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ABSTRACT 
Effects of the wide spread adoption of PHEVs on Ontario electric generating capacity from the 

year 2014 to 2030 is studied. Long-term forecasting models of load demands and the number of 

light-duty vehicles sold are developed by employing linear and non-linear regression techniques. 

Number of PHEVs is forecasted through consideration of three scenarios of penetration levels, 

such as mild, normal and aggressive ones. Four different scenarios of the charging pattern are 

also developed since not all people charge their PHEVs during the off-peak period. Extra 

required load demand for PHEVs charging purposes is calculated. The demands for the worst 

case, assumed highest transition of PHEVs penetration with the peak period charging pattern, is 

compared with generator availability at peak in Ontario. Results present that at the end of 2030 

in which the total number of PHEVs is 890,362 vehicles, supply is less than the peak load 

demand. The additional electricity demand on the Ontario electricity grid from charging PHEVs 

is incorporated for electricity production planning purposes. Moreover, the impact of the socio-

economic factors is analyzed. A penetration function is developed which consists of two parts, 

diffusion rate and the other representing the socio-economic factors. Three general scenarios are 

considered when deploying the penetration function. Each scenario presents the weight assigned 

to the diffusion rate and the socio-economic factors. Next, Aggressive, Average and Mild 

vehicles all-in costs, are studied the adoption rates for males and females separately. Overall, it is 

indicated that the EVs, HEVs and PHEVs adoptions will increase substantially in the future, 

comprising a fraction of approximately 30%-38% (depending on the considered scenario) of the 

total conventional vehicles sold by 2050. Furthermore, Zonal analysis is also accomplished. This 

study shows that with the increasing adoption of EVs and PHEVs, emissions decrease 

significantly through 2014 – 2050, specifically in three zones which are The Metropolitan Area 

of Toronto, Ottawa Ontario, and The Metropolitan Area of Hamilton. This is presented by 

assuming three different scenarios. The number of related EVs and PHEVs through each 

scenario is forecasted. To show the quantity of emissions produced in the zones considering the 

scenarios, initially the emissions factor for Greenhouse Gases (GHG) and Major Non-GHG 

pollutants are found. The results confirm that the total emissions per season will drop by roughly 

40% to 50% of the quantity they would emit when no EVs or PHEVs are penetrated. Finally, the 

Ontario energy planning is optimized to minimize the value of the cost of the electricity over 

sixteen years (2014-2030). The mathematical objective function consists of the fuel costs, fixed 
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and variable operating and maintenance costs, the capital costs for a new power plant, and the 

retrofit costs of existing power plants (associated with fuel switching from coal to natural gas for 

coal-fired stations). The mathematical model of objective function and related constraints are 

applied in the GAMS software. Because of having mixed integer model, the programming code 

set to be solved through CPLEX solver. Five different case studies are performed with different 

penetration rate, type of new power plants, and CO2 emission constraints. Among all the case 

studies, the one requiring the most new capacity, (~8,748 MW), is Case D, assuming the base 

case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is 

Case B, assume the base case, doubled NG prices, medium PHEV and no CO2 emissions 

reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, 

optimization results indicate that by not utilizing coal power stations the CO2 emissions are the 

lowest; ~500 tonnes compared to ~900 tonnes when coal is permitted. To conclude, if the most 

likely scenario is followed (a) the Province cannot meet the expected demand and will need to 

build significant new capacity and (b) the Province will see significant reductions in CO2 

emissions.  
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 
The global demand for energy continues to increase in relation to the growth in population and 

the economy. The 2009 projections from the International Energy Outlook (IEO), indicate that 

the global energy consumption is expected to rise by 44% from 2006 to 2030 (EIA, 2010). 

Protection for the environment and availability of sufficient electricity should be considered in 

anticipation of soaring global demands for energy. 

In Canada, a large part of the energy consumption is derived from the transportation sector, 

which accounts for approximately 31% of the current total national demand (Statistics Canada, 

2009). Greenhouse gases (GHGs) trap the sunlight’s energy, keeping the Earth sufficiently warm 

for life. However, excessive emissions of GHGs contribute to global warming by increasing 

Earth's average temperature.  

New technologies applicable to vehicles have been developed successfully over past decades to 

improve their performance, reduce energy consumption, and lessen pollution released into the 

environment. Plug-in Hybrid Electric Vehicles (PHEVs) become fuel flexible vehicles because 

they use both gasoline and electricity for propulsion. One of the major challenges of using 

PHEVs is their environmental impact. Although PHEVs can reduce tailpipe emission, the 

emissions shift to the power plants where the electricity is produced. If the power plants use 

fossil fuels, emissions are still released. However, if electricity is produced from nuclear, solar, 

hydro, or wind power plants, emissions are near zero.  

With the PHEV penetration into the automobile market, gasoline consumption will decrease in 

direct relation to the increasing numbers of PHEVs. However, electricity demand will 

correspondingly increase. The next challenge of PHEV penetration is to determine whether the 

electricity grid is capable of supplying the increased demand from charging PHEVs.  

As mentioned, one challenge of PHEVs penetration is the increasing load demand. The question 

of whether the existing electricity production infrastructure can cope with the future load demand 

must be considered. What if Ontario experiences a large electricity deficit? If this proved to be 

true, then what are the solutions? One solution is to build new power plants. However, by 
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building new power plants, more GHGs and other emissions could be released to the 

environment. Therefore, in anticipation of generating more electricity to meet rising load 

demands, both economic regulations and environmental aspects and targets must be considered. 

The main objective of the thesis is to discover what combinations of future supply technologies 

will meet the increased electricity consumption in Ontario as a result of PHEV penetration. 

1.2 Objectives 
The effect of a wide spread adoption of PHEVs on the electric generating capacity on Ontario is 

a challenging subject. The main objective of this thesis is to develop a multi-period 

optimization model for electricity generation planning considering PHEV penetration. The 

scope of the work includes following major sections. 

1. Formulate the models for long-term forecasts, peak, base, and hourly load demands, and for 

light-duty vehicles sold in Ontario employing regression methods, as well as nonparametric 

regression methods by neural network. 

2. Study the PHEV penetration and the impact on Ontario load demand  

3. Develop a model considering the effect of socio-economic factors on PHEVs/EVs/HEVs 

adoption rates in Ontario. 

4. Analysis the zonal emissions, from PHEVs/EVs penetration.  

5. Develop a multi period MILP model to determine the optimal mix of electricity supply sources 

to satisfy load demand in the Ontario generating sector. 

6. Develop different case studies to study the effect of various conditions on the optimization 

model including different adoption rate, emission restriction, and phasing out specific power 

stations 

1.3 Contribution of the Research 
The literature review reveals that no studies to date have been conducted regarding the 

optimization of energy planning considering the wide spread adoption of PHEVs.  

The expected contributions of this study are  
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• Study the effect of PHEVs penetration on energy planning for long term (in literature, 

just developed for short period of time for example 24 hours) 

• Employing more sophisticated data for predicting PHEVs penetration and load demands 

• Developing model to use infrastructure of Ontario including all the current plans (in 

literature, multi period energy planning in Ontario has been done just using OPG data)  

• Defining new and realistic charging scenarios on hourly bases. The results can contribute 

significantly to the establishment an Ontario government policy to encourage consumers 

to save energy. 

• Developing different models considering the effect of socio-economic factors on 

PHEVs/EVs/HEVs adoption rates can significantly increase considering realistic 

penetration rate of PHEVs/EVs/HEVs in Ontario. 

• Zonal vehicles emissions analysis would determine areas in Ontario that would make 

improvement from PHEVs/EVs penetration. 

•  Developing an optimization model to address optimal planning of the Ontario power 

generating sector in consideration of different PHEV penetration levels  

• The optimization model can be used on a larger scale i.e., for all Canadian provinces and 

territories, as well as for other parts around the world. 

1.4 Thesis Outline 
Chapter 2 consists of a concise review of the electricity supply technologies, PHEVs charging 

specifications, forecast methodology, optimisation methodologies, and relevant literature. 

Chapter 3 discusses the general methodologies for the research regarding forecasting, and energy 

planning. The forecasted results for the study, especially for forecasting, PHEVs penetration and 

charging scenarios, are presented in Chapter 4. The impact of the socio-economic factors is 

analyzed in Chapter 5. A penetration function is developed which consists of two parts, diffusion 

rate and the other representing the socio-economic factors. Three general scenarios are 

considered when deploying the penetration function. Each scenario presents the weight assigned 

to the diffusion rate and the socio-economic factors. Next, Aggressive, Average and Mild 

vehicles all-in costs, are studied the adoption rates for males and females separately. Chapter 6 

studies the zonal penetration of EV and PHEV. This chapter indicates that with the increasing 

adoption of EVs and PHEVs, emissions decrease significantly through 2014 – 2050, specifically 
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in three zones which are The Metropolitan Area of Toronto, Ottawa Ontario, and The 

Metropolitan Area of Hamilton. This is presented by assuming three different scenarios. The 

number of related EVs and PHEVs through each scenario is forecasted. To show the quantity of 

emissions produced in the zones considering the scenarios, initially the emissions factor for 

Greenhouse Gases (GHG) and Major Non-GHG pollutants are found. In Chapter 7, the Ontario 

energy planning is optimized to minimize the value of the cost of the electricity over sixteen 

years (2014-2030). The mathematical model of objective function and related constraints is 

applied in the GAMS software. Four different case studies are performed with different 

penetration rate, type of new power plants, and CO2 emission constraints. Installed capacity, 

economic and emissions analysis of each case study are fully investigated.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 
This chapter provides an overview of the electricity supply technologies: thermal power, 

hydroelectric power, nuclear power, and wind power stations. It also presents the modes of 

operations, key benefits and challenges, battery charging time, and charger requirements for 

PHEVs. Then, different forecasting and regression models and the methodology are described, 

and optimization concepts of linear, nonlinear, and integer programming are studied. Finally, a 

review of other studies and papers on the energy planning optimization models and PHEV 

penetration are addressed. 

 

Electricity consumption in Ontario is forecast to be approximately 1% by the Integrated Power 

System Plan (IPSP) (OEA, 2007) and 0.9% by the Independent Electricity System Operator 

(IESO) (IESO, 2005). Therefore, the energy load demand is predicted to grow from 

approximately 143.7 terawatt hour (TWh) in 2009 (CEA, 2009) and 145 TWh in 2010 to 

approximately 186 TWh in 2025 (OME, 2011b). The penetration of PHEVs into the automobile 

market is expected to increase in the coming years (Eppsteina et al., 2011). This penetration will 

further increase the demand for electricity. To produce sufficient electricity to satisfy the future 

demand, supplementary supplies of power must be generated by power stations. 

2.2 Overview of Supply Technologies in Ontario 
Total generated electricity in Ontario was approximately 154 TWh in 2013 (IESO 2013). Fifty 

two percent of the electricity or 80.3 TWh was generated by OPG (OPG 2013). Thermal 

electricity, hydroelectric, and nuclear power plants account for 14%, 34%,and 52% of the OPG 

electricity generating capacity respectively (OPG 2013).  

 

The installed capacity, measured in MW, is the amount the system is able to generate if it works 

to full capacity. Table 2.1 shows the total installed capacity of various power plants types in the 

Ontario in 2013. Approximately 60% of the total installed capacity is from nuclear and 

hydropower plants (IESO 2013). By considering capacity factors the actual amount of power 

generated can be calculated. Being able to manage shutdowns, unexpected peak demands, 

routine equipment maintenance of a power plant, the installed capacity should be always greater 

than actual generated power. As demonstrated in Figure 2.1, approximately 59.2% and 23.4% of 
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power generated in Ontario was produced by nuclear and hydropower plants in 2013, 

respectively (IESO 2013). 

Table 2.1 Total Installed Capacity for whole Ontario in 2003, 2010, 2013, and 2030 (OME 

2011b) (IESO 2013) 

Installed Capacity (MW) 2003 2010 2013 2030 (projected) 

Coal 7546 4484 572 0 

Gas/Oil 4364 9424 9920 9200 

Renewables-Wind, Solar, 

Bioenergy 

155 1657 1948 10700 

Renewables- Hydroelectric 7880 8127 8014 9000 

Nuclear 10061 11446 12947 12000 

Conservation 0 1837 1928 7100 

Total 30006 36975 35329 48000 

 

2.2.1 Thermal Power Stations 
More than twenty existing thermal electricity GSs operated in Ontario by 2011 (Short, 2011). 

Five of them are owned by OPG: Atikokan, Nanticoke, Lambton, Thunder Bay, and Lennox GS. 

Atikokan and Thunder Bay GSs will be converted from coal to use biomass by the end of 2014. 

Nanticoke and Lambton GSs are fuelled by coal, and the fifth one, Lennox GS, is fuelled by oil 

and natural gas (OPG, 2013). The different types of thermal power stations are discussed in the 

following sections. 

 

2.2.1.1 Natural Gas Power Stations  

As it is obvious natural gas power stations are fuelled by natural gas. Steam turbines and gas 

turbines can be used to generate power for electricity production. A steam turbine is a type of 

turbine that produces thermal energy from steam and converts it to electricity through rotary 

motion using rotating turbine blades. A gas turbine uses gas expansion whereby the gas flow 

rotates the turbine by passing through a nozzle aimed over the turbine blades. Turbine drives 

electrical generator which generate electricity. The different types of natural gas power station 

technologies are discussed in the following sections. 
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Figure 2.1 Installed and Generation Capacity for whole Ontario in 2013 (IESO, 2013). 

 

Simple Cycle Gas Turbine  

In a simple cycle gas turbine, air is compressed to higher pressure once it enters the compressor. 

In a combustion chamber, natural gas or other fuels are burned at high temperature and pressure 

with compressed air. The resulting high temperature combustion gas and air mixture are 

converted to work by expanding in the turbine and spinning an electrical generator to produce 

electricity. 

 

Natural Gas Combined Cycle 

A natural gas combined cycle (NGCC) power plant merges the steam turbine and gas turbine 

technologies to generate electricity. In a heat exchanger, steam is generated by using released 

heat from a gas turbine. Therefore, additional electricity is produced by a steam generator which 

works by the steam generated (or generated steam). 

 

Combined Heat and Power/Cogeneration, CHP 

Cogeneration systems produce both electricity and valuable heat at the same time. Similar to 

NGCC, electricity is generated from steam turbines. However, in cogeneration, steam is not used 

Coal Gas/Oil

Renewable
s‐Wind, 
Solar, 

Bioenergy

Renewable
s‐

Hydroelect
ric

Nuclear
Conservati

on

Installed Capacity 2013 0.12 0.28 0.055 0.226 0.366 0.054

Generation 2013 0.021 0.111 0.034 0.234 0.592 0.008

‐7.77E‐16

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6



8 
 

to produce electricity. In fact, thermal energy of steam is used for district heating, water 

desalination, etc. CHP overall efficiency (electricity + usable heat) is approximately 80 percent 

(OME 2011b). 

 

2.2.1.2 Coal Power Stations  

Two main groups of coal power plant technologies are: 

Combustion (pulverized coal power stations) 

Gasification (for instance, Integrated Gasification Combined Cycle (IGCC)) 

 

Pulverized Coal Power Stations 

A boiler is fuelled by powdered coal which was ground for combustion. Heat is produced by 

burning these crushed coals. The heat then produces steam which rotates the turbines for 

electricity generation. 

 

Integrated Gasification Combined Cycle, IGCC 

Through IGCC plants, steam production from the gasification system and the combined cycle 

portion of this system are integrated together. Synthetic gas (syngas) is derived from gasified 

coal by partial combustion, in coal gasification. Then, the syngas is burned by combustion to turn 

gas turbine blades and generate electricity. Additional electricity is generated through smaller 

steam turbines, derived by produced steam from recovered waste heat of hot exhaust gases. 

 

2.2.1.3 Thermal Power Resource in Ontario 

After October 2010, coal-fired generation comprises approximately thirteen percent of Ontario’s 

electricity capacity and produced eight percent of the total power generated in Ontario (OME 

2011b). In 2013, coal GSs generated 2.1% of the electricity generated in Ontario (IESO, 2013). 

Thermal electricity GSs have a combined capacity of 10,492 MW operating in Ontario. The 

generation capacity of the two coal power plants, Nanticoke and Lambton, is 572 MW (OPG, 

2013). 

 

The generated electricity in fossil fuel-fired thermal power plants converts only approximately 

35% of the potential energy from coal into electricity. Heat is released into the environment as a 
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form of the remaining energy. Carbon dioxide (CO2), carbon monoxide (CO), sulphur dioxide 

(SO2), nitrogen oxides (NOx) and particulates are discharged from coal combustion into the 

atmosphere (IESO 2010). 

 

Reducing the CO2 by using CO2 capture and sequestration is particularly expensive. For this 

reason and because of many other environmental issues (IESO 2010), two units at Lakeview 

(Mississauga) were phased out in April 2005. Four coal generation units at Lambton GS and 

Nanticoke GS were closed in October 2010. Two more units at Nanticoke GS were shut down by 

the end of 2011 (IESO 2010).The remaining coal power stations are scheduled to be closed by 

the end of 2014.  

 

In addition, natural gas, biomass, and oil are additional fuelling options for some units. For 

example, OPG will consider natural gas as fuel at Nanticoke and Lambton GS in the near future 

(IESO 2010). Natural gas power plants produce a lower amount of CO2 compared to other types 

of fossil fuels. Moreover, both small and large generators are required to have a reliable supply. 

Natural gas power plants are able to significantly improve the flexibility of the system to respond 

to the high demand during peak hours of electricity use. Since 2003, 5,574 MW of electricity 

generated by new natural gas power plant has been added to the supply network (IESO, 2013). 

At present, there is a capacity of 9,920 MW of electricity generation from natural gas/oil in 

Ontario (IESO, 2013). 

 

A plan was developed in 2007, which included establishing new power plants in the next several 

years. The plan emphasizes the lower level of the contamination produced by the natural gas 

power plants, the operational flexibility, the cost of making new plants, and the speed of 

construction of the plants. In addition, in the GTA which is consuming a large amount of energy, 

natural gas is used in the power plants and the waste heat is used to provide space and water 

heating for other buildings in the same region (OME 2011b). 

 

The third mentioned type of thermal power plants is CHP. In Ontario, CHP capacity is 

approximately 2,000 MW or 5.5 percent of installed generation capacity at present. In addition, 
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there is a new capacity of 414 MW in Thorold, Oshawa, Kingsville, Sault Ste. Marie, Windsor, 

London, and Markham (IESO, 2013). 

2.2.2 Hydroelectric Power Stations  
Hydroelectric power GSs produce electricity by utilizing stored water behind a dam. Water is 

released on to turbine propellers which rotate the turbine shafts. Shafts are connected to the 

generator and thus produce electricity. In this procedure, as water is the only fuel that is used to 

generate electricity, hydropower is identified as a renewable resource by most governmental 

energy policies. However, there are still many discussions as to whether hydropower is a 

renewable and/or sustainable energy source in Canada (Freya and Linkeb, 2002). 

 

2.2.2.1  Hydropower Resource in Ontario 

Hydroelectric power stations provide approximately 23.4% of Ontario’s electricity. The stations 

represent 22.6% of the installed capacity of the province’s electricity-producing plants IESO, 

2013). The Niagara plant group with its capacity of 2,278 MW is the largest hydropower GS in 

Ontario and is located on the Niagara River at DeCew Falls in St. Catharines (OPG 2011a). The 

total installed hydroelectric capacity in Ontario is 8,014 MW. The plan is to increase the installed 

capacity to 9,000 MW by 2018 (OME 2011b). Some of the completed and ongoing projects of 

building new hydro power stations in Ontario are noted in Table 2.2 (OME 2011b). 

2.2.3 Nuclear Power Stations 
Nuclear power plants generate and preserve energy from uranium atoms that have been divided 

into parts, i.e., the source of energy is the splitting of the uranium atoms. To generate electrical 

energy, the energy released from the nuclear reactions is used to heat water, produce steam, and 

move the generators (Sovacool 2008). A nuclear fuel cycle is grouped into two categories: 

“closed” and “once-through.” During a once-through mode, the used fuel is disposed directly. 

Most of the conventional reactors work on a once-through basis. The main advantage of closed 

type reactor is that the used material can be recycled after separating the waste products from 

unused fissionable fuel. 
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Table 2.2 List of New Ontario Hydropower Generating Stations (OME 2011b) 

Hydropower GS Generating  Capacity 

(MW) 

Comments/Location 

Niagara Tunnel Project --- This project will increase the amount 

of water at the Sir Adam Beck GS.  

The Lower Mattagami 

Project Expansion 

440 The project is the largest one 

planned in the past 40 years. 

Healey Fall Project 15.7 Campbellford, east of Peterborough 

Lac Seul GS 12.5 Ear Falls 

Trent Rapid 

Hydroelectric Station 

8 Near Peterborough 

Sandy Falls 5.5 Mattagami River, near Timmins 

 

2.2.3.1 Nuclear Power Resource in Ontario 

In Ontario, over half of the power used and thirty six percent of installed capacity (12,947 MW) 

are generated by nuclear power plants. Moreover, nuclear power generating plants are critical for 

providing reliable baseload power. Three CANada Deuterium Uranium (CANDU) nuclear plants 

with sixteen units operate in Ontario at the present time. The Pickering GS, Bruce Power Plant, 

and the Darlington GS have six, six, and four operating units, respectively (IESO, 2013).  

 

Nuclear units, their gross capacity, as well as their estimated end-of-service dates are outlined in 

Table 2.3 (Winfield et al., 2004). The first commercial operation dates of most of the nuclear 

units are in the 1970s and 1980s. Therefore, the units which reach the end of their working lives 

will be retired or will need to be refurbished before 2020. Sixteen units will be taken out of 

service, two at a time, for refurbishment between 2010 and 2026. The refurbished units can 

operate for another thirty years (IESO 2009a). In addition, two units are planned to be added at 

the Darlington site in the 2020s (OME 2011b). 
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Table 2.3 Ontario’s Nuclear Generating Stations Status, Capacity, Service Date (Winfield 

and others 2004, OPG 2013) 

  

Unit 

# 

 

Status 

Gross  

Capacity

(MW) 

First 

Commercial 

Operation 

End of 

service 

date 

Pickering Nuclear Plant  

Pi
ck

er
in

g 
A

 1 Operational - Was returned to service in 2005 515 07/1971 n/a 

2 Out of service 515 12/1971 n/a 

3 Out of service 515 06/1972 n/a 

4 Operational -Was returned to service in 2005 515 06/1973 2016 

Pi
ck

er
in

g 
B

 5 Operational 516 05/1983 2020 

6 Operational 516 02/1984 2020 

7 Operational 516 01/1985 2020 

8 Operational 516 01/1986 2020 

Bruce Nuclear Plant   

B
ru

ce
 A

 

1 Operational -Was returned to service in 2011 750 09/1977 n/a 

2 Operational -Was returned to service in 2011 750 01/1977 n/a 

3 Out of service 750 01/1978 2012 

4 Operational 750 01/1979 2016 

B
ru

ce
 B

 

5 Out of service 785 03/1985 2011 

6 Out of service 820 09/1984 2011 

7 Out of service 785 04/1986 2011 

8 Out of service 785 05/1987 2012 

Darlington Nuclear Plant  

D
ar

lin
gt

on
 

1 Operational 881 11/1992 2017 

2 Operational 881 10/1990 2015 

3 Operational 881 02/1993 2018 

4 Operational 881 02/1993 2018 
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2.2.4 Wind Power Plants  
Wind powered plants produce electricity after turbine blades are rotated by wind. Theoretically, 

the generated electricity is a result of converted kinetic energy from wind’s potential energy. 

 

2.2.4.1 Wind Power Resource in Ontario 

Melancthon EcoPower Centre (Amaranth I and Amaranth II) with a 199.5 MW capacity located 

near Shelburne is Canada’s largest wind farm. In Ontario, more than 700 wind turbines operate 

currently. The number of wind turbines was ten in 2003 (OME 2011b). Tables 2.4 and 2.5 give 

amounts of power generated by wind turbines in Ontario in 2011 (IESO 2011). 

 

Table 2.4 Current Ontario’s Wind Power Generating Station’s Capacity (IESO 2011) 

Wind Farm Capacity (MW) Operational Location 

Amaranth I 67.5 Mar. 2006 Township of Melancthon 

Kingsbridge I 39.6 Mar. 2006 Huron County 

Port Burwell (Erie Shores) 99 May-06 Norfolk and Elgin Counties 

Prince I 99 Sep. 2006 Sault Ste. Marie District 

Prince II 90 Nov. 2006 Sault Ste. Marie District 

Ripley South 76 Dec. 2007 Township of Huron-Kinloss 

Port Alma (T1) (Kruger) 101.2 Oct. 2008 Port Alma 

Amaranth II 132 Nov. 2008 Township of Melancthon 

Underwood (Enbridge) 181.5 Feb. 2009 Bruce County 

Wolfe Island 197.8 Jun. 2009 Township of Frontenac Islands

Port Alma II (T3) (Kruger) 101 Dec. 2010 Municipality of Chatham-Kent

Gosfield Wind Project 50 Jan. 2011 Town of Kingsville 
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Table 2.5 Ontario’s Wind Power Generating Station’s Capacity Recently added (IESO 

2011) 

Project Capacity (MW) In Service 

Spence Wind Farm (Talbot) 98.9 2011-Q1 

Dillon Wind Centre (Raleigh) 78 2011-Q1 

Greenwich Wind Farm 98.9 2011-Q3 

McLean's Mountain Wind Farm I 50 2011-Q3 

McLean's Mountain Wind Farm III 10 2011-Q3 

Comber East Wind Project 82.8 2011-Q3 

Comber West Wind Project 82.8 2011-Q3 

Pointe Aux Roche Wind 48.6 2011-Q3 

Conestogo Wind Energy Centre I 69 2011-Q4 

Summerhaven Wind Energy Centre 125 2012-Q1 

Bow Lake Phase I 20 2012-Q2 

2.3 Plug­in Hybrid Electric Vehicles, PHEVs 
Plug-in hybrid electric vehicles (PHEVs) combine the combustion engine of conventional 

vehicles and the electric motor of electric vehicles. PHEVs have greater fuel efficiency because 

they consume less fuel than in conventional vehicles in which gasoline is the only energy source. 

PHEVs battery can be recharged by connecting into the electrical grid. This makes PHEVs “fuel 

flexible vehicles” because they can use both gasoline and electricity for propulsion (Figure 2.2). 

The challenge of PHEVs is their impact on the electricity grid. The amount of charge required by 

PHEVs increases correspondingly with the extent of PHEV penetration. The energy sector must 

anticipate and prepare for this extra demand and implement long-term planning for electricity 

production. The benefits and challenges of PHEVs are written in Table 2.6. 

 

In this thesis, it is assumed that PHEVs are commercially produced starting January, 2014. 

Besides, only new light-duty vehicles are considered as potentially new PHEVs since they have 

more potential to be PHEVs. Batteries capacity is another issue, especially for charging patterns. 

Deeper battery charging and discharging cycles than conventional hybrids are required for 

PHEVs. Since battery life is influenced by the number of full cycles; PHEVs battery life may be 
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smaller than in traditional HEVs which do not deplete their batteries as much as PHEVs. In 

addition, design issues and trade-offs against battery life, capacity, heat dissipation, weight, 

costs, and safety are batteries limitations. In this thesis 80% safety factor and 82% of charger 

efficiency are assumed. To calculate the demand from charging, identification of types of 

PHEVs that will penetrate the transportation sector is essential. Based on the average commuting 

distance in Ontario, 12.9 km, PHEV-20 is assumed to be the main PHEV that will penetrate the 

light-duty vehicles sector. Another assumption is that no PHEVs are retired during the period 

under study, 2014–2030. 

 

 
Figure 2.2 Fuel Consumption of CVs, HEVs, PHEVs (EPRI 2001; EPRI 2002). 

 

Table 2.6 PHEVs Benefits and Challenges 

Benefits Challenges 
Flexibility of fuel 

GHGs emissions reduction 
Gasoline consumption reduction 

Improved fuel economy 
 

Battery cost 
Shifted emissions to power plants 

Load demand increase 
 

 

2.4 Regression Models 
Electricity demand forecasts are essential to the efficient operation of electric utilities, 

governmental energy agencies, engineering and construction firms, and policymakers. Naturally, 

forecasts must accurately anticipate the future behaviour of users before decisions are made. 
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Generally, forecasts are generated for points in time that may be a number of hours, days, weeks, 

months, quarters and/or years in the future. This length of time is known as the time horizon or 

time frame. The length of the time horizon is usually categorized by the three forecast types 

presented in Table 2.7 (Al-Alawi and Islam, 1996). Different forecast horizons are associated 

with different uses or purposes, different types of forecast models, and different levels of 

reliability.  

 

Table 2.7 Types of Electricity Demand Forecasts and Major Applications (Al-Alawi and 
Islam 1996) 

Forecast Types Forecast Horizons Applications 
Long-term 5 to 25 years in 

future 
System expansion planning and financial analysis 

Medium-term Few months to few 
years in future 

Fuel procurement, maintenance scheduling and 
diversity interchanges 

Short-term Few hours to few 
weeks in future 

Determining unit commitment and economic 
dispatch 

 

The thesis focuses on the long-term load forecast because capital investments associated with 

electricity supply systems are extremely expensive and the construction of power generation 

plants requires up to five years to complete. 

2.4.1 Forecast Methods 
 
Neural Networks (NN) are connected structures including simple elements. The simple elements 

are called neurons, and the structure is parallel. Neurons are organized in parallel layers and are 

connected together like biological neuron systems. NN models typically have at least three layers 

as input, hidden, and output layers. The number of neurons in each layer depends on different 

items. For instance, the nature of the problem defines the number of neurons in the input and 

output layers. The values of the connections, known as weights, are important factors in NN 

systems. Essentially, by adjusting weights between neurons, most of the difficult functions can 

be accomplished by training. The training process enables model to lead from particular input to 

specific target output. The training process (considering the comparison of the output and target) 

continues until the output and target match (Entchev & Yang, 2007). 
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2.4.2 Forecast Evaluation 
Forecast evaluation is accomplished by employing mean absolute error (MAE), mean absolute 

percentage error (MAPE), and mean square error (MSE) are used to measure the forecast 

accuracy as follows: 

 

ܧܣܯ ൌ ∑ |௘೟|೙
೟సభ
௡

ൌ ∑ |௬೟ି௬ො೟|೙
೟సభ

௡
                                                                                                     (2.1) 

ܧܲܣܯ ൌ ଵ଴଴
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௧ୀଵ                                                                                                                  (2.2) 
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೟సభ
௡

                                                                                                                             (2.3) 

where:  
 et  = the error term 
 yt = the observed value 
 ො௧ = the estimated valueݕ 
 n = the total number of observations  
 t = time index 

2.5 Basic Concepts of Optimization 
Optimization is the scientific method for analyzing complex models. The best solution for 

finding the available optimized value of a real function is indicated by developing specialized 

techniques. Three main requirements are defined for optimization (Edgar and Himmelblau 

2001): objective functions, decision variables, and constraints. Depending on the objective 

function, the optimized value can be a minimum or maximum amount of the function in the 

specified domain. 

 

The mathematical model of the objective function is: 

Objective function        min/max୶,୷ ݂ሺݔ, ,ݕ  ሻ                                                                          (2.4)ݒ

Equality Constraint       ݄ሺݔ, ,ݕ ሻݒ ൌ  0                                                                                      (2.5) 

Inequality constraint     ݃ሺݔ, ,ݕ ሻݒ ൑  0                                                                                      (2.6) 

where ݔ is explanatory variable like electricity generation, CO2 emission, capacity factor, etc. 

and ݕ is a binary variable that shows existence or nonexistence of power plants units for instance 

fuel selection, new power plants, etc., and ݒ is a parameters. 

 

The equality constraints consist of process model equation, for example, satisfaction of demand 

or cost model of new plants. The inequality constraints may refer to quality, feasibility, logical 
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and binary constraints. The CO2 emission target is the quality constraint. It states that the CO2 

emission should be equal to or less than a specific percent of a target year by a certain time. An 

example of logical constraint is the total generated power should be equal to or greater than the 

Ontario electricity demand. The capacity factor of each power plant is a feasibility constraint. 

New power plants choice and fuel selection are binary constraints. 

 

In addition, mathematical models are categorized in three general classifications: 

Linear Programming, LP 

Nonlinear Programming, NLP 

Mixed Integer Programming, Linear and Nonlinear, MILP and MINLP 

2.5.1 Linear Programming 
LP consists of a linear objective function and linear constraints. The constraints should include 

only linear equalities and inequalities. LP is the most effective optimization technique and it is 

used extensively. The solution must satisfy all linear constraints and find the minimum or 

maximum of the defined linear objective function. Currently, LP mathematical models with 

thousands of constraints and variables can be solved by optimizer packages. 

2.5.2 Nonlinear Programming 
NLP consists of linear and nonlinear objective functions and constraints. The constraints or 

objective function must at least involve a nonlinear term. In problem solving, both the theoretical 

and practical features of NLP problems are considered. Studying the algebraic and geometric 

situations that distinguish the solution involves theoretical issues. Mathematical formulation, 

algorithms development, and the analysis of a specific problem are practical issues. One method 

of solving NLP problems is removing the variable with the nonlinear term from the formula by 

solving explicitly. 

2.5.3 Integer Programming 
The integer programming model consists of one or more integer variables. These variables are 

discrete and have integer values, such as the existence or nonexistence of power plant units as 

binary variable termed zero-one. Another example is tray of distillation columns, with terms one, 

two, three, etc. In general, if the objective function depends on two type of variables (continuous 

and integer), the problem would be a MIP model. If only the integer variables are used, the 
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problem would be an Integer Programming (IP) model. Finally, if only variables with the amount 

of 1-0 are used, the problem would be a Binary Integer Programming (BIM) model. 

 

Moreover, the MILP model consists of only linear equalities and inequalities, and the MINLP 

model includes linear and nonlinear ones. In this study the MIP model is employed to optimize 

energy planning of Ontario energy sector.  

2.6 Journal Reviews  
Several studies have been conducted to model energy planning optimization, address the 

MINLP, and analyze the wide spread adoption of PHEVs penetration on energy generation 

planning systems. 

2.6.1 Energy Planning Optimization Models 
A deterministic multi-period MILP model for power generation planning was developed with 

respect to meeting electricity demand and CO2 emissions targets at minimum cost 

(Mirzaesmaeeli et al., 2010). Some of the time dependent decision variables that comprised the 

objective function included expected energy demand, fuel prices, construction lead time, and 

variability in operational and maintenance costs. The model was applied to two case studies, one 

without a CO2 emissions target (case I) and another with the Kyoto Protocol’s emissions 

reduction target (case II). It was found that case I required the building of several new high 

emissions power plants without CCS technology while case II required the building of low 

emissions power plants with CCS technology. It was also found that case II would cost 

approximately 11.4% more to implement than case I.  

 

Benjamin F. Hobbs (1995) reviewed optimization models for electric utility planning. It is an 

exploration of how the needs of utility planners have changed due to changes in electricity 

demand, environmental issues, competition, and overall uncertainty. Various models are 

presented in response to the challenges stated and the gaps these models contain are addressed.  

Jebaraj and Iniyanb (2006) studied various emerging issues related to energy modeling. These 

included energy planning models, energy-supply demand models, forecasting models, renewable 

energy models, emission reduction models and optimization models. In addition, neural network 

models and fuzzy theory models were also explored.  In the linear programming models 

considered, it was determined that factors such as income, output, profit, energy quantity, energy 



20 
 

performance and energy production were important for finding energy utilization levels. 

Technology, efficiency, supply, demand, employment and resource availability were found to be 

constraints in these models.  

 

A MILP optimization model under CO2 emissions constraints was discussed (Lee and Hashim, 

2014). Using the case study of Iskandar, Malaysia, the model is able to determine the 

combination of the most economical and lowest CO2 emitting solution to meet electricity 

demands through 2025. Some of the decision variables involved in this model include fuel 

switching, use of renewable energy power generation and carbon capture and storage technology. 

Various CO2 emission limits were used for the model. It was determined from sensitivity 

analysis that the resultant combination of energy generation types were significantly affected by 

CO2 emission limits.  

 

Arnette and Zobel, (2012) developed a model used in the energy planning decision making 

process focusing on increased use of renewable. A MOLP model was used to determine the 

optimal combination of existing fossil fuel power plants and the addition of renewable energy 

sources. A clear trade-off between the electricity generating costs and greenhouse emissions can 

be extrapolated from this paper’s findings. A case study using this model was applied for the 

greater southern Appalachian Mountains in the eastern US. Findings from the optimization 

model indicate that the costs of implementing renewable energy generating sources are not as 

high as previously assumed.  

 

Computational methods in optimizing energy generation from renewable and sustainable sources 

are reviewed (Banos et al., 2011).  Through the review of over two hundred papers, it was 

concluded that the quantity of research papers that use computational optimization methods to 

solve renewable energy problems has increased dramatically. Large numbers of researchers are 

using heuristic optimization, Pareto-optimization methods and parallel processing to solve these 

problems.  

 

Cong (2013) developed a REOM to analyze the effect of three sources (wind, solar and 

biomass). From this model, the maximum capacities of the three renewable energy sources were 
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found for 2020. In addition, the growth patterns of the three renewable energy sources were 

determined, and the cost of using solar power was found to decline significantly in the coming 

years.  

 

Cristobal et al. (2012) suggested a systematic tool using a MINLP model that minimizes the cost 

of electricity for a specific trading price of CO2. A case study was explored for retrofitting an 

existing coal-fired power plant with respect to generation quantities and carbon management 

solutions. It was concluded that the selection of the minimum cost option greatly depended on 

the prices of CO2 emissions on the market. A trigger price for CO2 was determined that would 

make carbon capture and storage technology profitable. 

 

A method is proposed to help design carbon capture and compression processes retrofitted to 

existing power plants by combining simulation, automated heat integration and multi-objective 

optimization (Harkin et al., 2012). Specifically, this model was applied to coal fired power plants 

using a potassium carbonate based solvent absorption system. The efficiency of power plants can 

be reduced 14-38% after the installation of a carbon capture and storage system. Results from 

this model will be useful for early stage process design and optimization of operating values for 

solvent carbon capture plants for their respective power plants. 

 

Bazmi and Zahedi (2011) addressed a literature review on power and supply sector 

developments, the role of modeling and optimization in this field and future uses of optimization 

modeling for decision making for sustainable energy systems. A discuss of the current state of 

power generation technologies, optimization models related to power generation and the impact 

of optimization in future power sector decision making are explored. Small-scale decentralized 

power generation systems are becoming an appealing alternative to large centralized power 

generation. It was concluded that optimization modeling is allowing researchers to find optimal 

and sustainable solutions to the complicated problems of power generation, supply and 

distribution.  

 

Elkamel et al. (2009) developed a fleet-wide model of energy planning for determining the 

optimal structure to meet CO2 reduction targets while maintaining power to the grid. A mixed-
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integer program is used to optimize an existing fleet with the addition of new generating stations 

(hydroelectric, wind, nuclear, fossil fuels) while considering carbon capture technology at the 

minimum total cost. This model was applied for the system operated by OPG. Four future 

electrical demand scenarios, various CO2 reduction levels and six additional power generation 

technologies were considered. Fluctuations in natural gas prices were found to significantly 

affect model results as well as the cost of electricity.  

 

MILP model for the planning of optimal electrical generation systems while meeting a specified 

CO2 reduction target for a country is presented (Muis et al., 2010). The model was applied using 

the software GAMS in the Peninsular Malaysia area. To halve the current CO2 emissions, the 

model determined that IGCC, NGCC, nuclear, biomass and palm oil residue electrical generation 

technology must be implemented. In addition, it was also found that Malaysia could currently 

generate up to 9% of its electricity from renewable sources. 

 

Pekala et al. (2010) identified a general modeling methodology for the planning of optimal 

energy generating networks with respect to CO2 emissions and land footprint. Two technologies 

of liquid biofuels used in transportation and carbon capture and storage with power generation 

are explored within the flexible and expandable model framework. Case studies were used to 

demonstrate the variations in the different technology implementations.  

 

The Finnish EFOM was employed to support policy planning for the sustainable use of resources 

(Lehtila and Pirila, 1996). The common modeling framework was comprehensively adapted into 

the Finnish energy network along with a submodel of the energy intensive pulp and paper 

industry. Results from the model determined that reductions of CO2 emissions strategies are 

difficult to implement, though the model has provided useful results for policy making.  

 

Carapellucci and Giordano (2012) assessed economic and energy performances of renewable 

energy islands integrated with a hydrogen storage system by a simulation tool. The electrical 

generating technologies in these energy systems include solar power, wind power and micro-

hydroelectric generators. The approach for optimizing the energy island is hybrid genetic-
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simulated annealing algorithm and minimizes the cost of electricity. A farm in central Italy is 

used as a case study for this optimization model.  

 

Rajab Khalilpour (2014) focused on the carbon-management strategy at the enterprise level using 

PCC technology and carbon credits. A multi-period MILP which maximized net present value 

was developed to find the best investment decision for the enterprise. Dynamic elasticity and 

carbon market prices over the planning time are incorporated into the model. Power generation 

levels and carbon capture rates are adjusted within this model to find the best operating 

conditions of a power plant and PCC process. The model was applied to several case studies with 

differing prices of CO2 emission credits. 

 

A dynamic interval-parameter optimization model (DIP-REM) developed for long term energy 

planning along with GHG mitigation (Liu et al., 2013). The energy system in the Liaoning 

province of China was the focus of this study. Two different GHG mitigation levels are 

considered with respect to energy, socio-economic and environmental effects in Liaoning. The 

findings from this model provide optimal energy resource, service allocation and capacity 

expansion plans, and also helps policy makers determine the most cost effect method to mitigate 

CO2 emissions. The results of this model can be used to formulate GHG reduction levels and the 

economic implications associated with those decisions. 

 

A multi-period MILP model for planning the operations of a steam power system was provided 

(Luo et al., 2012). The objective functions of this model are minimized for both economic and 

environmental costs. Optimal operation schedules were obtained from the model at various 

environmental charge standards (carbon emission credits). Total cost savings and pollutant 

reductions were optimized using this model. It was found that the model results were quite 

sensitive to environmental charge standards. 

 

Lin et al. (2014) presented an interval-parameter mixed-integer power management systems 

model (IMPMS) for supporting sustainable power systems under uncertainty. Uncertainties 

captured within this model can include interval values and capacity expansion issues. The model 

was applied to a Canadian power system case study which yielded results that may help develop 
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strategies for sustainable energy development under uncertainty. It was found that a combination 

of wind and hydroelectric power would reduce system costs, conserve energy and carbon 

emissions as well as diminish the intermittency of renewable energy sources on power grids. The 

development of an inexact power management systems tool which integrated renewable and 

conventional power generating sources into an optimization model were the main results of this 

paper.  

 

A RISO method for planning energy systems and trading CO2 by incorporating interval-

parameter programming within a RO network was studied (Chen et al., 2012). The model is 

applied to large scale electric power system planning under the constraint of a CO2 trading 

scheme. Various solutions were generated from this model and can be used to adjust allocation 

plans of energy resources, prepare local energy policy, analyze the effectiveness of the CO2 

trading scheme and analysis of the trade-off between system cost and CO2 reduction levels. 

 

Dongjie et al. (2013) developed a multi-period superstructure optimization planning model of the 

Chinese power sector under uncertainty. A levelized optimal pathway demonstrated that with the 

presence of a carbon tax, carbon emissions from the power sector would drastically be reduced 

as low-carbon emitting technologies such as nuclear, renewable power and carbon capture and 

storage would be implemented. Decision variables in this model included the power demand, 

plant efficiency, plant capital cost, fuel costs and the carbon tax levels. From the model, it was 

shown that if a carbon tax were to be implemented, the construction of new coal plants would 

slow drastically and the development of nuclear and renewable would increase in a 

corresponding manner.  

 
2.6.2 Summary of MINLP Models 
To summarize the most important works on modeling of optimization problems using MIP since 

1979; Grossmann and Sargent (1979) developed a MINLP model to maximize the profit of a 

multi-product batch plant. Furthermore, Suhami and Mah (1982); Papageorgaki and Reklaitis 

(1990a; 1990b); Fletcher (1991), Barabosa and Macchietto (1994), Ravemark and Rippin 

(1998)(1995), Xia and Macchietto (1997), Orcun et al. (2001), Janak et al. (2007) proposed 

different MINLP models to address design, production planning, and scheduling with the same 

objective function and application as Grossmann et al. (1979). From the literature review, several 
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MIP models have been applied in different applications, for instance, a toluene process (Diwekar 

and Madhavan, 1991), an ethylene plant (Diaz and Bandoni, 1996), a reactor network (Pahor, 

2000), distillation (Floudas and Paules, 1988), energy planning, etc.  

 

In the energy sector, Godoy et al. (2011) employed a NLP model to minimize specific annual 

cost values, capital investment, and operating costs in combined cycle gas turbine power plants. 

They tried to simplify the resolution of the optimization problem based on the economic optima 

distinctive characteristics. Optimal complex combined cycle power plants are distinguished by 

Kocha et al. (2007). They minimize the product costs by optimizing the design configuration and 

process variables at the same time by means of a MIP model. Savola et al. (2007) presented a 

MINLP model for the scheduling and planning of CHP plants on a small scale. In addition, 

power production was formulated to be increased over time. A single-period deterministic 

MINLP optimization model was developed to minimize costs while satisfying electricity 

demands and CO2 emission targets by Hashim et al. (2005). Mirzaesmaeeli et al. (2010) 

developed a multi-period MINLP to indicate the optimal mix of energy supply sources meeting 

the yearly peak and base load demand, and the CO2 emission target by minimizing the overall 

cost of electricity. 

 

2.6.3 PHEVs Penetration 
Yabe et al. (2012) forecasted the rate of EV/PHEV market penetration and its effect on carbon 

emissions. Factors such as battery learning curves, geographic distribution of daily travel 

distances and an optimal power generation planning model for charging electric vehicles were 

used to determine the rate. The forecast shows that only a quarter of the vehicles shares in 2050 

will be EV/PHEV in Japan. This market share forecast is sensitive to battery development and 

initial prices of vehicles. In addition, carbon emissions reduction rates are also predicted in the 

forecast as a result of EV/PHEV penetration.  

 

Wu et al. (2012) explored regional growth patterns of light-duty passenger vehicles in three 

developed areas in China. In addition, several scenarios for the penetration of HEV, PHEV and 

EV were developed for the 2010-2030 time period. Factors such as petroleum consumption, 

fossil fuel use and carbon emissions were employed to evaluate various technologies that could 
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be implemented. It was found that HEV penetration reduced carbon emissions more in coal 

electricity producing intensive regions, while PHEV and EV were better suited for regions with 

cleaner electricity production methods.  

 

Ahmadi et al. (2012) studied PHEVs Penetration and its impact on Ontario’s Electricity Grid. 

For this purpose, long-term regression models, both linear and non-linear ones, of electricity load 

demands were forecasted for the years 2012-2030. For the forecasting models various variables 

in the climate, economic, and demographic sectors were considered.  Number of PHEV’s was 

calculated based on different penetration levels. The PHEVs’ charging electricity of different 

PHEVs’ penetration scenarios was estimated. Effect of them on base and peak load demands was 

analysed. Moreover emission reduction as a result of PHEVs penetration was determined. 

Finally, additional electricity load demand considering PHEVs penetration was identified for 

energy planning purposes. 

 

A resource dispatch and emissions model was developed with respect to changing electric grid 

demand due to the penetration of electric vehicles for western US grid (Jansen et al., 2010). 

Results from the model were compared to historical data to validate the model. Impact between 

EV penetration and the western grid was found based on correlations between historical dispatch 

and system load data. Findings from this study showed that dispatch planning can be assisted 

using the model, charging scenarios affect the emissions intensity and type, and ideal charge 

profiles can be found using hourly model resolution of changes in emissions intensity. 

 

Current progress in PHEV technology, economic constraints, market trends, research 

requirements and challenges ahead for the integration of PHEVs into the electric grid was 

assessed (Anurag et al., 2010). Policies required for the implementation of vehicle-to-grid 

operation and the advantages of PHEVs for consumers and power producers were also explored. 

A PHEV can be charged from a utility and a vehicle-to-grid capable vehicle can reverse the 

direction of electricity back to the grid. 

 

Waraich et al. (2013) introduced an iterative approach that integrates PEV electricity demand 

and a power system simulation to expose inadequacies in the energy system due to increased 
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PEV electricity demand. The main goal of this study was to understand the potential impact of 

PEV charging on the electrical grid. An agent-based traffic demand model along with an 

interconnected multiple energy carrier system was used to trend electricity demand and 

production. It was found that charging patterns are very sensitive to electricity pricing. 

 

Richardson et al. (2013) reviewed current literature on different types of EVs, the electric grid 

and renewable energy integration. Main ideas such as key methods and assumptions from 

literature were discussed and the economic, environmental and grid impact of electric vehicles 

were assessed. Capability of EVs to integrate intermittent and renewable energy sources 

(especially wind power) were reviewed from various papers. Literature indicates EVs might 

reduce the amount of excess electrical energy produced under specific conditions.  

 

A comprehensive survey of various research problems and their solutions with respect to PHEV 

integration to a smart grid was demonstrated (Hota et al., 2014). Many aspects of PHEV to grid 

integration have been addressed recently, such as charging and control strategies of PHEVs, 

vehicle-to-grid technology, and application domains. Mathematical models were formulated 

based on artificial intelligence methods, intelligent methods and agent based computing 

methodologies to resolve these problems.  

 

The effects of PHEV penetration on the fuel consumption of coal, natural gas and oil, and on 

pollutant levels were explored (Valentine et al, 2011). Specifically, this study focussed on the 

New York Metropolitan Area undergoing two battery charging scenarios on a normal summer 

and winter day. Network constraints were incorporated into an economic dispatch model in 

addition to battery charging pattern models based on commuter transportation. Findings show 

that network-constrained economic dispatch penetration of PHEVs was much more realistic than 

unconstrained scenarios, and that fuel consumption were on the margins. In addition, regulated 

PHEV charging produced lower night-time emissions than unregulated charging. It was found 

that models combining network constrains and economic dispatch can optimize the performance 

of PHEV penetration in energy systems.  
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Falvo et al. (2011) created the design of sustainable urban mobility systems through the 

integrated metro-lines with surface PEVs. This study is a review of the planning criteria of urban 

mobility system in large cities with respect to transportation power systems. A case study was 

applied in terms of power systems architecture and business models which identified energy 

savings, environmental sustainability objectives and cost savings. The integration of the metro 

transit system and electric vehicles connected by a smart grid would minimize economic and 

environmental impact while optimizing the performance of both systems.  

 

An investigation into the systems and processes required to implement vehicle-to-grid 

technology is presented (Kempton and Tomic, 2005).  Vehicle-to-grid uses the high power 

capacity, low utilization and low capital cost of vehicle power along with long operating life and 

low operating costs of power generators to complement one another. Business models and 

strategies are suggested to optimize the electricity utilization, power production and electricity 

costs in a vehicle-to-grid energy system. In addition, vehicle-to-grid can provide storage for 

intermittent renewable energy sources especially wind power. 

 

Mullan et al. (2012) reviewed the most common variants of the vehicle-to-grid theme using the 

case study of Western Australia is presented in this paper. Western Australia is an energy 

isolated geographic location that cannot import or export electricity with no hydroelectric storage 

capabilities. There is already an underutilization of generation and transmission capacity in this 

region. The study concludes that vehicle-to-grid technology operation in Western Australia 

would require too much infrastructure investment and can carry significant risk in 

implementation. However, it was found that simply charging electric vehicles can be added to 

the planned electricity demand without extra capital investment.  

 

Goransson et al., (2010) investigated the costs and benefits of integrating electric vehicles in a 

power grid supplied by a quarter wind power and the remainder thermal energy electricity 

generation. Four different PHEV integration methods with varying impacts on total electric load 

were examined. It was found that a controlled PHEV charging system will reduce carbon 

emissions up to 4.7% while an uncontrolled charging system will lead to an increased in 
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emissions. Reductions in emissions can be mostly attributed to a decrease in thermal power plant 

start-up and partial load operation conditions. 

 

Kiviluoma and Meibom (2011) developed a generation planning optimization model for power 

plant portfolios to estimate the costs and benefits from EVs for future power systems. In the 

models formulated, the charging and discharging of EVs were integrated with the rest of the 

power system. A large difference was found in the power system cost for EVs with smart 

charging system compared to dumb EVs. Some findings from this study were that the price of 

electricity for electric vehicles was reasonable. In addition, the power system will benefit from a 

smart timing charging system for EVs and lower power plant portfolio cost  

 

PHEV and EV penetration through 2030 was analysed for the five northern European countries 

of Denmark, Finland, Germany, Norway and Sweden (Hedegaard, 2012). Shares of private 

passenger EVs were assumed to increase 2.5%, 15%, 34%, 53% in 2015, 2020, 2025 and 2030 

respectively. Results illustrate that a smart grid connection to the PHEVs and EVs will propagate 

wind energy investments and reduce reliance on new coal or natural gas power plants. If 

renewable do not compliment PHEV and EV penetration, fossil fuel sourced electricity will 

likely increase substantially. EVs will bring carbon emission reductions and total cost increases, 

although this result varies from country to country and is sensitive to fuel and carbon pricing. 

  

A review of existing literature on power system integrated with electric vehicles and economic 

dispatches of PHEV in the electricity market is published (Peng et al., 2012). In addition, the 

joint scheduling problem considering renewable and intermittent energy sources and risk 

management of PHEV-penetrated power grids are discussed. Due to government incentives, 

rapid development of PHEVs in the market has occurred recently. If PHEVs are randomly 

connected to the power grid in large quantities, this will bring great challenges to the power 

system operations. 

 

Soares et al. (2012) developed a linear programming optimization tool for the modeling of 

electric power system expansion in northeastern Brazil, with a particular focus on the variable 

output of future wind farm production capacity. Disparity between the supply and demand of 
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electricity was expected due to variations in power generation. As a result, PHEVs were 

considered in this study to assist in the moderation of power supply fluctuations. From this study, 

it was found that increasing the fleet of PHEVs (0.5 million to 1.5 million) over the next two 

decades would be able to regulate power loads generated from wind farms. Advantages of 

simultaneously optimizing power generation and transportation sectors as part of a “smart grid” 

were also explored. 

 

A group of models based on light-duty PEVs fleets for national level planning studies of the 

transportation and energy sections was studied (Wu et al., 2013). Three case studies were 

performed over a 40 year period for the US transportation and energy sections based on the 

models. The results of the case studies indicate that penetration of PEVs along with investments 

in renewable energy sources can reduce total energy and transportation cost by 5%. Emissions 

and gasoline consumption can also be reduced, although 800TWh of extra annual electricity 

production will be required. It was noted that optimization of the entire electric vehicle fleet is 

unlikely to occur in a free market economy such as the US, and that these optimization results 

should rather be targets. 

 

Brouwer et al. (2013) evaluated the performance of four types of CHP plants to PEVs compared 

to using electricity from the grid. Simulation of CHP plant performance was achieved by 

integrating the composition of a future power system, the demand for heat and electricity, and 

specifications of EVs and CHP plants. It was found that there were no significant added benefits 

of a combined deployment of CHP plants and EVs. Timing of electricity supply and demand as 

well as abatement costs was not improved. 

 

An integrated optimization model used to find the most economic and environmentally 

sustainable plans for future smart electricity systems with intermittent renewable energy sources 

and electric vehicle penetration was demonstrated (Zhang et al., 2013). Two goals of this model 

were to find the ideal power generation and capacity combination to meet future electricity 

demands, and to obtain a detailed model of hourly operations of power plants and controllable 

electric devices. This model was applied to a case study in the Tokyo area in Japan with a time 
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horizon of 2030. Results found the paths towards the ideal energy generation combinations based 

on fossil fuels, hydroelectric power, nuclear and renewable energy.  

 

A mixed integer linear programming model for capacity expansion, plant dispatch and PHEV 

charging was introduced (Weis et al., 2014). The cost savings from controlling PHEV charging 

and the trade-off between a controlled charging program or increased power system generation 

capacity was also explored. It was found that by controlling PHEV charging, the integration 

costs of PHEV into the power system were cut in half. In addition, wind generation intense 

systems and system that require capacity expansion benefit greatly from controlled charging.  

 

From the literature review, there are no publications on studying the energy planning through 

multi-period optimization model for electricity generation considering the effects of wide spread 

of PHEVs penetration. 
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CHAPTER 3: Methodology 

3.1 Introduction 
The quality and quantity of vehicle emissions are a major concern in the design and production 

of new automobiles. PHEVs have a significant potential to reduce GHG emissions and also to 

increase fuel economy and fuel flexibility because PHEVs are propelled by the energy from both 

gasoline and electric power sources. The penetration of PHEVs into the automobile market and 

its increased demand on the existing electrical grid has not been fully investigated.  

The main objective of the thesis is to develop a multi-period optimization model for the amount 

of electricity needed considering the anticipated PHEV penetration. 

The model considers electricity load demands and a corresponding number of light-duty vehicles 

expected to be operating. The number of projected PHEVs is based on three different levels. 

Once the number of PHEVs is determined, the charging amount is calculated to ascertain the 

total electricity load demand. The deficit in electricity is identified by modelling the power plant 

optimization adding new power plants and retrofitting them by using fuel switching. Finally, the 

optimal solution with the minimum electricity cost is identified. 

3.2 General Methodology 
The general methodology can be divided into six main steps.  The flowsheet for the general 

methodology is illustrated in Figure 3.1. The details of each step are discussed in subsequent 

sections. 

Electricity Demand: Forecast the load demand without considering the PHEVs to find the 

amount of electricity needed to be generated in Ontario. 

PHEV’s Consumption: Forecast the number of new vehicles and the number of PHEVs based on 

different scenarios. Calculate the charging amount to estimate how much more electricity the 

PHEVs need for charging in Ontario. 

New Demand: Add the existing demand by PHEVs electricity consumption to find the new 

demand. 

Current Generated Power Satisfies Demand: Compare the supply generation to assess if available 

generated electricity is sufficient or not. 
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Optimization: Optimize the current power plants and add new power plants if generated power is 

unsatisfactory.  

Optimal Solution: Identify the optimal solution where the optimal electricity generation is a mix 

of the minimum costs.  

 
 

Figure 3.1 Flowsheet of General Methodology. 
3.2.1 Load Demand Forecasting 

• The calculation for the anticipated load demand from 2014 to 2030 has two principle 

components: forecasting the base and peak load demands, forecasting typical daily load 

curves  

Different forecast techniques and model selection criteria are studied to choose a suitable 

method. Both LR and NLR techniques are employed to create proper forecast models. 

Dependent variables are peak and base load demands (PEAK and BASE) and light-duty vehicles 

sold (VEH). Peak load demand is the maximum demand in each day normally occurring between 

9 a.m. and 9 p.m. For base load demand, it is defined as the minimum amount of power that 

power plants must make available to customers. It can be calculated by averaging daily demands 
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in a weekday. Explanatory variables that may impact the PEAK and BASE models are broadly 

divided into three groups: (I) weather variables such as temperature (T), relative humidity (RH) 

and wind speed (WS), (II) demographic variable such as population size (POP), income (INC), 

number of employments (EMP), and (III) economic variable which is gross domestic product 

(GDP).To forecast VEH, the number of new graduated students (EDU) is also an important 

factor. People who get degrees at the undergraduate and graduate level tend to buy new cars 

more than others. Therefore, the number of graduated students is one of the explanatory variables 

to forecast the number of light-duty vehicles sold. 

Historical data of dependent and explanatory variables are collected to fulfill the required data 

for developing the models. Before achieving historical data of peak and base load demand, 

outlier determination is an important step in order to avoid poor forecasting results. In this study, 

Statistics Package for Social Science (SPSS) version 20.0 was used to develop the forecast 

models. SPSS also has a feature to identify outliers among inputs by using boxplot. All outliers 

are omitted from the data and replaced by the values at the closest boundary. An important 

possible issue with explanatory variables is multicollinearity problems. Multicollinearity occurs 

when two or more explanatory variables are highly correlated. As a result, regression procedures 

may not be able to distinguish between the separate contributions of these variables to the 

dependent variable, and the estimation of unknown parameters may be unreliable. Ordinary 

multicollinearity is the situation in which there is a close, but not perfect, linear relationship 

between some of the explanatory variables in the sample data. Multicollinearity is usually 

considered to be a data or sample problem. The principle of parsimony (using the simpler model 

when greater complexity does not provide significant benefits) suggests that when two or more 

variables are highly correlated, one of them should be omitted from the model. Matrix scatter in 

SPSS is used for detecting multicollinearity. The scatter that presents linear relationship between 

two explanatory variables indicates multicollinearity problem. 

Model Development and Selection 

In this step, models for forecasted peak and base load demands and light-duty vehicles sold are 

developed using LRMs and NLRMs. Historical data of peak and base load demands are monthly 

data from 1994 to 2010. Those data and hourly load demand in 2010 were obtained from the 

Independent Electricity System Operator (IESO). To simplify the forecasting, four months 
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representing each season were used as input in the model development. Hence, eight models 

were developed to represent peak and base load demands for the four selected months. Four of 

them are used for forecasting peak load demand and the rest are used for forecasting base load 

demand. 

For historical light-duty vehicles sold, information was provided by season. Therefore, one 

model was formulated to represent light-duty vehicles sold in all seasons, with only some model 

parameters being changed to distinguish the four seasons. The seasonal periods are identified in 

Table 3.1. 

Table 3.1 Period of Season 

Season Months 
Winter January to March 
Spring April to June 
Summer July to September 
Autumn October to December 

 

Linear Regression with SPSS 

To formulate a LRM in SPSS, dependent and explanatory variables need to be defined. Details 

of these variables were discussed in the first step. A list of variables used as input of SPSS is 

summarized in Table 3.2, where PEAK, BASE, VEH represent peak and base load demand and 

light duty vehicles sold. T, RH, WS, POP, INC, EMP, EDU, GDP are temperature, relative 

humidity, wind speed, population size, income, number of people employed, number of new 

graduated students and gross domestic product respectively. But some of these explanatory 

variables are highly correlated to each other. For example, when there are more new graduate 

students, there will be a higher number of people employed. Also wind speed and relative 

humidity are highly correlated for some temperatures (in particular for the extreme high and low 

ones). 
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Table 3.2 Input Variables for Linear Regression 

Dependent Variables Explanatory Variables 

PEAK, ln(PEAK) T, RH, WS, POP, INC, EMP, GDP, ln(T), ln(RH), ln(WS), 
ln(POP), ln(INC), ln(EMP), ln(GDP) 

BASE, ln(BASE) 

 

To determine which combination of explanatory variables provides the best fit to the data, SPSS 

has an automated process for variable selection called “stepwise regression” in which the 

regression equation is automatically estimated several times. 

Non-Linear Regression with SPSS 

NLR in SPSS does not have a tool to choose the best combination of explanatory variables 

unlike LR. Therefore, selecting a set of explanatory variables should be done manually. To 

reduce complexity, only multiple NLRMs were considered which means only two explanatory 

variables were used as input of the models. In addition, pairing of explanatory variables which 

are highly correlated must be omitted to prevent the multicollinearity problem. Logarithm terms 

of both dependent and explanatory variables were not included. Possible combinations of 

explanatory variables are illustrated in Table 3.3. 

Table 3.3 Possible Explanatory Variables Combination for Non-Linear Regression 

Dependent variables Combination of explanatory variables 

PEAK T vs RH
T vs WS
T vs POP
T vs INC
T vs EMP
T vs GDP 

RH vs WS
RH vs POP
RH vs INC
RH vs EMP
RH vs GDP 

WS vs POP 
WS vs INC 
WS vs EMP 
WS vs GDP BASE 

 

After finding all possible LRMs and NLRMs, the next step is model selection. Mean Absolute 

Error, MAE, Mean Squared Error, MSE, and Mean Absolute Percentage Error, MAPE, were 
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employed as a criterion for selecting the best model. The model that has the lowest MAE, MSE 

and MAPE were chosen to represent the historical data and also forecast future data. The 

equation of MAE, MSE and MAPE can be written as follows: 
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where et is the error term, n is the total number of observations and t is time index. yt and ݕො௧ are 

the observed and estimated values, respectively. 

Projection of Forecast Variables 

The best models for forecasting peak and base load demands and light-duty vehicles sold were 

used for projecting the future value of those dependent variables from 2014 to 2030. Future 

values of all explanatory variables shown in the selected models were substituted into those 

models in order to predict values of the dependent variables. 

Forecasting Typical Daily Curves 

A neural network model is developed to predict hourly load demand. The dependent variable is 

the hourly load demand (HRL) and the initial explanatory variables are indicated in Table 3.4. 

As mentioned in Table 3.4 the day of the week (DOW) is defined as a new explanatory variable. 

DOW is specified by programming in MATLAB. By specifying the DOW, the effect of 

weekdays and weekends is considered in the predicted hourly load. 

Table 3.4 Initial Variables for Hourly Load Forecasting Model 

Dependent Variables Explanatory Variables 

HRL, Ln(HRL) T, RH, WS, POP, INC, EMP, GDP, ln(T), ln(RH), ln(WS), 
ln(POP), ln(INC), ln(EMP), ln(GDP), DOW, 
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Data clustering will be done after finding the hourly load demand because of large data. 

Essentially, data clustering divides a large set of data into smaller groups. A typical daily curve 

represents the group. In this work, all data are categorized into four groups corresponding to four 

seasons per year. There are different methods for data clustering. Marton et al. (Martona, 

Elkamel, Duever 2008) clustering tool is selected to identify the typical daily curves. 

3.2.2 PHEVs Penetration and Charging Pattern 
Since PHEVs were not commercially produced before January 2014, this study assumes that 

there is no PHEV in January, 2014. Variables that are used for vehicle forecasting model are 

presented in Table3.5. 

Table 3.5 Variables for VEH Forecasting Model 

Dependent Variables Explanatory Variables 
VEH, ln(VEH) POP, INC, EMP, EDU, GDP, ln(POP), ln(INC), ln(EMP), 

ln(EDU), ln(GDP) 
 

Three transition models of PHEVs penetration in the light-duty vehicles sold, named low, 

medium and high, are shown in Figure 3.2 assuming 10%, 30% and 50% of PHEVs penetration 

by December, 2030, respectively. These equations are used because of being more 

straightforward than the exponential equations during mentioned time period. For all models a 

constant penetration rate for any given scenario is assumed: 

ݏܸܧܪܲ ൌ ݇ ൈ ଶ (3.4)ݐ

where PHEVs is the number of PHEVs, k is the constant rate and t is time. In this study, only 

new light-duty vehicles are considered. Before studying charging patterns, it is necessary to 

identify which type of PHEVs will penetrate into the transportation sector. To choose appropriate 

types of PHEVs that match people’s lifestyle in Ontario, commuting distance must be 

considered. 
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Figure 3.2 Assumed PHEVs Transitions in Ontario. 

Table 3.6 compares commuting distances in Canada and Ontario [20]. The average commuting 

distance in Ontario is 12.9 km (= 8 miles). This implies that PHEV-20, which can travel twenty 

miles without using its combustion engine, is appropriate for a majority of people in Ontario. 

Therefore, this study assumes that only PHEV-20 penetrates into the light-duty vehicles sold. 

Another assumption is that no PHEVs are retired during the period under study. Since most 

household outlets already contain 120 V/15 A outlets, it is assumed that all PHEV-20 will be 

recharged through this circuit every day. Charger requirements of PHEV-20 with 120 V/15 A 

outlets are summarized in Table 3.5. 

Table 3.6 Average Commuting Distance in Canada and Ontario (Statistics Canada 2006) 

Commuting Distance (km) 
Commuters (people) 

Canada Ontario 
  Less than 5 km 4,741,630 1,672,260 
  5 to 9.9 km 2,962,810 1,101,410 
  10 to 14.9 km 1,738,750 672,685 
  15 to 19.9 km 1,095,465 475,410 
  20 to 24.9 km 693,645 318,960 
  25 to 29.9 km 461,250 213,460 
  30 km or more 1,376,340 640,470 
Average commuting distance (km) 11.9 12.9 
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Table 3.7 Charger Requirements for PHEV-20 under 120 V/15 A Outlets (Statistics Canada 

2006) 

Vehicle Type 
Rated Pack Size 

(kWh) 
Charging 

Sizea 
(kW) 

Charger 
Rateb 
(kW) 

Charging Time
(hour) 

20 miles 8 miles 
Compact Car 4.10 1.64 1.44 1.18 4 
Mid-Sized Sedan 4.70 1.88 1.44 1.18 4.7 
Mid-Sized SUV 6.30 2.52 1.44 1.18 6.3 
Full-Sized SUV 7.40 2.96 1.44 1.18 7.4 
Average 5.63 2.25 1.44 1.18 5 

Note: a An 80% required safety factor for continuous charging is used. 
b Charger efficiency is assumed to be 82%. 

PHEVs can be recharged in both peak periods and off-peak periods. Details of each scenario are 

illustrated in Table 3.8. Scenario 1 represents the worst case of charging scheme since all PHEVs 

are assumed to be recharged during the peak period whereas Scenario 4 represents the best case 

which all PHEVs are recharged during the off-peak period. 

Table 3.8 Charging Scenarios 

Scenario Name Period 
1 After work 17:00-22:00 
2 Three hours after work 21:00-2:00 
3 In the morning 8:00-13:00 
4 During the night 24:00-5:00 

 

3.2.3. Total Demand 
New peak, base, and hourly load demands represent PHEVs charging in peak, off-peak, and 

specific periods, respectively. They can be calculated by adding the amount of PHEVs charging 

in each period with the peak, base, and hourly load demands obtained from regression models 

and a neural network model. Equations for calculating the new peak, base, and hourly load 

demands are 

Peak୬,୧ ൌ Peak୰,୧ ൅ CR ൈ PHEVs                                                                                          (3.5) 

Base୬,୧ ൌ Base୰,୧ ൅
BSൈPHEVୱ

ଶସ ୦୰ୱ
                                                                                         (3.6) 

Hrl୬,୧ ൌ Hrl୰,୧ ൅ CR ൈ PHEVs                                                                                          (3.7) 
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where Peakn,i, Basen,i  ,and Hrl୬,୧ are the new peak, base, and hourly load demands after adding 

the amount of PHEVs charging, respectively. Peakr,i , Baser,i , Hrl୬,୧ are peak, base, and hourly 

load demands obtained from the regression models. CR is the charger rate, PHEVs is the number 

of PHEVs charging, and BS is the battery size or rated pack size. 

3.2.4. Comparison of Total Demand with Generated Electricity by Ontario Power 
Plants 
In this step, the worst case of penetration level and charging scenario is chosen as the case study. 
The demand of the worst case is compared to available resources in Ontario to see whether there 
can be enough supply to the increasing demand from PHEVs charging. 

3.2.5 Optimization Methodology for Energy Planning  
The methodology that is used to find the optimal solution of energy planning of power plants 

electricity generation contains six different steps as indicated in Figure 3.3. The details of each 

step are provided in subsequent sections. 

 

Figure 3.3 General Optimization Methodology. 

Optimal Solution

Different Case studies

Mathematical Model Programming in GAMS 

Data Gathering  

Energy Planning Mathematical Statement: Constraints

Energy Planning Mathematical Statement: Objective Function
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3.2.5.1 Objective Function Mathematical Statement 
As a first challenge after calculating the difference between load demand and generated power, 

an LP model will be formulated for the existing electricity fleet for load demand satisfaction. 

Furthermore, the optimization model will be a MILP model which identifies discrete decision 

variables for fuel switching of each power plant. In the next step, the binary variables of 

existence or nonexistence of different types of new power plants are defined. As a final step, CO2 

emission target is considered.  

The objective function of the energy planning optimization model is to minimize the 

present value of the cost of electricity over a sixteen year period (2014-2030). The overall 

costs consist of the fuel costs, fixed and variable operating and maintenance costs, the capital 

costs for a new power plant, and the retrofit costs of existing power plants (associated with fuel 

switching from coal to natural gas for coal-fired stations). The total discounted present value is 

minimized by considering the electricity demand as an effect of PHEV penetration, as well as, in 

the last stage of this work, satisfying CO2 emission target. 

The mathematical model of the previously mentioned objective function is: 

݂݉݅݊ሺ݅, ݆, ݊, ܰ, ሻܹ,ܪ ൌ ∑ ∑ ிி஽ܨ௜௝ܨ௜௝ݎ݌௜௝ிிܱܨ ൅௝௜אிி ∑ ே௎஼௅ா஺ோאேேݎ݌ேே௎஼௅ா஺ோܱܨ ே஽ܨ ൅

∑ ு௒஽ோைאு஽ுܨுݎ݌ுு௒஽ோைܱܨ ൅ ∑ ௐௐூே஽ܨ
ௐאௐூே஽ ௐ஽ܨௐݎ݌ܱ ൅

∑ ∑ ݐݏ݋ܴܿ ቀி
಴ಾಲ೉

ை௣௧௜௠௘
ቁ௝௜א஼ெ஺௑,஼ ሺܨܣሻ൫ܨ௜,௡௚஼ ൯ ൅ ∑ ௡݌ܽܥ ቀ

ி೙ಿಶೈಾಲ೉

ை௣௧௜௠௘
ቁ ሺܨܣሻሺܨ௡஽௡אோௐெ஺௑ ሻ ൅

∑ ሺܱݎ݌௡ ൅ ሺ ௡ܲ௡אோௐீாே  ௡ோௐீாேሻ                                                                             (3.8)ܨ௡ሻሻሺݎܪ

 

where i is the index of all of the Fossil Fuel Generators in Ontario, j is the fuel used, Opr are the 

associated operating and maintenance costs for each Power Plant ($).݌ܽܥ௡is the capital cost for 

new power plants. n, N, H, and W are the index of all of the new possible, Nuclear, Hydro and 

Wind Power Plants in Ontario.  FFF, FNUCLEAR, FHYDRO and FWIND are electricity generated 

(MWh) by the Fossil Fuel, Nuclear, Hydro, and Wind Power Plants in Ontario. ܨிி஽ , 

,ே஽ܨ ,ௐ஽ܨ  ௡஽ are binary variables (0-1) for existence or not existence, operating or not ofܨ ு஽andܨ

unit related to identified indices at the time. FCMAX is the set of the maximum power generation 

of all the current coal generation plants in Ontario, and FC is the set of the adjusted power 

generation of the current coal plants in Ontario. Optime is a maximum operation time in a year 
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which is 8760 hours. AF is the Annual factor. FNEWMAX is the set of the maximum power 

generation possible for the possible new Power Plants, and FD is the decision variable to build a 

new power generation plant.  P is the index of the price of the fuel used at each plant; Hr is the 

heat rate (efficiency of each type of fuel) at each new possible Power Plant, and FNEWGEN is the 

amount of Power Generated at each new Power Plant. 
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Figure 3.4 Optimization Modeling Flow Chart. 
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This function will be minimized through the constraints laid out by the equations that follow; 

Total electricity generated, Fuel selection and Plant Shutdown, Fuel switching constraints, Non-

Fossil plant constraints, constraints on the amount of power can be produced by the new plants, 

Upper bound of amount of electricity that can be produced by a new plant in that year, lower 

bound on the amount a current plant can produce, and selection of new plants.   

The structure of the programming code is indicated in Figure 3.4. First the sets for all of the 

power plants are listed, and then the scalars are listed.  The maximum possible generation for all 

of the power plants is inputted, along with the same variable for the possible power plants. 

Actual generation for all of the power plants in Ontario is listed, along with two different 

operational costs for all of the fossil fuel power plants (one for Coal, the other Natural Gas).  The 

capital costs and operating costs are stated for the new possible power plants.  Variables for the 

optimal amount of electricity generated by each power plant, electricity generation for the 

possible new power plants, adjusted generation based on fuel switching (for fossil fuel plants) 

are initialized, along with binary variables for fuel selection at each plant and decision variables 

for the possible new power plants.   

3.2.5.2 Constraints Mathematical Statement 
The equations are initialized, with the objective function, total electricity generated, fuel 

switching equations, equations that set certain plants to be natural gas, total electricity generation 

for each plant, capacity constraints, new plant capacity constraints, upper bound on generation 

for new plants, and a lower bound for generation of current plants, and a cap on additional new 

plants being created as functions.   The equations of constraint are presented as outlined below; 

E1  

∑ ∑ ௜௝௉௝௜ܨ ൑ ∑ ∑ ௜௝஽௉௝௜ܨ௜௝௉ெ஺௑ܨ                                                                                                   (3.9) 

where FPMAX is the power generation of a Power Generation Plant in Ontario, and FPC is the 

binary decision variable to keep the current Power Generation Plant in Operation.  This is 

repeated for all Power Generation Plants in Ontario, including the possible new plants, meaning 

the output of a power plant must be less than its maximum possible output multiplied by either a 

1 or 0 (if the plant is in operation (1) is will produce less than or equal to its production level, or 

if retired (0) no electricity will be produced there). 
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E2  

∑ ௡ோௐ௡ܨ ൑ ∑ ሻ௡ܨܥܣ௡ோௐெ஺௑ሺܨ                                                                                          (3.10) 

where FNEW is the set of new possible power plants, and FNEWMAX is the set of maximum possible 

power generated at each new possible Power Plant, and ACF is the Annual Capacity Factor for 

new Stations, which is 75%, meaning that all new Stations, for the first year of the code, must 

operate at less than 75% capacity. 

E3 

∑ ∑ ௜௝ிி௝௜ܨ ൒ ∑ ∑ ௜௝஽ிி௝௜ܨሻܴܧܹܱܮ௜௝ிிெ஺௑ሺܨ                                                                         (3.11) 

where FFF is the set of Electricity Produced at Fossil Fuel Stations, FFFMAX is the maximum 

amount of electricity produced at each Fossil Fuel Station, LOWER is the Annual Capacity 

Factor Lower Bound, which is 1%, and FDFF is the decision variable to keep a current Fossil Fuel 

Plant in operation.  In this technique the model makes all Operational Plants operate at over 1% 

Capacity, if not the Plant would be shut down. 

The total generated power should be equal to or greater than the Ontario electricity demand. 

்ܦ ൑

∑ ∑ ிி஽ܨ௜௝ܨ௜௝ிிܨ ൅௝௜אிி ∑ ே௎஼௅ா஺ோאேே௎஼௅ா஺ோேܨ ே஽ܨ ൅ ∑ ு௒஽ோைאு஽ுܨுு௒஽ோைܨ ൅

∑ ௐௐூே஽ܨ
ௐאௐூே஽ ௐ஽ܨ ൅ ∑ ∑ ஼ெ஺௑,஼א஼ெ஺௑௝௜ܨ ൫ܨ௜,௡௚஼ ൯ ൅ ∑ ோௐெ஺௑א௡஽௡ܨ௡ோௐெ஺௑ሺܨ ሻ               (3.12) 

An initial guess for cost is made (integer value of 1) and the model is set to solve the problem 

with the CPLEX solver for Mixed Integer Programming (MIP) minimizing cost.  The CPLEX 

solver was selected because of its numerous options for MIP, as the CPLEX solver takes less 

time on larger programs and automatically sets the best values for specific problems. 

3.2.5.3 Data Gathering 
The following data are gathered from OPG and IESO: 

Installed capacity of power plants 

Net electricity generation 

Capacity factor of power plants 

Operating cost 
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Retrofit cost 

New power plants economic evaluation 

3.2.5.4 Mathematical Model Programming in GAMS  
A mathematical model is applied in the software Generalized Algebraic Modeling System 

(GAMS). Linear, nonlinear, mixed integer linear, and nonlinear optimization problems can be 

solved by the GAMS modeling system. Because of high level programming language to solve 

the compact version of complicated and large models, and of the possibility for the quick and 

safe modification in the model and formulating obvious algebraic terms, GAMS is one of the 

best options for optimization applications. 

In GAMS, users can state the relations among objective functions, constraints, variables, 

parameters, and scalars. A Language compiler and a solver are two main operating stages for an 

input file in GAMS.  LP, NLP, mixed integer linear programming (MILP), and mixed integer 

nonlinear programming (MINLP) can be solved by GAMS different solvers. In this study the 

followings steps are accomplished: 

Define Set: indices in the mathematical models are called Set in GAMS. In this study, the set of 

different types of power plants, such as fossil fuel, hydro, nuclear, wind power plants, are 

defined. Then all the equations including the objective function and constraints are indicated. All 

the variables, parameters, scalars are defined. Variables are continuous and binary variables. 

Parameters are all the data that mentioned in the previous section that has been gathered from 

IESO and OPG. Next, minimizing or maximizing objective function is decided. Applicable 

solver to optimize model based on the problem formulation is selected. Table 3.9 indicates the 

list of solvers for different problem formulation. Moreover, the solution is established by the 

optimization algorithm, and the optimum value of the objective function is found as an output by 

changing decision variables. 
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Table 3.9 List of GAMS Solvers 

Problem Formulation Solver 

LP MPSWRITE, CPLEX, LAMPS, OSL 

NLP CONOPT, MINOS5 

MIP CPLEX, LAMPS, OSL 

MINLP DICOPT, BARON 

 

In this study, the programming code is developed that accepts set inputs of all of the fossil fuel 

power plants (Coal, Natural Gas) in the Ontario power generation grid as individual sets with 

their own generators described as indices for that set and each of the renewable energy resources 

(Wind, Hydro, Nuclear) as its own set.  This allows for easier manipulation of the fossil fuel 

plants compared to the renewable resource plants so that CO2 emissions would be easier to 

manage.  In this technique, the Province of Ontario’s goal of phasing out all coal generation 

plants could be more accurately projected and accounted for with minimal alteration to the base 

code.   

The next part of the programming code inputs the operating costs of each fossil fuel plant using 

both coal and natural gas, which allows the program to choose between coal and natural gas for 

each power plant, thus allowing for complete control over which fuel is used in each plant.  The 

code then contains the capital costs and operating costs associated with each of the possible new 

power stations.  This makes for the most control in the event the program decides a new power 

plant should be built, as the code will be able to make the best possible choice for the remaining 

power needing to be generated.   

GAMS then initializes a number of variables to be used in the later linear equations.  Some of the 

variables initialized by the program are adjusted electricity generation for all of the current 

power plants, decision (binary) variables to build new power plants, and fuel switching options 

for all of the current power plants.   
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Chapter 4: Forecasting Results 

4.1 Introduction 
This chapter considers historical data of electricity demand and demonstrates the results of 

developed models by SPSS and neural network. Results from linear, non-linear, and hourly 

regression models are presented and compared. In addition, the models that best describe 

forecast variables are chosen by using MAE, MSE, and MAPE as criteria. The projection of 

forecast variables is presented in this chapter, and different PHEVs penetration transitions and 

charging scenarios are developed. A comparison of the increased demand from PHEVs charging 

and Ontario’s electricity supply are discussed.  

4.2 Model Development 
This section is divided into four parts based on four forecast variables: (i) peak load demand; (ii) 

base load demand; (iii) hourly load demand; and (ix) number of light-duty vehicles sold. Linear 

and non-linear regression models for the peak, base and hourly load demands and light-duty 

vehicles sold were developed using the methodology described in the previous chapter. For the 

peak and base load demands, the development of the regression models uses weather, 

demographic, and economic variables as previously mentioned. For hourly load demand the 

same explanatory variables as peak and base load demands and also DOW were applied. 

Demographic and economic variables were employed in the development of regression models 

for light-duty vehicles sold. The general forms of linear and non-linear regression models are 

shown in eq. (2.1) and eq. (2.2). The set of variables used for developing linear, non-linear and 

non-parametric regression models is listed in Table 3.2, Table 3.3 and Table 3.4, respectively.  

Several models were generated after employing different sets of variables. In order to select the 

most appropriate models, the models with the lowest MAE were chosen. The results of the best 

models for linear and non-linear regression models are discussed in the following section. 

4.2.1 Peak Load Demand Models 
Using the selection approach mentioned previously, linear regression models for peak load 

demand forecast in January, May, August and October are chosen to be: 

January: lnሺܲܭܣܧ௜ሻ ൌ 9.7 ൅ 5 כ 10ି଻ ܦܩ ௜ܲ െ 9.1 כ 10ିଷ  ௜ܶ                               (4.1) 

May:               ܲܭܣܧ௜ ൌ െ36,900 ൅ 4,100 ݈݊ሺܦܩ ௜ܲሻ                                                     (4.2) 
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August: ܲܭܣܧ௜ ൌ െ79,890 ൅ 6,400 ݈݊ሺܦܩ ௜ܲሻ ൅ 5,200 ݈݊ሺ ௜ܶሻ                              (4.3) 

October: ܲܭܣܧ୧ ൌ െ42,000 ൅ 4,590 lnሺGDP୧ሻ                                                     (4.4) 

The peak load demand in January and August are a function of temperature and GDP, while the 

peak load demand in May and October are a function of GDP only. Temperature has a 

significant effect for the winter and summer months. In winter (eq. (4.1)), the temperatures are 

always less than zero degree centigrade; therefore, the lower the temperature, the higher the peak 

load demand because people need more electricity for space heating. Alternatively, in the 

summer (eq. (4.3)), electricity consumption increases with increased temperatures because more 

electricity is required for space cooling.  The GDP is the only explanatory variable which affects 

peak load demand in all four months. The GDP reflects the direction of economic growth. From 

eq. (4.1) to eq. (4.4), all coefficients for the GDP are positive; hence, the greater the GDP, the 

greater the peak load demand. The best non-linear regression models for the peak load demand in 

four selected months are: 

January:  ܲܭܣܧ௜ ൌ 46,835 െ 24,930ሺexpሺ8 כ 10ିଷ  ௜ܶሻ 

                              ൅expሺെ6.2 כ 10ି଺ ܦܩ ௜ܲሻሻ                                                     (4.5) 

May:     ܲܭܣܧ௜ ൌ 17,900 െ ܦܩ ሺെ10ିହ݌ݔ݁ 73,141 ௜ܲሻ                                      (4.6) 

 

August: ܲܭܣܧ௜ ൌ 23,000 െ 42,600ሺ݁݌ݔሺെ0.2  ௜ܶሻ  

                             ൅݁݌ݔሺെ7 כ 10ି଺ ܦܩ ௜ܲሻሻ                                                                  (4.7) 

October: ܲܭܣܧ௜ ൌ 19,900 െ ሺെ4.8݌ݔ݁ 18,570 כ 10ି଺ ܦܩ ௜ܲሻ                             (4.8) 

The same trends are found for the linear regression models. Temperature affects the peak load 

demands in January and August (the seasons corresponding to the highest peaks), while GDP 

affects base load demand in all four months. All coefficients of NLRMs follow the law of 

diminishing returns. The models increase quickly with the increasing temperature and GDP, and 

then they gain slowly. For eq. (4.5), the coefficient of temperature is positive; however, when 

multiplying with temperature in the winter which is always negative, this term will be negative 
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which follows the law of diminishing returns. All temperatures are given in °C. Note that 

although the January and August peaks depends on temperatures, those temperatures are 

assumed constant from one year to the other year and thus the changes in peak demand over the 

years are due solely to changes in GDP. 

4.2.2 Base Load Demand Models 
Using the same selection approach as in the case of peak load demand, the best LRMs and 

NLRMs of base load demand in January, May, August, and October are shown below: 

Linear regression models: 

January: ܧܵܣܤ௜ ൌ 13,500 െ 177  ௜ܶ ൅ 9.4 כ 10ିଷ ܦܩ ௜ܲ                                         (4.9) 

May:     ܧܵܣܤ௜ ൌ െ37,000 ൅ 4,000 ݈݊ሺܦܩ ௜ܲሻ                                                   (4.10) 

August: ܧܵܣܤ௜ ൌ 73,200 ൅ 5,650 ݈݊ሺܦܩ ௜ܲሻ ൅ 5,650 ݈݊ሺ ௜ܶሻ                            (4.11) 

October: ܧܵܣܤ௜ ൌ െ36,510 ൅ 4,050 lnሺGDP୧ሻ                                                   (4.12) 

 

Non-linear regression models: 

January:  ܧܵܣܤ௜ ൌ 57,750 െ 22,430ሺexpሺ8.3 כ 10ିଷ  ௜ܶሻ 

                           ൅expሺെ5.5 כ 10ି଻ ܦܩ ௜ܲሻሻ                                                               (4.13) 

May:     ܧܵܣܤ௜ ൌ 17,260 െ ሺെ5.8݌ݔ݁ 20,680 כ 10ି଺ ܦܩ ௜ܲሻ                           (4.14) 

 

August: ܧܵܣܤ௜ ൌ 21,080 െ 43,000ሺ݁݌ݔሺെ0.1  ௜ܶሻ  

                             ൅݁݌ݔሺെ7.4 כ 10ି଺ ܦܩ ௜ܲሻሻ                                                    (4.15) 

October: ܧܵܣܤ௜ ൌ 17,640 െ ሺെ5.4݌ݔ݁ 16,270 כ 10ି଺ ܦܩ ௜ܲሻ                           (4.16) 

Trends for base load demand forecast are similar to those of peak load demand forecast. Both 

LRMs and NLRMs of base load demand forecast in January and August depends on the 
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temperature and GDP and those of base load demand forecast in May and October depend only 

on GDP.  

4.2.3 Hourly Load Demand Models 
Using a neural network approach, non-parametric regression models for hourly load demand 

forecast in January, May, August and October are chosen. 

Based on peak and base loads models, hourly load demands for all seasons are assumed to be a 

function of temperature, GDP and DOW. However, temperature is a more important factor for 

the winter and summer months; the effect of temperature is considered for autumn and fall too. 

In addition, hourly load demands of all seasons are affected by the GDP and DOW. Investigation 

of historical data shows the peak period of hourly demand is not the same in weekdays and 

weekends. Therefore, day of the week is another explanatory variable affects the hourly 

prediction. As a training network function, Newff was chosen to create feed-forward network 

based on (Li and others 2009; Mohamed and others 1998). Seventy percent of input data was 

used for training purpose and thirty percent for testing. The results of the neural network models 

of the hourly load demand in four typical seasons and year 2000 (as a sample) are plotted in 

Figure 4.1 to Figure 4.5.  

 

 

Figure 4.1 Results of NN Models for Hourly Load Demand in First Day of January. 
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Figure 4.2 Results of NN Models for Hourly Load Demand in First Day of May. 

 

Figure 4.3 Results of NN Models for Hourly Load Demand in First Day of August. 
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Figure 4.4 Results of NN Models for Hourly Load Demand in First Day of October. 

 

Figure 4.5 Result of NN Models for Hourly Load Demand Year 2000. 

4.2.4 Light­Duty Vehicles Sold 
The best linear and non-linear regression models are: 

Linear regression models: 

ln ሺܸܪܧ௜ሻ ൌ 11.1 െ ଵݔ 0.1 ൅ ଶݔ 0.3 ൅ ଷݔ 0.1 ൅ 2.1 כ 10ି଻ ܦܩ ௜ܲ                                       (4.17) 
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Non-linear regression models: 

௜ܪܧܸ  ൌ 75,840 െ ଵݔ 6,850 ൅ ଶݔ 24,370 ൅  ଷݔ 7,780

 െ39,580 exp ሺെ6.1 כ 10ି଺ ܦܩ ௜ܲሻ                                                                           (4.18) 

where x1=1 and x2=x3=0 for winter, x2=1 and x1=x3=0 for spring, x3=1 and x1=x2=0 for summer 

and lastly x1=x2=x3=0 for autumn. Both linear and non-linear regression models of light-duty 

vehicles sold forecast consist of these integer valued and GDP. From eqs. (4.17) and (4.18), the 

number of light-duty vehicles sold increases when increasing GDP because people have more 

potential to buy new vehicles when the economic growth is positive. 

4.3 Model Selection 
Comparisons were made among LRMs and NLRMs. MAE, MSE and MAPE were employed as 

the criterion to determine which model yields the most accurate results. MAEs, MSEs and 

MAPEs of all regression models of peak and base load demands and light-duty vehicles sold are 

compared in Table 4.1. 

For peak load demand, NLRMs of all four months yield lower MAEs, MSEs and MAPEs than 

LRMs. Therefore, NLRMs represented in eq. (4.5) to eq. (4.8) were selected to represent peak 

load demand in January, May, August, and October, respectively. 

When comparing between LRMs and NLRMs for base load demand, NLRMs in May, August, 

and October gives smaller MAEs. The opposite result is found in January. The LRM for January 

yield lower MAE, MSE and MAPE than NLRM. However, the difference between MAE, MSE 

and MAPE of LRMs and NLRMs is very small (approximately 1.8%). Therefore, the LRM 

represented by eq. (4.9) was employed to represent base load demand in January and NLRMs 

represented by eq. (4.14) to eq. (4.16) are used to illustrate base load demand in May, August, 

and October, respectively.  

For light-duty vehicles sold, the LRMs gives better results than NLRMs, but there is only a slight 

difference between the MAEs for both regression models (approximately 0.4%). In this case, the 

LRM represented by eq. (4.17) was chosen to represent the number of light-duty vehicles sold 

due to lower mean absolute error of the model. 
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In summary, most of NLRMs yield lower MAE than LRMs. This implies that the relationship 

between forecast variables (peak and base load demands) and explanatory variables (temperature 

and GDP) are not always linear. In the few cases where LRMs give better results than NLRMs 

(base load demand in January and light-duty vehicles sold), the differences between MAEs, MSE 

and MAPE of both regression models are insignificant. 

Table 4.1 Model Comparisons 

Forecast variables 
MAE MSE MAPE  

Selected 
models LRM NLRM LRM NLRM LRM NLRM 

1. Peak load demand          

- January 307.6 300.3 138965 124507 1.45 1.41 NLRM  
(eq. (4.5)) 

- May 323.7 273.0 181623 142217 1.90 1.60 NLRM  
(eq. (4.6)) 

- August 443.8 420.7 333226 301652 2.22 2.10 NLRM  
(eq. (4.7)) 

- October 415.2 391.4 269448 247339 2.34 2.21 NLRM 
(eq. (4.8)) 

2. Base load demand      

- January 327.6 333.4 158877 160983 1.71 1.74 LRM  
(eq. (4.9)) 

- May 336.4 308.9 208385 189852 2.16 1.98 NLRM  
(eq. (4.14)) 

- August 386.2 360.5 292767 254423 2.17 2.02 NLRM  
(eq. (4.15)) 

- October 390.3 372.9 211663 194546 2.40 2.30 NLRM  
(eq. (4.16)) 

3.Light-duty vehicles  
sold 6699.8 6848.9 74529858 7697788 8.62 8.87 LRM  

(eq. (4.17)) 
 

4.4 Projection of Forecast Variables 
From the previous section, the best models of peak and base load demands and light-duty 

vehicles sold depend upon temperature and GDP. Using the temperature and GDP, the peak and 

base load demands and light-duty vehicles sold can be forecasted. The projections of peak and 

base load demands, without PHEVs, and light-duty vehicles sold until 2030 are shown in Figure 

4.6 and Figure 4.7, respectively. 
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Figure 4.6 Load Demands Projection. 

 

Figure 4.7 Vehicles Sold Projection. 

As shown in Figure 4.6, the highest peak and base load demands of each year normally occur in 

January, which is approximately 26,000 MW and 21,000 MW, respectively. More electricity is 

required for space heating in the winter, resulting in a greater amount of peak and base load 

demands in January.  

IESO also published a peak load demand forecast for Ontario from 2010 until 2020. Comparing 

peak load demand from the regression models with IESO forecast, there is an average difference 

of approximately 3%. Since the forecasting methodology from IESO is not known to us, it is 
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impossible to explain these differences. Nonetheless, these differences are sufficiently small that 

both models are in reasonable agreement.  

4.5 Effects of PHEVs Penetration 
In the study of PHEVs penetration, three transitions, low, medium and high, are assumed to 

represent PHEVs penetration from 2014 to 2030, these were shown in Figure 3.2 Other 

assumptions used in PHEVs charging demand calculations are listed below: 

- Only PHEV-20 penetrates into Ontario’s transportation sector. 

- No PHEVs are retired from 2014 to 2030. 

- All PHEVs are recharged through the circuit during the peak period every day (worst case 

scenario). 

Figure 4.8 represents model’s results of accumulative numbers of PHEVs in the Ontario’s 

transportation sector in various transitions of PHEVs penetration levels. The total number 

PHEVs at the end of 2030 for low, medium and high transition will be approximately 178,000, 

534,000 and 890,000, respectively. 

 

Figure 4.8 Accumulative Numbers of PHEVs in Ontario Transportation Sector. 

New load demands after adding PHEVs into the transportation sector can be calculated from eq. 

(3.5), eq. (3.6) and eq. (3.7), respectively. As illustrated in Figure 4.9, the load demand of 

0
100,000
200,000
300,000
400,000
500,000
600,000
700,000
800,000
900,000

1,000,000

PH
E

V
s (

ve
hi

cl
es

)

Year

Transition 1

Transition 2

Transition 3

2014           2016          2018           2020           2022           2024           2026           2028         2030 



59 
 

PHEVs for high transition is the highest since this transition assumes the greatest amount of 

PHEVs penetration which is 50% of new vehicles in December, 2030. Additional peak load 

demands in December, 2030 from PHEVs charging for low, medium and high transitions will be 

210.3 MW, 630.8 MW and 1,051.3 MW, respectively. 

 

Figure 4.9 Comparisons of Peak Load Demand for Different Transition Levels in 
December 2030. 

4.6 Effects of Charging Pattern 
In the study of charging pattern, three assumptions used in PHEVs charging demand calculation 

are: 

- Only PHEV-20 penetrates into Ontario’s transportation sector with Transition 3 of penetration 

level. 

- No PHEVs are retired from 2014 to 2030. 

- All PHEVs are recharged through the circuit every day. 

Four different charging scenarios are developed. Details for each scenario were illustrated in 

Table 3.8 and are shown again below.  

Table 3.8 Charging Scenarios 

Scenario Name Period 
P1 After work 17:00-22:00 
P2 Three hours after work 21:00-2:00 
P3 In the morning 8:00-13:00 
P4 During the night 24:00-5:00 
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Results of peak and base load demands for different charging scenarios after adding PHEVs into 

the transportation sector in 2023 (as an example) are shown in Figure 4.23. As indicated, the 

peak load demand from charging pattern in Scenario 1, which represents charging only during 

the peak period, is the highest among all scenarios. For Scenario 4, its peak load demand is 

similar to the peak load demand when there is no PHEVs penetration because the number of 

PHEVs being recharged in the peak period in Scenario P0 is assumed to be zero. Additional peak 

load demands in December 2023 from PHEVs charging in Scenario P1 to Scenario P4 will be 

1,051.3 MW, 788.5 MW, 525.7 MW, and 0 MW, respectively. 

For the base load demand, Scenario P4 in which all PHEVs are recharged during the off-peak 

period has the highest base load, while base load demand for Scenario P0 in which no PHEVs 

are recharged during the off-peak period is similar to the base load demand with no PHEVs 

penetration. The base load demand in all scenarios is not much different. Additional base load 

demands in December, 2023 from PHEVs charging in Scenario P1 to Scenario P4 are 0 MW, 

20.9 MW, 41.7 MW, and 83.5 MW, respectively. 

When comparing additional peak and base load demands in all scenarios, it was found that 

PHEV charging pattern has more effect on the peak load demand than on the base load demand. 

4.7 Comparisons of Highest Transition with Scenario P1 with Ontario’s 
Available Resources 
Values of all transitions with 10%, 30% and 50% of PHEVs penetration in December 2030 and 

all scenarios for end of each year from 2014 to 2030 are indicated in Table 4.2. High transition 

on Scenario P1, in which all PHEVs are assumed to be recharged in peak period, has the highest 

value. All transitions and Scenario 1 are selected as the case study to compare with Ontario’s 

generator availability at peak. As illustrated in Figure 4.10, in the beginning of 2014 where there 

is no PHEVs penetration into the transportation sector, the generator is more than the average 

peak load demand by about 2,228MW. At the end of 2030 in which the total number of PHEVs 

is 890,362 vehicles per highest transition, peak load demand is greater than the supply by about 

1,466 MW. Therefore, it can be concluded that available resources in Ontario cannot afford the 

increasing demand from charging PHEVs between 2014 and 2030. In addition, since Ontario 

exports electricity to nearby province and USA, the increasing amount from PHEVs charging 

can reduce the quantity of electricity exported from Ontario. 
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Table 4.2 Peak Load Prediction of all Scenarios and Transitions at end of each Year (MW) 

Year Low_ 

P1 

Low_ 

P2 

Low_ 

P3 

Low_ 

P4 

Med_ 

P1 

Med_ 

P2 

Med_ 

P3 

Med_ 

P4 

High_ 

P1 

High_ 

P2 

High_ 

P3 

High_

P4 

2014 24872 24872 24872 24872 24872 24872 24872 24872 24872 24872  24872 24872 

2015 25131 25129 25127 25122 25148 25142 25135 25122 25166  25155  25144  25122 

2017 25211 25207 25203 25194 25246 25233 25220 25194 25280 25259 25237  25194 

2018 25282 25275 25267 25252 25342 25319 25297 25252 25402  25364 25327  25252 

2019 25354 25342 25330 25306 25449 25414 25378 25306 25545 25485 25425 25306 

2020 25428 25410 25392 25356 25571 25517 25464 25356 25714 25625 25535 25356 

2022 25505 25480 25454 25403 25710 25633 25556 25403 25915 25787 25659 25403 

2023 25587 25552 25517 25446 25869 25763 25657 25446 26151 25974 25798 25446 

2024 25670 25623 25575 25481 26046 25905 25764 25481 26423 26187 25952 25481 

2025 25759 25698 25637 25514 26250 26066 25882 25514 26740 26434 26127 25514 

2027 25857 25779 25701 25545 26483 26248 26014 25545 27109 26718 26327 25545 

2028 25965 25867 25769 25573 26749 26455 26161 25573 27532 27043 26553 25573 

2029 26082 25961 25840 25599 27049 26687 26324 25599 28017 27412 26808 25598 

2030 26211 26064 25917 25622 27389 26947 26505 25622 28566 27830 27094 25622 

 

 

Figure 4.10 Comparisons of Peak Load Demand with Ontario Available Resource through 
Scenario 1. 
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4.8 Conclusions 
Number of PHEVs is forecasted through consideration of three scenarios of penetration levels, 

and the maximum number of PHEVs would be 890,362 vehicles at the end of 2030 in Ontario. 

There are different factors effecting on PHEVs penetration. Moreover, four different scenarios of 

the charging pattern are developed. Additional peak load demands in December 2030 from 

PHEVs charging in different scenarios are 1,051.3 MW, 788.5 MW, 525.7 MW, and 0 MW. 

Also, additional base load demands in December, 2030 from PHEVs charging are 0 MW, 20.9 

MW, 41.7 MW, and 83.5 MW. After PHEVs penetration, peak load demands and base load 

demands in December 2030 would be increased by ~13% and 4% compared to the 2013 demand. 

Consequently, supply is less than the peak load demand. The additional electricity demand on the 

Ontario electricity grid from charging PHEVs is incorporated for electricity production planning 

purposes. Therefore, we need more power plants if PHEVs are widely adopted. 
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Chapter 5: Effect of Socio­Economic Factors on PHEVs/EVs/HEVs 
Penetration 

5.1 Introduction 
Transportation sector contributes approximately 25% to Greenhouse Gas (GHG) Emissions in 

Canada as published by Canada’s action on climate change website. As a response, Electric 

Vehicles (EVs) which operate solely on electricity have been penetrated to the market (Zhang et 

al., 2013). Hybrid Electric vehicles (HEVs) are also another type of low emission vehicles which 

comprise of two or more power sources (Emadi et al., 2008). Plug-in HEVs (PHEVs) include 

battery packs of high density which allow them to run longer than the HEVs and can be 

recharged via cable plug-ins (Emadi et al., 2008). For people who need more range coverage of 

up to 500 km sometimes, Extended Range Electric Vehicles (EREV) are perfectly suited. These 

type of vehicles run on their internal combustion engines when the battery is depleted and close 

to reach minimum state of charge, in order to recharge it (Eberle and Helmolt, 2010; Tuttle and 

Baldick, 2012). According to Table 5.1, HEVs are much more popular than EVs in Canada (IA-

HEV, 2008 and IA-HEV, 2012). The main reason of this is most likely due to the fact consumers 

tend to have range anxiety regarding EV adoptions (Daziano, 2013). 

Table 5.1 Number of EV and HEV Units Sold in Canada (2005-2009) 
Year 2005 2006 2007 2008 2009 
Vehicle Type Evs HEVs Evs HEVs Evs HEVs Evs HEVs Evs HEVs 
Units Sold  11 6053 18 13253 21 25783 29 45703 41 59541 

 

GoodCarBadCar auto sales data sources present the sales of some of the more popular models of 

EVs and HEVs over the recent years as indicated in Table 5.2 and 5.3. Nissan Leaf is having the 

most sales as a popular EVs brand in Canada, since it’s the first all-electric car built by large 

amounts with an affordable price. Among HEVs, Prius V stands out, mainly because of its high 

fuel efficiency which is 4.5L/100km mentioned in Toyota official website. As for PHEVs, 

several automobile manufacturers have only just started producing them commercially in 2010 

(Ahmadi et al., 2012) with Toyota Prius Hybrid having the most sales in Canada at 193 units 

from 2012 Sep to 2013 May. As for the EREVs, Chevrolet Volt is having more sales than others. 

In Ontario, Considering the fact that the government is supporting EVs and PHEVs adoption by 

giving incentives of up to 8500$ to their customers, and also because Ontario Ministry of 

Transportation  is envisioning a future that one out of every twenty vehicles in Ontario’s roads 
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would be electric vehicles, EVs and PHEVs will have a significant popularities in near future. 

This chapter focuses on analyzing EVs, HEVs and PHEVs adoption rate through various socio-

economic factors in Ontario from the year 2012 to 2050. 

Table 5.2 Units of EVs Sold in Canada 
 Electric Vehicles 
Vehicle Brands I - miev (Nov 2011 - May 2013) Nissan Leaf (July 2011 - May 2013) 
Units Sold 300 645 

 
Table 5.3 Units of HEVs Sold in Canada 

 Hybrid Electric Vehicles 
 Vehicle 

Brand 
Ford C-max 

Hybrid (Sep 2012 
– May 2013) 

Honda CR-Z 
(Aug 2010 – 
May 2013) 

Honda Insight 
(Jan 2010 – 
May 2013) 

Toyota Prius C 
(Jan 2010 – 
May 2013) 

Toyota Prius V 
(Oct 2011 – 
May 2013) 

 Units 
Sold 

 
883 

 
1104 

 
2299 

 
3658 

 
5717 

 

Estimating the adoption of innovations has been the subject of academic and practical interest 

since 1960s (Eggers, 2011). Factors influence adoption rates include the risk the consumer 

believes he/she might be taking, the methods of the innovator’s marketing and the innovation’s 

cultural effects (Eggers, 2011). For the purpose of this chapter, the innovation of EVs, HEVs and 

PHEVs vehicles is the subject of interest. Studies have shown that economic factors such as the 

costs of purchasing the vehicle, its fuel and electricity and external factors such as government 

incentives affect the MV adoption rate. In addition, the households and target group of MVs’ 

characteristics such as their age, income level and their environmental consciousness, plus the 

vehicle attributes also affect the adoption rate (Eggers, 2011; Musti and Kochelman, 2011). Even 

though MVs reduce dependence on fossil fuels which decreases GHG emissions as a result, there 

are still barriers preventing these innovations to be adopted on a large scale (Egbue, 2012). These 

challenges include the consumers’ tendency to resist adopting new unknown technologies and 

therefore federal policy decisions addressing their concerns have major impacts. The economical 

factor of cost was shown to be ranked ahead of the sustainability and environmental factors when 

it came to adopting EVs, HEVs and PHEVs (Egbue, 2012; Tran et al., 2013). 

Forecasting the penetration of MVs, is more complicated than the usual market forecasts due to 

various reasons. First fact is that EVs and PHEVs have only been introduced to the market in the 

recent years, and not enough sales data are available for study. Another reason is that to adopt 
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EVs and PHEVs, a behavioral change in the consumers would be required, which is refueling 

their vehicle at a gas station and/or charging by plugging in it and only a few studies have 

attempted to see how much consumers are willing to accept these change. Furthermore, the 

change in fuel type creates controversy regarding the use of past CV and HEV sales data (Al-

Alawi and Bradley, 2013). According to (Alawi and Bradley, 2013), the three major modeling 

techniques have been used by researchers to represent the market interactions in their models for 

MV penetrations, including Agent-based models, Consumer choice models and Diffusion rate 

and time series models.  

An agent based model is a computer simulation which has a virtual environment with agents in 

it. Each agent has a set of characteristics which determine their actions. This technique is applied 

to fields such as population dynamics, consumer behavior and vehicle traffic. Consumer choice 

models have been used in numerous studies to estimate vehicle sales and are usually derived 

from past vehicles sales data and consumer demographic data. The diffusion rate and time series 

models’ goal is to find the “life cycle of new products over time”. Diffusion is the rate at which 

product spreads in the market and it is usually presented as a normal distribution over time. 

Diffusion rate models are commonly associated with S-shaped curves and the impact of social 

influence in the innovation adoption rates are presented in them. This type of model is meant to 

present the acceptance of a product over time (Al-Alawi and Bradley, 2013). 

For the purpose of this chapter, based on the diffusion rate model, a novel model is developed 

presenting the socio-economic factors affecting the EVs, HEVs and PHEVs adoption rates in 

Ontario. 

5.2. Methodology 
The Methodology used in this chapter consists of modeling of light duty vehicle sold, same as 

previous chapter, and penetration function of diffusion rate and socio-economic factors.   

5.2.1. Light Duty Vehicles Sold Modeling 
To predict the number of Light Duty Vehicles (VEH) sold in the future, a long-term forecast of 

Canada’s Gross Domestic Product (GDP) is needed. To find the GDP, initially, a long term GDP 

forecast released by the PricewaterhouseCoopers firm (PwC) is considered (Elliot, 2011; PWC, 

2011)). The forecast continued until year 2050, which is needed for this chapter. But since the 

GDP amounts are derived from Purchasing Power Parity (PPP) calculations, they are multiplied 
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by a coefficient “k” in order to convert them to real GDP. The coefficient “k” is obtained by 

referring to Ontario’s long-term report on the economy forecasted GDP until year 2030 and is 

released by Ontario’s Ministry of Finance (Ontario Long term report, 2013). PPP, according to 

The World Bank Group and an article from the Climatic Change journal, is used for comparing 

the economy of different countries, by first picking a specific basket of goods and services that 

has an equivalent worth in all nations. By using the ratios of the prices of the goods and services, 

conversion to common currencies can be done. With this method, the negative impacts caused by 

differences in price levels are removed (Manne and Richels, 2005)). After converting the GDPs 

taken from PwC, the numbers are compared to the GDP numbers given in Ontario’s Ministry of 

Finance report. The mean absolute errors which can be observed in Table 5.4 are negligible. 

Table 5.4 Conversion and Comparison of GDPs from PwC and Ontario’s Ministry of 
Finance 

Year GDP at PPP 
 (PwC) 

Real GDP 
(PwC) 

GDP by applying growth rate  
(Ontario’s Ministry of Finance) 

Mean Absolute Error 
 

2012 1,403.06 676855.3446 676855.3446 4.9921E-11 
2013 1,440.95 695130.4389 697837.8602 0.00389484 
2014 1,478.41 713203.8303 716679.4825 0.00487329 
2015 1,517.11 731872.3532 731747.1299 0.0001711 
2016 1,556.82 751029.5355 750901.0344 0.0001711 
2017 1,593.87 768903.6892 770556.3035 0.00214931 
2018 1,631.02 786825.0793 788895.1851 0.00263096 
2019 1,668.26 804788.1542 807282.5314 0.00309942 
2020 1,705.57 822786.9466 824103.0699 0.00159959 
2021 1,742.94 840815.0741 842533.8333 0.00204416 
2022 1,780.29 858834.1315 860994.6359 0.00251562 
2023 1,817.69 876873.4888 879446.1506 0.0029339 
2024 1,855.11 894926.1337 897918.4526 0.00334365 
2025 1,892.54 912984.6407 915509.4348 0.00276543 
2026 1,929.97 931041.1684 933983.2875 0.00316003 
2027 1,972.55 951583.036 952455.1153 0.00091645 
2028 2,016.24 972656.1117 973469.4458 0.0008362 
2029 2,061.04 994269.2908 995027.2022 0.00076228 
2030 2,106.98 1016431.538 1017137.484 0.00069453 

 

The amount of light duty vehicles sold season by season (VEH) is forecasted by Eq (4.17): 

lnሺܸܪܧ௜ሻ ൌ 11.1 െ ଵݔ0.1 ൅ ଶݔ0.3 ൅ ଷݔ0.1 ൅ 2.1 ൈ 10ି଻ܦܩ ௜ܲ 

According to the gathered historical vehicles sales data, the GDP factor and the seasons of the 

year affect the units of light duty vehicles sold. The seasons are taken into account by assigning 
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integer numbers of 0 and 1 to the dummy variables, ݔଵ,  ଷ in the model. Table 5.5ݔ ଶ andݔ

indicates what combination of numbers present which seasons. 

Table 5.5 Season Representations 
Seasons Winter Spring Summer Fall 
࢞૚ 1 0 0 0 
࢞૛ 0 1 0 0 
࢞૜ 0 0 1 0 

 

As GDP increases, so does the number of light duty vehicles sold, due to the fact that when 

there’s growth in the economy, more people would have the potential to buy new vehicles. 

Initially, to find the best forecasting model, both of the Linear Regression (LR) and Non-Linear 

Regression (NLR) techniques are deployed by using the software called Statistical Package for 

Social Sciences (SPSS) (SPSS, 1987). At the end, it is observed that the forecasting model 

derived by LR has the least mean absolute error, and therefore it is concluded that it is the most 

convenient option to find VEH. 

5.2.2. Penetration Function Modeling 
To find out the number of EVs, HEVs and PHEVs in Ontario over time, a penetration function, 

representing diffusion rate and socio economic factors simultaneously, is modeled. All steps are 

discussed on the following sections in detail. 

5.2.2.1. Diffusion rate 

To find out what fraction of the new light duty vehicles would be made up of Modern Vehicles 

an exponential penetration functions are commonly used. The following penetration function, 

PF(I) is developed for diffusion rate part (Jochem et al., 2013) 

ሻܫሺܨܲ ൌ ଵ
஺ା஻௘಴ೣశವ

                                                                                                                  (5.1) 

Where A, B, C and D represent related coefficients and x represents number of seasons. 

The next step is to determine the coefficients. With the purpose of having more accuracy, this 

process considers some key facts regarding the amount of EVs, HEVs and PHEVs in different 

times, like Ontario Ministry of Transportation planning to have 1 out of every 20 vehicles on the 

province’s roads to be EV, HEV or PHEV by 2020. Also, roughly around 200 EVs, HEVs and 

PHEVs were sold in the year 2012. Additionally, according to the Ministry of Environment, by 
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2050, the government of Ontario is planning to reduce the Greenhouse Gas Emissions by 80% 

below the 1990 emission levels; therefore at least 50% of the vehicles on the road need to be 

MVs by that year.  

5.2.2.2. Socio-Economic factors 

For the purpose of increasing the accuracy of the EVs, HEVs and PHEVs penetration function, a 

second part which represents the socio-economic impacts on the MV adoption rate, is developed  

considering the total cost of a vehicle ownership, driver’s age, gender, location, community 

distance, traffic, vehicles production year, type and model. Vehicles with higher All-In Costs, 

AIC, would have a less penetration than vehicles with lower AIC. I, AIC is determined by Price 

My Ride [Pricemyride, 2013]. With more than 20,000 vehicles in their database, the Price My 

Ride team employs the intricate approaches of maintenance, insurance fees and fuel costs to find 

out how much it would cost to run the vehicle. According to the team, their AIC are found from 

purchase prices, insurance estimates and fuel costs, and the results are reliable. Purchases prices 

of new vehicles are based on prices suggested by car companies to their dealers and are acquired 

from a company called Autodata. The estimation of insurance is done by using the same rate of 

insurance companies which are filed by with regulators in Canada. It must be noted that if a 

vehicle is already owned, it is assumed that the consumer will be staying with his/her current 

insurance provider. As for fuel costs, the calculation is done by the procedure which the 

government has approved and is based on fuel economy data provided by vehicle manufacturers. 

In the next step, the methodology of finding the AIC by Price My Ride is explained. As 

presented in Fig. 5.1, initially an input of gender, age and location is required.  
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Figure 5.1 Calculation Procedures. 
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For more accuracy, all of the procedure is done two times, to have data for both females and 

males. The location is selected to be Toronto. For the insurance rates, if a vehicle is already 

owned, it is required for the users to select their insurance rates per month. For the result to be 

more accurate, the users can enter more details regarding their insurance, such as selecting the 

company, its bodily injury coverage, accident benefits and property damage. Because of 

developing penetration function on new vehicles sold in Ontario in this study, it is assumed that 

no vehicle is currently owned for calculating AIC, therefore the insurance estimate is considered 

to be based on current averages of the industry, with the assumption of no tickets and accidents. 

Next the model considers the travelling distance in an average week. According to Table 5.6, 

data are provided by Statistics Canada, for the age span of 25-54, the distance is approximately 

119 kilometers per week for females and 154 kilometers per week for males. 

Table 5.6 Commuting Distances 
Commuting distance Commuters (people with age 25-54) 

 Male Female 
Less than 5 km 466020 608235 
5–9.9 km 370340 409875 
10–14.9 km 243265 247430 
15–19.9 km 181720 172080 
20–24.9 km 126930 114370 
25–29.9 km 88020 74550 
30 km or more 289805 187230 
Total average distance (km/day) 22 17 
Total average distance (km/week) 154 119 

 

Due to limitations existing in the selection of the distance on Price My Ride, for females, the 

average distance is selected to be 100 kilometers and for males, 150 kilometers. The next 

required input is the percentage of time that would be spent in stop-and-start traffic. By referring 

to Natural Resources Canada and Statistics Canada, the fraction is estimated to be roughly 10%.  

The vehicle selection process is divided into six parts. First the users have to select the 

production year of their vehicle. Next, the users indicate if their vehicle is leased or purchased. 

Also, if they are not planning to keep the car, they should indicate if they will be selling or 

trading it. In the final step, the users select the car that they are planning to get. Then the make, 

model, trim, body and finally transmission are selected as are indicated in Table 5.7, and based 

on all of the information that is submitted in the previous steps, the car’s all-in costs are 
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presented. In this study, more than 800 all-in cost samples are obtained, using Price My Ride’s 

calculation system and are employed with the GDP trend to create the second part of the 

penetration function. 

Table 5.7 Price My Ride Selections 
Select 
vehicle 
make 

Select vehicle model Select vehicle trim Select vehicle 
body 

Select vehicle 
transmission 

Acura TL Base (A6)/(A5), 3.2 Sedan AWD AT6/AT5,  
FWD AT5/AT4 

Audi A3/A4 2.0 TDI Progressiv (S tronic) Diesel, 2.0 
TDI  (S tronic) Diesel, 2.0TSportsback (S-
tronic),2.0T,Base 
(A5)Sportsback(M6),1.8T(EOP 
Nov/03)(A5),1.8T(A5),  

Hatchback/ 
Sedan 

FWD 
AT6/MT6/AT5 
AWD AT5  

BMW Active Hybrid,7L/ 
X6,323,320,318 

Base,i,i (A4) Sedan/ 
Sport Utility  

RWD AT6/MT6/ 
AT4,AWD AT7 

Buick LaCrosse,Enclave, 
Allure,Century 

Base,CX,Custom,Special Sedan 
Sport Utility 

FWD AT6/AT4 
AWD AT6 

Cadillac Escalade /Hybrid 
,Catera,DeVille  

Base 
  
  

Sport Utility 
Sedan 

4x4 CVT4/AT4 
AWD AT6/AT4 
RWD AT4,FWD 

Chevrolet Tahoe,Hybrid, 
Cavalier 
Silverado1500/ 
Hybrid  

Base,LT,LS   Regular Side, 
Sport 
Utility,Sedan  

4x2CVT4/CVT/A
T4/MT5, FWD 
MT5 

Chrysler 200,300,,300M, 
,Sebring 

Limited,Base,JX 
  

Sedan 
Convertible 

FWD AT6/AT4 
AWD AT5  

Daewoo Lanos S Sedan FWD MT5 
Dodge Journey 

Grand , 
Caravan 

R/T Rallye,CV 
Base, Sport 

Sport Utility, 
Cargo & 
Passenger Van 

AWD AT6 
FWD AT4/AT3  

FIAT 500 Lounge Hatchback FWD MT5 
Eagle Talon Base,ESi  Hatchback,Cou

pe 
FWD MT5 

Ford Fusion Hybrid, 
Escape 
/Hybrid,Focus,F-
150 

Hybrid,Base,Limited 
Duratec,XLS,LX,Standard, Special 
Styleside 

Sedan 
Sport Utility 
Regular Side 

FWD CVT2/ MT5 
4x4 CVT2/ AT4/ 
MT5, 4x2 MT5 

Geo Metro base Coupe FWD MT5 
GMC Sierra 1500,Safari 

Hybrid,Yukon, 
Hybrid,Jimmy, 

Base,SLE,SL  Regular Side, 
Sport Utility, 
Cargo Van 

4x2 CVT4/ AT4 
AWD AT4 

Honda Civic /Hybrid Base,DX /(A5)/(A4) Sedan, 
Hatchback 

FWDCVT2/ 
AT5/AT4 

HUMMER H3 SUV Base Sport Utility 4x4 MT5 
Hyundai Elantra GL /(A4),GLS 1.8L (A4) Sedan FWD MT6/ MT5/ 

AT4  
Infiniti G25/37/35/20,I30 Luxury /(A4)/(A7),Base /(A5)/(A4),Sport 

(A4) 
Sedan RWD AT7/ AT5 

FWD AT4 
Isuzu Trooper LS Sport Utility 4x4 AT4/MT5 
Jaguar X F/K/J8/J6, S-

TYPE 
Base,3.0L /V6 (A6)/V6,Base 4.0L Sedan, Coupe RWD 

AT6/AT5/AT4 
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Jeep Wrangler, 
Grand Cherokee 

Rubicon, 
Laredo 

Sport Utility 4x4 MT6/ AT5/ 
AT4 
4x3 AT4,4x2 AT4 

Kia Rio, Sephia EX(A6)/(A4),LS(A4),Base(M5) Hatchback, 
Sedan 

FWD AT6/ AT4/ 
MT5 

Land Rover LR4,LR3,Discover
y,Range Rover 

Base,V6 /SE,HSE,Series II /Kalahari 
Edition,LE,4.0 SE 

Sport Utility 4x4 AT6 
4x4 AT4 

Lexus ES /300/330/350 Base Sedan FWD 
AT6/AT5/AT4 

Lincoln MKZ /Hybrid,LS 
Continental 

Hybrid,Base,V8 Sport,V6 
/Auto/AutoBase/AutoLuxury 

Sedan FWD CVT2/AT4 
AWD AT6,RWD 
AT5  

Mazda CX-7,MX-5  
Miata, Protégé 

GX,3rd Generation Limited (M6),GS 
/(M6),1.8 (A4),Base (A4),LX (A4) 

Sport Utility 
Convertible 
Sedan 

FWD 
AT5/AT4/MT5 
AWD AT6 
RWD MT6/AT4 

Mercedes-
Benz 

S-Class Base Sedan AWD AT7/AT5 
RWD AT5 

MINI Cooper Base Hatchback FWD MT6/MT5 
Mitsubishi Lancer GT,SE,GTS,ES /(A4) Sedan FWD MT5/MT4  
Mercury Grand Marquis GS Sedan RWD AT4 
Nissan Altima /Hybrid 2.5 S /(CVT)/(A4), 

S (A4), XE (A4) 
Sedan  FWD CVT2/AT4 

Oldsmobile Silhouette, Achieva GL 
SC 

Extended, 
Coupe 
Passenger Van,  

FWD AT4/MT5 

Plymouth Breeze Base Sedan FWD MT5 
Pontiac G 5/6, Aztek, 

Grand Prix 
Base,GT,SE Sedan, Sport 

Utility, Coupe 
FWD MT5/AT4 
AWD AT4  

Porsche Cayenne /Hybrid, 
Boxster, 911 

S,V6,Base /(M6),Carrera Sport Utility, 
Convertible,Cou
pe 

AWD AT8/ MT6/ 
AT6 
RWD MT5/MT6 

Ram 1500 Laramie Regular Side 4x2 AT6 
Scion tC Base (M6) Coupe FWD MT6 
Saab  9-5, 900 Base Automatic, Aero w/1SC,Aero,S Sedan,Hatchbac

k 
FWD AT5/MT5  
 

Saturn VUE /Green, 
Saturn 
Line/Hybrid, LS, 
SL 

Base,4 CYL (CVT)/(M5)/Automatic, Sport 
/(A4),SL 

Sport Utility, 
Sedan 

FWD AT4/MT5 
AWD CVT1 

smart fortwo BRABUS, passion /diesel Coupe  RWD AT5/AT6  
Subaru Legacy  2.5 GT (M6)/(M5),GT (M5),L+ (M5) Sedan, S Wagon AWD 

NT6/MT6/MT5  
Suzuki Grand Vitara, 

Vitara,Esteem  
Base,JX /(A5)/(A4), JA Base 1.6L (M5),GL 
Custom (A4) 

Sport Utility, 
Sedan 

4x4 AT4/ AT5/ 
MT5 
FWD AT4 

Toyota Prius,Corolla Base,CE (A4),DX (A3) Hatchback,Seda
n 

FWD 
CVT2/AT4/AT3 

Volkswage
n 

Golf, City Golf 2.5L Comfortline (A6), 2.0L (M5),CL 
(A4),GL (A4) 

Hatchback, 
Coupe 

FWD 
AT6/MT5/AT4 

Volvo S80,S60,S70,960 
   

T5 Level 1,3.2 A,3.2,2.5T ,A SR,2.4T A 
SR,Base (A5),GLT (A4),Base 

Sedan FWD, 
AT6/AT5/AT4, 
AWD AT6,RWD 
AT4 
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Furthermore, to develop adoption rate model of the EVs, HEVs and PHEVs base on the impact 

of the socio-economic factors, the technique of regression analysis is deployed, using the 

software SPSS. Initially by taking numerous economic factors into consideration, regression 

models are created for each of them to find their impact on the dependant variable which is the 

AIC of vehicles during 1996-2012. In this step, the economic factors are the number people 

employed (EMP), population size (POP), income (INC), the number of graduated students 

(EDU) and the gross domestic product (GDP) (Table 5.8). 

Table 5.8 Linear Regression Variables 
Dependant variable Economic factors 

All-in Cost EMP, POP, INC, EDU, GDP 

 

Using the GDP give the lowest mean absolute error (MAE) when is compared to the historical 

data of AIC (Table 5.9). 

Table 5.9 Mean Absolute Error of a Linear Regression Model Sample 
Female all-in cost (average) 

Year GDP F_ave_all-in-cost Prediction MAE 

1996 454868.46 510.72 448.9857 0.120876997 
1998 494828.2 556.97 494.375 0.112384868 
2000 538298.36 617.32 522.2122 0.154065639 
2002 569972.38 675.97 609.0301 0.099027915 
2004 603510.12 759.82 686.5294 0.096457845 
2006 624737.99 903 825.57805 0.085738594 
2008 632257.33 1106.18 1033.16935 0.066002504 
2010 639867.18 1302.97 1240.3081 0.048091591 
2012 676855.34 1423 1300.5553 0.086046873 

 

5.2.2.3. Final penetration function 

In the final stage, the exponential function representing the diffusion rate (PF(I)) and the 

regression model representing the socio economic factors’ (PF(II)) impact on the EVs, HEVs and 

PHEVs adoption rate are combined to give the final penetration function: 

ܨܲ ൌ ሻܫሺܨܲ ൅  ሻ                                                                                                            (5.2)ܫܫሺ ܨܲ
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For the predictions of adoption rates to be more accurate, three scenarios are considered as three 

case studies (Table 5.10). 

Table 5.10 Scenario Weights 
Scenario Α Β 

A 1 0 
B 0 1 
C 0.50 0.50 

Scenario A represents a situation where only the impact of the diffusion rate is being considered, 

whereas in scenario B, only the impact of socio-economic factors is accounted for. In scenario C, 

the impact weight is equally balanced between the two factors. 

The AIC function already has six different scenarios, and when combined by the three scenarios 

due to α and β, the adoption rate of EVs, HEVs and PHEVs can be estimated in eighteen 

different scenarios, using the final penetration function. 

5.3. Results 

5.3.1. Light Duty Vehicle Sold 
It is found that the VEH in spring exceeds than that of the other seasons due to better weather 

and buying conditions. Winter has the least of light duty vehicle sales. The sales are depicted in 

Figure 5.2.  

 

Figure 5.2 Vehicle Units Sold Seasonally During 2012-2050. 
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5.3.2. Penetration Function of Diffusion Rate 
After doing all the calculations and analysis, all the coefficients of PF(I) are found as indicated in 

Table 5.11. 

Table 5.11 Diffusion Function Parameters 
Coefficient Value 

A 2 
B 2 
C -0.08178 
D 5.15214 

 
By substituting the coefficients in the above equation, PF(I) which is presented below, holds true 

to all facts mentioned in section 2.2.1 . For example if we consider end of year 2020 the adoption 

rate would be 0.05, and therefore  the first part of representing the diffusion rate of the final 

penetration function is the proper model. 

ሻܫሺܨܲ ൌ   ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

                                                                                                       (5.3) 

Figure 5.3 presents the diffusion rate over time. 

 

Figure 5.3 Diffusion Penetration Rate Function. 
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FEMALE 

• Aggressive all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ210.0890ሻ െ ሺ0.1059 כ ሻܴܣܧܻ ൅ ሺ4.8359 כ 10଺ כ  ሻ                                   (5.4)ܲܦܩ

• Average all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ56.8195ሻ െ ሺ0.0282 כ ሻܴܣܧܻ ൅ ሺ1.15141 כ 10଺ כ  ሻ                                    (5.5)ܲܦܩ

• Mild all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ22.5581ሻ െ ሺ0.0108 כ ሻܴܣܧܻ ൅ ሺ2.3028 כ 10଻ כ  ሻ                                      (5.6)ܲܦܩ

MALE 

• Aggressive all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ209.7629ሻ െ ሺ0.1057 כ ሻܴܣܧܻ ൅ ሺ4.8359 כ 10଺ כ  ሻ                                    (5.7)ܲܦܩ

• Average all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ56.3289ሻ െ ሺ0.0279 כ ሻܴܣܧܻ ൅ ሺ1.1514 כ 10଺ כ  ሻ                                      (5.8)ܲܦܩ

• Mild all-in cost forecast 

ሻܫܫሺܨܲ ൌ ሺ21.1650ሻ െ ሺ0.0101 כ ሻܴܣܧܻ ൅ ሺ2.3028 כ 10଻ כ  ሻ                                      (5.9)ܲܦܩ

5.3.4. Final Penetration Function 
After adding diffusion rate and socio-economic factors the following penetration functions 

present the total adoption rate of EVs, HEVs and PHEVs in Ontario. 

FEMALE 

• Aggressive all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻሺሺ210.0890ሻ ൅ ሺെ0.1059 כ ሻܴܣܧܻ ൅ ሺ4.8359 כ 10଺ כ
 ሻሻ                                                                                                                                (5.10)ܲܦܩ

• Average all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻሺሺ56.8195ሻ ൅ ሺെ0.0282 כ ሻܴܣܧܻ ൅ ሺ1.1514 כ 10଺ כ
 ሻሻ                                                                                                                               (5.11)ܲܦܩ
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• Mild all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻሺሺ22.5581ሻ ൅ ሺെ0.0108 כ ሻܴܣܧܻ ൅ ሺ2.3028 כ 10଻ כ
 ሻሻ                                                                                                                            (5.12)ܲܦܩ

MALE 

• Aggressive all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻ൫ሺ209.7629ሻ ൅ ሺെ0.1057 כ ሻܴܣܧܻ ൅ ሺ4.8359 כ 10଺ כ

 ሻ൯                                                                                                                            (5.13)ܲܦܩ

• Average all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻሺሺ56.3289ሻ ൅ ሺെ0.0279 כ ሻܴܣܧܻ ൅ ሺ1.1514 כ 10଺ כ
 ሻሻ                                                                                                                            (5.14)ܲܦܩ

• Mild all-in cost forecast 

ܨܲ ൌ ሺߙሻ ቀ ଵ
ଶାଶ௘షబ.బఴభళఴሺೣషలయሻ

ቁ ൅ ሺߚሻሺሺ21.1650ሻ ൅ ሺെ0.01015 כ ሻܴܣܧܻ ൅ ሺ2.3028 כ 10଻ כ
 ሻሻ                                                                                                                            (5.15)ܲܦܩ

where β and α represent the weight of the socio economic factors and the diffusion rate on the 

total MV adoption rates respectively. x is the number of seasons.  

5.3.5. Number of EVs, HEVs and PHEVs of Different Case Studies 
In this section, the results derived from the total adoption rates in various scenarios are analyzed. 

SCENARIO A: 

By referring to Figure 5.4, it can be observed that when considering only the diffusion (α=1, 

β=0), the EVs, HEVs and PHEVs adoption will start off in low sales in 2012 at approximately 

215 unit sales. The diffusion penetration rate is increasing throughout the entire time span. The 

trend is fluctuating rapidly; as is the same with all the other trends due to the fact that the sales 

are being analyzed seasonally. The adoption rate picks up in 2020 and reaches an almost steady 

rate of increase in roughly year 2038. The reason of the slow start is that the early adopters are 

taking risks, and not everyone is willing to do so. After the initial adoptions, more people will 

realize the benefits of MVs and the product’s popularity will rapidly increase until it reaches a 

certain saturation level and the increase in its adoption will reach a steadier rate. 
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Figure 5.4 EVs, HEVs and PHEVs Sold in Scenario A. 

SCENARIO B: 

In this scenario, the only factor that is considered to impact the MV adoption rate is the socio-

economic factors (α=0, β=1). When referring to a trend result for the Male/Female adoption rates 

in the average case (Figure 5.5), it is observed that the rate increases after roughly the year 2030. 

In all of the cases, the male and female behavior show a similar pattern with the male MV 

adoptions slightly exceeding the female MV adoption, due to the fact that men have a tendency 

to drive more (Table 5.6) and therefore are willing to invest more on their vehicles. 

SCENARIO C: 

When considering both the diffusion and the socio-economic factors for the EVs, HEVs and 

PHEVs adoption rates (α=0.50, β=0.50), as observed in Figures 5.6 and 5.7, the number of MV 

units sold in the aggressive case is generally lower than the other two, in both males and females, 

due to the high AIC of vehicles. As mentioned in section 5.2.2, high AIC have negative effects 

on the consumers’ desire to purchase the EVs, HEVs and PHEVs. Until approximately year 

2032, the aggressive case adoption rate, while still being lower than the other two cases, exhibits 

a behavior similar to them. After the mentioned year, the aggressive case unit sales will keep 

increasing with almost the same slope while the other two will have a decrease in their slope. As 

a result, in all the three cases for both males and females, the number of adopted MVs will 

become very close to each other near 2050. 
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Figure 5.5 HEVs and PHEVs Sold in Scenario B, Average Case, Male/Female Comparison. 

 

Figure 5.6 EVs, HEVs and PHEVs Sold in scenario C, Male Cases Comparison. 
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Figure 5.7 EVs, HEVs and PHEVs Sold in Scenario C, Female Cases Comparison. 

When comparing the Male/Female MV adoption rates in the mild case, it is noticed that the 

number of MV units adopted by males exceeded the females’ by the largest amounts, compared 

to their difference in the other cases (Figure 5.8). 

 

Figure 5.8 EVs, HEVs and PHEVs Sold in Scenario C, Male/Female Mild Case 
Comparison. 
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Table 5.12 presents the units of EVs, HEVs and PHEVs sold in Scenario C in all the three cases 

for both males and females from 2012 to 2050 of scenario C. According to the table, in 2050, the 

sales in the aggressive case will be significantly lower than the other two cases due to the higher 

AIC, while the mild case has slightly higher sales than the average case.  

Table 5.12 EVs, HEVs and PHEVs Sold in Scenario C 
Year Male Female 
 Aggressive Average Mild Aggressive Average Mild 
2012 7,012 20,861 23,048 7,009 20,705 22,054 
2014 6,299 20,815 23,075 6,288 20,645 22,036 
2016 5,907 20,961 23,261 5,887 20,777 22,177 
2018 5,510 21,301 23,689 5,482 21,103 22,559 
2020 5,592 22,114 24,587 5,555 21,901 23,411 
2022 6,428 23,683 26,241 6,382 23,455 25,017 
2024 8,297 26,291 28,933 8,242 26,047 27,662 
2026 11,227 29,968 32,696 11,163 29,710 31,377 
2028 15,478 34,444 37,122 15,405 34,170 35,753 
2030 19,769 38,750 41,324 19,685 38,460 39,903 
2032 23,606 42,283 44,669 23,513 41,976 43,193 
2034 26,923 44,929 47,032 26,820 44,605 45,501 
2036 29,836 46,874 48,616 29,722 46,532 47,027 
2038 32,515 48,369 49,692 32,391 48,008 48,043 
2040 35,342 49,680 50,498 35,207 49,301 48,787 
2042 38,500 50,962 51,180 38,353 50,563 49,405 
2044 42,115 52,309 51,824 41,956 51,891 49,982 
2046 46,277 53,779 52,480 46,106 53,340 50,568 
2048 50,783 55,329 53,144 50,600 54,868 51,161 
2050 55,930 57,055 53,862 55,734 56,570 51,804 

 

5.4. Conclusions 
The goal of this chapter is to analyze the impact of the socio-economic factors on the adoption 

rate of Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles (EVs, HEVs and PHEVs) 

in the time span of year 2012-2050. In the first step, the number of light duty vehicles sold in the 

future in each season is found, with the slope being positive its graph having a fluctuating nature, 

showing that seasons greatly affect the number of the vehicles that are sold. In the next step, a 

penetration function is formed, comprising of two parts. One part represents the diffusion rate 

and the other presents the socio-economic factors. The socio-economic section which accounts 

for males and females separately, by itself is divided into three sections of aggressive, average 
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and mild. Using the penetration function, the adoption rates are calculated in three different 

scenarios of A, B and C as three case studies. In scenario A, full weight is assigned to the 

diffusion rate, and the trend of the vehicle units sold resembles the shape of S, showing that 

initially people are hesitant to adopt modern vehicles, but over time they get more popular. In 

scenario B, full weight is assigned to the socio-economic section of the penetration function. It is 

observed that both of the males’ and females’ adoption behaviors are similar, with the male 

adoption rates being slightly higher during the time span. In scenario C, both of the diffusion and 

the socio economic factors are considered. The graphs show that in all of the cases of aggressive, 

average and mild, the number of EVs, HEVs and PHEVs adoptions reach to amounts which are 

close to each other near the end of the time span. The behavior of all the six trends is mostly 

similar, with the trend of the aggressive case being lower than the other two cases for the most 

part. It has been concluded, considering different scenarios of socio-economic factors on 

analyzing the adoption rates of the EVs, HEVs and PHEVs is very essential as the results 

indicate that when considering only the impact of socio-economic factors (scenario B) on the 

EVs, HEVs and PHEVs adoption rates, the unit sales by 2050 would improve by the average of 

roughly 18.9%, while when considering both of the diffusion rate and the socio-economic 

factors, the unit sales would improve by the average of approximately eight percent. 
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Chapter 6: Zonal Emission Analysis of PHEVs/EVs Penetration 
 

6.1. Introduction 
According to Canada’s Action on Climate change, the transportation sector is the source of 25% 

of the total Greenhouse Gasses (GHG) emitted throughout the country. According to the 

International Energy Agency, the CO2 emissions in Canada accounted for two percent of the 

global emissions in 2009 (Canada’s Emissions Trends, 2012). As stated by the U.S. 

Environmental Protection Agency: Office of Mobile Sources, initially, when vehicles are 

analyzed individually, the amount of harmful emissions are not alarming. However, when 

gathering the volume of emissions from millions of those from the many cities in the country, 

personal vehicles become one of the greatest polluters (EPA, 2012). In order to mitigate the 

effects caused by these pollutants, Modern Vehicles (MV), namely in this chapter, Electric 

Vehicles (EV) and Plug-in Electric Vehicles (PHEV) are considered. EVs and PHEVs will have 

growing popularity in the future due to the Government of Canada’s support to their users of   

incentives up to $8500 to their adopters. As mentioned in the previous chapter, the Ontario 

Ministry of Transportation also plans to have one out of twenty of the province’s vehicles to be 

either EVs or PHEVs. The purpose of this chapter is to show that the adoption of MVs through 

2012–2050 will greatly decrease the vehicle GHG and major non-GHG emissions in the future. 

The pollutants known as GHG and major non-GHG are included: 

• CO - carbon monoxide: The result of incomplete combustion and oxidation, this 

product reduces the flow of oxygen in the bloodstream (EPA, 2012). 

• NOx - nitrogen oxides: Due to the high pressure and temperature of an engine, 

nitrogen and oxygen atoms react and create nitrogen oxides, and, as a result, ozone 

and acid rain are created (EPA, 2012). 

• SO2 - sulphur dioxide: This chemicals is the major component of acid rain (Nagase 

and Silva, 2007). 

• VOC - volatile organic compounds: These compounds are the main reason of ground 

level ozone and particulate matter in the atmosphere (Geddes et al., 2009) 
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• PM (particulate matter):  Airborne particles that are in solid or liquid form. The size 

of PMs determine the environmental and health impacts to a large extent; 

Environment Canada classifies them in to three sizes (Yan et al., 2011; Callen et al., 

2011; Dongarra et al., 2011) 

TPM - total particulate matter less than 100 microns in diameter 
PM10 - particulate matter less than or equal to 10 microns in diameter 
PM2.5 - particulate matter less than or equal to 2.5 microns in diameter 

• GHG (CO2e) - carbon dioxide equivalent: This emissions factor presents an 

estimation of all the GHG that are the result of fossil fuel combustion, expressed as an 

equivalent mass of carbon dioxide (CO2e) (Workplace travel plans, 2010). An 

anthropogenic source of CO2 is the activity of fuel combustion (Quadrell, 2007), and 

although this substance does not directly impact health, it traps heat inside the earth’s 

atmosphere, which, as a result increases the potential for global warming (Zhang et 

al., 2013). 

6.2. Methodology 

To find the average amount of pollutants created by vehicles in a location, initially Emissions 

Factors (grams of pollutant per vehicle-kilometers) are needed. By referring to Workplace Travel 

Plans – Guidance for Canadian Employers prepared by ACT Canada and Noxon Associates 

Limited, for the ecoMOBILITY Program of Transport Canada, the average vehicle emissions 

factors for GHG and Major Non-GHG pollutants for different Canadian provinces can be found 

in a table with the name of Suggested Emissions Factors. The guide was prepared with the 

purpose of helping employers and property managers encourage their employees to find more 

sustainable ways to commute to work and mitigate traffic. 

Three zones in Ontario were designated for study the Metropolitan Area of Toronto, Ottawa ON, 

and the Metropolitan Area of Hamilton. Table 6.1 identifies the emissions factors for the 

mentioned pollutants in Ontario: 

 

 

 



85 
 

Table 6.1 Ontario Pollutant Emissions Factors 

Province GHG 
(CO2e) 

CO NOx SO2 VOC TPM PM10 PM2.5 

Ontario 258 11.3 0.601 0.00415 0.669 0.0169 0.0165 0.00799 
 

The emissions factors are calculated by using Transport Canada’s Urban Transportation 

Emissions Calculator (UTEC) (Transport Canada, 2013). These are the average vehicle 

emissions factors in Ontario, and depending on their driving costumes and vehicle fuel 

efficiency, actual emissions factors for each person will differ from each other. The emissions 

factors are calculated by assuming a ratio of 98.5:1.5 between gasoline powered vehicles and 

diesel powered vehicles existing in the provinces roads in 2006, for the purpose of the guide. 

Figure 6.1 presents the steps taken to find the seasonal amount of major pollutants emitted from 

the consumption of gasoline by vehicles in specific zones. In short, this is done by multiplying 

the kilometers travelled (CD) (Stat Canada, 2013) (while they consume gasoline) by vehicles in a 

specific zone, by the pollutants’ emission factors. Initially, the seasons in which the amount of 

emissions is desired to be presented are specified. The seasons start off from X = 1, representing 

the first season of the year 2012, then X = 2 representing the second season and so on until X = 

156 which represents the fourth season of year 2050. Next, the zone of interest is selected. As 

mentioned before, three zones are available for selection, and consist of the metropolitan area of 

Hamilton, Ottawa ON and the metropolitan area of Toronto. After zone selection, two processes 

initiate. The first process (P1) calculates the total number of vehicles sold by seasons (VEH) in 

Ontario, using a formula with independent variables representing GDP and seasons. The next 

process (P2) finds the VEH in the selected region. In the next step, it is specified whether MVs, 

namely PHEVs or EVs will be penetrating or not. If no MVs are to be penetrated, the total 

seasonal commuting distance (CD) of zone specific VEH will directly be calculated. 
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Figure 6.1 Flowchart of Zonal Emission Analysis of PHEVs/EVs Penetration. 

Yes No 

PHEV or EV?
PHEV EV

Vehicle Desired Type? 

Penetration Rate = g(X) ... P(3)

# of zonal MV = h(GDP*X) ... P(4)

Zonal VEH after MV adoption =  
P(2)-P(4) ... P(5) 

CD1 = Total VEH Seasonal commuting 
distance Å P(5) * daily commuting 
distance * # of seasonal days ... P(6) 

CD = Kms travelled by Zonal VEH =  
Zonal VEH * daily commuting distance  

* # of seasonal days

START

X Å desired season interval

Select zone

Ontario VEH = m(GDP, I) ...  P(1)

Zonal VEH = f(Ontario VEH) ... P(2)

Modern Vehicle Penetrated? 

Select emission type: 
GHG, CO, NOX, SO2, 

TPM, VOC, PM10, M2.5 

Seasonal Amount of emission(s) =  
CD * emission factor(s)

Display the amount of 
emission(s) through the 

seasons 

END 

CD2=Total PHEV Seasonal gasoline 
consuming commuting distance Å # of 

(PHEV-K) * (daily commuting distance – K) 
* # of seasonal days ... P(7)

CD = CD1+CD2 

CD3=Total EV Seasonal gasoline consuming 
commuting distance = 0  ... P(8) 

CD = CD1+CD3
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The steps are more complicated if MV penetration is involved. First it is indicated whether 

PHEVs would be penetrating the zonal VEH or EVs. This affects the amount of gasoline 

consuming seasonal commuting distance of VEH in later steps. Then, in (P3), by using the 

diffusion rate from (Jochem et al., 2013) which has the number of seasons as its independent 

variable, the seasonal MV penetration rate is found. Using this penetration rate, the total number 

of zonal seasonal MVs sold by seasons is found in (P4). The number of zonal MVs sold then, is 

deducted from the zonal VEH to give the number of non-MV VEH in the zone in (P5). In (P6), 

the total seasonal commuting distance of the non-MV VEH is calculated, and is assigned to 

(CD1). Following (P6), if EVs are decided to penetrate, due to the fact that they have no tailpipe 

emissions, their gasoline consuming commuting distance (CD3) is zero. Therefore only the total 

commuting distance of non-MV VEH would be considered (CD = CD1). On the other hand, if 

PHEVs are decided to penetrate, first, the total gasoline consuming commuting distance (CD2) is 

calculated in (P7). The total gasoline consuming commuting distance of PHEVs is significantly 

less than that of the non-MV VEH, since they can travel a portion of their driving distances 

without using gasoline. In the case of this chapter, PHEV-10s are considered. The summation of 

the total seasonal commuting distances of the non-MV VEH and the gasoline consuming 

commuting distance of PHEVs is assigned to (CD). 

By selecting the emission type in the following step, CD will be multiplied by its emission factor 

and the result(s), which is the grams of pollutants emitted seasonally, will be displayed. 

6.3. Results and Discussion 

Figure 6.2 indicates the amount of CO created in the three different zones, in the scenario where 

no MVs are penetrated. It can be appraised the amount of CO will rise rapidly in all the three 

zones, with Toronto’s slope being much steeper higher than the other two. Toronto’s CO 

emission in 2050 is seven times more than that of the other two zones. The amount of CO that 

Hamilton and Ottawa produce in 2050, is around the amount that Toronto produces in year 2018. 

This indicates that Toronto’s situation in the case of contributing to emissions is significantly 

more serious than the other mentioned zones, and actions needs to be taken to mitigate it. 

Hamilton is producing the least emissions. 
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Figure 6.2 No-MV Zonal CO Comparison. 

The amount of PM10 created in Hamilton, Ottawa and Toronto, in the scenario where PHEV10 

is penetrated, are presented in Figure 6.3. At around year 2027 where the growth rate of the 

PHEVs penetration increases, the slope of the PM10 emission in Toronto decreases noticeably, 

while the other two zones’ slope decrease are not as obvious. Ottawa and Hamilton’s emissions 

are significantly less than Toronto’s, with the two’s amount being very close to each other. 

 

Figure 6.3. PHEV Zonal PM10 Comparison. 
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Figure 6.4 confirms that in the scenario where EVs are penetrated, Toronto’s CO emissions 

greatly exceed the CO emissions of Ottawa and Hamilton. The emissions amounts of the 

aforementioned two zones are very close to each other, with the difference between them 

increasing as the years pass. The effect that the increase of the EV penetrations has on the 

Toronto emissions’ slope is significantly more than its effect on the other two zones’ slope. 

 

Figure 6.4. EV Zonal CO Comparison. 

Figure 6.5 presents the quantity of GHG that is released into the air in Hamilton, in three 

different scenarios through 2012-2050. It is observed that at the beginning, the emissions 

quantities are very similar to each other in the three scenarios, and it’s not until after the year 

2022 where the penetration rate of the EVs and PHEVs increase, and as a result the emissions 

amounts deviate from the No-MV scenario’s emissions amounts. In the scenario where no MVs 

are penetrated, it is shown that the GHG emissions increase rapidly, which is due to the rapid 

increase in the population and therefore the conventional vehicle sales. In the next scenario 

where PHEV-10s are penetrated, it is observed that the slope of the GHG emission’s trend 

decreases noticeably after the year 2028. In the scenario where EVs are penetrated, the emissions 

drop to an even lower quantity, such that at year 2050, amount of GHG emitted is almost half of 

the emissions in the No-MV scenario.  
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Figure 6.5. Hamilton GHG Comparison. 

As observed in Figure 6.6 which presents the amounts of VOC and NOX emitted in Toronto in 

the scenario where EVs are penetrated, the emissions for both pollutants start off very close to 

each other. As the years progress, the emission quantity difference between them gradually 

increases and it gets relatively significant from approximately year 2020. Overall, VOC has a 

higher emissions rate than NOX. 

Figure 6.7 is comprised of the plots of the amounts of SO2, TPM, PM10 and PM2.5 emitted in 

years 2012 – 2050 in Toronto, when considering the scenario in which the penetration of PHEV-

10 is involved. TPM and SO2’s quantity of emissions are very close to each other, while both of 

their differences from the other two pollutants are significant. The mentioned two pollutants have 

higher emissions compared to the other two pollutants. PM10 and PM2.5 have a lower slope 

compared to SO2 and TPM, and while noticeable, the difference between PM10 and PM2.5’s 

emissions is not as great their emission difference with the other two pollutants. PM2.5 has the 

least amount of emissions compared to the other three pollutants. 
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Figure 6.6 Toronto EV (VOC, NOX) Comparisons. 

 

Figure 6.7. Toronto PHEV-10 Comparisons. 

By referring to Figure 6.8, the amount of NOX emissions in 2050 that Toronto, Ottawa and 

Hamilton contribute to the amount that Ontario emits when no MV is penetrated can be 

observed. When no MVs are penetrated, Toronto contributes to approximately 44% of Ontario’s 

total NOX emissions, while Ottawa and Hamilton are roughly 7%.When EVs are penetrated, all 

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

0 50 100 150 200

V
O

C
 a

nd
 N

O
X

 A
m

ou
nt

Years 20..

Toronto EV VOC

Toronto EV NOX

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 20 40 60 80 100 120 140 160 180

D
iff

er
en

t P
ol

lu
ta

nt
 

Years 20..

SO2

TPM

PM10

PM2.5

12  14  16  18  20  22  24  26  28  30 32  34  36  38  40  42  44  46  48  50 

12  14  16  18  20  22  24  26  28  30 32  34  36  38  40  42  44  46  48  50 



92 
 

of the three zones’ emissions contributions drop by about half of what they were emitting in the 

previous scenario with Toronto now having a 22% emission contribution. 

 

Figure 6.8. Zonal NOx Comparisons (with and without EV) in 2050. 

Figure 6.9 presents the amount of CO that Toronto contributes to the amount of CO emissions 

that Ontario’s vehicles produce in the scenario where no MVs are penetrated in 2012 – 2047. 

When no MVs are penetrated, Toronto contributes to roughly 44% of Ontario’s CO emissions 

throughout the years. When EVs are penetrated, initially small drops in the contribution can be 

seen, and as the years progress, so do the drops in Toronto’s CO emissions contributions, until it 

reaches a contribution rate almost 50% less than what it is producing  in the scenario where no 

MVs are penetrated in 2047. This is due to the fact that as time passes, the penetration rate of the 

EVs increases. 
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Figure 6.9. Zonal CO Comparisons (with and without EV), 2012 - 2050. 

6.4. Conclusions 
This chapter serves the purpose of presenting the decrease in vehicle emissions through years 

2012 – 2050, when EVs and PHEVs are penetrated in the vehicle adoption market. Initially the 

emissions factor is found. Then the total seasonal commuting distances in the assumed scenarios 

are found. The scenarios comprise of a case where no EVs and PHEVs are penetrated, a case 

where EVs are penetrated and a case where PHEVs are penetrated. When combining the 

emissions factors with the total seasonal commuting distances, the seasonal vehicles emissions 

are presented through 2012 – 2050. The results show that when there are no MVs penetrated, the 

average emissions will decrease by approximately 210 times by 2050. When penetrating PHEVs 

and MVs, the average emissions quantities by 2050, will drop by roughly 40% to 50% when 

compared to the total emissions in the scenario where no MVs are introduced. It is observed that 

The Metropolitan area of Toronto makes the largest contribution of 40% to Ontario’s total 

emissions when no MVs are penetrated, but when penetrating EVs in its adoption market, the 

contribution fall to approximately 20%. Overall, vehicle emissions in Ontario are rising 
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exponentially, and it is concluded that penetrating the EVs and PHEVs will dramatically mitigate 

this situation. 
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Chapter 7: Optimization Results 

7.1 Introduction 
This chapter outlines results of the process, methods, and equations used to optimize the power 

generation plants in Ontario in order to minimize power generation cost.  The results include 

outcome of the programming code in five different case studies (Table 7.1) on the base case 

situation with employing CO2 emission constraints, PHEVs penetration, and ceasing the use of 

coal by the end of 2014. In the event of a surplus of power in the power grid, the program 

identifies which plants are ineffectual and recommend their closure, while in the event of a 

deficit of power in the grid, the program will recommend new plants to be built to meet the 

demand.  The results represent the lowest electricity cost option, which should always be 

considered in solving problems of this magnitude.   

Table 7.1 Different Case Studies 

Case Study PHEVs Adoption Rate Type of Potential Power plants CO2 Limit 

A: Base Case Medium Penetration All type of power plants except 

Coal power stations 

No 

B: Base case with increased 

NG prices 

Medium Penetration All type of power plants 

including NG double price 

No 

C: Base case with Coal 

 

Low Penetration All type of Power plants No 

D: Base case with 6% 

reduction in year 2018 CO2 

High Penetration All type of power plants except 

Nuclear power stations 

Yes 

E: Base case without 

considering current load 

deficit 

Medium Penetration All type of power plants except 

Coal power stations 

No 

 

7.2 Case Study A (Base Case) & B (Base case with increased NG prices) 
Base case considers PHEVs are penetrated with a Medium rate in Ontario. Therefore, load 

demand would be increased by vehicles charging amount of electricity. All coal power plants 

have been phased out according to the Environmental Protection Act (EPA) is engaged in the 

year 2014. In Case B the penetration is still with a medium rate but the price of natural gas is 

doubled starting in year 2018.  
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7.2.1 New Power Generating Stations 
In base case, depicted in Table 7.2, new NGCC stations make up 68% of the total new installed 

capacity.  

In base case with increased NG prices, when the natural gas price is double in Table 7.3, the fleet 

rely on more coal technologies making up 30% of the total new installed capacity, largest of any 

new supply technologies used, therefore PC is popular. In the early years, NG is used because of 

shorter construction time; however there are NG power plants later because of coal and nuclear 

capital expenditure constraint. 

As it is shown in Tables 7.2 and 7.3 model adding new power plants have been suggested as 

soon as possible to satisfy current load demand deficit. The optimizer suggests building NG 

power plants because of coal capital expenditure constraint in the model. Highlighted area is the 

period of construction. The year thereafter is when electricity production commenced, except for 

the import option that we would import power from the beginning of the highlighted area. As 

total budget of building new power plants specified in the model, results indicate import by the 

end of the period.   

Table 7.2 New Power Generating Stations and their Construction Time_ Base Case 
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Table 7.3 Detail Fleet Structure: Natural Gas Price Doubled in 2020_ Base Case with  

Increased NG Prices 

 

7.2.2 Economic and Emission Analysis 
As indicated in Figure 7.1, both two cases follow a general trend where a peak during 2014 is 

observed. The base case, where no new or existing coal is available after 2014, has a particularly 

high cost of electricity during the early years. A large capacity of existing coal power supply has 

gone offline, forcing the model to purchase a large amount of new supply technologies to prepare 

the fleet for this urgent lack of generating capacity.  



98 
 

 

Figure 7.1 Overall Cost of Electricity. 

A different building strategy is employed in Figure 7.2 and Figure 7.3. Total expenditure is 

higher for the case with the double natural gas price, since there would be more investment on 

nuclear power plants.  
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Figure 7.2 Detail Expenditure_ Base Case with  

Increased NG Prices. 

 

 

Figure 7.3 Detail Expenditure_ Base Case. 
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Figure 7.4 Overall CO2 Emissions. 

CO2 emission from the base case and base case with increased NG prices are ~500Mt and ~900 

Mt correspondingly. The same general trend is observed in both curves in Figure 7.4. In the base 

case, the overall emission is reduced dramatically due to the elimination of both new and existing 

coal power stations. 

7.3 Case Study C: Base Case with Coal 
Case Study C assumes, there would be Low PHEVs penetration in Ontario from the year 2014 to 

2030. Besides, all the coal power stations are in operating condition and persist on generating 

electricity. In addition, CO2 emission restriction does not apply in the time frame; however CCS 

technology is available in Ontario. 

7.3.1 New Power Generating Stations 
In this case the best possible solution for the Ontario power stations to meet the load demand 

from the year 2014 to 2030 is determined.  As indicated in Table 7.4, the model recommended a 
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stations with total capacity of 3,136 MW and 3,364 MW respectively. Figure 7.4 presents that 

Nuclear, Wind and Hydro Power stayed at about the same power generation levels which are 

equal to 12,947, 1,948, and 8,014 correspondingly, therefore rate of power allocated for 
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renewable energies does not change. The reason is the more economical capital cost of coal 

power plants than other sources of electricity. As a result of no CO2 limit, cheaper operating cost 

of a unit fuelled by coal rather than Biomass and extra retrofitting cost, there is not any fuel 

switching proposed. Additionally, in case of retrofitting the coal power station to whether 

Biomass or NG without employing CCS technology, the emission penetration would be more 

than coal power plants.   

Table 7.4 New Power Generating Stations and their Construction Time_ Base Case with 

Coal 

 

Figure 7.6 displays the percentage change of power allocated in the four different years, 2014, 

2021, 2026 and 2030. Power allocated from nuclear from 40% in 2014 decreased to 35% in 

2030. Also natural gas and oil power plants generate more amount of the electricity from 30% in 

2014 to 35% in 2016 and will keep constant rate of power percentage to 2030.  
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Figure 7.5 Total Allocated Capacities of each Power Plant (MW) from 2014 to 2030_Base 

Case with Coal.

 

Figure 7.6 Total Power Allocated Percentage _Base Case with Coal. 
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Figure 7.7 Annual Electricity Production _ Base Case with Coal. 

Annual electricity generation by new power plants are established in Figure 7.7. After 2018, new 

power stations, PC and NG, generate a significant amount of energy.  Although results present 

that the programming code succeed in modeling the power generation needs for the Ontario load 

demand by meeting the goal of finding the lowest electricity cost, the proposed solution is not 

feasible with the current state of the Ontario power plants and the plans of the Government of 

Ontario and the Companies that Produce Ontario’s Electricity due to phasing out all the coal 

stations by the end of 2014.   

7.3.2 Economic and Emission Analysis, 
Figure 7.8 and Figure7.9 indicate detailed expenditure of entire electricity sector and electricity 

cost of the total investment from 2014 to 2030 for Base Case with Coal. The expenditure 

including Nuclear refurbishment, CO2 credits, capital and O&M cost of CCS, variable O&M cost 
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of new and existing power plants, fuel, fixed O&M of new and existing units ,  capital cost of 

fuel switching,  capital cost of new power plants, are revealed based on 2013 Canadian dollars.  

 

Figure 7.8 Detail Expenditure_ Base Case with Coal. 

Figure 7.10 indicates the amount of CO2 created over years, totally 869Mt, from existing and 

new power plants, in the case study where no PHEVs are penetrated. It is presented that the 

amount of CO2 rises rapidly in between 2019 and 2024 because of new source of electricity. As a 

result of not considering any emission limit in Base Case with Coal, model predicted two NG 

and two coal power plants which cause CO2 emission slope being steeper higher in start point of 

new electricity generation than the other part of the trend.  
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Figure 7.9 Overall Electricity Cost_Base Case with Coal. 

 
Figure 7.10 CO2 Emissions_ Base Case with Coal. 

7.4 Case Study D: Base Case with 6% Reduction in CO2 by Year 2018  
Case study D considers the impact of PHEVs high penetration rate under two conditions. The 

first condition is, there would not be any new nuclear power station. And the second one is CO2 

emission should reduce at 6% by the year 2018.  
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7.4.1 New Power Generation Stations 
When high adoption rate of PHEVs, no new nuclear stations, and CO2 emission reduction target 

of 6% are applied, NGCC is generating electricity with ~ 4,400 MW new installed capacities, 

Table 7.5. New power stations with CCS system are suggested by model to guarantee the CO2 

emission target satisfaction.  

Table 7.5 New Power Generating Stations and their Construction Time_ Base Case with 

6% Reduction in CO2 by Year 2018 

 

7.4.2 Economic and Emission Analysis 
Following figures indicate overall and detailed expenditure for base case with 6% reduction in 

CO2 by year 2018. 
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Figure 7.11 Overall Expenditure_ Base Case with 6% Reduction in CO2 by Year 2018. 

 

 
Figure 7.12 Detail Expenditure_ Base Case with 6% Reduction in CO2 by Year 2018. 
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Figure 7.13 Overall Cost of Electricity_ Base Case with 6% Reduction in CO2 by Year 

2018. 

Overall average cost of electricity is 2.36 c/kWh. The similarities between the previous cases and 

this case are not significant. As indicated in Figure 7.14 the overall CO2 emission is stay steady 

after 2020. Total of ~600 Mt of CO2 emissions is detected in the case with 6% emission 

reduction by the year 2018. Emission curve show a minimum points in 2018 because of the 

significant number of PHEVs after 2018. 
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Figure 7.14 Overall CO2 Emissions_ Base Case with 6% Reduction in CO2 by Year 2018. 

7.5 Case Study E:  Base Case without Considering Current Load Deficit 
Case E does not consider current load deficit in Ontario. PHEVs penetration rate is Medium. All 

Coal power plants have been phased out in the year 2014.  

7.5.1 New Power Generating Stations 
In the base case without considering current load demand, depicted in Table 7.6, new NGCC 

stations and wind stations are added over time, which is because of adding more PHEVs over 

time and all are transferring there electricity load to the grid. NGCC makes up 80% of the total 

new installed capacity.  
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Table 7.6 New Power Generating Stations and their Construction Time_ Base Case without 

Considering Current Load Deficit 

 

7.5.2 Economic and Emission Analysis 
As indicated in Figure 7.15, the base case without considering current load deficit has a lower 

average cost of electricity. Because of having cheaper capital cost of NG power plants and also 

almost half of the installed capacity than other case studies (due to less electricity deficit), the 

average cost of electricity is the lowest one among all the case studies.  

 

Figure 7.15 Overall Cost of Electricity_ Base Case without Considering Current Load 

Deficit. 
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Figure 7.16 Overall CO2 Emissions_ Base Case without Considering Current Load Deficit. 

No CO2 emission reduction constraint is applied in this case. Because of increasing number of 

PHEVs as a function of square time, there would be less gasoline consumption by vehicles each 

year compare to the previous year. Therefore, amount of CO2 emission decreases over time, as it 

is shown in Figure 7.16. In the next section, all cases are compared together.  

7.6 Summary 
As indicated in Figure 7.17, base case without considering current load demand deficit has the 

lowest average cost of electricity and base case with increased natural gas prices has the highest 

one. Total new installed capacity in base case with 6% reduction in CO2 in year 2018 is the 

highest amount, 8,748 MW, and 2,400 MW as the lowest for base case without considering 

current load demand deficit, Table 7.7.  
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Figure 7.17 Overall Cost of Electricity Comparison. 

Almost half of electricity generated by new fleet is from nuclear power stations. However case 

studies are different, there are many similarities between them. For example, after optimization 

of the model, large amount of electricity are generated from nuclear stations in base case and 

base case with increased NG prices. At the same time, 49% of new power plants are NGCC in 

base case, in which utilizing coal power plants are not allowed, and 47% percent of new units are 

coal generating stations in base case with coal. 
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Table 7.7 New Power Generating, COE Comparison  

 Total 
New 

Installed 
Cap 

(MW) 

COE 
¢/kwh 

New Power 
(MW) 

Installed Cap in 2030 Compared to 
2013 

C
oal  

N
G

C
C

  

W
ind  

H
ydro  

N
uclear 

Base case 

no CO2 constraints, no Coal 

Medium PHEVs Penetration 

7270 2.27  NGCC: 2890 

Wind:2000 

Nuclear: 1080  

2%↓ 4%↑  4%↑  0  3%↓ 

Base case with increased NG 
prices 

no CO2 constraints 

Medium PHEVs Penetration  

7270 2.34  Coal:1660 

NGCC: 1370 

Wind:2000 

Nuclear:12010  

2%↑  0  4%↑  3%↓  3%↓ 

Base case with Coal 

no CO2 constraints 

Low PHEVs Penetration  

6500 2.20  Coal: 2792 

NGCC:3136 

7%↑  4%↑  1%↓  4%↑ 6%↓ 

Base case with 6% reduction 
in CO2 in year 2018; no 
Nuclear 

High PHEVs Penetration 

8748 2.36  IGCC: 1100 

NGCC: 4398 

Wind: 2000 

1%↑  6%↑  4%↑  4%↑ 7%↓ 

Base case without considering 
current load deficit; 

no CO2 constraints, no Coal 

Medium PHEVs Penetration 

2400 2.19  NGCC: 1985 

Wind: 500  

2%↓  5%↑  1%↑  1%↓  3%↓ 

 

7.7 Conclusions 
Among all the case studies, highest new capacity (~8,748 MW) is installed for base case with 6% 

reduction in CO2 in year 2018 which considers high adoption rate for PHEVs, and not utilizing 

any new nuclear power plants, with the carbon dioxide emissions restriction. The next highest 

ones are base case and base case with increased NG price with ~7,270MW, which considers NG 
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price increases to be double in 2020 with the medium PHEVs adoption rate. One of the main 

reasons of having more installed capacity in base case with 6% reduction in CO2 in year 2018, is 

high PHEVs penetration which leads to more electricity consumption. Therefore, more 

electricity needs to be generated to satisfy load demand over years.  

As a result of highest amount of installed capacity in the case of the base case with 6% reduction 

in CO2 in year 2018, the total expenditure and average cost of electricity of this case (148 CND 

billion, and 2.36 c/kWh) are more than three other cases.  

Results show that by phasing out coal power stations in the base case the total amount of the CO2 

emissions is the lowest amount among the different case studies. The total CO2 emissions for 

base case is the lowest one (~500 tonnes), almost half of the base case with coal (~900 tonnes), 

which is the highest one.  
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Chapter 8: Conclusions and Recommendations 
Number of PHEVs is forecasted through consideration of three scenarios of penetration levels, 

and the maximum number of PHEVs would be 890,362 vehicles at the end of 2030 in Ontario. 

There are different factors effecting on PHEVs penetration, such as socio-economic factors 

including age, gender, location, insurance, vehicle model, etc. By considering socio economic 

factors, PHEVs adoptions will increase substantially in the future, comprising a fraction of 

approximately 30%-38% (dependent on the considered scenario) of the total conventional 

vehicles sold. In addition by accomplishing zonal analysis the total emissions per season will 

drop by roughly 40% to 50% of the quantity they would emit when no PHEVs are penetrated. 

Moreover, four different scenarios of the charging pattern are developed. Additional peak load 

demands in December 2030 from PHEVs charging in different scenarios are 1,051.3 MW, 788.5 

MW, 525.7 MW, and 0 MW. Also, additional base load demands in December, 2030 from 

PHEVs charging are 0 MW, 20.9 MW, 41.7 MW, and 83.5 MW. After PHEVs penetration, peak 

load demands and base load demands in December 2030 would be increased by ~13% and 4% 

compared to the 2013 demand. Consequently, supply is less than the peak load demand. The 

additional electricity demand on the Ontario electricity grid from charging PHEVs is 

incorporated for electricity production planning purposes. Therefore, we need more power plants 

if PHEVs are widely adopted. 

Finally, the Ontario energy planning is optimized to minimize the value of the cost of the 

electricity over sixteen years (2014-2030). The mathematical objective function consists of the 

fuel costs, fixed and variable operating and maintenance costs, the capital costs for a new power 

plant, and the retrofit costs of existing power plants (associated with fuel switching from coal to 

natural gas for coal-fired stations). The mathematical model of objective function and related 

constraints are applied in the GAMS software. Because of having mixed integer model, the 

programming code set to be solved through CPLEX solver. Five different case studies are 

performed with different penetration rate, type of new power plants, and CO2 emission 

constraints. Among all the case studies, the one requiring the most new capacity, (~8,748 MW), 

is Case D, assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV 

penetration. The next highest one is Case B, assume the base case, doubled NG prices, medium 

PHEV and no CO2 emissions reduction target with an increase of 34.78% in the total installed 

capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power 
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stations the CO2 emissions are the lowest; ~500 tonnes compared to ~900 tonnes when coal is 

permitted. 

For the future work, different type of PHEVs could be considered based on percentage of people 

with specific driving distance. For this purpose, different scenarios could be defined. The similar 

procedure as chapter three could be developed. Moreover, the computational time of the model 

could be improved by modifying the model development to utilize less memory. Other work 

could be decentralizing and integrating the zonal PHEVs penetration, develop optimization 

model to address optimal planning of the Ontario zonal power generating sector, some part of the 

work has been accomplished in chapter six of this thesis. Furthermore, multi objective functions 

could be considered for operating and maintenance cost of various power plants, such as 

considering fuel (NG) cost fluctuations.  
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