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Abstract

Battail [1989] shows that an appropriate criterion for the design of long block codes

is the closeness of the normalized weight distribution to a Gaussian distribution. A sub-

sequent work shows that iterated product of single parity check codes satisfy this crite-

rion [1994]. Motivated by these earlier works, in this thesis, we study the effect of the

interleaver on the performance of turbo codes for large block lengths, N →∞. A parallel

concatenated turbo code that consists of two or more component codes is considered. We

demonstrate that for N → ∞, the normalized weight of the systematic ŵ1 =
w1√
N

, and

the parity check sequences ŵ2 =
w2√
N

and ŵ3 =
w3√
N

become a set of jointly Gaussian

distributions for the typical values of ŵi, i = 1, 2, 3, where the typical values of ŵi are

defined as lim
N→∞

ŵi√
N
6= 0, 1 for i = 1, 2, 3. To optimize the turbo code performance in the

waterfall region which is dominated by high-weight codewords, it is desirable to reduce

ρij, i, j = 1, 2, 3 as much as possible, where ρij is the correlation coefficient between ŵi

and ŵj. It is shown that: (i) ρij > 0, i, j = 1, 2, 3, (ii) ρ12, ρ13 → 0 as N → ∞, and

(iii) ρ23 → 0 as N → ∞ for “almost” any random interleaver. This indicates that for

N → ∞, the optimization of the interleaver has a diminishing effect on the distribution

of high-weight error events, and consequently, on the error performance in the waterfall

region. We show that for the typical weights, this weight distribution approaches the av-

erage spectrum defined by Poltyrev [1994]. We also apply the tangential sphere bound

(TSB) on the Gaussian distribution in AWGN channel with BPSK signalling and show

that it performs very close to the capacity for code rates of interest. We also study the
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statistical properties of the low-weight codeword structures. We prove that for large block

lengths, the number of low-weight codewords of these structures are some Poisson random

variables. These random variables can be used to evaluate the asymptotic probability mass

function of the minimum distance of the turbo code among all the possible interleavers.

We show that the number of indecomposable low-weight codewords of different types tend

to a set of independent Poisson random variables. We find the mean and the variance of

the union bound in the error floor region and study the effect of expurgating low-weight

codewords on the performance. We show that the weight distribution in the transition

region between Poisson and Gaussian follows a negative binomial distribution. We also

calculate the interleaver gain for multi-component turbo codes based on these Poisson ran-

dom variables. We show that the asymptotic error performance for multi-component codes

in different weight regions converges to zero either exponentially (in the Gaussian region)

or polynomially (in the Poisson and negative binomial regions) with respect to the block

length, with the code-rate and energy values close to the channel capacity.
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Chapter 1

Introduction

The advent of turbo codes [1] is one of the most important developments in coding theory

in many years. These codes can achieve a near capacity error correcting performance

with a relatively simple decoding method. Turbo codes consist of two or more recursive

convolutional codes (RCCs) which are connected in parallel or serial via pseudo-random

interleavers.

A typical error performance of a turbo code consists of two regions: the waterfall region

and the error floor region. In the waterfall region, the error performance is determined by

high-weight codewords, whereas in the error floor region, the performance is determined

by low-weight codewords.

One of the tools to assess the performance of a binary linear block code with maximum

likelihood (ML) decoding is its weight distribution1. While ML decoding is not feasible

1Number of codewords for different possible weight.
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CHAPTER 1. INTRODUCTION 2

for turbo codes, it provides insight into the potential performance of these codes. Because

of the existence of the interleaver, the analysis based on the actual weight distribution

becomes very complicated. Benedetto and Montorsi introduce “uniform interleaving” tech-

nique and evaluate the “average weight distribution” of the code, which is defined as the

average weight distribution among all codes generated with various possible interleavers [2].

Although turbo codes are not random coding schemes, with a randomly chosen in-

terleaver, their pairwise distance spectrum is very similar to that of the random codes.

In [3, 4], it is shown that turbo codes belong to the class of weakly random-like codes; al-

though their frame error rate (FER) performance is poor, the bit error rate (BER) remains

low up to the neighborhood of the channel capacity. In the class of weakly random-like

codes, the normalized weight distribution has similarity with that of random coding mea-

sured by cross entropy [5]. Battail shows that an appropriate criterion for the design of long

block codes is the closeness of the normalized weight distribution to Gaussian rather than

large minimum distance [6]. Reference [7] provides techniques to apply the channel coding

theorem and the resulting error exponent, which was originally derived for random block

code ensembles, to the ensembles of codes with fewer restrictive randomness requirements.

Evaluating the performance of turbo codes is not feasible because of their complex

structure. As a result, providing some bounds on the error performance is helpful to evalu-

ate the potential performance of the code. Based on the weight distribution of turbo codes

and by using Gallager’s bounding techniques [8], some upper bounds on the performance

of turbo codes are derived in [9–11].
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It is known that using a pseudo-random interleaver in turbo codes guarantees an ex-

cellent BER performance, but a certain number of low-weight codewords are generated,

resulting in a small minimum distance and the appearance of an error floor. The structure

and the number of such low-weight codewords are studied in [12] and [13].

In this thesis, the weight distribution of turbo codes is addressed and it is proved

that the weights of the systematic and parity streams for their typical values tend to a

set of uncorrelated, and hence, independent, Gaussian random variables for a randomly

chosen interleaver and for any nontrivial recursive convolutional code. We show that with

probability one, in the waterfall region, a randomly chosen interleaver performs as well

as the best interleaver. We also show that Gaussian weight spectrum is very close to the

“average spectrum” [14]. The performance of a code with an average spectrum is very

close to that of a capacity-achieving random code with binary phase shift keying (BPSK)

signaling over an additive white Gaussian noise (AWGN) channel. We apply the tangential

sphere bound (TSB) on the frame error rate of a code with asymptotically Gaussian weight

distribution and find the region of rate and signal-to-noise ratio (SNR) where the error

exponent is positive and hence, the error probability converges to zero as the block length

increases. We show that the achievable rate is very close to the capacity for code rates of

interest.

We also investigate the effect of the interleaver optimization on the error floor region. It

is known that the low-weight codewords do not follow the Gaussian distribution and they

are more important in determining the performance of the code in the error floor region
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(at high SNR). Therefore, unlike in the waterfall region, the optimization of the compo-

nent codes and the interleaver affect the performance in the error floor region. In [12], it

is reported that as the block length increases, the low-weight codewords of a few special

structures remain probable, and the expected number of low-weight codewords of each

such structure remains finite as the block length tends to infinity. In this thesis, we show

that the asymptotic probability mass function of the number of low-weight codewords of

each structure is a Poisson random variable. We also show that indecomposable low-weight

codewords constitute a set of independent Poisson random variables. We study the statis-

tical properties of these codewords based on asymptotically possible low-weight codewords

and derive the mean (and the variance) of the number of decomposable and indecompos-

able low-weight codewords. By means of these random variables, the probability mass

function of the turbo code minimum distance, and the mean and the variance of the union

bound in the error floor region, are evaluated.

The Gaussian approximation is valid for high-weight codewords and the Poisson dis-

tribution is valid for low-weight codewords. We show that the weight distribution in the

transition region where the spectrum emerges from Poisson to Gaussian is negative bino-

mial and we show that the effect of the codewords in this region on the error performance

is negligible.

In [15], it is indicated that using J > 2 component codes improves the distance prop-

erties of turbo codes, resulting in a better performance when ML decoding is used. Here,

we show that the Poisson distribution of low-weight codewords guarantees that for a turbo



CHAPTER 1. INTRODUCTION 5

code with J component codes and randomly chosen interleavers, the interleaver gain is J−2

which is the same as for the uniformly interleaved code reported in [16]. Our results show

that the overall performance of multi-component turbo codes is very close to the capacity

for BPSK signalling over an AWGN channel, because: (i) the error probability due to high-

weight codewords exponentially tends to zero for SNR values close to the capacity, and (ii)

the low-weight codewords result in an error floor which decreases polynomially as the block

length increases. Finally, observing that the number of low-weight codewords is small, we

discuss a method to expurgate the low-weight codewords following the method introduced

in [17,18], and show that the interleaver gain can be increased for multi-component turbo

codes by expurgating low-weight codewords.

This thesis is organized as follows. In Chapter 2, we study the basic structure of turbo

codes and the component codes and the typical performance of turbo codes and bounds on

the performance of the code. In Chapter 3, we study the asymptotic weight distribution

of the code for high-weight codewords and apply the TSB on the error performance of

the code in the waterfall region. In Chapter 4, the statistical properties of the low weight

codewords and their effect on the error floor is studied. In Chapter 5, the contributions of

this thesis are summarized. Chapter 6 includes some future research directions.



Chapter 2

Basic Structure of Turbo Codes

2.1 Chapter Overview

Designing codes that achieve transmission rates close to the channel capacity defined in

the Shannon’s celebrated work [19] has been an attractive subject of research for decades.

However, almost no near capacity coding schemes with practical encoding and decoding

were known for about half a century. Turbo codes [1] presented in 1993 by Berrou achieve

code rates very close to the capacity limit for a Gaussian channel over a wide range of

signal-to-noise ratios with practical encoding and decoding algorithms.

The basic idea behind turbo codes is to make use of some recursive convolutional codes

(RCC) connected through some interleavers. The resulting linear block code has a weight

distribution which is very close to the distance spectrum of random codes [20].

The low-complexity suboptimal decoding algorithm introduced in [1] is based on an

6



CHAPTER 2. BASIC STRUCTURE OF TURBO CODES 7

iterative algorithm which employs a soft-output decoder for each of the constituent codes.

In each iteration, the soft-input soft-output decoding improves the reliability values and

eventually, under certain conditions, these reliability values converge to a valid codeword1.

The complexity of this algorithm is proportional to the block length2 and the number of it-

erations, while the complexity of the maximum likelihood decoding increases exponentially

with the number of information bits.

The presence of the pseudo-random interleaver makes it difficult to evaluate the per-

formance of turbo codes. However, the performance of turbo codes can be estimated by

using bounding techniques. Some of these techniques use the weight distribution of the

code to compute some upper bounds on the error performance.

The weight distribution of turbo codes is affected by the weight distribution of recursive

convolutional codes and the interleaver structure. Although there are some analytical

approaches to compute the weight distribution of RCCs, it is practically infeasible to

compute the weight distribution of a turbo code because of the effect of the interleaver.

The average weight distribution of the code among all possible interleavers known as the

weight distribution under uniform interleaving is used to bound the performance of turbo

codes.

1A valid vector of coded bits.
2Number of coded bits in each codeword.
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2.2 Basic Structure of Turbo Codes

Conventional turbo codes consist of two (or more) convolutional codes connected in serial

or in parallel via some pseudo-random interleavers. Other classes of turbo codes include

bandwidth-efficient turbo codes [21] and turbo codes based on block constituent codes [22].

In this thesis, we focus on parallel concatenated turbo codes with recursive convolutional

codes as their constituent codes.

Figure 2.1 presents a block diagram of an encoder of a systematic turbo code with a

block length N that is composed of two recursive convolutional codes (RCC). The infor-

mation bits are fed to the first RCC and after being interleaved are passed through the

second constituent encoder. The resulting codeword consists of the systematic bits, b1(i),

and two parity check streams, b2(i), b3(i), i = 1, 2, . . . , N .

b3(i)

b2(i)

b1(i)b1(i)

Interleaver

RCC

RCC

Figure 2.1: Basic structure of the turbo encoder.

The coding rate of this code is 1/3. Higher code rates are achievable by puncturing par-

ity check bits (and even systematic bits). Using more constituent codes and/or constituent

codes with lower code rates result in codes with rates lower than 1/3.
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The Hamming weight of a codeword in a binary3 block code is the number of ones in

that codeword. For the turbo code presented in figure 2.1, the Hamming weight of the

output codeword is equal to the sum of the weights of the b1, b2 and b3 sequences over a

block denoted by w1, w2, and w3, respectively.

2.2.1 Linear Feedback Shift Registers

A turbo encoder employs two or more constituent recursive convolutional codes. Each code

is a linear feedback shift register (LFSR) with an infinite impulse response (IIR). Here, we

review the LFSR sequences and study the properties of the RCCs as the components of

turbo codes. The properties of shift register sequences is studied by Golomb in [23].

A binary LFSR consists of some memory elements, each storing a binary variable,

b ∈ {0, 1}. Figure 2.2.1 represents the basic structure of a binary LFSR with n memory

elements.

...

...

++ +

ak−2 ak−3 ak−n

C1 C2 C3 Cn

ak−1

Figure 2.2: Binary linear feedback shift register.

3Only consisting of ones and zeroes
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The binary values stored in all the memory elements is called the state of the LFSR.

The output sequence is a function of the positions of the switches in figure 2.2.1 indicated

by binary variables Ci, i = 1, 2, . . . , n. A one indicates a closed switch, and a zero indicates

an open switch. Note that in order to have n memory elements, Cn should be one. From

the structure of an LFSR, it can be shown that the generated sequence {an} satisfies the

recursive equation

ak =
n∑

i=1

Ciak−i. (2.1)

The initial state of the LFSR is shown by a−1, a−2, . . . , a−n . The sequence generated by

an LFSR is a function of its initial state, as well as the positions of the switches. The

sequence {an} = {a0, a1, a2, . . .} can be described by its generating function G(x), defined

by

G(x) =
∞∑
i=0

aix
i =

n∑
i=1

Cix
i

i∑
j=1

a−jx
−j

1−
n∑

i=1

Cix
i

=
g(x)

f(x)
. (2.2)

The polynomial

f(x) = 1−
r∑

i=1

Cix
i (2.3)

is called the characteristic polynomial of the shift register. Since cn = c0 = 1, f(x) is a

monic polynomial of degree n [23].

In an LFSR, the next entry in the sequence and the next state depend only on the

current state. If a particular state occurs for the second time, the rest of the sequence

will be periodic from that point on. Therefore, the maximum period of an LFSR sequence

is 2n − 1, which corresponds to one cycle through each of the 2n − 1 non-zero states. A
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sequence with a period of 2n−1 is commonly known as a maximum length sequence (MLS)

or an m-sequence. The period of an LFSR sequence with characteristic polynomial f(x) is

the smallest integer p such that f(x) divides 1−xp (modulo 2 arithmetic) [23]. The integer

p is also called the exponent of f(x). A necessary, but not sufficient condition on f(x) to

produce an m-sequence is that f(x) is irreducible. The number of polynomial of degree n

with maximum exponent is given by φ(2n − 1)/n where φ(·) is the Euler φ-function [23].

2.3 Typical Performance of Turbo Codes

A typical error performance of a turbo code is illustrated in figure 2.3. The performance

of the code is divided into two regions: the waterfall region and the error floor region.

For signal to noise ratios close to the capacity, a small increase in the received bit-energy

results in a considerable improvement in the error probability. This region of performance

is called the waterfall region. In the error floor region, the performance does not improve

significantly as the SNR increases and the error performance remains almost constant for

a wide range of SNR values.

In the waterfall region, the error performance is determined by the codewords of high

weights. As we will see in the following chapter, for large block turbo codes, the asymptotic

weight distribution of high-weight codewords is Gaussian with parameters which are inde-

pendent of the chosen component codes and the structure of the interleaver. As a result,

the performance of long block turbo codes does not improve very much with interleaver
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Waterfall

Error Floor

SNR
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Figure 2.3: Typical error performance of a turbo code over an AWGN channel.

and RCC optimization.

In the error floor region, the performance is determined by low-weight codewords. The

weight distribution of low-weight codewords is determined by the RCC and interleaver

selection. As a result, the error floor can be lowered by optimizing the constituent codes

and the interleaver. Turbo codes are powerful codes in part due to the fact that the number

of their low-weight codewords remains small as the block length increases. This is unlike

many other known block codes where the number of such codewords increases with the

block length. A recursive convolutional encoder produces many nonzero parity bits from

a low-weight systematic stream, unless for a small number of certain systematic patterns.

The interleaver rearranges the bit positions in such streams and as a result, with a high

probability, at least one of the parity streams will have a high weight. However, still a small



CHAPTER 2. BASIC STRUCTURE OF TURBO CODES 13

number of low-weight codewords may exist, as the interleaver may map a low-parity-weight

pattern to another low-parity-weight pattern. Therefore, turbo codes have a relatively low

minimum distance4.

2.4 Weight Distribution of Linear Binary Block Codes

In a binary linear codebook5, the binary addition of any two codewords is another code-

word. As a result, the all-zero codeword is a valid codeword for any binary linear code.

For a binary linear code, each codeword is located with the same set of distances from

other codewords as the all-zero codeword is. This is called the distance invariance prop-

erty. In this case, all codewords have the same error protection because the shape of all

Voronoi regions are the same. The Voronoi region of a codeword is the region where the

optimal decoder decodes that codeword when the received vector falls in that region. For

AWGN channel and equiprobable codewords, each point belongs to the Voronoi region

of the codeword with the shortest Euclidean distance. In this case, the Voronoi region

of each codeword is surrounded by all the median planes between that codeword and its

neighboring codewords.

The shape of the Voronoi region determines the error performance. An error occurs

when the received vector is not in the Voronoi region of the actual transmitted codeword.

Larger Euclidean distance between codewords results in a larger Voronoi region, and hence,

4The Hamming weight of the nearest codeword with respect to the all-zero codeword.
5Set of all possible codewords.
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a better error performance. For a binary block code, larger Euclidean distance is equivalent

to larger Hamming distance6 between different codewords. The error protection is mainly

affected not only by the distance of the nearby codewords, but also by the number of such

codewords.

Weight distribution of a linear code is defined as the number of codewords of different

weights. A useful tool to show the weight distribution of a code is its input-output weight

enumerating function (IOWEF). IOWEF shows how the weight of the coded bits relates

to the systematic weight. For the turbo code shown in figure 2.1, the IOWEF is given by

Aw1,w2,w3(W1, W2,W3) =
∑

w1,w2,w3

Aw1,w2,w3W
w1
1 Ww2

2 Ww3
3 , (2.4)

where Aw1,w2,w3 indicates the number of codewords with the systematic weight of w1 and

the parity weights of w2 and w3. For this code, the total weight is the sum of the systematic

and the parity weights (w = w1 +w2 +w3) and so the weight enumerating function (WEF)

of the code can be written as

Aw(W ) = Aw1,w2,w3(W1 = W,W2 = W,W3 = W )

=
∑

w1,w2,w3

Aw1,w2,w3W
w1Ww2Ww3

=
∑

w

∑
w1+w2+w3=w

Aw1,w2,w3W
w

=
∑

w

AwWw,

(2.5)

where

Aw =
∑

w1+w2+w3=w

Aw1,w2,w3 . (2.6)

6Hamming weight of the binary addition of the two codewords.
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Weight distribution can be used to evaluate some bounds on the error performance

when maximum likelihood (ML) decoding is used. Although ML decoding is not practically

feasible for turbo codes, this analysis provides insight into the performance of turbo codes.

Reference [24] presents a method to determine the asymptotic weight distribution of various

concatenated code ensembles. It also provides a method to derive lower bounds on the

thresholds of these ensembles under maximum-likelihood (ML) decoding.

2.4.1 Uniform Interleaving

For parallel concatenated block codes, such as turbo codes, two linear systematic codes C1

and C2 are linked by an interleaver. In order to obtain the weight enumerating function

of such a parallel code, the calculation must take into account each constituent code and

the interleaver structure. Since this calculation becomes impractical even for small block

lengths, Benedetto and Montorsi introduced an abstract interleaver which they called a

uniform interleaver [2]. In [25], a simple approximation of the performance of parallel

concatenated turbo codes with uniform interleaving based on the union bound is obtained.

A uniform interleaver of length N is a probabilistic device which maps a given input

word of weight w1 into all the distinct

(
N

w1

)
permutations with equal probability

1(
N

w1

) .

Suppose that there are A1 different systematic patterns of weight w1 which result in parity

weight w2 by the first RCC and there are A2 different patterns of the same systematic

weight resulting in a parity weight of w3 in the second RCC. The definition of the uniform

interleaver results in a weight enumerating function for the second code which is indepen-
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dent of the first code and hence, the coefficients of the weight enumerating function of the

code will be

Aw1,w2,w3 =
A1A2(

N

w1

) . (2.7)

The term

(
N

w1

)
accounts for the number of different ways to interleave a systematic pattern

of weight w1, where N is the code block length.

Therefore, the input-output weight enumerating function for the parallel code can be

calculated as follows:

Aw1,w2,w3(W1,W2,W3) =
∑

w1,w2,w3

A
(C1)
w1,w2A

(C2)
w1,w3(

N
w1

) Ww1
1 Ww2

2 Ww3
3 , (2.8)

where A
(C1)
w1,w2 and A

(C2)
w1,w3 are the coefficients of the input-output weight enumerating func-

tions of the constituent codes.

2.5 Turbo Decoding

Like other coding schemes, the optimal decoder is a Maximum Likelihood (ML) decoder.

But unlike conventional convolutional codes, the Viterbi algorithm [26] and other algo-

rithms based on the trellis diagram are not practical as turbo codes do not have a simple

trellis diagram. However, the constituent codes are convolutional and they have such

simple trellis diagrams.

The suboptimal decoder is an iterative, modular decoder. A turbo decoder consists of

two concatenated decoders, each using the received systematic stream and the correspond-
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ing received parity stream. Each decoder provides a soft output of the transmitted bits

by using the received data and the information provided by the other decoder. The soft

output is the a posteriori probability (APP) and consists of three components: the intrinsic

information which is a function of the received signal for the corresponding bit position, the

a priori (AP) probability of that bit position and the extrinsic information which comes

from the received signal for other bit positions and their a priori probabilities. In each

iteration, the extrinsic information produced by the other constituent decoder is used to

evaluate the a priori probabilities in that iteration. Repeating this procedure improves the

estimation of the bit probability values and hence, reduces the probability of error.

One efficient algorithm for soft output decoding, based on the trellis diagram of the

code known as the BCJR algorithm, is presented by Bahl et al. in [27]. Another efficient

soft decoding algorithm is derived from the coset decomposition principle in [28]. Also,

there are some special methods for soft decoding such as sectionalized trellis diagrams [29]

and the use of the codewords of the dual code [30].

The suboptimal decoder introduced in [1] finds the extrinsic information on the trans-

mitted bits by one of the constituent decoders and passes it to the other decoder through

the interleaver. The decoder can decode the received vector only if the iterative decod-

ing converges. Note that in the iterative decoding, it is assumed that the extrinsic data

provided by the first constituent decoder is independent from the received vector corre-

sponding to the second parity stream and the systematic stream and vice versa. Although

this is not true for all bit positions, it is generally true for most bit positions.
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References [31–33] introduce extrinsic information transfer (EXIT) chart to find the

convergence criteria for turbo decoding. In this approach, the extrinsic information from

constituent maximum a posteriori (MAP) decoders are assumed to be Gaussian random

variables when the inputs to the decoders are Gaussian. Furthermore, it is assumed that

after interleaving, the adjacent bits have independent extrinsic information as they have

been far enough before interleaving. Under these assumptions, the iterative decoder con-

verges to zero probability of error if the signal to noise ratio is higher than a certain

threshold [32, 33]. This threshold predicts the SNR of the waterfall in the performance of

the iterative decoder. The minimum SNR for which the iterative decoder converges de-

pends on the constituent codes and hence, one can improve the performance of the iterative

decoder by proper selection of the component codes by using the EXIT chart.

2.6 Low-Weight Codewords and Minimum Hamming

Distance

The performance of turbo codes in the error floor region is determined by the low-weight

codewords. It is known that using a randomly chosen interleaver guarantees an excellent

BER performance, but a certain number of low-weight codewords are generated, resulting in

the appearance of an error floor and a small minimum distance. For a parallel concatenated

turbo code, a low-weight systematic stream which produces low-weight parity streams in

both RCC encoders results in a low-weight codeword, and hence a low minimum distance.
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Despite this fact, the power of turbo codes is in part due to the low number of such

codewords in comparison to a conventional convolutional code.

The structure and the number of low-weight codewords are studied in [12,13]. In [12],

it is shown that for the turbo code shown in figure 2.1 and for N → ∞, only certain

low-weight codeword structures remain asymptotically probable. These codewords consist

of a low weight systematic stream which produces one or more short error events in each

parity stream. The number of these short error events in the two parity streams are the

same. Furthermore, each short error event is caused by a systematic stream of weight two.

By using a combinatorial approach, an upper bound on the minimum distance of turbo

codes as a function of the code rate, interleaver length and the structure of the constituent

codes is derived and it is proved that the minimum Hamming distance of the turbo codes

cannot asymptotically grow at a rate higher than the logarithm of the codeword length [34].

A method to design the interleaver is presented in [35] which achieves a minimum distance

increasing with the logarithm of the block length.

Reference [36] introduces a systematic technique to find sequences which are primary

candidates for obtaining the minimum distance of parallel concatenated turbo codes. This

technique finds all the input sequences that are mapped to shifted versions of themselves.

These streams satisfy the conditions in [12] to form an asymptotically possible low-weight

codeword.

The algorithm presented in [37] is applied to calculate the minimum distance of the

turbo codes. This algorithm is improved in [38] by using a tighter lower bound on the
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minimum distance. The effect of the interleaver structure on the minimum distance of the

code is studied in [39].

Reference [40] shows that for low density parity check (LDPC) code ensembles (which

are closely related to turbo codes), the capacity achieving codes do not have a large min-

imum distance. Battail in [6] shows that an appropriate criterion for the design of long

block codes is the closeness of the normalized weight distribution of the code to a Gaus-

sian distribution. Biglieri [41] substantiates this by showing that iterated-product codes

have a weight distribution that is approximately Gaussian. In [42], it is shown that for

codes with rates approaching one, the weight distribution is asymptotically Gaussian as

the block length increases. Reference [42] also shows that for codes with lower code rates,

the cumulative weight distribution asymptotically tends to a Gaussian cumulative distri-

bution (as the block length increases) when the minimum distance of the dual code tends

to infinity. It provides a sufficient condition on the systematic parity-check matrix of the

code in order to have a Gaussian distribution. This condition is rather restrictive and it

cannot be applied to the turbo code structure shown in figure 2.1. This sufficient con-

dition is satisfied by a special class of multi-component block codes based on a so-called

parallelotope interleaver introduced in [42].
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2.7 Improving the Performance of Turbo Codes

Although the asymptotic performance of turbo codes in the waterfall region is very close

to the theoretical limit for coding rates of practical interest (low), their performance in the

error floor region can be improved by optimizing the component codes and the interleaver

structure.

By choosing a proper interleaver, one can increase the minimum distance of the code

and/or reduce the number of low-weight codewords. The chosen interleaver also affects

the weight distribution for high-weight codewords which affects the performance in the

waterfall region for short turbo codes. The effect of the chosen interleaver on the weight

distribution is studied in [13,35,43–52]. These references provide some methods to design

interleavers in order to decrease the number of low-weight codewords and/or to increase

their weight. These methods are more beneficial when the block length is relatively small.

Reference [53] studies the design of nonsystematic turbo codes to achieve higher minimum

distances.

In [54], a concatenation of a turbo code and a Reed-Solomon code, and in [55], a

concatenation of a turbo code and a BCH code are deployed to improve the error floor

performance.

References [56, 57] provide methods to design prunable interleavers. With these tech-

niques, smaller interleavers are produced by pruning a larger interleaver, while maintaining

the good performance of the original code.

The algorithm in [17] expurgates some low-weight codewords by injecting a zero in the
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lower-protected bit positions, and then punctures the resulting code to compensate for the

loss in the effective code rate.

In [58], the extrinsic information in the decoder is modified to exploit the source re-

dundancy to enhance the system performance.

In [15], it is indicated that using more component codes improves the distance prop-

erties of the turbo codes, resulting in a better performance when ML decoding is used.

However, the suboptimal iterative decoding does not perform very well for multiple com-

ponent codes. In [16], it is shown that the bit and frame error rates for both serial and

parallel concatenation with uniform interleaving under some mild conditions approaches

zero, at least as fast as N−β where N is the block length and β is the interleaver gain. For

the parallel concatenated turbo codes, β is J − 2 and J − 1 for the bit and frame error

probabilities, respectively, where J is the number of component codes.

2.7.1 Bounds on the Performance of Turbo Codes

Exact performance evaluation of block codes is often infeasible. Several bounding tech-

niques are proposed to find a tight upper bound on the error probability of block codes.

Gallager bounding techniques provide some upper bounds on the performance of linear

block codes based on their weight distribution. Fano [59] also used the same general

bounding method as Gallager’s first bounding technique (GFBT), and therefore, some

authors refer to the GFBT as the Gallager-Fano bounding method [60].

In Gallager’s first bounding technique (GFBT), the word (frame) error probability is
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decomposed as in

P{E} = P{E, r ∈ R}+ P{E, r /∈ R}

= P{E, r ∈ R}+ P{E|r /∈ R}P{r /∈ R}

≤ P{E, r ∈ R}+ P{r /∈ R},

(2.9)

where E is the frame error event, r is the received signal vector and R is an appropriate

region in Rn around the transmitted signal point. The above expression divides the total

error probability into the sum of error probability in a region of few and a region of many

errors, denoted by R and Rc, respectively. The region of many errors is considered totally

erroneous, and only the error events in the region of few errors are estimated or bounded.

The choice of region R is very important in this bounding method. Different choices of this

region have resulted in various different tight bounds in different ranges of signal-to-noise

ratio. Here, we briefly review some important bounds and bounding techniques based on

the GFBT.

For the BPSK signalling, all codewords have the same energy nEN , where n is the

number of bit positions and EN is the energy per channel use. In this scheme and other

signalling schemes whose codewords have equal energy, the codewords constellation is lo-

cated on the surface of a hyper-sphere centered at origin. The tangential bound (TB) of

Berlekamp [61] results in a significantly tighter bound than the union bound in low SNRs.

This bound uses Gallager’s first bounding technique combined with union bound for sphere

constellations. In this bounding technique, the radial and the tangential components of

the Gaussian noise are separated with a half-space shown in figure 2.4 as the underlying
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Gallager region. The location of this half-space Gallager region, R, is determined by the

radial component of the noise. The Gallager region is defined as

R = {r|z < z0}. (2.10)

If the transmitted signal point is s0, the radial component of noise is the noise component

in the direction of the axis connecting s0 to the origin, referred to as the Z axis. In order

to tighten the bound, z0 should be optimized.

Origin

Gallager region
in TB

s0

Z axis

√
nEN

z0

Figure 2.4: Gallager region in tangential boundB.

The Gallager region for the sphere bound (SB) of Herzberg and Poltyrev [62] is a sphere

centered at the transmitted signal point as shown in figure 2.5, whose radius r is to be
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optimized to tighten the bound, i.e.,

R = {r | ‖r− s0‖ ≤ r}. (2.11)

Origin

Gallager region
in SB

s0

r

√
nEN

Z axis

Figure 2.5: Gallager region in sphere bound.

The tangential sphere bound (TSB) is proposed by Poltyrev [63]. In TSB, the Gallager

region R is a hyper-cone whose apex is at the origin of the space and its main axis (referred

to as the Z axis) is along the radial component of the noise as shown in figure 2.6 and

R = {r | r < z tan θ}, (2.12)

where r =
√
‖r‖2 − z2 defines the boundary of the hyper-cone described above as a function
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of its main axis variable. To tighten the bound, one should optimize the angle θ. This

optimization is only a function of the weight distribution and does not depend on the noise

variance. Reference [64] proves that the tangential bound is at least as tight as the union

bound and is not tighter than the tangential sphere bound of Poltyrev. Reference [65]

shows that the hyper cone used in the tangential sphere bound of Poltyrev for sphere

codes is the optimum Gallager region for the Gallager’s first bounding technique.

Origin

Gallager region
in TSB

θ

s0

√
nEN

Z axis

Figure 2.6: Gallager region in tangential sphere bound.

In [9], modified Gallager bounding technique is applied to some short block turbo codes

to improve the union bound on the error performance for SNR values below the cutoff rate.
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In [10, 11], the TSB is applied to short turbo codes to evaluate an upper bound which is

tighter than the bound presented in [9].

2.8 Summary

In this chapter, the basic structure of turbo codes has been presented and an overview of

the performance of turbo codes is provided. The literature on the asymptotic performance

of turbo codes is reviewed. The weight distribution of the code based on the uniform

interleaving is defined. The performance of the code and different solutions on how to

improve it are provided. Finally, some bounds on the performance of turbo codes are

reviewed.



Chapter 3

Performance Analysis in the

Waterfall Region

3.1 Chapter Overview

In this chapter, the asymptotic weight distribution of turbo codes for high-weight code-

words is studied and it is shown that the weight distribution is asymptotically Gaussian and

its mean and variance are independent of the chosen interleaver. On the other hand, with

a randomly chosen interleaver, its variance is equal to the best possible interleaver with

probability one. As a result, interleaver optimization has little effect on the performance

of the turbo codes in the waterfall region.

Based on the Gaussian distribution, the TSB is applied to the code and the achievable

rate predicted by the TSB is compared to the capacity of BPSK signalling over an AWGN

28



CHAPTER 3. PERFORMANCE ANALYSIS IN THE WATERFALL REGION 29

channel.

3.2 Weight Distribution for Typical Weights

Consider the turbo code shown in figure 2.1 with N information bits. The joint probability

distribution function of the systematic weight w1 and each of the two parity weights w2, w3

is affected by the chosen recursive convolutional code and is not a function of the chosen

interleaver. On the other hand, interleaver optimization can affect the conditional weight

distributions of w2 and w3, when the other weight is known.

3.2.1 Probabilistic Properties of RCCs

It is assumed that the RCCs are generated by the transfer function namely G(d) =

N(d)/D(d). The impulse response of G(d) is periodic with the period P ≤ 2r − 1, where

r is the memory length of the code [23]. The main interest is in the group structure of

the codebook, and also the periodicity property of the impulse response of G(d). In this

respect, we limit our attention to the structure of D(d). This does not result in any loss

of generality, because the group structure and also the periodicity property of the impulse

response of G(d) is not affected by the choice of N(d).

In general, the desire is that the period of the impulse response of G(d) is as large as

possible. As mentioned earlier, the maximum period with r memory elements is equal to

2r − 1 for MLS sequences. For the rest of the paper, we assume that all the RCCs are
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MLS. The rules to determine all the possible configurations of D(d) to obtain a maximum

length sequence of period 2r − 1 (for the given r) are provided in [23]. It can be shown

that any MLS-sequence satisfies the three postulates of randomness [23]. One consequence

of this property is that in any period of an MLS-sequence, the number of ones is equal to

2r−1, and the number of zeros is 2r−1 − 1.

If the impulse response of D(d) is considered to be a periodic sequence (started at

infinity in the past), we obtain P = 2r − 1 non-zero sequences which are time shifts of

each other. Each sequence corresponds to a specific positioning of the impulse within the

period. These sequences are referred to as different phases of the periodic signal. We

assume that the different phases are labeled by integer numbers, say 1, . . . , P , where the

label of a phase corresponds to the relative position of the corresponding impulse within

the period. It can be shown that the set of phases of an MLS-sequence (plus the all-zero

sequence) constitutes a group under binary addition [23]. The order of each element in

this group is equal to two, indicating that the sum of each phase with itself results in the

all-zero sequence (denoted as the zero phase).

Using the group property of phases, we conclude that the function of the numerator

of G(d) is to replace each phase with a linear combination of some other phases. This

function is equivalent to a permutation (relabeling) of phases and does not play a role in

the following discussions.

For the bit position k, (k = 1, . . . , N) within the i’th output stream, we refer to the

set of systematic bit positions j ≤ k for which an impulse at position j results in a 1 at
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position k as Ri(k), i = 1, 2, 3.

For the systematic stream, it is easy to see that R1(k) = {k}. For the parity streams,

if the bit position k is located in the L’th period, i.e., L = dk/P e, where d . e denotes the

ceiling function, then the number of positions belonging to Ri(k), i = 2, 3, within each

of the periods 1, . . . , L − 1 is equal to 2r−1 [23]. The number of positions within the L’th

period (the period containing k itself) depends on the relative position of k within the L’th

period and also on the numerator of G(d).

We are mainly interested in the large values of L (parity bits far from the boundaries)

for which the effect of the elements within the L’th period itself is negligible. Thus,

|R2(k)| = |R3(k)| ' dk/P e2r−1, where | . | denotes the cardinality of the corresponding

set.

The notation bi(k), i = 1, 2, 3, k = 1, . . . , N , is used to refer to the k’th bit within the

i’th output stream. Since each bit is zero or one with an equal probability, then

bi(k) = b2
i (k) = 1/2. (3.1)

3.2.2 Asymptotic Weight Distribution

To investigate the asymptotic weight distribution of turbo codes, we show that

ŵi =
wi√
N

, i = 1, 2, 3, (3.2)

referred to as the normalized weights, have a Gaussian distribution for their typical values

when N is large. On the other hand, it is shown that the conditional weight distributions
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are Gaussian. As a result, the three weights are jointly Gaussian distributed random

variables.

It is easy to verify that each weight has a Gaussian distribution. All the 2N possible

combinations within the three steams are equiprobable, and consequently, the positions

within each of the three output streams are independent and identically distributed (iid)

binary random variables (where zero and one are equally probable). Using the Central

Limit Theorem, we conclude that ŵ1, ŵ2 and ŵ3, which are the normalized sum of N iid

random variables, have a Gaussian distribution with mean
√

N/2 and variance 1/4 for the

large values of N .

In order to have a set of jointly Gaussian random variables, not only do the marginal

weight distributions need to be Gaussian, but also the conditional distributions should

be Gaussian. When the systematic weight w1 is known, the parity bits are no longer

independent of each other, because only

(
N

w1

)
out of 2N codewords represent a systematic

weight of w1, and hence, remain probable. Under these circumstances, the parity bits in

each stream tend to be an m-dependent sequence and the Central Limit Theorem can still

be applied. In the following, using the properties of m-dependent random variables, we

show that the conditional weight distributions of ŵ2 and ŵ3 given ŵ1 are Gaussian for the

typical values of ŵ1. As a result, noting that the marginal distributions are Gaussian, we

can conclude that ŵ1, ŵ2 and ŵ3 are a set of jointly Gaussian random variables.

Definition: m-dependent sequence [66]

A sequence X1, X2, . . . of random variables is called m-dependent if and only if two subse-
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quences {Xa−r, Xa−r+1, . . . , Xa} and {Xb, Xb+1, . . . , Xb+s} are independent sets of variables

when b − a > m; that is, an m-dependent sequence is a sequence of dependent random

variables for which the dependency lasts, at most, for m elements.

Theorem 3.1. Central Limit Theorem for the sum of dependent random variables [66]

If X1, X2, . . . is a sequence of m-dependent, uniformly bounded random variables and Sn =

X1 + X2 + · · · + XN , with the standard deviation VN . Then, if
VN

N1/3
→ ∞ as N → ∞,

GN(x) → Φ(x) for all x, as N → ∞, where GN is the cumulative distribution function

(cdf) of
SN − E(SN)

VN

and Φ(x) =
1√
2π

∫ x

−∞
exp(−t2

2
)dt.

As indicated by the theorem, if the standard deviation of the sum of N consecutive

elements of a stream of m-dependent random variables grows faster than the third root of

N , the Central Limit Theorem can still be applied. In order to apply this theorem on the

conditional weight distributions, we prove the following proposition.

Proposition 3.1. Given that the systematic weight is w1, each parity stream is an m-

dependent sequence, and the variance of its weight is given by

σ2
w2|w1

=
N

4

(
1 +

2(1− 2w1

N
)(P+1)/2

1− (1− 2w1

N
)(P+1)/2

)
. (3.3)

To prove the proposition, we need the following lemma.

Lemma 3.1. Suppose that we partition a stream of N bits consisting of w ones and N−w

zeros into K groups. Each group consists of Nk, k = 1, . . . , K,
∑

k

Nk = N bits. We

denote by Ok, the event in which the k’th group has an odd Hamming weight. For N →∞,



CHAPTER 3. PERFORMANCE ANALYSIS IN THE WATERFALL REGION 34

if

lim
N→∞

Nk

N
6= 0, k = 1, . . . , K, (3.4)

then O1, O2, ..., OK−1 tend to be independent events with probability 1/2 as N goes to

infinity (for the typical values of w).

Proof. The Hamming weight of the k’th group is shown by Wk. Then, the probability

mass function of Wk can be written as

PWk
(wk) =

(
N−Nk

w−wk

)(
Nk

wk

)
(

N
w

) , wk = 0, 1, . . . , Nk. (3.5)

This probability mass function is an increasing function with respect to wk for 0 <

wk < wt, where wt =

⌊
wNk

N

⌋
is the typical value for the Hamming weight of the k’th

subsequence, and is decreasing for wt < wk < min{w, Nk}.

An integer random variable with a monotonic probability mass function is almost

equally likely to be an even or an odd number. In fact, the difference between the two

probabilities is less than the boundary probabilities. For example, suppose that X is a

random variable with a monotonically increasing probability mass function defined for

2a < x < 2b, x, a, b ∈ Z. Then,

P{X is even} =
b∑

x=a

P{X = 2x} =
b−1∑
x=a

P{X = 2x}+ P{X = 2b}

≤
b−1∑
x=a

P{X = 2x + 1}+ P{X = 2b} = P{X is odd}+ P{X = 2b}.
(3.6)

The probability mass function that is described by (3.5) can be separated into two

monotonic (one increasing and one decreasing) functions. For N → ∞, the boundary
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probabilities specified by (3.5) (i.e., the probabilities at w = 0, N, wt) are 0, and so,

P{Wk is odd} = P{Wk is even} =
1

2
. (3.7)

The same approach is valid for the k’th group (k < K) when the Hamming weight

of the first k − 1 groups are known, and hence, it is odd-weighted with probability 1/2.

Obviously, the Hamming weight of the K’th group, given the Hamming weights of the

other groups, is known.

We are now ready to prove Proposition 3.1. Assuming the systematic weight is w1, we

show that each parity stream is an m-dependent sequence, and the variance of its weight

is given by (3.3).

Proof. Consider two arbitrary parity bits (far from the boundaries) named pb1 and pb2 in

a given parity stream. We show that these two bits are independent of each other, when

the distance between them is large. The proof can be easily extended to two sets of parity

bits. According to the distance between pb1 and pb2, two situations can occur.

Case I: The distance between these parity bits is not an integer multiple of the RCC

impulse response period P . We divide the information bits into four subsets, depending

on whether they trigger these two parity bits or not. We denote these four groups by

Ck, k = 0, 1, 2, 3. C0 is the set of systematic bits which do not trigger non of the parity

bits. C1 and C2 are defined as the set of the systematic bits which trigger only the first

parity bit and the second parity bit, respectively. Finally, C3 consists of bits that trigger

both parity bits. Similarly, we denote by Oi, the event that Ci, i = 0, 1, 2, 3 has an odd
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weight. Systematic bits located after both parity bit position do not affect them and hence,

they belong to set C0. For any P information bits preceding the first parity bit, there is

at least one bit in each of Ci, i = 1, 2, 3. Hence,

|Ci|
N

6= 0, i = 0, 1, 2, 3, (3.8)

where | · | denotes the cardinality of a set. As a result, Ci’s satisfy the conditions in

Lemma 3.1. It is easy to see that

pb1 = O1 ⊕O3, pb2 = O2 ⊕O3, (3.9)

in which ⊕ is the binary addition (pb1 is one if only one of O1 and O3 happens, and is zero,

otherwise.) Since, O1, O2 and O3 are equiprobable identical independent events, pb1 and

pb2 are equiprobable independent bits.

Case II: The distance between the two parity bits is an integer multiple of impulse

response period P , say kP . In this case, C1 is empty, but C0 and C3 still satisfy the

condition in the lemma 3.1. C2 has only k(P + 1)/2 elements since in each period P , only

(P + 1)/2 bits trigger a certain parity bit. However, as long as the distance between the

two parity bits is large (when k is large which is true for almost any two typical bits), the

conditions of the Lemma 3.1 are satisfied, and O2 and O3 become equiprobable independent

and identically distributed events. As a result pb1 and pb2 are independent. Note that the

dependency between parity bits last longer when the systematic weight is far from its

typical values (around N/2) and as a result m will be larger.

To apply the Central Limit Theorem to the m-dependent sequence of the parity stream,
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we have to find the variance of the conditional parity weight. This variance is a function of

the cross correlation between the near parity bits that are separated by an integer multiple

of P (all the other parity bit pairs are uncorrelated). To compute this correlation, we note

that when the distance between the parity bits is kP (k is a relatively small integer), the

elements of C2 can be considered to be iid bits, and each of them is one with probability

w1

N
. Then,

cov [b2(i), b2(i + kP )] =
1

4

(
1− 2w1

N

)k(P+1)/2

, (3.10)

because the probability of having an odd parity within these k(P + 1)/2 bits is

P{O2 = 1} =

1−
(

1− 2w1

N

)k(P+1)/2

2
. (3.11)

The covariances of the other pairs are zero. Since, the parity weight is w2 =
N∑

i=0

b2(i), then

σ2
w2|w1

=
N∑

i=1

σ2
b2(i) + 2

∑
1≤i<j≤N

cov[b2(i), b2(j)]. (3.12)

As a result,

σ2
w2|w1

=
N∑

i=1

1

4
+ 2

N∑
i=1

b(N−i)/P c∑

k=1

cov[b2(i), b2(i + kP )]

=
N

4
+ 2

N∑
i=1

b(N−i)/P c∑

k=1

1

4

(
1− 2w1

N

)k(P+1)/2

' N

4
+ 2

N∑
i=1

∞∑

k=1

1

4

(
1− 2w1

N

)k(P+1)/2

=
N

4

(
1 +

2(1− 2w1

N
)(P+1)/2

1− (1− 2w1

N
)(P+1)/2

)
.

(3.13)
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With this proposition and Theorem 3.1, the conditional parity weight distributions

given the normalized systematic weight ŵ1, asymptotically become Gaussian. A similar

approach is valid for the conditional weight distribution of ŵ3, given ŵ1 and ŵ2. As a

result, ŵ1, ŵ2 and ŵ3 are a set of jointly Gaussian random variables, since their marginal

and conditional distributions are Gaussian.

A set of jointly Gaussian random variables can be completely described by their mean

vector and covariance matrix. The mean and the marginal variance of ŵ1, ŵ2 and ŵ3 are

√
N/2 and 1/4, respectively. The correlation coefficients between ŵi and ŵj denoted by

ρij, i, j = 1, 2, 3, can be written as

ρij =
ŵiŵj − ŵi ŵj

σŵi
σŵj

= 4

[
ŵiŵj − N

4

]
, (3.14)

and

ŵiŵj =
1

N

∑
m

∑
n

bi(m)bj(n), (3.15)

where the expectation is taken over all 2N possible input combinations. The total normal-

ized weight of the output sequence is equal to ŵ = ŵ1 + ŵ2 + ŵ3 which has a Gaussian

distribution with mean,

µŵ = 3

√
N

2
, (3.16)

and variance,

σ2
ŵ =

3 + 2ρ12 + 2ρ13 + 2ρ23

4
. (3.17)

Noting that sequences with a smaller weight result in higher probabilities of error,

we conclude that the main objective in the code design (as far as the waterfall region is
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concerned) is to sharpen the peak of the pdf of the normalized Hamming weight ŵ which

is equivalent to minimizing the variance of the normalized weight. This is equivalent to

minimizing the correlation coefficients ρij. In the following, we first show that ρij ≥ 0;

therefore, the minimum value for the correlation coefficient is zero. When the block length

increases, ρ1j, j = 2, 3 become zero for any nontrivial RCC. Also, ρ23 tends to zero with

probability one for a randomly chosen interleaver. Consequently, the asymptotic weight

distribution by using a randomly chosen interleaver is optimum (in the waterfall region)

with probability one.

In the following, we first show that the ρij ≥ 0; therefore, the minimum possible value

for the correlation coefficients is zero.

Theorem 3.2. ρij ≥ 0 for i, j = 1, 2, 3.

Proof. Any of the pairs bi(m), bj(n) for i, j = 1, 2, 3 and m,n = 1, . . . , N , can take four

different values, {00, 01, 10, 11}. The set of the input sequences that result in the value of

00 form a sub-group of all the possible 2N input combinations. This is a direct consequence

of the linearity and the group property of the code. Due to the group property of the set of

corresponding coset leaders, two situations can occur. There is either only one coset with

the coset leader 11, or there are three cosets with the coset leaders 01, 10 and 11. The

important point is that in both of these cases, the 00 sub-group and its cosets contain the

same number of input sequences. Therefore, for the probability of the pair bi(m), bj(n),

the following two cases exist:
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Case I: bi(m), bj(n) take the values 00, 11, each with probability 1/2, resulting in

bi(m)bj(n) = 1/2, so that

bi(m)bj(n)− bi(m) bj(n) =
1

4
. (3.18)

Case II: bi(m), bj(n) take the values 00, 01, 10, 11, each with probability 1/4, resulting

in bi(m)bj(n) = 1/4, so that

bi(m)bj(n)− bi(m) bj(n) = 0. (3.19)

In both cases, we have

bi(m)bj(n)− bi(m) bj(n) ≥ 0. (3.20)

This indicates that the correlation coefficients ρij, i, j = 1, 2, 3 are always nonnegative.

The following theorems show that when the block length increases, ρ1j, j = 2, 3 become

zero for any nontrivial RCC. Also, ρ23 tends to zero with the probability of one for the

randomly chosen interleavers. Consequently, the asymptotic weight distribution for the

high-weight codewords with the probability of one is optimized when a randomly chosen

interleaver is used.

Theorem 3.3. ρ12, ρ13 → 0 as N →∞.

Proof. For ρ12 and ρ13 (the interaction of the systematic stream with each of the parity

checks), Case II in the previous two cases is valid, resulting in ρ12, ρ13 → 0 as N → ∞.

Note that b1(m) and b2(n) are independent of each other, if b1(m) is not mapped (through
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interleaving) to a bit position within R2(n), or if R2(n) contains at least two elements.

This is valid except for some trivial cases which have a vanishing effect on the overall

result.

Theorem 3.4. ρ23 → 0 for N → ∞ with the probability of one (for almost any random

interleaver).

Proof. If R2(m) differs from R3(n), even by one bit position, then b2(m) and b3(n) are

independent of each other. This results in b2(m)b3(n) = b2(m) b3(n) = 1/4. This is the

case, unless |m − n| < P/2, and the elements of R2(m) and R3(n) contain the same

input bits (before and after interleaving). Consequently, the corresponding interleaver

has a restriction on the mapping of the many bit positions. Obviously, the fraction of

such interleavers tends to zero as N → ∞. Therefore, for almost any random interleaver,

ρ23 → 0 as N →∞.

As a result, the typical weight distribution of turbo codes is not a function of the chosen

RCC and interleaver (for nontrivial RCCs and interleavers), and hence, the interleaver

optimization has a diminishing effect on the asymptotic performance of the turbo code in

its waterfall region.

This result is valid only for the waterfall region and when a maximum likelihood decoder

is used. With the iterative decoder, the chosen RCCs affect the EXIT chart [31] and hence

the RCC optimization can slightly change the SNR region in which the waterfall happens.

On the other hand, as it is shown in the next chapter, the interleaver and RCCs affect
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the weight distribution for low-weight codewords, and hence, the performance in the error

floor region can be improved by the RCC and interleaver optimization.

The Gaussian weight distribution approximation is valid for the typical values of the

Hamming weight. The number of low-weight codewords cannot be approximated by a

continuous distribution, and as we will see in the next chapter, low-weight codewords

appear only in certain structures and for each of these structures, their number is a Poisson

random variable.

3.3 Cutoff Rate for large block Turbo Codes

In this section, in order to provide insight into the range of the SNR for which codewords

of typical weights are dominant, we apply the union bound on the weight distribution to

find the dominant weight in the error performance. Also, the cutoff rate which is based

on applying the union bound on the weight distribution is calculated according to this

assumption and compared to the random coding cutoff rate.

The Gaussian approximation of the turbo code weight distribution is similar to the

weight distribution of random codes. This assumption remains valid when high-weight

codewords dominate the performance. One of the tools to characterize random coding

is the cutoff rate. The weight of the dominant codewords in computing the cutoff rate

provides insight into the validity of the Gaussian approximation. We compute the cutoff

rate using the Gaussian distribution, and compare it to the random coding cutoff rate;
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namely,

R0 = 1− log2(1 + e−EN/N0), (3.21)

where EN is the channel symbol energy, and N0 is the one-sided Gaussian power spectrum

of noise [67].

For a turbo code of rate R and block length N , the normalized weight distribution

function can be modeled as a Gaussian distribution with the mean

µŵ =

√
N

2R
(3.22)

and variance

σ2
ŵ =

1

4R
, (3.23)

where the code rate R is achieved by employing a larger number of parallel concatenated

RCCs and/or puncturing which does not affect the Gaussian assumption. The number of

codewords of the normalized weight between ŵ and ŵ + ∆ŵ, under the Gaussian distribu-

tion, is

Nŵ ' 2N∆ŵ√
π
2R

exp


−2R

(
ŵ −

√
N

2R

)2

. (3.24)

The term in the union bound that corresponds to the probability of an error event of the

normalized weight ŵ (using the BPSK modulation) is

pŵ = Q




√
2ŵ
√

NEN

N0


 . (3.25)

The dominant codewords in the error probability are around the peak of Nŵpŵ, which

occurs at

ŵp =

√
N

2R

(
1− EN

2N0

)
. (3.26)
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The Gaussian assumption is valid when

lim
N→∞

Rŵp√
N
6= 0, 1. (3.27)

It is easy to see that

Rŵp√
N

<
1

2
, (3.28)

and consequently, we only require that

Rŵp√
N

> 0, (3.29)

resulting in

EN

N0

< 2 (3.30)

(which is equivalent to 3 dB). After the break point of EN/N0 = 3 dB is reached, the

behavior of the turbo code cannot be modeled anymore by using the Gaussian distribution.

In practice, turbo codes are used in much lower ranges of signal to noise ratios than the

break point. For example, the value
EN

N0

= 3 dB corresponds to the value of
Eb

N0

= 7.7 dB

(Eb stands for energy per information bit) for a code of the rate 1/3, or to
Eb

N0

= 6 dB for a

code of the rate 1/2. These values are substantially higher than those of the ranges of
Eb

N0

used in practical systems. In other words, the dominant codewords follow the Gaussian

assumption for the SNRs of interest.

To find the cutoff rate under the Gaussian assumption, using the union bound, we have

Pe <

√
N

R∑

ŵ=0

Nŵpŵ. (3.31)
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By using the inequality Q(x) <
1

2
exp

(
−x2

2

)
and the Gaussian assumption, (3.31) can be

rewritten as

Pe <
2N

√
2π
R

A

∫ √
N

R

0

exp


−2R

[
ŵ −

√
N

2R
(1− EN

2N0

)

]2

 dŵ, (3.32)

where

A = exp

(
− N

2R

[
1−

(
1− EN

2N0

)2
])

, (3.33)

and hence,

Pe < 2N−1AB, (3.34)

where

B = Q

[√
N

R

(
EN

2N0

− 1

)]
−Q

[√
N

R

(
EN

2N0

+ 1

)]
. (3.35)

For
EN

N0

< 2 and N →∞,

lim
N→∞

Q

[√
N

R

(
EN

2N0

− 1

)]
= 1, (3.36)

and,

lim
N→∞

Q

[√
N

R

(
EN

2N0

+ 1

)]
= 0. (3.37)

Hence, B can be approximated as 1.

Let us define

RT =
1

2 ln(2)

[
EN

N0

− 1

4

(
EN

N0

)2
]

. (3.38)

We can see that if R < RT , then the probability of error converges to 0 as N → ∞.

Figure 3.1 reflects the difference between R0 and RT around the break point of
EN

N0

= 3 dB

(
Eb

N0

= 7.7 dB for a code of the rate 1/3).
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.
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3.4 Tangential Sphere Bound on Average Spectrums

Gallager Bounding techniques [8] use weight enumerating function to give some upper

bound on the error performance of linear codebooks. In [14], a very tight bound named

tangential sphere bounding technique is presented.

Tangential sphere bound is very effective for binary codebooks over BPSK modula-

tion. In these codebooks, all the codewords are located on the surface of a n-dimensional

hyper-sphere of radius
√

nEN where n is the code length. The Voronoi region for these

codebooks is a cone as all the median hyper-planes between codewords contain origin. In

this technique, the Gallager region is a cone which mimics the Voronoi region. The cone’s

apex is at the origin and its main axes passes the corresponding codeword. In [65], it is

shown that this Gallager region is optimum and it gives the tightest upper bound based

on Gallager bounding technique.

Poltyrev shows that for codes with average spectrum, tangential sphere bounding pro-

vides an error exponent which is very close to that of capacity-achieving random coding

schemes [14]. Average spectrum is defined as [14]

Aw =





2n(h(ω)−h(α))+o(n) w = ωn ≥ αn

0 w = ωn < αn

, (3.39)

where n = N/R is the code length and 0 < α <
1

2
is the root to the following equation

R = 1− h(α) = 1 + α log2(α) + (1− α) log2(1− α). (3.40)
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The error exponent based on this bounding technique is

Ets(R, σ2) =





α

2σ2
log 2 0 < σ2 ≤ σ2

ad

h(α)− log(1 + e−1/2σ2
) σ2

ad < σ2 ≤ σ2
st(

η2
0

2σ2
+

ρη0

2σ2

)
log 2− 1

2
log

eρη0

σ2
σ2

ts < σ2
ad ≤ t0

, (3.41)

where

ρη0 = t0(1− η0)
2, (3.42)

t0 = min
ω

ω22rω

(1− ω)(22rω − 1)
, (3.43)

rω = max{0, (h(ω)− h(α))}, (3.44)

η0 =
1 + 2t0 −

√
1 + 4σ2(1 + t0)

2(1 + t0)
, (3.45)

σ2
ts = t0(1− ωts)

2 − ωts(1− ωts), (3.46)

and ωts is the root of the following equation:

2ω(1− ω) log
1− ω

ω
= 22(h(ω)−h(α)) − 1. (3.47)

The Gaussian distribution, described by

Aω =
2nR

√
π/2

exp

[
−2n

(
ω − 1

2

)2
]
, (3.48)

is slightly different from the average spectrum given by (3.39). The Gaussian weight

distribution predicts a nonzero number of codewords in the region 0 < w < αn. Here, we

apply the TSB on the error probability based on the Gaussian distribution to predict the

performance of the code in the waterfall region where the dominant codewords are in the

typical region.
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The Gallager region in TSB is a cone whose apex is located at the origin and its axis

denoted by the Z axis connects the origin to the all-zero codeword. We normalize the space

by dividing each axes by
√

n. Note that with BPSK signalling, the all-zero codeword is

located at

(√
EN

n
,

√
EN

n
, . . . ,

√
EN

n

)
, where EN is the energy per channel use. This cone

is produced by rotating the line r = z tan θ about the Z axis, where r is the distance to

the Z axis in the polar coordinates. All codewords are on the surface of an n-dimensional

sphere with radius
√

EN . The Euclidean distance between two codewords in the normalized

space is 2

√
wdEN

n
, where wd is the Hamming distance between the two codewords.

To find the TSB error exponent on the Gaussian spectrum, we need the following

lemma.

Lemma 3.2. For large even integer n, if Y is a chi-squared random variable with mean n

and n degrees of freedom, then for y = βn > n,

P{Y > y} <
n

2

e−y/2(y/2)n/2−1

(n/2)!
= O

(
exp

{
−n

2
(β − 1− log β)

})
. (3.49)

Proof. For the chi-squared random variable Y with mean n and n degrees of freedom,

P{Y > y} =
Γ

(
n
2
, y

2

)

Γ
(

n
2

) , (3.50)

where Γ(α, x) is the incomplete gamma function defined by

Γ(α, x) =

∫ ∞

x

tα−1e−tdt, (3.51)

and the gamma function, Γ(α), is

Γ(α) =

∫ ∞

0

tα−1e−tdt. (3.52)
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For integer α = m,

Γ(m) = (m− 1)!. (3.53)

and

Γ(m,x) = (m− 1)!e−x

m−1∑

k=0

xk

k!
= (m− 1)!e−xem(x), (3.54)

where em(x) =
m−1∑

k=0

xk

k!
is the exponential sum function. For x > m, em(x) can be upper

bounded by

em(x) =
m−1∑

k=0

xk

k!
< m

xkc

kc!
, (3.55)

where kc is

kc = arg max
0≤k<m

xk

k!
= m− 1. (3.56)

and hence,

em(x) < m
xm−1

(m− 1)!
. (3.57)

Then, by replacing x = y/2 and m = n/2, (3.50) is upper bounded by

P{Y > y} <
n

2

e−y/2(y/2)n/2−1

(n/2)!
. (3.58)

For odd n, we add an independent chi-squared random variable Y1 with mean one and

one degree of freedom to Y to form the random variable Y ′ = Y + Y1 which will be a

chi-squared random variable with mean n + 1 and n + 1 degrees of freedom. Since Y1 ≥ 0,

for y > n + 1,

P{Y > y} < P{Y ′ = Y + Y1 > y} <
n + 1

2

e−y/2(y/2)(n+1)/2−1

((n + 1)/2)!
. (3.59)
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For large even n and y/n = β > 1 and by using the Stirling’s approximation,

P{Y > βn} <
1

2

e−βn/2(βn/2)n/2−1

√
πn(n/2e)n/2

=
n

2

e−βn/2(βe)n/2

√
πnβ/2

for β > 1. (3.60)

This indicates an exponent of
1

2
(β − 1− log β) in the probability defined by (3.50).

Theorem 3.5. The probability of error for a code of rate R of length n and N = nR

information bits whose weight distribution is given by (3.48) approaches zero as N → ∞,

if

E2 = min
0<ω<

√
N0/2√

EN +
√

N0/2

{
2

(
ω − 1

2

)2

− 1

2
log

(
1− 2ω

1− ω

EN

N0

)}
−R log 2 > 0, (3.61)

where EN is the energy per channel use and N0 is the one-sided noise spectrum.

Proof. Consider a thin disk of radius c =
√

EN tan θ and height ε → 0 around the all-zero

codeword as shown in figure 3.2. Note that the surface of the disk is an n− 1 dimensional

sphere perpendicular to the Z axis. This disk is the portion of the cone which is confined

by
√

EN − ε

2
< Z <

√
EN +

ε

2
.

Each dimension is normalized by
√

n. Therefore, the noise component on each dimen-

sion is asymptotically zero. Hence, the probability that the received vector falls inside the

disk given that the all-zero codeword is transmitted is equivalent to the probability that

it falls inside the entire cone. In other words, the cone and the disk around the all-zero

codeword are the same in n− 1 dimensions and differ in only one dimension and the noise

component along that dimension is zero with probability one.

If the thin disk is used as the Gallager region, assuming that the all-zero codeword is
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Figure 3.2: Gallager region used for TSB.



CHAPTER 3. PERFORMANCE ANALYSIS IN THE WATERFALL REGION 53

transmitted, the error probability is bounded by

Pe ≤ P{r /∈ R}+
∑

i6=0

P{r ∈ R, |r− ci| < |r− c0|}, (3.62)

where R is the Gallager region (i.e. the thin disk), c0 is the all-zero codeword, r = c0 +n is

the received vector (n is the noise vector) and the summation is over all nonzero codewords

ci whose median planes with the all-zero codeword intersect with the Gallager region. In

the following, we find an upper bound for each summand in the error probability bound

in (3.62) and its associated error exponent. The probability of error converges to zero as

N →∞ if all error exponents are positive.

The probability that the received vector is outside the Gallager region, given that the

all-zero codeword is transmitted, is upper bounded by

P{r /∈ R} ≤ P{|n1| >
√

nε/2}+ P

{
1

n

n∑
i=2

n2
i > c2

}

< P{|n1| >
√

nε/2}+ P

{
1

n

n∑
i=1

n2
i > c2

}
, (3.63)

where n1 = nZ is the noise component along the Z axis and
n∑

i=1

n2
i is the total noise energy

in all n dimensions. The noise component along the Z axis is a zero mean Gaussian random

variable with variance N0/2, where N0 is the one-sided noise power spectrum. Therefore,

P{|n1| >
√

nε/2} = 2Q

(√
nε2

2N0

)
< exp

(
− nε2

4N0

)
, for ε > 0. (3.64)

This indicates a positive exponent of E0 = ε2/4N0 for ε > 0.

On the other hand, the total noise energy is a chi-squared random variable with n

degrees of freedom and mean nN0/2. Using Lemma 3.2, the error exponent for the second
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summand in (3.63) can be obtained as

E1 =
1

2

(
c2

N0/2
− 1− log

c2

N0/2

)
, for c >

√
N0/2. (3.65)

Next, we find an upper bound on the second summand in (3.62), which is equal to

∑

i 6=0

P{r ∈ R, |r− ci| < |r− c0|} =

∫ ωmax

0

AωP{r ∈ R, |r− cω| < |r− c0|}dω, (3.66)

where cω is a codeword of weight w = ωn and ωmax =
c√

EN + c
=

tan θ

1 + tan θ
, because

only the median planes between the all-zero codeword and codewords of weight 0 < w <

nωmax = n
c√

EN + c
intersect with the Gallager region as shown in figures 3.3 and 3.4.

Note that P{r ∈ R, |r− cω| < |r− c0|} represents the probability that the received vector

falls in the shaded area in figure 3.3 given that the all-zero codeword is transmitted. Since

the disc is very thin (i.e. ε ' 0), the distance from the all-zero codeword to the intersection

of the Gallager region and the median plane is

√
ωEN

1− ω
.

If c is chosen to be
√

N0/2+ε, ε → 0, the error exponent defined by (3.65) is positive for

ε > 0. On the other hand, if we omit the height of the thin disk and the noise component

along with the Z axis, nZ , the disk transforms to the n− 1 dimensional noise sphere. For

large n, the n − 1 dimensional normalized white Gaussian noise is uniformly distributed

within a sphere with radius
√

N0/2 [68]. The volume of the noise sphere (noted by S1 in

figure 3.4) is
π(n−1)/2

Γ
(

n+1
2

)(N0/2)(n−1)/2. Note that for
√

N0/2 + ε, ε → 0, the cone approaches

the n − 1 dimensional noise sphere and becomes tangent to it. The intersection of the

median plane between the all-zero codeword and a codeword of weight w = ωn with the

n − 1 dimensional noise sphere confines a cap (the shaded area in figure 3.4 noted by
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Origin

codeword of weight w

The median plane

The coneThe Z axis

√
ωEN

1−ω

√
EN

c0

√
ωEN

θ

c

Figure 3.3: The median plane between the all-zero codeword and a codeword of weight

w = ωn (side view).
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The median plane

The noise sphere

The cone

c0

√
N0

2

√
ωEN

1−ω

S2

c

√
N0

2
− ωEN

1−ω

√
N0

2
−

√
ωEN

1−ω

S1

Figure 3.4: The intersection of the median plane and the Gallager region (top view).
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S2) with radius

√
N0

2
− ω

1− ω
EN and height

√
N0

2
−

√
ω

1− ω
EN . If the received vector

given that the all-zero codeword is transmitted falls inside this cap, an error occurs. The

volume of this cap is upper bounded by the volume of a n − 1 dimensional sphere with

radius

√
N0

2
− ω

1− ω
EN , which is

π(n−1)/2

Γ
(

n+1
2

)
(

N0

2
− ω

1− ω
EN

)(n−1)/2

. Note that this upper

bound is tight, since the sphere cap and the sphere of radius

√
N0

2
− ω

1− ω
EN differ in

only one dimension. Comparing the volume of the sphere cap and the noise sphere, for a

codeword ci of weight w = ωn,

P{r ∈ R, |r− ci| < |r− c0|} =

vol{S2}
vol{S1} <

π(n−1)/2

Γ
(

n+1
2

)
(

N0

2
− ω

1− ω
EN

)(n−1)/2

π(n−1)/2

Γ
(

n+1
2

)(N0/2)(n−1)/2

=

(
1− 2ω

1− ω

EN

N0

)(n−1)/2

,

(3.67)

whose exponent is

−1

2
log(1− 2ω

1− ω

EN

N0

). (3.68)

Using the weight distribution described by (3.48) for codewords of weight 0 < w <

n

√
N0/2√

EN +
√

N0/2
, we finally arrive at the exponent for the second summand in (3.62)

E2 = min
0<ω<

√
N0/2√

EN +
√

N0/2

{
2

(
ω − 1

2

)2

− 1

2
log

(
1− 2ω

1− ω

EN

N0

)}
−R log 2. (3.69)

Since the error exponent in (3.65) is positive for c =
√

N0/2 + ε, then the overall error

exponent is positive if the error exponent in (3.69) is positive.
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Figure 3.5 shows the minimum signal to noise ratio for which the TSB error exponent

for the Gaussian weight spectrum given in (3.69) is positive and compares it to that of the

average spectrum. It also shows the capacity of BPSK signalling over an AWGN channel.

The achievable rate predicted by the TSB for the Gaussian spectrum and for the average

spectrum are very close to the BPSK capacity for code rates less than 1/2.
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Figure 3.5: TSB bound vs capacity.

Figure 3.6 shows the dominant weight ωcn on the error exponent in 3.69 for different

SNR values:

ωc = arg min
0<ω<

√
N0/2√

EN +
√

N0/2

{
2

(
ω − 1

2

)2

− 1

2
log

(
1− 2ω

1− ω

EN

N0

)}
. (3.70)
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As the SNR increases, the error exponent is dominated by the error probability due to

the codewords of lower weights. For EN/N0 > 2 = 3 dB, the dominant weight in (3.69)

becomes zero as shown in figure 3.6 and the Gaussian approximation is no longer valid.

This result matches the validity range derived by using the union bound to evaluate the

cutoff rate for a Gaussian weight spectrum in section 3.3.
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Figure 3.6: Dominant weight in the error exponent evaluation.

The derivations in this section remain valid for parallel concatenated turbo codes with

J > 2 component codes as all the systematic and parity weights are Gaussian and each

parity stream is an m-dependent sequence conditioned on the weight of the systematic and

the other parity streams. If one punctures one or more of the parity streams to increase the
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code rate, the central limit theorem is still applicable, if that puncturing leaves an infinite

number of parity bits when N →∞.

The Gaussian weight distribution approximation is valid for the typical values of the

Hamming weight. As the SNR increases, the error performance is determined by the

codewords of lower weights. The number of low-weight codewords cannot be approximated

by a continuous distribution. As we will see in Chapter 4, low-weight codewords appear

only in certain structures. We will study the statistical properties of low weight codewords

and their effect on the overall performance.

3.5 Summary

In this chapter, the asymptotic weight distribution of turbo codes is studied. It is shown

that the weight distribution in its typical region is Gaussian. We also show that this

weight distribution remains the same for almost any random interleaver and any nontrivial

component codes. This weight distribution is compared with the “average spectrum” and

the TSB is applied on the error performance of turbo code to find the region of signal to

noise ratio and code rate values where the error probability converges to zero for a code

with Gaussian distribution.



Chapter 4

Performance Analysis in the error

floor region

4.1 Chapter Overview

As mentioned in the previous chapter, the weight distribution of the code for its typical

weights is asymptotically Gaussian. However, the weight distribution for the low-weight

codewords which affect the performance in the error floor region does not follow the Gaus-

sian distribution. In this chapter, the statistical properties of the low-weight codewords

will be evaluated and based on that the statistical properties of error floor and the mini-

mum distance of the code will be derived. We also show that for multi-component codes,

the error floor converges to zero as the block length increases. We present a method to

expurgate the low-weight codewords.

61
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4.2 Asymptotic Behavior of Low-weight Codewords

The error floor is caused by low-weight codewords. The number of low-weight codewords

and their weights are determined by the RCC and the interleaver structure. To evaluate

the statistical properties of the error floor among all the possible interleavers, the statistical

properties of the low-weight codewords are required.

Consider the turbo code shown in figure 2.1 with two component codes. The probable

low-weight codewords for large block lengths consist of some short single error events1

with the systematic weight of two in both RCCs [12]. Each of these short error events

is caused by two nonzero systematic bits that are separated by an integer multiple of the

RCC impulse response period. In other words, an asymptotically probable codeword has

an even systematic weight of w1 = 2M, M = 1, 2, . . .. Each RCC leaves the all-zero state

M times and returns to it after an integer multiple of P transitions. This is equal to

at least M repetitions of the RCC impulse response in each encoder. This phenomenon

produces
K(P + 1)

2
nonzero parity bits, where K ≥ 2M is the number of RCC impulse

response repetitions in the parity check sequences. Such a structure is denoted by type

(M, K) where K ≥ 2M . For a code consisting of J constituent codewords, the low-weight

codeword of type (M,K) consists of M short error events in each parity stream. The

systematic stream and all its J − 1 interleaved versions contain M pairs of ones, each pair

separated by an integer multiple of P as shown in figure 4.1.

To calculate the mean and the variance of the error floor, it is necessary to com-

1A single error event means leaving the zero-state and returning back to it for the first time.
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Before Interleaving

After first Interleaver

.......
k1mP k1MP

k2MPk2mPk21P

k11P

After J − 1 Interleaver

kJmP kJMPkJ1P

J∑

j=1

M∑

m=1

kjm = K

Systematic stream consisting of M pairs of ones (ones are shown by circles, zeros elsewhere)

Figure 4.1: The structure of low-weight codewords of type (M,K).
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pute the statistical properties of each low-weight structure. One can show that there

are

(
K − 1

2M − 1

)
ways to choose 2M positive integers whose sum is K. Equivalently, the

structure of type (M,K) can be divided into

(
K − 1

2M − 1

)
substructures. The number of

codewords of each substructure has the same statistical properties as the number of code-

words of type (M, 2M).

Theorem 4.1. The number of codewords of type (M, K) is a Poisson random variable with

parameter λ
(2)
M,K =

(
2M

M

)(
K − 1

2M − 1

)
, where superscript (2) is used to denote the presence

of two component codes.

Proof. We first calculate the statistical properties of the number of codewords of type

(M, 2M) and then generalize the result to the other structures. There are

(
N

M

)
systematic

input combinations consisting of M pairs of ones, each pair with P − 1 zeroes in between.

This can be easily verified by determining the place of the first element of each pair. The

overlapping pairs are neglected, because N À M . Such a structure generates M(P + 1)/2

parity bits in the first convolutional encoder. There are the same number of parity bits

in the second convolutional encoder, if the interleaver maps that systematic stream to

another stream of the same structure. There are

(
N

2M

)
ways to interleave a stream of

length N and weight 2M . However, among them, only

(
N

M

)
result in M pairs of ones,

each pair with P−1 zeroes in between; that is, the Bernoulli event that a low parity-weight

generating stream changes to another one occurs with probability

(
N
M

)
(

N
2M

) . The number of

these Bernoulli events is

(
N

M

)
. These Bernoulli events are asymptotically independent

because occupying a bit position in the interleaved stream by a certain information bit
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does not asymptotically affect the probability for the other bits. As a result, the number

of low-weight codewords of type (M, 2M) is asymptotically a Poisson random variable with

parameter

λ
(2)
M,2M =

(
N
M

)
(

N
2M

)
(

N

M

)
. (4.1)

For N →∞ and by using Stirling’s approximation, (4.1) converges to

λ
(2)
M,2M =

(
2M

M

)
. (4.2)

Finally, the Poisson parameter for the structure of type (M, K) is computed by multi-

plying λ
(2)
M,2M by

(
K − 1

2M − 1

)
, which is

λ
(2)
M,K =

(
2M

M

)(
K − 1

2M − 1

)
. (4.3)

As an example, there are approximately N codewords with the systematic weight of

two, consisting of two nonzero bits separated by P . After interleaving, the distance between

these two bits remains P with the probability of 2/N . This occurs because these two bits

can occupy about N2/2 different places after interleaving, and only about N of the new

places are separated by P . Then, the average number of low-weight codewords of this

structure is two. On the other hand, there are four codewords with the systematic weight

of 2 and parity weight of 3(P + 1)/2, averaged over all the possible interleavers, because

there are two possible structures for this situation: distance P before interleaving and 2P

after interleaving, and vice versa, and the Poisson parameter for each of two substructures
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Table 4.1: Poisson parameters for different low-weight structures for P=7.

K=2 K=3 K=4 K=5 K=6 K=7 K=8

λ w λ w λ w λ w λ w λ w λ w

M = 1 2 10 4 14 6 18 8 22 10 26 12 30 14 34

M = 2 6 20 24 24 60 28 120 32 210 36

M = 3 20 30 120 34 240 38

M = 4 70 40

is two. Table 4.1 shows the Poisson parameter and the corresponding weights for some

values of M and K.

4.2.1 Indecomposable Low-weight Codewords

In a linear binary codebook, the binary addition of two or more low-weight codewords

results is another low-weight codeword. The new codeword is decomposable when the

original low-weight codewords do not have common nonzero bit positions. Decomposable

codewords can be easily ignored, because: (i) it easily follows that the decomposable

codewords do not contribute to the walls of the Voronoi region of the all-zero codeword,

and (ii) if each of the original low-weight codewords is expurgated, the decomposable

codeword no longer exists.

The Poisson parameters calculated by (4.3) include both decomposable and indecom-

posable low-weight codewords. These Poisson random variables are not independent. For
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example, the number of codewords of type (M1 + M2, K1 + K2) depends on the number of

codewords of types (M1, K1) and (M2, K2).

Theorem 4.2. The number of indecomposable codewords of type (M,K) is a Poisson

random variable with parameter λ̂
(2)
M,K =

22M

2M

(
K − 1

2M − 1

)
.

Proof. Again, we begin with codewords of type (M, 2M). A codeword of type (M, 2M)

consists of 2M systematic bits. There are

(
N

2M

)
ways to choose 2M bits out of N

systematic bits. Consider these bits as the 2M nodes of a graph. These bits form M pairs

before and M pairs after interleaving. We denote each pair before interleaving by a red

edge and each pair after interleaving by a blue edge. A graph with two edges for each

node consists of one or more loops. Each loop represents an indecomposable codeword.

We have one and only one indecomposable codeword of type (M, 2M), if and only if there

is only one loop in the graph. There are (2M − 1)! ways to form a loop with 2M nodes

in such a way that each node has one blue edge and one red edge. For each edge in the

graph, the probability that the corresponding systematic bits are separated by P trellis

positions is 2/N . Since the relative position of bits in different pairs are asymptotically

independent, all pairs are separated by P before and after interleaving with probability
(

2

N

)2M

. The number of low-weight codewords of type (M, 2M) is the summation of many

Bernoulli events with a low probability which is a Poisson random variable. Noting the

above statements, the parameter of this random variable is

λ̂
(2)
M,2M =

(
N

2M

)
(2M − 1)!

(
2

N

)2M

. (4.4)
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Table 4.2: Poisson parameters for different indecomposable low-weight structures.

K=4 K=5 K=6 K=7 K=8 K=9 K=10

λ λ̂ λ λ̂ λ λ̂ λ λ̂ λ λ̂ λ λ̂ λ λ̂

M = 2 6 4 24 16 60 40 120 80 210 140 336 224 504 336

M = 3 20 32
3

120 64 420 224 1120 1792
3

2520 1344

M = 4 70 32 560 256 2520 1152

M = 5 252 512
5

For large N , (4.4) can be written as

λ̂
(2)
M,2M =

22M

2M
. (4.5)

The Poisson parameter for the number of indecomposable low-weight codewords of type

(M, K) is the multiplication of λ̂
(2)
M,2M by

(
K − 1

2M − 1

)
:

λ̂
(2)
M,K =

22M

2M

(
K − 1

2M − 1

)
. (4.6)

Table 4.2 compares the Poisson parameters of all low-weight codewords and indecom-

posable low-weight codewords for different structures. In this table, λ indicates the Poisson

parameter of all low-weight codeword of one structure, while λ̂ denotes the Poisson param-

eters corresponding to the indecomposable low-weight codewords.

Here, the Poisson parameter corresponding to the number of indecomposable low-wight

codewords is evaluated based on an alternative approach based on the following lemma.
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Lemma 4.1. If Xm is a Poisson-distributed random variable of parameter λ̂m,2m, then

E

[(
Xm

km

)]
=

λ̂km
m,2m

km!
. (4.7)

Proof.

E
[(

Xm

km

)]
=

∞∑

k=km

(
k

km

)
P{Xm = k}

=
∞∑

k=km

k!

km!(k − km)!
e−λ̂m,2m

λ̂k
m,2m

k!

=
e−λ̂m,2mλ̂km

m,2m

km!

∞∑

k=km

λ̂k−km
m,2m

(k − km)!

=
e−λ̂m,2mλ̂km

m,2m

km!

∞∑

k=0

λ̂k
m,2m

k!

=
e−λ̂m,2mλ̂km

m,2m

km!
eλ̂m,2m

=
λ̂km

m,2m

km!
.

(4.8)

In a large block turbo code, a decomposable low-weight codeword has a systematic

weight of 2M ≥ 4, and consists of some smaller low-weight codewords which can be

partitioned to km codewords of the systematic weight 2m for m = 1, . . . , M − 1. The km’s

are nonnegative integers that satisfy

M−1∑
m=1

mkm = M. (4.9)

Again, we only consider codewords of type (M, 2M). The same approach that was previ-

ously applied is still valid for the codewords of type (M, K), when K > 2M . The total
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number of low-weight codewords of type (M, 2M) is

(
2M

M

)
. Let us denote the average

number (Poisson parameter) of indecomposable codewords of type (M, 2M) by λ̂M,2M . If

the number of indecomposable low-weight codewords of type (m, 2m), m = 1, . . . , M−1, is

Xm, then the number of decomposable codewords of type (M, 2M) consisting of km, m =

1, 2, . . . , M − 1, codewords of types (m, 2m), is

M−1∏
m=1

(
Xm

km

)
. (4.10)

Xm is a Poisson random variable with parameter λ̂m,2m. Therefore, the average number of

decomposable codewords is

(
2M

M

)
− λ̂M,2M =

∑
∑M−1

m=1 mkm=M

E

[
M−1∏
m=1

(
Xm

km

)]
=

∑
∑M−1

m=1 mkm=M

M−1∏
m=1

E

[(
Xm

km

)]
. (4.11)

Equation (4.11) holds because Poisson random variables denoting the number of inde-

composable codewords are asymptotically independent noting that generation of an inde-

composable low-weight codeword in a large block turbo code does not affect the position

occupied by other information bits.

Using Lemma 4.1, we can see that

λ̂M,2M =

(
2M

M

)
−

∑
∑M−1

m=1 mkm=M

M−1∏
m=1

λ̂km
m,2m

km!
, for M > 1. (4.12)

This recursive equation in conjunction with the fact that λ̂1,2 = 2 yields another method

to evaluate the Poisson parameter for the indecomposable, low-weight codewords of type

(M, 2M).
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4.2.2 Minimum Distance of Turbo Codes

Using Poisson parameters in (4.6), we can evaluate the asymptotic probability mass func-

tion of the minimum distance over all possible interleavers. Note that the smallest low-

weight structure with a nonzero number determines the minimum distance. In other words,

if these structures are sorted in the ascending order of their weights (i.e., wi ≤ wi+1, i =

1, 2, . . .) and Yi is the number of low-weight codewords of the i’th structure, then the

minimum distance of the code is wi if

Yj = 0, j = 1, 2, . . . , i− 1 and Yi 6= 0. (4.13)

The probability of this event can be obtained by

P{wmin = wi} = P{Y1 = 0, Y2 = 0, . . . , Yi−1 = 0, Yi 6= 0}. (4.14)

Since the number of indecomposable codewords of different types are independent Poisson

random variables,

P{wmin = wi} = P{Yi 6= 0}
i−1∏
j=1

P{Yj = 0} = exp

{
−

i−1∑
j=1

λj

}
(1− exp {−λi}) , (4.15)

where λi denotes the Poisson parameter of random variable Yi. Figure 4.2 represents the

pmf of the minimum distance of a large-block turbo code with P = 3, 7, 15.

4.3 Error Floor for Large Block Turbo Codes

In this section, the asymptotic behavior of the error floor will be studied. Using the results

of the previous section, we can calculate the mean and the variance of the union bound
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Figure 4.2: Asymptotic pmf of the turbo code minimum distance as N →∞.
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on the error floor. Suppose that we sort the probable structures in the ascending order of

their weights. Obviously, the minimum weight belongs to codewords of type (1, 2). The

weight of such codewords is 2+2(P +1)/2 = P +3. Suppose that the number of codewords

of the i’th structure is Yi which is determined by a Poisson distribution with parameter λi.

With the union bound, the error floor can be bounded as

Pe ≤ Pu =
∑

i

Yipi, (4.16)

where pi = Q

(√
2ENwi

N0

)
is the corresponding error for any codeword of the i’th structure,

where EN is the energy per channel use. The mean of this upper bound can be determined

by

E[Pu] =
∑

i

λipi. (4.17)

As mentioned earlier, the upper bound on the performance becomes tighter, if only in-

decomposable codewords are considered. On the other hand, since the Poisson random

variables corresponding the number of indecomposable low-weight codewords are asymp-

totically independent, the variance of Pu can be evaluated by

σ2
Pu

=
∑

i

λip
2
i . (4.18)

Figure 4.3 shows the mean and the standard deviation of the union bound that is

applied on the error floor, by using the Poisson parameters in (4.3). As expected, both the

mean and the standard deviation decrease when the SNR increases. As the SNR increases,

the ratio between them converges to
√

2. This is because for this region of signal to noise
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ratio values, only the codewords of the lowest weight structure, i.e., type (1,2), remain

effective and the Poisson parameter for this type is two.
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Figure 4.3: The mean and standard deviation of the union bound on the error floor for

P = 3, 7 and 15.

In figure 4.4, the union bound on the average error floor using the Poisson distribution

of the indecomposable low-weight codewords in (4.6) for a code with P = 3 is compared

to the union bound evaluated by using Poisson parameters in (4.3). Since P is relatively

small, the Poisson parameters of the indecomposable low-weight codewords result in a

tighter bound than the Poisson parameters of the all low-weight codewords.
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Figure 4.4: The error floor for a large-block turbo-code with P = 3.
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4.4 Turbo Codes with Multiple Constituent Codes

In [15], it is shown that turbo codes with more component codes have a better performance

when ML decoding is used. In [16], it is shown that for a randomly interleaved turbo code,

the error floor decreases as O(N−J+2+ε) when J component codes are used. Next, we

investigate the asymptotic behavior of multi-component turbo codes based on the Poisson

distribution of low-weight codewords.

We focus on a parallel concatenated turbo code consisting of J component codes. These

codes are concatenated via J − 1 randomly chosen interleavers. The rate of this code is

1

J + 1
. Higher code rates are achievable by puncturing and lower rates are achievable by

using component codes of rate less than one.

Again, we concentrate on the codewords consisting of short error events due to two

systematic bits. With a similar approach used in [12], the average number of codewords

consisting of w1 systematic bits and Aj ≤
⌊w1

2

⌋
, j = 1, . . . , J short error events in the

jth encoder is O(N−w1(J−1)+
∑

j Aj). Within low weight codewords of systematic weight w1,

those codewords with Aj = M = bw1

2
c, j = 1, . . . , J are dominant. The parity weight of

such codewords is
K(P + 1)

2
, where K ≥ JM .

We first study the statistical properties of codewords of weight 2M +
JM(P + 1)

2
(i.e.,

K = JM). The number of low parity-weight patterns of systematic weight 2M is

(
N

M

)
.

After each interleaver, only

(
N

M

)
out of

(
N

2M

)
possible outcomes will be a low-weight

structure. As a result, the average number of low-weight codewords with the systematic
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weight of 2M and parity weight of
JM(P + 1)

2
is

λ
(J)
M,JM =

(
N
M

)J

(
N

2M

)J−1
' (2M !)J−1

(M !)J
N−M(J−2). (4.19)

For J = 2 component codes, λ
(J)
M,JM is finite and non-zero. For J > 2, this average goes to

zero as N increases. For structures with parity weight of
K(P + 1)

2
, where K ≥ JM , we

have

λ
(J)
M,K = λ

(J)
M,JM

(
K − 1

JM − 1

)
. (4.20)

The mean of the error floor based on the union bound can be bounded by

E{Pe} ≤
∑
M

∑
K≥JM

λ
(J)
M,KQ

(√(
2M +

K(P + 1)

2

)
2EN

N0

)
. (4.21)

Then,

E{Pe} ≤
∑
M

(2M !)J−1

(M !)J
N−M(J−2)

∑
K≥JM

(
K − 1

JM − 1

)
Q

(√(
2M +

K(P + 1)

2

)
2EN

N0

)
.

(4.22)

The dominant term is the term corresponding to M = 1 as N →∞,

E{Pe} ≤ 2J−1N−J+2
∑
K≥J

(
K − 1

J − 1

)
Q

(√(
2 +

K(P + 1)

2

)
2EN

N0

)
= O(N−J+2), (4.23)

which indicates an interleaver gain of J−2. A similar result based on a different approach is

reported in [16] for a turbo code with J component codes and uniform interleaving. This

predicts a diminishing error floor for multi-component turbo codes with a performance

improving inversely with the block length. This behavior is different from what we have

seen in the waterfall region. Note that the performance of turbo code in the waterfall
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region is determined by high-weight codewords and an error exponent and a cut-off rate

could be defined for that region.

The BER for this code can be bounded by

E{Pb} ≤
∑
M

(2M !)J−1

(M !)J
N−M(J−2)−1

∑
K≥JM

2M

(
K − 1

JM − 1

)
P(M,K), (4.24)

where

P(M,K) = Q

(√(
2M +

K(P + 1)

2

)
2EN

N0

)
.

This indicates an interleaver gain of J − 1. As a result, although a turbo code consisting

of two component codes has a nonzero asymptotic FER, its BER asymptotically tends to

zero in the error floor region with almost any random interleaver.

If one punctures one or more of the parity streams to increase the code rate, the num-

ber of low-weight codewords remain unchanged but the weight of each codeword decreases.

This increases the error floor in (4.22) and (4.24), but does not change the order of the

error floor for bit and frame error probabilities, which are O(N−J+2) and O(N−J+1), re-

spectively.

4.5 Transition Region

As discussed earlier, the asymptotic weight distribution of turbo code is Gaussian for

typical values of weight, w = O(N). In this region, the Central Limit Theorem applies

to the systematic and parity weights. On the other hand, there are a few codewords with

finite weight which consist of low systematic and parity weights and their number follows
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a set of Poisson random variables. The two weight regions are separated by a transition

region, with unbounded weight of w = o(N) as N → ∞, where the weight distribution

emerges from a set of Poisson random variables to Gaussian.

Here, we find the average weight distribution of the code for the transition region among

all possible interleavers. In this region, the systematic stream consists of many non-zero

bits. However, the number of these bits is very small compared to the block length.

As a result, two consecutive non-zero systematic bits (in the original systematic stream

and all J − 1 interleaved versions of it) are very far from each other. Such a systematic

stream, can be modeled by N iid Bernoulli events with a very low success probability of

w1

N
, where w1 is the systematic weight. In this case, each parity stream is divided into

w1 segments. Each segment starts with a nonzero systematic bit and ends with the next

nonzero systematic bit. If one RCC encoder is in the zero state before a nonzero systematic

bit, it arrives to a non-zero state after it. If the previous state is a non-zero state, after

a nonzero systematic bit, the RCC encoder arrives in one of P − 2 non-zero states or the

zero-state, depending on the current state. Since w1 is very large, the law of the large

number applies and in each RCC encoder, the encoder remains in the zero-state for about

w1

P + 1
segments. Thus, with J component codes, the total number of non-zero segments is

about

⌈
P

P + 1
Jw1

⌉
. Considering that each systematic bit is one with probability

w1

N
, the

number of trellis transitions that each encoder corresponding to each segment is a geometric

random variable with parameter
w1

N
. As a result, the total number of trellis transitions of

the non-zero segments in all J RCC encoders is a negative binomial random variable with
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parameters

(⌈
P

P + 1
Jw1

⌉
,
w1

N

)
. Note that the overall parity weight is approximately

⌈
P + 1

2P
x

⌉
, where x is the overall length of the non-zero segments. Since there are

(
N

w1

)

different systematic inputs of weight w1, the overall number of codewords of systematic

weight w1 = o(N) and parity weight wp is

A(J)
w1,wp

'
(

N

w1

)(
x− 1

r − 1

)
pr(1− p)x−r, (4.25)

where x =

⌈
2P

P + 1
wp

⌉
, r =

⌈
P

P + 1
Jw1

⌉
is the total number of these segments and

p =
w1

N
. The weight enumerating function in (4.25) can be approximated by

A(J)
w1,wp

' Nw1

w1!

(
2P

P + 1
wp

) P
P+1

Jw1

⌈
P

P + 1
Jw1

⌉
!

(w1

N

) P
P+1

Jw1

. (4.26)

The effect of this weight distribution on the error performance based on the union bound

is

Pe <
∑
w1

∑
wp

A(J)
w1,wp

Q

(√
2EN

N0

(w1 + wp)

)
. (4.27)

It is easy to see that for w1, wp = o(N), the right hand-side of (4.27) converges to zero as

N →∞. The error probability in (4.27) corresponds to codewords in the transition region

for a code with a uniform interleaver. For a code with a pseudo-random interleaver, the

effect of this region of weight on the overall performance depends on the order of the weight

enumerating function. Note that with a randomly chosen interleaver, with probability one,

the weight enumerating function has the same order as the weight distribution with the

average interleaver in (4.25). As a result, with any randomly chosen interleaver, the effect

of the transition region on the overall performance is negligible.
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The three different weight regions and the corresponding conditional weight distribu-

tions are shown in figure 4.5, where w = o(N) denotes weights where lim
N→∞

w = ∞ and

lim
N→∞

w

N
= 0, and w = O(N) denotes weights linearly increasing with N .

Weight

Finite

Poisson Negative Binomial Gaussian
0

o(N) O(N)

Figure 4.5: The weight distribution for different regions of weight.

4.6 Expurgating Low-weight Codewords

Low-weight codewords in turbo codes occur when a low-weight information stream results

in a few parity bits in both recursive convolutional encoders. As mentioned before, the

average number of low-weight codewords in which more than two nonzero systematic bits

cause a short error event is zero for large block lengths. The important point is that the av-

erage number of such low-weight codewords does not increase with the block length N [12].

The number of low-weight codewords is a nonnegative integer with a finite average, and

consequently, the probability of having an infinite number of such low-weight codewords

approaches zero for large block lengths.

We can remove the effect of these low-weight codewords on the error floor region by

expurgating them. Expurgating low-weight codewords decreases the dependency of the
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turbo code performance on the RCCs and the interleaver structure, since the remaining

codewords tend to the Gaussian weight distribution.

To expurgate these codewords, one way is to set one information bit in each low-weight

codeword to zero as presented in [17]. However, no further puncturing is required to

maintain the code rate, because when the block length is sufficiently large, the number of

these bits is small in comparison with the block length, and consequently, the code rate is

not affected.

In figure 4.6, the effect of expurgating low-weight codewords on the asymptotic mean

of the error floor after expurgating codewords of the first low-weight structure (type (1,2),

systematic weight 2 and parity weight P + 1), and the second one (type (1,3), systematic

weight 2 and parity weight 3(P + 1)/2) for a code of the rate 1/3 and P = 7 is shown. On

the average, there are two and four codewords of these two structures, respectively. The

number of codewords in each of these two types does not exceed ten with probabilities

8 × 10−6 and 0.0028, respectively. Figure 4.7 presents the effect of the expurgation on a

turbo code of the length 10000 and rate of 1/3 by using RCCs with three memory bits

(P = 7). The interleaver is chosen randomly. Simulation results show that by using this

randomly chosen interleaver, three low-weight codewords with the systematic weight of

two and parity weight of less than or equal to 12 (having the first or the second structure)

exist.

In multi-component turbo codes, the Poisson parameters decrease with N . However,

some low-weight codewords may still exist for large (but finite) block size turbo codes. As
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Figure 4.6: Asymptotic effect of expurgating two low-weight codeword structures
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the number of low-weight codewords is decreasing with the block length, it is possible to

expurgate all codewords of weight less than a certain threshold. This threshold can be

increased unbounded as the block length increases. This is because the total number of

low-weight codewords with the systematic weight 2M and K ≤ Kmax is

Kmax∑
K=JM

A
(J)
M,K =

(2M !)J−1

(M !)J
N−M(J−2)

Kmax∑
K=JM

(
K − 1

JM − 1

)
= O

(
N−M(J−2)KMJ

max

)
. (4.28)

For Kmax = o
(
N (J−2)/J

)
, the number of low-weight codewords in (4.28) is negligible com-

pared to the block length and hence, expurgating those low-weight codewords does not

change the code rate for N → ∞. If all the low-weight codewords of systematic weight

1, 2, . . . , 2M − 1 are expurgated, then the interleaver gain increases to M(J − 2), without

affecting the code rate.

4.7 Summary

In this chapter, the performance of turbo codes in the error floor region is studied. It is

shown that the weight distribution of the code for the low-weight codewords is a set of

Poisson random variables. The statistical properties of these Poisson random variables are

derived. Based on these random variables, the statistical properties of the error floor and

the minimum distance of the code are evaluated. The interleaver gain for multi-component

code is evaluated and a method to expurgate the low-weight codewords is presented. It

is also shown that the weight distribution of the code in the transition from Gaussian to

Poisson is negative binomial.



Chapter 5

Summary of Contributions

In this thesis, the asymptotic performance of turbo codes is studied. Our analysis is based

on the code weight distribution. We show that for large block size turbo codes, the weight

spectrum has three different regions: (i) the low-weight region where the weight spectrum

is Poisson, (ii) the high weight region where the weight spectrum is Gaussian, and (iii)

the transition region from Poisson to Gaussian where the weight spectrum is negative

binomial. The performance of turbo codes in the waterfall region is mainly affected by

the high-weight codewords. It is shown that for almost any random interleaver and any

nontrivial recursive constituent code, the normalized weight distribution of turbo codes

is asymptotically Gaussian and the code spectrum is very close to the average spectrum.

A code with a randomly chosen interleaver performs the same as a code with the best

interleaver with probability one and hence, interleaver optimization has little effect on the

asymptotic performance of the code in the waterfall region. This Gaussian distribution

86
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approaches the average spectrum defined in [14]. The TSB bound is applied on the Gaus-

sian distribution and the region of code rate and SNR where the TSB error exponent is

positive is evaluated. It is shown that the achievable rate is close to the capacity of BPSK

signalling over AWGN channel. We also evaluated the weight of the dominant codewords

in the performance of the code as a function of the signal to noise ratio. As the signal to

noise ratio increases, the weight of the dominant codewords decreases and after a certain

SNR, the Gaussian distribution is not valid for the dominant codewords.

In the error floor region (large SNR values), the performance of the code is affected

by low-weight codewords and for a code with two RCCs, the number of these codewords

remains finite as the block length increases. For large block lengths, only certain structures

of these codewords remain possible. The number of indecomposable codewords of each

structure is asymptotically characterized by a set of independent Poisson random variables.

The frame error rate for these codes is bounded away from zero for a large block length.

However, expurgating some low-weight codewords lowers the error floor. On the other

hand, multi-component codes have a positive interleaver gain and the error floor disappears

as the block length increases. The overall asymptotic error probability for these codes

converges to zero either exponentially (in the Gaussian region) or polynomially (for Poisson

and negative binomial regions).



Chapter 6

Future Research Directions

• In this work, the weight distribution of binary parallel concatenated turbo codes is

used to evaluate the asymptotic performance of these codes over an AWGN channel

with BPSK signalling. It is concluded that the weight distributions of these codes

are Gaussian and the mean and the variance of the distribution remains the same

for almost any component code and interleaver structure. These codes perform very

close to the capacity for low values of spectral efficiency. It is known that when a

higher spectral efficiency is desired, the performance of these codes with non-binary

modulation schemes along with binary or non-binary codes is not very close to the

capacity. It is desirable to analyze the pairwise distance spectrum of these codes and

compare it to the distance spectrum of random coding. This will show the potential

capability of these codes designed for higher spectral efficiencies.

• In non-binary modulation schemes, the coded bits are mapped to the modulation con-

88
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stellation points through another interleaver. The asymptotic effect of the mapping

interleaver on the performance of turbo codes for non-binary modulation is another

extension to this study.

• In this thesis, we find the region of the signal to noise ratio and code rate values

where the performance of the code due to high-weight codewords converges to zero.

This helps us to evaluate the waterfall when ML decoding is used and compare it to

the capacity. However, for a large (but finite) code length and signal to noise ratio

values higher than the capacity, the value of the error exponent indicates how fast

the performance improves as the block length increases. Using the same approach

as provided in section 3.4, one can find the tightest error exponent on a code with

Gaussian distribution using the tangential sphere bounding technique.

• There are some bounding methods [69] which give tighter bounds than the tangential

sphere bound. It is desirable to apply these bounding techniques on the Gaussian

weight distribution to improve the asymptotic achievable rate based on the Gaussian

weight distribution.

• It is known that, the serial concatenated turbo codes and LDPCs perform better

in the error floor region than parallel concatenated codes. Analyzing the weight

distribution of these codes in their typical and low-weight codeword regions is another

extension to the work presented in this thesis.
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