Dispatching Work: Finding the best
dispatching method for real job-shops

by

Andrew A.H. Brown

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Management Sciences

Waterloo, Ontario, Canada, 2014

© Andrew A.H. Brown 2014

Author’s Declaration
I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Motivated by a situation observed by our industry partner, we test if changing
dispatch methods within a job-shop can reduce the percentage of late jobs while
not reducing the maximum lateness across all jobs, the two key performance
indicators (KPIs) of interest. Using data provided by our industry partner, we
show that the earliest operation due date (EODD) dispatch rule is the best rule
for them. In addition, we propose an alternative idea for random job shop data,
the routing distribution, and we compare dispatching rules performance using
KPI frontiers under different routing distributions. We find that EODD is one
of several dispatching rule which consistently lie on the KPI frontier for different
job routing distributions. We further show that using multiple dispatch rules
across several job-shop departments does improve a job-shop’s performance on
the KPIs, though the improvement is small. Lastly, we leave the readers with
some insight into determining which dispatch rules should be considered for
different job-shops.

iii

Acknowledgments

I would like to thank my advisors Stan Dimitrov and Ada Barlatt for their
enthusiasm, guidance and willingness to let me share in this research problem
with me. I also thank my Master’s committee for their many useful suggestions
for improving this thesis. I am also very grateful to our industry partner for
their generous access and assistance. I thank the Department of Management
Science for the academic opportunities afforded me as a graduate student.

iv

Contents

1 Introduction 1
2 Related Work 5
3 Notation and Methods 8
3.1 Job-Shop Simulation 8
3.2 Job-shop Demand Definitions and Notation 9
3.3 Random Jobsets L. 10
3.3.1 Uniform Routing 12
3.3.2 Triangle Routing 13
3.3.3 Preferential Attachment Routing 14
3.3.4 Preferential Flow Routing 16
3.3.5 Empirical Routing 0oL 17
3.4 Job-Shop Scheduling as a Mathematical Program 18
3.5 Scheduling Methods 19
3.5.1 Earliest Due Date (EDD) 19
3.5.2 Earliest Operation Due Date (EODD) 19
3.5.3 Earliest Release Date (ERD) 20
3.5.4 Earliest Fraction Completed Date (EFCD) 20
3.5.5 Shortest or Longest Processing Time (SPT, LPT) 20

3.5.6 Shortest or Longest Operation Processing Time (SOPT,
LOPT) . .o 21
3.5.7 Least or Most Remaining Operations (LRO, MRO) ... 21
3.5.8 Shortest Next Queue (SNQ) 21
3.5.9 First in, First or Last out (FIFO, FILO) 21
3.5.10 Maximum Work per Day (MWpD) 21
3.5.11 Least Slack (LS) 22
3.5.12 Least Slack over Remaining Operations (LS/RO) 22
3.5.13 Least Slack over Operation Processing Time (LS/OPT) . 22

3.5.14 Least Slack times Operation Processing Time (LS*OPT) 22

3.5.15 Least Slack plus a late rule (LS1Ir) 23

3.5.16 Most Tardy plus an early rule MT er) 23

3.5.17 Most Tardy over Remaining Processing Time (MT/PT) . 23

3.5.18 Most Tardy over Operation Processing Time (MT/OPT) 24

3.5.19 Multiple Rules 0. 24

4 industry partner Results 25
4.1 Single Rule Performance L. 25
4.2 Multiple Rule Methods Results 26

5 Generalized Results 29
5.1 Single Rule Results 29
5.1.1 Empirical Routing 29

5.1.2 Preferential Attachment 32

5.1.3 Preferential Flow
5.1.4 Triangle Routing
5.1.5 Uniform Routing
5.2 Routing Function Multiple Rule Methods Results
5.2.1 Comparing KPI Frontiers
5.2.2 Comparing to EODD
5.2.3 Comparing the number of rules

Discussion

6.1 Just enough Complexity
6.2 KPITrade-offs
6.3 Travel Times e
6.4 Simplicity of One Rule L.
6.5 Routing Distribution Difficulty and Control

Conclusion

7.1 Scheduling method Recommendation for our industry partner . .

7.2 Modeling a Job-Shop o

7.3 Future Work
7.3.1 Extending the job-shop model
7.3.2 Extend to other job-shops
7.3.3 Explore creating Departments
7.3.4 Further investigate routing distributions

Appendices

A Failed Dispatching Rules

A.1 Minimum Completion Time
A.2 Highest Priority WIP

Python Code

B.1 Simulation Code
B.2 Dispatching Rule Code
B.3 Routing Distribution Code

KPI frontiers

vi

56

56
56
o7

57
o7
o7
o8

58

List of Figures

1

[\

10
11
12
13
14
15
16
17
18
19

20

The state of a machine m; jobs 1 to 4 are enqueued and the third
operation of job 0 is being processed on m. 8
An exampleof ajob. L oL oo o 9
The left panel shows how the total number of operations pro-
cessed at each machine in J,4 can vary. The middle panels
shows that the totals do not statistically vary for uniform rout-
ing. The right panel shows that the total number of operations
processed per machine in a triangle job set are subjectively sim-

ilar to the totals for Jrpg. . - -« « v o oo o 13
A triangle probability distribution with density on the range [a, 0],
andmode ¢ Lo 14

The left panel shows a histogram counting the number machines

from J7,q which process a number of operations processed between

the bounds of each bar. For example, 9 machines process between

400 and 600 operations. The middle and right panels show the
same counts for triangular job sets and for preferential attach-
ment jobsets. 14
The left panel shows a histogram counting the number machines

from Jr,q which process a number of operations processed between

the bounds of each bar. The right panels show the same counts

for preferential flow jobsets. oL 17
Simulation results for single dispatching rules plotted by their
performance on our KPIs: maximum lateness versus percentage

of late jobs. L 25
Results for simulations using multiple dispatching rules. 27
The KPI frontiers for the single rule methods and for all the

methods run on the industry partner data simulations. 28
The KPI frontiers for scheduling methods using 1 to five different

rules. 28
The single rule KPI frontiers for each routing distribution. 30
Single rule performances on the Empirical routing distribution. . 31
Single rule performances for the preferential attachment routing

distribution.o 33
Single rule performances on the preferential flow routing distri-

bution. 35
Single rule performances for the triangle job sets. 36
Single rule performances for the uniform jobset. 38

The KPI frontiers over all methods for each routing distribution. 39
The KPI frontiers for single rule simulations (red) and for all

simulations (green) for each routing distribution. 40
The KPI frontiers of simulations using 1, 2, 3 or 4 rule methods

for each routing distribution. 42
The percentage of late jobs which were incomplete at week n. . . 44

vii

21

The single rule KPI frontiers for each of the six routing distri-
bution considered above, and an additional frontier for a second
empirical routing distribution.o

viii

1. Introduction

Manufacturing is an important part of Canada’s future economic development,
representing 14% of Canada’s Gross Domestic Product, but it is facing many
new challenges from around the globe. To address those challenges, Canadian
manufacturers need to become more efficient (CMC, 2012). Many companies,
like our industry partner, are seeking efficiency gains by implementing Indus-
trial Engineering methods in their job-shops, particularly for their production
scheduling. In this thesis, we show that our industry partner’s current schedul-
ing method is a fine choice, that multiple rule methods can increase the efficiency
of their production scheduling further, and that, for the most part, these results
generalize to other job-shops.

We were tasked by our industry partner to propose new scheduling methods for
their job-shop to reduce the number of late jobs. In observing their schedule, we
determined that any scheduling method we recommend should be human imple-
mentable; a method is human implementable if it usable by schedulers with min-
imal training using existing scheduling equipment such as work-in-progress lists,
and job boards. Our industry partner uses a human implementable method cur-
rently, so a new human implementable scheduling method can be implemented
by replacing the current method, with little change to other business processes.
Indeed, an important implication of human implementability is that none of
our recommended methods can require new software, equipment acquisitions,
substantial retraining, or major corporate restructuring.

Dispatching rules are a commonly used scheduling method, and most are hu-
man implementable. To define them, we first define a job-shop. As in many
production models, a job-shop has a number of machines or resources on which
the production work is processed. The production in job-shops is organized into
jobs: an ordered list of operations each completed using a specific machine or
resource for a set amount of time. Each job has a due date by which time the
job is ideally complete. At each machine, there are enqueued jobs waiting to
be processed, and a dispatching rule is a scheduling method used every time
a machine finishes processing an operation, with the function to to choose the
next enqueued job to ‘dispatch’ for processing.

Dispatching rules are typically quite simple:
All else being equal, process the job with the earliest due date.

The earliest due date (EDD) rule, as this example is known, is human imple-
mentable; a person can determine the next job to select as per EDD with only
a list of enqueued jobs and their due dates. Our industry partner currently uses
a variant of EDD called earliest operation due date (EODD) defined in Section
3.5.2. There are many other well-known dispatching rules; Pinedo (2009) defines
several. In this thesis, we consider only those dispatching rules which can be
assessed using a list to ensure human implementability. We show by simulating
our industry partner’s factory that EODD minimizes the number of late jobs

while completing all jobs, whereas another rule, shortest operation processing
time (SOPT) first, defined in Section 3.5.6, reduces the number of late jobs by
as much as 50% over EODD though a small set of jobs is left incomplete.

In addition, we show that multiple rule scheduling methods, methods where
two or more dispatching rules are assigned to groups of machines, are slightly
more effective. Our industry partner organizes their machines and production
scheduling using departments, and they have experimented with several ways
of setting those departments, grouping machines by function for instance. We
propose new scheduling methods which assign different dispatching rules to the
groups our industry partner used. We show that the best performing of these
multiple rule methods out-perform using single rule, though typically by less
than 1% fewer late jobs.

We then generalize the above work by simulating the functioning of all our
scheduling methods on randomly created production data. That production
data is created using several empirical distributions based on our industry part-
ner’s data, as well as five different routing distributions. A routing distribution
is a set of discrete probability distributions, each on the set of job-shop ma-
chines, with a distribution assigned to or generated for each operation of every
job. Each operation’s probability distribution is sampled to determine the ma-
chine processing that operation of every job. A simple example of a routing
distribution is what we have called a uniform routing distribution, previously
called an open job-shop (Philipoom and Fry, 1990), in which every probability
distribution for every operation is a uniform distribution on the set of machines.

We suspect that the uniform routing distribution is commonly used due to its
simplicity, but production data generated using uniform routing is a poor model
for our industry partner’s production data. Overall, the performances of our
dispatching rules is very different on the uniformly generated production data
compared to the overall performance on our industry partner’s data. One dif-
ference between them is the key-performance-indicator (KPI) Pareto frontiers
or KPI frontiers. The KPI frontier for the industry partner data exhibits a
clear trade-off between the two indicators, percentage of late jobs and max-
imum lateness; whereas, the performances of each dispatching rule on the KPI
frontier for the uniformly generated data are nearly identical, with less than 1%
performance difference in both KPIs. That difference, and others, are due to
the specialization of some or all of the machines in a real job-shop; for example
some machines process the leading operations, while others process the trailing
operations.

In an effort to better model that specialization, we define, in Section 3.3, four
routing distributions beyond the uniform routing distribution. We compare
routing distributions by calculating the KPI frontier of the best performing
dispatching rules on each routing distribution. We find that the performance of
the best dispatching rules varies substantially, more than we initially expected.
However, for most of the routing distributions considered, EODD and SOPT
are still, on average, good dispatching rules.

Now, there are many scheduling heuristics and algorithms studied in both OR
and artificial intelligence with significantly better theoretical performance than
dispatching rules. Indeed, our industry partner has previously scheduled their
production with one algorithm implemented by a computerized scheduling sys-
tem. However, in McKay et al. (1988), the authors find that the theoretical
methods studied are likely irrelevant to real job-shops, as they do not account
for many of the realities faced by schedulers in real job-shops. The scheduling
methods we describe here, both single rule and multiple rule methods, avoid
being irrelevant in the following ways.

Firstly, most job-shop algorithms require extensive computations, so the reasons
for and interactions among the choices made by these algorithms can be quite
opaque. When changes are required, that opacity makes altering portions of a
created schedule difficult. In contrast, the reasons for the choices each dispatch-
ing rule makes are straight forward: calculate the earliest due date, so that jobs
do not go past due. With that clarity, schedulers can easily weigh the import-
ance of a dispatching rule choice against other manufacturing requirements such
as the need to conduct preventative maintenance.

Secondly, job-shop algorithms typically create complete schedules which specify
the start and stop times of all operations for all jobs in progress. However, the
situation on a shop floor changes very quickly with new orders, machine break
downs and many other considerations, so the later half of a complete schedule
is typically changed dramatically, a computational waste. Job-shops algorithms
cannot capture enough of the complexity and instability inherent in scheduling
a real job-shop (McKay et al., 1988). The scheduling methods proposed here
avoid that waste, as dispatching rules make scheduling choices in real time.

Finally, neither dispatching rules nor multiple rule methods replace or reduce
the scope of job-shop employees in the scheduling process, whereas compu-
terized OR-solutions often do replace or reduce the scope of employees. For
instance, it is difficult for anyone to criticize a computer generated schedule, as
any suggested changes could require abandoning large portions of the schedule
due to the cascading effect of changes in job-shops. Hence, employee criticism
and suggested changes can go unheeded. After being unheeded often enough,
employees stop offering input, acquiescing to the schedule regardless of their
better judgment. While using their computer scheduling system, our industry
partner experienced that employee acquiescence, and they found that employee
involvement in many other aspects of production declined, negatively affect-
ing production as a result (Industry-Partner, 2013). The scheduling methods
here, on the other hand, allow employees, informed by the changing situation,
to easily make, contribute to, or criticize scheduling choices. In particular, the
suggestions of any of our scheduling methods can be easily over ruled in favour
of other priorities.

In Section 3.5, we define several dispatching rules for use in our simulations
either alone or in combinations. We conduct a tournament using a job-shop
simulation, described in Section 3.1, and compare the performance of each sim-

ulation using two of our industry partner’s KPIs: the percentage of late jobs
and the maximum lateness. The simulations we seek are on the KPI frontier
for these two KPIs. Our simulations are run on data provided by our industry
partner, as well as random production data generated using empirical distribu-
tions based on that same data and the routing distributions defined in Section
3.3. We present the results of our simulations in Sections 4 and 5. We conclude,
in Section 7.1, with a specific recommendation for both our industry partner
and for job-shops in general.

2. Related Work

The study of job-shop problems has proceeded similarly to other NP-hard
problems. First, the problem is formulated and optimal algorithms are pro-
posed (Manne, 1960). Later, after an NP-hardness proof is found, by Garey
et al. (1976) for job-shops, researchers assume that all optimal algorithms for
the problem have prohibitively long run-times, and researchers began develop-
ing approximation algorithms and heuristic solutions in favour of optimal al-
gorithms. Approximation algorithms and heuristic solutions find good, though
not optimal, solutions to hard problems in polynomial time, and the polynomial
run time allows them to be more easily employed by industry. Dispatching rules,
a family of heuristics for job-shops and the focus of this thesis, were proposed
by Panwalkar and Iskander (1977).

There are a variety of algorithms and heuristics, which in theoretical terms, out
perform dispatching rules such as the approximation algorithms (Shmoys et al.,
1994), the shifting bottle neck algorithm (Adams et al., 1988), or constraint
programming methods (Nuijten and Aarts, 1996) to name just a few. However,
the solution of many of these algorithms and heuristics are complete schedules,
and as was mentioned above, McKay et al. (1988) found that, among other
things, actual job-shops are prone to rapid and unpredictable change. Complete
schedules implicitly assume that job-shops are more stable than is really true.
Dispatching rules avoid this problem by not creating complete schedules; they
merely specify what should be worked on next by a free machine or resource.

Another, more recent heuristic approach is to search through a job-shop in-
stance’s solution space to find solutions with good objective values. There
is a large variety of such search algorithms: ant colony algorithms (Colorni
and Dorigo, 1994; Huang and Liao, 2008); differential evolution algorithms
(Pan et al., 2008; Wei-ling and Jing, 2013); genetic algorithms (Yu and Liang,
2001; De Giovanni and Pezzella, 2010); local-search (Vaessens et al., 1994; Vela
et al., 2008); particle swarm algorithms (Sha and Hsu, 2006; Zhang and Wu,
2010), simulated annealing (Tavakkoli-Moghaddam et al., 2008; Zhang and Wu,
2011), and tabu-search algorithms (Nowicki and Smutnicki, 2005; Armentano
and Scrich, 2000). These algorithms also create complete solutions, but there is
another problem, that of understanding generated schedules.

Search algorithms all use various steps with no clear analogue to scheduling
a real job-shop, such as randomly generated schedules, “scent trails” along a
“path” of schedules or “moves” from schedules to other schedules. The lack of
analogy for these steps makes it difficult for industry schedulers to understand
the choices and assumptions made by the search algorithm while generating a
schedule, so it is difficult to know how to alter a schedule and to what degree
when the real situation changes. The proactive scheduling algorithm proposed
in Goren et al. (2012), while avoiding the problems of complete schedules, shares
the analogy problem because it employs tabu-search. The dispatching rules we
consider here, namely human implementable dispatching rules, are specifically

chosen or designed to have clear analogies to real job-shop scheduling, involving
quick calculations or lookups, such as finding the earliest due date amongst a
set of jobs.

We consider dispatching rules from several sources (Panwalkar and Iskander,
1977; Pinedo, 2009), as well as some new rules. We compare their performance in
job-shop simulation using the percentage of late jobs and the maximum amount
a job is completed past due. Similar analyses of dispatching rule performance
on job-shop simulations can be found in Kaban et al. (2012), or Sculli and
Tsang (1990). Our goal here is slightly different from those papers in that we
not simply looking for the best performing rule under our chosen KPI or KPIs.
Instead, we are recommending changes to our how industry partner’s schedules
to reduce the number of their late jobs, so we sought rules which outperform
their current dispatching rule, earliest operation due date.

We also take up a study of what we call routing distributions, defined in Section
1, as they appear to be an under studied aspect of job-shop. Some job-shop
researchers explicitly state the routing distribution used to create their random
production data as in Adams et al. (1988), Shah (2004), or Ruiz and Vézquez-
Rodriguez (2010), but being explicit about this does not seem to be common
among researchers. Moreover, different routing distributions are known to affect
the performance of dispatching rules (Philipoom and Fry, 1990).

As mentioned above, a job set has a uniform routing distribution, also known
as an open (Philipoom and Fry, 1990) or a pure job-shop (Holstein and Berry,
1970), if for a given job length, every route through the job-shop’s machines is
equally probable. Uniform routing implies that it is unlikely there will be any
routing “features” like bottlenecks or favoured routes in the job set. Any route
is equally as likely as any other. However, the routing distribution observed in
our industry partner’s production data included several features such as loose
staging and bottle necks, among other things, suggesting that uniformly distrib-
uted routing is a poor model of industry demand. We compare our scheduling
methods on random production data created from several different, explicitly
stated, routing distributions, including uniform routing. We show that our set
of dispatching rules collectively perform quite differently on each routing dis-
tribution, so routing distributions are an important consideration in random
production data creation.

The last new aspect of this thesis is the focus on human implementable dispatch-
ing rules. To our knowledge, the studies of dispatching rules in the literature
have not previously sorted the rules upon this criteria. The focus on human
implementability comes from the need to make improvement recommendations
to our industry partner that easily fit into their existing scheduling processes. In
personal communication with our industry partner, we learned that they use an
effective, human-centric scheduling process which has improved performance on
all of their key performance indicators, reversing the production decreases attrib-
uted to a previously used computerized scheduling system (Industry-Partner,
2013). Their current process employs a human implemented dispatching rule,

earliest operation due date first, so a different rule is conceivably an easy change
to make, and one that maintains the centrality of the human scheduler along
with the attendant benefits our industry partner experiences.

3. Notation and Methods

In this section, we introduce the necessary definitions and notation to describe
a job-shop instance, our simulations, and the particulars of our solutions. We
begin with the definition of our job-shop simulations.

3.1. Job-Shop Simulation

We model job-shops using a computer simulation. The setup of our simulations
consists of

1. a job set J, Section 3.3, and
2. scheduling method, Section 3.5.

A job-shop is simulated using a discrete time line implemented using SimPy
to track factory events: job releases, processing starts, processing completions,
and job transits between machines (Lunsdorf et al., 2012). The simulations are
deterministic because all of the variables specified in the job set are constants,
and all the scheduling methods are deterministic. The code itself is shown in
Appendix B.

Throughout a simulation, the current state of each machine and each released
job is available for dispatching rules. The current state of a released job is given
by a combination of the amount of processing completed on j, and the location
of j, whether in transit between machines or at a specific machine. In Figure
1, job 0 is at machine m, 2 of 5 operations of job 0 in the figure are complete,
and the third is 43% complete. The state of a machine m includes two pieces
of information. The first is the queue, ¢,,, of all the jobs waiting at m. The
second piece is either that m has completed p percent of operation ¢ of job j or
that m is in sleep mode waiting for a new job to enter the job queue, which for
m is denoted g,,. In Figure 1, the state of m is the list of jobs 0 through 4, and
that operation 3 of job 0 is 43% complete.

—
iy
ooom
oooEEEE

J;
m m —
g8 |, 8
Jo B L
o 43% qm

Figure 1: The state of a machine m; jobs 1 to 4 are enqueued and the third operation of job
0 is being processed on m.

The dispatching rule for a machine m is triggered whenever m finishes processing
an operation. The rule chooses a job enqueued at m, and m begins processing it.
If the rule finds that g, is empty, q,, = 0, then m is put to “sleep” until a new
job enters g,,,. From every simulation, the history of the simulation is returned
as a list of all the start times of all operations. We calculate the two KPIs for
each simulation: percentage of late jobs, and maximum a job completed past
due.

3.2. Job-shop Demand Definitions and Notation

Figure 2 is an example of a job used in our simulation. Each job has several
parameters: job name, release date and due date, and an ordered list of opera-
tions. An operation is a task which must be processed on a particular machine
for the number of hours given by the processing time , and the operation index
is the position of the operation in the list of operations. The first operation in
Figure 2 has index 1 and takes 4.4 hours on machine mb4. The release date is
the date after which processing the first operation can begin, 10/18/13 in the
figure. A job set consists of a number of such jobs.

Name Release Date Due Date
j1774 10/18/13 0:01 01/10/14 23:59

Index Machine Processing (hrs)
1 mb4 4.40
2 md7 0.24
3 mO03 0.24
4 SUB 105.0
5 m07 1.24
6 m02 5.68
7 SUB 45.0
8 m09 0.10

Figure 2: An example of a job.

The job in Figure 2 also has two special operations each processed on a machine
called SUB. This machine stands for processing which is subcontracted, such as
heat treatment in metal work. The processing time includes the transportation
handling and actual processing by the contractor. Our industry partner has
several contractors available for each type of subcontracted processing, and we
model this in our simulations by treating SUB as the only machine which can
process multiple operations at the same time.

The mathematical notation required to describe the above is as follows. A job
set is denoted J = {j1,j2,...,4n}, and the set of all operations in J is Op(7).
As described above, each job j € J has

e an ordered list of operations O; = (01,02, ..., 0¢),

e a release date r;, and
e a due date d;.
The ith operation of job j is be denoted 0;;. Each operation has
e an assigned machine m;; on which o;; is processed, and
e a processing time p;; > 0 of 0;;.

Our notation here differs from the standard notation set in Pinedo (2009) where
operations are denoted as the tuple (m;;, j). We found our exposition aided by
the above notation.

We also make some assumptions based on details of our industry partner’s job-
shop (Industry-Partner, 2013).

e We assume an operation cannot be preempted, so once processing begins
on an operation, it cannot be stopped until complete.

e Operations are completed in a linear order by index.

e Release dates are not required to be the same for all jobs.

e Each job can be processed on one and only one machine at a time.
e Each machine can process one and only one operation at a time.

e Setup times are included in the processing time, and they are not sequence
dependent.

e Re-entrant jobs are permitted, that is two or more operations of a job may
be processed on the same machine, but re-entrance can only occur after a
SUB operation.

e One day is required to transport a job between different machines.

Another assumption we make is that the simulated machines do not break down
or need maintenance. It is clear that in a real job-shop machines do break down
and do require regular maintenance. To account for this lack of down time,
our simulations use the same number of hours of processing per day which
our industry partner uses for their planning, 80% of the true capacity of each
machine. Because of these differences and others, we cannot make a fair compar-
ison between performances in the simulation to the actual performance of our
industry partner. However, all the simulations share the same advantages or dis-
advantages, so simulated performances of scheduling methods can be compared.
Hence, the simulation of our industry partner’s scheduling method, EODD, can
be compared to the simulated performances of all the other scheduling methods.

3.3. Random Job sets

Job sets represent the work manufacturers complete for clients, and these sets
are the principle input of our job-shop simulator. We are fortunate enough to

10

have access to two years worth of production data from our industry partner,
representing several thousand jobs; that data was formed into a job set, which
we denote as Jrpq throughout. We wished to apply our results to job-shops
other than our industry partner’s, so we created additional job sets using several
probability distributions derived from our industry partner’s production data.
The creation of a random job set J proceeds according to Algorithm 1. We
note several things about the algorithm.

First, all but one of the parameters needed to create operations, jobs and thus
job sets are sampled from our industry partner’s data, so operation processing
times, job lengths, job due dates etc are all sampled from J7,4. Indeed, we con-
struct each job set so that they each have the same number of machines as Jrpq,
and within 0.05% of the same number of operations in Op(Jrnq). The routing
distribution is the one parameter which we do not necessarily sample from Jy,4;
instead, we use one of the routing functions defined below to determine the job
routings.

Second, the machine SUB, representing subcontracted work, appears in every
random job set. The steps 7 to 10 of Algorithm 1 show how an operation is
assigned to SUB. Our industry partner uses subcontracting at specific points
in the processing of a job, points which depend on the length of the job. We
model that specificity by using the subset of operations described in step 7: all
ith operations of jobs with the same number of operations as j. Recall from
Section 3.2 that a machine may appear multiple times for a job only if the
occurrences are separated by a SUB operation. This re-entrance condition is
enforced by steps 14 and 15 of the algorithm, not by the routing function.

Lastly, Algorithm 1 is used to create all of the random job sets. The algorithm
takes a single parameter, the routing function denoted RF. Each routing func-
tion takes four parameters: the set of machines M needed to process Jr,q4, the
job j, the current operation index i, and the current job set J

RF(M, j,i,J).

Each call to RF returns a discrete probability distribution over M, the set of
machines. The machine distribution is sampled at step 13 of Algorithm 1 to de-
termine the machine for the next operation of a particular job. In this section,
we define the five different routing functions which implement the five rout-
ing distributions: Uniform defined in Section 3.3.1, Empirical in Section 3.3.5,
Triangle Section 3.3.2, Preferential Attachment Section 3.3.3, and Preferential
Flow in Section 3.3.4. The main difference between them is how the machine
distributions are defined. For instance, the uniform routing function always
returns a uniform probability distribution over all machine for each operation,
whereas the triangle routing function returns a triangle probability distribution.
We find that dispatching rule performance varies a great deal depending on the
different routing distributions implemented by these functions, so dispatching
rule performance is quite sensitive to the routing distributions. The remainder

11

of this section defines the five routing functions used to implement our routing
distributions.

Algorithm 1 Job Set Creation
Require: A routing function:

RF(M, 4,4, 7).
Require: The industry partner job set Jrnq.

1: procedure BUILD JOB SET

2 while |Op(J)| < |Op(Trna)| do

3 Sample the release date r; from Jrnq.

4: Sample the difference d; — r; from Jrpnq.

5: Sample the number of operations |O;| from Jrpa.

6 for i from 1 to |O;| do

7 Sample o from the ith operations of |O;| length jobs in Jrya-
8 if o is processed on SUB then

9

10: Sample processing time p;; from all SUB operations in Jrn4.

11: else

12: Sample p;; from all non-SUB operations in Jrpg4.

13: Sample a machine m;; from the machine distribution.
RF(M,], ’L7 \7)

14: if m;; is a repeat since last SUB then

15: Return to step 7.

16: Add 045 to job j

17: Add j to job set J.

18: return J

8.8.1. Uniform Routing

The uniform routing function returns a discrete, uniform probability distribution
over M, so the probability of sampling any machine m € M is

1

P(m) = ™M

This routing function can return the same machine on consecutive samples,
but the constraint noted above and enforced during Algorithm 1 only allows
repeated machines if every pair of instances are separated by the machine SUB.
The returned uniform distribution does not depend on the operation number
i, the job itself or the current job set J. A job set is called a uniform job
set or is said to be uniformly routed if it was created by Algorithm 1 using

12

the uniform routing function. These job-sets have also been called open job-
shops (Philipoom and Fry, 1990).

The first job sets we simulated after [Jr,q were uniform job sets. We noticed
that the performance of all dispatching rules was significantly better than we
observed when simulating J7,4. The uniform job sets seemed “easier” for our
dispatching rules to process. The following routing functions are all attempts
to find “harder” job sets, where the collective performance of our dispatching
rules better resembles their collective performance on Jr.,4.

3.3.2. Triangle Routing

One of the features observed in Jr,q is that the total number of operations
assigned to each machine varies quite widely. An example of how the totals can
vary in Jrnq is shown in the left panel of Figure 3. For uniform routing, the
total number of operations processed by each machine is roughly the same, as
we see in the middle panel of Figure 3. The triangle routing function is one
attempt to create job sets with a wide variance among the processing totals,
similar to what we see in the left panel of the figure. We call a job set created
with a triangle routing function a triangle job set, or that it is a triangularly
routed job set.

Operation Totals
industry partner Uniform Triangle

I 500
1 350 | 00
1000 300 +
w00 | 0 a0
20
o | 00 .
: | 1]
w0 100 1
| % [HEAN]
[loa. o ML : ! n

0 0
ceopzeecee g [s p se e s eeg Ny Y s an s e ez ga g,
E¥EEEEEEE S S432:24¢2 gEggz2gsgegddezsds ge2z28582

Figure 3: The left panel shows how the total number of operations processed at each machine
in Jrnq can vary. The middle panels shows that the totals do not statistically vary for uniform
routing. The right panel shows that the total number of operations processed per machine in
a triangle job set are subjectively similar to the totals for Jr,q.

This routing distribution is implemented using a continuous triangle distribu-
tion, a probability distribution with a triangle shaped density graph, as in Fig-
ure 4. The parameters for this distribution are the range [a,b] with non-zero
density and the mode ¢, which is the position of the peak in Figure 4. The
discrete triangle distribution is obtained by taking the floor of any sample from
the continuous triangle distribution. Hence, the probability of sampling the kth
machine, my, in M is

Pimg)=Pk<T<k+1)
where T is a random sample of a triangle distribution.

One sees that those machines “near” the peak of the triangle will appear more
often in 7, so those machines will process more operations than other machines.

13

In the right most panel of Figure 3, there is indeed a wide variance in the total
number of operations processed on each machine, which is the aim of the triangle
routing distribution.

Figure 4: A triangle probability distribution with density on the range [a, b], and mode ¢

3.8.3. Preferential Attachment Routing

The triangle routing function creates job sets with a lot of variance in the total
number of operations processed on each machine, which is similar to Jrq.
However, looking at the histograms in Figure 5, we note a difference between
Jina and a triangularly routed job set. The bar in each range in the left panel
of Figure 5 counts the number of machines in Jj,q4 which process a number of
operations between the bounds of that bar; for example, the number of machines
which process between 400 and 600 operations is nine. The middle panel is
similar, but the histogram is from a triangular job set. Roughly the same
number of machines fall into each category in the middle panel, whereas the left
panel shows a great deal of variance between the categories. A few machines in
J1nd pProcess a significant proportion of all the operations while most machines
process comparatively few operations.

Machine Counts
industry partner Triangle Preferential Attachment

0 200 400 600 800 1000 1200 1400 0 100 200 300 40D SOD 60O 700 800 [200 400 600 800 1000 1200 1400

Figure 5: The left panel shows a histogram counting the number machines from J7,4 which
process a number of operations processed between the bounds of each bar. For example, 9
machines process between 400 and 600 operations. The middle and right panels show the
same counts for triangular job sets and for preferential attachment job sets.

The relationship observed for Jr,4 in Figure 5 is similar to a power law relation,
which is the same relationship one observes in network formation models when

14

the formation is governed by preferential attachment. Preferential attachment
is an idea introduced by Barabdsi and Albert (1999), and it is now a cornerstone
idea of complex systems theory. It deals with the evolution of networks, both
physical and abstract, and states that the more links a node in a network has
the more likely it is to form additional links in the future. There is a preference
for new links to be added to highly connected nodes. One of the principle
features of networks which evolve by preferential attachment is that there are
small number of nodes with a large number of links, while all the other nodes
have comparatively very few links.

Job-shops can be viewed as networks where the machine are nodes, and con-
secutive steps within a job form the links. In this view, a smaller number of
machines in J7,q are highly connected, and a rest of the machines have relat-
ively few connections. We propose a preferential attachment model among the
machines as an improved model for J7,4 over both uniform routing and trian-
gular routing, as a preferential attachment job set will have a similar variance
of the number of connections. The right panel in Figure 5 shows the machine
counts for the preferential attachment job sets, and the histogram for it and
the industry partner job set exhibit similar patterns of those counts: a large
number of machine processing few operations and a small number of machines
processing many operations. Job sets created with this routing function are
called preferential attachment job sets.

The preferential attachment routing function returns a probability distribution
from which it is more likely to sample a highly connected node, that is a machine
which processes a large number of operations. However, every sampling adds
another machine to 7, the job set being created, so the probabilities of choosing
a given machine are updated after each sample. In particular, the probability
of sampling a machine m increases after each time m is added to a job in 7,
so this routing function uses the fact that Algorithm 1 creates J operation by
operation.

The probability of sampling any m is calculated as follows. Consider all the
operations currently added to J. For each machine m, count the number of
times an operation has been assigned to be processed on m, and denote that
count C,,. The probability of sampling m from the distribution returned by
preferential routing function is

1+ aqCh,

P ==
(m) ZeeMlﬁLang

where ag = 0.7 is an attachment dampening parameter. Hence, a machine m is
increasingly likely to be sampled again each time it is sampled. That likelihood
is reduced by ag4, the attachment dampening parameter, and the parameter was
introduced because we noted that the job sets created with ay = 1 had several
machines which did not process any operations, contrary to what we observe in
Jind where every machine processes some operations. Setting ay < 1 increases
the chances that every machine will process some operation, as the 1 in the

15

numerator remains undamped, and after some trial and error, we settled on
aq = 0.7 for our definition, as every machine processed some operations. If
aq = 0, this is the uniform routing function.

3.8.4. Preferential Flow Routing

This routing is similar to preferential attachment, but in this case, preferences
develop between pairs of machines instead of for particular machines. As this
distribution develops, certain machines will become more and more likely to
follow certain other machines, so a degree of staging appears in job sets cre-
ated this way. For instance, certain machines regularly start jobs, while others
regularly complete jobs.

For our industry partner, certain processes are commonly done at the begin-
ning of a job, while others are done commonly at the end. With this routing
function, we model this property, called staging, in the random job sets. The
routing functions above do not result in any staging; for uniform, triangle, and
preferential attachment, machines are as likely to complete a job as they are to
start a job. The preferential flow routing function models staging by creating
flow relationships between pairs of machines; if some job “flows” from machine
£ to m, then it becomes more likely that m will directly follow ¢ for other jobs.
We call these job sets preferential flow job sets.

The probabilities of sampling a machine m depends primarily on the last ma-
chine added to the current job. Let j be the current job in the while loop of
Algorithm 1, o;; be the previous operation added to j, and m;; be the machine
on which o;; will be processed. We next determine the probabilities for sampling
a machine to assign to the operation o;;. For each machine m, find and count
all occurrences currently in J of the machines m;; and m processing operations
consecutively, m;; then m, and denote the count C,,; sm. Then

o 1+ fdcmijﬁm

P(m)

where f; = 0.7 is a flow dampening parameter. The value of the flow dampening
parameter was arrived at similarly to the attachment dampening parameter
defined in Section 3.3.3; with f; = 1, several machines were not assigned any
operations in the created job sets, and after some trial and error, we settled on
fa=0.7.

Interestingly, the histogram of machine counts for this routing distribution, the
right panel of Figure 6, is somewhat different from the histogram for the industry
partner job set, the left panel of the figure. In particular, there are no machines
which process between 0 and 200 operations, so the tallest bar is not close to
zero, as it is for Jr,q. Hence, this routing distribution fails to be more similar
to the industry partner job set than the preferential attachment, though it is
still of interest.

16

Machine Counts
industry partner Preferential Flow

20 a0
18

16

1

12 25

10 20

0 200 400 60 Eo0 loo0 1200 14w 100 200 300 400 500 600

Figure 6: The left panel shows a histogram counting the number machines from [J7,4 which
process a number of operations processed between the bounds of each bar. The right panels
show the same counts for preferential flow job sets.

3.3.5. Empirical Routing

This routing function directly models the routing one observes in J7,4. To do so,
there are many dimensions to consider beyond simply the frequency with which
each machine appears in Jr,4; for instance, the frequency a particular machine
processes the first step of a job in Jj,q is quite different from the frequency
that the same machine processes the tenth step of a job. The empirical routing
function is defined with this consideration in mind, and the process of sampling
is described in Algorithm 2. Job sets created using this routing function are
said to be empirically routed, and called empirical job sets.

In Algorithm 1, several quantities, such as job length or operation processing
time, are determined using a distribution derived empirically from our industry
partner’s job set, Jrn4, SO every job set we consider here is to some degree an
empirical job set. Our use of ‘empirical’ for the routing function described in
this section, and its associated job sets, indicates that the routing function itself
has been empirically derived, where the other four routing functions are not.

Algorithm 2 Sampling using the Empirical Routing Function
Require: The machine set M.

Require: The current job j.

Require: The current operation index .

Require: The industry partner job set Jrnq.

1: procedure SAMPLE DISTRIBUTION ON M

2 Sample o from the ith operations of |O;| length jobs in Jrpnq.

3: if m, = SUB then > M, Processes o
4 Return to step 2

5

return m,.

17

8.4. Job-Shop Scheduling as a Mathematical Program

We now formally define the job-shop problem by stating it as a mathematical
program similar to that on page 86 of Pinedo (2009), using the notation defined
in Section 3.2. The primary decision variables for this program are the start
times, s;;, of all operations, 0;;. A schedule is an assignment of a non-negative
real number to all start times. A schedule is feasible if the following conditions
are met by all start times:

1. operations of each job j are completed in order consecutively, and there

is transportation time of ¢ = one day between machines:

Sij +pij +1 < Siqay

2. processing of job j is started after its release date:

Tj Sslj-

3. a machine can only process one operation at a time: if the ith operation of
job j and the gth operation of job h are processed on the same machine,
that is m;; = mgp, then

Sij + Pij < Sgh O Sgn + Pgn < Sij-

Our aim is to find a feasible schedule which minimizes the number of late jobs
which we achieve with the following variables, constraints and objective func-
tion. A job j is not late if the last operation finishes on or before the due
date:

Sej +pej < dj.

For each job, we introduce the following constraint
Sej +pej < dj +uj- L,

where L is a constant representing the maximum amount of time a job is allowed
to be late and u; is a binary decision variable. The u; variables are the second-
ary decision variables. By taking the objective function to be min) ;Ujs each
decision variable u; = 1 if and only if the job j is late, so the objective value
will equal the number of late jobs. The mathematical program is summarized

18

below.

minZuj
J
s.t.
uj €{0,1} vj
rj < s Vi
Skj+pr; <dj+uj-L Vj

sij >0 Vj and o;5 € Oy
Sij T pij < Sit1 vj and o0;; € O;

Sij +Pij < Sgh
or Vo;; and ogp, st m;; = mgp # SUB
Sgh T Pgh < Sij

8.5. Scheduling Methods

In this section, we describe the fifty five dispatching rules which we simulate, and
unless cited, the proposed dispatch rule has not, to the best of our knowledge,
appeared in the scheduling literature before. Each one is human implementable
as each one is implementable using a printed list. These rules are triggered at
a machine whenever that machine finishes processing an operation. Ties are
always broken arbitrarily. The machine where the rule in question is triggered
is denoted m and its queue as qy,.

We introduce some additional notation for our dispatching rule descriptions.
The current time is denoted t.. For each job j, O7*™ is the sublist of O; which
lists the remaining unprocessed operations. The first operation in the list O;em
is called the current operation of j, and it is denoted as of while its processing
time and machine are denoted p; and mj. If j € g, then m§ = m. For each
job, the total remaining work of 7, wj®™, is the total processing of operations
in O7°™ plus any travel time required for those operations.

3.5.1. Earliest Due Date (EDD)

EDD selects an enqueued job at m with the earliest due date, d;. The aim of this
rule is to work on a job that is almost due, or a job that is late already (Panwalkar
and Iskander, 1977).

3.5.2. Earliest Operation Due Date (EODD)

The due date for each operation of a job is calculated when that job is released.
The operation due date of a job is the due date of that job’s current operation,
0}, so the operation due date of a job will change as operations are processed.

19

This rule proceeds like EDD, so the job with the earliest operation due date is
selected for processing.

The due dates of each operation are calculated recursively from d; in the fol-
lowing way. Let hg be the number of hours in a work day. The due date of the
final operation is d;, the due date for j. If d;y1; is the due date for operation
0it+1j, then the due date for operation o;; is di; = d;+1; — [pij/ha]. Hence, the
due dates of consecutive operations are at least one day apart, allowing for the
one day of travel time between machines (Panwalkar and Iskander, 1977).

3.5.3. Earliest Release Date (ERD)

Similar to EDD, ERD selects the enqueued job at m with the earliest release
date, r;. This heuristic is the first in, first out principle applied in a job-shop
setting. (Pinedo, 2009).

3.5.4. Earliest Fraction Completed Date (EFCD)

The fraction completed date of a job j is a dynamic date between the release
date r; and the due date d;, and it is calculated as follows. First, calculate the

processing and transit time that has been completed on j so far, wj*™. Then

f B w;:om
- w;om 4 w;em
is the fraction of completed processing for j. The fraction completed date (FCD)
is given by
FCD = fd; + (1 — f)r;.

The job in ¢, with the earliest FCD is processed next on m.

This rule can be viewed as an interpolation between ERD and EDD. If FCD is
a date in the future, then the processing of j can be seen as ahead of schedule;
whereas, if the FCD is in the past, then j is behind schedule. By choosing the
earliest FCD, the job which is most behind schedule is selected.

This rule does take some calculation, so it is not obvious that it is human
implementable. However, it suffices to add another column to a work in progress
report showing the FCD of each job.

3.5.5. Shortest or Longest Processing Time (SPT, LPT)

The job selected from g, by these rules has the least or the most total work
remaining, that is the job with the minimum or maximum wj“™ (Panwalkar

and Iskander, 1977).

20

3.5.6. Shortest or Longest Operation Processing Time (SOPT, LOPT)

For these two rules, a job is chosen from ¢, if it has the least or most processing
time for its current operation, that is the minimum or maximum p§ for j € g,

(Panwalkar and Iskander, 1977).

3.5.7. Least or Most Remaining Operations (LRO, MRO)

A job is selected for processing if it has the least or the most operations re-
maining, that is the minimum or maximum |O}°™| for j € ¢,, (Panwalkar and

Iskander, 1977).

3.5.8. Shortest Next Queue (SNQ)

For each job j € ¢, let 0?“ be the operation which follows of in O7*™, and let

J
n; = m?“ be the machine where that 0§+1 is processed. Then we find the total
amount of processing of all the current operations of jobs currently enqueued at

the next machine n;:
Ti=) v

keqnj

The job j € gy, with the minimum 7} is selected for processing on m. By
selecting the shortest next queue, this heuristic tends to avoid sending jobs on
to “overloaded” machines, so it tends to balance the work loads of all machines
(Panwalkar and Iskander, 1977).

3.5.9. First in, First or Last out (FIFO, FILO)

For this rule, we keep track of the arrival order of jobs into every queue, and the
job which arrived first, or which arrived most recently, is selected for processing
(Panwalkar and Iskander, 1977).

3.5.10. Mazimum Work per Day (MWpD)

The work per day for a job j is calculated as the ratio of the remaining processing
wi“™ over the number of days remaining before d; if the due date is not passed.
If d; is passed, then the work per day equals w;*™. Hence, the WpD is calculated

as
rem

WpD = J .
PP max(1, [d; — t.))

The job in ¢, with the maximum WpD is selected for processing.

21

3.5.11. Least Slack (LS)

The slack a job has is the amount of time before its due date less the amount
of remaining work w7 “™:

slack(j) := (dj — tc) — wj*™.

The slack of a job is positive only if 7 can be completed before its due date
(Panwalkar and Iskander, 1977).

3.5.12. Least Slack over Remaining Operations (LS/RO)
The quantity S/RO is calculated as

(dj —tc) —wi™ slack(j)
S/RO = I = .
o o

The job in g, with the least S/RO is selected. If two jobs are late and have the
same slack, then the one with fewer operations is selected; whereas, for two early
jobs, this rule selects the job with the most remaining operations (Panwalkar
and Iskander, 1977).

3.5.13. Least Slack over Operation Processing Time (LS/OPT)

This is similar to LS/RO where the slack is calculated for each job, and then a
ratio is formed. Here, the denominator of the ratio is the processing time of the
current operation:

(dj —te) —wi®™ slack(j)

S/OPT = _ ==
P pj

The job in ¢, with the least ratio is selected for processing.

The aim of this rule is to handle jobs differently depending on whether the slack
is positive or negative and the size of the current operation. Firstly, any job with
negative slack will be processed before a job with positive slack. Secondly, if
slack is positive, larger current operation lengths decrease the ratio compared to
smaller operation lengths, whereas if slack is negative, larger operations increase
the ratio over smaller operations. Hence, for jobs with positive slack, jobs with
longer current operations are processed first, while for jobs with negative slack,
jobs with shorter current operations are processed first.

3.5.14. Least Slack times Operation Processing Time (LS*OPT)

For each job, calculate the product

S*OPT = slack(j) * pj.

22

The job in ¢, with the least product is selected for processing.

The aim is very similar to LS/OPT. The jobs with negative slack will be pro-
cessed before jobs with positive slack, but the the current operation length has
the opposite affect on selection because the quantity calculated is a product
instead of a ratio.

3.5.15. Least Slack plus a late rule (LS Ir)

This rule is formed as a combination of two rules. The bounded least slack rule
is used to find all the jobs in g, with the least bounded slack, where we bound
slack, defined for rule 3.5.11, by zero:

max(0, slack(7)).

The second rule, the late rule, is used to select from among those jobs. Due to
the bound at zero, the primary effect of this rule is that late jobs with 0 slack
are selected using a different rule than jobs with positive slack, though it also
breaks ties between jobs with the same positive slack. If the late rule is the
least slack rule, then the combination is equivalent to the least slack rule.

3.5.16. Most Tardy plus an early rule (MT er)

This rule uses the tardiness of job j, namely the amount of time a job is past
its due date:
max(0,t. — d;).

This rule operates similarly to LS Ir above; first, all jobs in g, with the highest
tardiness are found, and then a second rule is used to select a job for processing
from among those found jobs. This rule also has a similar primary effect as LS
Ir in that tardy and non-tardy jobs in g, are selected using different rules and
the tardy jobs are always selected over the non-tardy jobs.

3.5.17. Most Tardy over Remaining Processing Time (MT/PT)

Calculate the tardiness of each job as t. — d;, allowing negative values. Divide
this value by the total processing time remaining for that job,

te—d;
rem
J

w

and select the job with the highest such ratio for processing. The ratio calculated
for this dispatching rule is also known as the critical ratio. (Pinedo, 2009)

23

3.5.18. Most Tardy over Operation Processing Time (MT/OPT)

This is similar to MT/PT, but the ratio is formed using the processing time of
the current operation:
te —d;

C

pj

(Panwalkar and Iskander, 1977)

8.5.19. Multiple Rules

Lastly, we consider assigning multiple rules to the job-shop machines. To do so,
we use the departments, groups of machines, we observed in our industry part-
ner’s factory. There are five departments, and they have 27%, 26%, 19%, 15%,
and 13% of the total number of machines respectively. For a scheduling method
with multiple rules, each of the five departments is assigned a dispatching rule,
and at least two different rules are assigned.

Now, all the job sets we create have the same number of machines, and there is
a canonical mapping of those machines to the machine in the industry partner
job set Jrnq. With that mapping, we are able to use the same departments
on all the job sets by mapping the machines of J;,4 to the machines in all the
other job sets J.

However, the original departments our industry partner created were not created
arbitrarily; they were created using explicit and implicit forms of analysis. By
using the above mapping, the department assignments made for the random job
sets are essentially random expect for the size of these departments. To correct
this problem, an analysis similar to that under taken by our industry partner
would be required to similarly assign the machine in the random job sets to
departments. This, unfortunately, goes beyond that scope of this thesis.

24

4. industry partner Results

We now explore the results of the deterministic simulations run on our industry
partner’s production data, the job set Jr,q. In the Section 4.1, we show that
the human implementable rule our industry partner currently uses, EODD, is
the best scheduling method for them to use. The best multiple rule method in
Section 4.2 does not out perform EODD enough to warrant its use, as determ-
ined by our industry partner. There are also several other candidate scheduling
methods which significantly out perform EODD on the percentage of late jobs
KPIs, but the trade-off of large increases to the maximum lateness is not ac-
ceptable to our industry partner. (Industry-Partner, 2013)

4.1. Single Rule Performance

Industry Partner Data

30 ' : jE : ., e B

% Late Jobs
N
G
T

N
S}
T

i i i i i i i
30 40 50 60 70 80 90
Max Past Due (weeks)

Figure 7: Simulation results for single dispatching rules plotted by their performance on our
KPIs: maximum lateness versus percentage of late jobs.

The simulation results shown in Figure 7 show the performance of all fifty five
single dispatching rules on Jj,q- In each simulation, one dispatching rule is
used on all machines, and that rule has a point in Figure 7 with coordinates
given by how the rule performed on our two KPIs: the x-coordinate is the
maximum lateness, in weeks, across all completed jobs, and the y-coordinate
is the percentage of simulated jobs completed late. There is no single best
performing dispatching rule; instead, there is a trade-off of performance for the
two KPIs, so the best performing rules form a KPI frontier, which is indicated by
the line in the figure. The four rules on the KPI frontier are listed in Table 1 with
their coordinates. The results in the figure and table are for the performance of
a single simulation on J7,q using one rule, as the simulations are deterministic.

The earliest operation due date rule, the rule currently employed by our industry
partner, is on the KPI frontier, so it is one of the best performing rules on the
job set Jrnq. Hence, EODD is a fine choice for our industry partner’s job-shop.

25

Rule Max Late % Late

EODD 25.0 weeks 28.27%
EDD 28.0 weeks 27.90%
SNQ 82.0 weeks 18.46%
SOPT 87.0 weeks 13.78%

Table 1: Best performing single rules on the industry partner data.

Our simulations also indicate that performance trade-offs for the other rules on
the KPI frontier are not acceptable for our industry partner. The rule EDD, the
second rule listed in Table 1, lengthens the maximum lateness by three weeks
over the score for EODD, a 12% increase; the trade-off is a reduction of the
percentage of late jobs by 0.4%, a relative decrease of only 1.4%. This is not a
favourable trade-off for our industry partner (Industry-Partner, 2013).

Further, the rules SNQ or SOPT greatly reduce the number of late jobs com-
pared to EODD; Table 1 shows that the percentage of late jobs is 10% and 15%
less, a relative reduction of 35% and 51%, respectively. However, to use SNQ
or SOPT, our industry partner would have to accept a maximum lateness over
three times as large, over 80 weeks past due in each case. In real terms, jobs
completed over 80 weeks past due are essentially abandoned, and our industry
partner does not wish to refuse work or subcontract out entire jobs. Hence, SNQ
and SOPT are not acceptable dispatching rules for their job-shop. (Industry-
Partner, 2013)

4.2. Multiple Rule Methods Results

For these results, the simulations assign one of eight dispatching rules to each
of five departments; Table 2 lists the eight rules, and the five departments are
described in Section 3.5.19. The eight rules were selected because they are the
eight most commonly appearing rules on the KPI frontiers discussed in Sections
4.1 and 5.1, the single dispatching rule KPI frontiers. The remaining dispatching
rules from Section 3.5 were not assigned in any of the multiple rule simulations
as time did not permit; the number of possible assignments to five departments
grows factorially with additional rules, and each simulation takes an average of
1 minute.

EODD SOPT EDD MTEFCD §SNQ EFCD FIFO MRO

Table 2: The eight rules assigned to the five departments from Section 3.5.19.

The performance of all methods, single and multiple together, are shown in
Figure 8. As in Section 4.1, there is a KPI frontier in the figure indicating again
that there is a trade-off between the two KPIs. In Table 3, the nine points on
the KPI frontier are listed.

26

Industry Partner Data

/ .

% Late Jobs

/
/

H H H H H H H
30 40 50 60 70 80 90
Max Past Due (weeks)

Figure 8: Results for simulations using multiple dispatching rules.

Dept 1 Dept 2 Dept 3 Dept 4 Dept 5 Max Late % Late
EODD EODD EODD EODD SOPT 25.0 27.93
EODD EDD EODD EODD SOPT 28.0 27.63
SOPT EDD EODD EODD SOPT 30.0 26.23
MT EFCD SNQ EDD MT EFCD SNQ 76.0 19.06
MT EFCD SNQ SNQ SOPT EDD 77.0 18.91
EDD SNQ SNQ EFCD SNQ 78.0 17.60
SOPT SNQ SOPT EODD SNQ 81.0 17.54
EODD SNQ EODD SOPT EODD 82.0 16.79
SOPT SOPT EODD SOPT SOPT 87.0 13.74

Table 3: The Parteo frontier of all industry partner data simulations. The rules are assigned
to the departments defined in Section 3.5.19.

Comparing the numbers in Table 3 to Table 1 in Section 4.1, it is clear that,
where multiple rule methods out performed a single dispatching rule, the degree
they out performance is very small. For instance, the first entry of Table 3 has
a very similar performance to EODD: 25 weeks maximum lateness for both and
27.93% late jobs versus 28.27% late jobs. The difference in the percentage of
late jobs is 0.34%, only a 1% relative difference. In Figure 9, the proximity
of the two frontiers is evident. With a similar analysis as in Section 4.1, the
first entry of Table 3 is a good choice for our industry partner. However, the
decrease in the percentage of late jobs is not enough, at 0.34%, to justify the
extra effort of maintaining two different dispatching rules in two different de-
partments. (Industry-Partner, 2013) EODD by itself remains the better choice
overall.

There is a question of whether more rules used in combination improves job-
shop performance. Figure 10 shows KPI frontiers for all simulations separated
by the number of rules the scheduling method employs; for instance, the 2 rules
frontier is the KPI frontier for every multiple rule method which assigned exactly
two rules to the five departments. The two, three and four rule frontiers are
nearly indistinguishable across their entire length. The five rule KPI frontier is

27

Industry Partner Data

% Late Jobs

181
16
— TRule
=
30 40 50 60 70 80 90

Max Past Due (weeks)

Figure 9: The KPI frontiers for the single rule methods and for all the methods run on the
industry partner data simulations.

above each of those three frontiers, as no five rule method is on the KPI frontier.
Overall, there is very little for our industry partner to gain from using multiple
rule methods over the best single rule methods, and what little can be gained
is almost entirely achieved using two rule methods.

Industry Partner Data

% Late Jobs

i i
30 40 50 60 70 80 90
Max Past Due (weeks)

Figure 10: The KPI frontiers for scheduling methods using 1 to five different rules.

28

5. Generalized Results

In this section, we show results applicable to other job-shops. While our sim-
ulations are deterministic, the creation of the job sets is a random process, so
for statistical significance, fifty different job sets were simulated for each of the
five routing distributions described in Section 3.3: empirical routing, preferen-
tial attachment, preferential flow, triangle routing, and uniform routing. The
performance of the rules are assessed as averages of the performances on all
fifty job sets for given routing distribution. We present the results for each
routing distribution using charts similar to those in Section 4, with the addition
of 95% confidence intervals for the calculated averages. We find that EODD is
consistently one of the best performing rules regardless of routing distribution.
We also find that the multiple rule combinations out perform EODD, but on
average, the combinations do not out perform single rules enough to warrant
the complexity of their implementation for any of the routing distributions we
consider.

5.1. Single Rule Results

In Figure 11, we see a KPI frontier for each routing distribution. The points
along each frontier indicate the performance of one of the best performing single
rules for the corresponding routing distribution. The frontier for the industry
partner data in Figure 11 is the same frontier as that shown above in Figure
7. In this section, we are showing results for scheduling methods which use a
single rule across all departments, so the department structure can be ignored.

Confidence intervals are shown as rectangles about each point, and they indic-
ate the 95% confidence interval for the averages represented by the x and y
coordinates of the point. We refer to these rectangles as confidence rectangles
below.

The figure also shows the extent to which dispatching rule performance is af-
fected by the routing distribution. Recall from Section 3.2, the only parameter
which changes for each routing distribution is the routing function used to create
the job sets, so the only difference is the ways jobs flow through the job-shop.
The other properties of the job sets, such as job length and due date, are all
sampled from the same empirical distributions derived from J7,,4. Despite this
consistency across all job sets, Figure 11 shows quite a large variance of both
the position and length of the KPI frontiers. In the following five subsections,
we detail the impact routing distribution has on the fifty five single dispatching
rules we simulated, as well as show that EODD is the best performing rule for
most routing distributions.

5.1.1. Empirical Routing

From the definition, it appears that the empirical routing distribution, of all the
routing distributions considered here, should be the best model of the industry

29

Multiple Routing Distributions

IS
S
S

% Late Jobs

i i i i i
20 40 60 80 100 120
Max Past Due (weeks)

Figure 11: The single rule KPI frontiers for each routing distribution.

partner data, as it is the only routing distribution which uses Jr,4 to determine
machine order. Indeed, we expected the performance of dispatching rules on
empirically routed job sets to be similar to their performance on Jryq.

However, the large difference in position and length of the Empirical and in-
dustry partner data frontiers in Figure 11 indicated that the dispatching rules
show severely degraded performance on empirically routed job sets. The de-
graded performance occurs despite the facts that the number of machines is
constant for all the simulated job sets and the number of operations in every
job set is within 0.4% of the number of operations in Op(Jrnq)-

While we are uncertain exactly why the performance degraded, we suspect it is
due to the decoupling of one or more correlated features of Jj,4. For instance,
job length could be seasonally correlated if our industry partner has seasonal
clients. There is also the possibility that our industry partner uses various
soft strategies, which were not described to us during our interviews and job
shadowing, to coordinate release dates, schedule subcontracting, account for
expected demand or other features of production. If so, the job set [Jj,q has
more “helpful” structure than we assume, and all the random job sets we create
do not include that structure. To maintain confidentiality of the data used, we
do not analyze these possibilities in detail.

Note that the confidence intervals are less than 3% either side of all the av-
erages in table 4, so the confidence rectangles in Figure 12 are small in area.
These features indicate that the simulated performance of each of the 55 single
dispatching rules is consistently bad across all fifty empirically routed job sets.
In fact, many of the rules appear to have the exact same performance on every
empirically routed job set; there are 18 rules listed in Table 4 that have the same
average performance as ERD. This is indicated by the darker rectangle about
the point (58.12,65.26) in Figure 12. ERD is included on the KPI frontier over
the others because it is the simplest of the rules with that performance. The
confidence rectangle for the Least Slack (LS) dispatching rule overlaps with the

30

Empirical
==
[w)
o ‘ ‘ 1
o =
— -
2 5 H ; - g
s &= =
g
T sof- 1
\::\l
401 e B
301 . R
H H H H H
60 80 100 120 140
Max Past Due (weeks)

Figure 12: Single rule performances on the Empirical routing distribution.

rectangle for EODD, and it is the only other dispatching rule to overlap the
rectangles on the frontier.

Rule Max Late % Late

EODD 49.54 weeks £1.45 68.88% +0.78
EDD 51.34 weeks +1.41 67.84% +0.73
EFCD 57.42 weeks +1.41 67.79% +0.62
ERD (and 18 others) 58.12 weeks £1.43 65.26% £0.48
FIFO 92.12 weeks £2.56 63.20% £0.46
SNQ 105.40 weeks +3.28 44.04% +0.42
SOPT 122.94 weeks +£1.69 29.03% +0.24

Table 4: Best performing single rules for the empirical routing distribution.

Rule Max Late % Late
LS 49.66 weeks +1.43 69.21% +0.76

Table 5: The only rule which partially overlaps confidence rectangles on the empirical routing
distribution KPI frontier.

Despite the worsening of overall performance compared to the industry partner
job set, the relative performances of the best rules is very similar. The four
rules on the KPI frontier for the industry job set, Table 1, are all on the KPI
frontier for the empirical job sets listed in Table 4 in the same order from left
to right on their respective frontiers. Hence, there is a similar trade-off between
the KPIs along the frontiers: EODD minimizes the number of weeks all jobs are
past due, SOPT minimizes the percentage of late jobs, and the rules in between
on the frontier are various performance mixtures. We can quantify the trade-off
using the concept of elasticity from economics.

Table 6 shows the ‘percentage of late jobs’ (PLJ) elasticity of the ‘maximum
lateness’ (ML) for the KPI frontier for empirically routed job sets. Here, the

31

EDD -2.34
EFCD -9.18
ERD -2.95
FIFO -6.99
SNQ -1.64
SOPT -1.05

Table 6: The PLJ arc-elasticity of ML with EODD for the empirical routing distribution.

elasticities are calculated as arc-elasticities for a pair of KPI frontier points,
(ML;,PLJ;) and (MLy, PLJ3), by the formula

MLy — ML, (MLy 4+ MLy)/2 \ 7!
PLJ, — PLJ, (PLJ, + PLJ1)/2)

In economics, price elasticity of demand is generally calculated at a point, pt =
(P,Q), on a continuous demand curve as the slope at pt divided by the ratio of

the COOrdinateS:
dQ Q .

In the case of point-wise data, arc-elasticities are calculated instead; the slope
is calculated for the arc between a pair of points, and the midpoint of that arc
is used for the ratio of coordinates.

The purpose of elasticity is to quantify the percentage change of one quantity,
the ML KPI in our case, for each 1% decrease of another quantity, the PLJ
KPI. Hence, an arc-elasticity for two points on a KPI frontier indicates the
exact trade-off a job-shop makes in choosing one of the scheduling methods
over the other. For example, the performances of EODD and EDD have an
arc-elasticity of -2.34; this means that if a job-shop switched to EODD after
having used EDD and the job-shop experienced an % relative increase in the
percentage of late jobs after the switch, then they can expect a simultaneous,
relative decrease of £ x 2.34% in the maximum lateness KPI.

We assume that the two KPIs are of equal importance and our goal is to min-
imize both simultaneously. An arc-elasticity of less than -1 for a pair of KPI
frontier points indicates that the rule further to the left in Figure 12 is the better
choice for minimizing both KPIs simultaneously. The pairwise elasticities with
EODD in Table 6 are all less than -1. Hence, we recommend EODD as the best
performing single dispatching rule on the empirically routed job sets, with the
caveat that LS possibly out performs EODD on some job sets.

5.1.2. Preferential Attachment

In Figure 11, we see that the KPI frontier for the preferential attachment (PA)
job sets is between the frontiers for the industry partner data and the empirical

32

job sets, so PA job sets are “easier” to process than the empirically routed job
sets though more “difficult” than the industry partner data. It may be possible
to adjust the attachment dampening parameter a4, defined in Section 3.3.3,
when creating preferential attachment job sets and so create job sets which post
dispatching rule performances much closer to those observed for the industry
partner data. However, to maintain manageable project scope, we forewent a
comparison of different a4 values, including such a comparison in our list of
future work to consider in Section 7.3.4.

Note the higher degree of variance in the averages indicated by the large con-
fidence rectangles about the points on the PA frontier in Figure 11, which are
greater than the confidence rectangles on the empirical KPI frontier. The vari-
ance increase is observed for all 55 dispatching rules, as all the rectangles in
Figure 13 are of comparable size to those on the KPI frontier. Hence, the ran-
dom process used to create the preferential attachment job sets introduces more
variation in the features most affecting dispatching rule performance than does
the process used to create the empirically routed job sets.

Preferential Attachment

piE) M'%H °|H;L-‘

asf

% Late Jobs

20 40 60 80 100
Max Past Due (weeks)

Figure 13: Single rule performances for the preferential attachment routing distribution.

Despite these differences, the list of rules on the KPI frontier, Table 7, is rather
similar to the frontiers for the empirically routed job sets and the industry
partner data: EODD, EDD and SOPT appear on all three in the same order,
and FIFO appears on the empirical frontier. Hence, there is a similar trade-off
between our KPIs: choosing EODD minimizes the maximum lateness KPIs,
SOPT minimizes the percentage late, and the other rules are mixtures. Table
7 also shows that choosing a rule which increases one or the other KPI also
increases the amount of performance variance of that KPI. This is visible in
Figure 13 as the change from squares to thin rectangles when sweeping over the
figure from left to right.

The arc-elasticity for our two KPIs are shown for EODD in Table 8. As we saw
for the empirically routed job sets, all the elasticities for EODD are less than -1,
so EODD is again the best choice to minimize both KPIs simultaneously. There

33

Rule Max Late % Late

EODD 24.94 weeks £4.84 45.81% £2.76
EDD 26.46 weeks +£4.92 45.08% +2.73
FIFO 57.32 weeks £8.22 44.53% +2.24
MRO 74.02 weeks £8.32 40.28% +1.86
SOPT 91.28 weeks +£8.13 24.13% +0.44

Table 7: Best performing single rules for the preferential attachment routing distribution.

are also two dispatching rules, LS and EFCD, with performances which overlap
EODD, so EODD might be out performed by one or both of these dispatching
rules on some job sets. Table 9 shows a list of the rules with performances
overlapping points of the preferential attachment job sets KPI frontier.

EDD -3.66
FIFO -27.66
MRO -7.71
SOPT -1.84

Table 8: The PLJ arc-elasticity of ML with EODD for the preferential attachment routing
distribution.

Rule Max Late % Late
LS 25.04 weeks +4.83 46.17% £2.75
EFCD 28.10 weeks +4.93 46.35% +2.49

LS EDD (and 16 others)
ERD (and 18 others)
LS/RO

46.00% £2.73
45.33% +2.28
45.88% £2.69

32.00 weeks +5.18
32.42 weeks +5.10
60.96 weeks +£10.33

Table 9: The rules with performances overlapping the KPI frontier for preferential attachment
job sets.

5.1.3. Preferential Flow

The features of the average performances of the fifty five dispatching rules on
the preferential flow (PF) job sets are very similar to the features mentioned
in Section 5.1.2 about the preferential attachment job sets. The preferential
flow frontier in Figure 11 shows improved performance over the industry part-
ner data, preferential attachment, and empirical KPI frontiers. The confidence
intervals in Figure 14 are as large as those for preferential attachment job sets
shown in Figure 13, so the random process for creating the preferential flow job
sets introduces similar variability in job set features which affect dispatching
rule performance. The confidence rectangles also show the trade-off between
our KPIs; we go from tall rectangles to squat, long rectangles when sweeping
from left to right in Figure 14.

34

Preferential Flow

% Late Jobs
N N w
3 @ S
T T
s
f
[
“
i i i

N
PN
T
i

N
N
-
i

N

Sy
T

i

i i i i i i
10 20 30 40 50 60
Max Past Due (weeks)

Figure 14: Single rule performances on the preferential flow routing distribution.

Rule Max Late % Late

EODD 13.36 weeks +2.60 26.37% +2.19
EDD 13.92 weeks +2.78 26.19% £2.18
SNQ 37.56 weeks £9.01 25.34% +1.45
MRO 41.00 weeks +£10.27 24.72% 40.99
SOPT 43.66 weeks £10.51 20.11% +0.27

Table 10: Best performing single rules for the preferential flow routing distribution.

The rules listed on the KPI frontiers in Tables 7 and 10 are nearly all the same,
with the only change being FIFO is exchanged with SNQ. Expressing the trade-
off along the KPI frontier using elasticities, shows that EODD is the best rule for
minimizing both KPIs simultaneously, as all the elasticities in Table 11 are less
than -1. The dispatching rules LS and EFCD both have confidence rectangles
which overlap the rectangle for EODD, so there is a chance they could out
perform EODD on some job sets.

EDD -585
SNQ -23.74
MRO -15.70
SOPT -3.94

Table 11: The PLJ arc-elasticity of ML with EODD for the preferential flow routing distribu-
tion.

The biggest difference between the results for preferential flow and the other
job sets discussed above is the degree of overlapping we see in Figure 14; every
rectangle, save the one around SOPT, overlaps another rectangle. The length
of Table 12 shows more evidence of the higher amount of overlap, as there are
many more rules listed. There is an overall narrowing of the range of possible
performances in Figure 14 which, when coupled with high variance, results in

35

LS EDD (and 17 others)
ERD (and 18 others)

15.86 weeks +3.29
16.64 weeks £3.22

Rule Max Late % Late
LS 13.46 weeks +2.60 26.49% +2.19
EFCD 15.72 weeks +3.16 26.64% +1.84

26.49% +2.19
27.08% +1.83

FIFO 23.22 weeks +6.13 26.88% +1.82
LS/RO 24.60 weeks £7.72 26.55% +2.18
MT/PT 25.86 weeks £8.05 27.02% £2.15
LS*OPT 41.86 weeks £11.90 26.22% £2.17
LRO 51.48 weeks £11.19 22.97% +0.80
LPT 52.02 weeks £11.31 25.70% £1.09
SPT 52.10 weeks +£11.23 21.85% +0.57

Table 12: The rules with performances overlapping the KPI frontier for preferential flow job
sets.

the observed overlapping and the shorter KPI frontier.

5.1.4. Triangle Routing

The KPI frontier for the triangle job sets is quite short in length in Figure 11,
particularly in comparison to the empirical frontier. Indeed, the range of dis-
patching rule performances is also quite restricted, with all confidence rectangles
in a 6% by 9 week area in Figure 15. None of the KPI frontiers discussed above
and shown in Figure 11 could fit into an area of similar size. Even the worst
performing rule, shown at the top right of Figure 15, posts a better performance,
in both KPIs, on the triangle job sets than any rule posts on the job sets so far
discussed.

Triangle

% Late Jobs
N N N N
W kN G o
T T T
)
i i i

N
N
T

i

21f - d

20F B
H H H H

i i
8 9 10 11 12 13 14 15 16
Max Past Due (weeks)

Figure 15: Single rule performances for the triangle job sets.

However, the relative performance of the best rules is similar to the job sets
discussed in the previous sections. The KPI frontier, listed in Table 13, contains
EODD, EDD and SOPT, as have all the previous frontiers discussed so far. The
pairwise, arc-elasticities, shown in Table 14, indicate that EODD is again the

36

best dispatching rule for simultaneously minimizing both KPIs, and LS, along
with 19 other rules, overlaps EODD’s performance, indicating they may actually
out perform EODD on some job sets. Essentially, the story of the previous
sections was compressed into a much smaller performance range.

Rule Max Late % Late

EODD 8.82 weeks +0.48 20.41% +0.21
EDD 8.86 weeks £0.51 20.35% £0.21
SOPT 10.16 weeks +0.55 20.20% +0.16

Table 13: Best performing single rules for the triangle routing distribution.

EDD -1.4
SOPT -13.31

Table 14: The PLJ arc-elasticity of ML with EODD for the triangle routing distribution.

Rule Max Late % Late

LS 8.82 weeks £0.51 20.59% +0.22
LS EDD (and 17 other) 8.98 weeks £0.49 20.59% +0.22
LS*OPT 9.10 weeks +0.51 20.42% +0.23

Table 15: The rules with performances overlapping the KPI frontier for triangle job sets.

5.1.5. Uniform Routing

In Figure 11 above, the KPI frontier for the uniform routing distribution appears
as a single point. The frontier actually consists of three points, but due to the
scale of Figure 11 and the proximity of the points to each other, the frontier
is shown as a single point. The performances of all the rules on the uniformly
routed job sets fall into a very narrow range in Figure 16: between 8 and
10.5 maximum weeks late and between 18.5% and 21% late jobs. This is an
even smaller range than we noted for the triangle job sets. The dispatching
rules perform the best on the uniformly routed job sets of all the job sets we
considered.

Table 16 also shows a few other differences; it is the only KPI frontier without
SOPT on it, with LS on it, and where EODD is not the rule with the best average
performance. This is also the only frontier where all the confidence rectangles
for the rules on the frontier all overlap each other, and there are twenty one
other rules, listed in Table 17, which overlap all three rules on the frontier.
With another set of fifty uniformly routed job sets, the relative performances
shown in Figure 16 and Tables 16 and 17 could be entirely changed.

In addition, the fine distinctions of performance in Figure 16 are unlikely to be
realizable in an actual uniformly routed job-shop due to the complexity and the

37

Uniform

% Late Jobs

8.0 8.5 9.0 9.5 10.0
Max Past Due (weeks)

Figure 16: Single rule performances for the uniform job set.

large number of factors affecting production, so because all the rules perform so
similarly, it reasonable to suggest that a real, uniformly routed job-shop could
use any of the fifty five dispatching rules with equal success. Therefore, the
simplicity of a rule is a much greater consideration than the performance differ-
ences we observed in our simulations, and the rule EDD is among the simplest
of the rules we consider, requiring only a list of due dates for implementation.

Rule Max Late % Late

LS 8.64 weeks +£0.56 18.86% +£0.17
EODD 8.68 weeks £0.54 18.80% =£0.18
EDD 8.72 weeks +£0.54 18.73% +0.17

Table 16: Best performing single rules for the uniform routing distribution.

Rule Max Late % Late

LS EDD (and 17 other) 8.76 weeks +0.54 18.86% +0.18
LS/RO 8.76 weeks +0.51 18.91% +0.18
LS*OPT 8.78 weeks £0.53 18.81% +0.18
SOPT 8.98 weeks £0.51 18.78% +0.18

Table 17: The rules with performances overlapping the KPI frontier for uniform job sets.

5.2. Routing Function Multiple Rule Methods Results

In this section, we explore the performance gains achieved by using multiple
rule methods. The simulations we ran are setup as follows. The sixty two ma-
chines used for all the jobs sets are gathered into five departments as discussed
in Section 3.5.19. The scheduling methods we simulated are all possible assign-
ments to five department of two or more of the the rules EODD, EDD, SOPT,

38

and FIFO. These four rules were selected as they appear on a majority of the
KPI frontiers above. We limit the number of rules to four due to computing
time constraints. The increased number of simulated scheduling methods in-
creases the number of points on the KPI frontier, as is evident in Figure 17.
The KPI frontiers for the five routing distributions are listed in Appendix C for
completeness.

We assess all the scheduling methods by the same two KPIs as we assessed
the results in Section 5.1 with, but in this section, we compare the multiple rule
performances to the performance of the single rules on each routing distribution,
specifically to EODD as it is consistently the best performing single rule across
routing distributions. We also examine whether using more rules in combination
offers any performance gains. We find that for all routing distributions the best
multiple rule methods do out perform the best single rules, but the performance
differences are not statistically significant. As such, we cannot recommend the
implementation of multiple rule methods for any of the routing distributions.
Further, we find no statistical performance gain for using more than two rules
in combination on any of the routing distributions.

5.2.1. Comparing KPI Frontiers

For each routing distribution, we compare the single rule KPI frontier to the
multiple rule frontier. Figure 17 shows all the KPI frontiers together, and they
show the same progression that the single rule KPI frontiers do in Figure 11:
the empirical routing distribution at the top right, and the uniform distribution
showing as a single point in the bottom left. The frontiers are also similarly
positioned and have a similar length. The multiple rule methods collectively
perform very much like the single dispatching rules.

Multiple Routing Distributions

=)
i =

S 5y o

% Late Jobs
N

N

~

20 40 60 80 100 120
Max Past Due (weeks)

Figure 17: The KPI frontiers over all methods for each routing distribution.

Figure 18 displays the KPI frontiers for each routing distribution. The red
frontier in each figure is the single dispatching rule KPI frontier for that routing
distribution; each of those are discussed in detail in Section 5.1. The green
frontier is the KPI frontier for all simulated scheduling methods, single rules

39

and multiple rules together. In all the figures, we see that the average point of
the green frontier is below the red frontier, so the best performing multiple rule
methods do out perform the best single rules on for each routing distribution
in average terms. However as the confidence rectangles overlap for all but the
empirical distribution, the same cannot be said statistically.

Empirical

e

=R

% Late Jobs

50 60 70 80 90 100 110 120
Max Past Due (weeks)

preferential Attachment Preferential Flow

st]

[

9% Late Jobs
e

9% Late Jobs
X

=
=

20 30 a0 50 60 0 80 90 100 10 20 30 a0 50
Max Past Due (weeks) Max Past Due (weeks)

Triangle Uniform

% Late Jobs
s
®
Faa

% Late Jobs

8.0

9.0 95 85 9.0
Max Past Due (weeks) Max Past Due (weeks)

Figure 18: The KPI frontiers for single rule simulations (red) and for all simulations (green)
for each routing distribution.

The empirical routing frontiers, the top row of Figure 18, are visually very
similar. The main difference is that the green frontier is a few percentage points
below the red frontier.

The multiple rule frontiers for the preferential attachment and flow routing
distributions, the middle row of Figure 18, both have significantly more points
on them than the single rule frontiers, so they are a better interpolation of the
end points than the single rule frontiers. It appears the end points of the green
and red frontiers in both figures are the same.

Finally, for the triangle and uniform routing distributions, the bottom row of

40

Figure 18, neither of the frontier pairs show large statistical difference. The
confidence rectangles of the green frontiers entirely contain the red frontiers. In
addition, the variation of the values is quite narrow. While the best average
performances for the multiple rule methods are better than the averages of
the single rule average performances, we cannot be confident that the relative
positions of the two frontiers will remain as shown in the figures if the simulation
sample size were increased.

5.2.2. Comparing to EODD

As was noted in Section 5.1, the dispatching rule EODD is the best rule for
simultaneously minimizing both of our KPIs for all but one of the routing dis-
tributions, and for that exception, the uniform routing distribution, EODD’s
performance is statistically indistinguishable from the best performing rule, LS.
EODD is also the rule used by our industry partner. For these reasons, we use
the performance of EODD on each of the routing distributions as the bench
mark for the performances of the multiple rule methods.

The multiple rule method we compare EODD to is the method which minimizes
the maximum lateness KPI. Table 18 shows the comparisons. All the multiple
rule methods shown assign EODD to at least one department. In the case of
preferential attachment (PA), EODD is on the KPI frontier, so the multiple rule
method shown is the next point along the frontier in the PA chart in Figure
18. The multiple rule method shown for each of the other routing distributions
does better than EODD. However, the two performances are very close in all
cases. They are certainly close enough for the confidence rectangles to overlap,
so EODD may in fact out perform the best multiple rule method on some job
sets. Moreover, the cost of the complexity of using multiple rules is unlikely to
be compensated for by the performance difference.

Routing Dept 1 Dept2 Dept3 Dept4 Deptb Max Late % Late

Empirical SOPT SOPT SOPT FIFO EODD 49.54 weeks 66.95%
EODD - - - - 49.54 weeks 68.88%

PA EODD - - - 24.94 weeks 45.81%
EODD EODD EODD EDD EODD 25.06 weeks 45.74%

PF EODD EDD EODD EODD EODD 13.36 weeks 26.35%

EODD - - - - 13.36 weeks 26.37%
Triangle EODD EDD EDD EODD EODD 8.76 weeks 20.35%
EODD - - - - 8.82 weeks 20.41%
Uniform EDD EODD EODD FIFO EDD 8.76 weeks 20.35%
EODD - - - - 8.86 weeks 20.35%

Table 18: The maximum lateness minimizing methods compared to EODD for each routing
distribution.

41

5.2.83. Comparing the number of rules

In this section, we compare the best performances of single rules and multiple
rule methods using 2, 3 or 4 rules. It suffices to make the comparison graph-
ically using charts in Figure 19. Each figure shows KPI frontiers for the best
performing multiple rule methods grouped by the number of rules they employ:
the green frontier is for methods with two rules, the purple for three rules, and
the yellow for four rules. We include the KPI frontier for single rules in red for
comparison. The analysis is the same in all five cases; the three multiple rule
frontiers are not statistically distinguishable, as the rectangles of each colour in
each figure entirely cover the frontiers of the other colours. Hence, regardless of
a job-shops routing distribution, combining more than two rules is unlikely to
result in performance gains.

Preferential Flow Preferential Attachment

% Late Jobs
/
% Late Jobs

=
ot]
20 0 a0 0 20 30 a0 50 60 70 80 90 100
Max Past Due (weeks) Max Past Due (weeks)

Triangle Uniform

%ﬁ

% Late Jobs
% Late Jobs
&

85 9.0 95 100 105
Max Past Due (weeks) Max Past Due (weeks)

Empirica

% Late Jobs

70 80 90 100 110 120
Max Past Due (weeks)

Figure 19: The KPI frontiers of simulations using 1, 2, 3 or 4 rule methods for each routing
distribution.

42

6. Discussion

6.1. Just enough Complexity

Table 19 is a complete list of every dispatching rule which appears on one or
more of the six KPI frontiers discussed in Sections 4 and 5. For each, the table
shows the number of frontiers on which a given rule appears. Interestingly,
the table only has nine rules listed, so despite the wide range of performance
differences shown in Figure 11 between the industry partner data and the five
routing distributions, a consistent set of dispatching rules appear on the fron-
tiers. Moreover, the dispatching rules listed are among the simplest in concept
and execution: EDD, SOPT, SNQ, FIFO, MRO, ERD all require a lookup and
comparison; EODD and EFCD require calculations once per job and after that,
it is a lookup and comparison; and LS requires two subtractions then compares
the results for each execution. These nine rules performed better than any
of dispatching rules which combine tardiness or job slack together with other
rules in some way, all of which are somewhat more complicated in concept and
execution.

Appendix A lists several complicated dispatching rules which select jobs for pro-
cessing by considering all jobs in progress, not just those jobs in the queue of the
machine on which the dispatching rule was triggered. These rules could poten-
tially cause a machine m to wait for a high priority job to arrive in g, instead of
selecting a job to process immediately. However, preliminary experiments show
these rules perform substantially worse than most of the rules included here.

It would seem that, at least some, simple dispatching rules have a performance
advantage over the more complicated rules. It is worth noting that EODD, the
best performing single rule, is not the simplest rule appearing on any of the
KPI frontiers. Arguably, EDD is a simpler rule. The fact that EODD uses two
crucial pieces of information for each job, the due date and the amount of work
remaining, instead of just the due date, as EDD does, could explain its superior
performance. As EODD is currently used by our industry partner, it would
seem to be just complex enough.

Rule Count Rule Count
EODD 6 EDD 6
SOPT 5 SNQ 3
FIFO 2 MRO 2
EFCD 1 ERD 1
LS 1

Table 19: The number of times each rules appears on a KPI frontier for industry partner data
or a routing distribution. EODD and EDD both achieve the maximum, as they appear on all
six KPI frontiers.

43

6.2. KPI Trade-offs

Table 20 lists five performance comparisons for EODD and SOPT. The per-
formances on the uniformly routed job sets are not listed because SOPT is not
on that particular KPI frontier. For the rest, the two rules are on the extreme
ends of each KPI frontier; EODD minimizes the maximum lateness KPI and
SOPT minimizes the percentage of late jobs KPI.

Depting Rule Max Late % Late

Industry EODD 25.0 weeks 28.27%
SOPT 87.0 weeks 13.78%

Empirical EODD 49.54 weeks 68.88%
SOPT 122.94 weeks 29.03%

PA EODD 24.94 weeks 45.81%
SOPT 91.28 weeks 24.13%

PF EODD 13.36 weeks 26.37%
SOPT 43.66 weeks 20.11%

Triangle EODD 8.82 weeks 20.41%
SOPT 10.16 weeks 20.20%

Table 20: EODD and SOPT performance comparisons for industry partner data and all but
the uniform routing distribution.

Figure 20 offers an insight into the different ways these two rules process jobs.
In the figure, each (x,y) point on the curves indicates that y% of jobs were
incomplete at x weeks past their due dates; for instance, when using EODD on
the industry partner data, roughly 12% of the jobs completed 10 weeks past
due or more, though while using SOPT only 5% of jobs were completed at 10
weeks past due or later. The differences stem from the different ways EODD

T T
—_ DD
— SOPT

Industry Partner Data

1 L 1 L 1
10 20 30 40 50 60 70 80 90
Weeks Past Due

Figure 20: The percentage of late jobs which were incomplete at week n.

and SOPT select jobs for processing on the most utilized machines in a job-shop
which we discuss in the following paragraphs. For that discussion, take m to be
a heavily utilized machine in our industry partner’s job-shop or a job-shop J
with an empirical or a preferential attachment routing distribution.

44

For EODD, each operation of a newly released job is assigned an operation
due date, and that date is determined in large part by the length of the op-
eration: the longer the operation the earlier the date assigned. The due dates
of operations preceding a long operations are even earlier. Hence, jobs with
long operations are likely to be processed earlier than jobs without long opera-
tions. If the long operation is also processed on a heavily utilized machine m,
many other jobs in g,, will wait for that long operation to complete, increasing
the chances that those waiting jobs will be completed past due. These facets
show up in the comparatively high percentage of late jobs in the performance
of EODD regardless of routing distribution.

The figure shows that using SOPT ensures most of the jobs are completed by
their due dates, some 86%, but a small number of jobs, about 2%, are completed
at 30 weeks or more past due, some more than 80 weeks past due. The aim of
SOPT is to increase the amount of parallel processing in a job-shop; by choosing
the job with the shortest current operation, the rule SOPT selects the job which
can be most quickly moved onto another machine for processing or completion.

However, jobs with one or more long operations processed on a heavily util-
ized machine such as m will be delayed, because a job with a shorter current
operation is likely to enter g, and be selected by the SOPT dispatching rule.
That is until the all the jobs in the simulation have passed their release date,
and the number of incomplete jobs drop off. For a real job-shop with the same
routing distribution as J, there are always new jobs being released. Hence,
using SOPT in a strict way in a real job-shop amounts to having a small set
of jobs which are never completed in exchange for having roughly half as many
late jobs. While that reduction of late jobs is large, we learned that it would un-
reasonable for our industry partner to accept that 2% of jobs are left incomplete
or refused, because leaving jobs incomplete or refusing them adversely affects
company reputation (Industry-Partner, 2013).

6.3. Travel Times

In Section 3.4, we mentioned that in our simulations the travel time between
machines is modeled as one day. This is the maximum time allowed by our in-
dustry partner in their job-shop. By choosing the maximum, we were justified
in modeling the machinery and people which move the jobs as an infinite re-
source instead of a limited one, which greatly simplified our job-shop simulation.
However, choosing the maximum and treating travel as an infinite resource has
several consequences.

One of the consequences is that the rules which tend to get the most jobs
traveling at once will generally out perform the others, as this maximally exploits
the infinite resource. This is why SOPT out performs SPT for instance. SOPT
selects the job which can be made to move between machines in the shortest
amount of time, while SPT does not guarantee that.

45

Another consequence is due to the fact that the travel times are long compared
to the total machine processing, excluding SUB, which had a few effects. First,
rules, like EDD, ERD or FIFO, do not use travel times for their calculations, so
they each “leave out” a significant factor from their dispatching logic. Second,
several rules use a snapshot of the state of some or all machines in their calcu-
lations. The long travel time between machines often resulted in the snapshots
being “out of date” by the time a dispatched job reached another machine,
reducing the effectiveness of the dispatching logic. This was particularly true
of the rules in Appendix A each of which used the state of other machines in
quite complex calculations. SNQ may be the only rule we simulated which uses
snapshots effectively, in that observing a short queue implies a higher chance of
there being an empty queue after a job completes its movement.

The last consequence we discuss is that the long travel times may explain the
success of EODD. We mentioned in Section 6.1 that EODD’s dispatching logic
considers two pieces of information: the due date and the operation processing
times. In fact, the operation due dates implicitly consider the one day travel
times because each operation due date is at least one day earlier than the next
operations due date in sequence. Hence, the operation due date schedule pro-
posed for each job is a tight schedule including the travel time.

6.4. Simplicity of One Rule

Several times in Sections 4 and 5, we mention that the best performing multiple
rule scheduling methods do out perform EODD, but that the cost of the addi-
tional complexity of managing two or more dispatching rules in a real job-shop is
greater than the potential gain regardless of the underlying routing distribution.
In this section, we make our reasoning for this explicit.

In Sections 4 and 5, we calculated arc-elasticities, and the elasticities show
that EODD assigned to every machine is the second best scheduling method for
simultaneously minimizing the two KPIs we consider. The best method in every
case, save for the preferential attachment job sets, is a multiple rule method.
Table 21 shows a comparison between EODD and the best multiple rule method
for each routing distribution; Table 21 is Table 18 with the Industry lines added
to show the comparison for the industry partner data.

The first assertion we make for our argument is that the performance gains
from using the multiple rule method over EODD are all small; the decreases in
Table 21 are all less than 1%, save one which is 2.8%, which is indeed small.
The next assertion is that employing more than one dispatching rule introduces
complexity into a real-shop in several ways. This complexity comes primarily
from the need to create at least two training streams, process maps, and sets
of reports. Further, departments with different dispatching rules may have
different priorities for the work in progress. Differing priorities can lead to
a lack of flexibility due to difficulty with moving staff between departments,
and worse, it could lead to disputed priorities between departments. While we

46

cannot quantify the costs of the second assertion, we contend that just the cost
of replicating training, processes and reports is likely to exceed the the gains we
see in Table 21. When coupled with the fact our industry partner already uses
EODD, we are confident that the preceding argument is enough to justify our
recommendation that our industry partner avoid using multiple rule scheduling
methods.

Depting Rulel Rule2 Rule3 Rule4 Rule5 Max Late % Late
Industry EODD EODD EODD EODD SOPT 25.0 wks 27.93%
EODD 25.0 wks 28.27%

Empirical SOPT SOPT SOPT FIFO EODD 49.54 wks 66.95%
EODD 49.54 wks 68.88%

PA EODD 24.94 wks 45.81%
EODD EODD EODD EDD EODD 25.06 wks 45.74%

PF EODD EDD EODD EODD EODD 13.36 wks 26.35%
EODD 13.36 wks 26.37%

Triangle EODD EDD EDD EODD EODD 8.76 wks 20.35%
EODD 8.82 wks 20.41%

Uniform EDD EODD EODD FIFO EDD 8.76 wks 20.35%
EODD 8.86 wks 20.35%

Table 21: The maximum lateness minimizing multiple rule methods compared to EODD.

6.5. Routing Distribution Difficulty and Control

In comparing the performances of dispatching rules on the routing distributions,
we notice that particular routing distributions are more “difficult” to process
than others. For instance, every scheduling method used on the uniformly
routed job sets performed better by large factors in both KPIs over the best
methods used on the preferential attachment job sets. The relative difficulty of
two routing distributions can be ascertained by their relative positions of the
KPI frontiers in Figures 11 and 17 in the previous section, and in general, we
can say routing distribution A is more difficult to process than B if the KPI
frontier of scheduling method performances for A is entirely above and to the
right of the frontier for B. For the frontier comparison to be reasonable, the
number of machines and the number of operations in the job sets must be the
same or very similar, as is the case here.

The notion of routing distribution difficulty suggests that caution should be
taken in selecting or creating job sets to model job-shops for algorithms and
heuristics. The very large performance difference of every scheduling method
indicates that the uniform routing job sets are poor models for our industry
partner’s job-shop. Given the complex and specialized nature of real job-shops,
uniformly routed job-shops are very likely in the minority, so uniformly routed
job sets are likely a poor model for most real manufacturing job-shops. Worry-
ingly, of the ones considered here, the uniform routing distribution is the easiest

47

routing distribution to implement in terms of programming complexity, so it
may be the routing distribution used for many simulations. If that is the case,
the applicability of the simulated results is limited.

On the other hand, being able to compare the difficulties of two routing distribu-
tion suggests a mathematical language for another way to approach optimizing
job-shop performance, which is to actively alter the routing distribution of a
job-shop. Ideally, a job-shop would have a uniform routing distribution, which
is to say that each machine performs roughly the same amount of work so there
are no bottleneck machines. This ideal is typically impossible given the spe-
cialization of equipment and labour required for most forms of production. It
may be possible to reduce the number of machines or the size of the bottlenecks
by making strategic equipment purchases to redirect work from bottleneck ma-
chine. It might also be possible to explicitly include additional information in
the job designing process, such as projected machine workloads, in an attempt
to avoid further burdening bottleneck machines. Of course, these ideas to alter
difficult routing distributions do not originate with us, but rather from hav-
ing observed our industry partner. We only offer the idea of discussing these
changes as attempts to control a job-shop’s routing distribution.

48

7. Conclusion

7.1. Scheduling method Recommendation for our industry partner

The primary question of this research is whether our industry partner change
or keep their current scheduling method. To answer this, we simulate the pro-
cessing of two years worth of work in a job-shop model of our industry partner’s
factory using over 30000 different scheduling methods. The simulations are
based on the set of jobs our industry partner actually processed in a two year
time period.

All of our simulated scheduling methods employ job-shop dispatching rules be-
cause any method we recommend needs to be easy to implement, to teach and
to use for our industry partner. The methods assign rules to departments, and
the departments we used are the same as the departments our industry partner
used at the time of our initial investigations.

The performances of all these methods were compared using two KPIs: the
maximum number of weeks a job completed past its due date, and the percentage
of jobs which completed late. The best methods appear on the KPI frontier, and
the best rule among those rules on the frontier is the one which simultaneously
minimizes both KPIs to the greatest degree.

In Section 4.2, we found the best method to be one which assigned the two
dispatching rules EODD and SOPT. This method is on the KPI frontier for the
industry partner data simulations, so it is one of the best performing methods
for that production data.

Scheduling Method Max Late % Late
EODD EODD EODD EODD SOPT 25 weeks 27.93%
- - EODD - - 25 weeks 28.27%

Table 22: Best performing scheduling methods on the industry partner data.

However, we also note in that section that this multiple rule method performed
similarly to the method employing only EODD on all machines. The two meth-
ods and their performances are listed again in Table 22. EODD is the second
best method for simultaneously minimizing both KPIs. Hence, most of the be-
nefits of using the two rule method can be achieved using EODD, which our
industry partner already does. As such, we recommend the following:

Our industry should make no change to their current scheduling
method of using the earliest operation due date (EODD) dispatching
rule on all machines.

49

7.2. Modeling a Job-Shop

We also aimed to extend our results to other job-shops by simulating using
random production data. Very early on, we noticed that all of the scheduling
methods were performing significantly better by a factor of at least two over
the industry partner data on the random production data we had created at
that point. This was despite the fact that nearly every property of the random
data was sampled from the industry partner data. The missing piece was a
model for how to construct a job route, the sequence of job-shop machines a
job must be processed on before it is complete. The initial random production
data we simulated was created using a uniform routing distribution, so we had
inadvertently biased our dispatching rule performance.

A routing distribution is such a model, and we define and simulate five different
routing distributions which we named the uniform, triangle, preferential flow,
preferential attachment, and empirical routing distributions. The five routing
distributions were used to create 250 different random job sets, fifty per routing
distribution. These job sets were used in our job-shop simulator, and the average
performance of each scheduling method was computed with 95% confidence
intervals for the five routing distributions. Figure 17 shows the KPI frontiers
for the five distributions along with the industry partner KPI frontier, and
strikingly, there is no overlap of even the pictured confidence intervals. The
figure also shows that the best scheduling methods for the uniform routing
distribution significantly outperform the best methods on nearly every other
routing distribution including the industry partner data.

We derive two conclusions from that error and results of simulating the routing
distributions. The first is that dispatching rule performance is greatly affected
by the routing distribution of the job-shop where the rules are employed, so the
simulated performance of a given dispatching rule may only be applicable to
job-shops with the same routing distribution as in the simulation. Moreover,
the uniform routing distribution job sets are very different from our industry
partner’s production data. The difference is visible in Figure 17 which shows
the two KPI frontiers together. Hence, any dispatching rule performance claims
made using a uniform routing distribution are unlikely to be broadly applicable.
Further, we conjecture that performance claims of any job-shop algorithm run
on uniformly routed production data are not broadly applicable, and that any
job-shop algorithm run on a uniformly routed job set will perform significantly
worse when that algorithm is run on our industry partner’s data.

The second conclusion is that EODD is a good scheduling method for our in-
dustry partner to use even if, as we suspect, their routing distribution changes
over time. Throughout Section 5, we found that the scheduling method em-
ploying EODD on all machines performed better than nearly all other methods.
The consistency of EODD’s performance across the routing distributions we
simulated is evidence that employing EODD is a good hedge against a changing
routing distribution, as it seems likely that EODD will remain a top performing
dispatching rule for a new routing distribution.

50

7.8. Future Work

We finish with a discussion of how this work might be extended.

7.3.1. Eztending the job-shop model

For simplicity, we left several common features of job-shop models out of our
model. Our scheduling method simulations might more accurately reflect reality
if we also modeled machine breakdown, employee availability or job transit times
to name a few.

We are also interested in modeling what we have called job shepherding. We ob-
served that from time to time a group employees would “shepherd” a job through
its processing; the group would ensure that processing began immediately upon
arrival at a machine, processing was carried out by selected individuals, transit
times were short, and all problems arising for the job were quickly solved. Mod-
eling some or all of these techniques is a way to include in the job-shop model
some of the positive impacts people working in the real job-shops can have on
processing performance.

7.3.2. Extend to other job-shops

Our research was fundamentally based on production data from our industry
partner, and we were uncommonly lucky to have had access to that. However,
we do not know if the results we observed here are truly generalizable to other
job-shops, even with our consideration of alternative routing distributions. For
that, we would need similar access to more production data from one or more
real job-shops. Even gaining access to similar data from our industry partner
at later date would allow us to test whether their routing distribution changes
significantly over time, as we suggest in the second conclusion of Section 7.2,
and if so, we could test whether the analyses above also apply to that new
production data.

7.3.8. Ezplore creating Departments

The performance gains we observed from using multiple dispatching rules were
no significant enough for us to recommend to our industry partner to imple-
ment such scheduling methods. However, we did not exert any control over
the departments themselves, and there may be significant performance gains to
be had from strategically designing departments for use with dispatching rule
scheduling methods. For example, it may be the case that some dispatching
rules work well on those machine which typically process a job’s first opera-
tion, but poorly on the finishing machines. In that case, the starting machines
and finishing machines could each be grouped into their own departments, and
assigned specialized dispatching rules.

o1

7.3.4. Further investigate routing distributions

Several ideas occur to extend the research into routing distributions. The first
potential extension is the conjecture made in the first conclusion of Section 7.2.
We conjecture that the routing distribution will affect all job-shop algorithms
as significantly as we have observed it affecting dispatching rules. Proving the
conjecture could amount to modeling the various job sets as mixed integer pro-
grams, and finding the optimal solutions.

Another extension would be to create a routing distribution which better models
our industry partner’s production data. One way to show we did not achieve
this here is by using all the dispatching rules on a KPI frontier as a kind of
signature for features of the underlying routing distributions. All of the frontiers
in Figure 17 are different from the industry partner data (IPD) frontier, so
when viewed as routing distribution signatures, we see that none of the routing
distributions we defined are very similar to the IPD. The routing distributions
preferential attachment and flow both have a parameter, ay and fg, which may
be adjusted so that these routing distributions might be made to better resemble
the IPD.

The empirical routing distribution also needs to be “fixed;” its frontier is the
furtherest from the IPD frontier of all the frontiers shown in Figure 21, a figure
similar to Figure 11. We attempted to make a fix to the empirical routing
distribution by determining processing times by using unit processing times;
the jobs our industry partner works on are primarily batch jobs consisting of
one to many units, so to determine an operation’s processing time, we sampled
a set of unit processing times and multiplied by the sampled number units for
a job. The result is shown as the 'Empirical I’ frontier in Figure 21. In the
figure, the ’Empirical II’ frontier is similar to the 'Empirical’ frontier, so this
particular attempt to better model the IPD failed. It is clear that additional
research is required to determine the key features of industry data which must
be replicated in the creation of similar random data.

Multiple Routing Distributions

% Late Jobs

i i i i i i
20 40 60 80 100 120
Max Past Due (weeks)

Figure 21: The single rule KPI frontiers for each of the six routing distribution considered
above, and an additional frontier for a second empirical routing distribution.

92

Bibliography

Adams, J., Balas, E., Zawack, D., 1988. The shifting bottleneck procedure for
job shop scheduling. Management science 34 (3), 391-401.

Armentano, V. A., Scrich, C. R. a., 2000. Tabu search for minimizing total
tardiness in a job shop. International Journal of Production Economics 63 (2),
131-140.

Barabdsi, A., Albert, R., Oct. 1999. Emergence of scaling in random networks.
science 286 (5439), 509-512.

CMC, 2012. Manufacturing Our Future: A Manufacturing Action Plan for
Canada. Tech. rep., Canadian Manufacturing Coalition.

Colorni, A., Dorigo, M., 1994. Ant system for job-shop scheduling. Belgian
Journal of Operations Research, Statistics and Computer Science 34 (1), 39—
53.

De Giovanni, L., Pezzella, F., 2010. An Improved Genetic Algorithm for the
Distributed and Flexible Job-shop Scheduling problem. European Journal of
Operational Research 200 (2), 395-408.

Garey, M., Johnson, D., Sethi, R., 1976. The complexity of flowshop and jobshop
scheduling. Mathematics of operations research 1 (2), 117-129.

Goren, S., Sabuncuoglu, I., Koc, U., 2012. Optimization of schedule stability and
efficiency under processing time variability and random machine breakdowns
in a job shop environment. Naval Research Logistics 59 (1), 26-38.

Holstein, W., Berry, W., 1970. Work flow structure: An analysis for planning
and control. Management Science 16 (6), B324-B336.

Huang, K., Liao, C., Apr. 2008. Ant colony optimization combined with ta-
boo search for the job shop scheduling problem. Computers & Operations
Research 35 (4), 1030-1046.

Industry-Partner, 2013. private communication with a manager from our in-
dustry partner.

Kaban, a. K., Othman, Z., Rohmah, D. S.; 2012. Comparison of dispatching
rules in job-shop scheduling problem using simulation: a case study. Interna-
tional Journal of Simulation Modelling 11 (3), 129-140.

Lunsdorf, O., Muller, K., Scherfke, S., Vignaux, T., 2012. SimPy: Event discrete
simulation for Python.

URL http://simpy.readthedocs.org/

Manne, A., 1960. On the job-shop scheduling problem. Operations Research
8 (2), 219-223.

93

http://simpy.readthedocs.org/

McKay, K., Safayeni, F., Buzacott, J., 1988. Job-shop scheduling theory: what
is relevant? Interfaces 18 (4), 84-90.

Nowicki, E., Smutnicki, C., 2005. An Advanced Tabu Search Algorithm for the
Job Shop Problem. Journal of Scheduling 8 (2), 145-159.

Nuijten, W., Aarts, E., 1996. A computational study of constraint satisfaction
for multiple capacitated job shop scheduling. European Journal of Operational
Research 7 (95), 269-284.

Pan, Q.-K., Tasgetiren, M. F., Liang, Y.-C., 2008. A discrete differential evolu-
tion algorithm for the permutation flowshop scheduling problem. Computers
& Industrial Engineering 55 (4), 795-816.

Panwalkar, S., Iskander, W., 1977. A survey of scheduling rules. Operations
Research 25 (1), 45-61.

Philipoom, P., Fry, T., 1990. The robustness of selected job-shop dispatching
rules with respect to load balance and work-flow structure. Journal of the
Operational Research Society 41 (10), 897-906.

Pinedo, M., 2009. Planning and scheduling in manufacturing and services.
Springer.

Ruiz, R., Vazquez-Rodriguez, J. A., 2010. The hybrid flow shop scheduling
problem. European Journal of Operational Research 205 (1), 1-18.

Sculli, D., Tsang, K., 1990. Priority dispatching rules in a fabrication/assembly
shop. Mathematical and Computer Modelling 13 (3), 73-79.

Sha, D., Hsu, C.-Y., 2006. A hybrid particle swarm optimization for job shop
scheduling problem. Computers & Industrial Engineering 51 (4), 791-808.

Shah, P., 2004. SELECTING A MIX OF DISPATCHING RULES. Ph.D. thesis,
Ryerson University.

Shmoys, D. B., Stein, C., Wein, J., 1994. Improved Approximation Algorithms
for Shop Scheduling Problems. STAM Journal on Computing 23 (3), 617-632.

Tavakkoli-Moghaddam, R., Khalili, M., Naderi, B., 2008. A hybridization of sim-
ulated annealing and electromagnetic-like mechanism for job shop problems
with machine availability and sequence-dependent setup times to minimize
total weighted tardiness. Soft Computing 13 (10), 995-1006.

Vaessens, R. J. M., Aarts, E., Lenstra, J., 1994. Job shop scheduling by local
search. INFORMS JOURNAL ON COMPUTING 8, 302-317.

Vela, C. R., Varela, R., Gonzélez, M. a., 2008. Local search and genetic al-
gorithm for the job shop scheduling problem with sequence dependent setup
times. Journal of Heuristics 16 (2), 139-165.

o4

Wei-ling, W., Jing, Y., 2013. A hybrid differential evolution algorithm for job
shop scheduling problem to minimize the total weighted tardiness. Manage-
ment Science and Engineering (ICMSE), 2013 International Conference on,
294-300.

Yu, H., Liang, W., Apr. 2001. Neural network and genetic algorithm-based
hybrid approach to expanded job-shop scheduling. Computers & Industrial
Engineering 39 (3-4), 337-356.

Zhang, R., Wu, C., 2010. A divide-and-conquer strategy with particle swarm
optimization for the job shop scheduling problem. Engineering Optimization
42 (7), 641-670.

Zhang, R., Wu, C.; 2011. A simulated annealing algorithm based on block prop-
erties for the job shop scheduling problem with total weighted tardiness ob-
jective. Computers & Operations Research 38 (5), 854-867.

99

Appendices

A. Failed Dispatching Rules

In this appendix, we describe two dispatching rules which we did not use in
our final simulations. In the initial tests, both rules, when compared to rules
on the KPI frontiers, performed very poorly. Further, the run-time was greatly
increased due to each of these rules selecting a highest priority job from all the
work in progress, not just the jobs in a particular queue. We describe them here
for completeness.

Both these rules use the concept of a job ranking. A job ranking is a function
R : J — R. The jobs can be weakly ordered or prioritized by rank. Each of
the dispatching rules in Section 3.5 exploits a job ranking to select a job for
processing; for instance, the rule EDD selects the job with the earliest due date
which can be considered as the number of days since January 1, 2000, a real
number. Since we required our dispatching rules to be implementable with a
list, we can find a mapping of jobs to real numbers for each dispatching rule
which can be used as a job ranking and the highest ranked job is the one the
dispatching rule selects for processing.

A.1. Minimum Completion Time

The aim of this rule is to predict the completion time of a job based on a the
priority of a job as determined by the ranking function R, and opportunistically,
complete the jobs which can be completed the earliest. The idea is to calculate
the maximum amount of time a job is expected to wait at all the machines it
has yet to be processed on, and estimate a completion time as the sum of the
current time, t.; the remaining processing time and the remaining transit time,
w;i“™; and that maximum wait time:

comp(j) = te +w;“" + waittime(j).

Calculating the wait time, as we conceive it, is straight forward once some
notation has been established.

Let m; be the machine which processes the ith operation of j. We calculate two
quantities: the arrival time, a;;, of j in the queue of m;, and the start time, s;;,
of operation o;.

e The arrival time a;; is calculated by assuming j will not wait in any
future queue, and a;; is equal to t. plus all the processing and transit time
required before j is moved into g,,,. It is zero if o0;; is complete or j is
already in ¢, .

96

e The start time s;; is an estimate of the time that j is waiting while higher
priority jobs are processed on m;. Hence, s;; is zero if 0;; is complete,
and otherwise, s;; is calculated as the sum of the current time plus the
processing times of all current operation of jobs k € ¢y,, where R(k) >

R(35).

With that, the wait time of j is the maximum difference between the start times
and arrival times:

waittime(j) = max{0, s1; — a1, S2; — Q2j, ..., Sg; — Q¢j}-
The job with the minimum comp(j) is selected for processing.

The calculation of waittime(j) takes advantage of the fact that jobs with higher
priority than j will be processed whether j is in the same queue or not, so
if no jobs with rank greater than or equal to R(j) enter g, then s;; — a;;
decreases steadily to zero regardless of whether j is in ¢, or not. Of course,
that assumption is not reasonable, particularly if the job ranking is dynamic, so
the wait time of a job could vary wildly even while it is stationary in a queue.
Whats more, the job ranking function is called many more times than for our
other dispatching rules, as we repeatedly calculate the rank of every job which
may interact with j.

A.2. Highest Priority WIP

The idea of this rule is to determine whether a high priority job, j*, is soon to

arrive at a machine m, and if so, select a job already in ¢,, to process which will

be complete before j* arrives in ¢,,. A job ranking function R is required to

determine job priority. To implement this rule, we need to introduce two pieces

of notation. The first is a list, £,,,, maintained at each machine m, and the list

has all of the released jobs which still need to be processed on m. The second
c—rm

is wi ™, which is the amount of processing and transit time required for j to

be moved from its current location to ¢,.

B. Python Code

All code is stored in the GitHub repository https://github.com/salvor7/
JobshopSimulation

B.1. Simulation Code

The simulation code files are simulator.py, timer.py and sleep.py.

B.2. Dispatching Rule Code

The dispatching rule definition python code is specified in ranking_rules.py.

o7

https://github.com/salvor7/JobshopSimulation
https://github.com/salvor7/JobshopSimulation

Algorithm 3 High Priority WIP Dispatching Rule

Require: Machine m where rule is triggered.
Require: The list of jobs £,,.

1: procedure DISPATCHING RULE

2 ETA = oo.

3 L=,

4; while L # () do

5: Find the highest priority job, j*, listed on L.
6 if j* € gm and p§ < ETA then

7 return j* for processing and Stop.
8 else

9: Remove j* from L.

10: if ETA > w§™™ then

11: Set ETA = w§™

12: return Sleep Signal.

B.3. Routing Distribution Code

The python code defining routing functions used to create job sets is cont
create_data_files.py.

C. KPI frontiers

The KPI frontier file is stored in the GitHub repository https://github.com/
salvor7/JobshopSimulation as multirule front.csv.

98

https://github.com/salvor7/JobshopSimulation
https://github.com/salvor7/JobshopSimulation

Index

confidence rectangles, 29

earliest due date, 19

earliest fraction completed date, 20
earliest operation due date, 19
earliest release date, 20

first in, first out, 21
first in, last out, 21

job, 1
due date, 1
job set, 9
release date, 9
job-shop, 1

KPI, 2
frontier, 2

least remaining operations, 21
least slack, 22
over operation processing, 22
over remaining operations, 22
plus late rule, 23
times operation processing, 22
longest operation processing, 21
longest processing, 20

maximum work per day, 21

most remaining operations, 21

most tardy
over operation processing, 24
over remaining processing, 23
plus early rule, 23

operation, 9
current operation, 19
index, 9
processing time, 9

routing distribution, 2

schedule, 18
scheduling method
dispatching rule, 1

99

human implementable, 1
multiple rules, 24
shortest next queue, 21
shortest operation processing, 21
shortest processing, 20

	Introduction
	Related Work
	Notation and Methods
	Job-Shop Simulation
	Job-shop Demand Definitions and Notation
	Random Job sets
	Uniform Routing
	Triangle Routing
	Preferential Attachment Routing
	Preferential Flow Routing
	Empirical Routing

	Job-Shop Scheduling as a Mathematical Program
	Scheduling Methods
	Earliest Due Date (EDD)
	Earliest Operation Due Date (EODD)
	Earliest Release Date (ERD)
	Earliest Fraction Completed Date (EFCD)
	Shortest or Longest Processing Time (SPT, LPT)
	Shortest or Longest Operation Processing Time (SOPT, LOPT)
	Least or Most Remaining Operations (LRO, MRO)
	Shortest Next Queue (SNQ)
	First in, First or Last out (FIFO, FILO)
	Maximum Work per Day (MWpD)
	Least Slack (LS)
	Least Slack over Remaining Operations (LS/RO)
	Least Slack over Operation Processing Time (LS/OPT)
	Least Slack times Operation Processing Time (LS*OPT)
	Least Slack plus a late rule (LS lr)
	Most Tardy plus an early rule (MT er)
	Most Tardy over Remaining Processing Time (MT/PT)
	Most Tardy over Operation Processing Time (MT/OPT)
	Multiple Rules

	industry partner Results
	Single Rule Performance
	Multiple Rule Methods Results

	Generalized Results
	Single Rule Results
	Empirical Routing
	Preferential Attachment
	Preferential Flow
	Triangle Routing
	Uniform Routing

	Routing Function Multiple Rule Methods Results
	Comparing KPI Frontiers
	Comparing to EODD
	Comparing the number of rules

	Discussion
	Just enough Complexity
	KPI Trade-offs
	Travel Times
	Simplicity of One Rule
	Routing Distribution Difficulty and Control

	Conclusion
	Scheduling method Recommendation for our industry partner
	Modeling a Job-Shop
	Future Work
	Extending the job-shop model
	Extend to other job-shops
	Explore creating Departments
	Further investigate routing distributions

	Appendices
	Failed Dispatching Rules
	Minimum Completion Time
	Highest Priority WIP

	Python Code
	Simulation Code
	Dispatching Rule Code
	Routing Distribution Code

	KPI frontiers

