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Abstract

The need for image enhancement and restoration is encountered in many practical applications.

For instance, distortion due to additive white Gaussian noise (AWGN) can be caused by poor qual-

ity image acquisition, images observed in a noisy environment or noise inherent in communication

channels. In this thesis, image denoising is investigated. After reviewing standard image denoising

methods as applied in the spatial, frequency and wavelet domains of the noisy image, the thesis

embarks on the endeavor of developing and experimenting with new image denoising methods based

on fractal and wavelet transforms. In particular, three new image denoising methods are proposed:

context-based wavelet thresholding, predictive fractal image denoising and fractal-wavelet image

denoising. The proposed context-based thresholding strategy adopts localized hard and soft thresh-

olding operators which take in consideration the content of an immediate neighborhood of a wavelet

coefficient before thresholding it. The two fractal-based predictive schemes are based on a simple

yet effective algorithm for estimating the fractal code of the original noise-free image from the noisy

one. From this predicted code, one can then reconstruct a fractally denoised estimate of the original

image. This fractal-based denoising algorithm can be applied in the pixel and the wavelet domains

of the noisy image using standard fractal and fractal-wavelet schemes, respectively. Furthermore,

the cycle spinning idea was implemented in order to enhance the quality of the fractally denoised

estimates. Experimental results show that the proposed image denoising methods are competitive,

or sometimes even compare favorably with the existing image denoising techniques reviewed in

the thesis. This work broadens the application scope of fractal transforms, which have been used

mainly for image coding and compression purposes.
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Chapter 1

Image Degradation and Restoration

The need for image enhancement and restoration is encountered in many practical applications.

For instance, distortion due to additive white Gaussian noise (AWGN) can be caused by poor qual-

ity image acquisition, images observed in a noisy environment or noise inherent in communication

channels. Linear filtering and smoothing operations have been widely used for image restoration

because of their relative simplicity. However, since these methods are based upon the assumption

that the image signal is stationary and formed through a linear system, their effectiveness is gen-

erally acceptable but limited. In reality, real-world images have typically non-stationary statistical

characteristics. They are formed through a nonlinear system process where the intensity distribu-

tion arriving at the imaging system is the product of the reflectance of the object or the scene of

interest and the illumination distribution falling on the scene. There also exist various adaptive

and nonlinear image restoration methods that account for the variations in the local statistical

characteristics [9, 11, 39, 42, 44, 45, 49, 61, 62, 63, 64]. These methods achieve better enhancement

and restoration of the image while preserving high frequency features of the original image such as

edges.

Another, seemingly unrelated, problem in signal processing is the need and desire to manipu-

late, communicate and store large amounts of digital information. This natural demand for data

acquisition, coupled with the exponential growth of computer-based information, remote systems

and media applications have created tremendous demand for storage. Data compression and more

specifically, digital image compression is a viable method for reduction of storage, transmission and

manipulation requirements of digital imagery. Digital image compression takes advantage of the

relationships existing between pixel values to define a new set of coefficients or parameters which

1
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can be used to re-construct an estimate of the original image. In fact most real-world images con-

tain some amount of redundancy that can be removed when the image is stored or transmitted and

replaced when it is reconstructed without significant loss of information. Successful compression

will result in this transformed image taking up less storage and requiring less time to transmit than

the original image.

Recently, many research efforts in the literature have shown that the above two signal processing

problems are indeed closely related and lossy image compression methods have been proposed for

the purpose of image denoising in several works [12, 13, 14, 15, 16, 60, 69]. The focus of this thesis

is to extend the application of wavelet and fractal schemes, which are image compression methods,

for the purpose of image denoising and restoration. In particular, the aim is to develop adaptive

wavelet and fractal-based image denoising methods, assess and compare their performance.

This chapter is organized as follows: The image denoising problem is first described and the

noise statistics are estimated. In section 2, several standard image denoising methods are described

and implemented for the purpose of restoring a noisy test image. Some of these methods are

spatially based, others are applied in the frequency domain of the noisy image. Section 3 contains

a brief outline of some of the more recent developments in the image restoration field of research

as well as a brief motivation of the research undertaken in this thesis. A brief outline of the thesis

is presented in section 4.

1.1 The Image Denoising Problem

In this section, the image denoising problem will be formulated and some of the preliminary issues

such as the assumptions about the noise, estimation of the noise variance and quality assessment

criteria of the denoised image will be discussed.

1.1.1 Image Degradation and Restoration

In practice, an image may be degraded by various types and forms of noise. However, the most

common type of noise is the additive one. As Figure 1.1 shows, the degradation process is modeled

as an additive noise term, w, which operates on an input image, u, to produce a degraded image, û.

Given this noisy observation, along with some knowledge of the additive noise term, the restoration

technique yields an estimate, ũ, of the original image. The denoised estimate is desired to be as

close as possible to original image.
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ũ

+

u

Restoration filter

Degradation

û = u+w

w

Figure 1.1: The degradation and restoration model for an additive noise process.

1.1.2 Noise Model

The principal source of noise in digital images arise during image acquisition (digitization) or

transmission. The performance of imaging sensors is affected by a variety of factors, such as

the environmental conditions during image acquisition, and by the quality of the sensing elements

themselves. For instance, in acquiring images with a camera, light levels and sensor temperature are

major factors affecting the amount of noise in the resulting image. Images are also corrupted during

transmission principally due to interference in the channel used for transmission. For example, an

image transmitted using a wireless network might be corrupted as a result of lighting or other

atmospheric disturbance.

Gaussian Noise

Distortion due to additive white Gaussian noise (AWGN) can be caused by poor quality image

acquisition, images observed in a noisy environment or noise inherent in communication channels.

However, because of its mathematical tractability in both the spatial and the frequency domains,

Gaussian noise models are used frequently in practice. Consequently, throughout this work, the

focus will be on restoring digital images that have been corrupted by an additive white Gaussian

noise. More specifically the noise, w, is assumed to be an additive wide-sense stationary (WSS)

white Gaussian noise (AWGN) process with zero mean and constant variance σ2w, which is formed

independently of the original noise-free image. Thus, if an image I of size M ×N pixels is defined

by its gray-level function, u = [um,n], m,n = 1, 2, . . . ,M,N , then the noisy image Î is defined by

the noisy gray-level function û = [ûm,n], m,n = 1, 2, . . . ,M,N , as follows:

û = u+w, (1.1)
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where u and w are statistically independent. In the pixel domain, one has

ûm,n = um,n + wm,n, m, n = 1, 2, . . . ,M,N, (1.2)

where wm,n,m, n = 1, 2, . . . ,M,N are independent and identically distributed (iid) Gaussian ran-

dom samples with zero mean and variance σ2w, that is

wm,n ∼ N (0, σ2w), for m,n = 1, 2, . . . ,M,N. (1.3)

Next, the objective of the addressing the image denoising problem is addressed.

1.1.3 The Objective

The ultimate goal of image denoising and restoration techniques is to improve a degraded image

in some sense. More specifically, given the noisy observation, û, the objective of restoration is to

obtain an estimate, ũ, of the original image. The denoised estimate is desired to be as close as

possible to original image, in some sense. In general, the more one knows about the noise, the

closer the denoised estimate, ũ, will be to u.

In brief, restoration techniques attempt to suppress the random noise, which has corrupted

the image, while preserving the most important visual features of the image, such as edges. The

challenge in designing effective image denoising techniques lies in achieving these two competing

objectives.

1.1.4 The Test Image

For experimental purposes, unless stated otherwise, the widely known original test image of “Lenna”

and its noisy version as corrupted by an AWGN noise with variance σ2w = 252, will be used. These

images are illustrated in Figure 1.2. It should be noted here that throughout this thesis, the

printed images may have artifacts, such as dithering, halftone, contrast, etc., that are due to the

laser printer. An electronic version of this thesis is available from the University of Waterloo

library’s E-Thesis Database at: http://library.uwaterloo.ca/ETD/etheses.html.

The selection of the noise intensity, σ = 25, was chosen to ensure that the noise is subjectively

significant without overwhelming the original image. In chapter 6, the various image denoising

methods of interest will be applied to other test images, corrupted by AWGN noise with different

intensity, σ, in order to achieve a better assessment of their performance.
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The original noise-free image I The noisy image Î
512× 512 pixels (8 bits/pixel) noise variance: σ2

w = 25
2

source: http://links.uwaterloo.ca RMSE=25.01, PSNR=20.17.

Figure 1.2: The original image of “Lenna” and its noisy version, as corrupted by AWGN noise with

noise variance σ2w = 252.

It is important to note here that in practice, the original signal is generally not known, only

the distorted one is available. In this case, although the original image is available, it is only

used for comparative purposes in order to assess the quality of the denoised image as compared

to the original noiseless image. Also in reality, the acquired noisy image has been corrupted by

an AWGN noise with unknown noise variance σ2w. Thus, an important first step in solving an

image denoising problem involves an accurate and robust estimation of the noise variance, σ2w.

Two different methods for estimating the noise variance will be described and implemented next.

1.1.5 Estimation of the Noise Variance σ2w

As mentioned earlier, throughout most of this thesis, a noisy version of the “Lenna” test image

which has been degraded by AWGN of variance σ2w = 252, will be used for illustrative purposes.

Since in practice the noise variance is generally not known, we first outline how to estimate the

noise statistics from the noisy image. The statistics of the AWGN noise are uniquely determined

by the noise variance σ2w, or equivalently, its standard deviation σw. In this section, two simple,

yet reliable methods for estimating the noise variance from the noisy image, will be presented. The
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first such method is based in the spatial domain of the noisy image, as discussed next.

A Spatial-Based Method
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Figure 1.3: The histogram of the local noise variance

computed from 7×7 masks of the noisy “Lenna” image.

One method of estimating the noise variance

is based on the assumption that an image has

many regions of almost uniform intensity and

that most changes in these regions of insignif-

icant variations are due to the noise. This as-

sumption is generally valid for many real-world

images. The background of a scene is an exam-

ple of such a region of insignificant variations.

Also the noise w is assumed to have a constant

variance σ2w throughout the image. This is a

direct consequence of the fact that the noise is

assumed to be a WSS process. The local vari-

ance estimates of all window masks of sizem×m
pixels, centered at every pixel of the image, are

then calculated. The choice of the window size over which to estimate the local variance is impor-

tant. It needs to be at least 5×5 for reasonable noise estimates, but it should also be small enough

to ensure local signal stationarity. Experimentally, it was observed that both 5× 5 and 7× 7 work

well but matter yields better results. Figure 1.3 illustrates the histogram of these local variance

estimates. Examining the distribution of the local variance across the entire image and assuming

that most of the local 7× 7 subregions of the image have insignificant signal variations. The mode

(i.e. the most frequent value) of the local variance distribution (histogram) was shown to be a

reasonable estimator of the noise variance [39, 45]. This strategy yields the following estimate of

the noise variance:

σ̂2w = 636, or equivalently σ̂w = 25.22, (1.4)

which is relatively close to the true noise standard deviation σw = 25.

Since some of the proposed image denoising methods are applied in the wavelet domain of the

noisy image, a wavelet-based method for estimating the noise variance is described next.
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A Wavelet-Based Method

The Discrete Wavelet Transform (DWT) will be discussed in chapter 2. However, here only the

basic concepts related to the DWT of an image are used. Recall that the wavelet decomposition

of an image is done as follows: In the first level of decomposition, the image is split into four sub-

bands, namely HH1, HL1, LH1, and LL1, as illustrated in Figure 1.4 (a). The HH1 sub-band gives

the diagonal details of the image, the HL1 subband gives the horizontal features, while the LH1

represents the vertical structures. The LL1 subband is the low resolution residual consisting of low

frequency components and it is this subband which is further split at higher levels of decomposition.

It has been shown that the noise standard deviation σw can be accurately estimated from the first

decomposition level diagonal subband HH1 by the robust and accurate median estimator [20], as

given by

σ̂w =
median(|HH1|)

0.6745
. (1.5)
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(a) Wavelet decomposition tree (b) Histogram of HH1.

Figure 1.4: The wavelet decomposition tree and a histogram of the coefficient in the first level diagonal

subband HH1.

Although the original image is responsible for a few large amplitude outliers, these few coeffi-

cients have little impact on the median operator. Figure 1.4 (b) illustrates the distribution of the

wavelet coefficients in the first level diagonal subband, HH1, of the wavelet coefficients. Note that

this distribution is highly symmetric, with zero mean and resembles a Gaussian distribution. Table

1.1 illustrates the statistics as well as the estimate of the noise standard deviation σw. Clearly, for

the test image of “Lenna” with true noise standard deviation σw = 25, a very accurate estimate

σ̂w = 25.015. (1.6)
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is obtained. The wavelet-based method yields the best estimate of the noise variance, as compared

to the other two estimation methods. This is because the discrete wavelet transform performs a

significant degree of localization both spatially and in frequency. Consequently, in the subband

HH1, most of the wavelet coefficients are due to noise. Although, the original image is responsible

for a few large amplitude outliers, these few coefficients have little impact on the median operator.

In what follows, this wavelet-based method will be adopted as the method of choice and the

noise intensity will be estimated by

σw ≈ σ̂w = 25.015. (1.7)

Size(HH1) Mean(HH1) V ariance(HH1) Std(HH1) Median(|HH1|)| σ̂w =
Median(|HH1|)

0.6745

256× 256 0.000 641.598 25.330 17.012 25.015

Table 1.1: The statistics of the diagonal subband of the first decomposition level HH1. Note that the

estimate of the noise standard deviation σ̂w = 25.015 is very close to true noise standard deviation σw = 25.

In this section, the objectives involved in solving the image denoising problem were defined

and two different reliable methods for estimating the noise variance, σ2w, were presented. Next,

the image quality measures, which will be used throughout this thesis to assess the quality of the

denoised estimate, are defined.

1.1.6 Image Quality Measures

Image restoration may be viewed as a subjective or objective process. On the one hand, image

restoration can be viewed as a heuristic procedure designed to manipulate an image in order to

take advantage of the psychological aspects of the human visual system. On the other hand, as a

subjective procedure, one needs to define a set of criteria of goodness that yield an optimal estimate

of the desired result. However, this generally requires the knowledge of the original image. In this

work, image denoising and restoration is viewed as an objective process and standard image quality

measures will be used, as defined next.

In the absence of accurate mathematical models for the complete human visual system, there

is no reliable standard measure of image quality that is consistent with human perception and

that provides a qualitative as well as quantitative measurement. In spite of the lack of such an
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ideal measure, there are “acceptable” image quality measures that have been consistently used in

the literature. One commonly used image quality measure is known as the Root Mean Squared

Error (RMSE). Although it does not always correlate with human perception, the RMSE is often

considered as an “good” measure of the fidelity of an image estimate. This measure is defined as

follows:

Suppose that the original image u of size M × N has been denoised, using an image

denoising scheme, and let ũ be the denoised estimate. The RMSE between the denoised

image and the original image is given by

RMSE =

√

√

√

√

1

M ×N

M
∑

i=1

N
∑

j=1

(ui,j − ũi,j)2. (1.8)

Another related image quality measure is the Peak Signal to Noise Ratio (PSNR), which

is inversely proportional to the RMSE, its units are in decibels (dB) and is formally

defined by

PSNR = 20 log10[
255

RMSE
] (dB) (1.9)

where 255 is the maximum pixel value for an 8 bits/pixel gray-scale image. These two

measures are used consistently throughout this thesis as appropriate measures of image

representation quality as well as comparative criteria when comparing the performance

of various image denoising schemes.

Clearly, when the original image is not known, one cannot rely on the above quantitative fidelity

measures. In that case, the assessment of the denoised image is done subjectively.

Next, a few conventional image denoising methods will be briefly described and and their

performance is assessed.

1.2 Standard Image Denoising Methods

The need for noise suppression without significantly degrading the edges and other high frequency

components of the image, has thus motivated the development of efficient edge-preserving noise

smoothing techniques. Significant progress and development in designing highly effective image

denoising techniques have been achieved and reported over the years. In this section, two types

of standard image denoising methods that are applied in the spatial and frequency domains of the

noisy image, respectively, will be described and implemented.
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1.2.1 Spatial Domain Methods

A variety of spatial filters that attempt to suppress noise without corrupting the significant features

of the image have been developed over the years, such as [42, 45, 49, 62, 64, 63], just to mention a

few. Initially, most of these methods were global and non-adaptive and based on the assumption

that the image signal is stationary in nature, which is generally not the case for most real-world

images. The evolution of adaptive techniques for image denoising and enhancement began with

developing filters that adapt to the local statistics in small sub-regions centered at a sample pixel

which is being filtered. In this section, a few conventional spatial-based image denoising methods

will be described.

Spatial Mask Filters

Many image enhancement techniques are based on spatial operations performed on local neighbor-

hoods of input pixels. Often, the image is convolved with a finite impulse response filter called

spatial mask. Here each pixel is replaced by a weighted average of its neighborhood pixels, that is

ũ(m,n) =
∑

(k,l)∈M

a(k, l)û(m− k, n− l), (1.10)

where û(m,n) and ũ(m,n) are the input noisy image and output denoised estimate, respectively,

M is a suitably chosen window mask, and a(k, l) are the filter weights. A common class of spatial

averaging filters has all equal weights, which is known as the local averaging (or mean) filter, as

discussed next.

The Mean Filter

The local mean filter uses equal weights, a(k, l), to yield a smoothed estimate

ũ(m,n) =
1

NM

∑

(k,l)∈M

û(m− k, n− l) (1.11)

=
1

NM

∑

(k,l)∈M

u(m− k, n− l) + w̄(m,n), (1.12)

where a(k, l) = 1
NM

and NM is the number of pixels in the windowM and w̄(m,n) is the spatial

average of the noise w(m,n). It is a simple matter to show that w̄(m,n) has zero mean and

variance σ2
w

NM
. Thus, the noise power is reduced by a factor equal to the number of pixels in the

window maskM. If the noiseless image u(m,n) is constant over the window maskM, the spatial
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averaging results in an improvement in the output signal-to-noise ratio by a factor of NM. This

seems to indicate that taking larger windows would be beneficial. However, in practice the size of

the window mask M is limited due to the fact that u(m,n) is not really constant, so for larger

windows, spatial averaging introduces a distortion in the form of blurring. A 5 × 5 mask will be

used for the experimental implementation of this filter.

Another spatially-based denoising filter, which is more adaptive than the mean filter, is the Lee

filter, which is described next.

The Lee Filter

One of the limitations of conventional linear filtering methods for image denoising is that they are

based on the assumption that the image signal is stationary and formed through a linear process.

However, such an assumption is generally not valid for most real-world images. It is expected

that local characteristics of an image would be more suitable for effective image restoration and

enhancement. The Lee filter is such an adaptive local method [49]. It is a local statistics filter that

employs local masks whose coefficients are functions of the local signal and noise characteristics.

Using the Lee filter approach, at each pixel located (m,n) where the observed noisy pixel value is

û(m,n), the denoised estimate ũ(m,n) is obtained from û(m,n), as follows:

ũ(m,n) = αm,nû(m,n) + βm,n (1.13)

The parameters αm,n and βm,n are chosen to minimize the mean squared estimation error criterion

∆2
m,n = E[(u− αm,nû− βm,n)

2]. (1.14)

Setting the partial derivatives of ∆2
m,n with respect to αm,n, βm,n to zero and solving for these

coefficients yields

αm,n =
σ2u(m,n)

σ2
û
(m,n)

and βm,n =
σ2w

σ2
û
(m,n)

¯̂u(m,n). (1.15)

Since the original signal, u, and the noise signal, w, are assumed to be independent then one has

σ2û = σ2u + σ2w, or equivalently σ2u = σ2û − σ2w. (1.16)

Thus, the scaling factor, αm,n, can be expressed in terms of the statistics of the noisy image as

follows:

αm,n =
σ2û(m,n)− σ2w

σ2
û
(m,n)

. (1.17)
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Substituting (1.18) into (1.13) yields the following form of the Lee filter:

ũ(m,n) =
σ2û(m,n)− σ2w

σ2
û
(m,n)

û(m,n) +
σ2w

σ2
û
(m,n)

¯̂u(m,n). (1.18)

Note that the quantities ¯̂u(m,n) and σ2û(m,n) denote, respectively, the local sample mean and

variance of û. These statistics are computed from a local mask centered at (m,n) and consequently

they are computed locally and adaptively and thus they are dependent on the pixel (m,n), cur-

rently being processed. The choice of the window size over which to estimate the local variance is

important. It needs to be at least 5× 5 for reasonable noise estimates, but it should also be small

enough to ensure local signal stationarity. Lee has found that both 5× 5 and 7× 7 work well [49].

A 7× 7 mask will be used in the implementation of the Lee filter.

Note that the denoised estimate is a weighted sum of the raw noisy observation and its local

average, using local variance for the weighting. On the other hand, when the local signal variance

is much greater than the constant noise variance, the estimate is close to the observation, i.e. little

or no smoothing occurs. On the other hand, when the local variance is entirely attributable to the

presence of noise, the estimate is just the local average, and maximum smoothing is performed.

Thus, the Lee filter is expected to perform little or no smoothing near edges or high contrast texture

regions and extra smoothing in the flat regions of the image.

Denoising methods can also be applied in the frequency domain of the noisy image. Next, two

frequency-based image denoising techniques will be described.

1.2.2 Frequency Domain Methods

Frequency domain filters are another way of approaching image restoration and enhancement. One

of the main difficulties associated with spatial domain image processing methods is their computa-

tional complexity involved in performing the convolution and especially solving the deconvolution

problem. Frequency domain methods overcome these problems due to the Fourier convolution

property where convolution is transformed into multiplication of the spectra. Since most of the

energy of a typical image is concentrated in the low frequencies, and because the energy of the

noise is often spread across all frequencies (white noise), frequency-based denoising methods often

adopt some form of lowpass filtering to suppress most of the high-frequency components in order to

denoise the image. However, this approach is generally not effective because it involves suppressing

two distinct types of high frequency components that are randomly mixed within the noisy image.

On the one hand, visible edges, which are the significant features of an image from a human viewing
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perspective, are represented by desirable high-frequency components in the power spectrum of an

image. On the other hand, noise is also modeled as high frequency data, representing the undesir-

able high frequency component that one seeks to eliminate or suppress. Thus, it becomes difficult

to suppress the noise without also causing some degree of degradation of the significant features

of the image. Consequently, most of the generic frequency-based image denoising methods often

result in overly smoothed denoised images where the noise has been suppressed but also edges and

other high-frequency features of the image have been blurred.

A non-ideal lowpass filter for image denoising is briefly described next.

The Gaussian Lowpass Filter

The Gaussian lowpass filter (GLF) presents a more realistic alternative to the ideal lowpass filter,

which thresholds (sets to zero) all frequency components outside a specified low range of frequencies.

The effects of the GLF on the spectrum of an image are similar to those of an ideal lowpass filter

in the sense that low frequency components are allowed to pass while higher frequency components

are suppressed. The main difference is that the truncation of the higher frequency components

is gradual and not sharp, as is the case for the lowpass filter. Consequently, no visible ringing

artifacts are observed in the spatial domain of the image. The GLF is represented by the following

frequency response:

HG(Ω) = Ae−2π
2σ2|Ω|2 . (1.19)

The GLF still results in some degree of blurring of the original image, something that is expected

from a lowpass filtering operation.

Another frequency-based filtering method is the Wiener filter, which is briefly discussed next.

The Wiener Filter

The objective in denoising the simple degradation model, in which a signal u is corrupted with an

AWGN noise w, as given in Eq. (1.1), is to recover the original signal u. One might do so with

a linear system with impulse response h such that its response to the observation is the minimum

mean squared error estimate of the signal. Thus, the objective is to find the impulse response h

such that the denoised estimate given by

ũ = û ∗ h (1.20)
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minimizes the mean squared error

∆2 = E[|u− ũ|2] (1.21)

The denoised estimate û is the minimum mean squared error estimator of the original signal, u

and the optimal choice of the impulse response, h, is known as the Wiener filter. The frequency

response H(Ω) associated with the Wiener filter is given by

H(Ω) =
PS(Ω)

PS(Ω) + Pw(Ω)
(1.22)

where Pw(Ω) = σ2w is the global noise variance estimate.

It has been shown that, under certain conditions, the Wiener filter is the optimal globally linear

filter for removing AWGN noise [39, 45]. The main problem associated with the Wiener filter is

that it uses a model which assumes that the original image and noise are globally stationary. The

global stationarity refers to a signal with signal statistics that remain relatively constant throughout

the image. Natural images are in general not stationary, in fact it is exactly that non-stationarity

which manifests itself in images consisting of regions of relative smoothness and regions of high

edge content. The assumption of global stationarity ignores the locally changing nature of the

statistics typical in a broad class of images. This is indeed in contrast to the Lee filter outlined

above, which uses local statistics from a small fixed window around a pixel of interest to estimate

the non-degraded value at that point.

1.2.3 Computational Platform

Throughout this thesis, the numerical computations required to generate the illustrated experi-

mental results were executed using a Pentium 4, 1.9 GHz. computer system platform. The C

programming language as well as the standard numerical computation software, MATLAB, were

generally used to implement these results. The execution times required to produce the experimen-

tal results are usually presented below the figures, when a appropriate. It should be noted that

the implemented computer programs were not necessarily optimized to yield the fastest execution

times.

Next, the various standard image denoising methods are implemented for the purpose of restor-

ing the noisy test image.
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1.2.4 Experimental Results

In this section, the standard image denoising methods, described above, will be implemented for

the purpose of restoring the noisy test image.

Figure 1.5 illustrates the results obtained by applying four generic image denoising methods,

discussed above. In view of these results, the following observations are made:

• The results obtained by the local averaging, mean filter, are highly dependent on the size of

the mask,M. On the one hand, a small mask yields sharp yet noisy estimate, on the other

hand, larger masks yield over-smoothed yet blurry denoised estimates. Experimentally, it was

observed that a 5×5 mask yields the best result for the test image under consideration. Note

that the mean filter results in a smoothed and blurry denoised estimate.

• The Lee filter does little or no smoothing near edges and other high contrast texture regions

and performs extra smoothing when the signal component is near constant, that is in flat

subregions of the image. The Lee filter attempts to adapt itself to the human visual system

that is less sensitive to noise near edges but more sensitive to the presence of noise in the flatter

subregions of the image. In fact, near edges, the Lee filter performs little or no smoothing,

allowing visible noise in close proximity of the edges. However, in flatter subregions, e.g. the

background, local signal variance is mostly due to noise and the Lee filter performs a high

degree of smoothing through local averaging. In spite of the presence of the noise in high

activity subregions of the image, we note that the edges in the Lee filter output remain sharp.

This is indeed unlike the case for most lowpass linear filtering and smoothing operations which

tend to blur edges.

• The Gaussian filter results in overly smoothed and a rather blurry denoised image. This is the

case due to the fast exponential decay of the frequency response of this filter thus resulting

in suppressing the higher frequency components of the image, which include noise as well as

important high frequency content of the image, such as edges.

• Finally, the Wiener filter is the optimal globally linear filter for the purpose of removing an

additive AWGN noise, in the sense that it minimizes the global mean squared error. This is

indeed illustrated by the RMSE and PSNR fidelity measures. However, the problem with the

Wiener filter is that it implicitly assumes stationarity of the original signal and the additive

noise process, so that descriptive statistics, such as correlation functions, variances and power
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(a) Mean filter with 5× 5 mask (b) Lee filter with 7× 7 mask
RMSE=11.01, PSNR=27.29. RMSE=10.73, PSNR=27.52.

Execution time ≈ 2 secs. Execution time ≈ 3 secs.

(c) Gaussian lowpass filter (GLF) (d) Wiener filter

RMSE=9.72, PSNR=28.38. RMSE=9.65, PSNR=28.43.

Execution time ≈ 1 secs. Execution time ≈ 2 secs.

Figure 1.5: Denoised estimates of “Lenna”, using the various conventional image denoising techniques

reviewed in this section.
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spectra, remain the same throughout the image. While this assumption generally holds true

for the noise, especially in the case of an AWGN noise, it is generally not true for most

natural images. The global estimate of the signal statistics tend to underestimate the signal

variance near edges and overestimate signal variance in relatively flat regions. This is because

one has to choose a single signal variance for both of these vastly different subregions of the

image. Consequently, the Wiener filter tends to perform too much smoothing near edges

and not enough smoothing in flat subregions of the image. Some blurriness artifacts near

edges are visible in the Wiener denoised image. Also, the denoised estimate appears noisy

because flatter subregions of the image were not smoothed well enough by this filter and one

is generally more aware of the presence of noise in flat regions of the image.

Next, a few more recent developments in adaptive image denoising are briefly outlined.

1.3 Recent Developments in Image Restoration

In the previous section, various standard image denoising methods, as applied in the spatial as well

as the frequency domain of the noisy image, have been described and implemented. It should be

stated that, although these methods are the most commonly known and used, they are not by any

means the most effective ones. Indeed, there have been significant progress in developing highly

adaptive, spatial and frequency-based, image denoising methods that perform significantly better

than the standard image denoising methods, described above. Some of these recent developments

are outlined in this section.

1.3.1 Adaptive Image Denoising Methods

The development of efficient and adaptive image restoration techniques that account for the local

statistics has become a rather popular research field and has attracted many researchers from

different backgrounds. Research conferences as well as journal issues were dedicated to this subject,

such as [42, 64]. An adaptive recursive two-dimensional filtering technique for removing Gaussian

noise in images was proposed in [44]. The adaptation was performed with respect to three local

image features; edges, spots, and flat regions. Detectors for classifying these three subregions of the

images were developed. The proposed filter was shown to perform simultaneous noise suppression

and edge enhancement. A recursive and adaptive Wiener filter was proposed in [46]. A Wiener

filter which locally estimates the power spectrum at various regions in the image was developed.
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A qualitative comparison of edge-preserving smoothing techniques was studied in [11]. Locally

adaptive techniques for edge-preserving smoothing were proposed and compared. In [61], a novel

method to smooth a signal while preserving preserving discontinuities was presented. This was

achieved by repeatedly convolving the signal with a small averaging mask weighted by a measure of

the signal continuity at each point. This method was shown to be extremely attractive since edge

detection can be performed after only a few iterations, and features extracted from the smoothed

signal are correctly localized. In [9], a new nonlinear filter for noise smoothing was introduced. The

novel feature of the proposed filter is that it attempts to distinguish between meaningful contours

(edges) and noise, so that the image can be smoothed without loss of important details. Many

other adaptive image restoration techniques were studied in [39, 62, 63].

Next, the basic idea behind the wavelet-based developed image denoising methods will be briefly

described.

1.3.2 Wavelet Thresholding for Image Denoising

Over the past decade, there has also been a new and significant contribution in the image pro-

cessing literature which lies in the development of wavelet-based methods for the purpose of image

denoising. Basic wavelet image restoration techniques are based on thresholding in the sense that

each wavelet coefficient of the image is compared to a given threshold; if the coefficient is smaller

than the threshold, then it is set to zero, otherwise it is kept or slightly reduced in magnitude. In

chapter 3, various wavelet thresholding methods for the purpose of image denoising will be studied

and implemented in order to assess and compare their performance.

Another new direction in signal processing literature involves the application of image compres-

sion methods for the purpose of image denoising, as briefly discussed next.

1.3.3 Image Denoising using Compression Methods

Recently, many research efforts in the literature have shown that the problems of image compression

and denoising are indeed closely related and lossy image compression methods have been proposed

for image denoising in several works [12, 13, 14, 15, 16, 60, 69]. The intuition behind using lossy

compression for denoising may be explained as follows: A signal typically has structure correlations

that a good coder can exploit to yield a concise representation. White noise, however, does not have

structural redundancies and thus is not easily compressible. Hence, a good compression method

can provide a suitable model for distinguishing between the signal and noise.
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The use of traditional image compression methods is the subject of study in this thesis, as

motivated next.

1.3.4 Motivation of the Proposed Research

In this thesis, the use of various types of fractal-based image coding techniques, which are lossy

image compression methods, for the purpose of image denoising, will be investigated. This research

was originally motivated by the simple question: What happens if one simply encodes a noisy image,

corrupted by and AWGN noise, using any of the various fractal-based image coding methods? It

turns out that one does indeed achieve a varying degree of denoising and enhancement when

encoding the noisy image using any of the fractal and fractal-wavelet image compression schemes.

The intuition behind this is as follows:

• Purely fractal-based methods, as applied in the spatial domain of the image, exploit local and

global self-similarities that are inherent in many classes of real-world images. Natural image

structures possess similarities across subregions of the image which can be exploited by fractal

image coding methods. However, noisy structures have no resemblance across other parts of

the image and, therefore, cannot be accurately encoded using fractal coders. Consequently,

encoding a noisy image with a fractal coder results in a good approximation of the natural

self-similar structures, whereas the noisy contents cannot be described or reconstructed well

by the fractal transform. Hence, fractally encoding a noisy image results in some degree of

image denoising.

• Fractal-wavelet methods, as applied in the wavelet domain of the image, exploit redundancies

and self-similarities that exist across resolution levels and scales of real-world images. Indeed,

natural image structures generally possess similarities across resolution scales of their wavelet

coefficients, which normally can exploited by fractal-wavelet coding methods. However, noisy

structures have no resemblance across resolution levels and, therefore, cannot be represented

well using fractal-wavelet coders. Thus, encoding a noisy image using a fractal-wavelet coder

results in good reconstruction of the natural, self-similar structures, whereas the noisy con-

tents cannot be re-generated. Hence, again this explains why one achieves some degree of

denoising by simply encoding the noisy image, using any fractal-wavelet scheme.

This initial investigation then led to the question of whether such a simple fractal encoding of the

noisy image could be used as a starting point to estimate the fractal code of the noiseless image
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from the observed noisy one. These questions will be examined, in detail, in this thesis and the

answers will be shown to be in the affirmative.

1.4 Thesis Organization

In chapter 2, a detailed description and implementation of various fractal and wavelet based image

coding methods will be provided. These fractal image coding methods will be applied for the

purpose of image denoising in later chapters.

Chapter 3 contains a detailed study of the recently developed concept of wavelet thresholding for

the purpose of image denoising. A particular attention will be given to implementing a set of stan-

dard wavelet thresholding methods, assessing and comparing their performance and investigating

ways to improve them.

Chapters 4 and 5 represent the core of this work and they contain detailed investigations of

applying fractal and fractal-wavelet methods for the purpose of image denoising, respectively.

In chapter 6, experimental comparisons between the various image denoising schemes studied

and developed in this thesis, using different images and noise variances, shall be presented.

Finally, this thesis is concluded in chapter 7, where a summary of the undertaken work and

findings is presented and related future work and investigations are proposed.



Chapter 2

Fractal and Wavelet Image Coding

Standard methods for still, noise-free, image coding come in several forms and are applied in various

domains. Spatial image coding techniques, as applied in the pixel-domain of the image, are the

most basic methods. Fourier transform methods, such as JPEG, have become widely used in

practice [39]. However, over the past decade, there has been considerable interest and significant

development in fractal and wavelet image coding methods. The wavelet transform has been shown

to be perhaps the most efficient domain for the purpose of image compression. Today, the best

known image compression techniques are the EZW [68] and the SPIHT [66] algorithms, which are

wavelet-based methods. While its performance is not yet comparable to the wavelet transform,

the fractal transform has also attracted significant interest and witnessed important developments

since its birth in the late 1980s [3, 4, 5, 6]. Originally, the fractal transform was viewed in the

signal processing community as a computationally expensive and limited technique that only works

when the image exhibits a high degree of self-similarity. Today, significantly faster fractal-based

techniques that perform relatively well for most real-world images are available [26, 27, 52, 65]. One

of the most important milestones in the fractal transform literature is the novel idea of combining

the capabilities of fractal and wavelet transforms to yield what has been known as the fractal-

wavelet transform [18, 28, 47, 57, 70]. This hybrid scheme resulted in significant improvement in

the performance of fractal-based image compression methods and extended the capabilities of both

transforms. Furthermore, as will be seen in this thesis, the application of the fractal transform can

be extended to other aspects of signal processing, such as image denoising and enhancement.

In this chapter, a brief review the basics of fractal, wavelet and fractal-wavelet transforms

with an emphasis on the recent developments and their applications for the purpose of image

21
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coding is presented. In section 1, a brief mathematical framework of fractal image coding is first

presented. Various practical issues related to the implementation of fractal image coding are then

addressed, the fractal encoding and decoding processes are outlined and finally the fractal coding

scheme for the purpose of image representation is implemented. Some of the issues encountered

in fractal image compression will also be discussed and recent progress and development in the

field of fractal image coding is outlined. In section 2, a brief outline of some of the practical

aspects of the implementation of the discrete wavelet transform for the purpose of image coding

and describe and implement the SPIHT algorithm, which is a highly effective wavelet-based image

compression method. In section 3, an outline of the theory of the fractal-wavelet image transform

is given and fractal-wavelet image coding is performed. The advantages of fractal-wavelet image

coding as compared to standard image coding are highlighted and some of the recent progress and

development in fractal-wavelet image coding are outlined. This chapter will be concluded with

an experimental comparison between the various fractal and wavelet image compression methods

studied in this chapter and a brief summary and concluding remarks.

2.1 Fractal Image Coding

Fractal image coding techniques are based on the theory of Iterated Function Systems (IFS) founded

by Hutchinson [24] and further developed by Barnsley in the early 1980s [3, 4, 5, 6]. The IFS

theory is based upon the Banach’s Contraction Mapping Principle, which states that a contractive

transformation, defined on a complete metric space, possesses a unique fixed point or attractor

[3, 4]. For the purpose of image compression, this idea translates into finding an optimal contractive

transformation whose attractor closely approximates a given target image. This problem is widely

known as the inverse problem in the fractal image coding literature. The fractal-based schemes

exploit the self-similarities that are inherent in many real-world images for the purpose of encoding

an image as a collection of transformations. Hence, a digitized image, which typically requires

mega-bytes of storage memory, can be stored as a collection of IFS transformations (parameters)

and is easily regenerated or decoded for use or display. The storage of the IFS transformation

coefficients generally requires much less memory, resulting in data compression. Iterated function

systems were originally introduced to generate globally self-symmetric compact sets and natural

images such as the Cantor set, the Sierpinski triangle, and the Spleenwort fern [3, 4, 5, 55]. Due

to these restrictions and others, the IFS scheme was initially viewed as little more than a limited
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scheme for representing a specific class of images, namely those that exhibit a high degree of self-

similarity. However, in the late 1980s, Jacquin developed a block-based fractal image compression

scheme that exploits local self-similarities within images [43]. Many variations of this scheme

have been developed since then [5, 26, 27, 52]. These schemes have shown that the fractal-based

approach provides efficient and accurate models for many real-world images, resulting in relatively

high compression ratios and good reconstruction fidelity. Although fractal-based schemes are still

based on exploiting self-similarities in the spatial domain of images, these self-similarities do not

have to be global or highly visible. In fact, most real-world images exhibit some degree of local

self-similarity which can be exploited by using fractal-based image compression methods.

In this section, a brief outline of the mathematical framework of fractal image coding is given

and various fractal-based schemes for the purpose of image representation are implemented. The

main developments in standard fractal image coding will be emphasized. First, the theory of

Iterated Function Systems, which represent the cornerstone of fractal image coding, is reviewed.

2.1.1 Mathematical Framework: Iterated Function Systems

An Iterated Function System (IFS) is uniquely described by a set of contractive transformations

defined on a complete metric space. Hence, by the contraction mapping theorem, it possesses a

unique attractor. For the purpose of image compression, the objective is then to construct an IFS

whose attractor approximates a target image. In this section, the contraction mapping principle

will be stated its use for the purpose of image compression shall be motivated. The collage theorem,

which is closely related to the contraction mapping principle, will also be presented. This theorem

provides a method of finding a contractive transformation whose attractor or fixed point closely

approximates a given target image or function. The concepts of contractivity and fixed point are

first defined.

Definitions: Let T be a transformation defined on a metric space (Y, dY ).

1. T is said to be contractive if there exists a positive constant s, 0 ≤ s < 1, such that:

d(T (x), T (y)) ≤ sdY (x, y), ∀x, y ∈ Y. (2.1)

The smallest such s ≥ 0 is called the contractivity factor of T .

2. A fixed point or attractor of T is a point ȳ ∈ Y that is invariant under the application of T ,
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i.e.

T (ȳ) = ȳ. (2.2)

The Contraction Mapping Theorem guarantees that a contractive transformation defined on a

complete metric space (i.e. a metric space where every Cauchy sequence converges) possesses a

unique fixed point or attractor.

Contraction Mapping Theorem: Let T be a contractive transformation defined on the com-

plete metric space (Y, dY ). Then T possesses a unique fixed point ȳ in Y satisfying the following

properties:

• T (ȳ) = ȳ,

• limn→∞ dY (T
(n)(y0), ȳ) = 0, ∀y0 ∈ Y .

where

T (n+1)(y) = T (T (n)(y)), for n = 0, 1, 2, . . . (2.3)

The contraction mapping theorem provides a converging algorithm for the approximation of the

attractor ȳ of a contractive transformation T . It is important to emphasize the key feature that the

fixed point ȳ can be closely approximated by iterating the transformation T a few times, starting

with any initial seed y0. In practice, only 10 - 20 iterations are needed for the estimation sequence

{T (n)(y0)}∞n=0 to visibly converge within a reasonably small error tolerance. The attractor or fixed

point of a contractive transformation often exhibits self-tiling and symmetry characteristics, so it is

also called a fractal. Hence in fractal image compression, the goal is to approximate a target image

by a fractal. However, in practice, unless one carefully and appropriately choose the transformation

T , its fixed point may not have any practical use. For the purpose of fractal image representation, for

the purpose of image compression and representation, one is mainly interested in the construction

of an appropriate contractive transformation whose attractor “closely resembles” a given target

image. This is known as the inverse problem or the fractal image coding problem, and it can be

stated in a mathematical framework as follows:

Given a target image ū ∈ Y , construct a contractive transformation T defined on Y

whose attractor, ȳ, closely approximates ū.
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The following theorem is a consequence of the contraction mapping theorem and is known in the

IFS literature as the collage theorem [3, 4, 6]. This theorem provides us with a practical and fast

way to test for feasible choices of T .

Collage Theorem: Let ū be a target image in a complete metric space of images (Y, dY ). Suppose

there exists a contractive transformation T defined on Y with contractivity factor 0 ≤ s < 1 and

attractor ȳ such that

dY (T (ū), ū) < ε, for some given ε > 0, (2.4)

then

dY (ū, ȳ) <
ε

1− s
. (2.5)

In other words, if one can find a contractive transformation T that maps the target image ū close

to itself, then the attractor ȳ of T will closely approximate the target ū. In view of this theorem, the

inverse problem for fractal image compression can be reformulated as a constrained minimization

problem:

Given a target image ū, find a contractive transformation T that maps ū closest to itself.

Hence, solving for the optimal transformation T reduces to solving the following minimization

problem for the parameters of T :

Minimize: dY (T (ū), ū) subject to: T is contractive. (2.6)

In practice, it turns out that under certain assumptions, such an optimal transformation can easily

be obtained by using the least squares optimization [26, 27, 52].

The formulation of this optimization problem conveys the basis of fractal image compression.

However, in practice, solving for the parameters of T for a given real-world image is not an easy

task. In fact, finding a transformation T , other than the identity transformation, that acts on a real-

world image in a global fashion, without introducing a significant amount of distortion may not be

possible. Such a transformation would typically be rather complex and may require a comparable

amount of bytes to encode as the original image. However, such a complex transformation is not

practically interesting, since little or no compression may be gained through its use. The difficulty

in solving for such a transformation stems from the fact that it requires that the target image be
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highly and globally self-similar, a trait that is not exhibited by most real-world images. However,

most real-world images may exhibit some degree of local self-similarity, in the sense that some

subregions of the image may be “similar” to some other larger subregions. The sense of similarity

shall be defined, in more detail, in the next section.

The standard fractal scheme, originally introduced by Jacquin, seeks to exploit these local self-

similarities by adopting a block-based approach [43]. In block coding, the target image is partitioned

into non-overlapping sub-blocks and “similar” subregions are then matched. This is the basis of

fractal-block coding described in detail in the next sections.

2.1.2 Practical Aspects of Fractal Image Coding

Originally, IFS-type methods sought to express a target set or image as a union of shrunken copies

of itself. However, most real-world objects are rarely so entirely self-similar. Instead, self-similarity

may be exhibited only locally, in the sense that subregions of an image may be self-similar. In the

late 1980s, Jacquin developed a block-based fractal image compression scheme that exploits local

self-similarities within images [43]. This fractal-based scheme is based on exploiting the inherent

local self-similarities in the spatial domain of images. In fact, most real-world images exhibit some

degree of local self-similarity which can be exploited by using fractal-based image compression

methods. To exploit the local self-similarities within sub-regions of images, the image is subdivided

into a pair of simple and uniform partitions of the image: A domain partition of larger sub-blocks,

also known as parent sub-blocks and a range partition of smaller sub-blocks, also known as child

sub-blocks. A parent sub-block is mapped into its corresponding child sub-block using a geometric

mapping, followed by a simple affine transformation, known as the gray-level map. This process

is outlined next.

Let I denote an image of interest as defined by an image function u(x, y) supported over a

region X ∈ R2. Here x, y ∈ X denote spatial coordinates of a point or pixel of I. Now suppose

that there exists a suitable partition R of X into range sub-blocks Rk so that X = ∪kRk. For

simplicity, the Rk are assumed to be non-overlapping. Also, assume that associated with each

sub-block Rk is a larger domain sub-block Di(k) ⊆ X so that Rk = wi,k(Di(k)), where wi,k is a

one-to-one contraction map in the continuous plane. As illustrated in Figure 2.1, typically, the Rk

and Di(k) blocks are square pixel blocks and the wi,k are affine contractions that may also rotate

or invert the Di(k). As will be seen, there are eight such possible maps.

Now suppose that the image function u(Rk) supported on Rk is well approximated by a modified
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copy of the image function u(Di(k)) supported on Di(k) as follows:

u(Rk) ∼= φi,k(u(Di(k))) = φi,k(u(w
−1
i,k (Rk))), (2.7)

where φi,k : R → R is a gray-level map that operates on the pixel intensities. Because of the

non-overlapping nature of the partition, one may write

u(x, y) ∼= (Tu)(x, y) =
∑

k

φi,k(u(w
−1
i,k (x, y))). (2.8)

In other words, the image function u is approximated by a union of spatially-contracted (wi,k) and

gray-level-distorted (φi,k) copies of itself. This union of modified copies may be considered as defin-

ing a special kind of fractal transform operator T on image functions. If the above approximation

is a good one, then the so-called collage distance ‖ u− Tu ‖ is small.

Rk = wi,k(Di(k))

Parent block

Child block

Rk

Di(k)

Figure 2.1: Fractal transformation of a do-

main block Di(k) into a range block Rk.

Under suitable conditions on the spatial maps wi,k

and the gray-level maps φi,k, the operator T is con-

tractive [29, 30]. From the contraction mapping the-

orem, there exists a unique fixed point function, ū,

such that ū = T (ū). Furthermore ū is attractive: If

one starts with any image function u0 supported on

X and constructs the iteration sequence of functions

un+1 = T (un), then the sequence un converges to ū as

n → ∞. In practice, the sequence converges after a

finite number of iterations. Moreover, the collage the-

orem establishes that if u is “close” to T (u), then u is

also “close” to ū, implying that ū is a good approxi-

mation to u. The consequence is that one needs only

to store the parameters that define the operator T in

order to generate the approximation ū of u. This is the essence of fractal image coding, as shall be

explain next in more detail.

2.1.3 Block-Based Fractal Image Coding

A few practical issues left unaddressed in the above discussion, are now addressed. For example,

what kind of partitioning for the Rk should be used? Given a child or range block Rk, how does

one determine an “optimal” parent or domain block Di∗(k), with corresponding gray-level mapping

φi∗(k),k, that produces the best approximation in (2.8)?
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Uniform Image Partitioning

For a given fractal resolution, (M,N), the standard fractal scheme adopts a block coding strategy

where the target image is first partitioned into non-overlapping uniform sub-blocks as follows:

• As illustrated in Figure 2.2, the target image is subdivided into two different partitions of

non-overlapping blocks:

1. M ×M domain blocks, Di, i = 1, 2 . . . ,M2,

2. N ×N range blocks, Rk, k = 1, 2 . . . , N2, typically N = 2M ,

• Each child block, Rk, k = 1, 2, . . . , N2, is then matched to a “similar” parent block Di∗(k),
for some i∗(k) ∈ {1, 2, . . . ,M2}.

Di(k)

Rk

Rk = wi,k(Di(k))

M2 parent blocks N2 child blocks

Figure 2.2: Uniform image partitioning for the purpose of fractal image coding.

For each range block Rk, it is assumed that there exists a set or “pool” Di of domain blocks Di ⊂ X.

The domain blocks are usually assumed to be twice the length and width (hence four times the

area) of the range blocks. Naturally, the larger the domain pool, the better the approximation that

can be achieved in (2.8). However, a larger domain pool requires more memory for the storage of

indices that specify the locations of optimal domain blocks. From a compression viewpoint, some

compromise between domain pool size and fidelity must be established.
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The Geometric Mappings w

As illustrated in Figure 2.3, there are eight contractive affine mappings that can transform a square

parent block into a smaller square child block – four rotations, a horizontal flipping, a vertical

flipping and two diagonal flippings. Any of these mappings can be considered as the composition

of a non-rotating affine transformation followed by an isometry. Note that one may consider only

a subset of the eight possible isometries are employed. A geometric mapping of domain block Di

to range block Rk is denoted as w
(m)
ik , where 1 ≤ m ≤ 8. In most applications, including those in

this chapter, the domain blocks are contracted by a factor of four. The action of these geometric
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Figure 2.3: There are 8 geometric maps that transform a square parent block into a smaller square child

block.

contractions is straightforward when the x and y spatial coordinates are continuous, i.e. real-valued.

However, in discrete pixel space, the shrinking of an 2n × 2n parent pixel block to an n × n child
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pixel block must be achieved by some kind of reduction or decimation procedure. Typically, a

sub-block of 2× 2 neighboring pixels in the parent block is replaced by a single pixel and the four

gray-level values are replaced by their average value. In the discrete case, it is assumed that the

maps w
(m)
ik perform this decimation operation.

Next, the gray-level maps, which are applied to these transformed parent sub-blocks, are defined.

The Gray-level Mappings φ

Once the parent blocks Di are reduced to the same pixel size as the child blocks Rk, a first order

linear prediction is performed to estimate the latter from the former using affine transformations

of the form

φ(t) = αt+ β. (2.9)

The gray-level map that best maps the gray-level values supported on the (decimated) block Di to

their counterparts on Rk is the map φ(t) that minimizes the so-called collage distance over Rk

(∆
(m)
ik )2 =‖ φ(u(w(m)ik (Di))− u(Rk) ‖22 . (2.10)

In practice, the L2 norm (i.e. least squares error) is used so that the optimal gray-level map

performs a least-squares fit of the parent-child gray-level data. Let {xj , j = 1, 2, . . . , n} and {yj , j =
1, 2, . . . , n}, where n is the size of the range block Rk, denote the gray-level values on, respectively,

the geometrically transformed (decimated) parent block Di and the child block Rj , using the

geometric mapping w
(m)
ik . Then the minimization of the squared L2 distance

(∆
(m)
ik )2 =

n
∑

j=1

[yj − (α
(m)
ik xj + β

(m)
ik )]2 (2.11)

yields a set of linear equations in α
(m)
ik and β

(m)
ik with solution (assuming a nonzero determinant)

α
∗(m)
ik =

n
∑n

j=1 xjyj −
∑n

j=1 xj
∑n

j=1 yj

n
∑n

j=1 x
2
j − [

∑n
j=1 xj ]

2
(2.12)

β
∗(m)
ik =

1

n

n
∑

j=1

yj − α
∗(m)
ik

1

n

n
∑

j=1

xj .

There is one complication, however, in that the contractivity of the fractal transform operator

T is dependent upon the α scaling coefficients. There is no simple relationship between the L2

contractivity factor of T and the α coefficients because of the local nature of the parent-child

mappings. However, in the L∞ norm, contractivity is guaranteed if all α satisfy the condition
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|α| < 1. For this reason, most fractal coding algorithms “clamp” the α coefficients, i.e. α =

sgn(α)min(|α|, 1). The resulting fractal transform operators T are almost always contractive in

L∞, hence in L2, due to the equivalence of the norms in finite pixel space. In [26], the gray-level

coefficients, α
∗(m)
ik , where truncated at

√
2 with no noticeable effects on the contractivity.

Next, a practical, block-based fractal image coding scheme is presented and implemented for

the purpose of fractal image representation of real-world images.

2.1.4 The Standard Fractal Image Coding Scheme

In view of the above definitions and notations, all of the ingredients necessary to outline a block-

based fractal image coding scheme, have been defined. This scheme is also applied to perform

fractal encoding of a test image.

The Fractal Encoding Algorithm

Supposed that a particular partitioning R of range blocks Rk, k = 1, . . . , NR has been constructed.

As outlined above, associated with each block Rk is a pool of domain blocks Dk = {Di∗(k) ⊂ X}. For
each range block, Rk, 1 ≤ k ≤ NR, one seeks the domain block Di∗(k) ∈ Dk such that the sub-image

u(Di∗(k)) best approximates the sub-image u(Rk) after a geometric transformation/decimation. In

other words, one need to fin the indices

(i∗(k),m∗(k), α
∗(m∗(k))
i∗(k) , β

∗(m∗(k))
i∗(k) ) = arg

[

min
Di∈Dk

min
1≤m≤8

‖ α∗(m)ik u(w
(m)
ik (Di)) + β

∗(m)
ik − u(Rk) ‖22

]

,

where α
∗(m)
ik and β

∗(m)
ik denote the least-squares gray-level coefficients associated with the mapping

w
(m)
ik .

The fractal code associated with the partition R and the associated domain pools D is then as

follows: For each range block, Rk, 1 ≤ k ≤ NR, determine

1. The fractal resolution of the uniform partition (M,N),

2. The index i∗(k) of its optimal parent block Di∗(k) ∈ Dk,

3. The optimal isometry m∗(k).

4. The optimal (least-squares) gray-level coefficient pair (α
∗(m∗(k))
i∗(k),k , β

∗(m∗(k))
i∗(k),k ).

Thus, instead of storing each range block Rk, 1 ≤ k ≤ NR, one can just store its corresponding

fractal code. Generally, and as will be shown later, storing the fractal code requires much less
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storage memory than storing the original image, hence resulting in significant data compression

(i.e. higher than 20:1).

Computational Complexity

For a given fractal resolution, (M,N), there are:

• N2 child (range) blocks, Rk.

• M2 parent (domain) blocks, Di.

• 8 geometric maps, w(m).

For each Rk, k = 1, 2, . . . , N2, search through all the collection of Di, i = 1, 2, . . . ,M2, to find the

optimal one which minimizes the collage error, as given by Eq. (2.11). In addition, there are 8

ways to map a child block onto a parent block, as illustrated in Figure 2.3. This means one has to

compare 8×M2 to each of the N 2 child blocks, for a total of 8×M 2 ×N2 child/parent matching

tests. For instance, when (M,N) = (32, 64), there are 33554432 tests. Each of these tests requires

the decimation step of a parent block, the computation of the gray-level coefficients, as in (2.12)

and the collage error, as in (2.11).

Clearly, the standard fractal encoding algorithm, which achieves optimal results for the non-

overlapping parent blocks case, is computationally expensive. Many sub-optimal fractal-based

image coding methods have recently been proposed the significantly reduce the computation load

at the expense of relatively small degradation in the quality of the encoded image have been

proposed. Some of these methods will be described in section 2.1.6.

Next, the fractal decoding algorithm, which is significantly simpler and faster than the encoding

process, is described.

The Fractal Decoding Algorithm

The fractal code defines a fractal transform operator T that acts on an image function u according

to (2.8). Starting with an arbitrary initial image, typically u0 is chosen to be a blank image. The

fractal decoding process can be outlined as follows:

For each range block, Rk, 1 ≤ k ≤ NR, to obtain the image values of T (u) in Rk, one

takes the optimal domain block Di∗(k) and apply the following operations:

1. decimate the domain block to produce a block of the same size as Rk,
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2. apply the appropriate isometry, 1 ≤ m∗(k) ≤ 8, to the block,

3. modify the gray-level values of this block according to the appropriate gray-level

map

φ(t) = α
∗(m(k))
i(k),k t+ β

∗(m(k))
i(k),k ,

4. replace the image values in (range) block Rk by those of the above block.

This process is then repeated recursively until it converges to the attracting fixed point

within a prescribed tolerance error or after executing a prescribed number of iterations.

Although the fractal encoder may require a considerable amount of computation in order to match

the child blocks to their optimal parent blocks, the decoding process is computationally simple and

converges rapidly. This may make the fractal-based schemes attractive alternatives for applications

in which the resources available for decoding are considerably less than the resources available

for encoding. For instance, in multimedia applications, considerable computational resources may

be available for the encoding operation. However, if the decoding is to be done in software, the

computational resources available to the decoder may be quite limited.

Next, the fractal representation of the real-world test image of “Lenna” is illustrated.

Application to Images

Figure 2.4 illustrates a few iterations of the fractal decoding algorithm. Note how, starting with

an initial blank image, a relatively “close” approximation of the fractal representation of the test

image of “Lenna”, is obtained after only a few iterations. In Figure 2.5, the fractal representations

of the test image are shown at various domain-range block resolutions (M,N). The quality of the

fractal representations are measured using the RMSE and PSNR fidelity measures. As expected,

the quality of the representation increases with M . Clearly, there is a trade-off between the com-

putational complexity of the fractal scheme and the fidelity of the fractal representation of the

image.

For this fractal image coding implementation, no particular attention was given to assessing the

compression capability of the fractal scheme. The fractal code was passed losslessly to the decoder

and no quantization of the gray-level parameters was done and hence the compression ratios are not

given. Next, a brief review of various issues related to quantizing and storing the fractal coefficients

and assessing the compression capability of the above fractal image coding scheme is presented.



CHAPTER 2. FRACTAL AND WAVELET IMAGE CODING 34

(a blank image)

The  intial seed  for Fractal Decoding

(a) Starting with a blank image (b) After 1 iteration of T

(c) After 5 iterations of T (d) After 10 iterations of T

Figure 2.4: Generating a fractal approximation of the target image “Lenna” by iterating the fractal

transform T , starting with an initial blank image, using the uniform partitioning fractal scheme with

(M,N) = (32, 64).
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(a) (M,N)=(8,16): Execution time ≈ 105 secs. (b) (M,N)=(16,32): Execution time ≈ 309 secs.
RMSE=18.33, PSNR=22.87. RMSE=11.94, PSNR=26.60.

(c) (M,N)=(32,64): Execution time ≈ 1129 secs. (d) (M,N)=(64,128): Execution time ≈ 4719 secs.
RMSE=7.20, PSNR=31.00. RMSE=3.39, PSNR=37.53.

Figure 2.5: Fractal representations of the test image of “Lenna” for various resolutions values (M,N),

using all 8 geometric maps. Note that the (M,N) = (64, 128) fractal representation is visually identical to

the original image.
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2.1.5 Standard Fractal Image Compression

Historically, it was found that much less computer memory was needed to store the fractal code

than the test image, resulting in data compression. As is the case for any compression algorithm,

the goal of fractal image compression is to produce approximations of maximal fidelity subject to

constraints on the memory required to store the fractal code. This also involves the question of

optimal storage of fractal coefficients in terms of quantization and entropy encoding. In this section,

a brief review of the author’s previous work in this regard is presented and an assessment of the

compression capabilities of the standard fractal scheme is made. The fractal code of an image is

first examined.

The Fractal Code

A sample of the fractal coefficients is listed in Table 2.1, and the gray-level coefficients, α
∗(m∗)
i∗(k),k

and β
∗(m∗)
i∗(k),k, are illustrated in Figure 2.6. Clearly, the address of the optimal parent block and

the index of the geometric map are discrete integer-valued, so no quantization is required and

they can easily be encoded losslessly using a fixed-rate coding method. However, the gray-level

coefficients α
∗(m∗)
i∗(k),k and β

∗(m∗)
i∗(k),k are real-valued and belong to a continuous range that is “almost”

symmetrically clustered around the origin. Thus, these coefficients need to be quantized before

they can be encoded. These issues are addressed next.

Child block Optimal parent block Grey-level coefficients Optimal geometric map

k l i∗(k, l) j∗(k, l) α
∗(m∗)
i∗j∗,kl β

∗(m∗)
i∗j∗,kl wm∗

i∗j∗,kl

1 1 14 8 0.413 0.425 4

1 2 21 17 0.986 -0.853 7

1 3 4 23 0.120 0.795 8

1 4 1 23 0.891 -0.704 8

... ... ... ... ... ... ...

... ... ... ... ... ... ...

64 64 7 25 0.433 0.109 4

Table 2.1: A sample from the fractal code of “Lenna” for (M,N) = (32, 64).
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Quantization of the Gray-level Coefficients

In [33], many issues related to devising efficient quantization and entropy encoding strategies for

the fractal transform coefficients in order to achieve compression gain, were investigated. Three

quantization strategies for quantizing the gray-level coefficients were studied and implemented.

First, a uniform as well as Lloyd-Max probability density function (pdf) optimized quantizers,

were designed. This was done by fitting the probability distributions of the gray-level coefficients

to a known probability distribution, namely the Laplacian. As illustrated in Figure 2.6 (a)-(b),

the distributions of the gray-level coefficients, α
∗(m∗)
i∗(k),k and β

∗(m∗)
i∗(k),k, are peaked and fast-decaying,

resembling a Laplacian probability density function. A statistical justification was provided for

such probability fitting using the goodness-of-fit statistics [33]. The gray-level coefficients were

also explored for any type of statistical dependence and attempted to exploit such redundancies for

the purpose of designing a vector quantizer. In fact, as reflected in Figure 2.6 (c), it was observed

that these transform coefficients exhibit a high degree of linear dependence that can be exploited

by using an appropriate vector quantizer. The Linde-Buzo-Gray (LBG) vector quantizer was used

in order to quantize both gray-level coefficients simultaneously. The linear dependence between the
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Figure 2.6: Histograms of the gray-level coefficients as well the linear dependence between these coefficients.

gray-level coefficients was also exploited in a different way. The highly correlated coefficients were

first decorrelated, resulting in a significant reduction in the variation range of at least one of the

two variables. The decorrelated variables were then quantized, independently, using appropriate

uniform quantizers. The inherent correlation was then re-introduced to obtain the quantizations
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of the original coefficients. This resulted in a significant compression gain. For each quantization

strategy, the Huffman algorithm was used for binary coding of the quantized fractal coefficients,

achieving a near-entropy bit rate performance. Figure 2.7 illustrates the fractal representations of

“Lenna” using the various proposed quantization strategies. Note that most of these quantization

methods yield high quality fractal representations of the test image at relatively high compression

ratios.

In this section, it was shown that the standard block-based image compression scheme provides

high-quality representations of real-world images at relatively high compression ratios. However,

this scheme is not without drawbacks, as it suffers from three main limitations: computational

complexity, restrictive uniform partitioning and blockiness artifacts in the fractal representation of

the image. Next, an outline some of the recent developments that aim to overcome some of these

limitations will be given.

2.1.6 Developments in Fractal Image Coding

Over the years, a variety of highly competitive fractal image compression methods have been de-

veloped. Most of these schemes share a common feature, performing some kind of block collage

coding as originally introduced by Jacquin [43]. Their variety lies in the different strategies em-

ployed to obtain the best possible matching of blocks within an image, subject to constraints. (The

books [5, 26, 27, 52], represent excellent surveys of the field. Perhaps the most complete listing of

papers on fractal image coding is to be found at the following Leipzig fractal compression website

http://www.informatik.uni-leipzig.de/cgip/.) These schemes yield results that are compa-

rable, in terms of rate-distortion performance, to some of the most efficient still image compression

methods.

Next, an outline of some of the main developments that aim for overcoming some of the limi-

tations of the original fractal image compression scheme will be presented.

Reducing the Computational Complexity

As discussed previously, the standard fractal encoding process adopts an exhaustive search strategy

in which all parent sub-blocks as well as all possible geometric maps are tested to match a child

block Rk with its corresponding globally optimal parent block Di∗(k). This procedure is obviously

computationally expensive. Many research efforts have focused on overcoming the computational

complexity of the standard fractal scheme. Some investigate region-based image coding methods,
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(a) Pdf-optimized uniform quantization (b) Pdf-optimized Lloyd-Max quantization

RMSE=8.05, PSNR=30.01, CR=21:1. RMSE=7.34, PSNR=30.82, CR=18:1.

Execution time ≈ 1231 secs. Execution time ≈ 1389 secs.

(c) LBG vector quantization (d) Decorrelation and uniform quantization

RMSE=8.80, PSNR=29.24, CR=22:1. RMSE=8.42, PSNR=29.63, CR=24:1.

Execution time ≈ 1534 secs. Execution time ≈ 1423 secs.

Figure 2.7: Fractal-representations of the test image of “Lenna” using various quantization strategies of the

gray-level coefficients.
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such as the use of the quadtree-partitioning in [8, 26, 67]. Others proposed combining the fractal

transform with other transform methods such as wavelet in [18, 47, 57, 70], to yield a fast fractal-

wavelet image coding method. This hybrid fractal-wavelet method will be studied in more details

in section 2.3. Recently, classification methods based on the local energy were proposed to speed

up the fractal encoding process, such as in [48].

Next, a brief description and practical implementation of a fast, search-free fractal-based image

coding scheme, known as the Bath Fractal Transform (BFT) scheme, are presented.

The Bath Fractal Transform (BFT)

The BFT is a hybrid of the standard fractal scheme discussed above [58, 59, 72]. The main

difference lies in the fact that the BFT does not require any search or geometric maps (other

than the shrinking transformation) in the process of matching child sub-blocks with parent sub-

blocks. In fact, as illustrated in Figure 2.8 (a), a child block is simply matched with its “co-centric”

parent block. However, this reduction in computational complexity comes at the expense of adding

extra parameters to fit the gray-level values. A relatively small degradation in the fidelity of the

approximation and reduction in compression ratio are also sacrificed.

Parent block

Child block

(a) Child-parent matching (b) BFT representation: Execution time ≈ 5 secs.
RMSE=10.11, PSNR=28.03, CR=17.01

Figure 2.8: For BFT coding, each block is matched with its “co-centered” parent block with wrap-around

for border sub-blocks.
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The place-dependent BFT gray-level maps used in this study have the form:

φ(x, y, f(x, y)) = αf(x, y) + β + γxx+ γyy, (2.13)

where the final three terms correspond to the addition of a planar or “ramping” term to the fractal

term αf(x, y). Similar to the standard fractal scheme, in the case of non-overlapping child sub-

blocks, these coefficients are computed using the least squares method. The fractal code of the

BFT scheme consists simply of the coefficients:

{αk, βk, γx,k, γy,k, k = 1, 2, . . . , N2}. (2.14)

As was the case for the standard fractal scheme, it was observed that the fractal coefficients corre-

sponding to the BFT scheme still exhibit some degree of linear dependence [33]. These redundancies

were exploited for the purpose of obtaining higher compression, and the representation of “Lenna”

using the BFT scheme is illustrated in Figure 2.8 (b).

Quadtree Image Partitioning

Another weakness of the standard fractal scheme lies in the fact that it adopts a uniform image-

independent square partition of the image. The use of fixed-size partitions may have limitations

since there are sub-regions in the image that are difficult to cover using the prescribed resolution or

size of the partition. For instance, high detail sub-regions of the image, such as edges, may require

a small mesh size to be represented well. On the other hand, there may be sub-regions in the image

that can be covered well using larger block sizes, hence resulting in a reduction of the total number

of parameters to be stored and an increase in compression of the image. The most common method

of adaptive image partitioning is that of quadtrees: Starting with the original image, square pixel

sub-blocks are broken down into quadrants in a recursive tree structure. The partitioning, which will

vary throughout the image, is terminated when a particular condition is satisfied. Typically, regions

of higher image activity, for example edges, will produce partitions of finer resolution, i.e., small

block sizes. Consequently, edges are generally represented well in quadtree-based coding schemes,

including fractal coding. This process is illustrated nicely in Figure 2.9. Note how certain blocks

are subdivided further into four quadrants while others are encoded and not further decomposed.

Also, note that the regions of the image that contain “too many” details, such as the eyes and hair

and the edges of the hat, are subdivided into a finer level, in some cases the minimum allowable

block size is reached. Similarly, Note how relatively flat parts of the image, such as the face and
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the background, are partitioned more coarsely. This is indeed the essence and the benefit of the

quadtree partitioning scheme.

(a) Quadtree image partitioning (b) RMSE=6.81, PSNR=31.47, CR=29:1.

Execution time ≈ 253 secs.

Figure 2.9: Quadtree partitioning of the image for the purpose of fractal image coding as well the quadtree-

based fractal representation of the test image.

The use of quadtrees in fractal coding was originally discussed in detail by Fisher [26], from

which much work has been done. Originally, the quadtree-based fractal image coding scheme

adopts a collage decomposition criterion. A child sub-block is fractally encoded and the collage

error, which describes the goodness of fit, is computed. If the resulting collage error is within a

prescribed tolerance, then the child is presumed fractally encoded. However, if the collage error

exceeds the prescribed threshold, then the child sub-block is sub-divided into four uncoded child

sub-blocks (quadtrees). This process is then repeated until the whole image is partitioned into

non-overlapping fractally encoded child sub-blocks.

In [34], the use of the quadtree partitioning scheme for the purpose of fractal image compression

was investigated in some detail. Various decomposition strategies were explored and rate distortion

curves for fractal image compression schemes using the quadtree partitioning algorithm were gen-

erated. It was shown that the variance of the child sub-block is a quadtree decomposition criterion

than the collage error, previously proposed for the purpose of quadtree-based fractal image cod-

ing. The main advantage of the variance decomposition criterion over the collage one is that the



CHAPTER 2. FRACTAL AND WAVELET IMAGE CODING 43

resulting quadtree-based fractal scheme is significantly faster than the one using the collage error.

This is because one need not fractally encoded a child block before deciding whether to decompose

a child sub-block. In fact, only those child sub-blocks with high (i.e. greater than some threshold)

variances are fractally encoded. This quadtree-based fractal scheme using the child variance as a

decomposition criterion is outlined next.

A Quadtree-Based Standard Fractal Algorithm:

For each uncoded child sub-block, Rk = {yk,1, yk,2, . . . , yk,n}, compute its variance σ2k:

σ2k =
1

n

n
∑

j=1

(yk,j − ȳk)
2, where ȳk =

1

n

n
∑

j=1

yk,j . (2.15)

• If σ2k is less than some prescribed threshold σ2c , then the child sub-block Rk is encoded using

the standard fractal scheme, and marked as fractally coded.

• Otherwise, the child sub-block Rk is split into four equal sub-blocks (quadtrees) denoted by

Rk1 ,Rk2 ,Rk3 and Rk4 which are then labeled as uncoded.

• Repeat this process until all the child sub-blocks are fractally coded.

One of the advantages of the quadtree-based standard fractal scheme is the ability to generate

rate distortion curves by varying the energy criterion threshold σ2c . Figure 2.10 illustrates the rate

distortion curves for the quadtree-based standard fractal scheme outlined above. The “bumpiness”

in these curves may be explained as follows: These rate distortion curves were generated by vary-

ing the child-block variance threshold, σ2c . For larger values of σ2c , the partition of the image is

rather coarse. Thus decreasing this threshold is expected to result in many child sub-blocks being

partitioned into four quadtrees. This results in relatively significant changes in the rate-distortion

quality of the fractal representation. Similarly, for smaller values of σ2c , the partition of the image

is becoming finer. Thus decreasing this threshold even further results in decomposing some of the

larger blocks and yielding an even finer partition of the image. This again results in a relatively

significant change in the rate-distortion quality of the fractal representation. For medium range

threshold values, the rate distortion quality of the fractal representation appear to vary continu-

ously with the variation of the child block variance threshold, σ2c . This explains the steepness of

these curves for lower and higher compression ranges.



CHAPTER 2. FRACTAL AND WAVELET IMAGE CODING 44

20 40 60 80 100 120
5

6

7

8

9

10

11

12

13

14

15

 Compression Ratio

 R
M

S
E

20 40 60 80 100 120
24

25

26

27

28

29

30

31

32

33

34

 Compression Ratio

 P
S

N
R

Figure 2.10: Rate distortion curves of the quadtree-based standard fractal scheme, for the test image of

“Lenna”.

Reducing the Blockiness Artifacts

Figure 2.11: Zooming in on the fractal representation

reveals the blockiness artifacts.

Standard fractal schemes are based on spatial

transformations among the target image sub-

blocks; as a result, the reconstructed image gen-

erally suffers from disturbing artifacts or block-

iness. In fact, as the image is partitioned into

blocks and since errors tend to be strongly cor-

related within a block but generally uncorre-

lated across neighboring blocks, very distract-

ing artifacts in the fractal representation of an

image are often observed. Note that zooming

on the fractal representation reveals the block-

iness artifacts, as illustrated in Figure 2.11.

Fractal-wavelet transforms were introduced

in an effort to reduce the blockiness artifacts

and computational complexity that are inherent

in standard fractal image compression. Fractal-
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wavelet schemes will be discussed in more detail in section 2.3.

In this section, various fractal-based image coding schemes were described and implemented

and some of the significant developments in fractal image compression over the past few years were

outlined. Next, a brief discussion of the discrete wavelet transform and its application for the

purpose of image coding and compression will be given.

2.2 Discrete Wavelet Image Coding

The wavelet transform has many unique features that have made it a popular method for the

purpose of image processing and compression. The wavelet transform performs a high degree of

decorrelation between neighboring pixels, and it provides a distinct localization of the image in

the spatial as well as the frequency domain. This transform also provides an elegant subband

framework in which both high and low frequency components of the image can be analyzed sep-

arately. However, one of the major difficulties in wavelet-based coding schemes is that significant

wavelet coefficients corresponding to important edge information and other high-frequency content

of the signal are often dispersed among a large number of insignificant coefficients. The problem

encountered in wavelet-based image coding methods is how to efficiently detect and represent the

locations of these significant coefficients without spending most of the allocated bit-budget. Re-

cently, many highly efficient wavelet-based image coders have been developed. In particular, the

Embedded Zerotree Wavelet (EZW) [68] and the Set Partitioning in Hierarchical Trees (SPIHT)

[66] schemes, which are considered as benchmarks for the performance of wavelet-based image

compression methods.

2.2.1 The Discrete Wavelet Transform

There are many wavelet systems that can be used effectively, such as the “Haar”, “Daubeschies”,

“Coiflets”, “Symlets”, “Morlets”, “Mexican Hat”, “Meyer” and “Biorthogonal” wavelets [10]. All

these wavelet systems have the following three general characteristics:

1. A wavelet system is a set of building blocks to construct or represent a signal or function.

It is a two-dimensional expansion set (usually a basis) for some class of one- (or higher)

dimensional signals.

2. The wavelet expansion gives a time-frequency localization of the signal. This means most of

the energy of the signal is well presented by a few expansion coefficients.
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3. The calculation of the coefficients from the signal can be done efficiently. It turns out that

many wavelet transforms (the set of expansion coefficients) can be calculated with O(N) op-

erations. This means that the number of floating-point multiplications and additions increase

linearly with the length of the signal. More general wavelet transforms require O(N log(N))

operations, the same as for the fast Fourier transform (FFT) [10].

The reader is referred to [10, 19, 53], to mention only a few, for more detailed study of the math-

ematical foundation and algorithmic implementation of the discrete wavelet transform. There are

many software toolboxes for the implementation of the discrete wavelet transform, such as the

MATLAB Wavelet Toolbox [56] and WAVELAB [71].

Throughout this thesis, the Daubechies wavelet system [19] of order N = 8, denoted as “Db8”

is used, when implementing wavelet-based schemes. For the purpose of signal denoising, a smooth

wavelet system is generally desired. While there are many wavelet systems that possess varying

degree of smoothness and regularity, the selection of the “Db8” wavelet, which possesses the required

properties, is somewhat arbitrary. Clearly, one could have chosen any one of the other smooth

wavelets, such as “Symlets” or “Coiflets” wavelets.

Next, some of the properties of the wavelet decomposition tree are described.

2.2.2 Properties of the Wavelet Decomposition Tree

The wavelet coefficients of an image are often organized in a pyramid structure known as the wavelet

decomposition tree. This tree is constructed through a recursive four-subband splitting, starting

with the original image. This process was applied using the 512 × 512 test image of “Lenna”, as

illustrated in Figure 2.12. This figure also illustrates how the wavelet coefficients of an image are

arranged in a spatial orientation tree, also known as the wavelet decomposition tree. The wavelet

decomposition tree is divided into three subbands (horizontal, vertical and diagonal), and a number

of levels. The wavelet decomposition tree of an image can be decomposed into subtrees that consist

of the wavelet coefficients in the same spatial positions for the various wavelet decomposition levels,

in the three subbands. A subtree can be rooted anywhere in the spatial orientation tree and the

node or root of the subtree is a coefficient identified by a set of coordinates, (i, j), the hierarchical

level k and the subband λ ∈ {h, v, d}, generally denoted as aλkij . The 2 × 2 block of pixels in the

same spatial location in the next finer level are called children or offspring of aλkij . The collection

of coefficients that are in the same spatial location in all the lower levels are called descendants of
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��

Horizontal subband

V ertical subband Diagonal subband

(a) Fully decomposed wavelet tree (b) Structure of the wavelet tree

for “Lenna”

Figure 2.12: The wavelet decomposition tree of an image, using the “Db8” wavelet basis.

aλkij . Let Aλ
kij denote the subtree with node aλkij , λ ∈ {h, v, d}. Some of the characteristics of the

wavelet tree include:

• The coefficients in each subband correspond to edge information in that direction.

• Most of the energy of the image is concentrated in the low frequency components.

• Most importantly, it has also been observed that there is a spatial self-similarity between

subbands. That is, the wavelet coefficients in higher level subtrees can be estimated by scaled

copies of the wavelet coefficients in lower-level subtrees. This inherent self-symmetry within

the wavelet tree motivates the use of fractal-based methods to encode the wavelet coefficients,

as will be discussed in the next section.

The DWT has a vast number of applications. In this chapter, the focus is on its usefulness for

the purpose of image compression. The use of wavelet-based image compression methods is first

discussed.

2.2.3 Wavelet Image Compression

Generic wavelet based image compression techniques exploit the fact that the wavelet transform

concentrates most of the energy of the image in a relatively small number of coefficients. The
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strategy is as follows: An optimal threshold for the coefficients is computed in such a way that

a certain percentage of the energy of the image is preserved after compression. Then, coefficients

with values below the threshold are deemed to be insignificant and forced to zero, while the rest

of the coefficients are quantized and encoded in a refined fashion. For typical images, most of

the energy of the image is generally localized in a relatively few coefficients, hence most of the

coefficients can be insignificant and discarded, resulting in a some degree of compression. However,

more sophisticated wavelet compression techniques can outperform this generic approach. These

methods exploit the characteristics and structure of the wavelet decomposition tree in order to

locate the significant coefficients.

Locating the Significant Coefficients

The discrete wavelet transform attempts to produce coefficients that are decorrelated with most

of the energy of the image localized in a relatively few coefficients, as compared to the spatial

distribution of the pixels in the original image. For a typical real-world image, the image is com-

posed of mainly “trends” or relatively smooth areas where neighboring pixels are highly correlated.

However, the most important features of the image in terms of the human perception lie in the

edges and boundaries of the image. These features have lower cumulative energy than the rest of

the image, however they contain perceptual significance that is far greater than their numerical

energy contribution to the image. The wavelet transform attempts to separate these two main

features of the image and localize them at various scales and in three different subbands. Typi-

cally, most of the energy of the image is localized in the lowest frequency components of the image

(top left-corner of the wavelet decomposition tree), whereas most of the edge information or high

frequency components of the image are scattered in the higher scales of the wavelet decomposition

tree. Thus, the fine details or the high frequency components (edges) of the image constitute the

most important perceptual characteristics of the image and they are often scattered among a large

number of insignificant coefficients. Hence, if not done efficiently, this may represent a problem for

wavelet-based image coding methods, as most of the bit budget may be spent in representing and

coding the position of those few coefficients corresponding to significant edges or fine details. The

challenge in wavelet-based image coding methods is how to efficiently locate these high-information

coefficients and representing the positions of the significant wavelet coefficients.

There are many wavelet-based image compression methods, but most of them only differ in

the way they locate and encode the significant coefficients. Two of the most efficient wavelet-
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based image coding methods are the Embedded Zerotrees of Wavelet (EZW) method and the Set

Partitioning in Hierarchical Trees (SPIHT) scheme, which are discussed briefly next.

Efficient Wavelet Image Coding Schemes

Over the past decade, many efficient wavelet-based image compression schemes have been devel-

oped. Two of the best wavelet image compression schemes, widely known as the Embedded Ze-

rotrees Wavelet (EZW) [68] and the Set Partitioning in Hierarchical Trees (SPIHT) algorithms [66].

In 1993, Shapiro proposed the use of a special structure called zerotree for the purpose of locating

and encoding the significant wavelet coefficients [68]. The embedded zerotree wavelet algorithm

(EZW) is a simple yet remarkably effective image compression algorithm, having the property that

the bits in the bit stream are generated in order of importance, yielding a fully embedded code.

This highly efficient wavelet-based image compression scheme is based on the following significance

hypothesis:

If a wavelet coefficient at a coarse scale is insignificant with respect to a threshold then

all of its descendants are also insignificant.

The embedded code represents a sequence of binary decisions that distinguish an image from the

“zero” image.

In 1996, Said and Pearlman [66] proposed an enhanced implementation of the EZW algorithm,

known as the Set Partitioning in Hierarchical Trees (SPIHT). Their method is based on the same

premises as the EZW algorithm, but with more attention to detail. The public domain version

of this coder (which is available from http://www.cipr.rpi.edu/research/SPIHT/) is very fast, and

improves the performance of the EZW by 0.3-0.6 dB. Next, the main features of the SPIHT scheme

are summarized and its performance is assessed.

The Main Features of the SPIHT Algorithm

In summary, the SPIHT algorithm partitions the wavelet coefficients into three sets: list of

significant pixels, list of significant sets, and list of insignificant sets. By using this structure

and conditionally entropy encoding in these symbols, the coder achieves very good rate-distortion

performance. In addition, the SPIHT coder also generates an embedded code. Coders that generate

embedded codes are said to be have progressive transmission or successive refinement property.

Successive refinement consists of first approximating the image with a few bits of data, and then
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improving the approximation as more and more information is supplied. An embedded code has

the property that for two given bit rates: R1 ≥ R2, the rate R2 code is a prefix to the rate R1 code.

Such codes are of great practical interest for the following reasons:

• The encoder can easily achieve a precise bit-rate by continuing to output bits until it reaches

the desired bit-rate.

• The decoder can cease decoding at any given point, generating an image that is the best

representation possible with the decoded number of bits. This is of practical interest in

many applications, including broadcast applications where multiple decoders with varying

computational, display and bandwidth capabilities attempt to receive the same bit-stream.

With an embedded code, each receiver can decode the passing bit-stream according to its

particular needs and capabilities.

• Embedded codes are also useful for indexing and browsing, where only a rough approximation

is sufficient for deciding whether the image needs to be decoded or received in full. The process

of screening images can be sped up considerably by using embedded codes.

The SPIHT method generates an embedded code by using a bit-slice approach. First the wavelet

coefficients of the image are indexed into a one-dimensional array, according to their order of

importance. This order places lower frequency bands before higher frequency bands since they have

more energy, and coefficients within each band appear in a raster scan order. The bit-slice code is

generated by scanning this one-dimensional array, comparing each coefficient with a threshold T .

This initial scan provides the decoder with sufficient information to recover the most significant

bit slice. In the next pass, new information about each coefficient is refined to a resolution of T
2 ,

and the pass generates another bit slice of information. This process is repeated until there are no

more slices to code.

The SPIHT algorithm is indeed embedded, progressive and computationally efficient. Figure

2.13 illustrates some typical SPIHT representation of the test image compressed at pre-determined

bit-rates as well as the rate distortion performance of the SPIHT method.

In this section, a brief outline of the practical implementation of the DWT for the purpose of

image compression is given. In particular, the main features of the SPIHT method, which is one

of the most effective wavelet-based image codec, are described. Next, the hybrid fractal-wavelet

scheme which combines the fractal and the wavelet transforms studied so far, is studied.
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(a) RMSE = 5.61, PSNR = 33.15 dB, CR=40:1 (b) RMSE = 3.93, PSNR = 36.24 dB, CR=20:1

Execution time ≈ 55 secs Execution time ≈ 51 secs
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Figure 2.13: Results of the SPIHT compression algorithm for the image of “Lenna”: (a)-(b) illustrate

SPIHT compressed images and (c)-(d) illustrate the rate distortion performance of the SPIHT method.
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2.3 Fractal-Wavelet Image Coding

Standard fractal schemes exploit the self-similarities that are inherent in many real-world images

to encode an image as a collection of transformations. As shown earlier in this chapter, these

schemes provide efficient and accurate models for many real world images, resulting in relatively

high compression ratios for a wide class of images that exhibit some degree of local or global self-

similarity. However, fractal-based schemes are not without limitations and much remains to be

investigated before such a novel technique is comparable to other image compression technology

currently in use. As discussed earlier, some of the disadvantages of the conventional fractal schemes

include expensive computational requirements and blockiness artifacts in fractal representations of

images. These schemes are based on spatial transformations between sub-blocks of the image; as a

result, the reconstructed image generally suffers from disturbing blockiness artifacts. A new class of

fractal-wavelet (FW) transforms has recently been proposed and investigated [18, 47, 57, 70]. These

fractal-wavelet image coding schemes were initially introduced to overcome the above mentioned

limitations of the original standard fractal scheme. The FW transform exploits the local self-

similarities that are inherent in the wavelet decomposition tree. That is, the wavelet coefficients in

higher level subtrees are scaled copies of the wavelet coefficients in lower-level subtrees. As will be

shown, the benefits of these fractal-wavelet techniques are numerous and they include; significant

reduction in computational complexity, reduction of the blockiness artifacts and significant increase

in the rate distortion quality of the fractal representation of the image.

2.3.1 Generalized 2D Fractal-Wavelet Transforms

Fractal-wavelet transforms, discovered independently by a number of researchers ([18, 47, 57, 70]

to name only a few), were introduced in an effort to reduce the blockiness and computational

complexity that are inherent in fractal image compression. Their action involves a scaling and

copying of wavelet coefficient subtrees to lower subtrees, quite analogous to the action of fractal

image coders in the spatial domain.

The FW Transform

For the fully decomposed wavelet tree, let Ah
k ,A

v
k,A

d
k denote the horizontal, vertical and diagonal

sub-blocks of wavelet coefficients at decomposition level k, 0 ≤ k ≤ K, respectively. Each of these
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sub-blocks contains 22k coefficients; ahkij , a
v
kij , a

d
kij , respectively. The three collections of blocks

Ah =

K
⋃

k=1

Ah
k , A

v =

K
⋃

k=1

Av
k, A

d =

K
⋃

k=1

Ad
k,

comprise the fundamental horizontal, vertical and diagonal subtrees of the coefficient tree, respec-

tively. Now consider any wavelet coefficient aλkij , λ ∈ {h, v, d} in this matrix and the unique subtree,

with this element as its root, this subtree will be denoted by Aλ
kij .
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Figure 2.14: The FW transform.

The two-dimensional fractal-wavelet trans-

forms involve mappings of “parent” subtrees of

wavelet coefficients to lower “child” subtrees.

For simplicity in presentation and notation, we

consider a particular case in which the roots

of all parent quadtrees appear in a given block

and the roots of all child quadtrees appear in

another given block. Select two integers, the

parent and child levels, k∗1 and k∗2, respectively,

with 1 ≤ k∗1 < k∗2. Then for each possible in-

dex 1 ≤ i, j ≤ 2k
∗
2 define the three sets of affine

block transforms:

Wλ
ij : Aλ

k∗1 ,i
λ(i,j),jλ(i,j) → Aλ

k∗2 ,i,j
, (2.16)

Aλ
k∗2 ,i,j

= αλijA
λ
k∗1 ,i

λ(i,j),jλ(i,j), λ ∈ {h, v, d}.

Note how the child subtrees at level k∗2 are replaced by scaled copies of parent subtrees from level

k∗1. This procedure is illustrated in Figure 2.14. These block transforms will comprise a unique

fractal-wavelet (FW) operator W. The use of the indices ih, jh, etc. emphasizes that the parent

quadtrees corresponding to a given set of child quadtrees Ah
k∗2 ,i,j

, Av
k∗2 ,i,j

and Ad
k∗2 ,i,j

need not be the

same. As well, the scaling coefficients αhij , α
v
ij and αdij are independent.

The “fractal code” associated with the generalized FW operator W consists of the following:

1. The parent-child index pair (k∗1, k
∗
2), generally k

∗
2 = k∗1 + 1.

2. The wavelet coefficients in blocks B0, and A
λ
k , λ ∈ {h, v, d} for 1 ≤ k ≤ k∗2 − 1, a total of 4k

∗
2

coefficients.
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3. The scaling factors αλij and parent block indices, (iλ(i, j), jλ(i, j)), for all elements aλij in each

of the three blocks Aλ
k∗2
. The total number of parameters:

• 3× 4k
∗
2 scaling factors,

• 2× 3× 4k
∗
2 indices.

It has been shown [57, 70] that, under certain conditions, the fractal-wavelet transform W is

contractive in an appropriate complete metric space (l2-type square summable sequences) of wavelet

coefficients. For the special transform given in Eq. (2.16), contractivity is guaranteed when

cQ = 2k
∗
2−k

∗
1 max
λ,i,j
|αλij | < 1,

where λ ∈ {h, v, d} and 0 ≤ i, j ≤ 2k
∗
2 − 1. From the Contraction Mapping Theorem, the condition

cQ < 1 guarantees the existence of a unique fixed point of the operatorW, that is, a unique wavelet

coefficient tree, c̄ such that W(c̄) = c̄. Moreover, the wavelet tree c̄ may be generated by iteration

of W.

The standard FW scheme, as described in [18, 47], is a special case of the generalized FW

scheme, where it assumes that common parents and common scaling factors are used for the various

subbands, that is

ih(i, j) = iv(i, j) = id(i, j)

jh(i, j) = jv(i, j) = jd(i, j)

αhij = αvij = αdij .

In other words, the h, v and d subbands are not treated independently.

Next, a few FW schemes that differ only in whether the three subbands (horizontal, vertical

and diagonal) of the wavelet tree are combined together or treated independently, are described

and implemented.

2.3.2 Fractal-Wavelet Schemes

In [33, 34], various types of FW schemes were investigated their performance as measured by their

corresponding rate distortion curves, was assessed. Only a brief description of these schemes is

given here.

As in the case of conventional fractal-based compression methods, there exists a variety of

strategies for “optimal” parent block assignment, involving some kind of searching over feasible
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parent block indices (i′, j′). The optimal strategy is to perform a full search of all possible parent

blocks within a subband λ in level k∗1. However, this is expensive from both a computational as

well as coding point of view. However, restrictive searches requiring much less computational time

often yield good results with relatively small sacrifices in accuracy [33, 34].

Scheme α’s Parents Description

Exhaustive

FW-I

(αh, αv, αd) Independent Generalized FW scheme with independent

parent blocks, i.e. the three indices

(iλ(i, j), jλ(i, j)), and independent scaling

coefficients αλ, λ ∈ {h, v, d}.
Standard

FW-II

(αh = αv = αd) Common Quite restrictive scheme; the indices

(iλ(i, j), jλ(i, j)) and the coefficients αλ are

the same for λ ∈ {h, v, d}.

Table 2.2: The two fractal-wavelet schemes studied here.

Table 2.2 illustrates two FW schemes corresponding to two different ways of choosing the

parent subtrees and scaling coefficients for the horizontal, vertical and diagonal subbands. Note

that FW-I treats the three subbands independently while FW-II combines the three subbands.

These schemes were implemented for the purpose of image representation and compression. The

results are illustrated in Figure 2.15. For each scheme, the figure illustrates the approximation

at the levels (k∗1, k
∗
2) = (4, 5) and (k∗1, k

∗
2) = (5, 6). For the scaling coefficient, a midriser uniform

quantizer, with an appropriate range and number of levels, was used. The results are also presented

below each of the images.

The implementation of these fractal-wavelet schemes shows that the application of the fractal-

based schemes in the wavelet domain has many advantages, as compared to the conventional spatial-

based fractal methods. Some of these benefits include:

• Significant reduction in computational complexity and encoding time. This is reflected in the

reduction of the execution times when comparing Figures 2.5 and 2.15.

• Better approximations at relatively higher compression ratios are also achieved. This can be

seen by comparing the results of the standard fractal representations of “Lenna”, to those

obtained by using the fractal-wavelet schemes. Comparing Figure 2.7 to Figure 2.15, reveals

that significant gain in compression as well as approximation fidelity are achieved by applying
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FW-I scheme with (k∗1 , k
∗
2) = (4, 5) FW-I scheme with (k∗1 , k

∗
2) = (5, 6)

RMSE = 10.42, PSNR = 27.78, CR=47:1. RMSE = 6.27, PSNR = 32.20, CR=11:1.

Execution time ≈ 43 secs. Execution time ≈ 87 secs.

FW-II scheme with (k∗1 , k
∗
2) = (4, 5) FW-II scheme with (k∗1 , k

∗
2) = (5, 6)

RMSE = 12.81, PSNR = 25.98, CR=112:1. RMSE = 8.04, PSNR = 30.04, CR=27:1.

Execution time ≈ 15 secs. Execution time ≈ 57 secs.

Figure 2.15: The fractal-wavelet representations of the test image obtained by simply encoding the image

using the two FW schemes.
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fractal-based schemes in the wavelet domain of the image, especially when the FW-II scheme

is used.

• Also, the disturbing blockiness artifacts that are often present in the standard fractal-based

schemes approximations are eliminated or significantly reduced when using a smooth wavelet

basis with finite support, such as the Daubechies wavelets. As illustrated in Figure 2.16, the

blockiness artifacts are no longer apparent in the zoomed fractal-wavelet image approximation.

This is, in contrast to the standard fractal approximation of “Lenna” which suffers from

apparent blockiness.

(a) Zooming in on the standard fractal (b) Zooming in on the fractal-wavelet

image representation image representation

Figure 2.16: Zooming in on the fractal and the fractal-wavelet representations of the “Lenna”: note that

the purely fractal representation suffers from blockiness artifacts while the fractal-wavelet representation

shows no blockiness.

However, despite these advantages and others, these fractal-wavelet schemes are not without

limitations. For instance, these fractal-wavelet schemes are still rather restrictive in the sense that

are constrained by the the three-subband wavelet decomposition tree, when selecting the “parent”

and “child” subtrees. This results in a static representation that varies significantly from one

resolution level to the next. As illustrated in Figure 2.15, moving from the level (k∗1, k
∗
2) = (4, 5) to

the (k∗1, k
∗
2) = (5, 6) level, results in a significant improvement of the fidelity of the approximation,
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accompanied by a drastic reduction in the compression ratio. Next, some of the recent progress

and development in FW image coding is outlined.

2.3.3 Developing Adaptive FW Algorithms

As discussed in the previous section, the original FW schemes are non-adaptive in the sense that

they are restricted by the structure of the wavelet decomposition tree in the selection of the child

and parent subtrees. The FW resolution is defined by the selection of (k∗1, k
∗
2). As one moves

from one resolution to the next, one notices a drastic change in the rate-distortion quality of the

FW representation. However, this is not practical since FW representation with intermediate rate

distortion quality can be obtained.

Next, an adaptive FW scheme which overcomes some of the limitations of the original FW

scheme are presented.

FW Image Coding using Adaptive Partitioning
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Parent Block

Adaptive partitioning of the wavelet tree

Standard partitioning of the wavelet tree

Child Block

Figure 2.17: Adaptive partitioning of the wavelet coeffi-

cients tree for the purpose of FW image coding.

In many applications, one seeks to obtain

the best approximation that yields a certain

predetermined bit rate or compression ratio.

The parameters involved may be set due to

storage or transmission restrictions. Thus,

it is often desirable to perform image com-

pression with bit-rate or fidelity constraints.

In [33, 37, 38], it was proposed and im-

plemented an algorithm that introduces the

essential element of adaptivity to the origi-

nal fractal-wavelet schemes to yield adap-

tive fractal wavelet algorithms capable of

compressing a target image at a predeter-

mined bit rate. The proposed scheme is

less restrictive than the schemes described

above, in the sense that the parent and child blocks do not have to be restricted in size or location to

the various decomposition level or subbands of the spatial orientation tree, as illustrated in Figure

2.17. This scheme is outlined next.
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An Adaptive FW Algorithm:

1. Start at the initial level (l = l0) with corresponding FW resolution: (k∗1,l0 , k
∗
2,l0

):

2. Slide and expand the parent block Aλ
k∗1,l

by one pixel, in the direction of λ ∈ {h, v, d}:

3. Expand each child block Aλ
k∗2,l+1

, in the direction of λ ∈ {h, v, d}, by 2 pixels:

4. This process is then extended to the higher levels to cover the entire wavelet decomposition

tree.

5. Check if the stopping criterion, such as a prescribed bit rate or distortion, is achieved: if so

stop, otherwise set l = l + 1 and go to step 2.

Clearly, one can apply the quadtree partitioning algorithm for the purpose of FW image coding

using any of the FW schemes described in the previous section, however, the standard FW-II

scheme will be mainly use. This scheme is generally preferred for its computational efficiency.
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Figure 2.18: Rate distortion curves generated by the adaptive standard FW-II scheme, for the test image

of “Lenna”.

Some of the benefits of such an adaptive fractal-wavelet scheme include the ability to generate

continuous and relatively smooth rate distortion curves for the fractal-wavelet schemes and encode

images at a pre-defined bit rate or representation tolerance error. The resulting rate distortion
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curves for the adaptive fractal-wavelet schemes are illustrated in Figure 2.18. Note how the “block

sliding” strategy performs an interpolation between the points corresponding to the (k∗1, k
∗
2) =

(3, 4), (4, 5) and (5, 6). The “bumpiness” in these rate-distortion curves may be explained as follows:

Recall that this adaptive FW scheme attempts to interpolate between the three standard FW

resolutions, (k∗1, k
∗
2) = (3, 4), (4, 5) and (5, 6). The “bump” in the middle of the curves correspond

to the middle resolution, (k∗1, k
∗
2) = (4, 5). Note that for intermediate resolutions, the partitioning of

the wavelet tree does not follow the standard hierarchical quadtree partitioning and hence the blocks

of child and parent subtrees contain a mixture of subtrees that originate from the horizontal, vertical

and diagonal sub-bands. This is expected to yield FW representations that are somewhat distinct

from those obtained using standard FW resolutions. Although this adaptive scheme interpolates

reasonably well between the three resolutions, the resulting rate-distortion curves are not smooth

at the standard resolutions, (k∗1, k
∗
2) = (3, 4), (4, 5) and (5, 6).

Next, another adaptive FW scheme that is based on quadtree partitioning of the wavelet de-

composition tree, will be discussed.

FW Image Coding using Quadtree Partitioning
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Figure 2.19: Quadtree partitioning of the wavelet coeffi-

cients tree for the purpose of FW image coding.

In [35, 36], the use of the quadtree-

partitioning approach for the purpose of

partitioning the wavelet tree and perform-

ing fractal-wavelet image compression, was

proposed. The hierarchical quadtree parti-

tioning scheme of the wavelet domain stems

for the spatial quadtree image partitioning

algorithm. The main distinction is that

while the quadtree image partitioning al-

gorithm seeks to decompose a sub-block

that does not satisfy a homogeneity crite-

rion into four smaller quadrants, the hier-

archical quadtree partitioning scheme per-

forms similar operation on subtrees instead

of sub-blocks.

The hierarchical quadtree partitioning scheme in the wavelet domain can be described as follows:
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Consider a subtree of wavelet coefficients, Aλ
kij , that is rooted at the coefficient aλkij , λ ∈ {h, v, d}.

The fractal-wavelet based scheme examines such a tree and decides, on the bases of a prescribed

criterion, whether or not such a tree should be encoded using a FW scheme. If it turns out that

the tree contains “too much” information to be encoded properly at the given level, then the node

or root, aλkij , is stored and the subtree Aλ
kij is replaced by four subtrees that are rooted at the four

children of the original node, aλkij . This process is illustrated in Figure 2.19.

Various decomposition criteria for the hierarchical quadtree partitioning scheme have been in-

vestigated. In particular, the use of the collage error, the variance and the energy of a subtree as

decomposition criteria for the quadtree partitioning scheme, was explored. It was found that the

energy of the subtree is the best quadtree decomposition criterion [35, 36]. The quadtree-based FW

scheme, using the energy of the subtree as the quadtree decomposition criterion, is summarized next.

A Quadtree-Based FW Algorithm:

For each uncoded child subtree, Aλ
kij = {y1, y2, . . . , yn}, rooted at aλkij , compute its energy:

Ekij =
1

n

∑

m

y2m. (2.17)

• If Ekij is less than some prescribed threshold TE , then the subtree is encoded using the a FW

scheme of choice, and marked the subtree as fractally coded.

• Otherwise, the node, aλkij , of the current subtree is stored and the subtree is decomposed into

four new subtrees as follows:

– Store the node of the subtree and mark it as stored,

– Replace the subtree by the four subtrees that are rooted at its four children, and mark

each one of these new subtrees as uncoded.

• Continue until all the coefficients are either fractally coded or stored.

Clearly, one can apply the quadtree partitioning algorithm for the purpose of FW image coding

using any of the FW schemes described in the previous section. However, it is advantageous to

use the standard FW-II scheme due to its computational efficiency. The main advantage of using

the energy of the subtree as the quadtree partitioning criterion is that one is performing fast FW

image coding. This is the case since only those subtrees with high energy are encoded using the

FW scheme. However, when using the collage error as a quadtree decomposition criterion, every
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Figure 2.20: Rate distortion curves generated by the quadtree-based standard FW-II scheme, for the test

image of “Lenna”.

child subtree has to be encoded using the FW scheme before one can decide whether to subdivide

it or not.

Some of the advantages of the quadtree-based FW scheme include: making the FW scheme

more adaptive to the content of an image, performing FW compression at a pre-determined bit

rate or fidelity precision and generating rate distortion curves for the FW coding schemes by

varying the energy criterion threshold ET . Figure 2.20 illustrates the rate distortion curves for the

quadtree-based standard FW scheme outlined above.

Similar to the quadtree-based fractal scheme in the pixel domain, the quadtree-based FW scheme

yields rate distortion curves that are relatively “bumpy”. This bumpiness can be explained as

follows: These rate distortion curves were generated by varying the child-subtree energy threshold,

TE . On the one hand, for larger values of TE , most child subtrees are encoded using the FW scheme.

Thus decreasing this threshold is expected to result in many child subtrees being partitioned into

four new subtrees and their roots stores. In turn this results is relatively significant changes in the

rate-distortion quality of the FW representation. On the other hand, for smaller values of TE , most

of the subtrees are partitioned and their roots stored. Thus decreasing this threshold even further

results in decomposing some of the remaining subtrees and storing more wavelet coefficients. This in

turn results in a relatively significant change in the rate-distortion quality of the FW representation.
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For medium range threshold values, the rate-distortion quality of the FW representation appear to

vary continuously with the variation of the child subtree energy threshold, TE . This explains the

steepness of these curves for lower and higher compression ranges.

The performance of the adaptive image coding methods discussed in this chapter will be com-

pared next.

2.4 Comparisons and Concluding Remarks

In this chapter, several fractal, wavelet and fractal-wavelet image coding methods for the purpose

of image compression were discussed and implemented. Some of the advantages of developing

adaptive fractal-based image compression methods include performing content-dependent image

compression at at pre-determined bit rates, compression ratios or fidelity precisions and generating

rate distortion curves. Generating rate distortion curves for these fractal-based schemes provided

a comparison of their performance to each other as well to other image compression methods, such

as the SPIHT method.
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Figure 2.21: Rate distortion curves generated by the various adaptive image compression methods studied

in this chapter, namely the quadtree-based standard fractal, the SPIHT, the adaptive FW and the quadtree-

based FW schemes.

Figure 2.21 illustrates a comparison between the various adaptive fractal and wavelet-based

image compression methods covered in this chapter, namely the quadtree-based standard fractal,
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the SPIHT, the adaptive FW and the quadtree-based FW schemes. Clearly, the SPIHT performs

best. However, when comparing the various fractal-based methods to each other, note that fractal-

wavelet based methods perform better than the standard fractal schemes, applied in the spatial

domain of the image, for higher compression ratios. However, for lower compression ratios (i.e. less

than 50:1), the quadtree-based standard fractal scheme starts to perform better than some of the

FW methods.

In this chapter, a brief review of the theory and application of various adaptive fractal and

wavelet based image compression methods was presented. Rate distortion curves of these adap-

tive image compression schemes were generated and their performance was compared. While the

SPIHT method performs considerably better than the best fractal-based schemes, fractal-based

schemes were shown to be competitive especially at low compression ratios. Algorithms for making

fractal-based schemes adaptive were also discussed. The fractal-wavelet schemes perform better

than standard fractal schemes, especially for high compression ratios. Furthermore, fractal-wavelet

schemes overcome the computational complexity and the disturbing blockiness artifacts that are

evident when using the generic spatial-based fractal schemes.

In the following chapters of this thesis, the application of these various fractal and fractal-

wavelet based image coding schemes for the purpose of image restoration and enhancement will be

investigated.



Chapter 3

Wavelet Image Denoising

As discussed in the last chapter, the wavelet transform has many unique features that has made

it a popular method for the purpose of image processing and compression. The wavelet transform

performs a high degree of decorrelation between neighboring pixels, and it provides a distinct

localization of the image in the spatial as well as the frequency domain. This transform also

provides an elegant subband framework in which both high and low frequency components of the

image can be analyzed separately. Recently, various wavelet-based methods have been proposed

for the purpose of image enhancement and restoration. Basic wavelet image restoration methods

are based on thresholding in the sense that each wavelet coefficient of the image is compared to a

given threshold; if the coefficient is smaller than the threshold, then it is set to zero, otherwise it

is kept or slightly reduced in magnitude. The intuition behind such an approach follows from the

fact that the wavelet transform is efficient at energy compaction, thus small wavelet coefficients are

more likely due to noise, and large coefficients are generally due to important image features, such

as edges. Most of the efforts in the literature have concentrated on developing threshold selection

criteria. Originally, Donoho and Johnstone proposed the use of a universal threshold uniformly

throughout the entire wavelet decomposition tree [20, 21]. Then the use of different thresholds for

different subbands and levels of the wavelet tree was found to be more efficient [22, 23, 73]. Some

methods of selecting thresholds that are adaptive to different spatial characteristics have recently

been proposed and investigated [13, 14, 15, 16]. It was found that such adaptivity in the threshold

selection tends to improve the wavelet thresholding performance because it accounts for additional

local statistics of the image, such as smooth or edge regions. These observations are consistent

with the nature of adaptive processes which account for the local statistics and characteristics of

65
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the image. In general, adaptive approaches have been found to be more effective than their global

counterparts.

In this chapter, some of the basic wavelet thresholding methods for the purpose of image denois-

ing will be briefly reviewed, implemented and compared. and compare their performance. The use

of the idea of cycle spinning for the purpose of reducing the pseudo-Gibbs artifacts that are often

evident in the denoised images will also be discussed. Furthermore, the use of a new context-based

thresholding strategy that takes the value of the neighboring wavelet coefficients into consideration

when thresholding a wavelet coefficient will be proposed and implemented. It will be shown that

the use of this proposed adaptive, context-based hard and soft thresholding operators result in an

improvement, as compared to the standard hard and soft thresholding operators widely used in the

literature.

The layout of this chapter is as follows: In section 1, an brief description of the the wavelet

thresholding process is given. Four different standard wavelet thresholding methods for image

denoising are described and implemented in section 2. Section 3, contains the the use of the cycle

spinning idea for the purpose of reducing some of the artifacts and enhancing the denoised estimates

obtained by various wavelet thresholding methods. In section 4, a context-based thresholding

strategy is proposed and compared to the conventional hard and soft thresholding operators widely

used in the literature. This chapter is concluded in section 5 with a brief summary.

3.1 Wavelet Thresholding for Signal Denoising

In this section, the wavelet thresholding process is first outlined, then the thresholding operators

are defined and the selection of the threshold is briefly discussed. This process is then implemented

for the purpose of denoising four one-dimensional test signals.

3.1.1 The Wavelet Thresholding Process

Wavelet thresholding for image denoising attempts to remove the noise present in the signal while

preserving most of the signal characteristics, regardless of its frequency content. It involves the

following steps:

1. Acquire the noisy digital signal.

2. Compute a linear forward discrete wavelet transform of the noisy signal.
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3. Perform a non-linear thresholding operation on the wavelet coefficients of the noisy signal.

4. Compute the linear inverse wavelet transform of the thresholded wavelet coefficients.

This simple four-step process is known as wavelet thresholding or shrinkage. A more precise mathe-

matical formulation of the above wavelet denoising procedure is needed. However, first the necessary

variables and terms are defined as follows:

• x: the original noise-free digital one or two-dimensional signal which has M samples. In the

one-dimensional case, it is denoted by x = [xi], i = 1, 2, . . .M and for the two-dimensional

case, without loss of generality, the image is assumed to be square so x = [xij ], i, j =

1, 2, . . . ,
√
M . In most of the two-dimensional applications in this chapter, the original image

is the widely used test image of “Lenna”, which is an 8 bits/pixel, gray-scale 512× 512 pixels

image, soM = 5122. In practice, the original signal is generally not known, only the distorted

signal is available.

• X=DWT (x): the discrete wavelet transform of original signal x, which again depending on

the dimension of x is a one or two-dimensional array of size M . As mentioned earlier, the

orthogonal Daubechies wavelet “Db8”, chosen for its desirable smoothness properties, will be

used throughout this thesis.

• w: an additive white Gaussian noise with zero mean and variance σ2w, which is assumed to

have the same size M but independent of the original signal x, so w∼ N(0, σ2w). For most of

the two dimensional applications, unless stated otherwise, it will be assumed that σw=25.

• y=x+w: the noisy version of the original noise-free signal.

• Y=DWT (y): the DWT of the noisy signal y.

• T (., λ): the thresholding transformation with threshold λ.

• X̂ = T (X, λ): the thresholded wavelet coefficients obtained after applying the thresholding

operator T (., λ).

• x̂ = DWT −1(X̂): the denoised version of the noisy image y, which represents an approxima-

tion of the original image x, with mean squared error

MSE = E[||x− x̂||2]. (3.1)
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In view of the above notations, the wavelet denoising process can be summarized as follows:

x −→ y = x+w −→ Y = DWT (y) −→ X̂ = T (Y, λ) −→ x̂ = DWT −1(X̂). (3.2)

A block diagram of this process is illustrated in Figure 3.1.

w

y
DWT

Thresholding

  

 

IDWT
    x Y x̂X̂

T (Y, λ)
+

Figure 3.1: The three steps involved in the wavelet denoising process.

In summary, the wavelet denoising problem can be formulated as follows:

Design a thresholding transformation T (., λ) with threshold λ such that:

MSE = E[||x− x̂||2] is minimized (3.3)

and the denoised image x̂ satisfies certain criteria, such as smoothness in low activity

regions and sharpness of edges.

So far, the wavelet thresholding process is formulated, it remains to describe the two types of the

threshold operator T (., λ) associated with the threshold λ.

3.1.2 Thresholding Operators

Recall that T (., λ) denotes the thresholding operator with corresponding threshold λ. More specif-

ically, in this section the hard thresholding operator Th(., λ) and the soft thresholding operator

Ts(., λ) will be defined.

The hard thresholding operator is defined as:

X̂ = Th(Y, λ) such that x̂ = Th(y, λ) =







y, if |y| ≥ λ,

0, otherwise.
(3.4)

The soft thresholding operator on the other hand is defined as:

X̂ = Ts(Y, λ) such that x̂ = Ts(y, λ) =



















y − λ, if y ≥ λ,

y + λ, if y ≤ −λ,
0, otherwise.

(3.5)
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Figure 3.2: Hard and soft thresholding operators as applied on the wavelet coefficients.

The transfer functions of the hard and soft thresholding schemes are illustrated in Figure 3.2. Note

that hard thresholding is a “keep or set to zero” procedure and is more intuitively appealing. On

the other hand, soft thresholding shrinks coefficients above the threshold in absolute value. While

at first sight hard thresholding may seem to be natural, the continuity of soft thresholding has

some advantages. Sometimes, pure noise coefficients may pass the hard thresholding and appear

as annoying “blips” in the output. However, soft thresholding shrinks these false structures.

Once the thresholding operator T (., λ) has been defined, it remains to address the problem of

selecting the corresponding threshold, λ.

3.1.3 Threshold Selection

As one may observe, threshold determination is an important question when applying the wavelet

thresholding scheme. A small threshold may yield a result close to the input, but the result may

be still be noisy. A large threshold on the other hand, produces a signal with a large number of

zero coefficients. This leads to an overly smooth signal. Paying too much attention to smoothness

generally suppresses the details and edges of the original signal and causes blurring and ringing

artifacts.
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The Universal Threshold

In this section, the most original threshold known as the universal threshold will be introduced and

its performance will experimentally explored using a one-dimensional signal example.

Originally, Donoho and Johnstone proposed the use of the universal threshold [20]:

λuniv =
√

2 ln(M)× σw, (3.6)

where M is the signal size and σ2w is the noise variance. It has been shown that, when using the

soft thresholding operator Ts(., λ), with λ = λuniv, the following results hold[21, 22]:

• With high probability, which asymptotically tends to unity as the signal size M increases, the

denoised signal x̂ is at least as smooth as the original noise-free signal x, where smoothness

is measured by any wide range of smoothness measures.

• Although the universal threshold λuniv was derived for the purpose of soft thresholding, it

can also be used for the purpose of hard thresholding. Hard thresholding using the universal

thresholding, Th(., λuniv) achieves better estimates in the MSE sense than Ts(., λuniv), but it

does not guarantee the smoothness property of the denoised signal.

Next, the wavelet thresholding process using the universal threshold will be illustrated using a

one-dimensional signal.

Application: A One-Dimensional Example

To investigate the effects of threshold selection, the wavelet thresholding process is applied to

four one-dimensional signals commonly used in wavelet literature, namely “Blocks”, “Bumps”,

“Doppler” and “HeavySine”. Each, one of these signals was corrupted by an AWGN noise with

standard deviation σw = 1. The setup is as follows:

• Apply the hard and soft thresholding operators, Th(., λ) and Ts(., λ), respectively using the

universal threshold. In this example, the original signals have length M = 2048 and the noise

standard deviation σw = 1 so the universal threshold is given by

λuniv =
√

2 ln(2048)× (1) = 3.905. (3.7)

• Vary the threshold λ over the interval [0, 5] with a step size of ∆ = 0.1. At each step, the hard

and soft thresholding operators are applied to the four test signals using that threshold. The
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RMSE fidelity measure of the quality of each denoised signal is then computed by comparing

it to the original noise-free signal, which is assumed to be known.

• The above steps are repeated for different orthonormal wavelet bases, namely Haar and

Daubechies 2, 4, and 8.

Figure 3.3 (a) illustrates the performance of the soft and hard thresholding operators using the

universal threshold for the four test signals. The quality of the denoised signals as a function of

the threshold, λ, level are illustrated in Figure 3.3 (b). These quality curves clearly indicate that

the universal threshold is not optimal in the RMSE sense for the various signals. In general, the

universal threshold tends to be conservatively high resulting in over-smoothing of the signal. This is

the case because the derivation of this threshold gives higher priority to ensuring that the denoised

estimate is at least as smooth as the original image than to minimizing the mean squared error

[20, 21]. Often, this threshold is only useful as a starting value when nothing else is known about

the signal characteristics, such as smoothness. One can then test better threshold values depending

on the results obtained using the universal threshold. Table 3.1 illustrates the “optimal” thresholds

Blocks Bumps HeavySine Doppler

Hard Soft Hard Soft Hard Soft Hard Soft

Haar 3.0 1.6 3.1 1.6 3.4 1.6 3.1 1.6

Db2 3.6 1.5 3.1 1.7 3.7 1.9 3.4 1.8

Db4 3.1 1.5 3.1 1.7 3.5 2.0 3.5 1.8

Db8 3.2 1.4 3.4 1.6 3.8 2.0 3.4 1.8

Table 3.1: The optimal thresholds for the four test signals using various wavelet bases. Note that the

optimal thresholds are generally lower than the universal threshold λuniv = 3.095, especially for the soft

thresholding scheme. Note also that the optimal threshold for the soft thresholding operator is consistently

about half of that corresponding to the hard thresholding operator.

for the various test signals using the different wavelet bases. Again, note that the “optimal” soft

and hard thresholds are consistently lower than the universal threshold. It is also interesting to

note that the “optimal” soft threshold is consistently about half of the “optimal” hard threshold

for the various signals and wavelet bases.

So far, the experiments have been restricted to wavelet thresholding for the purpose of denoising

one dimensional signals. Next, these experiments will extended to the two-dimensional case and
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(a) Hard and soft thresholding for denoising four commonly used signals:

“Blocks”, “Bumps”, “HeavySine” and “Doppler” signals.
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(b) The dependence of the quality of the denoised signals on the selection of the threshold λ.

Figure 3.3: One-dimensional wavelet hard and soft thresholding of four noisy signals; “Blocks”, “Bumps”,

“HeavySine” and “Doppler” signals, corrupted by an AWGN noise with σw = 1. The “Db8” wavelet basis

was used.
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illustrate the application of wavelet thresholding for the purpose of image denoising.

3.2 Wavelet Thresholding Methods for Image Denoising

The image is assumed to be corrupted by a random AWGN noise with variance σ2w during its

acquisition or transmission process. The original image of “Lenna” and its noisy version which

is corrupted by an AWGN noise with noise standard deviation σw = 25, as illustrated in Figure

1.2, will be used for the experimental results. The underlying concept of wavelet denoising of

images is similar to the one-dimensional case. In this section, four standard wavelet thresholding

methods will be briefly described, implemented and compared. These technique are VisuShrink,

LevelShrink, SureShrink and BayesShrink which differ only in the selection of the threshold λ and

the strategy employed in applying the thresholding operator T (., λ).

3.2.1 VisuShrink

The VisuShrink technique consists of applying the soft thresholding operator using the universal

threshold:

λuniv =
√

2 ln(M)σw, (3.8)

as originally proposed by Donoho and Johnstone [20].

The VisuShrink algorithm was implemented for the purpose of restoring and enhancing the noisy

image of “Lenna”. Figure 3.4 illustrates the results corresponding to the hard and soft thresholding

methods using the universal threshold:

λuniv =
√

2 ln(5122)× 25 = 124.88. (3.9)

Note that VisuShrink is found to yield an overly smoothed estimate, especially in the case of the soft

thresholding operator. This is because the universal threshold, λuniv, tends to be too high for large

values ofM , setting to zero many signal coefficients along with the noise. This illustrates a common

limitation of VisuShrink which has been widely reported in the literature [54, 20, 21, 22, 23]. The

main feature of VisuShrink is that it guarantees a highly smoothed reconstruction of the noisy image

but in doing so it often compromises many of the important features of the image (i.e. edges) by

setting the threshold conservatively high. These limitations of VisuShrink are also due to the fact

that it fails to adapt to the various types of statistical and structural properties of the wavelet
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tree. The universal threshold is applied uniformly throughout the wavelet tree. However, the use

of different thresholds for different decomposition levels and subbands seems more reasonable.

(a) Hard VisuShrink thresholding (b) Soft VisuShrink thresholding

RMSE=12.37, PSNR=26.28. RMSE=15.76, PSNR=24.18.

Execution time ≈ 9 secs. Execution time ≈ 11 secs.

Figure 3.4: Hard and soft threshold denoised estimates of “Lenna”, using the VisuShrink thresholding

method with the universal threshold: λuniversal =
√

2 ln(5122)25 = 124.88.

Next, the optimality of the universal threshold is explored and it will be shown that the optimal

thresholds for soft and hard thresholding, in terms of RMSE and PSNR quality measures, are indeed

much lower than the universal threshold.

Exploring the Optimality of the Universal Threshold

In order to further explore the “optimality” of VisuShrink and its adopted universal threshold, the

dependence of the quality of the denoised image, as measured by the RMSE and PSNR fidelity

measures, on the value of the threshold level is studied. The noisy image of “Lenna”, described

above was used and the threshold was allowed to span a wide range of values which includes the

universal threshold. Figure 3.5 illustrates the results obtained using the hard and soft thresholding

methods. Observe that for the given test image, the “optimal” thresholds corresponding to the

hard and soft thresholding algorithms are lower than the universal threshold adopted by VisuShrink,

especially in the case of soft thresholding.
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Figure 3.5: The dependence of the quality of the denoised image on the selection of the threshold for hard

and soft thresholding, using the noisy image of “Lenna”: The universal threshold λuniv =
√

2 ln(5122)×25 =
124.88 while the optimal thresholds are λhard ≈ 80 for hard thresholding and λsoft ≈ 40 for soft thresholding.

Experimentally, it was found that, for the given test image of “Lenna”, the optimal thresholds

are λ∗hard ≈ 80, for hard thresholding and λ∗soft ≈ 40 for soft thresholding. It is interesting to note

again that, similar to the one-dimensional case, the relationship

λ∗soft ≈
λ∗hard
2

. (3.10)

still holds. This relationship between the optimal values of λ∗hard and λ
∗
soft has been widely reported

in the wavelet thresholding literature, although it has yet to be shown to hold analytically [54]. In

fact, since many optimal threshold values were derived for the purpose of soft thresholding, it is a

common practice to simply set the optimal hard threshold to be twice the optimal soft threshold.

The optimal values of soft and hard thresholds were used to denoise the test image and the

results are illustrated in Figure 3.6. Note that the quality of these denoised estimates is better than

the results obtained using the universal threshold, which were shown in Figure 3.4.

The limitations of the VisuShrink method can be attributed to the following two fundamental

problems associated with this method:

• The universal threshold is conservatively too high resulting in noise-free estimates at the

expense of over smoothing of the high frequency contents of the image. The VisuShrink
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estimates, especially when soft thresholding is used, often exhibit disturbing ringing and

blurring artifacts.

• VisuShrink applies the universal threshold uniformly throughout the image without account-

ing for the local statistics of the various subbands and decomposition levels of the wavelet

decomposition tree. Clearly, the use of different thresholds for different levels and subbands

seems more reasonable, since it accounts for variation of the local statistics of the wavelet

coefficients.

(a) Hard thresholding using: λ∗hard = 80 (b) Soft thresholding using: λ∗soft = 40

RMSE=10.98, PSNR=27.31. RMSE=10.57, PSNR=27.65.

Execution time ≈ 8 secs. Execution time ≈ 10 secs.

Figure 3.6: Hard and soft thresholding denoised estimates of “Lenna” using the optimal thresholds: λ∗hard =

80 and λ∗soft = 40.

Next, a level-dependent wavelet thresholding method will be studied. This adaptive thresholding

technique accounts for the variability within the wavelet tree structure by using different thresholds

for different decomposition levels of the wavelet tree.

3.2.2 LevelShrink

As described in the previous section, VisuShrink adopts the universal threshold to be used uniformly

throughout the wavelet decomposition tree of the noisy image. Intuitively, due to the high variability
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of the wavelet coefficients across different subbands and decomposition levels, it would be more

reasonable, and perhaps more efficient, to use different thresholds for different subbands and levels

of the wavelet tree. Recently, various methods for selecting thresholds that are adaptive to different

spatial and statistical characteristics of the wavelet tree have been investigated [73, 21, 22, 13,

14, 15, 16]. It was found that such adaptivity in the threshold selection tends to improve the

wavelet thresholding performance because it accounts for additional local statistics of the image,

such as smooth or edge regions. These observations are consistent with the nature of adaptive

processes which account for the local statistics and characteristics of the signal. In general, adaptive

approaches have shown to be more effective than their global counterparts. In this section, one

such simple level-dependent wavelet thresholding technique will be studied.

The level-dependent thresholding algorithm, called LevelShrink, proposes the use of different

thresholds for different levels of the wavelet tree. Recall that the horizontal, vertical and diagonal

subbands of the wavelet decomposition of an image illustrate distinct but complementary features

of the image. In particular, for each decomposition level j = 1, 2, . . . , J , the diagonal subband,

HHj , gives the diagonal details of the image, the horizontal subband, HLj , gives the horizontal

features while the vertical subband LHj represents the vertical structures. Since the content of

the various subbands varies from one level to the next, the use of level-dependent thresholds seems

more reasonable than the use of a uniform threshold.

In [73], a level-dependent thresholding algorithm which adopts different thresholds for dif-

ferent levels of the wavelet tree has been proposed to improve the performance of the original

wavelet thresholding method, VisuShrink. Instead of using a uniform threshold λuniv throughout

the wavelet tree, the level-dependent thresholding method uses different thresholds for different

decomposition levels. One particular level-dependent thresholding scheme, called LevelShrink, is

to set the threshold at the jth decomposition level of the wavelet tree as follows [73]:

λj =
√

2 ln(M)× σw × 2−(J−j)/2 = λuniv × 2−(J−j)/2, for j = 1, 2, . . . J, (3.11)

where J is the total number of decomposition levels and j is the scale level where the wavelet

coefficient to be thresholded is located.

As illustrated in Table 3.2, this scheme uses larger threshold values for the finer scales decom-

position tree and smaller thresholds for the more coarse scales of the wavelet tree. Note that for

the highest level, the universal threshold is used. However, for the lower levels, the threshold is

gradually scaled down.
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Figure 3.7 illustrates the results obtained by using the hard and soft LevelShrink thresholding

the noisy test image of “Lenna”. Note that this thresholding scheme yields results that are better

than the results obtained by VisuShrink, especially when the hard thresholding scheme is used.

finer ←− Wavelet Decomposition Level−→ coarse

Level 9 8 7 6 5 4 3 2 1

Threshold 124.88 88.30 62.44 44.15 31.22 22.07 15.61 11.03 7.80

Table 3.2: The optimal thresholds for the various wavelet decomposition levels used by the LevelShrink

thresholding scheme.

Hard LevelShrink thresholding Soft LevelShrink thresholding

RMSE=10.01, PSNR=28.11. RMSE=11.30, PSNR=27.07.

Execution time ≈ 13 secs. Execution time ≈ 15 secs.

Figure 3.7: The denoised estimates obtained by the hard and soft LevelShrink thresholding scheme.

Clearly, the LevelShrink thresholding method is more adaptive than VisuShrink since it adapts

to the variability registered within the wavelet tree from one decomposition level to the next by

using different thresholds for different levels. However, this level-dependent thresholding method

does not account for the inherent variability from one subband to another at the same decomposition

level of the wavelet tree. In fact the same threshold is used for the horizontal, vertical and diagonal

subbands of the same decomposition level. In reality, as mentioned earlier, these three subbands
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generally contain different types of details of the image and they should be treated and thresholded

differently.

Next, a more adaptive thresholding technique, that adopts different thresholds that vary not

only from level to level but also from one subband to another, will be studied.

3.2.3 SureShrink

Donoho and Johnstone developed an adaptive method of selecting a threshold that minimizes

the Stein Unbiased Risk Estimator (SURE), which has been known as the SureShrink wavelet

thresholding technique [22, 23, 54]. The adaptivity of SureShrink is achieved by choosing distinct

thresholds for each subband of each level of the wavelet tree using an efficient recursive process.

This thresholding scheme attempts to select thresholds that adapt to the data as well as minimize

an estimation of the mean squared error or risk.

Threshold Determination

Let Xsub
j and Ysub

j , represent the wavelet coefficients corresponding to the original noise-free and

noisy images, respectively, of sizeMj and located in subband sub ∈ {horizontal, vertical, diagonal}
and decomposition level j ∈ {1, 2, . . . , J}. To study the impact of the choice of the threshold on

the risk, let R(Xsub
j , λ) denote the risk of a soft thresholding operator, Ts(., λ), calculated with a

threshold λ; in other words:

R(X, λ) = E[||Xsub
j − Ts(Y

sub
j , λ)||2] (3.12)

Since, the original image is generally not known, thenXsub
j is not known and, an estimate R̂(Xsub

j , λ)

of R(Xsub
j , λ) is calculated from Ysub

j and the best threshold level λ
(sub)∗
j can be estimated by

minimizing R̂(Xsub
j , λ).

To estimate the risk R(Xsub
j , λ), recall that:

X̂sub
j = Ts(Y

sub
j , λ), where Ts(Y

sub
j,m , λ) =



















Y sub
j,m − λ, if Y sub

j,m ≥ λ,

Y sub
j,m + λ, if Y sub

j,m ≤ −λ,
0, otherwise.

(3.13)

There are two cases:

1. If |Y sub
j,m | < λ, then the soft thresholding operator sets this coefficient to zero, which produces

a risk equal to |Xsub
j,m|2. Since

E[|Y sub
j,m |2] = |Xsub

j,m|2 + σ2w, (3.14)
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one can estimate

|Xsub
j,m|2 ≈ |Y sub

j,m |2 − σ2w. (3.15)

2. If |Y sub
j,m | ≥ λ, the soft thresholding subtracts λ from the amplitude |Y sub

j,m |. The expected risk

is the sum of the noise energy plus the bias introduced by the reduction of the amplitude of

Y sub
j,m by λ. Thus, the expected risk associated with a wavelet coefficient |Y sub

j,m | < λ can be

estimated by σ2 + λ2.

The resulting total risk estimator of R(Xsub
j , λ) is

R̂(Xsub
j , λ) =

Mj
∑

m=1

Φ(|Y sub
j,m |2) (3.16)

where

Φ(|Y sub
j,m |2) =







|Y sub
j,m |2 − λ2, if |Y sub

j,m | ≤ λ,

σ2w + λ2, if |Y sub
j,m | > λ.

(3.17)

It has been shown that R̂(Xsub
j , λ) is an unbiased estimator of R(Xsub

j , λ) [54]. This unbiased risk

estimator, R̂(Xsub
j , λ), is known as the Stein’s Unbiased Risk Estimator (SURE).

To find the optimal threshold level λsub∗j that minimizes the SURE estimator R̂(Xsub
j , λ):

1. First, the wavelet coefficients Y sub
j,m , within each vertical, horizontal and diagonal subband

(sub) and each level, j = 1, 2, . . . , J , are sorted in decreasing magnitude order.

2. Now, let Y
sub(r)
j (k), k = 1, 2, . . . ,Mj be the ordered coefficient of order r, where Mj is the

number of coefficients in a subband at decomposition level j.

3. It was shown that the risk estimator is given by [54]:

R̂(Xsub
j , λ) =

Mj
∑

k=l

|Y sub(r)
j (k)|2 − (M − l)σ2 + l(σ2 + λ2), (3.18)

where l is an index such that:

|Y sub(r)
j (l)| ≤ λ < |Y sub(r)

j (l + 1)|. (3.19)

4. Since R̂(Xsub
j , λ) is an increasing function of λ, then one must choose

λsub∗j = |Y sub(r)
j (l)| (3.20)

to minimize R̂(Xsub
j , λ).
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To find the optimal threshold level λ∗sure that minimizes R̂(Xsub
j , λ) it is therefore sufficient to

compare the Mj possible values {|Y sub(r)
j (l)|}, l = 1, 2, . . . ,Mj , and choose the value of λ that

yields the smallest risk estimator R̂(Xsub
j , λ).

Although the SureShrink thresholding method clearly provides an adaptive thresholding strat-

egy, its performance is dependent on estimating the statistics of the wavelet coefficients of the

original image from the statistics in the wavelet transform of the noisy image. For instance, the

estimation

|Xsub
j,m|2 ≈ |Y sub

j,m |2 − σ2w. (3.21)

may yield a negative estimate of |Xsub
j,m|2 when |Y sub

j,m |2 < σ2w which is mathematically inconsistent.

This may occur in situations where the wavelet coefficients are sparse. Next, a hybrid approach

adopted by the SURE algorithm, which deals with these outlying cases, is described.

Threshold Selection in Sparse Cases

The SURE principle has a drawback in situations of extreme sparsity of the wavelet coefficients.

In such cases the noise contributes to the SURE profile through the many coordinates at which

the signal is zero or close to zero. The wavelet coefficients of the noisy image at these locations,

which correspond mainly to noise, will swamp the information contributed to the SURE profile

by the few coordinates where the signal is nonzero. To overcome the limitations in these outlying

cases, SureShrink uses a hybrid approach where the threshold is chosen to be λsub∗j in high activity

subbands and the localized universal threshold in sparse subbands.

Although the estimator R̂(Xsub
j , λ) of R(Xsub

j , λ) is unbiased, in sparse regions of the wavelet

decomposition tree, its variance may induce errors leading to an optimal threshold λsub∗j that is too

small. This happens if the signal energy is small relative to the noise energy, that is

||Xsub
j ||2 << E[||w||2] = Mjσ

2
w. (3.22)

In this case one must impose another thresholding method, such as the localized universal threshold

λuniv =
√

2 ln(Mj)× σw, (3.23)

computed for the current decomposition level j, in order to remove most of the noise.

However, the original image x is generally unknown, hence its wavelet transform Xsub
j is also

unknown. But, since

E[||Ysub
j ||2] ≈ ||Xsub

j ||2 +Mjσ
2
w, (3.24)
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one can estimate

||Xsub
j ||2 ≈ ||Ysub

j ||2 −Mjσ
2
w (3.25)

This estimate of the local signal energy is compared to the minimum energy level, as defined in [54]

εMj
= σ2w

√

Mj [ln(Mj)]
3
2 . (3.26)

The resulting hybrid threshold adopted by the SureShrink scheme is given by:

λsub∗j,sure =







√

2 ln(Mj)σw, if ||Ysub
j ||2 −Mjσ

2
w ≤ εMj

,

λsub∗j , if ||Ysub
j ||2 −Mjσ

2 > εMj
.

(3.27)

Next, an implementation of the SureShrink wavelet thresholding scheme for the purpose of denoising

images is illustrated.

Experimental Results

The SureShrink thresholding method was implemented for the purpose of restoring and enhancing

the noisy test image of “Lenna”. Table 3.3 illustrates the optimal thresholds obtained by using the

SureShrink technique. Note that the optimal thresholds vary not only from one level to the next but

also from subband to another. This represents an improvement as compared to the LevelShrink

thresholding approach where the optimal threshold is the same for the three subbands at each

wavelet decomposition level. Again, note that similar to the LevelShrink thresholding strategy,

the SureShrink uses larger threshold values at finer scale levels of the wavelet tree and smaller

thresholds for more coarse scales. These results illustrate how the universal threshold adopted

by the VisuShrink method is far from optimal for most of the decomposition subbands and the

decomposition levels, especially the lower ones. The optimal threshold adopted by the SureShrink

method is derived for the purpose of soft thresholding. As mentioned earlier, the optimal hard

threshold is set to be twice that used by the soft threshold.

Figure 3.8 illustrates the results of denoising the test image using the SureShrink technique,

applied on the first five decomposition levels of the wavelet tree. Note that this scheme yields better

results as compared to the LevelShrink thresholding technique presented in the previous section.

However, this improvement is gained at the expense of an increase in computational complexity.

This is evident when comparing the execution times of the hard and soft BayesShrink thresholding

schemes to those of the VisuShrink and LevelShrink methods.
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Wavelet Decomposition Level

Level 9 8 7 6 5

Horizontal 117.74 40.29 23.90 8.95 4.14

Vertical 117.74 30.57 15.21 7.96 3.01

Diagonal 117.74 110.14 28.70 12.28 3.97

Table 3.3: The optimal thresholds for the various wavelet decomposition levels and subbands obtained by

the SureShrink soft thresholding scheme, for the first five wavelet decomposition levels.

The wavelet thresholding methods discussed so far assume no knowledge of the original signal or

its probability distribution. These methods are based on simple and general assumptions, such as

the signal is assumed to belong to a wide class of piecewise regular practical signals and real-world

images and that the noise is independent of the signal.

Hard SureShrink thresholding Soft SureShrink thresholding

RMSE=9.89, PSNR=28.23. RMSE=9.96, PSNR=28.16.

Execution time ≈ 973 secs. Execution time ≈ 989 secs.

Figure 3.8: Hard and soft thresholding denoised estimates of “Lenna” using the SureShrink thresholding

method applied on the first five decomposition levels of the wavelet tree. Note that the threshold for hard

thresholding is twice that of the optimal Sure threshold derived for soft thresholding.

Next, BayesShrink, which is an adaptive wavelet thresholding method that is based on Bayes
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theory, is described and implemented.

3.2.4 BayesShrink

The BayesShrink wavelet thresholding method [13, 14, 15, 16] adopts Bayesian approach which

assumes the knowledge of the probability distribution of the original signal and seeks to optimize

the threshold operator T (., λ) for the purpose of minimizing the expected risk. In particular, it is

assumed that, for the various subbands and decomposition levels, the wavelet coefficients of the

original image follow approximately a Generalized Gaussian Distribution(GGD). In particular, the

wavelet coefficients, Xsub
j , of size Mj and located in subband sub ∈ {horizontal, vertical, diagonal}

and at decomposition level j ∈ {1, 2, . . . , J} can be modeled by a Generalized Gaussian Distribu-

tion(GGD), which is given by , which is given by

GGσ
Xsub
j

,β(x) = C(σXsub
j
, β)e

−[α(σ
Xsub
j

,β)|x|]2

, for ∞ < x <∞ and β > 0 (3.28)

where

α(σXsub
j
, β) =

√

Γ(3/β)
Γ(1/β)

σXsub
j

, and C(σXsub
j
, β) =

βα(σXsub
j
, β)

2Γ(1/β)
. (3.29)

The parameter σXsub
j

is the standard deviation and β is the shape parameter. It has been observed

[13, 14, 15, 16] that, using a shape parameter β ranging from 0.5 to 1, the distribution of the

wavelet coefficients in a subband can be described for a large set of natural images.

Recall that in the wavelet domain, the following relationship holds:

Ysub
j = Xsub

j +Wsub
j (3.30)

Due to the independence assumption between the original signal x and the noise w, the joint dis-

tribution of Xsub
j andWsub

j is the product of the distribution of Xsub
j andWsub

j . The conditional

probability distribution of Xsub
j , given the observed noisy wavelet coefficients Ysub

j , is called the

posterior distribution. This posterior distribution can be used to construct a decision soft thresh-

olding operator Ts(., λ) that computes a denoised estimate X̂sub
j = T (Xsub

j , λ) of Xsub
j from the

noisy data Ysub
j by minimizing the Bayes risk.

More specifically, assuming that the noiseless wavelet coefficients, Xsub
j located in subband

sub ∈ {h, v, d} and decomposition level j = 1, 2, . . . , J , follows the GGD distribution. Then, β

and σXsub
j

are empirically estimated for each subband and try to find the optimal threshold λ∗Bayes
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which minimizes the Bayesian risk function, defined as the expected value of the mean square error:

R(Xsub
j , λ) = E[||Xsub

j − X̂sub
j ||2] (3.31)

= EXsub
j

[EYsub
j
|Xsub

j [(Xsub
j − X̂sub

j )2]], (3.32)

where

X̂sub
j = Ts(Y

sub
j , λ), (3.33)

Ysub
j |Xsub

j ∼ N(x, σ2w) and (3.34)

Xsub
j ∼ GGDσ

Xsub
j

,β . (3.35)

For each decomposition level j ∈ {1, 2, . . . , J} and subband sub ∈ {horizontal, vertical, diagonal},
the the optimal threshold λsub∗j is then given by

λsub∗j (σXsub
j
, β) = argminλR(X

sub
j , λ). (3.36)

which is a function of the parameters σXsub
j

and β.

Since there is no closed form solution for λsub∗j , numerical calculation is used to find its value.

It was discovered that the threshold value set by

λ̂sub∗j =
σ2w
σXsub

j

(3.37)

is near optimal and indeed very close to λsub∗j [13, 14, 15, 16]. The estimated threshold λ̂∗Bayes =

σ2
w

σ
Xsub
j

is not only nearly optimal but also has an intuitive appeal. The normalized threshold,
λ̂Bayes
σw

,

is inversely proportional to σXsub
j

, the standard deviation of Xsub
j , and proportional to σw, the

noise standard deviation. This quantity can be interpreted as a noise-to-signal-ratio. There are

two limiting cases:

• When σw

σ
Xsub
j

<< 1, the signal is much stronger than the noise,
λ̂sub∗j

σw
is chosen to be small in

order to preserve most of the signal and remove some of the noise. This occurs near edges

and other high frequency content of the signal where the noise to signal ratio is relatively

small. Performing little or no denoising or smoothing in these sub-regions will preserve the

sharpness of the image edges.

• On the other hand, when the noise-to-signal ratio is high, i.e. σ2
w

σ
Xsub
j

>> 1, the noise dominates

and the normalized threshold is chosen to be large to remove the noise which has overwhelmed

the signal. Generally, this occurs in flat and low activity sub-regions of the image where extra
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denoising and smoothing can be performed without degrading the most important features

of the image.

Thus, this choice of threshold adapts to both the signal and the noise characteristics as reflected in

the parameters σw and σXsub
j

. It is also important to note that this Bayesian thresholding strategy

is consistent with the human visual system which is less sensitive to the presence of noise in the

vicinity of edges. However, the presence of noise in flat regions of the image is perceptually more

noticeable. Exploiting these unique characteristics of the human visual system has been explored

in the literature, and the Lee filter, described in chapter 1, is one such example [49].

Parameter Estimation

The GGD parameters, σXsub
j

and β, need to be estimated to compute λ̂∗Bayes. The parameter β

does not explicitly enter into the expression of λ̂Bayes. Therefore it suffices to estimate directly the

signal standard deviation σXsub
j

. The observation model is:

Ysub
j = Xsub

j +W, (3.38)

with X andW being independent of each other, hence

σ2
Ysub
j

= σ2
Xisubj

+ σ2w, (3.39)

where σ2
Ysub
j

is the variance of the observed noisy image Y and can be computed as follows:

σ̂2
Ysub
j
≈ 1

Mj

Mj
∑

m

[Y sub
j,m − Ȳ sub

j ]2, where Ȳ sub
j =≈ 1

Mj

Mj
∑

m

Y sub
j,m . (3.40)

Thus σ2
Xsub
j

can be estimated by re-arranging Eq. (3.39) as follows:

σ2
Xsub
j

= σ2
Yisubj

+ σ2w (3.41)

However, this estimate may be negative, so to avoid these unexpected cases, one may choose:

σ̂Xsub
j

=

√

max(σ̂2
Ysub
j

− σ̂2w, 0). (3.42)

The noise variance, σ2w, can be estimated using the wavelet-based method outlined in section 1.1.2.

Once the statistics, σXsub
j

and σ2w, are estimated, the near optimal threshold, λ̂sub∗j , adopted by

the BayesShrink method can be computed as follows:

λ̂sub∗j =
σ̂2w
σ̂Xsub

j

(3.43)
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Note that in the case where σ̂2w ≥ σ̂2
Ysub
j

, σ̂2
Xsub
j

is taken to be zero, i.e. λ̂sub∗j −→∞. Alternatively,

in practice, one may choose λ̂sub∗j = maxm=1,2,...,Mj
{|Y sub

j,m |}, and all coefficients are set to zero.

In summary, the BayesShrink thresholding technique performs soft thresholding with an adap-

tive, data-driven, subband and level-dependent near optimal threshold given by:

λ̂sub∗j =











σ̂2
w

σ̂
Xsub
j

, if σ̂2w < σ̂2
Ysub
j

,

maxm=1,2,...,Mj
{|Y sub

j,m |}, otherwise,

(3.44)

for each subband sub ∈ {h, v, d} and each decomposition level j = 1, 2, . . . , J.

Experimental Results

The BayesShrink thresholding method was implemented for the purpose of denoising the noisy test

image of “Lenna”. Table 3.4 illustrates the optimal thresholds obtained by using the BayesShrink

technique. Note that the optimal thresholds vary not only from one level to the next but also from

one subband to another. Similar to the SureShrink thresholding strategy, the optimal threshold

value vary from one wavelet decomposition level to another as from one subband to the next. Note

also, similar to the previous two adaptive thresholding methods, BayesShrink uses larger threshold

values at finer scale levels of the wavelet tree and smaller thresholds for more coarse scales. Similar

to the SureShrink case, the the optimal threshold adopted by the BayesShrink method is derived

for the purpose of soft thresholding. The optimal hard threshold is again chosen to be twice that

used by the soft threshold.

Wavelet Decomposition Level

Level 9 8 7 6 5

Horizontal 130.09 43.42 16.43 6.82 3.04

Vertical 77.66 25.90 9.52 3.62 1.18

Diagonal 219.09 55.99 17.92 7.34 2.70

Table 3.4: The optimal thresholds for the various wavelet decomposition levels and subbands used by the

BayesShrink soft thresholding scheme for the first five wavelet decomposition levels.

The results obtained by the BayesShrink for the image of “Lenna” is shown in Figure 3.9.

The BayesShrink performs better than SureShrink in terms of the RMSE and PSNR fidelity

measures. The reconstruction using BayesShrink is smoother and more visually appealing than
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the one obtained using SureShrink. This not only validates the approximation of the wavelet

coefficients to the GGD but also justifies the use of the Bayes threshold:

λ̂sub∗j =
σ̂2w
σ̂Xsub

j

. (3.45)

which is related to the noise-to-signal ratio. Using this threshold, BayesShrink yields results that

are consistent with the human visual system where extra denoising is performed in flat regions of

the image and less denoising is performed near edges to preserve the sharpness of the image. Note

also that this threshold is independent of the distribution parameter β which makes it more robust

as it does not depend on the estimate of the distribution parameters.

Hard BayesShrink thresholding Soft BayesShrink thresholding

RMSE=10.07, PSNR=28.07. RMSE=9.93, PSNR=28.19.

Execution time ≈ 12 secs. Execution time ≈ 14 secs.

Figure 3.9: Hard and soft threshold denoised estimates of “Lenna” using using the BayesShrink method

applied on the first five decomposition levels. Note that the threshold for hard thresholding was chosen to

be twice that of the optimal Bayes threshold derived for soft thresholding.

Next, a brief comparison between the four wavelet thresholding methods for image denoising

described and implemented in this section is presented.
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3.2.5 Comparison Between the Studied Wavelet Thresholding Methods

This section is concluded by a brief comparison between the various wavelet thresholding methods

studied in this section. Figures 3.10 and 3. 11 summarize the results for the various schemes.

The VisuShrink method, which uses the universal threshold uniformly throughout the wavelet tree,

yields the worst results. This is expected because the universal threshold tends to be conservatively

high resulting in extra smoothing and visible degradation of the edges and sharpness of the image.

Also applying the same threshold uniformly throughout the wavelet tree is counter-intuitive since

the local statistics of the wavelet tree vary generally from one decomposition level to the next and

one subband to another. The LevelShrink thresholding scheme, which uses thresholds that adapt

only to the wavelet decomposition level, yields better results than VisuShrink. However, if more

adaptive thresholds that vary not only from one decomposition level to the next but also from one

subband to another are selected, even better results can be achieved. For each of the adaptive

thresholding methods, note that larger threshold values are used at finer scale levels of the wavelet

tree and smaller thresholds are used for more coarse scales.

The critical thresholds for the SureShrink and BayesShrink methods were derived for the soft

thresholding operator Ts(., λ). However, a widely acceptable practice in the literature where the

critical threshold for the hard-thresholding operator is taken to be twice that corresponding to soft

thresholding was adopted. The BayesShrink technique yields the best results and also adopts a

thresholding strategy that not only performs well but it is also intuitively appealing. The quantity
λ̂sub∗j

σ̂w
= σ̂w

σ̂
Xsub
j

can be interpreted as a noise to signal ratio. BayesShrink performs denoising that is

consistent with the human visual system that is less sensitive to the presence of noise in the vicinity

of edges. However, the presence of noise in flat regions of the image is perceptually more noticeable

by the human visual system. BayesShrink performs little denoising in high activity sub-regions to

preserve the sharpness of edges but completely denoises the flat sub-parts of the image.

Next, the use of the cycle spinning algorithm in order to improve the quality of the denoised

images obtained by various wavelet thresholding methods is illustrated.

3.3 Improving Wavelet Image Denoising via Cycle Spinning

In spite of the significant developments outlined in the previous section, wavelet thresholding meth-

ods are not without limitations. Most notably, denoising with the traditional wavelet transform

(orthogonal, maximally decimated) wavelet transforms often exhibit disturbing visual artifacts. In
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VisuShrink: Hard thresholding VisuShrink: Soft thresholding

RMSE=12.37, PSNR=26.28. RMSE=15.76, PSNR=24.18.

LevelShrink: Hard thresholding LevelShrink: Soft thresholding

RMSE=10.01, PSNR=28.11. RMSE=11.30, PSNR=27.07.

Figure 3.10: Zooming in on the denoised estimates obtained by VisuShrink and LevelShrink meth-

ods reveals the pseudo-Gibbs artifacts.
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SureShrink: Hard thresholding SureShrink: Soft thresholding

RMSE=9.89, PSNR=28.23. RMSE=9.96, PSNR=28.16.

BayesShrink: Hard thresholding BayesShrink: Soft thresholding

RMSE=10.07, PSNR=28.07. RMSE=9.93, PSNR=28.19.

Figure 3.11: Zooming in on the denoised estimates obtained by SureShrink and BayesShrink meth-

ods reveals the pseudo-Gibbs artifacts.
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particular, pseudo-Gibbs phenomena tend to be noticeable in the vicinity of edges. This is mainly

due to the lack of translation invariance of the wavelet basis.

As illustrated in Figures 3.10 - 3.11, when zooming on the denoised images obtained by the

standard wavelet thresholding methods described in the previous section namely, VisuShrink, Lev-

elShrink, SureShrink and BayesShrink, the pseudo-Gibbs artifacts become quite evident. In this

section, the cycle spinning algorithm will be applied in order to improve the performance of these

thresholding methods and reduce some of these disturbing artifacts in the denoised images.

The idea of using “cycle spinning” has been previously proposed for the purpose of reducing

the pseudo-Gibbs disturbing artifacts that are often present in wavelet-based image reconstruction

and denoising [17]. This is performed as follows:

For a range of shifts, one shifts the image, horizontally or vertically or both, denoises

the shifted data using a wavelet thresholding technique of choice, and then unshifts the

denoised image. Doing this for each of a range of shifts, and averaging the several results

so obtained, produces a reconstruction subject to weaker pseudo-Gibbs phenomena than

the thresholding-based denoising using the traditional orthogonal wavelet transform.

This is a consequence of the fact that the discrete wavelet transform is not translation invariant

in the case of a periodic signal. In other words, if a periodic signal is shifted, then its wavelet

decomposition coefficients are not simply permuted. Mathematical details of this fact have been

studied in [53].

The Cycle Spinning Algorithm

In order to formally define this process one needs to introduce the appropriate notations. Consider

a noisy image, y of size M ×M . Clearly, there are various ways the image could be shifted; one

could shift it horizontally, vertically or both. In general, the results are more sensitive to the total

number of shifts rather than to the manner the shifting is performed. Thus, a simple shifting

operation that shifts the image horizontally and vertically by the same amount h along its diagonal

is adopted. The two-dimensional circular shifting operator Dh is defined as follows:

y(h) = Dh(y), (3.46)

where

y(h) = [y(1 + h mod M, 1 + h mod M), . . . , y(M + h mod M,M + h mod M)]. (3.47)
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and k mod M represents the remainder when k is divided by M . Note that the shift operator is

unitary and

(Dh)
−1 = D−h (3.48)

Also, as before the thresholding operator with corresponding threshold λ is denoted by Tλ.

In view of these notations, the cycle spinning algorithm for the purpose of reducing the pseudo-

Gibbs artifacts can be outlined as follows:

The Cycle Spinning Algorithm:

For a one-dimensional signal of size M and a given number of shifts K ≤M :

1. Initialize the sum signal: s = 0.

2. For each shift h in a range of shifts, {0, 1, 2, . . . ,K}, repeat:

• Shift the noisy signal y by h to obtain the shifted signal y(h):

y(h) = Dh(y) (3.49)

• Compute the discrete wavelet transform, Y(h) of y(h):

Y(h) = DWT (y(h)). (3.50)

• Apply the thresholding operator Tλ of choice to obtain the denoised version,

X̂(h) of Y(h):

X̂(h) = Tλ(Y
(h)). (3.51)

• Take the inverse discrete wavelet transform of X̂(h) to obtain a denoised ver-

sion, x̂(h) of the shifted signal:

x̂(h) = IDWT (X̂(h)). (3.52)

• Now unshift x̂(h) to obtain a denoised version, x̂, of the original signal:

x̂ = D−h(x
(h)) (3.53)

• Update the sum signal of these estimates:

s = s+ x̂. (3.54)
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3. Compute the average of the above denoised estimates to obtain one denoised signal

that has resulted from the above K estimates:

x̂K =
s

K
(3.55)

This algorithm can be summarized as follows:

x̂K =
1

K

K
∑

h=0

D−h(IDWT (Tλ(DWT (Dh(y)))). (3.56)

Since the image is assumed to be periodic with period M , better results can be obtained by using

a higher number of shifts K ∈ {0, 1, 2, . . . ,M − 1}. When K = M − 1, it is said that total-

shift cycle spinning is performed, otherwise only partial-shift cycle spinning is performed. As will

be illustrated, the quality of the denoised signal, as measured by the RMSE and PSNR fidelity

measures, improves considerably for the first few values of K. However, for larger values of K, no

visible gain in achieved by increasing K even further.

Clearly the cycle spinning algorithm may be rather computationally expensive. Indeed, when

incorporating this algorithm with K shifts for any denoising method, the computational complexity

is multiplied by K times.

Experimental Results

A range of shifts was tested and it found that the quality of the denoised image stabilizes after only

a few shifts. Thus, a range of shifts between K = 1 and K = 16 is selected, that is:

1 ≤ h ≤ K = 16. (3.57)

The cycle spinning algorithm was applied to the various thresholding methods, described in the

previous section, and the results are illustrated in Figures 3.12 - 3.15. In view of these results, and

after comparing the zoomed images in each of these figures to those illustrated in Figures 3.10 -

3.11, where no cycle spinning is performed, it can be concluded that for each of the thresholding

methods (hard or soft), the application of the cycle spinning method has resulted in some reduction

of the pseudo-Gibbs artifacts and overall improvement of the quality of the denoised images.

In Figure 3.16, the quality of the denoised images as a function of the number of shifts is

illustrated for the various wavelet thresholding methods, in order to assess the benefits of using the

cycle spinning for the various schemes. Examining this figure, one may conclude that SureShrink

and BayesShrink yield comparable results that are better than the results obtained by VisuShrink
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and relatively better than the results obtained by the LevelShrink thresholding technique. However,

in general, the BayesShrink method is preferred due to its simplicity compared to SureShrink,

which is computationally expensive. Besides, the BayesShrink method adopts a threshold that is

intuitively appealing and consistent with the human visual system. Note also that for most of the

methods, the cycle spinning algorithm results in significant improvement of the quality of the image

after only a few shifts. After the first few shifts, the quality of the denoised estimate becomes less

sensitive to increasing the number of shifts.

In this section, the use of the cycle spinning idea for the purpose of reducing the pseudo-Gibbs

artifacts and improving the quality of the denoised estimates obtained by the various wavelet

thresholding methods was illustrated. Next, a context-based thresholding strategy that takes into

consideration the content of an immediate neighborhood of each wavelet coefficient before thresh-

olding will be proposed and implemented.

3.4 Context-Based Thresholding for Image Denoising

Recall that all the wavelet thresholding for image denoising methods covered so far adopt the

standard hard thresholding operator Th(., λ) and the soft thresholding operator Ts(., λ), as defined

in (3.4) and (3.5), respectively. The following observations regarding the use of these thresholds

are outlined:

• While some of the wavelet thresholding methods studied so far, in particular the LevelShrink,

SureShrink and BayesShrink, attempt to employ thresholds that are adaptive to the local

characteristics of the signal, they all apply the above hard and soft thresholding operators.

• For a given threshold λ, the hard and soft thresholding operators defined above are global and

non-adaptive in nature. They are applied on each wavelet coefficients in the same manner

regardless of its location or context. The thresholded coefficient only depends on the value of

the noisy coefficients and it is independent of other neighboring or context coefficients.

• While the wavelet transform performs some degree of decorrelation, it is evident that there

is still a some degree of redundancies within the wavelet decomposition tree. In fact, natural

images structures generally possess similarities across resolution scales of their wavelet coef-

ficients. For instance, wavelet coefficients corresponding to a high activity subregion (such as

edges) are often clustered together and copied across the various resolutions and subbands of
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(a) Hard VisuShrink thresholding (b) Zooming in on the image in (a)

RMSE=10.27, PSNR=27.90. RMSE=14.94, PSNR=24.64.

(c) Soft VisuShrink thresholding (d) Zooming in on the image in (b)

RMSE=14.94, PSNR=24.64.

Figure 3.12: Results of applying the VisuShrink with hard and soft thresholding using cycle spinning with

K=16 diagonal shifts.
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(a) Hard LevelShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.34, PSNR=29.70.

(c) Soft LevelShrink thresholding (d) Zooming in on the image in (c)

RMSE=10.61, PSNR=27.61.

Figure 3.13: Results of applying the LevelShrink hard and soft thresholding using cycle spinning with K=16

diagonal shifts.
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(a) Hard SureShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.39, PSNR=29.65.

(c) Soft SureShrink thresholding (d) Zooming in on the image in (c)

RMSE=8.73, PSNR=29.31.

Figure 3.14: Results of applying the SureShrink with hard and soft thresholding using cycle spinning with

K= 16 diagonal shifts.
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(a) Hard BayesShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.64, PSNR=29.40. RMSE=8.66, PSNR=29.38.

(c) Soft BayesShrink thresholding (d) Zooming in on the image in (c)

RMSE=8.66, PSNR=29.38.

Figure 3.15: Results of applying the BayesShrink with hard and soft thresholding using cycle spinning with

K=16 diagonal shifts.
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 LevelShrink hard thresholding 
 SureShrink hard thresholding
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 VisuShrink hard thresholding
 LevelShrink hard thresholding 
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 VisuShrink soft thresholding
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 SureShrink soft thresholding
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Figure 3.16: Comparison between the various thresholding methods after applying the idea of the cycle

spinning with K=16 shifts.
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the wavelet tree, as illustrated in Figure 2.12 (a). Thus, one should expect some degree of

dependence among neighboring wavelet coefficients corresponding to high activity subregions

of the image. Hence, thresholding these coefficients independently may not be appropriate.

• Doing so may result in zeroing out some of the significant wavelet coefficients in a cluster of

correlated wavelet coefficients, resulting in a few significant wavelet coefficients surrounded by

many thresholded coefficients, which were set to zero. In the denoised image, this generally

results in over-smoothing, blurring and ringing artifacts. These blurring and over-smoothing

artifacts are most evident in the case of the VisuShrink and the LevelShrink thresholding

methods where the denoised estimates appear overly smooth and blurry.

• It seems more reasonable that when thresholding a wavelet coefficient to take the values of

other neighboring coefficients into consideration.

Next, the context-based localized thresholding operators are defined.

3.4.1 Context-Based Thresholding Operators

Many efforts in the literatures have focused on selecting more adaptive thresholds [13, 14, 54,

21, 22, 54, 73]. In particular in [13], an effective, highly spatially adaptive thresholding strategy

that selects thresholds that vary from one coefficients to another was proposed. However, all of

these methods focus only on making the thresholds adaptive and continue to apply the usual hard

and soft thresholding operators defined above. In this section, located thresholding operators that

account for the local content characteristics of the wavelet coefficients will be proposed.

As mentioned above, it seems reasonable to take some context of each wavelet coefficient into

consideration before thresholding. There are many ways of defining a suitable context of a wavelet

coefficient. Employing contexts of wavelet coefficients has been shown to be effective for the purpose

of image compression [66, 68]. The use of context-based thresholding was also used for the purpose

of deriving threshold values, λ, that are more adaptive. Here a context-based and localized soft

and hard thresholding operators are proposed. A simple context, which contains the neighboring

wavelet coefficients centered at the coefficient to be thresholded, is considered. That is, for each

wavelet coefficient, yi,j , its context is defined by the m × m mask centered at yi,j , and denoted

by Cm×m(yi,j). For this context, the maximum (in magnitude) value with this mask to be Mi,j is
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defined as follows:

Mi,j = max
(k,l)∈Cm×m(yi,j)

|yk,l|. (3.58)

Now for a given threshold λ, consider the following modified, context-based hard and soft thresh-

olding operators:

• The context-based hard thresholding operator is defined as:

X̂ = T c
h(Y, λ) such that x̂ = T c

h(yi,j , λ) =







yi,j , if |yi,j | ≥ λ or Mi,j ≥ λ,

0, otherwise.
(3.59)

• The context-based soft thresholding operator on the other hand is defined as:

X̂ = T c
s (Y, λ) such that x̂ = T c

s (yi,j , λ) =































yi,j − λ, if yi,j ≥ λ,

yi,j + λ, if yi,j ≤ −λ,
yi,j if |yi,j | < λ and Mi,j ≥ λ,

0, otherwise.

(3.60)

These modified, context-based and localized thresholding operators are motivated in the following

observations:

1. Note how these thresholds clearly take the values of the neighboring coefficients, located

within the defined mask, into consideration before thresholding each wavelet coefficients.

2. For the modified hard thresholding operator, only those wavelet coefficients that are insignif-

icant and also surrounded by insignificant coefficients are set to zero. However, a significant

coefficient is kept unchanged if it is located near a significant one.

3. Similarly, for the modified soft thresholding operator, a wavelet coefficient is set to zero if and

only if it is insignificant and it all of its neighbors are insignificant. However, an insignificant

coefficient that is located near a significant one is left unchanged.

4. Clearly, the issue of selecting the context and its size requires further investigation. Larger

masks result in sharper, but noisier estimates, exhibiting more artifacts. Also, defining the

context itself requires further investigation. Instead of choosing the neighboring wavelet

coefficients, perhaps one could choose a context containing the parent or children of the

wavelet coefficient to be investigated as it is usually done in context-based wavelet image
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coding such as in [66, 68]. Also, as described above, when an insignificant coefficient is

surrounded by a significant one, it is kept unchanged. Clearly, one may decide to alter the

value of such a coefficient without setting it to zero. Also, instead of taking the maximum

absolute value, Mi,j , into consideration one may consider other statistics, such as the average

or median. These are important issues that are open for investigation and they will be the

focus of future research.

Next, the proposed thresholding operators will be implemented for the purpose of image denoising

using the various various wavelet thresholding methods.

3.4.2 Experimental Results

The above context-based thresholding approach for the purpose of restoring and enhancing the noisy

image of “Lenna”, was implemented using the various wavelet thresholding methods studied in the

previous section. A mask size of 3× 3 coefficients was used for the experimental implementations.

It was observed that when using larger masks, better quantitative results, as reflected by the RMSE

and PSNR measures, may be obtained. However the resulting denoised estimates are not visually

preferred since they tend to be noisy and suffer from some disturbing artifacts. This is the case

because, for larger masks, more wavelet noisy coefficients are kept unchanged and hence resulting

is reconstruction of some of the noise.

Figures 3.17 and 3.18 illustrate the denoised estimates obtained using hard and soft context-

based thresholding for VisuShrink, LevelShrink, SureShrink and BayesShrink methods. Also, Table

3.5 summarizes a comparison of the quality of the denoised images obtained by the various thresh-

olding methods using the traditional and the context-dependent thresholding operators. In view of

these results it is observed that:

• For all thresholding methods, there is an improvement in the quality of the denoised estimates

obtained using the context-based thresholding operators compared to the denoised images

obtained by traditional thresholding schemes.

• For the VisuShrink and the LevelShrink thresholding methods, note that the denoised images

obtained using the new thresholding strategy appear sharper and less blurry than the images

obtained by the traditional thresholding methods. These improvement are also reflected

through the RMSE and PSNR fidelity measures, as illustrated in Table 3.5. Note that best

result is obtained when using the context-based hard LevelShrink thresholding method.
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(a) Hard VisuShrink thresholding (b) Soft VisuShrink thresholding

RMSE=10.21, PSNR=27.95. RMSE=14.16, PSNR=25.11.

(c) Hard LevelShrink thresholding (d) Soft LevelShrink thresholding

RMSE=9.37, PSNR=28.69. RMSE=10.07, PSNR=28.07.

Figure 3.17: Results of applying the context-based hard and soft thresholding using 3 × 3 masks for the
VisuShrink and the LevelShrink methods.
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(a) Hard SureShrink thresholding (b) Soft SureShrink thresholding

RMSE=9.66, PSNR=28.43. RMSE=9.01, PSNR=29.03.

(c) Hard BayesShrink thresholding (d) Soft BayesShrink thresholding

RMSE=10.02, PSNR=28.11. RMSE=9.02, PSNR=29.02.

Figure 3.18: Results of applying the context-based hard and soft thresholding using 3 × 3 masks for the
BayesShrink and the SureShrink methods.
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Traditional Thresholding Context-Based Thresholding

Hard Soft Hard Soft

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

VisuShrink 12.37 26.28 15.76 24.18 10.21 27.95 14.16 25.11

LevelShrink 10.01 28.11 11.30 27.07 9.37 28.69 10.07 28.07

SureShrink 9.89 28.23 9.96 28.16 9.66 28.43 9.01 29.03

BayesShrink 10.07 28.07 9.93 28.19 10.02 28.11 9.02 29.02

Table 3.5: Comparison between the results obtained using the various wavelet thresholding methods, using

the traditional as well as the context-based soft and hard thresholding operators.

• For SureShrink and BayesShrink, note that the gain stemming from the use of the context-

based thresholding operators is much more visible for the soft thresholding operators than for

the hard thresholding one. This is probably because the optimal thresholds corresponding

to these methods were originally derived for the purpose of soft thresholding. In fact, using

hard thresholding for SureShrink or BayesShrink adopts an ad-hoc method where the optimal

hard threshold is taken to be twice the value of the optimal soft threshold for these methods.

• The improvement achieved by the proposed context-based thresholding operators is more

evident for the case of the VisuShrink and LevelShrink than it is for the SureShrink and

BayesShrink methods. This is probably the case because the “optimal” thresholds for the

latter two methods were proposed for thresholding using the conventional soft thresholding

operator, as defined in (3.5). Thus, using these thresholds when applying the new thresholds

does not result in significant improvement.

Next, the cycle spinning algorithm will be incorporated for the purpose of improving the quality of

the denoised estimates obtained by the above context-based thresholding methods.

3.4.3 Enhancing Context-Based Thresholding via Cycle Spinning

The cycle spinning algorithm was incorporated in order to enhance the denoised estimates obtained

by the various modified wavelet thresholding methods which apply the new context-based thresh-

olding operators. Figures 3.19 - 3.22 illustrate the results obtained by using K = 16 shifts. As

before, note that quality of the denoised images is improved by using the cycle spinning methods.
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Table 3.6 illustrates the results obtained by using cycle spinning idea when the traditional as well

as context-dependent thresholding operators are used, for the various methods. Note that the

best overall result is obtained when using the context-based hard thresholding for the LevelShrink

method along with the cycle spinning method. Clearly, the use of the proposed context-based

thresholding operators yields better results than using the conventional hard and soft thresholding

operators before and after incorporating the cycle spinning idea. Again, note that the improve-

ment, resulting from the use of the context-based thresholding, is more evident when using soft

thresholding especially in the case of the VisuShrink and the LevelShrink thresholding methods.

As explained earlier, this is the case because the latter two methods use “optimal” thresholds that

are derived for the purpose of applying the conventional soft thresholding operator. Figures 3.23

and 3.24 also illustrate how the quality of denoised image improves with the number of shifts for

the various thresholding methods when using traditional and context-based thresholding. Note

that the quality of the denoised estimate improves rapidly for the first few shifts. However, after

a relatively small number of shifts, the quality of the image becomes more stable and little further

improvement is achieved by increasing the number of shifts even further.

Traditional Thresholding Context-Based Thresholding

Hard Soft Hard Soft

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

VisuShrink 10.27 27.90 14.94 24.64 8.87 29.18 12.76 26.01

LevelShrink 8.34 29.70 10.61 27.61 8.06 30.00 8.71 29.33

SureShrink 8.39 29.65 8.73 29.31 8.38 29.67 8.37 29.67

BayesShrink 8.64 29.40 8.66 29.38 8.71 29.33 8.36 29.69

Table 3.6: Comparison between the results obtained by the various wavelet thresholding methods, using

traditional and context-based soft and hard thresholding as well the cycle spinning idea with K = 16 shifts.

3.5 Summary and Concluding Remarks

In this chapter, a few standard wavelet thresholding methods were reviewed, implemented and

compared. These use of the cycle spinning algorithm for the purpose of reducing the Gibbs artifacts

that tend to be present in the denoised estimates was illustrated.
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(a) Hard VisuShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.87, PSNR=29.18.

(c) Soft VisuShrink thresholding (d) Zooming in on the image in (c)

RMSE=12.76, PSNR=26.01.

Figure 3.19: Results of applying the context-based VisuShrink with hard and soft thresholding using cycle

spinning with K=16 diagonal shifts.
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(a) Hard LevelShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.06, PSNR=30.00.

(c) Soft LevelShrink thresholding (d) Zooming in on the image in (c)

RMSE=8.71, PSNR=29.33.

Figure 3.20: Results of applying the context-based LevelShrink hard and soft thresholding using cycle

spinning with K=16 diagonal shifts.
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(a) Hard SureShrink thresholding (b) Zooming in on the image in (a)

RMSE=8.38, PSNR=29.67.

(c) Soft SureShrink thresholding (d) Zooming in on the image in (c)

RMSE=8.37, PSNR=29.67.

Figure 3.21: Results of applying the context-based SureShrink with hard and soft thresholding using cycle

spinning with 16 diagonal shifts.
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(a) Hard BayesShrink thresholding: K=16 (b) Zooming in on the image in (a)

RMSE=8.71, PSNR=29.33. RMSE=8.36, PSNR=29.69.

(c) Soft BayesShrink thresholding (d) Zooming in on the image in (c)

RMSE=8.36, PSNR=29.69.

Figure 3.22: Results of applying the context-based BayesShrink with hard and soft thresholding using cycle

spinning with 16 diagonal shifts.
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Figure 3.23: Comparison between the conventional and context-based (C-B) VisuShrink and LevelShrink

thresholding methods when applying the idea of the cycle spinning with K=16 shifts.
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Figure 3.24: Comparison between the conventional and context-based (C-B) SureShrink and BayesShrink

thresholding methods when applying the idea of the cycle spinning with K=16 shifts.
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Furthermore, the use of context-based and localized soft and hard thresholding operators that

takes into consideration the values of the neighboring coefficient before each wavelet coefficient

is thresholded, was proposed and implemented. It was shown that the use of these adaptive

thresholding operators is indeed beneficial resulting in an improvement of the quality of the denoised

estimates especially for the VisuShrink and LevelShrink thresholding methods. These improvements

lie in obtaining denoised estimates that are sharper and less blurry than the results obtained by the

traditional thresholding operators. Overall, it was found that the resulting gains are more evident

for the soft-thresholding strategy than when the hard thresholding operator is used. The use of the

cycle spinning idea with this new thresholding strategy has illustrated the benefits of using these

context-based thresholding operators even further and shown that restoration and enhancement of

the noisy image can be achieved by combining the use of the context-based thresholding with cycle

spinning idea.

In the next chapter, the potential of applying fractal-based image coding methods for the

purpose of image denoising will be explored.



Chapter 4

Fractal Image Denoising

In this chapter the potential of applying standard fractal methods for the purpose of image denoising

will be explored. As detailed in chapter 2, fractal image coding has received much interest over

the past decade, mostly in the context of image compression. However, little or no attention has

been given to the use of such fractal-based methods for the purpose of image enhancement and

restoration. Indeed, one of the original motivations for this study was the observation that a noisy

image is somewhat denoised when it is fractally coded. This led to the question of whether such a

simple fractal encoding of the noisy image could be used as a starting point to estimate the fractal

code of the noiseless image, perhaps with some knowledge of the noise, e.g., its variance. One can

then use this fractal code to reconstruct a denoised estimate of the original image. This question

will be examined in this chapter and the answer will be shown to be in the affirmative.

First, straightforward fractal-based coding of the noisy image is shown to perform rather well

as a denoiser. In retrospect, this is not surprising since the (white Gaussian) noise process is not

represented well by the (local) linear transform that maps parent blocks to child blocks, hence

resulting in noise reduction. Indeed, this is essentially the basis of the local linear minimum mean

squared error Lee filter [49] so that fractal coding may be considered to be closely related to Lee

filtering. Also, fractal-based schemes exploit local and global self-similarities that are inherent in

many classes of real-world images. Natural image structures possess similarities across other parts

of the image which can be exploited for fractal image coding. However, noisy structures have no

resemblance in other parts of the image and therefore cannot be accurately encoded using fractal

coders.

This initial investigative step is followed by proposing a simple, yet effective scheme of predicting

115
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the fractal code of the original image from the noisy one. Given a noisy image, it will be shown

that its fractal code parameters – in particular, the gray-level map coefficients – can be used to

estimate those of its noiseless counterpart, assuming that one knows (or can estimate) the variance

of the (white Gaussian) noise. This leads to an improvement in the fractal approximation to a target

image u. It will be shown that this method performs in a manner similar to that of the human visual

system, producing extra smoothing in flat, low activity regions and a lower degree of smoothing

near high activity regions, including edges. The use of the cycle spinning idea for the purpose of

reducing the blockiness artifacts that are inherent in standard fractal image representations will

also be explored.

The layout of this chapter is as follows: First, image denoising through simple fractal coding

will be illustrated. In section 2, a theoretical relationship between the fractal code of a noisy image

and the fractal code of its noiseless counterpart, will be derived. An outline of a scheme to predict

the true fractal code of the noiseless image will also be given. In section 3, the cycle spinning

algorithm will be implemented in order to improve the quality of the denoised estimates obtained

by the various fractal denoising schemes.

4.1 Image Denoising using Simple Fractal Coding

In this section, the effects of simply encoding a noisy image using a spatially based fractal scheme

are investigated. The noisy image used here is the same test image of “Lenna” which has been

degraded by an additive white Gaussian noise (AWGN) with standard deviation σw = 25.

4.1.1 Fractal Coding using Uniform Partitioning

As described in chapter 2, the standard fractal scheme performs a uniform partitioning of the

image for the purpose of fractal image coding. This scheme is used to encode the noisy test image

of “Lenna” for various fractal resolutions (M,N), and the results are illustrated in Figure 4.1.

These results are summarized in the following observations:

• The fractal representation at the resolution (M,N) = (32, 64) is the best, quantitatively, as

reflected by the RMSE and PSNR fidelity measures. However, this approximation is clearly

not as good as the one obtained by simply fractally encoding the noiseless image, using the

same fractal scheme and the same fractal resolution, as illustrated in Figure 2.5 (c). This

shows that although a significant degree of restoration and enhancement of the noisy image
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(a) Noisy image: σw = 25 (b) Fractal encoding: (M,N)=(16,32)

RMSE=25.01, PSNR=20.17. RMSE=13.94, PSNR=25.24.

Execution time ≈ 302 secs.

(c) Fractal encoding: (M,N)=(32,64) (d) Fractal encoding: (M,N)=(64,128)

RMSE=11.56, PSNR=26.87. RMSE=15.48, PSNR=25.59.

Execution time ≈ 1145 secs. Execution time ≈ 4803 secs.

Figure 4.1: (a) The original noisy image with noise standard deviation σw = 25 and (b)-(d) the standard

fractal representations of the noisy image of “Lenna” for various fractal resolutions (M,N). Note that the

gray-level coefficients were not quantized.
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has been achieved, the presence of noise has significantly affected the fractal code, resulting

in a less accurate fractal representation of the original image.

• For the lower resolution, (M,N) = (16, 32), most of the noise has been suppressed at the

expense of significant blockiness artifacts, over-smoothness and degradation of the sharpness

of edges.

• For the higher resolution, (M,N) = (64, 128), the fractal representation appears rather noisy.

This is the case because, for this resolution, the child blocks are of size 4×4 pixels and thus one

is fitting 16 neighboring pixels in each child block which tend to be more correlated. Hence

a better fit can be achieved for small child blocks, resulting in more reconstruction of the

noise. Although the fractal approximation appears noisy, some degree of the noise has been

suppressed even at this resolution. This is evident when comparing the fractal reconstruction

to the original noisy, and it is also reflected by the fidelity measures.

Clearly, there is a trade-off between the fractal resolution and the quality of the fractal represen-

tation. A lower resolution results in smoothing most of the noise at the expense of over-smoothing

of edges and blockiness artifacts. On the other hand, a higher resolution results in a greater

reconstruction of the noise, while preserving the high frequency content (edges) of the image.

One way to exploit this trade-off between the partition size and the reconstruction of the noise

is to employ a quadtree partitioning strategy for the purpose of fractal image coding. Hence,

the image partitioning is content-dependent. On one hand, the smoother regions of the original

noiseless image tend to be dominated by the noise, so one can partition the image coarsely, hence

resulting in considerable reduction of the noise. On the other hand, within regions of high activity,

such as edges, one can adopt a less coarse (finer) partition hence preserving the sharpness of these

features while suppressing some of the noise as well. This process is described next in more detail.

4.1.2 Fractal Coding using Quadtree Image Partitioning

In principle, the human visual system is less sensitive to the presence of noise near edges and

other high activity subregions of the image, while noise in flat subregions is more perceivable.

Human observers tend to subjectively prefer sharper images with little noise over blurred noiseless

images. In fact, psychophysical studies have shown that human observers are less sensitive to

random noise variations in the vicinity of strong edges than in constant signal regions, because

high local contrast masks the nearby noise [62]. This motivated the investigation of the the use of
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the quadtree partitioning scheme which allows for adapting the image partitioning to its content

by using different fractal resolutions or block sizes for different parts of the image. In particular,

one expects that finer resolutions (i.e. smaller sub-blocks) will be used near edges and other high

activity areas. From the previous section, these areas will yield noisy fractal representations while

preserving the edges well. The presence of an acceptable amount of noise in these high activity

subregions of the fractal representation may not be a problem due to the fact that the human

visual system is less sensitive to noise near edges. On the other hand, it is expected that a more

coarse partitioning will be suitable for flat and low activity regions, resulting in a higher degree of

smoothing and denoising.

Quadtree Decomposition Criterion

As described in chapter 2, quadtree-based fractal coding adopts an adaptive, image-dependent

partitioning strategy in which square child sub-blocks are either fractally encoded or broken down

into four quadrants in a recursive tree structure. Various quadtree decomposition criteria were

investigated in [33], and it was found that the child block variance is the optimal decomposition

criterion for the purpose of fractal image compression.

For the purpose of fractally encoding and restoring a noisy image, a signal-to-noise ratio (SNR)

quadtree decomposition criterion will be used. The SNR, γ, of a noise-free child sub-block Y, is

computed as

γ =
σ2Y
σ2w

. (4.1)

However, the noise-free child block Y is not available and only its noisy version, Ŷ, defined by

Ŷ = Y +w (4.2)

can be observed. Thus, under the assumption that the original image u and the noise w are

statistically independent, the following relationship can be established:

σ2
Ŷ

= σ2Y + σ2w or equivalently σ2Y = σ2
Ŷ
− σ2w. (4.3)

Consequently, the SNR γ can be estimated from the noisy child sub-block Ŷ and the noise variance

σ2w as follows:

γ =
σ2
Ŷ
− σ2w

σ2w

=
σ2
Ŷ

σ2w
− 1. (4.4)
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However, in practice, this quantity may be negative when σ2
Ŷ
< σ2w, thus a more practical estimate

of the SNR is given by

γ = max {
σ2
Ŷ

σ2w
− 1, 0}. (4.5)
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Figure 4.2: Distortion curves illustrating the quality

of the fractal representations as a function of the SNR

threshold, for the noisy images of “Lenna”, “Barbara”,

“Boat” and “Mandrill”, with σ2
w = 625. The optimal

threshold for “Lenna” is seen to be γc ≈ 0.25.

Since higher SNR values reflect the exis-

tence of edges or other high pixel variability

within the sub-block, then a sub-block is parti-

tioned into four quadtrees if its SNR, γ, exceeds

a prescribed threshold γc. Otherwise, if a sub-

block has a small SNR, then it is assumed that

it is dominated by noise and fractally encod-

ing this sub-block will result in significant noise

reduction, especially for larger block sizes.

Figure 4.2 illustrates the relationship be-

tween the quality of the quadtree-based fractal

representations and the signal to noise thresh-

old, γc, for the the noisy images of “Lenna”,

“Barbara”, “Boat” and “Mandrill”, with noise

variance σ2w = 625. Note that there is a trade-

off between the quadtree-resolution and the re-

construction of the noise. On the one hand,

a higher SNR threshold of γc results in coarse

quadtree partitioning which, in turn, produces smoother yet coarser fractal representations of the

image. On the other hand, a lower SNR threshold yields a finer quadtree partitioning, resulting in

finer but noisier fractal representations. For instance, this figure also shows that there is an optimal

critical SNR threshold, γc ≈ 0.25, for “Lenna”. This represents an optimal trade-off between the

quadtree-based fractal resolution and the noise reconstruction.

Whenever using the quadtree partitioning algorithm for the purpose of fractal image coding,

one has to choose a threshold for the decomposition criterion. In this case, one has to determine the

“optimal” value, γc, for the SNR threshold decomposition criterion. As illustrated in Figure 4.2,

note that quality of the various fractal representations is rather stable and is not highly sensitive
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to various values of γc, for 0 < γc ≤ 0.45. This is the case especially for the Barbara and Mandrill

images. For the image of interest, “Lenna”, note that, 25.6 ≤ PSNR ≤ 26.3, whenever 0 < γc ≤ 0.5,

with an optimal value for the SNR threshold is γc ≈ 0.25. From Eq. (4.4), this seems to indicate

that one partitions a noisy image sub-block Ŷ if

γ ≥ 0.25 or equivalently σ2
Ŷ
≥ 1.25σ2w. (4.6)

This decomposition criterion also seems reasonable for the other test images as well. In general,

one expects the optimal value for γc to depend on the image and the noise level, so one can,

experimentally, generate lookup tables for classes of images and various noise levels. Thus, γc, can

be viewed as a denoising fine-tuning parameter that measures the trade-off between suppressing

the noise and reconstructing the high frequency content and important features of the image, such

as edges. This is somewhat similar to the idea of using fine-tuning parameters adopted in JPEG,

which are obtained from lookup tables. These parameters are used to visually enhance the quality

of the image representation.

Experimental Results

Figure 4.3 illustrates the quadtree segmentation of the noisy image of “Lenna” as well as the fractal

representation of the image using SNR threshold γc = 0.25. Note that the fractal representation has

a relatively high RMSE (or low PSNR) due to the presence of noise near edges – a careful observation

of the fractal representation will reveal such noise. However, the edges remain sharp, in contrast to

the uniform partitioning case, which results in over smoothing throughout the denoised estimate.

Flat regions of the image, such as the shoulder, face and background, are relatively smooth – most

of the noise in these regions has been suppressed in the fractal representation. It is important to

mention that the quadtree-based fractal representation is indeed visually better than the qualitative

measures (i.e. RMSE and PSNR) seem to indicate. This is because, as mentioned previously, most

of the remaining noise is localized in the vicinity of edges and other high-frequency content of the

image where the human visual system is less sensitive to noise. Hence the noise is less noticeable.

However, the quadtree-based fractal representation suffers from blockiness artifacts which is more

visible due to the non-uniform nature of the quadtree partitioning.
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(a) Quadtree partitioning of the noisy image (b) Quadtree-based fractal denoising

RMSE=12.35, PSNR=26.30.

Execution time ≈ 257 secs.

Figure 4.3: Standard fractal image restoration using quadtree partitioning using the optimal SNR threshold,

γc = 0.25, for the noisy “Lenna” with σ
2
w = 625.

In summary, the quadtree partitioning based fractal scheme permits more smoothing away from

edges and lesser smoothing near edges, resulting in restoring the noisy image without significantly

degrading its edges. This scheme also yields results that are consistent with the human visual

system which is more sensitive to the presence of noise in flat regions than near edges of the image.

Next, the noisy image is encoded using the search free Bath fractal transform, described in

chapter 2.

4.1.3 The Bath Fractal Transform

As described in chapter 2, the Bath fractal transform is a search-free fractal scheme that matches

each child block with its “co-centric” parent block. This scheme was applied for the purpose of

coding the noisy test image of “Lenna” and the results are illustrated in Figure 4.4. Surprisingly,

the Bath fractal transform seems to perform almost the same as the standard fractal coding scheme,

when using uniform partitioning with (M,N) = (32, 64).
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Bath fractal coding: RMSE=11.62, PSNR=26.83

Execution time ≈ 7 secs.

Figure 4.4: Bath fractal coding of the noisy image of

“Lenna”.

Recall that the Bath fractal transform

scheme uses place-dependent gray-level maps of

the form

φ(û(x, y), x, y) = αû(x, y) + β + γxx+ γyy,

where the term û(x, y) represents the gray-level

value of a pixel located at (x, y) in the noisy im-

age. Note that while the gray-level value û(x, y)

is affected by the additive noise, the location

of the pixel, (x, y), is not. Hence, one would

expect that the coefficients γx, γy are not sig-

nificantly affected by the presence of the noise.

This makes the fractal code of the noisy image

closer to the fractal code of the noiseless im-

age, resulting in a significantly denoised image.

The main advantage of using the BFT scheme

is that it is computationally less expensive than the standard fractal scheme. This makes the ap-

plication of BFT coding scheme for the purpose of image denoising appealing since this scheme is

not only computationally inexpensive but also yields denoised estimates that are comparable to the

results obtained by exhaustive fractal coding schemes.

Next, some of the reasons why fractally encoding a noisy image actually results in significant

noise reduction are examined.

4.1.4 Why Does Fractal Coding Result in Denoising?

In the previous section, it was shown that by simply fractally encoding the noisy test image, using

any of the fractal-based schemes, one may generally achieve a significant degree of noise reduction.

As explained earlier, one of the main reasons for achieving noise reduction through fractal coding is

that natural self-similar structures within natural images are generally reconstructed well through

fractal coding, whereas the noisy contents cannot be described or approximated well by the fractal

transform. In this section, some of the other reasons behind achieving noise reduction through

fractal coding are explored.
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Fractal Representation of Pure Noise

A simple experiment that might help answer the above question involves simply fractally encoding

a purely noisy image using a fractal-based scheme. The standard fractal scheme with resolution

(M,N) = (32, 64) shall be used. As illustrated in Figure 4.5, a purely noisy image (AWGN)

with noise variance σ2w = 252 has been encoded using the standard fractal scheme. The fractally

encoded image appears significantly less noisy as compared to the original purely noisy image. This

observation is better illustrated through the histogram of the “gray-level” values of the fractally

encoded image which are now much closer to zero and occupy a significantly smaller range than the

case for the noisy image. This figure also illustrates the gray-level coefficients corresponding to the

fractal transform of the pure noise. Note the distribution of the scaling coefficients, α, is bi-modal

with all scaling coefficients being non-zero. This can be explained by the fact that when fractal

coding a noise-free image, flat regions yield almost constant child blocks which in turn result in

zero (or close to zero) scaling coefficients, α. However, a noisy image has no more flat regions, since

smooth regions in the original image are now dominated by the noise. Thus, the resulting child

blocks in the partition are non-uniform and the corresponding scaling coefficients, α, are going to

be non-zero. This explains the shape of the distribution of the scaling coefficients in Figure 4.5 (e).

Another important source of noise reduction lies in the decimation mapping employed by the

fractal transform, as discussed next.

Decimation of the Domain Blocks

As discussed in detail in section 2.1, when fractally encoding a noisy image, the domain (parent)

sub-block, Di(k), is first geometrically transformed into the range (child) sub-block, Rk, through

a contractive mapping, w
(m)
ik , 1, 2, . . . , 8, that involves reducing Di(k) to the same size as Rk and

applying one of the eight isometries on the reduced domain sub-block to obtain a decimated and

transformed parent sub-block, D̄ik. The gray-level values of the transformed domain block, D̄ik,

are then mapped into the the gray-level values of the range block, Rk, through the gray-level map,

φ.

In the discrete pixel space, the action of the geometric maps, w
(m)
ik , involve the shrinking of an

2n × 2n parent pixel block to an n × n child pixel block. This can be achieved by some kind of

reduction or decimation procedure. Typically, a sub-block of 2× 2 neighboring pixels in the parent
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Figure 4.5: Fractal coding of pure AWGN noise with σw = 252: note how fractally encoding the pure

AWGN process results in an almost blank image with gray-level values spanning a much smaller range.



CHAPTER 4. FRACTAL IMAGE DENOISING 126

block is replaced by a single pixel and the four gray-level values are replaced by their average value.

The averaging operation results in reduction of the noise variability, and hence noise suppression.

Once the parent sub-block is geometrically transformed, then one is essentially mapping a reduced,

smoothed and transformed version, D̄ik, of the original parent sub-block, Di(k), into the child sub-

block, Rk, using an affine gray-level mapping, φ(t) = αt+β. Arguably, it is difficult to reconstruct

the random in the unfiltered child block, Rk, from the smoothed and transformed parent sub-

block, Di(k), using this simple first order gray-level map, φ. The decimation associated with the

contractive geometric maps, w
(m)
ik , used in the fractal transform is probably responsible for much

of the achieved fractal denoising.

Next, an apparent connection between the idea of fractal coding for image denoising and the

Lee filter is explored further.

Connections Between the Fractal Transform and the Lee Filter

Recall that, similar to the fractal transform, the Lee filter also applies an affine point transformation

that operates on single pixel values û(m,n), as given in Eq. (1.13). From Eq. (1.18), the gray-level

coefficients of this transform are determined from the statistics of a 7×7 pixel block that is centered

at the pixel (m,n) being processed. As such, the Lee filter may be viewed as a local affine (fractal)

transformation of a 7× 7 parent block onto the single-pixel child block that lies at its center. This

latter action is somewhat reminiscent of the Bath Fractal Transform discussed in chapter 2, in

which parent blocks are chosen to be co-centric with child blocks. The main difference is that for

the Lee filter, the coefficients αm,n and βm,n, vary for each pixel. However, for the BFT, these

coefficients are the same for all the pixels within the child-block. This establishes some degree of

connection between the Bath Fractal Transform, as well as other fractal-based methods, and the

Lee filter - a well known standard image denoising method.

Further Observations

In this section, some insights that explained the relatively good performance of fractal-based

schemes as image denoising methods were explored. At this point, it is clear that by simply

encoding a noisy image using any fractal scheme, one can achieve significant noise reduction. How-

ever, the results obtained by the best fractal-based image denoising scheme are surpassed by the

results obtained by the standard denoising methods studied in chapter 1, namely the mean, Lee,

Gaussian and the Wiener filters. This seems to suggest that fractal-based schemes do not present
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an alternative to standard image denoising methods. The reason why simply encoding a noisy

image using a fractal-based scheme does not yield even better results than it did is mainly due to

the following observations:

• Recall that for any spatially based fractal scheme, the fractal transform maps a parent block

into a child block through a composition of a gray-level map φ and a geometric map w. When

encoding a noisy image using a fractal scheme, one is mapping a noisy parent block into a

noisy child block and thus some of the noise will indeed be reconstructed. This is indeed

evident when applying the standard fractal scheme using a uniform partitioning with a high

fractal resolution (M,N) = (64, 128) where the fractal representation appears rather noisy,

indicating that most of the noise has been reconstructed by the fractal transform.

• Also, the most negative effects of the noise on the fractal code lies in causing miss-matches

between child blocks and their optimal parent blocks. In other words, due to the noise, a

child block is not matched with its optimal, in the sense of minimizing the collage error

for the original noiseless image, parent block. These miss-matches are the main roots for

the relatively inadequate performance of fractal image coding schemes as image denoising

methods.

Thus, in conclusion, encoding a noise image using a fractal-based scheme will result in a relatively

denoised image where the degree of the reduction of the noise is inversely proportional to the fractal

resolution (M,N). For low resolution, extra smoothing at the expense of disturbing blockiness and

artifacts and degradation of sharp features of the image. For high resolution, little noise smoothing

is performed, resulting in a rather sharp yet noisy fractal representation. The fractal resolution

(M,N) = (32, 64) yields the best trade-off between noise reduction and preserving the important

features of the original image in the fractal reconstruction. The use of the quadtree-based fractal

scheme was also investigated in order to control this trade-off between the partition size, noise

and important image features reconstruction in a manner that is consistent with the human visual

system. Simply encoding a noisy image by using a fractal-based method does not always result

in optimal results that are comparable to the results obtained when applying standard image

denoising methods, such as the Lee denoising filter. However, this initial investigation represents

only a starting point of the application of fractal-based methods for the purpose of image denoising.

Indeed, further investigations that aim for developing more efficient fractal image denoising methods

are presented in the coming sections.
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Next, a simple method for predicting the fractal code of the original noiseless image from the

noisy one will me derived.

4.2 Predicting the Fractal Code of the Noise-free Image

In this section the relationship between a noisy image Î and its noiseless counterpart I is examined,

specifically in terms of their respective fractal gray-level map coefficients. This relationship provides

a method of estimating the fractal parameters of the noiseless image from those of the noisy image.

From the former, a fractal representation of the noiseless image can then be reconstructed [31]. In

the discussion that follows, variables and coefficients that correspond to a noisy image will have

hats, e.g. X̂, Ŷ for the noisy image as opposed to X,Y for the noiseless image.

Before proceeding further, it will be useful to rewrite the least-squares gray-level coefficients in

terms of standard statistical quantities. Recall that the optimal least-squared gray-level coefficients

are given by

α∗ =
n
∑n

j=1 xjyj −
∑n

j=1 xj
∑n

j=1 yj

n
∑n

j=1 x
2
j − [

∑n
j=1 xj ]

2
(4.7)

β∗ =
1

n

n
∑

j=1

yj − α∗
1

n

n
∑

j=1

xj .

An image is considered as a random signal so that the gray-level values {xj , j = 1, 2, . . . , n} and

{yj , j = 1, 2, . . . , n} in (4.7) can be considered as random samples of the random variables X and

Y representing the gray-level distribution of the (decimated) parent block D and child block R,

respectively. The least-squares coefficients can then be written as

α∗ =
Cov(X,Y )

σ2X
(4.8)

β∗ = E[Y ]− α∗E[X],

where

Cov(X,Y ) =

∑n
j=1 xjyj

n
−

∑n
j=1 xj

n

∑n
j=1 yj

n
, (4.9)

σ2X =

∑n
j=1 x

2
j

n
− [

∑n
j=1 xj

n
]2, (4.10)

E[X] =

∑n
j=1 xj

n
, and E[Y ] =

∑n
j=1 yj

n
. (4.11)

Strictly speaking, the above expressions are approximations to the statistical quantities of the

random variables X and Y since they represent (finite) sample statistics. For large n, the sample
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statistics provide good estimates of the population statistics. The fact that n will not be large in

our applications will contribute to errors in estimating the local image statistics and, subsequently,

optimal fractal codes for the noiseless images.

4.2.1 Prediction of the Gray-level Coefficients

As above, let X and Y denote the random variables representing the gray-level values in a trans-

formed parent block D and its corresponding child block R, respectively, for the noise-free original

image. Also, let X̂ and Ŷ denote the corresponding gray-level random variables for the noisy image.

Recall that the random variable X̂ represents the gray-level values of the pixels in the transformed

parent block. Various decimation methods have been used in the literature to produce from the

parent block a transformed block of the same size as the child block, generally four times smaller.

These include: (i) down-sampling by taking every fourth pixel, and (ii) averaging over 2× 2 pixel

blocks. The averaging operation is preferred and will be used in this study. However, averaging

over 2× 2 pixel blocks affects the noise variance since

x̂j = xj +
wj + wj+1 + wj+2 + wj+3

4
= xj + w̄j,4 (4.12)

where

w̄j,4 =
wj + wj+1 + wj+2 + wj+3

4
. (4.13)

Since the noise w is stationary, w̄j,4 is independent of the location index j and it is a sample from

the averaged random noise

w̄4 =
w1 +w2 +w3 +w4

4
, where wi ∼ N(0, σ2w). (4.14)

Clearly, w̄4 is also Gaussian with

E[w̄4] = 0, V ar(w̄4) =
σ2w
4
. (4.15)

Thus, the averaged noise w̄4 is an AWGN process

w̄4 ∼ N(0,
σ2w
4

). (4.16)

The relationship between the random variables X̂ and X corresponding to a domain block of the

noisy and the noiseless image, respectively, can be written as follows:

X̂ = X + w̄4 ⇒ E[X̂] = E[X], since E[w̄4] = 0. (4.17)
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On the other hand, for the child blocks, no averaging or down-sampling is required, so the relation-

ship between Ŷ and Y is given by

Ŷ = Y +w⇒ E[Ŷ ] = E[Y ], again since E[w̄] = 0. (4.18)

Assuming that the image signal and the noise signal are independent, the variance of the noisy

vector X̂ is

σ2
X̂
= Var(X + w̄4) = σ2X +

σ2w
4
, (4.19)

where σ2X is the variance of the noise-free vector X. Also, under the independence assumption

between the noise and the image signal as well as the independence between w̄4 and w, it can be

shown that

Cov(X̂, Ŷ ) = Cov(X + w̄4, Y +w) = Cov(X,Y ). (4.20)

The independence between w̄4 and w can be achieved by insuring that parent block X̂ does not

overlap with that child block Ŷ . From (4.8), (4.19) and (4.20), one can express the scaling coefficient

α̂∗ in terms of the statistics of the noiseless image I and the noise variance as follows:

α̂∗ =
Cov(X̂, Ŷ )

σ2
X̂

=
Cov(X,Y )

σ2X + σ2
w

4

=

Cov(X,Y )
σ2
X

1 + σ2
w

4σ2
X

. (4.21)

From this result and (4.8) it can be shown that

α̂∗ =
α∗

1 + 1
4γ

, (4.22)

where the signal-to-noise ratio, γ, is defined as

γ =
σ2X
σ2w

. (4.23)

From (4.19), the signal-to-noise can estimated from the noisy image as follows:

γ =
σ2
X̂
− σ2

w

4

σ2w
=
σ2
X̂

σ2w
− 1

4
, (4.24)

provided that

σ2
X̂
>
σ2w
4
. (4.25)

Similarly, from (4.17) and (4.18), the offset β∗ is given by

β̂∗ = E[Y ]− α̂∗E[X] = E[Ŷ ]− α̂∗E[X̂]. (4.26)
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Rearranging the above yields expressions for the the gray-level coefficients, (α∗, β∗), corresponding

to the original noiseless image in terms the gray-level coefficients, (α̂∗, β̂∗), of the noisy image, as

follows:

α∗ = (1 +
1

4γ
)α̂∗ and β∗ = E[Ŷ ]− α∗E[X̂]. (4.27)

These relationships will be further explored in the next sections for the purpose of estimating the

fractal code of the original image from the noisy image.

Remarks

The following observations are made in view of the above derivations:

• In the absence of noise, i.e. as σ2w → 0, then γ →∞ so one has

α∗ → α̂∗ and β∗ → β̂∗, (4.28)

as expected.

• Near edges or other high activity regions of the image, where the γ is relatively large, one has

α̂∗ ≈ α∗ and β̂∗ ≈ β∗. (4.29)

So far, an approach for estimating the gray-level coefficients corresponding to the original noise-

less image from those computed from the noisy image has been presented. Next, the problem of

child-parent matching assignment will be addressed.

4.2.2 Prediction of the Optimal Parent-Child Matching

The results of the previous section suggest a simple algorithm to fractally denoise an image. First,

estimate the variance σ2w of the noise in the image. Then, fractally encode the noisy image to obtain

the noisy gray-level coefficients (α̂∗, β̂∗). Use (4.27) to estimate the noise-free gray-level coefficients

(α∗, β∗). However, there is one problem: It is not guaranteed that the parent-child assignments of

the noisy image Î are optimal for the noiseless image I in the mean-squares sense, i.e. that the

MSE is minimized.

A method that estimates the optimal collage coding procedure for the noiseless image, which is

not available, is proposed next. As before, let X,Y denote the random variables corresponding to

the parent and (transformed) child blocks. (X̂, Ŷ for the noisy image.) The method is as follows:

For each child block Ŷk ∈ R, 1 ≤ k ≤ NR, of the noisy image, the following steps are performed:
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1. For each parent block Xi ∈ Dk, the domain pool of Yk, consider all possible geometric maps

ω
(m)
ik and compute the least-squares gray-level gain coefficient, α̂∗ik, corresponding to the noisy

image. Then use this coefficient, the estimated noise variance and the estimated statistics

from the noisy image to estimate the noise-free gray-level coefficients (α∗ik, β
∗
ik) using (4.27)

as follows:

α∗ik = (1 +
1

4γ
)α̂∗ik and β∗ik = E[Ŷk]− α∗E[X̂i]. (4.30)

2. For the fractal code of the original noise-free image, one seeks to minimize the collage error,

measured in terms of the mean squares error of the noiseless image as

∆
(m)2
ik = E[(Yk − (α∗ikXi + β∗ik))

2|(α∗ik, β∗ik)]. (4.31)

Expanding the above quantity yields

∆
(m)2
ik = E[Y 2k ] + α∗2ikE[X2

i ]− 2α∗ikE[XiYk]− 2β∗ikE[Yk] + 2α∗ikβ
∗
ikE[Xi] + β∗2ik , (4.32)

which can be expressed in terms of the statistics of the noisy image as follows:

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]−
σ2w
4
)− 2α∗ikE[X̂iŶk]− 2β∗ikE[Ŷk] (4.33)

+2α∗ikβ
∗
ikE[X̂i] + β∗2ik .

provided that

E[Ŷ 2k ] > σ2w and E[X̂2
i ] >

σ2w
4
. (4.34)

As a result, the collage error for the noiseless image is estimated from statistics of the noisy

image.

3. Select the optimal parent block i∗(k) and associated geometric map w
m∗(k)
i∗(k),k such that

∆
(m∗(k))2
i∗(k),k ≤ ∆2

jk for all j 6= i∗(k) and m 6= m∗(k). (4.35)

The result is an estimated collage-based matching criterion for the original noise-free image.

A method for estimating the fractal code of the noise-free image from that of the noisy image has

been derived. This fractal code is expected to be closer to the code of the noiseless image as the

variance of the noise decreases, converging to the latter in the limit as σw → 0. This method will

be outlined, as an algorithm, in the next section.
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4.2.3 Predicting the Fractal Code of the Original Image from the Noisy Image

In view of the above derivations and discussion, an algorithmic approach for predicting the fractal

code for the original noise-free image from the noisy image can be outlined as follows:

For each uncoded child block Ŷk ∈ R, the range blocks, of the noisy image, the following steps

are performed:

1. Compute its energy

E[Ŷk
2
] =

1

n

n
∑

m=1

ŷ2k,m. (4.36)

Then get an estimate of the energy of the corresponding child block in the original

noiseless image as follows:

EYk = E[Yk
2] = E[Ŷk

2
]− σ2w. (4.37)

In theory, EYk must be positive, however in practice this will not always be the case since

E[Ŷ 2k ] is computed locally from sub-blocks with a relatively small number of coefficients, so

it is possible to encounter cases where

E[Ŷ 2k ] < σ2w, (4.38)

resulting in negative values for EYk . Thus, there are two cases: E[Ŷ 2] > σ2w and E[Ŷ 2] ≤ σ2w.

More specifically, to avoid cases where the estimate of the energy is zero, one should consider

the following two cases: E[Ŷ 2] ≥ λσ2w and E[Ŷ 2] < λσ2w, where the parameter λ > 1, to be

determined experimentally.

2. For each possible parent block X̂i ∈ Dk, the domain pool of Yk, and geometric map, w
(m)
ik ,

compute:

The least-squares gray-level gain coefficient corresponding to the noisy image

α̂∗ik =
Cov(X̂i, Ŷk)

σ2
X̂i

(4.39)

as shown in Eq. (4.8).

Then compute the signal-to-noise ratio, as predicted from the noisy image as follows:

γ =
σ2
X̂i

σ2w
− 1

4
. (4.40)
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Again, in theory, γ must be positive, however in practice this will not alway be the

case since and σ2
X̂i

is computed locally from sub-blocks with a relatively small number of

coefficients, so it is possible to encounter cases where

σ2
X̂i

<
σ2w
4
, (4.41)

resulting in negative values for γ values. Thus, again there are two different cases: σ2
X̂i
≥ σ2

w

4

and σ2
X̂i

< σ2
w

4 . More specifically, to avoid cases where the estimate of γ is zero, one should

consider the following two cases: σ2
X̂i
≥ λσ

2
w

4 and σ2
X̂i

< λσ
2
w

4 , for the same parameter, λ > 1,

chosen above.

3. Thus, overall, there are two cases:

(a) Case 1: If E[Ŷ 2] ≥ λσ2w and σ2
X̂i
≥ λσ

2
w

4 , then:

• One has:

EYk = E[Ŷk
2
]− σ2w ≥ (λ− 1)σ2w > 0 and γ =

σ2
X̂i

σ2w
− 1

4
≥ (λ− 1)

4
σ2w > 0. (4.42)

• Since the current parent sub-block, Xi is fixed, then one is using the same child-

parent assignment; (Ŷk, X̂i) for the noisy image and (Yk, Xi) for the noiseless image.

Thus, the noise-free gray-level coefficients, (α∗ik, β
∗
ik), can be estimated as follows:

α∗ik = (1 +
1

4γ
)α̂∗

β∗ik = E[Ŷk]− α∗E[X̂i]. (4.43)

as shown in (4.27). This yields an estimate of the gray-level coefficients α∗, β∗.

• Now, use these estimates of α∗ and β∗ to compute the collage error, measured in

terms of the mean squared error for the original noiseless image

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]−
σ2w
4

)− 2α∗ikE[X̂iŶk]

−2β∗ikE[Ŷk] + 2α∗ikβ
∗
ikE[X̂i] + β∗2ik . (4.44)

as shown in (4.33). Note that in this case it is assumed that σ2
X̂i

> λσ
2
w

4 , then the

second term in the above collage error expression is non-negative, since

E[X̂2
i ] ≥ σ2

X̂i
> λ

σ2w
4
. (4.45)

This ensures a collage-based matching criterion for the original noise-free image.
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Now, the case when the variance of the child-block is small is considered.

(b) Case 2: If E[Ŷ 2k ] < λσ2w or σ2
X̂i

< λσ
2
w

4 , then:

• One may assume that child or parent block is dominated by the noise and the corre-

sponding subregion of the original image is mainly flat and low-activity and contains

little relevant information. Thus, it can be argued that it would be beneficial to re-

duce the magnitude of α̂∗ik since larger values of α̂∗ik would amplify the noise. Thus,

α̂∗ik can be reduced to get an estimate of α∗ik, as follows:

α∗ik ≈ min(
E[Ŷ 2k ]

λσ2w
,
σ2
X̂i

λσ
2
w

4

)× α̂∗ik. (4.46)

• Also, in this case one cannot use the collage error in Eq. (4.33), derived for the

noise-free image, because the estimate

E[Y 2k ] ≈ E[Ŷ 2k ]− σ2w or E[X2
i ] ≈ E[X̂2

i ]−
σ2w
4

(4.47)

may be negative. Thus, in this case one needs to resort to the using the collage

error, corresponding to the noisy image

∆2
ik = E[Ŷ 2k ] + α∗2ikE[X̂2

i ]− 2α∗ikE[X̂iŶk]− 2β∗ikE[Ŷk] + 2α∗ikβ
∗
ikE[X̂i] + β∗2ik . (4.48)

4. Select the optimal parent sub-block i∗(k) and geometric map, m∗(k), such that

∆
(m∗(k))2
i∗(k),k ≤ ∆

(m)2
i,k for all i 6= i∗(k) and m 6= m∗(k). (4.49)

In view of the above detailed outline, the proposed predictive fractal image denoising scheme can

be summarized as follows:

The Proposed Predictive Fractal Image Denoising Algorithm

Choose the standard fractal scheme and its resolution (M,N), then: For each uncoded child sub-

block Ŷk, k = 1, 2, . . . , N ×N , do the following:

1. Compute the energy of the child sub-block

E[Ŷk
2
] =

1

n

n
∑

m=1

ŷ2k,m. (4.50)

2. For each possible parent sub-block X̂i ∈ Dk, the domain pool of Ŷk, and each possible geo-

metric map, w
(m)
ik , compute:
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• Its variance

σ2
X̂i

=
1

n

n
∑

m=1

(x̂i,m − x̄i)
2. (4.51)

• The least-squares gray-level gain coefficient corresponding to the noisy image:

α̂∗ik =
Cov(X̂i, Ŷk)

σ2
X̂i

(4.52)

Now, consider one of the following two cases:

(a) Case 1: If E[Ŷk
2
] ≥ λσ2w and σ2

X̂i
≥ λσ

2
w

4 , then:

• Compute the signal-to-noise ratio, γ, corresponding to the original noise-free image,

which can be estimated by

γ =
σ2
X̂i

σ2w
− 1. (4.53)

• Predict the scaling coefficient, α∗, corresponding to the noise-free image as follows:

α∗ik = (1 +
1

4γ
)α̂∗ik. (4.54)

• Compute the gray-level (offset) coefficient, β∗, corresponding to the the noisy image,

as given by

β∗ik = E[Ŷk]− α∗ikE[X̂i]. (4.55)

• Compute the collage error corresponding to the original noise-free image

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]−
σ2w
4

)− 2α∗ikE[X̂iŶk] (4.56)

−2β∗ikE[Ŷk] + 2α∗ikβ
∗
ikE[X̂i] + β∗2ik .

(b) Case 2: If E[Ŷk
2
] < λσ2w or σ2

X̂i
< λσ

2
w

4 , then:

• Estimate the scaling coefficient, α∗, corresponding to the noise-free image, from α̂∗,

corresponding to the noisy image, as follows:

α∗ik ≈ min(
E[Ŷ 2k ]

λσ2w
,
σ2
X̂i

λσ
2
w

4

)× α̂∗ik. (4.57)

• Compute the gray-level offset coefficient, β∗ik, corresponding to the the noisy image,

as given by

β∗ik = E[Ŷk]− α∗ikE[X̂i]. (4.58)
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• Compute the collage error corresponding to the noisy image, as given by

∆2
ik = E[Ŷ 2k ] + α∗2ikE[X̂2

i ]− 2α∗ikE[X̂iŶk]− 2β∗ikE[Ŷk] + 2α∗ikβ
∗
ikE[X̂i] + β∗2ik . (4.59)

3. Select the optimal parent sub-block, i∗(k), and geometric map, m∗(k), such that

∆
(m∗(k))2
i∗(k),k ≤ ∆

(m)2
i,k for all i 6= i∗(k) and m 6= m∗(k). (4.60)

The predicted fractal code corresponding to the original noise free consisting of

Fractal code = {i∗(k),m∗(k), α∗m
∗(k)

i∗(k) , β
∗m∗(k)
i∗(k) , for k = 1, 2, . . . , N2}. (4.61)

which can then be used by the fractal decoder to generate a denoised estimate of the original image.

In view of the above algorithm, the following observations are outlined:

• Clearly, it is straightforward to apply the above predictive algorithm on any of the standard

fractal schemes implemented in this chapter for the purpose of image denoising. This predic-

tive fractal denoising scheme will be implemented for the purpose of image denoising, using

the exhaustive fractal scheme with (M,N) = (32, 64) and the quadtree-based fractal scheme.

• The selection of the parameter λ in the above algorithm, is based on the interpretation of

what is considered as a noise dominated child or parent sub-block and what is considered as

a high activity child or parent sub-block. The parameter, λ will be chosen to be 2; to indicate

that if the variability of a child block is twice the noise variance, then the child sub-block

is dominated by noise. It was observed that λ = 2 yields better qualitative experimentally

results for the noisy test image of “Lenna”.

Next, the issue of quantizing the estimated gray-level coefficients is addressed in order to obtain

fractally denoised estimates with gray-level values in the [0, 255], which is the appropriate range

for the 8-bits/pixel test image of “Lenna” as well as other test images of interest.

4.2.4 Quantization of the Gray-level Coefficients

In order to guarantee the contractivity of the fractal transform with respect of the L∞ for various

classes of images, one has to ensure that the absolute value of the quantized scaling parameter α

is smaller than unity. In the quantization methods used in this work, the scaling coefficients are

restricted to the interval [−0.99, 0.99]. Also, adding noise to images often results in many pixels of

the noisy image having gray-level values outside the appropriate [0, 255] range for 8-bit gray-scale
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images. In order to ensure that the gray-level values of the fractal denoised estimate lie within this

appropriate range, the following quantization strategy is proposed for the offset coefficient β.

For a quantized scaling coefficient αq and offset coefficient βq, it is required that

0 ≤ αqx+ βq ≤ 255 (4.62)

for each pixel value x in the parent block. Thus, there are two cases, depending on whether αq is

positive or negative:

1. If αq ≥ 0

0 ≤ x ≤ 255 ⇒ βq ≤ αqx+ βq ≤ 255αq + βq. (4.63)

Thus to ensure that αqx+ βq remains in the [0, 255] range it suffices to have

0 ≤ βq and 255αq + βq ≤ 255, or equivalently 0 ≤ βq ≤ 255(1− αq). (4.64)

2. If αq < 0

0 ≤ x ≤ 255 ⇒ βq ≥ αqx+ βq ≥ 255αq + βq. (4.65)

Similarly, to ensure that αqx+ βq remains in the [0, 255] range it suffices to have

0 ≤ 255αq + βq and βq ≤ 255, or equivalently − 255αq ≤ βq ≤ 255. (4.66)

This guarantees that the fractal representation of a noisy image will lie within the [0, 255] range

provided that the seed image also satisfies this condition. Since one typically uses a blank image,

i.e., uij = 255, as the initial seed, the condition is satisfied.

In view of the above derivations, the offset coefficient β is quantized to be within the interval

[βmin, βmax], depending on the sign of the scaling coefficient α, as follows:

[βmin, βmax] =







[0, 255(1− αq)], if αq ≥ 0,

[−255αq, 255], if αq < 0.
(4.67)

This ensures that the various fractal representations have pixel values within the suitable [0, 255]

range. Since achieving high compression ratios is not a priority at this point, then a uniform

quantizer with NQ = 1024 quantization levels is used. One of the benefits of insuring that the

resulting fractal denoised estimates have pixel values within the suitable [0, 255] range, is that

one can use the standard RMSE and PSNR qualitative measures to assess the quality of these

representations and display these representations on any standard 8-bit graphic device.
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4.2.5 Experimental Results

The uniform as well as quadtree partitioning predictive fractal schemes were implemented for the

purpose of enhancing and restoring the noisy test image of “Lenna”. The results are illustrated in

Figure 4.6. The following observations are outlined in view of these results:

• Clearly, there is clearly a significant improvement of the quality of the fractally denoised

estimate, especially when the quadtree partitioning of the image is used. In these fractal

representations, most of the noise appears to have been suppressed without blurring the

edges or other high frequency components of the image. The zoomed images reflect the

disturbing blockiness artifacts in the fractal representations, which is not surprising. Except

for a few blockiness artifacts, the quadtree-based fractally denoised estimate appears to have

high visual quality. In the next section, ways of reducing these disturbing blockiness artifacts

will be addressed. Clearly, the application of the predictive fractal denoising algorithm has

resulted in significantly better results than simply fractally encoding the image.

• It is interesting to note that, as illustrated in Figures 4.1 and 4.3, when simply encoding

the noisy image, the standard uniform-based fractal coding of the noisy image results in

a better denoised estimate (quantitatively) than quadtree-based fractal coding of the noisy

image. This is because the quadtree-based fractal coding reconstructs most of the noise in

the vicinity of edges and other high-frequency content of the image. However, after applying

the proposed fractal code prediction method, the quadtree-based fractal denoising scheme

yields a denoised estimate that has a better quality than the one obtained by the uniform

partitioning based fractal denoising scheme. This can be explained as follows:

– When simply encoding the noisy image using the quadtree-based fractal scheme, a signal

to noise ratio (SNR) decomposition was applied. The quadtree-based fractal denoising

scheme performs a content-based denoising where a high degree of denoising is performed

in uniform sub-regions of the image and a lower degree of denoising in performed in the

vicinity of edges without compromising their sharpness. Thus, the quadtree denoised

image, appears overly smoothed in flat regions and noisy near edges and within high

activity sub-regions of the image, which explains why the quadtree denoised estimate

has a high RMSE (low PSNR). However, the uniform-based fractal denoising scheme

performs a uniform degree of smoothing throughout the image, regardless of its con-

tent, and the resulting denoised estimate is smoothed uniformly and contains little or no
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residual noise. Although the qualitative fidelity measures seem to indicate that uniform-

based fractally denoised image is better than the quadtree-based fractally denoised one,

visually one may prefer the latter because the presence of noise near edges is less notice-

able. However, the quadtree-based fractally denoised image suffers from non-uniform

disturbing artifacts.

(a) Predictive fractal denoising (b) Predictive fractal denoising

Uniform partitioning: (M,N) = (32, 64) Quadtree partitioning: collage error

RMSE=10.03, PSNR=28.10. RMSE=9.10, PSNR=28.95.

Execution time ≈ 1234 secs. Execution time ≈ 1047 secs.

Figure 4.6: The fractal denoised estimates obtained using the proposed predictive fractal denoising algo-

rithm with uniform and quadtree partitioning of the image.

– When using the quadtree-based predictive fractal denoising algorithm, a collage error

decomposition criterion was used. A child sub-block is only fractally encoded using

the predictive fractal scheme if the resulting collage error is less than a desired error

tolerance level. Otherwise, it is split into four quadrant child blocks. By doing so, the

predictive fractal denoising scheme performs noise reduction on one hand. On the other

hand, the use of the quadtree, with the collage error decomposition criterion, ensures

that important features (i.e. edges) of the original image are represented well, by using

finer partitioning when necessary, to guarantee a specified fitting error.
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Next, the results obtained by the predictive fractal denoising scheme, using uniform partitioning,

will be compared to the results obtained by the Lee filter.

4.2.6 Comparison with the Lee Filter

As shown earlier, there is a close relationship between the fractal-based schemes and the Lee filter.

Both of these methods attempt to reconstruct a denoised image through affine transformations

of sub-blocks of the noisy image into other sub-regions. Thus, the performance of the proposed

fractal-based scheme will be compared to the results obtained by the Lee filter.

(a) Predictive fractal denoising (b) Lee filter

Uniform partitioning: (M,N) = (32, 64) Local mask: 7× 7 pixels
RMSE=10.03, PSNR=28.10. RMSE=10.83, PSNR=27.44.

Execution time ≈ 1234 secs. Execution time ≈ 3 secs.

Figure 4.7: Comparison between the fractal-based image method and the Lee filter: (a) the fractal-based

image denoising approach using uniform partitioning with 8× 8 mask, and (b) the Lee filter, using a 7× 7
mask.

Figure 4.7 illustrates results of the proposed fractal-based and Lee filter image denoising methods

as applied to the noisy “Lenna” image. For the fractal-based scheme, uniform partitioning was used

with 8×8 pixel child blocks was used. The uniform fractal predictive scheme was chosen instead of

the quadtree-based one in order to ensure a fair comparison with the Lee filter which uses uniform

7× 7 masks to estimate the local statistics of the image.
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The proposed fractal denoising method is seen to yield better results both quantitatively, in

terms of RMSE and PSNR, as well as qualitatively, in terms of the visual quality of the denoised

image. Another advantage of the fractal method is that it yields a representation of the noisy

image with pixel values that lie in the range [0, 255] because of the quantization strategy imposed

upon the gray-level coefficients, α∗ and β∗, as discussed in the previous section. The Lee filter

representation of the noisy image will not always satisfy this condition. However, in terms of the

computational complexity, the Lee filter is clearly significantly more efficient and faster than the

proposed fractal denoising scheme, as reflected by the execution times of the two methods.

Next, the performance of the above algorithm in predicting the fractal code of the test image

is assessed.

4.2.7 Examining the Performance of the Predicted Fractal Code

In order to assess the performance of the above predictive fractal scheme, the available original test

image of “Lenna” is used to compute its true fractal code. This exact fractal code is then compared

to the one predicted by the above predictive scheme, from the noisy test image of “Lenna” with

noise intensity, σ = 25. The results are summarized as follows:

• Figure 4.8 illustrates the distribution of the gray-level coefficients, α and β, corresponding to

the original and noisy images as well as the predicted gray-level coefficients. Note that the

distribution of the scaling coefficients, α, corresponding to the noisy image is rather distinct

from that of the original image. In fact, it looks bi-modal with all scaling coefficients being

non-zero. As explained earlier, this is the case because when fractal coding the noise-free

image, flat regions yield almost constant child blocks which in turn result in zero (or close to

zero) scaling coefficients, α. However, the noisy image has no more flat regions, since smooth

regions in the original image are now dominated by the noise. Thus, the resulting child blocks

in the partition are non-uniform and the corresponding scaling coefficients, α, are going to be

non-zero. The distribution of the predicted scaling coefficients remains bi-modal, although to

a lesser degree than that of the noisy image. This is the case because the image has many flat

low-activity subregions which correspond to child blocks dominated by noise. As explained in

case 2 of the above algorithm, these sub-blocks are simply fractally coded while introducing a

minor modification (reduction) of their corresponding scaling coefficients, as given in (4.57).

Consequently, the distribution of the predicted scaling coefficients is now closer to that of the
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Figure 4.8: Comparison between the gray-level coefficients corresponding to the original image, the noisy

image as well as the predicted coefficients. Note that the distributions of the predicted gray-level coefficients

resembles those corresponding to the true gray level coefficients.
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exact scaling coefficients corresponding to the original image.
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(a) Collage error distribution for Zooming in on the figure in (a)

child sub-block number 900.

Figure 4.9: The distribution of the collage error corresponding to a typical child block. Note that there

are many sub-optimal parent sub-blocks that yield collage errors that are relatively close to the minimum

collage error corresponding to the optimal parent sub-block.

• As for the prediction of the true child-parent assignment maps, it should be noted that

one does not need to predict the optimal parent block corresponding to each child block.

In fact, as illustrated in Figure 4.9, for each child block there are many good sub-optimal

parent blocks that can be chosen instead of the optimal parent block at the expense of a

relatively small reduction in the fidelity. Note how for this typical child block, there are a

few parent sub-optimal parent blocks that yield collage errors that are relatively close to the

minimum collage error obtained from the optimal parent block. This is the subject of a work

in progress by Alexander, Tsurumi and Vrscay who have shown that child blocks, especially

those corresponding to edges and other high activity subregions, can be matched to many

good sub-optimal parent sub-blocks, at the expense of a relatively small degradation in the

fractal representation.

• Figure 4.10 illustrates the histogram of the rank of the predicted parent blocks obtained from

the noisy image corrupted by AWGN noise with different noise intensity σ. For the chosen
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Figure 4.10: The histogram of the rank of the predicted parent blocks for different noise intensity, σ. A

rank of 1 means that the optimal parent block was predicted, the rank is 2 when the second best parent

block was predicted, etc. Note that for lower noise intensity, most of the predicted parent blocks are among

the first few closest parent blocks. However, as the noise intensity increases, many of the predicted parent

blocks are further away from the optimal ones.
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Figure 4.11: (a) Parent-child assignment maps using the best 10 parent blocks corresponding to the

original image as well as the predicted parent blocks, for some of the child blocks. (b) The collage errors for

the best 10 parent sub-blocks as well as the collage errors corresponding to the predicted parent blocks. It

was observed that for about 2857 child blocks, the predicted parent blocks matches one of the best 10 parent

sub-blocks, for the noisy test image with σ = 25.
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(M,N) = (32, 64) fractal resolution, all 4096 child blocks were examined and for each child

block, all of the 1024 potential parent blocks were tested. For each child block, the predicted

parent block is then ranked according to how close it is to best (optimal) parent block, as

obtained from the original image. A rank of 1 means a perfect match, while a rank of 2,

implies that the predicted parent block is the second best, etc. Note that, for the lower noise

intensity, for most of the child blocks, the predicted parent blocks are among the first few

closest (sub-optimal) parent blocks. As the noise intensity increases, the rank distribution

is shifted to the right indicating that many of the predicted parent blocks are further away

from the optimal ones.

• Figure 4.11 (a) illustrates the child-parent assignment maps using the closest 10 parent sub-

blocks as well as the predicted child-parent assignment map, corresponding to the noisy test

image with σ = 25. Note that in many cases, the predicted child-parent assignment coincides

with one of the closest 10 parent blocks. Part (b) of this figure illustrates the collage errors

corresponding to the closest 10 parent blocks and the collage errors corresponding to the

predicted parent blocks. The fact that the predicted parent blocks are usually among the

first few closest (i.e., near-optimal) parent blocks may indeed be the main reason why the

predictive fractal scheme performs reasonably well in predicting a fractal code that is relatively

close to the true fractal code of the original image, resulting in a relatively good denoised

estimate of the original image.

This completes the examination of the performance of the predicted fractal code.

In this section, an algorithm for the purpose of estimating the fractal code of the original noise-

free image from the noisy one was proposed. This fractal denoising scheme was implemented using

uniform as well as quadtree partitioning of the noisy image. It was shown that the performance

of the uniform based fractal denoising scheme surpasses that of the Lee filter. The quadtree-based

fractal denoising scheme performs even better than the uniform based one.

Next, the use of the cycle spinning algorithm in order to improve the fractal denoised estimates

is investigated.

4.3 Improving Fractal Image Denoising via Cycle Spinning

In spite of the significant gains achieved by the proposed fractal denoising schemes, the denoised

estimate still suffers from disturbing blockiness artifacts that are inherent in fractal-based image
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representations. In fact, zooming in on any of the fractally denoised estimates, so far generated in

this chapter, reveals the disturbing blockiness artifacts in these fractal representations, as illustrated

in Figure 4.12. The use of the cycle spinning idea is proposed for the purpose of reducing these

artifacts and enhancing the quality of the fractally denoised estimates.

Incorporating the idea of cycle spinning within fractal-based schemes can be performed in a

similar fashion to the use of cycle spinning for the purpose of wavelet thresholding and denoising.

The main difference is that the standard fractal schemes are performed in the spatial domain of the

image and hence the computation of the discrete wavelet transform and its inverse are no longer

required. Also, the middle step of wavelet thresholding is now replaced by fractally encoding the

noisy image, using any of the spatially-based fractal image denoising schemes developed so far. The

initial and final steps of shifting and unshifting the image, respectively, and finally averaging all

the unshifted the images to obtain a unique improved denoised image remain the same. In view of

this generalization, the fractal-based cycle spinning algorithm can be summarized as follows:

x̂K =
1

K

K
∑

h=0

D−h(FT (Dh(y))). (4.68)

where Dh is the two-dimensional diagonal shifting operator Dh defined in (3.47) and FT is the

fractal scheme of choice.

Once again when implementing the cycle spinning algorithm, with K shifts, for the purpose

of enhancing the quality of the fractally denoised estimates the computational complexity of the

fractal-based schemes increases by K times.

4.3.1 Experimental Results

The cycle spinning algorithm was incorporated in order to improve the performance of some of the

fractal image denoising methods developed in this chapter. The results obtained for each of the

fractal denoising schemes are outlined as follows:

• Figures 4.13 - 4.15 illustrate the results obtained by applying the above cycle spinning al-

gorithm for the purpose of fractally encoding the noisy image using various fractal-based

denoising schemes. The results are summarized in the following observations:

• For all the methods, examining the zoomed fractally denoised images, note that the disturbing

blockiness artifacts in the denoised image are significantly reduced or eliminated. This is due

to the fact that the various fractally denoised unshifted images are averaged out to obtain one
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(a) Standard fractal coding (no maps) (b) Quadtree-based fractal coding

(c) Predictive fractal denoising (d) Predictive fractal denoising

(uniform partitioning) (quadtree partitioning)

Figure 4.12: Zooming in on the fractally denoised estimates, as obtained by the various fractal schemes,

reveals the disturbing artifacts in the fractal representations.
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fractally denoised image. Averaging these fractal representations will reduce the variability

around the boundaries of the fractal uniform image partition and hence result in significant

reduction of the blockiness artifact in the averaged fractal representation.

• Figure 4.16 illustrates a comparison between the various fractal-based denoising methods

proposed in this chapter, when incorporating the cycle spinning idea. Note that the quadtree-

based predictive scheme performs better than the other fractal denoising methods. Also note

that the quality of the fractally denoised image stabilizes after only a few shifts, thus achieving

fast convergence. This is the case because at the (M,N) = (32, 64), which correspond to an

8× 8 child blocks partitioning and 16× 16 parent blocks partitioning, if the image is shifted

exactly 8 pixels along its diagonal, then the new shifted image will have a partition that is

equivalent to the partition of the original image. Thus the fractal codes of the original image

and the one that is shifted by 8 pixels are equivalent. Hence, after unshifting the decoded

image resulting from the shifted (by 8 pixels) image will be the same as the fractally decoded

image from the original (unshifted) image, and hence no new information is gained. This

argument can be extended to higher shifts and it can be concluded that the cycle spinning

process will converge rapidly when using standard fractal coding and only a relatively small

number of shifts is required to improve the quality of the fractal representation and reduce

the blockiness artifacts. Performing a higher number of shifts will not degrade the quality of

the fractally denoised image but will result in little or no improvement.

4.4 Summary and Concluding Remarks

In this chapter, various fractal-based schemes for image restoration have been developed and imple-

mented. First, the noisy image was simply encoded using the uniform partitioning fractal scheme. It

was observed that the standard fractal scheme performs too much smoothing for lower resolutions

(M,N), producing a blurring of the edges as well as blockiness artifacts. At higher resolutions

(M,N), an insufficient amount of smoothing is performed, resulting in a noisy fractal represen-

tation. This competition between quality and resolution can be resolved by using an adaptive

partitioning scheme such as quadtrees, which allows different resolutions and block sizes to be used

for different parts of an image. It permits a greater degree of smoothing away from edges (larger

blocks) and a lesser degree of smoothing near edges (smaller blocks), hence minimizing their degra-

dation. An attempt has been made to gain some insights into some of the reasons why fractally
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(a) Standard fractal coding (b) Zooming in on the image in (a).

uniform partitioning with (M,N) = (32, 64)

No geometric maps are tested

RMSE=9.04, PSNR=29.01.

(a) Standard fractal coding (b) Zooming in on the image in (a).

uniform partitioning with (M,N) = (32, 64)

all 8 geometric maps are tested

RMSE=8.71, PSNR=29.33.

Figure 4.13: Denoised estimates using the standard fractal coding of the noisy image, without an well as

with testing for the 8 geometric maps, when using the cycle spinning algorithm with K = 16 diagonal shifts.



CHAPTER 4. FRACTAL IMAGE DENOISING 152

(a) Quadtree-based fractal scheme (b) Zooming in on the image in (a)

SNR decomposition criterion

RMSE=8.69, PSNR=29.35.

(a) Quadtree-based fractal scheme (b) Zooming in on the image in (a).

collage error decomposition criterion

RMSE=8.73, PSNR=29.31.

Figure 4.14: Denoised estimates using the quadtree-based fractal coding of the noisy image, using signal-to-

noise (SNR) as well as collage error decomposition criterion when incorporating the idea of cycle spinning

with K = 16 diagonal shifts.
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(a) Standard predictive fractal scheme (b) Zooming in on the image in (a).

uniform partitioning with (M,N) = (32, 64)

RMSE=8.37, PSNR=29.68.

(c) Quadtree-based predictive fractal scheme (d) Zooming in on the image in (c).

collage error decomposition criterion

RMSE=8.09, PSNR=29.97.

Figure 4.15: Denoised estimates using the standard as well as the quadtree-based predictive fractal denoising

schemes when incorporating the cycle spinning algorithm with K = 16 diagonal shifts.
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Figure 4.16: Comparison between the improvement achieved by incorporating the cycle spinning idea with

K=16 diagonal shifts within the the various fractal-based denoising schemes studied in this chapter.
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coding a noisy image leads to a significant degree of noise suppression. The decimation associated

with the contractive spatial maps used in the fractal transform is probably responsible for most of

the denoising.

A second major result of this chapter lies in the estimation of the fractal code of the noise-free

image from the fractal code of the noisy image. However, it is not guaranteed that optimal parent-

child pairings of the noisy image will coincide with optimal parent-child pairings of the noiseless

image. In an effort to predict the latter, thereby producing a better fractal reconstruction of the

noiseless image, a collage-based method employing the noise statistics was proposed. Experiments

indicate that the method works very well, improving upon the other fractal-based methods and

yielding results that are superior to those obtained by the Lee filter method. Using the quadtree-

based fractal predictive scheme, with collage decomposition criterion, performs even better than

the standard predictive scheme adopting uniform partitioning of the image. Another possible

advantage of the proposed fractal denoising scheme over the Lee filter is that the former can, if

desired, perform compression of the noisy image, unlike the latter.

The incorporation of the cycle spinning idea for the purpose of reducing the blockiness artifacts

and improving the overall quality of the fractally denoised estimates was also proposed and imple-

mented. It was shown that significant gains are achieved by using the cycle spinning idea at the

expense of an increase in the computational complexity.

In this chapter, the task of investigating and developing fractal-based image denoising methods,

as applied in the spatial domain of the noisy image, was investigated. This investigative process

followed in this chapter has a fractal-wavelet analogue. In particular, the extraction of the fractal

code of the original image from noisy one, can be performed for the fractal-wavelet transform. In

other words, the predictive fractal denoising algorithm will be extended for the purpose of predicting

the fractal-wavelet code of the DWT of the original image from the DWT of the noisy one. This

analogous task is treated in the next chapter, in some detail.



Chapter 5

Fractal-Wavelet Image Denoising

In this chapter, the potential of applying various fractal-wavelet (FW) schemes for the purpose of

image denoising will be investigated. This is going to be done in an manner that is analogous to the

pure fractal-based methods, as detailed in chapter 4. As it was the case for the spatial-based fractal

schemes, it will be shown that when the wavelet transform of the noisy image is simply fractally

encoded, using any of the fractal-wavelet schemes described in chapter 2, a significant amount of the

noise is suppressed. The use of the adaptive as well as the quadtree-based fractal-wavelet schemes

for the purpose of image denoising will also be explored.

A simple yet effective method to estimate the fractal-wavelet code of the wavelet transform of

the original noise-free image from the statistics of the wavelet transform of the noisy image will

be derived. From this fractal-wavelet code, one can then generate a FW denoised estimate of the

original noiseless image. This predictive fractal-wavelet image denoising scheme is analogous to the

predictive pure fractal image denoising scheme proposed in chapter 4. Even better results can be

obtained when using a hybrid fractal-wavelet image denoising scheme that makes use of quadtree

partitioning scheme in the wavelet domain as well as adaptive thresholding of the stored wavelet

coefficients. It will be shown that this hybrid FW denoising scheme yields estimates that are

significantly denoised while preserving the sharpness of the edges and other high frequency features

of the image. The denoising and restoration achieved by the proposed hybrid quadtree-based FW

denoising scheme was found to be consistent with the human visual system where extra smoothing

is performed in flat and low activity regions and a lower degree of smoothing is performed near

high frequency components, e.g. edges, of the image.

Furthermore, ways of improving the performance of the proposed fractal-wavelet image denois-

156
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ing methods even further will be investigated. In particular, the cycle spinning algorithm will be

applied in order to enhance the fractal-wavelet denoised estimates. Incorporating this idea in the

various fractal-wavelet denoising methods results in significant reduction of the pseudo-Gibbs and

ringing artifacts that are inherent in a FW denoised estimate and improves its overall visual and

quantitative quality considerably.

The layout of this chapter is as follows: First, the potential of applying fractal-wavelet schemes

for the purpose of image denoising by simply encoding the noisy images using various FW schemes

is investigated. A predictive FW scheme for the purpose of image denoising will be outlined and

implemented in section 2. The incorporation of the cycle spinning idea in order to improve the FW

denoised estimates, obtained by the various FW schemes is detailed in section 3. A brief summary

and conclusions will be given in the last section of this chapter.

5.1 Image Denoising using Fractal-Wavelet Coding

In chapter 2, the potential of applying standard fractal coding as applied in the spatial domain

of an image for the purpose of image denoising was investigated. It was shown that significant

noise reduction can be achieved by simply fractally encoding a noisy image. In this section, the

potential of fractal denoising in the wavelet domain of the noisy image will be investigated. The

use of various fractal-wavelet schemes for the purpose of image denoising will be investigated.

First, the noisy image is simply encoded using the studied fractal-wavelet schemes. It will be

shown that a significant amount of the noise is suppressed. Further improvement in image quality

can be achieved by applying the adaptive as well as the quadtree-based fractal wavelet schemes

described in chapter 2. Similar to the quadtree-based fractal scheme in the spatial domain, It will

be shown that the enhancement achieved by the quadtree-based fractal-wavelet scheme is consistent

with the characteristics of the human visual system. Extra denoising is performed in flat and low

activity regions and a lower degree of smoothing is performed near high frequency components,

hence preserving the sharpness of edges in the image. Similarities that may exist between the

fractal-wavelet denoising and the wavelet thresholding techniques will also be explored.

5.1.1 Conventional Fractal-Wavelet Coding for Image Denoising

In chapter 2, various fractal-wavelet schemes were studied and implemented. In particular, two

distinct and effective schemes were considered, namely the the exhaustive FW scheme (FW-I)
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which treats the three subbands independently and the the standard FW scheme (FW-II), which

combines the three subbands. These schemes were described in Table 2.2.

The noisy test image used in this chapter is the same standard test image of “Lenna” that has

been degraded by an AWGN with standard deviation σw = 25, used throughout this work. These

FW schemes have been implemented to encode the noisy image of “Lenna” and the results are

illustrated in Figure 5.1 and summarized as follows:

• Note that significant but varying degree of noise reduction has been achieved by the two

FW schemes at the (k∗1, k
∗
2) = (4, 5) as well as the (k∗1, k

∗
2) = (5, 6). The best result, as

reflected by the RMSE and the PSNR, is obtained when using the Standard FW scheme at

the (k∗1, k
∗
2) = (5, 6) resolution.

• At the lower FW resolution, (k∗1, k
∗
2) = (4, 5), both schemes yield overly smoothed denoised

estimates where most of the noise has been suppressed but also at the expense of smoothing

other high frequency content of the image such as edges. Disturbing ringing and blurring

artifacts are also observed throughout the denoised estimate.

• For the higher FW resolution, (k∗1, k
∗
2) = (5, 6), sharper images are obtained but also some

degree of residual noise that is still present in the image is observed. This is observed especially

when the exhaustive FW-I scheme is used, the denoised estimate appears sharp but visibly

noisy.

• Clearly, for both FW schemes, it is observed that there is a consistent trade-off between

the resolution and the quality of the FW representation. On one hand, for lower resolution

(k∗1, k
∗
2), excessive smoothing is performed which results in blurring of edges and less sharp

images with ringing and blurring artifacts. On the other hand, at higher resolution (k∗1, k
∗
2),

not enough denoising is performed while the sharpness of the image is preserved, resulting in

sharp but noisy images.

The observed trade-off between the selection of the FW resolution, (k∗1, k
∗
2) = (4, 5), and the

quality of the denoised estimate is reminiscent of the trade-off observed between the selection of the

threshold, λ, and the quality of the denoised estimate obtained by wavelet thresholding method.

This apparent connection between the two methods will be explored in more detail next.
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(a) Exhaustive FW-I scheme : (k∗1 , k
∗
2) = (4, 5) (b) Exhaustive FW-I scheme: (k∗1 , k

∗
2) = (5, 6)

RMSE =12.01 , PSNR = 26.53. RMSE = 15.35, PSNR = 24.41.

Execution time ≈ 52 secs. Execution time ≈ 93 secs.

(c) Standard FW-II scheme: (k∗1 , k
∗
2) = (4, 5) (d) Standard FW-II scheme: (k∗1 , k

∗
2) = (5, 6)

RMSE = 13.67, PSNR = 25.42. RMSE = 11.32, PSNR = 27.05.

Execution time ≈ 19 secs. Execution time ≈ 65 secs.

Figure 5.1: Denoised estimates obtained by simply encoding the noisy image using the Exhaustive (FW-I)

and the Standard (FW-II) schemes. Note that no quantization of the FW scaling coefficients is performed.
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Similarities Between Fractal-Wavelet Denoising and Wavelet Thresholding

In view of the above observations, it can be noted that the trade-off that exists between the FW

resolution (k∗1, k
∗
2) and the quality of the FW denoised estimate is rather similar to that observed

trade-off between the selection of the value of the threshold λ and the quality of the denoised

estimate. For low resolution (k∗1, k
∗
2), the FW encoding method yields overly denoised representation

where most of the noise has been suppressed at the expense of smoothing the edges of the image

and creating artificial ringing artifacts. This is indeed analogous to the results observed for the

wavelet thresholding method when a critical threshold that is too high is used. On the other hand,

for higher resolution (k∗1, k
∗
2), FW coding of the noisy image does not perform enough denoising,

resulting in sharp but visibly noisy representations. Again, this observation is consistent with

the results obtained by the wavelet thresholding method when the used threshold is too low. This

establishes an apparent similarity between the FW coding and the wavelet thresholding methods for

image denoising, studied in chapter 3. The analogy lies the fact that the selection of the optimal

FW resolution (k∗1, k
∗
2) is equivalent to the selection of the optimal critical threshold λ∗ for the

wavelet thresholding method. In order to achieve denoised images while preserving the sharpness

of the image, the wavelet thresholding method seeks to choose an optimal threshold λ∗. Similarly,

to achieve the best denoised FW representation of the original image, one seeks to obtain the

optimal intermediate resolution between the lower FW resolution (k∗1, k
∗
2) = (4, 5) and the higher

FW resolution (k∗1, k
∗
2) = (5, 6).

As seen in chapter 2, there are many different strategies for selecting effective thresholding

strategies for the purpose of image denoising. Adaptive thresholds that vary with the subbands

and levels of the wavelet tree perform significantly better than uniform thresholding. For the FW

coding schemes, different degrees of denoising can be achieved by varying the FW resolution. Next,

the selection of the best FW resolution (k∗1, k
∗
2) will be explored by using the adaptive fractal-wavelet

scheme described in chapter 2.

5.1.2 Adaptive Fractal-Wavelet Coding for Image Denoising

Recall that the adaptive fractal-wavelet, scheme described in chapter 2, yields fractal-wavelet

representations at any intermediate partition level between any two FW resolutions (k∗1, k
∗
2) and

(k∗1 + 1, k∗2 + 1). As seen in the previous section, increasing the resolution from (k∗1, k
∗
2) = (4, 5)

to (k∗1, k
∗
2) = (5, 6) results in significantly different results that illustrate a clear trade-off between
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the noise reduction and the sharpness of the FW representation. The adaptive FW scheme yields

FW representations at various intermediate partition levels of the wavelet coefficients. This adap-

tive FW scheme is less restrictive than the original FW schemes in the sense that the parent and

child blocks do not have to be restricted, in size or location, to the various wavelet decomposition

subbands and levels of the wavelet tree.
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(a) Quality of denoised estimate vs. FW resolution (b) Best adaptive FW denoised estimate

Optimal FW resolution: 30× 30 parent blocks RMSE = 10.77, PSNR = 27.48.

Execution time ≈ 47 secs.

Figure 5.2: (a) The quality of the adaptive FW scheme denoised estimate of “Lenna” for different FW

resolutions, and (b) the best FW denoised estimate obtained when the parent blocks contains 30 × 30
coefficients.

Figure 5.2 (a) illustrates the dependence of the quality of the adaptive FW denoised estimate

on the size of the parent sub-block, as the FW resolution varies from (k∗1, k
∗
2) = (3, 4) to (k∗1, k

∗
2) =

(5, 6). Note that this figure illustrates the trade-off between the quality of the FW denoised estimate

and the FW resolution (k∗1, k
∗
2) quite well. For low FW resolution, the quality of the denoised

image is poor mainly because not many wavelet coefficients have been stored and most of the

wavelet coefficients are estimated from the relatively small number of stored wavelet coefficients.

However, as the FW resolution increases, the quality of the denoised estimate improves until a

critical resolution is reached, beyond which the quality starts to degrade. Figure 5.2 (b) illustrates

the best representation using adaptive FW scheme with an intermediate level corresponding to the
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critical resolution with 30×30 parent sub-blocks and 60×60 child sub-blocks. If the FW resolution

is increased even further, the quality of the FW denoised estimate starts to get worse because more

noisy coefficients are stored and thus more of the noise is reconstructed and the FW reconstruction

appear noisier, and hence with higher RMSE and lower PSNR.

Figure 5.3 further illustrates the similarities between the wavelet thresholding method and the

adaptive FW scheme. Note that the quality of the FW denoised estimate of the original image

depends on the FW resolution, as described by the size of the parent sub-block, in the same manner

as the quality of the wavelet thresholding estimate of the original image depends on the selection

of the critical threshold. This clearly supports the analogy between the two methods that has been

suggested earlier.

A different way to interpret the trade-off between the fractal resolution and the quality of the

FW denoised estimate is as a trade-off between the number of wavelet coefficients that are stored,

as they are, and the number of those wavelet coefficients that are fractally encoded and estimated

during the decoding process from the ones that have been stored and the FW code. One way

to adaptively control this trade-off is to use the quadtree-based FW scheme. Next, the use of the

quadtree-based fractal-wavelet scheme for the purpose of image denoising and assess its performance

will discussed and implemented.

5.1.3 Quadtree-Based Fractal-Wavelet Coding for Image Denoising

In chapter 2, the use of the quadtree-partitioning approach for the purpose of partitioning the

wavelet tree and performing fractal-wavelet image coding was described. The hierarchical quadtree

partitioning scheme for the purpose of fractal-wavelet image denoising can be described as follows:

Consider a subtree of wavelet coefficients, Asub
kij , that is rooted at the coefficient asubkij , sub ∈ {h, v, d}.

The FW quadtree-based scheme examines such a subtree and decides, on the basis of a prescribed

criterion, whether or not such a subtree should be FW encoded. If it turns out that the subtree

should not be encoded, then the node or root, asubkij , is stored and the subtree Asub
kij is replaced by

four subtrees that are rooted at the four children of the original node, asubkij . Otherwise the subtree

is encoded using the FW scheme of choice.

Various decomposition criteria for the hierarchical quadtree partitioning scheme have been

investigated. For the purpose of image denoising, a signal-to-noise ratio (SNR) decomposition
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(a) Quality vs. Resolution (b) RMSE = 10.77, PSNR = 27.48.

Optimal parent size: 30× 30
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(c) Quality vs. Threshold (d) RMSE=10.98, PSNR=27.31.

Optimal threshold : λ∗hard = 80

Soft thresh.
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(e) Quality vs. Threshold (f) RMSE=10.57, PSNR=27.65.

Optimal threshold : λ∗soft = 40

Figure 5.3: Comparison between the adaptive FW coding and the VisuShrink wavelet thresholding for

image denoising.
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criterion is used. The SNR, γ, of a noise-free child subtree Y = [Asub
kij ] is computed as follows:

γ =
σ2Y
σ2w

. (5.1)

However, the noiseless child block, Y = [Asub
kij ], is not available and only its corresponding noisy

version, Ŷ = [Âsub
kij ], is observed. Since the noise is assumed to be AWGN and independent of the

original image, then the variances, σ2
Ŷ

and σ2Y, of the noisy and the noise free subtrees, respectively,

are related as follows:

σ2
Ŷ

= σ2Y + σ2w, (5.2)

or equivalently

σ2Y = σ2
Ŷ
+ σ2w. (5.3)

Thus the SNR, γ, can be computed from the noisy image as follows:

γ =
σ2Y
σ2w
≈
σ2
Ŷ
− σ2w

σ2w
≈
σ2
Ŷ

σ2w
− 1. (5.4)

However, this estimate may be negative since σ2
Ŷ

is computed locally. Thus, a more reasonable

estimate of the SNR is as follows:

γ ≈ max{
σ2
Ŷ

σ2w
− 1, 0}. (5.5)

Using this SNR, the quadtree-based FW image denoising scheme can be outlined next.

Quadtree-Based FW Image Denoising Algorithm

For a given prescribed SNR threshold, γc:

• For each, uncoded, noisy child subtree, Ŷ = [Âsub
kij ], compute its SNR, as given by Eq. (5.5)

γ ≈ max{
σ2
Ŷ

σ2w
− 1, 0}, (5.6)

and compare it to γc.

– If γ ≥ γc, then store the root of the subtree and partition the subtree into four subtrees

rooted at each of the its four children that are marked as not coded.

– Otherwise, the subtree is simply fractally encoded, using any of the fractal-wavelet

schemes and marked as coded.

As discussed next, the quadtree-based FW scheme is intuitively appealing because it attempts to

exploit some of the characteristics of the human visual system.
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The Quadtree-Based FW Scheme and the Human Visual System

In principle, the human visual system is less sensitive to noise near edges and more sensitive to

noise in flatter regions of the image. This motivates the investigation the quadtree partitioning

scheme which permits the use of different resolutions or subtree sizes for different parts of the wavelet

tree. In particular, subtrees with high signal to noise ratio, γ, generally contain edge information or

other high frequency content of the image. Thus, some or most of the significant wavelet coefficients

within such a subtree will be stored. On the other hand, subtrees with low signal to noise ratio

generally correspond to flat regions of the image. Fractally encoding such a subtree results in

significant noise reduction, as was shown earlier. Thus, the quadtree based FW scheme performs

little denoising near edges and other high activity regions of the image. However, the presence of

an acceptable amount of noise in these high frequency regions of the fractal representation may not

be a problem due to the fact that the human visual system is less sensitive to noise near edges. On

the other hand, the FW encoding of subtrees with low signal to noise ratio, γ, results in significant

noise reduction in flat and low activity regions of the image. These favorable characteristics of the

quadtree-based FW scheme will be exploited for the purpose of image denoising while preserving

its sharpness.

Experimental Results

Whenever using the quadtree partitioning algorithm for the purpose of fractal image coding, one

has to choose an optimal decomposition criterion. In this case, the “optimal” value, γc, for the SNR

threshold decomposition criterion has to be determined. Similar to the spatial case, the value was

determined experimentally. Figure 5.4 (a) illustrates the dependence of the quality of the quadtree-

based FW denoised image on the selection of the prescribed signal-to-noise ratio threshold, γc. Note

that γc ≈ 0.2 yields the best results, which is similar to the critical SNR threshold, γ
′

c ≈ 0.25 used

for the quadtree-based standard fractal image denoising scheme, as performed in the spatial domain

of the noisy image and discussed in detail in section 4.1.2. From Eq. (5.5), this seems to indicate

that one needs to partition a subtree Ŷ if

σ2
Ŷ
≥ 1.2σ2w. (5.7)

Figure 5.4 (b) illustrates the quadtree-based FW representation of the noisy image corresponding to

the optimal critical signal-to-noise ratio threshold, γc = 0.2. Note that quantitatively, the RMSE

fidelity measure of the denoised estimate is relatively high. However, visually, the edges of the
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image appear sharp and most of the background and other low activity areas of the image have

been overly smoothed. Taking a closer look, one could still notice the presence of noise near edges

and other sharp features of the images. However, naturally the noise is less perceivable and mixed

with the other high frequency features of the image.
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(a) Quality of denoised estimate vs. SNR (b) The best FW-quadtree denoised estimate

optimal SNR: γc ≈ 0.2 RMSE = 11.53, PSNR = 26.89.

Execution time ≈ 117 secs.

Figure 5.4: (a) The dependence of the quality of the quadtree-based FW denoised image on the selection

of the SNR threshold γc, and (b) the best quadtree-based FW denoised estimate, obtained using γc = 0.2.

When encoding the wavelet tree of the noisy image using any of the FW schemes, a relatively

high number of noisy wavelet coefficients are stored. Thus, during the decoding process, these noisy

wavelet coefficients along with the FW code are used to generate the FW estimate. Consequently,

the FW estimate will often have some degree of noise. Next, a hybrid FW and wavelet thresholding

scheme that denoises the stored wavelet coefficients using a suitable thresholding method before

they are stored is proposed.

5.1.4 Hybrid Quadtree-Based Fractal-Wavelet Coding and Thresholding

In this section, the use of a hybrid quadtree-based FW and thresholding scheme that combines

the use of FW coding as well as thresholding of stored wavelet coefficients is discussed. Recall

that for the various FW schemes, a certain number of wavelet coefficients has to be stored. For
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instance, for any of the original FW schemes, one has to store 2k
∗
2 × 2k

∗
2 wavelet coefficients, when

using a FW resolution of (k∗1, k
∗
2). Even more coefficients are stored when the quadtree-based FW

is used. However, when encoding the wavelet tree of a noisy image using any of the FW schemes,

these stored wavelet coefficients are noisy. During the FW decoding process, these stored wavelet

coefficients along with the FW code, will be used to re-generate an estimate of the original image.

Consequently, the FW denoised estimate will generally contain some degree of noise. Note that

this is quite different from the case of encoding the noisy image using any of the standard fractal

schemes which are applied in the spatial domain of the noisy image. Recall that for standard fractal

image coding, the fractal decoder generally starts with a blank, noise-free image, and re-generates

the fractal estimate of the original image by iterating the fractal code on the initial blank image

seed.

Recall that in wavelet thresholding, one often thresholds only the first few highest decomposition

levels. Typically, only coefficients at decomposition level j, 6 ≤ j ≤ 9 are thresholded, for the

512 × 512 test image of “Lenna”. The reason behind this is that first few lowest decomposition

levels, 1 ≤ j ≤ 5 contain mainly the low frequency content of the image and thus they are not

significantly affected by the noise, which is a high frequency data that is embedded within the high

frequency wavelet coefficients of the image. For these reasons, the thresholding process should not

be applied at the lower frequency subbands of the wavelet coefficients tree. When applying the

fractal-wavelet schemes with fixed levels (k∗1, k
∗
2), one is storing 2k

∗
2 × 2k

∗
2 wavelet coefficients that

are mainly located at the lowest decomposition levels of the wavelet tree, when k∗2 is small. Thus

most of these stored coefficients are not significantly affected by the noise and there is no need to

threshold them. It was observed that thresholding these coefficients is counter productive and yields

slightly worse results than without any thresholding. However, in the case of the quadtree-based

fractal-wavelet scheme described above, the stored wavelet coefficients may come from anywhere in

the wavelet decomposition tree. Thus, one would expect that it would be beneficial to threshold

the stored wavelet coefficients that originate from high-frequency levels and subbands. Indeed it

was observed that this is the case, as will be seen next.

Thresholding Strategy

The hybrid FW quadtree-based thresholding scheme proposes denoising the stored wavelet coeffi-

cients by applying a suitable thresholding strategy. The level-dependent thresholding scheme will

be used because it has shown to perform well and it is computationally simple and does not require
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estimating the local statistics of the wavelet tree, as is the case for the SureShrink and BayesShrink.

Thus, if a stored wavelet coefficient is positioned in level j of the wavelet decomposition tree of size

M , then the level-dependent threshold is given by

λj =
√

2 ln(M)σw2
−(J−j)/2, for j = 1, 2, . . . , J. (5.8)

The use of soft as well as hard thresholding operators using level-dependent thresholds will be

investigated.

Experimental Results

This hybrid wavelet denoising scheme was implemented for the purpose of enhancing the perfor-

mance of the quadtree-based fractal-wavelet image denoising scheme studied in the previous section.

Figure 5.5 illustrates the results obtained by applying the quadtree-based fractal wavelet scheme

along with hard and soft thresholding of the stored wavelet coefficients, located at higher frequen-

cies (j ≥ 6). Comparing these results to those obtained by simply applying the quadtree-based FW

scheme, as illustrated in Figure 5.4 (b), note that the use of the proposed thresholding strategy to

denoise the stored wavelet coefficients has in fact resulted in a slight improvement of the quality of

the FW denoised estimate. This improvement is visually noticeable as the new estimates appear

less noisy and exhibit a lesser degree of ringing and blurring artifacts. The RMSE and PSNR

fidelity measures also reflect this improvement in the quality of the quadtree-based FW denoised

estimates.

In summary, the quadtree partitioning scheme permits more smoothing away from edges and

lesser smoothing near edges, thus achieving the smoothing and denoising of an image without

degrading its edges. Also performing some degree of level-dependent thresholding of the stored

wavelet coefficient will result in an overall less noisy FW estimate, even in the vicinity of edges.

5.1.5 Observations

So far in this section, it has been shown that, similar to the spatial-based fractal methods discussed

in chapter 2, simply encoding a noisy image using any of the conventional, adaptive or quadtree-

based fractal-wavelet schemes results in significant noise reduction. Again this is because natural

image structures generally possess similarities across resolution scales of their wavelet coefficients,

which normally can exploited for fractal-wavelet coding. However, noisy structures have no re-

semblance across resolution levels and therefore cannot be represented well using fractal-wavelet
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coders. Thus, encoding a noisy image using a fractal-wavelet coder results in good reconstruction

of the natural, self-similar structures, whereas the noisy contents cannot be re-generated. Some of

the advantages of using the fractal-wavelet schemes to denoise images include:

• The fractal-wavelet schemes eliminate the blockiness artifacts in the denoised image that are

inherent in block-based standard fractal schemes, as applied in the spatial domain of the

image. However, especially for lower (k∗1, k
∗
2), the denoised image often suffers from pseudo-

Gibbs and ringing artifacts. Ways to significantly reduce or eliminate these artifacts will be

studied later in this chapter.

• Fractal-wavelet schemes are also computationally less expensive than their standard fractal

counterparts. Also, as was shown in the last section, one may combine fractal-wavelet schemes

with other wavelet-based denoising methods, such as wavelet thresholding, to yield a better

hybrid fractal-wavelet and thresholding scheme for image denoising.

(a) Hybrid quadtree-based FW: hard thresholding (b) Hybrid quadtree-based FW: soft thresholding

RMSE=11.13, PSNR=27.20. RMSE=11.18, PSNR=27.17.

Execution time ≈ 127 secs. Execution time ≈ 132 secs.

Figure 5.5: The results obtained by applying the hard-thresholding and soft-thresholding of the stored

wavelet coefficients for the quadtree-based fractal-wavelet scheme, using the signal-to-noise decomposition

threshold γc = 0.2.
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Next, a method for predicting the fractal-wavelet code of the original noise-free image from the

noisy image will be proposed.

5.2 A Predictive Fractal-Wavelet Image Denoising Technique

In this section, the relationship between the wavelet transform of the noisy image and its noiseless

counterpart, will be examined. This relationship will provide a method of estimating the fractal-

wavelet code for the wavelet tree of the original noiseless image from the statistics of the noisy

image. This FW code is then used to generate a FW denoised estimate of the original noise-free

image.

Recall that the FW scheme proceeds as follows: given a fixed set of parent-child level values

(k∗1, k
∗
2):

1. For each uncoded child quadtree Asub
k∗2 ,i,j

, sub ∈ {h, v.d} and i, j = 1, 2, . . . , 2k
∗
2 :

• Find the parent quadtree Asub
k∗1 ,i

′,j′ for which the collage distance associated with that

child, namely,

∆sub
i,j,i′,j′ = ||Asub

k∗2 ,i,j
− αsubi,j,i′,j′A

sub
k∗1 ,i

′,j′ ||22, (5.9)

is minimized.

2. Store the wavelet coefficients ĉi,j , for 1 ≤ i, j ≤ 2k
∗
1 .

For simplicity of notation let the range subtree of an arbitrary wavelet decomposition tree Ri,j =

Asub
k∗2 ,i,j

be represented by the vector y = [y1, y2, . . . , yn] and the domain subtree Di′,j′ = Asub
k∗1 ,i

′,j′ of

the same wavelet tree be represented by the by the vector x = [x1, x2, . . . , xn]. The determination

of the optimal scaling coefficient α is a simple least-squares problem. In practice, the L2 norm

is used so that the optimal scaling map performs a least-squares fit of the parent-child wavelet

coefficients data, and the minimization of the squared L2 (i.e. mean squares) error

∆2
i′(i,j),j′(i,j) =

1

n

n
∑

m=1

[ym − αxm]
2 (5.10)

yields a single linear equation in α with solution

α∗ =
1
n

∑n
m=1 xmym

1
n

∑n
m=1 x

2
m

. (5.11)

Before proceeding further, it will be useful to rewrite the least-squares scaling coefficients in (5.11)

in terms of standard statistical quantities. The wavelet transform of an image can be regarded
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as a random signal so that, in general, the wavelet coefficients, x={xm,m = 1, 2, . . . , n} and

y={ym,m = 1, 2, . . . , n}, can be considered as random samples drawn from the random variables X

and Y representing the wavelet coefficients distribution of a parent subtree D and its corresponding

child subtree R. The least-squares scaling coefficient can then be written as

α∗ =
E[XY ]

E[X2]
(5.12)

where

E[XY ] =
1

n

n
∑

m=1

xmym, and E[X2] =
1

n

n
∑

m=1

x2m. (5.13)

Strictly speaking, the above expressions are approximations to the statistical quantities of the

random variables X and Y since they represent (finite) sample statistics. For large n, the sample

statistics provide good estimates of the population statistics. The fact that n will not be large in

our applications will contribute to errors in estimating the local image statistics and, subsequently,

sub-optimal fractal codes for the noiseless images. In what follows, variables and coefficients that

correspond to a noisy image will have hats, e.g. X̂, Ŷ for the noisy image as opposed to X,Y for

the noiseless image.

Next, an expression for the scaling coefficients corresponding to the noisy image will be derived.

A relationship between the scaling coefficients corresponding to the noisy and the noise-free images

will be established.

5.2.1 Derivation of the Scaling Coefficients for the Noiseless Image

As above, let X and Y denote the random variables representing the the wavelet coefficients values

in a parent subtree D and its corresponding child subtree R, respectively, corresponding to the

noise-free original image. Also, let X̂ and Ŷ , denote the random variables corresponding to wavelet

coefficients of the noisy image.

For the wavelet transform of the noisy image, similarly to (5.12), the least-squares scaling

coefficients are given by

α̂∗ =
E[X̂Ŷ ]

E[X̂2]
, (5.14)

where

X̂ = X +WX , Ŷ = Y +WY , (5.15)
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where WX and WY are independent and identically distributed N(0, σ2w); additive white Gaussian

noise (AWGN) processes. Assuming that the image and the noise signals are independent, then

the second moment of the noisy random variable X̂ is

E[X̂2] = E[(X +WX)2] = E[X2] + σ2w. (5.16)

Also, under the independence assumption between the noise and the image signals, it can be shown

that

E[X̂Ŷ ] = E[(X +WX)(Y +WY )] = E[XY ]. (5.17)

From (5.14), (5.16) and (5.17), the scaling coefficient α̂∗ can be expressed in terms of the statistics

of the noiseless wavelet transform of the image and the noise variance as follows:

α̂∗ =
E[XY ]

E[X2] + σ2w
. (5.18)

Or equivalently,

α̂∗ =

E[XY ]
E[X2]

1 + σ2
w

E[X2]

. (5.19)

From this result and (5.12), it can be shown that

α̂∗ =
α∗

1 + 1
γ

, or equivalently α∗ = (1 +
1

γ
)α̂∗, (5.20)

where the signal-to-noise ratio is defined as

γ =
E[X2]

σ2w
. (5.21)

From Eq. (5.16), the signal-to-noise ratio can be estimated from the statistics of the noisy image,

as follows:

γ =
E[X̂2]

σ2w
− 1. (5.22)

provided that:

E[X̂2] > σ2w. (5.23)

Eq. (5.20) provides a relationship between the scaling coefficients, α∗ and α̂∗, corresponding to the

original and the noisy images, respectively. This relationship will be explored in more detail in the

next sections.
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Remarks

In view of the above derivations, one can make the following observations:

• Examining the signal-to-noise ratio, γ, note that if the energy of the subtree is significantly

larger than the noise variance, i.e. E[X2] >> σ2w, then γ >> 1 and the content of the subtree

can be considered as important. In other words, this subtree contains edge information and

other high frequency features of the original image. Thus the noise is insignificant compared

to the signal information. In this case one has

α̂∗ ≈ α∗, when γ >> 1, (5.24)

In the limit, when the image is noise-free, then one has the following:

α̂∗ → α∗, as γ −→∞. (5.25)

which is reasonable, as the FW codes of the noisy and the original images will be closer

together when the noise is negligible (i.e. small σ2w) and rather distinct for dominant noise

(large σ2w).

Next, a method for estimating the the collage error corresponding to the the noiseless image from

the noise one is derived.

5.2.2 Derivation of the Collage Error for the Noiseless Image

The results of the previous section suggest an algorithm to fractally denoise an image. First,

fractally encode the DWT of the noisy image to obtain the scaling coefficients α̂∗. Use (5.3) to

estimate the scaling coefficients, α∗, corresponding to the DWT of the noiseless image. There is one

problem, however: It is not guaranteed that the parent-child assignments of the wavelet transform

of the noisy image are optimal for the wavelet transform of the noiseless image in the mean-squared

error sense, i.e. that the MSE is minimized for the original image. A method to ensure that optimal

collage coding is being performed for the noiseless image will now be proposed next.

Our objective is to estimate the collage error corresponding to the noise-free wavelet transform

of the image as computed from the statistics of the noisy wavelet transform of the image. Recall

that the collage error for the DWT of the noiseless image corresponding to the child subtree Yk, its

corresponding parent subtree Xi and resulting scaling coefficient α∗ik is given by

∆2
ik = E[(Yk − α∗ikXi)

2]. (5.26)
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Expanding the above quantity yields

∆2
ik = E[Y 2k ] + α∗2ikE[X2

i ]− 2α∗ikE[XiYk].

Recall that

X̂i = Xi +Wi, Ŷk = Yk +Wk. (5.27)

Then, as shown earlier in equations (5.16) and (5.17), the above collage error can be expressed in

terms of the statistics of the noisy image as follows:

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]− σ2w)− 2α∗ikE[X̂iŶk]. (5.28)

provided that:

E[Ŷ 2k ] > σ2w and E[X̂2
i ] > σ2w. (5.29)

This provides an approach to estimate the collage error corresponding to the wavelet transform of a

noisy image as computed from the statistics of the wavelet transform of its observed noisy version.

Next, an approach for estimating the FW code corresponding to the noise-free wavelet transform

from the noisy wavelet transform is outlined.

5.2.3 Predicting the FW Code of the Original Image from the Noisy Image

In view of the above derivations and discussion, an approach for predicting the fractal-wavelet code

for the wavelet transform of the original noise-free image from the wavelet transform of the noisy

image is outlined next.

For each uncoded child subtree Ŷk ∈ R, the range subtrees, of the wavelet transform of the

noisy image, the following steps are performed:

1. Compute its energy:

E[Ŷk
2
] =

1

n

n
∑

m=1

ŷ2k,m. (5.30)

2. Then get an estimate of the energy of the corresponding subtree in the wavelet transform of

the original noiseless image as follows:

EYk = E[Yk
2] = E[Ŷk

2
]− σ2w. (5.31)
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In theory, EYk must be positive. However in practice this will not always be the case since

E[Ŷ 2k ] is computed locally from subtrees with a relatively small number of coefficients, so it

is possible to encounter cases where

E[Ŷ 2k ] < σ2w (5.32)

resulting in negative values for EYk . Thus, there are two cases: E[Ŷ 2] > σ2w and E[Ŷ 2] ≤ σ2w.

More specifically, to avoid cases where the estimate of the energy is zero, one should consider

the following two cases: E[Ŷ 2] ≥ λσ2w and E[Ŷ 2] < λσ2w, where the parameter λ > 1, to be

determined experimentally.

3. For each possible parent subtree X̂i ∈ Dk, the domain pool of Yk, compute the least-squares

scaling coefficient, α̂ik, corresponding to the DWT of the noisy image

α̂∗ik =
E[X̂iŶk]

E[X̂2
i ]

, (5.33)

as given by (5.14).

Then compute the signal-to-noise ratio, as predicted from the DWT of the noisy image

as follows:

γ =
E[X̂i

2
]

σ2w
− 1. (5.34)

Again, in theory, γ must be positive, however in practice this will not alway be the

case since and E[X̂2
i ] is computed locally from subtrees with a relatively small number of

coefficients, so it is possible to encounter cases where

E[X̂2
i ] < σ2w, (5.35)

resulting in negative values for γ values. Thus, again there are two cases: E[X̂2
i ] > σ2w and

E[X̂2
i ] ≤ σ2w. More specifically, to avoid cases where the estimate of the energy is zero,

one should consider the following two cases: E[X̂2
i ] ≥ λσ2w and E[X̂2

i ] < λσ2w, for the same

parameter λ > 1, chosen above. Thus, overall there are two cases, which are treated in detail

as follows:

(a) Case 1: If E[Ŷ 2k ] ≥ λσ2w and E[X̂2
i ] ≥ λσ2w, then:

• One has

EYk = E[Ŷk
2
]− σ2w ≥ (λ− 1)σ2w > 0 and γ =

E[X̂2]

σ2w
− 1 ≥ λ− 1 > 0. (5.36)
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• Now, since the current parent-subtree, Xi is fixed, then one is using the same child-

parent assignment (Yk, Xi) for the noise-free image and (Ŷk, X̂i) for the noisy image,

then, the scaling coefficient, α∗, corresponding to the wavelet tree of the original

image is related to the scaling coefficient, α̂∗, corresponding to the noisy image by

α∗ik = (1 +
1

γ
)α̂∗ik, (5.37)

as shown in (5.3). This yields an estimate of the scaling coefficient α∗.

• Now, use this estimate of α∗ to compute the collage error, measured in terms of

the mean squared error for the wavelet tree corresponding to the original noiseless

image given by

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]− σ2w)− 2α∗ikE[X̂iŶk]. (5.38)

as shown in Eq. (5.28). This insures a collage-based matching criterion for the

DWT of the original noise-free image. This completes the first case, the case when

the energy of the child-subtree is small is now considered.

(b) Case 2: If E[Ŷk
2
] < λσ2w or E[X̂2

i ] < λσ2w, then:

• One may assume that child or parent subtree is dominated by the noise and the

corresponding subregion of the original image is mainly flat and low-activity and

contains little relevant information. In [7], it was suggested to reduce the value of

α̂∗ to get a better estimate of α∗. Indeed, it is beneficial to reduce the magnitude of

α̂∗ to obtain a distribution that resembles the distribution of the α∗. Besides, larger

values of α̂∗ would amplify the noise. The following modification is suggested: of

α̂∗:

α∗ ≈ min(
E[Ŷ 2k ]

λσ2w
,
E[X̂2

i ]

λσ2w
)α̂∗, (5.39)

to obtain an estimate of α∗.

• Also, in this case one cannot use the collage error in Eq. (5.28), derived for the

noise-free image, because the estimate:

E[Y 2k ] ≈ E[Ŷ 2k ]− σ2w or E[Y 2k ] ≈ E[X̂2
i ]− σ2w, (5.40)

may be negative. Thus, in this case one needs to resort to using the collage error,

corresponding to the wavelet transform of the noisy image:

∆2
ik = E[Ŷ 2k ] + α∗2ikE[X̂2

i ]− 2α∗ikE[X̂iŶk]. (5.41)
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4. Select the optimal parent subtree i∗(k) such that

∆2
i∗(k),k ≤ ∆2

i,k for all i 6= i∗(k). (5.42)

Clearly, one may apply any of the FW schemes discussed in the previous section. However, only the

FW-II scheme will be applied because it combines the three subbands, hence resulting in sufficiently

large child and parent subtrees and consequently better estimates of the required subtree statistics,

such as E[X̂2] and E[Ŷ 2] are obtained.

In view of the above detailed outline, the proposed predictive fractal-wavelet image denoising

scheme can be summarized as follows:

The Proposed Predictive FW Image Denoising Algorithm

Choose the standard FW scheme (FW-II) and its resolution (k∗1, k
∗
2), then: For each uncoded child

subtree Ŷk, k = 1, 2, . . . , 2k
∗
2 × 2k

∗
2 :

1. Compute the energy of the child subtree

E[Ŷk
2
] =

1

n

n
∑

m=1

ŷ2k,m. (5.43)

2. For each possible parent subtree X̂i ∈ Dk, the domain pool of Yk, compute:

• The scaling coefficient, α̂∗, corresponding to the DWT of the noisy image, as given by

(5.14):

α̂∗ik =
E[X̂iŶk]

E[X̂2
i ]

, (5.44)

• The energy:

E[X̂i
2
] =

1

n

n
∑

m=1

x̂2i,m. (5.45)

Now, consider one of the following two cases:

(a) Case 1: If E[Ŷk
2
] ≥ λσ2w and E[X̂i

2
] ≥ λσ2w, then:

• Compute the signal-to-noise ratio, γ, corresponding to the original noise-free image,

which can be estimated by

γ =
E[X̂i

2
]

σ2w
− 1. (5.46)
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• Predict the scaling coefficient corresponding to the DWT of the noise-free image as

follows:

α∗ = (1 +
1

γ
)α̂∗. (5.47)

• Compute the collage error, optimized for the noise-free image, as given by

∆2
ik = (E[Ŷ 2k ]− σ2w) + α∗2ik (E[X̂2

i ]− σ2w)− 2α∗ikE[X̂iŶk]. (5.48)

(b) Case 2: If E[Ŷk
2
] < λσ2w or E[X̂i

2
] < λσ2w, then:

• Estimate the scaling coefficient, α∗, corresponding to the DWT of the noise-free

image, from α̂∗, as follows:

α∗ ≈ min(
E[Ŷ 2k ]

λσ2w
,
E[X̂2

i ]

λσ2w
)× α̂∗, (5.49)

• Compute the collage error corresponding to the noisy image, as given by

∆2
ik = E[Ŷ 2k ] + α∗2ikE[X̂2

i ]− 2α∗ikE[X̂iŶk]. (5.50)

3. Select the optimal parent subtree, i∗(k), such that:

∆2
i∗(k),k ≤ ∆2

i,k for all i 6= i(k). (5.51)

The predicted fractal-wavelet code corresponding to the original noise free consisting of:

Fractal-Wavelet code = {i∗(k), α∗i∗(k), k = 1, 2, . . . , 2k
∗
2 × 2k

∗
2} ∪ {ĉi,j , for 1 ≤ i, j ≤ 2k

∗
2}. (5.52)

which can then be used by the FW decoder to generate a denoised estimate of the original image.

In view of the above derivations, it can be observed that:

• Although the above algorithm is outlined for the purpose of using the standard FW-II scheme,

it is indeed a straightforward matter to generalize it to other FW schemes, such as the

quadtree-based FW scheme. One should use a FW that combines the three subbands in order

for the child and parent subtrees to have sufficiently large size. Otherwise, poor estimates of

the local statistics may lead to poor results.

• As for the selection of λ, the same value, λ = 2, will be used for spatial-based fractal predictive

scheme. It was observed that this value yields good results.
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In this section, an algorithm for predicting and extracting the fractal-wavelet code of the noise-

free wavelet transform of the original image from the wavelet transform of the noisy image was

proposed.

Next, the above FW predictive scheme is applied for the purpose of denoising the test image

and the results are illustrated.

5.2.4 Experimental Results

Figure 5.6 illustrates the results obtained by the predictive fractal-wavelet denoising scheme when

the standard FW-II is used with FW resolutions: (k∗1, k
∗
2) = (5, 6) as well as the quadtree-based

predictive FW scheme. For the quadtree-based scheme, it was observed that it is beneficial to

threshold the stored wavelet coefficients that are located at the highest few decomposition levels,

i.e. 5 ≤ j ≤ 9. The context-based, level-dependent thresholding strategy discussed in detail

in chapter 2, was applied. A collage error decomposition criterion for the quadtree-based FW

predictive scheme was also employed. These results are summarized in the following observations:

• In parts (a) and (b), the predictive FW-II denoised estimate and its zoomed version are

illustrated. Clearly, the use of the predictive FW scheme has resulted in significant noise

reduction. As shown earlier, simply encoding the noisy image using the standard FW scheme

at various resolutions results in significant noise reduction. For instance, simply encoding

the noisy image using the FW-II scheme with resolution (k∗1, k
∗
2) = (5, 6), results in denoised

estimate, as illustrated in Figure 5.1 (d). However, when using the predictive FW-II scheme

with the same resolution clearly results in further noise reduction and overall improvement of

the denoised estimate. Zooming in on the FW denoised estimate reveals ringing and pseudo-

Gibbs artifacts instead of the blockiness artifacts that were evident is standard fractal denoised

estimates. Ways of reducing these artifacts will be investigated in the next section.

• Parts (c) and (d) illustrate the results obtained when using the quadtree-based hybrid pre-

dictive FW denoising scheme which adopts a level-dependent context-based soft thresholding

strategy of the stored wavelet coefficients. Note that, the quadtree-based predictive FW

scheme has resulted in further improvement in the quality of the predictive FW denoised

estimate. In fact the quality of this hybrid FW denoised estimate is better than the results

obtained by any of the wavelet thresholding methods, including SureShrink and BayesShrink

which were discussed and implemented in chapter 3.
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• When implementing the quadtree-based predictive FW denoising algorithm, a collage error

decomposition criterion was used. A child subtree is only fractally encoded using the pre-

dictive FW scheme if the resulting collage error is less than a desired error tolerance level.

Otherwise, its root is stored and the rest of the subtree is split into four child subtrees rooted

at the next decomposition level. By doing so, the predictive fractal denoising scheme per-

forms noise reduction on one hand. On the other hand, the use of the quadtree, with the

collage error decomposition criterion, insures that important features (i.e. edges) of the orig-

inal image are represented well, by storing more significant wavelet coefficients and using

finer partitioning when necessary, to fit the subtrees well enough and guarantee a specified

fitting error. Consequently, the proposed quadtree-based FW predictive scheme, with collage

decomposition criterion, not only denoises the image, it also attempts to recover most of the

important features of the original image in order to yield sharp denoised estimates.

(a) Predictive FW-II scheme (b) Predictive quadtree-based FW-II scheme

(k∗1 , k
∗
2) = (5, 6) with collage error decomposition criterion

RMSE = 10.31, PSNR = 27.86 RMSE = 9.24, PSNR = 28.82.

Execution time ≈ 69 secs. Execution time ≈ 178 secs.

Figure 5.6: The denoised estimates obtained by the predictive FW-II with (k1, k2) = (5, 6) and the quadtree-

based predictive FW-II schemes with collage error decomposition criterion.

Next, the performance of the proposed FW denoising scheme in predicting the FW code of the

test image is further examined and assessed.
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5.2.5 Examining the Performance of the Predicted FW Code

In this section, the predicted FW code, as obtained from the noisy test image of “Lenna”, is

compared to the exact FW code obtained from the original noiseless image of “Lenna”. The results

are similar to those observed when examining the predicted fractal code in the pixel domain, as

discussed in some details in section 4.2.7. These observations can be summarized as follows:
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Figure 5.7: Comparison between the scaling coefficients corresponding to the original image, the noisy

image as well as the predicted coefficients. Note that the distribution of the predicted scaling coefficients

resembles that corresponding to the true scaling coefficients.

• Figure 5.7 illustrates the distribution of the scaling coefficients, α, corresponding to the

original and noisy images as well as the predicted scaling coefficients, as obtained using

the standard FW-II predictive scheme with (k∗1, k
∗
2) = (5, 6). Note that, once again, the

distribution of the scaling coefficients corresponding to the noisy image is rather distinct

from that of the original image, as it has a bi-modal with all scaling coefficients being non-

zero. The reasons behind this distinct distribution are similar to those explained earlier

regarding the shape of the distribution of the gray-level scaling coefficients of the noisy image.

The distribution of the predicted scaling coefficients remains bi-modal, although to a lesser

degree than that of the noisy image. This is the case because the image many flat low-activity

subregions which yields child subtrees dominated by noise. As explained in case 2 of the above

algorithms, these subtrees are simply fractally coded while introducing a minor modification

(reduction) of their corresponding scaling coefficients, as given in (5.39). Consequently, the

distribution of the predicted scaling coefficients is now closer to that of the exact scaling
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coefficients corresponding to the original image.
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Figure 5.8: Samples from the distribution of the collage error corresponding to two typical child sub-

blocks. Note, for both cases, that there are many sub-optimal parent subtrees that yield collage errors that

are relatively close to the minimum collage error corresponding to the optimal parent subtree.

• As in the pixel domain, one does not need to predict the optimal parent subtree corresponding

to each child subtree. In fact, as illustrated in Figure 5.8, for each child subtree there are many

good sub-optimal parent subtrees that can be chosen instead of the optimal parent subtree

with relatively small reduction in the fidelity. Note how for these typical child subtrees, there

are a few parent sub-optimal parent subtrees that yield collage errors that are relatively close

to the minimum collage error obtained from the optimal parent subtree.

• Figure 5.9 illustrates the histogram of the rank of the predicted parent subtrees. For the

chosen (k∗1, k
∗
2) = (5, 6) FW resolution, all 4096 child subtrees were examined and for each

child subtree, all of the 1024 potential parent subtrees were tested. For each child subtree, the

predicted parent subtree is then ranked according to how close it is to best (optimal) parent

subtree, as obtained from the DWT of the original image. A rank of 1 means a perfect match,

while a rank of 2, implies that the predicted parent subtree is the second best, etc. Note that

most of the predicted parent subtrees are among the first few closest parent subtrees.

• Figure 5.10 (a) illustrates the child-parent subtrees using the closest 10 parent subtrees as
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Figure 5.9: The histogram of the rank of the predicted parent subtrees corresponding to the noisy test

image with σ = 25. A rank of 1 means that the optimal parent subtree was predicted, the rank is 2 when the

second best parent subtree was predicted, etc. Note that most of the predicted parent subtrees are among

the first few closest parent subtrees.

well as the predicted child-parent subtrees assignment map. Note that in many cases, the

predicted child-parent assignment coincides with one of the closest 10 parent subtrees. Part

(b) of this figure illustrates the collage errors corresponding to the closest 10 parent subtrees

and the collage errors corresponding to the predicted parent subtrees. The fact that the

predicted parent subtrees are usually among the first few closest (i.e., near-optimal) parent

subtrees may indeed be the main reason why the predictive FW scheme performs reasonably

well in predicting a fractal code that is close enough to the true fractal code of the original

image, resulting in a relatively good denoised estimate of the original image.

This completes the examination of the predicted FW code.

In this section, a predictive fractal-wavelet image denoising method was proposed. It was

shown that this scheme performs reasonably well resulting in a significantly restored image while

preserving the sharp features of the image, such as edges and other high frequency features of the

image. As shown in chapter 4, the spatially-based predictive fractal denoising scheme is competitive

with some of the standard spatial-based image denoising schemes, such as the Lee filter. In this

chapter, it was also shown that the wavelet-based predictive fractal denoising scheme is competitive

with the most efficient wavelet thresholding methods such BayesShrink and SureShrink, especially
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Figure 5.10: (a) Parent-child assignment maps using the best 10 parent subtrees corresponding to the

original image as well as the predicted parent subtrees, for some of the child subtrees. (b) The collage errors

for the best 10 parent subtrees as well as the collage errors corresponding to the predicted parent subtrees.

Note that it was observed that for about 2689 child subtrees, the predicted parent subtrees coincide with

one of the best 10 parent subtrees.
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when using the quadtree partitioning of the wavelet decomposition tree.

One of the main advantages of the proposed fractal-wavelet denoising scheme is that it is

computationally less expensive and significantly faster than the previously proposed standard fractal

denoising scheme. The blockiness artifacts in conventional fractal-based representations are also

eliminated. However, the FW denoised estimates suffer from other types of artifacts. Similar

to most wavelet-based methods, FW representations often suffer from pseudo-Gibbs and ringing

artifacts. However, these artifacts are generally less disturbing than the blockiness artifacts in

standard fractal representations.

Next, the use of the cycle spinning algorithm for the purpose of enhancing the FW denoised

estimates will be illustrated.

5.3 Improving FW Image Denoising using Cycle Spinning

As illustrated in Figures 5.11 and 5.12, the denoised estimates obtained by the various fractal-

wavelet schemes exhibit some ringing and pseudo-Gibbs artifacts. Also, when encoding the noisy

image using the Exhaustive FW-I scheme, zooming in on the denoised estimate reveals a significant

degree of residual noise. In this section, the use of cycle spinning algorithm in order to reduce

these artifacts that are inherent in FW representations and improve the overall quality of the FW

denoised estimates.

For a range of shifts K, the cycle spinning algorithm for the purpose of fractal-wavelet denoising

can be summarized as follows:

x̂K =
1

K

K
∑

h=0

D−h(IDWT (FW (DWT (Dh(y)))). (5.53)

Where Dh still represents the two-dimensional diagonal shifting operator defined in Eq. (3.47).

As before, the use of the cycle spinning algorithm, withK shifts, will increase the computational

complexity and execution time by a factor of K.

5.3.1 Experimental Results

As illustrated in Figure 5.13 - 5.15, incorporating the cycle spinning idea for the purpose of fractal-

wavelet denoising does in fact result in significant improvement of the overall quality of the FW

denoised estimates. In particular, significant reduction of the pseudo-Gibbs and ringing artifacts

are observed. These improvements are better illustrated through the zoomed images. Note that
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Exhaustive (FW-I) scheme Exhaustive (FW-I) scheme

Level (k∗1 , k
∗
2) = (4, 5) (k∗1 , k

∗
2) = (5, 6)

Standard (FW-II) scheme Standard (FW-II) scheme

Level (k∗1 , k
∗
2) = (4, 5) (k∗1 , k

∗
2) = (5, 6)

Figure 5.11: Zooming in on the various fractal-wavelet denoised estimates, using the standard (FW-I) and

exhaustive (FW-II) schemes reveals pseudo-Gibbs and ringing artifacts that are especially disturbing in the

(k∗1 , k
∗
2) = (4, 5) resolution.
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Predictive Standard (FW-II) scheme Predictive Quadtree-Based (FW-II) scheme

Level (k∗1 , k
∗
2) = (5, 6)

Figure 5.12: Zooming in on the FW denoised estimates, using the predictive FW schemes, reveals less

degree of pseudo-Gibbs and ringing artifacts.

the enhancement is more significant for the predictive FW schemes than for the simple FW coding

schemes. In particular, the predictive FW-II scheme benefits considerably from the use of the cycle

spinning idea as most of the ringing and pseudo-Gibbs artifacts in the denoised estimates that

have eliminated. Also, the overall quality of the FW-II denoised estimate has been considerably

improved. The incorporation of the cycle spinning for the purpose of the quadtree-based FW

predictive scheme has also resulted in significant improvement of the denoised estimate, as most of

the artifacts have been reduced. This has indeed resulted in the best FW denoised estimate.

Figure 5.16 illustrates a comparison between the various FW denoising methods proposed in

this chapter, when incorporating the cycle spinning idea. Note that the quadtree-based predictive

scheme performs better than the other FW denoising methods. These curves illustrate the depen-

dence of the quality of the denoised images on the number of shifts. Once again, note that the

quality of the FW denoised estimates becomes stable after only a small number of shifts. Thus,

only a partial shift of the image is usually needed.
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(a) Exhaustive FW-I scheme: (k∗1 , k
∗
2) = (4, 5) (b) Zooming in on the image in (a)

RMSE=10.52, PSNR=27.69.

(c) Exhaustive FW-I scheme: (k∗1 , k
∗
2) = (5, 6) (d) Zooming in on the image in (c)

RMSE=10.21, PSNR=27.95.

Figure 5.13: Exhaustive fractal-wavelet (FW-I) coding of the noisy image with (k∗1 , k
∗
2) = (4, 5) and

(k∗1 , k
∗
2) = (5, 6) when incorporating the idea of cycle spinning with K = 16 diagonal shifts.
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(a) Standard FW-II scheme: (k∗1 , k
∗
2) = (4, 5) (b) Zooming in on the image in (a).

RMSE=12.51, PSNR=26.18.

(c) Standard FW-II scheme: (k∗1 , k
∗
2) = (5, 6) (d) Zooming in on the image in (c).

RMSE=9.07, PSNR=28.97.

Figure 5.14: Standard fractal-wavelet (FW-II) coding of the noisy image with (k∗1 , k
∗
2) = (4, 5) and (k

∗
1 , k

∗
2) =

(5, 6) when incorporating the idea of cycle spinning with K = 16 diagonal shifts.
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(a) Predictive FW-II scheme (b) Zooming in on the image in (a).

Standard with (k∗1 , k
∗
2) = (5, 6)

RMSE=8.53, PSNR=29.51.

(c) Predictive FW-II scheme (d) Zooming in on the image in (c).

Quadtree partitioning

RMSE=8.37, PSNR=29.68.

Figure 5.15: Denoised estimates obtained by the Standard and Quadtree-based predictive fractal-wavelet

(FW-II) denoising schemes when incorporating the idea of cycle spinning with K = 16 diagonal shifts.
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Figure 5.16: Quantitative comparison of the gain achieved by incorporating the cycle spinning idea (K=16

diagonal shifts) within the the various fractal-wavelet based denoising schemes studied in this chapter.
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5.4 Summary and Concluding Remarks

In this chapter, the potential of applying various fractal-wavelet schemes for the purpose of image

denoising was investigated. It was shown that, as it was the case for the spatial-based fractal

schemes, when the wavelet transform of the noisy image is simply fractally encoded, using any of

the fractal-wavelet schemes described in chapter 2, a significant amount of the noise is suppressed.

The use of the adaptive as well as the quadtree-based fractal-wavelet schemes for the purpose of

image denoising was also explored. A relationship between these fractal-wavelet denoising schemes

and some of the basic wavelet thresholding methods found in the literature, was established.

A simple yet effective method to estimate the fractal-wavelet code of the original noise-free image

from the statistics of the noisy image was proposed. This fractal-wavelet scheme is analogous to the

fractal denoising scheme proposed in chapter 2. In particular, even better results can be obtained

when using a hybrid fractal-wavelet image denoising scheme that makes use of quadtree partitioning

scheme, with collage decomposition criterion, in the wavelet domain as well as adaptive thresholding

of the stored wavelet coefficients. This hybrid FW denoising scheme was shown to yield denoised

estimates that are significantly denoised while preserving that sharpness of the edges and other

high frequency features of the image. The denoising and restoration achieved by the proposed

hybrid FW denoising scheme was found to be consistent with the human visual system where

extra smoothing is performed in flat and low activity regions and a lower degree of smoothing is

performed near high frequency components, e.g. edges, of the image.

The performance of the proposed fractal-wavelet image denoising scheme is compared to the

results obtained using the various wavelet thresholding techniques. It was also shown that the

proposed scheme yields better results than some of the conventional wavelet thresholding methods,

such as SureShrink and BayesShrink described in chapter 3. When comparing the performance

of the hybrid FW denoising schemes to the results obtained by using the spatial domain based

fractal denoising schemes proposed and described in chapter 4, note that predictive spatial-based

fractal schemes yields relatively better results than their fractal-wavelet counterparts. The main

advantage of the wavelet-based fractal denoising scheme over the spatial domain fractal denoising

scheme is that the former is computationally significantly much less expensive than the latter.



Chapter 6

Additional Experimental Results

So far in this thesis, several image denoising methods were studied and implemented. Some of these

methods are spatial-based such as the Lee filter, others are frequency-based, such as the Wiener

filter, and the rest are wavelet based such as VisuShrink, LevelShrink, SureShrink and BayesShrink.

More importantly, several new wavelet and fractal-based image denoising methods were also devel-

oped. In particular, a context-based thresholding strategy that applies hard and soft thresholding

operators which take into consideration the values of the neighboring wavelet coefficients before

thresholding a wavelet coefficient was proposed. Several fractal-based image denoising schemes were

also proposed. In particular, a simple, yet effective methodology the aims for estimating the fractal

code of the original noise-free image from the noiseless one was proposed. It was shown that this

method can be applied in the spatial domain of the noisy image by using standard fractal schemes

or in the wavelet domain of the noisy image by applying fractal-wavelet methods. Throughout

this work, one common test image of “Lenna”, corrupted by AWGN with noise standard deviation

σw = 25, has been used so far in order to assess and compare the performance of the various image

denoising methods studied in this thesis.

In this chapter, some of the proposed fractal and wavelet image denoising methods will be

applied in order to restore different test images corrupted by AWGN noise with different intensity,

σw. The use of these different test images will help us achieve a better assessment of the performance

of the proposed image denoising schemes and make a comparison between them.

193
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6.1 Application to Images

The test images are “Lenna”, “Boat”, “Peppers” and “San Francisco”. The three new original (i.e.

noiseless) images to be used in this chapter are illustrated in Figure 6.1.

(a) “Boat” (b) “Peppers” (c) “San Francisco”

Figure 6.1: The new original, noise-free, test images to be used in this chapter.

First, an experimental investigation of the advantages of the proposed context-based, localized

wavelet thresholding operators is illustrated.

6.1.1 BayesShrink using Context-Based Thresholding

Recall that in chapter 3, the use of context-based, localized hard and soft thresholding operators

that take into consideration the values of the neighboring wavelet coefficients when thresholding a

wavelet coefficient was proposed. It was shown that the use of this adaptive thresholding strategy

with the various wavelet thresholding methods does indeed result in significant gain as compared

to the use of the standard hard and soft thresholding operators. These findings were based on the

use of a single test image of “Lenna” degraded by AWGN noise with noise intensity, σw = 25. In

this section, this proposed thresholding strategy will be applied for the purpose of denoising the

various test images which were corrupted by AWGN noise with varying intensity.

Figure 6.2 illustrates the results of denoising four different test images, “Lenna”, “Boat”, “Pep-

pers” and “San Francisco”, which corrupted by AWGN noise with varying intensity; σw = 10, 20, 30

and 40, using the BayesShrink method. Two versions of the BayesShrink scheme were implemented:

The original BayesShrink technique which adopts the standard soft thresholding operator and a

modified BayesShrink scheme which applies the proposed context-based soft thresholding operator.

The results obtained before and after applying the cycle spinning algorithm are presented.
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Figure 6.2: Comparison between the results obtained by the BayesShrink method using the conventional

and context-based soft thresholding operators, before and after applying the cycle spinning (C.S.) idea with

K = 8 diagonal shifts, for the various test images and noise intensities. Note that the context-based soft

thresholding strategy yields significantly better results than the application of the standard soft thresholding

operator.
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In view of these experimental results, some observations are outlined as follows:

• The results obtained by the modified BayesShrink scheme which adopts the proposed context-

based soft thresholding operator are consistently better than those obtained by the original

BayesShrink scheme which uses the standard soft thresholding operator. Indeed, this is the

case for all test images and noise intensities.

• This improvement is even more evident before using the cycle spinning idea than after applying

this enhancement method. This is probably because the use of the cycle spinning idea has

benefited both methods by eliminating or considerably reducing most of the artifacts, hence

yielding closer enhanced denoised estimates from both schemes.

• It is important to note that the use of the cycle spinning idea is computationally expensive and

hence time consuming. In practice, some applications may not allow for this time complexity

and the cycle spinning idea may not be a feasible option. Thus, the fact the proposed thresh-

olding operator yields significantly better results than the standard thresholding operator

without applying the cycle spinning idea is of great practical importance and significance.

In this section, it was shown that the advantages of the proposed context-based wavelet thresholding

operator observed for the case of the noisy image of “Lenna” holds for other noisy test images and

noise intensities as well. In fact incorporating the context-based soft thresholding operator in

the BayesShrink technique yields consistently better results than the use of the conventional soft

thresholding operator.

Next, the performance of the proposed fractal-based image denoising methods will be assessed.

6.1.2 Predictive Fractal-Based Image Denoising Schemes

In this section, the proposed predictive fractal-based image denoising schemes will be applied for

the purpose of image restoration.

Figure 6.3 illustrates the results of applying the predictive standard fractal as well as the

fractal-wavelet image denoising schemes, developed in chapters 4 and 5, respectively. Once again,

the results obtained before and after applying the cycle spinning algorithm are presented.

In view of these results, we make the following observations:

• The spatial-based fractal predictive image denoising scheme performs consistently better than

the fractal-wavelet method, before and after the use of the cycle spinning idea. The reasons
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Figure 6.3: Comparison between the results obtained by the predictive fractal and fractal-wavelet image

denoising schemes, before and after applying the cycle spinning (C.S.) idea with K = 8 diagonal shifts, for

the various test images and noise intensities. Note that standard fractal scheme performs consistently better

than the fractal-wavelet method.
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for the superior performance of the standard fractal denoising scheme as compared to its

fractal-wavelet counterpart may include:

1. The standard fractal predictive scheme employs a set of contractive geometric maps that

decimate, through an averaging operation, and geometrically transform, through one of

eight isometries, in order to match a child sub-block to its optimal parent sub-block. In

fact, as discussed previously, the decimation associated with the contractive spatial maps

used in the fractal transform is probably responsible for most of the denoising. However,

the fractal-wavelet scheme uses no such smoothing or pre-processing step before fitting

a parent subtree to a child subtree. This may indeed be the main reason behind the

difference in the performance of the fractal and the fractal-wavelet denoising schemes.

2. Also, the fractal-wavelet scheme stores a set of noisy wavelet coefficients. These noisy

wavelet coefficients, along with the FW code, are then used by the FW decoder to

estimate the remaining wavelet coefficients, hence resulting in re-distributing the noise

among the predicted coefficients. Although the stored wavelet coefficients are indeed

located in the lower decomposition levels and scales, which are smoothed by the wavelet

filters, the role of these coefficients in redistributing the noise may be significant. When

using the quadtree-based fractal-wavelet scheme, a context-based thresholding strategy

was applied to all higher scales stored wavelet coefficients. However, when using the

standard FW scheme, it was observed that thresholding the stored wavelet coefficients

is counterproductive and yields worse results, in terms of RMSE.

• The use of the cycle spinning idea has indeed benefited considerably both fractal schemes,

resulting in a almost artifact-free fractal and fractal-wavelet denoised estimates, for the vari-

ous images and noise levels. This supports the use of the cycle spinning idea for the purpose

of enhancing fractal representations. Thus, the cycle spinning idea, which was originally in-

troduced for the purpose of reducing the Gibbs artifacts in wavelet thresholding denoised

estimates, has also been shown to be an effective tool of reducing ringing, blurriness and

Gibbs artifacts in fractal-wavelet estimates and blockiness artifacts in standard fractal re-

constructions. This suggests that the cycle spinning idea can indeed be used for enhancing

fractal image representations in applications where the computational complexity and the bit

rate are not a major practical concern.
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6.1.3 Comparison Between the Proposed Image Denoising Methods

In this section, a comparison between the performance of the various image denoising methods

proposed in this thesis will be illustrated. These image denoising methods are the context-based

wavelet thresholding, the standard fractal and the fractal-wavelet predictive schemes.

The soft, context-based, thresholding operator was incorporated in the BayesShrink method.

The standard fractal and fractal-wavelet (FW-II with (k∗1, k
∗
2) = (5, 6)) predictive schemes were also

implemented for the purpose of restoring the four noisy test images. The cycle spinning algorithm

was used to reduce the artifacts and further enhance the quality of the various denoised estimates.

Figure 6.4 - 6.7, illustrate the comparisons between various denoised estimates obtained using the

proposed image denoising methods.

In view of these results, some observations are presented as follows:

• For lower noise intensity, σw, the BayesShrink method performs considerably better than

the fractal-based methods. However, this is to be expected since the fractal and the fractal-

wavelet methods are lossy compression methods, whereas the BayesShrink method is not. In

fact, even when encoding the original, noise-free image, using the fractal-based methods, the

fractal representation is a lossy one. However, if one attempts to denoise the original noise-

free image, i.e. σw = 0, using the BayesShrink method, the resulting estimation should be

lossless because the BayesShrink scheme adopts a zero threshold (i.e. λ = 0), in the absence

of any noise. This, it is not surprising that the BayesShrink method performs better than the

fractal-based image denoising method for low noise intensities, especially at σ = 10.

• For larger values of the noise variance, the performance of the BayesShrink method starts to

degrade rapidly as the noise variance increases. Under heavy noise, i.e. for σ = 30, 40, the

fractal-based schemes perform better than the BayesShrink method, especially for σ = 40.

In spite of the degradation of the quality of the various denoised estimates, as reflected by

the RMSE and PSNR quality measures, few artifacts are observed in the denoised images

obtained by the fractal-based or BayesShrink methods. This is mainly due of the use of the

cycle spinning idea that does a good job of reducing these artifacts. Perhaps some of the

remaining artifacts would be more noticeable when zooming in on these denoised estimates.

• As explained in the previous section, the standard fractal image denoising scheme performs

better than the fractal-wavelet counterpart. This scheme also performs better than the

BayesShrink method for high noise variance. A significant feature of the standard fractal
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denoising scheme is that it adopts a quantization strategy of the gray-level coefficients that

yields a fractally denoised estimate with pixel values that lie in the range [0, 255]. As the

noise variance increases, it becomes more difficult for the BayesShrink or the fractal-wavelet

methods to yield denoised estimates that satisfy this requirement.

In summary, for most of the test images the BayesShrink method performs better for low noise

variance but sharply degrades as the noise variance becomes large. For heavy noise (σ ≥ 20),

the fractal-based methods perform consistently better than the BayesShrink method. Also, the

standard fractal denoising scheme has been shown to perform consistently better than its fractal-

wavelet counterpart.

6.2 Summary and Concluding Remarks

In this section, the proposed wavelet and fractal-based image denoising methods were applied in

order to restore and enhance four noisy images degraded by different noise intensities. It was shown

that the context-based thresholding strategy performs consistently better than the conventional

thresholding operators for the various noisy test images. Also, for most of the test images, the

BayesShrink method performs better for lower noise variance but sharply degrades as the noise

variance becomes larger. For heavy noise, the fractal-based methods perform consistently better

than the BayesShrink method. Also, the standard fractal denoising scheme has been shown to

perform consistently better than its fractal-wavelet counterpart.
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σw Context-Based BayesShrink Predictive Fractal Scheme Predictive FW-II Scheme

10

RMSE=5.27, PSNR=33.70 RMSE=6.13, PSNR=32.38. RMSE=7.54, PSNR=30.59.

20

RMSE=7.51, PSNR=30.61 RMSE=7.82, PSNR=30.27. RMSE=8.13, PSNR=29.93.

30

RMSE=9.06, PSNR=28.99 RMSE=8.57, PSNR=29.47. RMSE=9.16, PSNR=28.89.

40

RMSE=10.30, PSNR=27.87 RMSE=9.79, PSNR=28.32. RMSE=10.31, PSNR=27.86.

Figure 6.4: Denoised estimates using the proposed BayesShrink context-based thresholding, predictive fractal

and fractal-wavelet image denoising schemes, when applying the cycle spinning idea with K = 8 shifts, for

the noisy test image of “Lenna” with different noise intensity σw.
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σw Context-Based BayesShrink Predictive Fractal Scheme Predictive FW-II Scheme

10

RMSE=5.62, PSNR=33.13. RMSE=8.65, PSNR=29.39. RMSE=9.06, PSNR=28.99.

20

RMSE=8.40, PSNR=29.65. RMSE=8.89, PSNR=29.15. RMSE=9.15, PSNR=28.90.

30

RMSE=10.44, PSNR=27.76. RMSE=10.41, PSNR=27.78. RMSE=11.00, PSNR=27.31.

40

RMSE=12.00, PSNR=26.54 RMSE=11.87, PSNR=26.64. RMSE=12.26, PSNR=26.35.

Figure 6.5: Denoised estimates using the proposed BayesShrink context-based thresholding, predictive fractal

and fractal-wavelet image denoising schemes, when applying the cycle spinning idea with K = 8 shifts, for

the noisy test image of “Boat” with various noise intensity, σw.
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σw Context-Based BayesShrink Predictive Fractal Scheme Predictive FW-II Scheme

10

RMSE=5.44, PSNR=33.42. RMSE=6.47, PSNR=31.09. RMSE=7.51, PSNR=30.61.

20

RMSE=7.65, PSNR=30.46. RMSE=7.44, PSNR=30.70. RMSE=7.78, PSNR=30.31.

30

RMSE=9.43, PSNR=28.64. RMSE=8.94, PSNR=29.10. RMSE=9.32, PSNR=28.74.

40

RMSE=10.81, PSNR=27.45. RMSE=10.22, PSNR=27.94. RMSE=10.66, PSNR=27.57.

Figure 6.6: Denoised estimates using the proposed BayesShrink context-based thresholding, predictive fractal

and fractal-wavelet image denoising schemes, when applying the cycle spinning idea with K = 8 shifts, for

the noisy test image of “Peppers” with different noise intensity, σw.
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σw Context-Based BayesShrink Predictive Fractal Scheme Predictive FW-II Scheme

10

RMSE=6.02, PSNR=32.54. RMSE=7.29, PSNR=30.87. RMSE=7.33, PSNR=30.83.

20

RMSE=9.15, PSNR=28.90. RMSE=8.76, PSNR=29.28. RMSE=8.93, PSNR=29.11.

30

RMSE=11.53, PSNR=26.89. RMSE=9.49, PSNR=28.59. RMSE=10.01, PSNR=28.12.

40

RMSE=13.04, RMSE=25.83. RMSE=10.67, PSNR=27.57. RMSE=11.17, PSNR=27.17.

Figure 6.7: Denoised estimates using the proposed BayesShrink context-based thresholding, predictive fractal

and fractal-wavelet image denoising schemes, when applying the cycle spinning idea with K = 8 shifts, for

the noisy test image of “San Francisco” with different noise intensity, σw.



Chapter 7

Summary, Conclusions and Future

Work

In this thesis, several novel fractal and wavelet-based image denoising methods were proposed,

implemented and assessed. An outline of the major results and contributions are summarized in

this chapter. A few related future research directions and problems that stem from this work will

also be proposed. First, a brief summary of the thesis is presented.

7.1 Thesis Summary

• In chapter 1, the image denoising problem, encountered when an image is corrupted by an

AWGN noise with unknown variance σ2w, was outlined and formulated. The problem of

estimating the noise variance from the noisy image was then addressed. Various spatial as

well as frequency-based standard image denoising methods were described and implemented.

The principle of wavelet thresholding for image denoising was then described. Finally, the

research in this thesis was motivated.

• Chapter 2 contains a detailed description and implementation of various fractal and wavelet

based image coding methods. In particular, the development of adaptive fractal and fractal-

wavelet image compression schemes was outlined. These schemes were then implemented for

the purpose of image denoising in later chapters of this work.

• Various basic wavelet thresholding methods for the purpose of image denoising were reviewed,

implemented and assessed in chapter 3. The use of the cycle spinning strategy for the purpose

205
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of reducing the pseudo-Gibbs artifacts that tend to be present in wavelet-based representations

of signals was investigated. The application of context-based thresholding strategies that

introduced reasonable modifications to the conventional hard and soft thresholding operators

used in the literature was proposed and implemented. These modified thresholding operators

take into consideration the content of a specified immediate neighborhood of each wavelet

coefficient before thresholding. It was shown that significant improvement in the quality of

the denoised estimate is gained, especially in the case of soft thresholding, for the various

wavelet thresholding methods.

• In chapters 4 and 5, new fractal-based image denoising techniques in the spatial and the

wavelet domains of the noisy image were proposed, implemented and assessed. It was shown

that significant noise reduction was gained by simply fractally encoding the noisy image us-

ing any of the fractal or fractal-wavelet image coding schemes. Some of the reasons behind

achieving image denoising through fractal coding of the noisy image were investigated. Fur-

thermore, a simple, yet effective method of estimating the fractal code of the original noiseless

image from the noisy one was outlined. From this predicted fractal code, one can then recon-

struct a fractally denoised estimate of the original noiseless image. This was done analogously

for the pure fractal schemes, as applied in the spatial domain of the noisy image, and the

fractal-wavelet schemes, as applied in the wavelet domain of the noisy image. The use of the

cycle spinning algorithm for the purpose of enhancing the fractally denoised estimates was

illustrated. It was observed that incorporating this algorithm results in significant reduction

of the blockiness and pseudo-Gibbs artifacts that tend to be present in the fractal and the

fractal-wavelet denoised estimates, respectively.

• Additional experimental results using different test images and noise intensities were illus-

trated in chapter 6, in order to achieve a better comparison between the studied and proposed

image denoising methods.

7.2 Conclusions

Some of the conclusions that can be drawn from this work include:

• This work broadens the application scope of fractal-based methods. The potential of applying

fractal-based methods for the purpose of image denoising has been investigated in detail and
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fractal-based image denoising schemes were proposed and implemented. Experimental results

show that these fractal-based image denoising methods are competitive, or sometimes even

compare favorably with standard image denoising methods reviewed in this thesis.

• Much interest has been given, in the literature, to the use of fractal-based coding schemes for

the purpose of image compression. However little attention has been given to their possible use

in image restoration and enhancement. This work may, in fact, represent the first significant

attempt of its kind. It should be stated, however, that other fractal and “multifractal”

methods [25] have been shown to be successful in image processing applications, including

denoising as well as segmentation, texture analysis, approximation and compression. Over

the past decade, much of this work has been done by J. Lévy Véhel and coworkers [40,

50]. The denoising methods developed by this group rely on multifractal methods and more

sophisticated methods of analysis ( e.g. “2-microlocalization”) that are deeply rooted in

wavelet theory.

• Fractal denoised estimates may be significantly enhanced using the cycle spinning algorithm

that was originally introduced for the purpose of reducing the Gibbs artifacts in wavelet

denoised estimates. This enhancement involves reduction of blockiness artifacts in standard

fractal representations and Gibbs artifacts in fractal-wavelet estimates.

• Although the proposed fractal-based denoising methods are competitive in performance with

some of the standard image denoising methods, they suffer from the enormous computational

complexity that is associated with standard fractal techniques. Although many faster fractal-

based methods have been proposed, these schemes are only sub-optimal and the reduction of

the computational complexity is generally achieved at the expense of significant degradation

of the quality of the fractal representation. The computational complexity associated with

the exhaustive fractal schemes remains a significant obstacle that has prevented fractal-based

signal processing methods from becoming practical and realistic alternatives to the existing

signal processing techniques currently in use.

• The use of the localized context-dependent hard and soft thresholding operators have re-

sulted in some improvement in the performance of the various standard wavelet thresholding

methods studied in this thesis. This indicates that conventional hard and soft thresholding

operators widely used in the wavelet thresholding literature are not optimal even when they
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use adaptive thresholds. There are two aspects to the adaptivity of the thresholding opera-

tors: The first is related to the selected threshold λ where adaptive thresholds perform better

than the universal one. The second adaptivity aspect is related to the manner the thresh-

olding operators are applied. In this work, it was shown that better results were achieved

by applying adaptive and localized thresholding operators instead of the conventional hard

and soft thresholding point operators. While the selection of adaptive thresholds have been

investigated in the literature, making the thresholding operators themselves more adaptive

seem to have been overlooked.

7.3 Contributions

In this thesis, several important contributions were realized. The main new ideas proposed and

implemented in this work can be summarized as follows:

• This work may represent the first serious attempt to investigate the potential of fractal-

based image coding methods for the purpose of image enhancement and denoising. Although

significant progress and development have been achieved in fractal image coding over the past

decade, there has been little published work that focused on investigating the application of

fractal-based techniques for other aspects of image processing, other than image compression.

• A simple, yet effective method of estimating the fractal code of the original noiseless image

from the noisy image was proposed and implemented. From this predicted fractal code of

the original noiseless images, one can then reconstruct a fractally denoised estimate of the

original noiseless image. This predictive fractal denoising algorithm was applied in the spatial

as well as the wavelet domains of the noisy image.

• Experiments that aimed for developing more adaptive wavelet thresholding strategies were

presented. In particular, the application of context-based thresholding strategies that intro-

duced reasonable modifications to the conventional hard and soft thresholding operators was

proposed and implemented. These thresholding operators take into consideration the content

of a specified immediate neighborhood of each wavelet coefficient before thresholding it. It

was shown that significant improvement in the quality of the denoised estimate is gained,

especially in the case of soft thresholding, for the various wavelet thresholding methods.

• The cycle spinning idea is not new, however incorporating this approach within the proposed
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fractal and fractal-wavelet image denoising schemes for the purpose of improving their perfor-

mance is a novel idea. This has resulted in significant improvement in the subjective quality

of the fractally denoised estimates.

7.4 Future Research Directions

Some of the research directions that may stem from the work presented in this thesis can be outlined

as follows:

• It was shown that the use of the quadtree-based fractal and fractal-wavelet predictive schemes

for image denoising yields results that are significantly better than using standard fractal and

fractal-wavelet schemes. However, whenever using the quadtree partitioning algorithm for

the purpose of fractal image coding, one has to choose a threshold for the decomposition

criterion. The determination of a reasonable, image independent strategy for selecting such a

threshold is still an open question. This threshold can be viewed as a denoising fine-tuning

parameter that measures the trade-off between suppressing the noise and reconstructing the

high frequency content and important features of the image.

• In practice, one is often constrained with a bit-budget. Thus, developing image denoising

methods that only aim for getting the best quality of the denoised image without also paying

any attention to the compression ratios and bit-rate limitation may not be very practical.

Thus, there a great need to develop effective schemes that perform not only image denoising

but also image compression. The Rissanen’s Minimum Description Length (MDL) principle

has recently been effectively used for the purpose of designing wavelet thresholding methods

for the purpose of simultaneous image compression and denoising [13, 14, 15, 16]. The use of

the MDL principle may also be applied for the purpose of developing effective fractal-based

techniques that are capable of performing simultaneous denoising and compression of noisy

images. Fractal-based methods have been shown to be effective lossy image compression

methods. In this thesis, it was shown that fractal-based schemes are also effective image

denoising methods. Thus, the development of fractal-based joint image compression and

denoising would combine these capabilities of the fractal methods. These schemes would allow

us to generate rate distortion curves that exhibit the trade-off between the quality of a fractally

denoised image and the bit rate required to store this denoised image. Simultaneous image

compression and denoising schemes are important in many applications where simultaneous
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compression and denoising is needed, for instance, when images are acquired from a noisy

source and storage or transmission capacity is severely limited, such as in some video coding

applications.

• For the context-based thresholding strategy, proposed in chapter 3, the issue of selecting the

context and its size requires further investigation. Also, defining the context itself requires

further investigation. Instead of choosing the neighboring wavelet coefficients, perhaps one

could choose a context containing the parent or children of the wavelet coefficient or other

contexts. Also, when an insignificant coefficient is surrounded by a significant one, it is kept

unchanged. Clearly, one may decide to alter the value of such a coefficient without setting

it to zero. Also, instead of taking the maximum absolute value into consideration one may

consider other statistics, such as the average or median. These are important issues that are

open for further investigation and will be the focus of future research.



Appendix A

Sample Programs

Most of the experimental results presented in this thesis can be implemented using the following
sample programs or variations of these programs.

%*********************************
%*********************************
% Median Flitering of AWGN noise *
%*********************************
%*********************************
clear all
original=imread(’lenna_orig.tif’);
original_db=double(original);
noisy=original_db+25*randn(512,512);
noisy_db=double(noisy);
mask=5;
input=noisy_db;
mean_filter0=filter2(ones([mask mask]), input)/(mask*mask);
subplot(1,1,1), image(double(mean_filter0));
colormap(gray(255))
axis off
axis equal
E2=double(mean_filter0)-original_db;
RMSE2=std2(E2);
PSNR2=20*log10(255/RMSE2);
%************************************
%************************************
% LEE Flitering of AWGN noise *
%************************************
%************************************
clear all
original=imread(’lenna_orig.tif’);
original_db=double(original);
noisy=original_db+25*randn(512,512);
noisy_db=double(noisy);
mask=7;
f=noisy_db;
LocalMean=filter2(ones([mask mask]), f)/(mask*mask);
LocalVar=filter2(ones([mask mask]),f.^2)/(mask*mask)-LocalMean.^2;
NoiseVar=25^2;
SignalVar=LocalVar-NoiseVar;
lee_dn=(SignalVar./LocalVar).*f+(LocalMean.*NoiseVar)./LocalVar;
E2=double(lee_dn)-original_db;
RMSE2=std2(E2)
PSNR2=20*log10(255/RMSE2)
colormap(gray(255))
subplot(1,1,1), image(lee_dn);
axis off
axis equal

211
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orient tall
%**************************************
%**************************************
%Gaussian LPF Flitering of AWGN noise *
%**************************************
%**************************************
clear all
original=imread(’lenna_orig.tif’);
original_db=double(original);
noisy=original_db+25*randn(512,512);
noisy_db=double(noisy);
mask=7;
f=noisy_db;
h=fspecial(’gaussian’,[mask,mask],1);
gauss=filter2(h,f);
subplot(1,1,1), image(double(gauss));
colormap(gray(255))
axis off
axis equal
orient tall
E2=double(gauss)-original_db;
RMSE2=std2(E2)
PSNR2=20*log10(255/RMSE2)
%**************************************
%**************************************
% Wiener LPF Flitering of AWGN noise *
%**************************************
%**************************************
clear all
original=imread(’lenna_orig.tif’);
original_db=double(original);
noisy=original_db+25*randn(512,512);
noisy_db=double(noisy);
mask=7;
f=noisy_db;
wiener=wiener2(f,[mask,mask]);
subplot(1,1,1), image(wiener);
colormap(gray(255))
axis off
axis equal
E2=original_db-double(wiener);
RMSE2=std2(E2)
PSNR2=20*log10(255/RMSE2)
/***********************************************
/**********************************************/
/* Standard fractal image coding */
/* uniform image partitioning: (M,N) */
/* input: input_image.dat */
/* output: output_image.out */
/**********************************************/
/**********************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
#define NMAPS 8
#define MAXITER 20
void getBlock(int index, int n, int n1, int n2, float block[][n]);
void TransBlock(int map, int n, float block[][n], float Tblock[][n]);
void Leastsquares(int n,float x[1024],float y[1024],float coef[2],float *error);
float lena0[SIZE][SIZE], lena[SIZE][SIZE], lena1[SIZE][SIZE];
main()
{
int i, j, iic, jjc, iip, jjp, npixc, npixp, iter;
int nchilds, nparents, ic, jc, ncount, map;
int nrindex[64][64],ncindex[64][64],mapindex[64][64];
float error, errmin, pixel, sum1,sum2,sum, RMSE1, PSNR1;
float childb[8][8], parentb[16][16], Tparentb[16][16];
float alpha,beta,x[1024],y[1024],coef[2],constant[64][64],slope[64][64];
FILE * finput0;
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FILE * finput1;
FILE * foutput;
finput0=fopen("input_image.dat","r");
foutput=fopen("output_image.out","w");
nparents=32; // M=32
nchilds=64; // N=64
npixp=SIZE/nparents;
npixc=SIZE/nchilds;
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput0, "%f",&pixel);
lena[i][j]=pixel/255;
lena1[i][j]=0;

}
}
// start the encoding process...
for (iic=0;iic<nchilds;iic++) // for each child blocks
{ for (jjc=0;jjc<nchilds;jjc++)

{ errmin=1000000;
getBlock(1,npixc,iic, jjc,childb);
ncount=0;
for (i=0;i<npixc;i++)
{ for (j=0;j<npixc;j++)

{ y[ncount]=childb[i][j];
ncount++;

}
}
for (iip=0; iip<nparents; iip++) // test all parent blocks
{ for (jjp=0; jjp<nparents; jjp++)

{ getBlock(1,npixp,iip,jjp,parentb);
for (map=0; map<NMAPS; map++) // test all goemetric maps
{ TransBlock(map, npixp,parentb,Tparentb);

ncount=0;
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ x[ncount]=(Tparentb[i-1][j-1]+Tparentb[i-1][j]+
Tparentb[i][j-1]+Tparentb[i][j])/4.0;

ncount++;
}

}
Leastsquares(npixc*npixc, x, y, coef, &error);
if (error < errmin)
{ errmin=error;

constant[iic][jjc]=coef[0];
slope[iic][jjc]=coef[1];
nrindex[iic][jjc]=iip;
ncindex[iic][jjc]=jjp;
mapindex[iic][jjc]=map;

}
}

}
}

}
}// end of encoding process
for (iter=0; iter<MAXITER; iter++) // start decoding
{ for (iic=0; iic<nchilds; iic++)

{ for (jjc=0; jjc<nchilds; jjc++)
{ iip=nrindex[iic][jjc];

jjp=ncindex[iic][jjc];
map=mapindex[iic][jjc];
getBlock(2,npixp,iip,jjp,parentb);
TransBlock(map,npixp,parentb,Tparentb); /* transform the block */
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ ic=(i-1)/2;
jc=(j-1)/2;
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childb[ic][jc] = slope[iic][jjc]*(Tparentb[i][j]+
Tparentb[i][j-1]+ Tparentb[i-1][j]+Tparentb[i-1][j-1])/4.0
+constant[iic][jjc];
lena1[iic*npixc+ic][jjc*npixc+jc]=childb[ic][jc];

}
}

}
}

}
sum=0;
for (i=0; i<SIZE; i++)
{ for (j=0; j<SIZE; j++)

{ sum=sum+pow((lena1[i][j]-lena[i][j]),2);
fprintf(foutput,"%.3f\n", 255*lena1[i][j]);

}
}
RMSE1=255*sqrt(sum/pow(SIZE,2));
PSNR1=20*log10(255.0/RMSE1);
printf("RMSE = %f\n", RMSE1);
printf("PSNR = %f\n", PSNR1);
fclose(finput0);
fclose(foutput);
}
/*****************************************/
/* This function sets up the child block */
/*****************************************/
void getBlock(int index, int n, int n1, int n2, float block[][n])
{ int i, j;

if (index==1)
{ for (i=0; i<n;i++)

for (j=0; j<n;j++)
block[i][j]=lena[n1*n+i][n2*n+j];

return;
}
if (index==2)
{ for (i=0; i<n;i++)

for (j=0; j<n;j++)
block[i][j]=lena1[n1*n+i][n2*n+j];

return;
}

}
/**************************************************************/
/* This function transforms a parent block using one of the 8 */
/* geometric transformations */
/**************************************************************/
void TransBlock(int map, int n, float block[][n], float Tblock[][n])
{ int i, j;

switch(map)
{ case(0): for (i=0; i<n;i++) /* identity map */

for (j=0;j<n;j++)
Tblock[i][j]=block[i][j];

break;
case(1): for (i=0; i<n;i++) /* 90 degree rotaion */

for (j=0;j<n;j++)
Tblock[i][j]=block[j][n-1-i];

break;
case(2): for (i=0; i<n;i++) /* 180 degree rotaion */

for (j=0;j<n;j++)
Tblock[j][i]=block[n-1-j][n-1-i];

break;
case(3): for (i=0; i<n;i++) /* 270 degree rotation */

for (j=0;j<n;j++)
Tblock[j][i]=block[n-1-i][j];

break;
case(4): for (i=0; i<n;i++) /* transpose wrt diagonal */

for (j=0;j<n;j++)
Tblock[i][j]=block[j][i];
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break;
case(5): for (i=0; i<n;i++) /* transpose wrt off-diagonal*/

for (j=0;j<n;j++)
Tblock[i][j]=block[n-1-j][n-1-i];

break;
case(6): for (i=0; i<n;i++) /* rot. wrt. hori. mid. axis */

for (j=0;j<n;j++)
Tblock[i][j]=block[n-1-i][j];

break;
case(7): for (i=0; i<n;i++) /* rot. wrt. vert. mid. axis */

for (j=0;j<n;j++)
Tblock[i][j]=block[i][n-1-j];

break;
default: printf("fatal error\n");

exit(0);
}
return;

}
/*******************************/
/* The Least squares function */
/*******************************/
void Leastsquares(int n, float x[1024], float y[1024], float coef[2], float *error)
{ int i, j;

float s1, s2, s3, s4;
float xbar, ybar,sum;
s1=0.0; s2=0.0; s3=0.0;s4=0.0;
xbar=0.0; ybar=0.0; sum=0.0;
for (i=0; i<n; i++)
{ s1=s1+x[i];

s2=s2+y[i];
s3=s3+x[i]*y[i];
s4=s4+pow(x[i],2);

}
xbar=s1/n;
ybar=s2/n;
if ((s4-pow(s1,2)/n)==0.0)
{ printf("error in Leastsquares()\n");

exit(0);
}
else
{ coef[1]=(s3-s1*s2/n)/(s4-pow(s1,2)/n);

coef[0]=ybar-coef[1]*xbar;
}
sum=0.0;
for (i=0; i<n; i++)
{ sum=sum+pow((y[i]-coef[0]-coef[1]*x[i]),2);}
*error=sqrt(sum/n);
return;

}
/***************************************************************************/
/***************************************************************************/
/* Bath Fractal Transform (BFT) scheme */
/* input: image_in.dat */
/* output: image_bath.out */
/***************************************************************************/
/***************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SWAP(a1,b1) {float temp=(a1);(a1)=(b1);(b1)=temp;}
#define SIZE 512
#define NMAPS 8
#define MAXITER 25
void getchildBlock(int n, int n1, int n2, float block[][n]);
void getparentBlock(int n,int n1,int n2,float block[][n],float x2[64],float x3[64]);
void Dec_getparentBlock(int n,int n1,int n2,float block[][n],float x2[64],float x3[64]);
float dot_product(int n, float u[n], float v[n]);
void gauss(float a1[4][4],float b1[4], float b2[4]);
float lena[SIZE][SIZE], lena0[SIZE][SIZE], lena1[SIZE][SIZE];
main()
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{
int i, j, iic, jjc, iip, jjp, npixc, npixp, neq, iter;
int nchilds, nparents, ic, jc, ncount,npts;
float error, errmin, pixel, sum, rmse, psnr;
float tot;
float childb[8][8], parentb[16][16];
float x1[64], x2[64], x3[64], y[64];
float constant[64][64];
float x_loc[64][64],y_loc[64][64], greyc[64][64];
float ones[64], a[4][4], b[4], coef[4];
FILE * finput;
FILE * foutput1;
FILE * foutput2;
finput=fopen("lenna0.dat","r");
foutput1=fopen("lenab.dat","w");
foutput2=fopen("lenab.out","w");
nchilds=64;
nparents=32;
npixp=SIZE/nparents;
npixc=SIZE/nchilds;
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput, "%f",&pixel);
lena[i][j]=pixel/255.0;
lena0[i][j]=0.0;
lena1[i][j]=0.0;

}
}

for (iic=0;iic<nchilds;iic++) // for each child block
{ for (jjc=0;jjc<nchilds;jjc++)

{ getchildBlock(npixc,iic, jjc,childb);
ncount=0;
for (i=0;i<npixc;i++)
{ for (j=0;j<npixc;j++)

{ y[ncount]=childb[i][j];
ones[ncount]=1.0;
ncount++;

}
}
getparentBlock(npixp,iic,jjc,parentb,x2,x3); // get the co-centric parent block
ncount=0;
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ x1[ncount]=(parentb[i-1][j-1]+parentb[i-1][j]+
parentb[i][j-1]+parentb[i][j])/4.0;

ncount++;
}

}
npts=npixc*npixc;
a[0][0]=dot_product(npts,x1,x1);

a[0][1]=dot_product(npts,x1,x2);
a[0][2]=dot_product(npts,x1,x3);

a[0][3]=dot_product(npts,x1,ones);
a[1][0]=dot_product(npts,x1,x2);
a[1][1]=dot_product(npts,x2,x2);
a[1][2]=dot_product(npts,x2,x3);
a[1][3]=dot_product(npts,x2,ones);
a[2][0]=dot_product(npts,x1,x3);
a[2][1]=dot_product(npts,x2,x3);
a[2][2]=dot_product(npts,x3,x3);
a[2][3]=dot_product(npts,x3,ones);
a[3][0]=dot_product(npts,x1,ones);
a[3][1]=dot_product(npts,x2,ones);
a[3][2]=dot_product(npts,x3,ones);
a[3][3]=dot_product(npts,ones,ones);

b[0]=dot_product(npts,x1,y);
b[1]=dot_product(npts,x2,y);
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b[2]=dot_product(npts,x3,y);
b[3]=dot_product(npts,ones,y);

gauss(a, b, coef);
greyc[iic][jjc]=coef[0];

x_loc[iic][jjc]=coef[1];
y_loc[iic][jjc]=coef[2];
constant[iic][jjc]=coef[3];

error=0.0;
for (i=0;i<npts;i++)

{ for (j=0;j<npts;j++)
{ error=error+pow(y[ncount]-coef[0]*x1[ncount]-coef[1]*x2[ncount]

-coef[2]*x3[ncount]-coef[3],2);
}

}
error=sqrt(error/npts);

}
}
for (iter=0; iter<MAXITER; iter++) // start the decoding process
{ for (iic=0; iic<nchilds; iic++)

{ for (jjc=0; jjc<nchilds; jjc++)
{ Dec_getparentBlock(npixp,iic,jjc,parentb, x2, x3);

ncount=0;
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ ic=(i-1)/2;
jc=(j-1)/2;
childb[ic][jc] =greyc[iic][jjc]*(parentb[i][j]+
parentb[i][j-1]+ parentb[i-1][j]+parentb[i-1][j-1])/4.0
+x_loc[iic][jjc]*x2[ncount]+y_loc[iic][jjc]*x3[ncount]

+constant[iic][jjc];
ncount++;
lena1[iic*npixc+ic][jjc*npixc+jc]=childb[ic][jc];

}
}

}
}
for (i=0; i<SIZE; i++)
{ for (j=0; j<SIZE; j++)

{ lena0[i][j]=lena1[i][j];}
}

}
sum=0;
tot=0;
for (i=0; i<SIZE; i++)
{ for (j=0; j<SIZE; j++)

{ sum=sum+pow((lena1[i][j]-lena[i][j]),2);
fprintf(foutput1,"%.3f\n", 255.0*lena1[i][j]);

}
}
rmse=255.0*sqrt(sum/pow(SIZE,2));
psnr=20*log10(255.0/rmse);
printf(" RMSE = %f\n ", rmse);
printf(" PSNR = %f\n", psnr);
fclose(finput);
fclose(foutput1);
fclose(foutput2);
}
/*****************************************/
/* This function sets up the child block */
/*****************************************/
void getchildBlock(int n, int n1, int n2, float block[][n])
{ int i, j;

for (i=0; i<n;i++)
{ for (j=0; j<n;j++)

{ block[i][j]=lena[n1*n+i][n2*n+j];}
}
return;
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}
/******************************************/
/* This function sets up the parent block */
/*******************************************/
void getparentBlock(int n,int n1,int n2,float block[][n],float x2[64],float x3[64])
{
int i, j, m1, m2, ncount;
switch(n1)
{ case(0): if (n2<63)

{ m1=0; m2=n2*n/2;}
else
{ m1=0; m2=(n2-1)*n/2;}
break;

case(63):if (n2<63)
{ m1=(n1-1)*n/2; m2=n2*n/2;}
else
{ m1=(n1-1)*n/2; m2=(n2-1)*n/2;}
break;

default : break;
}
switch(n2)
{

case(0): if (n1<63)
{ m1=n1*n/2; m2=0;}
else
{ m1=(n1-1)*n/2; m2=0;}
break;

case(63):if (n1<63)
{ m1=n1*n/2; m2=(n2-1)*n/2;}
else
{ m1=(n1-1)*n/2; m2=(n2-1)*n/2;}
break;

default : break;
}
if ((n1>0)&&(n1<63)&&(n2>0)&&(n2<63))

{m1=n1*n/2-n/4; m2=n2*n/2-n/4;}
for (i=0; i<n;i++)
{ for (j=0; j<n;j++)

{ block[i][j]=lena[m1+i][m2+j];}
}
ncount=0;
for (i=0; i<n; i=i+2)
{ for (j=0; j<n; j=j+2)

{ x2[ncount]=(m2+j+0.5)/512.0;
x3[ncount]=(m1+i+0.5)/512.0;
ncount=ncount+1;

}
}
return;
}
/******************************************/
/* This function sets up the parent block */
/******************************************/
void Dec_getparentBlock(int n,int n1,int n2,float block[][n],float x2[64],float x3[64])
{
int i, j, m1, m2, ncount;
switch(n1)
{ case(0): if (n2<63)

{ m1=0; m2=n2*n/2;}
else
{ m1=0; m2=(n2-1)*n/2;}
break;

case(63):if (n2<63)
{ m1=(n1-1)*n/2; m2=n2*n/2;}
else
{ m1=(n1-1)*n/2; m2=(n2-1)*n/2;}
break;

default : break;
}
switch(n2)
{

case(0): if (n1<63)
{ m1=n1*n/2; m2=0;}
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else
{ m1=(n1-1)*n/2; m2=0;}
break;

case(63):if (n1<63)
{ m1=n1*n/2; m2=(n2-1)*n/2;}
else
{ m1=(n1-1)*n/2; m2=(n2-1)*n/2;}
break;

default : break;
}
if ((n1>0)&&(n1<63)&&(n2>0)&&(n2<63))

{m1=n1*n/2-n/4; m2=n2*n/2-n/4;}
for (i=0; i<n;i++)
{ for (j=0; j<n;j++)

{ block[i][j]=lena0[m1+i][m2+j];}
}
ncount=0;
for (i=0; i<n; i=i+2)
{ for (j=0; j<n; j=j+2){

x2[ncount]=(m2+j+0.5)/512.0;
x3[ncount]=(m1+i+0.5)/512.0;
ncount=ncount+1;

}
}
return;
}
/*********************************************************************/
/* The Gaussian function solves the system of linear equations: Ax=b */
/*********************************************************************/
void gauss(float a1[4][4],float b1[4], float b2[4])
{
int indxc[4], indxr[4], ipiv[4];
int i, icol, irow, j, k, l, ll,m,n;
float big, dum, pivinv, a[4][4],b[4][1];
n=4;
m=1;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
{ a[i][j]=a1[i][j];}
for (i=0;i<n;i++)
{ indxc[i]=0;

indxr[i]=0;
ipiv[i]=0;
b[i][0]=b1[i];

}
for (j=0; j<n; j++)

ipiv[j]=0;
for (i=0; i<n; i++)
{ big=0.0;

for (j=0; j<n; j++)
if (ipiv[j] != 1)

for (k=0; k<n; k++) {
if (ipiv[k] == 0){

if (fabs(a[j][k]) >= big){
big=fabs(a[j][k]);
irow=j;
icol=k;

}
} else if (ipiv[k]>1) printf("GAUSS: singular Matrix-2\n");

}
++(ipiv[icol]);
if (irow != icol){

for (l=0; l<n;l++) SWAP(a[irow][l],a[icol][l]);
for (l=0;l<m;l++) SWAP(b[irow][l],b[icol][l]);

}
indxr[i]=irow;
indxc[i]=icol;
if (a[icol][icol]==0.0) printf("GAUSS: singular Matrix-2\n");
pivinv=1.0/a[icol][icol];
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a[icol][icol]=1.0;
for (l=0; l<n; l++) a[icol][l] *= pivinv;
for (l=0; l<m; l++) b[icol][l] *= pivinv;
for (ll=0; ll<n;ll++)

if (ll != icol) {
dum=a[ll][icol];
a[ll][icol]=0.0;
for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum;
for (l=0;l<m;l++) b[ll][l] -= b[icol][l]*dum;

}
}
for (l=n-1;l>=0;l--){

if (indxr[l] != indxc[l])
for (k=1;k<=n;k++)

SWAP(a[k][indxr[l]],a[k][indxc[l]]);
}
for (l=0;l<n;l++) b2[l]=b[l][0];
return;
}
/****************************************************************************/
/* This function computes the dot product betwwen two vecors */
/****************************************************************************/
float dot_product(int n, float u[n], float v[n])
{
float sum;
int i;
sum=0.0;
for (i=0;i<n;i++) {

sum=sum+u[i]*v[i];
}
return(sum);
}
/*****************************************************************************/
/*****************************************************************************/
/* Quadtree Fractal Image Coding: */
/* Variance decomposition criterion */
/* Starting at (M,N)=(2,4) */
/* Ending at (M,N)=(68,132) */
/* Input: input_image.dat */
/* Output:output_image.out */
/*****************************************************************************/
/*****************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
#define MAXITER 20
void GetBlock(int n, int n1, int n2, float block[][n]);
float Uniform(int level, float low, float up, float x);
void Leastsquares(int n, float x[n], float y[n], float coef[2], float *error);
void Exhaustive(int npixc,int iic,int jjc,int indexp[2], float coef[2],float *error);
void Split(int npixc, int iic, int jjc);
void Statistics(int npixc,int iic,int jjc,float min_var,

float *mean,float *variance, int *status);
float Entropy(int size, int level, float low, float up, float vector[size][]);
float lena[SIZE][SIZE], lena0[SIZE][SIZE], lena1[SIZE][SIZE];
float partition[SIZE+1][SIZE+1];
main()
{
int levels,skip,i,j,iic,jjc,iip,jjp,npixc,npixp,iter,npixc1;
int nchilds,nparents,ic,jc,ncount,status,index[2];
int index1[4][4],index2[8][8],index3[16][16];
int index4[32][32],index5[64][64],index6[128][128];
int iindex1[4][4],iindex2[8][8],iindex3[16][16];
int iindex4[32][32],iindex5[64][64],iindex6[128][128];
int jindex1[4][4],jindex2[8][8],jindex3[16][16];
int jindex4[32][32],jindex5[64][64],jindex6[128][128];
int nsplit,repeat,last,number,nchilds0,nparents0,count,level;
int level1,level2,level3,level4,level5,level6;
float errmin,error,threshold,pixel,sum,rmse,psnr,distance,s,c;
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float childb[128][128],parentb[256][256],coef[2];
float mean,variance,ave,constant6[128][128];
float constant1[4][4],constant2[8][8],constant3[16][16];
float constant4[32][32],constant5[64][64],coefficients[128*128][2];
float slope1[4][4],slope2[8][8],slope3[16][16];
float slope4[32][32],slope5[64][64],slope6[128][128];
float threshold0,c_ratio,entropy,low,high,bit_rate;
FILE * finput1;
FILE * foutput1;
finput1=fopen("input_image.dat","r");
foutput1=fopen("output_image.out","w");
nparents0=2; //M=2
nchilds0=4; //N=4
threshold0=1000;
level=256;
low=-5.0;
high=5.0;
sum=0.0;
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput1, "%f",&pixel);
lena[i][j]=pixel;
lena1[i][j]=0;
lena0[i][j]=0;

}
}
for (repeat=0;repeat<1;repeat++)
{ threshold=threshold0-repeat*100;

for (i=0;i<SIZE/4;i++)
{ for (j=0;j<SIZE/4;j++)

{ index6[i][j]=2;
index5[i/2][j/2]=2;
index4[i/4][j/4]=2;
index3[i/8][j/8]=2;
index2[i/16][j/16]=2;
index1[i/32][j/32]=2;

}
}
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ lena0[i][j]=0.0;
lena1[i][j]=0.0;

}
}

npixc=SIZE/nchilds0;
for (i=0;i<=SIZE;i++)
{ for (j=0;j<=SIZE;j++)

{ if ((i%npixc)==0 || (j%npixc)==0)
{ partition[i][j]==0.0;}
else
{ partition[i][j]=255.0;}

}
}
level1=level2=level3=level4=level5=level6=0;
ncount=0;
last=0;
nsplit=0;
printf("Start the encoding process\n");
for (count=1;count<=6;count++)
{ nchilds=pow(2,count-1)*nchilds0;

nparents=pow(2,count-1)*nparents0;
npixc=SIZE/nchilds;
npixp=SIZE/nparents;
printf("Encoding: working on layer number : %d\n",count);
for (iic=0;iic<nchilds;iic++)
{ for (jjc=0;jjc<nchilds;jjc++)

{ if (count==1)
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{ Statistics(npixc,iic,jjc,threshold,&mean,&variance,&status);
if (status==0)
{ index1[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex1[iic][jjc]=index[0];
jindex1[iic][jjc]=index[1];
slope1[iic][jjc]=coef[0];
constant1[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
ncount++;

}
if (status==1)
{ index1[iic][jjc]=1;

Split(npixc,iic,jjc);
nsplit++;

}
}
if (count==2 && index1[iic/2][jjc/2]==1)
{ Statistics(npixc,iic,jjc,threshold,&mean,&variance,&status);

if (status==0)
{ index2[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex2[iic][jjc]=index[0];
jindex2[iic][jjc]=index[1];
slope2[iic][jjc]=coef[0];
constant2[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
ncount++;

}
if (status==1)
{ index2[iic][jjc]=1;

Split(npixc,iic,jjc);
nsplit++;

}
}
if (count==3 && index2[iic/2][jjc/2]==1)
{ Statistics(npixc,iic,jjc,threshold,&mean,&variance,&status);

if (status==0)
{ index3[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex3[iic][jjc]=index[0];
jindex3[iic][jjc]=index[1];
slope3[iic][jjc]=coef[0];
constant3[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
ncount++;

}
if (status==1)
{ index3[iic][jjc]=1;

Split(npixc,iic,jjc);
nsplit++;

}
}
if (count==4 && index3[iic/2][jjc/2]==1)
{ Statistics(npixc,iic,jjc,threshold,&mean,&variance,&status);

if (status==0)
{ index4[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex4[iic][jjc]=index[0];
jindex4[iic][jjc]=index[1];
slope4[iic][jjc]=coef[0];
constant4[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
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ncount++;
}
if (status==1)
{ index4[iic][jjc]=1;

Split(npixc,iic,jjc);
nsplit++;

}
}
if (count==5 && index4[iic/2][jjc/2]==1)
{ Statistics(npixc,iic,jjc,threshold,&mean,&variance,&status);

if (status==0)
{ index5[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex5[iic][jjc]=index[0];
jindex5[iic][jjc]=index[1];
slope5[iic][jjc]=coef[0];
constant5[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
ncount++;

}
if (status==1)
{ index5[iic][jjc]=1;

Split(npixc,iic,jjc);
nsplit++;

}
}
if (count==6 && index5[iic/2][jjc/2]==1)
{ index6[iic][jjc]=0;

Exhaustive(npixc,iic,jjc,index,coef,&error);
iindex6[iic][jjc]=index[0];
jindex6[iic][jjc]=index[1];
slope6[iic][jjc]=coef[0];
constant6[iic][jjc]=coef[1];
coefficients[ncount][0]=coef[0];
coefficients[ncount][1]=coef[1];
ncount++;
last++;

}
}

}
}
number=ncount;
entropy=Entropy(number,level,low,high,coefficients);
for (iter=0;iter<MAXITER;iter++)
{
for (count=1;count<=6;count++)
{ nchilds=pow(2,count-1)*nchilds0;

nparents=pow(2,count-1)*nparents0;
npixc=SIZE/nchilds;
npixp=SIZE/nparents;
for (iic=0;iic<nchilds;iic++)
{ for (jjc=0;jjc<nchilds;jjc++)

{ skip=1;
if (count==1 && index1[iic][jjc]==0)
{ iip= iindex1[iic][jjc];

jjp= jindex1[iic][jjc];
s=slope1[iic][jjc];
c=constant1[iic][jjc];
skip=0;

}
if (count==2 && index2[iic][jjc]==0)
{ iip= iindex2[iic][jjc];

jjp= jindex2[iic][jjc];
s=slope2[iic][jjc];
c=constant2[iic][jjc];
skip=0;
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}
if (count==3 && index3[iic][jjc]==0)
{ iip= iindex3[iic][jjc];

jjp= jindex3[iic][jjc];
s=slope3[iic][jjc];
c=constant3[iic][jjc];
skip=0;

}
if (count==4 && index4[iic][jjc]==0)
{ iip= iindex4[iic][jjc];

jjp= jindex4[iic][jjc];
s=slope4[iic][jjc];
c=constant4[iic][jjc];
skip=0;

}
if (count==5 && index5[iic][jjc]==0)
{ iip= iindex5[iic][jjc];

jjp= jindex5[iic][jjc];
s=slope5[iic][jjc];
c=constant5[iic][jjc];
skip=0;

}
if (count==6 && index6[iic][jjc]==0)
{ iip= iindex6[iic][jjc];

jjp= jindex6[iic][jjc];
s=slope6[iic][jjc];
c=constant6[iic][jjc];
skip=0;

}
if (skip==0)
{ for (i=0; i<npixp;i++)

{ for (j=0; j<npixp;j++)
{ parentb[i][j]=lena0[iip*npixp+i][jjp*npixp+j];}

}
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ ic=(i-1)/2;
jc=(j-1)/2;
ave=(parentb[i][j]+parentb[i][j-1]+

parentb[i-1][j]+parentb[i-1][j-1])/4.0;
childb[ic][jc]=s*ave+c;
lena1[iic*npixc+ic][jjc*npixc+jc]=s*ave+c;

}
}

}
}

}
} /** end of the count loop...****/
for (i=0; i<SIZE; i++)
{ for (j=0; j<SIZE; j++)

{ lena0[i][j]=lena1[i][j];} /* copy lena1 into lena0 and iterate */
}
} /*** end of the iteration loop ***/
printf("\n");
sum=0;
for (i=0; i<SIZE; i++)
{ for (j=0; j<SIZE; j++)

{ sum=sum+pow((lena1[i][j]-lena[i][j]),2);
fprintf(foutput1, "%f\n", 255*lena1[i][j]);

}
}
rmse=255.0*sqrt(sum/pow(SIZE,2));
psnr=20*log10(255.0/rmse);
c_ratio=(float)(pow(2,21))/(nsplit+number-last+number*10+
2*(level1+level2*2+level3*3+level4*4+level5*5+level6*6));
bit_rate=8.0/c_ratio;
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printf("\n");
printf("_____________________________________________________\n");
printf(" Iteration = %d\n with variance threshol = %.2f\n", repeat, threshold);
printf("The RMSE = %f\n ", rmse);
printf("The PSNR = %f\n ", psnr);
printf("The Compression Ratio = %f\n ", c_ratio);
printf("\n");
printf("==================================================================\n");
} /**** end of the repeat loop ****/
fclose(finput1);
fclose(finput2);
fclose(foutput1);
fclose(foutput2);
}
/************************************************************************/
/* This function sets up the child/parent block */
/************************************************************************/
void GetBlock(int n, int n1, int n2, float block[][n])
{
int i, j;
for (i=0; i<n;i++)
{ for (j=0; j<n;j++)

{ block[i][j]=lena[n1*n+i][n2*n+j];}
}
return;
}
/************************************************************************/
/* This is a Uniform quatizer that quatizes the scaling coefficients */
/* into the specified number of levels on the given range. */
/************************************************************************/
float Uniform(int level, float low, float up, float x)
{
int num;
float q,step;
step=(up-low)/level;
if (x<=low)
{ q=low+step/2.0;}
if (x>=up)

{q=up-step/2.0;}
if (x>low && x<up)
{ num=(int)(level*(x-low)/(up-low));

q=low+((float)(num)+0.5)*step;
}
return(q);
}
/**************************************************************************/
/* The Least squares function */
/**************************************************************************/
void Leastsquares(int n, float x[n], float y[n], float coef[2], float *error)
{
int i,j;
float s1,s2, s3, s4;
float xbar, ybar,sum;
float s,c;
s1=0.0; s2=0.0; s3=0.0;s4=0.0;
xbar=0.0; ybar=0.0; sum=0.0;
for (i=0; i<n; i++)
{ s1=s1+x[i];
s2=s2+y[i];
s3=s3+x[i]*y[i];
s4=s4+pow(x[i],2);

}
xbar=s1/n;
ybar=s2/n;
if ((s4-pow(s1,2)/n)==0.0)
{ s=0;

c=ybar;
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printf("ZERO DETERMINANT IN LEASTSQUARES\n");
}
else
{ s=(s3-s1*s2/n)/(s4-pow(s1,2)/n);

c=ybar-s*xbar;
}
coef[0]=s;
coef[1]=c;
sum=0.0;
for (i=0; i<n; i++)
{ sum=sum+pow((y[i]-(coef[0]*x[i]+coef[1])),2);}
*error=sqrt(sum/n);
return;
}
/**************************************************************************/
/* This function finds the closest parent block to a child block */
/* and returns: */
/* The address of the parent-block */
/* The optimum coefficients */
/* The collage error */
/**************************************************************************/
void Exhaustive(int npixc,int iic,int jjc,int indexp[2],float coef[2],float *error)
{
int i,j,iip,jjp,ncount,nparents,npixp;
float childb[npixc][npixc], y[npixc*npixc], parentb[2*npixc][2*npixc], x[npixc*npixc];
float err,errmin,coefficients[2];
ncount=0;
errmin=100000000;
for (i=0; i<npixc;i++)
{ for (j=0; j<npixc;j++)

{ childb[i][j]=lena[iic*npixc+i][jjc*npixc+j];}
}
for (i=0;i<npixc;i++)
{ for (j=0;j<npixc;j++)

{ y[ncount]=childb[i][j];
ncount++;

}
}
npixp=2*npixc;
nparents=SIZE/npixp;
for (iip=0; iip<nparents; iip++)
{ for (jjp=0; jjp<nparents; jjp++)

{ for (i=0; i<npixp;i++)
{ for (j=0; j<npixp;j++)

{ parentb[i][j]=lena[iip*npixp+i][jjp*npixp+j];}
}
ncount=0;
for (i=1; i<npixp; i=i+2)
{ for (j=1; j<npixp; j=j+2)

{ x[ncount]=(parentb[i-1][j-1]+parentb[i-1][j]+
parentb[i][j-1]+parentb[i][j])/4.0;

ncount++;
}

}
Leastsquares(npixc*npixc, x, y, coefficients, &err);
if (err < errmin)
{ errmin=err;

coef[0]=coefficients[0];
coef[1]=coefficients[1];
indexp[0]=iip;
indexp[1]=jjp;
*error=err;

}
}

}
return;
}
/***********************************************************************/
/* this function splits a quadtree into four quadtrees */
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/***********************************************************************/
void Split(int npixc, int iic, int jjc)
{
int i,shift1,shift2;
shift1=iic*npixc;
shift2=jjc*npixc;
for (i=0;i<=npixc;i++)
{ partition[shift1+i][shift2+npixc/2]=0.0;

partition[shift1+npixc/2][shift2+i]=0.0;
}
return;
}
/*******************************************************************************/
/* this functions computes the statistics(mean and variance) of a child block*/
/* and returns 1 if the variance is greater than some defined THRESHOLD */
/*******************************************************************************/
void Statistics(int npixc,int iic,int jjc,float min_var,

float *mean,float *variance, int *status)
{
int i,j;
float block[npixc][npixc], sum;
float ave, var;
for (i=0; i<npixc;i++)
{ for (j=0; j<npixc;j++)

{ block[i][j]=lena[iic*npixc+i][jjc*npixc+j];}
}
sum=0.0;
for (i=0;i<npixc;i++)
{ for (j=0;j<npixc;j++)

{ block[i][j]=255.0*block[i][j];
sum=sum+block[i][j];

}
}
*mean=sum/(npixc*npixc);
ave=sum/(npixc*npixc);;
sum=0.0;
for (i=0;i<npixc;i++)
{ for (j=0;j<npixc;j++)

{ sum=sum+pow((block[i][j]-ave),2);}
}
*variance=sum/(npixc*npixc);
var=sum/(npixc*npixc);
if (var>min_var)
{ *status=1;}
else
{ *status=0;}
return;
}
/************************************************************************/
/* This is function computes the entropy of a set of quatized values */
/* to be used for compression ratio... */
/************************************************************************/
float Entropy(int size, int level, float low, float up, float vector[size][2])
{ int i,j,num,freq[512];

float sum,x,step;
step=(up-low)/level;
for (i=0;i<level;i++)

freq[i]=0;
for (i=0;i<size;i++)
{ for (j=0;j<2;j++)

{ x=vector[i][j];
if (x<=low)
{ freq[0]=freq[0]+1;}
if (x>=up)
{ freq[level-1]=freq[level-1]+1;}
if (x>low && x<up)
{ num=(int)(level*(x-low)/(up-low));

freq[num]=freq[num]+1;
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}
}

}
sum=0.0;
for (i=0;i<level;i++)
{ if (freq[i]>0)

{ sum=sum-((float)(freq[i])/(2.0*size))
*(log10((float)(freq[i])/(2.0*size)))/log10(2.0);}

}
return(sum);

}
/*********************************************************************/
/*********************************************************************/
/* Exhaustive Fractal-Wavelet scheme (FW-I) */
/*********************************************************************/
/*********************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
main()
{
int i,j,ii,jj,lk1,lk2,lkk1,lkk2,k1,k2,k,lx1,lx2,nsize,block;
int iindexh[32][32], iindexv[32][32],iindexd[32][32];
int jindexh[32][32], jindexv[32][32],jindexd[32][32];
int size1,size2,m,n,lx,l1,l2,iindex,jindex;
int nq,iter;
float psnr,rmse,pixel,sum,sum1,sum2,err,errormin,C[512*512];
float Ak2ij[85], Ak1ij[85], wcoef0[512][512],wcoef[512][512],wcoef2[512][512];
float alpha, alph, alphah[32][32],alphav[32][32],alphad[32][32];
FILE * finput0;
FILE * finput1;
finput0=fopen("lena_wv_in0.dat","r");
foutput1=fopen("lena_wv_out.out","w");
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput0, "%f",&pixel);
wcoef0[i][j]=pixel;
wcoef[i][j]=pixel;
wcoef2[i][j]=0.0;

}
}
k1=4;// k1*=4;
k2=5;//k2*=5;
lkk1=pow(2,k1);
lkk2=pow(2,k2);
for (block=1; block<=3; block++)
{ for (i=0; i<pow(2,k2); i++)

{ for (j=0; j<pow(2,k2); j++)
{ lk2=lkk2;

lx2=0;
size2=1;
if (block==1)

Ak2ij[lx2]=wcoef[i][lk2+j];
if (block==2)

Ak2ij[lx2]=wcoef[i+lk2][j];
if (block==3)

Ak2ij[lx2]=wcoef[i+lk2][j+lk2];
for (k=k2;k<=7;k++)
{ lk2=lk2+pow(2,k);

size2=2*size2;
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ lx2=lx2+1;
if (block==1)

Ak2ij[lx2]=wcoef[size2*i+m][lk2+size2*j+n];
if (block==2)

Ak2ij[lx2]=wcoef[lk2+size2*i+m][size2*j+n];
if (block==3)
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Ak2ij[lx2]=wcoef[lk2+size2*i+m][lk2+size2*j+n];
}

}
}
nsize=lx2+1;
errormin=100000.0;
for (ii=0;ii<pow(2,k1); ii++)
{ for (jj=0; jj<pow(2,k1); jj++)

{ lk1=lkk1;
size1=1;
lx1=0;
if (block==1)

Ak1ij[lx1]=wcoef[ii][lk1+jj];
if (block==2)

Ak1ij[lx1]=wcoef[lk1+ii][jj];
if (block==3)

Ak1ij[lx1]=wcoef[lk1+ii][lk1+jj];
for (k=k1; k<7; k++)
{ lk1=lk1+pow(2,k);

size1=2*size1;
for (m=0; m<size1; m++)
{ for (n=0; n<size1; n++)

{ lx1=lx1+1;
if (block==1)

Ak1ij[lx1]=
wcoef[size1*ii+m][lk1+size1*jj+n];

if (block==2)
Ak1ij[lx1]=

wcoef[lk1+size1*ii+m][size1*jj+n];
if (block==3)

Ak1ij[lx1]=
wcoef[lk1+size1*ii+m][lk1+size1*jj+n];

}
}

}
sum1=0.0;
sum2=0.0;
for (lx=0; lx<nsize; lx++)
{ sum1=sum1+Ak2ij[lx]*Ak1ij[lx];

sum2=sum2+Ak1ij[lx]*Ak1ij[lx];}
alph=sum1/sum2;
sum=0.0;
for (lx=0; lx<nsize; lx++)
{ sum=sum+pow((Ak2ij[lx]-alph*Ak1ij[lx]),2); }
err=sum/nsize;
if (err<=errormin)
{ errormin=err;

alpha=alph;
iindex=ii;
jindex=jj;

}
}

}
if (block==1)
{ alphah[i][j]=alpha;

iindexh[i][j]=iindex;
jindexh[i][j]=jindex;

}
if (block==2)
{ alphav[i][j]=alpha;

iindexv[i][j]=iindex;
jindexv[i][j]=jindex;

}
if (block==3)
{ alphad[i][j]=alpha;

iindexd[i][j]=iindex;
jindexd[i][j]=jindex;

}
}
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}
}
for (i=0;i<lkk2;i++)

for (j=0;j<lkk2;j++)
{ wcoef2[i][j]=wcoef[i][j];}

for (block=1; block<=3; block++)
{ size2=1;

lk1=lkk1;
lk2=lkk2;
for (k=k2;k<=8;k++)
{ for (i=0; i<pow(2,k2);i++)

{ for (j=0; j<pow(2,k2);j++)
{ if (block==1)

{ ii=iindexh[i][j];
jj=jindexh[i][j];
alpha=alphah[i][j];}

if (block==2)
{ ii=iindexv[i][j];

jj=jindexv[i][j];
alpha=alphav[i][j]; }

if (block==3)
{ ii=iindexd[i][j];

jj=jindexd[i][j];
alpha=alphad[i][j]; }

for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ if (block==1)
wcoef2[i*size2+m][lk2+j*size2+n]=
alpha*wcoef2[ii*size2+m][lk1+jj*size2+n];

if (block==2)
wcoef2[lk2+i*size2+m][j*size2+n]=
alpha*wcoef2[lk1+ii*size2+m][jj*size2+n];

if (block==3)
wcoef2[lk2+i*size2+m][lk2+j*size2+n]=
alpha*wcoef2[lk1+ii*size2+m][lk1+jj*size2+n];

}
}

}
}
size2=2*size2;
lk1=lk1+pow(2,k-1);
lk2=lk2+pow(2,k);

}
}
sum=0.0;
for (i=0;i<512;i++)
{ for (j=0;j<512;j++)

{ fprintf(foutput1, "%.5f\n", wcoef2[i][j]);
sum=sum+pow((wcoef0[i][j]-wcoef2[i][j]),2);

}
}
rmse=sqrt(sum)/512.0;
psnr=20*log10(255.0/rmse);
printf("RMSE = %.5f\n",rmse);
printf("PSNR = %.5f\n",psnr);
fclose(foutput1);
fclose(finput0);
}
/*******************************************************************************/
/*******************************************************************************/
/* Standard Fractal-Wavelet scheme (FW-II) */
/*******************************************************************************/
/*******************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
main()
{
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int i,j,ii,jj,lk1,lk2,lkk1,lkk2,k1,k2,k,lx1,lx2,nsize,block;
int iindexh[32][32],jindexh[32][32],nq;
int size1,size2,m,n,lx,l1,l2,kk1,kk2,iindex,jindex,kmax;
float alph2,rmse,pixel,sum,sum1,sum2,sum3,err,errormin;
float Ak2ij[3*85], Ak1ij[3*85], wcoef0[512][512],wcoef[512][512],wcoef2[512][512];
float alpha, alph, alphah[32][32],psnr;
FILE * finput0;
FILE * foutput1;
finput0=fopen("lena_wv_in0.dat","r");
foutput1=fopen("lena_wv_out.out","w");
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput0, "%f",&pixel);
wcoef0[i][j]=pixel;
wcoef[i][j]=pixel;
wcoef2[i][j]=0.0;

}
}
k1=4; //k1*=4
k2=5; //k2*=5
kmax=9;
lkk1=pow(2,k1);
lkk2=pow(2,k2);
kk1=0;
for (i=k2; i<kmax; i++)
{ kk1=kk1+pow(2,2*(i-k2));}
for (i=0; i<pow(2,k2); i++)
{ for (j=0; j<pow(2,k2); j++)

{ lk2=lkk2;
lx2=0;
size2=1;
Ak2ij[lx2]=wcoef[i][lk2+j];
Ak2ij[lx2+kk1]=wcoef[i+lk2][j];
Ak2ij[lx2+2*kk1]=wcoef[i+lk2][j+lk2];
for (k=k2;k<=7;k++)
{ lk2=lk2+pow(2,k);

size2=2*size2;
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ lx2=lx2+1;
Ak2ij[lx2]=wcoef[size2*i+m][lk2+size2*j+n];
Ak2ij[lx2+kk1]=wcoef[lk2+size2*i+m][size2*j+n];
Ak2ij[lx2+2*kk1]=wcoef[lk2+size2*i+m][lk2+size2*j+n];

}
}

}
nsize=3*(lx2+1);
errormin=1000000000.0;
for (ii=0;ii<pow(2,k1); ii++)
{ for (jj=0; jj<pow(2,k1); jj++)

{ lk1=lkk1;
size1=1;
lx1=0;
Ak1ij[lx1]=wcoef[ii][lk1+jj];
Ak1ij[lx1+kk1]=wcoef[lk1+ii][jj];
Ak1ij[lx1+2*kk1]=wcoef[lk1+ii][lk1+jj];
for (k=k1; k<7; k++)
{ lk1=lk1+pow(2,k);

size1=2*size1;
for (m=0; m<size1; m++)
{ for (n=0; n<size1; n++)

{ lx1=lx1+1;
Ak1ij[lx1]= wcoef[size1*ii+m][lk1+size1*jj+n];
Ak1ij[lx1+kk1]=wcoef[lk1+size1*ii+m][size1*jj+n];
Ak1ij[lx1+2*kk1]=wcoef[lk1+size1*ii+m][lk1+size1*jj+n];

}
}
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}
sum1=0.0;
sum2=0.0;
sum3=0.0;
for (lx=0; lx<nsize; lx++)
{ sum1=sum1+Ak2ij[lx]*Ak1ij[lx];

sum2=sum2+Ak1ij[lx]*Ak1ij[lx];
}
alph=sum1/sum2;
sum=0.0;
for (lx=0;lx<nsize;lx++)
{ sum=sum+pow((Ak2ij[lx]-alph*Ak1ij[lx]),2); }
err=sum/nsize;
if (err<=errormin)
{ errormin=err;

alpha=alph;
iindex=ii;
jindex=jj;

}
}

}
alphah[i][j]=alpha;
iindexh[i][j]=iindex;
jindexh[i][j]=jindex;

}
}
for (i=0;i<lkk2;i++)

for (j=0;j<lkk2;j++)
{ wcoef2[i][j]=wcoef[i][j];}

size2=1;
lk1=lkk1;
lk2=lkk2;
for (k=k2;k<=8;k++)
{ for (i=0; i<pow(2,k2);i++)

{ for (j=0; j<pow(2,k2);j++)
{ ii=iindexh[i][j];

jj=jindexh[i][j];
alpha=alphah[i][j];
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ wcoef2[i*size2+m][lk2+j*size2+n]=
alpha*wcoef2[ii*size2+m][lk1+jj*size2+n];

wcoef2[lk2+i*size2+m][j*size2+n]=
alpha*wcoef2[lk1+ii*size2+m][jj*size2+n];

wcoef2[lk2+i*size2+m][lk2+j*size2+n]=
alpha*wcoef2[lk1+ii*size2+m][lk1+jj*size2+n];

}
}

}
}
size2=2*size2;
lk1=lk1+pow(2,k-1);
lk2=lk2+pow(2,k);

}
printf(" decoding process done...\n");
sum=0.0;
for (i=0;i<512;i++)
{ for (j=0;j<512;j++)

{ fprintf(foutput1, "%.5f\n", wcoef2[i][j]);
sum=sum+pow((wcoef0[i][j]-wcoef2[i][j]),2);

}
}
rmse=sqrt(sum)/512.0;
psnr=20*log10(255.0/rmse);
printf("RMSE = %.5f\n",rmse);
printf("PSNR = %.5f\n",psnr);
printf("program completed successfully\n");
}
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/**************************************************************************/
/**************************************************************************/
/* Adaptive FW-II scheme */
/**************************************************************************/
/**************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
void uniform(int sizeb2, int level, float low, float up, float alpha[][128],
float q[][128], float *entropy);
main()
{
int i,j,ii,jj,lk1,lk2,lkk1,lkk2,k1,k2,k,lx1,lx2,nsize,block;
int iindexh[128][128],jindexh[128][128],nq,shift;
int size1,size2,m,n,lx,l1,l2,kk1,kk2,iindex,jindex,kmax;
int sizeb2,sizeb1,count,ncount,k10,k20,num1, num2, num3, lx3;
int nsize1,nsize2;
int row, col, nshift;
float rmse,pixel,sum,sum1,sum2,err,errormin,bit_rate;
float Ak2ij[3*350], Ak1ij[3*350], wcoef[512][512],wcoef2[512][512];
float alpha, alph, alphah[128][128],psnr,c_ratio,entropy,low,high;
float alphaq[128][128],wcoef1[128][128],wcoefq[128][128],ent_a,ent_w;
float y1[350], y2[350], y3[350];
FILE * finput;
FILE * foutput;
finput=fopen("lena_wv_in0.dat","r");
foutput=fopen("rate_adapt.out","w");
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput, "%f",&pixel);
wcoef[i][j]=pixel;
wcoef2[i][j]=0.0;

}
}
k10=3;
k20=4;
nshift=24;
kmax=9;
for (ncount=0;ncount<=nshift;ncount++)
{ if (ncount<8)

{ k1=3;
k2=4;

}
if (ncount>= 8 && ncount <24)
{ k1=4;

k2=5;
}
if (ncount==24)
{ k1=5;

k2=6;
}
shift=ncount;
sizeb1=pow(2,k10)+shift;
sizeb2=pow(2,k20)+2*shift;
printf("shift = %d\n",shift);
printf("sizeb1=%d sizeb2=%d\n",sizeb1,sizeb2);
for (i=0;i<SIZE;i++)

for (j=0;j<SIZE;j++)
wcoef2[i][j]=0.0;

lkk1=pow(2,k10)+shift;
lkk2=2*sizeb1;
for (i=0; i<sizeb2; i++)
{ for (j=0; j<sizeb2; j++)

{ num1=0;
num2=0;
num3=0;
nsize1=0;
nsize2=0;
lk2=lkk2;
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lx1=0;
lx2=0;
lx3=0;
size2=1;
count=0;
y1[lx1]=wcoef[i][lk2+j];
y2[lx2]=wcoef[lk2+i][j];

y3[lx3]=wcoef[lk2+i][lk2+j];
for (k=k2;k<=7;k++)

{ count++;
lk2=lk2+pow(2,count)*sizeb1;

size2=2*size2;
for (m=0; m<size2; m++)

{ for (n=0; n<size2; n++)
{ if ((lk2+size2*j+n)<512)

{ lx1=lx1+1;
y1[lx1]=wcoef[size2*i+m][lk2+(size2*j+n)];

}
else
{ lx1=lx1+1;

y1[lx1]=wcoef[size2*i+m][256+(lk2+size2*j+n)%256];
}
if ((lk2+size2*i+m)<512)
{ lx2=lx2+1;

y2[lx2]=wcoef[lk2+size2*i+m][size2*j+n];
}
else
{ lx2=lx2+1;

y2[lx2]=wcoef[256+(lk2+size2*i+m)%256][size2*j+n];
}
if ((lk2+size2*i+m)<512 && (lk2+size2*j+n)<512)
{ lx3=lx3+1;

y3[lx3]=wcoef[lk2+size2*i+m][lk2+size2*j+n];
}
if ((lk2+size2*i+m)>=512 && (lk2+size2*j+n)<512)
{ lx3=lx3+1;

y3[lx3]=wcoef[256+(lk2+size2*i+m)%256][lk2+size2*j+n];
}
if ((lk2+size2*i+m)<512 && (lk2+size2*j+n)>=512)
{ lx3=lx3+1;

y3[lx3]=wcoef[lk2+size2*i+m][256+(lk2+size2*j+n)%256];
}
if ((lk2+size2*i+m)>=512 && (lk2+size2*j+n)>=512)
{ lx3=lx3+1;

y3[lx3]=wcoef[256+(lk2+size2*i+m)%256][256+(lk2+size2*j+n)%256];
}

}
}

}
num1=lx1+1;
num2=lx2+1;
num3=lx3+1;
for (k=0;k<num1;k++)

Ak2ij[k]=y1[k];
for (k=0;k<num2;k++)

Ak2ij[num1+k]=y2[k];
for (k=0;k<num3;k++)

Ak2ij[num1+num2+k]=y3[k];
nsize1=num1+num2+num3;
errormin=100000000000.0;
for (ii=0;ii<sizeb1; ii++)

{ for (jj=0; jj<sizeb1; jj++)
{ lk1=lkk1;

size1=1;
lx1=0;
lx2=0;
lx3=0;
count=0;
Ak1ij[lx1]=wcoef[ii][lk1+jj];
Ak1ij[num1+lx2]=wcoef[lk1+ii][jj];
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Ak1ij[num1+num2+lx3]=wcoef[lk1+ii][lk1+jj];
for (k=k1; k<=6; k++)

{ lk1=lk1+pow(2,count)*sizeb1;
count++;
size1=2*size1;
if (k<6)
{ row=size1;

col=size1;
for (m=0; m<row; m++)
{ for (n=0; n<col; n++)

{ lx1=lx1+1;
lx2=lx2+1;
lx3=lx3+1;
if ((lk1+size2*jj+n)<512)
{ Ak1ij[lx1]=wcoef[size1*ii+m][lk1+size1*jj+n];}
else

{ Ak1ij[lx1]=wcoef[size1*ii+m][256+(lk1+size1*jj+n)%256];}
if ((lk1+size2*ii+m)<512)

{ Ak1ij[lx2+num1]=wcoef[lk1+size1*ii+m][size1*jj+n];}
else

{ Ak1ij[lx2+num1]=wcoef[256+(lk1+size1*ii+m)%256][size1*jj+n];}
if ((lk1+size2*ii+m)<512 && (lk1+size2*jj+n)<512)

{ Ak1ij[num1+num2+lx3]=wcoef[lk1+size1*ii+m][lk1+size1*jj+n];}
if ((lk1+size2*ii+m)>=512 && (lk1+size2*jj+n)<512)

{ Ak1ij[num1+num2+lx3]=wcoef[256+(lk1+size1*ii+m)%256][lk1+size1*jj+n];}
if ((lk1+size2*ii+m)<512 && (lk1+size2*jj+n)>=512)

{ Ak1ij[num1+num2+lx3]=wcoef[(lk1+size1*ii+m)][256+(lk1+size1*jj+n)%256];}
if ((lk1+size2*ii+m)>=512 && (lk1+size2*jj+n)>=512)

{ Ak1ij[num1+num2+lx3]=wcoef[256+(lk1+size1*ii+m)%256][256+(lk1+size1*jj+n)%256];}
}

}
}

}
nsize=nsize1;

sum1=0.0;
sum2=0.0;
for (lx=0; lx<nsize; lx++)
{ sum1=sum1+Ak2ij[lx]*Ak1ij[lx];

sum2=sum2+Ak1ij[lx]*Ak1ij[lx];
}

alph=sum1/sum2;
sum=0.0;
for (lx=0; lx<nsize; lx++)

{ sum=sum+pow((Ak2ij[lx]-alph*Ak1ij[lx]),2); }
err=sum/nsize;
if (err<=errormin)
{ errormin=err;

alpha=alph;
iindex=ii;
jindex=jj;

}
}

}
alphah[i][j]=alpha;

iindexh[i][j]=iindex;
jindexh[i][j]=jindex;

}
}
for (i=0;i<lkk2;i++)

for (j=0;j<lkk2;j++)
wcoef2[i][j]=wcoef[i][j];

size2=1;
lk1=lkk1;
lk2=lkk2;
count=0;
for (k=k2;k<=8;k++)
{ for (i=0; i<sizeb2;i++)

{ for (j=0; j<sizeb2;j++)
{ ii=iindexh[i][j];
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jj=jindexh[i][j];
alpha=alphah[i][j];
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ if ((lk2+j*size2+n)<512)
{ wcoef2[i*size2+m][lk2+j*size2+n]=

alpha*wcoef2[ii*size2+m][lk1+jj*size2+n];}
if ((lk2+i*size2+m)<512)
{ wcoef2[lk2+i*size2+m][j*size2+n]=

alpha*wcoef2[lk1+ii*size2+m][jj*size2+n];}
if ((lk2+i*size2+m)<512 && (lk2+j*size2+n)<512)
{ wcoef2[lk2+i*size2+m][lk2+j*size2+n]=

alpha*wcoef2[lk1+ii*size2+m][lk1+jj*size2+n];}
}

}
}

}
count++;
size2=2*size2;
lk1=lk1+pow(2,count-1)*sizeb1;
lk2=lk2+pow(2,count)*sizeb1;

}
sum=0.0;
for (i=0;i<512;i++)
{ for (j=0;j<512;j++)

{ sum=sum+pow((wcoef[i][j]-wcoef2[i][j]),2);
fprintf(foutput,"%f\n", wcoef2[i][j]);

}
}
rmse=sqrt(sum)/512.0;
psnr=20*log10(255.0/rmse);
printf("RMSE = %.5f\n",rmse);
printf("PSNR = %.5f\n",psnr);
fprintf(foutput1, "%d %.5f %.5f %.5f\n",ncount, rmse, psnr);
} /* end of the ncount loop */
}
/********************.....Uniform quantizer...***************************/
void uniform(int sizeb2, int level, float low, float up, float alpha[][128],
float q[][128], float *entropy)
{
int i,j,size,num,freq[512];
float sum,x,vector[4096],step;
size=sizeb2;
for (i=0;i<size;i++)

for (j=0;j<size;j++)
{ vector[i*size+j]=alpha[i][j];}

step=(up-low)/level;
for (i=0;i<level;i++)

freq[i]=0;
for (i=0;i<size;i++)
{ for (j=0;j<size;j++)

{ x=alpha[i][j];
if (x<=low)

{q[i][j]=low+step/2.0;
freq[0]=freq[0]+1;}

if (x>=up)
{q[i][j]=up-step/2.0;
freq[level-1]=freq[level-1]+1;}

if (x>low && x<up)
{ num=(int)(level*(x-low)/(up-low));

freq[num]=freq[num]+1;
q[i][j]=low+((float)(num)+0.5)*step;

}
}

}
sum=0.0;
for (i=0;i<level;i++)
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{ if (freq[i]>0)
{ sum=sum-(freq[i]/pow(size,2))*(log10(freq[i]/pow(size,2)))/log10(2.0);}

}
printf("entropy=%f\n",sum);
*entropy=sum;
return;
}
/*****************************************************************************/
/*****************************************************************************/
/* Quadtree-Based FW-II scheme */
/*****************************************************************************/
/*****************************************************************************/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#define SIZE 512
#define EPSILON 0.0001
#define INFINITY 1000000000
float Uniform(int level, float low, float up, float x);
float Entropy(int size, int level, float low, float up, float vector[512*512]);
float Max_Min(int n, float buffer[][512], float *max,float *min);
main()
{
int iindex[SIZE][SIZE],jindex[SIZE][SIZE],store[SIZE][SIZE];
int kk1,i,j,ii,jj,lk1,lk2,lkk1,lkk2,k1,k2,k,lx1,lx2,nsize,block;
int size1,size2,m,n,lx,l1,l2,iind,jind,k1_min,k1_max,k10,k20,iter;
int repeat,last,count_s,count_w,level_s,level_w;
int level1,level2,level3,level4;
int npoints,num,num_3,num_4,num_5,num_6,image;
float bit_rate,entropy_w,entropy_s,temp,rmse,pixel,sum,sum1,sum2,err,errormin;
float threshold,threshold_f,threshold_0,energy,psnr,low_w,high_w,low_s,high_s,c_ratio;
float wcoef1[SIZE][SIZE],alpha[SIZE][SIZE],wcoef[SIZE][SIZE],Ak2ij[1500],Ak1ij[1500];
float wave[SIZE*SIZE],scaling[SIZE*SIZE],wcoef2[SIZE][SIZE],alphaq[SIZE][SIZE];
float prune,min,max,alph,alpha1,sumh,sumv,sumd,energyh,energyv,energyd,step;
FILE * finput;
FILE * foutput;
finput1=fopen("lenna_wv0_in.dat","r");
foutput1=fopen("rate_fw_qd.out","w");
sum=0.0;
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ fscanf(finput1, "%f",&pixel);
wcoef[i][j]=pixel;

}
}
level_s=65;
low_s=-3;
high_s=3;
level_w=256;
Max_Min(SIZE,wcoef,&max,&min);
low_w=min;
high_w=max;
printf("For the chosen image : Range = [%.2f, %.2f]\n",min,max);
printf("==================================================================\n");
printf("\n");
printf("Enter the NUMBER OF DATA POINTS to be generated >\n");
scanf("%d", &npoints);
printf("Enter the INITIAL ENERGY CRITERION THRESHOLD >\n");
scanf("%f", &threshold_0);
printf("Enter the INCREMENTAL STEP > \n");
scanf("%f", &step);
printf("Enter the minimum energy threshold for pruning\n");
printf("Typically, we chose the pruning threshold = 25\n");
printf("But other values may be chosen >\n");
scanf("%f",&prune);
printf("\n");
printf("==================================================================\n");
printf("\n");
/*********************************************************/
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/* Set the minimum quadtree layer (k1*,k2*)=(3,4) */
/* Set the maximum quadtree layer (k1*,k2*)=(6,7) */
/*********************************************************/
k1_min=3;
k1_max=6;
/*********************************************************/
/* Start the encoding process, and repeat as many as the */
/* number of requested data points, starting at the */
/* specified initial threshold. */
/*********************************************************/
for (repeat=0;repeat<npoints;repeat++)
{ threshold=threshold_0+repeat*step; /* increment the energy threshold */

printf("Data point number : %d, Energy threshold = %.2f\n",repeat+1,threshold);
sum=0.0;
/* initialization */
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ wcoef1[i][j]=0.0;
wcoef2[i][j]=0.0;
iindex[i][j]=0;
jindex[i][j]=0;
store[i][j]=2;
alpha[i][j]=0;
alphaq[i][j]=0;

}
}
/* setup the sizes initial sizes ...(k1*,k2*)=(3,4)....*/
k10=3;
k20=4;
lkk1=(int)pow(2,k10);
lkk2=2*(int)pow(2,k10);

/****************************************************************/
/* count_s : the number of fractally encoded subtrees (roots) */
/* count_w : the number of stored wavelet coefficients */
/* level(i): the number of subtrees encoded on the i_th layer */
/* last : the number of subtrees encoded on the last layer */
/****************************************************************/

count_s=0;
count_w=0;
last=0;
level1=level2=level3=level4=0;
num_3=num_4=num_5=num_6=0;

/*********************************************************************/
/* store and quantize the initial set of wavelet coefficients, up to */
/* the initial quadtree level (k1*,k2*)=(3,4) */
/*********************************************************************/

for (i=0;i<lkk2;i++)
{ for (j=0;j<lkk2;j++)

{ wcoef1[i][j]=wcoef[i][j];
temp=wcoef[i][j];
wcoef2[i][j]=Uniform(level_w,low_w,high_w,temp);
store[i][j]=1;
wave[count_w]=wcoef[i][j];
count_w++;

}
}

/**************************************************************************/
/* start the quadtree partitioning scheme, starting at the initial level */
/* (k1*,k2*)=(3,4), until the final level (k1*,k2*)=(6,7) */
/**************************************************************************/
for (k1=k1_min;k1<=k1_max;k1++)
{ k2=k1+1;

lkk1=0;
lkk2=0;
for (i=0; i<k1; i++)
{ lkk1=lkk1+pow(2,i);}
lkk1=lkk1+1;
lkk2=lkk1+pow(2,k1);
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kk1=0;
for (i=k2; i<9; i++)
{ kk1=kk1+pow(2,2*(i-k2));}
for (i=0; i<pow(2,k2); i++)
{ for (j=0; j<pow(2,k2); j++)

{ if (store[i][lkk2+j]==2)
{ lk2=lkk2;

lx2=0;
size2=1;
Ak2ij[lx2]=wcoef[i][lk2+j];
Ak2ij[lx2+kk1]=wcoef[i+lk2][j];
Ak2ij[lx2+2*kk1]=wcoef[i+lk2][j+lk2];
for (k=k2;k<=7;k++)
{ lk2=lk2+pow(2,k);

size2=2*size2;
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ lx2=lx2+1;
Ak2ij[lx2]=wcoef[size2*i+m][lk2+size2*j+n];
Ak2ij[lx2+kk1]=wcoef[lk2+size2*i+m][size2*j+n];
Ak2ij[lx2+2*kk1]=wcoef[lk2+size2*i+m][lk2+size2*j+n];

}
}

}
nsize=3*(lx2+1);
errormin=INFINITY;

/*************************************************************************/
/* Compute the energy of each subtree (h,v,d) and set the energy to the */
/* maximum of the three values */
/*************************************************************************/

sumh=0.0;
sumv=0.0;
sumd=0.0;
for (m=0;m<nsize/3;m++)
{ sumh=sumh+pow(Ak2ij[m],2);}
for (m=nsize/3;m<2*nsize/3;m++)
{ sumv=sumv+pow(Ak2ij[m],2);}
for (m=2*nsize/3;m<nsize;m++)
{ sumd=sumd+pow(Ak2ij[m],2);}
energyh=sqrt(sumh);
energyv=sqrt(sumv);
energyd=sqrt(sumd);
energy=energyh;
if (energyv>energy)

energy=energyv;
if (energyd>energy)

energy=energyd;
/*************************************************************************/
/* If the energy is less than the threshold, then encode the subtree */
/* and store the fractal code */
/*************************************************************************/

if (energy<threshold || k1==k1_max)
{ store[i][lkk2+j]=0;

store[lkk2+i][j]=0;
store[lkk2+i][lkk2+j]=0;
size2=1;
lk2=lkk2;
for (k=k2;k<=7;k++)
{ lk2=lk2+pow(2,k);

size2=2*size2;
for (m=0; m<size2; m++)
{ for (n=0; n<size2; n++)

{ store[size2*i+m][lk2+size2*j+n]=3;
store[lk2+size2*i+m][size2*j+n]=3;
store[lk2+size2*i+m][lk2+size2*j+n]=3;

}
}

}
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for (ii=0;ii<pow(2,k1); ii++)
{ for (jj=0; jj<pow(2,k1); jj++)

{ lk1=lkk1;
size1=1;
lx1=0;
Ak1ij[lx1]=wcoef[ii][lk1+jj];
Ak1ij[lx1+kk1]=wcoef[lk1+ii][jj];
Ak1ij[lx1+2*kk1]=wcoef[lk1+ii][lk1+jj];
for (k=k1; k<7; k++)
{ lk1=lk1+pow(2,k);

size1=2*size1;
for (m=0; m<size1; m++)
{ for (n=0; n<size1; n++)

{ lx1=lx1+1;
Ak1ij[lx1]= wcoef[size1*ii+m][lk1+size1*jj+n];
Ak1ij[lx1+kk1]=wcoef[lk1+size1*ii+m][size1*jj+n];
Ak1ij[lx1+2*kk1]=wcoef[lk1+size1*ii+m][lk1+size1*jj+n];

}
}

}
sum1=0.0;
sum2=0.0;
for (lx=0; lx<nsize; lx++)
{ sum1=sum1+Ak2ij[lx]*Ak1ij[lx];

sum2=sum2+Ak1ij[lx]*Ak1ij[lx];
}
alph=Uniform(level_s,low_s,high_s,sum1/sum2);
sum=0.0;
for (lx=0; lx<nsize; lx++)
{ sum=sum+pow((Ak2ij[lx]-alph*Ak1ij[lx]),2); }
err=sum/nsize;
if (err<=errormin)
{ errormin=err;

alpha1=alph;
iind=ii;
jind=jj;

}
}

}
/********************************************************************/
/* If the scaling coefficient is too small (quantized to zero) */
/* or the energy of the subtree is insignificant, then prune the */
/* subtree, and keep track of which subtrees have been pruned */
/* and where */
/********************************************************************/

if (fabs(alpha1)<EPSILON || energy<=prune)
{ if (k1==3)

num_3++;
if (k1==4)

num_4++;
if (k1==5)

num_5++;
if (k1==6)

num_6++;
alpha1=0.0;

}
alpha[i][lkk2+j]=alpha1;
alphaq[i][lkk2+j]=alpha1;
iindex[i][lkk2+j]=iind;
jindex[i][lkk2+j]=jind;
scaling[count_s]=alpha1;
count_s++;
if (k1==k1_max)
{ last++;}
if (k1==3)

level1++;
if (k2==4)

level2++;
if (k1==5)

level3++;
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if (k1==6)
level4++;

}
/*********************************************************************/
/* If the energy is higher than the threshold, then store the node */
/* and replace the subtree by four subtrees rooted at the four */
/* children of the node */
/*********************************************************************/

else
{ store[i][lkk2+j]==1;

wcoef1[i][lkk2+j]=wcoef[i][lkk2+j];
temp=wcoef[i][lkk2+j];
wcoef2[i][lkk2+j]=Uniform(level_w,low_w,high_w,temp);
wave[count_w]=wcoef[i][lkk2+j];
count_w++;
wcoef1[lkk2+i][j]=wcoef[lkk2+i][j];
temp=wcoef[lkk2+i][j];
wcoef2[lkk2+i][j]=Uniform(level_w,low_w,high_w,temp);
wave[count_w]=wcoef[lkk2+i][j];
count_w++;
wcoef1[lkk2+i][lkk2+j]=wcoef[lkk2+i][lkk2+j];
temp=wcoef[lkk2+i][lkk2+j];
wcoef2[lkk2+i][lkk2+j]=Uniform(level_w,low_w,high_w,temp);
wave[count_w]=wcoef[lkk2+i][lkk2+j];
count_w++;

}
}

}
}

}
/************************************************************/
/* The ENCODING process is DONE */
/************************************************************/
/*************************************************************/
/* Compute and display the entropies of the scaling and the */
/* stored wavelet coefficients */
/*************************************************************/
entropy_s=Entropy(count_s,level_s,low_s,high_s,scaling);
entropy_w=Entropy(count_w,level_w,low_w,high_w,wave);
printf("Entropies:\n");
printf("The scaling coefficients entropy = %f\n", entropy_s);
printf("The wavelet coefficients entropy = %f\n", entropy_w);
printf("\n");
printf("The number of scaling coefficients = %d\n", count_s);
printf("The number of wavelet coefficients = %d\n", count_w);
printf("\n");
/************************************************************/
/* Start the DECODING process */
/************************************************************/
for (k1=k1_min;k1<=k1_max;k1++)
{ k2=k1+1;

lkk1=0;
lkk2=0;
for (i=0; i<k1; i++)
{ lkk1=lkk1+pow(2,i);}
lkk1=lkk1+1;
lkk2=lkk1+pow(2,k1);
size2=1;
lk1=lkk1;
lk2=lkk2;
for (k=k2;k<=8;k++)
{ for (i=0; i<pow(2,k2);i++)

{ for (j=0; j<pow(2,k2);j++)
{ if (store[i][lkk2+j]==0)

{ ii=iindex[i][lkk2+j];
jj=jindex[i][lkk2+j];
alph=alphaq[i][lkk2+j];
for (m=0; m<size2; m++)
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{ for (n=0; n<size2; n++)
{ wcoef2[i*size2+m][lk2+j*size2+n]=

alph*wcoef2[ii*size2+m][lk1+jj*size2+n];
wcoef2[lk2+i*size2+m][j*size2+n]=
alph*wcoef2[lk1+ii*size2+m][jj*size2+n];

wcoef2[lk2+i*size2+m][lk2+j*size2+n]=
alph*wcoef2[lk1+ii*size2+m][lk1+jj*size2+n];

}
}

}
}

}
size2=2*size2;
lk1=lk1+pow(2,k-1);
lk2=lk2+pow(2,k);

}
}
/********************************************************/
/* Compute the RMSE and the PSNR of the decoded */
/* wavelet tree. */
/********************************************************/
sum=0.0;
for (i=0;i<SIZE;i++)
{ for (j=0;j<SIZE;j++)

{ sum=sum+pow((wcoef[i][j]-wcoef2[i][j]),2);}
}
rmse=sqrt(sum)/SIZE;
psnr=20*log10(255.0/rmse);
/*******************************************************/
/* Count how many subtrees have been pruned */
/* these need to be removed from the fractal code */
/* depending on which layer such subtrees were pruned */
/*******************************************************/
num=num_3+num_4+num_5+num_6;
sum=2*(3*num_3+4*num_4+5*num_5+6*num_6)+num*entropy_s;
c_ratio=pow(2,21)/((entropy_w+1)*count_w-pow(2,(k1_min+1))*pow(2,(k1_min+1))+
count_s*entropy_s+2*(level1*3+level2*4+level3*5+level4*6)+count_s-last-sum+num);
bit_rate=8.0/c_ratio; /* Bit-Rate */
printf("\n");
printf("The number of zero-scaling coefs = %d\n",num);
printf("RMSE = %.5f\n",rmse);
printf("PSNR = %.5f\n",psnr);
printf("Compression Ratio = %.5f\n",c_ratio);
printf("Bit Rate = %.5f\n",bit_rate);
printf("\n")
printf("=====================================================================\n");
threshold,rmse,psnr,c_ratio,bit_rate);
} /* END of the repeat loop */
fclose(foutput1);
fclose(finput1);
printf("The program finished successfully\n");
}
/*________________________ END OF MAIN()_______________________________*/
/************************************************************************/
/* This is a Uniform quatizer that quatizes the scaling coefficients */
/* into the specified number of levels on the given range. */
/************************************************************************/
float Uniform(int level,float low,float up,float x)
{
int num;
float q,step;
step=(up-low)/level;
if (x<=low)
{ q=low+step/2.0;}
if (x>=up)

{q=up-step/2.0;}
if (x>low && x<up)
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{ num=(int)(level*(x-low)/(up-low));
q=low+((float)(num)+0.5)*step;

}
return(q);
}
/************************************************************************/
/* This is function computes the entropy of a set of quatized values */
/* to be used for compression ratio... */
/************************************************************************/
float Entropy(int size,int level,float low,float up,float vector[512*512])
{
int i,j,num,freq[1024];
float sum,x,step;
step=(up-low)/level;
for (i=0;i<level;i++)

freq[i]=0;
for (i=0;i<size;i++)
{ x=vector[i];

if (x<=low)
{freq[0]=freq[0]+1;}

if (x>=up)
{freq[level-1]=freq[level-1]+1;}

if (x>low && x<up)
{ num=(int)(level*(x-low)/(up-low));

freq[num]=freq[num]+1;
}

}
sum=0.0;
for (i=0;i<level;i++)
{ if (freq[i]>0)

{ sum=sum-((float)(freq[i])/(size))*(log10((float)(freq[i])/(size)))/log10(2.0);}
}
return(sum);
}
/********************************************************************/
/* This function computes the max and minimum values in an array. */
/********************************************************************/
float Max_Min(int n, float buffer[][512],float *max,float *min)
{
int i,j;
float mx,mn;
mx=buffer[0][0];
mn=buffer[0][0];
for (i=1;i<n;i++)
{ for (j=1;j<n;j++)

{ if (buffer[i][j]>=mx)
{ mx=buffer[i][j]; }
if (buffer[i][j]<=mn)
{ mn=buffer[i][j]; }

}
}
*max=mx;
*min=mn;
return;
}
%********************************************************************************
%********************************************************************************
% VisuShrink wavelet threshold scheme
% Performs hard and soft thresholding using the universal threshold.
%********************************************************************************
%********************************************************************************
clear all
load lenna0.dat;
for i = 1:512

lena0(i,1:512)=lenna0(512*(i-1)+1:i*512)’;
end
noisy_im=lena0+25*randn(512,512);
SIZE=512;
noise_std=25;
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num_levels=9;
max_levels=9;
dwtmode(’per’);
X=noisy_im;
for i=1:9

ii=2^i;
jj=512/ii;
[CA,CH,CV,CD] = dwt2(X,’sym8’);
coef(1:512/ii,1:512/ii)=CA;
coef(512/ii+1:2*512/ii,1:512/ii)=CH;
coef(1:512/ii,512/ii+1:2*512/ii)=CV;
coef(512/ii+1:2*512/ii,512/ii+1:2*512/ii)=CD;
clear X;
X=CA;
clear CA;
clear CH;
clear CV;
clear CD;

end
thr=sqrt(2*log(SIZE*SIZE))*noise_std;
for i=1:512

for j=1:512
if (abs(coef(i,j))>thr)

coef_hdn(i,j)=coef(i,j);
else

coef_hdn(i,j)=0.0;
end
if (coef(i,j)>thr)

coef_sdn(i,j)=coef(i,j)-thr;
end
if (coef(i,j)<-thr)

coef_sdn(i,j)=coef(i,j)+thr;
end
if (abs(coef(i,j))<thr)

coef_sdn(i,j)=0.0;
end

end
end
coef=coef_hdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
clear X;
X_hd=X0;
coef=coef_sdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else
X0=X;
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end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_sd=X0;
lena_hd=X_hd;
lena_sd=X_sd;
D=lena_hd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’VISUSHRINK HARD THRESHOLDING\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
D=lena_sd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’VISUSHRINK SOFT THRESHOLDING\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
colormap(gray(255))
subplot(1,2,1), image(lena_hd);
axis off
axis equal
subplot(1,2,2), image(lena_sd);
axis off
axis equal
colormap(gray(255))
%********************************************************************************
%********************************************************************************
% LevelShrink Wavelet thresholding scheme
%********************************************************************************
%********************************************************************************
% clear all variables...
clear all
load lenna0.dat;
for i = 1:512

lena0(i,1:512)=lenna0(512*(i-1)+1:i*512)’;
end
noisy_im=lena0+25*randn(512,512);
%********************************
SIZE=512;
noise_std=25;
num_levels=9;
max_levels=9;
dwtmode(’per’);
% setup the sizes
%********************************
X=noisy_im;
for level=1:num_levels

ii=2^level;
jj=SIZE/ii;
[CA,CH,CV,CD]=dwt2(X,’sym8’);
coef(1:SIZE/ii,1:SIZE/ii)=CA;
coef_hdn(1:SIZE/ii,1:SIZE/ii)=CA;
coef_sdn(1:SIZE/ii,1:SIZE/ii)=CA;
thr=noise_std*sqrt(2*log(SIZE*SIZE))*2^((num_levels-level+1-num_levels)/2.0);
thr_sd=thr;
thr_hd=thr;
% The horizontal subband
coef(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH;
for i=1:jj

for j=1:jj
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if (abs(CH(i,j))>thr_hd)
CH_hdn(i,j)=CH(i,j);

else
CH_hdn(i,j)=0.0;

end
if (CH(i,j)>thr_sd)

CH_sdn(i,j)=CH(i,j)-thr_sd;
end
if (CH(i,j)<-thr_sd)

CH_sdn(i,j)=CH(i,j)+thr_sd;
end
if (abs(CH(i,j))<thr_sd)

CH_sdn(i,j)=0.0;
end

end
end
coef_hdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_sdn;
% The vertical subband
coef(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV;
for i=1:jj

for j=1:jj
if (abs(CV(i,j))>thr_hd)

CV_hdn(i,j)=CV(i,j);
else

CV_hdn(i,j)=0.0;
end
if (CV(i,j)>thr_sd)

CV_sdn(i,j)=CV(i,j)-thr_sd;
end
if (CV(i,j)<-thr_sd)

CV_sdn(i,j)=CV(i,j)+thr_sd;
end
if (abs(CV(i,j))<thr_sd)

CV_sdn(i,j)=0.0;
end

end
end
coef_hdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_hdn;
coef_sdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_sdn;
% The diagonal subband
coef(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD;
for i=1:jj

for j=1:jj
if (abs(CD(i,j))>thr_hd)

CD_hdn(i,j)=CD(i,j);
else

CD_hdn(i,j)=0.0;
end
if (CD(i,j)>thr_sd)

CD_sdn(i,j)=CD(i,j)-thr_sd;
end
if (CD(i,j)<-thr_sd)

CD_sdn(i,j)=CD(i,j)+thr_sd;
end
if (abs(CD(i,j))<thr_sd)

CD_sdn(i,j)=0.0;
end

end
end
coef_hdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_sdn;
clear X;
X=CA;
clear CA;
clear CH;
clear CH_hdn;
clear CH_sdn;
clear CV;
clear CV_hdn
clear CV_sdn;
clear CD;
clear CD_hdn;
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clear CD_sdn;
clear Y;

end
coef=coef_hdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_hd=X0;
coef=coef_sdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_sd=X0;
lena_hd=X_hd;
lena_sd=X_sd;
D=lena_hd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’LevelShrink Hard thresholding \n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
D=lena_sd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’LevelShrink Soft thresholding \n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
colormap(gray(255))
subplot(1,2,1), image(lena_hd);
axis off
axis equal
subplot(1,2,2), image(lena_sd);
axis off
axis equal
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colormap(gray(255))
fprintf(1,’The program completed successfully\n’);
%********************************************************************************
%********************************************************************************
% SureShrink wavelet threshold scheme
%********************************************************************************
%********************************************************************************
% clear all variables...
clear all
load lenna0.dat;
for i = 1:512

lena0(i,1:512)=lenna0(512*(i-1)+1:i*512)’;
end
noisy_im=lena0+25*randn(512,512);
%********************************
SIZE=512;
noise_std=25;
num_levels=4;
max_levels=9;
dwtmode(’per’);
% setup the sizes
%********************************
X=noisy_im;
for level=1:num_levels

ii=2^level;
jj=SIZE/ii;
N=jj^2;
[CA,CH,CV,CD]=dwt2(X,’sym8’);
coef(1:SIZE/ii,1:SIZE/ii)=CA;
coef_hdn(1:SIZE/ii,1:SIZE/ii)=CA;
coef_sdn(1:SIZE/ii,1:SIZE/ii)=CA;
% The horizontal subband
coef(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CH(j,1:jj)’;
end
Y=sort(abs(Y));
Y=Y(jj*jj:-1:1);
sure_min=1000000000000000;
ssum=Y*Y’;
for k=1:N

t=Y(k);
s=Y(k:N)*(Y(k:N))’;
sure=s-(N-k)*noise_std^2+k*(noise_std^2+t^2);
if (sure<sure_min)

tmin=t;
sure_min=sure;

end
end
epsilon=noise_std^2*sqrt(N)*(log(N))^(3.0/2);
if (ssum-N*noise_std^2<=epsilon)

thr_hdn=noise_std*sqrt(2*log(N));
thr_sdn=noise_std*sqrt(2*log(N));

else
thr_sdn=tmin;
thr_hdn=2*tmin;

end
CH_hdn=zeros(jj,jj);
CH_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CH(i,j))>thr_hdn)

CH_hdn(i,j)=CH(i,j);
else

CH_hdn(i,j)=0.0;
end
if (CH(i,j)>thr_sdn)

CH_sdn(i,j)=CH(i,j)-thr_sdn;
end
if (CH(i,j)<-thr_sdn)

CH_sdn(i,j)=CH(i,j)+thr_sdn;
end
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if (abs(CH(i,j))<thr_sdn)
CH_sdn(i,j)=0.0;

end
end

end
coef_hdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_sdn;
% The vertical subband
coef(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CV(j,1:jj)’;
end
Y=sort(abs(Y));
Y=Y(jj*jj:-1:1);
sure_min=10000000000000000;
s=Y*Y’;
for k=1:N

t=Y(k);
s=Y(k:N)*(Y(k:N))’;
sure=s-(N-k)*noise_std^2+k*(noise_std^2+t^2);
if (sure<sure_min)

tmin=t;
sure_min=sure;

end
end
epsilon=noise_std^2*sqrt(N)*(log(N))^(3.0/2);
if (ssum-N*noise_std^2<=epsilon)

thr_hdn=noise_std*sqrt(2*log(N));
thr_sdn=noise_std*sqrt(2*log(N));

else
thr_sdn=tmin;
thr_hdn=2*tmin;

end
CV_hdn=zeros(jj,jj);
CV_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CV(i,j))>thr_hdn)

CV_hdn(i,j)=CV(i,j);
else

CV_hdn(i,j)=0.0;
end
if (CV(i,j)>thr_sdn)

CV_sdn(i,j)=CV(i,j)-thr_sdn;
end
if (CV(i,j)<-thr_sdn)

CV_sdn(i,j)=CV(i,j)+thr_sdn;
end
if (abs(CV(i,j))<thr_sdn)

CV_sdn(i,j)=0.0;
end

end
end
coef_hdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_hdn;
coef_sdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_sdn;
% The diagonal subband
coef(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CD(j,1:jj)’;
end
Y=sort(abs(Y));
Y=Y(jj*jj:-1:1);
sure_min=100000000000000000;
ssum=Y*Y’;
for k=1:N

t=Y(k);
s=Y(k:N)*(Y(k:N))’;
sure=s-(N-k)*noise_std^2+k*(noise_std^2+t^2);
if (sure<sure_min)

tmin=t;
sure_min=sure;

end
end



APPENDIX A. SAMPLE PROGRAMS 250

epsilon=noise_std^2*sqrt(N)*(log(N))^(3.0/2);
if (ssum-N*noise_std^2<=epsilon)

thr_hdn=noise_std*sqrt(2*log(N));
thr_sdn=noise_std*sqrt(2*log(N));

else
thr_sdn=tmin;
thr_hdn=2*tmin;

end
CD_hdn=zeros(jj,jj);
CD_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CD(i,j))>thr_hdn)

CD_hdn(i,j)=CD(i,j);
else

CD_hdn(i,j)=0.0;
end
if (CD(i,j)>thr_sdn)

CD_sdn(i,j)=CD(i,j)-thr_sdn;
end
if (CV(i,j)<-thr_sdn)

CD_sdn(i,j)=CD(i,j)+thr_sdn;
end
if (abs(CD(i,j))<thr_sdn)

CD_sdn(i,j)=0.0;
end

end
end
coef_hdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_sdn;
clear X;
X=CA;
clear CA;
clear CH;
clear CH_hdn;
clear CH_sdn;
clear CV;
clear CV_hdn
clear CV_sdn;
clear CD;
clear CD_hdn;
clear CD_sdn;
clear Y;
clear x;
clear sure_h;
clear sure_v;
clear sure_d;

end
coef=coef_hdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_hd=X0;
coef=coef_sdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
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CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_sd=X0;
lena_hd=X_hd;
lena_sd=X_sd;
D=lena_hd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’\n’);
fprintf(1,’SureShrink - Hard thresholding...\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
D=lena_sd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’\n’);
fprintf(1,’SureShrink - Soft thresholding...\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
colormap(gray(255))
subplot(1,2,1), image(lena_hd);
axis off
axis equal
subplot(1,2,2), image(lena_sd);
axis off
axis equal
colormap(gray(255))
fprintf(1,’The program completed successfully\n’);
%********************************************************************************
%********************************************************************************
% BayesShrink wavelet thresholding scheme....
%********************************************************************************
%********************************************************************************
% clear all variables...
clear all
noise_std=25;
load sanfran512.dat;
lenna0=sanfran512;
for i = 1:512

lena0(i,1:512)=lenna0(512*(i-1)+1:i*512)’;
end
noisy_im=lena0+noise_std*randn(512,512);
%********************************
SIZE=512;
num_levels=4;
max_levels=9;
dwtmode(’per’);
% setup the sizes
%********************************
X=noisy_im;
for level=1:num_levels

ii=2^level;
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jj=SIZE/ii;
N=jj^2;
[CA,CH,CV,CD]=dwt2(X,’sym8’);
coef(1:SIZE/ii,1:SIZE/ii)=CA;
coef_hdn(1:SIZE/ii,1:SIZE/ii)=CA;
coef_sdn(1:SIZE/ii,1:SIZE/ii)=CA;
% The horizontal subband
coef(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CH(j,1:jj)’;
end
var_y=var(Y);
sigma_x=sqrt(max((var_y-noise_std^2),0));
if (sigma_x==0)

thr_sdn=max(abs(Y));
else

thr_sdn=noise_std^2/sigma_x;
end
thr_hdn=2*thr_sdn;
CH_hdn=zeros(jj,jj);
CH_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CH(i,j))>thr_hdn)

CH_hdn(i,j)=CH(i,j);
else

CH_hdn(i,j)=0.0;
end
if (CH(i,j)>thr_sdn)

CH_sdn(i,j)=CH(i,j)-thr_sdn;
end
if (CH(i,j)<-thr_sdn)

CH_sdn(i,j)=CH(i,j)+thr_sdn;
end
if (abs(CH(i,j))<thr_sdn)

CH_sdn(i,j)=0.0;
end

end
end
coef_hdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,1:SIZE/ii)=CH_sdn;
% The vertical subband
coef(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CV(j,1:jj)’;
end
var_y=var(Y);
sigma_x=sqrt(max((var_y-noise_std^2),0));
if (sigma_x==0)

thr_sdn=max(abs(Y));
else

thr_sdn=noise_std^2/sigma_x;
end
thr_hdn=2*thr_sdn;
CV_hdn=zeros(jj,jj);
CV_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CV(i,j))>thr_hdn)

CV_hdn(i,j)=CV(i,j);
else

CV_hdn(i,j)=0.0;
end
if (CV(i,j)>thr_sdn)

CV_sdn(i,j)=CV(i,j)-thr_sdn;
end
if (CV(i,j)<-thr_sdn)

CV_sdn(i,j)=CV(i,j)+thr_sdn;
end
if (abs(CV(i,j))<thr_sdn)
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CV_sdn(i,j)=0.0;
end

end
end
coef_hdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_hdn;
coef_sdn(1:SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CV_sdn;
% The diagonal subband
coef(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD;
for j=1:jj

Y((j-1)*jj+1:j*jj)=CD(j,1:jj)’;
end
var_y=var(Y);
sigma_x=sqrt(max((var_y-noise_std^2),0));
if (sigma_x==0)

thr_sdn=max(abs(Y));
else

thr_sdn=noise_std^2/sigma_x;
end
thr_hdn=2*thr_sdn;
CD_hdn=zeros(jj,jj);
CD_sdn=zeros(jj,jj);
for i=1:jj

for j=1:jj
if (abs(CD(i,j))>thr_hdn)

CD_hdn(i,j)=CD(i,j);
else

CD_hdn(i,j)=0.0;
end
if (CD(i,j)>thr_sdn)

CD_sdn(i,j)=CD(i,j)-thr_sdn;
end
if (CV(i,j)<-thr_sdn)

CD_sdn(i,j)=CD(i,j)+thr_sdn;
end
if (abs(CD(i,j))<thr_sdn)

CD_sdn(i,j)=0.0;
end

end
end
coef_hdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_hdn;
coef_sdn(SIZE/ii+1:2*SIZE/ii,SIZE/ii+1:2*SIZE/ii)=CD_sdn;
clear X;
X=CA;
clear CA;
clear CH;
clear CH_hdn;
clear CH_sdn;
clear CV;
clear CV_hdn
clear CV_sdn;
clear CD;
clear CD_hdn;
clear CD_sdn;
clear Y;

end
coef=coef_hdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;
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end
X_hd=X0;
coef=coef_sdn;
for level=1:num_levels

jj=2^(max_levels-num_levels+level-1);
CA=coef(1:jj,1:jj);
CH=coef(jj+1:2*jj,1:jj);
CV=coef(1:jj,jj+1:2*jj);
CD=coef(jj+1:2*jj,jj+1:2*jj);
X=idwt2(CA,CH,CV,CD,’sym8’);
coef(1:2*jj,1:2*jj)=X;
if (level<num_levels)

clear X;
else

X0=X;
end
clear CA;
clear CH;
clear CV;
clear CD;

end
X_sd=X0;
lena_hd=X_hd;
lena_sd=X_sd;
D=lena_hd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’Bayes Hard Thresholding...\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
D=lena_sd-lena0;
rmse=sqrt(sum(sum(D.^2)))/512;
psnr=20*log10(255.0/rmse);
fprintf(1,’====================================\n’);
fprintf(1,’Bayes Soft Thresholding...\n’);
fprintf(1,’The RMSE = %d\n’, rmse);
fprintf(1,’The PSNR = %d\n’, psnr);
fprintf(1,’\n’);
fprintf(1,’====================================\n’);
colormap(gray(255))
subplot(2,2,1), image(lena_hd);
axis off
axis equal
subplot(2,2,2), image(lena_sd);
axis off
axis equal
colormap(gray(255))
fprintf(1,’The program completed successfully\n’);
%*******************************************************************
%===================================================================



Bibliography

[1] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresholding via a Bayesian

approach,” J. R. Statist. Soc., vol. 60, pp. 725-749, 1998.

[2] M.F. Barnsley, Fractals Everywhere. New York: Academic Press, 1988.

[3] M.F. Barnsley, and S. Demko, “Iterated function systems and the global construction of frac-

tals,” Proc. Roy. Soc. Lond., vol. A399, pp. 243-275, 1985.

[4] M.F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, “Solution of an inverse problem for

fractals and other sets,” Proc. Nat. Acad. Sci. USA., vol. 83, pp. 1975-1977, 1985.

[5] M.F. Barnsley, and L.P. Hurd, Fractal Image Compression., Massachusetts: A.K. Peters,

Wellesley, 1993.

[6] M. Barnsley, and A.D. Sloan, “A better way to compress images”, BYTE Magazine, pp. 215-

223, 1998.

[7] K.U. Barthel, H.L. Cycon, and D. Marpe, ”Image denoising using fractal and wavelet-based

methods”, SPIE Proc. vol. 5266, pp 10-18, 2003.

[8] K. Belloulata, and J. Konrad, “Fractal image compression with region-based functionality,”

IEEE Trans. Image Processing, vol. 11, no. 4, pp. 351-362, 2002.

[9] K.B. Boussaid, and A. Beghdadi, “A new image smoothing method based on a simple model

of spatial processing in the early stages of human vision”, IEEE Trans. Image Processing, vol.

9, no. 2, pp. 220-226, 2000.

[10] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms:

A Primer Prentice Hall. New Jersey, 1997.

[11] T.G. Campbell, and J.M.H Du Buf, “A quantitative comparison of edge-preserving smoothing

techniques”, IEEE Trans. Sig. Proc., vol. 21, pp. 289-301, 1990.

255



BIBLIOGRAPHY 256

[12] A. Chambrolle, R.A. DeVore, N. Lee, B. J. Lucier, ”Nonlinear wavelet image processing:

variational problems, compression, and noise removal through wavelet shrinkage,” IEEE Trans.

Image Processing, vol. 7, no. 3, pp. 319-335, 1998.

[13] S.G. Chang, B. Yu, and Martin Vetterli, “Spatially adaptive wavelet thresholding with context

modeling for image denoising,” IEEE Trans. on Image Proc., vol. 9, no. 9, pp. 1522-1531,

2000.

[14] S.G. Chang, B. Yu, and Martin Vetterli, “Adaptive image thresholding for image denoising

and compression,” IEEE Trans. on Image Proc., vol. 9, no. 9, pp. 1532-1546, 2000.

[15] S.G. Chang, B. Yu, and Martin Vetterli, “Bridging compression to wavelet thresholding as a

denoising method,” in Proc. Conf. Information Sciences Systems, Baltimore, MD, pp. 568-573,

1997.

[16] S.G. Chang, B. Yu, and Martin Vetterli, “Image denoising via lossy compression and wavelet

thresholding”, in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 604-607, 1997.

[17] R.R. Coifman, and D.L. Donoho, ”Translation-invariant denoising,” in A. Antoniadis, and G.

Oppenheim, editors, Wavelets and Statistics, vol. 103 of Springer Lecture Notes in Statistics,

pp. 125-150, New York, Springer-Verlag 1995.

[18] G. Davis, “A wavelet-based analysis fractal image compression,” IEEE Trans. Image Process-

ing, vol. 7, pp. 141-154, 1998.

[19] I. Daubechies, Ten Lectures on Wavelets. SIAM Press, Philadelphia, 1992.

[20] D.L. Donoho, “Nonlinear wavelet methods for recovery of signals, densities, and spectra from

indirect and noisy data,” in Proc. of Symposia in Applied Mathematics, vol., 00, pp. 173-205,

AMS, 1993.

[21] D.L. Donoho, “Denoising and soft-thresholding,” IEEE Trans. Infor. Theory, vol. 41, pp.

613-627, 1995.

[22] D.L. Donoho, and I.M. Johstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika,

vol. 81, pp. 425-455, 1994.

[23] D.L. Donoho, and I.M. Johstone, “Adapting to unknown smoothness via wavelet shrinkage,”

Journal of the American Statistical Assoc., vol. 90, no. 432, pp. 1200-1224, 1995.



BIBLIOGRAPHY 257

[24] J. Hutchinson, “Fractals and self-similarity,” Indiana Univ. J. Math. vol. 30, pp. 713-747,

1981.

[25] C.J.G. Evertesz, and B.B. Mandelbrot, “Multifractal measures,” in Chaos and Fractals: New

Frontiers of Science, H.-O. Peitgen, H. Jürgens, and D. Saupe. New York: Springer Verlag,

1994.

[26] Y. Fisher, Editor, Fractal Image Compression, Theory and Application. New York: Springer-

Verlag, 1995.

[27] Y. Fisher, Editor, Fractal Image Encoding and Analysis, NATO ASI Series F 159. New York:

Springer Verlag, 1998.

[28] B. Forte, and E.R. Vrscay, “Theory of generalized fractal transforms,” in Fractal Image En-

coding and Analysis, Y. Fisher, Ed., NATO ASI Series F 159, New York: Springer Verlag,

1998.

[29] B. Forte, and E.R. Vrscay, “Solving the inverse problem for function/image approximation

using iterated function systems I: Theoretical basis,” Fractals, vol. 2, pp. 325-334, 1994.

[30] B. Forte, and E.R. Vrscay, “Solving the inverse problem for function/image approximation

using iterated function systems II: Algorithm and computations,” Fractals, vol. 2, pp. 335-346,

1994.

[31] M. Ghazel, G.H. Freeman, and E.R. Vrscay, “Fractal image denoising,” IEEE Trans. Image

Processing, vol. 12, no. 12, pp. 1560-1578, 2003.

[32] M. Ghazel, G.H. Freeman, and E.R. Vrscay, “Fractal-wavelet image denoising,” Proc. IEEE

Int. Conf. on Image Proc. (ICIP), Rochester, New York, pp. 836-839, 2002.

[33] M. Ghazel, “Adaptive fractal image compression in the spatial and the wavelet domain,”

Master’s of Electrical and Computer Engineering degree thesis, University of Waterloo, April

1999.

[34] M. Ghazel, and E.R. Vrscay, “Generating rate distortion curves for fractal image compression

schemes using adaptive and quadtree partitioning algorithms,” a research report, Department

of Applied Mathematics, University of Waterloo, August 1999.



BIBLIOGRAPHY 258

[35] M. Ghazel, and E.R. Vrscay, “Adaptive fractal and wavelet image coding using quadtree

partitioning,” Proc. 20th Biennial Symposium on Information Theory, Kingston, ON, May,

2000.

[36] M. Ghazel, and E.R. Vrscay, “An effective hybrid fractal-wavelet image coder using quadtree

partitioning and pruning,” Proc. IEEE Canadian Conference on Electrical and Computer En-

gineering (CCECE), Halifax, NS, May 7-11, 2000,

[37] M. Ghazel, E.R. Vrscay, and A.K. Khandani, “Adaptive fractal-wavelet image compression

schemes,” Proc. 1999 Canadian Workshop on Information Theory, Kingston, ON, June 15-18,

1999.

[38] M. Ghazel, E.R. Vrscay, and A.K. Khandani, “An interpolative scheme for fractal image

compression in the wavelet domain,” Proc. 8th International Conference on Computer Analysis

of Images and Patterns (CAIP), Ljubljana, Slovenia, September 1-3, 1999.

[39] R.C. Gonzalez, and R.E. Woods, Digital image processing, New Jersey: Prince-Hall, Inc. 2002.
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