared amongst invertebrate and vertebrate neuronal sodium channels (See Appendix 3, Alignment 3).

3.3.7 Cytoplasmic II-III linker sequence of $\mathrm{LNa}_{\mathrm{v}} 1$ channel shows little homology with human $\mathrm{Na}_{\mathrm{v}} \mathbf{1}$ channels, where a sodium channel ankyrin binding motif is located.

The cytoplasmic II-III linker, unlike the I-II linker, is highly divergent in snail $\mathrm{LNa}_{\mathrm{v}} 1$ channels compared to human Nav1 channels. The divergence appears to relate to the evolution of the II-III linker in vertebrates. Axon initial segments and nodes of Ranvier in myelinated axons contain dense clusters of sodium channels, which underlie the evolution of fast signaling in vertebrates (Hill, et al., 2008). Key to this evolution is the ankyrin-spectrin based membrane structures. Ankyrin-G participates in localization of all known AIS components, such as voltage-gated sodium channels, potassium channels that modulate sodium channel activity, 186 kDa neurofascin, a L 1 CaM that directs GABAergic synapses to the AIS and beta-4 spectrin, which stabilizes axon initial segments (Hedstrom, Ogawa, \& Rasband, 2008). Moreover, ankyrin G is required to form microtubule bundles at the axon initial segment (Lai \& Jan, 2006).
The evolution of ankyrin binding motifs in L 1 CaM is found in all bilateral organisms including C. elegans and Drosophila (Bennett \& Lorenzo, 2013). Voltage-gated $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels only acquire an ankyrin-binding motif in cephalochordates like Branchiostoma (Amphioxus), while KCNQ2/3 channels followed with gaining of an ankyrin-binding motif later in jawed fish (Pan, et al., 2006). True myelination appears in jawed fish, so the ankyrin binding motif likely evolved for clustering sodium channels in AIS before their appearance in clustering sodium channels in nodes of Ranvier (Hill, et al., 2008). The distal II-III linker contains optional, 58 amino acid exon 21 downstream of the chordate ankyrin binding motif. The function of the optional exon 21 in the II-III linker of snail LNav1 channels is unknown, but it appears to be a conserved optional exon found in all molluscan channels (Appendix 3, Alignment 4).

3.4 Discussion

3.4.1 Characterization of the Lymnaea sodium channel gene $\mathrm{LNa}_{\mathrm{v}} 1$.

In this thesis I set out to characterise the pore forming α-subunit of the Lymnaea sodium channel which serves to generate the upstroke of the action potential in snails and all metazoan species. Sodium channels are found in all animals with nervous systems, including the basal cnidarians, but are absent in more simple multicellular organisms, such as the placozoan (Trichoplax adherens), the sponges
(Amphimedon queenslandica), and the ctenophorans (Mnemiopsis leidyl) (Liebeskind, Hillis, \& Zakon, 2011).

As expected, in the pond snail, Lymnaea stagnalis we found a single gene coding for the $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel and it spans 31 exons and codes for a full length channel with a 2007 amino acid sequence. We identified several conserved domains that are expected to be important for different aspects of sodium channel activity and expression. We also compared highly divergent regions of the channel which allowed us to gain insight into both the evolutionary relationships of this protein and its functions within the invertebrate nervous system.

3.4.2 The dual evolution of sodium-selectivity of the $\mathrm{Na}_{\mathrm{v}} 1$ channel in the brain and the Cav3 sodium channel outside the brain in invertebrates.

We only found $\mathrm{LNa}_{\mathrm{v}} 1$ localized to the snail central nervous system. It is not found in appreciable amounts in any other tissues including, glands (prostate, albumin) or muscle or the heart. It has also been reported that the equivalent Drosophila Nav1 channel is also limited to the nervous system, so it is likely the case that sodium-dependent action potentials involving $\mathrm{Na}_{\mathrm{v}} 1$ channels don't exist outside the brain in invertebrates. The Spafford lab has shown that the snails like other invertebrates generate sodiumselective T-type channels by alternative splicing in exon 12 . These alternatively spliced T-type channels are notably expressed within the snail heart (Senatore, Guan, Boone, \& Spafford, 2014). It would mean that the sodium permeant T-type channel replaces the highly tissue specific Nav1 sodium channel genes expressed outside the brain, such as $\mathrm{Na}_{\mathrm{v}} 1.5$, a primary cardiac channel and $\mathrm{Na}_{\mathrm{v}} 1.4$, as a predominantly muscle channel.

From their localization patterns, snail $\mathrm{Na}_{\mathrm{v}} 1$ channels are most homologous to the human channels expressed in neurons in the chromosome 2 locus which contains $\mathrm{Na}_{\mathrm{v}} 1.1, \mathrm{Na}_{\mathrm{v}} 1.2, \mathrm{Na}_{\mathrm{v}} 1.3$, and $\mathrm{Na}_{\mathrm{v}} 1.7$ channels and Nav1.6, localized on chromosome 12.

This closer homology of $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels to the chromosome 2 and 12 mammalian sodium channels is evident in the most divergent regions of sodium channels, such as the I-II linker. Three consensus phosphorylation sites include serine 573, 576 and 623, all harbored in exon 11, that are commonly shared between snail and the chromosome 2 sodium channels and Nav1.6. Phosphorylation by PKA and PKC dramatically reduces the sodium channel peak amplitude without affecting other gating properties and the surface expression of sodium channels, leading to an overall reduction in neuron excitability in vivo (Catterall, 1993). Dampening of sodium channel activity by phosphorylation
in Nav channels appears to be a conserved evolutionary feature between mammalian and invertebrate neuronal Nav1 channels.

3.4.3 The localization of invertebrate sodium channels along the axonal surface

The II-III linker of mammalian sodium channel shows little homology with $\mathrm{LNa}_{\mathrm{v}} 1$ II-III linker. This region is directly involved in channel localization and serves as a binding point for the cytoskeleton structures that keep sodium channels clustered at the nodes of Ranvier and on the axon initial segment. Differences in the axonal organisation of the sodium channels between myelinated mammalian neurons and unmyelinated invertebrate neurons would partially explain the divergence in the II-III linker region. Mammalian Na_{v} 1channels have a highly conserved II-IIIL anchor motif that binds ankyrin G- an adapter protein that tethers the channel to the spectrin-actin complex(Lai \& Jan, 2006). It is a 9 amino acid sequence $\frac{V}{A} P \frac{I}{L} A X X E \frac{S}{D}$ D where X are random amino acids.

This ankyrin G binding motif is found in basal chordates, including the urochordates (ascidians) and jawless fish (hagfish and lampreys), where it likely serves to support clustering of sodium channels at the axon initial segment (Hill, et al., 2008). Myelination first appears within the craniates of vertebrates which includes all the bony fish and contemporary sharks (gnathostomes) and most basally, in a placoderm ancestor (Hill, et al., 2008) (Bullock, Moore, \& Fields, 1984). The ankyrin G motif promotes the localization of Nav channels clustered at the nodes of Ranvier in myelinated axons of craniate vertebrates (Fache, et al., 2004).

The snail sodium channel does not have the anchor motif and there is little information available about the axonal distribution of the sodium channels in invertebrates. Myelination though, isn't strictly a vertebrate innovation, since many invertebrate lineages have myelinated axons (internodes) and nodes, like nodes of Ranvier, whose structure resembles vertebrate axons. The examples of myelinated invertebrate axons are found in crustaceans (malacostraca, including cecapod shrimp and copepods) and annelids (polychaetes and oligochaetes) (Hartline \& Colman, 2007).

Figure 3.16. Evolution of myelin sheath in bilateria.

Taxa that are reported to have myelin sheath are shown in red. Animals with unmyelinated neurons are shown in blue. Taxa marked by asterix have suspected myelin structures that have not yet being confirmed by electron microscopy (Hartline \& Colman, 2007).

We can speculate that the molluscan sodium channels spread along the axon with an especially high concentration at the AIS(Hill, et al., 2008). The mechanism for axonal localization of snail channels has not been found yet, although the II-IIIL region appears to be a likely target for any possible anchor -like proteins. The string of charged amino acids at the distal end of the optional exon 21^{8} in the II-IIIL (N E V E I V Y $\frac{\mathrm{A}}{\mathrm{V}}$ K) is conserved among all known molluscan channels, but not in human channels and seems like a potential candidate for ankyrin -like protein binding. Another candidate region for protein-protein interaction is located on the C-terminal end immediately posterior (7 residues in $\mathrm{Na}_{\mathrm{v}} 1$ and 8 residues in $\mathrm{Na}_{\mathrm{v}} 2$) to the DIVS6. It is conserved both among $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ sodium channels. A high degree of homology indicates functional significance, though no known motifs were identified.

Mollusc Nav1

E	D	V	Q	Q	G	L	T	P	D	D	F	D	M	Y	Y	E	K	W	E	K	X	D

[^5]
3.4.4 The evolution of TTX insensitivity in Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ channel and other $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels.

Tetrodotoxin is a highly potent pore blocker of $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels and is produced by bacteria, mostly Vibrio alginolyticus which exists symbiotically with many discovered hosts including puffer fish and other fish species, turbellarian flatworms, blue-ringed octopus (Hapalochlaena), western newt (Taricha), toads (Atelopus), sea stars, angelfish, polyclad flatworms, arrow worms (Chaetognaths), several ribbonworms (nemerteans) and xanthid (horseshoe) crabs (Soong \& Venkatesh, 2006). TTX serves as protection against predators and is also used by predators to subdue prey. TTX can pass through cell membranes so that all tissues are exposed to it, and thus both predator and prey have developed mutations in the $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel pore for TTX resistance. TTX is found in gastropod snails too (Hwang, Tai, Chueh, Lin, \& Jeng, 1991). TTX poisoning due to ingestion of marine, gastropod snails is widespread throughout Japan, China, Taiwan and Europe and it is believed that the marine snails accumulate TTX from eating animals that contain the TTX producing bacteria, such as starfish or pufferfish (Yoshida, 1994).

It is probably because of the chronic exposure to TTX, that gastropod snails, like the freshwater pond snail Lymnaea stagnalis have high insensitivity to TTX. Where TTX sensitive $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels are blocked in the low nanomolar range, action potentials in snail neurons are resistant to upwards of tens of micromolar levels of TTX (Soong \& Venkatesh, 2006).

Evolutionary adaptations in the sodium channel pore for TTX-resistance has allowed a population of garter snakes Thamnophis sirtalis in the Willow Creek district to survive and feed on its toxic prey, the newt Taricha granulosa, which have extremely high levels of TTX in their skins. Sodium channels in garter snakes in a Bear Lake district are sensitive to low nm concentrations of TTX, whereas the same garter snakes in the Willow Creek district, are insensitive to TTX in the tens of micromolar range (Geffeney, Brodie, Ruben, \& Brodie, 2002). Peter Ruben and colleagues have shown that Domain IV pore helices of Nav1.4 sodium channels are altered in the locales of species of Thamnophis sirtalis garter snakes. In particular a DG to NV conversion in pore helix 2 alters TTX sensitivity from a 50% block at $44+/-4.2 \mathrm{nM}$ to 12,000 +/- 2000 nM (Geffeney \& Ruben, 2006). In a similar fashion, TTX insensitive gastropod snails from Lymnaea, Biomphalaria, and Aplysia, also have a similar mutation of the DG pair of residues to an SD configuration. Mutation of the Domain IV SD residues in unique insect Varroa destructor to DD leads to the creation of high TTX sensitivity as long as a Domain III pore residues are modified too.

The DG pair of residues in Domain IV pore helix 2 is not altered in TTX sensitive species, such as the atlantic squid (Loligo) or fruit fly Drosophila, and the mammalian Nav1 sodium channels.

Once we have successfully expressed snail LNav1, we can address whether changes to the DG pair of residues in the pore helix of snail channels is responsible for its TTX insensitivity in exactly the same manner that Willow creek district Thamnophis garter snakes have TTX insensitive channels.

There are differences in TTX sensitivity of mammalian Na_{v} channels with TTX-sensitive (blocked by nM concentrations) channels and TTX-resistant channels (blocked by uM concentrations). The cause of the differences in TTX-sensitivity in mammalian channels is different than that which creates the highly TTX insensitive channels described above, and involves a particular aromatic residue (tyrosine or phenylalanine) (position 401) in the outer pore of Domain I in $\mathrm{Na}_{\mathrm{v}} 1.1,1.2,1.3,1.4$. This aromatic residue is altered to a cysteine or serine in Nav1.5, and Nav1.8 and Nav1.9 channels which provides the TTX resistance of mammalian channels.

Figure 3.17 Residues responsible for tetrodotoxin resistance/sensitivity of sodium channels.
Here we can see the residues responsible for TTX resistance in molluscan and snake sodium channel, but not mammalian sodium channels, whose mechanism for TTX resistance is located in the different region. Shown in yellow is the forth domain part of the selectivity filter motif DEḰ. The boxed regions that flank the selectivity filter form 2 helices and with the red letters representing amino acids responsible for TTX resistance. SD residues (molluscan sodium channels) that substitute for DG residues render the channel TTX-insensitive. Mutation in the same location in garter snakes (DG to NV) also increases resistance to tetradotoxin. DG residues are therefore likely to be essential in for tetrodotoxin binding in the pore of the sodium channel.

Figure 3.18 The comparison of Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ against the sodium channel sequences of other organisms.
Maximum likelihood phylogeny of $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ sodium channels, with bootstrap scores above branches. Due to high homogeneity of sodium channel across the species, alignment of the sodium channels helps establishing the evolutionary relationships between the species.

3.4.5 Characterization of the $\mathrm{LNa}_{\mathrm{v}} 2$ channel gene.

There is a second, more ancestral sodium channel gene that is located in invertebrates, but lacking in vertebrates. It was dubbed "DSC1" or "Drosophila Sodium Channel 1" in fruit fly; later the first expression of a homolog of this gene was obtained from german cockroach and termed BSC1 or "Blattella Sodium Channel 1" gene. The notable feature of this channel is that it is highly similar in sequence to the invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ channels, but displays a DEEA selectivity filter in place of the conserved $\mathrm{Na}_{\mathrm{v}} 1$ DEKA sodium-selectivity filter. Expression of $\mathrm{Na}_{\mathrm{v}} 2$ channels from Drosophila, Blattella and the cnidarian, Nematostella in Xenopus oocytes confirm that Nav2 channels are calciumselective channels (Zhang, et al., 2013) (Gur Barzilai, et al., 2012). Mutant DSC1 channels in Drosophila suggest that Nav2 channels are involved in sensory systems, like olfaction, and are also associated with the stress response, as knockout animals have a distinct jumpy phenotype that is intensified by heat shock and starvation (Zhang, et al., 2013).

We found a partial mRNA transcript coding for the N -terminus of snail $\mathrm{LNa}_{\mathrm{v}} 2$ using cDNA derived from snail tentacles and eye spots, but we were not able to amplify any snail $\mathrm{LNa}_{\mathrm{v}} 2$ fragments from cDNA isolated from heart and brain. Our PCR data supports the assertion that Nav2 channels have limited expression outside of sensory systems, and has limited to no overlap in expression with brainspecific Nav1 channel in snails. This is also consistent with the available Lymnaea brain transcriptome, which has a full length LNav1 sodium channel, but there isn't a single fragment of the LNav2 channels. We can put together almost the full contig of 25 exons of LNav2 from available genomic DNA sequence.

We have yet to put together a full length clone of snail LNav2 for expression but others have characterized the expression of $\mathrm{Na}_{\mathrm{v}} 2$ homologs. Ke Dong's lab has expressed Nav2 channels from german cockroach (Blatella germanica) and fruit fly (Drosophila melanogaster) and the Moran lab has expressed $\mathrm{Na}_{\mathrm{v}} 2$ sodium channels from the cnidarian nervous system, starlet sea anemone, Nematostella vectensis, From this work, it appears that invertebrate Nav2 channels express without requirement of additional auxillary beta subunits(Gur Barzilai, et al., 2012).

Remarkably, the only successful expression of invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels comes from different arthropod $\mathrm{Na}_{\mathrm{v}} 1$ channels expressed in vitro by Ke Dong (Michigan State University), including

Drosophila melanogaster (fruit fly), Aedes aegypti (mosquito) Blattella germanica (german cockroach) and non-insect arthropod, varroa mite (Varroa destructor)(Lin, Right, Muraro, \& Bains, 2009).

Full length invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ clones express poorly in human HEK-293T cell lines and more successful expression is found by mRNA injection of run-off transcripts and expression in Xenopus (frog) oocytes. The absence of expressible invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ channels outside of arthropods may be the requirement of auxiliary beta subunits, identified as Tip-E in insects, which is required for functional expression of Drosophila para $\mathrm{Na}_{\mathrm{v}} 1$ channels (Warmke, et al., 1997). Another possibility for poor expression of invertebrate Nav1 channels in human cell lines is the importance of replacing the divergent II-III linker of snail $\mathrm{LNa}_{\mathrm{v}} 1$ with the human $\mathrm{Na}_{\mathrm{v}} 1.7$ counterpart containing the ankyrin G binding motif that is a requirement for trafficking human $\mathrm{Na}_{\mathrm{v}} 1$ channels to axon initial segments and nodes of Ranvier. HEK-293T cells were originally described as being derived from embryonic kidney cells, but their transcriptome reveals a more neuronal lineage.

3.4.6 Common conserved domains in $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$

The presence of the calmodulin binding IQ motif in both $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$ implies that the snail sodium channels, like many other ion channels are subject to regulation by intracellular calcium. Experiments in unicellular eukaryotes with a conserved IQ motif demonstrated that sodium channels lose their activity rapidly when the cytosolic concentration of calcium is low. The activity can be restored by introducing Calmodulin $-\mathrm{Ca}^{2+}$ complex but not by the presence of higher calcium concentration alone (Kung, et al., 1992).

The PDZ domain, a conserved C-terminal region found in multiple membrane proteins is responsible for protein-protein interaction. The distal part of the PDZ domain located on the carboxy tail is responsible for specific binding partner recognition. Morgan Sheng proposed that the PDZ domain plays a role in the clustering of ion channels on the neuronal surface (Sheng M. , 1996). Since different carboxy tail sequences imply different binding partners, we can presume that SGVVA from $\mathrm{LNa}_{\mathrm{v}} 1$ and HTEPL from $\mathrm{LNa}_{\mathrm{v}} 2$ would not bind the same ligands (See Figure 3.13 for PDZ motifs of different ion channels).

Chapter 4. Sodium channel auxiliary subunit $L N a_{v} B$

4.1 Putative auxiliary snail sodium channel subunit: results

4.1.1 $\mathrm{LNa}_{\mathrm{v}} 1$ specific polyclonal antibody

To recapitulate the expression features from snail $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit in vitro, we needed to express sodium channel specific β-subunits from snails. Since pond snail genomes and transcriptomes do not contain any gene resembling the four human sodium channel β - subunits or insectal auxiliary subunits (Tip-E or TEH genes), we were aware that we would have to use a different method than homology cloning to find a snail sodium channel beta subunit. In subsequent sections of this results chapter, I will outline how we generated a bacterial fusion protein coding for cytoplasmic regions of the snail sodium channel (the antigen), which was then injected into rabbits to generate snail $\mathrm{Na}_{\mathrm{v}} 1$ specific antibodies. The antiserum was used to fish out the sodium channel protein complex from the Lymnaea brain.

4.1.2 Making the antigen

Bacterial fusion proteins were designed by Dr Spafford and constructed by Neil Hsueh, a 499 project student. The target areas were I-II and II-III linker of the α-subunit. The I-II linker was intended to be universal for all the α-subunits, while the II-III linker was specifically designed to target the LNav1 $\alpha(+)$ variant. An in-frame C-terminal His tag on the vector pET22b vector was used to purify the bacterial fusion proteins on a nickel column. (See Appendix1. Table 5.3).

NavI-II L, size $=25.1 \mathrm{kDa}$

SSFGGESLSRSESADEPNKIAEAIDRFKRFGNWVKVKIIVCIKVKLQRQKNWRPSVPPSKLPELNGKENAFGDGTVIAMEKTPDDFPDGAMEPDDCFCYSLTKR
CTWCLVIEKPPIGRAWWALRCFMYRLAEHRYFDTFIIVMILLSSCALALEDAYLHEKPLLKEILEYMDKVFTVIFIVEMLVKWLEHHHHHH
NavII-III L, size $=11.5 \mathrm{kDa}$

SRAGSIYSTKDLKSPLGSHSGSSHCSSCSSLSDSAQTKKIDLEGDHEINEVEIVYHHHHHH
Induction of bacterial expression of fusion proteins in Rosetta bacteria produced visible protein bands illustrated on a SDS-PAGE gel (Figure 4.1).

2,3-linker

Figure 4.1 Expression of fusion protein ${ }^{9}$
Both whole cell lysate (WC) and supernatant (SUP) were compared for fusion protein presence before and after induction with IPTG. The thick protein band at present at 35 kDa (1,2-linker gel) and 15 kDa (2,3-linker gel) in the IPTG induced lanes is the fusion protein. The presence of the protein both in whole cell and in supernatant indicated that the proteins are water soluble.

Figure 4.2 Western blot of II-III linker polyclonal antibody.
Antibody binds the antigen well but the lack of the band on the brain lysate lane indicates that the antibody does not bind the proteins in the snail brain.

4.1.3 Antibody production

At the time of antibody production, the LNav1 with exon $21(+)$ channel that would generate the II-IIIL antigen to serve as a positive control for the II-IIIL polyclonal antibody, was not available and testing

[^6]the II-III L against the brain lysate produced negative results (Figure 4.2). The II-III L antibody was purified but never tested further. The universal I-II L polyclonal antibody alone was used for all downstream applications, and referred subsequently as the LNav1 α-specific antibody.

SDS-PAGE gel

Serum 1

Serum 2
Serum 3

Figure 4.3 Testing of an LNav1 specific antibody using Western Blotting.
Gradual increase in the affinity with every boost of antigen in rabbits of the polyclonal $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$ antibody resolved using SDS-PAGE. Coomassie stained gel (left gel) is a duplicate of the gel used for Western blotting (right three gels). The serums are numbered according to the number of antigen injections complete before a test bleed. Pre-bleed is not shown since no visible bands appeared on the membrane. The antigen serves as positive control while the HEK cell lysate serves as negative control. . The substantial antibody staining of HEK cells expressing the LNav1 α subunit (serum 3) demonstrate the potency and specificity of the rabbit antiserum for the LNav1 sodium channel.

Western Blotting with the LNav1 α antibody demonstrates that the antibody is highly specific for the expected 260 kDa LNav1 alpha subunit expressed in HEK-293T cells and the original fusion protein antigen. It also shows that HEK-293T cells will express the cloned LNav1 sodium channel, although we are unable to find expressible sodium currents after transfection.

The rabbits were terminally bled (exsanguinated) after the fourth boost with antigen and incomplete adjuvant cocktail, and the polyclonal antibody was purified from the antiserum with the antigen on a SulfoLink column, and then tested against expressed LNav1 in transfected HEK cells and in Lymnaea brain homogenates.

Figure 4.4 Comparison of $\mathrm{LNa}_{\mathbf{v}} \mathbf{1} \alpha$-subunit affinity between final bleed serum and purified antibody.
Western blot, Left (Ponceau general protein stain), Middle (tested with terminal antiserum \#4) and right (testing with purified antibody) with original bacterial antigen, untransfected HEK-293T cells, HEK cells expressing LNav1 and snail brain lysates. For the sake of consistency, the same amount of antigen was used in this gel as in gels used to test serums 0, 1, 2 and 3 illustrated in Figure 4.3. Terminal bleed antiserum (\#4) indicates some background binding in both negative control and transfected HEK cells expressing LNav1a lanes (middle gel), but the background improves dramatically after purification of the polyclonal antibody .Multiple bands in transfected LNav1 α subunit in HEK-293T cells may occur because of degradation of the large sized channel protein during membrane purification.

4.1.4 Co-Immunoprecipitation

The purified polyclonal LNav1 sodium channel antibody was used to fish for an LNav1 α subunit associated accessory subunit. For the lysis buffer, I originally chose RIPA (RadioImmunoPrecipitation Assay) buffer, a fairly strong buffer recommended for extracting membrane proteins. After an attempt using RIPA lysis buffer was unsuccessful, I switched to a milder buffer, CHAPS cell extraction buffer, which contains less harsh detergents and is better suited for co-immunoprecipitation experiments (Harlow \& Lane, 1999).

The polyclonal antibody was cross-linked to protein A sepharose beads with glutaraldehyde. Differing protein homogenate samples were poured over the antibody-coupled beads, washed with buffer and the remaining protein bound to antibody beads was loaded for SDS-PAGE analyses. SDS-PAGE was loaded with differing samples to resolve whether there was a unique protein band appearing only in a lane containing a snail brain protein complex. We expected a band in the range of 30 to 40 kDA , which corresponds to approximate sizes for Drosophila TIP-E and human sodium channel beta subunits.

A number of negative controls (lanes A to F, Figure 4.5) were used to ensure confidence that a positive result associated with a unique protein band (lane G, Figure 4.5) on an SDS-PAGE gel was specific to sodium channel complexes in snail brains. No positive control was available, except that we knew that the $\mathrm{LNa}_{\mathrm{v}} 1$ polyclonal antibody bound with high and selective affinity for $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel protein expressed in HEK-293T cells and in snail brain homogenate.

Brain lysate Co-Ip Comparison of sources and conditions Co-Ip

Figure 4.5 Isolating the $\boldsymbol{\beta}$ subunit using $\mathbf{L N a}_{\mathbf{v}} \mathbf{1}$ specific antibody.
SDS-PAGE gels were run that contained protein samples with snail mantle (lane A) versus snail brain homogenate (G). Control HEK cells (lane D) vs. transfected HEK cells with LNav1 channel (lanes B, C, E). Protein homogenates that were pre-cleared with general rabbit serum bound to protein $\mathrm{A}(\mathrm{SAC})^{10}$ and without pre-clearing the protein homogenate (lanes A, B and E). Lane F contained polyclonal antibodies alone bound to beads without protein homogenate. A comparison was also made between rabbit anti-serum containing (Lanes A, B, C, D and the gel on the left), and polyclonal antibody purified against the bacterial fusion protein antigen before binding to beads (Lanes E, F, G). The unique band in snail brain homogenate bound to the antibody-bound LNav1 complex is at roughly 47 kDa (lane G) and is not seen in any of the control lanes (A to F).

Snail mantle tissue was lysed and prepared as a protein homogenate in the same way as the snail brain tissue. Comparison between snail mantle tissue homogenate (lane A) and brain homogenate (lane G) allowed for identification of unique protein bands localized specifically to brain, the only organ

[^7]where LNav1 α-subunit is expressed, according to our previous qPCR transcript profile analyses for LNav1 channels from different snail tissues.
Homogenates of HEK-293 cells transfected with the α-subunit, both pre-cleared and not pre-cleared, were compared to see if the pre-clearing step eliminates any visible bands. Pre-clearing however, in our case had no obvious effect on removing contaminating proteins that could interfere with visualization of the protein of interest (lane B versus lane C, Figure 4.5). Most of the visible bands are likely due to nonspecific proteins in the antiserum such as albumin, and the polyclonal immunoglobulin G antibodies themselves (molecular mass ~ 150 to 170 kDa) which are comprised each of two light chains (23 kDa) and two heavy chains $(\sim 50 \mathrm{kDa})$. The $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel α-subunit is not visible on Coomassie stained gel and is only detectable by Western blotting with specific LNav1 specific polyclonal antibody. Using the comparative approach, especially comparing $\mathrm{LNa}_{\mathrm{v}} 1$ channels transfected in HEK cells (lane E, Figure 4.5), snail mantle homogenate (lane A, Figure 4.5), and snail brain homogenate (lane G, Figure 4.5), a unique protein band of $\sim 47 \mathrm{kDa}$, a possible accessory β subunit homolog, was only visible on the brain lysate sample (lane G, Figure 4.5).

4.1.5 Identifying the amino acid sequence of the putative β-subunit of $\mathrm{LNa}_{\mathbf{v}} 1$

The unique $\sim 47 \mathrm{kDa}$ protein band was cut out of the SDS-PAGE gel and sent to the SPARC BioCentre at the SickKids Hospital in Toronto, where protein sequences were determined. The protein band was digested by trypsin enzyme into fragments which underwent electrospray ionization (ESI) that ionizes the liquid containing protein fragments at high voltage and sprays the liquid as an aerosol to separate the protein fragments by liquid chromatography. ESI was coupled with tandem mass spectrometry (MS/MS) for protein sequencing, where resulting peptide sequence tags are compared to a translated protein database. We generated a translated database from the published Lymnaea brain transcriptome shotgun assembly (TSA), (Sadamoto, et al., 2012).

Mass spectrometry is highly sensitive to contamination, and despite being careful to maintain sterile conditions, the highest number of peptide sequence tags matched human keratin (162 peptides in six proteins). The greatest hit for a non-human protein was 8 peptides that matched a protein we dub, LNavbeta1, translated from the Lymnaea brain transcriptome (see Table 3.1). These eight peptides cover 31% of the expected 32.6 kDa protein.

Table 4.1. Protein sequence tags identified by ESI tandem mass spectrometry (MS/MS), that code for a novel Lymnaea protein, LNavbeta1.

Peptide	Unique	-10lgP	Mass	ppm	m/z	Z	RT	Scan	\#Spec	Start	End
K.SPYFGFSNYLANTR.C	Y	80.13	1635.7681	3.6	$\begin{aligned} & 818.894 \\ & 3 \end{aligned}$	2	44.08	13132	1	53	66
R.LADQSNIYVK.S	Y	63.20	1149.6029	3.6	$\begin{aligned} & 575.810 \\ & 8 \end{aligned}$	2	27.62	7626	1	43	52
R.GFQVQISAVR.Y	Y	58.03	1103.6088	3.7	$\begin{aligned} & 552.813 \\ & 7 \end{aligned}$	2	35.55	10217	1	142	151
R.FTYVLPPGR.N	Y	33.90	1048.5706	-2.2	$\begin{aligned} & 525.291 \\ & 4 \end{aligned}$	2	37.10	11081	1	118	126
R.TDGSVTARGFQVQ(+ .98)/SAVR.Y	Y	26.41	1891.9751	1.9	$\begin{aligned} & 946.996 \\ & 6 \end{aligned}$	2	54.84	16324	1	134	151
R.ATDNLLR.A	Y	19.94	801.4344	3.7	$\begin{aligned} & 401.726 \\ & 0 \end{aligned}$	2	1.04	471	1	273	279
A.DQSNIYVK.S	Y	17.82	965.4818	3.3	$\begin{aligned} & 483.749 \\ & 8 \end{aligned}$	2	26.81	7362	1	45	52
R.YYQTSPDYYRPSQHLDRIPILYFLEEAQAALNKA.A	Y	15.44	4091.0581	7.6	$\begin{aligned} & 1023.77 \\ & 95 \end{aligned}$	4	50.14	15074	1	233	266

We then used the TBLASTN algorithm (Basic Local Alignment Search Tool, National Center for Biotechnological Information (NCBI), National Institute of Health (NIH), Bethesda, MD) to find candidate transcripts that were close homologs to the translated $\mathrm{LNa}_{v} \beta 1$. Another three homologous proteins, members of the CUB domain family were found after the analysis of the Lymnaea transcriptome, termed $\mathrm{LNa}_{\mathrm{v}} \beta 2, \mathrm{LNa}_{\mathrm{v}} \beta 3$ and $\mathrm{LNa}_{\mathrm{v}} \beta 4$. Searching the protein sequence tag database resulting from the ESI MS/MS of the isolated protein band, revealed two peptide hits for $\mathrm{LNa}_{\mathrm{v}} \beta 3$ and $\mathrm{LNa}_{\mathrm{v}} \beta 4$ (Table 3.2 and Table 3.3). The finding of multiple close homologs in the Lymnaea transcriptome that were isolated from the original protein gel band provides confidence in identified $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits as candidate accessory subunits for $\mathrm{LNa}_{\mathrm{v}} 1$ channels, with differing protein sequences, with common regulatory domains for associating with $\mathrm{LNa}_{\mathrm{v}} 1$ channels.

Table 4.2. Overview of protein sequence tags identified by ESI MS/MS mass spectrometry

| Protein Group | Protein ID | Accession | -10lgP | Coverage (\%) | \#Peptides | \#Unique | PTM | Avg. Mass |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 2428 | $\underline{\text { LNavb1 }}$ | 152.64 | 31 | 8 | 8 | Y | 32.612 kDa |
| NA | NA | LNavb2 | NA | 0 | 0 | 0 | NA | 42.4 kDa |
| 6 | 2433 | LNavb3 | 21.26 | 6 | 1 | 1 | N | 27.729 kDa |
| 7 | 2434 | LNavb4 | 20.24 | 3 | 1 | 1 | N | 40.076 kDa |

Table 4.3. Protein sequence tags identified by ESI MS/MS mass spectrometry that code for a novel
Lymnaea protein LNavbeta3 and LNavbeta4.

	Peptide	Unique	-10lgP	Mass	ppm	m / z	z	RT	Scan	Start
End										
LNavß3	S.DDNSCAWDKLCISNVK.F	Y	21.26	1809.8025	1.9	905.9102	2	41.15	12112	94
LNavß4	I.DIGAQSYGLIK.S	Y	20.24	1163.6187	4.8	582.8194	2	41.75	12340	43

Below are the amino acid sequences of putative peptides for LNavbeta1 through LNavbeta4, with grey areas indicating oligo-peptides identified by ESI MS-MS.
>LNavb1 (32.6)
MMRCGALTVLAGAWLVFAGGHVIDKRQAIFPNLVLCVDSEARLADQSNIYVKSPYFGFSNYLANTRCQLTLRSGADPLTVSVQFDAFDLELEARACSSDSLCVGGVQFCGNWQVN QRFTYVLPPGRNFTLVFRTDGSVTARGFQVQISAVRYDYQPTLITSGGVGSSSGGVQTQLLSYNGDYEHTYQDKCAVDADGGFWNDQTTPYYYNGNSSFADLWRGQASPRDPFT DT RYYQTSPDYYRPSQHLDRIPILYFLFEAQAALNKAAFKRGRATDNLLRAYDASGGRAINYKK

>LNavb2 (42.4 kDa)

MMGVYVLATLLSVWLVCTGAHVIDKRQASYSNLALCQDTAFSIGAYSNLYVKSPNYGFGNYQDSTRCNLVLQSGSETLFITVRFDVVELEYNLECVFDSICVGGYKFCGPNWAANKE YSFIIPANRTFTLDFKTDGSVTGRGFQLFITASPFTGQTALTPVGGVGSSNNSLQVDYLTYSSNYSDTYQDKCRIDNYGGNGYYQTSPNYYTDNPWYYQTSPNYYTDNPWYYQTSPN YYTDYYQTSPNYYTNYPWYYQTSQNYYTDNPWYYQTSQNYYTDYPWYYQTSQNYYTDYPWYYSTSHSPNYYTDYPYYYNTSPDRRTDSTFLLYSLYEALSSLSQANFDIQTAVQHL QRAIAHVDGSVARKK
>LNavb3 (27.73 kDa) (missing the C-terminal end)

MTTVKLLSILAGVFLIPCAAHVVRRQTPTPVVELCNGSQSNVVDIGDKSIGIVRTANFSASNYKDNTRCNVILRTQGQALIVSIYFRSFDVESDDNSCAWDKLCISNVKFCGVWPTSRT FDYVVPANNTFTLDLQTDTSVTARGFELQISAVEYKGVAVTYPSGGFGSAYERLIFSTLNSTNQTGYADKCKDNIGATFSYYKFSAPNYVYSSWVLQNASSSKAASLNTTTPSSNLTAT RPLN TTTPSSNLTTTRP

>LNavb4 (40.08 KDa) (missing the C-terminal end)

MFILRLLTVLAGALLVTNANVVRRQTSSQVVELCNGSTKSLIDIGAQSYGLIKSPGFGQRNYPNNVACKATLRTQNQPLIINLQYNYFSLEYESQSCSYDRLCVSGVQYCGGWSSNYNY EYVVPAYSTFTLDFRTDSSVTDSGFQIAASARAYNGEAIAVATGGVGTNSGRVTYSSPYLNTYYDACAPSSSDPAYNKDTASVYYSWWMGQDNLYNLTSTQSWSAYYNTTNYPYYNTT YYPYNTTYHPYYNTTYYPYNTTYYPYYNTTYYPYNTTYYPYYNTTYYPYNTTYYPYYNTTYYPYNTTYYPYYNTTYYPYNTTYYP YYNTTSYPYYNTTSYPYYNTTSY

The novel β-subunit sequences were submitted to GenBank and the following accession numbers were assigned to them:

LNa ${ }_{\mathrm{v}} \mathrm{B} 1$: LNavbetas.sqn LNavbeta1 KM282656
$\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ 2: LNavbetas.sqn LNavbeta2 KM282657
LNa, B3: LNavbetas.sqn LNavbeta3 KM282658
LNa, $\mathrm{V}_{\mathrm{v}} 4$: LNavbetas.sqn LNavbeta4 KM282659

4.1.6 Secondary and tertiary structure of the $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ proteins

The protein secondary structure of $\mathrm{LNav} \beta 1-4$ was analyzed using Phyre-2 a protein fold recognition algorithm (Kelley \& Sternberg, 2009). The Phyre 2 server compares the input sequence with homologs of known three-dimensional (3D) structure, the so-called template-based homology modeling or fold-recognition. A recurring structure - a beta sandwich with a jelly roll fold motif of about 110 amino acids, recognized as a CUB domain, was found in all four proteins. Two CUB domains were identified in $\mathrm{LNa}_{v} \beta 1$ and $\mathrm{LNa}_{v} \beta 3$, while a single CUB domain followed by recurrent motifs was found in $\mathrm{LNa}_{\mathrm{v}} \beta 2$ and $\mathrm{LNa}_{\mathrm{v}} \beta$ 4(Figure 4.6). The evolutionarily conserved CUB domain (standing for complement $\mathrm{C} 1 \mathrm{r} / \mathrm{C} 1 \mathrm{~s}$, Uegf, $\mathrm{Bmp1}$) is found almost exclusively in extracellular and plasma membrane associated proteins, many of which are developmentally regulated.

Figure 4.6. Structures of sodium channel beta subunits.
Structures of $\operatorname{LNav} \beta 1, \beta 2, \beta 3$ and $\beta 4$, generated by homology modeling using Phyre 2 protein fold recognition server. $\mathrm{LNav} \beta 1$ and $\beta 3$ have two predicted CUB domains compared to one CUB domain predicted for $\mathrm{LNav} \beta 2$ and $\beta 4$.


```
LNavß1
LNavß2 HVDGSVARKK
LNav\beta3
LNav\beta4
```

Figure 4.7. Alignment of putative Lymnaea sodium channel $\boldsymbol{\beta}$-subunits with predicted secondary structure derived from the Phyre2 algorithm.
There is a high degree of homology between signal peptide domains and the first CUB domain of all four subunits. Six conserved cysteines (shown in tan color) form three disulfide bonds (1-6, 2-5, 3-4) according to DiANNA 1.1 (unified software for Cysteine state and Disulfide Bond partner prediction (http://clavius.bc.edu/~clotelab/DiANNA/)). The red squares show four possible glycosylation sites.

The extracellular repeat sequences in $\mathrm{LNa}_{\mathrm{v}} \beta 2$ have 7 repeats of mostly "YY-QTSPN-YY-TDNPW", and $\mathrm{LNa}_{\mathrm{v}} \beta 2$ has "YYPY-NTT" repeated at least 16 times. There are extracellular repeats in $\mathrm{LNa}_{\mathrm{v}} \beta 3$ too, of "TTT-PSSNL". The full length cDNA is known for $\mathrm{LNa}_{\mathrm{v}} \beta 1$ and $\mathrm{LNa}_{\mathrm{v}} \beta 2$ and identifiable in the Lymnaea transcriptome and/or Lymnaea genome. The complete 3 ' end of the $\mathrm{LNa}_{\mathrm{v}} \beta 3$ and $\mathrm{LNa}_{\mathrm{v}} \beta 4$ sequence is not known because of the large number of repeat sequences that can't easily be matched and identified across multiple genomic contigs. The repeat sequences are reminiscent of coiled coil structures in which two to five alpha-helices are coiled together in a super coiled structure like the strands of rope. Coiled coil domains are found in a diverse array of proteins, from transcription factors like cFos and c-jun, to motor proteins like myosin, dyneine and kinesin, to skeletal proteins such as α-keratin (Burkhard, Stetefeld, \& Strelkov, 2001).

4.1.7 Homologs of $L N a{ }_{v} B$ in other closely related species

We TBLASTN searched in available databases (NCBI, JGI and others) for similar $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunit homologs amongst known genomes available in gastropod snails besides pond snail Lymnaea stagnalis, which includes Biomphalaria glabrata (pulmonate freshwater snail), Aplysia californica (California sea hare, a marine snail) and Lottia gigantea (giant owl limpet). We were only able to definitely confirm a set of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ homologs in the most closely related pulmonate freshwater snail, Biomphalaria. It is likely that gastropod snails outside of pulmonates, as well as other mollusks, and differing animals in other phyla, have unique beta subunits. The restricted distribution of the pulmonate snail $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunits within freshwater pulmonate snails, is similar to the unique Tip-E and the four TEH subunit homologs identified in Drosophila melanogaster which have a restricted distribution to insects and crustaceans, but are not present within other arthropods, such as the chelicerates (Li, Waterhouse, \& Zdobnov, 2011).

We evaluated the structural relationships amongst pulmonate snail $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits in a phylogenetic tree generated by protein amino acid sequence alignments using phylogeny.fr (Dereeper, et al., 2008)
$\mathrm{LNa}_{\mathrm{v}} \beta 1$ and $\mathrm{LNa}_{\mathrm{v}} \beta 2$ are closest homologs to each other in Lymnaea. Biomphalaria also has similar $\mathrm{LNa}_{\mathrm{v}} \beta 1$ and $\mathrm{LNa}_{\mathrm{v}} \beta 2$ homologs but has three genes, a $\mathrm{BgNa}_{\mathrm{v}} \beta 1$ and two very closely related genes, $\mathrm{BgNa}_{\mathrm{v}} \beta 2 \mathrm{a}$ and $\mathrm{BgNa}_{\mathrm{v}} \beta 2 \mathrm{~b}$.
$\mathrm{LNa}_{\mathrm{v}} \beta 3$ and $\mathrm{LNa}_{\mathrm{v}} \beta 4$ are more distant to $\mathrm{LNa}_{\mathrm{v}} \beta 1$ and $\mathrm{LNa}_{\mathrm{v}} \beta 2$ in Lymnaea and Biomphalaria also have $\mathrm{BgNa}_{\mathrm{v}} \beta 3$ and $\mathrm{BgNa}_{\mathrm{v}} \beta 4$ homologs that contain similar long extracellular repeat sequences. See full alignment of Lymnaea and Biomphalaria auxiliary sodium channel subunits in Appendix 3, Alignment 5.

Figure 4.8. The Gene tree of the four sodium channel beta subunits from pulmonate freshwater snails, Lymnaea and Biomphalaria.
Snail $\mathrm{LNa}_{\mathrm{v}} \beta$ subunit homologs are homologous to neuropilin (1 and 2) and NETO-1/NETO-2, which also have two CUB domains. Neuropilins and NETO proteins are illustrated as outgroups in the gene tree. Neuropilin are co-receptors for semaphorins, which are responsible for axon guidance during the development of the nervous system in vertebrates. NETO proteins are kainate receptor auxiliary subunits. Tree generated by Phylogeny.fr website (Dereeper, et al., 2008)

4.1.8 Comparison of snail accessory β-subunit with other members of the CUB family.

CUB domain containing proteins are known to be involved in neuronal related functions, including developmental patterning, axon guidance, neurotransmitter and receptor mediated endocytosis, and notably, act as auxiliary subunits to ligand gated ion channels.

Figure 4.9. Members of the CUB domain family.

Neuropilins have the CUB domain structure that is most homologous to that of $\mathrm{LNa}_{v} \beta$ proteins, while NETO and Sol show overall structural similarity to $\mathrm{LNa}_{\mathrm{v}} \beta$ in possessing two CUB domains.

The most closely related human CUB domain proteins that were recognized by the Phyre2 protein folding prediction program were neuropilin-1 (NRP-1) and neuropilin-2 (NRP-2). Neuropilins are co-receptors for class-3 semaphorins, which are responsible amongst other things for axon guidance during the development of vertebrate nervous systems (He \& Tessier-Lavigne, 1997).

Sol-1 and Sol-2 that are found in the nematode Caenorhabditis elegans and contain two CUB domains serve as auxiliary subunits to ionotrophic AMPA glutamate receptors (iGluRs) that are not (N-methyl-D-aspartate) NMDA receptors. Sol-1 was so named because of a conserved amino acid that when modified generates a "lurcher" ataxic mouse. Sol-1 was identified as a "Suppressor Of Lurcher" in a screen of modifiers of genes that suppressed the "lurcher" phenotype of iGluR-1 (Zheng, Mellem, Brockie, D., \& Maricq, 2003). Sol-1 affects
iGluR gating but not localization of receptors to synapses. Sol-1 slows receptor desensitization and speeds recovery from desensitization, similar to the effect of NETO (NEuropilin and TOlloid like-1) proteins on mammalian ligand gated channel receptors. Mammalian Neto1 and Neto2 auxiliary subunits coassemble with NMDA receptors (NMDARs) and kainate receptors (KARs) to modulate their gating, and possibly regulate trafficking of these receptors to the membrane (Ng, et al., 2009)

Another CUB domain protein in C. elegans, Lev-10, is required for clustering of levamisole-sensitive acetylcholine receptors (L-AChRs) at the nematode postsynaptic membrane of neuromuscular junctions (NMJ). Loss of Lev-10 does not functionally modify the gating of receptors like Sol-1 or mammalian NETO subunits, but causes the complete loss of receptors at synapses (Gally, Eimer, RichmondJ.E., \& Bessereau, 2004). Many CUB proteins, including Sol-2, Lev-10, Neto-1 and Neto-2 have a low density lipoprotein class A (LDLa) domains adjacent to the membrane that is lacking in the snail $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits (Gaboriaud, Thielens, Bally, \& Arloud, 2011).

The putative $\mathrm{Na}_{\mathrm{v}} \beta$ subunits from pulmonate snails, Lymnaea and Biomphalaria are likely soluble proteins, with the first eleven amino acids predicted to form a signal peptide that is post-translationally cleaved. There are no predicted transmembrane domains in $\mathrm{LNa}_{\mathrm{v}} \beta$. All the CUB domain containing proteins (neuropilin-1, neuropilin-2, Sol-1, Sol-2, LEV-10, NETO-1, NETO-2) described above have a single-pass transmembrane domain, but at least some of these proteins have soluble versions that are functional. Both Neuropilin-1 and Neuropilin-2 have truncated and secreted form of splice variants, while the presence of a soluble Sol-1 CUB domain partially rescues the function of GLR-1 ionotrophic receptors (Ng, et al., 2009). A truncated, soluble form of LEV-10 is able to cluster the L-AChRs at NMJs and restore synaptic currents. Lev-10 is associated in a complex with Lev-9 and OIG4, that are required for clustering L-AchR, but Lev-9 and OIG-4 are completely soluble, secreted proteins (Gally, Eimer, RichmondJ.E., \& Bessereau, 2004). It is also pertinent that one of the human sodium channel beta subunit splice isoforms, $\mathrm{Na} \beta$ 佰 B , retains an intron that creates a secreted β-subunit without a transmembrane domain (Brackenbury \& Isom, 2011).

The lack of transmembrane domains of snail β-subunits therefore may not be particularly unique.

It has recently been found that a subset of CUB domain family, dubbed cbCUB domain proteins, have the ability to bind calcium (cb stands for calcium binding). A calcium binding site is located among the linkers that connect the β sheets and presents a conserved sequence of Y-E-D-D with the residues distanced 6 to 27 amino acids from one another (Gaboriaud, Thielens, Bally, \& Arloud, 2011). We have identified the conserved calcium binding motif in the first CUB domain of four Lymnaea $\operatorname{LNav} \beta$ subunits (See Figure 4.10) as well as Biomphalaria (See Appendix 3, Alignment 5). All putative β-subunits have this motif with the adjacent conserved residues that are characteristic of cbCUB domain family. Neuropilin CUB domains are also alleged to be calcium binding, as well as Drosophila tolloid and human TTL1(tolloid-like 1) (Gaboriaud, Thielens, Bally, \& Arloud, 2011).

Figure 4.10. Calcium binding CUB domain alignment.
Tyrosine residue is shown in purple, and acidic residues E D D that are involved in coordination of Ca^{2+} ion are shown in yellow. Alignment is based on (Gaboriaud, Thielens, Bally, \& Arloud, 2011) with Lymnaea CUB domains on top.

4.1.9 Cloning of the putative accessory β subunit for the analysis of its functional regulation of sodium channels.

We PCR amplified the full $\mathrm{LNa}_{\mathrm{v}} \beta 1$ sequence from mature snail brain cDNA, and constructed clones with a bicystronic vector pIRES DS red. Positive clones containing the insert were identified by insert PCR amplification from bacterial template. (See Appendix B, vector map 2 for the map of LNavB1/pIRES DS red

Figure $4.11 \mathrm{LNa}_{\mathrm{v}} \beta 1$ colony PCR.
Colony PCR with pIRES specific primers was performed to ensure the vector contains the insert of expected size. The gel shows all four colonies that were tested, contained the $\mathrm{LNa}_{\mathrm{v}} \beta 1$ sequence. Once isolated, the plasmid was sequenced to ensure no mistakes were found in the sequence.

HEK 293 cells were transfected with primary and auxiliary subunits of sodium channel $\mathrm{LNa}_{\mathrm{v}} 1$ to evaluate the functional effect of the $\mathrm{LNa}_{\mathrm{v}} \beta 1$ as a regulator of the Nav1 α subunit. We were able to confirm positively transfected $\mathrm{LNa}_{\mathrm{v}} 1$ (4a+ variant) by the emission of green fluorescence of cells, and the co-expression of $\mathrm{LNa}_{v} \beta 1$ by the emission of red fluorescence of cells

Figure 4.12 Co-transfection of LNav1.a(+) and LNavß1 in HEK cells. The outlined cells exhibit both green and red fluorescence.

I tested various combinations of the α-subunit (snail LNav1, and human Nav1.7), and β subunits (snail $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 1$, Drosophila Tip-E and rat beta1 subunit), and evaluated sodium channel properties in whole cell patch clamp electrophysiological recording of transfected HEK-293T cells. Transfected sodium channels express poorly in HEK-293T cells and there are also contaminating native human Nav1.7 currents expressed in HEK cells, mostly in the $100-400 \mathrm{pA}$ range (He \& Soderlund, 2010). We were unable to confirm the expression of the Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$ sodium channel above the levels of native Nav 1.7 currents in HEK-293T cells. In the future, we will use a different method to evaluate the expression $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels. A common method used by scientists in the sodium channel field is injection of mRNA generated from runoff transcripts of linearized plasmids and recording of expressed channels in frog oocytes (Xenopus laevis).

Table 4.3 Combinations of plasmid vectors used in transfection

Construct (α)	Construct (β)	Reporter construct	Current
LNa ${ }_{\mathbf{v}} 1 \mathrm{a}(+/-)^{\text {II }}$.pIRES2-EGFP	-	-	-
LNa $11 \mathrm{a}(+/-) . \mathrm{pIRES} 2-\mathrm{EGFP}$	Tip-E.pIRES DSred	-	-
LNav 1 a(+).pIRES2-EGFP	Rat $\beta 1 . \mathrm{pcDNA} 3.1$	-	-
LNav 1 a(+).pIRES2-EGFP	LNav $\beta 1 . \mathrm{pIRES}$ DSred	-	-
HumanNavv1.7.pcDNA3	-	EGFP vector	yes
HumanNa 1 1.7.pcDNA3	Rat $\beta 1 . \mathrm{pcDNA} 3.1$	EGFP vector	yes
HumanNavv1.7.pcDNA3	LNav $\beta 1 . \mathrm{pIRES}$ DSred	-	yes

The constructs were expressed in various combinations in an attempt to assess the properties of Lymnaea sodium channel α and β subunits. The same solutions were used in all recordings.

[^8]

Figure 4.13 Recording of human sodium channel with human and snail β-subunit.
a. Human α human β : peak at 0 , tau value 1.0678.
b. Human α, snail β : peak at 5 mV , tau value 0.846543 . c. IV curve to compare human and snail β-subunits.

The preliminary data indicates that Snail $\beta 1$ shifts the sodium channel towards depolarization and speeds up the kinetics of the channel. More data needs to be collected before any conclusions can be reached.

4.1.10 The pulldown of the $\mathrm{LNa} \mathrm{v}_{\mathrm{v}} 1 \alpha$ subunit with the putative β-subunit.

We identified $\mathrm{LNa}_{\mathrm{v}} \beta 1$ originally in a pulldown of snail brain homogenate containing the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit. To illustrate their interaction, we attempted the reverse experiment: pulldown of the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit from transfected HEK cell homogenate with His tagged $\mathrm{LNa}_{\mathrm{v}} \beta 1$ bound the Ni^{2+} - NTA agarose resin column. The presence of the α subunit would then be detectable with the $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit specific antibody. In this single attempt, I was not able to obtain a visible $\mathrm{LNa}_{\mathrm{v}} \beta 1$ band in a SDS-PAGE gel, nor was I able to detect a presence of the α-subunit by Western blotting. I did not have time to confirm whether the $\mathrm{LNa}_{\mathrm{v}} \beta 1$ with its C-terminal His tag properly bound to the Ni NTA resin in the first place. It is
possible that the tertiary structure of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ would keep the C -terminal His -tag hidden. Both the cell protein homogenate and the surrounding cell culture medium were loaded onto the Ni NTA resin, as it is expected the $\mathrm{LNa}_{\mathrm{v}} \beta 1$ is mostly a secreted protein.

4.2 Discussion

4.2.1 Structural identity of snail auxiliary subunit $\mathrm{LNa}_{\mathrm{v}} \beta$ homologs.

The small protein that was pulled out of the Lymnaea brain lysate using $\mathrm{LNa}_{\mathrm{v}} 1$ specific antibodies in the Co-immunoprecipitation procedure and named $\mathrm{LNa}_{v} \beta 1$ has 2 CUB domains and a signal peptide at the N-terminus. Using blast searches of the snail $L N a v \beta 1$, we found three other $\operatorname{LNav} \beta$ subunit homologs, $\operatorname{LNav} \beta 2$, $L N a v \beta 3$, and $\operatorname{LNav} \beta 4$. Two out of three of these putative beta subunits were also found in the brain protein complex with $\mathrm{LNa}_{\mathrm{v}} 1$ channels, suggesting that snails have four β-subunits, reminiscent of mammalian β-subunits that can differentially modulate $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels.

Out of four β-subunits, $L N a v \beta 1$ and $L N a v \beta 3$ are predicted to have two CUB domains, unlike LNav $\beta 2$ and $\operatorname{LNav} \beta 4$ that have single CUB domains. While the first CUB domain is highly conserved in all β-subunits, the downstream regions show little homology. The most obvious difference between the $N a v \beta$ subunits are variable repeat sequences of 2-5 amino acids in length that are C-terminal to the CUB domains. These extracellular repeats, found on $\mathrm{LNav} \beta 2$ and $\mathrm{LNav} \beta 4$, form alpha helices that coil together like strands of rope. Coiled coil type proteins have important biological functions such as serving as transcription factors (c-Fos and c-jun) and muscle proteins like tropomyosin (Burkhard, Stetefeld, \& Strelkov, 2001).
$\mathrm{LNa}_{\mathrm{v}} \beta$ subunits do not appear to possess a transmembrane domain, but contain a signal peptide, so they are likely secreted, and possibly bind to the extracellular side of $\mathrm{LNa}_{\mathrm{v}} 1$. As mentioned earlier, $\mathrm{LNa}_{\mathrm{v}} \beta 1$ has six cysteines, which can form three disulfide links that would stabilize the tertiary structure of the protein (See Figure 4.7). The disulfide bonds are predicted between cysteines $1-6,2-5$ and 3-4. It is therefore unlikely that $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 1$ forms a covalent di-sulfide bond with the α-subunit.

4.2.2 Comparison between $\mathrm{LNa}_{\mathrm{v}} \beta$ and other CUB domain proteins

The CUB protein family has over 2000 membrane associated and soluble proteins, involved in multiple functions, among them axonal guidance, angiogenesis, developmental patterning, tissue repair, tumor suppression, and fertilisation (Blanc, et al., 2007). The majority of CUB family proteins have multiple repeats of the CUB domain- up to 27 in cubilin. Some have fewer (2-4) domains and resemble the novel $\mathrm{LNa}_{\mathrm{v}} \beta 1$ in their structure. The highly diverse specialised function of the CUB domain proteins depends on the electrostatic interactions between the CUB domains and the target proteins (Gaboriaud, Thielens, Bally, \& Arloud, 2011).

Among proteins with similar structure is NETO1 (neuropilin and tolloid like 1) protein which is expressed in mammalian retina and brain (Stohr, Berger, Frohlich, \& Weber, 2002). Like $\mathrm{LNa}_{\mathrm{v}} \beta 1$, NETO1 has a N-terminal signal peptide, followed by tandem CUB domains, which are then followed by C-terminal LDLa (low density lipoprotein receptor domain class A) and a transmembrane domain. NETO1 is a component of the NMDA receptor multiprotein complex that plays a role in the NMDAR maintenance. NETO1 null mice exhibit spatial learning deficiencies (Ng , et al., 2009). NETO1 CUB domains are highly homologous to those of another CUB family member- neuropilin. Neuropilins participate in neuronal and cardiovascular development. As targets of semaphorin binding, neuropilins are involved in axon steering and formation of new blood vessel branches during embryogenesis (Carmeliet, 2003).

Another example of CUB domain proteins are Sol-1 and Sol-2 found in C.elegans. Sol proteins are auxiliary subunits of ionotrophic glutamate receptors (GLR), responsible for glutamate gated current regulation Sol-1 is required for the proper function of the GLR, while Sol-2 helps maintain the stability of GLR/Sol-1 complex on the cell membrane (Zheng, Mellem, Brockie, D., \& Maricq, 2003) (Wang, et al., 2012). LEV-10 is another CUB domain containing protein in C. elegans, that, like Sol-1 and Sol-2 serves as an auxiliary subunit of ligand gated channels, but in this case is specific for post-synaptic aggregation of acetylcholine receptors. It is interesting that Sol-1/Sol-2 and Lev-10 in invertebrates and Neto-1/Neto-2 in vertebrates are all not homologous to each other, but are auxiliary subunits
of different ligand gated channels. The discovery of gastropod snail $N a v \beta$ subunits extends the auxiliary subunit function of CUB domain proteins to voltage-gated ion channels.

4.2.3 $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits, mammalian $\mathrm{Na}_{\mathrm{v}} 1 \quad \beta$-subunits and Drosophila Tip-E/TEH

Although gastropod snail $N a v \beta$ subunits with their CUB domains are not homologous to the mammalian sodium channels or Drosophila Tip-E beta subunits for that matter, there are still some remarkable similarities with both: 1) the CUB domain has remarkable similarity to the immunoglobulin superfamily with their Ig V-fold domain in mammalian beta subunits. The Ig V-fold domain is roughly the same size or smaller (70-110 amino acids) and forms a sandwich-like structure formed by two sheets of antiparallel beta strands. Highly conserved disulphide bonds form between cysteine residues to stabilize the Ig fold. The CUB domain is reminiscent of the Ig fold, forming a compact ellipsoidal structure assembled from ten beta-strands organized in a sandwich of two five-stranded beta sheets, each containing two parallel and four antiparallel strands and conserved cysteines that probably form structure stabilizing di-sulfide bonds. 2) Another similarity with human sodium channel beta subunits is that there are completely soluble versions of human $\mathrm{Na}_{v} \beta 1$, lacking a transmembrane domain and likely secreted as extracellular only proteins. Snail $\mathrm{Na}_{\mathrm{v}} \beta$ subunits are completely soluble and extracellular too, and many of the CUB domain containing ligand gated channel auxiliary subunits (Sol/NETO/LEV10) also have soluble spliced isoforms. 3) Different mammalian sodium channel beta subunits will form dimers, and the extracellular repeats in gastropod snail beta subunits indicate that these extracellular repeats possibly could self-associate as well. 4) Sodium channel beta subunits are also not just auxiliary subunits of ion channels, but have very important roles outside of altering the gating and expression of mammalian sodium channels. Sodium channel beta subunits have been shown to function as cell adhesion molecules which can interact with the extracellular matrix and cytoskeleton and serve as regulators of cell migration, and cellular aggregation. The cell adhesion molecule role is ascribed to CUB domain containing proteins as well, with roles in developmental patterning, tissue repair, axon guidance, angiogenesis and cell signaling (Blanc, et al., 2007). 5) Many CUB domain containing proteins have calcium
binding, EGF-like binding domains. This is shared in Drosophila beta subunits, where TEH (TipE homologs) resemble TipE but with calcium binding, extracellular EGF like domains.

4.2.4 The significance of $L \operatorname{Nav} \beta$ subunits possessing a cbCUB domain

Many of the CUB domains are endowed with a calcium-binding capacity, which is coordinated by a triad of acidic residues (one glutamic acid and two aspartic acid residues). These, together with a conserved tyrosine associated with the calcium binding site, generate a YEDD signature sequence common in calcium-binding CUB domains. Snail LNav β subunits also possess the signature YEDD sequence and therefore are likely calcium-binding as well(Gaboriaud, Thielens, Bally, \& Arloud, 2011). The ionic interaction with calcium is expected to be a low micromolar affinity calcium interaction similar to members of the LDLR (low density lipoprotein receptor) family. The highly specialized functions in different CUB domain proteins are reported to involve variable electrostatic interactions between the CUB domains and their protein ligands (Gaboriaud, Thielens, Bally, \& Arloud, 2011). We will evaluate in the future how the calcium binding capacity of $\operatorname{LNav} \beta$ subunits of gastropod snails influences the function and regulation of snail $\mathrm{Na}_{\mathrm{v}} 1$ channels.

Chapter 5. Conclusions and future directions

This project began with the purpose of exploring the characteristics of expressed $\mathrm{Na}_{\mathrm{v}} 1$ and $\mathrm{Na}_{\mathrm{v}} 2$ sodium channels of freshwater mollusk Lymnaea stagnalis, a protostome invertebrate. Since Nav1 sodium channels are essential to the evolution of nervous systems, our comparative analyses of invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ channels should provide insights into the more fundamental and more specialized, adaptive features of nervous systems.

The answers that we have obtained lead to new questions and open doors for further research. Among the experiments we propose are several options designed to obtain recordable sodium currents from the existing full-length constructs I have cloned already of the snail $\mathrm{LNa}_{\mathrm{v}} 1$ channels. We plan to do the following: a) clone new variants of $\mathrm{LNa}_{\mathrm{v}} 1$ with mutually-exclusive exon $4 b$ instead of exon $4 a$, since exon $4 b$ more resembles the exon 4 of human Nav1 channels; b) clone in the human $\mathrm{Na}_{\mathrm{v}} 1.7$ II-III linker containing the ankyrin G binding motif into snail $\mathrm{LNa}_{\mathrm{v}} 1$, to see if the mammalian motif responsible for trafficking and clustering expressed neuronal sodium channels will facilitate the expression of snail $\mathrm{LNa}_{\mathrm{v}} 1$ to express HEK-93T cells; c) prepare run-off mRNA transcripts of $\mathrm{LNa}_{\mathrm{v}} 1$ and accessory subunits to express in Xenopus oocytes and evaluate the expression of these subunits in oocytes using two-electrode voltage clamp electrophysiological recordings. We have failed to date to generate LNav1 sodium currents, which may be the result of transfection and expression in human HEK cell lines which is not as efficient as Xenopus oocytes and/or that the snail $\mathrm{LNa}_{\mathrm{v}} 1$ and its beta subunit is lacking compatible features for expression in human HEK293T cell lines.

If we have recordable $\mathrm{Na}_{\mathrm{v}} 1$ channels, we will evaluate whether mutations in Domain IV of Nav1 sodium channel are responsible for the highly TTX insensitive $\mathrm{Na}_{\mathrm{v}} 1$ sodium channels in Lymnaea stagnalis.

One interesting area of study is to evaluate the mRNA and protein expression patterns of Nav1 sodium channels in snail tissues. We expect that $\mathrm{LNa}_{\mathrm{v}} 1$ protein is completely limited to the brain. It will also be interesting to evaluate how snail $\mathrm{LNa}_{\mathrm{v}} 1$ channels are distributed along axons in the simpler invertebrate nervous system. No myelinated axons have been found in mollusks, but perhaps there is something equivalent to the axon initial
segment where dense clusters of sodium channels are found to promote action potential generation. We created highly specific $\mathrm{LNa}_{\mathrm{v}} 1$ antibodies for evaluating the expression pattern of LNav1 in different tissues.

We also intend to continue cloning the full length calcium selective $\mathrm{Na}_{\mathrm{v}} 2$ channel from Lymnaea stagnalis. We expect to characterize the electrophysiological features of the calcium selective $\mathrm{Na}_{\mathrm{v}} 2$ channel and to identify possible, novel splice variants. We also plan to evaluate the expression pattern of the Nav2 channel which we expected to be limited to sensory organs. We also want to make $\mathrm{Na}_{\mathrm{v}} 2$ specific antibodies raised in rabbits, by immunizing rabbits with His tagged fusion proteins of the I-II and II-III linker, in a manner that what also used generate to generate snail Nav1 antibodies, previously.

I wish to continue the analyses of the putative $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits and the consequences of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ associating with $\mathrm{LNa}_{\mathrm{v}} 1$. We are going to collect and compare tissue specific expression data from sodium channel α and β subunits using real-time qPCR. We would like to generate a sodium channel beta subunit specific antibody raised in mice, to evaluate its colabelling in snail brains with Nav1 sodium channels using immunofluorescence staining.

We also wish to investigate further the binding association of putative $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunit and Nav1 channels. We will reverse our previous co-immuno-precipitation experiment to show that the snail β subunit can be used as a probe to pull out the LNav1 sodium channel in snail brain homogenate. If we succeed in establishing the functional link between $\mathrm{LNa}_{\mathrm{v}} \beta 1$ and $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels, we will examine the other homologs of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ in snails $\left(\mathrm{LNa}_{\mathrm{v}} \beta 2, \mathrm{LNa}_{\mathrm{v}} \beta 3\right.$ and $\mathrm{LNa}_{\mathrm{v}} \beta 4$) and how they differ in their modulation of Nav1 channels, and evaluate their expression patterns in different tissues as measured by real-time qPCR.

5.1 Proposed experiments related to $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$

5.1.1 Substitution of the mutually exclusive exon

The mutually exclusive exons 4 a and 4 b found in several molluscan species code for the Domain I, segment I of the sodium channel α-subunit. Exon 4 b is the only isoform found in one type of snail (Lottia gigantea), and exon 4 b is more similar in sequence to human
$\mathrm{Na}_{\mathrm{v}} 1$ sodium channels. Thus, it is possible that exon 4 b is the more expressible exon in snail $\mathrm{LNa}_{\mathrm{v}} 1$ channels, than is exon 4 a . So far, we have only tested clones of $\mathrm{LNa}_{\mathrm{v}} 1$ clones possessing exon 4 a . It is possible that exon 4 b is more capable of promoting the expression of sodium currents in HEK 293T cells, where exon 4a containing channels generate no obvious expression of sodium currents in HEK 293T cells. Putting the exon 4 b splice variant clone $\mathrm{LNa}_{\mathrm{v}} 1\left(\mathrm{LNa}_{\mathrm{v}} 1 \mathrm{~b}+\right)$ and expressing it in HEK 293 cells is thus a priority project to establish $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channel currents.

5.1.2 Insertion of human II-III linker into snail sodium channels

One of the difficulties of expressing an invertebrate protein in a mammalian cell line is a potential mismatch between the expressed protein and the host cell proteins designated to aid in posttranslational modifications and localization. From work done with α-subunit specific antibodies we know that a full length sodium channel is being expressed, but we cannot be sure whether it reaches the membrane in sufficient quantities to create measurable sodium current. To improve the cell surface expression of $\mathrm{LNa}_{\mathrm{v}} 1$ we are going to insert a human $\mathrm{Na}_{\mathrm{v}} 1.71175$ bp II-III linker region containing the ankyrin G binding fragment into a BlpI restriction enzyme site spanning the II-III linker region of the Lymnaea Nav1 sodium channel. The II-III linker of the $\mathrm{Na}_{\mathrm{v}} 1$ channel is less likely to affect the channel's biophysical properties. We expect that the chimeric snail channel with the human II-III linker would promote channel surface expression without altering the channel gating properties. A potential side project would be to make an expressible GFP tagged snail channel with the mammalian II-III linker and evaluate how the expression of the mammalian II-III linker effects sodium channel distribution within snail nervous systems.

5.1.3 Using Xenopus oocytes as a vehicle for $\mathrm{LNa}_{\mathrm{v}} 1$ expression

Unlike mammalian sodium channels which can be expressed and recorded without difficulty in the human HEK293T cell line, invertebrate sodium channels might not be favorable for expression in mammalian cells. Laboratories that work with sodium channels usually use Xenopus oocytes as host cells for channel expression of injected run-off mRNA
transcripts(Tan, Liu, Nomura, Goldin, \& Dong, 2002). Our lab obtained excellent results recording Lymnaea Cav1, Cav2 and Cav3 calcium channels in HEK293 cells; but it is possible that LNav1channel clones just don't generate sodium currents as they would in Xenopus oocytes. We want to put the $\mathrm{LNa}_{\mathrm{v}} 1$ clone into the Xenopus oocyte expression vector based on pGH19, a Xenopus expression vector. We will do this by putting a customized polylinker into pGH19 that spans the unique MluI-KpnI ends of the full length LNav1 clone in pIRES2-EGFP. We will linearize the plasmid, transcribe the gene into mRNA in-vitro and inject the prepared mRNA into oocytes for expression and recording attempts of the LNav1 channel expression using the two electrode voltage clamp technique. We will carry out Xenopus oocyte recording of LNav1 in our lab or in collaboration with Ke Dong, at Michigan State University.

5.1.4 Unique features that we will examine for in vitro expressed $\mathrm{LNa}_{\mathrm{v}} 1$ channels

We expect that snail $\mathrm{LNa}_{\mathrm{v}} \beta$ subunits may alter the expression levels and biophysical properties of LNav1 channels. We want to also pursue whether there is inter-compatibility between human sodium channel beta subunits, snail $\mathrm{Na}_{v} \beta$ subunits and Drosophila Tip-E, in their regulation of $\mathrm{LNa}_{\mathrm{v}} 1$ channels. It will address whether these analogous beta subunits in different species perform the same functions, despite their structural dissimilarity with each other.

We know that the I-II linker has conserved PKA and PKC sites that when phosphorylated, dampen human neuronal sodium channel activity. We predict that snail $\mathrm{LNa}_{\mathrm{v}} 1$ will respond to PKA and PKC phosphorylation in the same manner.

Snail $\mathrm{LNa}_{\mathrm{v}} 1$ channels like other gastropod snail channels are insensitive to TTX. We have seen the changes in Domain IV of pore helix 2 in population of garter snakes of Thamnophis sirtalis that allowedthe snakes to adapt to feeding on newts (Taricha granulosa) that have toxic levels of TTX in their skins. We will make the appropriate Domain IV, pore helix 2 mutations and address whether this change is responsible for the insensitivity of snail channels to TTX.

5.1.5 We will examine the localization of $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels within snail brains.

Based on our qPCR data, LNav1 sodium channels is the most abundant transcript that we have identified, with levels that are 29 fold higher than HPRT control mRNA levels. We will paraffin-embed tissue cross sections of snail brains and label the immune-fluorescent staining with snail $\mathrm{LNa}_{\mathrm{v}} 1$ antibody using confocal microscopy. We will also attach $\mathrm{LNa}_{\mathrm{v}} 1$ antibody to a gold conjugate and examine the localization of $\mathrm{LNa}_{\mathrm{v}} 1$ staining at the transmission electron microscopy level. Our goal is to understand the pattern of localization of sodium channels in invertebrate axons. It has been thought that primitive invertebrates would lack clustering of sodium channels, but it is more likely that there is differential localization to support action potential firing at axon initial segments.

5.1.6 Cloning and expression of snail $\mathrm{LNa}_{\mathrm{v}} 2$ channel in vitro and evaluation of its pattern of expression in snail tissues.

We will try and put together the full length snail Nav2 sequence in PCR products that are generated with cDNA template from Lymnaea external sensory organs such as eyes and tentacles. As we did for the $\mathrm{LNa}_{\mathrm{v}} 1$ channels, we will put in a designer polylinker that has custom restriction sites for cloning $\mathrm{LNa}_{\mathrm{v}} 2$ PCR products sequentially into pIRES2-EGFP. As we clone $\mathrm{LNa}_{\mathrm{v}} 2$ we may encounter unique splice variants that we could evaluate further.

Once the $\mathrm{LNa}_{\mathrm{v}} 2$ channel is sequenced and cloned into the pIRES2-EGFP expression vector, we will record LNav2 and characterize its biophysical properties and unique calcium selectivity. We will identify which exact tissues $\mathrm{LNa}_{\mathrm{v}} 2$ is expressed in, and whether this includes other sensory organs (lips, pneumostome) and compare the expression levels of these isolated tissues using qPCR analysis.

We will make $\mathrm{LNa}_{\mathrm{v}} 2$ specific antibodies with antigens grown as 6 xHis -tagged bacteria fusion proteins targeting the I-II and the II-III linker of the channel. With a specific $\mathrm{LNa}_{\mathrm{v}} 2$ antibody, we can address the localization of $\mathrm{LNa}_{\mathrm{v}} 2$ channels in snail sensory organs.

5.2 Proposed experiments related to putative $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ subunits

5.2.1 Real-time, quantitative PCR to analyze tissue specific expression of $\mathrm{LNa} \mathrm{v}_{\mathrm{v}} \mathrm{B} 1$

We will compare the expression patterns of the sodium channel α-subunit and the $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunit to understand whether they are co-localized specifically in the same cells of the brain together. We know that $\mathrm{LNa}_{\vee} \beta 1$ is expressed abundantly in the brain, since brain lysate was used to isolate the protein and brain mRNA was the source of $L N a_{v} \beta 1$ sequence for PCR amplification. Showing that $\mathrm{LNa}_{\mathrm{v}} \beta 1$ is expressed only in brain tissue will reinforce the idea of its close functional relationship with the brain specific $\mathrm{LNa}_{\mathrm{v}} 1$ channels. However, to determine the protein localization patterns, we will make a $\mathrm{LNa}_{\mathrm{v}} \beta$ subunit specific antibody, but not in rabbits. If we generate a mouse specific $\mathrm{LNa}_{v} \beta$ antibody, we can compare the anti-mouse $\mathrm{LNa}_{\mathrm{v}} \beta$ localization pattern with the staining of $\mathrm{LNa}_{\mathrm{v}} 1$ and $\mathrm{LNa}_{\mathrm{v}} 2$ channels, to address whether the $\mathrm{LNa}_{\mathrm{v}} \beta$ co-localizes with both channel types, and address whether $\mathrm{LNa}_{\mathrm{v}} \beta$ has patterns of expression that also don't overlap with any sodium channel.

5.2.2 Pulling down the α-subunit using β - subunit specific antibodies

We will need to confirm that $\mathrm{LNa}_{\mathrm{v}} \beta 1$ is a binding partner with $\mathrm{LNa}_{\mathrm{v}} 1$ channels in the brain. We first fished out $\mathrm{LNa}_{v} \beta 1$ by isolating it from the sodium channel complex bound to $\mathrm{LNa}_{\mathrm{v}} 1$ antibody. We will put an N-terminal $3 x H A$ tag on $\mathrm{LNa}_{\mathrm{v}} \beta 1$ and couple it to HA beads, and fish out whether $\mathrm{LNa}_{\mathrm{v}} 1$ from brain homogenate will co-immunoprecipitate with $\mathrm{LNa}_{\mathrm{v}} \beta 1$ bound to beads. The presence of α-subunit in the alpha-beta complex of sodium channels bound to beads will be confirmed using Western blotting and the LNav1 α-subunit specific antibody. Using the $\mathrm{LNa}_{v} \beta 1$ bound to beads and to pull out the α-subunits from the brain homogenate will provide adequate proof that $\mathrm{LNa}_{\mathrm{v}} \beta 1$ is a sodium channel auxiliary subunit.

5.2.3 Calcium binding properties of $\mathrm{LNa}_{\mathrm{v}} \beta 1$

While analyzing the sequence of the putative sodium channel β-subunit we discovered that the first CUB domain of each $L N a_{v} B$ homolog contains a calcium binding CUB domain signature motif YEDD. We intend to evaluate the calcium binding properties of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ by loading HEK cells expressing the $\mathrm{LNa}_{\mathrm{v}} \beta 1 /$ pIRES DSred clones with free Ca^{2+} ion
and to use the Ca^{2+}-sensing fluorescent indicator dye, to analyze the rate of calcium binding under the confocal microscope. Mutations in any of the YEDD signature sequence should eliminate the calcium binding capacity of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunits. We can address whether the mutation of the YEDD signature sequence is vital to the modulation of snail LNav1 sodium channels.

5.2.4 Investigating of the $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ homologs

Like other members of the large CUB domain family, $\mathrm{LNa}_{\mathrm{v}} \mathrm{B}$ proteins could play multiple roles in neural system development and maintenance. There are variable repeat sequences in the C-terminal tail of $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 3$ and $\mathrm{LNa}_{\mathrm{v}} \mathrm{B} 4$ that hint at their potential role as possible transcription factors. We will test whether these novel sodium channel beta subunits have different effects on $\mathrm{LNa}_{\mathrm{v}} 1$ channels expressed in vitro. We may expect a nuclear targeting of a subset of $\mathrm{LNa}_{\mathrm{v}} \beta 1$ subunits if they are capable of serving as transcription factors. We could carry out a co-immunoprecipitation or yeast-2-hybrid assay, to evaluate what binding partners are associated with $\mathrm{LNa}_{\mathrm{v}} \beta 1$, outside of $\mathrm{LNa}_{\mathrm{v}} 1$ sodium channels. The study of $\mathrm{LNa}_{\mathrm{v}} \beta$ homologs could open exciting new research directions in understanding how the invertebrate nervous system operates.

Appendix A. Primer sequences

Table 5.1.Primers for $\mathrm{LNa}_{\mathrm{v}} 1 \alpha$-subunit sequencing

	Name	Sequence 5' ${ }^{\prime} 3^{\prime}$
1	Nav1FIGVIIf	TTYATHTTYGCNGTNATGGNCARCA
3.	Nav1FIGVIIb1	AAGACCAATGCTGCCAGTTT
4.	Nav1FIGVIIb2	TCATTCGTTTCATGGCATTG
5.	Nav1AKHAEKf	GARGARGCNGCNAARCAYGCNGARAA
6.	Nav1PWNWLDb	ACRAARAARTCNARCCARTTCCANGG
7.	5' raceb2	TTTCTGCCAGCCTCAAGTTT
8.	5' raceb1	TGATGGAGGGAGTTTTTCTGC
9.	3' RACE F1	CTGGTTGGAGCGATGTTCTA
10.	3' RACE F2	TGGAGCGATGTTCTAAATGC
11.	2.2 kbF 1	GCCATAACTTCGTGGACACC
12.	2.2 kbF 2	AACCCTCTCAAGGGGCTTTA
13.	$2.2 \mathrm{kbB1}$	CACACAGCACACGAAACACA
14.	$2.2 \mathrm{kbB2}$	GTTCCACCTGGGCATGTTAT
15.	LNav1_TVELGPDSb2	CTGTYNGGNCCNAGYTCNACNGT
16.	LNav1_GPDSGVVAb1	GCCACYAYNCCNCTGTYNGGNCC
17.	LNav1-ex16f1	TCCTTCAAAGCTGCCAGAAT
18.	LNav1-ex16b1	AACACCTTAGAGCCCACCAA
19.	LNav1-ex16f2	AAGCTGCCAGAATTGAATGG
20.	LNav1-ex16b2	GGGAGGTTTTTCAATGACCA

Degenerate primers are based on molluscan consensus sequences, derived from sodium channel sequences of Lottei, Aplysia and Biomphalaria.

Table 5.2. Primers for full length α-subunit contig construction in pIRES vector

	Name	Sequence $\mathbf{5 '}^{\prime} \rightarrow \mathbf{3}^{\prime}$
21.	Nav1PolylinkerA	TCGACCCAAACGCGTCCAAACTAGTCCAAAAGCTTCCAAGAATTCCCAAC
22.	Nav1PolylinkerB	GGCCGTTGGGAATTCTTGGAAGCTTTTGGACTAGTTTGGACGCGTTTGGG
23.	Nav1ATGff	TCGCGAGCACTACTCATAGC
24.	Nav1Spelbb	GGATCCTGGCAAACTGAGAC
25.	Nav1ATGf	GGCCGTCGACACGCGTGCCGCCACCATGGAAGAGGAAACTGTAGAACG
26.	Nav1Spelb	GTTTAAGGTGAGCGCTGGTC
27.	Nav1Spelff	ATGCTGGCGAGAAGGATTTA

28.	Nav1HIIIbb	ATTCTGGCAGCTTTGAAGGA
29.	Nav1Spelf	CCTAACTAGTGACCAGTCGATGACCAG
30.	Nav1HIIIb	AGTTTTTCTGGCGTTGAAGcTTGACTT
31.	Nav1HIIIff	CGCTCAGAGTCTGCTGATGA
32.	Nav1EcoRIbb	AGAACTCGACCCACTCGAAA
33.	Nav1HIIIf	GTCAAgCTTCAACGCCAGAAAAACT
34.	Nav1EcoRIb	TGAGCAGGGTTGGTGATATG
35.	Nav1EcoRIff	GTTTGGTCTGCGCTGGTATT
36.	Nav1Xma1bb	TGGATTGATTCCAAAGCTGA
37.	Nav1EcoRIf	GGTTCCCTGGAATGTCTTTG
38.	Nav1Xma1b	TCCATGCCCGGGTCACGCCACAATGCCACTGTTAG
The primers named polylinker A and B were designed to form an adaptor which		
would equip the pIRES vector with the necessary restriction sites. The polylinker contains in		
the following order: XhoI, MluI, SpeI, HindIII, EcoRI and XmaI.		

Table 5.3. A list of primers used in the construction of two expression vectors (antigen production)

Primer	Restric	Direction	Sequence (5' - 3')
39. 1,2-Linker	Ndel	F	GACACATATGGAGT
40. 1,2-Linker	Xhol	B	GCTGCTCGAGAAGG
41. 2,3-Linker	Ndel	F	GACGCATATGGTCT
42. 2,3-Linker	Bgll	F	GACGAGATCTGTCT
43. 2,3-Linker	BamHI	B	CAGTGGATCCGATC
44. 2,3-Linker	Xhol	B	GAGTCTCGAGGATC
These primers were designed by Dr Spafford for the undergraduate project of Neil			
Hsueh.			
Table 5.4. Primers used for LNav B1 sequencing, amplification and cloning			
Name		Sequence 5' \rightarrow 3'	
45.1 LNavbeta1fff		TGGAGCATCCTTCAATTTGC	
46.2 LNavbeta1bbb		CGTAGCCTGCCATTTGTTCT	
47.3 LNavbeta1ff		GCGGCTGCGTAAACATAAAG	
48.4 LNavbeta1bb		CGAACAACCTGTCGTCAAAA	
49.5 LNavbeta1f		GCATTTGGTGGACATGATGA	
50.6 LNavbeta1b		CAGAACGACGATTTGATTTTG	

$\mathbf{5 1 . 7}$	LB1.Histag.Xmal	CCCGGGTTAATGGTGATGGTGATGGTGTTTTTTGTAATTAATGGCCCTGCC
$\mathbf{5 2 . 8}$	LNavB1f.Sall	TCAGATGTCGACTACCACC ATGATGAGATGTGGTGCCCT
$\mathbf{5 3 . 9}$	LymbetaBBamHI	GGTTGGATCCCGACTAATCTTTTACATTATTTTTTGT

Primers 33-38 were used for amplification and sequencing of Sodium channel auxiliary subunit LNavB1. Juvenile brain cDNA was used as a source of mRNA. Primers 3941 contain restriction sites that enable to clone the sequence into pIRES2DSred vector.

Table 5.5. Primers for cloning LNav2

	Name	Sequence 5' $\mathbf{7}^{\prime}$ '
1.	Nav2Cff	GTGGTNAATGCNCTNATGAATGC
2.	Nav2Cbb	TCATTTGGCTTTGGGATTTG
3.	Nav2CF	TTYTGGCTCATNTTCAGCATCAT
4.	Nav2Cb	CAAATCCCCAACAAAATTGG
5.	Nav23'RACEff	AATCCCAAAGCCAAATGAAA
6.	Nav23'RACEf	CCCCATAATGGAAGGTGAGA
7.	Nav2-A1f	AGCTGAGAACATTGAGTACTTGTTTT
8.	Nav2-A1b	GCAACGCCAAGAAAAGATTG
9.	Nav2-B1f	GCCATCTACACATTGGAGTGC
10.	Nav2-B1b	TCCAAAGACCAATGCTGGTA
11.	Nav2-C1f	AGGCCTCAAGTGAACTTTGC
12.	Nav2-C1b	TGTCATTCCATCCAGCAGAT
13.	Nav2-D1f	TACCAGCATTGGTCTTTGGA
14.	Nav2-D1b	TTTCAGTCATGACGCCATTC
15.	Nav2-E1f	TGITCACCGCTGTGTTTACG
16.	Nav2-E1b	GGTCAGGTTGGTGTCAAGGT
17.	Nav2-F1f	CGCTGTGTTTACGTTGGAAG
18.	Nav2-F1b	CTACGCCAAGCCCTTTGTAG
19.	Nav2topf1	CAAGAYGCNCATYTNGTTGATGG
20.	Nav2topf2	GGNATACCTATTGARGAAATTGA

21.	Nav2topb2	GACDATRAAATCCAACCAATTCCA
22.	Nav2topb1	AAACACCATNARACARAARAATGT
23.	Nav2midf1	ATTCGAGCNACAGGNCCNTGGAATGT
24.	Nav2midf2	GTTTCAATGTCNTATGARGARGARGC
25.	Nav2midb2	NACTCNAAATATCATCAGCATNGA
26.	Nav2midb1	NGCTGGCAAGAANACNACCATNCA

Table 5.6. Vectors used for cloning

Name	Size(Kb)	Resistance	Target cell	Reporter
1. pGEMt Easy	3.0	Amp	E coli	LacZ
2. pIRES2 EGFP	5.3	Kan/Neo	E coli/HEK	EGFP
3. pIRES DSred	5.3	Kan/Neo	E coli/HEK	DSred
4. pGH19	5.6	Amp	X.oocyte	--
5. Blunt-II-TOPO	3.5	Kan/Zeo	E.coli	LacZ
6. pET22b	5.5	Amp	E.coli	--
7. pcDNA3	5.4	Amp/Neo	E coli/HEK	--

Appendix B. Vector maps

1. LNav1 α a+ in pIRESII-EGFP, inserted between MluI and AclI

MluI Kozak
 CGACCCAAACGCGTGCCGCCACCATGGAAGAGGAAACTGTAGAATGGACGCCGTTCAGGTTGTTCACCAGAGAGTCTTTGTTTAACATCGAGCGGCGTATTGC

 AGAGGAGGAGGCAGCCAAGCATGCCGAAAAGGTCAAACCTGAGTCTGACGACGAAGAGGATGACGACGATGCCAGCCAAAATGAGGAAACTCTCAAACCCAAC ССТАAACTTGAGGCTGGCAGAAAACTCCCTCCATCACTGGAGGACTATCCGCGAGAGTATATCGGCAAACCTTTGGAGGACCTGGATGAATTTTACCATAATC
 AAAAGACGTTCGTGGTCCTCAACAAGGATAAAGCCATCTTCCGATTCAGCGCCACCAATGCAATCTTCTTGTTATCCCCTTTTTAATCCCATCCGCCGGACGGC $>\mathrm{P} \quad \mathrm{K} \quad \mathrm{T}$

Mutually exclusive exon region
GATTTACATCCTCACTCATCCTGGTTTTAGTCTTTTGGTGATGCTGACCATTTTAGTAAACTGCGCCTCTATGGCCATAACTTCGTGGACACCCCCGCCCTAT
 GTGGATGTGGAGCATATCTTCTTGGGCATTTACACTGTGGAGGCTTTTAATCAAAACCCTCTCAAGGGGCTTTATTCTCAAGCCTTTCACATATCTCCGGGATC
 CTTGGAACTGGCTTGACTTCTTTGTCATATCAATAGCCTACATGACAATGGCTATCAAGTCCTTGGGAAACCTCTCAGCTCTCAGAACATTCAGAGTGTTGAG
 AGCTCTAAAAACAATTTCTGTAATACCAGGTCTGAAGACAATCGTAGGTGCCTTGCTGGAAGCTGTCAGACGTTTGCGAGATGTCATGATACTCACCATCTTT
 GTTTTGTCTATCTTCGCCCTTGTTGGAATGCAACTGTACTCAGGCTCATTAAGACATAAGTGCATCAAAAACTACAGAATATTTTACGGAGCAAACATCAGCC
 ATGACGAATGGTGGGAGTGGGTGAACAATGAATCAAACTGGAGGACAGATCATTATAATGAGATTCAAGTATGTGGCAACAACTCAGGGGCTGGTCAATGTGG
 TAATAACACTTTTAATGGAACAGCTGAATACGAGTGTTTGCCCGGAATTGGAAAAAACCCAAATTTTGATTTCACAAGCTTTGACAACTTTGGCATGGCACTG
 CTGTGTGCTTTCCGTCTAATGACTCAGGACTACTGGGAAAGTTTGTACCATCTGGTGCTCAGGGCAGAAGGAATGGCGCATTGTTTGTATTTTGTACTTGTCA
 TCTTGCTGGGCTCATTCTACCTGGTCAACTTAATCTTGGCTATTGTTGCTATGTCTTATGATGAACAGCAGAAGCAGGACCAGGCAGACGCTGATGAGGAGGC
 AGCAGAGAGACAGGAAGAGGAAGCACGAAAGGAAGCAATGAGCATCATGTCTAAAAGCCAGAGCAACTCTTCATGGAATGAGTTTGATGCTGGCGAGAAGGAT
 TTAGTTGACAAACCAGATGAAAAGGAGAGACTGTCGGTAACTAGTGACCAGTCGATGACCAGCGCTCACCTTAAACCAAGCCTTTTAAACCAAAAACGGCATA
 GTCTCAGTTTGCCAGGATCCCCATACATTCATCGCAGAAATAGCAAAGGAAGCCAGTACAGCTGGCGAAAGCCGGTCACAGCGACCAAACGCGGTGGTCATTA
 TACGGACCGCCAGCCTTTGGTTCATCACACCCTTGAAAACCTTCCTCTTCCATTTGCTGATGATTCAGGGGCGGTAACCCCATCATCAGAAGATCTATGCAAC
 TATTCTTTTGTACGAAACATGCCAAATGGTCGGCGTTTCAGCTTTGCCTCTCAGAAACGGAGTGCTGGTCCCGATTCTGGAAAACAAACAGGAAGCAGGAGGA
 GCAGTTTTGCGTCCAACCACAGTCGTACATCCCGCACAAGCAGAGGCTCCCAGCAGGCCGACAGAAGCAAAATGGAGACACTACTGAACTTCAAGAAAGGGAA
 AGTTCCTGATGTTGTACTTGACAAATCAAAACTAGACGATGATGCTGATTCCCTCAGCAGTGGGTCAGGTCACTGTCCAGAGAAAGACAAGACTTCTGAGAGC
 AACCCTTTCCTTGGCAACACCCCAGGAGGACCCAATGTTGAGATGAAAGATGTAATGGTCCTCAAAGATATCTTGGATCAAGCCTCTGGACACAGAAGAAGTT
 TTGTCAGTATGGCAAGCATCCAACAGAAGACCATGAAAGACATTATGTGGAAGTACTTTTGCACGTGGGATTGTAATCCTAACTTCCAAAAACTGCAGAGATT
 GGTCAGCCTTTTTATCATGGATGCATTTGTTGACCTCTTCATAACTGTGTGTATTGTTGTCAACACTCTATTCATGGCTATGGACCATTATAATATGGATAAA
 AATCTTCAAGATATTTCATCTCAAGCTAATGAGGTCTTTACTGCAATCTTTGCTGCTGAAGCATTTCTGAAGATTCTTGCGATGAGCCCTGTGGTCTATTTCA
 AGGATGGCTGGAACATCTTTGACTCCCTAATTGTGGCACTCTCTCTTATGGAGCTTAGCATGAAGGAGCTGCCTGGGCTATCAGTGCTGAGAGCATTTAGATT
 GCTGCGTGTGTTCAAACTGGCCAAGTCCTGGCCAACACTGAACATGCTCATTGCCATTGTGGCCCGCACCATGGGGGCATTGGGTAACCTCATCATTGTACTG

 ACATTGATAACATGCCCAGGTGGAACTTCAATGATTTTCTCCACTCTTTCATGATTGTGTTTCGTGTGCTGTGTGGCGAATGGATAGAGTCCATGTGGTGGTG
 CCACAAAGCTGCCGGGTGGCCCTGTGTGCCCTTCTTTTTACTCACCTACATCATAGGAAATCTTGTGGTTCTCAATCTTTTCCTTGCCTTGCTGCTCAGTTCT $\begin{array}{llllllllllllllllllllllllllllllllll}> & \mathrm{H} & \mathrm{K} & \mathrm{A} & \mathrm{A} & \mathrm{G} & \mathrm{W} & \mathrm{P} & \mathrm{C} & \mathrm{V} & \mathrm{P} & \mathrm{F} & \mathrm{F} & \mathrm{L} & \mathrm{L} & \mathrm{T} & \mathrm{Y} & \mathrm{I} & \mathrm{I} & \mathrm{G} & \mathrm{N} & \mathrm{L} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{S} \\ \mathrm{S}\end{array}$ TTTGGAAGTGAGAGTCTGTCCCGCTCAGAGTCTGCTGATGAACCCAATAAAATAGCAGAAGCTATTGACAGATTCAAACGCTTTGGTAACTGGGTCAAGGTAA
 AGATAATTGTGTGCATCAAAGTCAAACTTCAACGCCAGAAAAACTGGCGACCATCTGTGCCTCCTTCAGAGCTGCCAGAATTGAATGGCAAAGAGAATGCATT
 II-III linker deletion
TGGTGATGGCACTGTGATCGCCATGGAAAAAACCCCAGATGATTTTCCAGATGGTGCAATGGTCTCAAGAGCAGGCAGCATATATTCAACTAAAGACCTGAAA
 TCCCCCCTGGGCAGCCATAGTGGCTCCAGTCACTGCTCAAGCTGCTCTTCCTTGTCTGACTCAGCACAAACTAAAAAGATTGACCTGGAAGGTGATCATGAGA

TCAATGAAGTAGAGATTGTCTATGCCAAGGAACCAGATGATTGCTTCTGCTATTCCCTCACAAAGCGCTGTACTTGGTGTTTGGTCATTGAAAAATCTCCCAT > I $\mathrm{N} \quad \mathrm{E} \quad \mathrm{V}$ CGGTCGAGCTTGGTGGGCTCTAAGGTGTTTTATGTATCGGCTAGCAGAGCATCGATACTTTGACACTTTCATTATAGTGATGATCTTGCTCAGCAGTTGTGCA
 TTGGCTTTAGAAGATGCCTACCTTCATGAGAAGCCACTGCTGAAGGAGATTCTGGAGTACATGGACAAAGTGTTTACTGTCATCTTCATTGTAGAGATGTTGG
 TCAAGTGGTTTGCCTTTGGCTTCAAAACTTACTTCACTGACGCCTGGTGCTGGCTGGACTTTTGTATTGTCATGTTATCTATTATGATGCTTATGGCTGACAT
 GATGGCATCTGCTGATGGACATGGTGGAGGCAAAATGGGGGCAATGAGATCCATTAGGACATTGAGAGCCTTACGTCCACTCCGAGCGGTCAGTCGTTGGGAG
 GGAATGAGGGTTGTAGTGAATGCCCTATTCAAAGCTATCCCATCCATCTGTAATGTGCTGCTAGTGTGTCTAGTTTTCTGGCTCATATTCGGAATTATGGGAG
 TACAGCTCTTCAATGGGAAATTTCACGCTTGCGTCTGTGAAAATGGCACAAGATGTGAACCAGATGTGATACCTAATCGGACTGTTTGTGAGTTACAAGGCTA
 CAACTGGACCAACGCTCAGATCAACTTTGATAATGTTATTGCTGCATACTTGGCTCTCTTTCAAGTGGCCACCTACAAGGGATGGGTGGACATAATGAACAAT
 GCCATTGATGCAAGAGAGATTGGTATCCAACCAAAGAGAGAGGAAAATATCTACTCATACCTATTTTTTGTACTTTTCATCATATTTGGTTCTTTCTTCACCC
 TCAACTTATTCATTGGTGTCATCATTGATAACTTCAATTCCCAGAAAAAGAAGGCTGGTGGCTCTCTAGAAATGTTCATGACAGACGATCAAAAGAAATACTA
 CAATGCCATGAAACGAATGAAGTCTAAATCCCCACAAAAATCAATTCCCAGGCCTAAGTACAAACTGGCAGCATTGGTCTTTGACATCACCACTGACCAGAAG
 TTTGATATTGTCATCATGATAATTATCATCCTCAACATGCTGACCATGATGTTTGAGTATGAAGACATGTCCAAACAGATGAAAGATATTCTGGGAATTTTCA
 ATCTTGTCTTTATCACCATATTCACTGCAGAATGTGTTCTCAAACTGTTTGGTCTGCGCTGGTATTACTTCAAGGTTCCCTGGAATGTCTTTGATTTCATTGT
 CGTCGTCTTATCAATCATGGCATCATCTTTGGATGAATTCGAAGACAGCTTCTTCATATCACCAACCCTGCTCAGGGTCATTCGAGTATTTCGAGTGGGTCGA
 GTTCTACGTCTGGTCAAATCTGCAAAAGGAATACGCACACTTCTCTTCTCCCTTGCTGTATCACTTCCTGCCCTATTCAACATCGGCCTTCTCCTGGGCTTAG
 TCATGTTCATCTATGCCATCATGGGCATGAATTTCTTCCAAGGTTATCCTCAGACGTTTGGGATGGATGATGCTTTTAATTTTGACACCTTCTTGAGTAGCTT
 САТТСТTСTTTTCCAAATGTGCACCAGTGCTGGTTGGAGCGATGTTCTAAATGCCCTTATCTCCCCTTGCCCACCTACAGGTAGTTGCTCTCATTATAACAAG
 GCCACTCTGTACCTGGCCACTTACCTGATCATCTCATTCCTTGTGGTCGTGAACATGTACATTGCTGTAATACTGGAGAATTTCAGTCAGGCCACTGAGGATG
 TACAACAGGGTCTGACTCCAGATGACTTTGATATGTACTACGAAAAATGGGAGAAATATGATCCCAAGGCTACTAAATACATCCCACTGGACCAGCTGTCCGA
 СTTTGTGGATTACCTCGAGGAGCCTCTCAGGCTCCCAAAACCCAACCACTTTATCCTGGTCAAACTGGACATACCCATTTGTGAAGGGGATAAGTGCTACTGT

 TCAGTAGCACCTTGAGGAGGCAGAAGGAGCACTACGCAGCTAGGATAATACAGAAGGCCTACAGAAACTACAAAGGGCTGACCATATCCGAGGTCAGCTATGG
 CCATGAAGATGTGATGGATAGTTATAGTCAGGATAATGATGATGACAGGGACAGCGGTGGCAGCAGTGGAAGGAACTTGGATAAATCCTTCCCCAGTCCACCC
 TCCAGCTACAAAAGTGACAAAAAGCCACCAGAAAACGGGACAAAGGAGAAAAAATCTGAGGACAGCTCCAAGAAGGCAAAGGATAAGAAAGACAAGGGAAAAG
 ATAAGAAAGCCAAGTCTGATAAGAAAGATGATGGTAAAAAAAAAAAGGATGCTAGCAAACCGCCCAATGGCTTATCAAAAACAACGCGGTCAAAAGAAAGTGC
 TGCGATAACTTTGATCAATGAAACGGAAGGAGAAAATAAAACGGTGGAATTGGGCCCTAACAGTGGCATTGTGGCGTGACATGGAAGGAAATCGGTATCAGAT

[^9]
2. LNavB1/pIRES DS red

LNavB1 inserted between XhoL and BamHI sites of pIRES DSred vector.
XhoI/SalI combination created a scar.

3. LNavB1xHis/pIRES DS red

LNavB1xHis inserted between XhoL and BamHI sites of pIRES DSred vector.
XhoI/Sall combination created a scar.

 тСтTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAACGTCTGTAGCGACcctTTGCAGGCAGCGGAACCCCccaccTGGCGACAGGTGCCTCTGCGGCCAAAAGCCACGTG CGAGGTTAAAAAAACGTCTAGGCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGGCCACAACCATGGCCTCCTCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGC俍
 GCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGGGTAACCACCACACCCGCGGCGCTTAATGCGCCGCTACAGGGCGCG
 TCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTC CGAACACCAAGCGAAACATCGCATGCTCGGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGGTACCTGCCCATI
GATATATCATGTGATMAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCC GAATATCATGGTGGAAAATGGCGGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGGGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGGTTGGGGGCGAATGGGCTGACCGCTTCCTCGTGGTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGC CATTGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCCTCAGGTTMCTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC
 ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCG

4. I-II linker construct in pET22b

Abstract

FTCCGATTTAGTGGTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCAGGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGGCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTT FTGATTTATAAGGGATTTTGCGGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAAGGTTTACAATTTCAGGTGGCACTTTTCGGGGAAAGGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCC GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGT АСTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGATCATGTAACTCGCCTTGATCGTV TTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACGGTACCAGCGGGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCGGAGGTAACTGGCTTCAGCMGAGGGCAGATACCAAATACTGTCCTTCTAGTGTAGCGGTAGTTAGGCCACCACTTC АСАССGAACTGAGATACCTACAGGGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCGGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAACGCCTGGTAACTTMTAGTCCTGTCGGGTTTGGCCACCTCTGACTTGA AGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGGGGTATTTTCTCCTTACGCATCTGTGGGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTAAGTGACTGG GTCATGGCTGCGCCCCGACACCCGCAACACCGCTGACGCGCCTGACGGCTTGTCCGCTCCGGCAMCCGCTTACAGACAAGCTGTGACCGTCTCGGGAGCGGCATGTGTCAGAGGTTTTCACGGTCACACCGAACGGGGGGGCAGCTGCGGTAAAGCACATCAGCGTGGTCGI (1) CCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGGGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACT TAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCA TCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGG 信 CGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGAT

CCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGAAAAGCCAGA

GCAACTCTTCATGGAATGAGTTTGATGCTGGCGAGAAGGATTTAGTTGACAAACCAGATGAAAAGGAGAGACTGTCGGTAACTAGTGACCAGTCGATGACCAGCGCTCACC CAGCGACCAAACGCGGTGGTCATTATACGGACCGCCAGCCTTTGGTTCATCACACCCTTGAAAACCTTCCTCTTCCATTTGCTGATGATTCAGGGGCGGTAACCCCATCAT CAGAAGATCTATGCAACTATTCTTTTGTACGAAACATGCCAAATGGTCGGCGTTTCAGCTTTGCCTCTCAGAAACGGAGTGCTGGTCCCGATTCTGGAAAACAAACAGGAA GCAGGAGGAGCAGTTTTGCGTCCAACCACAGTCGTACATCCCGCACAAGCAGAGGCTCCCAGCAGGCCGACAGAAGCAAAATGGAGACACTACTGAACTTCAAGAAAGGGA AAGTTCCTGATGTTGTACTTGACAAATCAAAACTAGACGATGATGCTGATTCCCTCAGCAGTGGGTCAGGTCACTGTCCAGAGAAAGACAAGACTTCTGAGAGCAACCCTT TCCTTGGCAACACCCCAGGAGGACCCAATGTTGAGATGAAAGATGTAATGGTCCTCAAAGATATCTTGGATCAAGCCTCTGGACACAGAAGAAGTTTTGTCAGTATGGCAA GCATCCAACAGAAGACCATGAAAGACATTATGTGGAAGTACTTTTGCACGTGGGATTGTAATCCTAACTTCCAAAAACTGCAGAGATTGGTCAGCCTTTTTATCATGGATG CATTTGTTGACCTCTTCCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAG $>$ A \quad F $\quad V \quad$ D \quad L \quad F \quad L \quad E \quad H \quad H \quad H \quad H \quad H CATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

5. II-III linker in pET22b

Abstract

NdeI ACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGAGTTCTTTTGGAGGTGAGAGTCTGTCCCGCTCAGAGTCTGCTGATGAACCCAATAAA ATAGCAGAAGCTATTGACAGATTCAAACGCTTTGGTAACTGGGTCAAGGTAAAGATAATTGTGTGCATCAAAGTCAAACTTCAACGCCAGAAAAACTGGCGACCATCTGTGC TGATTGCTTCTGCTATTCCCTCACAAAGCGCTGTACTTGGTGTTTGGTCATTGAAAAACCTCCCATCGGTCGAGCTTGGTGGGCTCTAAGGTGTTTTATGTATCGGCTAGCA cactect AGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

Appendix C. Sequence alignments

Alignment 1. LNav 1 1 α-subunit aligned with other molluscan sodium channel α-subunits

Domain I of molluscan sodium channel $\mathrm{Na}_{\mathrm{v}} 1 \alpha$ subunit.

	EXON 11 SER 573 SER 576
Lymnaea $\mathrm{Na}_{1} 1$	DLVDKPDEKERLSVTSDQSMTSAHLKPSLLNQKRHSLSLPGSPYIHRRNSKGSQYSWRKP VTATKRGGHYtdrQPLVHh
Biompholaria $\mathrm{Na}_{1}{ }^{1}$	DNTDKPEEKERLSMTSDQSLTSGHLKPS-LSQKRHSLSLPGSPYIHRRNSKGSQYSWKKPNVPTAKRGGHSADRQPLVHH
Aplysia Na, ${ }^{1}$	TAGDKAEEKERLSLTSDHSATSAHLKPSRLNQKRHSLSLPGSPYIHRRNSRGSQYSWRKP-VPTAKRSPYCPDRQPLVHH
Lottia Na, ${ }^{1}$	- tektedkerlsitsdhsvkssrlqpvskh kraststpgspfvtrrgsksshagswkk......khghpverqplvig
Loligo $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	
	SER 623 SER 655
Lymnaea $\mathrm{Na}_{\mathrm{v}} 1$	TLENLPLPFADDSGAVTPSSEDLCNYSFVRNMPNGRRFSFASQKRSA GPDSQTGSRRSSFASNHSRTSRTSRGSQQA
Biomphalaria $\mathrm{Na}_{\mathrm{v}} 1$	ALENLPLPFADDSGAVTPSSEDLCNFSFVRNIPNGRRFSFASQKRSAALESGKQSGSRRSS
Aplysia Na, ${ }^{1}$	
Lottio Na, ${ }^{1}$	NPESLPLPYADDSAAVTPSSDDLCNFPFHKNLPNGRRYSFASQTLR.-HLAEGRSSSRRSSFNSNISRNSRSSRHSVHSP
Loligo $\mathrm{Na}_{\mathrm{v}} 1$	SIKSVELPAVTVDSAGKGEIVERMSIQSETGSEVKRKLSVKLSGKSK
	EXON 12 EXON 12b
Lymnaea $\mathrm{Na}_{1} 1$	
Biompholaria $\mathrm{Na}^{1} 1$	DKSKMETLLNFKKYK-VPDVILDKSKLDDGHDSVSSG-SGHGMDKDKTSESNPFLGNSGTGQ-NVEMKDVMVLKD
Aplysia Na, ${ }^{1}$.-DRTKTQTLLNFKKGK.VPDVVLDKSKLDDDQdSVSSGGSGHCPEKDKASESNPFLSHSPGGP-NVEMKDVMVLKD
Lottio $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	
Loligo $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	-RESISSGGSECETAKKKNYANNPFLCPSSSATNVVDMKDVMVLKD
	EXON13 2S1
Lymnaea ${ }^{\text {Nav1 }}$	I LDQASGHRRSFVSMASIQQKTMKDIMWKYFCTWDCNPNFQKLQRLVSLFIMDAFVDLFITVCIVVNTLFMAMDHYNMDK
Biomphalaria $\mathrm{Na}^{1} 1$	I LDQASGHRKSYVSMASIHKRNMKDLMWKYFCTWDCSPNFQKIQRLAGLFIMDAFVDLFITVCIVANTLFMAMDHYDMDP
Aplysia Na, ${ }^{1}$	I LDQASGHRRSFVSMTSIHQRTMKDIMWKYFCTWDCHPNFQKLQRLVSLFIMDAFVDLFITICILVNTAFMAMEHYDMED
Lottia $\mathrm{Na}^{1} 1$	LIDHASGHRRSFMSEVSNQEERMRDKLYRYFCSWEGLPSCEHFQRIVGLFILDAFVDLFITICIVVNTGFMAIEYWEMPQ
Loligo $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	LIDHASGARSSSVSSSESQPELLKEKLIRIFCAWDCYPPFKTLRGYIGFFIMDAFVDLFITLCIVLNTVFMAIDHYDMQE
	$2 \mathrm{S2}$ EXON 14 2S3 250
Lymnaea Nav1	NLQDISSQANEVFTAIFAAEAFLKILAMSPVVYFKDGWNIFDSLIVALSLMELSMKELPGLSVLRAFRLLRVFKLAKSWP
Biomphalaria $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	KLANVSSMANEVFTAIFAAEAFLKILALSPVVYFKDGWNIFDCFIVVLSLMELSLTELPGLSVLRAFRLLRVFKLAKSWP
Aplysia Na, 1	DLKAVSNAANLVFTAIFA-EAFLKILALSPVIYFKDGWNIFDSIIVAL-LMELSMTKLPGLSVLRAFRLLRVFKLAKSWP
Lottia $\mathrm{Na}_{\mathrm{v}} 1$	NLKDAGTNANYVFTAIFAIEAFLKILALSPATYFRDGWNGFDAVIVVLSLLDLGLKDLPGLSVLRAFRLLRVFKLAKSWP
Loligo $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	GLRVALEIGNYVFTAVFAAEAFLKILALAPQTYFKDPWNVFDSFIVFLSLMELGLGGIQGLSVLRSFRLLRVFKLAKSWP
	2 S5 ExON 15b
Lymnaea $\mathrm{Na}_{\mathrm{y}} 1$	TLNMLIAIVARTMGALGNLIIVLAIVIFIFAVMGQQLFSTHYAIYLYKELDNGTKVYDIDNMPRWNFNDFLHSFMIVFRV
Biomphalaria $\mathrm{Na}^{1} 1$	TLNMLIAIVARTMGALGNLIIVLAIVIFIFAVMGQQLFSQGYEPYY..CPKK.......c.cmprwnfndfmhsfmivfrv
Aplysia Na, ${ }^{1}$	TLNMLIAIVGRTMGA GNLIIVLGIIIFIFAVMGQQLFSSDYKTYEREIDAWGNVTINKDKMPRWNFNDFLHSFMIVFRV
Lottia $\mathrm{Na}_{\mathrm{v}} 1$	TLNMLISIVGRTMGALGNLTIVLGIVVFIFAVMGQQLFASDYKKYENDPEYA.... QYGGMPRWNFNTFLHAFMIVFRV
Loligo $\mathrm{Na}_{\mathrm{v}} 1$	
	256 Exon 16 Exon 16b
Lymnaea $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	LCGEWIESMWWCHKAAGWPCVPFFLLTYIIGNLVVLNLFLALLLSSFGGESLSRSESADEPNKIAEAIDRFKRFGNWVKV
Biompholaria $\mathrm{Na}_{\mathrm{v}} 1$	LCGEWIESMWNCHRANGWSCVPFFLLTYIIGNLVVLNLFLALLLSSFGSESLSRSESDDEPNKIAEAIDRFKRFGNWVKV
Aplysia Na, ${ }^{1}$	LCGEWIESMWGCYLVSGWACVPFFLLTYVVGNLVVLNLFLALLLSSFGSESLQRSESDDEPSKIAEAIDRFKRFGNWVKV
Lottia $\mathrm{Na}_{\mathrm{v}} 1$	LCGEWIESMWGCMMVSGAACVPFFLLTYVIGNLVVLNLFLALLLSSFGTESLQRSQTDDEPNKLAEAFDRFNRFFNWIKV
Loligo $\mathrm{Na}_{\mathrm{v}}{ }^{1}$	LCGEMLESMWTCMEVAGYACVPFFLLTMIIGNLVVLNLFLALLLSSFGAESLQSSKSDDEPNKLQEAIDRIVRFTHWVKM

Domain II of molluscan sodium channel $\mathrm{Na}_{\mathrm{v}} 1 \propto$ subunit.

Domain III of molluscan sodium channel $\mathrm{Na}_{\mathrm{v}} 1 \alpha$ subunit.

Domain IV of molluscan sodium channel $\mathrm{Na}_{\mathrm{v}} 1 \alpha$ subunit.
Lymnaea sequence is most homologous to Biomphalaria glabrata, another pulmonate freshwater snail with Loligo sodium channel being the least homologous. The conserved serine residues in DI-II linker (blue) are PKA phosphorylation sites. Selectivity filter DEKA is shown in purple color and S4 voltage sensors are shown in tan color.

Alignment 2 Full amino acid sequences of snail $\mathrm{LNa}_{\mathbf{v}} \mathbf{1}$ and human $\mathrm{Na}_{\mathbf{v}} \mathbf{1 . 1}$ and $\mathrm{Na}_{\mathbf{v}} \mathbf{1 . 7}$

start of C terminus
Lymnaea Na, $\begin{aligned} & \text { start of Cterminus } \\ & \text { AVILENFSQATEDVQQGLTPDDFDMYYEKWEKYDPKATKYIPLDQLSDFVDYLEEPLRLPKPNHFILVKLDIPICEGDKCYCRDILDALTKNF }\end{aligned}$ human Na, 1.7 AVILENFSVATEESTEPLSEDDFEMFYEVWEKFDPDATQFIEFSKLSDFAAALDPPLLIAKPNKVQLIAMDLPMVSGDRIHCLDILFAFTKRV human Navi.1 AVILENFSVATEESAEPLSEDDFEMFYEVWEKFDPDATQFMEFEKLSQFAAALEPPLNLPQPNKLQLIAMDLPMVSGDRIHCLDILFAFTKRV

Lymnaea Na, L LGTSETADIPIKETDKE.......KEEYTPISSTLRRQKEHYAARI TQKAYRNYKGLTISEVSYGHEDVMDSYSQDNDDDRDSGGSSGRNLDK human Nay 1.7 LGESGEMDSLRSQMEERFMSANPSKVSYEPITTTLKRKQEDVSATVIQRAYRRY......RLRQNVKNISSIYIKDGDRDDD.LLNKKDMAFD human Navil LGESGEMDALRIQMEERFMASNPSKVSYQPITTTLKRKQEEVSAVIGQRAYRRH.......LLKRTVKQASFTYNKNKIKGGANLLIKEDMIID

Lymnaea Navi SFPSPPSSYKSDKKPPENGTKEKKSEDSSKKAKDKKDKGKDKKAKSDKKDDGKKKKDASKPPNGLSKTTRSKESAATTLINETEGENKTVELG
human Na, 1.7 NVNENSSPEKTDATSSTTS.PPSYDSVTKPDKEKYEQDRTEKEDKGKDSKESKK•
human Nay 1.1 RINENSITEKTDLTMSTAACPPSYDRVTKPIVEKHEQEGKDEKAKGK•
Lymnaea $\quad \mathrm{Na}_{\mathrm{v}} 1$ PNSGIVA•
$\begin{array}{ll}\text { human } & \mathrm{Na}_{\mathrm{v}} 1.7 \\ \text { human } & \mathrm{Na} \mathrm{s}_{\mathrm{y}} 1.1\end{array}$
Exon arrangement shown with numbering system from human Nav1 channels.
Positively-charged residues (R/K) in voltage-sensor S 4 segments are shown in brown color.
Calmodulin binding IQ motif conserved in C-terminus and the key "IFM" residues for rapid N-type inactivation are shown in the III-IV linker (tan color)
Conserved putative phosphorylation sites in the I-II linker are shown in blue color.
Conserved ankyrin binding site in II-III linker of vertebrate Nav1 channels are shown in green color.

Alignment 4. Alignment of the II-III linker between snail and human $\mathrm{Na}_{\mathbf{v}} \mathbf{1}$ channels.

end of II-III linker Domain III, segment 1

Ankyrin binding motif conserved in exon 16 of vertebrate but not invertebrate $\mathrm{Na}_{\mathrm{v}} 1$ channels. Ion channel clustering ankyrin motif is shared by KCNQ2/3 channels also localized at vertebrate Nodes of Ranvier. An optional exon 17 lies downstream of exon 16 in snail $\mathrm{LNa}_{\mathrm{v}} 1$ channel

Alignment 5. Auxiliary subunits of snail sodium channels (Lymnaea and Biomphalaria)

Alignment of Lymnaea and Biomphalaria sodium channel beta subunits, $L N a v \beta 1, \beta 2, \beta 3$ and $\beta 4$. Biomphalaria, like Lymnaea is a pulmonate, freshwater snail, and has homologs of the $\mathrm{LNa}_{v} \beta$ subunits. $\mathrm{LNa}_{\vee} \beta 1$ and $\mathrm{LNa}_{v} \beta 3$ have two CUB domains, compared to one in $\mathrm{LNa}_{v} \beta 2$ and $\mathrm{LNa}_{v} \beta 4$, according to Phyr2 protein homology modelling. There appear to be two distinct isoforms based on structural similarity. $\mathrm{Na}_{v} \beta 1$ and $\mathrm{Na}_{v} \beta 2$ are more similar to each other, and $\mathrm{Na}_{v} \beta 3$ and $\mathrm{Na}_{v} \beta 4$ are more similar to each other. Instead of a second CUB domain, $\mathrm{LNa}_{v} \beta 2, \mathrm{LNa}_{v} \beta 4, \mathrm{BgNa}_{v} \beta 3$, and $\mathrm{BgNa}_{v} \beta 4$ have extensive extracellular repeats. While CUB domain containing proteins are widespread in invertebrates, the presence of direct homologs of these sodium channel beta subunits don't appear to be in more distant gastropods like Lottia or Aplysia or mollusks. Conserved cysteines are shown in purple. Black frames show the Ca^{2+} binding motif YEDD in CUB 1.

Alignment 6. Complete alignment of molluscan $\mathbf{N a}_{\mathbf{v}} \mathbf{2}$ channels (3 pages)

Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	MSEMKIVPLAF
Biomphalaria	Nav2	MDDSKTSFSPF
Aplysia	Nav2	..
Lottia	Nav2	MSQdNEKSHVSEEMKAGEPNQQEISASPEKSQNSSPVKNEAETTVVEEISAKKSPEQIEHEYDQEGEEIRDSILSKLVSF
Crassostrea	Nav2	MAMKGKDGDKNHLSPNDHCVIAGKDGRVSPALSWRPSSARSSRVGDEEEPKDF
Bithynia	Nav2	
Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	
Biomphalaria	Nav2	
Aplysia	Nav2	
Lottia	Nav2	RKFTNESYQRQVEKEKEEKVKAIEKQAKAQEAHLVDGQLIFGDENEDEIEKPTIDPGLVEGNVLLDSYGVFPTDYI GKPL
Crassostrea	Nav2	RQYVQrS Wdeqlhrekeaq- KKLd
Bithynia	Nav2	
		exon 2 l ${ }^{\text {IS1 }}$
Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	EEIDPGIRDKTFVVIGSRFGKKFIYRFTATKSLFILAPWHSLRRLTLRIATNQFFDLCIFLTIIVNGVFLAV..pylpla
Biomphalaria	Nav2	EEI DPGVRDKTFVVIGQRFGKKPIYRFSATSSLCIFAPYNKLRKFMLRLLVNQFFDLVIFLTIIANCVFLAGGSNATSNA
Aplysia	Nav2	
Lottia	Nav2	EEIDKAIVDKTFVVIAKRFKKKFIYRFSSTSAFFLLPPWNPLRQLAVRIATNQFFDYFVILTIIVNCVFMTM. - Pdiql
Crassostrea	Nav2	EEIDKYIKDKTFVAIAPRFSNKYIHRFHATKALGLLTPWNPVRKLSVYIATNQFFDYLVILTILCNCVFLAM. . Pdopas
Bithynia	Nav2	
		152 exon 3 IS3 exon 4 is4
Lymnaea	$\mathrm{Nav}{ }^{2}$	ENIEYLFLAIYtLECIIKIMARGFVTHKHTYLFDPWNWLDFIVIVTAYMTIVLQLVSQEMTVGNLQGLRTFRVLratktV
Biomphalaria	Nav2	EQIEYIFLGIYTTECVIKIIARGFIMNKHTYLRDPWNWLDFIVIMTAYITILVQYSAHDLPSVNVQGLRTFRVLRALKTV
Aplysia	Nav2	
Lottia	Nav2	ETLEYIFLAIYVVEMLIKVTARGFII DKYTYLRDGWNWLDFIVIVLAFVTILIQLIYPDLSIGNLQVLRTFRVLRALKTV
Crassostrea	Nav2	
Bithynia	Nav2	
		exon 5 IS5
Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	SIVPGLKTMVSALLRAFKMLFEVILLTFFCLMVFAMFGLQIYMGAFRNKCVMNVTGYVENPS - Qtyddyyakwirn
Biomphalaria	Nav2	SIVPGLKTMVSALLRAFKMLFEVILLTFFCLMVFSMFGLQI YMGSFRNKCVKNITGYRNNPS-ETYEDYYAAWIRNQENW
Aplysia	Nav2	
Lottia	Nav2	SIVPGLKTIVNALLRAFKMLIDVIMLTFFCLMVFALFGLQVYQGVLRHKCVSDLPFDPNTTTPETYDTLYANHIRNISNW
Crassostrea	Nav2	
Bithynia	Nav2	
Lymnaea	$\mathrm{Na}_{\mathrm{v}}{ }^{2}$	HQAdg-EyIICGNLSGSGTCPDSYICLAGIGDNPRFGYLSFDHFGWALLSCFQLITLDFWEDIYNKAIRATGPWNVIFFI
Biomphalaria	Nav2	YQEDE-EYVLCGNLTGSGLCPADYICLPDIGDNPRFGYLSFDHFGWALLTSFQLITLDFWEDIYNKAIRATGPWNVIFFI
Aplysia	Nav2	YLSDD-EYVICGNNSGSGTCPDNYTCLGDVGDNPRYGYLNFDHFGWALLTCFQLITLDFWEDIYGKVIRATGPWNVIYFI
Lottia	Nav2	YGEPN-DYMLCGNTSGAGGCPENFTCLPDIGDNPNYGYTNYDNFGWAILNAFQLITLDFWEDNYDKVIRASGPWNVVFFI
Crassostrea	Nav2	YQNEEGEYLICGNASASGECPGGYTCLPDIGENPNYGYTSFDHFGWAMLTSFQLITLDFWEDTYNKVIRAMGPLNVLFFV
Bithynia	Nav2	...
		mISSING ExON..ILINKER exon 10
Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	IVIFFGSFYLINLMLAVVSMSYEEEAVSAGKADELI DPDIGALEGQVIDRNCDCCERWMCLYIPFLKMQNHFYVFVSDPL
Biomphalaria	Nav2	IVIFFGSFYLINLMLAVVSMSYEEEAVSAGKADALLDPDIGPLVGQVIDRNCNCCEKWMCLYVPFLKMQNYFYVFVTDPL
Aplysia	Nav2	IVIFFGSFYLINLMLAVVSMSYEEEALSAGKADSLLDPEIGALEGQVIDRNCDCCQRFCCCYISLLKMQNVFYTFVQDPL
Lottia	Nav2	LVVFFGSFYLINLMLAVVALSYEEEAENAGKADELEDDAM-SYDGQLVDRNCNICSSCCRCFVPWIKFQNIIHRFITDPL
Crassostrea		
Bithynia	Nav2	
		252 exon 11 253
Lymnaea	$\mathrm{Na}_{\mathrm{v}} 2$	FDLIITFCIFINTLFLSLEHHNQSSTLTTTLTVSNIMFTCVFILEAFCKIIGLGK-YyFMVGWNIFDLVIALASLLDLGL
Biomphalaria	Nav2	FDLIITFCIFINTLLLSLEHHDQSSALTITLSISNMIFTMIFTLEAVCKIVGLGK.YYFLVGWNIFDLLIAIASLLDLSL
Aplysia	Nav2	FDLVITICIVLNTVFLSLEHHNQDSGLTLALNISNYIFTSVFIUEAVCKIIGLGK.YYFMSGWNIFDLIIVIASVLDMGL
Lottia	Nav2	LDLFITLCILMNTIIMACESHEMSETTQETIRISNYVFTSVFTLEAILKIIALSK-YYFASGWNIFDFVIVLASLIDLGL
Crassostrea	Nav2	FDLFITFCILINTIFMGIEYHNMPQGLVDATTWANFVFTIIFTLEAVLKLCAFGKF.YFSNGWNNFDLVIVVASWLDFGL
Bithynia	Nav2	$\cdots \mathrm{ClNFCILLNTIVLSLQFHGMSTELREVVDIANKVFSAIFVTEAALKLYGLGVIGYFRIRWNIFDFIIVQEALITLLF}$
		254 exon 12 285
Lymnaea	$\mathrm{Na}_{\mathrm{v}}{ }^{2}$	
Biomphalaria	Nav2	
Aplysia	Nav2	
Lottia	Nav2	EDI DG. - LSVFRTFRLLRVFRLAQSWSTMRILISIIVNTFGALGNLTVVLFIIIYIFAVTGLQLFNRSYTADKFSPD.GI
Crassostrea	Na	S DVEG VNVIRTFRLLRVFKLAQAWRTMRVLLSIIMNTLGALGNLTVILVIIIYIFAVIGLQLFRNSYTADKF. GEDGV
Bithynia	Nav2	SYQHLPAEGVLRVCRLFRIFKLAQVWPAMNMLVTVIMKALGAVGQLIIILFIILYIFAVIGLQILGDKYVHTSFPHTTGV
		exon 13 ext ${ }^{\text {en }} 14$
Lymnaea	Nav 2	
Biomphalaria	Nav2	PRWNFQDFYHSMLMIFRVLCGEWIEPLYDCMQ...ASSEICMVVFLPALVLGNFVVLNLFLALLLNAFASDSLDKH... RD
Aplysia	Nav2	Pr WNFKDFYRSMLMIFRVLCGEWIEASYQCMR. . ASNELCMVVFLPALVFGNFIVLNLFLALLLNAFASDSLDKQ... Re
Lottia	Nav2	
Crassostrea	Nav2	
Bithynia	Na	PRWNFKDFFHSFLMMFRVLCGEWIEPLWDCMRIPQYSNLYCYVIFIPMLIFGNFVVLNLFLALLLNAFGDNETLKESIERK

MISSING EXONS II-IIL LINKER
 Biomphalaria Nav2 SST-ERSKLMEGFERLR-QLLCCCFSCPNGKVTPSSNTKELASKGKEDTFK

Aplysia Nav2 SSV.ERSKFLQGFDRLR. QLCCCCCPRPNGKVEPTTDANQNASEGQEMTDDS.
Lottia Nav2 SNKDDTSRFKLAF-HRIK-HLCCCCLPGNSNVVKPDERGEEVPPE..
Bithynia Nav2 RLENAKKRLYFLWGRIFKSICCFGKNIQCRVNVIIHKPVGSNMKEAGTETYQLNDKMIVIKQHSMWANSDSFCTPTAAPS

-
GICNITFSVLFTIEMILKWIGLGLTEYFTNFWTILDFFIVF| SLLGLIGDYIGLGSVAAFRSLRTLRSLRPLRAISRWQG Biomphalaria Nav2 NICNIVFSILFTMEMMLKWLGLGLTEYFTNFWTILDFFIVFTSMLSLIGDQIGLGNVDVFRSLRTLRSLRPLRAISRWQG Aplysia Nav2 KYCNIIFAALFALEMVLKIIGLGATEYFTSFWTLLDFFIVCISLLSLIGDSIGLNNITAFRSLRTLRALRPLRAISRWQG Lottia Nav2 YYLNIIFCVIFVAEMLFKWFAYGLWKYFTNFWTLLDFLIVCISVASLIAESLGISNLTAFRSLRTLRALRPLRAISRLQS Crassostrea Nav2 YYTNIIFAVLFTVEMLMKWVALGFKKYFTSFWTILDFAIVVISLASLIADATGGEDISAFRSLRTLRAFRPLRAISRWQS

Bithynia Nav2 QYLNLAFTILFICEMLLRWIGDGLTVYFTNIWTILDFIVVVVSSVNLLPGDDDDDSGSGLQALRALRALRPLRVVSRIHG
3 exon 20
Lymnaea Na, 2 MK|IVVNALMNAIPAIINVLLVCMVFWLIFSIMGVQFFKGRFYKCKNTTSLTVFDASVVPNKNVCLA.-V GGAWENSNV Biomphalaria Nav2 MKKVNALMNA1PA1INVFLVCMVFWLIFSIMGVQFFKGKFFKCVNKTTGETIVGDVIDTKSDCLVNRT Aplysia Nav2 MK VVNALMNAIPAIVNVLMVCMVFWLIFSIMGVQFFAGKFYKCVNVTTGERISHVITPNRNACDST-S GTEWENSNV Lottia Nav2 MRIVVNALMRAIPAIFNVFIVCMVFWLIFSIMGVQFFAGKFYKCVD-GNGEILLNTVVPNKTECLRN-S NYKWKNSNV Crassostrea Nav2 MRIVVNALMLAIPAILNVLVVCMVFWLIFSIMGVQFFSGRFYKCKD-SSGEVLLPSVVANKSQCLAMAATHNYSWVNSNI Bithyia Nav2 MKIVVNSLMRAIPAIINVFMVSLVVWLIFSIMGVQFFGGKFYKCIYFDNQTVVS. QVKNKTDCNARNG. TLWYNSNI
 Biomphalaria Nav2 NFDNAANGFLALFQVATFEGWMEIMADAVDATDVDYVPRRESNQIAYLYFVVFVIFGSFFSMNLFIGVIIDNFNVLKKKY Aplysia Nav2 NFDNSIAGFLALFQVATFEGWMEIMSDAADTTDVDQQPIQENSSLSYLYFVVFIVFGAFFSLNLFIGVIIDNFNVLKKKY Lottia Nav2 NFDNVLQGYLALFQVATFEGWMEVMRDAIDSTEVDVQPKFENNIYYYLYFVAFIIFGSFFTLNLIIGVIIDNFNVLKKKY
Crassostrea Nav2 NFDNVLNGYLALFQVATYE
WMEVMDDAI DSTKVDEQPSFENNLFMYLYFVAFIIFGSFFTLNLI।GVIIDNFNALKKKY
Bithyia Nav2 NFDNVLNAFLALFQVATFEGWMEVMRDGIDAVNVDVQPKQESGFIYYIYFVIFIVIGNFFSLNLLVGVIIDNFNALKKKY

Lymnaea Na, 2 EGSYLDAFLTQSQRNYYNTLKKLGKKKPQKTIKRPKNKFQLFFYNLSMSSKFEISIVLLIFCNMVNMAVEHYHESG. ACAV Biomphalaria Nav2 EGSYLDAFLTQSQRNYYNTLKKLGKKKPQKTIKRPKNKFQLFFYNLAMSSKFELSIVVLIFLNMVNMAIEHFHQSQ.-AV Aplysia Nav2 EGSYLDAFLTQSQRNYYNTLKKLGKKKPQKTIKRPKNRFQLFFYELAMSSKFELAVVLLIFFNMIVMAIEHYKEPD.-SV Lottia Nav2 DGSYLDMFLTPNQRNYYNTLKKLGNKKPQKTIKRPKTKFQGFFFDLATSNKFELSIIVIIFLNMITLAIESYKQSD.CTI
Crassostrea Nav2 DGSALDMFLTQGQKNYMNTLKKLGSKKPQKTIKRPKAAIQAVFYDVSVSSKFDLCIVIVIFLNMIAMAVDHYKMTD. YV
Bithynia Nav2 EGSFLDAFLTPNQRNYYSILKKLSTRKPAKIIEPPKWRFQQLFYDLAVSDRFELLLMGVVFLNMVSLILETISYKPSCAA

Lymnaea Na, 2 PTLLRVIRVFRIGRILRLIKGAKGIRKLLFALIISLPAIFNIGALLFLIMYMYAIIGMSSFIHVRVNGVM-TEIINFQTF Biomphalaria Nav2 PTLLRVIRVFRIGRILRI।KSAKGIRKLLFALIISLPAIFNIGALLFLIMYMYAIIGMSSFNRVKINGVF-TEIINFQTF Aplysia Nav2 PTLLRIIRVFRIGRVLRLIKAAKGIRKLLFALI।SLPAIFNIGALLFLVMYMYAIIGMSSFGNVKINGVF.DEVVNFQTF Lottia Nav2 PTLLRVGRVFRIGRVLRLIKAAKGLRKLLFALIISLPAIVNIGALLALIMYIYAILGMSSFKNLRVSPMMNNDIVNFQTF Crassostrea Nav2 PTLLRVLRVFRIGRVLRLIKAAKGIRKLLFALIISLPALINIGALLCLIMYIYAIIGMSVFGNMKIELPM DDTVNFQTF Bithynia Nav2 PNILRLLRFFRISRALRAVKVAKGLHKVMFSLLISLPAVINIMALLLLCVFIYAIVGMFIFSHVKLT-GSLTEMMNFRTL

Lymnaea Na2
Lymnaea Nav 2 GNSFMLLLRLATSAGWNDILEALLISPPYCNPNFYTLPDGTM-KESVYGDCGTPYLAIPYMVSYIIIVWLIVINMYIAVI Biomphalaria Nav2 GNSFMLLLRLATSAGWND। DALLIQSPYCDTHOYLVPGSDVPITATGGDGGTPLLA।PYMVSY।1।VWLIVINMYIAVI Aplysia Nav2 GNSFMLLLRLATAAGWNDVLEALLIKTPYCNPDYYTQPDGVL-VASSSGDCGIPYLAIPFMVTYIIIVWLIVINMYIAII
Lottia Nav2 ANSIILLFRLSTSAGWNEILDPLLIEYPDCDPDT7ELSNGQR-IKQTYGECGIPWLAIPYMVTYIFIAYLVIINMYIAVI
Crassostrea Nav2 ANSFVLLLRLSTSAGWNDILETMFLSEPDCDPDFATRPDGVSRFKYSTGDCGSPAFGVFYMVSYILIIFLVVINMYIAII
Bithynia Nav2 GGSMLLLLSLSTAAGWNDVLDPLLIQEPFCNRTHHQIPNGSWVAAKNG.DCGIKYMAVPYMVSFIIITYLCLINMYIAVI

The likely transmembrane regions are shown as gray boxes, Selectivity filter components are shown in purple color.

Appendix D. Genomic regions of sodium channels

Genomic region 1. Exons 4a and 4b of α-subunit

ATTTTCTGTATGTAAATATTCTTTAAAAAATAAGCAAAGTCGAATGGTTTAAAATATTTTAAACATTTTTTTTTTAATATGATAAAA TTTGTTATAGTGAAACATTTTTTTTTTAAATAACAGAAGAGTTATGACAATTGAAATTATCAGTTATGTTAATTATTTTGTATCTCA TTTACCTAGTTTCAGTTTTAACGTAATGTTCACCTTTATCTTGAGTGGAATAATTTCATGTTTTGTTTTTCTCTTAACAACTCTTCA exon 4 a Novel
CTGGTTTTAGTCTTTTGGTGATGCTGACCATTTTAGTAAACTGCGCCTCTATGGCCATAACTTCGTGGACACCCCCGCCCTATGTGG
 AGTAAGTAGGCCAGCTGCCACATTGGCTTTCTCTCCATTTCTATAGCAATAATACTCGAGCGTGCATTTTTTTTTAACTCGTCAGCT TATAAATTAGCTTTATATCTTTCTATTTATCCGATATTTTGTTTTTTATAAATACAAATCAATTCTATAGATGAGGTATCATTTATT AAACATATATACCGGTAAATATGTTTTCATTATTTTCAAAGGACGCTATCAGAGGGGGTGGGGTGTGTTAGTTTCTTTTTTAGATTT TACATATTCCAATTCCGGTTTTAAATAACATTTTAGGACACATATAATATAATTTTTTGAGAGATAATGTGTATCATTATTCAAGTA ACTATTGTTCTGGCAAAGTTAAAAGAAATATCCTGAATATTTCTTCTTCAATAACATCATATTTTCTCTACAAATCTTACCTCTACA TATCTCTTCTGTGTACCGCTAGACCTATATCTCTTCTCATTTCTCCATGCATCTTTTATCCTATAAATCTCTTCTCTACGCATCTTT ATCCTATAACCCTCTTTCTGTGCATCTTTTCTCTTTACATATTTATATTTCCTCCTATACATCTTTTCTCCAATACTGCTTTGTTCT ATACATTTTTGTTCTATACAAATACAACAATTTCAAATTAAAATTGATTTAAGGTTAAGCACTTGGCGGGGAAAATGTATTTCTTTT AACAGTCAAAATGAGGCGCCCCTCCCCCCTTTTTTCTGTTGTATCAAGAAAGTAGTTCACGCCAGCTCTCTGTGTCCATGCGTTAGC TGCCGAGAAATGATTTGATCTCCTTGTTAACTTGAAAATGACTCAACAAAAGACATGGTGATATGGTGGCGTATACTCGTTTACAGT GATGTTGCGTTGCACTGTCACTCAGTGTCTGGATTCCTTTGATATTTCAAACCATAATTGAAGCTCATGACATTAGATGCTAGGCAA TATTTGAATCGCCCGAGATCTAAGCAATATTTTGACCATCTGTCATCGAGTCCTTTCAAATGGAAGCGCCTGAAATCTTAAACAATG TTTATTTAGAGCTACTGATATCGAATCCCTGATTTTGAAACGACTGAAATCCTAGACAATATTTGAAGCACCTGATATCAGAATCTA AATTCTAGACAATATTTGAAGCACCTGATATCAGAATCTAAATTCTAGACAATATTTGGAGCACCTGATATCAGAATCCAAATCCTA GACAATATTCGGAGCACCTGATATCAGAATCTAAATTCTAGACAATATTTGGATCACCTGATATCAGAATGCAAGTCCTTGACAATA TTCGGAGCACCTGATATCAGAATCTAAATTCTAGACAATATTTAATTCGGATCATCTGATAACAAAATTCAAATCCTAGACAATATT TGCACCTGATAACAGAATTCAAATCCTAGACAATATTTGGAGTACCTGATATCAGAATCCAAATTCTAGACAATATTTTGAGCACCT GACATCAGTTGAAATGCCCAACACAGATCACCAGATAAAAATCGAAGATCCCAACACAAATCTCCAGATAAAATTTGAAGAGCCCAA CAGAAATCACCAGAGATTAAAAACTTAGAACACAAGTTTTCATAATTAAATCTTTTGTGTCATTTTGACAACCTTCCCATCATCTTT CCTCGTTATTTTGTGTCTTTTAGGTTTGCCGGAACAATAGATACAATTTAAAAAGAATTTTAAAAAATAAAAAATGGTTTTAAAGAT TGTTCTCTTGTATTTTTACCAACCCTTTTTTTAAAGCAATAAAACAAAACAAAAATTGCTTTTCGTTTATTCTAATTTCATCAATGT TCAATTCTGGAAACATTTATTCTCATTTTTTTCCTTGTTACTTCCAATGTTGTAAATTGCTTCCAGCTATAAAAAAAAGTTGCTTTA CAATACTCATCCATGTCGTCTTGTCTTGATACTACTCATCCATGTTGTATTGTAATTTCAATTACAGCTTCTATTATATTTTTTTCA ACATTGTATTTTTCAGCTAAAGTCATTTTGTCCCACGTACCTCTGTATTGTACTTTTTCTTTATTTTAGTTCGAAGTTTTATTTTCA AATTTTATTTCAAAATAATTAAAGAGAAACCATATGGCATCCAAGATTGTAAAAATATAATATGTATTTAAACTAAAAGACAGCATT ATATGCTCGTAAGCAAATTGTACAAAGTCTCTGCTTCTAGGACTGTTTGCTATTTGCTAGTGGTAATTTTAAAGTTCTTCTTGAAAC TGAAATAACTGTTTAGTTGTAACGAGCAAGCTATTGCTCAAATCAGCCCCCTATTTCTTCCAAACATTGCTGCTAAAATTTATATTC ATTTGTTTTTGTTTTACCATAAATACCGGTATAACAATAAGCCTTAGTCTTTGGAGCATTTTGGTTCAATGGTTTCTTAATTTAGCT TTTTGTTTCTTAAATAATGTGAAAGTGCAATATTTTGTATGCATAATCACTATAAATATAATCGCTTATCGTTCATACTCCATTATT TACCCTGAACTTTTACATGCATAGATTTATGGGGGTTTTTTTACTTTCGTTTACAGAGGAAACATATTAGTAATTGACTTTTTTTTA AATTAAGGAAATCAAAATCTCTCCAAAGATCAAATTGCACTTTTAATTACCGGTATTCCATTCCATTTGTAATCATTCAGTACCCTC TCCTGCTGCCTTCTCTCCCTTAGCCTGAGTACATTGATGAATTTTGCACAGTTTATTAATAATATTGACAATGTAATCTTATTTATT TTAAATATTTTTATTTCACCAGCCATTATCATAAAAGTAATTTATACCCCTATTGATTGTAACATGTCATTTAGACTTATTTAAGTA AATCATCATTCTCAGAGTGTTATAAAAAAGAGAATTTGTTAAAAGATTTATGCTGAACCCTAATAGTAATCGTTTCTTTAAAAATAA TCAATTATCTTACCATATGCATAGCGTGTCACAGGCAATATTAGCCAATTATAAAGTAACTTTAAATATAAGGAATATATATTTAAC TCTTTGCTTCCATCAACTCCCAATGATCACCATGTTCGACAGAGGTCTCTGTGTTTCAGTTCTCAGTCAGCAGTTGTCATTTAACAT GCACCGACGCAAATAACTATTCTTTGCATAAACAAAAAATTAGCTTCATCAGTTCATAAGCCACTAAACTAAAATATTCACTGAAAA GCAATAAGAAGTTGATTGTGGTCTCCATAACAAATCATTTAGACATAGAAGTCTCTACACTTCAAATCCCACAATTTCTATGACCAG GTTGTGTCTATTTAGTCATGAGAAATAATGATGTTCTTAAAATCAAGCACAAACATCGGATCAGACTCTTCTGGTCATGGGTTAACC CTCGTGTGAAGCACGCAATATAAGTCTGGGCCTACTTTTCACTGGAACTTACTTAAGTTACAGGCGTAGGGATGCGAAATCCCATCA TCTTCCTGATCACAAAGCCATTGGGGATTTAAACCTTCGGCCTATTCAATTGGGATGAAAATTTCAAACTCTAAATTTTCAAATACA TTATATATGTATTTATTGTTTGTTTGATTTGTTTTATGTGTGACTTTTGTTTTAAATAATCACATGATTATAGATTTTTCTCCCTTG AAAAATATTTGTTGAATTGTGGCTTTAATAATATATTCTTATTGTGATTCAACTAACCCGCCTCCCCCCCCCCTTCTCCCCAAACCT TACAGTTAGTTGCTGTTAATTATTTGTCATTTGAAAGTTTGCCTGAGCTCCGTCTGAAAAGCATCGTGTGTCTGGCTGTACCGTTTT TGAAAATCCTTGTTTAATTATTTATGGTTTTAAACATGAAGCATTTTTAAAACCCTGAACTAATGCCTTTTTAAAGATGGTGACATC TCCCCNNTTTAATATAATGGCTCGTTTGGCTTGACCGATTCTGTGGTTGCAGTAGTAAGTCTACAATGCCATATTTTTGTTTTTATT TTTTTTGCCCTTGGTTTTATTTCTACGGATATCCTGCTGCCATACATAAGGCTGAACATATTTGAATGAAGGATGATGTGTTTGGCC exon 3b Transcriptome clone
AAATCTTCCTTAACTGGCCCACTTTGTTTAGTTTGACTGTTATGATCACCATCATCACCAACTGTGTCTTTATGGCTCGCGCTGAAA $>\mathrm{L} \quad \mathrm{F} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{T} \quad \mathrm{V} \quad \mathrm{M} \quad \mathrm{I} \quad \mathrm{T} \quad \mathrm{I} \quad \mathrm{I} \quad \mathrm{T} \quad \mathrm{N} \quad \mathrm{C} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{M} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{A} \quad \mathrm{E}$
ATCCGCCAGAATATGTGGAGTAAGTACGGCATCACGTCCTCACGTTTGTTTGTTTGTTGACGGCGACGCCCACTAACAGCAATCACT $>N \quad P \quad P \quad E \quad Y \quad V$

ATCCAAGAAACCCCGCATAATGGAATACTTACAAAATATTTAAAAGTTCATGTATTGTTAAATAACAATAGAAAGTAGTTTCAAATA TTTTGCTTAAATTACGATGAAGCAGTATTTATTTTTTTTTAAAGTAGTTTCAAAGATTTTGCTTAAATTACAATAAGCAGTATTTA

Genomic region 2. Genomic region of Nav2 with exon 1 and 2

TTAATTAAATAAATACAAATAAGTTTAATAAGTGTCGAATCATAATATTTTAACATTTTTAATAACAAGAAAGATAGAGATTTTTTTTTAAATTGGGGAATATTAACAAT AACTAAACTTATCTATTGTGGCTTTATTTAGTAATCTCATATCTATCTATACTCCCTGTAAATATTTTATTTTTTATCTCATTTTATAGAAAAGTTATAGTATAGGTTT AAAAAGACAACAAAATGTGGAGAAAACTCCACTTGAGCTAGAAAGTAGATCTTGGTGTTTTTGGTAACCATTCTCTAGCCACTACAGGGCCTACACCTGTAGTATTTTT ATACTTTAAAAAAATGGTTGAAAATTTTAGCAAAGTGCATAATGGTAGATAATATTTTCTAGGCCTTATAGATAAGTCTTATTAAAAAAATGCAATATCATCATAGGGT AATATGTATGTTTTGTTTTGTGGTTTGTATAAAAGAGGTTTCAGCTGTGTGAATCTTGTAATGAAAGCAATAATACTTTTGCTGTAGCCATAGCTTTTAGAATGTCTCC CATTGGATGATCACTGGGTGTAATCCTGTTAGATCTACCGCCTCTTGTCAAAGCCTGTGATCTGTGACCAAGTGTTTAAGGGATCATTTCCAATGGCTTACCCTGTTTA ATCACATCTGATTTCTGTATGCCTTGTAGTGTAACTTAATTCACCTGGTCAGCTGTTCTTCTATTATATTTCTTTACATTTCAGAATGGGTTTTAAAATTCATCAGCTA GGATTATATTTCAACAAATGCTAGACAACTGTAATCTACTTGTAGTTAACAAAATGTTTCAAATGGGAAATAAATTGAAATCTGCAAAATAAACTAGTCAACTGAGAGA 909
AAATTGATGGCATGGGATATTACAGCAAGTGAAGCATTGGGTTCAATTCACAAATACCATGAGTGAAATGAAAATAGTCCCCCTAGCCTTCAGACCGTTCACTGAAGAA
$\begin{array}{llllllllllllllllll}> & M & S & E & M & K & I & V & P & L & A & F & R & P & F & T & E & E\end{array}$

 TGAAGAAATCGACCCAGGGATTCGTGATAAAGTAAGATCATTTTTTTTGTTCTCATTTAGATGTATTTATACATATGATTTTTTTGGACCAGTTTGTAGTCTCCTTCAG $>\quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{G} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{D} \quad \mathrm{K}$
ACTTCATACTGCTTAACATATATCATTTTTATTTAATTTTGCCTTTGTACTCTTATTGTTTGCTAAAGAAACCTTTTGCAAATACATTTGTTGTGTAGTTTTGTCTTCT TCAACGTTTTACACTACCCTGTGTTTATGGTTCTTAAAAGAATTAACTATCAGGTACCTTAAATAATTTCATAAAAAAGATCTGTTAATATTTTTCTGCAAATAAACTT ATTTCAGACTCAAAAACCACCAAATTCCAAATGGCAGGATTTATTAATAACTCTTCTGTTAATATCAAGGTTAATGCCTTGTTTCTCTACTGTGTAGAAAAACTATCAT AAAGATTACTGTTAAACAATTTAAACAAATGATATGATTTAACACTAGGGCAAGGGGTCTGCAAATGTTTTTTAACAAGGGCGGGTAAGAAGTCTCATCATTAACCAGG GCCAGTAAGAAGATCTCATCAATGACCAGGGCCAGTAAGAAGATCTCATCAATGACCAGGGCCAGTAAGAAGATCTCATTAATGACCAGGGCCAGTAAGAAGATCTGAT CAATGACCAGGCCAGTAAGAAGATCTCATCATTGACAAGGGCCAGTAAGAAGATCTCATCATTATCCAGGGCCAGTAAGAAGATCTCATCAATGACCAGGGCCAGTAAA AAGATCTCATCAATGACCAGGGCCAGTAAAAAGATCTAATCAATGACCAGGGACGGGAAGAAGATCTGATCAATGACCAGGGCCAGTAAAAAGATCTGATCAATGACAA GGGCTAGTAAGAAGATCTGATCAATGACCAGGGCCAGTAAGAAGATCTCATTAATGACCAGGGCCAGTAAGAAGATCTGATCAATGACCAGGGCCAGTAAGAAGATCTG ATCATTGACAAGGGCCAGTAAGAAGATCTCATCAATGACCAGGGCCAGTAAAAAGATCTCATCAATGACCAGGGCCATGAAGAAGATCTGTGGGGGAATCAACGATCAT junction marker
GTCCTTACCTTATCCACTGTGTGGTGTGGGGGAATTTAACGATCATGTCCTTACCTTCTCCTGTGACCTCATTTTATGATCATCCGTACATGTGACATCATTTTATGAT CAGATCATCCTTACATGTGACCTCATTTTATGATCATCATGAAGCATCAAGAGTTCCTAATTTTTCTCCCCCCCCCCCCCCCACCACATTTGTGGTTATTGGATCTCGG TTTGGGAAGAAGTTCATCTACAGATTTACTGCAACCAAATCCTTATTTATCCTTGCTCCGTGGCACAGCTTGAGGCGGTTAACTCTCCGAATAGCCACCAATCAATTCI
 TTGATTTGTGTATATTTTTAACAATAATTGTCAATTGTGTCTTCCTGGCCGTGCCATATCTTCCTATAGCTGAGAACATTGAGTAAGTAACCGAGTTTTTTTTTGAATA

TCATAATAACAGCACCGTTTGTAGCGCTCCTTTTCTTTATAAACAACATTCATTGTCTGTACTATAGAAATAAAGGATTAGACATAAAGGTATAGAAATAAAGGTATAG AAATATAGGCAAACTTTATGGAATGAAAATGAGCAGAGATAAGACCAAGCTTATGTCCAGCAGGCCATAAAGAGATAAGACCTAGGTTATGTCAGTAGAGCCATACGCA GTTAAGACCGAGCTTATGTCAGTAGGCCATACAGAGATAAGACCAAGCTTATGTCAGCAGGCCATACAGATATAAGACCTAGGTTATGTCAGCAGGCCATACAGAGATA AGACCTAGGTTATGTCAGCCAGCCATACAGAGATAAGACCTAGGTTATGTGAGCAGACTGTACAAGAGAAAAACTGGACATAATTATCAGTGATCAGCTGCTCCATCAA TGCCAGCATTTTAAATATCTGGGAAACATCTTTCTAAAACTTGATAGTGAGATATAGACGAGAGTGCAGACGGTGAAAACAGTCAGTTACCTCATAGCCCTGCCAGTAA

Bibliography

Anderson, P., Holman, M., \& Greenberg, R. (1993). Deduced Amino Acid Sequence of a Putative Sodium Channel from the Scyphozoan Jellyfish Cyanea Capillata. Proc. Natl. Acad. Sci. USA. (90), 7419-7423.

Arikkath, J., \& Campbell, K. (2003). Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Current Opinion in Neurobiology (13), 298307.

Benjamin, P. (2008). Lymnaea. Scholarpedia, 3(1):4124.

Ben-Johny, M., Yang, P., Niu, J., Yang, W., Joshi-Mukherjee, J., \& Yue, D. (2014). Conservation of $\mathrm{Ca} 2+$ /Calmodulin Regulation across Na and $\mathrm{Ca} 2+$ Channels. Cell (157), 1657-1670.

Bennett, V., \& Lorenzo, D. (2013). Spectrin- and Ankyrin-based Membrane Domains and the Evolution of Vertebrates. Current topics in membranes (27), 1-37.

Birnboim, H., \& Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Residues 7(6), 1513-1523. doi:10.1093/nar/7.6.1513

Blanc, G., Font, B., Eichenberger, D., Moreau, C., Ricard-Blum, S., Hulmes, J. S., \& Moali, C. (2007). Insights into How CUB Domains Can Exert Specific Functions while Sharing a Common Fold. $J B C(282), 16924-16933$.

Brackenbury, W., \& Isom, L. (2011). Na+channel β subunits: Overachievers of the Ion Channel Family. Frontiers in Pharmacology, 1-11.

Bullock, T., Moore, J., \& Fields, R. (1984). Evolution of Myelin Sheaths: Both Lamprey and Hagfish Lack Myelin. Neuroscience Letters 48(2), 145-148. doi:10.1016/0304-3940(84)90010-7

Burkhard, P., Stetefeld, J., \& Strelkov, S. (2001). Coiled Coils: a Highly Versatile Protein Folding Motif. Trends in Cell Biology (11), 82-88.

Cantrell, A., Tibbs, V., Yu, F., Murphy, B., Sharp, E., Qu, Y., . . . Scheuer, T. (2002). Molecular Mechanism of Convergent Regulation of Brain Na+ Channels by Protein Kinase C and Protein Kinase A Anchored to AKAP-15. Molecular and Cellular Neuroscience (21), 63-80.

Carmeliet, P. (2003). Blood Vessels and Nerves: Common Signals, Pathways and Diseases. Nature Reviews Genetics (4), 710-720.

Catterall, W.A. (1993). Structure and Modulation of Na+ and Ca+ Channels. Annals of New York Academy of Sciences (707), 1-19.

Catterall, W.A. (2000). From Ionic Currents to Molecular Mechanisms: The Structure and Function of Voltage-Gated Sodium Channels. Neuron (26), 13-25.

Catterall, W.A. (2014). Sodium Channels, Inherited Epilepsy, and Antiepileptic Drugs. The Annual Review of Pharmacology and Toxicology (54), 317-338.

Catterall, W. A. (2005). International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev, 397-409.

Catterall, W. A., Goldin, A. L., \& Waxman, S. G. (2005). International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltagegated sodium channels. Pharmacol. Rev, 397-409.

Catterall, W.A., Hulme, J., Xin, J., Preston, J., \& Few, W. (2006). Regulation of Sodium and Calcium Channels by Signaling Complexes. Journal of Receptors and Signal Transduction (26), 577-598.

Cestele, S., \& Catteral, W.A. (2000). Molecular Mechanisms of Neurotoxin Action on Voltage-Gated Sodium Channels. Biochimie, 883-892.

Croll, R. (2000). Insights Into Early Molluscan Neuronal Development Through Studies of Tramsmitter Phenotypes in Embrionic Pond Snails. Microscopy research and technique (49), 570-578.

Cusick, K., \& Sayler, G. (2013). An Overview on the Marine Neurotoxin Genetics, Molecular Targets, Methods of Detection and Ecological Functions. Mar. Drugs, 991-1018.

Davis, T., Chen, C., \& Isom, L. (2004). Sodium Channel $\beta 1$ Subunits Promote Neurite Outgrowth in Cerebellar Granule Neurons. The Journal of Biological Chemistry (279), 51424-51432,.

Dawson, T. F., Boone, A. N., Senatore, A., Piticaru, J., Thiyagalingam, S., Jackson, D., . . . Spafford, J. (2014). Gene Splicing of an Invertebrate Beta Subunit (LCav β) in the NTerminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels. PLOSone (9), 1-17. doi:10.1371/journal.pone. 0092941

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., . . . Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 465-469. doi:10.1093/nar/gkn180

Derst, C., Walther, C., Veh, R., Wicher, D., \& Heinemann, S. (2006). Four Novel Sequences in Drosophila Melanogaster Homologous to the Auxiliary Para Sodium Channel Subunit TipE. Biochemical and Biophysical Research Communications, Vol. 339, 939-948.

Dong, K. (2007). Insect Sodium Channels and Insecticide Resistance. Invertebrate Neuroscience, 17-30.

Ekberg, J., Jayamanne, A., Vaughan, C. W., Aslan, S., Thomas, L., Mould, J., . . . Lewis, R. J. (2006). μ O-Conotoxin MrVIB Selectively Blocks Nav1.8 Sensory Neuron Specific Sodium Channels and Chronic Pain Behavior Without Motor Deficits. PNAS, 1703017035.

Fache, M. P., Moussif, A., Fernandes, F., Giraud, P., Garrido, J. J., \& Dargent, B. (2004). Endocytotic Elimination and Domain-Selective Tethering Constitute a Potential

Mechanism of Protein Segregation at the Axonal Initial Segment. The Journal of Cell Biology (166), 571-578.

Feldkamp, M., Yu, L., \& Shea, M. (2011). Structural and Energetic Determinants of Apo Calmodulin Binding to the IQ Motif of The $\mathrm{Na}(\mathrm{V})$ 1.2 Voltage-Dependent Sodium Channel. PMC 19(5), 733-47.

Feng, Z., Zhang, Z., Van Kesteren, R., Straub, V., Van Nierop, P., Jin, K., . . . Smit, A. (2009). Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC genomics, 1-15.

Gaboriaud, C. G.-P., Thielens, N., Bally, I., \& Arloud, G. (2011). Structure and properties of the $\mathrm{Ca} 2+$-binding CUB domain, a widespread ligand -recognitionunit involved in major biological functions. Biochemical Journal, 185-193.

Gally, C., Eimer, S., RichmondJ.E., \& Bessereau, J.-L. (2004). A Transmembrane Protein Required for Acetylcholine Receptor Clustering in Caenorhabditis Elegans. Nature (431), 578-582.

Garrido, J. J., Fernandes, F., Moussif, A., Fache, M., Giraud, P., \& Dargent, B. (2003). Dynamic Compartmentalisation of the Voltage Gated Sodium Channels in Axons. Biology of the Cell (95), 437-445.

Geffeney, S., \& Ruben, P. (2006). The Structural Basis and Functional Consequences of Interactions Between Tetrodotoxin and Voltage-Gated Sodium Channels. Marine drugs 4(3), 1-34.

Geffeney, S., Brodie, E., Ruben, P., \& Brodie, E. (2002). Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. Science 297, 1336-1339.

Goldin, A. (2002). Evolution of Voltage Gated Na+ Channels. The Journal of Experimental Biology, Vol 205, 75-584.

Gur Barzilai, M., Reitzel, A., Kraus, E., Gordon, D., Technau, U., \& Gurevitz, M. (2012). Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal Signaling. Cell reports, http://dx.doi.org/10.1016/j.celrep.2012.06.016.

Hakim, P., Gurung, I., Pedersen, T., Thresher, R., Brice, N., Lawrence, J., . . . Huang, C. (2008). Scn3b Knockout Mice Exhibit Abnormal Ventricular Electrophysiological Properties. Progress in Biophysics and Molecular Biology, 251-266.

Harlow, E., \& Lane, D. (1999). Using Antibodies: A Laboratory Manual. NY: CSHL Press.

Harlow, E., \& Lane, D. (1999). Using Antibodies: A Laboratory Manual. NY: CSHL Press.

Hartline, D., \& Colman, D. (2007). Rapid Conduction and the Evolution of Giant Axons and Myelinated Fibers. Current Biology, 29-35.

He, B., \& Soderlund, D. (2010). Human Embrionic Kidney (HEK293) Cells Express Endogenous Voltage Gated Sodium Currents and Nav1.7 Sodium Channels. Neuroscience letters, 1-11.

He, Z., \& Tessier-Lavigne, M. (1997). Neuropilin Is a Receptor for the Axonal Chemorepellent Semaphorin III. Cell (90), 39-751.

Hedstrom, K., Ogawa, Y., \& Rasband, M. (2008). AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. The Journal of Cell Biology, 635-640.

Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K., \& Numa, S. (1992). Calcium Channel Characteristics Conferred on the Sodium Channel by Single Mutations. Nature, 441443.

Hill, A., Nishino, A., Nakajo, K., Zhang, G., Fineman, J., Selzer, M., . . . Cooper, E. (2008). Ion channel Clustering at the Axon Initial Segment and Node of Ranvier Evolved Sequentially in Early Chordates. PloS Genetics, 1-15.

Hille, B. (1975). Ionic Selectivity, Saturation and Block in Sodium Cannels. The Jouurnal of Genearal Physiology (66), 535-560.

Hodgkin, A. L., \& Huxley, A. F. (1945). Resting and Action Potentias in Single Nerve Fibers. Journal of physiology (104), 176-195.

Hodgkin, A., \& Haxley, A. (1952). The Components of Membrane Conductance in the Giant Axon of Loligo. Journal of Physiology, 473-496.

Hofmann, K., \& Stoffel, W. (1993). TMbase - A database of membrane spanning proteins segments. Biol. Chem., 166.

Hui, S., Xing, X., \& Bader, G. D. (2013). Predicting PDZ Domain Mediated Protein Interactions from Structure. BMC Bioinformatics, 1-17.

Hwang, D., Tai, K., Chueh, C., Lin, L., \& Jeng, S. (1991). Tetrodotoxin and Derivatives in Several Species of the Gastropod Naticidae. Toxicon. 29(8), 1019-1024.

Isom, L., Ragsdale, D., De Jongh, K., Westenbroek, R., Reber, B., Scheuer, T., \& Catterall, W. (1995). Structure and Function of the p2 Subunit of Brain Sodium Channels, a Transmembrane Glycoprotein with a CAM Motif. Cell (83), 433-442.

Kazen-Gillespie, K., Ragsdale, D., D’Andrea, M., Mattei, L. N., Rogers, K., \& Isom, L. (2000). Cloning, Localization, and Functional Expression of Sodium Channel Beta1A subunits. The Journal of Biological Chemistry (275), 1079-88.

Kelley, L., \& Sternberg, M. (2009). Protein Structure Prediction on the Web: a Case Study Using the Phyre Server . Nature Protocols (4), 363-371.

Kemenes, G., \& Benamin, P. (2009). Limnaea. Current Biology (19), 9-11.

Kung, C., Preston, R., Maley, M., Ling, K.-Y., Kanabrocki, J., Seavey, B., \& Saimi, Y. (1992). In Vivo Paramecium Mutants Show That Calmodulin Orchestrates Membrane Responses to Stimuli. Cell calcium (13), 413-425.

Kuo, C.-C. (1998). A Common Anticonvulsant Binding Site for Phenytoin, Carbamazepine, and Lamotrigine in Neuronal Na+ Channels. Molecular Pharmacology 54(4), 712721.

Laedermann, C., Syam, N., Petrin, M., Decosterd, I., \& Abriel, H. (2013). B1- and B3voltage -gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells. Frontiers in Cellular Neurosciense, 1-7.

Lai, H., \& Jan, N. (2006). The Distribution and Targeting of Neuronal Voltage-Gated Ion Channels. Nature, 546-562.

Lee, H. J., \& Zheng, J. J. (2010). PDZ Domains and Their Binding Partners: Structure, Specificity, and Modification. Cell Communication and Signalling, 1-18.

Leterrier, C., Brachet, A., Fache, M., \& Dargent, B. (2010). Voltage -gated sodium channel organisation in neurons: Protein interactions and trafficing pathways. Neurosciense Letters, 92-100.

Li, J., Waterhouse, R., \& Zdobnov, E. (2011). A Remarkably Stable TipE Gene Cluster: Evolution of Insect Para Sodium Channel Auxiliary Subunits. Evolutionary Biology, Vol.337, 1-11.

Liebeskind, B., Hillis, D., \& Zakon, H. (2011). Evolution of Sodium Channels Predates the Origin of Nervous System in Animals. PNAS, 9154-9159.

Lin, W., Right, D., Muraro, N., \& Bains, R. (2009). Alternative Splicing in the VoltageGated Sodium Channel DmNav Regulates Activation, Inactivation and Persistent Current. Journal of Neurophysiology, 1-45.

Littleton, J., \& Ganetzky, B. (2000). Ion Channels and Synaptic Organization: Analysis of the Drosophila Genome. Neuron 26, 35-43.

Liu, M., Davey, J., Banerjee, R., Han, J., Yang, F., Aboobaker, A., . . . Davidson, A. (2013). Fine Mapping of the Pond Snail Left-Right Asymmetry (Chirality) Locus Using RAD-Seq and Fibre-FISH . PLOS one (8), 1-7.

Lopreato, G., Lu, Y., Southwell, A., Atkinson, N., Hillis.D., Wilcox, T., \& Zakon, H. (2001). Evolution and Divergence of Sodium Channel Genes in Vertebrates. PNAS, 7588 7592.

McCusker, E., Bagne, C., Naylor, C., Cole, A., \& D'Avanzo, N. (2012). Structure of a Bacterial Voltage-Gated Sodium Channel Pore Reveals Mechanisms of Opening and Closing. Nature Communications, 1-8.

Messner, D., \& Catterall, W. (1986). The Sodium Channel from Rat Brain; Role of the B1 ans B2 Subunits in Saxitoxin Binding. The Journal of Biological Chemistry (261), 211-215.

Moldovan, M., Alvarez, S., Rosberg, M., \& Krarup, C. (2013). Axonal Voltage-Gated Ion Channels as Pharmacological Targets for Pain. European Journal of Pharmacology (708), 105-112.

Nakamura, H., Kojima, S., Kobayashi, S., Ito, I., Fujito, Y., Suzuki, H., \& Ito, E. (1999). Physiological Cracterization of Lip and Tentacle Nerves in Lymnaea Stagnalis. Neuroscience Research (33), 291-298.

Neher, E. (1988). The Use of the Patch Clamp Technique to Study Second MessengerMediated Cellular Events. Neuroscience (26), 327-334.

Ng, D., Pitcher, G., Szilard, R. K., Sertie, A., Kanisek, M., Clapcote, S. J., . . . McInnes, R. R. (2009). Neto1 Is a Novel CUB-Domain NMDA Receptor-Interacting Protein Required for Synaptic Plasticity and Learning. PLoS biology, 278-300.

Oyama, F., Miyazaki, H., Sakamoto, N., Becquet, C., Machida, Y., Kaneko, K., . . . Nukina, N. (2006). Sodium channel b4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. Journal of Neurochemistry (98), 518-529.

Pan, Z., Kao, T., Hovath, Z., Lemos, J., Sul, J.-Y., Cranstoun, S., . . . Cooper, E. (2006). A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon. The Journal of Neuroscience 26(10), 25992613.

Patino, G., \& Isom, L. (2010). Electrophysiology and Beyond: Multiple Roles of Na+ Channel Beta Subunits in Development and Disease. Neuroscience Letters, Vol.486, 53-59.

Patino, G., Claes, L., Lopez-Santiago, L., E.A., S., Dondeti, R., Chen, C., . . . Isom, L. (2009). A Functional Null Mutation of SCN1B in a Patient with Dravet Syndrome. Journal of Neuroscience, 10764-10778.

Payandeh, J., Scheuer, T., Zheng, N., \& Catterall, W. (2011). The Crystal Structure of a Voltage-Gated Sodium Channel. Nature (475), 353-358.

Pedraza, L., Huang, J., \& Colman, D. (2001). Organizing Principles of the Axoglial Apparatus. Neuron (30), 335-344.

Ranganathan, R., \& Ross, E. (1997). PDZ Domain Proteins: Scaffolds for Signaling Complexes. Current Biology 7(12), 770-773.

Sadamoto, H., Takahashi, H., Okada, T., Kenmoku, H., Toyota, M., \& Asakawa, Y. (2012). De Novo Sequencing and Transcriptome Analysis of the Central Nervous System of Mollusc Lymnaea stagnalis by Deep RNA Sequencing. PloS One (7), 1-13.

Scheuer, T. (2011). Regulation of Sodium Channel Activity by Phosphorylation. Seminars in cell \& developmental biology, 160-165.

Senatore, A., Guan, W., Boone, A., \& Spafford, J. (2014). T-type Channels Become Highly Permeable to Sodium Ions Using an Alternate Extracellular Turret Region (S5-P) Outside the Selectivity Filter . The journal of Biological Chemistry /9289), 11970. doi:10.1074/jbc.P114.551473 .

Sheng, M. (1996). PDZs and Receptor/Channel Clustering: Rounding Up the Latest Suspects. Neuron (17), 575-578.

Sheng, M., \& Sala, C. (2001). PDZ Domains and the Organization of Supramolecular Complexes. Annual Reveiw of Neurosciece 24 (1), 1-29.

Shimoda, Y., \& Watanabe, K. (2009). Contactins: Emerging Key Roles in the Development and Function of the Nervous System. Cell Adhesion \& Migration 3(1), 64-70.

Soong, T., \& Venkatesh, B. (2006). Adaptive Evolution of Tetrodotoxin Resistance in Animals. Trends in genetics 22(11), 621-526.

Spafford, J., Grigoriev, N., \& Spencer, A. (1996). Pharmacological properties of voltage gated $\mathrm{Na}+$ currents in motor neurones from a hydrozoan jellyfish Polyorchis penicillatus. The Journal of Experimental Biology (199), 941-948.

Stohr, H., Berger, C., Frohlich, \& Weber, B. (2002). A Novel Gene Encoding a Putative Transmembrane Protein With Two Extracellular CUB Domains and a Low-Density Lipoprotein Class A Module: Isolation of Alternatively Spliced Isoforms in Retina and Brain. Gene: an international journal on genes and genoms, 223-231.

Syed, N., Ridgway, R., Lukowiak, K., \& Bulloch, A. (1992). Transplantation and functional integration of an identified respiratory interneuron in lymnaea stagnalis. Neuron, 767774.

Tan, J., Liu, Z., Nomura, Y., Goldin, A., \& Dong, K. (2002). Alternative Splicing of an Insect Sodium Channel Gene Generates Pharmacologically Distinct Sodium Channels. The Journal of Neuroscience, Vol.22, 5300-5309.

Tonikian, R., Zhang, Y., Sazinsky, S., Currell, B., Yeh, J.-H., Reva, B., . . . Sidhu, S. (2008). A Specificity Map for the PDZ Domain Family. PLoS Biol 6(9), e239. doi: 10.1371/journal.pbio.0060239.

Twarog, B., Hidaka, T., \& Yamaguchi, H. (1972). Resistanse to Tetrodotoxin and Saxitoxin in ivalve Molluscs. Toxicon, 273-278.

Tyrrell, L., Renganathan, M., Dib-Hajj, S., \& Waxman, S. (2001). Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. The Journal of Neuroscience (21), 96299637.

Van Petegem, F., Lobo, P., \& Ahern, C. (2012). Seeing the Forest through the Trees: towards a Unified View on Physiological Calcium Regulation of Voltage-Gated Sodium Channels. Biophysical Journal 103, 2243-2251.

Wang, R., Mellem, J. E., Jensen, M., Brockie, P. J., Walker, C. S., Hoerndli, F., . . . Maricq, A. V. (2012). The SOL-2/Neto auxiliary protein modulates the function of AMPAsubtype ionotropic glutamate receptors. Neuron, 1-48.

Warmke, J., Reenan, R., Wang, P., Qian, S., Arena, J., Wang, J., . . . Cohen, C. (1997). Functional Expression of Drosophila para Sodium Channels: Modulation by the Membrane Protein TipE and Toxin Pharmacology. The Journal of General Phisiology, Vol.101, 119-133.

Widmark, J., Sundstrom, G., Daza, D., \& Larhammar, D. (2010). Differential Evolution of Voltage-Gated Sodium Channels in Tetrapods and Teleost Fishes. Molecular Biology and Evolution, 859-871.

Wollner, D., Messner, D., \& Catterall, W. (1987). Beta2 Subunits of Sodium Channels from Vertebrate Brain. The journal of Biological Chemistry 262(30), 14709-14715.

Woodall, A. J., Naruo, H., Prince, D., Z.P., F., Winlow, W., Takasaki, M., \& Syed, N. (2003). Anesthetic Treatment Blocks Synaptogenesis but not Neuronal Regeneration of Cultured Lymnaea Neurons. Journal of Neurophysiology (90), 2232-2239.

Yoshida, S. (1994). Tetrodotoxin-Resistant Sodium Channels. Cellular and Molecular Neurobiology, 227-245.

Yu, F. H., \& Catterall, W. A. (2003). Overview of the Voltage-Gated Sodium Channel Family. Genome Biology, Vol.207, 1-7.

Yu, F., Westenbroek, R., Silos-Santiago, I., McCormick, K., Lawson, D., Ge, P., . . . Curtis, R. (2003). Sodium Channel B4, a New Disulfide-Linked Auxiliary Subunit with Similarity to B2. The Journal of Neuroscience, (20), 7577-7585.

Zakon, H. (2012). Adaptive Evolution of Voltage-Gated Sodium Channels:. PNAS, 1061910625.

Zhang, T., Wang, Z., Wang, L., Luo, N., Jiang, L., Liu, Z., . . . Dong, K. (2013). Role of the DSC1 Channel in Regulating Neuronal Excitability in Drosophila melanogaster: Extending Nervous System Stability under Stress. PLOS, 1-10.

Zhang, X., Ren, W., DeCaen, P., Yan, C., Tao, X., Tang, L., . . Yan, N. (2012). Crystal Structure of an Orthologue of the NaChBac Voltage-Gated Sodium Channel. Nature (486), 130-134.

Zheng, Y., Mellem, J. E., Brockie, P. J., D., M., \& Maricq, A. (2003). SOL-1 is a CUBdomain Protein Required for GLR-1 Glutamate Receptor Function in C. elegans. Nature (427), 451-457.

Zonta, B., Desmazieres, A., Rinaldi, A., Tait, S., Sherman, D., \& Nolan, M. P. (2011). A Critical Role for Neurofascin in Regulating Action Potential Initiation through Maintenance of the Axon Initial Segment. Neuron (69), 945-956.

[^0]: ${ }^{1}$ Although it is universally recommended to grow Stbl2 in SOC media, I found that SuperBroth works just as well, while requiring less preparation steps.

[^1]: ${ }^{2}$ This project was done by Neil (Hsing -Tse) Hsueh, a 499 project student in Spafford laboratory. The Methods described above were taken from Mr Hsueh's BIOL 499 Senior Honours Thesis Project, "Production of a polyclonal antibody against a Lymnaea stagnalis sodium channel".
 ${ }^{3}$ The injections and the blood collection were performed by Martin Ryan, the Departmental Technician in Biology department, University of Waterloo.

[^2]: ${ }^{4}$ The direction of the Fragment 4 insertion into EcoRI site was confirmed by control digest with KpnI, XhoI.

[^3]: ${ }^{5}$ The clone of human B1 was generously donated by Lori Isom`s Laboratory. \({ }^{6}\) The clone of Tip E along with the clone of rat betal was graciously provided by Ke Dong`s laboratory.

[^4]: ${ }^{7}$ The qPCR was performed by A. Senatore as part of his research on T-type calcium channels.

[^5]: ${ }^{8}$ In molluscan sodium channel alignment the optional exon is exon 17. When aligned with human channels the exon numbers are based on the human sodium channel gene.

[^6]: ${ }^{9}$ Images taken from: H.T Hsueh(2013) Production of a polyclonal antibody against a Lymnaea stagnalis sodium channel,

[^7]: ${ }^{10}$ Staphylococcus aureus Cowan I strain (SAC) is a relatively cheap source of protein A that is recommended by (Harlow \& Lane, 1999) for a preclearing step.

[^8]: ${ }^{11}$ In LNav1a($+/-$), the ' a ' refers to mutually exclusive exon, novel version, while the ' + ' refers to optional exon 21 present in the sequence and '-' means exon 21 is deleted. (+/-) implies that both versions have been recorded.

[^9]:
 TGACCACCCTGAACCTACGGGGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGGGAAGTTCGAGGGGGACACCCTGGTG
 СGGCGGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCAC גAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGGGTTAATATTTTGTTAAAATTCGGGTTAAATTTTTGTTAAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAA
 TTCGGGGAAATGTGCGCGGAACCCC
 GCTCcccagcagciagaigratgc

 TTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGGGGGATCT GAGACCCCATTGGGGCCAATACGCCCGGGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAAGGTCGGGGCGGCAGGCCCTGCCATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATC

 GCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGT
 tGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCAGATCT

