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Abstract

Humans and other animals have an impressive ability to quickly adapt to unfamiliar en-
vironments, with only minimal feedback. Computational models have been able to provide
intriguing insight into these processes, by making connections between abstract computa-
tional theories of reinforcement learning (RL) and neurophysiological data. However, the
ability of these models falls well below the level of real neural systems, thus it is clear that
there are important aspects of the neural computation not being captured by our models.

In this work we explore how new developments from the computational study of RL
can be expanded to the realm of neural modelling. Specifically, we examine the field of
hierarchical reinforcement learning (HRL), which extends RL by dividing the RL process
into a hierarchy of actions, where higher level decisions guide the choices made at lower
levels. The advantages of HRL have been demonstrated from a computational perspective,
but HRL has never been implemented in a neural model. Thus it is unclear whether HRL
is a purely abstract theory, or whether it could help explain the RL ability of real brains.

Here we show that all the major components of HRL can be implemented in an inte-
grated, biologically plausible neural model. The core of this system is a model of “flat” RL
that implements the processing of a single layer. This includes computing action values
given the current state, selecting an output action based on those values, computing a
temporal difference error based on the result of that action, and using that error to update
the action values. We then show how the design of this system allows multiple layers to be
combined hierarchically, where inputs are received from higher layers and outputs delivered
to lower layers. We also provide a detailed neuroanatomical mapping, showing how the
components of the model fit within known neuroanatomical structures.

We demonstrate the performance of the model in a range of different environments,
in order to emphasize the aim of understanding the brain’s general, flexible reinforcement
learning ability. These results show that the model compares well to previous modelling
work and demonstrates improved performance as a result of its hierarchical ability. We
also show that the model’s output is consistent with available data on human hierarchical
RL. Thus we believe that this work, as the first biologically plausible neural model of HRL,
brings us closer to understanding the full range of RL processing in real neural systems.

We conclude with a discussion of the design decisions made throughout the course of this
work, as well as some of the most important avenues for the model’s future development.
Two of the most critical of these are the incorporation of model-based reasoning and the
autonomous development of hierarchical structure, both of which are important aspects of
the full HRL process that are absent in the current model. We also discuss some of the
predictions that arise from this model, and how they might be tested experimentally.
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Chapter 1

Introduction

One of the basic problems brains must solve is how to achieve good outcomes in unfamiliar
environments. A rat trying to navigate a maze, a bird trying to decide where to forage,
or a human trying to impress a new boss—all are faced with the problems of being in
an unknown environment, having no clear indication of how to achieve their target, and
executing a potentially lengthy sequence of decisions in order to achieve their goals.

Reinforcement learning (RL; Sutton and Barto, 1998) is a computational field that
aims to address this type of problem. Specifically, RL seeks to understand how an agent
can perform well when it begins with minimal knowledge of its environment and receives
only sparse feedback to guide its actions. RL is also one of the best examples of cross-
fertilization between computational theories and experimental investigation of the brain.
RL theories have been used to provide new explanations for empirical data (e.g., Schultz,
1998), and neurophysiological data has inspired the development of new computational
algorithms (e.g., Barto et al., 1983).

This goal of cross-fertilization is realized even more explicitly in computational neu-
ral modelling—the practice of building mechanistic models that recreate neural function.
Applied to RL, these models can be used to explain how the abstract computations of re-
inforcement learning could be carried out by real brains. One way to succinctly summarize
the motivation for this work is as follows:

1. Brains must solve reinforcement learning style problems somehow, as evidenced by
their impressive behavioural performance

2. There are algorithms in RL that provide powerful methods for solving such problems
computationally

1



3. If modellers can show how those methods can be implemented in neural systems, we
then have a hypothesis for how the brain could achieve those same solutions1

That is the ideal vision of modelling, but as always there are some challenges. One of the
most critical issues is the second point, with the question being “just how powerful are these
algorithms?” Reinforcement learning has a 30+ year history in computer science; many
different techniques have been developed, all with their own strengths and weaknesses.
Thus it is quite important which computational account a modeller picks from point 2)
to implement in point 3), as the resulting neural theory will have the same strengths and
weaknesses (at least) as the computational theory.

Unfortunately, most modelling work has been based on some of the earliest computa-
tional theories, and we therefore know that the proposed neural system will have the same
limitations as those theories. As an example, one of the most basic challenges is scaling
up to complex problem spaces, where the agent must make long sequences of decisions
over extended periods before achieving their goal. While even the simplest algorithms may
be guaranteed to find the correct solution eventually, in practice as the required sequence
of decisions becomes longer it can take impractically long time periods to find that solu-
tion. Or the problem can lie in the spatial rather than temporal dimension; for complex,
information-rich environments, again many algorithms become unusable. These are prob-
lems that real brains have somehow overcome; we regularly navigate incredibly complex
tasks in our daily lives, without requiring millennia of practice. Thus neural models that
recreate these simple computational theories are somewhat unsatisfying, as we know that
they must be missing something critical that the brain is doing.

One of the most important and pervasive features of the brain is its use of hierarchies.
Abilities like vision, motor control, and analogical reasoning have all been shown to be
heavily dependent on hierarchical processing (e.g., Felleman and Van Essen, 1991). The
benefits of hierarchies are also appreciated on the computational side. For example, in
recent years hierarchical systems have been at the forefront of computer vision (Hinton
et al., 2006) and robotic control (Liu and Todorov, 2009).

Hierarchy has also made its way into the field of RL. The basic idea is to decompose
the overall RL task into subtasks, whose solutions can be learned more tractably. Those
subtask solutions represent abstract actions, such that if the agent executes that action it
will carry out the subtask. The agent then needs to learn how to select between different
abstract and primitive actions in order to complete the overall task. Effectively, hierarchies

1There is also a corollary outcome 3b, that understanding the successes and failures of those hypotheses
can suggest improvements to the computational algorithms.
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impose structure on a problem space, thereby reducing the range of possibilities that need
to be explored. This helps to alleviate the challenges outlined above, allowing reinforcement
learning to be applied to more complex spatial and temporal domains. Several theories
have been proposed as to how to implement hierarchical reinforcement learning (HRL; see
Barto and Mahadevan 2003 for a review). It is one of the most active fields in RL, and has
led to interesting results in many different application domains (e.g., Morimoto and Doya,
2001; Joshi et al., 2012; Cuayáhuitl et al., 2012; Hawasly and Ramamoorthy, 2013).

This brings us to the specific motivation for the work presented here. Hierarchical
reinforcement learning is one of the most powerful computational theories of RL, so is a
good candidate for an algorithm to choose in point 2) above. We then seek to address point
3): can this theory be adapted so as to be implemented in a biologically plausible neural
model? If so, we then have a new hypothesis for how the brain could solve the reinforcement
learning challenges it faces, with all the strengths of HRL. The main contribution of this
thesis is to demonstrate that it is possible to construct such a model, and explore the
results of that work.

Outline

In the next chapter we go into more detail on the background for this work. We begin by
presenting the underlying theories used to construct this model—reinforcement learning,
hierarchical reinforcement learning, and the Neural Engineering Framework. We then
review previous RL and HRL based neural modelling in Chapter 3, to lay the groundwork
for the model we present here.

Chapter 4 describes the model that forms the core of this work, which can perform
hierarchical reinforcement learning in a biologically plausible neural implementation. There
are four main components to the model—action values, action selection, error calculation,
and hierarchical composition—which are addressed in turn.

Chapter 5 contains results from the model on various tasks. These results are intended
to demonstrate three things. First, that the model works as described in Chapter 4,
and to demonstrate in practice the functions described there. Second, that this model
has the advantages we would expect from a hierarchical RL system (e.g., it is able to
take advantage of the hierarchical structure of a task to learn more quickly). Third, that
this model is a plausible neural account; namely, that it is consistent with neural and
behavioural experimental data from hierarchical tasks.

Finally, we conclude with a more abstract discussion of this work. This includes an
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analysis of the design decisions that were made when building this model, and an ex-
ploration of alternate implementations and their relative strengths and weaknesses. This
leads into a discussion of how the model could be further developed in the future, in order
to improve its existing performance or add entirely new functionality. We also describe
some of the testable predictions that arise from this work, an important goal of any neural
model.

Note that portions of this work have been previously presented in various publications,
including Rasmussen and Eliasmith (2013, 2014a,b).
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Chapter 2

Background

There are three key theoretical frameworks that form the basis of the model we construct.
We begin with traditional reinforcement learning, as that lays out the problems and vocab-
ulary that frame the rest of this work. Next we cover hierarchical reinforcement learning,
and how it extends upon the basic principles of RL. We conclude with a discussion of
the Neural Engineering Framework (Eliasmith and Anderson, 2003); this is not specific
to RL, but is a general framework for constructing neural models based on mathemati-
cal/computational specifications, which we apply in this case to construct a neural model
of HRL.

2.1 Reinforcement learning

2.1.1 Markov Decision Processes

The basic problem to be solved by reinforcement learning is this: given the current state
of the world, what is the best action to take? Most commonly, the “world” is described
formally in the language of Markov Decision Processes (MDPs; Howard, 1960). MDPs
have four basic components, 〈S,A, P,R〉. S is the set of states s that the process can move
through. A is the set of actions a that can be taken in each state (technically the available
actions can be different in each state, but often they are treated as constant throughout
the MDP). P is the transition function P : S×A×S 7→ R, which describes, given current
state s and action a, the probability of reaching next state s′. R is the reward function
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R : S × A 7→ R, which describes the reward received if action a is taken in state s.1 Note
that the transition and reward functions do not depend on any information prior to the
current state s; this is the definition of the Markov property, which gives MDPs their
name. This does not mean that MDPs cannot use prior information, it just means that
any such information must be included in the current state representation—the decision
process itself cannot look into the past.

Deciding on a course of action can be expressed as choosing a policy π : S × A 7→ R,
which describes the probability of choosing action a in state s. Often the policies are taken
to be deterministic, so only one action a has non-zero probability for state s; in that case
π is sometimes expressed as π : S 7→ A.

2.1.2 State-action values

The total value of an action is a combination of a) the immediate reward received for
performing that action and b) the future rewards expected as the agent continues on from
the resulting state. In order to incorporate these two components, the value of taking
action a in state s can be described by

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Qπ(s′, π(s′)) (2.1)

Q is called the state-action value function, Q : S × A 7→ R. It represents the value of
taking action a in state s.2 The first term corresponds to the immediate reward received
for picking action a, and the second term corresponds to the expected future reward (the
Q value of the policy’s action in the next state, scaled by the probability of reaching that
state). Note that Equation 2.1 assumes a deterministic policy. For a stochastic policy we
would also sum over all the possible actions, weighted by the probability of selecting that
action. γ is a discounting factor, which is used to prevent the expected values from going
to infinity (since the agent will be continuously accumulating more reward).3 In general,
Equation 2.1 is known as a Bellman equation (Bellman, 1957).

1For the sake of brevity we will tend to refer to the output of R as reward, i.e., positive feedback. But
the output of R can also be negative—it represents a generic feedback signal.

2Sometimes the values are instead expressed only in terms of the state value, V : S 7→ R. This can be
related to the Q values as V (s) = maxaQ(s, a).

3Some RL approaches use an average-reward formulation that does not require a discount (Mahadevan,
1996). However, the discounted reward formulation is more common and better studied, and so is the one
we describe here. A more in-depth discussion of the average-reward approach is contained in Section 6.2.4.

6



Most often what is sought is an optimal policy, one that maximizes the total reward
received. Another way to state this is that the optimal policy π∗ maximizes the Q function:

Qπ∗(s, a) ≥ Qπ(s, a) ∀π, s, a (2.2)

The question is how to find such a policy. If Qπ∗ were known, the optimal policy would
be to always select the action with the highest Q value. Similarly, if π∗ were known, Qπ∗

could be computed via Equation 2.1. Clearly there is a problem of circularity—the policy
depends on the Q function, and the Q function depends on the policy.

This circularity can be resolved by an iterative process known as “policy iteration”
(Howard, 1960). Beginning with some initial policy, the agent can compute a Q function
via Equation 2.1 (sweeping across all S×A combinations until the values converge). Based
on that Q function, the agent can then compute a new policy via

π(s) = arg max
a

Q(s, a) (2.3)

for all states. This is referred to as a greedy policy, as the agent simply selects the highest
valued action in each state. The agent can then recompute the Q function based on
this new policy, and the new Q function must have higher values than the previous Q
function. For example, if we have a new policy where π(s) 6= π′(s), that must be because
Qπ(s, π′(s)) > Qπ(s, π(s)). This means that the second term in Equation 2.1 must have a
higher value under the new policy, meaning that the Q values in general must increase.

Recomputing the Q function means that the highest valued action may have changed,
so the agent can recompute the policy via Equation 2.3. This in turn leads to a new Q
function, and so on. Continuing to alternate between recomputing the Q function and
the policy is guaranteed to converge to the optimal policy π∗. There are other related
approaches, such as value iteration, that find an optimal policy via a similar iterative
process, but we will not go into them here (see Sutton and Barto 1998 for more details).

2.1.3 Temporal difference learning

With the above techniques, determining the optimal policy seems relatively straightfor-
ward. However, this approach has two major drawbacks. First, it is very computationally
expensive for large state spaces, often prohibitively so for real systems, because of the need
to iterate over every S × A combination. Second, Equation 2.1 relies on the premise that
R and P are known. This amounts to saying that it is fairly easy to decide on the best

7



choice if we know exactly what the consequences of our actions will be ahead of time. In
most real problems this is not the case, and therein lies the difficulty of decision making.

That is the problem reinforcement learning attempts to solve: how to find a good policy
π when R and P are not given explicitly. We assume that what is known is the state, s,
and an action a is chosen; the agent can then observe the new state s′ and any received
feedback r. The challenge is how to use that information to learn to act optimally.4

One approach is to try to recreate R and P . Every time that action a is taken in state
s, the agent can observe r and s′. This allows the agent to update the values for R̂(s, a)
and P̂ (s, a, s′), its estimates of R and P . As the agent continues to explore the state space
it will be able to fill in more and more of R̂ and P̂ , and as the exploration goes to infinity
the values will approach the true values of R and P . Finding an optimal policy can then
be accomplished in various ways, for example by substituting in the estimated values for R
and P in Equation 2.1 and then solving via the same iterative method. The optimality of
the resulting policy will depend on how closely the estimates R̂ and P̂ approach the true
values. This is called model-based reinforcement learning (Sutton and Barto, 1998), as the
agent is building an explicit model of the world. This is a powerful and flexible approach,
but the downside is that P can be a very large and complex function, sometimes requiring
an impractical amount of exploration to fill in, as well as the computational challenges of
using P to calculate an optimal policy.5

The more common approach is model-free reinforcement learning, where instead of
trying to learn R and P the agent tries to learn the state-action function Q directly. Q
implicitly represents the values that can be calculated explicitly if R and P are known.
The question then is how to calculate Q given observations of s, a, s′, and r. First, Q can
be broken down into two components, the immediate and future reward:

Q(s, a) = r + γQ(s′, a′) (2.4)

where a′ = π(s′).6 Note that this is similar to Equation 2.1, except we have replaced the
explicit functions with the samples from those functions. That is, the state-action value for
s and a is estimated based on the reward received plus the discounted value of the action
in the next state. However, the reward may be stochastic and the Q(s′, a′) values may be

4Note that there are extensions of the MDP framework that do not assume the state is directly observ-
able, known as Partially Observable Markov Decision Processes, as well as techniques for performing RL
in such environments. However, throughout this work we restrict ourselves to the fully observable MDP
formulation.

5A more in-depth discussion of model-based reinforcement learning can be found in Section 6.2.5.
6For the sake of simplicity we will omit the π superscript from the Q function from now on; it should

be assumed that the Q function is that of the agent’s policy, unless stated otherwise.
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changing over time, so the Q values should be based on more than one observation. A
natural solution is to calculate Q(s, a) after every decision, as in Equation 2.4, and then
take a running average over successive calculations. This results in the update formula

Qk+1(s, a) = (1− αk)Qk(s, a) + αk [r + γQk(s
′, a′)] (2.5)

where αk is the learning rate.7 Exploring the state space will result in an increasingly
accurate estimate of Q under the given policy. Similar to the policy iteration algorithm,
the agent can alternate these Q function updates with updates to the policy, based on the
new Q values. This algorithm is known as SARSA (Rummery and Niranjan, 1994).

As in the policy iteration algorithm, the optimal policy with respect to a given Q
function is the simple greedy policy of Equation 2.3. If we substitute that in for the policy
in Equation 2.5, we can observe the following:

Qk+1(s, a) = (1− αk)Qk(s, a) + αk [r + γQk(s
′, π(s′))]

= (1− αk)Qk(s, a) + αk

[
r + γQk(s

′, arg max
a′

Qk(s
′, a′)

]
= (1− αk)Qk(s, a) + αk

[
r + γmax

a′
Qk(s

′, a′)
]

(2.6)

This is the Q-learning update of Watkins and Dayan (1992). The interesting thing about
this update is that it allows the agent to learn the optimal Q function without reference
to the agent’s policy. This is known as “off-policy” learning. Essentially the algorithm
assumes that the agent will always follow the optimal policy in future states. SARSA
removes this assumption, instead waiting to observe what action the agent actually takes
(“on-policy” learning). If the agent is acting optimally with respect to the Q values (i.e.,
following the greedy policy of Equation 2.3) then Q-learning and SARSA will produce
identical results.

An important advantage of SARSA is that it can represent the action values for an agent
that is not acting “optimally” (e.g., the agent may be following an exploration policy). For
example, imagine an agent walking along a cliff. It usually picks the optimal action, but
10% of the time it picks a random action in order to explore its environment. Q learning
will assign equal value to states right on the cliff edge and states farther from the edge;
the optimal action is to not walk off the cliff, so the value of a state at the cliff edge is not
affected by the existence of the severely non-optimal actions. SARSA, on the other hand,

7If αk is set to 1/n, where n is the number of observations at Q(s, a), then this formula will calculate an
exact average. But more often αk is set to a constant or used as a “temperature” parameter that decreases
over time to encourage convergence.
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will notice that when the agent is in cliff-edge states sometimes it randomly wanders off
the cliff. It will therefore assign a lower value to actions that bring the agent close to the
cliff edge. A policy based on those Q values would therefore avoid the dangerous states,
whereas one based on the “optimal” Q function would not.

SARSA also removes the operation of searching ahead over future actions. That is, in
order to compute the Q learning update a system needs to evaluate the value of all the
available actions in state s′ and then compute the max. To compute the SARSA update
the system just needs to observe the selected action and then retrieve the value of that
action, Q(s′, a′). In a computational system either of these updates is relatively easy to
compute, so this is not an important concern. But when building a neural implementation,
simplifying the computations involved is often an important design goal.

The downside of SARSA is that it may not find the optimal policy. That is, the
learned Q function may not satisfy Equation 2.2. For example, in the above example the
true optimal solution might involve walking along the cliff edge; in theory, an agent could
receive the greatest reward by walking through the risky states. However, SARSA will not
find that Q function, it will find the Q function that reflects the sub-optimal behaviour of
the agent.

A different way of looking at this issue is to say that the SARSA update can slow down
or confuse the learning process. Consider an agent trying to learn the value of Q(s, a).
What the agent is trying to learn is whether a is going to take it to a high value or low
value state. In SARSA, the value of that next state, V (s′), is being approximated via
a sample Q(s′, a′). Over time those samples will converge to the true value of V (s′) (if
we assume that the agent’s policy converges to the optimal) and therefore Q(s, a) will
converge to the correct value, but in the meantime a lot of the Q(s, a) updates are based
on incorrect estimates of V (s′) (any time a′ 6= arg maxa′ Q(s′, a′)). In contrast, Q learning
always updates Q(s, a) based on the true value of V (s′), thus making more efficient use of
its visits to each state.8

This distinction between Q-learning and SARSA brings up the important issue of ex-
ploration. After a brief period of time in a new environment an agent will have some Q
values it has learned based on its limited observations. Thus it could, in theory, calculate
a policy as in Equation 2.3 and act accordingly. That policy will be optimal with respect
to the agent’s current Q values, but it is very likely that those Q values are wrong, as

8All of this is dependent on the assumption that SARSA and Q learning will eventually converge to the
same Q function, meaning that the agent’s policy converges to the simple greedy policy of Equation 2.3.
If that is not the case then the targets of the two algorithms are different, so it cannot be said that one is
more efficient than the other.

10



the agent has yet to try the majority of the possible actions across the state space. The
problem is that simply following that “optimal” policy is unlikely to improve the Q values,
as the agent will keep repeating the limited set of observations that led it to that policy in
the first place. This makes it quite likely that the agent will get stuck in a local maximum,
instead of finding the true optimal policy.

Exploration is the practice of selecting actions that may appear sub-optimal in order
to visit new regions of the state space. The simplest approach to exploration is known as
ε-greedy exploration. In this approach the agent selects actions according to the greedy
policy in Equation 2.3, but occasionally (with probability ε) it selects an action completely
at random instead. The advantage of this approach is its simplicity, but the disadvantage
is that a uniform random action selection ignores the information the agent has already
obtained about its environment. The other common approach is soft-max exploration. In
this approach the agent follows the policy

π(s, a) =
eQ(s,a)/τ∑

ai∈A

eQ(s,ai)/τ
(2.7)

This has the effect that the probability of choosing an action is proportional to the relative
Q value of that action. Thus a soft-max policy directs exploration more towards higher-
valued actions, compared to the uniform ε-greedy exploration. τ is a parameter that
controls the randomness of the exploration, similar to ε. A common approach is to initialize
τ at a high value and then gradually decrease it over the course of learning. This has the
effect that at the beginning of learning, when the Q values are very uncertain, the agent
will explore broadly throughout the state space. As τ decreases the agent will begin to
focus more on the high-value actions, as indicated by the Q values. As τ goes to 0, the
policy in Equation 2.7 will approach the greedy policy in Equation 2.3.

Q-learning and SARSA are examples of the general class of techniques known as Tem-
poral Difference (TD) learning (Sutton, 1988). TD learning has its roots in earlier RL
techniques, such as the Rescorla-Wagner model (Rescorla and Wagner, 1972), and de-
scribes a general approach rather than a specific algorithm; however, in practice, it has
become almost synonymous with Q-learning/SARSA. The origin of the name can be seen
by rearranging Equation 2.5 (or Equation 2.6) into the following form:

Qk+1(s, a) = Qk(s, a) + αk [r + γQk(s
′, a′)−Qk(s, a)] (2.8)

Here the update is re-framed as a comparison between the predicted value for Qk(s, a) and
the value based on the current observation (r + γQk(s

′, a′)). This difference is referred to
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as the prediction error
δk(s, a) = r + γQk(s

′, a′)−Qk(s, a) (2.9)

If the two terms match then the prediction error is zero, and the value of Q(s, a) is un-
changed. If the prediction does not match the current observation then a prediction error
occurs, and future predictions are adjusted in the direction of the current observation.

Although Equations 2.5 and 2.8 are mathematically identical, they differ in how they
describe the underlying mechanisms. Equation 2.5 indicates that the Q values are con-
stantly decaying, and this decay is counteracted by a steady input signal. Equation 2.8
indicates that the Q values are relatively constant, and updates are only delivered when a
prediction error occurs. If data transmission has a cost, as it often does in real systems, then
the latter approach is more efficient. Important for those interested in neural modelling,
dopamine neurons appear to be transmitting error signals that align with Equation 2.8
(Schultz, 1998), suggesting that this approach better describes the mechanisms employed
in the brain.

2.1.4 Actor-critic architecture

Actor-critic architectures make up another important sub-category of TD learning (Barto
et al., 1983). We do not use actor-critic in this work, but it is widely used in neural mod-
elling and so we include a discussion of it here. The basic idea of actor-critic is to decouple
the action values (the “critic”) from the policy (the “actor”). In Q-learning/SARSA the
policy is based directly on the action values; if the values are known, then so is the policy
(e.g., see Equations 2.3 and 2.7). In actor-critic the agent learns two separate functions—
one mapping from states to values (C : S 7→ R), and the other mapping from states to
actions (K : S × A 7→ R).

It is still necessary that the state values and the policy be connected in some way,
since we want the policy to reach high value states. In the actor-critic architecture this is
accomplished through the learning process—the output of the critic is used to update both
the actor and the critic. Since the critic output represents state values, it can be used to
compute a prediction error in an analogous way to Equation 2.9 (by comparing the value
of successive states). This prediction error can then be used to update the state values:

∆C(s) = α[r + γC(s′)− C(s)] (2.10)

The insight of actor-critic is that the same prediction error can be used to update the actor
function:

∆K(s, a) = ∆C(s) = α[r + γC(s′)− C(s)] (2.11)

12



where a is the action that led to s′. That is, the probability of selecting an action should
be increased if there was positive prediction error after selecting that action, and decreased
for negative prediction error.9

Note that if we think of C(s) as an approximation of the true state value V (s) =
maxaQ(s, a), then Equation 2.11 is essentially equivalent to the Q value update (Equa-
tion 2.6). In practice it is more similar to SARSA, as ∆C(s) is calculated based on the states
that the agent actually visits (i.e., it is not necessarily the case that a = arg maxaQ(s, a)).
Regardless, it can be seen that the end result of the actor-critic learning will be essentially
the same as the other TD algorithms—a function (named K instead of Q) that indicates
how preferable the different actions are in a given state.

One important reason one might choose the actor-critic architecture is that separating
the K function from the error calculation gives more freedom to the form of the policy
function. K can take on whatever form the modeller wants, as long as ∆C(s) can be
used to update it in an appropriate way. For example, in Potjans et al. (2009) K consists
of spiking neurons where the first neuron to spike determines the policy, and in Vasilaki
et al. (2009) it consists of a ring of interconnected neurons used to indicate direction in
2D space. In contrast, the Q function has to output a value that can be used to compute
the TD error, as well as driving the policy; this makes it less flexible than K. Actor-critic
also allows the modeller to use different parameters in the two functions, such as different
learning rates.

The main downside of the actor-critic architecture is that two recursively connected
functions need to be learned, instead of just one. This complicates the learning process.
For this reason, methods that explicitly learn Q values (such as Q learning and SARSA)
have been more widely used in later RL work (although actor-critic has remained popular in
neural modelling and robotics). A more in-depth discussion of the strengths and weaknesses
of actor-critic with respect to the work we present here is contained in Section 6.1.

2.1.5 Continuous domains

All the theory up until now has been described in terms of discrete state, time, and action.
That is the simplest case, and so tends to be how new developments are initially formulated.

9The output of the actor is not necessarily probabilities. Different actor-critic implementations have
different ways of interpreting the output of the actor, but the general idea is as described here; positive
prediction errors should increase the likelihood of selecting the action that led to that prediction error,
and vice versa.
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However, all of these techniques can be extended to continuous domains. We discuss work
aimed at continuous space, continuous time, and continuous action in turn.

The simplest technique is to take the continuous spaces, discretize them into some
number of bins, and then apply the standard discrete techniques. However, this quickly
runs into problems of scale. In order to achieve good performance, a fairly fine-grained
discretization is usually required; however, as mentioned previously, large state spaces
tend to be the Achilles heel of RL algorithms. Discretizing continuous spaces very quickly
results in state spaces too large to be feasibly tackled by discrete algorithms. Therefore it
is necessary to use RL techniques that work directly in the continuous domain.

The most common approach to working in continuous space is the use of function
approximation. For example, when learning Q values the agent is trying to learn a mapping
Q : S × A 7→ R. In the discrete case this can be represented with a lookup table, with
entries for every S ×A that give the value in R. In the continuous case it is impossible to
enumerate all the states in a lookup table. Instead, the agent needs to somehow represent
the actual function Q, so that it can map arbitrary states to values.

A common way to accomplish this is by breaking the function space up into some num-
ber of basis functions. The Q function can then be represented by some linear combination
of those basis functions. That is, we can approximate the function f(x) via

f(x) ≈ f̂(x) =
∑
i

wif̂i(x) (2.12)

where f̂i(x) are the basis functions, with the same domain and range as f . If the basis
functions are fixed and the free parameters are the weights wi on those basis functions,
this is known as linear function approximation. If the free parameters include parameters
of the basis functions, i.e.,

f̂(x) =
∑
i

wif̂i(x, pi) (2.13)

this is known as nonlinear function approximation. In this work we will focus on linear
function approximation.

There are various different approaches to adapting TD learning to operate with function
approximation (Busoniu et al., 2010). In this case the function we are approximating is the
state-action value function (f(x) = Q(s, a)). The simplest, and most common, approach is
to take the TD error δk(s, a), as calculated by Equation 2.9, and multiply it by the output
of the basis functions to calculate a change in wi:

∆wi = αkδk(s, a)f̂i(x) (2.14)
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This is equivalent to gradient descent over the weights with respect to the prediction error.
Intuitively, this means that if for example the prediction error is positive (i.e., f̂(x) was too
low) then the weight is increased for basis functions with positive output and decreased
for basis functions with negative output, which should push the output of Equation 2.12
upwards.

Tsitsiklis and Van Roy (1997) proved the formal convergence of on-policy TD learning
using linear function approximation with this type of update. Off-policy learning is more
problematic, due to the disconnect between the target function and the learning samples.
However, although there is no general proof, certain categories of off-policy TD learning
algorithms have been shown to have guaranteed convergence with linear function approx-
imation (e.g., Precup et al., 2001). TD learning with nonlinear function approximation
lacks general convergence guarantees; however, there have been some attempts to explore
this possibility, which seem to work in practice (e.g., Menache et al., 2005). It is also
important to note that these convergence guarantees refer to learning a value function
under a fixed policy. The full RL problem, involving learning a value function, modifying
a policy, exploration, and so on, is more complex. But what these results establish is that
it is not unreasonable to use function approximation to extend reinforcement learning to
continuous space.

The main challenge when working in continuous time is that the learning updates are
no longer occurring over fixed steps. In other words, the algorithm needs to consider the
actual time that has passed between Qk and Qk+1. This can be described as a semi-Markov
decision process (SMDP; Howard, 1971); an MDP that includes time as a component of the
transition and reward functions. Bradtke and Duff (1995) were the first to show how TD
learning could be extended to work with SMDPs. We will go into more detail on SMDPs
in Section 2.2.1, as they form the basis of hierarchical reinforcement learning.

Doya (2000) took a different approach to continuous time. Instead of trying to adapt TD
learning to work over extended time intervals, he removed the time interval completely.
Doya re-formulated the TD error in terms of the instantaneous derivative of the value
function. Intuitively, the derivative is a result of the discount factor and current reward.
Comparing those values to the actual derivative gives a natural analogue of the prediction
error from Equation 2.9:

δ(s(t), a(t)) =
1

γ
Q(s(t), a(t))− r(t)− Q̇(s(t), a(t)) (2.15)

The Bradtke and Duff (1995) approach allows us to calculate the TD error at discrete
points in continuous time, whereas the Doya (2000) approach gives us a continuous TD
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error signal. Which one is useful will depend on the application; the former is useful for
tasks with decision points separated by time delays, the latter for tasks with continuous
control/feedback. In this work we will be primarily interested in the former type of problem.

The use of continuous action spaces is more rare in reinforcement learning. In many
tasks it is not clear what a continuous action space would be. For example, imagine an agent
whose task is to decide which groceries to purchase; what action lies in between buying
apples and buying bananas? In other words, in many cases in reinforcement learning we
are interested in choosing between n relatively independent options, and choosing anything
other than exactly those n options may not be possible.

Tasks where continuous action makes sense tend to involve spatial control tasks. In
those cases the structure of the environment gives a natural structure to the action space;
for example, movement in 1D/2D/3D space has an intuitive continuous action space cor-
responding to the continuous state space. In these cases the solution is typically similar to
the continuous state representation—function approximation. The agent’s action space is
divided up into a set of basis functions, and the agent’s output then represents a weighting
over those basis functions. For example, an agent navigating 2D space could have basis ac-
tions representing movement in the four cardinal directions. The agent would then output
a 4-dimensional vector, which would be used to calculate an overall movement direction
via

π(s) =
∑
i

aif̂i(s) (2.16)

Examples of this approach can be found in Millán et al. (2002) or Strösslin and Gerstner
(2003). The work of Doya (2000) also uses continuous actions, but in 1D space. Often
in the 1D case the basis function is omitted and the agent’s output “weighting” is used
directly as the output action.

In summary, the various components of reinforcement learning can all be extended to
operate in continuous state, time, and action. However, one feature that becomes apparent
in this review is that continuous problems are less explored, and the practical implemen-
tation of reinforcement learning in continuous domains still has many open questions.

2.1.6 Complexity

In the previous sections we have seen how reinforcement learning can be used to calculate an
optimal policy, one which maximizes the agent’s long-term reward. However, as mentioned,
in practice these basic approaches have serious difficulty scaling up to complex, real-world
tasks. One way to highlight this challenge is to explore the algorithmic complexity of
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TD learning. The time complexity of naive Q learning (the number of steps required
to find an optimal policy) is O(|A||S|) (Whitehead, 1991). Under some fairly minimal
assumptions about the setup of the Q learning algorithm, this can be improved to O(|A||S|)
(Koenig and Simmons, 1993). However, the size of the state space |S| is exponential in
the dimensionality of the state space (this is known as the “curse of dimensionality”), thus
even the more generous analysis results in exponential complexity as the dimensionality of
the state space increases.

Exploring the basis for these complexities can give an intuition for the difficulties of
reinforcement learning. Imagine an agent placed into an unknown environment at state
s0. All of its initial Q values are 0, thus all it can do is move randomly. As it moves
around its environment, all of the terms in Equation 2.8 are 0, thus it has no prediction
error and no change in its Q values. This continues until it randomly moves into the goal
state, at which point it will have a positive prediction error, and update the Q value for
the preceding state sn. Beginning the next trial, all the Q values in its initial state are still
0, so it commences more random wandering. Suppose it follows the same random path;
eventually it will move into state sn, at which point it updates the Q value for sn−1. This
continues until it updates the value for s0, at which point it has calculated the optimal Q
values for that path. In reality the random path will not be the same each time; there are
|A|n possible paths, each of which will take n steps to fully explore (assuming for simplicity
that all the paths are the same length and there is no overlap). Thus the key factor is
n, the number of steps between the initial state and the goal, which is determined by the
size of the state space. This determines both how much wandering will be required to find
the goal in a single trial, and how many trials it will take to propagate reward information
from the goal back to the start state.

Almost all developments in RL can be framed as efforts to address this basic problem.
One approach is to try to reduce the size of the state space, thereby reducing the value
of n. Another approach is to perform more efficient exploration, thus reducing how much
wandering is required to find the goal. A third approach is to propagate reward information
more quickly through the state space, so that fewer repetitions are required. Hierarchical
reinforcement learning addresses all three of these avenues for improvement.

2.2 Hierarchical reinforcement learning

The central idea of hierarchical reinforcement learning (HRL) is the notion of an abstract
action. Abstract actions, rather than directly affecting the environment like the basic ac-
tions of RL, modify the internal state of the agent in order to activate different behavioural
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subpolicies. For example, imagine a robotic agent navigating around a house. Basic actions
might include “turn left”, “turn right”, and “move forward”. An abstract action might
be “go to the kitchen”. Selecting that action will activate a subpolicy designed to take
the agent from wherever it currently is to the kitchen. That subpolicy could itself include
abstract actions, such as “go to the doorway”, but the ultimate result will be a series of
basic actions that move the agent to the kitchen.

The incorporation of abstract actions helps to address the challenges faced by RL in a
number of different ways (Barto et al., 2013). Perhaps the most basic is that it shortens
the length of the decision path to the goal (n in Section 2.1.6). Returning to our example,
imagine an agent starting in the bedroom and trying to learn how to navigate to the re-
fridgerator. A long sequence of basic actions will be required in order to complete the task,
thus it will take many repetitions to propagate reward information from the refridgera-
tor back to the bedroom. But suppose the agent selects the “go to the kitchen” action,
and then a few basic actions to take it from the centre of the kitchen to the refridgera-
tor. Reward information can then propagate directly from the kitchen to wherever the
agent selected the “go to the kitchen” action. The abstract actions work like shortcuts,
encapsulating whole sequences of decisions (the basic actions that actually carry out the
abstract action) in a single choice. In other words, the complexity of learning the value of
that abstract choice is relatively independent of the length of the actual decision path that
choice will invoke.

Another important advantage of HRL is that it promotes better exploration. One of
the weaknesses of RL is that learning tends to begin with a long period of random action
selection, or “flailing”. This results in a kind of Brownian motion, where the agent moves
around in a limited area rather than moving throughout the state space. One can imagine
that if our refrigerator-seeking agent begins selecting random basic actions in the bedroom,
it will spend a long time wandering around the bedroom before it gets anywhere close to
the kitchen. But if the agent randomly selects the “go to the dining room” action, that
will take it to a significantly different area of the state space. Thus the agent’s random
exploration is going to result in a much broader coverage of the search space, and therefore
is more likely to bring it within proximity of the goal.

A third advantage of HRL is that it lends itself to state abstraction. State abstraction
is the process of ignoring parts of the state that are irrelevant to the current task, thus
reducing the size of the state space. In HRL it is possible to associate different state
abstractions with the different abstract actions. For example, suppose the agent is trying
to learn a subpolicy to get to the doorway of the bedroom. In that case it does not really
matter what is going on anywhere else in the house, so that subpolicy can be learned based
only on the parts of the state pertaining to the bedroom. This will make it much easier to
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learn that subpolicy.

Note that while the previous advantages are intrinsic properties of the hierarchical
framework, the question of how to come up with useful state abstractions is not trivial
(e.g., how does the agent know which aspects of the state are associated with the bedroom,
or which it is safe to ignore?). However, this question is more easily addressed in the
hierarchical case, as the abstract actions are restricted to limited parts of the task by
design. Without HRL the agent must try to find a state abstraction that works for the
whole task, which is likely to be more difficult to find and also likely to eliminate a smaller
portion of the state space.

The use of transfer learning in HRL is a similar case, in that it is not an intrinsic benefit
of HRL but is made easier by the hierarchical framework. Transfer learning is the process
of using knowledge gained in a previous task to aid performance in a new task (Taylor
and Stone, 2009). While this is possible in other RL frameworks, it is made much easier
by the use of HRL. One of the main challenges of transfer learning is trying to separate
the knowledge that can be reused and the knowledge specific to the previous task. In
HRL, knowledge is already divided into natural modular chunks—the abstract actions.
The abstract actions tend to be self-contained, general, and well-defined, making them
perfect components for transfer learning. For example, it is easy to see how the “go to
the kitchen” action could be reused for navigating to the refrigerator, the oven, the sink,
and so on. Once that subpolicy has been learned once, it can be added as an abstract
action in these new tasks, thereby conferring all of the benefits described in the previous
paragraphs.

2.2.1 Semi-Markov Decision Processes

The potential benefits of hierarchical reinforcement learning have long been recognized.
Singh (1992) showed that when a complex task was created by composing several simpler
tasks, the Q values for the overall task could be formed by a composition of the Q values
on the simpler tasks. The work of Dayan and Hinton (1993) on “Feudal RL” had almost
all of the components of modern HRL—policies operating at different levels of abstraction,
pseudoreward, state abstraction, and more. However, it is perhaps possible to date the
beginning of hierarchical reinforcement learning as a well defined and distinct field to
the review work of Barto and Mahadevan (2003). Their work emphasized the fact that
several recent hierarchical RL approaches were unified by the underlying theory of semi-
Markov Decision Processes (SMDPs; Howard, 1971). This observation gave a common
mathematical framework to the field of HRL, which was key to its continued development
in the next decade.
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The basic observation is that abstract actions take time to complete. When an agent
selects a basic action, the result of that action can be observed in the next timestep (by the
definition of MDPs). But abstract actions are not completed in a single timestep—there
is some time interval that elapses while the subpolicy is executing the underlying basic
actions, and only at the end of that delay period can the results of that action be observed.
SMDPs extend the basic MDP framework by adding time into the various components,
thus allowing them to capture this style of decision problem.

SMDPs extend the MDP framework in three ways. First, the transition function, P ,
must incorporate time. This is expressed as P : S × A × I × S 7→ R, where P (s, a, t, s′)
indicates the probability of arriving in state s′, t time-steps after choosing action a in
state s. This is a discrete time SMDP, as time is expressed as a number of time-steps.
Continuous time SMDPs also exist, where P : S ×A×R× S 7→ R (Puterman, 1994), but
in general we will describe things here in the simpler discrete-time case.

Next, the reward for an action a is no longer a single value given when the action
is chosen, but instead represents the total reward accumulated from when the action is
chosen to when the next state is reached. In terms of subtasks, that means that a chosen
subpolicy could execute several actions, some or all of which receive some reward, and the
the total reward for choosing that subpolicy is the sum of those rewards.

The final change is in the discounting factor, γ. This is now applied across the time
delay, so that states that are not reached for a long time are discounted more than states
that are reached quickly.

Thus the state-action value from Equation 2.4, can be re-expressed as

Q(s, a) =
τ−1∑
t=0

γtrt + γτQ(s′, a′) (2.17)

(where the transition to state s′ occurs at time τ). That is, the value of selecting action a
in state s is equal to the summed reward received across the delay period, plus the action
value in the resulting state, all discounted across the length of the delay period. This leads
to a similar adaptation of the prediction error equation to

δ(s, a) =
τ−1∑
t=0

γtrt + γτQ(s′, a′)−Q(s, a) (2.18)

However, with that basic framework in place there are still many different ways to
implement HRL, based on issues such as how the hierarchy of actions is structured and
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how the prediction error is calculated and applied. Different HRL theories are defined by
their choices on these issues. In the upcoming sections we explore three of the main HRL
approaches in more detail.

2.2.2 Options

The “options” framework was developed by Sutton et al. (1999). The framework is based
around the idea of an option, which is a generalization of actions to allow both basic and
abstract actions to fit within a common framework. One of the most attractive aspects of
the options approach is that this then allows many of the standard RL techniques described
in Section 2.1 to extend in a relatively intuitive fashion to the hierarchical setting.

An option consists of three components, 〈I, π, β〉. I ⊆ S is the set of initiation states,
the states where this option is a valid choice. π : S × A 7→ R is the subpolicy for this
option, describing which actions will be picked in each state after the agent has selected this
option. Note that the actions of the subpolicy could themselves be other abstract actions.
The policy is usually defined over the states in the initiation set (or, phrased differently,
the option can be initiated in any state in which its policy is defined). β : S 7→ R is the
termination function, giving the probability that the option will terminate in each state.
Basic actions can be thought of as a special case where I is the set of states where that
action can be chosen, π always selects the given action, and β is always 1 (so the option
always terminates after executing one action).

Acting with options proceeds as follows. If the agent x is in state s, and s ∈ Io (the
initiation set for option o), then the agent can select option o (e.g., πx(s) = o). The next
action will then be selected according to πo(s). This could select another option, but we
will suppose that it selects a primitive action that moves the agent into a new state s′. The
system now checks whether the option (probabilistically) terminates according to βo(s). If
the option does not terminate then another action is selected according to πo(s

′), resulting
in s′′. Supposing β(s′′) = 1 (the option terminates), control will then return to the policy
that selected o, and the next action will be selected according to πx(s

′′).

Q values can be learned using essentially the same technique as in Equation 2.8, but
with the updated prediction error expression of Equation 2.18. This results in the formula

Qk+1(s, o) = Qk(s, o) + αk

[
τ−1∑
t=0

γtrt + γτ max
a′

Q(s′, a′)−Q(s, a)

]
(2.19)
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This update is applied whenever option o terminates (in state s′ at time τ).10

As mentioned, the concept of a policy is extended to be a policy over options rather
than over actions; that is, π : S×O 7→ R, where O is the set of available options (including
those encapsulating basic actions). The policy can be determined in the same way as the
standard RL approaches described in Section 2.1, e.g. through ε-greedy or softmax over
the Q values learned in Equation 2.19.

Thus we can see that under the options framework all the standard RL processes proceed
in roughly the same way. However, Sutton et al. (1999) also suggest a number of extensions
to the options framework that leverage the hierarchical structure better than the standard
RL approach. First, according to the description above options always continue until they
terminate according to their β function. However, it is possible to re-examine the available
options at each step, and if another option has a higher state value for that state than
the currently executing option, then the current option can be interrupted and the second
placed in control. Sutton et al. (1999) prove that the resulting value obtained will be at
least as good as the original (and likely better).

Another extension is intra-option learning. Instead of updating only the state-action
value function of the currently selected option (as in Equation 2.19), it is possible to update
the value of any options that might have selected the same action in the same state. The
observation of s, a, s′, and r is not tied to the current option, so that observation can
be used to update all applicable values. This can significantly speed up learning, as the
system is learning different parts of the value function simultaneously.

The third extension incorporates the idea of subgoals. In the basic setup described in
Equation 2.19, the agent only learns how to choose between options; no learning occurs
within the options themselves (they are assumed to have fixed policies that were learned
at some other time). However, if subgoals are defined for the options, then each option can
learn to better achieve its subgoal, as well as the overall agent learning to choose between
options. This is accomplished by adding a local reward function g : S 7→ R to each option,
which describes the reward the option will receive for terminating in state s (this is often
referred to as pseudoreward). The state-action values for option x can then be expressed
in terms of the value of the next state (if the option has not reached a subgoal) or in terms

10Note that the options framework uses an off-policy prediction error rather than the on-policy update
of Equation 2.18, but the underlying principle is the same.
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of the subgoal value (if the option has reached a subgoal):

Qx(s, a) =



τ−1∑
t=0

γtrt + γτ max
a′

Qx(s
′, a′) if s′ is not a subgoal

τ−1∑
t=0

γtrt + γτgx(s
′) if s′ is a subgoal

(2.20)

Note that in this case each option maintains its own state-action value function Qx (used
to determine that option’s policy). Updating Equation 2.19 to incorporate these Q values
and applying it whenever an option terminates will allow the agent to improve the policy
of the abstract actions, as well as learning to choose between options itself.

Because of its minimalist approach to HRL, the options framework is an attractive
target for neural modelling. Thus, while incorporating many changes based on the needs
of a neural implementation, the model we present here will base much of its computation
on this approach (see Sections 4.4.2 and 6.1.2 for more details).

2.2.3 Hierarchical Abstract Machines

Another approach to hierarchical reinforcement learning was developed by Parr and Russell
(1998), referred to as Hierarchical Abstract Machines (HAMs). The central feature of this
approach is the “machine”, a finite state machine that has its own internal processing,
and which controls the underlying MDP as its output. Machines can be thought of as
an abstracted policy; they determine which action to take in each state, but through
a complicated internal process rather than a direct S 7→ A mapping. They are called
hierarchical because machines can invoke other machines rather than taking an action
themselves. One of the key distinctions between this and the options approach is that the
goal of this abstraction is to reduce the size of the policy space, whereas options extend
the policy space.

As usual, the task is represented as an MDP with states S, actions A, transition
function P , and reward function R. We refer to a hierarchical machine as Hi. Each
machine has its own internal states Si and actions Ai, as well as a transition function
Pi : Si × Ai × Si 7→ R governing movements through that internal state. Each machine
also has a function Ii : S 7→ Si that sets the initial state of the machine when it is invoked,
given the state of the MDP.

The states of a machine (Si) have four different types. “Action” states execute an action
in the underlying MDP. These states define a policy πi : S × Si × A 7→ R that describes
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which action to execute given the current state s of the MDP and the current state si of the
machine. These policies are fixed and defined as part of the machine. “Call” states invoke
another machine. These states contain a function hi : Si 7→ H that defines which machine
to invoke given the current state of the machine. “Choice” states allow the machine to
make decisions by modifying its internal state. They define a policy ci : S × Si ×Ai 7→ R.
Note that these actions (Ai) are different than the MDP actions (A); A actions change
the state of the underlying MDP, whereas Ai change the state of the machine. The actual
next state of the machine after the action is chosen will depend on the machine’s internal
transition function Pi. “Halt” states stop the current machine and return control to the
calling machine.

To learn to act optimally in a given environment, what needs to be determined are the c
functions, the choices that the machines make concerning their internal state. Everything
else in the system is fixed; the action policies and transition functions are defined when the
machine is created. In other words, machines predefine certain sequences of actions based
on their internal dynamics, and it is at choice nodes where a decision needs to be made
about which sequence to execute.

In order to understand how to learn the c functions, it is helpful to abstract away
from the internal processing of the machine, and treat the whole system as a general
SMDP. The combination of a machine and underlying MDP can be thought of as an
SMDP operating in an expanded state space S × Si, call it SH . The agent wants to learn
a policy πH : SH × Ai 7→ R. Note that the only “actions” in this SMDP correspond to
the choice states in the machine. It is a semi-MDP because after a choice is made at
one of these states the system will run autonomously for some length of time, potentially
accruing some reward, until it reaches the next choice state. Therein lies the advantages
of the HAM approach; although the original MDP has been expanded to a more complex
SMDP with a larger state space, large sections of the policy space are fixed based on the
internal dynamics of the machines. The learning problem is reduced to only those parts
of the state space that involve a choice state in one of the machines. Another way to look
at it is that large sections of the policy of the MDP are predefined by the programmer,
who uses his or her domain knowledge to focus the learning on the parts of the policy that
cannot be predefined.

Thus the goal is to learn a value function Q : S × Si × Ai 7→ R which can be used
to derive the policy for c. However, it is only necessary to learn the parts of the value
function Q(s, si, a) where si is a choice state. Learning these values can be accomplished
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using essentially the same update formula as in Equation 2.19:

Qk+1(s, si, ai) = (1− α)Qk(s, si, ai) + α

[
τ−1∑
t=0

γtrt + γτ max
a′i

Qk(s
′, s′i, a

′
i)

]
(2.21)

This update is applied every time a choice point is reached, and τ is the time elapsed
between choice points. Note that the expanded SMDP (and associated Q function) is
defined only in terms of the underlying MDP and one machine. Each machine maintains
its own Q function, and updates are applied to the currently executing machine. Over time
the Q functions of the machines will converge to the correct values, meaning that following
their policies will result in optimal reward.

The aim of the HAM framework is to provide a flexible and convenient way of specifying
policies, including the ability to learn parts of the policies when their behaviour cannot be
prespecified. This is realized even more explicitly in later work (e.g., Andre and Russell,
2002), where HAMs are specified using a modified version of Lisp. This is different than
the goal we pursue here, where we are interested in learning all aspects of the policy, thus
the model we present bears the least resemblance to the HAM approach. However, we
do make use of the principle of an expanded state space that can be modified by internal
actions, as a way to communicate information between abstract actions (see Section 4.4).

2.2.4 MAXQ

The third hierarchical reinforcement learning framework is MAXQ, developed by Dietterich
(2000). MAXQ bears many similarities to the options framework with subgoals, but it
makes subgoals the central feature of the architecture rather than an extension. The
MAXQ algorithm is based on breaking a task down into subtasks, locally optimizing those
subtasks, and then defining how to calculate the value function for the overall task by
composing the value functions of the subtasks.

Suppose the overall MDP is broken down into subtasks M0, M1, . . . , Mn. These
subtasks are analogous to options or machines; they represent an abstract action. A
subtask Mi is defined by four components, 〈Si, Ti, Ai, Ri〉. Si ⊂ S defines the states in
which this subtask can be executed. Ti ⊂ S plays a similar role to β in the options
framework, but in this case the subtask always terminates as soon as it reaches a state in
Ti, rather than the probabilistic formulation of β. Ai is the set of available actions for the
subtask, which can include primitive actions or other subtasks. Ri : Ti 7→ R is the local
reward function, which describes the reward received for arriving in each of the terminal
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states. Each subtask has its own policy πi : Si × Ai 7→ R. As in the options framework,
primitive actions can be defined as subtasks with Si = S (or the subset of states where a
is a valid choice), Ti = S, Ai = a, and Ri 7→ 0.

As with the other HRL approaches, the goal is to learn a value function that can be
used to determine the optimal policy. In the option and HAM frameworks, this means
learning Q(s, a) values that describe the total expected reward for executing action a in
state s. When options/machines learn individual value functions, each one contains all the
information needed to act. The insight of the MAXQ approach is that each subtask does
not need to learn the whole value function. If subtask Mi invokes subtask Mj, then the
expected value for Mi is already largely defined by the value function of Mj (since Mj will
be in control). Mi only needs to learn the part of the value function that does not depend
on Mj.

Let Qi be the state-action value function for Mi. To begin, the value of choosing a
subtask Mj can be expressed in the same way as Equation 2.17:

Qi(s,Mj) =
τ−1∑
t=0

γtrt + γτ max
a′

Qi(s
′, a′) (2.22)

In other words, the value for choosing subtask j is the reward accumulated while Mj is
running, plus the expected value of the state s′ in which Mj terminates. The next step is to
notice that Mj also has a value function, which defines a value for Vj(s) = maxaQj(s, a).
By definition, Vj(s) describes the reward Mj expects to accumulate when starting in state
s and continuing to termination. This is the same quantity being expressed by the first
term in Equation 2.22. Thus Mi’s value can instead be expressed as

Qi(s,Mj) = Vj(s) + γτ max
a′

Qi(s
′, a′) (2.23)

Calculating the second term requires knowledge of the termination time and state of Mj

(τ and s′). Assuming those are unknown, this can instead be expressed probabilistically
as

Qi(s, j) = Vj(s) +
∑
s′,t

Pi(s,Mj, t, s
′)γt max

a′
Qi(s

′, a′) (2.24)

The second term represents the expected value for Mi to complete its subtask after exe-
cuting subtask Mj in state s. One way to calculate this would be to explicitly model Pi;
this would be a model-based approach to the MAXQ decomposition. However, MAXQ in-
stead takes a model-free approach, summarizing the Pi and Qi terms via a new function C
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(similar to how Q was originally developed to summarize P and R). This gives a function
Ci : Si × Ai 7→ R, where

Ci(s,Mj) =
∑
s′,t

Pi(s,Mj, t, s
′)γt max

a′
Qi(s

′, a′) (2.25)

This is called the completion function for subtask Mi. These are the values that each
subtask needs to learn; if it knows the Ci function, then it can calculate a state-action
value according to

Qi(s,Mj) = Vj(s) + Ci(s,Mj) (2.26)

and determine a policy based on those Q values in the standard ways.

The strength of this approach becomes apparent when we consider a hierarchy of sub-
tasks. Suppose subtask i calls subtask j which calls subtask k which executes primitive
action a. The state-action value for subtask i can be decomposed into

Qi(s,Mj) = Vj(s) + Ci(s,Mj)

= Vk(s) + Cj(s,Mk) + Ci(s,Mj)

= Va(s) + Ck(s, a) + Cj(s,Mk) + Ci(s,Mj) (2.27)

That is, the Q values for subtask i, involving a complex hierarchy of actions, can be
broken down into a simple linear combination of lower level functions. At the lowest level
of primitive actions (e.g., Va(s)) the values are just based on the actual reward received for
executing that action in that state. The advantage of this approach is its efficiency, avoiding
the duplication of learning/knowledge among the different subtasks. The disadvantage is
that it makes the actual retrieval of Q values more complex; Mi does not actually contain
the Q values it needs in order to decide on a policy, instead that information is distributed
throughout all of Mi’s subtasks.

The final issue is how to learn the C values. At root this follows a familiar update
scheme:

∆Ci(s,Mj) = α[γτVi(s
′)− Ci(s,Mj)] (2.28)

That is, the update is based on a comparison between the predicted completion value for
choosing subtask j and the actual observed value Vi(s

′) once subtask j terminates at time
τ .11

The challenge is how to calculate the V term. Recall that Vi(s
′) = maxkQi(s

′,Mk), and
Qi(s

′,Mk) = Vk(s
′)+Ci(s

′,Mk). Thus calculating Vi involves recursively searching through

11The update is only applied if j terminates in a terminal state s ∈ Tj (i.e. it is not applied if j was
“interrupted” by the termination of a higher level subtask).
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the subtask tree of Mi, calculating the value for each path in the tree as in Equation 2.27,
and finding the maximum value path. Each path terminates at a primitive action a, where
the values (e.g., Va(s)) are stored explicitly. These values are updated after action a is
taken and a reward is received from the environment:

∆Va(s) = α[r − Va(s)] (2.29)

(i.e., just encoding the average reward received).

One complication in learning the C values is the subgoal reward values, Ri. These
are the local rewards a subtask receives for reaching one of its terminal states Ti. These
rewards should be considered when choosing actions within subtask i, but they should not
be a factor when other subtasks are judging the value of choosing subtask i (as the calling
subtasks will not actually receive the local reward, only the rewards from the environment).
Thus two completion functions are necessary: one to be used “outside” i (representing the
true reward to be expected from Mi) and one to be used “inside” (representing true reward
plus the local goals). These are termed Ci and Ĉi, respectively. Each subtask chooses
its own actions using Ĉ, but it reports C when other subtasks are trying to compute a
hierarchical value as in Equation 2.27. These two functions are updated simultaneously:

∆Ci(s,Mj) = α[γτQi(s
′, â)− Ci(s,Mj)]

∆Ĉi(s,Mj) = α[γτ Q̂i(s
′, â) + γτRi(s

′)− Ĉi(s,Mj)] (2.30)

where Q̂i is calculated as in Equation 2.26, but using Ĉi instead of Ci. â is the best action
in the next state s′ according to Ĉ, i.e., â = arg maxa Q̂(s′, a). Note that the updates for
both C and Ĉ are based on â; this is because this is the action that will actually be chosen
by subtask i (since it is trying to optimize its local reward).

One of the most important distinctions between MAXQ and the other two frameworks
is the optimality of the final policy. Both options and HAMs converge to a hierarchically
optimal policy, meaning that, within the constraints of the hierarchy, the agent will maxi-
mize the overall reward. MAXQ converges to what Dietterich (2000) terms a “recursively
optimal policy”. This means that the policy πi for each subtask is optimal with respect to
the parameters of that subtask (Si, Ti, Ai, Ri), but the overall behaviour may not be op-
timal. For example, suppose an agent wants to take a sip from a mug, and it has subtasks
for gripping a mug and bringing its hand to its mouth. When given the “take a sip” task,
options and HAM will learn the optimal way to take a sip from the mug. MAXQ will learn
the optimal way to combine its “grip the mug” and “bring hand to mouth” subtasks. It
will also learn the optimal way to grip a mug, and the optimal way to move its hand to its
mouth. But the result may not be the best way to take a sip from the mug. For example,
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it may be better to grip the mug differently depending on how the hand will approach the
mouth; this would require the agent to perform the “grip the mug” task sub-optimally, in
order to perform the overall “take a sip” task optimally. MAXQ will not do this; in effect,
it optimizes from the bottom up, so that each subtask just learns to perform its task to the
best of its ability given the tools it is provided, with no awareness of the overall context
within which it is operating. This is a drawback in terms of pure performance, but it can
be helpful for domain transfer. For example, if MAXQ is put in a new environment where
it has to pick up a mug and throw it, then it already knows the optimal way to grip a mug,
whereas options/HAMs would have learned a suboptimal gripping policy that now needs
to be retrained for the new task.

Although the data efficiency of the MAXQ framework is attractive, the complicated
recursive search required to calculate every Q value would be very complex to implement
in a neural model. Thus in our model we opt to have each abstract action maintain a
complete value function. However, an important similarity between our model and the
MAXQ approach is the way in which it divides the overall problem into a fixed hierarchy
of subproblems that are each solved relatively independently; we adopt a very similar
approach here (see Sections 4.4 and 6.1.3). Our model can also adopt either hierarchical
or recursive optimality, depending on how the pseudoreward is implemented.

2.2.5 Continuous HRL

The previous discussion of options, HAMs, and MAXQ has all been in terms of discrete
time, discrete states, and discrete actions. As with standard RL, this is the simpler case
and so is how these new developments are initially formulated. However, compared to the
discussion in Section 2.1.5 continuous HRL is still relatively unexplored.

The most formal continuous work has been undertaken in the MAXQ framework.
Ghavamzadeh and Mahadevan (2001) translated the MAXQ framework into the continuous
domain, showing how all the concepts discussed above could be described in a continuous
fashion. However, this work is largely theoretical; we are not aware of any continuous
implementations of MAXQ, other than a basic demonstration by Ghavamzadeh and Ma-
hadevan.

There has been no such formal treatment for the options framework, but there have
been several models developed that implement the options framework in a continuous envi-
ronment (Konidaris and Barto, 2009; Mugan and Kuipers, 2009; Neumann et al., 2009). In
general, the basic concepts of the options framework (adding options as selectable actions,
defining different policies under different options, accumulating reward) are general enough
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that the essential theory can be applied relatively unchanged. The challenge is how to cal-
culate the appropriate values and learning updates when given continuous input. As with
standard RL, the use of function approximation provides a useful bridge. The prediction
error can be calculated based on the standard options theory, and then as in Equation 2.14
this prediction error can be used to update the weights on the basis functions. This is a
key feature of the Konidaris and Barto (2009) and Neumann et al. (2009) approaches. The
idea behind the work of Mugan and Kuipers (2009) is to learn a discrete approximation of
the state space, at which point the discrete options learning techniques can be applied.

We are not aware of any work implementing the HAM theories in a continuous envi-
ronment; the finite state machine framework does not lend itself to this approach.

2.3 Neural Engineering Framework

Sections 2.1 and 2.2 addressed the computational theory underlying this work; in this
section we turn to the construction of neural models. The basic tool we use in this process
is the Neural Engineering Framework (NEF; Eliasmith and Anderson, 2003). The NEF is
a mathematical framework for taking a computational description of a system and turning
it into a neural implementation. The idea is to take the mathematical variables and
computations of RL, such as states and prediction errors, and recreate them using neural
activities and connection weights. In this section we will discuss the NEF in a general
fashion, while in Chapter 4 we will see how these techniques are applied to construct the
model of hierarchical reinforcement learning.

2.3.1 Representation

The NEF represents information in a distributed manner, using the combined information
from a population of neurons to represent a value (such as the state s in reinforcement
learning). There are two important components to representation. The first is encoding
a value into spikes—transforming the information contained in the mathematical variable
into the activity of the neurons (a to b in Fig. 2.1). The second component is decod-
ing spikes into a value (c to d), so that it is possible for the modeller to interpret what
information is being represented by the population.

Encoding a vector x(t) (all computations occur over time, t) into the spike train of
neuron ai is accomplished through a neuron model

ai(x(t)) = Gi

[
αieix(t) + Jbias

i

]
(2.31)
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Figure 2.1: Recordings from a simple network in which an input signal (a) is fed into
a population of simulated neurons (b). That population is then connected to a second
population (c), with the connection weights calculated to double the represented value.
Finally, the activity of the second population is decoded back into a value (d). Note: (b)
and (c) are spike rasters; each row corresponds to one neuron, and each dot indicates that
the neuron fired a spike at that time.
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which describes the activity of neuron ai as a function of its input current. Gi is a func-
tion representing the nonlinear neuron characteristics. It takes a current as input (the
value within the brackets), and uses a model of neuron behaviour to output spikes. The
variables αi, J

bias
i , and ei are the parameters of neuron ai. The parameters αi and Jbias

i

do not directly play a role in the encoding of information, but rather are used to provide
variability in the firing characteristics of neurons. This allows the modeller to capture the
heterogeneity observed in biological neurons. The parameter ei represents the neuron’s
preferred stimulus. This is an important factor in the neuron’s firing, as it differentiates
what properties of the input a neuron will respond to. Specifically, the dot product between
ei and the input (i.e., their similarity) drives a particular cell. In summary, the activity of
neuron ai is a result of its unique response (determined by its preferred stimulus, ei) to the
input x(t), passed through a nonlinear neuron model in order to generate output activity.

In this work we use leaky integrate-and-fire neurons (LIF; Lapicque, 1907), which strike
a balance between computational simplicity and realistic neural dynamics. The main
component of the LIF model can be captured by a single differential equation, which
describes how the neuron’s membrane potential V changes as a result of the input current
J (the value within the brackets in Equation 2.31):

∂V

∂t
=

1

τRC
(J − V ) (2.32)

τRC is a parameter of the model that describes the membrane capacitance—how quickly
the membrane voltage changes as a result of the presence or absence of input current. The
difference J − V gives the neuron a ramping behaviour, where the voltage will increase
quickly initially and then taper off as it approaches the input.

The other aspect of the LIF model is the spiking behaviour. When V passes a threshold
(generally set to 1), we say that the neuron has spiked. V is then set to 0 for a period τ ref ,
known as the refractory period, after which Equation 2.32 takes over again. Typical τRC

and τ ref values are 0.02 and 0.002, respectively.

One of the convenient aspects of the LIF model is that it has an analytic solution for
the firing rate:

ai(J) =
1

τ ref − τRC ln(1− 1
J

)
(2.33)

This means that if we are not interested in individual spike timing we can avoid simulating
the differential equation in Equation 2.32 and just directly calculate the firing rate. In
this work we will use both the spiking and rate model in order to demonstrate that either
works, but predominantly use the latter.
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One important thing to note is that the formulation of Equation 2.31 makes no as-
sumptions about the neuron model Gi. Thus the techniques of the NEF allow different
neuron models to be substituted in without affecting the principles we outline here.

The second, equally important, part of neural representation is the opposite of encoding:
decoding the activity of a population into a value, x̂(t). This is accomplished through the
formula

x̂(t) =
∑
i

h(t) ∗ ai(x(t))di (2.34)

where ∗ denotes convolution. Essentially this is modelling the unweighted current that
would be induced in the post-synaptic cell by the spikes coming out of ai. ai(x(t)) is
the output of Equation 2.31. The function h(t) is a model of the post-synaptic current
generated by each spike; convolving that with ai(x(t)) gives the total current generated by
the spikes from ai. More generally, if the output of ai is not spikes, h(t) can be thought
of as a filter that will be convolved with the neural activity to model the effect of the
post-synaptic current.

The di parameters are the optimal linear decoders, which are calculated analytically so
as to provide the best linear representation of the original input x. That is, we want to
solve the system

Ad = x (2.35)

where x is an array of points covering the possible values of x(t) and A is a matrix of the
form 

a0(x0) a1(x0) . . . an(x0)
a0(x1) a1(x1) . . . an(x1)
...

...
. . .

...
a0(xm) a1(xm) . . . an(xm)


This is a linear least squares problem, which can be solved by various standard methods
(Lawson and Hanson, 1974). The end result will be a di for each neuron that minimizes
the squared difference between x and x̂.

Roughly speaking, the decoders can be thought of as creating a mapping from the
output current onto the input value that created that output. Since the input was trans-
formed into current using the nonlinear neuron model, it is impossible to recreate the input
perfectly using linear decoders. Thus the resulting value is an approximation, x̂(t), of the
original input, x(t). That is why we use large populations of neurons, with heterogeneous
properties—so that the combined activity of all the neurons in the population counteracts
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the inaccuracy in any one neuron. Given enough neurons it is possible to get a very accu-
rate recreation of the original input; for a detailed analysis of the link between population
size, neuron properties, and representational accuracy, see Eliasmith and Anderson (2003).

2.3.2 Transformation

In addition to representing values, we also need to carry out transformations on those
values (for example, calculating prediction error). The simplest transformation is no trans-
formation, simply passing the value from one variable to another (e.g., calculating y = x).
Assuming that there are two populations a and b which will represent the x and y values,
respectively, then this amounts to a question of how to set the weights on the synaptic
connections between a and b. Referring back to Fig. 2.1, the connection weights between
the two populations—2.1b to 2.1c—are what need to be determined. The goal is to set
the weights in such a way that when the neurons in population a are firing to represent x,
this will cause the neurons in population b to fire in such a way that they also represent
x. Note that this is not equivalent to making their firing activity identical, as the a and b
neurons have different random properties and therefore different decoders.

Recall that the activity of neuron bj is a result of its nonlinear response (Gj) to the
input current. However, the input to population b is no longer a direct value, but is instead
the output from population a. The output of population a is given by Equation 2.34, so
to calculate the firing of population b, Equation 2.34 can be substituted in for x(t) in
Equation 2.31:

bj(x(t)) = Gj

[
αjej(

∑
i

h(t) ∗ ai(x(t))di) + J biasj

]

= Gj

[∑
i

h(t) ∗ ai(x(t))αjejdi + J biasj

]

= Gj

[∑
i

h(t) ∗ ai(x(t))ωij + J biasj

]
(2.36)

In other words, the input current of neuron bj is equal to the output current of all the a
neurons connected to bj, multiplied by the connection weights. In most neural simulations
the connection weights ω need to be learned. The NEF formulation allows the connection
weights to be analytically determined: ωij = αjejdi. Referring back to the descriptions of
the variables in Equations 2.31 and 2.34, what this means is that the connection weight
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between neuron ai and bj is equal to the preferred stimulus of bj multiplied by the decoders
for ai (all scaled by the gain, αj, on bj). Intuitively this makes sense; the output of ai is
being decoded into a value (via di) and then re-encoded into the input of bj (via ej), but
the connection weights are compressing that decoding/encoding into a single step.

So far the value has not really been transformed, the output of a is simply being passed
directly to b. Let us suppose we want to calculate a scaled version of the value represented
in a, e.g., y = 2x. If the output of a is x, multiplying that output by 2 will give 2x. That
is,

2x̂(t) = 2
∑
i

h(t) ∗ ai(x(t))di (2.37)

Substituting that into the encoding of bj, in the same way as Equation 2.36, results in the
connection weights ωij = 2αjejdi. In other words, if we want to double the represented
value, we simply double the connection weights. More generally, if we want to multiply
the vector x by the matrix C, we can calculate the weights as ωij = αjejCdi.

Another transformation is combining two values (z = x+y). This is almost identical to
Equation 2.36, except that now the input current is coming from two populations instead
of one:

ck(x(t) + y(t)) = Gk

[∑
i

h(t) ∗ ai(x(t))ωik +
∑
j

h(t) ∗ bj(y(t))ωjk + J biask

]
(2.38)

where ωik = αkekdi and ωjk = αkekdj. A second, analogous term has been added to
incorporate the second input population. This can be continued in the same way to combine
any number of inputs.

These two transforms can be combined to compute arbitrary transformations of the
form z = C1x + C2y. This is simply Equation 2.38, except ωik = αkekC1di and ωjk =
αkekC2dj. Thus with these techniques any linear transformation can be computed using
neural connection weights.

Notice that the linear transformation discussion has been solely about encoding from
value to spikes, there has been no discussion of decoding from spikes to values. This is
because the decoding is unaffected by these linear transformations. Recall that the optimal
linear decoders map from output current to the input value that caused that current. These
manipulations are only changing the input—the mapping remains the same. However, it
is also possible to compute different mappings. Instead of calculating the decoders via
Ad = x (Equation 2.35), we can instead calculate them as

Ad = f(x) (2.39)
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where f is some arbitrary function. Using the same linear least squares solving process
will then result in a set of decoders that approximate f̂(x) instead of x̂. Using those
decoders to calculate the connection weights as above will then result in a transformation
that approximates the desired function.

This allows for the computation of nonlinear transformations. For example, one of the
most common nonlinear operations is multiplication (z = xy). There are a number of
methods to perform multiplication using neurons (Eliasmith and Anderson, 2003; Polsky
et al., 2004); here we will describe a technique that uses only linear dendrites, as this is
the most conservative assumption regarding dendritic computation. With this approach,
multiplication involves a two stage process, using an intermediate population M . The
M population takes x and y as input and combines them into a two dimensional value
m = [x y]. This is a linear transformation, and so is accomplished as in Equation 2.38.
Then the decoders of M , instead of mapping onto the same two dimensional space as the
input, map onto a one dimensional space by setting f(m) = m1 × m2 in Equation 2.39.
Note that the decoders are still only linear weights and so can only approximate a nonlinear
transformation such as multiplication. The accuracy of the approximation is proportional
to the number of cells, so the multiplication can be made more or less accurate depending
on how many neurons the modeller wants to use.

These techniques can also be used to calculate recurrent connections. The idea is the
same as Equation 2.36, except instead of the input coming from a different population,
it comes from the output of the same population. This results in the connection weights
ωij = αjejdi where e and d are the encoders and decoders for population a. With no other
transformations applied, this will cause the population to feed its own represented value
back to itself. This results in the population performing integration over its inputs; given
no input it will maintain its current value, and otherwise it will add up all the inputs it
receives. This technique is useful for creating simple memory components, as we will see
in Chapter 4.

2.3.3 Learning

The previous section discussed how to analytically calculate the connection weights for a
desired transformation. However, in some cases the required transformation is not known
ahead of time; for example, in reinforcement learning the Q values are not known until
the agent actually starts exploring its environment. In those cases the weights need to be
learned online.

There are many learning rules that can be implemented in the NEF, but in our work
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we use the Prescribed Error Sensitivity rule (PES; MacNeil and Eliasmith, 2011). This is
described by the formula:

∆di = κEai(x) (2.40)

where κ is the learning rate and E is some error signal to be minimized. Note the similarities
between this and the basis function weight update in Equation 2.14. The neuron activation
functions are the basis functions, and we multiply the basis function output by the error to
calculate a change in the weight (di) on that basis function. The rule as expressed here is
in terms of changes to the decoders; the effect of this on the actual connection weights can
be observed by multiplying both sides by the encoders and gain of the neurons to which
ai connects:

∆ωij = καjejEai(x) (2.41)

This learning rule will cause the transformation calculated by the decoders/connection
weights to be adjusted in the direction of E. For example, if the output of the a population
represents Q values, and E is the TD error, this will cause the Q values to be adjusted as
in Equation 2.8.

2.3.4 Basal ganglia network

Several NEF models make use of a specific model of the basal ganglia (e.g., Stewart and
Eliasmith, 2011; Eliasmith et al., 2012; Stewart et al., 2012; Choo and Eliasmith, 2013;
DeWolf and Eliasmith, 2013), including the work we present here. This model is based on
work by Gurney et al. (2001), who employed a mixture of experimental and computational
work to build a computational model of basal ganglia function. This computational model
was then translated into a detailed neural model using the principles of the NEF by Stewart
et al. (2010).

The basic observation of Gurney et al. (2001) was that the basal ganglia architecture is
well suited to computing an “arg max” type function over its inputs. That is, given a set
of n inputs, it is good at finding which input has the highest value. This makes it perfect
for performing action selection; if we think of the basal ganglia inputs as action values,
then the effect of the basal ganglia will be to select the highest valued action.

The central operation is off-centre on-surround connectivity. The basal ganglia operates
through inhibition, thus off-centre corresponds to inhibiting—and therefore selecting—the
target action. This occurs via the direct striatal–globus pallidus internus (GPi) connec-
tions. On-surround means that each input will also be disinhibiting the other actions,
which occurs via connections from the striatum to GPi through the subthalamic nucleus
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(STN). The net result of this will be that the highest value action is inhibited, and all the
other actions are disinhibited.

However, the problem with this feedforward style of arg max calculation is that it is
very sensitive to the range of its input values. If the values are too high there will not be
enough disinhibition, and several actions will get selected. If the values are too low the
opposite occurs, and no actions will be selected. Thus the basal ganglia model contains
a secondary circuit that attempts to normalize the internal values. This follows the same
off-centre on-surround pattern as above, but projecting onto GPe instead of GPi. Thus
the GPe also contains the max action, but instead of being output from the basal ganglia
this value is used to inhibit the STN and GPi. The STN is controlling the level of the
on-surround in the previous circuit, thus by inhibiting this population (in concert with the
GPi) the GPe is controlling the level of disinhibition in the main selection circuit. This
allows the overall basal ganglia model to perform a more robust arg max calculation.

This network is often combined with a simple model of the thalamus in order to trans-
form the basal ganglia output into a more usable form. The model is based upon the
observation that the thalamus is constantly trying to activate different actions, but is in-
hibited by the basal ganglia output (Redgrave et al., 1999). This has the effect of converting
the negative selection of the basal ganglia (where the selected action is inhibited and all
others are disinhibited) into a positive selection (where the selected action is excited and
all others are inhibited). The thalamus model also includes mutual inhibition between the
different actions to further ensure that only one action is selected.

2.3.5 Nengo

The actual construction and simulation of NEF models is carried out by a software suite
called Nengo (Stewart et al., 2009; Bekolay et al., 2014). Nengo is an open-source project
(http://www.nengo.ca), and developing, maintaining, and extending Nengo has been an
important part of this work.

Nengo implements the NEF mathematics and provides a high-level functional perspec-
tive to the modeller. This allows the model to be specified in terms of mathematical
variables and transformations, which Nengo then translates into neural activities and con-
nection weights. Models can be constructed via a graphical interface, but for complex
models Nengo also provides a Python scripting interface. For example, the network shown
in Figure 2.1 could be constructed via:

# construct two populations of 100 neurons, representing 1-D values
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a = nengo.Ensemble(100, 1)

b = nengo.Ensemble(100, 1)

# connect a to b with a transform that doubles the represented value

nengo.Connection(a, b, transform=[[2]])

Nengo will then run all of the encoding, decoding, and transformation equations in order
to construct the specified model. Nengo also supports various different learning rules,
including the PES update used in this work (Equation 2.40).

A key goal of Nengo is to support the efficient simulation of large, complex neural
models. Concurrent with the work in this thesis, Nengo has been rewritten from the
ground up to better support this goal, leading to significant speed improvements (see
Bekolay et al. 2014 for benchmarking results). However, the scale of these models is still
limited by computational constraints. This issue is discussed in more detail in Section 6.2.7.

For more detailed examples of working with Nengo, see the documentation at http:

//www.nengo.ca/documentation. All of the code used in this work is available in the
supplementary material of this thesis.
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Chapter 3

Previous work

In this chapter we will review previous efforts to build neural models capable of RL and
HRL. The work in this thesis is aimed specifically at HRL, but interesting comparisons can
also be made to basic RL modelling and so we include a review of that work. In addition,
the previous work in HRL is fairly sparse, so including RL models gives a larger body of
work to compare against. We also include models with varying degrees of biological detail.
Many of these models are not intended to provide insight into actual neural function, and
so are not concerned with biological plausibility—they simply use neural networks as a
computational tool. However, these models can still provide useful points of comparison,
and so we include them in this discussion.

3.1 Reinforcement learning

In this section we address neural models of standard (non-hierarchical) reinforcement learn-
ing. After a brief comment on artificial neural network approaches, we focus on models
that seek to provide insight into how real neural systems might perform RL. We begin
with a discussion of associative RL models; this is the most common approach in neural
RL modelling, but it omits important aspects of the full RL problem. We then explore
models that go beyond associative RL, examining different approaches to addressing the
challenges of reinforcement learning.
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3.1.1 Artificial neural networks

One of the most well-known success stories in RL involved a neural network model. Tesauro
(1992) used a neural network to represent the state of a backgammon board, and trained
it with RL to predict the value of different board positions. Using the predictions of that
network to guide move selection resulted in a system able to achieve expert level play.
However, this is an example of work that uses neural networks for purely computational
purposes, with no intention of biological plausibility. For example, the network used a
very carefully crafted state representation, with specific neurons tied to specific aspects of
the state (e.g. one neuron active if there is one piece on a position, a different neuron if
there are two pieces, a different neuron if there are three pieces, etc.). It is unlikely that
real neural systems have such carefully tuned backgammon representations. In addition,
the neuron model itself was a simple sigmoidal function, rather than something that more
closely matches the behaviour of actual neurons (e.g., generating spikes) such as the LIF
model (Equation 2.32). Finally, Tesauro’s model used a learning update that could not
be computed by a local synaptic learning rule. However, these points are not intended as
critiques of the work—the purpose of this model was to build a system that was good at
backgammon, not to understand how humans play backgammon. The important contri-
bution of this work from our perspective is as an early demonstration of the power that
neural networks can provide, as well as the feasibility of combining neural networks with
RL.

Other cases where neural networks are used for purely computational purposes tend to
involve the extension of RL to continuous domains. As discussed in Section 2.1.5, function
approximation becomes crucial in these problems, and neural networks are often a useful
function approximation method. These networks are typically used only for approximating
the value function; other aspects of the RL algorithm, such as TD error calculation, are not
computed neurally. For example, the SARSA learning algorithm was originally developed
as a useful tool for extending Q learning to neural network models (Rummery and Niranjan,
1994), where the SARSA update was used as the error signal to train a network via
backprop to represent the value function. Neural networks are also useful for problems
with continuous time and action; for example, Millán et al. (2002) used neural networks
to represent a continuous action space, and Baddeley (2008) used the continuous TD error
formulation of Equation 2.15 (Doya, 2000) to train a neural network. Again, the aim of
these networks is purely functional—neural networks are employed here as a computational
tool, not in an effort to understand biological neural systems.

The next step of biological detail involves models that attempt to connect conceptually
to real neural systems, even if their actual implementations omit important neural features.

41



For example, Strösslin and Gerstner (2003) used a simulated neural network for the same
reason as those above—in order to represent a value function over continuous state, trained
by an externally computed TD error. They went further though, by connecting the neural
basis functions to the receptive fields of place cells in the rat hippocampus. Even though the
model itself is still quite simplified (e.g., the “neuron model” is simply a linear summation
of inputs), this is a useful exercise. Tying the components of the model to components
in the brain makes that mapping testable. For example, they map their action selection
mechanism to the nucleus accumbens in the ventral striatum. That then requires the
existence of information flow from the hippocampal value representation to the nucleus
accumbens, which is a testable element of the model. If such connectivity is observed in
real brains (as it is) that lends support to the algorithmic proposal of this model.

The work of Hasselmo (2005) is another example of this approach. Although many
aspects of the model are simplified (e.g., binary neurons and connection weights), he ties
the model conceptually to features such as cortical microcircuits and Hebbian learning.
One interesting feature of the Hasselmo (2005) model is that the error signal is computed
internally, through neural computation, rather than received as input (although the error
signal is a simplified one customized to the structure of the model, rather than a true TD
error). Hasselmo also compares the results of his model to real neural data, such as the
firing patterns of neurons in medial prefrontal cortex during a rat spatial navigation task.
Again, even though these comparisons are more conceptual than implementational, they
give a basis to judge whether or not real neural systems could be using a similar approach
to that proposed by the model.

3.1.2 Associative reinforcement learning

As the move is made to more biologically plausible models, often there is a trade-off between
biological detail and functional power. Purely computational systems have the option to
ignore some of the challenges faced by real physical systems, such as limited precision,
capacity, and local information transfer. Thus when biologically based models add these
extra constraints, it is often necessary to simplify the computations they are performing.

One simplification common to these models is that they restrict themselves to “asso-
ciative reinforcement learning”. In associative RL the agent does not consider the future
impact of its actions (i.e., the value of the subsequent state), it just tries to pick whichever
action will result in the largest immediate reward. That is, instead of representing the
state-action value as

Q(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′) max
a′

Q(s′, a′)
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it is simply
Q(s, a) = R(s, a) (3.1)

The majority of work in biological RL modelling has been on this type of learning (Seung,
2003; Florian, 2007; Baras and Meir, 2007; Izhikevich, 2007; Urbanczik and Senn, 2009;
Stewart et al., 2012).1

The learning update in this case is simply an average over the immediate rewards:

Qk+1(s, a) = (1− α)Qk(s, a) + αr (3.2)

Note that this is equivalent to the classic Rescorla-Wagner rule (Rescorla and Wagner,
1972). In this update it can be seen that there are no concerns about reward propagation
or comparing different state values. The task is just to match the output of Q(s, a) to the
signal received from the environment.

The main problem to be solved in these models is how to apply the learning update
in Equation 3.2 via a realistic neural learning rule. The key aspect of synaptic learning
rules is that the weight update can only be based on information that is actually present at
the synapse. Generally this includes the activity of the presynaptic neuron, the activity of
the postsynaptic neuron, and a global reward/error signal which is broadcast across large
groups of neurons via neuromodulators such as dopamine. Learning rules that violate
these assumptions include rules like backpropagation, as it requires error information from
neurons downstream of the postsynaptic neuron,2 or rules that deliver a customized error
signal to each neuron.

One broad class of realistic local learning rules is known as Hebbian learning. The
signature of Hebbian learning is that it is based on the correlation between the presynaptic
(ai) and postsynaptic (bj) activity:

∆ωij = αaibj (3.3)

RL models typically use reward-modulated Hebbian learning, which adds a reward term
into this equation:

∆ωij = αRaibj (3.4)

1Often associative RL is applied to what is known as a bandit task. In bandit tasks there is no state;
the actions selected by the agent do not affect the environment, they only affect the immediate reward
(which the agent receives after every choice). In this case the target function to be learned can be further
simplified to Q(a) = R(a).

2There is some evidence for backpropagating action potentials (Stuart et al., 1997), but it is still
unknown what information is contained in that backpropagation.
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Intuitively, the presynaptic–postsynaptic correlation indicates the importance of a synapse
in the current network state; if the correlation is high, then that synapse is contributing
significantly to the current processing of the network. Adding the reward term indicates
that if a synapse is important and the reward is positive then the synapse is probably
doing something right, so its weight should be increased (and vice versa if the reward is
negative). If, for example, ai represents the state and bj represents the Q value, this will
cause the weights to be increased/decreased on the synapses connecting highly active state
neurons to highly active Q neurons. The result of this will be a learning update akin to
Equation 3.2. Seung (2003) and Urbanczik and Senn (2009) are examples of associative
RL models using some variation of this approach.

The other learning rule commonly used in these systems is spike-timing dependent plas-
ticity (STDP; Markram et al., 1997). This can be thought of as a time-based extension
of Hebbian learning; instead of using the correlation between presynaptic and postsynap-
tic activity, this rule uses correlations between presynaptic and postsynaptic spike times.
There are different forms of the rule, but the general idea is that if the postsynaptic neuron
fires a spike within some time window (on the order of 10s of milliseconds) after a presy-
naptic spike then the weight of the synapse is increased, while if the postsynaptic neuron
fires before the presynaptic neuron (negative correlation) the weight is decreased. As in the
Hebbian case, reward can be incorporated into this update multiplicatively, so a positive
correlation with positive reward leads to weight increase, positive correlation with negative
reward leads to weight decrease, and so on. Florian (2007), Baras and Meir (2007), and
Izhikevich (2007) use reward-modulated STDP to perform associative RL.

We also include in the class of “associative RL” models that compute the TD error
outside the model and then feed it in as an input signal. For example, in Frémaux et al.
(2013) the model contains a representation of the value function in spiking neurons. They
then externally compute a value analogous to the continuous TD error of Doya (2000), and
feed it in to an error modulated Hebbian learning rule (similar to Equation 3.4) to update
the value function representation. We call this associative RL because the model just
needs to pick the action in each state that will result in the highest immediate reward—
the difference is that the “reward” in this case is the externally computed TD error, rather
than the environmental reward. Of course the overall system does end up performing TD
learning, but if we are interested specifically in neural mechanisms then this system is
solving an associative RL problem.
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3.1.3 PVLV and PBWM

The PVLV (Primary Value–Learned Value) model of O’Reilly et al. (2007) was one of the
first attempts to go beyond associative RL in a neural model. It consists of two systems
(Primary Value and Learned Value), which together are used to generate a prediction error
signal that can be used to train a reinforcement learning system.

The PV system is an associative RL process, the same as those described above—it
attempts to learn a mapping from the current state to immediate reward:

PV (s) = R(s, a) (3.5)

Note that O’Reilly et al. are not concerned with action selection in this model, they are
only concerned with learning the value function in order to generate the error signal. Thus
they take the agent to be moving through a fixed sequence of states. In that case it is
more natural to associate the reward directly with the state, i.e. PV (s) = R(s), which is
how O’Reilly et al. frame it. The learning signal for the PV system is just the difference
between the reward and PV value:

∆PV (s) = α[R(s)− PV (s)] (3.6)

Thus over time the PV system will become a model of the reward signal.

The LV system learns based on the same error signal as the PV system (R(s)−LV (s)),
but conditioned on the PV signal. That is,

∆LV (s) =

{
α[R(s)− LV (s)] if PV (s) > θ

0 otherwise
(3.7)

If we think of PV (s) as equivalent to R(s), as it will be after some period of learning, what
this means is that the LV system can only learn in rewarded states.

At first it is not clear what the LV system adds to the basic associative RL framework.
The key is to note that the PV and LV functions are being approximated via neural
networks. In other words, updates to state s will generalize to nearby states. In the PV
system any over-generalization is corrected by the error signal in Equation 3.6. But in the
LV system there is no correction, because the error signal is explicitly blocked in other
states. Thus the LV function represents a generalized version of the PV function.

This can be thought of as a very rough form of prediction, essentially predicting that
states similar to rewarded states will lead to reward. This is not a very helpful prediction
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in large state spaces with long decision sequences, as it is limited by the generalization
distance. It also relies on the assumption that all the states similar to the rewarded states
are good, which may not be true for some problems. However, in tasks that do not violate
that assumption and that have a relatively short decision sequence, the LV signal is a way
of propagating reward information to the states immediately preceding the reward.

The actual error signal output from the PVLV model is based on separating the PV
and LV systems into excitatory and inhibitory components. The prediction error is then
the difference between those components. In the case of the PV system the excitatory
component is just R(s) and the inhibitory component is the PV signal described above,
thus δPV (s) = R(s) − PV (s). For the LV prediction error, O’Reilly et al. create two
of the LV systems described in Equation 3.7 (LV + and LV −) but with different learning
rates. The prediction error is then the difference between these two systems, i.e. δLV (s) =
LV + − LV −. α+ is set to be faster than α−, so that initially δLV (s) will be positive, and
then as PV −(s) catches up δLV (s) will go to 0. The overall PVLV error signal is then set
to

δ(s) =

{
δPV (s) if PV (s) > θ

δLV (s) otherwise
(3.8)

In other words, it is the PV error in rewarded states and LV elsewhere. The result of this
will be that the PVLV system will give an initial prediction error in all states near the
reward, which will decrease to zero over time. As mentioned, in large decision problems this
is likely not helpful, but in short decision problems the PVLV signal will give a prediction
error in the rewarded state and in the states preceding reward, which can allow learning
to expand slightly out from the reward.

O’Reilly and Frank (2006) present a model that applies the error signal calculated by
PVLV to a specific model architecture based on the prefrontal cortex, basal ganglia, and
working memory (the PBWM model). The basic feature of this model is a working memory
system that can store input values over time. What is being learned is a gating signal on
the input to this memory; essentially the system is learning whether the stimulus should
be stored in memory or not. The basal ganglia is used to compute this gating signal, based
on inhibitory competition between populations of “Go” and “No-Go” neurons. Thus what
needs to be learned is the connection weight from the stimulus to the Go and No-Go
neurons; if the weight is higher on the Go neurons then the stimulus will be stored in
working memory, and vice versa.

PVLV is used to compute the error signal in this model. It is able to use its general-
ization based error propagation to propagate the reward signal from the reward time (at
the end of the working memory maintenance period) to the time of stimulus onset (when
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the Go/No-Go decision needs to be made). As an example, suppose storing stimulus “A”
in working memory results in reward. If the network is presented with “A” and randomly
makes the correct decision to store it in memory (“Go”), then it will get a reward signal at
the end of the trial. This will cause the PV system to learn a positive value for the state
of having “A” in memory at the end of the maintenance period. The LV system can then
generalize that to the state of having “A” in memory at the beginning of the maintenance
period. This will cause a positive prediction error when “A” is loaded into memory.

The learning rule is set up so that positive errors increase the weight from the stimulus
to the Go neurons and decrease the weight to the No-Go neurons, and vice-versa for
negative errors. For example, when the system gets a reward for storing “A” in memory, it
increases the weight from all the active stimulus neurons to the “Go” neurons, which will
increase the likelihood of storing “A” in memory in the future. Note that this requires that
each stimulus value is represented by a different group of neurons. If the same neurons were
involved in representing both “A” and “B”, this would also increase the “Go” weighting for
“B” stimuli, which is not desirable. Thus there need to be different neurons representing
each possible stimulus value. This is not ideal, as it means that the dimensionality of the
neural state increases with the number of stimuli values (thus exponentially increasing the
neural state space). However, as long as the input only takes on a few different values this
system will be sufficient for learning which of those stimuli should be stored in working
memory.

This system can be extended by having multiple working memory storage spots (called
“stripes” by O’Reilly and Frank), each with its own input gate, thereby allowing multiple
values to be stored in memory. In this case a separate learning process is needed for
each input gate. O’Reilly and Frank (2006) compute an individual error for each gate
by multiplying the “Go” activity of that gate by the PVLV signal. Since the reward is
based on the contents of working memory, only gates that are open (high “Go” signal)
are contributing to the current prediction error (by changing the contents of memory).
Therefore the result of this heuristic is that the learning update will only be applied to the
gates that are contributing to the error.

O’Reilly and Frank (2006) use this stripe system to simulate sequential decision making
(i.e., non-associative RL). For example, a simple 2-step decision problem might be “store A
in memory, then if A is in memory store B in memory”. This kind of problem can be solved
in this system by storing “A” in one stripe and “B” in another, and making the content
of the stripes part of the RL state. Effectively what this does is load all of the sequential
decisions into the current state, so that a sequential RL problem can be turned into an
associative RL problem. However, this approach will quickly run into scaling problems as
the length of the sequence increases. Effectively it makes the dimensionality of the state
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space proportional to the length of the decision sequence, and since the size of the state
space increases exponentially with the dimensionality this will be problematic for even
relatively simple tasks.3

The main contribution of this work is the detailed comparisons it makes to experimen-
tal data. For example, O’Reilly et al. (2007) show how the PVLV model can explain the
pattern of dopamine responses observed experimentally in several different conditioning
paradigms, such as blocking (where learning one stimuli–reward association prevents the
animal from learning associations from new stimuli to the same reward). The authors
also establish a detailed mapping between functional components of the models and neu-
roanatomical components in the brain. O’Reilly et al. (2007) go through each of the major
components of the model (PV +, PV −, LV +, LV −) and link to data showing specific brain
regions that contain the signals contained in those components and connect to each other
in the way required by the model. Similarly, O’Reilly and Frank (2006) show, for exam-
ple, how the Go/No-Go gating structure can be implemented by the direct and indirect
pathway through the basal ganglia. This type of work is very helpful for verifying the
biological plausibility of a model, as it provides a map for comparing neurophysiological
data, such as neural recordings and lesion studies, to the model. It is also helpful in future
modelling work, as new models can either use the same mapping (increasing the evidence
for that association) or propose an alternate one (providing a useful way to experimentally
differentiate the two models).

3.1.4 Eligibility traces

A different approach to reward propagation is the use of eligibility traces. The basic idea
of an eligibility trace is to add a slowly decaying representation of some signal of interest.
Adding eligibility traces into RL is a way of adding memory into the system, so that instead
of operations only applying to the current state they can be applied to states in the recent
past.

This was first introduced in the computational realm as TD(λ) (Sutton and Barto,
1998). TD(λ) modifies the value update in Equation 2.8 to be

Qk+1(s, a) = Qk(s, a) + λtαkδ(s
′, a′) (3.9)

where λ is the decay rate of the eligibility trace (some value < 1) and t is the number of
steps between s and s′. In other words, rather than just updating the state immediately

3Note that this is on top of the already problematic scaling related to the number of values each stimuli
dimension can take on, discussed above.
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preceding the prediction error, we update all the states leading up to that prediction error,
weighted by the decaying eligibility trace. This allows reward to propagate across multiple
states, rather than one state at a time.

Neural models can incorporate eligibility traces by adding the trace to the Hebbian or
STDP weight update. For example, the reward modulated Hebbian rule (Equation 3.4)
can be modified to

ωij = αRλ(aibj) (3.10)

where λ(aibj) is a decaying representation of the correlation between a and b. If, for
example, ai is representing the state, this will be analogous to Equation 3.9 in that it will
update the weights of all the recently active states, as they will still have positive eligibility
traces, rather than just the currently active state.

Thus a model can use essentially the same associative RL framework as the models
in Section 3.1.2, but with the benefit of eligibility traces the model can learn a value for
the states leading up to the reward, rather than just the state with immediate reward.
Vasilaki et al. (2009) and Friedrich et al. (2011) are examples of this approach, combining
associative RL with eligibility traces.

However, there are a few downsides to the eligibility trace approach. The main one
is that, similar to the PVLV model, it just extends the associative RL framework some
limited number of steps. After some point the eligibility trace will have decayed to a point
where the model cannot distinguish it from zero, which will mark the limit of how far away
from the goal the agent can make effective decisions.4 In associative RL the limit is one
step, here it is n steps, but there is still a fixed limit.

The length of n will be determined by the decay rate of the eligibility trace, which
brings up the second issue: it is not biologically plausible to have long eligibility traces.
The question is what the underlying neural mechanisms are that are actually implementing
the eligibility trace; what is it that is preserving the neural activity over time? Most models
attribute eligibility traces to the post-synaptic currents resulting from neurotransmitter
release at a synapse (Izhikevich, 2007). However, post-synaptic currents only preserve
information on the order of milliseconds, which will not give a useful extension of n for
most RL problems. If the eligibility trace is being used to propagate information across a
task involving long sequences of decisions, as in the models of Vasilaki et al. (2009) and
Friedrich et al. (2011), then the model needs to posit eligibility traces lasting at least tens of
seconds, for which there is not a well-established neural mechanism. Effectively what these

4Note however that in purely computational systems (with perfect precision in the represented values)
there is no such limit, since the eligibility trace can be tracked indefinitely.
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rules do is solve the RL problem by offloading reward propagation onto some unspecified
synaptic memory mechanism; without an explanation for how that memory mechanism
works, there are still important open questions about how this theory could actually be
implemented in the brain.

3.1.5 TD Error with eligibility traces

The most thorough neural reinforcement learning model is the work of Potjans et al. (2009).
Their model also makes use of eligibility traces, but not in the same way as above. Rather
than using eligibility traces to replace the TD error calculation, this model uses eligibility
traces to compute the TD error.

The main difficulty in the TD error calculation (Equation 2.9) is the need to compare
Q(s, a) and Q(s′, a′). Since both those values are samples from the same Q function, the
model needs a way to preserve the Q(s, a) value while the state switches to s′. In the
Potjans et al. model only a value function V (s) is represented rather than state-action
values, but the challenge is the same.

The key idea of Potjans et al. (2009) is to apply two different eligibility traces to the
output of the neurons representing V . When the state transitions from s to s′ this gives
two traces

e1(s
′) = (1− λ1)V (s) + λ1V (s′) (3.11)

and
e2(s

′) = (1− λ2)V (s) + λ2V (s′) (3.12)

where λ indicates the decay rate of the eligibility trace.

It can be observed that limλ1→1 e1(s
′) = V (s′) and limλ2→0 e2(s

′) = V (s). That is, the
eligibility trace with the higher decay rate can be thought of as a representation of V (s′)
and the slower trace can be thought of as V (s). The TD error can then be computed as
r + γe1 − e2. Thus if the V neuron output is connected to a postsynaptic cell via the
two eligibility traces, the synapse has all the information locally it needs to compute the
TD error. Note that it is not necessary that e1 or e2 be exactly equal to V (s′) or V (s),
because all that is required is a relative measure of whether the state value is increasing
or decreasing. If γe1 > e2 that will result in a positive prediction error and an increase in
the synaptic weight, and vice versa, until the value function converges to the point where
prediction errors are zero.

The advantage of this approach is that it does not require implausibly long eligibility
traces. The eligibility traces are not required to propagate information across multiple
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decision steps; the propagation is being taken care of by the TD update, and the eligibility
trace is only required to preserve information across a single state change.

However, this is also a downside of this approach, in that it imposes a fixed time period
during which the TD error can be computed. If the TD update does not occur within
the time window dictated by the decay rate of the slow trace, then both e1 and e2 will
approach V (s′) and it will not be possible to compute a meaningful TD error. And given
biologically plausible decay rates, that time window is quite short (tens of milliseconds).

One effect of this limitation is that it requires Potjans et al. (2009) to posit a relatively
complex mechanism that moves synapses into and out of a “plastic” state, so that weight
updates will only occur within that time window. This is problematic from the perspective
of biological plausibility, but it also indicates a more practical problem with this technique;
it is somewhat fragile, and relies on fine-grained timing and coordination of several different
signals, which can be difficult to accomplish in a realistic neural model. In addition, this
approach requires different neurons to be associated with each state, so that only the
synapses corresponding to state s will be in the plastic state when the TD update occurs.
This means that the required number of neurons increases with the number of states, and
since the number of states increases exponentially with the dimensionality of the state
space, this will be problematic when scaling up to complex state spaces.

The fixed time window is also problematic when we consider an SMDP framework. A
fixed window is feasible in an MDP framework because rewards and state transitions all
occur on a fixed schedule, which we can assume falls within that window. But in an SMDP
environment rewards can occur at arbitrary times throughout the delay period; we have
no guarantee that they will fall within the eligibility trace time window, in which case this
method will not be able to compute the TD error. This is an even greater problem in the
case of hierarchical RL, as the state may be changing during the delay period; in that case
the value trace from the beginning of the delay period will have long since been replaced
by intermediate values by the end of the delay period. Thus while the Potjans et al. (2009)
model is a solution to the basic TD RL problem, we will not be able to use this method
as we move to more complex RL algorithms.

3.2 Hierarchical reinforcement learning

In contrast to standard RL, there has been almost no previous work on recreating the com-
putational theory of hierarchical reinforcement learning in a neural model. There has been
limited work on combining function approximation with HRL (Bakker and Schmidhuber,
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2004; Jong and Stone, 2009; Cuayáhuitl et al., 2012), but none using even artificial neural
networks, not to mention biologically based systems. In this section we will discuss the two
closest pieces of related work. The first is work by Botvinick et al. (2009) that examines
how the actor-critic architecture can be extended to incorporate the needs of HRL. The
second is work by Frank and Badre (2012) that is not an effort to directly implement HRL
but does operate in a hierarchical fashion.

3.2.1 Actor-critic HRL model

The work of Botvinick et al. (2009) examines how the actor critic architecture (Sec-
tion 2.1.4) can be modified in order to implement the options framework of HRL (Sec-
tion 2.2.2). The implementation itself is purely algorithmic, with no neural components,
but Botvinick et al. include a detailed discussion of how their model could map onto neural
components in theory, and so we include it in this review.

The most significant change is that the actor and critic need to maintain different
functions for each abstract option. If the agent selects option o1 it then needs to select
subsequent actions according to the policy of o1; thus we need one actor function for o1,
another for o2, and so on. Similarly, the critic will need to maintain different value functions
for each option; this is because each option can have its own subgoals, thus the value of a
state can be different depending on which option is currently active.

Previous work on neuroanatomical mappings of the actor-critic architecture gener-
ally situate the actor in the dorsolateral striatum and the critic in the ventral stria-
tum/dopaminergic systems. Botvinick et al. maintain this mapping, but it needs to
be extended to allow for multiple functions. They propose that prefrontal regions (dorso-
lateral prefrontal cortex and supplementary motor area) maintain a representation of the
current option. This representation then activates different pathways in the dorsal/ventral
striatum through a gating mechanism, in order to switch between the different actor/critic
functions (this is based on the guided activation theory of Miller and Cohen 2001).

The actor also needs to check whether the current option has terminated (e.g., by
reaching a goal state), and communicate that termination to the critic in order to trigger
a learning update. Botvinick et al. point to previously observed signals in the dorsolateral
striatum that are aligned to the beginning and end of extended temporal action sequences
as neurophysiological evidence for this function.

Because we are now in an SMDP environment, the critic will need to track the accumu-
lated reward over the course of the option. It will also need to remember the state in which
the option was initiated, so that the appropriate C(s) and K(s, o) values can be updated
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when the option terminates. Botvinick et al. attribute these functions to the orbitofrontal
cortex, based on evidence there of reward signals spanning temporally extended action
sequences.

One final extension is the need to generate the pseudorewards. In Botvinick et al.
(2009) the pseudorewards are taken to be given externally, thus they are not included in
the actor-critic structure they propose here.

As mentioned, Botvinick et al. implement this actor-critic model in a purely computa-
tional framework, using lookup tables to represent the actor/critic functions and directly
computing the required learning updates. Thus there are still open questions about how
exactly these HRL extensions would be implemented in a neural system. However, what
this work demonstrates is that the broad algorithmic requirements of HRL are consistent
with behavioural and neurophysiological data, and the neuroanatomical mapping Botvinick
et al. provide helps guide the development of more detailed models. The neuroanatomical
mapping of this model (Section 4.5) draws heavily from that of Botvinick et al. (2009).

3.2.2 Hierarchical PBWM

In Frank and Badre (2012) the authors extend their previous PBWM model (see Sec-
tion 3.1.3) to a hierarchical architecture. In the PBWM model the stimulus is connected
to a Go/No-Go gating system, which controls whether that stimulus is loaded into working
memory. In the Hierarchical PBWM model (HPBWM) there are two of these systems in
parallel. The two levels interact through output gating; the output of the higher level
working memory is connected to another gating system that controls the output of the
lower-level working memory. The output of the low-level working memory drives the sys-
tem’s motor response.

To explain the operation of this model in more detail, imagine a task where the agent
receives a sequence of stimuli “AX, AZ, BX, BY, BZ, AY, AX”. When the agent sees an
“A”, it should press a button whenever it sees an “X”. If it sees a “B” it should never press
the button. Thus the correct response to the above stimuli sequence would be “press, -, -,
-, -, -, press”. To solve this task, the HPBWM model would first need to learn that “A”
and “B” stimuli should be stored in the high level working memory, and “X”, “Y”, and
“Z” should be stored in the low level. This can be accomplished via learning on the input
gates, which works just like in the PBWM model (i.e., there is no hierarchical interaction).
This requires that “A” and “B” are represented in one input “stripe”, and “X”, “Y”, and
“Z” represented in a different input stripe. The input gate for the low level can then learn
to be closed for the first stripe and open for the second, and vice versa for the high level.
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Given that the stimuli are routed to the appropriate memories, the question then is
how to learn the joint conditions (i.e. if “A” is in one and “X” is in the other then press the
button). In this model the interactions are all based on output inhibition. For example,
suppose that the motor response is to press the button whenever “X” is output from the
system (i.e., out of the low level working memory). The output gate on the low-level
working memory therefore needs to learn to inhibit the memory output when there is a
“B” in the high level working memory. This is the key hierarchical addition in the HPBWM
model.

The error signal used in the learning is the same PVLV signal throughout, as in the
basic PBWM model. Recall that this error signal drives the Go/No-Go activity in the
gates (increasing Go weighting for positive errors and decreasing for negative). Imagine
the network gets the input “BX”. If the output gate is open, this will result in a negative
reward, and a negative prediction error from the PVLV system. This will decrease the
weight on the connection from the “B” neurons in the high level working memory to the
“Go” neurons in the output gate, thus making it more likely that the gate will be closed
for future “B” stimuli. In contrast, opening the gate when “A” is in memory will lead to
a positive prediction error, making it more likely that the gate will be open in the future.
Thus over time the system will learn to open the gate for “A” and close it for “B”.

The downsides of this model are essentially the same as for the base PBWM model;
namely, it will have difficulty scaling up to complex state spaces (with a large number of di-
mensions, or a large number of values for each dimension), due to its localist representation
scheme. In addition, this approach will only really work on associative HRL problems. In
theory the same technique can be used as in the PBWM model, where a sequential decision
problem is transformed into an associative RL problem by incorporating all the past steps
into the current state. However, as discussed in Section 3.1.3, this will be impractical for
even relatively short decision sequences. Since one of the primary motivations for HRL is
to enable scaling up to long, complex decision sequences, it can be seen that this model
will not help in that regard.

However, it is important to note that the Frank and Badre (2012) model is not intended
to be a direct implementation of the computational theory of HRL. It is designed specifically
for tasks with hierarchical spatial structure, not hierarchical temporal structure. That is,
the above task is hierarchical in that the response to a stimulus such as “AX” has a
hierarchical dependence of one part of the stimulus (“X”) on the other (“A”). There is no
hierarchical structure in the “AX, AY, BX, ...” temporal sequence. So the above problems
are not intended as a critique of the Frank and Badre (2012) model, but rather to show
that the problem it addresses is not the same as the general computational theory of HRL.
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As with the PBWM model, one of the main strengths of the HPBWM model is its ex-
tensive comparisons to experimental data. For example, Frank and Badre map the different
hierarchical levels of the model onto an observed rostral–caudal hierarchical organization
in prefrontal cortex (Badre et al., 2010). They also compare the results from their model
to human performance on the same task. Together with the Botvinick et al. (2009) work,
this gives quite a thorough account of the neural basis of hierarchical processing, which is
helpful in any future model of HRL.

3.3 Summary

The previous modelling work can be best summarized by highlighting some of the open
problems that remain to be solved. Even ignoring HRL, it can be seen that there remain
many challenges within the biological modelling of basic reinforcement learning. Much of
the existing work has been limited to associative RL (Seung, 2003; Florian, 2007; Baras and
Meir, 2007; Izhikevich, 2007; Urbanczik and Senn, 2009; Stewart et al., 2012) or extensions
of associative RL (O’Reilly and Frank, 2006; O’Reilly et al., 2007; Vasilaki et al., 2009;
Friedrich et al., 2011; Frémaux et al., 2013).

The most complete RL model is that of Potjans et al. (2009). This model is able to
compute a TD error signal within the model, and use that error to learn a value function
and policy. However, as discussed in Section 3.1.5, the eligibility trace approach of this
model imposes a number of limitations. One of the most critical is that it forces a localist
representation scheme, which will be problematic when trying to scale this technique up
to complex problems. In addition, the eligibility traces impose a fixed time window on the
TD update, which is not suitable for SMDP problems. This is not a flaw in the model, as
it was only designed for MDP problems, but it means that it is not obvious how to extend
the approach of Potjans et al. (2009) to operate in a hierarchical fashion.

In the case of HRL, it can be seen that there is almost no prior work in the field of
neural modelling. Botvinick et al. (2009) have done extensive work analyzing what would
be required to construct a biologically plausible model of HRL, but an actual neural imple-
mentation remains theoretical. The closest related work is that of Frank and Badre (2012).
This model is capable of performing limited hierarchical reasoning, but it is only practically
applicable to problems with relatively simple state spaces and associative learning.

Thus it can be seen that there are many open questions concerning neural implemen-
tations of RL and HRL. In the next chapter we discuss the new model developed in this
work, and how it helps to address these questions.
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Chapter 4

Model

This chapter describes the key contribution of this work: a neural model of hierarchical
reinforcement learning. We have divided the structure of the model into three main com-
ponents, which we term action values, action selection, and error calculation (shown in
Figure 4.1).

We begin by discussing each of these components in turn, and show how they implement
their respective aspects of reinforcement learning. Together these components form a flat,
non-hierarchical system. Although the underlying design decisions were made with the
needs of a hierarchical system in mind (e.g., SMDP processing), this aspect of the model
can be understood without any reference to HRL. We largely present it as such, as it
represents an interesting contribution on its own. After the basic model is presented, we
then show how these elements can be composed into a hierarchical structure.

We present the model without reference to any particular task or environment. The
model is designed as a generic reinforcement learning system, thus the implementation is
not based on any specific task. Rather, the components are constructed in as general a
fashion as possible, so that this same model can be applied in many different environments.

To this end, the agent treats the environment largely as a black box. Its only insight
into the environment is a real valued vector that the environment makes available—the
state representation. This state is assumed to be continuous in both time and space. The
only way for the agent to interact with the environment is by outputting a real valued
vector representing an action.1 The agent assumes that the action space is given (i.e., the

1This model is designed for the case where there are a finite set of actions to choose from, each
represented by a different vector. We discuss how it might be extended to operate with continuous actions
in Section 6.2.3, but for the discussion here we focus on discrete actions.
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Figure 4.1: Overall architecture of the model, showing the three main components and the
functional values flowing between them. The action values component computes the Q
values given the state from the environment. The action selection component determines
the highest valued action, and sends the action itself to the environment and the identity
of the selected action to the error calculation component. The error calculation component
uses the Q values and environmental reward to calculate the TD error, which it uses to
update the Q function in the action values component. Triangular arrowheads indicate a
vector value connection, semicircle indicates a modulatory connection that drives learning.
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agent knows what options it has to choose from), but it does not know anything about the
effect or value of those actions. The environment takes the action output from the agent
and updates the state through some unknown internal mechanisms. The only feedback the
agent gets is a scalar value from the environment, the reward, and it will seek to select
actions that maximize the long term cumulative value of that reward.

Throughout this discussion we focus on the computational side of this work—that is,
the practical concerns of how to implement the required functions in a neural model. We
will discuss how the constraints of biological plausibility shape the design of the system,
but for the sake of clarity we avoid going in-depth into neuroanatomical comparisons. We
save that discussion until the conclusion of the chapter, where we examine in detail how
the various aspects of the model map onto neurophysiological data.

4.1 Action values

The first basic element of the model is the representation of state-action values—that is,
we want to build a neural representation of the Q function. Although this could be seen
as the most crucial aspect of the model, its structure is relatively simple.

The central feature of this component is a single population of neurons. These neu-
rons take the environmental state s as input, and output an n-dimensional vector (n
is the number of available actions, |A|) where each element represents the Q value of
that action in the current state. We will refer to this vector as Q(s), i.e., Q(s) =
[Q(s, a1), Q(s, a2), . . . , Q(s, an)]. Note that when we say that the population outputs a
vector, we refer to the value decoded using the techniques of the NEF (see Section 2.3).
The actual output is a vector of neural activities with length m, where m is the number of
neurons in the population, but it is generally more useful to refer to the represented value.

The question is what the decoders should be so that, given an input of s, the neurons
will output Q(s). Since we do not know the correct Q function ahead of time, we cannot
analytically determine the decoders as in Equation 2.35.2 Therefore the decoders need to
be learned, via the learning rule in Equation 2.40 (i.e., ∆di = κEai(x)). E in this case
is an n dimensional vector containing the error for each dimension (i.e., each action). In
theory this could be a different error for each dimension, but in this model the error is
equal to the TD error for the selected action and zero for all other actions. We will discuss
how this error is computed in Section 4.3.

2If, for the sake of argument, we did know the Q function, we could simply set f(x) = Q(x) in
Equation 2.39. This can be useful to seed the Q function representation with some initial values.
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The effect of this error will be to adjust the decoded value for the selected action in
the direction of the prediction error. It accomplishes this by increasing the weight on all
the active neurons if there was a positive error, and vice versa for negative. Note that
this is essentially linear function approximation with a weight update as in Equation 2.14.
Tsitsiklis and Van Roy (1997) proved the convergence of this approach under on-policy
updates, which we will employ in this model. Note that the model developed here violates
many of the simplifying assumptions made in that proof (e.g., non-independent basis func-
tions, continuous time, an SMDP framework, etc.). However, this gives us some confidence
that this approach is a reasonable one.

4.1.1 State encoding

It can be seen in Equation 2.40 that the learning update is dependent on the activity of
the neurons being decoded (in this case these are the neurons representing the state). This
leads to an important point on the practical usage of Equation 2.40—namely, the neural
activities must be correlated with the important variables of the task.

To see why, imagine a set of neurons where each neuron responded with a constant
activity level across the state space (i.e., no correlation between activity and state). Since
we are using a linear decoding, this means that the decoded value will be constant across
the state space; in other words, this population will only be able to learn a flat, uniform
Q function. It will learn the best flat approximation of the Q function given the errors it
receives, but that will still likely be a very poor representation of the true Q function.

Another way to put this is that the Q function we learn is a linear composition of the
basis functions (the neural response functions). If we want a good Q function approxi-
mation, then those basis functions need to give a useful encoding of the function space.
The shape of the neural response function is determined by the NEF encoding formula
(Equation 2.31). The neuron model G is constant across all the neurons (the LIF model in
Equation 2.32), and α and J bias are constant across the state space. Thus the key factor
is eix, the dot product between the state and the neuron’s encoding vector.

In other words, having appropriate encoders is important to the quality of the Q func-
tion representation. For example, imagine an environment with a 2-dimensional state,
where all the neurons are equally sensitive to the two dimensions (i.e., ei = [ci, ci]). The
only type of function that can be represented by this population will be one that is sym-
metric around the line y = x. This is a somewhat trivial example, and an obviously poor
encoding, but it highlights the role the encoders play in the Q value representation.
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The standard NEF approach is to use random unit vectors for the encoders. This works
fairly well, in that it spans the space of possible basis functions; by simply adding more
neurons we are guaranteed to get a good basis representation at some point. However, in
practice we often have limited neural resources, both in terms of the simulation (where
adding more neurons increases the computational costs) and the biology (where the brain
has a limited number of neurons to work with). If the state space is uniform, then random
encoders is about the best we can do.3 However, in most problems the state space is not
uniform; some areas of the space are visited more frequently, some not at all. Randomly
choosing encoders can result in many neurons that are not providing a useful encoding of
the state space.

Thus it can be helpful to choose the encoders more carefully, ensuring that they lie in
useful regions of the state space. In our model the encoders can be manually adjusted on
a per-task basis. This requires the input of some domain knowledge on the part of the
modeller, which is not ideal; a complete description would provide some explanation for
how these encoders could be automatically learned from the environment. However, the
challenge of that kind of unsupervised learning is an entire research field to itself, and not
one we propose to solve in this model.4 Also note that we are not increasing the represen-
tational power of the model by manually generating encoders, since the representational
space is upper bounded by the random encoding, in the limit. We are just making the
representation more efficient—providing a better representation with fewer neurons. The
encoding vectors we use also represent a prediction as to the kinds of neural responses that
usefully encode a given problem space. We presume that real brains are trying to solve a
similar problem—how to best encode a space with limited resources. Thus, for example,
an experimenter could compare the response functions of neurons in our model to recorded
responses of neurons in some brain area, to see if their response has been optimized in the
way we predict. Alternatively, experimental data can be used to suggest useful/appropriate
encodings for a model.

In some cases it can be helpful to go beyond the linear vector-based encoding. For
example, one of the downsides of the standard encoding vector approach is that it does not
lead to very sparse neuron activity. Neuron activity will differ in magnitude, but overall
neurons tend to be active across broad regions of the state space. The area of activity can
be imagined as a cone extending from the origin in the direction of the encoding vector.
Thus this encoding tends to provide good differentiation in activity if the input moves

3Evenly tiled encoders would be the best, but in practice there is little difference between tiled and
random given a certain minimum number of neurons.

4See Voelker et al. (2014) for an example of work that begins to explore the issue of learning encoders
in the NEF.
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laterally around the origin, but poor discrimination radially. This can be problematic for
learning Q functions with local nonlinearities in them, as adjusting the weight on a neuron
will adjust the Q function across a broad region of the state space. In addition, the neural
activities are not evenly distributed across the state space. A greater proportion of neurons
will be active for inputs at the “edge” of the state space (vectors with a larger norm). This
can induce a bias in the learning rule, in that weight updates in one region of the state
space will have a greater impact than the same weight update in a different state. The
latter problem tends to conflict with the former, in that the more evenly distributed the
activity is, the less sparse it will be.5

One way to resolve these issues is to project the state into a higher dimensional space.
The actual state space then represents a slice through the higher dimensional encoding
space, which will end up giving sparse, evenly distributed activations. For example, a 1D
variable x can be projected into a circle in 2D space via x̃ = [sin(x), cos(x)]. Encoders
distributed around that circle will activate when the state passes through their region of
the circumference. From the perspective of the 1D space, this will look like a neuron
with a bump of activity around some value of x; thus we will have activity that is sparser
(restricted to certain values of x) and evenly distributed across the state space. To return
to the cone intuition, effectively what this does is force the input to move laterally through
the encoding fields rather than radially. This principle works in the same way in higher
dimensional spaces.

Another way of looking at this issue is from the perspective of a feature of the NEF
called function representation (Eliasmith and Anderson, 2003). This involves specifying a
set of basis functions, and passing the input through those basis functions. This will result
in an m-dimensional vector, where m is the number of basis functions, at which point the
standard vector encoding techniques can be used to encode that new vector. The basis
functions can then be chosen in such a way as to give the kinds of encoding properties the
modeller wants.

The previous technique can be seen as a special case of this one, where the basis
functions are the spherical coordinate transforms. Another useful basis space are Gaussian
radial basis functions, i.e.

x̃ =
⊕
p∈P

e
−‖x−p‖2

2σ2 (4.1)

(we use the
⊕

notation to mean concatenation of the elements into a vector). If the

5This is because the way to increase the sparsity of the representation is to increase the firing threshold
of the neurons. But increasing the firing threshold pushes all the activity cones out from the origin, which
reduces their overlap radially and thereby increases the bias of activity towards the outside of the space.

61



centres of these Gaussians (p ∈ P ) are randomly distributed throughout the state space,
this will result in the kind of activity we want—sparse, local, and evenly distributed.
Adjusting the spacing and width (σ) of the Gaussians will give different levels of sparsity
and smoothness. This highlights the strength of the function representation approach,
namely, that it provides a lot of flexibility to the modeller.

The particular type of encoding that will be most useful differs from problem to prob-
lem, depending on the shape of the Q function. Thus, as discussed at the beginning of this
section, this model does not define a generic state encoding scheme, but rather takes it to
be something that is adjusted on a per task basis. However, this section gives some guide-
lines on what constitutes a useful encoding. In addition, the encoding schemes described
here are some of the most general, and useful across a range of tasks. The random vector
encoding is the most straightforward, and so is likely the first choice when beginning to
explore a problem. If there is a known structure to the state space, then it may be possible
to achieve more efficient encoding by picking the encoding vectors more carefully. Alter-
natively, if experimental data is available specifying certain neural encoding properties,
then the encoding vectors can be chosen to match. If the task requires sparser activity,
the Gaussian radial basis function encoding is a good way to accomplish this most of the
time. Only in rare cases is it likely to be necessary for the modeller to go beyond these
approaches, for example by defining more specialized basis functions.

4.1.2 Dual training system

Theory

Examining the decoder learning equation (∆di = κEai(x), Equation 2.40) reveals another
important challenge for learning action values: the weight update is based on the neuron’s
current activity, a(x). In the context of the action values component, the input is the
state, so the update is dependent on the activity in the current state, a(s). The problem
is that the TD error (Equation 2.9) cannot be calculated until the agent arrives in s′,
because it requires the comparison Q(s′, a′)−Q(s, a). At that point the input is s′, not s,
so the neuron activity represents a(s′) rather than a(s). If the TD error is applied at that
point, the effect would be to adjust Q(s′), not Q(s). Thus the model needs to somehow
apply the learning update based on prior neural activities. This is not a problem purely
computational approaches worry about, as they can simply store the previous activation
and recall it when needed. However, a biological model needs to explain how this can be
accomplished neurally.
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We need a brief aside here to mention what we mean by s and s′, in the context of a
system operating in continuous time and space. That is, s(t) is a continuously changing
signal, it is not divided up into previous and current states. By s we mean the value of
s(t) when the action was selected, and by s′ we mean the value of s(t) when the action
terminates (or the current time, if it has not yet terminated). That is, if the system selects
an action at time t0, then s = s(t0). Action a will execute for some time τ (recall that
a could represent an abstract action in the hierarchical case) and then terminate. The
value of s(t) at termination, s(t0 + τ), is s′, which is the value we want when computing
the SMDP TD error as in Equation 2.18. We use the notation s and s′ for the sake of
simplicity, and to connect to the background discussion in Sections 2.1 and 2.2.

The problem is how to preserve the neural activity from when a was selected, a(s),
until a terminates. The standard approach to preserving neural activity over time is to use
eligibility traces (e.g., Izhikevich, 2007). For example, if we changed the learning update
to be

∆di = κEe(ai(x)) (4.2)

where e denotes a decaying eligibility trace, then the learning update would be applied
based on the previous activity contained in the eligibility trace, which could be a(s).
However, as discussed in Section 3.1.4, eligibility traces can only preserve information over
fixed and, realistically, short time periods. In an SMDP environment there is an unknown
and potentially lengthy time period separating s and s′, so there is no guarantee that
e(a(x)) will contain any useful trace of a(s). Thus some other method is needed.

In this model we solve the problem via a dual training system, shown in Figure 4.2.
Rather than a single population representing the Q function, the network contains two
populations. Both are representing the same Q function, but one receives the current state
as input and the other receives the previous state.

The TD update is only applied to the decoders of the previous state population. When
the TD update is calculated in s′ the activity of these neurons is a(s), thus the appropriate
Q values are updated, Q(s). However, the action selection and error calculation needs to
be based on the Q values of the current state, Q(s′); this is why we require the second
neural population which receives the current state as input. The question then is how to
update the decoders of the latter population.

The key idea is that the output of the previous state population can be used to train
the current state population. Whenever s and s′ are the same (or within some range in the
continuous case), the output of the two populations, Q(s) and Q(s′), should be the same.
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Figure 4.2: Architecture of the action values component. Computes the current and pre-
vious Q values (Q(s′) and Q(s)) based on the current and stored state, respectively. The
previous Q function is trained by the TD error signal from the error calculation compo-
nent. The current Q function is trained to match the previous Q function output whenever
the distance between the current and previous state is below a threshold. The output of
Q(s) and Q(s′) are sent to the error calculation component, and Q(s′) is sent to the action
selection component. Circular arrowhead denotes an inhibitory connection.
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Figure 4.3: Generic memory circuit. x represents the target value, and gate controls when
that value is loaded into the memory. In the context of the dual training system, x = s′

and c = s.

Therefore the difference Q(s)−Q(s′) can be used as the error signal for Q(s′). That is,

E =

{
Q(s)−Q(s′) if ‖s− s′‖ < θ

0 otherwise
(4.3)

This error signal is then used to update the decoders via the same decoder update rule
(Equation 2.40). In this case the neuron activity is a(s′) and the goal is to update Q(s′),
so there is no problem.

In summary, we solve the problem of backpropagating the error in time by maintaining
an explicit representation of the previous state. The TD error is calculated in the current
state, but then applied to the population representing the previous state. The learning is
then propagated forward to the current Q population by training the current Q population
to match the previous Q population whenever s ≈ s′. We will now go into more detail on
how each of those steps is implemented neurally.

Implementation

The first question is how to store the previous state. We already discussed in Section 2.3.2
how an integrator can be constructed using the NEF, and how an integrator can be used to
preserve information over time (as given no input the population will maintain its current
value). However, there are a few useful features that can be added to the basic integrator
to make it a more powerful memory system.

65



First, it is helpful to be able to give a desired storage value as input to the memory,
rather than a derivative. This can be accomplished by setting the integrator input to be
the difference between the desired value and the current value stored in the integrator.
The difference can be calculated by a population that takes the desired and current value
as input, the latter with a transform of -1 (see Section 2.3.2, Equation 2.38). Integrating
this input will cause the value stored in the integrator to move to the desired value, at
which point the difference will be zero and the integrator will maintain the desired value.

Another important feature is that we be able to control when the value is updated. For
example, in the case of storing the previous state, the memory system will be receiving
the continuous state signal s(t) as the target value, but we only want to update the stored
value at a particular point in time (when an action is selected). When the state changes in
the future the memory should not continue to update, or it will just continue to represent
the current state. This can be accomplished by creating an inhibitory connection between
a signal that indicates when the value should be updated and the population calculating
the difference. By “inhibitory connection” we mean connecting a signal to the neurons of
a population via negative connection weights. Thus if the signal is zero the population
will not be inhibited, so the difference will be calculated and fed into the integrator. If the
signal is positive (e.g., one) the population will be inhibited, so its output will be zero and
the integrator will maintain its current value.

In this model the timing signal is produced by the environment, not generated internally
by the neural model. More accurately it is an action termination signal, rather than an
action selection signal. That is, the signal indicates that the previous action has completed,
which, by proxy, means that a new action needs to be selected. There are two ways in
which an action can terminate: after reaching some state, or after some time period has
elapsed. For example, an action such as “move forward” could terminate when a specific
state in front of the current one is reached, or it could just move the agent forward for
some time period and then terminate. The termination conditions are defined as part of
the action, which, as mentioned previously, we take to be given along with the task. It
would certainly be possible to compute these signals neurally; for example, a timer can
be implemented by an integrator with a constant input. However, the boundaries of the
model need to be drawn somewhere, and in this case we decided to compute these signals
outside the model.

The complete memory circuit is shown in Figure 4.3. The network has two inputs,
one indicating the value to be stored and the other indicating when the value should be
stored. In the case of storing the previous state, the former signal is the state signal from
the environment, and the latter signal is the one just discussed. Thus the stored value will
be the value of the state at the beginning of the current action period.
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The output of the memory network is then fed into the population of neurons repre-
senting the Q function for the previous state. The output of that network is trained via the
learning rule in Equation 2.40. E in this case is the prediction error as in Equation 2.8; we
discuss the neural circuit that calculates this value in Section 4.3. Note that this learning
rule is described in terms of changes to the decoders di. This is exactly equivalent to a
change in synaptic connection weights, as the weights can be calculated from the decoders
by multiplying them by the gain and encoders (α and e) of the postsynaptic population,
which are fixed (see Equation 2.41). The end result is that the Q function representation
in the population is updated in the direction of the prediction error. The specific part
of the function that is updated is dependent on the activity of the neurons. The neural
activity is a(s), meaning that the value of Q(s) will be modified, thus implementing the
desired TD update.

The population representing the current Q values receives the current state as input,
which comes directly from the environment. The same learning rule is used to update
the decoders of this population, but with a different error signal (Equation 4.3). The
first aspect of this error signal is the difference Q(s) − Q(s′). This can be calculated by
a population that takes the output of the two Q function populations as input, with a
transform of -1 applied to the current state function (see Equation 2.38).

The second aspect of Equation 4.3 is the conditional, namely that the error should be
zero whenever the distance between s and s′ exceeds the threshold θ. To calculate that
distance the first step is to calculate the difference between s and s′—this is done in the
same way, by a population that receives s and s′ as input, the latter with a transform of -1.
Distance can then be calculated as the absolute value of this difference (i.e., abs(s − s′)).
The absolute value can be computed by setting f(x) = abs(x) in the decoder calculation
for the difference population (see Equation 2.35). x is the total input to the population,
which in this case is s − s′, thus the overall population will be computing abs(s − s′).
Summing across the dimensions (a simple linear transform, see Equation 2.36), will then
give ‖s − s′‖1. Note that here we have used the L1 norm to represent distance. The L2
norm (or any other distance metric) could be used, but this is a more complex function
involving squares and square roots, and thus more difficult to approximate using neurons.
Since all that matters is whether the distance exceeds some fixed threshold, it is not that
critical what the distance metric is and so we adopt the simplest.

The output of this population represents the distance between s and s′. The next step
is to threshold that distance at θ, in order to get a signal that is zero when ‖s− s′‖1 < θ
and one when ‖s− s′‖1 ≥ θ. This signal can then be used as an inhibitory signal, as in the
memory network, in order to gate the output of the population calculating Q(s)−Q(s′).
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The gating signal can be computed by creating a population that takes the state dis-
tance as input and setting its output function to be

f(x) =

{
0 if x < θ

1 if x >= θ
(4.4)

However, functions with sharp nonlinearities like that are difficult to approximate using the
standard neural responses, and the end result of this will be a fairly fuzzy threshold around
θ. This can be improved by using the neuron properties themselves to help the population
approximate the function. Namely, neurons already have a built-in firing threshold; if
their input does not exceed that threshold, their activity will be zero. The threshold point
is determined by the value of J bias in Equation 2.31. The standard NEF approach is to
choose the thresholds randomly across the possible range of x. However, in this case we
can set all the neuron thresholds to align with the threshold of the desired function. Thus
the neural activity will always be exactly zero when x < θ and non-zero when x ≥ θ, which
will result in a more accurate approximation of the desired function.

The final step is to connect this thresholded signal to the Q difference population via
an inhibitory connection. Just as in the memory network, this means that when the signal
is zero the output will be the normal output of the population (Q(s) − Q(s′)), and when
the signal is one the output will be zero. Thus the output of the difference population will
implement Equation 4.3. This output becomes the E in the decoder learning rule for the
current state Q population. This will cause the current Q values, by proxy, to be updated
according to the TD error, thus coming to represent the correct Q function. Those Q
values are the key output of the action values component, which will drive the behaviour
of the action selection component.

4.1.3 Important parameters

Throughout the model description we will point out the important tunable parameters of
the model. This is not an extensive description of the model parameters—biological neural
models have hundreds of parameters, related to different neural properties, connections,
initialization conditions, and so on. However, many of these parameters do not significantly
affect the function of the model, or they can be determined based on the basic design of
the network and need not be modified. Instead we focus on the parameters that someone
using the model might want to adjust in order to modify its performance on a given task.

The first such parameter in this component of the model is the number of neurons in
the Q function representation. From a computational perspective this can be thought of as

68



the number of basis functions in the function approximation. Roughly speaking, the more
neurons used, the better the function approximation will be. Each neuron represents a
degree of freedom in the learning process, thus the more neurons available the more closely
the population will be able to fit the true value function.

To a machine learning audience this will immediately raise the question of overfitting.
However, generally speaking, problems like overfitting are not as great a concern in RL.
The goal is not to be able to generalize the Q function to novel areas of the state space—we
do not have separate “training” and “test” states. The goal is to learn the best possible
approximation based on the agent’s samples as it explores the environment. When the
agent enters an unfamiliar region of the state space the expectation is that those Q values
will be learned by the TD learning process, not based on generalization from the Q function.
Of course we do want some local generalization; the purpose of function approximation is
to use a discrete set of basis functions to represent a continuous function space—if the basis
functions do not generalize at all then the function approximation becomes a lookup table.
However, the problem in that case has more to do with the shape of the basis functions,
rather than the number of basis functions (i.e., decreasing or increasing the number of
basis functions would not solve the problem). The basis function shape is determined by
the state encoding, which was discussed in Section 4.1.1.

The real problem with increasing the number of neurons is that it increases the resource
demands of the model. By this we mean both the computational resources, in that the
more neurons the model contains the slower it will be to simulate, as well as the neurophys-
iological resources, in that the physical system we are attempting to model has a limited
number of neurons. If a proposed model required trillions of neurons to represent the value
function, that would be a problem for the biological plausibility of that model. However,
in practice our simulation capacity falls well below the resources of real brains, so it is the
former concern that dominates.

The tuning of this parameter amounts to a balancing act, where the modeller attempts
to use the minimum amount of neurons necessary to achieve the desired accuracy. The
required accuracy depends on the shape of the Q function. If, for example, the function
is relatively smooth and has large differences between the values of the different actions,
that can be represented more coarsely and therefore requires fewer neurons. If the task
requires fine discrimination (e.g., a maze where several different paths all have almost equal
length) that will require a more accurate Q function and more neurons. This parameter
also interacts with the discussion of state encoding in Section 4.1.1. If the neurons are set
to have a very local/sparse encoding (e.g., because the Q function is highly nonlinear) then
more neurons will be required to effectively tile the space.

69



In conclusion, it is impossible to suggest a value for this parameter independent of
the specific task. The best approach is to determine the minimum number of neurons
empirically—define the minimum accuracy required for the target Q function, and increase
the number of neurons until that accuracy is achieved. For reference, the tasks used in the
results of this work use between 500 and 1200 neurons in each Q function population.

Another important parameter is the learning rate, α, used in the TD update formula
(Equation 2.8), which is implemented by κ in the decoder learning update (Equation 2.40).
This parameter is task dependent in that it depends on the magnitude of the prediction
errors as well as the desired learning speed. The former is determined primarily by the
reward structure of the task. For example, a task with rewards ranging between ±100
will have very different prediction errors than a task with rewards from 0.5–1. The desired
learning speed is determined primarily by the reliability of the prediction errors. For exam-
ple, if there is significant noise in the prediction errors, perhaps because of an inaccurate
Q function representation or stochastic rewards, then less weight should be given to each
individual update, meaning a lower learning rate. If the prediction errors are reliable then
the learning rate can be increased, to speed up the rate of convergence (although if the
learning rate is too high it will cause the update to overshoot the target value, leading to
oscillations).

One final practical note is that translating the α in Equation 2.8 to the κ in Equa-
tion 2.40 depends on the units of a(x). That is, if a(x) represents the average firing rate
in Hertz, that will necessitate a different κ than if a(x) represents a postsynaptic current.
However, if the conversion between the different a(x) units is known (that is, we know what
the equivalent activity would be in the different units for the same x) then the learning
rate can be converted in the same way.

The last parameter to discuss is the threshold θ on the state difference, used to gate
the learning on the current state Q function. The modeller needs to decide what counts as
“nearby” in the state space of a given task (i.e., what is the ∆s such that Q(s) ≈ Q(s+∆s).
This value will differ depending on what s represents. If the value is too small then it
will take a long time for learning to transfer from the previous state Q function to the
current state Q function. If it is too large, then learning in the previous state Q function
will generalize to inappropriate states in the current Q function. However, in practice the
model is not overly sensitive to small changes in this parameter, once it is in approximately
the correct range. It can generally be set based on a quick examination of the state space,
but again this requires some domain knowledge on the part of the modeller.
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Figure 4.4: Architecture of the action selection network. The leftmost component repre-
sents the model of the basal ganglia and thalamus described in Section 2.3.4. The centre
component stores the output of the previous component across the SMDP time delay. The
rightmost component transforms the argmax vector into the vector associated with the
selected action.

4.2 Action selection

The task of the action selection component is to select an action based on the output of the
action values component. In other words, it needs to convert the Q values into a policy.
The core of this component is the basal ganglia/thalamus model discussed in Section 2.3.4,
based on work by Gurney et al. (2001) and Stewart et al. (2010). Recall that the function
computed by this network is essentially an arg max; given a vector of Q values as input, it
will compute

arg maxQ(s) =
n⊕
i=1

{
1 if ai = arg max

a
Q(s)

0 else
(4.5)

That is, a vector of the same length as Q(s), with 1 for the highest valued action and 0
elsewhere.

Thus the basal ganglia is well suited to computing a simple greedy policy, the model just
needs to convert the output of Equation 4.5 into an action for the environment. Recall
from the introduction of this chapter that actions in this model are represented by an
abstract vector. The environment knows what the vectors mean, but the agent does not;
to the agent they are just a set of generic possibilities to choose between. For example, the
agent might have four vectors it can output: [0.3, 0.2, . . .], [−0.1, 0.4, . . .], and so on. To
the environment these might represent movement in the four cardinal directions in a 2D
space, but to the agent those are just the four different outputs it can produce.

The mapping from Equation 4.5 to action vectors can be accomplished by a single
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population. First, a matrix A is constructed by stacking the available action vectors, i.e.

A =


a1
a2
...
an


The output of the thalamus is then connected to a neural population using that matrix as
the transform (see Equation 2.36). The resulting value will be whichever row in the matrix
corresponds to the 1 in the thalamus output, i.e., the vector of of the highest valued action.
This therefore implements the basic action selection process. However, there are a number
of subtleties that need to be addressed.

The first problem is that the maximum valued action is going to be constantly changing
as the agent moves through the environment. This is a problem because in a hierarchi-
cal/SMDP framework the agent needs to have a stable action output. That is, if the agent
selects some abstract action a, that decision needs to be maintained until a terminates,
despite the intermediate changes in the state brought about by the subpolicy of a.6

Stable action selection can be achieved by storing the selected action. For this we
can use exactly the same memory circuit as was used to store the previous state (see
Figure 4.3). The only difference is that the target value in this case is the output of
the basal ganglia/thalamus model. The gating signal is the same, causing the stored
value to be updated whenever an action terminates. Thus whenever the previous action
terminates, a new one will be selected by loading the maximum valued action into this
memory component. The content of the memory then drives the final output of the policy—
the action that is delivered to the environment.

The above setup computes a simple greedy policy. However, as discussed in Section 2.1,
RL policies also require some random exploration; otherwise the agent would just continue
to follow the first decent path it finds. Exploration is accomplished in this model by
adding random noise (drawn from N (0, σ)) to the Q values coming from the action values
component. The effect of this is akin to a soft-max policy (Equation 2.7). The probability
that an action is selected is equal to the probability that the noise pushes the value of that

6The options framework does have an extension that allows abstract actions to be interrupted (see
Section 2.2.2), meaning that the output action switches whenever a different action has a higher value
in the current state. There are potential benefits to this approach (Sutton et al., 1999), and it would be
interesting to explore the effect in this model. However, in this work we opted for the simpler approach of
executing each action to termination.
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action higher than the max value action. That is,

π(s, a) = p(N (0, 2σ) > max
b
Q(s, b)−Q(s, a)) (4.6)

=
1

2
− 1√

π

∫ z

0

e−t
2

dt (4.7)

where z = maxbQ(s,b)−Q(s,a)

2
√
2σ

(the action probabilities also need to be normalized by dividing

by
∑

a π(s, a)).7 Intuitively, the probability of selecting an action is proportional to how
close that action is to the max, which is the essential function of the soft-max policy. This
addition allows this component to implement all the required functions of an RL policy.

4.2.1 Important parameters

The action selection component is relatively static, and has few parameters that need to
be adjusted. The main variable is the noise that drives exploration, in which the key factor
is the variance of the noise—the greater the variance, the more random the agent’s action
selection will be. In the results described in this work we use Gaussian white noise, thus
the factor being adjusted is the standard deviation of the Gaussian distribution.

When picking the noise level for a given task, the important factor is that the noise
be proportional to the relative range of the Q values (not their absolute magnitude). For
example, if all the Q values are close together then even small noise levels will result in
very random action selection, whereas if the Q values are widely spaced then insufficient
noise might result in purely greedy action selection. It is also possible to adjust the noise
level over the course of learning. This could be used, for example, to mimic the common
soft-max technique of decreasing the temperature parameter over time.

The other important variable in the action selection system is a scaling factor on the
input to the basal ganglia. Scaling is necessary because the basal ganglia is only designed
to operate over values in a certain range; specifically, the basal ganglia works best if its
inputs are in the range 0.5–1.5. Therefore the Q values need to be scaled from their true
values down into that range for the arg max calculation.

Applying a constant scale to a value is easy to do in the NEF (see Equation 2.36).
However, this does assume that the approximate range of Q values is known for a given
task, so that the appropriate scaling constant can be determined. The basal ganglia still

7Note that this expression has been slightly simplified, in that it only compares the given action to the
maximum value action, and not all other actions.
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Figure 4.5: Architecture of error calculation network, implementing the SMDP TD error
calculation of Equation 4.9. The selection functions are performed by the network shown
in Figure 4.6, and the integration by the network shown in Figure 4.3. The final output
is used as the error signal modifying the Q function representation in the action values
component.

operates well for somewhat smaller or larger ranges, so the scale does not need to be finely
tuned; it just needs to be in the right ballpark to scale the Q values down to a magnitude
around 1. It is possible to do automatic normalization via neurons (Eliasmith and Martens,
2011), which could be added in to this model to update the scaling dynamically. However,
that was not the focus of this work, and so in the results presented here we just use a
constant scale.
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4.3 Error calculation

The purpose of the error calculation component is to calculate the SMDP TD prediction
error (see Equation 2.18):

δ(s, a) =
τ−1∑
t=0

γtrt + γτQ(s′, a′)−Q(s, a) (4.8)

There are four basic elements that go into this computation: the values of the current and
previously selected action, the discount, and the reward. In this section we will discuss
how each of those elements are computed, and how they are combined to calculate the TD
error.

4.3.1 Selecting Q values

The action values for the previous and current state, Q(s) and Q(s′) are already computed
in the action values component. However, those vectors contain the values of all the actions
available in a state, while what is needed for Equation 4.8 is the specific value of the selected
action Q(s, a) and Q(s′, a′). Thus what is needed is to separate out the element of that
vector corresponding to the selected action.

The selected action is represented by the output of the action selection component as
a vector of zeros, with one for the selected action. Thus computing the inner product of
that vector and Q(s′) would, roughly speaking, give the desired value Q(s′, a′). However,
it is difficult to do precise multiplication using the linear approximation of the decoder
calculations, particularly when the multiplication involves values of very different magni-
tude (such as multiplying a Q value by zero). It is important that the Q values be as
accurate as possible, as the TD error needs to capture subtle improvements or decreases in
the action values, so multiplication is not ideal. A more accurate selection method can be
found by noting that the particular case of multiplying by zero is equivalent to inhibition.
However, inhibition is more accurate, because when neurons are inactive their output is
exactly zero, rather than the approximate zero obtained by multiplying non-zero activities
by the decoders.

Inhibition can be used to select one element of Q(s′) by constructing a small circuit
containing n populations, where each population receives one element of Q(s′) as input (see
Figure 4.6). This routing is accomplished via a simple linear transform. For example, to
route the first element to a population the transformation matrix would be [1, 0, 0, . . . , 0]; if
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Figure 4.6: Circuit used to select one element in a vector. The vector is first divided into
populations representing each of its individual elements. The gating signal is similarly
divided into its individual elements, each inhibiting the non-aligned populations. Finally
the output of all the individual populations is summed together, the result of which will
be equal to the selected element since all other outputs are zero.
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this transformation is used to calculate the connection weights as in Equation 2.36, this will
result in only the specified element of the input being represented in the target population.
The output of the action selection component is then connected to each population via
inhibitory weights. This means that if, e.g., the first action was selected, then all the
populations except the first will be inhibited. The output of the n populations is then
summed in a final population. Since the output of all except the selected population is
zero, the sum will be equal to the Q value of the selected action.

The error calculation also requires the value of the previous state, Q(s, a). Fortunately,
the previous values are already being conveniently represented by the dual training system
in the action values component (see Section 4.1.2). Thus the same inhibitory selection
network can be used, but using the previous Q values as input rather than the current
values. Similarly, the inhibition should not be driven by the currently selected action, a′,
but by the action selected in the previous state, a. Again however this information is al-
ready available in the action selection component, which, as discussed, saves the previously
selected action. Using that saved action as the inhibitory signal will result in Q(s, a) being
selected.

One might wonder if it would be more efficient to just directly store the selected Q value
from the previous state, Q(s, a)), rather than storing a and then repeating the inhibitory
selection to find Q(s, a). However, this approach can lead to a positive feedback problem.
Imagine the agent arrives in some state s, selects an action a, and stores the value of that
action Q(s, a). Suppose for simplicity’s sake that a causes the agent to remain in state s.
The dual training system then updates the current state Q representation based on the
previous state Q representation, and suppose this causes the current state Q representation
to increase. If the TD error is then calculated, this will look like a positive prediction error
between the stored Q(s, a) and the current Q(s, a). The TD update will then be applied,
increasing the value of the previous state Q representation in the dual training system,
which will again cause an erroneous prediction error when the dual training occurs, and
this will continue indefinitely. The TD error should reflect the actual difference between
state values, not the difference between values before and after the dual training update.
That is why the model uses the system described above, so that the TD error is always
based on the most recent output of the Q functions, not the past output.

One final note of importance is that the Q(s, a) and Q(s′, a′) calculated by this compo-
nent are based on the action selected by the agent, rather than for example the strict max
Q value used in Q learning. This means that when these values are used to calculate a
prediction error the model will be computing on-policy learning updates (as in the SARSA
RL algorithm, Equation 2.5). This is done largely for practical reasons; the selection pro-
cess is already being done once to pick an action, and the result of that process can just be
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reused to determine the Q values rather than having a separate max calculation. However,
this also has the benefit that RL with linear function approximation has more general
convergence guarantees with on-policy updates (Tsitsiklis and Van Roy, 1997).

4.3.2 Discounting

The next element of Equation 4.8 is the discount factor, γ. Expressed in continuous terms,
γ is an exponentially decaying signal that is multiplied by incoming rewards across the
SMDP delay period, as well as the value of the next action Q(s′, a′) at the end of the delay
period. We will discuss two different approaches to calculating this discount.

The first approach is to represent the exponentially decaying signal via a leaky inte-
grator. This is a population of neurons connected back to itself with a scale less than one
(see Section 2.3.2). This will cause the represented value to decay over time, at a rate
determined by the scale. This value can then be multiplied by the incoming rewards and
current state value using the technique discussed in Section 2.3.2 in order to implement
Equation 4.8. However, this approach relies heavily on multiplication, which, as mentioned
above, is difficult to perform accurately, particularly when the values being multiplied are
of very different magnitude (as they are likely to be here, depending on the range of the
Q values). Again, this inaccuracy can be problematic, because the TD error calculation
often involves very slight differences in value that we do not want to disappear in the
multiplicative noise. This motivated a second approach that would be less dependent on
multiplication.

Before explaining the second approach it is helpful to step back and examine the purpose
of the discount. TD methods rely on the notion of a state or state-action value. A Q value
represents the expected rewards an agent will accumulate for selecting action a in state
s, including any immediate rewards and all rewards in the future resulting from that
choice. The problem is that in the general case where the agent continues moving around
the environment indefinitely, the sum of all future rewards is infinite. This would lead to
unhelpful Q values; if Q(s, a) =∞ ∀a, then the Q values are not useful for action selection.
This is why a discount is needed—it reduces the impact of rewards in the future so that
the sum has a finite value.

This is not only a problem for an abstract theoretical situation, it has practical im-
portance for model construction. Namely, without a discount the Q values will grow
indefinitely. The values need not reach infinity before they will fall outside the represen-
tational range of the model, at which point the model will fail in various ways. Thus a
different way to phrase the function of the discount is that it keeps the Q values within
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the representational range of the model. In addition, it is important that, in doing so, the
discount preserves the relative differences between the Q values, so that they remain useful
for action selection (for example, a “discount” that simply thresholded all the values at
some limit would not be helpful).

In the second approach to discounting we calculate the discount by integrating the
value of the previous action. The advantage of this approach is that this discount factor
can simply be subtracted from the TD error, rather than combined multiplicatively:8

δ(s, a) =
τ−1∑
t=0

rt +Q(s′, a′)−Q(s, a)−
τ−1∑
t=0

γQ(s, a) (4.9)

(we express things in a discrete form here for continuity with previous equations—in prac-
tice the summations are replaced with continuous integrals).

Clearly this form of discounting is not mathematically equivalent to the multiplicative
discount. However, it captures the two basic properties of the multiplicative discount—
namely, that the discount (

∑τ−1
t=0 γQ(s, a)) scales with time and with the magnitude of the

Q values. In addition, it accomplishes the practical purpose of the discount of keeping the
Q values within the representational range of the model.

For example, imagine an agent with one state and action and a fixed τ , receiving
constant reward. Initially, if Q(s, a) is zero, the discount will be zero, so the prediction
error will just be equal to the reward. As Q(s, a) gets larger, so too will the discount, which
will result in a steadily decreasing prediction error. Eventually an equilibrium point will be
reached; when

∑τ−1
t=0 rt =

∑τ−1
t=0 γQ(s, a) the prediction error will be zero, and the Q values

will stop growing. In a more realistic environment where the agent is moving between
different states, the equilibrium point will be reached when

∑τ−1
t=0 rt +Q(s, a)−Q(s′, a′) =∑τ−1

t=0 γQ(s, a). The modeller can adjust where the equilibrium point will be by adjusting
γ (this is helpful for fitting the values to the representational range of a given model).
Importantly, the equilibrium point depends on the values received after selecting action a
(the immediate rewards and the improvement in the state value). That is, actions that
result in a better outcome will have a higher equilibrium point. Thus this discounting
scheme fulfills the key requirement of preserving relative differences between actions.

The main difference between the multiplicative and integrative discount is that the
integrative discount grows continuously over time. This means that if the delay period is
long enough Equation 4.9 can result in a negative prediction error, even if the undiscounted

8In machine learning terms we can think of the discount factor as a regularization term, limiting the
magnitude of the Q values.
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prediction error would be positive. In some cases this can be interesting behaviour to
include in the model—essentially it is an automatic penalty applied to actions that take too
long to complete. However, if the modeller wants the discount to operate in the standard
way, allowing it to change the magnitude of a prediction error but not its valence, this can
be achieved by applying a threshold to the discount, so that it cannot grow larger than
the undiscounted prediction error.

In terms of implementing this discount neurally, we have already discussed in Sec-
tion 2.3.2 how to implement an integrator using the NEF. Connecting the output of the
population representing Q(s, a) to the integrator population with a scale of γ will result
in the desired computation. The only complication here is that the integrator needs to
be reset to zero every time an action terminates. This can be achieved by placing this
integrator within the memory circuit used elsewhere in this model (Figure 4.3), with zero
as the target value. The storage update is triggered by the same signal used to trigger the
storage of the previous state in Section 4.1.2. This will cause the value in the integrator
to be set to zero whenever a new action is selected, and allow it to integrate normally at
other times.

There is one final technical challenge related to discounting in this model. Discounting
only operates on the action values of the selected action, a, by pushing that value towards
zero. This places an upper limit on the Q values, because whatever value is highest will
be pushed downwards to its equilibrium point, or until another action has a higher value.
This is the desired behaviour, and keeps the Q values within the representational range of
the model. However, this process does not work for negative values. Imagine two values
Q(s, a1) < Q(s, a2) < 0. a2 has a higher value, so it will be selected, and the discount will
push its value upwards (in the absence of any negative prediction error). However, a1 will
never be selected, because it will continue to have a lower value than a2; a2 will just keep
being pushed upwards, while a1 remains the same. In other words, the discount factor
applies a negative feedback loop to the selection of positive values, but a positive feedback
loop to the selection of negative values (note that this is true for both the multiplicative
and integrative discount schemes).

Of course if a1 is never selected there should be no prediction errors pushing it down-
wards either. Thus the occasional random exploration of a1 will result in the discount
being applied, which should eventually bring its value back up. However, in practice the
noisiness of a neural model can cause some drift even in non-selected values, and we found
that random exploration was not enough to correct this. This led to a tendency for the
model to get stuck in local minima when the action values were all negative, in which it
would just continue to repeatedly select the same action. Therefore we developed a neural
mechanism to explicitly apply an upwards force to negative values, to fill the role the dis-
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count plays for positive values. Thus this component does not represent an important part
of the model from an algorithmic perspective, but we include a description here because it
is an example of the practical problems of a neural implementation.

The easiest solution would be to apply a fixed threshold to the Q values, so that they
cannot go below a certain point. However, this is not the best solution, for the same
reason that a fixed upper limit is not a good positive discount mechanic—it eliminates
the relative differences between values. If two action values are drifting out of range we
would like to correct that while still preserving their relative values as much as possible. A
more complex method would be to compute a pseudo-discount for all the actions (e.g., by
integrating their value); however, this would be fairly elaborate to implement. We opted
instead to provide a small fixed positive bias to all the negative values. This strikes a
balance between the two extremes; it will preserve the relative difference between values,
but we only need to apply a fixed value rather than computing a signal for each action.
Since all that this mechanism is intended to do is speed up the corrections that would
normally happen through random exploration, it is not necessary for the correction to be
extremely precise.

The bias can be computed by a population that constantly represents a vector, where
each element of the vector is a small positive value. However, the bias should only be
applied to negative values (the same effect is already being implemented by the discount
for positive values). Positive values can be detected by a population that receives Q(s) as
input and computes the threshold signal

f(x) =
⊕
a

{
1 if Q(s, a) > 0

0 else
(4.10)

As in the state distance thresholding used in Section 4.1.2, the neuron properties can be
used to help compute the thresholding by aligning all the neuron firing thresholds to the
desired function threshold. The output of this population is then used as an inhibitory
signal on the populations representing the positive bias, so that the bias for any dimensions
with a positive value will be set to zero (similar to Figure 4.6). The output of that
population is then added to the regular TD error, meaning that any negative values will
have a small positive bias applied to them, even if they were not selected. This has the
desired effect of more quickly moving the agent out of local minima for negative values.
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4.3.3 TD error calculation

With Q(s, a), Q(s′, a′), and the discount all computed, the only remaining calculation in
Equation 4.9 is to integrate the reward and then put all of these components together.

The reward can be integrated using exactly the same circuit as was used to compute
the integrative discount (that is, an integrator with an extra mechanism attached to reset
the integrator to zero when a new action is selected). The only difference is that the input
to the integrator is the reward from the environment in this case.

With all of the values computed, the TD error is easy to calculate. As it is a simple
linear combination of the four components, it can be computed by a single population that
takes as input the output of the populations representing each value, with a transform of
-1 applied to Q(s, a) and the discount. The output of this population then represents the
TD error function described in Equation 4.9.

Note that the output of this population will be a continuous signal across the delay
period, whereas we only want to update Q(s, a) when the action a terminates. This can be
achieved by inhibiting the above population, so that the output will be zero except when
we want to apply the TD update. The timing of this signal is based on the same signal
described previously for saving the selected action and resetting the discount and reward.
The two are just slightly offset from each other, so that the learning update is applied just
before the network is reset for the next action.

The last step is to transform the scalar output of the above population into the n-
dimension error signal required by the learning rule in Equation 2.40. n is the dimension-
ality of the decoders to which the learning rule is being applied, which in this case is the
population representing Q(s). In other words, we need to compute an error for each action.

Fortunately this is relatively simple; the TD update should only be applied to the
selected action, so the error should just be zero for all the non-selected actions.9 Thus the n-
dimensional error could be computed by multiplying the TD error by the vector of zeros and
one output from the action selection network. However, as mentioned above, the special
case of multiplying by zero can be implemented more accurately using inhibition. We create
an n-dimensional population where each element represents the same TD error value, and
then inhibit all the dimensions corresponding to the non-selected actions. What we want to
accomplish here is essentially the same as how Q(s, a) and Q(s′, a′) were computed. There
we were taking Q(s), inhibiting all but the selected action, and then summing the result.

9One could imagine a non-zero error for multiple dimensions in the continuous action case, where
the agent selects some weighting over the basis actions as its output. This possibility is discussed in
Section 6.2.3.
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Here we just omit the summation at the end, so that we are left with an n-dimensional
vector with all zeros except for the selected action. This value is the final output from
this network; using it as the error signal in the decoder learning rule on the output of the
population representing Q(s) will implement the TD update of Equation 2.8.

4.3.4 Important parameters

The important tunable parameter in the error calculation component is the discount factor,
γ. As mentioned, the key role of the discount factor in this model is to keep the Q values
within the representational range of the model. The higher the value of γ, the lower the
equilibrium point of the Q values will be. Thus the particular setting of γ will depend on
where the modeller wants the Q values to settle for a given task. This is fairly arbitrary,
so in general the modeller can just decide what the range of the Q values should be and
then adjust γ accordingly.

There is one consideration that slightly complicates this process. In addition to affecting
the maximum Q values, the discount also affects the slope of the Q value gradient outwards
from the rewarded states. For higher discount factors the Q values will decrease more
rapidly as the agent moves away from the rewarded state, as that decrease is driven by
the discount. This can be an important consideration, as when the Q values become too
small they cannot be accurately distinguished by the action selection system (we will see
an example of this in Section 5.3).

As a result, in general it is desirable to keep γ small in order to propagate reward
information as far as possible throughout the state space. Thus when trying to adjust
the range of Q values, it may be better to lower the reward values from the environment
(e.g., by applying a constant scale < 1), rather than increasing γ. The effect will be the
same, lowering the equilibrium point, but this will create a shallower slope in the reward
gradient.

4.4 Hierarchical composition

At this point all the components of a flat reinforcement learning model are implemented.
As shown in Figure 4.1, this system implements the full RL loop. It takes a state from the
environment, determines the values of the available actions in that state, picks an action
based on the Q values, waits until the action terminates, observes the resulting state and
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any rewards from the environment, computes the SMDP TD error, updates the Q values
accordingly, and repeats it all in the next state.

When extending this basic model to a hierarchical setting, we can think of this cycle as
the operation of a single layer in the hierarchy. The only difference is that the delay until
action termination represents the activity of a lower level, rather than a delay imposed
by the environment. But from the perspective of the rest of the system, learning action
values, selecting actions, and computing the TD error all proceeds in the same way. Thus
all that remains is to show how these basic elements can be composed into a multi-level
hierarchical system.

4.4.1 Hierarchical structure

In the design of this system we have tried to make the hierarchy as modular as possible.
The goal is to be able to construct the hierarchy out of the basic pieces described above
without modifying the internal operation of those pieces. There are a number of advantages
to this approach. First, from a practical perspective it simplifies the design and use of the
system; rather than redesigning the model whenever a new layer is added, we can just
repeat the same basic structure. In addition, each interaction between layers introduces
more potential points of failure, and also makes those failures more difficult to understand.
Thus by minimizing the interactions between layers we can make the system more robust.
This is related to another advantage of the modular approach, namely scaling. When there
are minimal interactions between layers, this means that there is minimal overhead as more
layers are added. If the elements of two layers are densely interconnected then the number
of connections in the model would increase polynomially as new layers are added, rather
than linearly. Yet another advantage of this approach is biological plausibility. Just as all
the features described above (ease of implementation, robustness, and scaling) are useful
from a computational perspective, they are also useful in biological systems. Thus the brain
also seems to have a tendency to construct more complex systems out of simple repeated
elements, and we follow that design in the structure of this model (this is discussed in more
detail in Section 4.5).

In practice what this modularity means is that the only interaction between layers is
via the normal inputs and outputs of the RL process. That is, the layers interact via the
same inputs and outputs with which the flat system interacts with the environment (state
and reward inputs, and action output)—there are no new connections between the internal
components of different layers.

In other words, from the perspective of a single layer, the layers above and below it
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are just a part of the environmental black box. The layer sends out some action vector,
which through some unknown mechanism (the operation of other layers) results in some
rewards being received as input and a new state when the action terminates. The individual
layers have no “knowledge” that they are embedded in a hierarchy; each of them is just
working independently on their own SMDP reinforcement learning problems, trying to pick
whichever actions will maximize their reward. Only from an outside perspective can it be
seen that the RL problems of the different layers are connected to one another.

For example, imagine a system trying to navigate around a house, where one layer of
the hierarchy picks which room to go to and a lower level takes care of navigating to the
target room. The overall task is to move to the kitchen, which requires the agent to move
through the dining room. The top level does not need to know that when it selects the
“go to the dining room” action a lower level is going to select “go forward” and “turn
left” actions that actually bring it to the dining room. The top level just learns that when
it outputs the “go to the dining room” vector, after some delay period it ends up in the
dining room state. When it arrives in the dining room it can evaluate whether that choice
was a good one or not, based just on the elapsed time and the value of the resulting state.
Thus the values of the different actions, and the process for learning those values, is a flat
SMDP problem, with no reference to a hierarchy. Similarly, the lower level does not need
to know that there is some higher level process trying to navigate to the kitchen. It just
receives some input which it has learned is associated with going to the dining room, and
it goes about completing that task (perhaps with the aid of still lower levels).

To reiterate then, the important constraint on the hierarchical structure of this model is
that the only interaction between layers is through the standard inputs (states and rewards)
and outputs (actions). However, that still leaves open a wide range of possibilities as to
what those inputs and outputs look like, and this model does not prescribe a specific
implementation. As discussed previously, the goal here is to describe a generic model
that can be applied to many different tasks. Different tasks will require different types
of hierarchical interaction, depending on the hierarchical structure of the task. In the
results section we will give examples of specific tasks and discuss how the interactions were
implemented in those cases. Here we will speak more generally about the different styles
of interaction and the functionality they afford.

Note that in this work we also take the hierarchical interaction to be defined by the
modeller. The question of how these structures could be learned automatically is an im-
portant and interesting one; we will discuss work in this field in Section 6.2.6. However,
this is very much an open problem in the computational field of HRL, not to mention
neural implementations. The question of how to implement a given hierarchical structure
is a precursor to any question of learning that structure, so it is on the former that we
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focus our efforts here.

We divide the ways in which layers can interact into three different categories. There
are only two inputs to a layer, the reward and the state, thus hierarchical interactions
must flow over one of those two channels. However, we divide the latter into two different
categories—“context” and “state” interactions.

Context interaction

In a context interaction the higher layer adds some new state information to the input
of the lower layer. It is termed a context interaction because this extra state can be
thought of as a context signal that modifies how the lower level responds to the normal
environmental state. For example, in the house navigating task suppose the environmental
state is the GPS location of the agent. The goal of navigating to the dining room can then
be represented by appending a vector to the state input of the lower level. The content of
that vector will be task dependent; it could be the GPS location of the dining room, or a
random vector label. From the perspective of the lower level it does not matter how the
vector was generated, it is all the same black box state input.

Concatenation is just a linear operation, and so can be implemented by a single popula-
tion that receives both the environmental state and the output of the higher level as input,
concatenates them, and then connects its output to the state input of the lower layer. The
lower level then has as its input both the normal state s and an indication of the goal, or
context, c. Recall that the lower level is not aware that it is part of a hierarchy, and so
is unaware that its input is a composition of these two elements. It just sees some state
input s̃, and it tries to learn the values of its available actions in each state.

The important feature that the context interaction allows is that the same environ-
mental state s is now represented at multiple different points in the concatenated state
space of S × C. This means that the agent can learn different action values for the same
environmental state, depending on the context. That is, the agent can learn one value for
Q(s ⊕ c1, a) and another for Q(s ⊕ c2, a). In the case of the house navigating agent, c1
might represent “go to the dining room” and c2 might represent “go to the bathroom”,
thus the agent can learn that the same action (“turn left”) in the same location can have
different values depending on the context.

Since we are using function approximation, there will be some relation between Q(s⊕c1)
and Q(s⊕ c2). For example, if c1 and c2 are very similar, then changing Q(s⊕ c1) will also
affect Q(s ⊕ c2). This is the same issue already discussed in reference to state encoding
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(Section 4.1.1), and the same points apply here. For example, the degree of interaction
can be adjusted by changing the sparsity of the s̃ state encoding.

To summarize, the context interaction allows the lower level to learn different sets of Q
values, and thereby different policies, and it allows the high level to change which policy
is being followed by picking different output actions. Importantly, from the perspective of
both layers they just have a set of Q values that assign a value to each action in the current
state, and they can learn those values using the standard SMDP TD error. Thus each layer
operates independently in exactly the way described in the previous sections, but because
they are connected via this context interaction the end result will be a hierarchical learning
system.

State interaction

In state interactions the higher level modifies the environmental state for the lower level,
rather than appending new information. The primary use case for this is what is known
as “state abstraction”. State abstraction is based on the idea that not all aspects of the
state may be relevant for a given task. Thus when the agent learns Q values for the whole
state space, large amounts of effort are being wasted learning the value of the Q function
over different states that represent the same effective point in the problem space. If the
irrelevant aspects of the state can be eliminated ahead of time then the size of the state
space becomes exponentially smaller, making the learning much more efficient.

Recognizing this, state abstraction has been of interest in RL almost since its inception;
however, it has had particular traction in the field of HRL (e.g., Dietterich, 2000; Andre
and Russell, 2002; Provost et al., 2007; Barto et al., 2013). When an overall task is
broken up into subtasks, it is often the case that aspects of the state that are relevant for
the overall task are not relevant in a particular subtask. For example, the overall task of
making breakfast might require as state the location of many different cooking implements.
However, if that task is broken up into subtasks for making cereal, toast, and coffee, then
each one of those subtasks only requires a subset of the available kitchen tools. Thus while
it may be difficult to find a useful state abstraction for the overall task, it can be more
feasible to find state abstractions in each of the different subtasks.

This kind of operation is enabled by the “state interaction” hierarchical structure. For
example, when the high level outputs a vector a1 representing the “make cereal” action,
that vector can be used as a gating signal on the environmental state to block out the
features irrelevant to that subtask. This can be implemented via, e.g., the same inhibitory
gating scheme used to block different parts ofQ(s) based on the selected action (Figure 4.6).
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The output of that gating network then represents a new state s̃ that belongs to a subspace
S̃ ⊆ S. The lower level then only needs to learn a Q function over the smaller state space
of S̃.

Note that state interaction need not be limited to state abstraction, it could map s to
an arbitrary new state space. For example, instead of simply eliminating irrelevant aspects
of the state space, the interaction could be defined as a type of context-dependent PCA
that rotates the state into a form more useful for learning in the lower level task. However,
state abstraction is the simplest and most lightweight type of state interaction, and its
usage has been explored in several other examples of HRL. Thus it is likely to be the most
commonly applicable type of state interaction in this model.

Reward interaction

Reward interaction involves the higher level modifying the reward input of the lower level.
The primary use case of this is to implement theories of pseudoreward, for example as used
in both options and MAXQ (see Sections 2.2.2 and 2.2.4). Recall that pseudoreward is
reward administered for completing a subtask. Without pseudoreward, a layer can only
learn to choose actions that maximize the external reward associated with an overall task.
If the modeller wants the layer to learn to achieve a subgoal independent of the overall
task, then there needs to be pseudoreward associated with that subgoal in order to guide
the RL process.

For example, in the house navigating agent recall that the desired functional architec-
ture is that the lower level navigates to the target set by the high level, while the high
level picks targets to complete the overall task. However, if the low level only receives
environmental rewards, then it will learn to select actions that complete the overall task,
which may or may not involve going to the target set by the high level. In order for the
low level to learn a policy that goes to the specified target, it needs to be rewarded for
reaching that target.

More generally, the low level should be rewarded for completing the goal set by the
high level. Again it is difficult to specify the specific implementation of this mechanism in
a task-independent fashion, as the notion of a goal will differ from task to task. However,
the most common type of goal is likely to involve reaching some target state s0 (as in the
above example). In this case the output a of the high level defines the target state s0
(i.e., there is some one-to-one mapping A 7→ S). The pseudoreward signal can then be
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computed via, e.g.,

rt =

{
1 if ‖s− s0‖ < θ

0 if ‖s− s0‖ ≥ θ
(4.11)

Note that this function has the same form as the one computed when calculating the state
distance in the dual training system (Equation 4.4). Thus the same circuit used to compute
that function can be reused here to compute the pseudoreward.

The pseudoreward signal could completely replace the environmental reward, or it
could be added to the environmental reward with some relative weighting. The former
will implement the pure subgoal learning of options/MAXQ, while the latter is more akin
to reward shaping. Reward shaping involves a higher level that is used to help train a
lower level by providing “hints” via the reward signal (e.g., Randlov and Alstrom, 1998).
The pure subgoal reward can be seen as an extreme case of reward shaping. Again, either
approach is compatible with this framework, depending on the task.

4.4.2 Relation to other HRL approaches

It is helpful to compare the hierarchical mechanisms of this model to the computational
theories described in Section 2.2, as another way of elucidating the features of this model.
Firstly, it is important to note that this model is not an exact recreation of any of those
theories—the process of neural implementation requires many adaptations and modifica-
tions, as we have seen in previous sections. However, the model does stay quite close to
these systems functionally, in particular to the options framework.10

The key aspect of the options framework is that it redefines actions as policy objects
called options. That is, when the agent selects an action, what it is doing is putting a
particular policy into place, so that future decisions will be made according to that policy.
This can be simulated in the model through the mechanism of context interactions. When
the agent selects an option, that can be modelled by appending a vector to the state of
a lower level. This is like loading a particular set of Q values—a different mapping from
actions to values, depending on the context. Thus, effectively this action has put a new
policy into place that will guide future action selection, which is the basic mechanism of
the options framework.

10We will focus primarily on the options and MAXQ frameworks here, as they lie closest to this approach.
HAMs are linked to this work by their use of SMDPs to encapsulate temporal abstractions, but the key
feature of HAMs—the reduction of the task to choice points in finite state machines—does not really have
close parallels in this work.
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The SMDP TD update mechanism used in this model is also essentially the same one
employed in the options framework (compare Equation 4.9 and the formula in Section 3.2 of
Sutton et al. 1999). The options framework employs the standard multiplicative discount, a
Q-learning rather than SARSA style update, and is formulated for discrete time and space,
but the overall form of the SMDP TD learning update is the same; the Q values from when
the abstract action was selected and when the action terminates are subtracted, plus the
reward, and that prediction error is used to update the Q values from the beginning of the
action period. This is an important feature that separates this approach from the MAXQ
framework, where the learning updates are based on the hierarchical decomposition of the
value function.

One important way in which this model differs from the options framework, and is
more similar to MAXQ, is that the actions are placed into a fixed hierarchical structure.
In the options framework an option’s policy is defined over all the available actions in a
given state. In this model the actions are spread across different layers, and each policy is
only defined across the actions of that layer. For example, the lower level might contain
all the primitive actions for interacting with the environment, and the higher level could
contain the abstract actions (representing different policies for the lower level); this would
mean that the low level policy was only defined over primitive actions, and the higher level
policy was only defined over abstract actions—it would not be possible for the high level
to select a primitive action.

Of course the hierarchical structure could be defined differently, for example including
all the abstract and primitive actions at each level. But even the concept of different levels
is not a feature of the options framework. In the options framework there are just a pool
of options available in a given state. After one is selected the same pool is still there, there
is no notion of moving through some pre-existing hierarchical structure. For example, the
options framework allows for an infinite recursion of option selection; if option o is selected
in state s, the policy for o could also specify that option o be selected in state s, and so on.
This would not be possible in this model or MAXQ, because when o is selected that means
moving down one layer in a given hierarchical structure, and there are a finite number of
layers. We will discuss more in Section 6.1.3 why the decision was made to modify this
aspect of the options framework; for now we just highlight it as an important difference.

It should also be noted that, as discussed above, the hierarchical structure we have de-
fined here allows for a lot of flexibility. A given model could be pushed more in the direction
of options or MAXQ depending on the choices of the modeller. For example, the use of con-
text interaction is more options-like, as described above, while state interactions are more
MAXQ-like (state abstraction is a key feature and motivation in the MAXQ framework
Dietterich, 2000). In addition, depending on how the reward interactions are constructed
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the results of this system could be hierarchically (MAXQ) or recursively (options) optimal.

4.4.3 Summary

Context and state interactions are based on changing the input of the Q function. The
former acts by appending new information, allowing the agent to select different actions
in the same environmental state. In other words, context interaction increases the size
of the state space in order to increase the decision making power. State interaction is
most likely used for implementing state abstraction, wherein irrelevant aspects of the state
space are removed. This is the inverse of the context effect; the state space is made smaller,
leading to a decrease in the complexity of the policy. Reward interaction acts differently,
by changing the target of the Q function. This is key to the notion of subgoals, where the
aim is for the layer to learn to achieve some target that is different than the overall task
goal.

Although we have presented the different interaction types independently, in practice
useful hierarchical structures often combine all three. For example, if state interaction is
combined with context interaction, then the efficiency gains of the state abstraction can
help balance the state space enlargement of the added context information. And it is often
the chunking of the overall task into simpler subgoals, made possible by pseudoreward,
that motivates the added context information, and allows for the simplifications of state
abstraction.

The important feature of all three interaction types is that they operate only through
the normal RL inputs and outputs. All that changes are the vector values of those signals,
based on relatively simple transformations as described above. There are no changes made
to, e.g., the internal action selection or TD error calculation of the components. This makes
it easy to define different hierarchical interactions for different tasks, as it is not necessary
to make changes to the fundamental implementation of the SMDP RL mechanisms.

4.5 Neuroanatomical mapping

In previous sections we discussed how the various model components can be implemented
via the low-level features of the brain, namely neural activity and synaptic connections.
Now we turn to how this model can be implemented by the macro-level structures of the
brain. That is, where do the various components of this model lie physically in the brain?
The majority of empirical evidence lies at this macro-level, thus such a mapping is critical
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Figure 4.8: Neuroanatomical mapping of the model. State input could be taken from
almost any brain region, depending on the task (hippocampus may provide a useful state
encoding in many cases). Q values are represented in the striatum (dark grey), divided into
dorsal and ventral for the current and previous Q functions, respectively. Orbitofrontal
cortex provides the input to the previous Q function. Action selection is performed by
basal ganglia/thalamus (light grey). The error signals used to update the Q functions are
output from the ventral tegmental area/substantia nigra. Brain image adapted from image
by John Henkel (Wikimedia Commons/Public Domain).
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in connecting this work to experimental data. This mapping also helps to establish the
biological plausibility of the model, by demonstrating that the components and communi-
cation in this model are supported by the neuroanatomy.

It is important to note that this section is largely a review of previous work. Extensive
effort has gone into the search for neurophysiological correlates of RL processes (see Dayan
and Niv 2008; Niv 2009; Botvinick et al. 2009 for reviews). The main purpose of this
section is to summarize those results, and connect the components of this model to that
data. In other words, our purpose here is not to propose a novel neuroanatomical mapping;
rather, it is primarily to show that the model we have developed is consistent with the
existing proposals.

The structure of this section follows the description of the model, focusing on action
values, action selection, error calculation, and hierarchical composition in turn. A coarse
overview of the mapping is shown in Figure 4.8.

4.5.1 Action values

The basic feature of this component is the neural representation of the Q function. Thus
the question is, where are action values represented in the brain? Since action selection is
performed by the basal ganglia in our model, it would be expected that the action values
be represented in the major input channel of the basal ganglia, the striatum. And, indeed,
there is strong evidence that this is the case.

For example, Samejima et al. (2005) recorded from 504 neurons in the dorsolateral
striatum of macaque monkeys. The task was a simple two-choice RL task; the monkey
holds a lever, and then when prompted moves it to either the left or right, and receives
some corresponding reward. The experimenters then manipulated the probability of reward
associated with moving left or right in different blocks of trials.

They found that 142 of the recorded neurons showed some responsiveness to the task,
and of those, half showed a correlation with the reward probabilities of the actions. For
example, a “left neuron” would fire more when the left action had a high probability of
reward and less when the left action had a low probability.

The challenge in this investigation is to distinguish action values from action selection.
That is, does the firing of the “left neuron” represent the value of left, or does it just
indicate that the monkey has decided to move left? Samejima et al. (2005) showed that
these neurons were actually representing Q values by manipulating the reward probabilities
independently of the selected action. For example, in one block of trials right would be
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rewarded with 90% probability and left with 10%. In the next block, right would again be
rewarded with 90% and left with 50%. In either case the selected action is predominantly
right, and yet Samejima et al. showed that the “left” neurons still showed a differential
response in the two trials. This can also be demonstrated by comparing one block where
left is rewarded 50% and right is rewarded 90% versus another where left is rewarded 50%
and right 10%. In this case the value of the left action is constant, but action selection
is reversed in the two trials. Samejima et al. (2005) showed that the activity of the “left
neurons” was constant in these two conditions, again indicating that they encode action
values, not action selection. Overall, one third of the task-sensitive neurons showed this
Q value encoding, which constituted 60% of the neurons that showed any correlation with
reward probabilities.

In addition, Samejima et al. (2005) found that the activity of the Q value neurons
followed the time course of the Q values in a simple TD RL model trained using the same
reward history as the monkey. This suggests that not only do the neurons represent Q
values, those values are learned in a similar manner to that predicted by the TD approach.
A similar result was found by Pessiglione et al. (2006) in a human fMRI experiment, but
in the ventral rather than dorsal striatum. This type of model-matching evidence is not as
strong, as the correlation of observed signals with an action-value model is only suggestive
of the fact that the observed signal represents action values (as opposed to, e.g., state
values). However, it is more evidence consistent with the hypothesis that the action values
component is located in the striatum.

It is also important to note that the striatum receives very widespread afferent projec-
tions. This is a desirable feature of any action values component, as the afferent information
in this case represents the state. The state in a decision making task could involve visual
areas, somatosensory, motor, linguistic, working memory, and so on. Thus it is important
that all that information could potentially be available as the input to the action value
function. The striatum fulfils that requirement, further supporting the proposed location
of this component.

Place cells

When discussing the action values component, we pointed out that it is often useful to have
a distributed, sparse, and local state representation, using Gaussian radial basis functions
as an example (see Section 4.1.1). The state representation is a task-specific feature, and
so we will not go in depth into it here. However, it is interesting to mention that this
kind of representation is exactly that provided by hippocampal “place cells” (O’Keefe and
Dostrovsky, 1971). These neurons were discovered in rodent spatial navigation tasks, where

95



it was noticed that certain neurons would fire whenever the rat was in some specific location
in the environment, firing more rapidly the closer the rat was to the centre of the place cell
field. Although the original discovery of place cells was based on spatial representations,
later work has shown that the hippocampus provides the same style of sparse encoding
across non-spatial state information as well (Eichenbaum et al., 1999). The hippocampus
also projects to both the dorsal and ventral striatum (Groenewegen et al., 1987). Thus the
hippocampus represents a plausible candidate for where one might find the kinds of state
encoding described in Section 4.1.1.

Note that we do not suggest that all state information in this model originates in the
hippocampus. Different tasks could require many different inputs, from various locations
throughout the brain. Rather, we just intend this to show that a particular style of state
representation which we pointed out as useful from a computational perspective is in fact
available in the brain.

Dual training

Another important feature of the action values component is the dual training system
(Section 4.1.2). This is a novel feature of this model, and so not something that has been
directly investigated experimentally. Thus we must search for evidence of this component
indirectly, looking for suggestions of its plausibility.

The first issue to be addressed is where the previous state information is stored. One
suggestion comes from the work of Schultz et al. (2000). They review a collection of
previous results based on a delayed response task. A monkey is presented with a cue that
indicates the task for that trial. After a delay period, it then selects an action based on
that task. Then, after another delay period, it is rewarded if it picked the correct action.
Under the interpretation of the dual training system, this would mean that the monkey
needs to retain information about those previous states across the delay periods, so that
the values of the Q functions in those states can be updated once the next state is reached.

Schultz et al. (2000) found that neurons in the orbitofrontal cortex (OFC) consistently
showed sustained activity following each state change (i.e., spanning the delay period).
Importantly, this OFC activity was only, or predominantly, present when the monkey was
in a rewarded, reinforcement learning environment. In a passive task where the monkey
did not have to make any decisions to get a reward this persistent OFC activity was not
present. This provides further evidence that this OFC activity is not just a generic memory
system, but memory specifically tied to the reinforcement learning process.
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The next key aspect of the dual training system is the internally generated error signal
based on the difference between the output of the two Q value functions. This requires
a particular form of connectivity, where the output of the two functions is combined and
then fed back to just one of the functions. Interestingly, this is exactly the structure of the
connectivity between ventral and dorsal striatum via the dopaminergic nuclei, reviewed in
Joel et al. (2002). They were discussing this in the context of an actor-critic architecture,
pointing out that it was problematic for some models that map the actor and critic onto
the dorsal and ventral striatum. But if we interpret the same data from the perspective of
the dual training system, it fits quite well.

First of all, the dopaminergic nuclei (ventral tegmental area and substantia nigra) have
long been associated with error signals in reinforcement learning. This will be discussed
in more detail in Section 4.5.3, for now we just point out that this makes it a good can-
didate for the production of the error signal in the dual training system. The interesting
observation of Joel et al. (2002) is that there is an asymmetry in the connections between
the dorsal/ventral striatum and the dopaminergic nuclei. The ventral striatum projects
broadly throughout the dopaminergic nuclei, while the dorsal striatum only projects to a
subset of the dopamine neurons. Both receive projections back from the dopamine neurons,
but the result of this connectivity pattern is that only the dopamine neurons projecting to
the dorsal striatum receive input from both ventral and dorsal striatum; in other words,
those neurons could conceivably compute the difference between the dorsal and ventral
output, and project that difference back to the dorsal striatum. Another important point
is that the OFC projects to ventral, but not dorsal, striatum. Thus the previous state
information would be available to the ventral striatum.

Together, this data supports the following mapping of the dual training system. We
have already proposed that the striatum is the basis of the value function representation;
now we divide that into dorsal and ventral striatum, corresponding to the current and
previous Q value components of the dual training system, respectively. The previous state
information is stored in the OFC, which projects to the ventral striatum (the previous Q
function). The dorsal and ventral striatum then both project to the dopaminergic nuclei,
where the difference is computed and fed back to the dorsal striatum to update the current
Q function.

It is important to emphasize that this section of the neuroanatomical mapping is quite
speculative. We have assembled various different results into a coherent story, but none
of these results were intended to address the proposed system. Although the mapping we
have established here is plausible, it is entirely possible that new data could invalidate this
proposal, or create a more convincing mapping elsewhere. We will discuss in Section 6.3
some of the specific predictions that arise from the dual training system, and how they
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could be used to experimentally investigate the mapping we propose here.

Action termination signal

One final question in the action values component is the origin of the action termination
signal. This signal is used to trigger the transfer of the current state into the previous
state memory (see Section 4.1.2), and is also used in subsequent components to control,
e.g., the resetting of the integrated reward.

Interesting data in this regard comes from a study by Fujii and Graybiel (2003). They
gave monkeys a task in which they had to make a sequence of eye movements in order
to receive reward. Recording from neurons in the PFC, they observed a burst of activity
when the sequence was complete. This burst was not related to reward activity, as delaying
the reward, changing its value, or omitting it entirely did not affect the signal. The signal
was also robust to changes in the properties of the sequence, such as changing the delay
between saccades or the number of saccades; this indicates that it is not a simple timing
signal, but actually indicates the end of the sequence.

Interestingly, if the monkey was given an external cue indicating the end of the sequence
then the self-generated signal was reduced. This suggests that the monkey is able to make
use of other termination signals if they are available, and further reinforces the role of this
neural activity as a termination signal.

In summary, it appears that the brain does generate signals marking the termination
of temporally extended actions. These signals could then fulfil the role required by the
action value and error calculation components in this model.

4.5.2 Action selection

The neuroanatomical mapping of the action selection component is relatively straightfor-
ward, as it consists largely of the basal ganglia model of Gurney et al. (2001) and Stewart
et al. (2010). We have discussed how this model maps onto the internal neuroanatomical
structure of the basal ganglia and thalamus in Section 2.3.4, and this is presented in much
greater detail in Gurney et al. (2001). The only remaining issue is how the inputs and
outputs of this component connect to the rest of the model.

The only input to the action selection component is the action values. As mentioned, the
striatum is the primary input channel for the basal ganglia, thus given the mapping of the
previous section the action values are readily available to the action selection component.
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The thalamic output goes to two places. One projection goes towards generating the
action vector for the environment. This aspect we do not take to be a realistic part of the
model that has a neuroanatomical mapping. The action generation circuit we discuss in
Section 4.2 is simply a placeholder for the complex mechanisms in the brain that transform
thalamic output into an action, which we do not include as part of this model. However,
see Eliasmith et al. (2012) for an example of work that does link the basal ganglia to a
model of motor output, with a corresponding neuroanatomical mapping. Thus the model
we present here is consistent with such a connection, but it is not implemented.

The other target for the thalamic output is the error calculation network, where it
is used to gate the error calculation according to the selected action. Evidence for this
interaction comes from the work of Parsons et al. (2007), recording dopaminergic input
in the ventral striatum. Recall that the ventral striatum contains the previous state Q
function, which is where we would expect the error calculation component to project.
Parsons et al. (2007) found that although the dopamine input in the ventral striatum
comes from the ventral tegmental area, it could be modulated by stimulation administered
in the thalamus. Although it is difficult to establish the actual function of that modulation,
it does demonstrate that the thalamic output interacts with the error signal calculation,
as proposed in this model.

4.5.3 Error calculation

The basic function of this third component is to compute the TD prediction error. This is
one of the most well-studied neural correlates of reinforcement learning; work by Schultz
(1998) showing that dopamine neuron activity corresponded to reward prediction error
(rather than just reward, as was previously thought) was what sparked much of the interest
in applying computational theories of reinforcement learning to the brain. This result has
since been replicated many times, including in humans (e.g., O’Doherty et al., 2004, see
Niv, 2009 for a review).

The two main nuclei of dopamine neurons are the ventral tegmental area (VTA) and
substantia nigra pars compacta (SNc). In general, the former targets the ventral striatum
while the latter targets the dorsal striatum. Given the mapping of the previous state Q
representation onto the ventral striatum, we would therefore expect the TD error signal of
the model to come from the VTA.

More recent studies have even attempted to differentiate the particular type of pre-
diction error observed in the brain. The two main hypotheses are the action-value based
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errors (Q learning and SARSA) and the actor-critic architecture (based on the state val-
ues). That is, the error in the first case is based on Q(s′, a′)−Q(s, a), and V (s′)− V (s) in
the actor critic case. Morris et al. (2006) attempted to differentiate these two possibilities
using a task where monkeys were presented with two stimuli, each with its own reward
probability, and had to pick one. The monkey then receives a reward, and Morris et al.
can analyze whether the resulting prediction error observation correlates with the state or
action value. For example, imagine the monkey is in a state with one high value choice
and one low value choice, picks the low value option, and gets no reward. The actor-critic
hypothesis would predict a large negative prediction error in this case, as the monkey was
in a relatively high value state and ended up with no reward. SARSA would predict a small
prediction error, because the monkey picked an option with a low estimated value and that
estimate was proven correct. Morris et al. (2006) find that the observed prediction errors
correlate with the action value approach. This is replicated in work by Roesch et al. (2007)
using rodents, although they found a mixture of on-policy and off-policy errors. Together
these studies give relatively strong support to the proposal that the error signal used in
this model is carried by the dopaminergic neurons.

Inputs and outputs

There are three inputs to the error calculation component: action values, the identity
of the selected action, and reward. We have already discussed in the action value and
action selection mapping that their output is connected to the dopaminergic nuclei, again
supporting the plausibility of the overall mapping. The only remaining input is reward.

In this model the reward signal is just a direct input from the environment. Obviously
real brains do not receive a direct reward signal; they receive some sensory data as input,
which is then translated through internal mechanisms into reward. This is why money can
be used as a reward in human reinforcement learning experiments, even though it has no
direct stimulative value. These mechanisms are not included in this model; as with the
action output, the reward circuitry in this model is just a placeholder for complex processes
occurring elsewhere in the brain. Thus we do not include these components as part of the
neuroanatomical mapping in this model. However, Lammel et al. (2012) found that they
could simulate reward or punishment by optogenetically stimulating different inputs to the
VTA, supporting the idea that the VTA does have an input channel for reward (wherever
it arises from), as suggested in this model.

The output of the error calculation component projects to the action values component,
where it is used to modify the previous state Q function. Given the mapping so far, this
implies that the dopamine signal should project to the (ventral) striatum, and modulate the
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learning of synaptic weights there. This is another well studied feature of the reinforcement
learning circuitry. Evidence for dopaminergic modulation of synaptic plasticity in the
striatum was first demonstrated by Wickens et al. (1996), and has since been replicated in
various paradigms, including human experiments (Reynolds et al., 2001; Pessiglione et al.,
2006). Thus there is good evidence that this interaction between the error calculation and
action value component is consistent with the neurophysiology.

Discounting

There are two final features to discuss related to error calculation in this model. Both are
related to discounting, namely the integrative discount and the positive bias mechanism.
As was the case for the dual training system, these are novel features of this model and
therefore have not been directly investigated by any experimental work. Therefore we must
adopt a similar speculative approach, searching for data that could be consistent with these
hypotheses.

With respect to the integrative discount, what immediately appears relevant is data
investigating how people estimate the value of future rewards (Critchfield and Kollins,
2001). For example, subjects are asked questions like “would you like $10 now or $100 in
6 months?”, and their response can be used to estimate the discount they apply to a 6
month delay. Some have suggested that the discount factor in RL could be used to explain
these results, which has led to debate into whether neural reinforcement learning models
should use, e.g., a hyperbolic or exponential discount function (Dayan and Niv, 2008).

However, these results are not as relevant to the current question as they may appear.
They refer to what we might call “behavioural discounting”. This is different than the
discount factor γ used in the TD update equation (Equation 2.8). As discussed in Sec-
tion 4.3.2, the TD discount factor was introduced for practical reasons, to prevent Q values
from constantly increasing. It was only later, after the parallels between TD prediction
errors and dopamine were discovered, that it was suggested that γ might also explain
behavioural discounting.

It is likely that relatively complex reasoning goes into the calculation of behavioural
discounting, based on factors such as present needs, future risk/uncertainty, and so on.
Thus while researchers such as Kim et al. (2008) have found that activity in dorsolateral
prefrontal cortex (DLPFC) correlates with the behaviourally discounted values, we hesitate
to apply that conclusion to the integrative discounting of this model.

In other words, when we say that the model uses integrative discounting, we are referring
to the implementational question of how the discount is used to compute a prediction
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error signal, which may or may not be equivalent to the observed behavioural discounting.
For example, if a constant signal is fed into the integrator the result would be linear
discounting, if a linearly increasing signal were fed into the integrator the result would be
polynomial discounting, and if some complex function computed in DLPFC were fed into
the integrator the result might look like hyperbolic discounting. Thus it is difficult to infer
the implementational mechanism based on behavioural data.

In theory, we would expect the integrative discounting to be located along with the
rest of the error calculation process in the dopaminergic nuclei, barring evidence to the
contrary. The problem is that this kind of detailed implementation question is very low
level, involving a small internal process in the error calculation regions. It is difficult to
observe or differentiate computational variables at that level, particularly when experi-
menters are not looking for them. Thus we are not aware of any data either for or against
this hypothesis. In Section 6.3 we discuss a prediction that could be used to generate such
evidence.

Unfortunately the mapping is similarly inconclusive with respect to the positive bias
mechanism. Again this is a low level implementational mechanism, for which it is difficult
to find evidence either for or against. In addition, it would not be surprising to find that the
positive bias mechanism is not well supported. Recall that the reason the positive bias was
introduced was to supplement the relatively weak exploration mechanism in this model.
Real brains have much more complex exploration mechanisms, and if such a mechanism
were included in this model (for example, an exploration component that could notice
that no random exploration had occurred for a long time), then it might be possible to
remove the positive bias mechanism entirely. In other words, as with some of the action
and reward components, we can think of the positive bias circuit as a placeholder for more
complex exploratory networks, and not something we would necessarily expect to find a
neuroanatomical correlate for.

4.5.4 Hierarchical composition

Empirical data on hierarchical reinforcement learning is more difficult to come by than
standard RL. One reason is that HRL is simply a younger field, and has had less time to
accumulate data; the neural correlates of reinforcement learning have been under investi-
gation since at least the mid-90s, whereas data on HRL has only started to appear within
the last 5–7 years. Another challenge is that HRL tasks are required to be more complex,
in order to provide a hierarchical structure. This makes them difficult to apply to animal
models like rodents, or even primates, without simplifying the hierarchies to the point
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of triviality. Thus much of the HRL data comes from human studies, using non-invasive
methods such as fMRI. This means that often we can only speak of general activity levels
in relatively large brain regions, rather than looking at detailed neural signals as we were
able to do in previous sections. However, we can still find evidence to support the general
hierarchical structure we suggested in Section 4.4.

The first question to be addressed is whether there are different hierarchical levels in
the brain’s RL processes, corresponding to the different levels in the model. Specifically,
this model suggests that the different processing levels are represented by physically dis-
tinct neural networks, and that they interact in a relatively one-way fashion with higher
levels influencing lower. There is indeed neuroanatomical evidence supporting this type
of structure. Although we have been speaking previously of the basal ganglia/striatum
as unitary objects, in fact the basal ganglia is divided into many relatively independent
loops (see Figure 4.9). That is, a particular area of cortex will project to a particular
striatal region, which will make its way through the basal ganglia to a particular region
of the thalamus, and then back to the same cortical region (Redgrave et al., 1999). Thus
there are multiple repeated action value/action selection circuits, which could implement
the different levels of a hierarchy.

In addition, more recent results have shown that these loops are actually more of a
spiral, with information from “higher level” cortical areas spiralling through the basal gan-
glia down into “lower level” areas. For example, Haruno and Kawato (2006) gave subjects
a two-choice task, where they were shown an image and had to press one of two buttons
based on the stimulus. Each stimulus was associated with different reward probabilities for
the two buttons. As expected, they found activity in the striatum correlated with the theo-
retical action values and prediction error. The important observation from our perspective
is that as they increased the task difficulty, different regions of the basal ganglia became
more active; specifically, the activity related to action values moved in a caudal–rostral
direction within the striatum.

Badre et al. (2010) found a similar result in a different task that gives more insight into
the specific link to hierarchical processing. In this study the setup was similar—subjects
were shown a stimulus, and had to press one of three buttons. The stimuli were objects that
could vary in shape, colour, and orientation. In one condition each stimulus was associated
with a random button. In the other condition, the button associations were governed by a
higher level rule. For example, a rule might be “if the stimulus is red, respond according
to orientation” versus “if the stimulus is blue, respond according to shape”. In the first
condition the learning process is simple reinforcement learning. The subject sees a stimulus,
presses a button, and receives a reward which they can use to update the value of that
button for that stimulus. In the second condition subjects can learn at two different levels.
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Figure 4.9: Visualization of cortical–striatal–thalamic loop/spiral structure, illustrating
multiple parallel systems and caudal–rostral gradient. Figure from Haruno and Kawato
(2006).
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At the high level they can learn the abstract rule; that is, when they see a red stimulus
they can respond according to orientation, and if they are rewarded then they can update
the value of that rule. At a lower level they need to learn the implementation of the rule
(i.e., given that the rule is “respond according to orientation”, which button should they
press for the given stimulus). Similar to Haruno and Kawato (2006), Badre et al. (2010)
found that the hierarchical condition activated more anterior striatal regions.

These caudal–rostral gradients in the striatum parallel a similar pattern in the cortex,
corresponding to the inputs/outputs of the basal ganglia loops. That is, the involvement
of more complex/hierarchical tasks tends to involve increasingly anterior cortical regions,
moving from the unimodal sensory/motor regions into the more abstract associative pre-
frontal cortex (Badre et al., 2010). For example, Golde et al. (2010) found that as the
number of rules increased in a pattern completion based intelligence test, activity moved
more and more anterior in the prefrontal cortex.

In summary, there is relatively strong evidence that there are multiple distinct cortico–
striatal–thalamic processing circuits, as suggested by the repeated RL circuits that form the
hierarchical structure of this model. In addition, these loops interact in a top-down fashion,
with higher level circuits projecting information to lower levels, again as employed in the
model. Finally, we can place these multiple levels in a roughly caudal–rostral gradient, with
higher levels of the hierarchy occupying increasingly anterior regions of striatum/cortex.

However, it is important to note that although the simple repetition of this mapping
is appealing, as we move to increasingly high level RL processing there may be qualitative
differences in the neural circuitry. For example, although we have proposed that the
basic representation of action values occurs in the striatum, there is evidence that in
more complex tasks prefrontal regions such as anterior cingulate cortex or OFC may be
involved in representing action values (Botvinick et al., 2009; Holroyd and Yeung, 2012).
These signals are still relayed through the striatum, thus we would still expect to see
striatal activity correlated with action values. The difference is in where those values are
being computed. In the basic story, action values are computed by the connection weights
from cortex to striatum. This is essentially a one-hidden-layer function approximation
model. However, in more abstract contexts, such as deciding the next step in repairing
a bicycle, it seems unlikely that the values of the various options are computed directly
in cortico–striatal weights. Rather, complex circuitry involving memory, planning, and
more would all go into determining the values of the different available options. Those
values can then be relayed through the striatum in order to continue the normal decision
making/learning process. The resulting neuroanatomical mapping will depend on the task-
specific implementation; here we only want to highlight the fact that such an extension is
not incompatible with the rest of the mapping presented here.
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Hierarchical interactions

The next issue is the neuroanatomical correlates of the three different hierarchical interac-
tions we defined (context, state, and reward, see Section 4.4). The model does not describe
specific mechanisms for these interactions; rather, they represent general categories, which
could be implemented in various different ways. Thus we will not focus here on establish-
ing a specific neuroanatomical mapping for these interactions, but instead focus on their
plausibility. That is, we will review evidence that the brain does employ these different
interaction types in hierarchical RL environments.

The context interactions are perhaps the most well established. Botvinick et al. (2009)
summarize data from several different studies, in an effort to extend the standard actor-
critic neuroanatomical mapping to HRL. Our model does not employ the actor-critic archi-
tecture, but the underlying features of interest are the same in this case. Botvinick et al.
(2009) show first that contextual information is represented in prefrontal areas (which we
would expect given the above mapping of higher level layers onto more anterior regions),
and second that those representations modulate activity in striatum (i.e., the representation
of action values). Thus the mechanisms are in place to implement the context interaction
type; a high level action can modify the context representation in some prefrontal region,
and that context can then drive different action values (and resulting policies) in lower
level RL processes.

State interactions have been investigated in the work of O’Reilly and Frank (2006)
and Frank and Badre (2012). The former presents a model of RL-based gating, where
basal ganglia output selectively inhibits different aspects of state represented in cortex.
This is an example of state abstraction, where the basal ganglia is learning which aspects
of the state are relevant in a given task. Frank and Badre (2012) extend this model to a
hierarchical context, where the output of one basal ganglia loop gates the input to the next
(these models are described in more detail in Sections 3.1.3 and 3.2.2). These results are
somewhat indirect evidence, as the existence of a model does not imply a correspondence
in real brains. However, these models are well-based in neuroanatomical evidence showing
that the basal ganglia does have these kinds of gating abilities (see Frank et al. 2001 for a
review). In addition, the authors go to extensive effort to compare the results of the model
to experimental data (e.g., Badre and Frank, 2012). At the least this work demonstrates
that state interaction is plausibly supported by the neuroanatomy, and more generously it
provides a specific neural mechanism for that interaction.

The last question is the plausibility of reward interactions; in other words, is there neural
evidence for the use of pseudoreward in the reinforcement learning circuitry? Excellent data
in this regard comes from recent work by Ribas-Fernandes et al. (2011). They created a
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simulated navigation task, where subjects had to move a cursor to a package, pick it up,
and then drop it off at a target location. In order to search for evidence of pseudoreward,
they manipulated the task by shifting the location of the package while the subject was en
route. If the overall distance to the target location were made longer we would expect this
to induce a negative prediction error, because the agent is suddenly in a worse state than
they expected. The interesting result comes when the package is shifted to a point that
does not change the overall distance to the target, but does change the distance to the
package. In this case the distance to the reward is unchanged, so in a basic RL framework
there would be no prediction error. However, Ribas-Fernandes et al. observe a negative
prediction error in the anterior cingulate cortex when the shift occurs. This suggests that
there is pseudoreward associated with reaching the package; the new state is farther from
that pseudoreward, even if it is no farther from the task reward, which leads to a negative
prediction error.

This result demonstrates the presence of subgoals, but it does not necessarily demon-
strate a hierarchical relationship. The key feature of reward interaction, as we define it,
is that it is based on the output of a higher layer. In this task subjects could just be
representing the problem as a sequence of two independent tasks, without any driving
influence from a higher level. Ribas-Fernandes et al. (2011) investigate this possibility in
a follow-up experiment, where at the beginning of the trial subjects are shown two dif-
ferent packages and asked which one they would like to deliver. If they are representing
the package as an independent goal they should reliably pick the closer package (assuming
the overall distance is the same).11 However, Ribas-Fernandes et al. found no significant
relationship between package distance and subject choice, despite the reliable presence of
pseudoreward prediction errors. This shows that subjects do not innately value a short
package distance, they only value it within the context of the overall task. In other words,
the pseudoreward is driven by the higher level problem solving process. This means that
the observed prediction errors are due to true pseudorewards, in the manner defined by
reward interactions.

4.5.5 Summary

This completes the neuroanatomical mapping for all the major components of the model.
For some there is strong experimental evidence and a fairly confident neural mapping, such
as the association of prediction error with the dopaminergic nuclei. In others we have put
together evidence from various sources to support a mapping that is plausible but unproven

11Or the farther package, if they were trying to optimize the delivery part of the task.
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(e.g., the mapping of the dual training system onto dorsal and ventral striatum). And in
a few cases we have pointed out model features for which there is little evidence either for
or against, such as integrative discounting.

The first purpose of this mapping is to support the biological plausibility of the model.
We seek to show that this model is a plausible neural account of hierarchical reinforce-
ment learning, not just at the level of neural function but in terms of the macro-level
neuroanatomical features of the brain. The other purpose of the mapping is to assist in
producing testable claims that can be used to investigate the model experimentally. For
example, this mapping now represents a specific prediction that dorsal and ventral stria-
tum are implementing the computations of the dual training system. If that prediction
is born out then the model has provided new insight into a key aspect of basal ganglia
anatomy. If it is not, then that motivates a re-evaluation of the model’s implementation,
and the search for a revised neuroanatomical mapping or a new method of propagating
error updates back in time. In either case, the usefulness of the model is improved by the
presence of a detailed neuroanatomical mapping.
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Chapter 5

Results

With the description of the model complete, we now move on to demonstrations of the
model’s performance. The goals of this chapter are threefold. First and foremost, the
purpose of these results is to demonstrate that the model works—that the action values,
action selection, and error calculation components all perform the functions described in
the previous chapter, and that together they are able to carry out the hierarchical reinforce-
ment learning process. The second goal is to demonstrate that the model’s performance is
consistent with neurophysiological data, in order to further support its biological plausi-
bility. And third, we seek to demonstrate the advantages of hierarchical learning, in order
to show the importance of including these features in models of decision making.

Note that it is not our goal to maximize the model’s performance on some specific
task. Achieving the highest performance on a given task requires building a model highly
customized to that task, in order to take advantage of all the particular quirks of that
environment. Although one could pursue that goal using our methods, that is not the
focus of the work we present here. We seek to understand the brain’s general reinforcement
abilities; thus we consider it more important to demonstrate how the model can be flexibly
applied to a range of tasks without modifying its basic structure, rather than showing how
to build a model for a specific task.

To that end, we have chosen the tasks we present here in order to showcase the different
features of the model and demonstrate the range of its problem solving ability. In each
section we will present the task in more detail, describe how the model is applied to that
task, and then explore its performance.
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Figure 5.1: Example input and output for the action values component. The input (a)
consists of simulated place cell activations, and the output (showing (b) spikes and (c)
decoded values) indicates the value of moving in the four cardinal directions in a spatial
navigation task (the target is to the south east of the agent).

5.1 Individual component performance

Before moving on to the tasks themselves, we begin by demonstrating the performance of
the individual components of the model. In the previous chapter we described the desired
function of each component, and the implementation designed to carry out that function.
Here we seek to demonstrate that those implementations are successful and carry out the
specified function. These examples are intended to be illustrative, rather than rigorous
proofs. The quantitative performance of the model is examined in the context of the
specific tasks in upcoming sections.

Figure 5.1 shows the output of the action values component. At the left we can see
the input state; in this case, these are simulated place cell activations (Gaussian RBFs,
see Section 4.1.1), with each line representing the activity of one cell. As the agent moves
through the state space different cells become active. The middle figure shows the activity
of the neurons representing the current Q function, which receive that state as input; each
row corresponds to one neuron, and each dot is a spike from that neuron. On the far right
is the vector Q(s) that is decoded from the output of those neurons. We include the neural
activities just to emphasize that all of the functions we describe here are being performed
via neural computations. In future figures we will just show the decoded values, as they
contain the meaningful, interpretable information.

In this case the agent is approaching a rewarded state so, as expected, the action values
are ramping up. The target is to the south east of the agent, so those actions have the
two highest values, and we can see that as the agent moves eastward eventually the value
of moving south becomes dominant. The actions that move away from the target (north
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(d) Previous state Q values
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(e) Current state Q values
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Figure 5.2: Computations of the dual training system. The previous and current state are
shown in (a) and (b), respectively. (c) shows the output of the population computing the
thresholded distance between those states. (d) and (e) show the Q values of the previous
and current state. (f) shows the difference between those values, which is inhibited by (c)
and used as the training signal for (e). See Section 4.1.2 for details.

and west) continue to have a low value throughout. In other words, the component output
matches the Q values we would expect in the given state.

Figure 5.2 demonstrates the activity of the dual training system. At the top left we
can see the previous and current state. To the right of that is the output of the popula-
tion computing the thresholded distance between the two states; note that whenever the
previous state is updated there is a brief window when the current and previous state are
close to each other, and then they progressively diverge, as we would expect. The principle
of the dual training system is that whenever the states are the same the output of the Q
functions should be the same. Below the states we can see the output of the previous and
current Q function, and the output of the population computing the difference between
them. This population is inhibited by the state difference, and we can see that its output is
zero whenever the state distance exceeds the threshold. The computed value difference is
then used to update the current Q function, which can be observed in the deviations in the
(e) signals (although this is complicated by the fact that the input state is also changing).
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Figure 5.3: Demonstration of the memory circuit. (a) shows the target value, and (b)
contains the gating signal that controls when that target is loaded into memory. It can be
seen in (c) that the stored value is initially zero, then when the gating signal activates it
begins to track the target value, and when the gating signal returns to zero the memory
retains the last value.
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Figure 5.4: Operation of the action selection component. Showing (a) input action values,
(b) output of the basal ganglia circuit, and (c) the final thalamic output, indicating 1 for
the selected action and 0 elsewhere.

Figure 5.3 demonstrates the performance of the memory circuit that is used in several
places throughout the model. On the left we can see the two inputs to the circuit, the
target value and the signal controlling when the target value is loaded into the memory. To
the right we see the output of the memory. At the beginning there is nothing stored in the
memory so the output is zero. At t = 0.6 the timing signal activates, and the target value
is loaded into memory. At t = 1.2 the timing signal turns off, after which the memory
retains the last value loaded in. If we imagine that the target function is the current state
and the timing signal is the action termination signal, it can be seen that this results in
the memory network preserving the previous state.

Figure 5.4 demonstrates the performance of the action selection component. To the left
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Figure 5.5: Demonstration of the selection circuit. (a) shows the input signal, (b) contains
the signal indicating the selected dimension, and (c) shows the output of the selection
circuit, which takes on the value of the selected dimension.

we can see the input to the component, a set of action values Q(s). In the middle is the
output of the basal ganglia network. Note that it has selected the highest valued action,
but the selection is somewhat noisy and the output is inverted (the selected element has
the lowest value). The rightmost figure shows the output of the thalamus, which has the
the same action selected but with a much cleaner output of 1 for the selected action and
0 elsewhere.

Figure 5.5 shows the behaviour of the circuit used in several places throughout the
model in order to select one element of a vector (for example, in order to isolate the Q
value of the selected action). To the left we can see the input vector (e.g., Q(s)), and in
the middle the selection vector (1 for the desired element and 0 elsewhere). On the right is
the output of the selection circuit, and it can be seen that as the selection vector changes
different elements of the input vector are produced as output.

Figure 5.6 shows the SMDP TD error calculation process. The inputs of the error
calculation are shown on the top: the previous action value (Q(s, a)), reward (r), and
current action value (Q(s′, a′)). The bottom left shows the integrative discount, which is
the integrated value of the previous action. Since Q(s, a) is constant, the discount signal
is a linear ramp. To the right is the integrated reward; it begins at zero, integrates the
received reward from t = 0.2 to t = 0.5, and then remains at the resulting value since there
is no more reward. In the bottom right is the calculated SMDP TD error, a continuous
implementation of Equation 4.9. Initially the prediction error is zero, as the current and
previous state have the same value and there is no reward. Then the agent receives some
reward, which generates a positive prediction error. At t = 0.7 the current action value
increases, further increasing the prediction error for the previous action value. We can also
see the effect of the discount, reducing the future value over time.

113



0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

in
p
u
t 

v
a
lu

e

(a)

0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

in
p
u
t 

v
a
lu

e

(b)

0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

in
p
u
t 

v
a
lu

e

(c)

0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

d
e
co

d
e
d
 v

a
lu

e

(d)

0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

d
e
co

d
e
d
 v

a
lu

e

(e)

0.0 0.5 1.0 1.5 2.0
time

0.0

0.2

0.4

0.6

0.8

1.0

d
e
co

d
e
d
 v

a
lu

e

(f)

Figure 5.6: Computations of the error calculation network. Example input signals are
shown in (a), (b), and (c) (the previous action value, reward, and current action value,
respectively). (d) shows the integrative discount, (e) shows the accumulated reward, and
(f) shows the overall output of the error calculation. Observe that (f) is equal to (c) + (e)
- (d) - (a) (see Equation 4.9).
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(a) Continuous error signal
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(b) Gated error signal
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(c) Termination signal
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(d) Q(s) values

Figure 5.7: Example application of the error signal to update Q values. (a) shows the
error signal, analogous to that shown in Figure 5.6. (c) shows the action termination
signal, which is used to gate the signal in (a), resulting in (b). (d) shows the Q values,
demonstrating the impact of the error update on the represented values.
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Finally, in Figure 5.7 we can see the calculated error signal being applied to the Q
value representation. The continuous SMDP TD error signal is shown in the top left; this
is the output signal from the network shown in Figure 5.6, but with realistic inputs. Recall
that the SMDP TD error is then gated by the action termination signal and the selected
action, in order to generate the learning update for the previous action value. The action
termination signal is shown in the bottom left; note that after the action terminates the
previous state is updated, hence the transition in the Q values at t = 7.6 and t = 8.3.1

It can be seen in the top right that the error is gated by this termination signal—it is
only non-zero when the action terminates.2 The error signal is also gated by the selected
action, so that the 1D error signal can be applied just to the selected action. The selected
action is not shown, but it can be inferred based on the Q values, and we can see that the
error update is correctly applied to the previously selected action at the end of the action
period. As expected, when the error signal is applied the value of the previously selected
action increases or decreases, proportionate to the error value. Thus this implements the
TD update of Equation 2.18.

This completes the demonstration of all the major functional computations of the
model. There are no dramatic conclusions to be drawn from these results, other than
that the various neural components perform as intended, implementing the different func-
tions required in this model. Of course many of these demonstrations have been toy
examples, with hand-chosen inputs. In the upcoming sections we will see what happens
when all of these components are interconnected in the complete model, and examine their
performance on more interesting tasks.

5.2 SMDP navigation task

We begin by examining the performance of the basic model, without any hierarchy involved.
As discussed in Section 3.1.5, the closest model to the one we present here is that of Potjans
et al. (2009). Theirs is the only other biologically detailed model that includes TD error
calculation in order to tackle temporally extended (i.e., non-associative) tasks. Thus in
this section we will compare the performance of our model to the work of Potjans et al.
(2009), in order to provide a baseline for the rest of the results we present.

1This state transition results in the spiky transients in the continuous error signal, as the previous
action values are updated.

2There is also a cap placed on the magnitude of the error, in order to prevent outliers from radically
altering the represented values. This is why the magnitude of the gated error signal at t = 8.0 is less than
the magnitude of the continuous error signal.
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5.2.1 Environment

The task used by Potjans et al. (2009) is a simple 5 × 5 grid navigation task. The agent
begins in a random location, and must navigate to a fixed target location. The state is the
x, y location of the agent. The model we present here is designed to work in continuous
space (as opposed to the Potjans et al. 2009 model, where each grid cell has a dedicated
neural state population), so operating in a discrete task like this is somewhat unnatural.
However, we approximate the discrete environment by moving the agent only to fixed
points in the continuous space, representing the centres of the grid cells.

The environment makes four actions available, each of which move the agent one square
to the north, south, east, or west (unless the agent is at the edge of the grid in which case it
stays in the same place). Recall that each action is represented by a vector; when the agent
outputs a vector, the environment will move the agent in the corresponding direction. In
the Potjans et al. (2009) model, state transitions occur instantaneously after the model
makes a decision. In our model we use a random time delay of 600–900ms between state
transitions, in order to demonstrate the ability of the model to perform in an SMDP
environment. The agent receives a reward of 1 when it reaches the goal state, and 0 at all
other times.

5.2.2 Results

Figure 5.8 shows the performance of the model on this task. A trial begins when the
agent starts in a random grid cell, and ends when it reaches the target. The “latency”
measure refers to the difference between how many steps the agent took to reach the target
and the optimal number of steps (the Manhattan distance from the start location to the
target). The “algorithmic” line shows the performance of a simple table-based Q learning
implementation, for comparison.

It can be seen that all three implementations are able to learn the task. The Potjans
et al. (2009) model is somewhat slower to learn, but within 100 trials all have achieved
near-optimal performance. It is also important to note that the model we present here is
operating on an SMDP version of the task, which could not be solved at all by the Potjans
et al. (2009) model. However, the main conclusion to draw from this result is simply that
the model’s basic RL performance is at least as good as the nearest neural model, and we
will now expand that performance into the domain of HRL.
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Figure 5.8: Performance of the model compared to a simple algorithmic Q-learning imple-
mentation and the model of Potjans et al. (2009).
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pickup
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dropoff

Figure 5.9: Schematic representation of the environment in the delivery task. The agent
must navigate to the pickup location to retrieve the package and then move to the delivery
location to receive reward.

5.3 Pick-up and delivery task

The first hierarchical task we will examine is a spatial navigation task, shown in Figure 5.9.
The agent must move to one location to pick up a package, and then another to drop it
off. This is a common task in HRL, used in both computational and experimental settings
(Dietterich, 2000; Ribas-Fernandes et al., 2011). It is popular because it naturally breaks up
into two different hierarchical levels; one level takes care of picking the target—managing
the sequencing of the pick-up and delivery—while the lower level manages the physical
movement to the target set by the higher level. It also represents a natural extension of
the classic “gridworld” environments, an example of which we saw in the previous task,
thus connecting to that work as well as showing how it can be extended via HRL.

5.3.1 Environment

As in the previous task, the environment provides four actions to the agent, corresponding
to movement in the four cardinal directions. However, in this case the environment is
represented continuously, so instead of moving through grid cells, the actions move the
agent a short distance each simulation timestep. In all the tasks we present here the
simulation timestep is one millisecond. If the agent attempts to move into a wall, it simply
remains in the same location.

Rather than the raw x, y position, in this task the environment represents the agent’s
location using simulated place cell activations, as described in Section 4.1.1. Place cells
are randomly distributed throughout the map, and each has a Gaussian activation based
on the Euclidean distance from the agent to the centre of that place cell.
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The package is represented by one of two vectors appended to the place cell activations,
one vector representing that the agent has the package and the other indicating it is empty
handed. The agent picks up the package automatically as soon as it enters the pick-up
area. The d-dimensional vector of all the place cell activities and the package vector then
forms the state input to the agent.

By default the agent receives a small negative reward of -0.05 as it moves throughout
the environment, in order to encourage it to complete the task quickly. Only when it enters
the delivery location with the package in hand does it receive a positive reward value of
1.5. After 600ms in the delivery location with the package, the package is reset and the
agent is placed in a random location to begin the pick-up and delivery process again.

5.3.2 Hierarchical setup

In all tasks the basic structure of the model is exactly as described in Chapter 4. The
only thing that is customized for a particular task is the hierarchical structure—that is,
how several of the basic elements described in Chapter 4 are combined to solve the task
hierarchically.

In this task the hierarchical structure consists of two layers. The lower layer has four
actions, corresponding to the basic environmental actions (movement in the cardinal di-
rections). These actions execute for a randomly determined time period (ranging between
600 and 900ms) and then terminate.3 The higher level has two actions, representing “go
to the pick-up location” and “go to the delivery location”. These actions terminate when
the agent reaches the specified location or after 30 seconds, whichever comes sooner. The
timeout is to prevent the agent from becoming stuck selecting an action that never com-
pletes.

The layers interact via a context interaction. The output of the high level (e.g., “go to
the pick-up location”) is represented by a vector, which is appended to the state input of
the lower level. Thus the low level has two contexts, a “pick-up” and “delivery” context.
It learns a set of Q values for each action, describing a policy over the basic movements
that will bring it to that location. The high level can switch between the different policies
by changing its output action, thereby causing the agent to move to either the pick-up or
delivery location via a single high level choice.

In order for the low level to learn the pick-up and delivery policies there needs to be
pseudoreward associated with the targets set by the high level. Thus this task also involves

3The randomness was just added to make the task more complex, and demonstrate the ability of the
model to perform in a stochastic SMDP environment.
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Figure 5.10: Performance of a flat versus hierarchical model on the pick-up and delivery
task. Results are adjusted such that random performance corresponds to zero reward
accumulation. The optimal line indicates the performance of an agent that always selects
the action that takes it closest to the target.

a reward interaction. In this case the pseudoreward is 1.5 whenever the agent is in the
location associated with the high level action (i.e. if the high level is outputting “pick-
up” and the agent is in a pick-up state, the pseudoreward value is 1.5). At other times
the pseudoreward is equal to a small negative penalty of -0.05. This penalty increases by
-0.0001 every timestep that the agent attempts to move into a wall.4 This pseudoreward
signal completely replaces the reward signal for the lower level. Thus when the high level
outputs “pick-up” the low level will learn to maximize the pseudoreward in that context,
which means learning a policy that will bring it to the pick-up location.

This hierarchy is also an example of state interaction, because the vector indicating
whether the agent has the package in hand or not is omitted for the low level (since it is
irrelevant to the low level task). However, this abstraction is a fixed part of the hierarchical
structure, not based on the output of the high level, so it is a fairly trivial example of state
abstraction.

5.3.3 Results

In this task we seek to demonstrate the advantages of a hierarchical system. Figure 5.10
compares the performance of the hierarchical system described above to a flat model. The
flat model consists of just one layer with the four basic actions, and the environmental

4This is a heuristic added to help prevent the agent from wasting long periods of time moving into
walls, a common technique in these types of tasks.
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state as input. The figure shows the total accumulated reward over time. Since this is the
measure that the model seeks to maximize, the final point of this line indicates the agent’s
overall performance. Another useful measure is the slope of the line, which represents
the rate of reward accumulation. This indicates how well the agent is performing at any
point in time, independent of previous performance. In all figures the time axis indicates
simulation time (in seconds), not real time; one simulation for this task takes 80–90 hours
to run in real time.5

We run the model five times in each condition, using different randomly generated
parameters each time (this includes variables such as neuron encoders, gains, and biases,
place cell locations, and exploration noise). The shaded area shows 95% confidence intervals
for the mean.

First, it is clear that the hierarchical model’s overall performance is better than the
flat model’s, in that it accumulates much more reward. Interestingly, we can also see that
the hierarchical model’s instantaneous performance is higher at the end of the experiment
(76% of optimal versus 12%). In other words, it is not just that the hierarchical model
learns more quickly, it also learns a better policy than the flat model. The reasons for
this are not obvious. The state input to the lower level contains the same information in
either case, and the same environmental actions are available, so it would seem that the
flat model should be able to learn an equivalent policy.

The reason for the better performance of the hierarchical system lies in the reward
propagation. Due to the discount factor, the shape of the action value function is a gradient
decreasing outwards from the rewarded states. In other words, the rewarded state has the
highest value, the immediately surrounding states have a slightly lower value, further states
have a slightly lower value, and so on. The discount goes to zero as the Q values approach
zero, so the gradient will eventually flatten out. This means that the potential range of
the Q values decreases the farther the agent moves from the target:

0 ≤ Q(s, a) ≤ γ(‖s− sr‖)V (sr) (5.1)

where V (sr) is the value of the rewarded state and γ describes the shape of the discounting
gradient. γ will change depending on the type and magnitude of discounting used, but it
is always less than one and decreases as the distance to the rewarded state increases.

Equation 5.1 is significant for this model because the action selection component has
limited precision. If the Q values are too close together then the basal ganglia model
cannot tell them apart. In other words, if the agent finds itself too far from the target, it

5On a Dual Intel Xeon E5-2650 2GHz CPU.
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will be unable to act effectively. It will just randomly wander until it happens to get close
enough to begin to follow the Q gradient up to the reward.

The hierarchical framework helps to reduce this problem because, as discussed in Sec-
tion 2.2, HRL reduces the reward propagation distance. This occurs in two ways. First,
the high level actions effectively represent shortcuts across the state space. When the high
level selects the “delivery” action, from its perspective it reaches the target location in a
single state change. Thus the effective distance of the previous state from the reward is
much shorter, and the gradient is less reduced. Second, the low level benefits from the
pseudoreward interaction. The environmental reward is only administered in the delivery
location, thus in the flat model the reward has to propagate from the delivery location,
back through the pick-up location, and then outwards from there. The pseudoreward, on
the other hand, is associated directly with both the pick-up and delivery locations, de-
pending on the action selected by the high level. Thus in any given state the lower layer in
the hierarchical system has a shorter distance to travel before it reaches a rewarding state.
These two factors combine to allow the hierarchical model to perform more successfully
than the flat model.

The interesting aspect of this result is that this advantage only appears in biological
(or, more generally, noisy/imprecise) systems. A purely computational system can always
distinguish the Q values, no matter how small their range may be. Thus in these systems
the flat and hierarchical models would always converge to the same performance in the long
run, the only difference would be the learning speed. This shows that when we incorporate
HRL into neural models we do not just recreate the computational advantages, we can find
important practical benefits specific to the constraints faced by neural systems.

As discussed in Section 2.2, another advantage of HRL is that it promotes the transfer
of knowledge between related tasks. The abstract actions represent modular components
that can be reused in different tasks, saving the effort that went into learning that subtask.
We investigated this effect in this model by creating a simpler version of the delivery task
where the agent is just rewarded for moving to a target location. There are several different
locations where the target could be, and the environment indicates which context is active
by appending a vector to the place cell activations. Note that this environment effectively
recreates the subgoal structure of the lower layer in the delivery task; there are several
different locations that the agent needs to learn to move to, depending on some context
vector appended to the state. The only difference is that those contexts are randomly
picked by the environment, rather than governed by the pick-up–delivery structure of the
previous task.

We then trained a flat model in this environment. This model will therefore be learning
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Figure 5.11: Performance of a hierarchical model where low level skills were transferred
from previous learning.

the lower level policies needed in the delivery task—a set of Q(s⊕ c, a) values that cause
it to move to the target location associated with c—but not the high level structure of the
delivery task. After 2000 seconds of training, we take the learned decoding weights from
this model and use them to initialize the decoders of the lower level in the full delivery
model.

Figure 5.11 shows the results of this knowledge transfer. The effect is dramatic—the
model’s performance is vastly improved on the delivery task. It is important to note that
the improvement in performance goes beyond a simple 2000 second head start. The model
with transfer very quickly reaches peak performance (96% of optimal), while the naive
model is still learning at the end of the trial (76% of optimal).

This highlights an important advantage of transfer learning, namely that of incremental
training. The high level’s learning problem is significantly complicated if the low level does
not reliably carry out its commands—from the high level perspective, this will look like an
SMDP with a highly stochastic transition function. In the transfer case the high level is
immediately presented with a reliable low level, significantly easing its learning problem.
In other words, learning multiple layers simultaneously is more difficult than learning one
layer at a time, and knowledge transfer enables the latter approach.

On the one hand, the result of Figure 5.11 is unsurprising; one could easily predict that
a model benefiting from such pretraining would perform much better. However, what this
simulation is intended to demonstrate is the ease of transferring knowledge between tasks.
The knowledge transfer was possible because the two tasks were composed out of the same
underlying subtasks, and the structure of the model captured that subtask structure. For
example, it would not have been possible to load the previous knowledge from the simpler
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task into the flat model of the delivery task, because the flat model does not share any
structure with the simpler task. From the perspective of the flat model, the solution to
the delivery task is completely different from the simpler task, and it is not clear how that
prior knowledge could be reused.

5.4 Hierarchical stimuli task

The second hierarchical test for the model is a recreation of the task from Badre et al.
(2010). In this task subjects are shown a stimulus and must press one of three buttons.
After pressing the button they receive feedback on whether they pressed the correct button
or not. The stimuli are artificial shapes that vary in colour, shape, and orientation. There
are two colours, three shapes, and three orientations, for a total of 18 stimuli, and therefore
18 stimuli–response mappings that need to be learned.

In order to investigate hierarchical processing, Badre et al. created two versions of
the task. In the “flat” version each stimulus was mapped to an arbitrary button—there
were no patterns in play, the subject just had to separately learn the correct button for
each stimulus. In the “hierarchical” version of the task the button presses follow a rule.
If the object has one colour, the button press is dependent on the shape (i.e., button
A for shape 1, button B for shape 2, etc.) regardless of the orientation, and vice versa
if the object has the other colour. In this case the task can be solved by learning 2
stimulus7→rule mappings and 6 stimulus+rule 7→response mappings; in other words, the
subject can use hierarchical learning to reduce the size of the problem space. The idea is
that the difference in processing between the two tasks will reveal the effect of the brain’s
hierarchical processing components.

From a computational perspective, this task is not as interesting as the previous one.
Each button press is independent, so there are no temporal sequences of actions involved;
this is an associative RL task (see Section 3.1.2). The reason we chose this task is that it
is one of the few hierarchical tasks that has experimental data at the neural level. This is
important, because we do not just want to show that this model can perform HRL, we want
to show that it is a plausible hypothesis for how the brain could perform HRL. Comparing
the output of the model to experimental data is one way to do that. In addition, the closest
model to the one we present here, the hierarchical PBWM model (Section 3.2.2) of Frank
and Badre (2012), was applied to this task. Thus examining how our model performs on
this task allows us to compare the performance of the two models.

In the previous two tasks we used the rate formulation for the LIF neurons that make
up the model (Equation 2.33). For this task, since the goal is to compare as closely as
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possible to neural data, we use the spiking LIF model (Equation 2.32). Thus these results
also demonstrate that the rate and spiking versions can be used interchangeably in this
model.

5.4.1 Environment

The state in this task is the stimulus object. We follow the implementation of Frank and
Badre (2012) in representing the stimulus via an 8 dimensional vector. The vector has one
element for each possible value of the stimulus; the two colours are represented by the two
vectors [1, 0] and [0, 1], the three shapes are [1, 0, 0], [0, 1, 0], and [0, 0, 1], and so on. In
the Frank and Badre (2012) model each attribute is represented as a separate input, but
in our model we concatenate the three attribute vectors together to form the full stimulus
representation (e.g. [1, 0, 1, 0, 0, 1, 0, 0]), which becomes the state input to the model.

Each stimulus is presented for 500ms. During this time the model selects one of the
three output actions (corresponding to the three buttons). After 500ms the environment
checks the action to see if it is correct or not, and delivers a corresponding reward of ±1.5
for 100ms. It then randomly picks a new stimulus and the process repeats.

5.4.2 Hierarchical setup

In this task the high level has two actions, corresponding to the two rules “respond accord-
ing to shape” and “respond according to orientation”, with a third option of producing
no output, indicating no rule. The lower level has the three basic actions representing the
three button presses. In this case all of these actions terminate after a fixed interval of
500ms, to align with the stimulus presentation described above.

The only hierarchical interaction in this task is state abstraction. When the high level
selects the “shape” rule, what this means is that all the state information other than
shape is irrelevant. In other words, the 8 dimensional state can be projected on to the 3
dimensional shape space. In the model we implement this by using the output vector of
the high level to inhibit the irrelevant state elements in the input to the lower level (using
a similar inhibitory selection circuit to that shown in Figure 4.6). The low level then learns
a mapping from that reduced set of states to the output actions.

There is no context interaction in this case, as no new information is added to the state,
and no reward interaction, as just the environmental reward is used to train both layers.
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Figure 5.12: (a) Human data from Badre et al. (2010), as well as model data from Frank
and Badre (2012). (b) Behavioural performance of the model in the flat and hierarchical
conditions. Frank and Badre (2012) did not report performance of their model in the flat
condition.

5.4.3 Results

Figure 5.12 shows the behavioural results from the model. The x axis shows the number
of trials, where each trial is one stimulus presentation, and the y axis shows the percentage
of trials answered correctly over time. The left figure shows the human data from Badre
et al. (2010) on the flat and hierarchical conditions. We also show the data from Frank and
Badre (2012) on the hierarchical task (performance on the flat condition was not reported).
On the right we see results from our model on the flat and hierarchical tasks. Note that
the model is the same in both conditions; in the previous experiment we kept the task the
same and changed the model to be either flat or hierarchical, here we keep the model the
same and change the task to be either flat or hierarchical.

The first observation is that neither our model nor that of Frank and Badre (2012)
achieves human level performance. Performance peaks at around 70% accuracy, as opposed
to the near-perfect performance of humans. However, these results do demonstrate the
advantage of hierarchical processing, in that, as with humans, our model is able to learn
more quickly on the hierarchical version of the task. In other words, the use of state
abstraction does improve performance in tasks that allow for it. Thus we can see the
benefit of incorporating hierarchical reasoning in neural models, while still observing that
there is more work to be done.6

6Anecdotally, the reason for the model’s limited performance seems to be that it over-generalizes the
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Figure 5.13: (a) fMRI activation from Badre et al. (2010) in dorsal pre-premotor cortex
(the region found to be associated with higher level hierarchical reasoning). Hierarchical
and flat conditions are shown in light and dark grey, respectively. (b) Neural activity in
output of higher level in Frank and Badre (2012) model. (c) Neural activity in output of
higher level in the model presented here.

The main neural result from the Badre et al. (2010) study was that activity in anterior
prefrontal regions was greater in the hierarchical versus the flat condition. This is consistent
with the mapping we established in Section 4.5. However, Badre et al. found a particular
temporal pattern of activation in those anterior regions, which provides a more detailed
point of comparison. Namely, both conditions began with the same high activity level,
and then the activity decreased in the flat condition. A priori it might seem equally likely
that both conditions begin with a low activity level and then activity increases in the
hierarchical condition; thus this result provides a unique, testable signature of hierarchical
processing in the brain.

Figure 5.13 shows the comparison between the flat and hierarchical activation in the
Badre et al. (2010) human data, Frank and Badre (2012) model, and our model. The Badre
et al. (2010) figure shows fMRI data from the dorsal pre-premotor cortex, which was the
area in PFC found to show a significant difference in activation in the flat versus hierarchical
condition. What is being plotted is the change in activation from baseline at the beginning,
middle, and end of learning. It can be seen that the difference in activation is due to a
decrease in the flat condition, rather than an increase in the hierarchical condition. The
Frank and Badre (2012) data shows the normalized firing rate in the component of their
model mapped to that brain region. Our model data comes from the spiking activity of the
population representing the action vector in the action selection component in the higher
level layer. This is the activity that projects down to the input of the lower level, which is

high level rules. That is, once it determines that the “shape” rule is correct on some stimuli, it begins to
apply the “shape” rule to all stimuli. This could perhaps be resolved by a different state encoding (greater
sparsity would reduce the generalization).
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what we would expect to drive the recorded prefrontal activity given the neuroanatomical
mapping of Section 4.5.

It can be seen that the model shows initially equal activity in both conditions, followed
by a decrease in the flat case. Quantitatively comparing this result to the human data is
difficult, as they represent very different types of data. Similarly, we cannot say whether our
model provides a better or worse fit than that of Frank and Badre (2012). The important
point is that the model captures the observed trend of a decrease in the flat condition,
rather than an increase in the hierarchical condition. In other words, it is at least as
plausible as the Frank and Badre (2012) model in this respect, while providing all the
functional advantages described previously (e.g., full temporally extended reinforcement
learning).

One important thing to note is the scale on the x axis in each case; specifically, although
the model we present here shows the same overall result, it takes longer to do so than
the Frank and Badre (2012) model (or humans). Learning more slowly than humans is
unsurprising, but why does the model learn more slowly than the Frank and Badre (2012)
model? There could be several factors at play, but ultimately the answer is that this model
has not been optimized for learning speed on this task. As mentioned in the introduction
of this chapter, our goal in these results is to demonstrate the flexible performance of the
same model across a range of tasks, rather than maximizing performance on one task. For
example, even though this is a simple associative RL task, the model is still performing
the full TD error calculation. In other words, the model is trying to find the button press
that will not only get it the best immediate reward, but also maximize the reward of
future button presses. Since in this task the trials are completely independent, this is a red
herring, and will just serve to confuse the learning process. Humans can be instructed that
the trials are independent (this is part of the experimental procedure in the Badre et al.
2010 task), and the Frank and Badre (2012) model is only able to perform associative RL
and so has no potential to be confused. It is likely that if a custom version of this model
were built for the Badre et al. (2010) task then it could achieve much faster learning than
what we present here; however, we have not attempted to construct such a model, and
so this is only speculation. An interesting project for future work would be to construct
a system that was able to switch between associative and TD learning, either through
learning or instruction.

The fact that the model is able to recreate this effect supports the plausibility of its
explanation for HRL processing in the brain. However, one of the main advantages of
creating functional neural models is that we can find mechanistic explanations for the
observed phenomena, rather than simply matching the data. Thus it is interesting to
explore why the model produces this activity pattern.
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To begin, we can examine why the output activity is high or low. The activity levels are
due to the output vectors associated with the different actions of the high level. Recall that
these vectors are used to inhibit the state input to the lower level. In the flat condition no
state abstraction is possible, so nothing should be inhibited, so the output vector should
be zero. However, in the NEF there is no necessary connection between the represented
value and the neural activity levels; that is, it is not obvious why a zero valued vector
should result in low spiking activity. The key is that in these inhibitory circuits it is
important that the inhibition signal be a very exact representation of zero (when not
trying to inhibit). Otherwise small fluctuations around zero are magnified in the inhibited
signal, introducing unwanted noise. As discussed in Section 4.1.2, a more accurate zero can
be represented by aligning the firing thresholds of the neurons with the zero value. This
has the functional effect of a cleaner inhibition signal, but it also has the neural effect of
linking the represented value to the neural firing rate. Thus this functional optimization
explains why we find lower activity in the flat condition.

Another question is why the initial tendency is to a high activity level, rather than a
low one. In this case this is due to a specific change we made to the model in order to
recreate this effect. We added a small positive bias to the reward for the high level when it
chose one of the two rules as the output action, even if it was the wrong rule; specifically,
the reward for the high level was ±1.5 if it selected the null action, but -1.35/+1.65 if
it selected the shape or orientation rule. This makes it more likely that the model will
pick the non-null actions during the initial exploration phase, meaning it will have higher
output activity. Eventually the model will learn the correct response (+1.5 is still better
than -1.35), which will then lead to a decrease in the activity levels; the bias just serves as
an initial nudge in the hierarchical direction.

Thus in this case the bump effect is something we explicitly added, rather than arising
naturally out of the functional constraints as in the previous case. This is less satisfying,
but it still provides interesting insight. Namely, this modification represents a specific
prediction/hypothesis: the brain has a small positive reward bias associated with learning
abstract rules. This is not an unreasonable prediction; one of the basic functions of the
brain is to find patterns (rules) governing the world around it, thus it seems plausible
that it would have a bias towards learning a rule-based account versus learning an arbi-
trary stimulus–response mapping. We will discuss how these predictions might be tested
experimentally in Section 6.3.
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Chapter 6

Discussion

We have divided the discussion chapter into three main sections. In the first we address,
in no particular order, various questions that may arise regarding the choices that were
made in the design of this model. In the next section we discuss how the model could be
extended in various ways. These extensions range from short to long term research efforts;
some are relatively small changes that would improve the existing function of the model,
while others add extensive new functionality. We finish the chapter by recalling some
of the predictions of the model, and outline how those predictions might be investigated
experimentally.

6.1 Model questions

6.1.1 Why not use the actor-critic architecture?

Many biological neural models use an actor-critic architecture (e.g., O’Reilly and Frank,
2006; Potjans et al., 2009; Botvinick et al., 2009; Frémaux et al., 2013), thus the decision
not to use that structure in this model may seem surprising. To understand why, it is
helpful to examine the reasons for the popularity of actor-critic elsewhere.

From a functional perspective, the main advantage of actor-critic is its simplicity. Sepa-
rating the state values and the policy into two relatively independent functions reduces the
RL process to two function approximation problems. That is, instead of having to learn
action values, find the highest value, and then convert that value into an output action, the
problem is to learn two functions—one mapping states to values, the other mapping states
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to actions. The modeller does not need to worry about the internal computations involved
in those mappings; from a modelling perspective they are just arbitrary input–output asso-
ciations, to be learned by trial and error. In addition, both of the functions can be trained
by the same error signal. Doing this kind of input–output function approximation is very
well studied in neural networks, thus composing the RL process out of that basic operation
is a natural approach to constructing a neural model of RL.

In contrast, recall all the different computational components described in Chapter 4:
selection circuits, memory circuits, basal ganglia/thalamus models, and so on. And none
of these circuits are independent; each is interconnected with other components, with the
output of one forming the input to another. One might wonder then, why bother with this
extra complexity when we could use actor-critic instead?

The first observation is that this complexity is greatly reduced by the methods of the
NEF (Section 2.3). In traditional modelling approaches every aspect of the model has to be
learned, because there is no other way to get the neural components to compute the desired
function. Learning the various components described in Chapter 4 based only on the
environmental reward signal would be impossible; there are too many degrees of freedom,
interlinked by complex relationships, all of which need to work together to produce a correct
response. In the best case scenario, the modeller could train each component independently
via supervised methods. For example, the modeller could construct a neural network with
the physical structure of the memory circuit, and then use training examples of desired
inputs and outputs to try to teach it to compute the desired function. Then the modeller
could assemble all the pretrained components together into the overall model and see if it
works. This would be a lengthy and difficult process, and in any case it would be much
more complex than simply training an actor-critic network.

However, as discussed in Section 2.3.2, the NEF allows us to specify the desired func-
tions/transformations and then analytically determine the weights. When the desired
computations of a component can be deterministically defined ahead of time, as is the case
for the majority of the components in this model, there is no need to learn that component.
For example, the performance of the action selection component is static, it does not need
to change its function based on the reward signal; instead, the learning can be focused on
the dynamic part of the RL algorithm, namely the action values. Thus the NEF makes it
possible to build more complex structure into the model, by reducing the dependence on
learning.

However, even given that the NEF allows us to build models with more complex struc-
ture, the question remains why we would want to if actor-critic is already working. The
answer is that actor-critic has a number of functional disadvantages. One problem is that it
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is inefficient, from a learning perspective. An actor-critic model has to learn two functions,
one for state values and one for the policy. In addition, those two functions are dependent
on one another; for example, it is impossible to learn an effective actor function until the
critic function has learned the approximate state values.

A Q function gives both those pieces of information in one function. That is, if you know
the Q function you can determine the state values (V (s) = maxaQ(s, a)) and the policy
(via, e.g., Equation 2.7). Learning a Q function is no more complicated than learning an
actor function; in fact, often the actor function looks almost exactly like a Q function, but
the values are called “action strengths” instead of action values (Botvinick et al., 2009).
So using a Q value approach it is possible to learn equivalent information, via a roughly
equivalent learning update, but the system only needs to learn one function instead of
two.1

This may contribute to the fact that while actor-critic is popular in the domain of
neural modelling, it tends to be less used in purely computational RL. For example, the
three main approaches to HRL, and all the computational work based on those approaches,
use action value techniques rather than actor-critic. Thus another reason to use an action-
value based approach is that it allows us to stay closer to the computational techniques we
are attempting to model. While it is certainly possible to adapt these approaches to work
in an actor-critic architecture (e.g., Botvinick et al., 2009), building models that are able
to work directly with action values removes the need for any such adaptation.

Another reason for the popularity of actor-critic is that its components have been
mapped onto known features of the neuroanatomy. With respect to the critic, the main
evidence supporting its neuroanatomical mapping is the observation of dopamine neuron
activity corresponding to TD prediction error, and the projection of those neurons to the
striatum where dopamine modulates synaptic plasticity (Joel et al., 2002). However, while
this is consistent with the actor-critic framework, it is also consistent with many other RL
approaches that make use of a TD error (such as the model we present here, as discussed
in Section 4.5). In addition, more recent work by Morris et al. (2006) and Roesch et al.
(2007) has shown that the striatal dopamine signal is better characterized as an action
value prediction error, rather than the state value prediction error employed in the critic.

Evidence for the actor is more diffuse, as the actor tends to be implemented differently
depending on the action output required in a model. O’Doherty et al. (2004) supported

1This may bring to mind the two functions in the dual training system. However, those two functions
address a different problem—how to apply the SMDP TD update using a local learning rule. This is still
a problem in the actor-critic architecture, so it would also require something akin to the dual training
system, for four functions total.
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the actor-critic distinction by creating two versions of an RL task, one where the subjects
observed two stimuli and then had to pick one, and the other where they simply observed
one of the two stimuli and then were rewarded accordingly. The assumption is that in
both cases subjects learn the value function (the critic), but only in the decision making
paradigm do they need to learn a policy (the actor). O’Doherty et al. found activity in
the ventral striatum in both cases but dorsal activity only in the decision making case,
supporting a mapping of the critic to the former and actor to the latter. However, this
type of data describing the overall activity level of broad anatomical areas is difficult
to use to differentiate competing computational hypotheses. That is, the fact that the
dorsal striatum is less active in one case does not tell us why it is less active. Using the
neuroanatomical mapping established in Section 4.5, we could propose that the magnitude
of the dual training signal is reduced in situations where the agent does not need to actively
make decisions (since there is less urgency to update the Q function that drives action
selection), thereby leading to reduced activity in dorsal striatum. Both explanations could
cite the work of O’Doherty et al. (2004) as supporting evidence.

These difficulties are characteristic of many attempts to develop neuroanatomical map-
pings for computational models. Namely, while it can often be shown that a given model
is consistent with neural data, it can be difficult to find data that distinguishes the spe-
cific implementation of one approach from other possibilities. The problem is that the
implementational distinctions are often at a level of detail that is difficult to observe using
our existing experimental methods. For example, we can observe the overall activity of
dopaminergic nuclei and see that it correlates with a prediction error signal, but we cannot
observe the internal computations that give rise to that signal. Note that this is not a
critique unique to the actor-critic architecture—it applies equally to the neuroanatomical
mapping of this model. What this data establishes is that the actor-critic architecture is
consistent with the existing data, which is a good thing for any proposed biological neural
model. The intent here is simply to highlight the fact that this consistency is not a reason
to favour the actor-critic architecture over other, also consistent, approaches.

In the absence of experimental data that strongly distinguishes one approach from
another, our general approach is to favour the one with greater functional ability. In
this case action-value methods are more efficient and are more easily connected to the
computational literature, which is why we adopted that approach in this model.
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6.1.2 Why is the model based primarily on the options frame-
work, rather than MAXQ/HAM?

First, it is important to note that this model is not a pure implementation of the options
approach, and can combine aspects of the various HRL frameworks depending on how the
hierarchical interactions are constructed (see Section 4.4.2). Rather than recreating any
particular HRL approach, the goal in the hierarchical structure of this model was to make
the minimal changes necessary to adapt the basic SMDP RL model to HRL. As it happens,
that was also the goal of the authors of the options framework. As they put it, “What
is the minimal extension of the reinforcement learning framework that allows a general
treatment of temporally abstract knowledge and action?” (Sutton et al., 1999, pg. 182).
That is why this model bears the greatest similarity to the options approach.

For example, in the options framework the learning update applied after selecting an
abstract action is the same as that applied after selecting a basic action. In either case
the error is based on the difference between the initial value of the selected action and
the action value where the action terminates (plus any reward received while the action
was executing). The error calculation is not affected by the presence of higher or lower
levels, each layer operates independently. This is nice from a modelling perspective, as it
means that the same learning process can be used at all the different levels of the hierarchy.
Contrast this with, for example, the MAXQ framework. In this case, computing the error
for an abstract action involves recursively computing action values based on the value
functions of all the lower layers. In addition, each layer uses a different value function for
its internal error calculation than it does for the recursive computations, each requiring its
own error signal to learn.

As another example, in the options approach (and the implementation of this model)
all states and actions are treated equally, none have a special privilege or effect. This
means that all inputs and outputs can flow over the same channel, and the model does
not require any built in information about the structure of the state space. Compare this
to the HAM approach, where states/actions are divided into qualitatively different types,
each requiring different behaviour by the system. For example, some states involve the
fixed execution of a basic action (where no learning is required), while in other states the
agent must make a decision and learn the value of the chosen action.

These kinds of features represent significant additional complications for a neural im-
plementation, which is why we tended away from those frameworks in this model. This
is not to say that we should avoid any complex computations in a neural model. These
complications come with important computational benefits, such as the efficient reuse of
value function representations in MAXQ. In the future it may be interesting to try to
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include these features in a neural model. However, at this point in the neural modelling of
HRL we are still seeking to understand the most basic issues of a neural implementation.
Thus we have tried to implement the minimal neural structure of HRL, which corresponds
most closely to the options framework.

6.1.3 Why encode the hierarchy into the physical structure of
the model?

This relates to the previous question, in that one of the primary features of the options
framework is its lack of a fixed structure. As discussed in Section 4.4.2, any of the options
available in a given state can be selected at any time; it is not the case that the available
actions change depending on a previous (higher level) decision. Thus given the points just
made about the similarity of this model to the options framework, it may seem strange
that the model employs a fixed hierarchical structure.

It would be entirely possible to implement the flexible structure of the options frame-
work using essentially the same basic SMDP model (see Figure 6.1). The key would be
to recursively connect the output of the model to its own input; the hierarchical inter-
actions would be the same (context, state, and reward), but instead of e.g. the output
action in the context interaction modifying the state of a lower level, it would modify its
own state input. This would allow the model to represent policies with potentially infinite
hierarchical depth, as in the options framework.

However, this added flexibility brings with it a number of challenges. One is that we
lose the advantage described in the previous section, where all actions in a given SMDP are
treated equally. Now the different actions in a given layer would have different effects. For
example, if the agent selects a “context interaction” action then that needs to be appended
to its input state, a “state interaction” action would modify the input state, and a basic
action would be sent to the environment. Thus the model would need different output
channels flowing to different locations, rather than the single input/output links of this
model.

Another challenge is that the recursive model needs to explicitly keep track of the “call
stack”—the record of previously selected abstract actions. This is necessary so that when
an action terminates the agent can be returned to the appropriate internal state. For
example, imagine an agent in context A selects an action b that puts it in context B, and
then selects a primitive action x. When x terminates, the system then needs to check if b
has also terminated. If it has, the context needs to be changed back from B to A. There
is no action that makes that change, it is just part of the internal bookkeeping of the HRL
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Figure 4.7).
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algorithm—so the model needs to implement some mechanism to keep track of all this
information and execute the necessary changes.

In contrast, with a fixed hierarchical structure the “stack” is implicit in the hierarchy
itself. For example, the above situation could be implemented with a two layer hierarchy.
The top level is in context A. It selects action b, and its output then sets the lower level
into context B; the lower level then selects action x, and the output of the lower level goes
to the environment. Note that the top level continues to be in context A, and it continues
to output the action b. The termination of b does not require any central mechanism, or
any communication between layers. Each level just selects actions and waits for them to
terminate, at which point it selects a new action.

Another way to phrase this is that in the recursive structure there can be multiple
actions being executed simultaneously in a single layer. This requires more bookkeeping
to keep track of which one is active and swap back and forth between them. With the
hierarchical structure the actions are distributed throughout the hierarchy, so that only
one action is being executed at a time in any given layer. This simplifies the hierarchical
computations, and supports the modular structure we strive for.

Another advantage is that the distributed hierarchical structure allows computations
to be performed in parallel, rather than serially. For example, in the above scenario the
recursive approach has to first process the termination of x (computing the TD error and
applying the learning update), and then do the same for action b. If we imagine that
each termination cycle takes 100ms, then it would take 200ms to process the end of action
x. In the hierarchical approach, error calculation proceeds in parallel at each level of the
hierarchy; when x terminates in some new state, the high level can begin processing the
termination of b at the same time that the low level processes the termination of x, only
taking 100ms total. This is true of all the different computations going on in a layer, not
just error calculation. The fixed hierarchical structure repeats the computational elements
in each layer, allowing each to proceed independently, while the recursive structure only
has one channel that all computations must flow through in turn. Thus there are functional
as well as implementational advantages to a fixed hierarchy.

Finally, the neuroanatomical evidence is consistent with structurally distinct layers. As
discussed in Section 4.5, multiple avenues of investigation have found that different levels
of processing activate different physical regions of the brain. For example, Ribas-Fernandes
et al. (2011) observed multiple, simultaneous prediction error signals in a hierarchical task,
corresponding to the termination of a primitive action x and abstract action b as in our
example, and Badre et al. (2010) found that the use of higher level actions activated
different regions of the brain than simpler actions. These results show that a) the brain
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has multiple regions of RL processing operating in parallel and b) different actions are
associated with different regions, which is consistent with a fixed hierarchical structure.

However, it is important to note that these options are not mutually exclusive. The
brain could, and almost certainly does, employ a mixture of recursive and hierarchical
approaches. In particular, the disadvantage of a fixed hierarchy is that it imposes a fixed
limit on the hierarchical depth—if a system has two layers, then it can only learn at two
different levels of abstraction. Clearly this is not a desirable feature in a hierarchical system.
For example, imagine the depth of the hierarchy that connects the abstract decision to get
into university with the immediate action of which icon to click on a computer screen. For
one, it would require a huge amount of neural resources to repeat the whole RL circuitry
the hundreds of times necessary to provide realistic hierarchical depths. In addition, such
a model would exhibit rather strange behaviour, where it would work fine up to a certain
depth and then completely fail for a depth of n+ 1.

One reasonable hypothesis would be that lower levels of RL processing are distributed
across separate hierarchical layers, while the top levels of the hierarchy contain the recursive
connections that allow for processing of arbitrary hierarchical depth. The slower, long term
reasoning of the higher levels would be more suited to the serial processing, while the quick
low level decisions could proceed in parallel. This would also allow for a smooth degradation
of performance as the hierarchical depth increases, as the bookkeeping mechanisms begin
to break down (for example, the system begins to forget the contents of the stack). It
would be an interesting project in the future to try to build such a hybrid system.

6.1.4 What does this model contribute to the computational
study of HRL?

Understanding how hierarchical reinforcement learning might be implemented in the brain
is certainly the main goal of this research. However, this effort can also provide value to the
purely computational study of HRL, as it has several desirable implementational features
that are independent of the goal of biological plausibility.

One such feature is that the model operates in continuous time and space. As discussed
in Section 2.2, the majority of HRL work has been in discrete environments; the model
of Konidaris and Barto (2009) is the only other continuous implementation of the options
framework, and it is limited to a particular type of hierarchical structure. Many of the
interesting real-world problems that researchers hope HRL will be able to address involve
continuous environments, thus expanding the theory into those domains is an important
step.
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The key aspect to the continuous spatial implementation is the use of neural populations
to approximate the value function. This is not a new insight, as neural networks have been
used to approximate the value function in many previous models of RL. However, here we
show that those same ideas can be extended to the hierarchical domain, where multiple
value functions are being represented at different levels of abstraction. In addition, the
context/state interactions show how information from different layers can make its way
into these function approximations.

With respect to continuous time, the main issues to solve are how to calculate errors
and apply learning updates over time rather than instantaneously. The error calculation
component described in Section 4.3 addresses the former, demonstrating how to calculate a
continuous version of the SMDP TD error, and how that signal can be gated to provide the
error at the appropriate points in time. The local learning rule (Equation 2.40) and dual
training system address the latter, demonstrating how to apply that error via a continuous
learning rule in a purely online fashion (i.e., where the system does not have access to the
past neural activations).

Finally, the results in Chapter 5 demonstrate that these ideas work in practice—that
this model can solve tasks that involve continuous time and state spaces. While these
tasks are still rather simple, they demonstrate the new possibilities that are opened up by
a continuous HRL implementation.

Another interesting feature of this implementation is that it deals naturally with noise,
imprecision, and heterogeneity in its components. Noise and heterogeneity are innate fea-
tures of the brain, thus brain-like implementations must incorporate solutions to these
problems from the ground up. For example, in our model every neuron has different ran-
domly generated properties, and therefore responds differently to a given input. The NEF
methods show how to combine these diverse activities in order to decode a reliable output
signal. Similarly, the output of these neurons is imprecise, and may be noisy/fluctuating.
We saw an example of this in the pick-up and delivery task, where the flat model was
unable to solve the task due to imprecision in the propagated reward values. There we
saw how HRL can be used to help address these problems, a feature that is not apparent
in implementations with perfect precision in the Q values.

These problems of noise and heterogeneity are challenges that tend to arise when com-
putational theories are applied in the real world, for example on robotic platforms. Often
it is difficult to make the move from simulation to physical environments, because algo-
rithms can have subtle assumptions/requirements on the reliability of processing compo-
nents that are not apparent until they are violated. Implementations that incorporate
these constraints from the ground up will be easier to transfer to real-world domains.
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A third interesting feature of a neural implementation appears in connection with the
development of neuromorphic hardware. These are custom computing platforms that use
neuron-like elements as their basic computational elements (Merolla and Arthur, 2007;
Khan et al., 2008). These platforms are able to simulate neural models much faster than
conventional hardware, and often require a fraction of the power. This makes them well
suited to mobile/robotic applications, where low power consumption can reduce weight
and prolong battery life. However, the software that runs on these platforms must be
implemented neurally, in order to program the neural hardware. Thus while a traditional
HRL implementation could not be run on these platforms, a model such as the one we
present here could be.

Neuromorphic hardware is still in the development stages, so we have not been able
to try a model with the complexity of the one we present here on these chips. However,
previous work has demonstrated that models built using the NEF can be run on these
neuromorphic platforms (Galluppi et al., 2012, 2014). Therefore it is likely that the model
we present here could be run on a neuromorphic chip in the near future, and combine the
computational advantages of HRL with the strengths of neuromorphic hardware.

An important feature to keep in mind when examining the computational advantages of
this implementation of HRL is that our simulation software (see Section 2.3.5) is designed
to make it easy to adjust the level of simulation detail. In this work we are trying to
demonstrate that all aspects of the HRL process could be implemented in the brain, so we
implement all the components neurally. However, in a purely computational application
someone might just be interested in using the function approximation of the action values
component, without caring about using a model of the basal ganglia to do action selection.
The model is designed to support this, allowing different components to be swapped in
and out without affecting the rest of the model. That is, as long as the action selection
component performs the same function, working with the same vector inputs and outputs,
it does not matter how it is implemented internally. Thus a researcher need not commit
to a full neural implementation in order to make use of this model.

Exploring in detail the computational advantages we have described here would be an
in-depth research project, and we do not take this work to have proven these benefits. The
purpose of this section is just to point towards these issues, and suggest how this model
could be used as a starting point in that direction.
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6.2 Model extensions

We now turn to a discussion of how this model could be modified, improved, or expanded.
We have arranged these changes in a rough order of complexity, beginning with relatively
small modifications and ending with large functional changes to the model. Also note that
this is not an exhaustive list, but represents what we consider to be the most promising or
important changes.

6.2.1 Improved exploration

In this model we have used a very simple model of exploration, where noise with a constant
variance is added to the action values (see Section 4.2). However, this simplicity can be
problematic. For example, in the pick-up and delivery task we were constantly struggling
to prevent the model from becoming stuck in local minima. Exploration is key to this
problem, but the simple exploration of this model did not provide much functionality;
increasing the noise could help move it out of the local minima, but then the noise would
prevent it from distinguishing the small differences in Q values in regions distant from
reward. These experiences have led us to consider a number of ways in which the model’s
exploration could be improved.

One approach would be to modify the variance of the noise according to a fixed schedule
over time. This is a relatively common practice in RL, often implemented via an adjustment
of the temperature parameter in the softmax policy (Equation 2.7). The idea is that at
the beginning of learning the agent should explore broadly in order to learn the general
structure of its environment. Its policy is likely incorrect anyway, so there is no point
attempting to stick to it rigidly. Over time the agent will learn a better policy, so in order
to maximize reward it should begin to listen to that policy more and reduce its exploration.

A further improvement would be to base the variance of the noise on the performance
of the model. A problem with the fixed scheme above is that the modeller has to guess the
appropriate exploration schedule. Often this is not obvious, and an incorrect schedule will
result in the agent missing out on reward due to over-exploring, or converging its policy to
an inaccurate Q function. In addition, the appropriate level of exploration may not change
monotonically over the course of learning—it could fluctuate as the agent learns different
areas of the state space. A better approach is to try to infer how much exploration is
needed dynamically over the course of learning. For example, one approach would be to
base the exploration noise on the average prediction error magnitude. The more accurate
the Q function, the smaller the prediction errors. Thus at the beginning of learning the
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agent would have large prediction errors and therefore more exploration, as desired. Over
the course of the trial it would reduce its exploration in proportion to its learning progress,
until in theory it has an optimal Q function, with no prediction errors and therefore no
exploration.

An even more advanced mechanism would be to use directed rather than random explo-
ration. That is, instead of the agent making accidental explorations and hoping to wander
into interesting areas, it could actively choose where to explore. One way to go about this
would be to track the action frequency. For example, the model could keep track of which
actions had not been selected in a while, and gradually increase the probability of selecting
those actions. Alternatively, the agent could track the state frequency. That is, it could
track how often it visits different regions of the state space, and then direct the exploration
towards unvisited regions. These model-based exploration schemes are more powerful, but
would require significant internal processing of their own.

The different exploration schemes could all be added to the model without making
any significant modifications to its existing structure. They would be implemented by a
component that simply takes the place of the current random noise generator. It would
then interact with the rest of the system in the same way, by outputting a vector that is
added to the action values before they are input to the action selection component.

6.2.2 Separate positive and negative RL mechanisms

In this model we treat all environmental feedback the same, regardless of its valence. How-
ever, there is an abundance of evidence that the brain treats positive and negative outcomes
qualitatively differently. For example, fMRI has revealed different areas of activation in
ventral striatum depending on whether the prediction error was positive or negative, and
different cellular mechanisms may underlie increases in synaptic weight versus decreases
(see Dayan and Niv 2008 for a review).

These features could be modelled by various different changes to the model. For ex-
ample, the positive and negative components of the Q functions could be represented
separately, and then added together to form the overall output of the action values com-
ponent. Or the model could have separate error calculation networks, with independent
inputs for positive and negative rewards. At a lower level, the model could use different
learning rules/learning rates for positive versus negative errors.

It is not clear at the moment whether there are functional advantages to separating
positive and negative mechanisms, or whether this is just a biological spandrel. Perhaps this
division could be used to help resolve the discounting problem described in Section 4.3.2,
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where the discount has a negative feedback interaction with positive actions but a positive
feedback with negative actions. If there were separate representations for positive and
negative Q values, then both could be represented via positive values (just weighting the
output of the latter by -1); this would allow the same negative feedback discounting to be
applied in both cases, removing the need for the somewhat ad hoc positive bias mechanism.
In any case, building a model that incorporates these features is a good way to explore
their functional impact.

Even if it turns out that this distinction is not important functionally, recreating it
would help support the biological plausibility of this model. For example, if it turned out
that certain features of the model rely on positive and negative reward being combined in
the same mechanism, then that would raise questions about whether those are a reasonable
hypothesis for the mechanisms used by the brain. In theory there is no reason why this
should be the case for any of the components of this model, but actually creating a working
implementation would be the best way to show that.

6.2.3 Continuous action

Although this model operates in continuous time and space, it is still limited to discrete
actions. For example, in the delivery task the model can only move in the four cardinal
directions, rather than the full 360 degree range of motion. Many interesting tasks involve
a continuous action space, thus it would be useful to expand the model in this direction.

The main challenge when working in a continuous action space is how to represent the
Q values. In this model we use the vector Q(s), where each element corresponds to the
value of one of the available actions. However, in this case we no longer have a discrete set
of actions to choose from; Q(s) needs to represent a continuous action space, rather than
a vector.

This is the same problem encountered when moving from a discrete to continuous state
space, and the solution is also the same—function approximation. The action space can
be spanned by a set of basis actions, and then the continuous action space represented as a
weighting over those bases. For example, in the delivery task the four cardinal movements
could be the basis actions, and then different combinations of those movements would give
all the possible 2D movements.

One nice feature of this approach is that it leaves the structure of the rest of the model
relatively unchanged. From an implementation perspective there are still a finite set of
actions to represent, but now they represent basis actions. For example, the output of the
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action values component would still be a vector Q(s), but now that vector would represent
the value of each basis action.

The main change is that the action selection output would need to be more nuanced.
Instead of outputting a binary vector selecting just one action, it would need to output
the basis function weights. For example, the basal ganglia/thalamus could be adapted
to compute something like the softmax function (Equation 2.7). This would take the Q
values as input, and output a vector where each basis action is weighted proportional
to its Q value. Note that the basal ganglia output is naturally a soft selection like this
(see Figure 5.4), so it would certainly be feasible for it to compute such a weighting.
Multiplying the basis action vectors by that weighting vector would then give the overall
action vector. Again, this is essentially what is already occurring in the model, but in the
current implementation the weighting vector is binary so the result of the multiplication
is always equal to one of the action vectors (see Section 4.2).

The error calculation can also be adapted to the new system without any major struc-
tural changes. In the current model the error signal is already gated by the output of the
action selection component (so that the error is non-zero for the selected action and zero
elsewhere). For continuous actions we can do the same thing, multiplying the TD error by
the action selection output, but in this case the action selection output is the weighting
vector. This means that the value of each basis action will be modified proportional to
how much that basis action contributed to the output action, which is what we would want
intuitively.

In summary, the model could be adapted to work in a continuous action space with
surprisingly limited changes to its existing structure. Of course this is all theoretical, and
the question remains whether the action selection component could compute something
like a softmax, or whether the weighted error update would be effective. But it would
certainly be possible to explore those questions using the current model.

Note that the system as described here would operate with actions that are continuous
in space, but still discrete in time. That is, the actions have a distinct beginning and end.
We discussed in Section 2.1.5 how Doya (2000) developed a version of RL for continuous
time actions, where the agent outputs a continuously changing signal, which one might
think of adapting for this case. However, it is difficult to imagine how continuous time
actions could be applied to an SMDP framework. The basic premise of an SMDP is that
actions have temporal extent, which requires that there is a point when the action begins
and a point when it ends. The notion of subgoals and termination conditions in HRL is
similarly bound up with the concept of actions that begin and end. Thus while it seems
likely that this model could be adapted to work with continuous space actions, continuous
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time actions are at odds with the basic principles on which the model is based, and are
unlikely to fit within this framework.

6.2.4 Average reward

Another interesting possibility would be to change the model to work with average reward
Q values rather than discounted reward. In the standard TD framework, Q(s, a) represents
the total discounted sum of reward to be expected after selecting action a in state s, with
time going to infinity. In the average reward framework, Q(s, a) represents the average
reward to be expected, rather than the sum. The nice thing about this approach is that
the average reward is constant over time, so there is no need for a discount factor to keep
Q values from going to infinity. The discount factor introduces a lot of potential problems
in this model, such as the vanishing gradient problem described in Section 5.3, or the need
to readjust the value of γ to keep the Q values in the correct range for the basal ganglia.
Thus removing the discount might simplify the rest of the model.

There are different approaches to average reward reinforcement learning, but they all
follow a similar structure. The method we will describe here is based on the work of Singh
(1994), as it is closest to the standard Q learning approach. The main change when moving
to an average reward framework is that state/action values are all relative to the overall
average reward. Therefore the first addition is that the model needs to keep track of the
average reward over time, ravg. This can be implemented by a network similar to the
memory circuit (Figure 4.3), where an integrator stores the average value and the stored
value is updated based on the incoming samples (with some small scale applied).

With ravg computed, the TD update is then changed to

δ(s, a) = α[Q(s′, a′) + r − ravg −Q(s, a)] (6.1)

Note that this is essentially the same TD update as in Equation 2.8, except Q(s, a) =
Q(s′, a′) + r(s, a)− ravg. That is, instead of a Q value representing the immediate reward
plus the value of the next state, it represents whether the immediate reward is better or
worse than average (plus the value of the next state). Since the average will converge to
some fixed point, the Q values will also converge around that fixed point, without the need
for a discount. Incorporating average reward into this model would be relatively easy;
the population computing the average reward would just take the place of the integrative
discount in the error calculation network (Figure 4.5).

The downside of the average reward approach is that it is less well developed than
discounted reward methods. One important problem is that while average discount meth-
ods are guaranteed to find a policy that maximizes the average reward, ravg, they are
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not guaranteed to find a policy that maximizes Q(s, a) (Mahadevan, 1996). For example,
imagine a task where the agent must navigate to a fixed target location to receive reward,
and receives a small punishment in all other states. Given enough time the agent will
learn to reach the rewarded state and stay there; this means that the average reward will
converge to the reward in the target state, regardless of the path the agent takes to get
there. Clearly a path that goes directly to the target is better than one that takes a long
time, but average reward methods are not guaranteed to find that solution.

However, in practice average reward methods have been shown to find good solutions
to many problems. It would be interesting to see how they perform in this model, and
whether the benefits of removing the discount outweigh any complications associated with
the average reward approach.

6.2.5 Model-based reinforcement learning

In Section 2.1 we briefly touched on model-based approaches to RL, but all the meth-
ods used in this work have been model-free. Model-based methods have many potential
strengths, thus it is interesting to explore how they might be integrated into this work.

Recall that in model-based approaches the agent attempts to construct an explicit rep-
resentation of its environment (generally consisting of the reward and transition functions).
That model can then be used in several different ways. One approach is to use the model
to generate extra TD learning updates. The only way the current model can update its
Q function is to execute an action and then wait for the new state and reward from the
environment. If the agent has a model of the environment, it can instead imagine selecting
an action a, simulate the outcome of that action using its internal model, and then use that
simulated outcome to update the value of a. This can often be done much more quickly
than waiting for the environment to execute each action, allowing the agent to perform
more learning updates in the same amount of time.

A more complex use of the internal model is to move away from Q value based ap-
proaches entirely. The purpose of a Q value is to estimate the future value of an action,
so that the agent can pick the action that has good long-term outcomes without knowing
what those outcomes will be. However, if the agent has a model of the environment it can
internally simulate the long term outcomes of the currently available actions, and use that
to pick the best action instead.

The main advantage of these model-based approaches is a more efficient use of sample
data. In a model-free approach, the information observed from the environment after
selecting an action a (the reward and new state) only updates one Q value, Q(s, a) (or a
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few previous states when using eligibility traces). In a model-based approach the sample is
instead used to update the model of the environment and reward functions. This can then
be used to rapidly update many different Q values using the sampling approach, or it will
affect all simulated paths that pass through the updated state in the planning approach.
In either case, the single sample can have far-reaching effects on the agent’s policy.

For example, imagine an agent that has been exploring around in an environment for a
while but has not yet located the reward. If it has learned a model of the environment, as
soon as it finds the reward it will then be able to plan a path to that state from any of its
well-learned areas of the environment—the reward information is immediately propagated
throughout the agent’s policy. Contrast that to a model-free approach, where reward would
only be propagated to the states immediately preceding the rewarded state, and the agent
would need to reach the reward many more times in order to propagate that information
throughout its policy.

Model-based approaches to HRL are relatively unexplored—the majority of HRL work
is model-free. However, the efficiency benefits of model-based methods also apply in the
hierarchical case. Sutton et al. (1999) discuss how model-based methods can be applied
in the options framework, although their points apply in general to any SMDP-based
approach. The key is to learn a model of each option, rather than modelling the overall
transition/reward function. An option model encodes the reward and terminal state to be
expected when selecting that option in any given state; that is, it consists of two functions
P̂o : S × S 7→ R and R̂o : S 7→ R. These option models can be learned in an analogous
fashion to standard RL models. When the agent selects option o in state s, it can observe
the resulting reward r and terminal state s′. It can use that information to update the
models via, e.g., ∆R̂o(s) = α[r − R̂o(s)]. Sutton et al. (1999) also describe some model
learning techniques that take advantage of the internal structure of the abstract actions,
in order to improve upon this basic model learning.

The option model can then be employed in the same sample or planning techniques.
That is, the agent can use the option model to internally simulate the effect of selecting an
option, either to generate a simulated TD update or to compute the long term value of o.
In fact, the benefits of a model-based approach may be even greater in HRL than standard
RL. Abstract actions tend to take a long time to execute, because the agent has to move
through the environmental execution of several lower level actions. Thus when an agent
uses a model of an abstract action to generate samples it is saving even more time than it
would when simulating a primitive action. And from the perspective of planning, abstract
action models represent larger steps through the state space. This reduces the depth of the
plan required to reach the goal, thereby reducing the complexity of the planning process.

148



However, despite these theoretical advantages, as mentioned the majority of HRL work
has been model-free. Sutton et al. (1999) provided some basic demonstrations of model-
based option learning, but this has not been explored in much detail since then. Sev-
eral methods have used a model-based approach to learn options (to be discussed in Sec-
tion 6.2.6), but then those options are used in a model-free way. Jong and Stone (2009)
combined a model-based approach with the MAXQ framework. However, in this case
the model was just used to guide exploration, as we suggested in Section 6.2.1 (directing
exploration towards unexplored parts of the state space); the reinforcement learning was
still model-free. Cao and Ray (2012) used a Bayesian approach to learn a model of the
environment and pseudorewards, and then used that model to generate learning updates
in the MAXQ framework. This is a hybrid approach, but still showed promising perfor-
mance. In summary, there is good reason to believe that model-based HRL would have
some important functional advantages, and some initial suggestions of how to go about it,
but the problem is still largely unexplored.

It is also clear that humans (and other animals) employ model based methods in ad-
dition to model-free. For example, Daw et al. (2011) created a task with the structure
shown in Figure 6.2. Imagine a subject has been performing this task for a while, and so
has learned to perform well. Now suppose they select action 1, get the unlikely outcome of
transitioning to state B, and get a higher than expected reward. Model-free RL predicts
that this should make them more likely to pick action 1, because they just selected action
1 and got a positive prediction error. Model-based RL predicts that this should make them
more likely to pick action 2, because they have an internal model of the environment that
says that action 2 is more likely to lead to state B, which is the unexpectedly rewarding
state. Daw et al. (2011) found a mixture of both results; different subjects showed different
propensities towards model-based versus model-free RL, and various manipulations to the
task could also influence the outcome. For example, adding a distractor task induced al-
most entirely model-free behaviour, presumably because subjects did not have the cognitive
resources available for the more complex model-based decision making. Daw et al. (2011)
also observed both model-based and model-free prediction errors in the ventral striatum,
proportional to the subjects’ choice behaviour. See Dolan and Dayan (2013) for a review
exploring neural evidence for both model-based and model-free RL. In summary, there are
not only computational reasons to be interested in model-based methods; we also need to
explore those methods if we want to understand reinforcement learning in the brain.

The downside of model-based approaches is that they trade data efficiency for compu-
tation. For example, imagine an agent trying to pick between three available actions. In
order to make an optimal choice the agent needs to search through all the possible outcomes
of each action (recursively searching through all future actions), calculate the value of each
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A B
Figure 6.2: Task from Daw et al. (2011). Each action leads to one state with high proba-
bility, and the opposite state with low probability.
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path, and choose accordingly. Contrast that with a model-free approach, where each of the
three actions has a Q value and the optimal behaviour is simply to pick the action with
the highest value. In other words, model-based methods make use of data more efficiently
by encoding it into these complex representational structures, but decision making then
becomes more complex. Model-free approaches put more effort into the learning process,
in order to simplify the decision process.

This largely explains why neural models of model-based RL are so few and far between.
Learning is relatively well understood in neural networks, so modellers are happy to put
the burden on the learning process in order to simplify decision making. In contrast, the
complex cognitive control involved in planning is much less understood.

One can imagine representing the transition/reward functions using the standard neural
network function approximation methods. For example, we could create a neural popula-
tion that takes two vectors representing a state and action as input, and outputs a vector
representing the predicted future state. These could then be trained using an error signal
such as2

δP̂ (s, a) = α[s′ − P̂ (s, a)] (6.2)

fed into the standard NEF learning rule (Equation 2.40).

In order to implement the sampling approach, the learned model would essentially take
the place of the environment in the current system. The output of the action selection
component would be input to the transition/reward function, and the function would
output a new state/reward (which would then be used to calculate a prediction error in
the normal way). Thus the sampling approach could be implemented without dramatic
changes to the existing model.

The real challenge appears when it comes to using the learned model to do planning.
How would a neural network implement the complex dynamics of a search process? For
example, to search just one path it would have to input a state and action to the population
representing the transition function, store the output, feed that stored value back into the
transition function at the next stage of the search, and so on. Then it would also need
to keep track of the branching tree structure of the search as it moves along the different
possible paths, and compute/store the value of each path. The manipulation of complex
knowledge structures and careful timing would be key throughout this process, both of
which are traditional weaknesses of neural networks.

However, there are NEF models demonstrating similar styles of processing in non-RL
domains. In Crawford et al. (2013) a neural model was used to encode a complex linguistic

2Note that we have used the deterministic formulation of the transition function here.
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knowledge structure, containing 100000 concepts linked by various relations. For example,

this model can represent information such as dog
−→
isa mammal and mammal

−→
has fur.

The model can then search through this knowledge structure, in order to find the answer
to questions such as “does a dog have fur?”. Clearly there is some distance between this
and model-based RL, but it demonstrates that it is possible to control a search process,
which could be extended to control a planning process.

In summary, model-based methods are an important but poorly understood aspect of
neural RL modelling. Incorporating something like option model learning/planning into
this work would be an extensive research project, but there are good reasons to believe
that it would be feasible and productive.

6.2.6 Learning hierarchical structure

As mentioned in Section 4.4, in this model we have assumed that the hierarchical structure
of the model is defined by the modeller. That is, the modeller decides how the problem
is broken down into subtasks, and how the different hierarchical levels interact (by defin-
ing the context/state/reward interactions). However, an important goal in reinforcement
learning is always to minimize the prior knowledge in the system. Therefore it would be
interesting to explore how this model could incorporate more autonomous methods for
constructing the hierarchical structure. This is one of the major open problems in HRL,
and is an active area of research, especially in regards to understanding how this could
occur neurally (Dayan and Niv, 2008; Niv, 2009; Botvinick et al., 2009; Diuk et al., 2012).

One approach is to focus on determining how to automatically generate subgoals. If
the subgoals are known then it is fairly easy to generate a template hierarchical structure:
we create an abstract action for each subgoal, controlled by a higher level via context in-
teractions that select between subgoals. The options and MAXQ frameworks both specify
how to learn the policy for those abstract actions, by using the subgoals to generate pseu-
doreward (see Section 2.2). The model in the pick-up and delivery task is an example of
this kind of structure; in this context the problem is how the model could automatically
learn that the pick-up and delivery locations should be two subgoals.

The key to these subgoal based approaches is to build up a representation of the state
space, and then analyze that state space to identify useful subgoals. An example of this
is the work of McGovern and Barto (2001). Their technique analyzed the agent’s paths
through the state space to try to identify bottlenecks—states that the agent has to go
through to successfully complete the task. In the pick-up and delivery task the pick-up
location would be an example of a bottleneck, because all successful paths have to pass
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through that state. Their system then created new options aimed at just reaching the
bottlenecks, which resulted in faster learning of the original task and better transfer to
related tasks. Similar approaches, based on searching for bottlenecks, were pursued by
Menache et al. (2002), Mannor et al. (2004), and Simsek and Barto (2004). Note that this
relates back to the model-based discussion of the previous section, as learning a model of
the environment is key to these techniques.

A different approach is to analyze the policy space rather than the state space. Pickett
and Barto (2002) developed a technique that searches a set of optimal policies generated
on related problems (tasks with the same state space but different reward function), and
attempts to identify commonalities across the different policies. These commonalities are
inferred to be useful sub-actions, and they are extracted out and made available to the
system as options.

A third group of techniques move away from analyzing the state/policy space, and
instead directly search over different hierarchical task structures. For example, Elfwing
et al. (2007) used an evolutionary algorithm to explore different hierarchical structures in
the MAXQ framework, to find the one that led to the most successful performance. Marthi
et al. (2007) used a similar “generate and evaluate” approach to find useful task structures.

The work of Singh et al. (2005) focuses on how to improve the subpolicy learning
process once the subgoals are identified. Their technique is based on the concept of intrinsic
reward—reward generated internally by the agent, independent of the task reward. Singh
et al. (2005) propose that this intrinsic reward is based on novelty; agents receive intrinsic
reward when they arrive in a new or unexpected state. The basic idea is that when a novel
state is encountered a new option is created with that state as its subgoal (meaning the
option has pseudoreward associated with that state). The intrinsic reward is then used to
focus exploration around that novel state, allowing the agent to quickly learn the policy
for that option. As it learns the policy the target state will cease to be novel; this will
cause the intrinsic reward signal to disappear, thereby releasing the agent to move on to
learning a new subtask. This again connects to the previous model-based discussion, as
the notion of an unexpected state requires that the agent build up an internal model of
the expected outcome of its actions.

In order to avoid creating a new option for every new state encountered, this system
requires the modeller to predefine certain events as “salient”. This is defining what kinds
of state change are interesting or important. For example, a movement to a new location
in the same room is not usually interesting, even if it is technically a new state. However,
if a light comes on when the agent arrives in that location, that is a more important state
change. Singh et al. (2005) assume that there is some external system that indicates to the
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agent when a salient event has occurred. The previous approaches, such as the bottleneck
search of McGovern and Barto (2001), can be thought of as methods to automatically
define salient states.

The intrinsic reward framework also connects well with neurophysiological data showing
that dopamine neurons respond to novelty, independent of any external reward (Horvitz,
2000). This has led to debate over whether the dopamine signal indicates TD error (as
described in Section 4.5) or novelty. However, the intrinsic reward framework nicely in-
tegrates both of these findings (Mirolli et al., 2013). If novel states are rewarding, then
we would expect to see a TD error in those states; thus dopamine neurons can respond to
novelty, without that invalidating the TD error hypothesis.

It should be noted that all of these theories are designed for discrete time and space.
Some work on continuous subtask learning has been developed by Mugan and Kuipers
(2009) and Konidaris and Barto (2009). The work of Mugan and Kuipers is a hybrid
approach; they assume that although the agent is operating in continuous space, there is
an underlying discrete structure to the problem. Their algorithm focuses on learning a
discrete representation while operating in the continuous space, and then once they have
found that representation they apply standard discrete reinforcement learning techniques
to find a policy. Konidaris and Barto stay in the continuous domain, but their algorithm
assumes that the problem can be solved via a sequence of subtasks, where each subtask is
responsible for moving the agent through one section of the state space and then passing
control off to the next subtask. While they can automatically learn the subtasks in this
chain, this technique would not work for learning a full hierarchical structure, where tasks
can be nested within one another (their implementation can be thought of as a hierarchy
with a maximum depth of two).

None of these techniques have been implemented in a neural model. The most imme-
diate targets for a neural implementation are the subgoal identification approaches, such
as the work of McGovern and Barto (2001).3 The challenge in this case would largely be
one of knowledge representation—how to build up a model of the state space, how to track
the frequency of state visits/paths, and how to analyze that knowledge in order to identify
states with certain characteristics. Note that these issues are very similar to those involved
in model-based RL, as described in the previous section. Thus the pursuit of the former
might solve many of the problems involved in the latter.

Clearly the description of this implementation is quite abstract. Our purpose in this

3The intrinsic motivation work of Singh et al. (2005) is also a very interesting target for a neural
implementation, but as mentioned above it requires something like the subgoal identification process as a
prerequisite.
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section is mainly to point out that automatically learning hierarchical structure is an
important open problem, and highlight some of the existing work. Implementing a neural
model based on that work would greatly expand the explanatory depth of this model,
providing a more complete picture of hierarchical reinforcement learning in the brain.
Developing such a model would be the most elaborate, but also one of the most valuable,
of the extensions we suggest here.

6.2.7 Improving simulation speed

This extension is not directly related to this model, but refers to neural simulation in
general. We include it here because it was a significant constraint on this work, and sheds
light on some of the design decisions.

A key challenge in neural modelling is that simulating these biologically detailed models
is computationally intensive. For example, the pick-up and delivery model runs at around
1/30th of real time.4 In practice what this means is that completing just one of the 2.5 hour
simulation runs takes 3-4 days of computation. This fact presents a number of challenges
for developing these kinds of models. One is that it significantly slows down the design
process. Model development is an iterative process, involving trying out different ideas,
finding problems, fixing problems, tuning parameters, and so on. When each one of those
steps requires many hours of simulation, it slows down the whole development cycle.

These computational limitations also restrict the complexity of the model. The com-
putation cost scales with the number of neurons and connections, so every new feature
added to the model slows the model down. Thus the reason for not adding a new neu-
ral component is often not that it could not be implemented, but that it would require
too many neurons. For example, separating the positive and negative feedback pathways
(Section 6.2.2) would primarily involve the duplication of several components; this is not
difficult from an implementation perspective, but would dramatically slow down the model.

Similarly, these constraints can prevent the model from being applied to more complex
tasks. For example, the pick-up and delivery task is played out in a fairly small environ-
ment. Performing the same task in a larger, multi-room environment could be done without
changing the model’s implementation, but it would require more place cells and therefore
more neurons in the state population. As another example, the slow simulation speed
prevents the model from being applied in real-time tasks, such as robotic applications; it
is difficult to control a robot when the control is occurring at 1/30th of real time.

4On a Dual Intel Xeon E5-2650 2GHz CPU.
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Figure 6.3: Simulation speed comparison between Nengo 1.4 and Nengo 2.0 running on
various different platforms. The model in this case involved a discrete Fourier transform and
an element-wise multiplication, run for 1 second of simulated time. Figure from Bekolay
et al. (2014).

As mentioned in Section 2.3.5, the model is simulated in a software suite called Nengo.
Recognizing these difficulties, improving the simulation speed of Nengo has been an impor-
tant research focus. As we developed the model presented here, we have also put extensive
effort into rewriting Nengo to support more efficient simulation of large models.

The basic idea is to allow Nengo models to run on a wide range of high performance
platforms, such as neuromorphic hardware, Blue Gene supercomputers, and GPU clusters.
Supporting this functionality required rewriting Nengo essentially from the ground up,
but the effort has already shown promise (Bekolay et al., 2014). Figure 6.3 compares the
performance of a simple Nengo circuit on several different platforms, showing significant
improvements in the new software. Note that Figure 6.3 shows results from the most stan-
dard computing platforms; even larger improvements are to be expected when simulating
on Blue Gene or neuromorphic hardware, although those benchmarks are not yet available.

Unfortunately this redesign is still a work in progress, so the current project was not
able to benefit from these improvements; all of the work presented here was carried out
in Nengo 1.4. Thus an important next step is to complete the development of Nengo 2.0
and then rewrite this model in the new environment. Functionally the two code bases are
equivalent, so none of the behavioural results will change; it is mainly a matter of changing
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the code over to the new syntax of Nengo 2.0. This will allow the model to take advantage
of the improved simulation speed, as well as future improvements to Nengo. The further
development of the model will be greatly eased by these improvements, as well as allowing
it to scale up to increasingly complex problems.

6.3 Model predictions

A great advantage of building mechanistic neural models is that they can be used to
generate a wealth of comparisons to experimental data. There are two main approaches to
these comparisons. One is to look at existing data and try to reproduce it with the model
(as in Section 5.4). This can verify the biological plausibility of the model, or generate a
new explanation for previously unexplained results (as in the classic dopamine/TD error
work of Schultz 1998).

The other approach is to generate predictions from the model; in this case the modeller
is using the analogy between the model and the modelled system to anticipate data that
does not yet exist. Prediction serves the same basic purpose as data matching: it supports
the biological plausibility of the model (if the prediction is born out), and it can generate
new understanding of the modelled system. However, prediction can be much more effective
in both these regards than data matching. A verified prediction is more convincing evidence
of the biological plausibility of a model, as the prediction is out of the modellers hands;
they cannot adjust the model to fit the data, they must fix the model and commit to the
result. Similarly, when a modelling prediction is investigated experimentally it has the
potential to drive research in an entirely new direction, which can have more impact than
providing a new explanation for existing data.

However, along with these potential advantages comes the condition that generating
useful predictions from a model is more difficult than data matching. The caveat of useful
predictions is an important one. It is easy to generate predictions; for example, we could
take any of the neural populations in this model and “predict” that there is a corresponding
neural population in the brain. There are several conditions to a useful prediction. One is
that the prediction should be testable; there needs to be a way to collect the predicted data
using existing methods, and quantitatively compare that data to the model’s prediction.
For example, how would we find the set of neurons corresponding to one of the predicted
populations, and how would we verify that it did correspond to the model population even
if we did? It should also be the case that the prediction is not trivially true. It is quite
likely that we could find some group of neurons whose activity would correlate with some
neurons in the model, but that is not a convincing demonstration of their equivalence. In
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other words, the prediction should distinguish something unique to the model, and not be
a result that would also follow from a broad range of competing hypotheses.

The final challenge of predictions is that someone needs to actually conduct the experi-
mental investigation. It is often the fate of modelling predictions that they are cast out by
the modeller and then never taken up by an experimentalist, in which case they are not of
much use. Of course this is often out of the modeller’s hands; unless the modeller has the
experimental apparatus themselves all they can do is make the prediction as compelling
as possible, in the hope of convincing an experimentalist to invest their effort. Often this
can be an important benefit of data matching, as a model that has already been shown to
match existing data has more support for the plausibility of its predictions.

In this section we present some of the predictions that can be generated from this
model. This is not an exhaustive list, but these are the predictions that best meet the
criteria outlined above.

6.3.1 Testing the dual training system

In Section 4.5 we described a hypothesized neuroanatomical mapping for the dual train-
ing system, and mentioned that while it was plausible it was also rather speculative and
untested. It is useful then to discuss how one might investigate that theory experimentally.

The key prediction is that updates in the dorsal striatum (representing the current Q
function) should be time delayed relative to those in the ventral striatum. For example,
imagine a rodent in a T-maze, well-trained so that there are little to no prediction error
signals. If an unexpected reward were then placed in one arm of the maze, we would expect
a positive prediction error in ventral striatum, as normal. The unique prediction of the
dual training system is that we would then see a similar positive prediction error in dorsal
striatum, not concurrent with the first but closely following it.

The length of the time delay between the updates depends on how quickly the animal
updates the data stored in orbitofrontal cortex (OFC). Recall that the current Q function
can only be updated when the current and stored state are the same, which occurs immedi-
ately after the stored state is updated. Thus we would expect to see the following sequence:
reward received, prediction error in ventral striatum, activity change in OFC (not neces-
sarily correlated with prediction error), and finally prediction error in dorsal striatum. A
more dramatic delay could be observed if the animal were moved out of the rewarded state
before the OFC update occurred. Then we would not expect a prediction error in dorsal
striatum until the next time the animal reaches the rewarded state. However, given the
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rapidity of the OFC updates, it would likely be difficult to interrupt the update sequence
in this way.

The rapidity of these updates would also make it difficult to detect these timings with
fMRI, due to its lower temporal resolution. Thus this experiment would be best applied in
an animal model as described here, with direct electrophysiological recording. However, the
challenge in that case would be to record from those diverse areas (dorsal/ventral striatum
and OFC) in the same animal.

6.3.2 Integrative discount

In Section 4.5.3 we pointed out that there was no strong evidence either for or against the
integrative discount mechanism. It is helpful then to imagine what convincing evidence
would look like, and how it might be found.

The key signature of the integrative discount would be neural activity that increases
(or decreases) over the course of action execution. Note that even though the integrated
value increases, the NEF demonstrates how this can be represented neurally by a decrease
in firing rate. Either way, the important point is that the activity changes monotonically
over time, even in the absence of any external changes.

More specifically, the model predicts that the rate of change should be proportional to
the value of the previously selected action. We have already seen that researchers can find
neurons representing action values (e.g., Samejima et al., 2005), so those could be used to
get a measure of the previous value. The next step would be to search for neurons whose
activity changes monotonically over time, as described above. The final test would then be
to look for a correlation between the two—as the action value goes up or down, the rate
of change should go up or down accordingly.

The main problem with this prediction is that we do not really know where to look
for these integrative discount neurons. The basic prediction is just that there are neurons
somewhere in the brain with these properties, which is not very helpful for an experimen-
talist. In addition, the integrative discount can be computed by a fairly small population,
which may be difficult to detect with methods such as fMRI. Thus testing this prediction
may require electrophysiological recording, which is even more difficult to use in a broad
search.

However, it seems likely that these neurons will be closely associated with the dopamin-
ergic nuclei, since their output is a key factor in the TD error calculation. Thus we would
expect them to be either inside the dopaminergic nuclei or within one synapse. In addition,
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these neurons need to receive input from the neurons representing action values in ventral
striatum. This narrows down the search range somewhat, but still represents a difficult
challenge.

6.3.3 Rule bias

Another prediction of the model, and one that could be tested in human subjects, arose
in relation to the Badre et al. (2010) hierarchical stimuli task. Namely, the model predicts
that the initial propensity of the pre-premotor region to a high activity level is due to an
internally generated bias applied to the reward signal.

Experimentally, this would appear as stronger positive prediction errors and weaker
negative prediction errors on the hierarchical version of the task relative to the flat ver-
sion. This could be used to create a measure of the bias in each subject, for example by
calculating the ratio between the average positive prediction error in the hierarchical and
flat scenarios.

The model would then predict that that bias measure would correlate with the magni-
tude of the high activity bump in the pre-premotor region in the flat condition. Specifically,
the bias should be correlated with the width of the bump—the stronger the subject’s bias,
the longer they should persist in trying to find a hierarchical rule.

One nice feature of this prediction is that it can likely be tested simply by re-analyzing
existing data, rather than requiring a new experiment to be conducted. However, the
question will be whether the measurements are sensitive enough to detect the hypothesized
difference in prediction errors. As described in Section 5.4, even a bias as small as 10%
in the reward signal can induce the hierarchical bias, which may translate into an even
smaller difference in prediction errors.
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Chapter 7

Conclusion

In this work we have presented a neural model capable of performing hierarchical rein-
forcement learning. This model is able to leverage its hierarchical structure to achieve
improved performance, and is consistent with neurophysiological data. It thus represents a
new hypothesis for neural decision making, bringing us closer to understanding the brain’s
impressive ability to learn complex behaviour from sparse feedback.

The model implements all the major components of reinforcement learning via neural
mechanisms, including the learning of action values (Section 4.1), action selection (Sec-
tion 4.2), and TD error calculation (Section 4.3). In addition, all of these components are
designed to operate in an SMDP environment, where actions have temporal extent. This
allows us to extend the model to hierarchical domains (Section 4.4), where the abstract
actions of HRL must extend across the execution of the underlying basic actions.

Throughout the design of this model an important goal has been to develop a generic
reinforcement learning system that can be applied across a wide range of tasks. Thus
a strong effort has been made to keep task-specific information/optimizations out of the
model’s basic components. The model treats the environment as a black box, only inter-
acting with it via the state and action vectors (and with a scalar reward signal as the only
feedback). This means that when the model is applied to a new task its internal structure
is largely unchanged; all that needs to be modified are those input and output components.

The hierarchical structure of the model takes a similar approach; we have tried to
define this structure in as general a fashion as possible, via the three context, state, and
reward interactions. However, these are less general, in that the modeller must implement
a specific instantiation of these abstract categories based on the hierarchical structure of
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the task. Automating this process is an important direction for future development of this
model (as discussed in Section 6.2.6).

We presented a detailed neuroanatomical mapping for the model in Section 4.5. This
serves two purposes. First, it lends support to the biological plausibility of the model, by
demonstrating that the structure of the model is consistent with known neuroanatomical
structure. Second, it makes it easier to connect the results of the model to neurophys-
iological data. This can be used to verify that the model matches existing data (e.g.,
Section 5.4), or to generate new predictions (e.g., Section 6.3).

This model builds on previous work in a number of ways. First we can consider the
model’s contributions from the perspective of standard RL (ignoring the hierarchical frame-
work). Many previous models have been limited to “associative RL”, meaning that they
can learn to maximize immediate rewards but not the long term consequences of their de-
cisions (Section 3.1). Other models move beyond immediate rewards, but are still limited
to optimizing relatively short-term consequences. In this model we show how the full TD
learning process can be implemented neurally, thereby allowing the model to solve problems
involving long sequences of decision making. Although this is not the only model to do so,
it is one of few (Section 3.1.5), and the only one able to operate in a continuous/SMDP
environment. We also believe that the distributed representational structure of this model
will scale better to complex problem domains, although a convincing demonstration of that
scaling awaits improvements to model simulation speed (see Section 6.2.7).

With respect to hierarchical reinforcement learning, this is the first neural model to
implement an HRL framework. Previous work has described how HRL could be neurally
implemented in theory only, or has implemented a simplified, associative HRL structure
(see Section 3.2). Thus this is the first model to demonstrate that the computational
principles of HRL could be implemented in the brain. This is exciting, as it represents a
new hypothesis for the brain’s reinforcement learning mechanisms. This new hypothesis
has greater functional power than flat RL techniques, thus explaining a broader range of
the brain’s performance.

The results we presented in Chapter 5 were designed to reinforce all the above points.
We demonstrated the model’s basic functional performance in Sections 5.1 and 5.2. Sec-
tion 5.3 established the power of the hierarchical approach, by demonstrating the improved
performance of the hierarchical versus flat model on the delivery task, and the ability of
the model to easily transfer knowledge between tasks. The hierarchical stimuli task of
Section 5.4 focused more on the comparison to experimental data; although such data is
limited in HRL, the results showed that the model’s output was consistent with human
neurophysiological data when applied to the same task.
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However, with all of the positive outcomes outlined above, it is important to emphasize
that this model has many limitations that could be improved upon. For example, it has
only been applied to relatively simple environments. These tasks may be complex with
respect to existing neural modelling, but they are still a far cry from the tasks that humans
can solve effortlessly, not to mention ones we find difficult. Understanding that advanced
performance is one of the main motivations for building these kinds of models, thus being
limited to simple domains is somewhat unsatisfying.

Beyond scaling, there are also important qualitative gaps in this model. One of the
most critical is model-based processing (Section 6.2.5). This is undoubtedly a crucial
aspect of human reinforcement learning, yet all of the processing in this work is model-
free. Understanding how to implement model-based RL in a neural model, how to apply
those techniques to HRL, and how to combine such a system with the one we present here
are important and unanswered questions.

Another key gap is the autonomous learning of hierarchical structure. In this model
the hierarchical structure (consisting of the various state/context/reward interactions, as
well as the division of abstract actions and assignment of actions to different hierarchical
levels) is all created by the modeller. One of the primary goals of RL is to begin from a
tabula rasa state, thus this dependence on the modeller is unsatisfying. In addition, real
neural systems do not have anyone to create the hierarchical structure for them, it must
be learned dynamically; thus this model must be omitting important neural computations.
As discussed in Section 6.2.6, techniques to autonomously learn hierarchical structure are
an ongoing area of research in HRL, and incorporating these ideas into a neural model will
be an important step in understanding hierarchical processing in the brain.

Thus the conclusions of this work are both optimistic and challenging. On the one hand,
we have seen that HRL can be implemented in a neural model, and seen demonstrations
of the added power that framework can bring to neural modelling. On the other hand,
this work also highlights the large distance still separating our models from real neural
systems. Our hope is that this model closes that distance slightly, bringing us a little
closer to understanding and recreating the impressive learning abilities of the brain.
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