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Abstract 

Winter road maintenance (WRM) operations, such as plowing, salting and sanding, are significant to 

maintain both safety and mobility of highways, especially in countries like Canada. Traditionally, 

WRM performance is measured using bare pavement regain time and snow depth/coverage, which 

are reported by maintenance or quality assurance personnel based on periodic visual inspection during 

and after snow events. However, the increasing costs associated with WRM and the lack of 

objectivity and repeatability of traditional performance monitoring methods have stimulated 

significant interest in developing alternative performance measures. 

This research is motivated by the need to develop an outcome based WRM performance 

measurement system with a specific focus on investigating the feasibility of inferring WRM 

performance from traffic state. The research studies the impact of winter weather and road surface 

conditions (RSC) on the average traffic speed of rural highways with the intention of examining the 

feasibility of using traffic speed from traffic sensors as an indicator of WRM performance. Detailed 

data on weather, RSC, and traffic over three winter seasons from 2008 to 2011 on rural highway sites 

in Iowa, US is used for this investigation. Three modeling techniques are applied and compared for 

modeling the relationship between traffic speed and various road weather and surface condition 

factors, including multivariate linear regression, artificial neural network (ANN), and time series 

analysis. Multivariate linear regression models are compared by temporal aggregation (15 minutes vs. 

60 minutes), types of highways (two-lane vs. four-lane), and model types (separated vs. combined). 

The research also examines the feasibility of estimating/classifying RSC based on traffic speed and 

winter weather factors using multi-layer logistic regression classification trees. 

The modeling results have shown the expected effects of weather variables including precipitation, 

temperature and wind speed, and verified the statistically strong relationship between traffic speed 

and RSC. The findings suggest that speed could potentially be used as an indicator of bare pavement 

conditions and thus the performance of WRM operations. It is also confirmed that the time series 

model could be a valuable tool for predicting real-time traffic conditions based on weather forecast 

and planned maintenance operations, and the multi-layer logistic regression classification tree model 

could be applied for estimating RSC on highways based on average traffic speed and weather 

conditions. 
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Chapter 1 
Introduction 

1.1 Background 

In countries like Canada and the United States (US), people’s daily life can be significantly impacted 

by severe cold weather, wind chills and heavy snow storms during winter seasons. Highway 

transportation is one of the many aspects that could severely be impacted by adverse weather 

conditions. Snow covered road surface conditions (RSC), low temperature and poor visibility could 

result in slow traffic speed and a higher risk of fatal collisions. 

Research has been carried out to address the impact of adverse weather on highway safety and 

mobility. According to the 2010 Ontario Road Safety Annual Reports, over 22.8% of fatal collisions, 

24.8% of personnel injury collisions and 28.3% of property damage collisions are related to 

wet/snow/icy RSC. Among all types of collisions, over 19.1% occurred under adverse weather 

conditions. The Highway Capacity Manual (HCM 2010) also provided research results about the 

impact of weather conditions on freeway traffic speed, citing a drop of 8-10% in free flow speed (FFS) 

due to light snow, 30-40 percent due to heavy snow, compared with clear and dry conditions. 

In order to keep road networks clear of snow and ice and for safe and efficient travel throughout 

winter seasons, many transportation authorities in countries like Canada and US are facing mounting 

challenges both monetarily and environmentally. According to the FHWA Statistics, WRM accounts 

for roughly 20 percent of state Department of Transportation (DOT) maintenance budgets with an 

average annual spending of more than 2.3 billion dollars on snow and ice control operations. 

(http://www.fhwa.dot.gov/policy/ohpi/hss/hsspubs.cfm). Similarly, Canada spends significant 

amounts of resources on WRM every year, including over 1 billion dollars of direct investment and 

use of an average of five million tons of road salt. The increasing maintenance costs and public 

concerns over the detrimental effects of road salt on the environment and vehicles stimulated 

significant interest in developing performance measures. It therefore becomes increasingly important 

to develop a rigorous performance measurement system that can show clear linkage between the 

inputs of WRM and its outcomes such as mobility and safety benefits.  
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1.2 Winter Road Maintenance and Performance Measurement 

Generally, WRM are the maintenance activities conducted by governments, institutions and 

individuals to remove or control the amount of ice and snow brought by snow events on roadway 

surface, and to make travel easier and reduce the risk of collisions.  

WRM methods can be divided into two primary categories: mechanical and chemical (Minsk, 

1998). Mechanical methods include plowing, brooming and blowing using maintenance trucks and 

equipment. The main chemical method is the application of temperature suppressant chemicals on the 

road’s surface. These chemicals, either liquid or solid, can lower the freezing-point, thus melting the 

snow/ice or preventing ice bonding on the road surface and making plowing easier.  

Based on the timing of the operation, WRM operations can also be classified into three categories: 

before, during and after snow events. Before event operations include checking for changing road and 

weather conditions, planning and preparing operations, and applying liquid chemicals to the road’s 

surface. During and after maintenance events includes operations such as plowing snow and ice; 

spreading salt and sand on road surface to provide traction and safer driving; cleaning up roadways 

and continually checking road, weather and traffic conditions after snow events.  

The choice of appropriate and effective methods depends on various factors. These factors include 

the severity of the snow events, topology of the area, road surface temperature, wind speed, etc. 

Because of the high efficiency and effectiveness in clearing snow and ice, plowing and salting are the 

two most commonly used methods. Plowing involves removing the snow layer from the road surface 

with trucks. The snow layer is usually a mixture of snow, ice, water, chemicals, and dirt, and is not 

excessively bonded to the road surface so that it can be picked up by plow equipped maintenance 

trucks and casted off to the side of the road for storage. Salting involves the applications of solid and 

liquid chemicals, such as Magnesium Chloride (MgCl), Calcium Chloride (CaCl), and Sodium 

Chloride (NaCl), and can be divided into two types, anti-icing and de-icing. Anti-icing is the 

application of salt or brine to the roadway prior to snow events so as to prevent the bonding of snow 

and ice to the road surface. De-icing is the application of salt to snow and ice that is bonded to the 

road surface for the purpose of melting the snow or ice, thereby ensuring safe driving conditions. 

Operation frequency and the chemical application rate can be determined based on road weather and 

surface conditions as well as the level of service requirements. The priorities of WRM are different 

for different types of roadways. For example, the priorities of highways, arterial roads, business 
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districts and bus lanes are higher while the priorities of local industrial roadways and residential 

streets are relatively lower.   

WRM is a typical example that its activities and performance need to be measured so as to achieve 

the optimum maintenance outcome while utilizing the minimum amount of resources. According to a 

handbook published by the U.S. Department of Energy (1995), performance measures quantitatively 

summarize some important indicators of the products, services and the process that produce them. A 

performance measurement system should consist of a comprehensive set of measures, processes and 

standards that can be used by the government agencies and maintenance contractors to assess: 

 

• How well we are doing? 

• Are we meeting our goals? 

• Are the customers satisfied? 

• Is the process with statistical control? 

• Are improvements necessary? 

 

Many WRM performance measures have been developed in the past, which can be generally 

divided into three categories: input measures, output measures, and outcome measures. Input 

measures indicate the amount of resources utilized to perform WRM operations, therefore are directly 

associated with maintenance costs. Output measures represent the amount of work that is 

accomplished by transportation agencies or maintenance contractors using WRM resources. Outcome 

measures assess the effectiveness of winter maintenance operations, and can clearly reflect the impact 

of the operations on highway mobility and safety as well as customer satisfaction. Input measures 

such as salt usage, labor, and equipment investment are not directly linked to WRM objectives and 

goals, and cannot provide measures of quality, efficiency or effectiveness of WRM.  

Although output measures such as lane-miles plowed or salted are more meaningful compared 

with input measures, they can only measure the physical accomplishment or the efficiency of WRM, 

and do not reflect the level of impact on the ultimate goal of WRM.  

Outcome measures such as bare pavement regain time, friction level, delay and the number of 

collisions can produce the most meaningful results. However, these measures also have drawbacks. 

Firstly, because of the limitations of data collection methods, some data used in these measures are 

still subjective. Others highly depend on data quality and availability (e.g. friction models), therefore 
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they cannot be applied without enough properly formatted datasets (Maze, 2009; Qiu, 2008). 

Secondly, models used for estimating outcomes are often relatively complex and are time-consuming 

to calibrate, which leaves a huge barrier to practical usage.  

One of the performance measures that have the potential to overcome the limitations of these 

existing outcome measures is traffic speed. Traffic speed is directly linked to WRM goals and easy to 

monitor with existing traffic sensors.  However, traffic speed has not been widely used as a WRM 

performance in practice. One of the main reasons for this lack of practical applications is that the 

relationship between traffic variables and road weather conditions, especially, road surface conditions 

(RSC), has not been clearly quantified. Some past studies have attempted to develop models to 

quantify the effect of weather and surface condition variables on traffic speed; however, most of these 

models were built on simplistic frameworks that have limitations in capturing the complex 

relationship between weather and traffic. Also, most of the past studies focused on freeways only, in 

which the effect of weather on traffic speed could be easily confounded by traffic congestion. These 

models used data with incomplete spatial/temporal representation, limiting their ability to take a full 

account of the variation in winter RSCs.    

 

1.3 Research Objectives 

With the problems of the current WRM performance measures mentioned in the previous section, this 

research has the following two major objectives: 

1. To investigate the impact of winter weather and RSC on the average traffic speed of rural 

highways with the intention of examining the feasibility of using traffic speed from traffic 

sensors as a new WRM performance measure; and 

2. To develop statistical models and methodologies to estimate/classify RSC based on traffic 

and weather data. 

The main task for Objective 1 is to develop and compare models calibrated with different time 

aggregation intervals, highway types and statistical algorithms, quantify the impact of winter weather 

and road surface factors on average traffic speed, and examine if average traffic speed is sensitive to 

winter weather, especially RSC on rural highways. Objective 2 addresses the problem of inferring 

RSC based on traffic speed and other factors. The main task is to develop reliable RSC classification 
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models/frameworks using data that is easy and inexpensive to collect such as traffic speed and 

weather factors. 

 

1.4 Thesis Organization 

This thesis consists of five chapters:  

Chapter 1 introduces the research problem and objectives and some basic concepts. 

Chapter 2 reviews the existing methods, standards, guidelines and policies used for WRM 

performance measurement in practice. It also reviews previous studies on the mobility impact of 

winter weather and road surface factors as well as RSC monitoring and estimation. 

Chapter 3 calibrates and compares different types of models and describes the results of the 

investigation of the impact of winter weather and RSC on the average traffic speed of rural highways. 

Chapter 4 presents the calibration process, validation and discussion of the RSC classification 

model/framework. 

Chapter 5 summarizes the major findings and provides recommendations for future studies. 
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Chapter 2 
Literature Review 

Much research work has been carried out on WRM performance measurement. This chapter covers a 

review of the WRM performance measurement system and some of the most widely used WRM 

performance measures in practice. Additionally, past studies on factors affecting average traffic speed 

in winter seasons are reviewed and summarized. Finally, previous research on equipment and 

methodologies for winter RSC monitoring and estimation is presented and discussed.  

2.1 WRM Performance Measurement 

Winter road maintenance operations are performed to minimize winter weather related collisions and 

the impact of adverse winter weather on travel times. This section reviews the WRM performance 

measurement system and the pros and cons of traditional WRM performance measures. 

2.1.1 Performance Measurement System 

According to a handbook published by the U.S. Department of Energy (1995), performance measures 

quantitatively summarize some important indicators of the products, services, and the process that 

produces them. Performance measurement is the process of collecting and analyzing data and 

assessing the performance of a system, individual, or organization (FHWA, 1996). It demonstrates 

with convincing evidence that the activities and work have been done towards achieving the targeted 

results and pre-specified objectives (Schacter, 2002).  

The fundamental reason why performance measurement is important is that it makes accountability 

possible, which is significant to decision making. Kane (2005) suggested that the purpose of 

measuring performance by transportation agencies is to advise customers how well transportation 

agencies are doing at improving transportation services. A report prepared by the Transportation 

Association of Canada (2006) also suggested that the most common purpose of conducting 

performance measurement is the need to be accountable to the public. The public expects to know 

how their funds are spent on maintaining the transportation system, and the effect of expenditures 

upon it. Performance measurement is essential to that process.  

Central to a performance measurement system is a set of indicators, numerical or non-numerical, 

which measure different aspects of the activities. Most literature suggested that input, output, and 

outcome are considered to be the three most common aspects of performance related activities. 
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Delorme et al. (2011) in their report about performance measurement and its indicators from the 

perspective of government decision making and policy evaluation, classified performance measures 

into five types, namely input, output, outcome, impact and context. Similarly, Probst (2009) 

suggested that inputs, outputs, efficiency, service quality and outcome should be taken into 

consideration when measuring local government decision performance.  

When it comes to selecting proper performance measures, firstly, it is important to determine what 

aspect of the activity is to be measured. Input measures reflect the resources that are used in the 

activity process, output measures reflect the products of the activity, and outcome measures reflect 

the impact of the products and are directly related with the agency’s strategic goals (Dalton et al, 

2005). Secondly, it is also significant to consider data availability, quality, the cost, and time in data 

collection. It must be possible to collect the necessary data with relatively high quality, but low cost. 

The performance measure that is to be adopted must be possible to be generated with the existing 

technology and resources available to transportation agencies. According to a report by the 

Transportation Research Board (TRB) (2000), there are other issues to be considered when selecting 

performance measures: 

• Forecastability: Is it possible to compare future alternative projects or strategies using this 

measure?  

• Clarity: Is it can be understood by transportation professionals, policy makers and the public?  

• Usefulness: Does the measure reflect the issue or goal of concern? Does it capture cause-and-

effect between the agency’s actions and condition?  

• Ability to diagnose problems: Is there a connection between the measure and the actions that 

affect it? Is the measure too aggregated to be helpful to agencies trying to improve 

performance?  

• Temporal Effects: Is the measure comparable across time?  

• Relevance: Is the measure relevant to the planning and budgeting processes? Will changes in 

activities and budget levels affect a change in the measure that is apparent and meaningful? 

Can the measure be reported with a frequency that will be helpful to decision makers?  
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2.1.2 WRM Performance Measurement System 

Qiu (2008) proposed a general performance measurement system from the perspective of WRM, and 

suggested that to develop a comprehensive performance measurement system, the following factors 

need to be taken into consideration:  

• Input measures: indicating the amount of resource used (e.g. equipment, material, and 

labor); 

• Uncontrollable factors: indicating those factors that are controllable in normal conditions, 

but related with performance (e.g. natural hazard and emergency); 

• Output measures: indicating efficiency of resources transformed to service (e.g. the lane-

miles plowed or salted); and 

• Outcome measures: reflecting effectiveness of the operation on pre-specified objectives 

(e.g. lower travel costs to customers). 

Maze (2009) systematically summarized the performance measurement system for WRM. As 

shown in the ‘Fish Bone Model’ in Figure 2.1, the government pays contractors to invest in WRM 

equipment, chemical materials and personnel (i.e. the input). Contractors then conduct WRM 

operations before, during and after snow events and make sure that the road surface is clean and the 

bare-pavement regain time meets the standard specified on the WRM guidelines (i.e. the output). 

Roadway users benefited from WRM in terms of both safety and mobility while travelling (i.e. the 

outcome).  

 

Figure 2.1 WRM Performance Measurement Model (Maze, 2009) 

 Terrain &       Solar                                              Wind             Air          
Geography      Energy   Precipitation   RSC         Speed       Temperature 

Anti-        Cycle       Truck   Abrasives   Salt        RWIS     Operation 
Icing        Length                                                                 Management 

Inputs 
- Labor 
- Equipment 
- Materials 
- Management 
- Information 

Snow and Ice Removal - Outputs 

Outcomes 
ü - Safety & Mobility 
ü - Travelers  

  Satisfaction (LOS) 
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Qiu (2008) and Maze (2009) have suggested different types of measures that can be used as 

indicators of WRM performance while these measures vary from one to another in terms of cost, data 

availability, measuring frequency, reliability and repeatability. The next section will review some of 

the most widely used WRM performance measures in practice, and discuss their pros and cons. 

2.1.3 Current WRM Performance Measures 

Effective WRM performance measures are significant to both the government and maintenance 

contractors. On one hand, by measuring maintenance performance and benchmarking outcomes, the 

government is able to tell how well the job is done by maintenance contractors. On the other hand, 

maintenance contractors can make more informed decisions, and conduct better planned maintenance 

operations toward specific objectives (Qiu, 2008). Many performance measures have been developed 

in the past to measure different aspects of WRM. 

(1) Input Measures 

Input measures indicate the amount of resources (e.g. labor, equipment and materials) utilized to 

perform WRM operations, therefore are directly associated with maintenance costs. For instance, for 

studying the budget and forecast of maintenance equipment needs, Adams et al. (2003) utilized 

automated vehicle location (AVL), global positioning system (GPS), material sensors and equipment 

sensors to collect data, and systematically developed a set of performance measures dealing with 

material application rate, material inventory and equipment cost in the State of Wisconsin. For 

example, the following equations show the measures for quantity of material used for each event and 

patrol section: 

𝑄!"#$,!,! = [ 𝑀𝐴𝑅!"#$,!,!,!/2𝑌!"#$,!,!]𝐿!"#$,!,!
!!"#$,!,!

!!!
                               (2.1) 

𝑄!"#$,!,! = [ 𝑀𝐴𝑅!"#$,!,!,!/2𝑌!"#$,!,!]𝐿!"#$,!,!
!!"#$,!,!

!!!
                            (2.2) 

𝑄!",!,! = [ 𝑀𝐴𝑅!",!,!,!/2𝑌!",!,!]𝐿!",!,!
!!",!,!

!!!
                                  (2.3) 

𝑄!"#$_!"#,!,! = [ 𝑀𝐴𝑅!"#$_!"#,!,!,!/𝑌!"#$_!"#,!,!]𝐿!"#$_!"#,!,!
!!"#$_!"#,!,!

!!!
                 (2.4) 
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Where, 

 𝑄!"#$%&"',!,! = Quantity of material used for each event and patrol section 

 𝑀𝐴𝑅!"#$%&"',!,!,! =   𝑦!! material application rate reading for patrol section p and for the event e 

 𝐿!"#$%&"',!,! = Number of treated lane miles in patrol section p over which material was 

distributed during event e 

 𝑌!"#$%&"',!,! = Total number of material application rate readings for event e and patrol section p 

 y = Index for material application rate reading 

 e = Index for event 

 

The authors suggested that developing new performance measures is time consuming, and the 

measures in the paper can serve as a quick starting point for agencies who want to utilize winter 

vehicle data to improve the performance of WRM.  

Input measures have the advantages of controllability and are the easiest to monitor; however, as 

stated by Maze (2009), because inputs are applied at the beginning of the winter maintenance process, 

they are not directly linked to WRM objectives and goals, and cannot provide measures of quality, 

efficiency or effectiveness of WRM. 

   

(2) Output Measures 

Output measures represent the amount of work that is accomplished by transportation agencies or 

maintenance contractors using WRM resources. Typical output measures are lane-kms 

plowed/salted/sanded and lane-kms to which anti-icing chemical was applied (Maze, 2009; Qiu, 

2008). Fallah-Fini & Triantis (2009) utilized Data Envelopment Analysis (DEA) in combination with 

regression analysis, analytic hierarchy process and classification methods to measure the efficiency of 

winter maintenance operations on highways from 2003 to 2007 within eight counties across the State 

of Virginia, US. According to the authors, the total area served (TAS), which represents the amount 

of road surface maintained by each county, was considered as one of the WRM output variables. The 

authors suggested that TAS can affect the performance of the maintenance crew and consequently the 

quality of the maintenance efforts performed to meet the required level of service. Similarly, Adams 
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et al. (2003) also suggested that the following equations can be used measure the total operating 

distance for different equipment: 

For plow and scraper units: 

𝐸𝐷! = (𝐿𝑀!" − 𝐿𝑀!"#$)!
!!

!
                                               (2.5) 

For spreader and spray bar units: 

𝐸𝐷! = (𝐿𝑀!"" − 𝐿𝑀!")!
!!

!
                                                (2.6) 

For truck units: 

𝐸𝐷! = (𝐿𝑀!"#$%_!"#$"%_! − 𝐿𝑀!"#$%_!!"#$%_!)!
!!

!
                             (2.7) 

Where, 

𝐸𝐷! = Total operating distance for each attachment unit𝐾!  = Total number of time periods 

equipment unit u was in use 

k = Index for time period for equipment use 

LM = Linear Measures 

u = Index for equipment unit 

 

Although output measures, like those mentioned above, are more meaningful compared with input 

measures, they can only measure the physical accomplishment of WRM, and cannot reflect the level 

of impact on the ultimate goal or the effectiveness of WRM. 

 

(3) Outcome measures 

Outcome measures assess the effectiveness of winter maintenance operations, and can clearly 

reflect the impact of the operations on highway mobility and safety as well as customer satisfaction. 

Therefore, outcome measures are considered the most meaningful to WRM management.  
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According to a survey conducted by the CTC & Associates LLC of Wisconsin DOT Research & 

Library Unit (2009), almost 70% of transportation agencies use bare pavement regain time or similar 

measures as the main indicator of WRM. One major problem of bare pavement regain time is that it is 

usually reported by maintenance or quality assurance personnel based on periodic visual inspection 

during and after snow events, therefore it lacks of objectivity and repeatability (Feng et al., 2010). 

Another problem is it can only reflect the road condition after snow storms, but it cannot capture the 

variation during snow storms.  

Many transportation agencies around the world including US, Canada, Japan and Europe 

(especially Finland and Norway) have found that the friction level correlates to collision risk, traffic 

speed and volume so that it can be used as an acceptable measure for snow and ice control operations. 

Friction level is a value that ranges from 0 to 1 with 0 indicating the most slippery/icy surface 

condition and 1 indicating a bare/dry surface condition. Some studies have been conducted regarding 

using friction level as WRM performance measurement. For example, Jensen et al. (2013) from Idaho 

DOT proposed Winter Performance Index (WPI) with the following form: 

 

𝑆𝑡𝑜𝑟𝑚  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦  𝐼𝑛𝑑𝑒𝑥 = 𝑊𝑆 𝑀𝑎𝑥 +𝑊𝐸𝐿 𝑀𝑎𝑥 + 300/𝑆𝑇(𝑀𝑖𝑛)              (2.8) 

Where, 

𝑊𝑆 = Wind Speed (mph) 

𝑊𝐸𝐿 = Water Equivalent Layer (millimeters) 

𝑆𝑇 = Surface Temperature (degrees F) 

 

𝑊𝑖𝑛𝑡𝑒𝑟  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒  𝐼𝑛𝑑𝑒𝑥   =   𝐼𝑐𝑒_𝑈𝑝  𝑇𝑖𝑚𝑒  (ℎ𝑜𝑢𝑟𝑠)  /  𝑆𝑡𝑜𝑟𝑚  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦  𝐼𝑛𝑑𝑒𝑥     (2.9)  

Where: 

𝐼𝑐𝑒_𝑈𝑝  𝑇𝑖𝑚𝑒 is when the friction level is below 0.6 for at least a 30 minute period, and the goal is 

to have a Winter Performance Index of 0.50 or less. 

Dahlen (1998) reported that Norway is also using friction level to measure WRM performance. On 

high volume roads, a friction level of 0.4 must be regained within a certain amount of time that is 

dependent on the road’s annual average daily traffic (AADT). For example, a friction level of 0.4 
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must be regained within four hours after a snow storm on a road with an AADT of between 3001 and 

5000.  

Some literatures, however, claimed that friction models highly depend on data quality and 

availability, therefore its large scale application is still questionable at this stage (Al-Qadi, et al., 2002; 

CTC & Associates LLC, 2007).  

Apart from the above measures, many other WRM performance measures have been proposed in 

the past. Blackburn et al. (2004) developed a pavement snow and ice condition index (PSIC) to 

evaluate the effectiveness of snow and ice control strategies and tactics (see Appendix B). The index 

was used to evaluate both within-event and end-of-event LOS achieved by winter maintenance 

treatments.  

Table 2.1 and 2.2 show the within and after event LOS categories based on the PSICs and the time 

to achieve a PSIC of 1 or 2. Table 2.3 shows the LOS expectations for different strategies and tactics 

based on the LOS categories in Table 2.1 and 2.2. 

 

Table 2.1 Within Event LOS Categories 

Within Event LOS PSIC 
Low 5 and 6 

Medium 3 and 4 
High 1 and 2 

 

Table 2.2 After Event LOS Categories 

After Event LOS Time to Achieve a PSIC 
of 1 or 2 (hour) 

Low    > 8.0 
Medium 3.1 – 8.0 

High 0 – 3.0 
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Table 2.3 Strategies and Tactics and LOS Expectations 

Strategies and Tactics 

Within Event LOS After Event LOS 

Low Medium High Low Medium High 

Anti-icing   X   X 

De-icing X X  X X  

Mechanical Alone X   X   

Mechanical and abrasives X   X   

Mechanical and anti-icing   X   X 

Mechanical and de-icing X X  X X  
Mechanical and pre-wetted 

abrasives X   X   

Anti-icing for frost/black ice/icing 
protection   X   X 

Mechanical and abrasives 
containing > 100 lb/lane-mile of 

chemical 
X X X X X X 

Chemical treatment before or early 
in event, mechanical removal 

during event, and de-icing at end 
of event 

X    X  

 

A customer satisfaction survey is also used in some areas to measure the WRM performance. For 

example, Kreisel (2012) conducted a public satisfaction survey about the local government service in 

the Strathcona County, Alberta. In the section about WRM, the author found that more people living 

in the rural areas felt the quality of WRM was higher than those living in the urban areas (shown in 

Figure 2.2). By comparing historical data from 2008 to 2012, the author also found that the 

percentage of urban residents who felt the WRM work was either very high or high decreased to 

44.4% in 2012, while it was 50.1% in 2011 and 45.7% in 2010. On the other side, the percentage of 

rural residents who felt the WRM work was either very high or high is 60.9% in 2012. This number is 

close to 2011 (61.1%), but higher than 2010 (56.3%), 2009 (53.1%) and 2008 (58.9%). Based on the 

survey results, the author finally suggested maintenance contractors to clear and sand residential side 

streets more often, and graders and sanders should get out earlier than they do to deal with the snow. 
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Figure 2.2 Quality of Winter Road Maintenance Urban and Rural Comparisons (Kreisel, 2012) 

 

Although outcome measures can produce the most meaningful results, they also have a series of 

problems. Firstly, because of the limitation of data collection methods, some data used in these 

measures is still subjective and costly (e.g. bare pavement regain time). Other models highly depend 

on data quality and availability (e.g. friction models), therefore cannot be applied without enough 

properly formatted datasets (Maze, 2009; Qiu, 2008). Secondly, models used for estimating outcomes 

are often relatively complex and are time-consuming to calibrate. This leaves a huge barrier to 

practical usage. Table 2.4 illustrates some of the mostly used WRM performance measures and their 

evaluation metrics. 

Table 2.4 Evaluation Metrics for WRM Performance Measures 

Category Measure Meaningful Controllable Easy to 
Monitor Robust Support 

Benchmarking 

Input 
Salt Usage L H H H L 

Work Hours L H H H L 

Output 

Lane-km Plowed M M H H L 

Lane-km Salted M M H H L 
Total cost per lane-

km M M H H L 

Outcome 

Average Collision 
Rate H L H L L 

BP Regain Time H M H M M 

Friction Level H M L M M 
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2.1.4 Using Traffic Speed as a WRM Performance Measure 

Compared with other WRM performance measures, traffic speed is easier and cheaper to monitor and 

has high reliability. Therefore, it could be a meaningful performance measure of WRM, and can 

easily be used to support benchmarking. This section will review some of the previous studies of 

using traffic speed as a WRM performance measure. 

Lee et al. (2008) conducted a study to investigate vehicle speed changes during winter weather 

events using the regression tree method, and proposed speed recovery duration (SRD) as a new WRM 

performance measure. A total of 954 winter maintenance logs collected from 24 counties in the State 

of Wisconsin over three seasons were analyzed. Figure 2.3 shows the definition of SRD, and the 

following linear model shows how SRD is calculated: 

 

𝑆𝑅𝐷   =   9.68   +   9.926 ∗𝑀𝑆𝑅𝑃𝐶𝐸𝑁𝑇   

−  0.866 ∗ 𝑆𝑡𝑜𝑆2𝑀𝑆𝑅   +   0.493 ∗ 𝐶𝑟𝑒𝑤𝐷𝑒𝑙𝑎𝑦𝑒𝑑   −   0.222 ∗ 𝑆𝑛𝑜𝑤𝐷𝑒𝑝𝑡ℎ          (2.10)  

Where, 

𝑀𝑆𝑅𝑃𝐶𝐸𝑁𝑇  is maximum speed reduction percent 

𝑆𝑡𝑜𝑆2𝑀𝑆𝑅 is time to maximum speed reduction after snowstorm starts 

𝐶𝑟𝑒𝑤𝐷𝑒𝑙𝑎𝑦𝑒𝑑 is time lag to deploy maintenance crew after snowstorm starts 

𝑆𝑛𝑜𝑤𝐷𝑒𝑝𝑡ℎ is snow precipitation 
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Figure 2.3 Speed Recovery Duration as a Performance Measure (Lee et al., 2008) 

The author concluded that changes in vehicle speed are correlated with changes in RSC during 

winter snow events and thus recovery in vehicle speed can be a good indication that WRM has taken 

in effect. SRD derived from vehicle speed data was found to be a good performance indicator of 

WRM. 

Qiu and Nixon (2009) used a traffic data related WRM performance measure, which is based on 

the comparison between the actual measured speed reduction with the acceptable speed reduction 

during a snow storm. The acceptable speed reduction is calculated based on a storm’s severity, which 

is an index defined with the consideration of several weather-related factors.  

 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒  𝑆𝑝𝑒𝑒𝑑  𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛   =   𝐵𝑉𝑆𝑅   ∗   𝑆𝑆𝐼                               (2.11)  

Where, 

𝐵𝑉𝑆𝑅 (Base Value of Speed Reduction) is the maximum acceptable speed reduction for a given 

route under the worst storm.  

𝑆𝑆𝐼 (Storm Severity Index) is generated based on the storm type, wind level and pavement 

temperatures during and after the storm. 
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Figure 2.4 shows the base values of speed reduction and the SSI equation. As can be seen in the 

figure, different types of routes have different base values of speed reduction (i.e. type A, B and C). 

SSI is calculated by considering storm type, storm temperature, wind conditions in the storm, early 

storm behavior, post storm temperature and post storm wind conditions. 

 

 

Figure 2.4 Base Values of Speed Reduction and SSI Equation (Iowa Highway Research Board, 

2009) 

 

Based on Qiu and Nixon’s model, Greenfield et al. (2012) proposed a revised 𝑆𝑆𝐼 calculation 

model (shown below) and applied it for real-time winter road performance analysis. The new model 

takes into account uncertainty in the sensor-based inputs and yielded better performance both on 

estimating in-storm and post-storm effect on traffic speed.  

 

𝑆𝑆𝐼 = 𝑐 ∗ (!
!
∗ 𝐸! ∗ 𝐸! ∗ 𝐸! + 𝐵! − 𝑎 )!.!                                   (2.12) 
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Similarly, Kwon et al. (2012) developed a traffic data-based automatic process to determine the 

road condition recovered times that can be used as the estimates for the bare pavement regain time.  

Firstly, the authors tried to identify speed change points in a speed-time space with smoothed and 

quantized speed data, for example, speed reduction starting time (SRST), low speed time (LST) and 

recovery starting time (RST) as shown in Figure 2.5. Secondly, the author’s defined speed recovered 

time to FFS (SRTF) and speed recovered time to congested speed (SRTC) are as follows: 

Time point  𝑡 satisfies the following condition is considered as SRTF: 

 

𝑈!,!,! ≥ 𝑈!,!"#"$ − ∆ 𝑓𝑜𝑟  𝑜𝑛𝑒  ℎ𝑜𝑢𝑟                                          (2.13) 

Where, 

 𝑈!,!"#"$ is the speed limit at location i 

 ∆ is parameter to reflect the measurement error, only for 𝑈!,!"#"$ ≥ 60  𝑚𝑝ℎ 

The initial SRTC is when time point 𝑖 satisfies the following conditions in the quantized speed-time 

graph: 

𝑈! − 𝑈! < 0
𝐾! − 𝐾! > 0       𝑤ℎ𝑒𝑟𝑒  𝑗 > 𝑖  𝑓𝑜𝑟  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  2  𝑡𝑖𝑚𝑒  𝑖𝑛𝑒𝑟𝑣𝑎𝑙𝑠 

 

Figure 2.5 Identification of SRST, LST, RST of Speed Variation During Snow Event (Kwon et 

al., 2012) 
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Then, the authors tried to identify the road condition recovered (RCR) time with both SRTF and 

SRTC cases. For the case with SRTF, if the speed level at RST <= (50 – β) mph, RCR time equals the 

last significant speed change point before the speed reaches its posted speed limit. Else, RCR time 

equals the last significant speed change point before SRTF where β = the threshold range parameter, 

e.g., 2 mph. For the case with SRTC, RCR is defined as the time when the significant speed change 

occurs between RST and SRTC. The model was then validated with data collected on two routes for 

four snow events. It was found that three of the four events, 64-65% of all the segments have less than 

30 minute differences between the estimated road condition recovered times and the reported bare 

pavement regain times. The fourth event on January 23, 2012, has only 44% of all the segments with 

less than a 30 minute difference. 

Using traffic speed as a WRM performance measure is relatively new compared with traditional 

performance measures, and still lacks systematic research. Most of the above studies focused on the 

speed reduction during winter snow events; however, few studies systematically analyzed the effect 

of both weather and RSC on traffic speed. Since both weather and maintenance activities can impact 

traffic speed, the effect of weather must be considered before making any assumptions about the 

quality of the WRM using traffic speed (Greenfield et al., 2012). The next section will review some 

of the previous studies on both weather and RSC factors on traffic speed. 

 

2.2 Factors Affecting Winter Traffic Speed 

Traffic speed on highways can be influenced by many factors, such as time of day, driving habits, the 

vehicle, traffic volume, highway class and design, etc. During winter seasons, both weather and RSC 

play an important role in traffic speed change on highways. This section reviews studies on the effect 

of weather and RSC on winter road mobility and compares different modelling methodologies.  

Much research work has been carried out to address the impact of adverse weather on traffic speed. 

HCM (2010) provides information about the impact of weather condition on traffic speed on freeways. 

Two precipitation categories are considered: light and heavy snow. Accordingly, there is a drop of 8-

10 percent in FFS due to light snow while heavy snow can reduce the FFS between 30–40 percent 

compared with normal conditions. Another research conducted by FHWA (1977) reported that the 

freeway speed reduction caused by adverse road conditions are 13% for wet and snowing, 22% for 
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wet and slushy, 30% for slushy in wheel paths, 35% for snowy and sticking and 42% for snowing and 

packed.  

Ibrahim and Hall (1994) conducted a study to quantify the effect of adverse weather on freeway 

speed using the data collected on Queen Elizabeth Way (QEW), Mississauga, Ontario. It was found 

that light snow resulted in a drop of 3 km/h in FFS, while heavy snow resulted in a drop of 37.0 to 

41.8 km/h (35 to 40 percent). Although the authors considered two intensity categories of rain and 

snow, other weather factors such as temperature and visibility were not considered. Also, the data 

used in this analysis is limited, covering only six clear, two rainy, and two snowy days. Therefore the 

results may not be reliable and applicable to other sites.  

Both Liang et al. (1998) and Kyte et al. (2001) took additional variables into consideration: 

visibility, wind speed and RSC. Liang et al. (1998) reported that under the 10 km visibility threshold, 

every one km reduction in visibility resulted in a reduction of 3 to 5 km/h in average traffic speed. 

Every one degree reduction in temperature resulted in reduction of  2 to 4 km/h. Snow covered road 

surface resulted in a reduction of 3 to 5 km/h. The effect of wind speed was found to be significant 

over 40 km/h where it reduced vehicle speed approximately by 1.1 km/h for every kilometer per hour 

that the wind speed exceeded 40 km/h. The regression results are summarized in Table 2.5. 

 

Table 2.5 Model Calibration Results (Liang et al., 1998) 
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Kyte et al. (2001) reported that when visibility is lower than 0.28 km (the critical visibility), traffic 

speed reduced by 0.77 km/h for every 0.01 km below the critical visibility. Wet or snow covered 

pavement resulted in a speed reduction of 10 to 16 km/h. High wind speed resulted in a speed 

reduction of over 11 km/h. A combination of snow-covered pavement, low visibility and high wind 

speed resulted in a speed reduction of about 35 to 45 km/h. The model calibrated is shown below: 

 

𝑠𝑝𝑒𝑒𝑑   =   100.2  –   16.4𝑠𝑛𝑜𝑤  –   9.5𝑤𝑒𝑡   +   77.3𝑣𝑖𝑠  –   11.7𝑤𝑖𝑛𝑑                  (2.14)  

Where, 

𝑠𝑝𝑒𝑒𝑑 is passenger-car speed (km/h), 

𝑠𝑛𝑜𝑤 indicating presence of snow on roadway, 

𝑤𝑒𝑡 indicating that pavement is wet, 

𝑣𝑖𝑠 is visibility variable that takes on value of 0.28 km when visibility exceeds 0.28 km and value 

of visibility when visibility is below 0.28 km, and 

𝑤𝑖𝑛𝑑 indicating that wind speed exceeds 24 km/h. 

 

Compared with Liang et al.’s study, Kyte et al. used more RSC categories (dry, wet and snow/ice 

covered) while Liang et al. used more factors such as temperature and day/night. However, both 

studies did not consider precipitation type and intensity. Using two RSC categories is also limited as 

it cannot capture the full range of the RSC variation during and after snow events. 

Similar with Ibrahim and Hall’s research, Knapp et al. (2000) utilized multiple regression analysis 

to model the relationship between traffic speed and weather factors using data collected over seven 

winter snow events in 1998 and 1999 in Iowa. As is shown in Table 2.6, poor visibility and the snow 

covered roadway resulted in about a 6.24 km/h (3.88 mph) and an 11.64 km/h (7.23 mph) reduction in 

average vehicle speed, respectively.  
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Table 2.6 Model Calibration Results (Knapp et al., 2000) 

 

 

There are some limitations with this study. First, the research data is collected for the northbound 

traffic flow at one site only (i.e. only 83 data points were used). Second, due to the lack of data 

collection facilities, some of the RSC and visibility data were manually collected, therefore their 

reliability and objectivity are limited. As mentioned by the authors, the results generated by this study 

should be used with caution.   

Agrwal et al. (2005) investigated the impact of different weather types and intensities on urban 

freeway traffic flow characteristics using traffic and weather data collected in the Twin Cities, 

Minnesota. Rain, snow, temperature, wind speed and visibility were considered, and each of these 

variables were categorized into 3 to 5 categories by intensity ranges. Average traffic speeds were 

calculated for different weather types and weather intensities. The research finally suggested that light 

and moderate snow show similar speed reductions with the HCM 2000 while heavy snow has 

significantly lower impact on speed reduction than those recommended by the manual. In addition, it 

was found that lower visibility caused 6% to 12% reductions in speed while temperature and wind 

speed had almost no significant impact on the average traffic speed. Table 2.7 shows the comparison 

between the model results and those values suggested on HCM 2000. 
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Table 2.7 Comparison of Model Results with HCM 2000 (Agrwal et al., 2005) 

 

 

Rakha et al. (2007) published results of a systematic study on the impact of inclement weather on 

key traffic stream parameters, including FFS, speed-at-capacity, capacity, and jam density. The 

analysis was conducted using weather data and loop detector data obtained from Baltimore and Twin 

Cities in the US. A general multiple regression model was proposed to estimate the weather 

adjustment factor (WAF) for key traffic stream parameters. The model is shown below and the 

calibration results are shown in Table 2.8: 

 

𝐹   =    𝑐!   +   𝑐!  𝑖   +   𝑐!  𝑖   +   𝑐!  𝑣   +   𝑐!  𝑣   +   𝑐!𝑖𝑣                                 (2.15) 

Where, 

𝐹 is WAF 

𝑖 is the precipitation intensity (cm/h) 

𝑣 is the visibility (km) 

𝑣𝑖 is the interaction term between visibility and precipitation intensity 
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Table 2.8 Model Calibration Results (Rakha et al., 2007) 

 
 

The results revealed that compared to normal conditions, light snow (0.01 cm/h) produces 

reductions in FFS of 5 to 16 percent. Heavy snow intensity (0.3 cm/h) resulted in FFS reduction of 5 

to 19 percent. FFS reductions in the range of 10 percent are observed for a reduction in visibility from 

4.8 to 0.0 km. However, Rakha et al.’s study suffered from small sample size (8 from Baltimore and 

32 from Twin Cities) and few weather factors (visibility and precipitation intensity only). 

Camacho et al. (2010) also utilized multiple regression analysis to model the relationship between 

FFS and traffic and weather factors such as truck percentage, visibility, wind speed, precipitation 

intensity, air temperature and snow layer depth. Data from 2006 to 2008 was collected from fifteen 

freeway sites in northwestern Spain. Four regression models were proposed correspond to four 

different types of climate: \ 

 

• Climate 1: without precipitation and air temperature is above 0°C: 

𝑣 = 𝑎 + 𝑏 ∗ 𝐼! + 𝑐 ∗ log
!"#
!,!!!

+𝑊 ∗ 𝑑 ∗ (𝑉! − 8)                            (2.16) 
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• Climate 2: without precipitation and air temperature is below 0°C:  

𝑣 = 𝑎 + 𝑏 ∗ 𝐼! + 𝑐 ∗ log
!"#
!,!!!

+ 𝑑 ∗ 𝑉!                                      (2.17) 

• Climate 3: with precipitation and air temperature is above 0°C (rain condition):  

𝑣 = 𝑎 + 𝑏 ∗ 𝐼! + 𝑐 ∗ log
!"#
!,!!!

+𝑊 ∗ 𝑑 ∗ 𝑉! − 8 + !
!!!

                       (2.18) 

• Climate 4: with precipitation and air temperature is below 0°C (snow condition):  

𝑣 = 𝑎 + 𝑏 ∗ 𝐼! + 𝑐 ∗ log
!!"
!,!!!

+𝑊 ∗ 𝑑 ∗ 𝑉! − 8 + !
!!!

+ 𝑔 ∗ 𝑠                (2.19) 

 

Table 2.9 Model Calibration Results (Camacho et al., 2007) 

 

 

Model calibration results are shown in Table 2.9. The authors reported that snow layer depth could 

cause reduction in speed, ranging from 9.0 to 13.7 km/h. The effect of visibility loss had a 

logarithmical form and has a large effect on speed reduction when it is low. Wind speed affects speed 

only when it goes beyond 8 m/s. It was also found that the effect of weather factors (i.e. visibility, 

wind speed and precipitation intensity) on vehicle speed was higher in snow conditions than in the 

other three conditions; the effects differed between different locations.  
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Camacho et al.’s study was well designed, utilizing a large dataset covering three years and 15 sites. 

However, their study also suffers several limitations. For instance, like other studies, RSC was not 

considered in the study. Although snow layer factor was included in the models as one of the 

independent variables, its data was collected by meteorological stations at roadside rather than by 

embedded surface sensors. Secondly, the assumption made for classifying climate types is not reliable. 

The categorization of climate is helpful for understanding the relationship between speed reduction 

and weather factors under different weather conditions; but, the weather stations used in this research 

could not distinguish between rain and snow precipitation.Assumptions were introduced to 

distinguish rain and snow based on temperature (above 0°C was assumed as rain; below 0°C was 

assumed as snow).  

Zhao et al. (2011) proposed a new weather indexing framework for weather factors. Instead of 

using sensor data directly, the framework transformed the data into weather indices. These indices 

areVisibility_Index, WeatherType_Index, Temperature_Index, WindSpeed_index and 

Precipitation_Index. The calibrated model is shown in the following equation: 

 

𝐴𝑣𝑔  𝑆𝑝𝑒𝑒𝑑 =   7.23   +   0.770   ∗   𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦!"#$% +   0.358   ∗   𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑇𝑦𝑝𝑒!"#$% +   0.132   ∗

  𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝐼𝑛𝑑𝑒𝑥   −   0.0469   ∗   𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑_𝐼𝑛𝑑𝑒𝑥   −   1.92   ∗

  𝐶𝑢𝑚𝑢𝑃𝑟𝑒𝑐𝑖𝑝_𝐼𝑛𝑑𝑒𝑥  (𝑈𝑝𝑑𝑎𝑡𝑒12𝑎𝑚)   +   0.853   ∗   𝑁𝑜𝑟𝑚_𝐻𝑟_𝑆𝑝𝑒𝑒𝑑  –   0.935   ∗   𝐷𝑎𝑦_𝐼𝑛𝑑𝑒𝑥 (2.20) 

  

The calibrated regression model suggested that an increase in the visibility index (better visibility) 

leads to higher speeds, with the speed increasing by about 2 km/h for each 1 km increase in visibility. 

The coefficient of WeatherType_Index indicated that the more severe the weather type, the slower the 

traffic speed. Moreover, temperatures above the freezing point results in a 1.58 km/h higher travelling 

speed compared to temperatures below freezing. High wind speed has a negative impact on traffic 

speed, with the speed decreasing by about 1.3 km/h for each 10 km/h increase in wind speed. The 

report mentioned that to ensure a proper match between weather (hourly data) and traffic data (10-

minute interval data), traffic data observed during the last 10 minute interval of every hour was used 

to match the weather data (e.g. 0:50 – 1:00am, 1:50-2:00pm). This indicates that the traffic data 

(average traffic speed, volume) may not be representative of that hour. Moreover, RSC was not used 
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in the weather indexing framework so that the relationship between traffic speed and RSC cannot be 

revealed by the model.  

Kwon et al. (2013) examined the relationship between freeway traffic capacity and FFS and 

various weather and RSC factors. Traffic, weather and RSC data were used to calibrate multiple 

linear regression models for estimating capacity and FFS as a function of several weather variables, 

such as snow intensity, visibility, air temperature, road surface index (RSI) and wind speed. As is 

shown in Table 2.10, it was found that snow intensity is highly correlated with visibility while both 

can statistically significant affect FFS. Hourly snow intensity rates of 2.0 mm/h and 15.0 mm/h would 

cause percent reductions of 1.8% and 13.5% in FFS, respectively. As visibility increases, FFS also 

increases. Visibility greater than 1.0 km had less than 5% reductions in FFS. Increased RSI (i.e., 

better road conditions) are correlated with increased FFS. For example, under the given snow 

intensity of 5 mm/h, at RSI = 0.2 (snow covered), FFS is reduced by 17.01%, whereas at RSI = 0.8 

(bare wet), FFS is reduced about 11.01%.  

 

Table 2.10 Model Calibration Results (Kwon et al., 2013) 
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The authors finally suggested that larger dataset with wider study area coverage can improve the 

applicability of the developed models. In addition, the potential non-linear effect should be tested and 

additional factors, such as number of lanes and road geometry, should be considered as well if 

possible. 

Donaher (2014) conducted a research with six years’ data collected from 21 sites in Ontario, 

Canada. The author developed two types of regression models, namely, hourly based and event based. 

For hourly based models, to isolate the effect of volumes approaching capacity on speed on non-rural 

freeways, the traffic data was divided into two groups “rural” and “urban” highways. Each event hour 

was paired with the typical median speed established based on non-event data. The difference 

between the observed median speed and the typical median speed was used as the dependent variable 

for regression modelling. Weather factors and RSI were used as independent variables. For event 

based models, each storm event was summarized in terms of weather and RSC factors over the 

duration of the event. Each event is also compared with average conditions of a clear weather period 

in the week before or after of the same duration. The event model is shown below: 
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Table 2.11 Event Based Model (Donaher, 2014) 

 

 

 

The hourly model for rural sites is shown below: 

𝛥𝑉 = −15.287 − 0.033 ∗𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 + 0.246 ∗ 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦   −   0.472 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 +

10.887 ∗ 𝑅𝑆𝐼 + 4.378 ∗ 𝑉/𝐶   + 2.903 ∗ 𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡                         (2.21) 

 

The hourly model for urban sites is shown below: 

𝛥𝑉 = −22.192 + 0.420 ∗ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.048 ∗𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 + 0.527 ∗ 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦   −

  0.938 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 17.143 ∗ 𝑅𝑆𝐼 − 4.472 ∗ 𝑉/𝐶   +   2.364 ∗ 𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡      (2.22)  
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Some major findings include that for hourly based models, a 0.1 drop in RSI was correlated with a 

1.09 km/h drop in median speed on rural highways while it is a 1.71 km/h drop for urban highways. 

For event based models, the same 0.1 drop in RSI was correlated with a 1.70 km/h drop in median 

speed. 

Table 2.12 presents a summary of the literature related to which factors affecting winter traffic 

speed. While differing in research objectives, circumstances and data used, past studies have all 

confirmed that adverse winter weather has a negative effect on average traffic speed.  However, there 

were inconsistency in the findings in terms of weather factors being significant and the size of the 

effects for these variables that were found significant. This is partially due to the different traffic and 

environmental characteristics of the study sites. It can also be caused by the sources and quality of the 

data used in these studies. Some of the limitations of previous studies include, firstly, most past 

studies focused on the differences in speed or other traffic variables between adverse and normal 

weather conditions using data under all weather conditions. Secondly, most of the past studies utilized 

linear regression models to quantify the effect of weather and surface condition variables on traffic 

speed, which cannot capture the possible non-linear effects of some factors. Thirdly, most studies 

focused on freeways only, in which the effect of weather on traffic speed could be easily confounded 

by traffic congestion, making the model less reliable. Lastly, few of the past studies have used large 

spatial/temporal coverage datasets and taken a full account of the variation in winter RSCs, and the 

results are therefore not immediately useful for showing the feasibility of using speed as a 

performance indicator of WRM. 
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Table 2.12 Summary of Literature Winter Traffic Speed Reduction 

Source RSC Precipitation Wind Speed Temperature Visibility 

FHWA 
(1977) 

3% for wet and 
snowing; 22% for 
wet and slushy; 30% 
for slushy in wheel 
paths; 35% for snowy 
and sticking; 42% for 
snowing and packed 

    

HCM 
(2010)  

8-10% for light 
snow; 30-40% for 
heavy snow 

   

Ibrahim 
and Hall 
(1994) 

 

3 km/h for light 
snow; 
37.0 – 41.8 km/h 
(35-40%) for heavy 
snow 

   

Liang et 
al. (1998) 

3-5 km/h for snow 
covered RSC  

1.1 km/h for 1 
km/h wind 
speed exceeded 
40 km/h 

2-4 km/h for 
1 degree 
temperature 
reduction 

3-5 km/h for 1 
km visibility 
reduction 

Knapp et 
al. (2000) 

11.64 km/h for snow 
covered RSC    

6.24 km/h if 
visibility is 
less than 0.4 
km 

Kyte et al. 
(2001) 

10-16 km/h for 
wet/snow covered 
RSC 

 
11 km/h if wind 
speed exceeded 
24 km/h 

 
0.77 km/h for 
every 0.01 km 
below 0.28km 

Agrwal et 
al. (2005)  

3-10% for light 
snow; 11-15% for 
heavy snow 

No significant 
effect 

No 
significant 
effect 

6-12% for low 
visibility 

Rakha et 
al. (2007)  

5-16% for light 
snow; 5-19% for 
heavy snow 

  
10% for a 
reduction from 
4.8 to 0.0 km 

Camacho 
et al. 

(2010) 
 

9 km/h for light 
snow; 13.7 km/h 
for heavy snow 

Has effect if 
goes beyond 8 
m/s 

 

Has large 
effect if 
visibility is 
low 

Zhao et al. 
(2011)   

1.3 km/h for 
each 10 km/h 
increase 

1.58 km/h 
lower if 
temperatures 
below 
freezing 

2 km/h for 
each 1 km 
reduction in 
visibility 

Kwon et 
al. (2013) 

Increased RSI (i.e., 
better road 
conditions) are 
correlated with 
increased FFS 

1.8% and 13.5% 
for 2.0 mm/h and 
15.0 mm/h snow 

  

less than 5% if 
visibility is 
greater than 1 
km 
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Donaher 
(2014) 

Hourly: 1.09 km/h 
(rural) or 1.71 km/h 
(urban) for 0.1 drop 
of RSI;  
Event: 1.7km/h for 
0.1 drop of RSI 

Hourly: 0.47km/h 
(rural) or 0.97km/h 
(urban) drop for 1 
cm increase 
Event: 1.3 km/h for 
1 cm increase 

Hourly: 0.33 
km/h (rural) or 
0.48km/h 
(urban) drop for 
10km/h 
increase 
Event: 0.8km/h 
for 10km/h 
increase 

Hourly: 
4.2km/h 
(urban) for 10 
degree 
increase  
Event: small 
effect 

Hourly: 
2.5km/h (rural) 
or 5.3km/h 
(urban) drop 
for 10km drop 
Event: 3.1km/h 
for each 
10km/h drop 

 

2.3 Winter RSC Monitoring and Estimation 

Since many WRM performance measurements rely on the measures of RSC which has huge impact 

on road safety and mobility, it is of great importance for transportation agencies to monitor or 

estimate RSC during winter seasons. This section summarizes some major RSC monitoring and 

estimation technologies that are being used currently or proposed recently. Their pros and cons are 

discussed at the end of each subsection. 

Traditionally, RSC is visually monitored and reported by highway maintenance or patrol staff 

during and after snow events. However, as mentioned in section 1.1, human report is labor intensive 

and lacks objectivity and repeatability, therefore is expensive and usually tends to be biased. With the 

development of modern sensing and network technologies, more and more RSC monitoring and 

estimation systems and methodologies have been proposed and developed. RSC indicators like road 

surface contaminant, contaminant type, temperature and friction can be measured by these sensors, 

and RSC can be inferred either directly or indirectly based on the measured indicators. By operation 

mechanism, RSC monitoring/estimation systems can be divided into two categories, namely 

stationary based and mobile based. Each category has its own advantages and disadvantages, and 

serves different purposes in terms of spatial and temporal coverage (Omer, 2011). 

 

2.3.1 Stationary Based RSC Monitoring and Estimation 

Stationary based systems rely on devices and infrastructure constructed at a fixed location close to 

highways for proper functioning. Video surveillance measuring, road weather information systems 

(RWIS) and spectral/optical sensor measuring are three typical stationary based RSC monitoring 

systems.  
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Video surveillance measuring refers to use close circuit television (CCTV) and web cams to collect 

RSC condition, and transfer data through the network to RSC monitoring staff and road users (Feng, 

2013). Kido et al., (2002) introduced a CCTV based winter RSC monitoring and road management 

system as part of the local ITS project to the city of Sapporo, located in northern Japan. It was 

reported that the system effectively reduced the snow removal cost and significantly improved winter 

maintenance efficiency. Video surveillance is a good alternative to traditional methods as it does not 

require onsite patrolling and can continuously provide road information, however, because human 

judgment still plays an important role during the classification process, its reliability and 

classification objectivity are limited (Yamamoto et al., 2005).  

RWIS, a combination of sensing technologies, however, does not rely on direct human judgment. It 

is capable of using both historical and current climatological data to provide real time road and 

weather condition, and aid in roadway-related decision making (http://www.aurora-

program.org/rwis.cfm). With the environmental sensor systems (ESS), which is usually installed at 

the roadside or embedded in the roadway, RWIS is capable of collecting both weather and road 

surface data which can be transmitted and processed on a central server for reporting, forecasting, 

data archiving and distribution purposes. RWIS has been under continuous and active development in 

the past few years and is now the most widely adopted weather and road surface data collection 

system in North America. In spite of all the benefits that RWIS brought to road users, researchers and 

transportation agencies, the major limitation of RWIS is that its measurement is site-specific and 

cannot reflect the variation of RSC along highways. Moreover, the current installation cost of a single 

RWIS station with basic configuration is from $45,000 to $50,000 (CAD), which makes it financially 

difficult for transportation agencies to install RWIS stations with high spatial density along highways 

at this stage (Buchanan & Gwartz, 2005).  

Another popular technique of stationary RSC monitoring is spectral/optical based sensing. The 

difference between video surveillance and spectral/optical sensing is that the latter not only utilizes 

visible spectrum to monitor RSC, but also applies built-in image detection algorithms or infrared 

band techniques. Yamamoto et al. (2005) studied the application of visible image road surface sensors 

for road surface management. According to the authors, the sensor can estimate RSC by applying 

image processing algorithms to road condition images captured by CCTV cameras, which makes it 

much easier for later judgment. Feng and Fu (2008) evaluated two new Vaisala sensors for road 

surface conditions monitoring located on highway 417, Ontario, Canada. Two infrared sensors are 
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analyzed in the study, namely the Vaisala Remote Road Surface State Sensor (DSC111) and Vaisala 

Remote Road Surface Temperature Sensor (DST111). DSC111 is mainly used to detect RSC and 

DST111  is mainly used to detect road surface temperature. The validation shows that the matching 

rate of RSC measurements is over 85%, and the temperature measurements accuracy is generally high. 

The authors, however, also suggested that although Vaisala sensors have acceptable performance in 

terms of RSC and temperature monitoring, the spatial coverage of sampling area is limited and tend to 

underestimate the road surface condition severity while the road surface is snow or ice covered. 

 

2.3.2 Mobile Based RSC Monitoring and Estimation 

Mobile based RSC monitoring requires systems and devices that are installed on moving vehicles 

while functioning. It is significantly different with stationary based methodologies in terms of cost, 

modelling techniques, spatial and temporal coverage. Typical mobile based RSC monitoring systems 

include thermal mapping, friction based measuring and image detection based measuring. 

Thermal mapping is the technology that utilizes an infrared thermometer mounted on the operating 

vehicle for sensing the temperature on road surfaces. Joshi (2002) investigated and developed a 

lightweight, vehicle-mounted RSC sensor system based on backscatter of infrared radiation emitted 

by an onboard light source from the road surface. The detected temperature signals are transmitted to 

an onboard computer, processed by a microprocessor and displayed on a map for visualization in real-

time. The developed prototype was calibrated and tested in Hanover, New Hampshire, US. The 

results revealed that the prototype has the potential to discriminate RSC types, but still needs to be 

adjusted in many ways to retrieve better results. One concern of thermal mapping is that the road 

surface temperature is affected by various factors, e.g. air temperature, traffic volume, maintenance 

operations and is usually site specific. The reliability of using temperature as the only indicator of 

RSC is yet to be proven.  

Friction based measuring is the estimation of RSC based on measurements of the friction 

coefficient between the vehicle tires and the road surface. Similar with road surface temperature, 

friction measures can be used to estimate RSC using modelling techniques. Perchanok (2002) utilized 

three friction related measures: peak resistance (𝐹!), slip speed at which the peak resistance occurs 

(𝑉!"#$) and locked wheel resistance (𝐹!") to estimate RSCs. Feng et al. (2010) applied continuous 

friction measurement (𝐶𝐹𝑀), sample standard deviation (𝑆𝑡𝑑), sample skewness (𝑆𝑘𝑒𝑤) of friction 
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measurements as well as the mean spectral power of the frequency range 0.0-0.2 periods/point 

(𝐿𝑜𝑤𝐹𝑟𝑒𝑞) and mean spectral power of 0.3-0.5 periods/point (𝐻𝑖𝑔ℎ𝐹𝑟𝑒𝑞), and calibrated multi-layer 

logistic regression classification tree to classify different RSC types. Both of these studies have 

shown the high correlation between road friction and RSC and the reliability of using CFM as an 

indicator of different RSC types. Because of the high performance of friction based RSC estimation 

models, friction has been used in many European countries as a powerful tool for RSC monitoring 

and estimation (Norwegian Ministry of Transport and Communication, 2003). The main limitation of 

friction based models is data collection and quality. Firstly, as claimed by Omer (2011), the operation 

cost of friction data collection is high due to the high cost of equipment (e.g. friction trailer, dedicated 

vehicles and drivers for operation). Secondly, friction trailers, acceleration/deceleration based friction 

measurement devices or optical sensor based friction measurement devices all suffer the drawback of 

measuring only a particular lane of a highway. This makes it difficult to model highways with 

multiple lanes especially those with different traffic patterns on different lanes (Haavasoja et al., 

2012).  

Another mobile based RSC measuring technique is using image detection/processing approaches to 

estimate RSC with data collected by onboard cameras or sensors. A similar system was developed by 

Omer (2011). With the application of onboard digital cameras and SVM classification algorithm on 

the server, Omer’s system is capable of collecting, transferring and classifying RSC images in real-

time. The author stated that since digital cameras are relatively cheap, and the system supports real-

time RSC classification, it has huge potential for application in the near future. Similarly, Kim et al. 

(2013) published research results on the development of mobile road surface condition detection 

system utilizing image processing. The authors installed stereo cameras, GPS, temperature and 

humidity sensors on a probe car to collect road surface images, location, temperature and humidity 

data, and applied K-means clustering algorithm to classify RSC types. Although the above research 

results have demonstrated the high potential of the image detection/processing techniques, it is still 

relatively new to the RSC monitoring and estimation sector. One of the issues of image 

detection/processing is that the classification accuracy highly depends on the quality of the images 

(e.g. environment light, exposure accuracy, resolution, speed of the vehicle, etc.). Further research 

needs to be done in order to improve the quality of image collecting hardware configuration and 

image pre-processing techniques. 
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2.4 Summary 

In summary, compared with input and output measures, outcome measures can produce the most 

meaningful results. However, outcome measures are usually hard to model and highly depend on data 

quality and availability. Data collection of some popular outcome measures like bare pavement regain 

time is still subjective and costly. Further studies are needed to either improve the current measures or 

come up with alternative measures to avoid these problems. 

As a potential alternative WRM performance measure, traffic speed can be easily obtained with 

high quality and reliability. Past studies have all confirmed that adverse winter weather has a negative 

effect on traffic speed.  However, most studies have limitations in terms of modeling methodologies 

and spatial/temporal coverage. Firstly, most past studies focused on the differences in speed or other 

traffic variables between adverse and normal weather conditions using data under all weather 

conditions. Secondly, most of the past studies utilized linear regression models to quantify the effect 

of weather and surface condition variables on traffic speed, which cannot capture the possible non-

linear effects of some factors. Thirdly, most studies focused on freeways only, in which the effect of 

weather on traffic speed could be easily confounded by traffic congestion, making the model less 

reliable. Lastly, few of the past studies have used large spatial/temporal coverage datasets and taken a 

full account of the variation in winter road surface conditions. The results are therefore not 

immediately useful for showing the feasibility of using speed as a performance indicator of WRM.  

 For RSC monitoring and estimation, many methodologies and new technologies have been 

proposed and developed in the past few years. However, most stationary based systems suffer from 

high installation and maintenance cost and lack of spatial coverage. Mobile based systems are also 

costly in terms of the investment on equipment and personnel, and are not feasible to provide 

measures with high temporal coverage. This study proposed a method to estimate RSC based on 

traffic and weather data which are much easier to collect compared with other RSC related factors. 

With the rapid development of smart phone technologies, this modelling technique has a high 

potential to utilize speed data, GPS data and weather data collected from road users’ smart phones to 

generate real time RSC estimation with high spatial and temporal coverage, which may potentially 

have the benefits of both stationary and mobile based systems, and dramatically reduce the overall 

cost. 
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Chapter 3 
Effect of Weather and Road Surface Conditions on Traffic Speed of 

Rural Highways 

3.1 Problem Definition 

In order to study the feasibility of using traffic speed as an alternative WRM performance measure, it 

is essential to understand the relationship between traffic speed and different types of RSC. However, 

this relationship could be easily confounded by other human or environmental factors such as traffic 

volume, type of the highway, weather condition and time of the day, etc. In addition, a large dataset 

with high spatial/temporal coverage is also required for modelling this relationship. 

To address these challenges, the study presented in this chapter focuses on the impact of winter 

weather and RSC on the average traffic speed of rural highways. Detailed data on weather, RSC, time 

of day, and traffic over three winter seasons from 35 rural highway sites in the State of Iowa, US, are 

used for this investigation. Three modeling techniques are applied and compared for modeling the 

relationship between traffic speed and various road weather and surface condition factors, including 

multivariate linear regression, Artificial Neural Network (ANN) and time series analysis. 

 

3.2 Data Collection 

This analysis was performed using three datasets: traffic, weather and surface condition, over three 

winter seasons from 2008 to 2011 collected from 35 rural highway sites in the State of Iowa, US. As 

shown in Figure 3.1, among the 35 sites, 14 are located on two-lane highways (shown in green) while 

21 are located on four-lane highways (shown in blue).  
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Figure 3.1 Study Sites in Iowa 

 

The traffic, road weather, as well as RSC at each of these sites are monitored by a RWIS station 

located at a roadside. The traffic sensors are all radar detectors installed on the RWIS towers and can 

provide traffic speed and volume data. The RWIS weather sensors provide observations on 

atmosphere. The RWIS pavement sensors are embedded in the pavement and connected to the main 

tower by cables, and can provide RSC data of the site. Most of the traffic records have a time interval 

of 2 minutes while the time interval of the atmosphere and surface data ranges from 9 minutes to over 

30 minutes with a majority of 10 minutes. Traffic data contains normal traffic volume, percentage of 

long traffic volume (i.e. truck and recreational vehicles) and average traffic speed. Atmosphere data 

includes precipitation, visibility, air temperature, and wind speed. Precipitation is given in two forms, 

precipitation intensity in centimeters per hour and categorical description of intensity, light snow (< 

0.25 cm/15 min), moderate snow (0.25-0.755 cm/15 min) and heavy snow (>0.755 cm/15 min). RSC 

data includes surface temperature and road surface states with the following six types in order of 

severity from lowest to highest:  

• Dry (moisture free surface, bare pavement) 

• Trace Moisture (thin or spotty film of moisture above freezing and detected in absence of 

precipitation) 
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• Wet (continuous film of moisture on the pavement sensor with a surface temperature above 

freezing as reported when precipitation has occurred) 

• Chemically Wet (continuous film of water and ice mixture at or below freezing with enough 

chemical to keep the mixture from freezing, it is also reported when precipitation has occurred) 

• Ice Watch (thin or spotty film of moisture at or below freezing and reported when precipitation is 

not occurring) 

• Ice Warning (continuous film of ice and water mixture at or below freezing with insufficient 

chemical to keep the mixture from freezing again, reported when precipitation occurs) 

 

3.3 Data Processing 

The dataset used in this analysis is collected by RWIS and traffic sensors. Due to software and 

hardware failures, the raw dataset may contain errors and outliers; therefore, cannot be used directly 

for this analysis. This section presents a data pre-processing framework developed for this dataset and 

a snow event extraction algorithm used to extract snow events from the data. Both the data processing 

framework and the snow event extraction algorithm can be easily modified to be applied to other 

datasets.  

 

3.3.1 Data Processing Framework 

For spatial aggregation, many previous traffic studies combined both directions together and 

developed site specific models based on the combined datasets. However, because driving habits, 

traffic patterns and surface conditions may be different in different directions of the same site, the 

effect of RSC on traffic speed on different directions may also have a big difference. To address this 

problem, this study separates the traffic and surface data collected on different directions from the 

same site, and calibrates models for each direction respectively. In other words, after the three data 

sources were aggregated, each sample was averaged over the lane based on the directional flow of 

traffic. Corresponding directional RSC data was used for each direction. 

For temporal aggregation, as the three types of data were collected separately by different sensors, 

it is necessary to aggregate them based on a consistent time interval. In this study, both 15 minute and 
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60 minute intervals were selected to aggregate these three datasets. Note that the 15 minute and 60 

minute intervals are also commonly used in many other traffic studies.  

Figure 3.2 shows the data processing framework which is developed with the programming 

language Python. Algorithms Atmospheric, Surface, and Traffic clean up atmosphere, surface and 

traffic datasets, respectively, and remove obvious outliers and errors such as those with zero speed 

and volume as well as those attribute values do not make intuitive sense or exceeded low limit or high 

limit specified in the metadata file. TrafficCombine calculates directional average speed and volume. 

ATSFAggregate algorithm aggregates atmosphere and surface data into a single table based on time 

and surface sensor ID. TrafficAggregate algorithm converts the traffic data into a dataset with 15 

minute or 60 minute time intervals and generates standard deviation of traffic speed, time of day etc. 

for each interval. AllAggregate is the core algorithm that combines all three data sources into a single 

table based on time and surface ID/lane ID, and generates the average temperature, wind speed and 

precipitation rate, etc. EventExtraction generates snow events utilizing an event generation algorithm 

which will be discussed in detail in the next section. Finally, GenerateAnalysis creates dummy 

variables of categorical variables, and changes the format of the data to make it analysis ready. All 

algorithms have been developed with flexibility to accept time intervals and site IDs as parameters to 

control the data processing and generate customized results. 
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Figure 3.2 Data Processing Framework 
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Table 3.1 shows the data fields and units included in the final data table after applying the data 

processing framework. Note that dummy variables of categorical fields are generated and appended to 

the end of each row before the analysis. 

 

Table 3.1 Summary of Final Data Fields 

Data Source Field Name Unit Note 

 
General 

System ID N/A System ID, i.e. 512 

Station ID N/A Station ID 

Station Name N/A Station Name 

Latitude degrees Latitude of the site 

Longitude degrees Longitude of the site 

Date & Time N/A Date and time 

Direction ID N/A Direction ID of the highway, e.g. 0 or 1 

Traffic 

Average Speed km/h Average speed over 15 minutes or 60 minutes 

Average Volume veh/ln/h Average total volume over 15 minutes or 60 minutes 

% Long Vehicles percent Percent of long vehicles 

SD of Speed veh/ln/h Standard deviation of speed over 15 minutes or 60 minutes 

Atmosphere 

Atmosphere 
Sensor ID N/A Atmosphere sensor ID 

Air Temperature celsius Average air temperature over 15 minutes or 60 minutes 

Wind Speed km/h Average wind speed over 15 minutes or 60 minutes 

Precipitation Type categories Precipitation Type (None or Snow) 

Precipitation 
Intensity categories Precipitation Intensity (None, Slight, Moderate or Heavy) 

Precipitation Rate cm/h Average precipitation rate over 15 minutes or 60 minutes 

Surface 

Surface Sensor ID N/A Surface sensor ID 

Surface Condition categories RSC types (Dry, Trace Moisture, Wet, Chemically Wet, Ice 
Watch or Ice Warning) 

Surface 
Temperature celsius Surface temperature 

Others 
Time of Day categories Day (6:00am – 6:00pm) Night (6:00pm – 6:00am) 

Event ID N/A The ID of each event 
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3.3.2 Snow Event Definition and Extraction 

In this study, a snow event extraction algorithm was proposed and developed based on the data 

available in the datasets. To study the impact of both weather and RSC on traffic speed, snow events 

should not only include the periods with snow precipitation, but also include those with continuous 

ice/snow covered RSC during and after snow precipitation.  

Figure 3.3 shows the definition of a snow event and the processes of the algorithm. The algorithm 

uses precipitation type equals snow as the start of each event, and then checks if snow or Ice 

Watch/Ice Warning surface condition occurs within the next hour (i.e. continuous snow precipitation 

or the RSC is ice/snow covered during or after a snow event). If any of these cases happens, the 

algorithm adds the next hour of data to the event bucket, and then repeats the process. If none of these 

cases happen, the algorithm will add one more hour of non-event data before and after the snow event 

to the event bucket, and write all data in the event bucket to an event file, the final output of the 

algorithm. Finally, the algorithm checks if this is the end of the file, if yes, save the event file and stop 

the process; otherwise, move to the next data row and repeat the whole process again.  
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Figure 3.3 Snow Event Extraction Algorithm 
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3.4 Exploratory Analysis 

Before proceeding with modelling, an exploratory data analysis was performed on the dataset to 

investigate the patterns of the data, potential outliers and correlation between variables. It was found 

that air temperature and surface temperature are highly correlated (i.e. 0.85 and 0.77 for two-lane and 

four-lane highways, respectively). Hence air temperature is removed from the dataset and is not 

considered in the subsequent modelling analysis.  

Summary statistics are subsequently generated. Table 3.2 shows the summary statistics of all 

numerical variables that will be used in this analysis with different highway types and time intervals. 

Table 3.3 shows the sample size of each categorical variable. Table 3.4 and 3.5 show the sample size 

percentage of each site among all the sites of the same highway type. 

As can be seen in Table 3.2, most summary statistics are identical for both 15 minute and 60 

minute datasets, except that the standard deviations of the 15 minute datasets are higher than those of 

the 60 minute dataset. It can also be found that four-lane highways have relatively higher average 

speed and average volume than two-lane highways. Although the maximum volume for some 

highways (Site 13, 14 and 48) are relatively high (e.g. over 2500 veh/ln/h), the average volume for 

both two-lane and four-lane highways are only around 100 veh/ln/h and 300 veh/ln/h respectively. All 

highways have a maximum average volume equal to or under capacity, therefore traffic on these 

highways can be considered as free flow conditions. As can be found in Table 3.3, for both types of 

highways, the majority of precipitation intensity is none and slight snow. Ice watch is the most 

common category of surface condition, and dry is the second. Precipitation type and time of day are 

almost evenly distributed for the two categories, respectively. Table 3.4 and 3.5 reveals that data 

samples are almost evenly distributed among all the sites/directions for both highways types. 
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Table 3.2 Summary Statistics 

15-Minute Interval 

 Two-Lane (67830 Obs.) Four-Lane (124314 Obs.) 

Field Name Unit Min Max Mean SD Min Max Mean SD 

Average Speed km/h 8.04 149.64 81.33 14.55 11.26 140.38 95.93 19.55 

Average Volume veh/ln/h 30.00 2730.00 111.42 84.15 30.00 4140.00 332.66 326.19 

% Long Vehicles % 0% 50% 18% 16% 0% 50% 31% 14% 

Wind Speed km/h 0.00 85.00 16.05 9.97 0.00 87.00 16.44 10.67 
Precipitation 

Rate cm/h 0.00 77.98 0.07 0.85 0.00 81.92 0.12 1.31 

Visibility km 0.00 114.26 34.20 43.56 0.00 162.54 13.11 27.81 
Surface 

Temperature Celsius -30.15 36.35 -4.89 5.02 -24.80 39.55 -4.57 5.73 

60-Minute Interval 

 Two-Lane (15905 Obs.) Four-Lane (30507 Obs.) 

Field Name Unit Min Max Mean SD Min Max Mean SD 

Average Speed km/h 8.04 145.97 80.00 14.48 11.26 136.87 93.86 19.39 

Average Volume veh/ln/h 30.00 2610.00 116.59 81.17 30.00 3930.00 309.37 302.78 

% Long Vehicles % 0% 50% 20% 14% 0% 50% 32% 14% 

Wind Speed km/h 0.00 85.00 16.44 10.43 0.00 70.00 16.35 10.88 
Precipitation 

Rate cm/h 0.00 49.55 0.09 0.83 0.00 62.75 0.13 1.12 

Visibility km 0.00 114.26 35.11 43.30 0.00 162.54 12.42 26.79 
Surface 

Temperature Celsius -29.50 34.15 -5.05 4.92 -24.83 38.80 -4.98 5.68 
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Table 3.3 Categorical Variable Sample Size 

 15-Minute Interval 

Field Name Categories 
Two-Lane Four-Lane 

Size % Size % 

Precipitation 
Intensity 

None 32074 47.29% 58207 46.82% 

Slight 34445 50.78% 63014 50.69% 

Moderate 957 1.41% 2375 1.91% 

Heavy 354 0.52% 718 0.58% 

Surface Condition 

Dry 11756 17.33% 33726 27.13% 

Trace Moisture 2176 3.21% 6006 4.83% 

Wet 5299 7.81% 7495 6.03% 

Chemically Wet 2592 3.82% 3279 2.64% 

Ice Watch 42918 63.27% 69761 56.12% 

Ice Warning 3089 4.55% 4047 3.26% 

Precipitation Type 
None 32074 47.29% 58207 46.82% 

Snow 35756 52.71% 66107 53.18% 

Time of Day 
Day 37278 54.96% 66715 53.67% 

Night 30552 45.04% 57599 46.33% 

 60-Minute Interval 

Field Name Categories 
Two-Lane Four-Lane 

Size % Size % 

Precipitation 
Intensity 

None 5973 37.55% 11248 36.87% 

Slight 9487 59.65% 18292 59.96% 

Moderate 322 2.02% 737 2.42% 

Heavy 123 0.77% 230 0.75% 

Surface Condition 

Dry 2430 15.28% 7281 23.87% 

Trace Moisture 520 3.27% 1403 4.60% 

Wet 1165 7.32% 1733 5.68% 

Chemically Wet 635 3.99% 752 2.47% 

Ice Watch 10469 65.82% 18295 59.97% 

Ice Warning 686 4.31% 1043 3.42% 

Precipitation Type 
None 5973 37.55% 11248 36.87% 

Snow 9932 62.45% 19259 63.13% 

Time of Day 
Day 9072 57.04% 16988 55.69% 

Night 6833 42.96% 13519 44.31% 
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Table 3.4 Site Sample Size Percentage (15-Minute Interval) 

Two-Lane Four-Lane 

 Direction 0 Direction 1  Direction 0 Direction 1 

Site Size % Size % Site Size % Size % 

01 1419 2.09% 1451 2.14% 00 2439 1.96% 2842 2.29% 

02 5033 7.42% 5263 7.76% 06 472 0.38% 709 0.57% 

11 1902 2.80% 2027 2.99% 08 2596 2.09% 2310 1.86% 

13 981 1.45% 1254 1.85% 10 1931 1.55% 2072 1.67% 

15 3531 5.21% 3722 5.49% 14 5072 4.08% 4925 3.96% 

25 4729 6.97% 4386 6.47% 19 1247 1.00% 1397 1.12% 

33 4043 5.96% 4581 6.75% 20 3227 2.60% 3186 2.56% 

42 295 0.43% 311 0.46% 27 2581 2.08% 2228 1.79% 

43 796 1.17% 804 1.19% 28 1565 1.26% 2104 1.69% 

55 1932 2.85% 1951 2.88% 30 2601 2.09% 3103 2.50% 

56 4271 6.30% 4460 6.58% 32 1325 1.07% 1177 0.95% 

57 3539 5.22% 3707 5.47% 36 4252 3.42% 4444 3.57% 

59 749 1.10% 693 1.02% 37 7131 5.74% 6236 5.02% 

Total   67830 100% 41 1825 1.47% 2599 2.09% 

     44 371 0.30% 333 0.27% 

     46 1441 1.16% 2956 2.38% 

     47 3933 3.16% 3175 2.55% 

     48 2970 2.39% 2818 2.27% 

     49 4792 3.85% 4963 3.99% 

     50 2586 2.08% 1943 1.56% 

     53 3859 3.10% 3868 3.11% 

     58 3552 2.86% 3158 2.54% 

     Total   124314 100% 
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Table 3.5 Site Sample Size Percentage (60-Minute Interval) 

Two-Lane Four-Lane 

 Direction 0 Direction 1  Direction 0 Direction 1 

Site Size % Size % Site Size % Size % 

01 328 2.06% 328 2.06% 00 526 1.72% 573 1.88% 

02 1149 7.22% 1208 7.60% 06 148 0.49% 212 0.69% 

11 415 2.61% 428 2.69% 08 691 2.27% 604 1.98% 

13 256 1.61% 342 2.15% 10 457 1.50% 457 1.50% 

15 773 4.86% 823 5.17% 14 1074 3.52% 1082 3.55% 

25 1177 7.40% 1084 6.82% 19 326 1.07% 385 1.26% 

33 1049 6.60% 1112 6.99% 20 736 2.41% 736 2.41% 

42 65 0.41% 65 0.41% 27 715 2.34% 634 2.08% 

43 150 0.94% 152 0.96% 28 513 1.68% 646 2.12% 

55 542 3.41% 565 3.55% 30 568 1.86% 677 2.22% 

56 865 5.44% 848 5.33% 32 372 1.22% 358 1.17% 

57 902 5.67% 908 5.71% 36 987 3.24% 1045 3.43% 

59 188 1.18% 183 1.15% 37 1711 5.61% 1570 5.15% 

Total   15905 100% 41 523 1.71% 666 2.18% 

     44 75 0.25% 69 0.23% 

     46 564 1.85% 777 2.55% 

     47 859 2.82% 764 2.50% 

     48 702 2.30% 679 2.23% 

     49 1182 3.87% 1209 3.96% 

     50 659 2.16% 574 1.88% 

     53 827 2.71% 838 2.75% 

     58 890 2.92% 847 2.78% 

     Total   30507 100% 
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3.5 Methodology 

3.5.1 Multivariate Linear Regression 

In order to quantify the impact of adverse weather and surface factors on traffic speed, a multivariate 

linear regression analysis is carried out in this study. With the intention of investigating the feasibility 

of using traffic speed as an alternative measure of WRM, the regression models should be capable of 

revealing the relationship between traffic speed and weather and surface factors, especially the 

significance of RSC with the minimum confounding effects of traffic volume. For rural highways, 

traffic speed is less likely to be affected by volume due to lack of traffic congestion, thus making the 

models more reliable than using urban highways. This has been confirmed in the exploratory data 

analysis in the previous section. 

Different directions of the same highway may have different traffic patterns, therefore with the 15 

minute and 60 minute time intervals, a set of models are developed separately for both directions of 

each study site, and two combined models for all sites of the same type of highways are also 

developed for both two-lane and four-lane highways. This results in 144 models in total. The reason 

for developing combined models is that the effect of most external factors on speed is expected to be 

similar for a given type of highway. In addition, a combined model is expected to be more 

generalizable or transferable than a highway specific model.  

Table 3.6 summaries the three dimensions of the regression analysis which includes aggregation 

interval, highway type and model type. The goal of setting these dimensions is to firstly investigate 

the impact of each dimension on the performance of the regression model; secondly, to find out 

similarities and improve the simplicity of the models; and thirdly, to find out the best modeling 

methodology that fits a specific dataset, which can also be used in the following advanced analysis. 

 

Table 3.6 Dimensions of the Regression Analysis 

Name Dimensions 

Aggregation Interval 15 minutes vs. 60 minutes 

Highway Type Two-Lane vs. Four-Lane  

Model Type Separated vs. Combined 
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The effect of precipitation on speed is tested in two representation forms, namely, categorical 

(precipitation intensity) and continuous (precipitation rate). It is found that the categorical form 

results in a higher explanation power, i.e., higher adjusted 𝑅! value suggesting its non-linear effect on 

traffic speed. Categorical form is thus used in the final models.  

For each categorical variable such as RSC, dummy variables are created, and a base category is 

defined in advance. “Dry”, “No Snow” and “Day” are used for RSC, precipitation intensity and 

Day/Night as the initial base conditions, respectively. Note that in the actual calibration, a 

combination of base conditions will be used if two or more categories show the similar effect with the 

initial base condition or not statistically significant compared with it. For example, as the effect of dry, 

trace moisture, wet and chemically wet are almost zero at Site 01 direction 0, the base condition, 

therefore, is the combination of all these four conditions. 

For site variables in the combined models, dummy variables are also created for each site. Site 01 

(direction 0) and Site 00 (direction 0) are used as base sites for the two-lane combined and four-lane 

combined models, respectively.  

The statistical significance of each variable is decided using a significance level of 5%. Any 

variables with a p-value greater than 5% or that do not make intuitive sense are eliminated 

sequentially from the model. The data set from each direction of each site is divided into two parts 

randomly: one includes 90% of the data to be used for model calibration and the remaining 10% of 

data is held out for subsequent model validation. The overall performance of the regression model is 

assessed using adjusted 𝑅! and Root Mean Square Error (RMSE). 

 

3.5.2 Artificial Neural Network 

ANN is a non-parametric method for modelling complex non-linear relationships. Unlike regression 

models that need an explicitly defined function to relate the input and the output, the ANN can 

approximate a function and associate input with specific output through the process of training. 

Therefore, ANN can be used to evaluate the robustness of regression models (Martin et al., 1995).  

In this study, multi-layer perceptron neural network (MLP-NN), the most commonly used ANN,  is 

selected for modeling the relationship between traffic speed and various influencing factors. As can 

be seen in Figure 3.4, MLP-NN consists of an input layer, one or more hidden layers, and an output 

layer. The input layer includes input nodes representing the weather, road and traffic factors which is 
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the same as the independent variables used in a regression model, while the output layer includes the 

dependent variable to be predicted, i.e., traffic speed. The hidden layer provides a mechanism to 

transfer inputs to output through activation functions and weights (Martin et al., 1995). In this 

research, the popular sigmoid function is selected as the activation functions for the hidden layers, 

and a linear activation function is selected for the output layer. The weights of MLP-NN are 

calibrated by a back propagation algorithm with a learning rate of 0.1 and a momentum of 0.8. The 

back propagation algorithm minimizes the sum of squared deviation of the output from the target 

value at the nodes of the output layer by adjusting the value of weight at the nodes. For the sake of 

comparison, the significant independent variables found in the combined regression analysis will be 

used as the input factors of the MLP-NN. 

 

 

Figure 3.4 Typical MLP-NN Architecture (Huang & Ran, 2003) 

 

3.5.3 Time Series Analysis 

The data used in this research consists of a time series of observations over various snowstorm 

events. The observations within each event could therefore be correlated to each other due to the 

similarity in weather and environmental conditions. This auto correlation violates the assumption of 

randomness and independency between observations required by the multivariate regression method. 

To address this issue, time series analysis is attempted to explicitly model the correlation between 

successive observations by considering the effect on current behavior of variables in terms of linear 
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relationships with their past values (Wei, 1989). In this research, one of the most popular time series 

models - univariate autoregressive integrated moving average (ARIMA) with additional exogenous 

variables (ARIMAX) - is utilized for predicting the traffic speed based on traffic volume, weather and 

surface data. Since the focus of this study is to investigate the speed variation during snow events, 

adjacent events are stitched together in model calibration. 

According to Shumway and Stoffer (2006), a combination of an autoregressive integrated (AR(p)) 

process and a moving average (MA(q)) process is called ARMA(p,q), which can be expressed as 

below: 

 

𝑥! = 𝜙!𝑥!!! + 𝜙!𝑥!!! +⋯+ 𝜙!𝑥!!! + 𝜔! + 𝜃!𝜔!!! +⋯+ 𝜃!𝜔!!!              (3.1) 

Where 

𝑥! is a stationary time series 

𝜔! is white noise 𝑁(0,𝜎!) 

𝜙 and 𝜃 are coefficients of the model  

 

The above equation can be written in vector form: 

 

𝝓 𝑩 𝒙𝒕 = 𝜽(𝑩)𝝎𝒕                                                           (3.2) 

 

If a d order differencing is added, the general form of ARIMA(p, d, q) model is given below: 

  

𝝓 𝑩 (𝟏 − 𝑩)𝒅𝒙𝒕 = 𝜽(𝑩)𝝎𝒕                                                   (3.3) 

Where  

𝑥! is a stationary time series 

𝜔! is white noise 𝑁(0,𝜎!) 

𝐵 is the back slash operator, 𝐵𝑥! = 𝑥!!! 

 𝜙 𝐵 = 1 − 𝜙!𝐵 − 𝜙!𝐵! −⋯− 𝜙!𝐵! 

 𝜃 𝐵 = 1 − 𝜃!𝐵 − 𝜃!𝐵! −⋯− 𝜃!𝐵! 

p is the number of autoregressive terms 
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d is the number of non-seasonal differences 

q is the number of lagged forecast errors in the prediction equation 

 

The ARMAX model is extended from general ARMA model by adding additional 

exogenous/explanatory variables. The general form of the ARMAX model is given below: 

 

𝑥! = 𝜙!𝑥!!! + 𝜙!𝑥!!! +⋯+ 𝜙!𝑥!!! + 𝜔! + 𝜃!𝜔!!! +⋯+ 𝜃!𝜔!!! + ΓU!        (3.4) 

Where 

𝑥! is a stationary time series (speed at time t) 

𝜔! is white noise 𝑁(0,𝜎!) 

𝜙 and 𝜃 are coefficients of the model 

U! is the vector of exogenous variables (explanatory variables including AR, MA, weather and 
surface variables) 

 Γ is the coefficient vector of exogenous variables 

 

The above equation is equivalent to: 

 

𝜙 𝐵 𝑥! = 𝜃 𝐵 𝜔! + ΓU!                                                    (3.5) 

 

If a d order differencing is added, the general form of ARIMAX(p, d, q) model is given below:  

 

𝜙 𝐵 (1 − 𝐵)!𝑥! = 𝜃 𝐵 𝜔! + ΓU!                                          (3.6) 

Where  

𝑥! is a stationary time series 

𝜔! is white noise 𝑁(0,𝜎!) 

𝐵 is the back slash operator, 𝐵𝑥! = 𝑥!!! 

 𝜙 𝐵 = 1 − 𝜙!𝐵 − 𝜙!𝐵! −⋯− 𝜙!𝐵! 

 𝜃 𝐵 = 1 − 𝜃!𝐵 − 𝜃!𝐵! −⋯− 𝜃!𝐵! 

p is the number of autoregressive terms 
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d is the number of non-seasonal differences 

q is the number of lagged forecast errors in the prediction equation 

U! is the vector of exogenous variables (explanatory variables including AR, MA, weather and 
surface variables) 

 Γ is the coefficient vector of exogenous variables 

 

If the time series is non-stationary, it must be transformed into a stationary time series by the 

method of differencing first. This can be determined using autocorrelation factor (ACF) and partial 

autocorrelation factor (PACF). The model parameters are estimated using a maximum likelihood 

method with 95% confidence level. Therefore, covariates, AR and MA variables of different time lags 

with p-values greater than 0.05 are excluded.  

 

3.6 Model Calibration 

3.6.1 Multivariate Linear Regression 

Statistical software R is used to calibrate the multivariate linear regression models. Appendix A-1 to 

A-4 shows the models developed for individual study sites. The average traffic speed constant of all 

two-lane highways are below 100 km/h while most four-lane highways have the average traffic speed 

constantly over 110 km/h. This makes sense as four-lane highways normally have a higher level of 

service than two-lane highways. Significant factors for highways of the same type are mostly 

identical: average volume, wind speed, all precipitation intensity categories, chemically wet, ice 

watch and ice warning are statistically significant and make intuitive sense for most two-lane 

highways. Average volume, % long vehicles, wind speed, all precipitation intensity categories, 

chemically wet, ice watch, ice warning and night are statistically significant and make intuitive sense 

for most four-lane highways. In terms of model performance, in general, four-lane highways have 

relatively higher adjusted 𝑅! (about 0.45 on average) than two-lane highways (about 0.25 on average). 

The reason is because four-lane highways have a relatively higher volume (larger sample size) which 

leads to less variation in average traffic speed while two-lane highways have higher variation in 

average traffic speed between vehicles due to a smaller sample size. 

Table 3.7 and 3.8 show the combined models for two-lane and four-lane highways, respectively. 

For two-lane combined, except % long vehicles and night, all the variables are statistically significant 
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and make intuitive sense for both 15 minute and 60 minute models. The adjusted 𝑅! of the 60 minute 

model is 0.34 which is slightly higher than the value of the 15 minute model (0.31). Both values are 

higher than the average adjusted 𝑅! generated by the separated models (about 0.25). The RMSE are 

12.06 and 11.74 for the 15 minute and 60 minute model, respectively. 

For four-lane combined, surface temperature and trace moisture are not significant for the 15 

minute model while surface temperature, trace moisture and visibility are found not significant for the 

60 minute model. Similar with two-lane models, the adjusted  𝑅! of both 15 minutes (0.68) and 60 

minutes (0.70) are increased significantly compared with separated models (about 0.45). The RMSE 

are 11.01 and 10.64 for the 15 minute and 60 minute model, respectively. 

The results above confirmed that, firstly, combined models have advantages over separated models 

and are acceptable to be used to estimate average traffic speed for most study sites. The adjusted  𝑅! 

of the combined models are higher than most separated models for both highway types. In addition, 

due to the lack of data on certain types of categorical variables at some sites, some categories’ 

coefficients are zero in the separated models. For example, heavy snow for Site 20 and ice warning 

for Site 06 were observed rarely, which results in zero coefficients. With the combined models, this 

type of relationship could be captured utilizing the data from other sites of the same highway type. 

Secondly, the 60 minute models’ performance is higher than the 15 minute model. Although the 15 

minute models can generate average traffic speed estimations with higher temporal resolution, 60 

minute models are based on smoother and more generalized dependent and independent variables and 

their adjusted  𝑅! are higher than the 15 minute models.  

Based on these two conclusions, the combined models will be used to analyze the effects of each 

variable on average traffic speed, and the combined datasets with 60 minute time interval will be used 

in the subsequent ANN and time series analysis model calibration. 
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Table 3.7 Regression Model Calibration Results for Two-Lane Highways Combined 

 
   
 
 
 
 
 
 
 
 
 

 

Coef. Std.	  Error t-‐value P-‐value Coef. Std.	  Error t-‐value P-‐value
(Intercept) 94.85 0.37 258.22 0.00 96.40 0.76 126.63 0.00

Average	  Volume -‐0.01 0.00 -‐8.17 0.00 -‐0.01 0.00 -‐7.90 0.00
%	  Long	  Vehicles
Wind	  Speed -‐0.13 0.01 -‐25.89 0.00 -‐0.15 0.01 -‐15.41 0.00
Visibility 0.03 0.00 19.49 0.00 0.04 0.00 10.94 0.00

Surface	  Temp 0.05 0.01 4.49 0.00 0.10 0.02 4.16 0.00
Slight -‐5.12 0.10 -‐52.82 0.00 -‐4.65 0.20 -‐22.92 0.00

Moderate -‐13.14 0.41 -‐32.33 0.00 -‐10.52 0.70 -‐15.06 0.00
Heavy -‐32.25 0.67 -‐48.09 0.00 -‐28.08 1.13 -‐24.87 0.00

Trace	  Moisture -‐0.60 0.30 -‐1.99 0.05 -‐2.24 0.60 -‐3.71 0.00
Wet -‐1.22 0.22 -‐5.68 0.00 -‐1.94 0.45 -‐4.31 0.00

Chemically	  Wet -‐4.31 0.27 -‐16.11 0.00 -‐5.54 0.54 -‐10.34 0.00
Ice	  Watch -‐7.81 0.13 -‐58.18 0.00 -‐9.13 0.28 -‐32.55 0.00
Ice	  Warning -‐10.02 0.27 -‐37.80 0.00 -‐12.19 0.54 -‐22.48 0.00

Night 0.00 0.00 0.00 0.00
01-‐1 -‐1.13 0.45 -‐2.51 0.01 -‐0.85 0.92 -‐0.93 0.35
02-‐0 -‐3.87 0.38 -‐10.32 0.00 -‐4.29 0.76 -‐5.63 0.00
02-‐1 -‐3.26 0.37 -‐8.73 0.00 -‐3.90 0.76 -‐5.14 0.00
11-‐0 -‐1.93 0.43 -‐4.49 0.00 -‐2.71 0.88 -‐3.08 0.00
11-‐1 2.05 0.43 4.83 0.00 1.64 0.88 1.87 0.06
13-‐0 -‐11.86 0.52 -‐22.98 0.00 -‐12.98 1.01 -‐12.82 0.00
13-‐1 -‐10.77 0.49 -‐22.15 0.00 -‐14.63 0.95 -‐15.34 0.00
15-‐0 3.28 0.39 8.43 0.00 3.64 0.79 4.59 0.00
15-‐1 2.47 0.39 6.41 0.00 2.50 0.79 3.18 0.00
25-‐0 -‐6.75 0.37 -‐18.15 0.00 -‐7.51 0.75 -‐10.02 0.00
25-‐1 -‐8.85 0.37 -‐23.69 0.00 -‐9.77 0.75 -‐13.00 0.00
33-‐0 -‐2.11 0.38 -‐5.51 0.00 -‐2.36 0.76 -‐3.08 0.00
33-‐1 1.14 0.38 3.02 0.00 0.78 0.76 1.02 0.31
42-‐0 -‐1.04 0.78 -‐1.32 0.19 0.78 1.61 0.48 0.63
42-‐1 -‐1.12 0.77 -‐1.46 0.14 0.66 1.61 0.41 0.68
43-‐0 -‐25.40 0.54 -‐46.93 0.00 -‐24.60 1.17 -‐20.98 0.00
43-‐1 -‐27.29 0.54 -‐50.60 0.00 -‐26.71 1.17 -‐22.89 0.00
55-‐0 2.90 0.43 6.82 0.00 2.73 0.83 3.30 0.00
55-‐1 4.78 0.42 11.26 0.00 3.97 0.82 4.82 0.00
56-‐0 -‐9.82 0.38 -‐25.99 0.00 -‐9.57 0.78 -‐12.34 0.00
56-‐1 -‐3.07 0.38 -‐8.16 0.00 -‐2.85 0.78 -‐3.67 0.00
57-‐0 -‐1.88 0.39 -‐4.82 0.00 -‐2.17 0.78 -‐2.79 0.00
57-‐1 0.07 0.39 0.18 0.86 -‐0.44 0.78 -‐0.56 0.57
59-‐0 -‐5.79 0.55 -‐10.57 0.00 -‐5.48 1.08 -‐5.07 0.00
59-‐1 -‐3.55 0.56 -‐6.32 0.00 -‐5.59 1.09 -‐5.12 0.00

RMSE 12.06 Adj.	  R^2 0.31 RMSE 11.74 Adj.	  R^2 0.34

15	  Minutes	  Interval 60	  Minutes	  Interval
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Table 3.8 Regression Model Calibration Results for Four-Lane Highways Combined 

 

Coef. Std.	  Error t-‐value P-‐value Coef. Std.	  Error t-‐value P-‐value
(Intercept) 121.30 0.27 457.07 0.00 122.20 0.59 206.41 0.00

Average	  Volume 0.01 0.00 68.77 0.00 0.01 0.00 38.45 0.00
%	  Long	  Vehicles -‐16.64 0.29 -‐56.47 0.00 -‐22.07 0.67 -‐32.72 0.00
Wind	  Speed -‐0.18 0.00 -‐56.84 0.00 -‐0.21 0.01 -‐31.93 0.00
Visibility 0.01 0.00 4.92 0.00

Surface	  Temp
Slight -‐4.69 0.06 -‐73.99 0.00 -‐4.19 0.14 -‐30.58 0.00

Moderate -‐13.36 0.23 -‐58.73 0.00 -‐11.98 0.43 -‐27.83 0.00
Heavy -‐15.62 0.41 -‐38.14 0.00 -‐17.25 0.75 -‐22.87 0.00

Trace	  Moisture 0.00 0.00 0.00 0.00
Wet -‐3.78 0.14 -‐27.49 0.00 -‐4.27 0.30 -‐14.30 0.00

Chemically	  Wet -‐7.86 0.20 -‐39.69 0.00 -‐9.26 0.43 -‐21.57 0.00
Ice	  Watch -‐9.10 0.07 -‐124.03 0.00 -‐9.94 0.16 -‐63.29 0.00
Ice	  Warning -‐11.39 0.19 -‐60.63 0.00 -‐12.17 0.39 -‐31.34 0.00

Night -‐0.94 0.06 -‐15.08 0.00 -‐0.41 0.13 -‐3.06 0.00
00-‐01 -‐0.50 0.29 -‐1.71 0.09 -‐0.73 0.67 -‐1.09 0.28
06-‐0 0.36 0.54 0.66 0.51 1.12 1.04 1.08 0.28
06-‐1 -‐3.39 0.46 -‐7.42 0.00 -‐2.14 0.90 -‐2.37 0.02
08-‐0 -‐28.90 0.31 -‐93.54 0.00 -‐27.87 0.65 -‐42.56 0.00
08-‐1 -‐29.48 0.32 -‐92.61 0.00 -‐29.18 0.68 -‐43.11 0.00
10-‐0 -‐13.70 0.33 -‐41.47 0.00 -‐14.18 0.72 -‐19.75 0.00
10-‐1 -‐16.68 0.32 -‐51.62 0.00 -‐18.00 0.72 -‐25.12 0.00
14-‐0 -‐9.21 0.28 -‐32.55 0.00 -‐9.87 0.64 -‐15.50 0.00
14-‐1 0.55 0.27 2.08 0.04 1.11 0.59 1.88 0.06
19-‐0 -‐7.81 0.37 -‐20.89 0.00 -‐8.29 0.78 -‐10.60 0.00
19-‐1 -‐9.14 0.36 -‐25.42 0.00 -‐9.09 0.74 -‐12.23 0.00
20-‐0 -‐45.98 0.30 -‐155.09 0.00 -‐46.10 0.65 -‐70.68 0.00
20-‐1 -‐47.68 0.29 -‐164.20 0.00 -‐46.36 0.64 -‐72.96 0.00
27-‐0 -‐6.75 0.31 -‐22.07 0.00 -‐7.40 0.64 -‐11.51 0.00
27-‐1 -‐7.07 0.32 -‐22.34 0.00 -‐10.10 0.66 -‐15.35 0.00
28-‐0 -‐11.28 0.35 -‐32.32 0.00 -‐13.39 0.69 -‐19.37 0.00
28-‐1 -‐1.84 0.32 -‐5.72 0.00 -‐3.56 0.66 -‐5.43 0.00
30-‐0 -‐6.64 0.31 -‐21.56 0.00 -‐8.60 0.68 -‐12.59 0.00
30-‐1 -‐0.80 0.29 -‐2.72 0.01 -‐1.42 0.65 -‐2.17 0.03
32-‐0 -‐8.88 0.37 -‐24.04 0.00 -‐9.49 0.76 -‐12.50 0.00
32-‐1 -‐3.42 0.38 -‐8.96 0.00 -‐3.89 0.76 -‐5.11 0.00
36-‐0 -‐44.68 0.29 -‐156.28 0.00 -‐44.96 0.63 -‐71.38 0.00
36-‐1 -‐40.08 0.28 -‐144.11 0.00 -‐39.85 0.61 -‐65.38 0.00
37-‐0 -‐1.48 0.26 -‐5.65 0.00 -‐1.92 0.57 -‐3.36 0.00
37-‐1 -‐0.79 0.27 -‐2.94 0.00 -‐1.23 0.58 -‐2.11 0.03
41-‐0 -‐34.63 0.34 -‐101.22 0.00 -‐35.11 0.71 -‐49.45 0.00
41-‐1 -‐40.07 0.31 -‐128.05 0.00 -‐39.87 0.67 -‐59.34 0.00
44-‐0 -‐13.90 0.60 -‐23.34 0.00 -‐13.80 1.37 -‐10.10 0.00
44-‐1 -‐3.69 0.62 -‐5.90 0.00 -‐3.67 1.42 -‐2.59 0.01
46-‐0 -‐14.62 0.36 -‐40.71 0.00 -‐14.59 0.68 -‐21.39 0.00
46-‐1 -‐12.54 0.30 -‐42.52 0.00 -‐12.76 0.63 -‐20.23 0.00
47-‐0 -‐1.13 0.28 -‐4.09 0.00 -‐1.31 0.62 -‐2.12 0.03
47-‐1 1.36 0.29 4.70 0.00 1.78 0.63 2.82 0.00
48-‐0 -‐6.84 0.30 -‐22.64 0.00 -‐6.86 0.66 -‐10.39 0.00
48-‐1 -‐10.38 0.30 -‐34.42 0.00 -‐11.24 0.66 -‐17.16 0.00
49-‐0 1.84 0.27 6.90 0.00 2.65 0.58 4.57 0.00
49-‐1 -‐0.81 0.26 -‐3.04 0.00 -‐0.25 0.58 -‐0.43 0.66
50-‐0 -‐3.76 0.30 -‐12.32 0.00 -‐4.32 0.65 -‐6.62 0.00
50-‐1 -‐4.92 0.33 -‐15.01 0.00 -‐5.71 0.67 -‐8.49 0.00
53-‐0 -‐2.84 0.28 -‐10.25 0.00 -‐3.54 0.62 -‐5.73 0.00
53-‐1 -‐3.65 0.28 -‐13.17 0.00 -‐3.75 0.62 -‐6.09 0.00
58-‐0 -‐6.85 0.28 -‐24.10 0.00 -‐6.57 0.61 -‐10.73 0.00
58-‐1 -‐2.31 0.29 -‐7.94 0.00 -‐2.49 0.62 -‐4.03 0.00

RMSE 11.01 Adj.	  R^2 0.68 RMSE 10.64 Adj.	  R^2 0.70

15	  Minutes	  Interval 60	  Minutes	  Interval
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• Effect of Average Volume and % Long Vehicles 

Two-Lane Highways: 

It can be found from Table 3.7 that traffic volume has the same negative effect on average traffic 

speed for both 15 minute and 60 minute models. The modeling results show that for each 100 

veh/ln/h increase in average traffic volume, speed will decrease by 1 km/h. Considering the low 

average traffic volume on two-lane highways, this effect is relatively small. The proportion of 

truck and recreational vehicles is found to be not statistically significant for both the 15 minute 

and 60 minute models. 

Four-Lane Highways: 

Table 3.8 shows that, different from two-lane highways, traffic volume has a positive effect on 

average traffic speed for four-lane highways. Both 15 minute and 60 minute models have the 

same coefficient: for each 100 veh/ln/h increase in traffic volume, speed could increase by 1 km/h. 

This relationship is somehow counterintuitive as the opposite is commonly observed, at least, 

under normal weather conditions. This positive effect on traffic may be attributed to its positive 

effect on improving road surface conditions through tire compaction, which might not have been 

fully captured by the RSC variable on four-lane highways. Another possible reason could be the 

low presence of vehicles in visual range on rural highways may have a positive effect on how fast 

a driver would be comfortable driving under adverse weather conditions. The proportion of truck 

and recreational vehicles is found to have a negative effect on the average traffic speed. For the 

15 minute model, every 10% increase in % long vehicles is expected to decrease average traffic 

speed by 1.7 km/h. For the 60 minute model, every 10% increase in % long vehicles is expected 

to decrease average traffic speed by 2.2 km/h. 
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• Effect of Wind Speed 

Two-Lane Highways: 

As expected, wind speed has a statistically significant effect on average traffic speed. Higher 

wind speed is found to be associated with a lower average traffic speed. One possible explanation 

is that high wind speed is normally associated with adverse weathers which will obviously slow 

down traffic. The results in Table 3.7 shows that on average, every 10 km/h increase in wind 

speed would slow traffic by approximately 1.3 and 1.5 km/h for the 15 minute and 60 minute 

models, respectively. 

Four-Lane Highways: 

Compared with two-lane highways, the effect of wind speed is slightly higher on four-lane 

highways. Every 10 km/h increase in wind speed would slow traffic speed by approximately 1.8 

and 2.1 km/h for the 15 minute and 60 minute models, respectively.  

  

• Effect of Visibility 

Two-Lane Highways:  

As is shown in Table 3.7, visibility has a positive effect on average traffic speed. On average, 

every 10 km increase in visibility would increase traffic speed by approximately 0.3 and 0.4 km/h 

for the 15 minute and 60 minute models, respectively. This makes intuitive sense, as high 

visibility indicates good weather and driving conditions which would have a positive effect on 

average traffic speed. 

Four-Lane Highways: 

Compared with two-lane highways, the effect of visibility is only statistically significant for the 

15 minute model. Every 10 km increase in visibility would only increase traffic speed by 

approximately 0.1 km/h. 
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• Effect of Surface Temperature 

Two-Lane Highways: 

Surface temperature is found to have a positive effect on average traffic speed for two-lane 

highways. One possible explanation is that a lower road surface temperature had contributed to 

the worsening of road surface conditions and decreasing in road surface friction. However, the 

effect of this factor is relatively small, as for each degree of drop in road surface temperature, 

there was only an average reduction of equal to or less than 0.1 km/h in average traffic speed. 

Four-Lane Highways: 

Surface temperature is not statistically significant for four-lane highways.  

 
 

• Effect of Night 

Two-Lane Highways: 

As is shown in Table 3.7, the categorical variable, night, doesn’t have a statistically significant 

effect on average traffic speed for two-lane highways, which may be caused by a lack of vehicles 

during the night. 

Four-Lane Highways: 

For four-lane highways, night has a negative effect on average traffic speed. The average traffic 

speed at night time is approximately 0.94 km/h and 0.41 km/h lower than day time traffic speed 

for the 15 minute and 60 minute models, respectively. Like surface temperature, this effect is also 

considered to be very small. 
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• Effect of Precipitation Intensity 

Two-Lane Highways: 

Figure 3.5 shows a comparison of the coefficients of the three precipitation intensity categories. 

The modeling results suggest that precipitation has a huge negative effect on average traffic speed, 

especially heavy snow. Compared with no snow, heavy snow could cause an average reduction of 

about 32.25 km/h (34.0%) and 28.08 km/h (29.1%) in average traffic speed for the 15 minute and 

60 minute models, respectively. Average speed reduction caused by moderate snow is 13.14 km/h 

(13.9%) and 10.52 km/h (10.9%) for the 15 minute and 60 minute models, correspondingly. 

Slight snow causes average speed reduction by 5.12 km/h (5.4%) and 4.65 km/h (4.8%) for the 15 

minute and 60 minute model, respectively. The effects of precipitation intensity are very close in 

the two models with different time intervals. The effects in the 15 minute model are slightly 

higher than in the 60 minute model. The speed reduction caused by heavy and light snow is fairly 

close with the numbers suggested in HCM 2010 (30-40% for heavy snow and 8-10% for light 

snow). 

Four-Lane Highways: 

Similar to two-lane highways, the effect of precipitation intensity is also significant for four-lane 

highways. Compared with no snow, heavy snow could cause an average reduction of about 15.62 

km/h (12.9%) and 17.25 km/h (14.1%) in average traffic speed for the 15 minute and 60 minute 

models, respectively. Compared with two-lane highways, these effects are lower for four-lane 

highways. Average speed reduction caused by moderate snow is 13.36 km/h (11.0%) and 11.98 

km/h (9.8%) for the 15 minute and 60 minute models, respectively. Slight snow could cause an 

average speed reduction of 4.69 km/h (3.9%) and 4.19 km/h (3.4%) for the 15 minute and 60 

minute models, respectively. Similarly, the effects of precipitation intensity are very close in the 

two models with different time intervals. Compared with the numbers suggested in HCM 2010, 

both heavy and slight snow result in relatively lower speed reduction on four lane highways. 
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Figure 3.5 Effect of Precipitation Intensity 

 

• Effect of Road Surface Conditions 

Two-Lane Highways: 

Figure 3.6 shows the coefficients of RSC categories. The modeling results suggest that RSC also 

has a significant negative effect on average traffic speed. Among all categories, ice warning 

causes the most significant speed reduction. Compared with dry conditions, it causes an average 

reduction of about 10.02 km/h (10.6%) and 12.19 km/h (12.6%) for the 15 minute and 60 minute 

models, respectively. Ice watch causes an average reduction of about 7.81 km/h (8.2%) and 9.13 

km/h (9.5%) for the 15 minute and 60 minute models, respectively. Chemically wet causes an 

average reduction of about 4.31 km/h (4.5%) and 5.54 km/h (5.7%) for the 15 minute and 60 

minute models, respectively. Compared with the first three categories, wet and trace moisture 

have limited effects on the average traffic speed. Wet causes an average reduction of about 1.22 

km/h (1.3%) and 1.94 km/h (2.0%) for the 15 minute and 60 minute models, respectively. Trace 

moisture causes an average reduction of about 0.60 km/h (0.6%) and 2.24 km/h (2.3%) for the 15 

minute and 60 minutes model, respectively. Again, the effects of RSC are very close in the two 

models with different time intervals. The effects in the 60 minute model are slightly higher than 

in the 15 minute model.  
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Four-Lane Highways: 

The effects of RSC on average traffic on four-lane highways show the same pattern with two-lane 

highways. Compared with dry conditions, ice warning causes an average reduction of about 11.39 

km/h (9.4%) and 12.17 km/h (10.0%) for the 15 minute and 60 minute models, respectively. Ice 

watch causes an average reduction of about 9.10 km/h (7.5%) and 9.94 (8.1%) km/h for the 15 

minute and 60 minute models, respectively. Chemically wet causes an average reduction of about 

7.86 km/h (6.5%) and 9.26 km/h (7.6%) for the 15 minute and 60 minute models, respectively. 

The effect of chemically wet is increased about 4 km/h than the effect in the two-lane models. 

Wet causes an average reduction of about 3.78 km/h (3.1%) and 4.27 km/h (3.5%) for the 15 

minute and 60 minute models, respectively. These values are also doubled compared with the 

values in the two-lane highways. Trace moisture is found to be not statistically significant for 

four-lane highways. Again, the effects of RSC are very close in the two models with different 

time intervals. The effects in the 60 minute model are slightly higher than in the 15 minute model. 

These results clearly show the high degree of impact of the RSC on average traffic speed. 

 

 

Figure 3.6 Effect of Road Surface Condition 
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• Effect of Site with the Same Highway Type 

Two-Lane Highways: 

Figure 3.7 shows the coefficients of sites of the two-lane models. The average speed constant 

of the base site is about 95 km/h. As can be seen in the figure, because of the lower speed limit or 

geometry (e.g. near intersection) at Site 13, 25 and 43, these sites have a relatively lower average 

speed than other sites. Except Site 13, 25 and 43, most two-lane highways’ coefficients are 

between -5 and 5, which indicates that under the similar traffic and weather conditions, most two-

lane highways tend to have similar average traffic speeds.  

 

 

Figure 3.7 Site Effect of Two-Lane Highways 
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Figure 3.8 shows the coefficients of sites of the four-lane models. The average speed constant 
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between -10 and 5, which indicates that under the default traffic and weather conditions, most 

four-lane highways also tend to have similar average traffic speeds (i.e. 112 km/h to 127 km/h). 

Note that the lower bound of this range (e.g. 112 km/h) is much higher than the higher bound of 

the two-lane highways’ range (i.e. 100 km/h). This clearly shows the different traffic speed 

patterns on these two types of highways.  

 

 

Figure 3.8 Site Effect of Four-Lane Highways 

 

3.6.2 Artificial Neural Network 

The two combined datasets with the 60 minute time interval are used for MLP-NN model calibration 

in the statistical software R. The significant independent variables found in the previous combined 

regression models are included as the input factors of the MLP-NN. Table 3.9 shows the results of 

MLP-NN for the two types of highways. Note that a single hidden layer with nine nodes was found to 

be optimal for the two-lane highways, and two hidden layers with nine nodes in the first layer and two 

nodes in second layer was found to be optimal for the four-lane highways. The corresponding RMSE 

is 10.13 and 9.68, which are slightly higher than the RMSE of the combined regression models. 

Detailed model comparison will be given in the next section. 
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Table 3.9 MLP-NN Model Calibration Results 

Site Variables 
MLP-NN Architecture 

(Hidden Layers & Nodes) Overall
RMSE 

First Layer Second Layer 

Two-Lane Combined 
(60-Minute Interval) 

Average Volume, Wind Speed, 
Visibility, Surface Temp, 
Precipitation Intensity, RSC 
and Sites 

9 0 10.13 

Four-Lane Combined 
(60-Minute Interval) 

Average Volume, % Long 
Vehicles, Wind Speed, 
Precipitation Intensity, RSC, 
Night and Sites 

9 2 9.68 

 

3.6.3  Time Series Analysis 

Similar to the previous two analyses, time series analysis is also calibrated in the statistical software R. 

It is found that observed speed does not show any trend of being non-stationary; therefore, no 

differentiation was required for the data. All independent variables used in the regression model 

calibration are included as the independent variables of the ARIMAX model. Based on the 

investigation of several combinations of ARIMAX models, ARIMAX (2,0,2) is found to be optimal 

and finally selected and calibrated for both two-lane and four-lane highways.  

Note that the goodness of fit of the model is estimated based on the model statistics generated by R 

called Akaike Information Criterion (AIC) and AICc (i.e. AIC with a greater penalty for extra 

parameters) which are measures of the relative quality of a statistical model for the trade-off between 

the goodness of fit of the model and the complexity of the model (Akaike, 1974). The lower the 

AIC/AICc values, the better quality the model has.  Another model statistic generated by R that could 

be potentially used is Bayesian Information Criterion (BIC). However, a comparison of AIC/AICc 

and BIC given by Burnham & Anderson (2002, 2004) suggest that AIC/AICc can be derived in the 

same Bayesian framework as BIC, and has theoretical advantages over BIC. As a result, only 

AIC/AICc is used to justify the model quality in this analysis.  

Table 3.10 and 3.11 show the final results of ARIMAX model for two-lane and four-lane highways, 

respectively. The results show that % long vehicles and night are not found to be significant for two-

lane highways while visibility and night are not significant for four-lane highways. The results also 

suggest that similar with the multivariate linear regression results, precipitation intensity (i.e. up to -
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6.62 and -7.80) and RSC (i.e. up to -6.28 and -6.84) have a significant effect on the average traffic 

speed. The RMSE values are 8.92 and 8.05, respectively, which are improved significantly compared 

with the values in the regression analysis (11.74 and 10.64), and also better than MLP-NN (10.13 and 

9.68). 

 

Table 3.10 ARIMAX Model Calibration Results for Two-Lane Combined (60-Minute Interval) 

Intercept 
89.45 
(2.60) 

AR1 
1.68 
(0.04) 

AR2 
-0.70 
(0.03) 

MA1 
-1.19 
(0.04) 

MA2 
0.26 
(0.02) 

Average Volume 
-0.01 
(0.00) 

% Long Vehicles 
 
 

Wind Speed 
-0.09 
(0.01) 

Visibility 
0.01 
(0.00) 

Surface Temperature 
0.23 
(0.03) 

None 
0.00 
0.00 

Slight 
-1.08 
(0.17) 

Moderate 
-3.73 
(0.56) 

Heavy 
-6.62 
(0.99) 

 

Dry 
0.00 
0.00 

Trace Moisture 
-0.77 
(0.59) 

Wet 
-0.53 
(0.42) 

Chemically Wet 
-2.95 
(0.47) 

Ice Watch 
-3.80 
(0.29) 

Ice Warning 
-6.28 
(0.52) 

Day Night   

01-0 
0.00 
0.00 

02-0 
-4.08 
(2.95) 

11-0 
-2.71 
(3.42) 

13-0 
-19.26 
 (3.79) 

15-0 
1.54 
(3.10) 

01-1 
-1.99 
(3.40) 

02-1 
-4.43 
(2.93) 

11-1 
0.44 
(3.41) 

13-1 
-9.99 
(3.71) 

15-1 
2.42 
(3.07) 

25-0 
-5.46 
(2.94) 

33-0 
-0.46 
(2.98) 

42-0 
2.48 
(5.09) 

43-0 
-24.87 
(4.30) 

55-0 
2.10 
(3.27) 

25-1 
-8.12 
(2.96) 

33-1 
2.84 
(2.96) 

42-1 
1.53 
(5.15) 

43-1 
-27.15 
(4.24) 

55-1 
4.41 
(3.25) 

56-0 
-10.07 
(3.05) 

57-0 
-0.46 
(3.03) 

59-0 
-6.26 
(4.04) 

  

56-1 
-4.16 
(3.05) 

57-1 
1.31 
(3.03) 

59-1 
-5.00 
(4.19) 

  

AIC 
114854.30 

AICc 
114854.50 

BIC 
115184.30 

Log Likelihood 
-57384.15 

Overall RMSE 
8.92 
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Table 3.11 ARIMAX Model Calibration Results for Four-Lane Combined (60-Minute Interval) 

Intercept 
112.68  
(1.76) 

AR1 
1.65 
(0.03) 

AR2 
-0.67 
(0.03) 

MA1 
-1.02 
(0.04) 

MA2 
0.12 
(0.01) 

Average Volume 
0.01 
(0.00) 

% Long Vehicles 
-15.61 
(0.61) 

Wind Speed 
-0.14 
(0.01) 

Visibility Surface Temperature 
0.03 
(0.02) 

None 
0.00 
0.00 

Slight 
-1.31 
(0.10) 

Moderate 
-4.78 
(0.33) 

Heavy 
-7.80 
(0.60) 

 

Dry 
0.00 
0.00 

Trace Moisture 
0.00 
0.00 

Wet 
-0.72 
(0.28) 

Chemically Wet 
-4.83 
(0.33) 

Ice Watch 
-4.61 
(0.17) 

Ice Warning 
-6.84 
(0.33) 

Day 
 
 

Night 
 
 

  

00-0 
0.00 
0.00 

06-0 
5.01 
(3.24) 

08-0 
-26.39 
(2.18) 

10-0 
-11.27 
 (2.39) 

14-0 
-5.23 
(2.03) 

00-1 
-0.47 
(2.22) 

06-1 
-0.76 
(2.93) 

08-1 
-27.81 
(2.24) 

10-1 
-16.16 
(2.38) 

14-1 
3.22 
(2.01) 

19-0 
-7.57 
(2.60) 

20-0 
-43.86 
(2.15) 

27-0 
-5.84 
(2.16) 

28-0 
-10.48 
(2.33) 

30-0 
-3.92 
(2.27) 

19-1 
-8.19 
(2.49) 

20-1 
-45.00 
(2.15) 

27-1 
-8.95 
(2.21) 

28-1 
-1.94 
(2.21) 

30-1 
1.59 
(2.19) 

32-0 
-7.45 
(2.51) 

36-0 
-42.58 
(2.04) 

37-0 
1.09 
(1.89) 

41-0 
-32.48 
(2.32) 

44-0 
-4.76 
(3.96) 

32-1 
-2.72 
(2.54) 

36-1 
-38.13 
(2.02) 

37-1 
1.97 
(1.91) 

41-1 
-38.34 
(2.20) 

44-1 
-1.82 
(4.04) 

46-0 
-13.04 
(2.28) 

47-0 
-0.59 
(2.09) 

48-0 
-3.51 
(2.18) 

49-0 
4.23 
(1.98) 

50-0 
-3.01 
(2.20) 

46-1 
-11.38 
(2.13) 

47-1 
2.62 
(2.13) 

48-1 
-8.33 
(2.19) 

49-1 
0.91 
(1.97) 

50-1 
-4.21 
(2.26) 

53-0 
-1.63 
(2.10) 

58-0 
-5.58 
(2.07) 

   

53-1 
-1.83 
(2.10) 

58-1 
-1.39 
(2.10) 

   

AIC 
213970.50 

AICc 
213970.80 

BIC 
214478.40 

Log Likelihood 
-106924.30 

Overall RMSE 
8.05 
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3.6.4 Model Comparison 

Figure 3.9 shows the overall RMSE comparison of the regression, MLP-NN and ARIMAX models 

calibrated based on the 60 minute combined datasets. As can be seen in the figure, the regression 

models have the highest RMSE, about 12 and 11 for two-lane and four-lane highways. The MLP-NN 

models have slightly better performance than the regression models, about 10 for both two-lane and 

four-lane highways, which validates the robustness of the combined regression models. The 

ARIMAX models have the best performance among the three, about 9 and 8 for two-lane and four-

lane highways. 

 

 

Figure 3.9 Overall RMSE Comparison for Combined Models 

 

Figure 3.10, Figure 3.11 and Figure 3.12 show the observed vs. predicted scatter plots of the three 

models using the 60 minute combined calibration data. Ideally, all the points should be aligned on the 

diagonal blue line. These figures reveal similar results with Figure 3.9. Figure 3.10 clearly shows that 
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the two-lane regression model tends to overestimate when the average traffic speed is low and 

underestimate when the average traffic speed is high. Particularly when the observed average traffic 

speed is between 0 to 20 km/h, the predicted speed ranges from 0 to over 80 km/h. The four-lane 

regression model is slightly better, however, there are still some points with observed speed between 

40 to 60 km/h that are predicted as 80 to 100 km/h. As can be seen in Figure 3.11, the MLP-NN 

models show very similar pattern with the regression models for both two-lane and four-lane 

highways. Although the overestimate and underestimate issue still exists in both models, performance 

improvement can be observed compared with the regression models, especially four-lane highways. 

By comparing the pattern in Figure 3.12 with the previous two figures, it can be found that most 

points of the ARIMAX models are roughly diagonally distributed, therefore the ARIMAX models 

have the best prediction performance among the three types of models.  

 

 

Figure 3.10 Observed vs. Estimated by Regression Combined (60-Minute Interval) 
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Figure 3.11 Observed vs. Estimated by MLP-NN Combined (60-Minute Interval) 

 

 

Figure 3.12 Observed vs. Estimated by ARIMAX Combined (60-Minute Interval) 
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3.7 Model Validation 

3.7.1 Model Validation for Each Site 

This section demonstrates the model validation using the 10% holdout data for each site. Since the 

ARIMAX model requires continuous time series data, it will be validated with the holdout event data 

and compared with other models in the next section. Therefore, only separated regression models, 

combined regression models and MLP-NN will be validated in this section. 

Table 3.12 and Figure 3.13 show the model validation for two-lane highways. RMSE values of 

each site are summarized both numerically and graphically. As can be seen in Table 3.12, most sites 

have RMSE lower than 10 for all three models. The RMSE of MLP-NN is the lowest among all the 

three models for most sites, which indicates that MLP-NN’s performance is the best among the three 

models. The RMSE of the separated regression model is slightly higher, but very close to the MLP-

NN for most sites. The RMSE of the combined regression model is slightly higher than the separated 

regression model and the MLP-NN for most sites. In general, all the three models have very similar 

RMSE (i.e. performance) for most sites. Therefore, similar with the model calibration results, the 

results of the validation of two-lane highways confirm the robustness of the regression models, both 

separated and combined.  

The only exception, as can be seen in Figure 3.13, is Site 13 in which the RMSE of the MLP-NN is 

much lower than both the separated regression model and the combined regression model. This 

reveals that MLP-NN probably works the best for Site 13, and regression models may not be the best 

choice for speed prediction purposes. 

 

 

 

 

 

 

 



 

 75 

Table 3.12 RMSE Comparison for Two-Lane Highways 10% Holdout Data 

 

 

Regression	  60	  
minutes	  by	  Site

Regression	  60	  
minutes	  Combined

MLP-‐NN	  60	  minutes	  
Combined

01-‐0 7.65 8.16 7.06
01-‐1 7.12 7.96 7.19
02-‐0 8.63 9.92 8.05
02-‐1 9.08 9.45 8.17
11-‐0 9.15 10.1 7.2
11-‐1 8.79 9.53 8.08
13-‐0 19.09 21.83 11.64
13-‐1 22.98 27.4 19.19
15-‐0 6.95 7.91 6.83
15-‐1 7.34 8.65 6.89
25-‐0 11.14 10.96 10.05
25-‐1 13.55 13.82 12.89
33-‐0 9.81 10.54 9.49
33-‐1 8.39 8.56 7.87
42-‐0 4.69 5.28 4.43
42-‐1 9.81 10.9 11.69
43-‐0 4.48 7.39 5.76
43-‐1 5.49 6.84 5.46
55-‐0 9.53 10.92 9.22
55-‐1 13.89 14.26 13.16
56-‐0 10.38 10.54 9.8
56-‐1 8.45 8.9 7.91
57-‐0 13.14 14.52 11.97
57-‐1 13.2 13.96 12.89
59-‐0 10.43 10.86 9.95
59-‐1 11.17 11.74 9.47
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Figure 3.13 RMSE Comparison for Two-Lane Highways 10% Holdout Data 

 

Table 3.13 and Figure 3.14 show the model validation for four-lane highways. As can be seen in 

Table 3.13, the RMSE ranges from lower than 5 to higher than 25. Most sites have RMSE lower than 

or around 10 for all three models. Again, similar with two-lane highways, the RMSE of MLP-NN is 

the lowest among all the three models for most sites. This indicates that MLP-NN’s performance is 

the best among the three models for four-lane highways as well. The RMSE of the separated 

regression model and combined regression model also follow a similar pattern with two-lane 

highways. In general, the results of the validation of four-lane highways also confirms the robustness 

of the regression models, both separated and combined.  
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Table 3.13 RMSE Comparison for Four-Lane Highways with 10% Holdout Data 

 

Regression	  60	  
minutes	  by	  Site

Regression	  60	  minutes	  
Combined

MLP-‐NN	  60	  
minutes	  Combined

00-‐0 8.2 8.62 7.65
00-‐1 10.64 11.21 8.53
06-‐0 5.85 7.67 5.19
06-‐1 8.3 8.83 7.53
08-‐0 6.98 27.67 7.07
08-‐1 6.15 28.4 6.28
10-‐0 8.63 24.58 12.05
10-‐1 9.88 25.49 21.46
14-‐0 11.54 10.81 9.56
14-‐1 9.05 9.65 8.19
19-‐0 10.61 11.2 9.52
19-‐1 11.51 12.1 10.7
20-‐0 5.12 6.88 5.23
20-‐1 7.48 9.39 7.06
27-‐0 11.89 13.35 10.43
27-‐1 17.1 18.88 15.22
28-‐0 18.56 19.69 17.65
28-‐1 15.47 17.17 13.04
30-‐0 10.38 12.02 10.24
30-‐1 11.12 11.72 11.08
32-‐0 8.86 9.12 7.85
32-‐1 11.79 12.84 13.15
36-‐0 4.12 5.48 3.83
36-‐1 3.61 4.95 3.69
37-‐0 8.73 9.05 8.49
37-‐1 8.12 8.11 8.03
41-‐0 6.06 6.62 6.32
41-‐1 6.65 6.82 7.15
44-‐0 15.32 19.28 11.24
44-‐1 3.93 6.34 5.76
46-‐0 11.34 12.21 11.94
46-‐1 8.41 8.7 8.73
47-‐0 11.87 14.39 10.92
47-‐1 11.08 12.88 10.23
48-‐0 9.96 9.85 9.44
48-‐1 11.47 11.41 8.75
49-‐0 7.82 8.19 8.11
49-‐1 10.13 10.25 10.46
50-‐0 11.89 12.43 11.62
50-‐1 10.89 11.85 11.08
53-‐0 11.98 12.57 11.93
53-‐1 12.77 13.01 12.52
58-‐0 8.39 9.09 7.74
58-‐1 11.41 11.94 11.43
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Figure 3.14 RMSE Comparison for Four-Lane Highways 10% Holdout Data 

 

There are also exceptions. For example, both Site 08 and 10’s combined regression models have 

extremely high RMSE values (i.e. over 25) indicating that combined regression models may not the 

best choice among the three models. For both sites, the model with the best performance is the 

separated regression model rather than the MLP-NN. This again suggests the need of developing 

different types of models for each site, therefore different models can be compared and the one with 

the best performance can be found. 

 

3.7.2 Case Studies 

To show the performance of the ARIMAX model for estimating traffic speed, the calibrated 

ARIMAX model is applied to estimate the traffic speed at a given time over two selected events 
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(both separated and combined) and MLP-NN model are also used to predict the traffic speed over the 

same events for comparison purpose.   

Figure 3.15 shows the results of speed estimation by the four models on Site 01-0 which is one of 

the two-lane highways. The y-axis represents the average speed and the x-axis represents the time in 

hours. It can be observed that the regression models and MLP-NN model have fairly accurate 

estimation for the first 20 hours. However, underestimation begins after hour 20, and clear 

overestimation can be observed from hour 26 to hour 30 at the second significant speed drop. The 

estimated speed of the ARIMAX model, on the other hand, has a very similar pattern with the 

observed speed over the whole event. Some minor overestimate issues can be found at the first and 

second significant speed drop. 

 

 

Figure 3.15 Estimation on Two-Lane Highways (Site 01-0 on Dec. 11th.-12th., 2010) 



 

 80 

Figure 3.16 shows the results of speed estimation by the four models on Site 00-0 which is one of 

the four-lane highways. It can be seen that the pattern of the speed estimated by the regression models 

and MLP-NN roughly matches with the pattern of the observed speed, especially the separated 

regression model and the MLP-NN. Some overestimation issues can be found when the speed is 

lower than 80 km/h. Again, the ARIMAX model has the best performance among the four. The 

pattern of the estimated speed is almost the same with the observed speed except for the fact that the 

estimated speed is slightly higher (i.e. about 5 to 10 km/h) than the observed speed when the observed 

is lower than 80 km/h. 

 

Figure 3.16 Estimation on Four-Lane Highways (Site 00-0 on Jan 10th., 2009) 

 

Overall, the two regression models and the MLP-NN have been outperformed by the ARIMAX 

model. This result is somehow expected as the latter used the past speed observations and thus has the 

advantage of making use of more information than the other three alternatives. 
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3.8 Summary 

This chapter investigates the impact of adverse weather and road surface conditions on traffic speed 

with the intention of exploring the feasibility of applying speed as a performance indicator of WRM. 

Data from 35 sites, 14 on two-lane and 21 on four-lane highways, in Iowa, US, are used in the 

analysis. Separated and combined regression models, MLP-NN and ARIMAX models are developed 

for these two highway types. 

It is found that precipitation and road surface conditions have a relatively higher effect on the 

average traffic speed than other factors such as surface temperature and wind speed. Different from 

the linear regression models, the MLP-NN could capture the non-linear effect of independent 

variables on the average traffic speed. However, the modeling results do not confirm the superiority 

of the MLP-NN over the regression models. This indifference validates the appropriateness of the 

multivariate linear regression models. By taking into account both the autocorrelation nature of the 

data as well as the effects of cross-sectional variables, the ARIMAX model provided much improved 

explanatory and prediction power as compared to regression models and MLP-NN. It should be noted 

that the ARIMAX model makes use of recent past observations in estimating the travel speed of the 

current time period. In contrast, the regression models and MLP-NN models estimate speeds based on 

external factors only. 

The analysis results clearly indicated the dependency of traffic speed on road surface conditions, 

suggesting the feasibility of applying speed as a performance monitoring tool. For example, under a 

given weather and traffic condition, the reduction in speed can be established from a comparison to 

baseline values and attributed to the change in surface conditions. Based on the degree of speed 

reduction, the road surface condition can be predicted and their performance can be gauged 

accordingly and/or maintenance activities can be mobilized. 

This chapter focused on investigating the correlation between traffic speed and RSCs. To address 

the reverse part of the problem, the next chapter focuses on developing quantitative models that can 

be used to infer RSCs (e.g. bare pavement status) based on observed traffic speed and other known 

road and weather parameters. 
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Chapter 4 
Inferring Road Surface Condition from Traffic and Weather Data 

4.1 Problem Definition 

One of the purposes of studying the effect of weather and RSC factors on traffic speed in the previous 

chapter is to confirm the relationship between traffic speed and RSC so that the feasibility of using 

traffic speed as WRM performance measure can be investigated. The results showed that adverse 

RSC is highly correlated with significant speed reduction on both two-lane and four-lane rural 

highways.  

On the other hand, it is essential for WRM management to accurately determine the RSC during 

snow storms. Traditional RSC monitoring by visual observation and web cams are subjective and/or 

costly requiring high workload. Additionally, modern embedded surface monitoring sensors suffer 

from high installation and maintenance costs, low reliability and scalability, therefore cannot be 

deployed in a large scale at this point. 

This chapter studies the reverse problem of Chapter 3, and proposes a model to estimate RSC based 

on traffic and weather data which are often readily available from existing traffic sensors. With the 

rapid development of smart phone technologies, this modelling technique has a high potential to 

utilize speed data, GPS data and weather data collected from road users’ smart phones to generate real 

time RSC estimation with high spatial and temporal coverage, which may potentially have the 

benefits of both stationary and mobile based surface monitoring systems, and dramatically reduce the 

overall cost. 

 

4.2 Data Collection 

The dataset used in this chapter is the same with Chapter 3. To ensure enough sample size of each 

RSC category, Site 11-1 (two-lane) and 00-0 (four-lane) with both 15 and 60 minute time intervals 

are selected for model calibration and validation. The following variables in Table 4.1 are used as 

explanatory variables in model calibration. Note that the analysis assumes no surface data is available 

and only traffic and weather data is available. Due to lack of enough valid data points, visibility is not 

included in this analysis. 
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Table 4.1 Explanatory Variables used in Model Calibration 

Data Source Field Name Unit Note 

Traffic 

Average Speed km/h Average speed over 15 minutes or 60 minutes 

Average Volume veh/ln/h Average total volume over 15 minutes or 60 minutes 

% Long Vehicles percent Percent of long vehicles 

SD of Speed N/A Standard deviation of speed over 15 minutes or 60 minutes 

Atmosphere 

Wind Speed km/h Average wind speed over 15 minutes or 60 minutes 

Air Temperature celsius Air temperature 

Precipitation 
Intensity categories Precipitation Intensity (None, Slight, Moderate or Heavy) 

Others Time of Day categories Day (6:00am – 6:00pm) Night (6:00pm – 6:00am) 

 

 

4.3 Methodology 

4.3.1 Road Surface Condition Classification 

RSC used in this analysis is collected by surface sensors embedded in the pavement. As is shown 

below, six types are recorded by the sensors in the order of severity from lowest to highest. The rest 

of the chapter will reference the RSC with type ids instead of type names. 

• Type 0: Dry (moisture free surface, bare pavement) 

• Type 1: Trace Moisture (thin or spotty film of moisture above freezing and detected in absence of 

precipitation) 

• Type 2: Wet (continuous film of moisture on the pavement sensor with a surface temperature 

above freezing as reported when precipitation has occurred) 

• Type 3: Chemically Wet (continuous film of water and ice mixture at or below freezing with 

enough chemical to keep the mixture from freezing, it is also reported when precipitation has 

occurred) 

• Type 4: Ice Watch (thin or spotty film of moisture at or below freezing and reported when 

precipitation is not occurring) 
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• Type 5: Ice Warning (continuous film of ice and water mixture at or below freezing with 

insufficient chemical to keep the mixture from freezing again, reported when precipitation occurs) 

 

4.3.2 Logistic Regression 

Logistic regression is a special form of generalized linear model (Mc-Cullagh & Nelder, 1999) and is 

one of the supervised classification methods. A logistic regression model has the following form: 

 

𝑙𝑛 !(!!!!)
!!!(!!!!)

= 𝜂 𝑋               ∀𝐶! ∈ 𝐶                                               (4.1) 

 

Where 

𝑌 is the categorical response variable 

𝐶 is the set of classifications. In this case, it represents the set of different RSC types 

𝐶! is a state in 𝐶 

𝑃(𝑌 = 𝐶!) is the probability of 𝑌 in the state of 𝐶! 

𝑋 is the explanatory variable vector of d features 

𝜂 𝑋  is a linear function describing the dependence of 𝑌 on the explanatory variables defined as 

follows: 

 

𝜂 𝑋 =   𝛽! + 𝛽!𝑥! +⋯+ 𝛽!𝑥!                                              (4.2) 

 

Where 𝛽!, 𝛽!⋯   𝛽! are model coefficients to be estimated. With this special model format, the 

probability of 𝑌 belonging to any specific state can be estimated by explanatory variables. 

The logistic regression model can be rewritten as  
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𝑃 𝑌 = 𝐶! = !! !

!!!! !                                                           (4.3) 

 

4.3.3 Multi-Layer Logistic Regression Classification Tree 

RSC classification is a typical classification problem and can be addressed by various traditional 

classification modeling approaches, e.g. supervised and unsupervised methods. The basic idea of the 

classification tree is to partition the space of explanatory variables into successively smaller hyper-

rectangles in order to make the sample more and more pure in terms of response variable’s class 

within the new hyper-rectangles that are created (Breiman et al., 1984). 

One of the major problems of the classification tree is that some classes are usually similar with 

other classes, and it is insufficient to use only one explanatory variable to discriminate two classes at 

each split. To solve this problem, in this chapter, a multi-layer logistic regression classification tree is 

proposed and used to classify RSC categories. At each split of the classification tree, a binary logistic 

regression model with multiple explanatory variables is calibrated. Figure 4.1 shows a sample 

classification tree. 

 

 

Figure 4.1 Sample Multi-layer Logistic Regression Classification Tree for RSC Discrimination 

Split 1 

Split 2 1 

0 Split 3 

2 3 

Binary Logistic Regression Model 1 

Binary Logistic Regression Model 3 

Binary Logistic Regression Model 2 
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For each dataset, firstly, a multi-layer logistic regression classification tree with the best 

discriminant performance will be developed. Secondly, 90% of all the data records will be randomly 

selected from the database to calibrate the logistic regression models at each split using the backward 

stepwise likelihood ratio method. Finally, the developed models will be validated using the rest of the  

data records (10%), and the classification hit rate of the models will be evaluated and compared. The 

significance level threshold of the explanatory variables is set to 0.05. 

 

4.3.4 Evaluation of Classification Quality 

The quality of the logistic regression classification is measured by an evaluation matrix (i.e. 

confusion matrix) as shown in Table 4.2. The diagonal cells represent the number of points for which 

the predicted type is equal to the observed type, while those off-diagonal cells are mispredicted by the 

classifier. The higher the diagonal values of the confusion matrix or the higher percentage correct, the 

better performance the classifier has.  

 

Table 4.2 Example of Logistic Regression Evaluation Matrix 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 7 3 70.0 20 5 80.0 
1 1 9 90.0 25 50 66.7 

Overall Percentage    80.0   70.0 

 

4.4 Exploratory Analysis 

Figure 4.2 and Figure 4.3 show the box-plots of all variables, i.e. average speed, standard deviation of 

traffic speed, average volume, % long vehicles, wind speed and air temperature of each RSC type on 

Site 11-1 with 15 minute and 60 minute time intervals, respectively. It can be found from both figures 

that the average speed under chemically wet, ice watch and ice warning conditions are mostly lower 

than those under dry, trace moisture and wet conditions. Standard deviation of traffic speed of all the 

six types overlapped a lot, however, ice watch and ice warning generally tend to have a relatively 
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higher standard deviation of traffic speed. The air temperature for trace moisture and wet are mostly 

above zero while it is mostly below zero for chemically wet, ice watch and ice warning. Although the 

box-plot of air temperature shows some difference among all the six types, the other five types are all 

bracketed by dry. Average volume, % long vehicles and wind speed overlapped a lot, and no obvious 

pattern can be found. 

Figure 4.4 and Figure 4.5 show the same box-plots for Site 00-0 with 15 minute and 60 minute 

time intervals, respectively. The patterns of average speed, standard deviation of traffic speed as well 

as air temperature are mostly similar with the patterns found in Figure 4.2 and Figure 4.3. No obvious 

pattern can be found in average volume, % long vehicles and wind speed as well. The overlapped 

patterns of the six RSC types suggest that nested logistic regression models are needed. 
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Figure 4.2 Boxplots for Site 11-1 (15-Minute Interval) 



 

 89 

 

Figure 4.3 Boxplots for Site 11-1 (60-Minute Interval) 
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Figure 4.4 Boxplots for Site 00-0 (15-Minute Interval) 
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Figure 4.5 Boxplots for Site 00-0 (60-Minute Interval) 
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4.5 Model Calibration and Validation 

4.5.1 Two Lane Highways 

Based on the exploratory analysis as well as the calibration results of different alternative tree designs, 

it is found that the multi-layer classification tree in Figure 4.6 yields the best discriminant 

performance on Site 11-1 for both the 15 minute and 60 minute datasets. Note that because of the 

similarity of Type 1 and Type 2 as well as Type 4 and Type 5 at Site 11-1, the calibrated models lack 

of discriminate power to separate them with acceptable hit rate. Therefore, Type 1 and Type 2 have 

been combined together as a single Type, and the same with Type 4 and Type 5. Split 1 at the root of 

the tree firstly estimates the two probabilities respective to Type (0, 1, 2, 3) and Type (4, 5). Split 2 

then estimates the two probabilities respective to Type 0 and Type (1, 2, 3). Accordingly, Split 3 

estimates the two probabilities respective to Type (1, 2) and Type 3. Based on this classification tree, 

three logistic regression models in total are calibrated. 

 

 
 

Figure 4.6 Calibrated Classification Tree for Site 11-1 

 
Table 4.3 shows the calibration results of Split 1 with a 15 minute time interval for Site 11-1. As 

can be seen above, average speed, standard deviation of traffic speed, average volume, wind speed, 

Split 1 

Split 2 4, 5 

0 Split 3 

3 1, 2 
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air temperature as well as night are all statistically significant. The negative coefficients suggest that 

the higher the average speed, average volume, wind speed, air temperature and if the time is night, the 

more likely that the RSC is Type (0, 1, 2, 3). The positive coefficients suggest that the higher standard 

deviation of traffic speed, the higher probability that the RSC is Type (4, 5). The results make 

intuitive sense and are consistent with the pattern found in the box-plots in the exploratory data 

analysis. 

Table 4.4 shows the classification results, which consists of two parts, the calibration data and the 

10% holdout validation data. Class 0 represents Type (0, 1, 2, 3) and class 1 represents Type (4, 5). A 

cutoff value of 0.5 is used to define these two classes. When the estimated probability of belonging to 

class 1 is equal to or greater than 0.5 and the observed class is 1, the model is considered as making a 

correct prediction. When the estimated probability of belonging to class 1 is less than 0.5 and the 

observed class is 0, the model is also considered as making a correct prediction. Otherwise, it is 

considered as a missing. The overall percentage is the ratio of correct predictions to the total number 

of observations in the group. 

For the calibration data, 399 and 1061 samples are correctly classified for class 0 and class 1, 

respectively. The hit rates for the two classes are 62.9% and 88.6%, respectively. The validation data 

shows the similar results: 39 and 117 cases are correctly classified for class 0 and class 1, respectively. 

The hit rates for class 0 and 1 are 60.9% and 88.6%, respectively. The overall hit rates for the 

calibration data and the validation data are 79.7% and 79.6%. 

 

Table 4.3 Model Calibration of Site 11-1 Split 1 (15-Minute Interval)  

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.048 .006 70.364 1 .000 .954 

Average Volume -.004 .002 5.331 1 .021 .996 

SD of Traffic Speed .031 .013 5.211 1 .022 1.031 

Wind Speed -.060 .010 34.947 1 .000 .942 

Air Temp -.296 .019 248.607 1 .000 .744 

Night -.356 .121 8.590 1 .003 .701 

Constant 4.695 .550 72.905 1 .000 109.432 
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Table 4.4 Classification Results of Site 11-1 Split 1 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 399 235 62.9 39 25 60.9 
1 136 1061 88.6 15 117 88.6 

Overall Percentage    79.7   79.6 

 

Table 4.5 shows the calibration results of Split 2 with a 15 minute time interval for Site 11-1. It 

shows that the higher the average speed and wind speed, the more likely that the RSC is Type 0 while 

the higher air temperature and precipitation intensity is slight, the higher probability that the RSC is 

Type (1, 2, 3). Table 4.6 shows that for the calibration data, the hit rates for class 0 and 1 are 70.4% 

and 77.3%, respectively. For the validation data, the hit rates for class 0 and 1 are 80.6% and 66.7%, 

respectively. The overall hit rates for the calibration data and the validation data are 74.3% and 73.4%. 

 

Table 4.5 Model Calibration of Site 11-1 Split 2 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.075 .013 30.900 1 .000 .928 

Wind Speed -.074 .016 21.017 1 .000 .928 

Air Temp .158 .025 39.053 1 .000 1.171 

Slight 1.861 .210 78.335 1 .000 6.430 

Constant 7.270 1.304 31.071 1 .000 1.436E3 

 

Table 4.6 Classification Results of Site 11-1 Split 2 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 195 82 70.4 25 6 80.6 
1 81 276 77.3 11 22 66.7 

Overall Percentage    74.3   73.4 
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Table 4.7 shows the calibration results of Split 3 with 15 minutes as the time interval for Site 11-1. 

It can be found that only the air temperature is statistically significant, and the higher the air 

temperature, the higher the probability that the RSC is Type (1, 2). Table 4.8 shows the classification 

results. Compared with the previous two splits, the hit rates of both classes are much higher for both 

the calibration and validation data. The overall percentages for the calibration data and the validation 

data are 96.9% and 93.9%, respectively. 

 

Table 4.7 Model Calibration of Site 11-1 Split 3 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Air Temp -7.155 1.468 23.753 1 .000 .001 

Constant -.623 .336 3.433 1 .064 .537 

 

Table 4.8 Classification Results of Site 11-1 Split 3 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 193 4 98.0 19 1 95.0 
1 7 153 95.6 1 12 92.3 

Overall Percentage    96.9   93.9 
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Table 4.9 shows the calibration results of Split 1 with 60 minutes as the time interval for Site 11-1. 

Compared with the 15 minute model, only average speed, wind speed and air temperature are 

statistically significant. The coefficients of these independent variables remain similar with the 15 

minute model. Table 4.10 reveals that for the calibration data, the hit rates for class 0 and 1 are 64.1% 

and 89.5%, respectively. For the validation data, the hit rates for class 0 and 1 are 63.6% and 82.1%, 

respectively. The overall percentages for the calibration data and the validation data are 81.0% and 

76.9%. 

 

Table 4.9 Model Calibration of Site 11-1 Split 1 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.060 .013 22.562 1 .000 .942 

Wind Speed -.084 .022 14.881 1 .000 .919 

Air Temp -.377 .047 63.587 1 .000 .686 

Constant 5.611 1.150 23.814 1 .000 273.496 

 

Table 4.10 Classification Results of Site 11-1 Split 1 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 84 47 64.1 7 4 63.6 
1 27 231 89.5 5 23 82.1 

Overall Percentage    81.0   76.9 
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Table 4.11 displays the calibration results of Split 2 with 60 minutes as the time interval for Site 

11-1. The model has the same significant independent variables with the 15 minute model, and the 

coefficients of these explanatory variables are also identical with the 15 minute model. It can be 

found in Table 4.12 that for the calibration data, the hit rates for class 0 and 1 are 66.7% and 86.2%, 

respectively. For the validation data, the hit rates for class 0 and 1 are 60.0% and 100.0%, 

respectively. The overall percentages for the calibration data and the validation data are 78.6% and 

81.8%. 

 

Table 4.11 Model Calibration of Site 11-1 Split 2 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.098 .032 9.122 1 .003 .907 

Wind Speed -.095 .036 6.848 1 .009 .909 

Air Temp .236 .069 11.844 1 .001 1.267 

Slight 1.830 .497 13.573 1 .000 6.235 

Constant 9.865 3.155 9.779 1 .002 1.925E4 

Table 4.12 Classification Results of Site 11-1 Split 2 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 34 17 66.7 3 2 60.0 
1 11 69 86.2 0 6 100.0 

Overall Percentage    78.6   81.8 
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Table 4.13 demonstrates the calibration results of Split 3 with 60 minutes as the time interval for 

Site 11-1. Again, only air temperature is statistically significant, and the effect of surface temperature 

is also identical with the 15 minute model. As is shown in Table 4.14, for the calibration data, the hit 

rates for class 0 and 1 are also high, 97.8% and 95.1%, respectively. For the validation data, the hit 

rates for class 0 and 1 are both 100.0%. The overall percentages for the calibration data and the 

validation data are 96.5% and 100.0%. 

 

Table 4.13 Model Calibration of Site 11-1 Split 3 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Air Temp -9.755 1.589 4.519 1 .034 .000 

Constant -.092 .726 .016 1 .899 .912 

 

Table 4.14 Classification Results of Site 11-1 Split 3 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 44 1 97.8 4 0 100.0 
1 2 39 95.1 0 4 100.0 

Overall Percentage    96.5   100.0 
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4.5.2 Four Lane Highways 

The classification tree of Site 00-0 (shown in Figure 4.7) is similar with the one of Site 11-1, except 

that Type 1 and 2 are no longer combined as they can be separated with an acceptable hit rate. Split 1 

at the root of the tree firstly estimates the two probabilities respective to Type (0, 1, 2, 3) and Type (4, 

5). Split 2 then estimates the two probabilities respective to Type 0 and Type (1, 2, 3). Split 3 then 

estimates the two probabilities respective to Type (1, 2) and Type 3. Finally, Split 4 estimates the two 

probabilities respective to Type 1 and Type 2. Based on this classification tree, four logistic 

regression models in total are calibrated. 

 

 

Figure 4.7 Calibrated Classification Tree for Site 00-0 

 

Table 4.15 demonstrates the calibration results of Split 1 with 15 minutes as the time interval for 

Site 00-0. As can be seen, average speed, standard deviation of traffic speed, average volume, wind 

speed, air temperature, slight as well as night are all statistically significant. The negative coefficients 

Split 1 

Split 2 4, 5 

0 Split 3 

3 Split 4 

1 2 



 

 100 

suggest that the higher the average speed, average volume, wind speed, and if the air temperature, 

precipitation intensity is slight and the time is night, the more likely that the RSC is Type (0, 1, 2, 3). 

The positive coefficients suggest that the higher the standard deviation of traffic speed, the higher 

probability that the RSC is Type (4, 5). The results make intuitive sense and are consistent with the 

pattern of the box-plots obtained in the exploratory analysis. Table 4.16 reveals that for the calibration 

data, the hit rates for the two classes are 65.4% and 86.0%, respectively. For the validation data, the 

hit rates for class 0 and 1 are 62.2% and 85.0%, respectively. The overall percentages for the 

calibration data and the validation data are 78.7% and 77%. 

 

Table 4.15 Model Calibration of Site 00-0 Split 1 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.101 .007 193.251 1 .000 .904 

Average Volume -.001 .000 5.224 1 .022 .999 

SD of Traffic Speed .062 .021 8.908 1 .003 1.064 

Wind Speed -.021 .005 18.397 1 .000 .980 

Air Temp -.122 .014 75.811 1 .000 .885 

Slight -.563 .120 21.928 1 .000 .570 

Night -.595 .114 27.061 1 .000 .552 

Constant 11.265 .857 172.697 1 .000 7.804E4 

 

 

Table 4.16 Classification Results of Site 00-0 Split 1 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 507 268 65.4 56 34 62.2 
1 197 1213 86.0 25 142 85.0 

Overall Percentage    78.7   77.0 
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The calibration results of Split 2 with 15 minutes as the time interval for Site 00-0 is shown in 

Table 4.17. The results reveal that the higher the average speed, average volume, wind speed and if 

time is night, the more likely that the RSC is Type 0 while the higher surface temperature and if the 

precipitation intensity is slight or moderate, the higher probability that the RSC is Type (1, 2, 3). It 

can be found in Table 4.18 that for the calibration data, the hit rates for class 0 and 1 are 95.8% and 

55.6%, respectively. For the validation data, the hit rates for class 0 and 1 are 94.8% and 60.0%, 

respectively. The overall percentages for the calibration data and the validation data are 85.4% and 

87.6%. 

 

Table 4.17 Model Calibration of Site 00-0 Split 2 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.055 .013 17.500 1 .000 .946 

Average Volume -.004 .001 24.459 1 .000 .996 

Wind Speed -.030 .009 12.477 1 .000 .970 

Air Temp .302 .029 105.907 1 .000 1.352 

Slight .685 .213 10.363 1 .001 1.984 

Moderate 1.657 .574 8.338 1 .004 5.243 

Night -.427 .204 4.361 1 .037 .652 

Constant 7.116 1.496 22.626 1 .000 1.232E3 

 

Table 4.18 Classification Results of Site 00-0 Split 2 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 546 24 95.8 73 4 94.8 
1 88 110 55.6 8 12 60.0 

Overall Percentage    85.4   87.6 
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Table 4.19 shows the calibration results of Split 3 with 15 minutes as the time interval for Site 00-0. 

Similar with Site 11-1, only the air temperature is statistically significant, and the higher the air 

temperature, the higher the probability that the RSC is Type (1, 2). Table 4.20 also shows similar 

results with Site 11-1. Compared with the previous two splits, the hit rates of both classes are much 

higher for both the calibration and validation data. The overall percentages for the calibration data 

and the validation data are 97.5% and 95.0%, respectively. 

 

Table 4.19 Model Calibration of Site 00-0 Split 3 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Air Temp -7.821 1.449 10.200 1 .001 .000 

Constant -1.034 .648 2.544 1 .111 .356 

 
 

Table 4.20 Classification Results of Site 00-0 Split 3 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 100 2 98.0 12 1 92.3 
1 3 93 96.9 0 7 100.0 

Overall Percentage    97.5   95.0 
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The calibration results of Split 4 with 15 minutes as the time interval for Site 00-0 can be found in 

Table 4.21. The results reveal that the higher the standard deviation of traffic speed and if the time is 

night, the more likely that the RSC is Type 1 while the higher average volume and wind speed, the 

higher probability that the RSC is Type 2. Table 4.22 reveals that for the calibration data, the hit rates 

for class 0 and 1 are 67.4% and 83.3%, respectively. For the validation data, the hit rates for class 0 

and 1 are 75.0% and 100.0%, respectively. The overall percentages for the calibration data and the 

validation data are 76.4% and 88.9%. 

 

Table 4.21 Model Calibration of Site 00-0 Split 4 (15-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Volume .006 .002 10.785 1 .001 1.006 

SD of Traffic Speed -.292 .124 5.523 1 .019 .747 

Wind Speed .076 .022 12.582 1 .000 1.079 

Night -1.046 .508 4.248 1 .039 .351 

Constant -2.123 .783 7.346 1 .007 .120 

 

Table 4.22 Classification Results of Site 00-0 Split 4 (15-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 31 15 67.4 3 1 75.0 
1 10 50 83.3 0 5 100.0 

Overall Percentage    76.4   88.9 
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Table 4.23 shows the calibration results of Split 1 with 60 minutes as the time interval for Site 00-0. 

Compared with the 15 minute model, only average speed, wind speed, air temperature and night are 

statistically significant. The coefficients of these independent variables remain similar with the 15 

minute model. As can be seen in Table 4.24, for the calibration data, the hit rates for class 0 and 1 are 

68.9% and 88.8%, respectively. For the validation data, the hit rates for class 0 and 1 are 77.3% and 

90.5%, respectively. The overall percentages for the calibration data and the validation data are 

82.3% and 85.9%. 

 

Table 4.23 Model Calibration of Site 00-0 Split 1 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.118 .015 64.602 1 .000 .889 

Wind Speed -.024 .010 5.594 1 .018 .976 

Air Temp -.112 .028 15.814 1 .000 .894 

Night -.660 .252 6.868 1 .009 .517 

Constant 13.204 1.671 62.407 1 .000 5.423E5 

 

Table 4.24 Classification Results of Site 00-0 Split 1 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 104 47 68.9 17 5 77.3 
1 35 278 88.8 4 38 90.5 

Overall Percentage    82.3   85.9 
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Table 4.25 demonstrates the calibration results of Split 2 with 60 minutes as the time interval for 

Site 00-0. Average speed, wind speed, air temperature, slight and moderate are statistically significant, 

and the coefficients of these independent variables are also identical with the 15 minute model. Table 

4.26 shows that for the calibration data, the hit rates for class 0 and 1 are 96.7% and 58.3%, 

respectively. For the validation data, the hit rates for class 0 and 1 are 92.3% and 100.0%, 

respectively. The overall percentages for the calibration data and the validation data are 88.0% and 

93.3%. 

 

Table 4.25 Model Calibration of Site 00-0 Split 2 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Speed -.104 .030 12.348 1 .000 .902 

Wind Speed -.058 .019 9.699 1 .002 .944 

Air Temp .273 .064 18.068 1 .000 1.313 

Slight 1.006 .495 4.130 1 .042 2.734 

Moderate 2.334 .968 5.814 1 .016 10.316 

Constant 11.726 3.416 11.780 1 .001 1.237E5 

 

Table 4.26 Classification Results of Site 00-0 Split 2 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 118 4 96.7 12 1 92.3 
1 15 21 58.3 0 2 100.0 

Overall Percentage    88.0   93.3 
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Table 4.27 shows the calibration results of Split 3 with 60 minutes as the time interval for Site 00-0. 

Again, only air temperature is statistically significant. The coefficient of air temperature is changed 

from -7.821 to -4.552. Table 4.28 reveals that for the calibration data, the hit rates for class 0 and 1 

are also high, 95.0% and 93.3%, respectively. For the validation data, the hit rates for class 0 and 1 

are both 100.0%. The overall percentages for the calibration data and the validation data are 94.3% 

and 100.0%. 

 

Table 4.27 Model Calibration of Site 00-0 Split 3 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Air Temp -4.552 2.959 2.366 1 .024 .011 

Constant -1.091 1.113 .961 1 .327 .336 

 

Table 4.28 Classification Results of Site 00-0 Split 3 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 19 1 95.0 2 0 100.0 
1 1 14 93.3 0 1 100.0 

Overall Percentage    94.3   100.0 
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The calibration results of Split 4 with 60 minutes as the time interval for Site 00-0 can be found in 

Table 4.29. Except for the standard deviation of traffic speed, the other significant variables are the 

same with the 15 minute models, and the coefficients are close to the 15 minutes as well. Table 4.30 

displays that for the calibration data, the hit rates for class 0 and 1 are also high, 85.7% and 90.0%, 

respectively. For the validation data, the hit rates for class 0 and 1 are 66.7 and 100.0%. The overall 

percentages for the calibration data and the validation data are 88.2% and 80.0%. 

 

Table 4.29 Model Calibration of Site 00-0 Split 4 (60-Minute Interval) 

 B S.E. Wald df Sig. Exp(B) 

Average Volume .012 .002 10.785 1 .001 1.012 

Wind Speed .086 .022 12.582 1 .000 1.09 

Night -1.021 .508 4.248 1 .039 .36 

Constant -1.112 .783 7.346 1 .007 .329 

 

Table 4.30 Classification Results of Site 00-0 Split 4 (60-Minute Interval) 

  Calibration Data Validation Data 

  Predicted Percentage 
Correct Predicted Percentage 

Correct 

  0 1  0 1  

Observed 
0 6 1 85.7 2 1 66.7 
1 1 9 90.0 0 2 100.0 

Overall Percentage    88.2   80.0 
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4.6 Discussion 

Table 4.31 shows the summary of models for both Site 11-1 and Site 00-0. Based on this table, the 

effects of each variable for all the splits can be summarized below: 

 

Table 4.31 Model Summary for Site 11-1 and Site 00-0 

 

 

• Impacts of Average Speed 

Based on the results of Split 1, it can be found that average speed is statistically significant in 

distinguishing good RSC (Type 0, 1, 2, 3) from poor RSC (Type 4, 5), and the higher the speed, 

the higher probability that the RSC belongs to Type (0, 1, 2, 3) – good conditions. For Site 11-1, 

every one km/h increase in average speed, the log odds of Type (4, 5) versus Type (0, 1, 2, 3) 

decreases by 0.048 and 0.06 based on the 15 minute and 60 minute models, respectively. For Site 

00-0, every one km/h increase in average speed, the log odds of Type (4, 5) versus Type (0, 1, 2, 

3) decreases by 0.101 and 0.118 for the 15 minute and 60 minute models, respectively.  

In addition, average speed is also statistically significant in classifying Type 0 and Type (1, 2, 

3) at Split 2, and the higher the value, the higher probability that the RSC is Type 0. For Site 11-1, 

every one km/h increase in average speed, the log odds of Type (1, 2, 3) versus Type 0 decreases 

by 0.075 and 0.098 for the 15 minute and 60 minute models, respectively. For Site 00-0, every 

15	  min 60	  min 15	  min 60	  min 15	  min 60	  min 15	  min 60	  min 15	  min 60	  min 15	  min 60	  min 15	  min 60	  min
Average	  Speed -‐0.048 -‐0.06 -‐0.075 -‐0.098 -‐0.101 -‐0.118 -‐0.055 -‐0.104
Average	  Volume -‐0.004 -‐0.001 -‐0.004 0.006 0.012
%	  Long	  Vehicles
SD	  of	  Speed 0.031 0.062 -‐0.292
Wind	  Speed -‐0.06 -‐0.084 -‐0.074 -‐0.095 -‐0.021 -‐0.024 -‐0.03 -‐0.058 0.076 0.086

Air	  Temperature -‐0.296 -‐0.377 0.158 0.236 -‐7.155 -‐9.755 -‐0.122 -‐0.112 0.302 0.273 -‐7.821 -‐4.552
Slight 1.861 1.83 -‐0.563 0.685 1.006

Moderate 1.657 2.334
Heavy
Night -‐0.356 -‐0.595 -‐0.66 -‐0.427 -‐1.046 -‐1.021

Constant 4.695 5.611 7.27 9.865 -‐0.623 -‐0.092 11.265 13.204 7.116 11.726 -‐1.034 -‐1.091 -‐2.123 -‐1.112
Calibration	  Overall	  
Percentage	  Correct

79.7 81.0 74.3 78.6 96.9 96.5 78.7 82.3 85.4 88.0 97.5 94.3 76.4 88.2

Validation	  Overall	  
Percentage	  Correct

79.6 76.9 73.4 81.8 93.9 100.0 77.0 85.9 87.6 93.3 95.0 100.0 88.9 80.0

Split	  4
Site	  11-‐1 Site	  00-‐0

Split	  1 Split	  2 Split	  3 Split	  1 Split	  2 Split	  3
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one km/h increase in average speed, the log odds of Type (1, 2, 3) versus Type 0 decreases by 

0.055 and 0.104 for the15 minute and 60 minute models, respectively. 

• Impacts of Standard Deviation of Traffic Speed 

Standard deviation of traffic speed is also statistically significant in distinguishing good RSC 

(Type 0, 1, 2, 3) from poor RSC (Type 4, 5). The more varied the speed, the higher probability 

that the RSC is in poor conditions. For Site 11-1, every one unit increase in standard deviation of 

traffic speed, the log odds of Type (4, 5) versus Type (0, 1, 2, 3) increases by 0.031for the 15 

minute model. For Site 00-0, every one unit increase in standard deviation of traffic speed, the log 

odds of Type (4, 5) versus Type (0, 1, 2, 3) increases by 0.062 for the 15 minute model.  

In addition, it turns out that standard deviation of traffic speed is also statistically significant 

in classifying Type 1 and Type 2. For Site 00-0, every one unit increase in standard deviation of 

traffic speed, the log odds of Type 2 versus Type 1 decreases by 0.292 for the 15 minute model.  

• Impacts of Average Volume and % Long Vehicles 

% long vehicles is found not statistically significant in all models. Average volume is in 

distinguishing good RSC (Type 0, 1, 2, 3) from poor RSC (Type 4, 5), and the higher the % long 

vehicles, the higher probability that the RSC is Type (0, 1, 2, 3). For Site 11-1, every one veh/ln/h 

increase in average volume, the log odds of Type (4, 5) versus Type (0, 1, 2, 3) decreases by 

0.004 for the 15 minute model. For Site 00-0, every one veh/ln/h increase in average volume, the 

log odds of Type (4, 5) versus Type (0, 1, 2, 3) decreases by 0.001 for the 15 minute model.  

In addition, average volume is also found statistically significant in classifying Type 0 and 

Type (1, 2, 3) as well as Type 1 and Type 2. For Site 00-0, every one veh/ln/h increase in average 

volume, the log odds of Type (1, 2, 3) versus Type 0 decreases by 0.004 for the 15 minute model. 

For Site 00-0, every one veh/ln/h increase in average volume, the log odds of Type 2 versus Type 

1 increases by 0.006 and 0.012 for the 15 and 60 minute models. 

• Impacts of Wind Speed 

Wind speed is statistically significant in distinguishing good RSC (Type 0, 1, 2, 3) from poor 

RSC (Type 4, 5), and the higher the wind speed, the higher probability that the RSC is Type (0, 1, 

2, 3). For Site 11-1, every one km/h increase in wind speed, the log odds of Type (4, 5) versus 

Type (0, 1, 2, 3) decreases by 0.06 and 0.084 for the 15 minute and 60 minute models, 
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respectively. For Site 00-0, every one km/h increase in wind speed, the log odds of Type (4, 5) 

versus Type (0, 1, 2, 3) decreases by 0.021 and 0.024 for the 15 minute and 60 minute models, 

respectively.  

In addition, wind speed is also statistically significant in distinguishing Type 0 from Type (1, 

2, 3), and the higher the wind speed, the higher probability that the RSC is Type 0. For Site 11-1, 

every one km/h increase in average speed, the log odds of Type (1, 2, 3) versus Type 0 decreases 

by 0.074 and 0.095 for the 15 minute and 60 minute models, respectively. For Site 00-0, every 

one km/h increase in average speed, the log odds of Type (1, 2, 3) versus Type 0 decreases by 

0.03 and 0.058 for the15 minute and 60 minute models, respectively.  

Lastly, wind speed is also statistically significant in distinguishing Type 1 from Type 2. For 

Site 00-0, every one km/h increase in wind speed, the log odds of Type 2 versus Type 1 increases 

by 0.076 and 0.086 for the 15 minute and 60 minute models, respectively.  

• Impacts of Air Temperature 

Air temperature is statistically significant in distinguishing good RSC (Type 0, 1, 2, 3) from poor 

RSC (Type 4, 5).The higher the air temperature, the higher probability that the RSC is Type (0, 1, 

2, 3). For Site 11-1, every one degree increase in air temperature, the log odds of Type (4, 5) 

versus Type (0, 1, 2, 3) decreases by 0.296 and 0.377 for the 15 minute and 60 minute models, 

respectively. For Site 00-0, every one degree increase in air temperature, the log odds of Type (4, 

5) versus Type (0, 1, 2, 3) decreases by 0.122 and 0.112 for the 15 minute and 60 minute models, 

respectively.  

In addition, air temperature is also statistically significant in distinguishing Type 0 from Type 

(1, 2, 3), and the higher the air temperature, the higher probability that the RSC is Type (1, 2, 3). 

For Site 11-1, every one degree increase in air temperature, the log odds of Type (1, 2, 3) versus 

Type 0 increases by 0.158 and 0.236 for the 15 minute and 60 minute models, respectively. For 

Site 00-0, every one degree increase in air temperature, the log odds of Type (1, 2, 3) versus Type 

0 decreases by 0.302 and 0.273 for the15 minute and 60 minute models, respectively.  

Lastly, air temperature is also statistically significant in distinguishing Type (1, 2) from Type 

3.The higher the air temperature, the higher probability that RSC is Type (1, 2). For Site 11-1, 

every one degree increase in air temperature, the log odds of Type (1, 2, 3) versus Type 0 

decreases by 7.155 and 9.755 for the 15 minute and 60 minute models, respectively. For Site 00-0, 
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every one degree increase in air temperature, the log odds of Type (1, 2, 3) versus Type 0 

decreases by 7.821 and 4.552 for the15 minute and 60 minute models, respectively. 

• Impacts of Precipitation Intensity 

Slight is statistically significant in distinguishing good RSC (Type 0, 1, 2, 3) from poor RSC 

(Type 4, 5). For Site 00-0, slight can cause the log odds of Type (4, 5) versus Type (0, 1, 2, 3) 

decrease by 0.563 for the 15 minute model.  

Additionally, both slight and moderate are statistically significant in distinguishing Type 0 

from Type (1, 2, 3) at Split 2. For Site 11-1, slight can cause the log odds of Type (1, 2, 3) versus 

Type 0 increase by 1.861 and 1.83 for the 15 minute and 60 minute models, respectively. For Site 

00-0, slight can cause the log odds of Type (1, 2, 3) versus Type 0 increase by 0.685 and 1.006 

for the 15 minute and 60 minute models, respectively. Moderate can cause the log odds of Type 

(1, 2, 3) versus Type 0 increase by 1.657 and 2.334 for the15 minute and 60 minute models, 

respectively. 

• Impacts of Night 

Night is statistically significant in distinguishing good RSC (Type 0, 1, 2, 3) from poor RSC 

(Type 4, 5). For Site 11-1, night can cause the log odds of Type (4, 5) versus Type (0, 1, 2, 3) 

decreases by 0.356 for the 15 minute model. For Site 00-0, night can cause the log odds of Type 

(4, 5) versus Type (0, 1, 2, 3) decrease by 0.595 and 0.66 for the 15 minute and 60 minute models, 

respectively.  

In addition, night is also found statistically significant in distinguishing Type 0 from Type (1, 

2, 3) as well as Type 1 and Type 2. For Site 00-0, night can cause the log odds of Type (1, 2, 3) 

versus Type 0 decrease by 0.427 for the 15 minute model. For Site 00-0, night can cause the log 

odds of Type 2 versus Type 1 decrease by 1.046 and 1.021 for the 15 and 60 minute models. 

 

Figure 4.8 and Figure 4.9 show the overall validation hit rate summary for each split of Site 11-1 

and Site 00-0, respectively. As can be found in Figure 4.8, both Split 1 and 2 of Site 11-1 have the 

overall hit rate at around 80% for both the 15 minute and 60 minute models. Split 3 has an even 

higher overall hit rate than Split 1 and 2, i.e. over 90% for the 15 minute model and 100% for the 60 

minute model. Figure 4.9 reveals that, similar with Site 11-1, both Split 1 and 2 of Site 00-0 have the 
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overall hit rate at around 80%. Again, Split 3 has the highest overall hit rate, i.e. over 90% for the 15 

minute model and 100% for the 60 minute model. Split 4 of Site 00-0 also has relatively high hit rate. 

It is about 90% for the 15 minute model, and about 80% for the 60 minute model.  

 

 

Figure 4.8 Overall Validation Hit Rate Summary of Site 11-1  

 

Figure 4.9 Overall Validation Hit Rate Summary of Site 00-0 
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4.7 Summary 

This study investigates the feasibility of classifying different RSC types on uninterrupted traffic flow 

using a multi-layer logistic regression classification tree based on both traffic and weather data. A 

wide range of factors are examined for the effects on RSC,  including average speed, average volume, 

% long vehicles, standard deviation of traffic speed, wind speed, air temperature, precipitation 

intensity and time of day. The results clearly show that with the proper classification trees, traffic and 

weather data can be utilized to discriminate major RSC types.  

It is found that splits that classify the same RSC types for both Site 11-1 (two-lane two-way) and 

Site 00-0 (four-lane) have similar significant explanatory variables. For example, for discriminating 

Type (0, 1, 2, 3) and Type (4, 5) at Split 1 of both sites, average speed, average volume, standard 

deviation of traffic speed, wind speed, air temperature and night are all statistically significant for the 

15 minute models while average speed, wind speed and air temperature are all statistically significant 

for the 60 minute models. For discriminating Type 0 and Type (1, 2, 3) at Split 2 of both sites, 

average speed, wind speed, air temperature and slight are all statistically significant for both the 15 

minute and the 60 minute models. For discriminating Type (1, 2) and Type 3 at Split 3 of both sites, 

air temperature is statistically significant for both the 15 minute and the 60 minute models. In terms 

of model performance, the overall hit rates for models of all splits are around 80% or higher, which 

indicates that the calibrated models have a relatively high performance and reliability. 
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Chapter 5 
Conclusions and Future Work 

5.1 Major Findings 

This research has, firstly, investigated the impact of adverse weather and RSC on traffic speed with 

the intention of exploring the feasibility of applying speed as a performance indicator of WRM. 

Traffic, weather and surface condition data, over three winter seasons from 2008 to 2011, collected 

from 35 rural highway sites (i.e. 14 on two-lane and 21 on four-lane highways) in Iowa, US, are used 

in this research. Multivariate linear regression models with both 15 minute and 60 minute time 

intervals, MLP-NN and ARIMAX models are developed for the two highway types.  

The results of the multivariate regression analysis confirm that both adverse weather conditions 

(e.g. snow precipitation) and snow/ice coverage can result in a significant speed reduction during 

snow events on both two-lane and four-lane rural highways. The MLP-NN is capable of capturing the 

non-linear effect; however, it is only slightly better in speed estimation performance than the 

multivariate linear regression models. This result suggests the robustness of the multivariate linear 

regression models. Compared with the multivariate regression models and the MLP-NN model, the 

ARIMAX model provides much improved explanatory and prediction power in estimating the travel 

speed of the current time period by making use of both recent past speed observations and external 

factors. The analysis results clearly indicated the dependency of traffic speed on RSC, suggesting the 

feasibility of applying speed as a performance monitoring indicator.  

Secondly, the research investigates the feasibility of classifying different RSC types using a multi-

layer logistic regression classification tree based on both traffic and weather data. The results show 

that splits that classify the RSC types for both Site 11-1 (two-lane) and Site 00-0 (four-lane) have 

similar significant explanatory variables. In particular, to discriminate ice watch/warning and other 

RSC types at Split 1, standard deviation of traffic speed is found statistically significant in the 15 

minute model while average speed, wind speed and air temperature are all statistically significant for 

both the 15 minute and 60 minute models. The overall hit rates for models of all splits are 80% or 

higher, which confirms the reliability of the multi-layer logistic classification regression tree in 

discriminating RSC types using traffic and weather data on both two-lane and four-lane highways. 
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5.2 Limitations and Future Work 

There are still limitations of this research. The following improvements can be pursued to gain a 

better understanding of the relationship between traffic speed and RSC and improve the reliability of 

applying the results in WRM performance measurement: 

• This study only considered the first order of the independent variables in the multivariate linear 

regression analysis. Further studies can be performed to investigate the need to consider higher 

orders and interaction among variables. 

• This study analyzed three winter seasons data collected from 35 sites. General models have been 

developed for both two-lane and four-lane highways. More sites should be covered to improve 

the transferability of the models. 

• Data used in this study is collected at stations located on highways, which indicates that the 

dataset is point measurement only. To improve the spatial coverage of the RSC classification 

models, mobile data (e.g. GPS, real time speed and weather condition) collected from highway 

users or patrol personnel needs to be utilized.  

• This study only applied logistic regression for classifying RSC types. Further studies need to be 

conducted to investigate other classification algorithms, especially machine learning algorithms, 

for example, a support vector machine. 
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Appendix A-1: Two-Lane Regression Results (15-Minute)  
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Appendix A-2: Four-Lane Regression Results (15-Minute)  
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Appendix A-3: Two-Lane Regression Results (60-Minute)  
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Appendix A-4: Four-Lane Regression Results (60-Minute)  
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Appendix B: Description of Pavement Snow and Ice Conditions 

Condition 1: All snow and ice are prevented from bonding and accumulating on the road surface. 

Bare/wet pavement surface is maintained at all times. Traffic does not experience weather-related delays 

other than those associated with wet pavement surfaces, reduced visibility, incidents, and “normal” 

congestion.  

Condition 2: Bare/wet pavement surface is the general condition. There are occasional areas having snow 

or ice accumulations resulting from drifting, sheltering, cold spots, frozen melt-water, etc. Prudent speed 

reduction and general minor delays are associated with traversing those areas. 

Condition 3: Accumulations of loose snow or slush ranging up to 5 cm (2 in.) are found on the pavement 

surface. Packed and bonded snow and ice are not present. There are some moderate delays due to a general 

speed reduction. However, the roads are passable at all times.  

Condition 4: The pavement surface has continuous stretches of packed snow with or without loose snow 

on top of the packed snow or ice. Wheel tracks may range from bare/wet to having up to 4 cm (1.5 in.) of 

slush or unpacked snow. On multilane highways, only one lane exhibits these pavement surface 

conditions. The use of snow tires is recommended to the public. There is a reduction in traveling speed 

with moderate delays due to reduced capacity. However, the roads are passable. 

Condition 5: The pavement surface is completely covered with packed snow and ice that has been treated 

with abrasives or abrasive/chemical mixtures. There may be loose snow of up to 5 cm (2 in.) on top of the 

packed surface. The use of snow tires is required. Chains and/or four- wheel drive may also be required. 

Traveling speed is significantly reduced, and there are general moderate delays with some incidental 

severe delays. 

Condition 6: The pavement surface is covered with a significant buildup of packed snow and ice that has 

not been treated with abrasives or abrasives/chemical mixtures. There may be over 5 cm (2 in.) of loose or 

wind-transported snow on top of the packed surface due to high snowfall rate and/or wind. There may be 

deep ruts in the packed snow and ice that may have been treated with chemicals, abrasives, or 

abrasives/chemical mixtures. The use of snow tires is the minimum requirement. Chain– and snow tire–

equipped four-wheel drive is required in these circumstances. Travelers experience severe delays and low 

travel speeds due to reduced visibility, unplowed loose or wind-compacted snow, or ruts in the packed 

snow and ice.  

Condition 7: The road is temporarily closed. This may be the result of severe weather (low visibility, etc.) 

or road conditions (drifting, excessive unplowed snow, avalanche potential or actuality, glare ice, 

accidents, vehicles stuck on the road, etc.). 
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