
Automotive Electronic/Electric
Architecture Modeling, Design

Exploration and Optimization using
Clafer

by

Alexandr Murashkin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Alexandr Murashkin 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Modern car systems are getting more complex, so do car electronic/electric (E/E) ar-
chitectures. E/E architecture of a car includes sensors, actuators, programmable ECUs and
all the related communications. The complexity of E/E architectures increases dramati-
cally: modern car have more than 100 of ECUs and communications spread over the entire
vehicle. Therefore, the development of such architectures is a major challenge. Additional
complexity comes from cross-cutting concerns, such as, variability and dependability.

To manage this complexity and reduce costs, architects and engineers apply model-
based methods to automate analysis, perform simulation, and make key decisions before the
actual implementation. To quantify the analysis results, engineers use quality attributes,
such as, cost, power consumption, complexity, maintainability, and wire length. Introduc-
tion of quality attributes also allows engineers to perform architecture optimization.

In this work, we explore applicability of a modeling language called Clafer to address
E/E architecture modeling, exploration and optimization problems. Clafer is a general-
purpose domain-modeling language that comes with tools and solvers that are capable of
performing consistency checking, design exploration and optimization. Clafer has minimal-
istic syntax, but its first-order logic based semantics is rich enough to represent a wide
range of domains.

Our main contributions include: formulation of Clafer domain modeling principles with
respect to architecture modeling, identification of Clafer design patterns in general, and
demonstration of applicability of Clafer to architecture exploration and optimization. To
evaluate our approach, we develop the Power Window case study. The Power Window
system’s E/E architecture is a rich representative of a car E/E architecture: it can be
decomposed into subsystems, it can have smart or dumb sensor and actuators, and it re-
quires wire or bus communications within and across subsystems. We consider the following
topics: representing Power Window system’s features and functions, automated hardware
topology generation, and automated deployment of functions to hardware.

Our case case study concludes that Clafer is capable of representing all structural as-
pects of E/E architectures: from modeling a device to modeling an entire system. Clafer
tools can facilitate automated deployment and hardware topology generation and perform
architecture multi-objective optimization within a reasonable time. And finally, Clafer lan-
guage features, such as arbitrary property nesting, result in clear, concise and lightweight
structural models.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Krzysztof Czarnecki for accepting me to
this program, giving directions, providing a lot of support, offering new opportunities and
enlightening my interest in research.

I would like to express my acknowledgements to all labmates I had a chance to work
closely with:

• Ed Zulkoski — for developing PythonSMT backend and his work Z3 translation
which made possible my other research

• Kacper Bąk — for Clafer language semantics, Clafer Compiler and semantics dis-
cussions

• Leonardo Passos — for a lot of support and motivation during my studies

• Jimmy Liang — for developing an extremely efficient Clafer Choco-based backend,
a lot of help with it and additional extensions made specifically for my research

• Jesús Alejandro Padilla Gaeta and Pavel Valov — for a great time at the
internship, productive discussions and motivation

• Jianmei Guo — for transferring very deep knowledge and insights

• Rafael Olaechea — for developing ClaferMoo tool that motivated me at the begin-
ning of my degree and influenced my entire research

• Zinovy Diskin — for Clafer language semantics discussions and general support

• Zubair Akhtar — for a great time working on architectural modeling and great
summer school time

A special thanks to Michał Antkiewicz for collaboration, knowledge and technology
transfer throughout my Master’s degree completion

A special thanks to Tom Fuhrman and Dr. Ramesh from General Motors Re-
search & Development for collaboration, support and domain knowledge transfer.

A special thanks to my lovely Kristina Nazarova for her big love, support and com-
mitment.

A special thanks to my parents Tatyana and Sergey for their tolerance, love and
support while being far away from me.

iv

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.0.1 Thesis Organization . 2

2 Background 4

2.1 EAST-ADL . 4

2.2 Clafer Language and Tools . 6

2.2.1 Language . 6

2.2.2 Tools . 8

2.2.3 Prior Use . 9

2.3 Optimization . 9

2.3.1 Bus Topology Example . 9

2.3.2 Single-Objective Optimization . 11

2.3.3 Multi-Objective Optimization . 11

2.4 Related Work . 12

2.4.1 Analysis and Optimization of E/E architectures 12

2.4.2 Design Space and Pareto Front Visualization and Exploration . . . 13

v

3 Principles of Creating Architecture Models in Clafer 15

3.1 Domain Modeling . 16

3.2 Optimization in Clafer . 25

3.2.1 Modeling Problem Domain . 26

3.2.2 Stating a Single-Objective Optimization Problem 26

3.2.3 Stating a Multi-Objective Optimization Problem 26

3.2.4 Visualization and Exploration of Optimal Variants 27

4 Micro-Level Modeling Patterns and Advices 31

4.1 Working with References . 31

4.2 Modeling One-to-One Relationships . 33

4.3 Modeling Many-To-One Relationships . 34

4.4 Typecasting . 36

4.5 Queries . 38

5 Macro-Level Modeling Patterns 43

5.1 Bottom-Up Development with Modularization 43

5.1.1 When to Apply . 43

5.1.2 Rationale . 43

5.1.3 How to Apply . 45

5.1.4 Side Effects . 46

5.2 Collaboration . 46

5.2.1 When to Apply . 47

5.2.2 Rationale . 47

5.2.3 How to Apply . 48

5.2.4 Side Effects . 49

vi

6 Power Window Control Case Study 50

6.1 Introduction . 50

6.1.1 Motivation . 51

6.1.2 Challenges . 51

6.1.3 Structure and Scope . 51

6.2 Methodology . 52

6.3 Modeling Features, Functions and Hardware 53

6.3.1 Vehicle Level: Features . 53

6.3.2 Analysis Level: Functional Architecture 54

6.3.3 Design Level: Hardware Topology 60

6.3.4 Design Level: Deployment and Wiring 63

6.4 Integration of Features, Functional Architecture, Deployment and Wiring . 69

6.5 Design Space Complexity . 70

6.6 Constraint-Based Design Space Exploration 71

6.6.1 Basic Electric Design Example . 71

6.6.2 Contradiction Example . 73

6.6.3 Complex Example with Smart Devices 73

6.7 Optimization-Based Design Space Exploration 75

6.7.1 Adding Quality Attributes . 76

6.7.2 Modeling Optimization Problem . 77

6.7.3 Running Optimization . 84

6.7.4 Performing Exploration . 87

6.8 Transition to Multiple Subsystems . 89

6.8.1 Vehicle Level: Features . 89

6.8.2 Analysis Level: Functional Architecture 90

6.8.3 Design Level: Hardware . 91

6.8.4 Design Level: Deployment and Wiring 91

vii

6.8.5 Integration . 92

6.8.6 Optimization-Based Design Exploration 93

6.9 Conclusions . 95

6.9.1 Domain Modeling . 96

6.9.2 Modeling Wiring and Deployment Problems 96

6.9.3 Reasoning Performance . 96

6.9.4 Design Generation . 97

6.9.5 Visualization and Exploration . 97

7 Conclusions, Limitations, Threats to Validity and Future Work 99

7.1 General Conclusions . 99

7.2 Limitations . 100

7.3 Threats to Validity . 100

7.4 Future Work . 101

A Full Source Codes of Models 102

A.1 Power Window Case Study: Driver Only Model 102

A.2 Query Performance Test . 115

A.2.1 Method 1: Quantifiers . 115

A.2.2 Method 2: Instances . 116

References 118

viii

List of Tables

2.1 Bus Topology Quality Values . 11

ix

List of Figures

2.1 EAST-ADL Levels . 5

2.2 Clafer: Example Models and Instances . 7

2.3 Bus Topologies in Terms of Reliability and Scalability 10

2.4 Bus Topologies in Terms of Network Structure 11

3.1 Device Type Declaration in Clafer. Dumb or Smart Devices 16

3.2 Device Type Declaration in Clafer. Dumb, Smart and Electronic Only Devices 17

3.3 Inheritance with Specialization in Clafer 18

3.4 Inheritance with Extension in Clafer . 19

3.5 Containment Hierarchy and Inheritance of Subsystems in Clafer 20

3.6 Combining Subsystems into Systems in Clafer 21

3.7 Sets and Set Operations in Clafer . 23

3.8 Modeling Connectors in Clafer. Integer Properties and Example Instances . 24

3.9 Single-Objective Optimization in Clafer . 27

3.10 Multi-Objective Optimization in Clafer . 28

3.11 ClaferMooVisualizer, Bus Example: Overview 29

3.12 ClaferMooVisualizer, Bus Example: Variant Comparer and Filtering 30

4.1 Incorrect Comparison of References . 32

4.2 Joining References . 33

4.3 Optional Dereferencing . 33

x

4.4 One-to-One Relationship Pattern in Clafer 35

4.5 Incorrect Implementation of Many-to-One Pattern 36

4.6 Many-to-One Relationship Pattern in Clafer 37

4.7 Typecasting in Clafer . 38

4.8 Query Implementation in Clafer: Universal Quantifiers (Method 1) 40

4.9 Query Implementation in Clafer: Additional Instances (Method 2) 41

4.10 Query Implementation Reasoning Performance: Measurement Results . . . 42

5.1 Bottom-Up Development with Modularization Pattern 44

5.2 Collaboration Pattern . 47

6.1 Power Window System E/E Architecture Overview 50

6.2 Complete PW Driver Subsystem’s Functional Architecture 55

6.3 Four Possible Variants of PW Driver Subsystem’s Functional Architecture 56

6.4 Basic Electric Variant 1 . 72

6.5 Basic Electric Variant 2 . 72

6.6 Complex Smart Variant 1 . 74

6.7 Complex Smart Variant 2 . 75

6.8 Complex Smart Variant 3 . 76

6.9 Clafer Configurator: Two Basic Electric Variants 77

6.10 Door Harness and Distances . 78

6.11 Body Harness and Distances . 79

6.12 Bus Topology Implementation Approach 83

6.13 ClaferMooVisualizer: PW Driver Subsystem Optimization 85

6.14 PW Driver Subsystem Optimization: Optimal Instance Clusters 86

6.15 ClaferMooVisualizer, PW Driver Subsystem Optimization: Designs 5 and 6 87

6.16 ClaferMooVisualizer, PW Driver Subsystem Optimization: Designs 5 and 6 88

6.17 ClaferMooVisualizer, PW Driver Subsystem Optimization: Designs 1 and 2 89

xi

6.18 Front Passenger Subsystem Architecture 90

6.19 ClaferMooVisualizer: Complete PW System Design Visualization and Ex-
ploration . 95

6.20 PW System Optimization: Optimal Instance Clusters 98

xii

Chapter 1

Introduction

Modern car systems are very complex. Apart from the core systems like power train,
transmission and braking, modern cars have many systems designed for safety, comfort, or
entertainment. All these systems and subsystems with necessary communications define a
car architecture.

Modern car architectures are electronic/electric (E/E) with an increasing role of software-
controlled components [28], [18]. Programmable electronic control units (ECU), smart sen-
sors and actuators and digital communication links like CAN bus or LIN bus are widely
used. Yet, some components are purely electric and mechanically controlled for a variety
of reasons and communicate to other components via discrete or analogue wires.

Heurung and Walz [22] state the “dramatical growth of electronic and electric systems
in cars for the past decade”. The overall electronic/electric architecture of a car is be-
coming more and more sophisticated: in modern cars, the number of ECUs is more than
one hundred. Clearly, the development of such a complex architectures is a challenging
task. It is time- and effort-consuming, costly in terms of money investment and has high
safety requirements because of the potential to cause accidents leading to injuries or even
fatalities.

To focus development efforts and reduce time-to-market, manufacturers design a uni-
versal E/E architecture to cover a superset of the functionality of various cars. However,
designing such an architecture is even more challenging because of the variability concern.
The design space becomes very big, meaning that there are many combinations of possible
instances of such an architecture.

To manage this complexity and reduce costs and errors, architects and engineers ap-
ply model-based methods [22] to automate analysis, perform simulation, and make early

1

architecture decisions before the actual implementation (see related work in Section 2.4).

To quantify the analysis results, engineers use quality attributes. Most common ex-
amples include cost, power consumption, complexity, and maintainability. These quality
attributes are hard to define and their definition depends on a use case. However, some
specific metrics like latency or wire length are easy to define and measure. An important
benefit of introducing quality attributes is an opportunity of optimization with respect to
a single (i.e., cost) or multiple (i.e, dependability versus expandability) quality attributes.
After optimization, the resulting set of optimal designs — or Pareto front — can be visu-
alized and explored. The Section 2.3 elaborates on this topic.

Another aid of reducing complexity is standardization. EAST-ADL [12] is an architec-
ture definition language (ADL) designed for the automotive industry. It covers activities
from the high-level design — for instance, defining features and high-level analysis func-
tions — down to the detailed design and implementation. We describe this standard in
Section 2.1 and use it throughout our work.

To apply model-based methods, architects and engineers often use a modeling lan-
guage (graphical or textual) to represent a part of a system or an architecture. After that,
they are able to execute the tools on the created model. For example, a related research
[24] introduces a language called AAOL to tackle software-to-hardware deployment and
optimization problems.

The purpose of our work is exploring the applicability of an existing modeling lan-
guage — namely, Clafer. Clafer [13] is a general-purpose structural modeling language. It
is claimed to have minimalistic syntax, yet being expressive enough to represent various
domains. In this work, we apply Clafer to address the E/E architecture modeling, explo-
ration and optimization problems. The motivation behind using Clafer originates from its
syntax that facilitates agile modeling and prototyping of problems and its tools that are
capable of performing consistency checking and optimization.

Our main contributions include: formulation of Clafer domain modeling principles with
respect to architecture modeling, identification of Clafer design patterns in general, and
demonstration of applicability of Clafer in architecture exploration and optimization by
solving function-to-hardware deployment and topology generation problems.

1.0.1 Thesis Organization

Chapter 2 reveals background information on the architecture modeling standard EAST-
ADL, Clafer language and tools, multi-objective optimization, and the concept of a Pareto

2

front. Section 2.4 contains the related work in design exploration, optimization and analysis
of E/E architectures and related areas, as well as tools and methods for design visualization
and exploration.

Chapter 3 describes our approaches of modeling architectures in Clafer. Chapter 4
presents language-related patterns discovered while modeling these problems in Clafer.
Chapter 5 illustrates high-level macro patterns for approaching complex problems.

Chapter 6 illustrates the Power Window case study as our evaluation part. Chapter 7
lists our conclusions and future work. Appendix A has source codes for our case study and
experimental models.

3

Chapter 2

Background

2.1 EAST-ADL

EAST-ADL [12] [17] is an architecture description language (ADL) designed as an industry
standard for automotive systems. EAST-ADL defines four levels of automotive architecture
abstraction (Fig. 2.1). The top-most level — Vehicle level — contains a tree of vehicle
features. These features may include Power Windows, Adaptive Cruise Control, Steering,
Braking and others. Those, in turn, are decomposed into smaller features. For example,
Power Windows can have an Express Down feature, meaning that the driver or a passenger
can close a window completely by pressing a button on a switch once only without holding
it. Similarly, modern cars support Express Up feature, or some cars do not have any express
features at all.

The next level — Analysis level — defines abstractions which are just sufficient to
make simulations, perform behavior analyses, and clarify interaction interfaces between
the system and the plant. Analysis functions are behaviors with well defined input and
output ports, while functional devices are abstractions of the actual hardware devices. For
example, analysis functions for the Power Window subsystem may include WinController,
PinchProtection, or Remote Request Arbitration. Functional devices of the same system,
such as Switch, Motor, and Current Sensor, gather or supply signals directly from or to the
environment. The analysis level avoids detailed function decomposition and implementation
details, yet allows early analysis before the actual software and hardware exist.

At the Design level, architects and engineers decompose high-level analysis functions
into low-level functions, define a hardware architecture and perform deployment of func-
tions on hardware. This level takes implementation concerns into account: the type of

4

System Model

Vehicle Level
 Technical Feature Model

Analysis Level
 Functional Analysis Architecture

Design Level
 Functional Design Architecture

 Hardware Design Architecture

Implementation Level
 AUTOSAR components

E
nv

iro
nm

en
t

(P
la

nt
)

M
od

el

allocationdata exchange over ports

V
ar

ia
bi

lit
y

D
ep

en
da

bi
lit

y

Extensions

..
.

Figure 2.1: EAST-ADL Levels

hardware, interactions, performance, and fault-tolerance. Hardware architectures are de-
fined in terms of ECUs, sensors, actuators, networking and wiring information. Functions
are deployed on hardware, e.g., WinController can be located on a door module, a switch
or the BCM — the body control module. Current Sensor can be implemented as an elec-
tronic circuit and can be allocated to a motor or a device that drives the motor (i.e., a
switch or a door module). Function connectors and signals are mapped onto buses or wires.
For example, the door module drives the motor by enabling power supply through a wire
that is connected to the motor. All smart devices can communicate through a serial bus,
such as LIN or CAN.

And finally, Implementation level defines system implementation using AUTOSAR
components. AUTOSAR defines executable software components and their deployment
onto hardware devices. It also provides standardized operating system services.

In our work, considering EAST-ADL has the following benefits. First, it defines clear
terminology of the terms feature, function, system and others. Some of the terms such as
feature and function are often used interchangeably in informal discussions, thus, bringing
confusion and reducing clarity. EAST-ADL clearly states that a feature is a high-level,
vehicle-level concept and defines what functionality is supported in a vehicle or a particular
system. A function is a realization of functionality; a behavior that has inputs and/or
outputs and performs some processing. Functions are decomposed into more fine-grained
functions, eventually distinguishing functions designed for control or just input-output
processing.

5

Second, EAST-ADL defines several levels of abstraction; therefore, it is easier to scope
our work. We focus on the Analysis level and Design level while touching on the Vehicle
level to define power window control features. However, we do not consider implementa-
tion/operational levels: these are outside our scope.

Third, EAST-ADL matches important use cases and concerns with the abstraction
level they arise at. For example, at the design level engineers perform function deployment
problem and are concerned about wiring cost. Therefore, if we propose a way to solve the
deployment problem, our approach should also take wiring cost into account.

Finally, EAST-ADL does not restrict the use of concrete languages or tools. We can
use any language or tool to perform the use cases suggested by a particular abstraction
layer. In our work, we use Clafer language and tools.

2.2 Clafer Language and Tools

In this section, we introduce only basic features of Clafer language and general capabilities
of Clafer tools. The details related to architectural modeling will follow in Sec. 3.

2.2.1 Language

Clafer (stands for class, feature, reference) is a general-purpose modeling language [13]. It
is a structural modeling language designed to represent domains, meta-models, component
and variability models.

Clafer unifies the concepts of classes, associations and properties, and defines a main
concept — a clafer. Clafer specifications are built entirely from clafers, which can represent
either properties, types, or references, depending on their nesting and syntactic modifiers.

Clafer is a textual language with minimalistic syntax. Figure 2.2a shows how a tree-
like syntax of Clafer defines types (Device and PWSubsystemHardware) and containment
hierarchy of concepts. Clafer allows for arbitrary property nesting; therefore, instantiation
of devices is done in place, without defining separate types for door modules or switches.

An important feature of Clafer is variability support via cardinalities. First, Clafer
has so-called clafer cardinalities to specify the possible number of instances: Device 0..2
means there can be up to two devices in a set. Second, Clafer has group cardinality modifiers
like xor— only one child is present, or – at least one child is present, and mux— at most one

6

abstract Device // defining a concept - abstract clafer
smart ? // optional concrete clafer: either smart or not

PWSubsystemHardware // defining a concept - concrete clafer
xor switch // group cardinality xor - only one switch can be present
smartSwitch : Device // an instance of a Device
[smart] // asserting to be a smart device
dumbSwitch : Device // an instance of a Device
[no smart] // not smart

smartComponents -> Device 0..2 // variable clafer cardinality: from 0 to 2
dumbMotor : Device
[no smart]
doorModule : Device ? // optional door module
[smart]

(a) Example Clafer model 1. Nesting denotes a containment hierarchy. Colons denote instantiation

abstract WireConnector
src -> Device // source is a reference to a device
dest -> Device // destination is a reference to a device
[src.ref != dest.ref] // cannot have source equals destination

length ->> integer // wire length
thickness ->> integer // wire thicnkess
mass ->> integer = length * thickness // wire mass

(b) Example Clafer model 2. References and integer attributes and constraints in Clafer

PWSubsystemHardware
switch
dumbSwitch
smartComponents = doorModule
dumbMotor
doorModule
smart

(c) Subsystem Instance

WireConnector$1
src = dumbSwitch
dest = doorModule
length = 20
thickness = 1
mass = 20

(d) Wire Connector In-
stance 1

WireConnector$2
src = doorModule
dest = dumbMotor
length = 20
thickness = 7
mass = 140

(e) Wire Connector In-
stance 2

Figure 2.2: Clafer: example models and instances. Shown containment, subtyping, inheri-
tance, sets, integers and constraints

7

child is present. Optionality of clafers is denoted using question marks ?. Optional clafers
have clafer cardinalities 0..1, thus they may or may not be present in model instances.

Clafer supports constraints written in first-order predicate logic. It has both existential
and universal quantifiers, sets, and relations. Constraints can contain operations on sets
and also on integers as on Fig. 2.2b, since Clafer supports integer types. Clafer has no
support of real numbers yet, so techniques like scaling down and rounding to a nearest
integer need to be used.

A specification written in Clafer language is called a Clafer model. An instance of a
Clafer model is its full completion with all clafers fully instantiated and no variability left.
Figure 2.2c shows a complete instance of PWSubsystemHardware: there is only one switch
device and the door module is present. Figure 2.2d and Figure 2.2e illustrate two wire
instances with all the values fully specified and computed.

Clafer has an implicit support for partial instances [15], i.e, a user can partially restrict
the model with variability, thus still allowing some undecided variability. During the in-
stance generation process, configurations become completed. Alternatively, a user can give
a complete specification of a system with no variability left, meaning there will be only
one possible instance. All these use cases are covered in details in Section 3.

2.2.2 Tools

Clafer comes with a set of tools [10] called Clafer tools. First, the tools include a compiler —
Clafer Compiler. It translates Clafer textual models into various formats: a graphical and
HTML representation, an XML-based intermediate representation, and reasoner-specific
formats. Next, the tools include backends for automated reasoning use cases, such as,
constraint checking, instance generation and completion, and multi-objective optimization.
In this work, we use mainly the Choco-based backend [2] as it it the fastest one and works
well with integers of a low scale. Clafer also has Alloy-based backend [3] and ClaferSMT
backend [4].

Clafer tools reflect the combinatorial nature of Clafer. Given a specification (a model)
written in Clafer language, Clafer backends generate all possible instances that satisfy the
conditions, or prove that there are no instances in the given scope. In other words, a user
can keep generating all the instances until the entire problem space is considered within
the given scope. This nice feature of Clafer can be used for design generation. In this case,
Clafer model can be treated as a configuration of the design, and the generated instances
are concrete designs.

8

2.2.3 Prior Use

The semantics of Clafer is clearly defined in the thesis [13] and the papers focused on
metamodeling [14] and partial instances [15]. Researchers demonstrated the use of Clafer
for modeling and opitimization of product lines [27], [10], [31]. Moreover, Clafer models
were used in example-driven modeling as both abstractions and examples [11]. Besides
these, there was no prior work demonstrating the use of Clafer in various types of domains.
In our work, we claim that the expressive power of Clafer is not restricted to representing
feature models and simple examples, and researchers can facilitate the use of Clafer in
industry such as automotive.

Moreover, from the user perspective, there is no systematic description of Clafer mod-
eling process. There are stand-alone Clafer models for various academic purposes, however,
there is no general description of modeling techniques, patterns and use cases of Clafer. In
our work, we define a modeling methodology for architectural modeling, as well as discover
patterns that may be reused across domains. This is another important contribution of our
work.

2.3 Optimization

In our work, we consider optimization of electronic-electric architectures; therefore, in this
section we introduce the notions of multi-objective optimization and a Pareto front. We
demonstrate these concepts on a bus topology example, to make it closer to the domain of
the paper.

2.3.1 Bus Topology Example

We consider four bus topologies to illustrate a multi-objective optimization problem. Fig-
ure 2.4 represents all four of them. Flat bus (Fig. 2.4a) — there is only one bus to which
each component in a system is connected. Expandability is very straightforward: only one
protocol is used, and adding another element to the bus is not a problem. Reliability is
problematic, the same bus is often used by other systems. A failure of a component on a
bus can cause the entire bus to become unavailable.

Grid defines dedicated buses and devices for each system or subsystem, and devices
communicate to the required devices directly. Grid topology is considered to be the least
expandable, since each subnetwork is tailored to support specific communication. However,

9

expandability

reliability

Grid: door modules

Grid: master switch

Super gateway

Flat

0 1 2 3 4

1

2

3

4

Figure 2.3: Bus topologies in terms of reliability and scalability. Blue circles — optimal
instances — form a Pareto front, light-yellow circle — a sub-optimal instance and not in
the Pareto front

reliability in general is good, since failure of a particular communication link does not brake
communication link in other subsystems. We distinguish two types of Grid topologies for
the Power Window subsystem: Grid based on Master Switch (Fig. 2.4b) and Grid based on
Door Module (Fig. 2.4c). BCM — Body Control Module, the main electronic control unit
that controls several systems in a car — may or may be not connected to any of the buses.
The communication topology is quite self-contained, and BCM does not play a significant
role.

And finally, we consider a Super Gateway topology (Fig. 2.4d). Two buses, one for
the driver window, one for the front passenger window are connected together by the
BCM. BCM is a gateway that can connect two buses of different communication protocols.
Reliability is moderate, since the failure of one bus does not disable the other one. However,
since there is a single gateway, its failure is likely have a significant negative impact.

For each of the four bus topologies, we can define two quality attributes: reliability
and expandability. We assign values to be relative to each other: the highest value of
expandability belongs to the most expandable alternative, while the least number — to
the least expandable (Tab. 2.1). Once we specified the values, we can run optimization.

10

driver door
module BCM

master
switch

front passenger
door module

front passenger
switch

(a) Flat Bus

driver
motor

master
switch

front passenger
switch

front passenger
motor

(b) Grid: Master Switch

master
switch

driver door
module

driver
motor

front passenger
door module

front passenger
motor

(c) Grid: Driver Door Module

driver door
module

master
switch

front passenger
door module

front passenger
motor

BCM

(d) Super Gateway

Figure 2.4: Bus topologies in terms of network structure. Buses are shown using a thick
black solid line. BCM stands for Body Control Module

Flat Grid: Master Switch Grid: Door Module Super Gateway
expandability 4 1 2 3

reliability 1 4 4 2

Table 2.1: Bus topology quality values for expandability and reliability

2.3.2 Single-Objective Optimization

First, a safety engineer needs to optimize the system in terms of reliability. Therefore, he
is interested in bus topologies that provide the highest possible reliability to the system.
A bus topology is considered to be optimal with respect to a maximization objective if it
has the highest possible value of the given objective. In our case, the most optimal bus
configuration set — as perceived by the safety engineer — is the set of two topologies:
Grid: Master Switch and Grid: Door Module. The problem faced by the safety engineer is
a Single-objective optimization problem, since he or she considers only one objective and
one quality attribute.

2.3.3 Multi-Objective Optimization

A system architect, in contrast to safety engineer, is interested in maximizing expandabil-
ity of the system. However, it is not possible to improve expandability without sacrificing
reliability: the more generic the bus is, the easier it is to add new devices, but the less

11

reliable and more error-prone the communication becomes. In this case, three bus config-
urations are the compromised options: Super Gateway, Grid: door modules and Flat are
non-dominated with respect to the two quality objectives (Fig. 2.3). However, Grid: master
switch is dominated by Grid: door modules because the latter one has better expandability.
Therefore, this option is called sub-optimal as there is a better option with a better quality.

The problem faced by the system architect and the safety engineer represented above is
a Multi-objective optimization problem. Two given objectives — to maximize expandability
and to maximize reliability are the part of the problem formulation. The set of all optimal
instances is called a Pareto front and consists of the three topologies described above. Grid:
master switch is not in the Pareto front since it is sub-optional. Figure 2.3 illustrates the
Pareto front for the bus multi-objective optimization example.

2.4 Related Work

2.4.1 Analysis and Optimization of E/E architectures

There are papers that focus on various stages of architecture design, as well as various
specific concerns like cost, power consumption and safety.

Kugele and Pucea [24] introduce a domain-specific constraint and optimization language
called AAOL (Automotive Architecture Optimization Language). The authors model a
deployment problem and perform multi-objective optimization on a similar, but much
smaller power window case study: two complete designs of the four-door power window
system. Their AAOL language framework is designed in a modular way, so it can be
concertized to accommodate specific solvers or tackle specific problems. In contrast, our
work is focused on a general-purpose modeling environment.

Walla et. al. [34] demonstrates exploration of E/E architectures in terms of power
consumption and allows a user to explore concrete designs and evaluate architecture spec-
ifications of automotive systems. It is possible to explore each ECU of an architecture
variant individually, to view the distribution of power consumptions across all ECUs, as
well as to catch its dynamics with time. The design exploration aspect is very related to
our work, however, the use case of comparing various architecture variants to each other
is not described in the paper. Also, we focus on the structural aspect only, as Clafer does
not support simulation or behavioral analysis.

Florentz and Huhn [20] propose an architecture evaluation method and demonstrate
it on a case study in an automotive industry - a power window system. Their case study

12

is less detailed and more high-level compared to ours, and their evaluation is conducted
over two alternatives only: federated vs. centralized design, and two quality metric groups:
cost and performance. Our approach is automated: quality computation and optimization
is done by Clafer backends. Also, we deal with a more complex design space and consider
other quality attributes (wiring length, wiring mass, and the number of smart devices).

Brandt et.al. [25] explore optimization of automotive E/E architecture in terms of cost.
The authors present complex formulas of cost computation that distinguishes development
and maintenance cost and also depends on the hardware and software components mapped
to an ECU. Their work has a strong focus on the cost metric, in contrast to our approach
that is more general and takes more metrics into account. Also, their paper does not
describe exploration of alternative solutions, in comparison to our work.

Moritz at al [26] demonstrates the use of evolutionary algorithms to optimize E/E
architectures in terms of cost and the defined metric called complexity (the average number
of functions on ECUs). It does not consider design space exploration explicitly, so the focus
of the paper is solely on optimization. In our work, we do consider design space exploration
use cases. However, their complexity metric may be useful in our case study, since we
currently do not restrict the number of components on ECUs.

Rupanov et. al. [30] consider an important activity of architectural design - safety
analysis. The paper emphasizes the importance of architecture evaluation at early design
stages and presents a methodology for building and evaluating architectures with respect
to fault-tolerance and other quality metrics. Our case study can be extended with the
safety aspect in the future.

2.4.2 Design Space and Pareto Front Visualization and Explo-
ration

In our work, we use ClaferMooVisualizer tool [27] to represent design spaces and Pareto
fronts. This tool is a web-based front-end that integrates all Clafer tools. It comes with
four general-purpose visualizations. First, Bubble Front Graph — a multi-dimensional
bubble chart that can visualize up to four dimensions simultaneously. Second, a tabular
visualization called Feature and Quality Matrix that lists every property value of every
optimal instance. Third, Variant Comparer that compares a chosen subset of optimal
instances. And finally, there is a new powerful visualization called Parallel Coordinates
Chart that represents each instance as a polyline connecting parallel objective axes in
proper places. Unfortunately, the tools currently does not support any problem-specific
visualizations: generating circuit diagrams may be very useful for our work.

13

Visualization of Pareto fronts is a well-known topic in research. There are various
straight-forward methods, such as multi-dimensional scatter plots [32] and radar charts (can
be found in Google Chart visualization libraries [7]), and also advanced techniques, such as
Level Diagrams [16] and heatmaps [29]. These visualization techniques may be applicable in
our context. However, we take advantage of Clafer Tools and built-in visualization methods,
therefore, we do not use other tools or approaches.

There are several visualization suites and libraries. Examples include RAVE tool [9]
that works with MatLab and has powerful visualization charts to be used in exploration.
Google Charts [7] and Dojo libraries [5] are useful for web-based visualizations. META [8]
is a very advanced tool suite that allows design exploration, optimization and simulation
of cyber-physical system models, including architecture models. It is integrated with a
tool suite by GA Tech ASDL [6], which allows design exploration by filtering by quality
metrics, design ranking, visualization of metric values distribution. This tool set is likely
to be applicable to E/E architectures as well.

14

Chapter 3

Principles of Creating Architecture
Models in Clafer

Architecture models in Clafer are characterized by the following properties.

1. Clafers with cardinalities greater than one. This is the main distinction of archi-
tecture models from feature models, where cardinalities are typically at most one
(0..1). However, architecture models can still have feature models for describing its
configuration.

2. Many levels of containment and instantiation to accommodate system decomposition.
Clearly, architectures are often about systems that are composed of subsystems or
high-level analysis functions that are composed of lower-level functions.

3. Many reference clafers. References are required when modeling a wire source and
destination or when deploying software to hardware.

4. Rich variability across the model. Variability appears in all aspects and in all levels:
whether to have BCM or door modules or not, what types of switches to have, etc.
Also, variability comes from alternative deployment rules and various communication
topologies.

Clearly, modeling systems themselves is more challenging than just modeling their
configurations. To model architectures, it is useful to have a methodology and guidelines
to follow. Unfortunately, for Clafer, there are no such guidelines. So, in this work, we
propose and describe such a methodology.

15

The following sections present various aspects of architecture models: from meta-modeling
and domain modeling to multi-objective optimization. Our methodology description is sup-
ported by examples originating from case study domains or small examples from our past
modeling experience, such as, service-to-machine deployment optimization.

3.1 Domain Modeling

To model a domain in Clafer, we start with a metamodel. A metamodel with the concepts
Device, ECU, Function and various connectors is essential, and the way it is created will
be reflected on the future modeling process.

Basic Type Declaration

In Clafer, we use the abstract keyword to define types Figure 3.1. We distinguish dumb
devices — purely electric with no software or control logic on it, and smart devices — that
can have software on them and communicate via buses.

Boolean properties like smartness of a device can be specified using an optional clafer.
Alternatively, we could define a smartness clafer with xor group cardinality to list the
choices more explicitly. And finally, the third alternative is to define a reference clafer
smartness and type it with the enumeration called Smartness.

Clafers defined with the abstract keyword are called abstract clafers, such as, Device
type. Clafers defined without this keyword are concrete clafers: smart, dumb and smartness
are concrete clafers. Typically, concrete clafers are instances of abstract clafers, or a uni-
versal base type clafer if the type is not specified.

abstract Device
smart ?

(a) Alternative 1: op-
tional clafer

abstract Device
xor smartness
dumb
smart

(b) Alternative 2: clafers in a
xor group

enum Smartness = smart | dumb

abstract Device
smartness -> Smartness

(c) Alternative 3: use of an enumera-
tion

Figure 3.1: Device type declaration in Clafer: dumb or smart devices

In terms of semantics, all the three ways are equivalent: a device can be either smart or
dumb. However, there is a reasoning performance perspective, which denotes how fast and

16

efficient the compiled code will be when it comes to generating complete model instances
and optimization. From this viewpoint, the first option is preferable, because it defines
only one clafer for smartness, called smart. The second alternative defines three clafers:
smartness, smart and dumb. The third alternative defines four: smartness, Smartness,
smart and dumb, and also a reference that adds an overhead.

Now, we add more device types — for example, we may have electronic devices — the
ones that have electronic circuits in them. Smart devices are electronic as well, since they
do have such circuits. The devices that are not smart, yet have some electronics to support
control logic are electronic-only.

abstract Device
smart ?
electronic ?
[electronic => smart]

(a) Alternative 1: optional
clafers with a constraint

abstract Device
xor smartness
dumb
smart
electronicOnly

(b) Alternative 2: clafers in a
xor group

abstract Device
smartness -> Smartness

enum Smartness = smart
| dumb
| electronicOnly

(c) Alternative 3: use of an
enumeration

Figure 3.2: Device type declaration in Clafer: smart, dumb and electronic only devices

Figure 3.2 shows the updated alternatives to accommodate our changes. All three op-
tions appear to be well-extensible. However, the first option becomes less intuitive, and also
requires constraints to allow the device to be either smart and electronic, or electronic, or
none (dumb). The implication says that if a device is smart, then it is considered to be
electronic in our domain. The best balance between performance and extensibility belongs
to the second option: we can easily add device types if needed, but there is no additional
overhead because of the references as in the third option.

Inheritance with specialization

Now, we define subtypes of Device. Subtypes can be defined using inheritance syntax
in Clafer: Descendant : Ancestor. For example, we define a subtypes of Device: ECUs,
sensors or actuators. Figure 3.3 shows definition of a type ECU in alternative ways. First,
subtypes are needed to for specialization — restricting the original type. For example, ECUs
can only be smart, therefore, when inheriting from a Device, we force all the instances of
the type ECU to be smart.

17

abstract ECU : Device
[smart]

(a) For the Alternative 1

abstract ECU : Device
[smartness.smart]

// or just [smart]

(b) For the Alternative 2

abstract ECU : Device
[smartness = smart]

(c) For the Alternative 3

Figure 3.3: Inheritance with specialization of Device in Clafer: ECU is a smart device

Note that for each of the alternatives, specialization is done in a different way. For the
first alternative, we create a constraint and assert that the smart clafer have to be present.
For the second alternative, since smart is nested under smartness, the most precise way of
asserting smartness is writing smartness.smart. Clafer Compiler’s name resolver, however,
allows for specifying clafers by names without its full path. As soon as the clafer smart is
unique in the namespace, we can simply write [smart], and the resolver will automatically
determine the clafer.

For the third alternative, since smartness is property of a type Smartness, we need
to equate it to the proper enumeration value by saying smartness = smart. There is no
short-hand for writing this statement.

Inheritance with extension

Via inheritance, we can also extend the base clafers by adding new clafers. For example, we
may want to add connectivity features: smart devices can be connected via LIN or CAN
interfaces. Some devices can support both protocols at the same time, if they act like a
gateway between various networks. Figure 3.4 shows alternative definitions of connectivity
features.

Now our left-most alternative becomes bulky: we define two optional clafers named
connectivityLIN and connectivityCAN. To make at least one of these present, we add
an or-constraint (||). The second alternative, in contrast, is clearly organized. There is a
clafer called connectivity, which acts like a group. The elements in the group — clafers
LIN and CAN can be present either together or individually. The third alternative is to
define an enumeration for the connectivity types: LIN, CAN or any.

From the performance reasoning point of view, the three alternatives are related simi-
larly as in previous cases. The left-most alternative includes two clafers and one constraint.

18

abstract ECU : Device
[smart]
connectivityLIN ?
connectivityCAN ?

[connectivityLIN
|| connectivityCAN]

(a) For the Alternative 1

abstract ECU : Device
[smart]
or connectivity
LIN
CAN

(b) For the Alternative 2

abstract ECU : Device
[smart]
connectivity -> Connectivity

enum Connectivity = LIN
| CAN
| any

(c) For the Alternative 3

Figure 3.4: Inheritance with extension of Device in Clafer. ECU has various types of con-
nectivity, which are complementary, not exclusive

The middle alternative defines 3 clafers and also an implicit constraint for or. And the
right-most alternative is implemented using 4 clafers and a reference. Set references (->)
have an implicit uniqueness constraint as well.

Containment hierarchy, instantiation and references

Now we model a composite system that contains or refers to various devices. To be more
precise, we demonstrate modeling the hardware part of a Power Window subsystem. Fig-
ure 3.5a represents PWSubsystemHW clafer. It does not inherit any type, however, it includes
instances of other types. Containment is modeled using just indentation: a tree-like syntax
of Clafer is handy when modeling part relationships. Device instances called switch and
smartMotor and doorModule are parts of the PWSubsystemHW. We also have a reference
clafer called bcm to a body control module. In a way, the reference is also a part of the
system, therefore, resides together with other devices.

Instances are defined using a colon notation (:) as well. Syntactically, the difference
between instantiation and pure subtyping is the absence of the abstract keyword1. For
consistency and clarity, we use the term to define an instance or instantiate when we use
the colon notation without the abstract keyword. We use the term subtyping when we
derive a type using the abstract keyword.

In our model, we define two instances of Device: a switch and a smartMotor. We can
still use specialization and extension when instantiating: for example, we assert that the

1In Clafer semantics [13], however, subtyping by creating concrete clafers and instantiation are equiva-
lent. This point is outside the paper scope, since we focus on the user perspective only

19

motor is not smart. Instances can also be optional. For instance, we may or may not have a
door module in the hardware: therefore, we put a question mark (?) following doorModule
: ECU.

abstract PWSubsystemHW
switch : Device
smartMotor : Device
[smart]
doorModule : ECU ?
bcm -> ECU ?

(a) Containment hierarchy. Nesting denotes a
containment hierarchy: switch, smartMotor, and
doorModule are parts of a PWSubsystemHard-
ware. The reference bcm is also a part of the
containment hierarchy, but the ECU it points to
is not a part of the subsystem. Colons denote
instantiation: switch is an instance of Device.
Question marks denote optional components. Ar-
rows denote references.

abstract FPPWSubsystemHW : PWSubsystemHW
masterSwitch -> Device
switchRequestJunction : Junction ?

[switch.smart => no
switchRequestJunction]

(b) Inheritance (with extension) of a sub-
system. Front passenger subsystem con-
tains all the components from the PW-
SubsystemHW. It also adds a reference
to the driver switch called masterSwitch,
and switchRequestJunction to join requests
from the driver and passenger doors by
splicing wires. If the switch is smart, then
should be no junction.

Figure 3.5: Containment hierarchy and inheritance of subsystems in Clafer

References are used to refer to a clafer that is not physically instantiated in place. Ref-
erences act as pointers in object-oriented languages: a reference clafer is actually a pointer
to a clafer instantiated elsewhere. References are useful when representing components
that are not the part of the containment hierarchy. For example, a body control module
(BCM) is common for all subsystems and resides outside power window systems. However,
power window subsystems often use BCM for various purposes: to deploy certain functions,
to transfer signals from a driver window to passenger windows, etc.. In Clafer, references
defined using single -> and double ->> arrows having different semantics2. We use single
arrows -> in most cases: modeling a reference to a device, function or any other component.
We describe the use of references in Sec. 4.1.
2Single arrow denotes references that must point to different clafer instances (set semantics); double

arrow does not have this restriction (bag semantics) [13]

20

Configuration of nested instances

Next, we go one level up to the system level and combine instances of subsystems together
into one complete hardware system. Figure 3.6 shows a definition of an abstract clafer
that represents a system type: PowerWindowSystemHardware. The system is supposed to
include and configure its subsystems. Therefore, we define several instances of subsystems:
one is the basic one — for the driver, and three extended ones — for the three passengers.
Moreover, we instantiate BCM at the system level, since it is common for all the subsystems.

Configuration is done via constraints. First, we assign the bcm references of each sub-
system to point to the BCM instance we define at the system level. This is done via the
constraint [bcm.ref = BCM]. Note that BCM is an optional clafer, therefore, it may not be
instantiated at all. According to the equality constraints, if BCM is present, each subsystem
will have a reference to the BCM; if there is no BCM, each of the subsystem will have no bcm
reference.

Next, for each passenger window, we assign its reference to the master switch. The
master switch is always the driver’s switch, so we assign the reference masterSwitch of each
subsystem to driverSubsystemHardware.switch. Now we have a complete subsystem that
represents hardware components of the entire system of four windows.

abstract PowerWindowSystemHardware
driverSubsystemHardware : PWSubsystemHW
[bcm = BCM]
frontPassengerSubsystemHardware : PPWSubsystemHW
[bcm = BCM]
[mainSwitch = driverSubsystemHardware.switch]
rearLeftPassengerSubsystemHardware : PPWSubsystemHW
[bcm = BCM]
[mainSwitch = driverSubsystemHardware.switch]
rearRightPassengerSubsystemHardware : PPWSubsystemHW
[bcm = BCM]
[mainSwitch = driverSubsystemHardware.switch]

BCM : ECU ?

Figure 3.6: Combining subsystems into systems in Clafer

21

Sets, set operations and quantifiers

Even though containment representation is handy, Clafer does not currently have a straight-
forward way of enumerating child clafers. To deal with this limitation, we use sets and store
all the clafers we need explicitly using references.

First, we define a set called localComponents. This is a set of references to Device
instances. Clafer cardinality 2..4 now determines the set cardinality: it is variable and
contains from two to four instances of Device, depending on whether we have a door
module, the BCM, both or none. BCM is considered local for each subsystem, since each
subsystem can allocate software functions to BCM. The constraint C1 in Figure 3.7 defines
the elements of the set.

Next, we are interested in a set of smart components as well. We define another set
with cardinality 0..4. The lower bound is 0, since we may have no smart components at
all, if all the switches and motors are dumb, and we do not have a BCM nor door module.
The upper bound is 4, when all the local components are smart.

To populate the set of smart components, we create a query that may be stated as “from
a set of local components, give me only those that are smart”. The next two constraints
C2 and C3 with quantifiers all and no represent such a query. Queries with quantifiers
are extremely expensive in terms of reasoning performance, and in the following chapter’s
Section 4.5 we show a method to avoid quantifiers yet achieving the query semantics.
However, for the demonstration purposes, we show a query with quantifiers. This query
extracts only the smart components from the set of local components.

The constraint C2 with the universal quantifier all states that each device d in a
localComponents set will be included in the localSmartComponents set if and only if
the device is smart. Clearly, the entire set of the local components is considered, and only
smart devices can go to the “smart” set. The Clafer quantifier all is equivalent to the
quantifier for all, or ∀.

The next constraint, C3, uses another universal quantifier no and states that it is im-
possible to have an element in the localSmartComponents set such that it is not in the set
of the local components. This constraint is necessary, because the previous constraint (C2)
does not make any restrictions on the devices that are not in the local component set, i.e,
components of another window. Therefore, Clafer reasoners may put any smart component
of another window into the set. The constraint C3 denies such a case.

Next, we demonstrate an existential quantifier some using the constraint C4. The con-
straint says that hasSmartComponent clafer is equivalent to having at least one element in
the localSmartComponent set. Thus, some is equivalent to exists, or ∃.

22

Another way of defining a hasSmartComponent flag is using set cardinality syntax: a
hash sign # (constraint C5). By saying #localSmartComponent, we get the actual cardinal-
ity of the localSmartComponent set, which is fully decided with respect to the elements
it has: it is already decided whether the doorModule and bcm are in the set. Obviously,
#smartComponents is equivalent to |smartComponents| in mathematics.

abstract PWSubsystemHW
...
localComponents -> Device 2..4
[localComponents = switch, motor, doorModule, bcm.ref] // C1

localSmartComponents -> Device 0..4
[all d : localComponents | (d in localSmartComponents) <=> d.smart] // C2
[no d : localSmartComponents | !(d in localComponents)] // C3

hasSmartComponent ?
[hasSmartComponent <=> (some d : localSmartComponents)] // C4

hasSmartComponentAlt ?
[hasSmartComponentAlt <=> (#localSmartComponents > 0)] // C5

abstract PWSystemHardware
...
allSmartComponents -> Device 0..13
[allSmartComponents.ref = // C6
driverSubsystemHardware.localSmartComponents.ref ++
frontPassengerHardware.localSmartComponents.ref ++
leftRearPassengerHardware.localSmartComponents.ref ++
rightRearPassengerHardware.localSmartComponents.ref]

Figure 3.7: Sets and set operations in Clafer

And finally, at the system level, we demonstrate a set union operation ++ using the
constraint C6. We create a set denoted as allSmartComponents and constrain it to be the
union of the four sets of smart components for each of the foor windows. Note that we
apply dereferencing a pointer operation (Sec. 4.1), so that the union operation is applied
to the sets themselves, not their references. Also note that for allSmartComponents it is
sufficient to have the upper cardinality of 13, because bcm.ref points to the same device;

23

therefore, this device will not be included twice in the same set.

Modeling connectors

To be able to connect devices together, we need an abstraction of a connector. Figure 3.8a
shows two definitions of connectors.

abstract WireConnector
src -> Device
dest -> Device
[src.ref != dest.ref]

(a) Definition of a wire connector. Has ref-
erences to source and destination devices

abstract WireMultiConnector
connectedDevices -> Device 2..*

(b) Definition of a wire multi connector. Has
references to source and destination devices

abstract WireConnector
...
length ->> integer
thickness ->> integer
mass ->> integer
[mass = length * thickness]

abstract DiscreteWireConnector : WireConnector
[thickness = 1]

abstract PowerWireConnector : WireConnector
[thickness = 7]

(c) Wire connector with integer properties and inte-
ger constraints. Mass is a function of a connector’s
length and thickness. Two subtypes of WireConnec-
tor with different thicknesses

abstract PWSubsystemHW
...
comWire : PowerWireConnector
[src.ref = switch]
[dest.ref = motor]
[no src.smart]

linBus : WireMultiConnector ?
[connectedDevices.ref =
smartComonents.ref]

(d) Example of connectors: a binary
connector that connects a switch to a
motor and a LIN bus that connects all
smart components

Figure 3.8: Modeling connectors in Clafer: single and multi-wire connector. Integer prop-
erties and example instances

The first one — WireConnector — is a binary connector that connect two devices
only. It has references to the source src and the destination dest the wire connector joins.
Connectors abstract away wires: each connector may be implemented using few wires (i.e.,
ground and power). We also specify a connector constraint that does not allow a device to

24

be connected to itself: it is achieved by the inequality of the dereferenced objects src.ref
and dest.ref.

The second one — WireMultiConnector — is designed to connect several devices at
the same time. There is a set of connected devices with the cardinality from two to star:
2..*. In this case, we do not need a constraint that denies self-loops: clafer sets defined
using a single arrow -> automatically deny any repetitions3. Also, the multi-connector is
not directed, because Clafer sets are not ordered.

Quality attributes and integer types

We augment our wire connector definition with quality attributes, such as, length, thickness
and mass (Fig. 3.8d). Integer quality attributes are defined using the bag reference notation
(->>) [13]. Since Clafer does not support real numbers yet and floating point, we have to
apply at least one of the following approaches:

1. Round real numbers to the nearest integer: 0.05 to 0, 2.5 to 3

2. Use absolute scaling: 0.05 to 5 and 2.5 to 250

3. Use relative scaling: take 0.05 as a unit, and since 2.5 is 50 times 0.05, it becomes 50

In Clafer, integer attributes do not have supplementary units. Therefore, we follow the
same conventions throughout the model. We measure length in centimeters (cm) without
any scaling. Thickness is relative: the base thickness is 1 and equals the cross-section area
(in mm2) of a discrete wire. The mass is a derived metric, and we do not care about density
assuming its the same for all type of wires. During the instantiation process, the mass gets
computed from the length and the thickness.

If any of the values is not specified, for example, we forgot to specify thickness, then
backends will pick an arbitrary number and substitute it. Obviously, we avoid such a case
and specify all the values.

3.2 Optimization in Clafer

Clafer has a support for both single-objective and multi-objective optimization. Optimiza-
tion is done with respect to numeric quality attributes. The optimization workflow in Clafer
3As opposed to bags ->> which allow repetitions

25

looks as follows. First, we model a problem domain and specify individual contributions to
quality. Next, we define optimization objectives. And finally, we visualize the resulting set
of optimal instances and make conclusions on it.

3.2.1 Modeling Problem Domain

For demonstration purpose, we model a bus topology example from a Sec. 2.3. This sub-
section describes how to represent this example in Clafer.

Figure 3.9a shows the formulation of the bus example in Clafer. The root abstract clafer
PWBusTopology contains two integer attributes: expandability and reliability. All the
bus topologies are connected using xor — meaning only one bus topology can be chosen.
Grid topology types are also combined into a xor group, to force only of the types to be
chosen.

Each choice imposes constraints on expandability and reliability quality attributes.
We use the numbers from the Tab. 2.1 and create the corresponding constraints on the
integer attributes. For instance, for the flat topology, expandability will be set to 4,
and the reliability is set to 1. We follow a similar approach for all the four topology
options.

3.2.2 Stating a Single-Objective Optimization Problem

To be able to optimize, we need to define an instance to optimize and specify optimization
objectives. We do that on the last two lines of Figure 3.9a: we define a concrete clafer
mostReliableTopology. And at the next line, we state an objective to maximize the re-
liability of the topology: << max mostReliableTopology.reliability >>. The problem
is fully specified now.

Now we run a Clafer optimization backend, and it generates the two instances illustrated
on Figure 3.9b. These two instances match the ones from Sec. 2.3: only grid topologies are
chosen, since they have the highest possible value of reliability.

3.2.3 Stating a Multi-Objective Optimization Problem

Specifying multi-objective optimization problem is easy: we just add more optimization
objectives. So, we also need to state that we need to maximize expandability of the bus

26

abstract PWBusTopology
expandability ->> integer
reliability ->> integer
xor type
flat
[expandability = 4]
[reliability = 1]
xor grid
usingMasterSwitch
[expandability = 1]
[reliability = 4]
usingDoorModule
[expandability = 2]
[reliability = 4]

superGateway
[expandability = 3]
[reliability = 2]

mostReliableTopology : PWBusTopology
<<max mostReliableTopology.reliability >>

(a) Bus Topology model and optimization objectives

=== Instance 1 Begin ===

mostReliableTopology$1
type
grid
usingDoorModule

expandability = 2
reliability = 4

--- Instance 1 End ---
=== Instance 2 Begin ===

mostReliableTopology$1
type
grid
usingMasterSwitch

expandability = 1
reliability = 4

--- Instance 2 End ---

(b) Set of optimal instances

Figure 3.9: Single-objective optimization in Clafer

topology Figure 3.10a. We define an instance called optimalBusTopology and two opti-
mization objectives: to maximize expandability and to maximize reliability.

Figure 3.10b, Figure 3.10c, and Figure 3.10d represent all the optimal instances pro-
duced by Clafer backends — three fully complete instances in Clafer textual representation.
They match perfectly our three instances described in the introductory Sec. 2.3.

3.2.4 Visualization and Exploration of Optimal Variants

It is hard to make conclusions on Pareto fronts without a proper visualization. There-
fore, Clafer comes with a visualization tool called ClaferMooVisualizer [27]. Figure 3.11
represents the tool with our multi-objective optimization example.

The tool uses a notion of a variant, which has the same meaning as an optimal variant

27

mostOptimalTopology : PWBusTopology
<<max mostOptimalTopology.reliability >>
<<max mostOptimalTopology.expandability >>

(a) Optimization Objectives

mostOptimalTopology$1
type
flat
expandability = 4
reliability = 1

(b) Optimal instance 1

mostOptimalTopology$2
type
superGateway
expandability = 3
reliability = 2

(c) Optimal instance 2

mostOptimalTopology$3
type
grid
usingDoorModule

expandability = 2
reliability = 4

(d) Optimal instance 3

Figure 3.10: Multi-objective optimization in Clafer: the objectives and the Pareto front

or an optimal instance. There are four interacting visualizations in total: Bubble Front
Graph, Feature and Quality Matrix, Variant Comparer and Parallel Coordinates Chart.

Visualization

Bubble Front Graph (Figure 3.11, top left) is a bubble chart. Each bubble represents
an optimal instance, or a variant. Bubbles are numbered, therefore, it is possible to refer
to instances by a number. Bubbles are selectable: if we click on a variant, it becomes
highlighted on all the rest visualizations. Bubbles are positioned with respect to two axes:
in our example, the two axes represent values of expandability — the horizontal axis, and
reliability — the vertical axis. The chart supports up to four dimensions: the third one is
bubble color, and the fouth one is bubble size. Dimensions can be switched manually.

Feature and Quality Matrix (Figure 3.11, top right) is a matrix that represents
variant clafers and their values per variant. Clafers that are present in a variant are marked
with a green tick and clafers that are not present in the variant are marked with a red
circle. If a clafer is not present, its entire subtree cannot be present. If there are quality
attributes, their values are specified in the cell. For example, the reliability of the variant
1 equals to 4, as we can see from the last row of the matrix. Commonalities are grayed
out automatically: the clafer usingMasterSwitch is not present in any optimal variant,
therefore, it is grayed out.

28

Figure 3.11: ClaferMooVisualizer with the bus example

Parallel Coordinates Chart (Figure 3.11, bottom) is a chart that represents each
variant as solid line that goes through parallel axes. The three axes: a variant ID, expand-
ability and reliability. The line crosses each axis in a point that corresponds to the actual
variant ID or the value of the quality attribute. Each axis show a range of a given quality
(or variant ID) and can be filtered to show only certain ranges of values. Axes can be
rearranges manually.

Variant Comparer (Figure 3.12, left) is a matrix-like visualization that shows se-
lected variants side-by-side and designed for comparison. The view is split into two parts:
commonalities and differences, making it easier to focus on either.

Exploration

Exploration use cases are listed in the related work [27]. There are two non-exclusive ways
of exploration: filtering by quality values and filtering by features. We only show the first
one.

For example, we are not interested in the worst expandability. Therefore, we mark the

29

Figure 3.12: ClaferMooVisualizer with the bus example: Variant Comparer and filtering by
quality

range from 3 to 4 using the Parallel Coordinates Chart’s expandability axes. The views
get filtered, and the variant with the expandability of 2 gets grayed out. Now, we can
select the two remaining variants on the graph and use the Variant Comparer to compare
them. Clearly, they are both non-grid topologies, therefore, the red circle in front of Grid
is present in the Commonalities part. The Differences part lists the differences between the
two variants: they have different quality and presense of flat and superGateway clafers.
This concludes that the variant 3 is a super gateway, and the variant 2 is a flat bus topology.

This is a simple exploration scenario done for demonstration purposes. In our case
study, however, exploration becomes essential: the instances are big and complicated, and
it is not trivial to compare them and understand their position with relation to each other.

30

Chapter 4

Micro-Level Modeling Patterns and
Advices

This chapter is designed for three purposes. First, for explanation of frequently used fea-
tures of Clafer with clearly defined semantics, but not well-documented and problematic
use, such as, references. Second, for solution to very common simple problems like typecast-
ing, modeling one-to-one and many-to-one relationships in Clafer. And finally, the topics
described here are building blocks for the case study.

For each subtopic, we propose potential extensions or fixes to Clafer language or tools
that could facilitate better user experience and better reasoning performance.

4.1 Working with References

References in Clafer are used to represent UML-like unidirectional associations, such as,
deployment association of a function to a device. References can be treated as pointers in
languages like C: there is a pointer that points to a value stored in memory. In Clafer’s
context, a reference is a special type of clafer that points to another clafer instance de-
fined elsewhere. For example, deployedTo -> Device is a reference that points to a single
instance of a type Device.

Semantics of references is clearly described in [13]. In this section we describe references
from the practical point of view, since working with references in Clafer is not always
straightforward.

31

First, reference clafers often require dereferencing to access the actual value. By deref-
erencing we mean writing .ref in the end of the reference: CurrentSensor.deployedTo.ref.
The code returns an instance of a Device the Current Sensor is deployed to.

Next, use of references is tricky when combining references and instances in the same
expression, such as, comparing a reference to an instance. For such cases, we state the
following rules derived from our experience and Compiler’s implementation details.

1. When comparing two or more reference objects to each other, we have to use .ref.
Omitting dereferencing results in a syntactically correct code, but semantically, the
comparison is performed on references, which is usually not intended. The problem is
similar to comparing pointers in languages like C++. Figure 4.1 depicts the problem.
The incorrect version of the code does not use dereferencing. Therefore, the compar-
ison is made on references, not on reference values. What makes this problem worse,
comparing two references directly always results in false, since in the Clafer language
design, any two clafers are disjoint unless one is in the inheritance hierarchy of an-
other. Therefore, having such a constraint in the model will make the entire model
to be unsatisfiable, and we have to use .ref to avoid such a mistake.

abstract Function
...
deployedTo -> Device

WinController : Function
CurrentSensor : Function

(a) Problem context. DeployedTo is a ref-
erence to a Device. The modeler needs
to state that the two functions — Win-
Controller and CurrentSensor — are de-
ployed to the same device

[WinController.deployedTo
= CurrentSensor.deployedTo] //wrong

[WinController.deployedTo.ref
= CurrentSensor.deployedTo.ref] //right

(b) Semantically incorrect (top) and correct (bot-
tom) versions to specify that WinController and Cur-
rentSensor have to be deployed on the same device.
Both versions are correct from the syntactical view-
point, though

Figure 4.1: Incorrect comparison of references: comparing without .ref

2. We do not use .ref in the middle of a join — a chain of clafers combined using a
dot. Dereferencing is done automatically in this case by the name resolver. Specifying
.ref in a middle of a join results in a syntax error. Figure 4.2 represents this case.

3. When equating or comparing a reference to a concrete non-reference clafer, .ref is
not required, because it is implicitly generated by the compiler. Figure 4.3 illustrates

32

[WinController.deployedTo.ref.smart]

(a) Syntax error

[WinController.deployedTo.smart]

(b) Syntactically and semantically correct

Figure 4.2: Joining references

this case. In other words, having an expression with one reference operand and one
non-reference operand does not require specifying ref. However, the types should
match in any case.

4. In all other cases, we should use .ref since there is no guarantee it is always generated
by the compiler properly. Moreover, the compiled code is more likely to be valid in
terms of semantics.

BCM : ECU ?
[WinController.deployedTo = BCM]

(a) Without .ref — syntactically and seman-
tically correct

BCM : ECU ?
[WinController.deployedTo.ref = BCM]

(b) With .ref — syntactically and semantically
correct

Figure 4.3: Optional dereferencing when one operand is a reference, another one is an
instance

Proposed corrections and extensions

Clafer Compiler should be more verbose when compiling references. A user has to be
notified about obvious cases that cause contradictions, or the constraints that lead to such
cases have to be forbidden.

4.2 Modeling One-to-One Relationships

When using references to model associations, there is a link from one object to another.
However, the second object may not be aware of being referenced and may not be able to
access the linked object. Moreover, an object may be referenced twice from different places
and it is not forbidden by default.

33

For example, we have a one-to-one deployment problem. A function can be deployed
on an ECU, however, we allow only one-to-one deployment in this section. We describe a
many-to-one deployment deployment in a later section.

Figure 4.4a shows two concepts: Function and ECU. A function can be deployed on a
single ECU. Each ECU can be deployed from a single function.

Figure 4.5 depicts the problem when deploying two different functions on the same ECU.
Since in Clafer it is not forbidden, we receive an instance that has both PinchDetection
and WinController deployed on the same ECU named doorModule.

Method

To fix the problem described above, we introduce an inverse relation deployedFrom. Next,
we add two constraints on the two relations. The semantics of the constraint C1 is as
follows. The function that the ECU is deployed from (referred by this keyword) has to
be deployed to the ECU (parent refers to the instance of ECU). The semantics of the
constraint C2 is as follows. The ECU that the function is deployed to (referred by this
keyword) has to be deployed from the function (parent refers to the instance of Function).

Proposed corrections and extensions

Clafer may introduce a syntax for inverse relationships, so that a user does not have to write
the inverse relationship constraints. Also, the Compiler could handle inverse relationships
in a special way and thus generate a more optimal code.

4.3 Modeling Many-To-One Relationships

This pattern is applicable when we need to model a many-to-one (equivalently, one-to-
many) relationship between two set of objects. For example, we have a deployment problem,
where we deploy functions ECUs with the conditions that each function is deployed to a
single hardware component, while an ECU can deploy several functions at the same time.
So, we need a simple deployment association between Function and ECU. Figure 4.6a
represents two association ends named deployedTo and runs, respectively.

In this pattern, we assume that the deployment can be done only to a single hardware
component. If a distributed deployment is possible (i.e., we allocate the same function to

34

Function ECU1 1
deployedFrom deployedTo

(a) UML representation

abstract ECU
deployedFrom -> Function
[this.deployedTo = parent] // C1

abstract Function
deployedTo -> ECU
[this.deployedFrom = parent] //C2

(b) Clafer implementation

BCM : ECU
deployedFrom = PinchDetection

doorModule : ECU
deployedFrom = WinController

WinController: Function
deployedTo = doorModule

PinchProtection: Function
deployedTo = BCM

(c) Example instance in Clafer

Figure 4.4: One-to-one relationship pattern in Clafer: a UML diagram, a Clafer represen-
tation, and an example instance

more than one ECU for redundancy or function distribution), we need to model a many-to-
many relationship. We can do this by extending the many-to-one relationship in a similar
way as we extended one-to-one relationship to many-to-one.

Method

Likewise in the previous pattern, we introduce an inverse relation deployedFrom. However,
this time, the cardinality of the clafer is star (*), meaning there can be zero or more
functions deployed to an ECU. And also, we add two constraints on the two relations.
The semantics of the constraint C1 is as follows. Every function the ECU is deployed from
(referred by this keyword) has to be deployed to the same ECU (parent refers to the
instance of ECU) as well. The semantics of the constraint C2 is like in the previous example:
the ECU that the function is deployed to (referred by this keyword) has to be deployed
from the function (parent refers to the instance of Function).

35

abstract ECU

abstract Function
deployedTo -> ECU

(a) Underconstrained, faulty implementa-
tion of the one-to-one pattern. In spite the
cardinality of the reference deployedTo is
one, there is no restriction constraining the
number of functions deployed on the ECU

doorModule : ECU
BCM : ECU

WinController: Function
deployedTo = doorModule

PinchDetection: Function
deployedTo = doorModule

(b) Invalid, but syntactically correct in-
stance that follows the faulty implementa-
tion. WinController and PinchDetection are
deployed on the same ECU which contra-
dicts our problem definition

Figure 4.5: Incorrect implementation of Many-to-One pattern with an invalid example

Proposed corrections and extensions

Inverse relationships can be marked, even in case of many-to-one relationships. The com-
piler can take advantage of handling inverse constraints and generate a more optimal code.

4.4 Typecasting

Typecasting is needed when a clafer is defined as an instance of one type, however, is used
via reference typed with it’s ancestor’s type. In other words, we have a reference to a clafer,
but the type of the reference is more generic than the type of the clafer it points to. And
the goal is to access the subclafers of the more specific type via a more generic reference.

For example, we have a Device type, and SmartDevice type (Figure 4.7a). The latter is
an extension of the former one. We have a switch reference pointing to a device. However,
the switch in the end can be instantiated as a Device or a SmartDevice. In any case, the
property cpu is inaccessible via the switch reference. The reason is that Device does not
have this property: this property is introduced in SmartDevice. Therefore, it is impossible
to get an access to cpu.

36

Function ECU* 1
deployedFrom deployedTo

(a) UML representation

abstract ECU
deployedFrom -> Function *
[this.deployedTo = parent] // C1

abstract Function
deployedTo -> ECU
[parent in this.deployedFrom]// C2

(b) Clafer implementation

doorModule : ECU
deployedFrom = WinController,
PinchDetection

WinController: Function
deployedTo = doorModule

PinchProtection: Function
deployedTo = doorModule

(c) Example instance in Clafer

Figure 4.6: Many-to-one relationship pattern in Clafer: a UML diagram, a Clafer represen-
tation, and an example instance

Method

Figure 4.7b shows the pattern for this problem. We define an additional clafer called
switchAsSmartDevice which gets eqruated to switch.ref.

Side effects

Side effects include possible performance influence by the additional reference clafer named
switchAsSmartDevice.

Proposed corrections and extensions

First, Typecasting can be done very efficiently when using a proper instruction to the
name resolver, so that it can resolve the properties that are not in the current type. The
suggested syntax is as follows: (SmartSwitch)switch.cpu. For type-checking, there is
already a support: switch.ref in SmartSwitch returns true if and only if switch.ref
is an instance of SmartSwitch.

37

abstract Device

abstract SmartDevice : Device
cpu ->> integer

switch -> Device

// cannot state switch.cpu!

(a) Context: SmartDevice is a subtype
of Device. The type of switch is not
known: it may be Device or SmartDe-
vice. The cpu property of switch is in-
accessible: Device does not have it

switchAsSmartDevice -> ECU ?
[switchAsSmartDevice.ref = switch.ref]

// now can access switchAsSmartDevice.cpu

(b) Proposed method of typecasting the switch. De-
fine an optional reference switchAsSmartDevice that
gets assigned if and only if the switch is of a type
SmartDevice. Now the cpu property becomes accessi-
ble via switchAsSmartDevice

Figure 4.7: Typecasting in Clafer

Second, typecasting in case of inheritance can be implemented via redefinition. Clafer
semantics [13] actually supports a notion of refinement (redefinition). If switch is a prop-
erty of System, then if we create a subtype of a system called SystemWithSmartDevice
we can redefine switch to be switch -> SmartDevice.

4.5 Queries

A notion of query we apply is similar to database “select” queries. By queries we assume
extraction of relevant clafers from a set of clafers. An example query can be states as
follows: “From the set of all devices, give me only those that are smart”.

In Clafer, there is no native support for queries. However, they can be simulated by
sets and constraints over the sets.

Method 1. Quantifiers

First, we define a set called localComponents. It may contain from two up to four in-
stances of Device, depending on whether we have a door module, the BCM, both or none.
Constraint C1 populates the set.

38

Next, we define a set of smart components localSmartComponents. This set stores the
result of our query. The cardinality of this set is 0..4. We may have no smart components
at all, if all the switches and motors are dumb, and we do not have an ECU nor door
module. The upper bound is 4, when all the local components are smart.

To populate the set of smart components, we create a query. The next two constraints
C2 and C3 with quantifiers all and no represent such a query. The constraint C2 with the
universal quantifier all states that all devices d in a localComponents set will be included
in the localSmartComponents set if and only if the device is smart. Clearly, the entire set
of the local components is considered, and only smart devices can go to the “smart” set.
The Clafer quantifier all is equivalent to the quantifier for all, or ∀.

The next constraint, C3, uses another universal quantifier no and states that it is im-
possible to have an element in the localSmartComponents set such that it is not in the set
of the local components. This constraint is necessary, because the previous constraint (C2)
does not make any restrictions on the devices that are not in the local component set, i.e,
components of another window. Therefore, Clafer reasoners may put any smart component
of another window into the set. The constraint C3 denies such a case.

Queries are very expensive in terms of performance. First, there are two sets with
variable cardinalities. Even though one is a subset of another, for the reasoners this fact
is not clear. Moreover, there are two universal quantifiers that can cause blow-ups. In our
work, we propose a method to avoid using quantifiers.

Method 2. Instances

The idea of the method is to define several versions of clafers that get instantiated depend-
ing on the conditions. For example, a switch can be smart or not smart, and therefore,
we define two instances: smartSwitch and dumbSwitch. They are nested under a clafer
with a xor group cardinality, therefore, exactly one of the two will be instantiated. For the
smartSwitch, we assert it is smart. For the dumbSwitch, we say it is not smart.

However, when having two instances, we still need a generic switch clafer that will
be present no matter whether it is smart or not. To achieve this, we transform switch
into a reference. Then, the reference is gets assigned to a smartSwitch or dumbSwitch,
depending on what instance gets instantiated. It is achieved by the constraints C1 and C2.
In the constraint C1, parent refers to the switch clafer, and this refers to the smartSwitch.
In the constraint C2, parent refers to the switch clafer, and this refers to the dumbSwitch.

39

abstract PWSubsystemHW
...
localComponents -> Device 2..4
[localComponents = switch, motor, doorModule, bcm.ref] // C1

localSmartComponents -> Device 0..4
[all d : localComponents | (d in localSmartComponents) <=> d.smart]// C2
[no d : localSmartComponents | !(d in localComponents)] // C3

Figure 4.8: Query implementation in Clafer, method 1. Modeling queries using universal
quantifiers

Reasoning performance measurement of two methods

Since we have two alternatives, it is easier to quantify the instance generator’s reasoning
performance for each of the alternatives. The goal of the experiment is to compare the two
modeling methods to each other in terms of solver’s reasoning performance. We measure
time it takes to the solver to get the first instance — this is what matters most for the
user. The unit of measurement are seconds, with uncertainty of 1-2 seconds. We do not
care about precise values. Moreover, out timeout is equal to 5 minutes: at the modeling
stage, users do not want to wait a lot for getting the first instance. The setup was done on
Intel (R) Core(TM) i7, 2.00 GHz, 8 GM RAM, x64. The model we tested the setup on is
Appendix A.2, with varying number of Subsystem instances.

Figure 4.10 represents the performance test results for the two backend — Alloy-based
backend called ClaferIG [3] and Choco-based backend called ClaferChocoIG [2]. For the
Alloy-based backend, the method 1 performs faster than method 2. However, the backend
is very slow, and starting at 6 subsystems, the performance drops down significantly.

For the ClaferChocoIG backend, the method 2 outperforms the method 1. Method 2
is significantly faster, moreover, it has much better scalability properties. In our opinion,
the reason of good performance of the method 2 is absence of quantifiers, while method 1
does not scale well because of quantifiers. Since ClaferChocoIG is more scalable, we prefer
to use this in our experiments. Therefore, method 2 gives a significant performance gain
for our entire work.

40

abstract PWSubsystemHW
xor switch -> Device
smartSwitch : Device
[parent = this] // C1
[smart]
dumbSwitch : Device
[parent = this] // C2
[no smart]

doorModule : ECU ?
...

(a) Updated definitions of a switch

xor motor -> Device
smartMotor : Device
[parent = this]
[smart]
dumbMotor : Device
[parent = this]
[no smart]

bcm -> ECU ?
...

(b) Updated definitions of a motor

localComponents -> Device 2..4
[localComponents = switch.ref, motor.ref, doorModule, bcm.ref]
localSmartComponents -> Device 0..4
[localSmartComponents = smartSwitch, smartMotor, doorModule, bcm.ref]

Figure 4.9: Query implementation, method 2. Modeling queries using additional instances

Side effects

Since for method 2, we have changed the clafer switch to be a reference, we need to
dereference it every time we want to access the switch by writing switch.ref. On the
other hand, we can always refer to the specific instances of smartSwitch and dumbSwitch
without dereferencing.

Proposed corrections and extensions

The proposed syntax is as follows:

localSmartComponents -> Device 0..4 {d : localComponents | d.smart}

which means that the localSmartComponents is a query over the localComponents.
Arbitrary complex condition is specified after the vertical slash |.

In any case, the compiler and the solvers should take the semantics of a query into
account and optimize the solution algorithms for dealing with queries faster.

41

Method 1:
Quantifiers

Method 2:
Instances

3 subsystems instant instant
4 subsystems 5 sec 55 sec
5 subsystems 2 min 0 sec > 5 mins
6 subsystems > 5 mins > 5 mins
7 subsystems > 5 mins > 5 mins
8 subsystems > 5 mins > 5 mins

(a) Alloy-Based IG

Method 1:
Quantifiers

Method 2:
Instances

3 subsystems instant instant
4 subsystems instant instant
5 subsystems 4 sec instant
6 subsystems 17 sec instant
7 subsystems 1 min 30 sec instant
8 subsystems > 5 mins instant

(b) Choco-Based IG

Figure 4.10: Reasoning performance of query implementation methods: measurement re-
sults. Shown time taken to generate the first instance

42

Chapter 5

Macro-Level Modeling Patterns

5.1 Bottom-Up Development with Modularization

Bottom-up development with modularization suggests decomposing a large problem into
subproblems, modeling subproblems first, testing them, integrating, and then performing
integration testing. This approach is inspired by bottom-up integration testing approach
in Software Engineering [21]. In this work, we apply these ideas to the Clafer context.
Also, by testing we mean a procedure of checking whether the model is satisfiable, and
whether it generates valid instances within a reasonable time. In Clafer, application of this
development approach is critical, and the reasons are explained in the following sections.

5.1.1 When to Apply

This pattern should be applied when modeling any complex model that can be decom-
posed. Typically, system architecture models are decomposable into hardware and func-
tions, which, in turn, can be further decomposed, like on Figure 5.1. Cross-cutting concerns
can also be modeled separately.

5.1.2 Rationale

Besides commonly known benefits of modularization, such as, model comprehension, sep-
aration of concerns, better maintainability, there are few very specific for Clafer. Native
deficiencies of Clafer like debugging and scalability issues are critical and may become the
most impeding factors in modeling using Clafer.

43

System

System Hardware System-Level Functions

Hardware Part 1

Hardware Part 2

Hardware Part N

Function Part 1

Function Part 2

Function Part K

System Deployment System Communication

Figure 5.1: Bottom-up development with modularization pattern. Decompose system,
model and test each part separately, and then integrate. Also, model cross-cutting con-
cerns separately.

Reason 1: Debugging Issues

Clafer models, unfortunately, are hard to debug. For example, a user creates a complex
model of the Power Window system. For the sake of performance, the user does not perform
modeling in a modular way. At the end, the final model is a solid bulk which cannot be
easily decomposed. The model compiles perfectly, and therefore, it is syntactically correct.
The user also expects the model to get instantiated. However, when trying to instanti-
ate it, all the backends output that there is no instance found. Backends are capable of
showing an UNSAT Core — a minimum set of constraints that causes the model to be
unsatisfiable. However, it is often not the case: many constraints interact, and there are
cross-dependencies across the entire model. Moreover, minimization of the UNSAT core is
costly in terms of time, so for the large models it may not finish in a reasonable time.

So, a natural solution for the user is removing parts of the Clafer code to single out the
cause of unsatisfiability. However, if the problem is not modularized, it is very hard to do.
Eventually, the user ends up removing a lot of code, and then gradually adding constraints
while the model remains satisfiable.

Reason 2: Scalability Issues

Another problem for Clafer tools is scalability. Clafer uses exact solvers for optimization,
and therefore, they have scalability problems. Moreover, Clafer Compiler may have perfor-

44

mance problems when compiling large models.

To define scalability problems, we introduce the notion of a reasonable time — a critical
time period that a user can tolerate while waiting for instance generation or compilation.
The reasonable time depends on the users and the user intention. However, at the modeling
stage, a reasonable time may last for few minutes.

Scalability problems are identified in the following way.

• Solver scalability. The solver is running, however, within a reasonable time, nei-
ther an instance, nor the unsatisfiability message is shown. This means the solver is
running and likely, tries to find solutions, however, the user does not know the result.

• Compiler scalability. The compilation is running, however, at some point the com-
piler seems to be hanging, and no output is generated within the reasonable time.

What makes the scalability problem worse is that it is very hard to predict exactly, what is
the critical size for the models. A model with a thousand lines of Clafer code can work faster
than the one with few hundred lines — it depends on the constraints, types of clafers used,
etc. Sometimes adding an additional constraint causes a dramatic decrease or a dramatic
improvement in performance.

Reason 3: Solver Implementation Issues

Clafer is relatively new project, and it is under constant development and improvement.
The new versions 0.3.6.1 are mostly free from the major bugs. However, bugs or imple-
mentation issues can still be present. Therefore, a model can be slow to instantiate or
mistakenly shown to be unsatisfiable not because of the model, but because of the solver
bugs or inefficient implementations.

To be able to resolve bugs, singling out a root cause is important. Again, it is very hard
to do if the model is built not in a modular way. Therefore, starting with a small model is
really important.

5.1.3 How to Apply

Our methodology suggests the following:

45

1. Decompose the modeling problem into parts. If it is the Power Window sys-
tem, decompose the system into each window subsystem and model communication
between the subsystems separately. Moreover, decompose each window subsystem
into functional and hardware architectures. Hardware can be decomposed further
into wiring and devices, if required.

2. Pick a small, simple subproblem and model it. For example, pick a hardware
topology of a driver power window subsystem. Model the parts, and compile the
model. Also, do not create a big concrete model.

3. Debug and test the subproblem. Create a test case — example configuration for
the driver window hardware. Run Clafer backends and test it.

4. Model another small subproblem, and repeat this step, until all the problems
on this level are considered.

5. Go one level up and model a bigger problem. The complete system model
include nested instantiations of the subsystems. Keep combining subproblems until
you have the complete system modeled or faced performance problems.

6. Model cross-cutting concerns separately. Concerns like deployment, system
communication or safety should not be scattered across the model. They can be
tested separately and then included in the final model.

5.1.4 Side Effects

Well-structured in terms of modularization model may have some performance overhead
because of inheritance, multiple instantiations and references. We do not look into the ways
to minimize side effects. However, in our opinion, side effects are minimal compared to the
benefits earned by this approach.

5.2 Collaboration

Collaboration is a process of interaction of several objects with the purpose to achieve
a concrete goal. The idea is inspired by UML collaboration diagrams, however, in our
context, the collaboration pattern has a different meaning. In Clafer, collaboration pattern
is a creational pattern that facilitates:

46

1. Constraining several existing clafers—collaborators to make them achieve a concrete
goal. For example, add deployment constraints in a way that every function is de-
ployed on a hardware.

2. Creating new clafers to help the existing clafers—collaborators interact to achieve a
concrete goal. For example, to make certain deployments possible, wire connectors
have to be created.

We also define a notion of collaboration environment — a “board” the collaborating
clafers act on. We call the clafers to be collaborators.

Figure 5.2 represents an example of collaboration. Four hardware components of a
driver power window subsystem — collaborators — are put together to create wires and bus
communication. To achieve the proper communication, potentially three mutually exclusive
discrete wire connectors, four mutually exclusive power wire connectors, and four bus
connections can be created, depending on conditions. The new connectors are not owned
by any of the system devices: they belong to the collaboration environment.

power

power

power

power

discrete

discrete

discrete
bus

motorswitch

BCM ? door module ?

xor

xor
smart?

smart? sm
art
?

switch

BCM ?

door module

motor

Figure 5.2: Collaboration pattern example. Deciding on connections across devices

5.2.1 When to Apply

This pattern can be applied to model cross-cutting concerns. Examples include: modeling
communications across devices, modeling a deployment problem.

5.2.2 Rationale

Separation of concerns, avoiding scattering and ease of debugging are one of the primary
reasons of using this pattern in Clafer.

47

Reason 1: Avoiding Scattering

Isolating and encapsulating collaboration in a separate place avoids scattering across the
entire model. For example, deciding on deployment could be done in the definition of
each analysis function. Thus, the properties of a function and its use could be done in
the same place when the function is defined. However, we have many functions, and some
deployment rules depend on the deployment decisions of other functions. Therefore, this
creates complexity in the function definition.

Reason 2: Separation of Concerns

Isolating collaboration in a separate place allows for separation of concerns. Deployment,
wiring, communication — all these are various concerns to be addressed.

Reason 3: Easy Debugging

Obviously, separation of concerns and encapsulating collaboration facilitates faster debug-
ging.

5.2.3 How to Apply

Our methodology suggests the following:

1. Decide on the goal. The goal may be: to create wire connectors or to add deploy-
ment constraints.

2. Create a collaboration environment clafer. Create a separate clafer called
PowerWindowWiring or PowerWindowDeployment

3. Add collaborators. Choose the required devices, ECUs, or functions. Add them to
the collaboration environment clafer as references.

4. Constrain collaborators. Create deployment or wiring rules and add necessary
constraints to the collaborators

5. Create supplementary clafers. Create necessary connectors or buses.

48

6. Test the collaboration environment. The ready environment can be tested sep-
arately.

7. Include the collaboration environment into the main model. We add an in-
stance of PowerWindowWiring or PowerWindowDeployment to the root PowerWindowSystem
clafer.

5.2.4 Side Effects

Collaboration objects have some performance overhead because of references. Also, when
using reference, there is inconvenience in terms of working with references (i.e., writing
.ref every time we need to access switch). We do not analyze or quantify side effects in
this work.

49

Chapter 6

Power Window Control Case Study

6.1 Introduction

The Power Window (PW) system is a part of a car electronic-electric architecture that is
responsible for Power Window operation (Figure 6.1). The most basic feature of the system
is moving the window up or down depending on a switch button pressed.

BCMDriver Front Passenger

body harness

dumb switch

smart motor smart motor

dumb switch

door harness door harness

 +

Figure 6.1: Power Window system E/E architecture overview: two-window configuration.
Devices are blue horizontal rectangles. Power wire connector is a solid red line, device
power connector is a dashed yellow line, discrete wire connector is a dashed green line.
Power wire connectors go to the power supply fuse located in the body harness close to
BCM — Body Control Module. Bus is a black solid line

50

6.1.1 Motivation

There are three reasons of choosing the Power Window system for the thesis case study.
First, the PW system’s E/E architecture is a rich representative of a car E/E architecture:
it can be decomposed into subsystems, it has various configurations, and its hardware
and functionality is variability-rich. Second, the PW system is a relatively small and self-
contained system compared to, for example, the power-train system. Third, the PW system
operation principles are easy to explain and understand without going too detailed on car
control theory.

The complete power window system consists of two subsystems — for two-window con-
figuration, or four and more — to support rear passengers. Subsystems are not completely
isolated: the driver window’s switch — called the master switch (MS) often can control
other windows as well. Moreover, Body Control Module (BCM) is often involved in system
operation. The subsystems communicate to each other via LIN (local area interconnection
network) buses or discrete, power and analogue wires.

6.1.2 Challenges

In spite of relative simplicity of the power window subsystem, its E/E architecture is not
straightforward. First, complexity comes from device variability. Switches can be smart or
dumb, so do motors. Some configurations have dedicated door modules — separate ECUs.
Moreover, certain configurations may also involve BCM.

Next, complexity comes from variability of connectors. Motor can be controlled via
power wires, discrete wires or a LIN bus. Driver and front passenger window may commu-
nicate via a bus, while communication to the rear windows can be done via discrete wires.
Analogue wires are also used when connecting a hall sensor to a device that drives the
motor.

And finally, complexity comes from deployment variability. Control functions can be
distributed across switches, motors, door modules and the BCM. Many deployments are
theoretically possible.

6.1.3 Structure and Scope

The flow of the case study is built incrementally and consists of two parts.

51

1. Step-by-step modeling and design exploration of a single subsystem — Driver Win-
dow Subsystem

2. Extending the model by adding a front passenger window subsystem to make the
complete PW System

For the first part, we perform and explain the following activities:

1. Creating a configuration model in terms of features (expressUp, express, otherRemoteControl)
— Section 6.3.1

2. Modeling functional architecture in terms of analysis functions and functional devices,
according to the EAST-ADL standard — Section 6.3.2

3. Modeling hardware topology and generate the proper one with accordance to the
functional architecture — Section 6.3.3

4. Modeling possible deployments of functions onto the hardware — Section 6.3.4

5. Modeling wire connectors and buses corresponding to deployment rules — Sec-
tion 6.3.4

6. Performing design exploration via specialization constraints — Section 6.6

7. Adding quality attributes and performing design exploration via multi-objective op-
timization — Section 6.7

For the second part, we demonstrate integration methods and a big illustrative example
on optimization-based design exploration — Section 6.8. At the end of the case study, we
make a summary and discuss limitations in Section 6.9.

6.2 Methodology

Our methodology is described in the previous chapters 3, 4 and 5.

We apply Macro-Level Patterns (Chapter 5) in the following way. Bottom-up develop-
ment pattern (Sec. 5.1) suggests system-to-part decomposition and bottom-up develop-
ment with testing. The approach is illustrated on Fig. 5.1. Thus, we start with a simple
subsystem — a driver window subsystem.

52

When modeling cross-cutting concerns, such as, deloyment and wiring, we apply the
Colaboration pattern as described in Sec. 5.2. However, we do not use this pattern ex-
cessively: we apply the pattern once for both deployment and wiring, since collaborators
are the same, and therefore, there is no point introducing more side effects in terms of
reasoning performance.

Throughout the modeling process, we refer to Chapter 3 for choosing appropriate mod-
eling methods and building blocks. Also, we apply micro-level patterns 4 whenever it is
necessary. For example, we use one-to-many modeling pattern (Sec. 4.2) to model function-
to-hardware deployment.

We also use EAST-ADL levels to structure our modeling: we start with features (Vehicle
Level), then model functional architecture (Analysis level) and step down to the Design
level to model hardware. These levels are orthogonal and complementary to our bottom-up
development approach.

For optimization and instance generation, we use ClaferChocoIG solver [2] throughout
the case study. For visualization and exploration, we use ClaferMooVisualizer [27] and
ClaferConfigurator [10].

6.3 Modeling Features, Functions and Hardware

6.3.1 Vehicle Level: Features

According to EAST-ADL standard, we start with the Vehicle level. At the this level, we
define features that are relevant to our systems and subsystems. Since we start with a
subsystem, we list only the features specific to a subsystem.

First, each power window normally supports basic up and down features, we call id
BasicUpDown. A human presses up or down button on his or her switch to make the
window move up or down.

Next, some power windows support express features. It means a driver or a passenger
can open or also close his or her window completely with one click on an express button.
We model a feature with implementation in mind, therefore, therefore, we distinguish the
feature expressUp as it makes our subsystem more complex. Here is the configuration
model so far:

abstract PWSubsystemConfig

53

basicUpDown // mandatory feature
express ? // at least express down
expressUp ? // both express up and express down

So, the possible configurations will be: express, but no expressUp — means will have
only express down. If we have both express and expressUp — we have both express up
and express down. And finally, if we have neither of these, our subsystem does not support
express features at all, only BasicUpDown. We cannot have expressUp without express
because the former one is nested under the latter one, and can be present if the parent —
express — is present.

6.3.2 Analysis Level: Functional Architecture

Based on our experience and observations of Power Window systems of various cars, we
define a functional architecture for the system. We define it in terms of EAST-ADL con-
cepts of Analysis Function and Functional Device and connectors across them (Sec. 2.1).
Also, we introduce variability to the functional architecture, so that it can support vari-
ous configurations. Figure 6.2 represents our functional architecture for the driver window
subsystem.

Switch is a functional device that receives inputs from a driver. A driver presses one
of the up and down buttons or express variations of those. We denote Switch functional
device’s output as Request.

Cars with a rooftop or remote operation (using a remote key) are able to adjust window
position without switch operation. The request denoted by Remote Request is sent to the
subsystem and then combined with the normal Request. We assume there is a specific
function called Remote Request Arbitrator that does this combination. As a result, the
Arbitrated Request goes further to a control function. As noted earlier, not all cars have
remote operation. Therefore, the entire set — Remote Request, Remote Request Arbitrator
and Arbitrated Request is optional its presence has to be configured. Now we realize that
we need such a feature, thus we add it to the configuration feature model and name it
remoteOperation ?, making it optional.

We name the main PW control function as WinController. This function is responsible
for sending commands (Command signal) to the motor, while handling the extreme con-
ditions when the window is already fully open or fully closed. To be able to verify these
conditions, this function can measure the current running through the motor. If the cur-
rent is too high, this means the motor is stuck, and two of the reasons of that are exactly

54

Switch

FD

Remote
Request
Arbitrator

WinController Motor

FD

FD

FD

Request
Arbitrated
Request Command

Remote Request

Window Position

Motor Current

Pinch
Detected

Window Position

Current
Sensor

Position
Sensor

Pinch
Detection

?

?

?

?

?

? ?

?

Motor Current ?

Figure 6.2: Complete PW driver subsystem’s functional architecture. Hollow blocks repre-
sent analysis functions, shaded blocks with the FD label — functional devices. Optional
analysis functions, functional devices and connectors are denoted using a question mark.

the extreme cases of the fully open and the fully closed window. So, there is a connection
Current from a so-called Current Sensor to WinController which decides whether to send
requests or not.

To clarify, in the final deployment, Current Sensor and WinController can be deployed
onto the same device, so this connection may not be mapped to an actual wire. In case
of an express-down feature support, WinController is supposed to send signals to the
Motor functional device continuosly. At the final deployment step, WinController may be
physically put on a smart motor, therefore, the motor may control itself and handle all the
extreme cases and express requests. At the current abstraction level, however, the Motor
is an abstraction and represents a functional device with a single function: moving the
window up or down.

As noted earlier, some PW systems support the express-up feature. From the implemen-
tation point of view, the system becomes more complex. One of the reasons is a function
called Pinch Detection that is supposed to stop the window from moving up in case it
hits an obstacle, i.e., a human finger, to avoid injuries. This function, however, for security

55

reasons, should not stop the window from moving up if the window is being closed by a
normal up button pressed by a human. Moreover, Pinch Detection function is supposed
to be switched off in case the window is just about to be completely closed, so that it can
be closed fully without falsely detected obstacle. Thus, the function accepts signals from
another functional device that we denote as Position Sensor and sends a signal Pinch De-
tected to WinController which can stop the window from moving up. As in case of remote
arbitrator, the entire set of functions and connectors related to express-up functionality is
optional and marked with a question mark.

At this point, we have an analysis-level model of the PW system’s driver subsystem. De-
pending on the configuration, optional functional devices and functions with corresponding
connections may or may not be included in the concrete functional architecture. Figure 6.3
represents all four possible variants of the functional architecture.

Switch

FD

WinController Motor

FD

FD

Request
Command

Motor Current Current
Sensor

(a) No other remote control, no express-up

Switch

FD

Remote
Request
Arbitrator

WinController Motor

FD

FD

Request
Arbitrated
Request Command

Remote Request

Motor Current Current
Sensor

(b) Other remote control, no express-up

Switch

FD

WinController Motor

FD

FD

FD

Request
Command

Window Position

Pinch
Detected

Window Position

Current
Sensor

Position
Sensor

Pinch
Detection

Motor Current

Motor Current

(c) No other remote control and express-up

Switch

FD

Remote
Request
Arbitrator

WinController Motor

FD

FD

FD

Request
Arbitrated
Request Command

Remote Request

Window Position

Pinch
Detected

Window Position

Current
Sensor

Position
Sensor

Pinch
Detection

Motor Current

Motor Current

(d) Other remote control and express-up

Figure 6.3: Four possible variants of PW driver subsystem’s functional architecture

The top two variants (Fig. 6.3a and Fig. 6.3b) do not support express-up, since they
have neither pinch detection nor position sensor. They differ only by inclusion of a remote
request arbitration feature. The bottom two variants (Fig. 6.3c and Fig. 6.3d) do support
express-up and also differ by remote request arbitration functions.

This concludes the general description of PW driver subsystem’s functional architecture.

56

Compared to the Driver subsystem, Passenger subsystems are slightly more complex. First,
there is another arbitration component — Switch Arbitrator — that is supposed to arbitrate
requests from the main switch and the passenger switch. In addition to that, rear window
subsystems also have a child lock functionality which adds additional functions. In our
work, we follow the bottom-up development pattern, therefore, we start modeling a simple
(driver) subsystem first, test it, and then continue doing extensions.

Basic types

First, to be able to model our concepts, we need to define types — a small metamodel. We
define AnalysisFunction and FunctionalDevice concepts. Also, according to EAST-ADL
specification, FunctionalDevice inherits AnalysisFunction. The semantic difference is
that functional devices get and send information from or to the plant. However, we do not
capture this distinction and use it for convenience.

abstract AnalysisFunction
abstract FunctionalDevice : AnalysisFunction

Next, we need an abstraction of a connector. We define a connector in a way we de-
scribed in Sec. 3.1 and denote this concept as AFConnector (“analysis function connector”).
Since functional devices inherit analysis functions, we can type both ends of a connector
to be AnalysisFucntion:

abstract AFConnector
src -> AnalysisFunction
dest -> AnalysisFunction

The abstractions above combined with expressive power of Clafer are sufficient to model
the entire functional architecture.

Subsystem Functional Architecture

First, we define an abstract clafer called PWSubsystemFunctionalArchitecture. We follow
the approach described in Sec. 3.1 and include all analysis functions and functional devices
we see on the Figure 6.2 in the model:

57

abstract PWSubsystemFunctionalArchitecture
WinController : AnalysisFunction
Motor : FunctionalDevice
Switch : FunctionalDevice
CurrentSensor : FunctionalDevice

PositionSensor : FunctionalDevice ?
PinchDetection : AnalysisFunction?
OtherRemoteArbitrator : AnalysisFunction ?

Next, we model connections by instantiating connectors. For example, we create a
connection conCommand and specify that the source is WinController and the destination
is Motor functional device. We decide to group certain connections (the ones related to
pinch detection), so that the entire group inclusion or removal is easy. And also, we model
two options for the connection with the source at Switch: in case we have a remote control,
the signal goes to the remote arbitrator, otherwise it goes directly to WinController. The
code below enumerates all the connectors we need:

conCommand : AFConnector
[src = WinController]
[dest = Motor]
conCurrent : AFConnector
[src = CurrentSensor]
[dest = WinController]

conArbitratedRequestFromOtherRemoteArbitratorToWinController : AFConnector ?
[src = OtherRemoteArbitrator]
[dest = WinController]
conRequestFromSwitchToOtherRemoteArbitrator : AFConnector ?
[src = Switch]
[dest = OtherRemoteArbitrator]
conRequestFromSwitchToWinController : AFConnector ?
[src = Switch]
[dest = WinController]

pinchDetectionConnections ?
conPositionToWinController : AFConnector
[src = PositionSensor]

58

[dest = WinController]
conPositionToPinchDetection : AFConnector
[src = PositionSensor]
[dest = PinchDetection]
conCurrentToPinchDetection : AFConnector
[src = CurrentSensor]
[dest = PinchDetection]
conPinchDetectionToWinController : AFConnector
[src = PinchDetection]
[dest = WinController]

And the final step is to add proper constraints with respect to the subsystem features.
We add a reference to the configuration feature model and link it to the architecture model
by using equivalence constraints in the following way:

config -> PWSubsystemConfig

[config.otherRemoteControl <=> OtherRemoteArbitrator]
[config.otherRemoteControl <=>
conRequestFromSwitchToOtherRemoteArbitrator]

[config.otherRemoteControl <=>
conArbitratedRequestFromOtherRemoteArbitratorToWinController]

[no config.otherRemoteControl <=> conRequestFromSwitchToWinController]

Thus, if we have otherRemoteControl, then we will have OtherRemoteArbitrator
and the two connections. Otherwise, we have a direct connection from Switch to the
WinController. Note that we use equivalence, since one directional implications are not
enough to completely deny the absence of clafers.

And finally, we configure the pinch detection and position sensor functions and connec-
tors in a similar way by connecting them to the expressUp feature. Now it becomes clear
that grouping is useful, since we can enable or disable the entire group.

[config.express.expressUp <=> PinchDetection]
[config.express.expressUp <=> PositionSensor]
[config.express.expressUp <=> pinchDetectionConnections]

This makes our analysis model complete and configured with respect to the configura-
tion feature model.

59

Testing

To be able to test, we move level up and create a clafer that will include instances of both
PWSubsystemFunctionalArchitecture and PWSubsystemConfig. We call it PWSubsytem
and its declaration and definition is done in the following way:

PowerWindowFunctionalArchitecture
driverFAConfig : PWSubsystemConfig
driverFA : PWSubsystemFunctionalArchitecture
[config = driverFAConfig]

The code above is just enough to test our functional architecture. We run our code in
any of the Clafer backends. The textual instances that get generated are very big, thus
we do not include them. However, we get four instances in total, and they correspond
exactly to the four functional architectures on Figure 6.3. The instances are generated
instantaneously, and therefore, we do not have reasoning performance problems and are
good to go.

6.3.3 Design Level: Hardware Topology

Now we move one level down according to the EAST-ADL specification and model a hard-
ware topology. We also accommodate variability as we did for the functional architecture.
We still follow the same bottom-up development approach: we start with a single sub-
system only, and then combine them into a complete system hardware with testing. This
subsection has many references to Chapter. 3, since we describe our methodology using
examples from the hardware domain. Thus, we do not repeat the details in this subsection.

Basic types

First, we need to define basic types as described in Sec. 3.1. We prefer the alternative
Fig. 3.2a to reduce the number of abstract clafers:

abstract Device
electronic ?
smart ?

[smart => electronic]

60

And second, we define an ECU as a smart device:

abstract ECU : Device
[smart]

This completes our hardware architecture so far. We model connectors in later sections.

Defining a subsystem

Now, since we have the basic types to work with, we can define a subsystem. We already
described hardware subsystem definition in Section 3.1 on a similar example.

Moreover, we need queries to represent a set of smart components. We apply the method
two described in Sec. 4.5. We define two references — a switch and a motor both are of
the type Device. Next, we define all the supporting instances: smartSwitch, dumbSwitch,
smartMotor, and dumbMotor. A complete definition for the hardware subsystem is illus-
trated below:

abstract PWSubsystemHardware

doorModule : ECU ?
switch -> Device
motor -> Device
bcm -> ECU ?

localComponents -> Device 0..4
[localComponents = switch.ref, motor, bcm.ref, doorModule]
localSmartComponents -> Device 0..4
[localSmartComponents = smartSwitch, smartMotor, bcm.ref, doorModule]

smartSwitch : Device ?
[smart]
[switch = this]
dumbSwitch : Device ?
[no smart]
[switch = this]
[smartSwitch xor dumbSwitch]

61

smartMotor : Device ?
[smart]
[motor = this]
dumbMotor : Device ?
[no smart]
[motor = this]
[smartMotor xor dumbMotor]

Testing

We define another concrete clafer — PWSystemHardware — and instantiate our subsystem
underneath. We also link the bcm reference to the actual BCM instantiated at this level:

PWSystemHardware
driverSubsystemHardware : PWSubsystemHardware // instance for the

// driver window
[bcm = BCM] // // configuration - setting the bcm reference

BCM : ECU ?

Now we execute the model in one of the backends. There are 36 instances generated
in total, meaning there are 36 possible designs for the driver window hardware, excluding
connectors. We show only two instances below: the smallest instance and the largest one.
The smallest instance looks as follows:

myPWSystemHardware
driverSubsystemHardware
switch = dumbSwitch
motor = dumbMotor
localComponents#0 = dumbSwitch
localComponents#1 = dumbMotor
dumbSwitch
dumbMotor

There is no door module nor BCM. Both the switch and the motor components are
dumb. There are two local components in total: switch and the motor. There are no smart
components, so this is not shown.

62

The largest instance is very different. There is a door module and BCM, both are
present. All components are both smart and electronic. There are all four smart compo-
nents:

myPWSystemHardware
driverSubsystemHardware
doorModule
electronic
smart

switch = smartSwitch
motor = smartMotor
bcm = BCM
localComponents#0 = smartSwitch
localComponents#1 = smartMotor
localComponents#2 = doorModule
localComponents#3 = BCM
localSmartComponents#0 = smartSwitch
localSmartComponents#1 = smartMotor
localSmartComponents#2 = doorModule
localSmartComponents#3 = BCM
smartSwitch
electronic
smart

smartMotor
electronic
smart

BCM
electronic
smart

6.3.4 Design Level: Deployment and Wiring

First, we have to augment our metamodel with deployment capabilities. We use the many-
to-one relationship pattern Sec. 4.2:

abstract AnalysisFunction
deployedTo -> Device

63

[parent in this.deployedFrom]

abstract Device
...
deployedFrom -> AnalysisFunction *
[this.deployedTo = parent]

To model deployment rules, we follow the collaboration pattern described in Sec. 5.2.
So, we start with declaring the collaboration environtment called PWSubsystemDeployment
and define two collaborators: in our case, the functional architecture fa collaborates with
a hardware topology ht:

abstract PWSubsystemDeploymentAndWiring
ht -> PWSubsystemHardware
fa -> PWSubsystemFunctionalArchitecture

Deployment rules

First, we deploy functional devices that have a clear destination. Clearly, the Switch func-
tional device has to be deployed to switch hardware device, and Motor has to be placed
on the motor:

[fa.Switch.deployedTo.ref = ht.switch.ref] // to the local switch only
[fa.Motor.deployedTo.ref = ht.motor.ref] // to the motor device only

To formalize the deployment rules, we analyze existing power window systems and
extract common patterns. We also introduce new concepts that become useful to simplify
deployment rules. For example, we add a concept of a motor driver — a device that supplies
a load power to the motor. This abstraction is useful, because it simplifies reasoning on
deployment of CurrentSensor and WinController functions. Since we do not know in
advance what device drives the motor, we simply specify that this can be any of the local
components. Moreover, if we have both BCM and a local door module, we would never
assign the motor driver role to the BCM — it is suboptimal. Therefore, we have the
following model:

// Motor Driver

64

motorDriver -> Device
[motorDriver.ref in ht.localComponents.ref]
// MotorDriver can be any of {BCM, switch, motor, doorModule}

[(ht.doorModule && ht.bcm) => (motorDriver.ref != ht.bcm.ref)]
// if we have a door module and BCM, then the motor driver is not BCM

Next, we need to configure deployment in case we have a double-express functional-
ity. If we do have express.expressUp, then the following conditions must be true. The
PositionSensor, PinchDetection and WinController have to be deployed to smart com-
ponents. Otherwise, it is impossible for other functions to work with PinchDetection, since
the latter one has to be on a smart component. Moreover, if the position sensor is not de-
ployed to the motor driver, it has to be deployed on a motor. All the constraints actually
imply that the motor driver or a motor have to be smart:

// ExpressUp: Position Sensor, Pinch Detection, WinCotnroller
[fa.config.express.expressUp =>
(
(fa.PositionSensor.deployedTo.ref in ht.localComponents.ref) &&
(fa.PinchDetection.deployedTo.ref in ht.localSmartComponents.ref) &&
(fa.WinController.deployedTo.ref in ht.localSmartComponents.ref) &&
((fa.PositionSensor.deployedTo.ref != motorDriver.ref)
=> (fa.PositionSensor.deployedTo.ref = ht.motor.ref))

)
]

Further, we have to state that WinController has to be deployed to an electronic
component, if the window supports the express feature. The reason is that purely electric
hardware cannot send repeated signals to the motor on its own. Therefore, the hardware
has to be either smart (which implies it is electronic) or it has to include simple electronic
circuits that support the required functionality (just electronic, not smart):

[fa.config.express => (fa.WinController.deployedTo.electronic)]

Now we consider deployment of WinController and CurrentSensor in more details.
First, if the motor driver is smart, then WinController has to talk to it via a bus, meaning
that it has to be deployed on a smart device. The current sensor is deployed to the motor
driver, since the motor driver supplies power and therefore, can measure the current flowing
through the motor:

65

[motorDriver.smart => (
(fa.WinController.deployedTo.ref in ht.localSmartComponents.ref) &&
(fa.CurrentSensor.deployedTo.ref = motorDriver.ref)
)
]

The next case includes a completely dumb motor driver (meaning it’s a dumb switch
or a dumb motor, without any electronics). If that’s the case, then two cases are possible.
Either both WinController and CurrentSensor are deployed to the switch, or both are
deployed to the motor:

[!motorDriver.electronic => (
// if the motor is driven by a dumb component (not even electronic)
(
(fa.WinController.deployedTo.ref = ht.motor.ref) &&
(fa.CurrentSensor.deployedTo.ref = ht.motor.ref)
// both WinController and CurrentSensor are on the motor (thermistor)
)
|| // or
(
(fa.WinController.deployedTo.ref = ht.switch.ref) &&
(fa.CurrentSensor.deployedTo.ref = ht.switch.ref)
// both window controller and the current sensor are on the dumb switch
)
)]

And the third case, if the motor is driven by an electronic but not smart device, then
WinController can be deployed to any component (of course, it has to talk to the motor
driver) and, the current sensor is deployed on the motor driver, since it can measure the
current:

[(motorDriver.electronic && !motorDriver.smart) =>
(fa.CurrentSensor.deployedTo.ref = motorDriver.ref) &&
(fa.WinController.deployedTo.ref in ht.localComponents.ref)
]

66

And finally, we need to accommodate OtherRemoteArbitrator, if it’s present. To make
this rule short and simple, we say that if WinController is not on the motor, then the
remote arbitrator has to go to the same place as WinController. In any case, the arbitrator
has to be allocated on a smart component:

[fa.OtherRemoteArbitrator =>
(fa.WinController.deployedTo.ref != ht.motor.ref =>
(fa.OtherRemoteArbitrator.deployedTo.ref

= fa.WinController.deployedTo.ref)
)
&&
(fa.OtherRemoteArbitrator.deployedTo.ref in ht.localSmartComponents.ref)
]

This concludes our set of deployment rules for the PW driver subsystem. The next step
is to generate wiring information.

Connectors and Wiring Information

We can model wiring in the same collaboration environment, since deployment and wiring
are closely related: if two functions have to communicate, then they should be either
deployed to the same device, or there has to be a connection between the two devices
the functions are deployed to. Moreover, we may add more deployment rules or impose
additional constraints on the devices while modeling wiring.

In our approach, we consider bus communication separately and currently focus only on
the wires: discrete, power and analog connectors. First, we need to extend our metamodel.
We use the approach described in Sec. 3.1 to model the connectors:

abstract WireConnector
src -> Device
dest -> Device

abstract DiscreteWireConnector : WireConnector
abstract AnalogWireConnector : WireConnector
abstract PowerWireConnector : WireConnector

67

Now, we work in the collaboration environment named PWSubsystemDeploymentAndWiring
and specify connectors. First, we need a power wire connector from the motor driver to the
motor. However, if the motor drives itself, we obviously do not need such a connection1,
but rather assert that the motor is smart:

wireCommand : PowerWireConnector ?
[src = motorDriver.ref]
[dest = ht.motor.ref]

[(motorDriver.ref = ht.motor.ref) <=> ht.motor.smart]
// if the driver is not the motor, then we need a power wire for the command
// we are not making discrete connection to the motor
[ht.motor.smart <=> no wireCommand]

Next, consider a connection from PositionSensor to the motor driver. It is present
only if we have expressUp. Moreover, since the sensor is deployed only to the motor driver
or the motor, we need a physical connection only in the case the motor does not drive
itself. Also, we realize that we need another constraint: if we support express-up, and the
motor driver is a switch, then it has to be smart.

wirePosition : AnalogWireConnector ?
[src = ht.motor.ref]
[dest = motorDriver.ref]

[wirePosition <=>
(fa.config.express.expressUp && (motorDriver.ref != ht.motor.ref))]
// the wire is present if and only if we have express-up,
// and the motor driver is not on the motor
[(fa.config.express.expressUp && motorDriver.ref = ht.switch.ref)
=> ht.switch.smart]

The third connector we may need is a wire from the switch directly to the place where
WinController resides. Obviously, we do not need any wire if WinController is on the
switch. If WinController is not on the switch, then two cases are possible. If the switch
drives the motor, then we do not need any wire, since the power wire is already there to
connect the motor driver to the motor. If the switch does not drive the motor and it is not
smart, we need a wire. If the switch is smart, we can still have a wire for redundancy.
1we model power supply from the fuse separately

68

[!fa.config.otherRemoteControl =>
((fa.WinController.deployedTo.ref = ht.switch.ref) => no wireRequestDirect) &&
((fa.WinController.deployedTo.ref != ht.switch.ref) =>
(
((ht.switch.ref != motorDriver.ref && !ht.switch.smart)

=> wireRequestDirect) &&
((ht.switch.ref = motorDriver.ref) => no wireRequestDirect)
))

]

wireRequestDirect : DiscreteWireConnector ?
[src = ht.switch.ref]
[dest.ref in ht.localSmartComponents.ref]

In case we have a remote control, OtherRemoteArbitrator has to be on a smart com-
ponent, therefore, we need a wire only in case the switch is not smart.

[fa.config.otherRemoteControl => (
(!ht.switch.smart) <=> wireRequestIndirect)

]

wireRequestIndirect : DiscreteWireConnector ?
[src.ref = ht.switch.ref]
[dest.ref in ht.localSmartComponents.ref]
// from switch to any other local smart component
// {BCM, smartMotor, doorModule}

All other connections are either modeled using buses — we model them in a separate
section, or no connection required — i.e., functions are allocated to the same device.

6.4 Integration of Features, Functional Architecture,
Deployment and Wiring

System integration is described in Section 3.1. We instantiate every entity we modeled
previously — deployment and wiring, hardware and functional architecture, include them
in PowerWindowSystem and configure:

69

PowerWindowSystem
DeploymentAndWiring : PWSubsystemDeploymentAndWiring
driverFAConfig : PWSubsystemConfig
driverFA : PWSubsystemFunctionalArchitecture
[config = driverFAConfig]
driverHardware: PWSubsystemHardware
[bcm = BCM]

BCM : ECU ?

Now we have a complete driver subsystem with all the deployment rules and wiring.

6.5 Design Space Complexity

We can now generate possible PW driver subsystem topologies with deployment. We ex-
ecute a backend — ClaferChocoIG — and it generates 876 possible designs. All of them
satisfy our deployment rule specification. The reasons we get this many instances are as
follows:

1. Configuration space. We have several features, including express features and
other remote control. If we assert otherRemoteControl to be excluded by adding the
constraint [no driverFAConfig.otherRemoteControl], our design space decreases
down to 502 instances.

2. Hardware variability. As we discovered while testing the hardware, there are 36
possible hardware designs determined by presence or absence of the door module or
BCM, having smart or dumb components.

3. Deployment variability. In case of functions that are required to be deployed on
a smart component and we have more than one smart component, a function can
be deployed on any of these, since we assume smart-to-smart communication via
buses across all the smart components. Therefore, in case we have both the smart
switch, the door module, the BCM and the smart motor, and we have 2 functions
to be deployed on a smart component, we have 2 ∗ 4! = 2 ∗ 4 ∗ 3 ∗ 2 = 48 possible
deployments of these functions.

Clearly, examination of every possible design even in case of having visualization tools is
impractical. We see two ways of approaching the big design space problem.

70

1. Adding conditions and constraints. For example, we can ask the solver to pro-
duce only purely electric designs with the dumb devices only. Or, we can generate
only designs that involve BCM and do not include additional door modules. We
represent this approach in the next section Sec. 6.6.

2. Optimization. Optimization of deployments. Second, some deployments can be op-
timized. For example, if the functionality can be achieved using dumb devices, then
there is no point of having expensive smart devices — a cost aspect. Moreover, we
may want to maximize the utilization of the switch and motor: there is no point of
sending signals from switch back to the BCM and then to the motor. And finally, we
can optimize communication by minimizing the length and the mass of wiring. We
explore all these approaches in the optimization Sec. 6.7.

6.6 Constraint-Based Design Space Exploration

6.6.1 Basic Electric Design Example

First, we start with a purely electric configuration. In Clafer, we can specify it as follows2:

PureElectric : PowerWindowSystem
[driverHardware.dumbSwitch]
[driverHardware.dumbMotor]
[no BCM]
[no driverFAConfig.express]
[no driverFAConfig.otherRemoteControl]

As a result, only two instances are generated. Both of them are pure electric.

Figure 6.4 illustrates the first variant. The analysis functions WinController, Motor
and CurrentSensor are deployed to the motor. The current sensor can be implemented
using a thermistor located on the motor. If the temperature increases (the current is too
high), the thermistor activates and breaks the circuit. This functionality of stopping the
motor belongs to the WinController function, therefore, it is located on the motor as well.
With regards to the switch, it is purely dumb and supplies power to the motor via a power
wire connector called wireCommand.
2Under current tools implementation, we have to convert the clafer PowerWindowSystem into an ab-

stract to be able to instantiate it

71

dumbSwitch : Device
deployedFrom = Switch

dumbMotor : Device
deployedFrom#1 = WinController
deployedFrom#2 = Motor
deployedFrom#3 = CurrentSensor

wireCommand : Power Wire
src = dumbSwitch
dest = dumbMotor

(a) Textual Form

switch

motor
Motor
WinController
CurrentSensor

Switch

wireCommand

(b) Graphical Form

Figure 6.4: Basic electric variant 1

Figure 6.5 illustrates the second design variant. The switch also supplies power as in
the previous variant. However, now the cut-off functionality is located on the switch. The
switch supplies power, therefore, the current can be measured on the switch and trigger the
cut-off. Thus, the three analysis functions — Switch, CurrentSensor and WinController
are deployed to the switch. The motor is purely dumb without any other functionality.

dumbSwitch : Device
deployedFrom#1 = Switch
deployedFrom#2 = WinController
deployedFrom#3 = CurrentSensor

dumbMotor : Device
deployedFrom = Motor

wireCommand : Power Wire
src = dumbSwitch
dest = dumbMotor

(a) Textual Form

switch

motor Motor

WinController
CurrentSensor
Switch

wireCommand

(b) Graphical Form

Figure 6.5: Basic electric variant 2

72

6.6.2 Contradiction Example

An engineer can mistakenly create a configuration that cannot be implemented. As in the
previous examples, an engineer needs a purely electric configuration, but also needs to be
able to control the windows remotely:

PureElectric : PowerWindowSystem
[driverHardware.dumbSwitch]
[driverHardware.dumbMotor]
[no BCM]
[no driverFAConfig.express]
[driverFAConfig.otherRemoteControl] // is on

The following happens in the solution. driverFAConfig.otherRemoteControl enables
the clafer OtherRemoteArbitrator to be present. There is a deployment rule that says that
OtherRemoteArbitrator has to be placed on a smart device. Since there are no smart de-
vices, Clafer backends output a contradiction message, and no instance gets generated. A
similar effect may happen if we request an expressUp functionality while having dumb de-
vices only. However, if we request for the express-down feature only, it can be implemented
without smart devices, but then the tool will enforces a switch or a motor to be electronic,
so that WinController can send signals continuously.

6.6.3 Complex Example with Smart Devices

The next configuration we try is as follows. There is expressUp and otherRemoteControl
functionality. Both switch and motor are smart. There is no door module, but there is the
BCM.

SmartSwitchAndMotorAndBCM : PowerWindowSystem
[driverFAConfig.express.expressUp]
[driverFAConfig.otherRemoteControl]
[driverHardware.smartMotor]
[driverHardware.smartSwitch]
[no driverHardware.doorModule]

[BCM]

73

Clafer tools generate 15 possible designs. All of them have the same hardware topol-
ogy, and the motor drives itself in all the designs, because the motor is smart. Also, the
CurrentSensor and the PositionSensor are deployed to the motor. The communication
is implemented via a bus and not shown in the instance, since we model it separately.

The main variability comes from the deployment: PinchDetection can reside on any
of the three smart devices (3 options), WinController can also reside on all three com-
ponents, while OtherRemoteArbitrator is deployed on the motor without WinController
(2 possibilities) or the device the WinController is deployed to (3 options). So, in total,
we have 3 ∗ (2 + 3) = 15. Figure 6.6, Figure 6.7, and Figure 6.8 represents few generated
deployments.

smartSwitch
deployedFrom = Switch

smartMotor
deployedFrom#1 = WinController
deployedFrom#2 = Motor
deployedFrom#3 = CurrentSensor
deployedFrom#4 = PositionSensor
deployedFrom#5 = PinchDetection
deployedFrom#6 = OtherRemoteArbitrator

BCM

(a) Textual Form

switch

motor

Switch

BCM

WinController
OtherRemoteArbitrator
PinchDetection
CurrentSensor
PositionSensor
Motor

(b) Graphical Form

Figure 6.6: Complex smart variant 1. Smart motor implements almost all the functionality

Clafer tools include a tool called ClaferConfigurator. It is a variant of ClaferMooVisu-
alizer and also includes Feature and Quality Matrix visualization. We can use this tool to
visualize and compare all the 15 instances. Unfortunately, the tool is too general, therefore
it shows all the clafers even the ones we are not interested in. However, the tool hides all
the commonalities and highlights the differences as illustrated by Fig. 6.9.

Unfortunately, ClaferConfigurator tool’s tabular visualization has limitations. The tool
is not designed to work well with reference clafers: it explicitly lists each set of functions
in a cell, therefore, there is not enough space to show all of them. The tool, however, can
be extended to support problem-specific custom visualizations.

We can create more configurations and explore them in a similar way. For example,
other commonly used configurations include:

74

smartSwitch
deployedFrom#1 = Switch
deployedFrom#2 = WinController
deployedFrom#3 = OtherRemoteArbitrator

smartMotor
deployedFrom#1 = Motor
deployedFrom#2 = CurrentSensor
deployedFrom#3 = PositionSensor
deployedFrom#4 = PinchDetection

BCM

(a) Textual Form

switch

motor

Switch
WinController
OtherRemoteArbitrator

BCM

PinchDetection
CurrentSensor
PositionSensor
Motor

(b) Graphical Form

Figure 6.7: Complex smart variant 2. Load is balanced between the smart switch and smart
motor

1. Having dumb switches, but smart motors.

2. Having smart switches, but dumb motors.

3. Having smart special door modules, but the switches and motors are all dumb.

All the possible options are supported by our model and can be found among the entire
set of designs.

6.7 Optimization-Based Design Space Exploration

Optimization may give us two benefits:

1. Optimization reduces the design space by showing only the most optimal configura-
tions.

2. Optimization allows for discovery of new designs not implemented previously.

In this section, we walk through all the steps of optimization: from defining the quality
attributes to the visualization of optimal designs.

75

smartSwitch
deployedFrom = Switch

smartMotor
deployedFrom#1 = Motor
deployedFrom#2 = CurrentSensor
deployedFrom#3 = PositionSensor
deployedFrom#4 = PinchDetection

BCM
deployedFrom#1 = WinController
deployedFrom#2 = OtherRemoteArbitrator

(a) Textual Form

switch

motor

Switch

BCM

CurrentSensor
PositionSensor
Motor

WinController
OtherRemoteArbitrator
PinchDetection

(b) Graphical Form

Figure 6.8: Complex smart variant 3. BCM is involved and has some control functionality

6.7.1 Adding Quality Attributes

First, we need to define quality attributes. The following options are possible in our problem
domain.

Number of smart components

As we saw in the complex example, the number of smart components is actually more
than required to accommodate all the functionality. In some configurations, BCM has no
functionality deployed nor communication implemented, therefore, it may not be needed
in the context of the system. Moreover, all the functionality can be placed on the motor,
therefore, there may be no necessity in having a smart switch, for example.

Another rationale is that smart components implement functions as a software. There-
fore, it becomes more error-prone.

And finally, the number of conversions from discrete to digital inputs matter. It can be
another quality attribute, however, it is related to the number of small components.

Wire length

Computing wire length has certain benefits. It is the best to have wires to be as short as
possible, because of the following reasons. First, shorter links may result in less latency.

76

Figure 6.9: Clafer Configurator with the two basic electric examples

Having a wire from the main switch to the BCM and then back to the motor is likely to
cause delays. Therefore, a link from the switch directly to the motor is more preferable.
And second, shorter connections are less expensive, and the cost factor is very important
in manufacturing such systems.

Wire mass

We can define the mass of wire as wire length times wire thickness. Wire mass matters
when we consider various types of wires. Load power wires are thicker than discrete wires,
thus, they are more expensive. Wire mass metric can help dealing with this problem.

6.7.2 Modeling Optimization Problem

Modeling Wire Length and Mass

We briefly explained modeling quality attributes in Sec. 3.1 on wire connector examples.
We do the same in our case study: we define wire length, thickness and mass:

77

switch

 door module

motor
inline

door harness

door harness

(a) Door Harness

switchToMotor = 40cm
switchToDoorModule = 20cm
motorToDoorModule = 30cm
inlineToSwitch = 45cm
inlineToMotor = 45cm
inlineToDoorModule = 35cm

inlineToSwitch = 25cm
inlineToMotor = 25cm
inlineToDoorModule = 15cm

(b) Distance Data

Figure 6.10: Door harness and distances

abstract WireConnector
...
length ->> integer // wire length
thickness ->> integer // wire thickness
mass ->> integer = length * thickness // wire mass (thickness * length)

abstract DiscreteWireConnector : WireConnector // inherits WireConnector
[thickness = 1] // take as a base thickness

abstract PowerWireConnector : WireConnector // inherits WireConnector
[thickness = 7] // power wire is ~7 times thicker than a discrete one

Thickness is fixed for each type of wire. However, length is variable and depends on the
wire harnesses in a car. In our example, we use the door harness topology represented on
Figure 6.10 and body harness topology illustrated on Figure 6.11. Note that all distance
data is encoded as constants: therefore, we can easily support other harness topologies.

Now, we walk through every wire connector we have and assign its length in accordance
to harnesses.

78

BCMDriver Front Passenger

body harness

(a) Body Harness

inlineDtoInlineFP = 170cm
inlineDtoBCM = 40cm
inlineFPtoBCM = 130cm

(b) Distance Data

Figure 6.11: Body harness and distances

First, the wireCommand. Its length depends on what the motor driver is. Therefore, we
add an integer value for this distance and compute it using conditions.

abstract PWSubsystemDeploymentAndWiring
...
distFromMotorToMotorDriver ->> integer
[(motorDriver.ref = ht.switch.ref) =>
(distFromMotorToMotorDriver = Dist.switchToMotor)]
[(motorDriver.ref = ht.motor.ref) =>
(distFromMotorToMotorDriver = 0)]
[(motorDriver.ref = ht.doorModule) =>
(distFromMotorToMotorDriver = Dist.motorToDoorModule)]
[(motorDriver.ref = ht.bcm.ref) =>
(distFromMotorToMotorDriver = Dist.inlineToMotor + ht.dist.inlineToBCM)]

Therefore, the wireCommand length becomes distFromMotorToMotorDriver:

wireCommand : PowerWireConnector ?
[src = motorDriver.ref]
[dest = ht.motor.ref]
[length = distFromMotorToMotorDriver]

Next, we consider wirePosition. It connects the motor to the motor driver. However,
it is composed of two wires (the position sensor sends two signals), therefore, we multiply
the length by two:

79

wirePosition : AnalogWireConnector ?
[src = ht.motor.ref]
[dest = motorDriver.ref]
[length = 2 * distFromMotorToMotorDriver]

The lengths of wireRequestDirect and wireRequestDirect are more tricky. First,
the number of wires vary for the switch with express command and the basic up-down
switch. We handle it using the following statement:

numberOfDiscreteWiresFromSwitch ->> integer
[numberOfDiscreteWiresFromSwitch = if fa.config.express then 3 else 2]

Next, the wire length depends on the destination. Again, we include a set of implication
statements to handle all possible cases:

wireRequestDirect : DiscreteWireConnector ?
[src.ref = ht.switch.ref]
[dest.ref in ht.localSmartComponents.ref]
// from switch to any other local smart component
// {BCM, smartMotor, doorModule}
[(dest.ref = ht.motor.ref) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToMotor)]
[(dest.ref = ht.doorModule) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToDoorModule)]
[(dest.ref = ht.bcm.ref) =>
(length = numberOfDiscreteWiresFromSwitch * (Dist.inlineToSwitch

+ ht.dist.inlineToBCM))]

For the wireRequestIndirect, the calculation is exactly the same. Therefore, we have
all the four wires with distance calculation specified.

Modeling Power Supply

Our optimization picture will not be complete unless we consider power supply and power
wires. First, we list our assumptions:

1. A device that supplies a power to the motor needs to get this power from the fuse.

80

2. All electronic (including smart) devices need a device power, which is significantly
less than the load power.

3. Device power wire has a similar thickness as discrete wires.

4. Power supply for both load and device power originates from a fuse located near the
BCM.

5. We ignore ground for simplification assuming we can ground each device at its own
location. Modeling ground is not difficult, though.

Taking all this into account, we can model power supply. We add a powerFuse as non-
electronic, not smart device to the hardware topology. Then we start with a load power
supply for the motor driver. We follow the same approach for the distance calculation as
we did previously. Note that we add distances from a device to the door inline and the
distance from the inline to the power fuse. Since power fuse is close to the BCM, we assume
the distance between the BCM and the fuse is 0 (see Fig. 6.20 for an idea of power flow).

wireFromLoadPowerFuseToMotorDriver : PowerWireConnector
[src.ref = ht.powerFuse]
[dest.ref = motorDriver.ref]
[(motorDriver.ref = ht.switch.ref) =>
(length = ht.dist.inlineToPowerFuse + Dist.inlineToSwitch)]
[(motorDriver.ref = ht.motor.ref) =>
(length = ht.dist.inlineToPowerFuse + Dist.inlineToMotor)]
[(motorDriver.ref = ht.doorModule) =>
(length = ht.dist.inlineToPowerFuse + Dist.inlineToDoorModule)]
[(motorDriver.ref = ht.bcm.ref) => (length = 0)]

Next, we model device power supply. We add an abstraction for the device power wire:

abstract DevicePowerWireConnector : WireConnector // inherits WireConnector
[thickness = 1] // device power wire has the same base thickness

Then, for each device, if and only if it is electronic (or smart), we add a device power
supply. For example, for the door module looks as follows:

81

[ht.doorModule <=> wireFromDevicePowerFuseToDoorModule]
wireFromDevicePowerFuseToDoorModule: DevicePowerWireConnector ?
[src.ref = ht.powerFuse]
[dest.ref = ht.doorModule]
[length = ht.dist.inlineToPowerFuse + Dist.inlineToDoorModule]

Length calculation is simple in this case. We do the same for the switch and the motor.
For the BCM, we do not add a device power supply since it’s already at the same place by
our assumption.

Modeling Buses

Modeling buses is a complicated part since bus may connect more than two devices. More-
over, there are various bus topologies and number of buses as described in the Section 2.3.1.
Also we need to carefully calculate the bus length in each case.

Obviously, if the number of devices is less than two, we cannot have any bus. Otherwise
we approach bus modeling in the following ways represented on Fig. 6.12.

1. A single bus from the outside of subsystems (via BCM) connects each of the lo-
cal smart devices — a Flat topology. We call it branch to all smart components
(Fig. 6.12a).

2. The bus connects the BCM to the door module, and then the door module connects
the rest local devices – applicable for both Grid: Door Module and Super Gateway.
We call this option branch to door module (Fig. 6.12b).

3. The main switch is a hub that has a connection to other subsystems (and BCM if
needed), and then the main switch has a local subnetwork connecting the rest local
devices — a Grid: Master Switch topology. We name it branch to switch (Fig. 6.12c).

4. A single bus that connects each of the local devices — also Flat topology, but just
for the door subsystem. We call this option local bus only (Fig. 6.12d).

For each case, we compute the bus length by adding length portions depending on
presence or absence of a device. We abstract away wires from a device to the bus, but they
are included in the length portions we add. Below is an example of length computation:

82

BCMDriver

body harnessdoor harness

(a) Branch to all

BCMDriver

body harnessdoor harness

door module

(b) Branch to door module

switch

BCMDriver

body harnessdoor harness

(c) Branch to switch

BCMDriver

body harnessdoor harness

(d) Local bus only

Figure 6.12: Bus topology implementation approach. Door branch bus is represented as
a black solid line. Door local bus is a green solid line. A bus may go beyond BCM — a
dashed black line — it does not matter in this implementation approach

xor busType ?
branchToDoorModule
... (length computation)
branchToSwitch
... (length computation)
branchToAllSmartComponents
[(no smartSwitch && no smartMotor && doorModule) => busLength =
dist.inlineToBCM + Dist.inlineToDoorModule]

[(no smartSwitch && smartMotor && no doorModule) => busLength =
dist.inlineToBCM + Dist.inlineToMotor]

[(no smartSwitch && smartMotor && doorModule) => busLength =
dist.inlineToBCM + Dist.inlineToMotor + Dist.doorSpliceToDoorModule]

... (4 more cases)

83

localBusOnly
... (length computation)

The approach above is relatively simple, yet extensible. First, it covers multiple bus
topologies at once: Fig. 6.12b can be used for both Super Gateway and Grid: Door Module.
Next, branch-based options are extensible: if the branch comes to a door harness, it does
not matter where it comes from: it may connect BCM or go directly to the front passenger’s
smart switch.

Adding Total Quality Attributes and Objectives

We recall our PowerWindowSystem clafer and add the total quality attributes.

PowerWindowSystem
...
quality
numberOfSmartComponents ->> integer
= #driverHardware.localSmartComponents

wireLength ->> integer = sum WireConnector.length
wireMass ->> integer = sum WireConnector.mass

Clearly, we need to minimize all the objectives, so we write:

<<min PowerWindowSystem.quality.numberOfSmartComponents >>
<<min PowerWindowSystem.quality.wireLength >>
<<min PowerWindowSystem.quality.wireMass >>

6.7.3 Running Optimization

Now we execute our problem in the ClaferMooVisualizer tool described in Sec. 2.3. The
tool generates 6 optimal designs, or variants. Figure 6.13 shows the tool screenshot with
the 6 generated instances.

BubbleFrontGraph shows three clusters in terms of quality. Each cluster has two in-
stances in it which have exactly the same quality, so they are shown on the graph merged.
The number shown on the circle is an ID of a representative3.
3the number on the circle should not be misinterpreted as the number of instnaces in the cluster

84

Figure 6.13: ClaferMooVisualizer: PW driver subsystem optimization

85

Objectives view and Parallel Cordinates chart reflect the ranges of quality: we can see
that the number of smart components range from 0 to 1, the wire length takes only three
values: 125, 220 and 250. Wire mass also takes three values ranging from 760 to 875.

Feature and Quality Matrix illustrates each design in terms of components and con-
nectors. We collapsed non-interesting clafers or the ones that have redundant information:
i.e., we do not show functional architecture clafers since we can see deployment by looking
the hardware clafers.

In spite of minimization of the number of smart components, the tool still produces 4
designs with a smart component. Now design exploration becomes very important: without
doing exploration we do not have any insights on why this happens and why wiring length
and the number of smart components are non-dominated in some cases.

Driver

body harnessdoor harness

+ -

dumb switch

dumb motor power fuses

(a) Design 1

Driver

body harnessdoor harness

+ -

dumb switch

smart motor power fuses

(b) Design 2

Driver

body harnessdoor harness

+ -

dumb switch

dumb motor

door module

power fuses

(c) Design 3

Figure 6.14: Instance cluster representative designs for PW driver subsystem optimization.
Load power wire connector is a solid red line, device power connector is a dashed yellow
line, discrete wire connector is a dashed green line. Power wire connectors go to the power
supply fuse located in the body harness

86

6.7.4 Performing Exploration

The next step is to understand what are the three clusters, we need to perform exploration.
We use Parallel Coordinates Chart to brush an axis area we want to consider. The views
get filtered, and it is easy to select the two designs. Figure 6.15 shows the filtered views.

Figure 6.15: ClaferMooVisualizer: PW driver subsystem optimization. Designs 5 and 6 are
selected

First, we choose instances without any smart component. By examining Feature and
Quality Matrix, we identify that both designs have dumb switches and dumb motors, and
there is a power wire wireCommand that connects a dumb switch to a dumb motor. There
is also a load power supply coming into the dumb switch from a power fuse to make the
switch powered and to make it able to supply power to the motor.

The difference between the two, as we can see front the Variant Comparer view, is
deployment only. In the instance 5, CurrentSensor and WinController are deployed on
the dumbSwitch. In the instance 6, CurrentSensor and WinController are deployed on
the dumdMotor. Thesea are exactly the same as the basic electric designs depicted on
Fig. 6.4 and Fig. 6.5, but also with power supply and wire length. Clafer tools generated
these designs by performing optimization. Figure 6.14a illustrates the instance cluster.

The second cluster of designs (variants 3 and 4) is illustrated on Figure 6.16. Both has
one smart component — smartMotor. The switch is connected to the motor via a discrete

87

wire. The smart motor drives itself and gets a load power from the fuse. The motor also
includes all the control functionality: WinController is deployed on the motor.

Figure 6.16: ClaferMooVisualizer: PW driver subsystem optimization. Designs 3 and 4 are
selected

All the differences between the two designs come from presence of otherRemoteControl.
If it is present, we have OtherRemoteArbitrator deployed on the motor, and our wire is
called wireRequestIndirect. If remote control is not supported, we just have a wire called
wireRequestDirect, which is equivalent to wireRequestIndirect in terms of length and
mass. Figure 6.14b illustrates the instance cluster. Unfortunately, the tool shows implied
differences as well; thus, the src and dest values of connections are also shown and distract
attention.

Figure 6.17 shows the third cluster of designs (instances 1 and 2). Both has one smart
component — doorModule. The switch is connected to the door module via a discrete wire.
The dumb motor is driven by the doorModule that gets a load power from the fuse. The
door module also includes all the control functionality: WinController is deployed on it.

As in the previous case, the difference between the designs is other remote control
functionality. If it is present, it is deployed on the door module. Figure 6.14c illustrates the
instance cluster.

88

Figure 6.17: ClaferMooVisualizer: PW driver subsystem optimization. Designs 1 and 2 are
selected

6.8 Transition to Multiple Subsystems

To show extensibility of our modeling approach, we show a transition from one window
subsystem to a system of two window subsystems.

6.8.1 Vehicle Level: Features

Passenger subsystem features are not different from the driver subsystem features. However,
some of them become restricted depending on driver subsystem configuration. For example,
the passenger window does support express-up, then the driver window should also be
express-up as driver subsystem is always at least as rich in terms of features as other
subsystems. We can specify these constraints using normal implications:

[passengerFAConfig.express => driverFAConfig.express]
[passengerFAConfig.express.expressUp => driverFAConfig.express.expressUp]

89

6.8.2 Analysis Level: Functional Architecture

Front passenger window subsystem is a little bit more complex that driver window subsys-
tem. It should have a function that combines requests from the local (passenger) switch and
the driver. Driver can close passenger windows too, therefore, we need a connection from
the master switch to that function. We name this function SwitchArbitrator. Figure 6.18
shows these differences.

Remote
Request
Arbitrator

WinController Motor

FD

FD

FD

Arbitrated
Request Command

Remote Request

Window Position

Pinch
Detected

Window Position

Current
Sensor

Position
Sensor

Pinch
Detection

?

?

?

?

?

?

?

?Master Switch

FD

Switch
(Local)

FD

Switch
Arbitrator

Master
Switch
Request

Specific for
Passenger
Window

Motor Current

Motor Current ?

Figure 6.18: Front passenger subsystem architecture. Many components are common. The
specific part is framed in blue. Master switch does not reside in the subsystem: it is a
reference to the master switch

We implement this extension by creating two subtypes for each window and subtyping
it from the common functional architecture part.

abstract DPWSubsystemFunctionalArchitecture : PWSubsystemFunctionalArchitecture
... (driver specific connectors)
abstract FPPWSubsystemFunctionalArchitecture : PWSubsystemFunctionalArchitecture
MasterSwitch -> FunctionalDevice
SwitchArbitrator : AnalysisFunction
... (passenger specific connectors)

90

6.8.3 Design Level: Hardware

Hardware can also be modeled via subtyping with extention. We need masterSwitch refer-
ence to the master switch device, as well as an optional junction component. We discussed
this in the Principles chapter’s Sec. 3.1, and Figure 3.5b reflects this extension.

6.8.4 Design Level: Deployment and Wiring

This SwitchArbitrator function can be deployed in various places:

1. On a passenger switch (dumb or smart). The request from the master switch has to
come to the passenger switch in some way (a wire or a bus)

2. On a junction. Power wires from the master switch and the passenger switch can be
joined into one.

3. On any smart device other than switch. The preference can be a smart motor or a
door module.

As in previous models, we create subtypes of PWDeploymentAndWiring and model each
of the cases above carefully with all the proper connections. We do not show these de-
ployment and wiring rules in our thesis. However, we do show a modeling problem that
arises.

When we define a subtype FPPWDeploymentAndWiring : PWDeploymentAndWiring,
the properties fa (Functional Architecture) and ht (hardware topology) get inherited.
However, we cannot access fa.SwitchArbitrator and ht.switchRequestJunction since
the generic types PWFunctionalArchitecture and PWHardwareTopology do not have these
properties. Therefore, we apply the typecasting pattern described in Sec. 4.4 twice:

fpfa -> FPPWSubsystemFunctionalArchitecture
[fpfa.ref = fa.ref] // typecast fa to fpfa

fpht -> FPPWSubsystemHardware
[fpht.ref = ht.ref] // typecast ht to fpht

Now we can access the properties that were inaccessible by stating fpfa.SwitchArbitrator
and fpht.switchRequestJunction .

91

6.8.5 Integration

We nest our newly created clafers under the PowerWindowSystem as in Section 6.4. We
also change the types to the newly created. The complete assembly looks as follows:

abstract PowerWindowSystem
BCM : ECU ?

driverFAConfig : PWSubsystemConfig
driverFA : DPWSubsystemFunctionalArchitecture
[config = driverFAConfig]

frontPassengerFAConfig : PWSubsystemConfig
frontPassengerFA : FPPWSubsystemFunctionalArchitecture
[config = frontPassengerFAConfig]
[MasterSwitch.ref = driverFA.Switch]

driverHardware: PWSubsystemHardware
[bcm = BCM]
[dist.inlineToBCM = Dist.inlineDtoBCM]
[dist.inlineToFuse = Dist.inlineDtoPowerFuse]
frontPassengerHardware: FPPWSubsystemHardware
[bcm = BCM]
[masterSwitch.ref = driverHardware.switch.ref]
[dist.inlineToBCM = Dist.inlineFPtoBCM]
[dist.inlineToFuse = Dist.inlineFPtoPowerFuse]

driverDeploymentAndWiring : DPWSubsystemDeploymentAndWiring
[ht = driverHardware]
[fa = driverFA]

frontPassengerDeploymentAndWiring : FPPWSubsystemDeploymentAndWiring
[ht = frontPassengerHardware]
[fa = frontPassengerFA]

allSmartComponents -> Device 0..8
[allSmartComponents.ref = driverHardware.localSmartComponents.ref
++ frontPassengerHardware.localSmartComponents.ref]

92

We also adjust our quality metrics to make them take the front passenger subsystem
into account:

quality
numberOfSmartComponents ->> integer = #allSmartComponents
wireLength ->> integer = sum WireConnector.length +
driverHardware.busLength + frontPassengerHardware.busLength
wireMass ->> integer = sum WireConnector.mass +
driverHardware.busMass + frontPassengerHardware.busMass

6.8.6 Optimization-Based Design Exploration

We go to the optimization-based exploration right a way. We try unconstrained optimiza-
tion first, and then switch to the constrained one.

Without Constraints

For the unconstrained optimization, we do not constrain the design: the tool should gen-
erate the entire Pareto front. We do that as follows:

system : PowerWindowSystem
<<min system.quality.numberOfSmartComponents >>
<<min system.quality.wireLength >>
<<min system.quality.wireMass >>

Unfortunately, ClaferMooVisualizer cannot produce any instance within a reasonable
time. The reason is that the design space is big, and the solver has to consider many
possible combinations which is hard to do. Thus, we ask the solver to follow the right
direction by adding constraints.

With Constraints

Now we add constraints and partially specify the design we are interested in. We want a
configuration with driver express-up, but front passenger just express-down. Both should
not have a remote control. Both designs should have smart motors, BCM and a bus that
connects all the smart components together. BCM should be used for communication only,

93

and we deny any deployment on BCM to avoid many isomorphic instances in terms of
structure. We also disable switch request junction to reduce the design space. The complete
configuration looks as follows below:

system : PowerWindowSystem
[driverFAConfig.express.expressUp]
[frontPassengerFAConfig.express]
[no frontPassengerFAConfig.express.expressUp]
[no driverFAConfig.otherRemoteControl]
[no frontPassengerFAConfig.otherRemoteControl]

[driverHardware.smartMotor]
[frontPassengerHardware.smartMotor]
[driverHardware.busType.branchToAllSmartComponents]
[frontPassengerHardware.busType.branchToAllSmartComponents]
[no frontPassengerHardware.switchRequestJunction]

[BCM]
[no BCM.deployedFrom]

This time, ClaferMooVisualizer generates 5 optimal designs relatively fast. The in-
stances are separated into two clusers. One consists of a single instance only. Another
one has four isomorphic instances in terms of structure and differ by deployment only.
Figure 6.19 is a tool screenshot for this problem.

The first cluster — a red circle — is represented by a solely instance 3 smart components
looks as on Figure 6.20a. The three smart devices are the driver smart motor, the front
passenger smart motor and the BCM. Both switches are dumb. There are no door modules.
The bus connects all the three smart devices together. For the master switch, there are
two discrete wire coming out: one goes to the smart motor to control it, another one goes
to the BCM for controlling the passenger motor. The BCM then sends the signals to the
front passenger motor via the bus. The passenger switch has also a discrete wire to control
its motor. Both smart motors get the load power from the power fuse and drive on their
own.

The second cluster — a green circle — represented by 4 isomorphic instances and looks
as on Figure 6.20b. It is almost the same as the previous one, but the master switch is
smart. Now we do not need discrete wires from it, but we connect it to the bus. The wiring
cost decreases, because we have only one wire to the bus instead of having two discrete

94

Figure 6.19: Complete PW system design visualization and exploration — a screenshot
from ClaferMooVisualizer tool

wires to the motor and the bcm. Thus, by adding a smart device — turning the master
switch into the smart master switch — we can save wiring cost.

The optimization backend did not generate any instance with the number of smart
devices greater than 4: they are not necessary and cannot reduce the wiring cost anymore.
Adding a smart component requires a device power from the fuse which negatively affects
the wiring length. The tool still decided to make the master switch smart because it is
located closer to the power supply and has two discrete wires, therefore, making it smart
actually reduces the overall wiring length.

6.9 Conclusions

Performing the Power Window (PW) case study was a very comprehensive evaluation of our
approach. In this section, we list our experience summary, lessons learned and limitations
for each of the following criteria.

95

6.9.1 Domain Modeling

We successfully created meta-models for hardware and functional architectures. We demon-
strated that relatively small metamodels combined with expressive power of Clafer is suf-
ficient to create a model of the two-window PW system.

We successfully modeled function connectors with quality attributes — length, thick-
ness and mass. Clafer does not support real numbers, thus we had to use scaling techniques.
However, the techniques worked in our example with thickness and reflected the real se-
mantics of thickness.

We successfully modeled variability at all EAST-ADL abstraction levels — vehicle,
analysis and design levels. Also, variability were supported at all of the device, subsystem
and system levels. Clafer was very intuitive when representing variability.

During modeling, bottom-up development approach (Sec. 5.1) reduced debugging time
and improved model comprehension. First, by successfully testing individual parts and
then integrating, we did not have any debugging problems described in Sec. 5.1. Second,
we identified the two-window optimization scalability problem and resolved it relatively
fast by adding constraints: we could easily turn some model parts off, which we would not
able to do if started with a huge model. And third, we used inheritance with configuration
thus thinking in object-oriented way.

6.9.2 Modeling Wiring and Deployment Problems

Clafer was expressive enough to represent all deployment and wiring constraints. We suc-
cessfully applied the collaboration pattern (Sec. 5.2) for these two problems. In terms of
modeling deployment and wiring constraints, Clafer lacks a comprehensive branching struc-
ture: we had to model conditions via a set of implications. The built-in if-then-else was not
easy to use because of its unintuitive syntax and type-checking.

6.9.3 Reasoning Performance

With regards to instance generation performance: the process was instantaneous for both
driver subsystem and the two-window system. Both constrained and unconstrained config-
urations were instantaneous.

With regards to optimization performance, we observed a perfect (instantaneous) rea-
soning performance for the driver subsystem. For the two-window system, unconstrained

96

optimization was slow and did not finish within the reasonable time. However, a reasonably
constrained optimization was instantaneous for our experiments. Experiments can be made
to analyze performance in more details.

6.9.4 Design Generation

Clafer backends successfully generated correct designs from our specifications. Designs
from both constraint-based generation and optimization-based instance generation in our
experiments were satisfactory. However, we did not perform detailed testing, therefore, we
cannot guarantee full correctness and validity of all our constraints. Moreover, our domain
knowledge is limited and we are not experts in the electrical engineering area.

6.9.5 Visualization and Exploration

We were able to visualize small design spaces (up to 15 designs) and compare selected de-
signs to each other using only the standard built-in visualizations of ClaferMooVisualizer
and ClaferConfigurator. Three-dimensional visualization of Bubble Front Graph was in-
tuitive and comprehensive. Multi-dimensional Parallel Coordinates Chart was very useful
for observing quality ranges and filtering. Feature and Quality Matrix, in contrast, was
less intuitive: it shows a lot of irrelevant clafers and does not allow easy comparison. Vari-
ant Comparer was useful for highlighting design differences, however, commonalities were
harder to observe because of their big number.

The visualizations, however, were very generic. For thesis illustrations, we made vari-
ous design diagrams manually. The tools could generate such diagrams automatically by
supporting custom, problem-specific visualizations.

97

BCMDriver Front Passenger

body harness

dumb switch

smart motor smart motor

dumb switch

door harness door harness

 +

(a) Design 1

BCMDriver Front Passenger

body harness

smart switch

smart motor smart motor

dumb switch

door harness door harness

 +

(b) Design 2

Figure 6.20: Representatives of two clusters of instances for the complete PW system
optimization. Power wire connector is a solid red line, device power connector is a dashed
yellow line, discrete wire connector is a dashed green line. Power wire connectors go to the
power supply fuse located in the body harness close to BCM. Bus is a black solid line

98

Chapter 7

Conclusions, Limitations, Threats to
Validity and Future Work

7.1 General Conclusions

We formulated architecture modeling principles and patterns in Clafer. We defined and
demonstrated approaches of meta-modeling, subsystem and system domain modeling. We
defined two Macro-Level patterns and four Micro-Level patterns that we successfully ap-
plied in the architecture modeling domain. We demonstrated extensibility of our model-
ing approach by showing a transition from modeling one-window system (driver only) to
two-window system (driver and front passenger). We believe the modeling principles and
patterns can be used outside the architecture domain.

We successfully applied Clafer and Clafer tools for two problems in architecture mod-
eling. First, we modeled an automated hardware topology generation. Clafer tools were
able to generate valid hardware topologies with wire connectors. Second, we formulated a
function-to-hardware deployment problem, and Clafer tools were able to generate correct
designs with function deployment. In our approach we combined the two problems together
to generate complete designs with deployment.

We formulated and performed multi-objective optimization with respect to three min-
imization objectives — the number of smart components, wire length and wire mass. We
demonstrated the ways of design visualization and exploration using ClaferMooVisualizer
and ClaferConfigurator.

As a secondary contribution, we evaluated Clafer backends and visualization tools and

99

proposed extensions to the tools and the language itself.

7.2 Limitations

Scalability in terms of reasoning performance is the most significant limitation of our ap-
proach. We start having performance problems when modeling two-window Power Window
systems. Also, our performance tests made for query modeling methods demonstrated per-
formance decrease with increasing number of subsystems. Currently, in Clafer all reasoning
and optimizations approaches are exact, therefore, they have scalability problems because
of the exponential complexity.

We do not foresee other significant limitations of our approach.

7.3 Threats to Validity

For our case study, we have two threats to validity. First, we lack full-coverage tests for
our case study models. We did not perform detailed testing, so there is no guarantee of
full correctness and validity of our case study model. However, our approach is feasible
with regards to the problems we considered (deployment and topology generation), and
resulting designs we received from the tools are plausible. Second, we have a limited domain
knowledge on the automotive systems and may not foresee some deployment or wiring rules.
However, this is not a big threat since our case study is extensible in terms of constraints,
and can easily be modified to accommodate new requirements.

The main threat to validity of our entire research is a bias towards the current im-
plementation of Clafer tools, the release 0.3.6.1. Clafer language and tools are gradually
extended to support new features. First, the features include the ones that are present in
Clafer semantics [13] but not implemented in the tools yet — such as, redefinition. Second,
there are features that are theoretically supported by the solvers and useful in general, but
not implemented yet — such as, real numbers. Our work is fully valid for the current Clafer
release, however, for the next versions of Clafer, some of our conclusions on performance
reasoning and modeling approaches may become invalid.

100

7.4 Future Work

There is a room for a future work can be done towards both Clafer modeling principles and
the Power Window case study. With regards to modeling approaches and principles, new
domains and new applications of Clafer can be explored. Some of our formulated model-
ing principles and patterns may be evaluated in other technical domains (e.g., aerospace
domain).

With regards to the case study, it can be extended to support four-window Power
Window system configurations and evaluated on these configurations. Moreover, the case
study can be the basis for the future works in behavioral modeling, such as, latency analysis.

101

Appendix A

Full Source Codes of Models

Source codes in Clafer for the Power Window Case Study can be found online:

https://github.com/gsdlab/ClaferCaseStudies/tree/master/PowerWindow.Thesis

A.1 Power Window Case Study: Driver Only Model

//========================
/* Distance Data */
//========================

Dist
switchToMotor : integer = 40
switchToDoorModule : integer = 20
motorToDoorModule : integer = 30
inlineToSwitch : integer = 45
inlineToMotor : integer = 45
inlineToDoorModule : integer = 35

doorSpliceToSwitch : integer = 25
doorSpliceToMotor : integer = 25
doorSpliceToDoorModule : integer = 15

inlineDtoInlineFP : integer = 170

102

inlineDtoBCM : integer = 40
inlineFPtoBCM : integer = 130

/* for power supply */
inlineDtoPowerFuse : integer = 40
inlineFPtoPowerFuse : integer = 130

abstract PWSubsystemConfig
basicUpDown // mandatory feature
express ? // at least express down
expressUp ? // both express up and express down
otherRemoteControl ?

abstract Device
electronic ?
smart ?
[smart => electronic]
deployedFrom -> AnalysisFunction *
[this.deployedTo = parent]

abstract AnalysisFunction
deployedTo -> Device
[parent in this.deployedFrom]

abstract FunctionalDevice : AnalysisFunction

abstract AFConnector
src -> AnalysisFunction
dest -> AnalysisFunction

abstract ECU : Device
[smart]

abstract PWSubsystemFunctionalArchitecture
WinController : AnalysisFunction
Motor : FunctionalDevice
Switch : FunctionalDevice
CurrentSensor : FunctionalDevice

103

PositionSensor : FunctionalDevice ?
PinchDetection : AnalysisFunction?

OtherRemoteArbitrator : AnalysisFunction ?

conCommand : AFConnector
[src = WinController]
[dest = Motor]

conCurrent : AFConnector
[src = CurrentSensor]
[dest = WinController]

conArbitratedRequestFromOtherRemoteArbitratorToWinController : AFConnector ?
[src = OtherRemoteArbitrator]
[dest = WinController]
conRequestFromSwitchToOtherRemoteArbitrator : AFConnector ?
[src = Switch]
[dest = OtherRemoteArbitrator]
conRequestFromSwitchToWinController : AFConnector ?
[src = Switch]
[dest = WinController]

pinchDetectionConnections ?
conPositionToWinController : AFConnector
[src = PositionSensor]
[dest = WinController]
conPositionToPinchDetection : AFConnector
[src = PositionSensor]
[dest = PinchDetection]
conCurrentToPinchDetection : AFConnector
[src = CurrentSensor]
[dest = PinchDetection]
conPinchDetectionToWinController : AFConnector
[src = PinchDetection]
[dest = WinController]

104

config -> PWSubsystemConfig

[config.otherRemoteControl <=> OtherRemoteArbitrator]
[config.otherRemoteControl <=>
conRequestFromSwitchToOtherRemoteArbitrator]

[config.otherRemoteControl <=>
conArbitratedRequestFromOtherRemoteArbitratorToWinController]

[no config.otherRemoteControl <=> conRequestFromSwitchToWinController]

[config.express.expressUp <=> PinchDetection]
[config.express.expressUp <=> PositionSensor]
[config.express.expressUp <=> pinchDetectionConnections]

abstract PWSubsystemHardware

doorModule : ECU ?
switch -> Device
motor -> Device
bcm -> ECU ?

localComponents -> Device 0..4
[localComponents = switch.ref, motor, bcm.ref, doorModule]
localSmartComponents -> Device 0..4
[localSmartComponents = smartSwitch, smartMotor, bcm.ref, doorModule]

smartSwitch : Device ?
[smart]
[switch = this]
dumbSwitch : Device ?
[no smart]
[switch = this]
[smartSwitch xor dumbSwitch]

smartMotor : Device ?
[smart]
[motor = this]
dumbMotor : Device ?

105

[no smart]
[motor = this]
[smartMotor xor dumbMotor]

powerFuse : Device ?
[no electronic]
[no smart]

/* Bus */
[busType <=> (#localSmartComponents > 1)]
[no busType => (busLength = 0)]
busLength ->> integer
busMass ->> integer
[busMass = busLength]
xor busType ?
branchToDoorModule
[bcm && doorModule]

[(smartSwitch && smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToDoorModule
+ Dist.motorToDoorModule + Dist.switchToDoorModule)]

[(smartSwitch && !smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToDoorModule
+ Dist.switchToDoorModule)]

[(!smartSwitch && smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToDoorModule
+ Dist.motorToDoorModule)]

[(!smartSwitch && !smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToDoorModule)]

branchToSwitch
[bcm && smartSwitch && !doorModule]

[(smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToSwitch

106

+ Dist.switchToMotor)]

[(!smartMotor) =>
(busLength = dist.inlineToBCM + Dist.inlineToSwitch)]

branchToAllSmartComponents
[bcm]
[(no smartSwitch && no smartMotor && doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToDoorModule]

[(no smartSwitch && smartMotor && no doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToMotor]
[(no smartSwitch && smartMotor && doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToMotor
+ Dist.doorSpliceToDoorModule]

[(smartSwitch && no smartMotor && no doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToSwitch]
[(smartSwitch && no smartMotor && doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToSwitch]

[(smartSwitch && smartMotor && no doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToSwitch
+ Dist.doorSpliceToMotor]

[(smartSwitch && smartMotor && doorModule) =>
busLength = dist.inlineToBCM + Dist.inlineToSwitch
+ Dist.doorSpliceToMotor]

localBusOnly
[no bcm]
[(smartSwitch && smartMotor) =>
busLength = Dist.switchToMotor]
[(doorModule && smartSwitch && !smartMotor) =>
busLength = Dist.switchToDoorModule]
[(doorModule && smartMotor && !smartSwitch) =>
busLength = Dist.motorToDoorModule]

dist

107

inlineToBCM ->> integer = Dist.inlineDtoBCM
inlineToFuse ->> integer = Dist.inlineDtoPowerFuse

abstract PWSubsystemDeploymentAndWiring
ht -> PWSubsystemHardware
fa -> PWSubsystemFunctionalArchitecture

[fa.Switch.deployedTo.ref = ht.switch.ref] // to the local switch only
[fa.Motor.deployedTo.ref = ht.motor.ref] // to the motor device only

// Motor Driver
motorDriver -> Device
[motorDriver.ref in ht.localComponents.ref]
// MotorDriver can be any of {BCM, switch, motor, doorModule}

[(ht.doorModule && ht.bcm) => (motorDriver.ref != ht.bcm.ref)]
// if we have a door module and BCM, then the motor driver is not BCM
// ExpressUp: Position Sensor, Pinch Detection, WinCotnroller

[fa.config.express.expressUp =>
(
(fa.PositionSensor.deployedTo.ref in ht.localComponents.ref) &&
(fa.PinchDetection.deployedTo.ref in ht.localSmartComponents.ref) &&
(fa.WinController.deployedTo.ref in ht.localSmartComponents.ref) &&
((fa.PositionSensor.deployedTo.ref != motorDriver.ref)
=> (fa.PositionSensor.deployedTo.ref = ht.motor.ref))

)
]

[fa.config.express => (fa.WinController.deployedTo.electronic)]

[motorDriver.smart => (
(fa.WinController.deployedTo.ref in ht.localSmartComponents.ref) &&
(fa.CurrentSensor.deployedTo.ref = motorDriver.ref)
)
]
[!motorDriver.electronic => (
// if the motor is driven by a dumb component (not even electronic)

108

(
(fa.WinController.deployedTo.ref = ht.motor.ref) &&
(fa.CurrentSensor.deployedTo.ref = ht.motor.ref)
// both WinController and CurrentSensor are on the motor (thermistor)
)
|| // or
(
(fa.WinController.deployedTo.ref = ht.switch.ref) &&
(fa.CurrentSensor.deployedTo.ref = ht.switch.ref)
// both window controller and the current sensor are on the dumb switch
)
)]

[(motorDriver.electronic && !motorDriver.smart) =>
(fa.CurrentSensor.deployedTo.ref = motorDriver.ref) &&
(fa.WinController.deployedTo.ref in ht.localComponents.ref)
]

[fa.OtherRemoteArbitrator =>
(fa.WinController.deployedTo.ref != ht.motor.ref =>
(fa.OtherRemoteArbitrator.deployedTo.ref

= fa.WinController.deployedTo.ref)
)
&&
(fa.OtherRemoteArbitrator.deployedTo.ref in ht.localSmartComponents.ref)
]

distFromMotorToMotorDriver ->> integer
[(motorDriver.ref = ht.switch.ref) =>
(distFromMotorToMotorDriver = Dist.switchToMotor)]
[(motorDriver.ref = ht.motor.ref) =>
(distFromMotorToMotorDriver = 0)]
[(motorDriver.ref = ht.doorModule) =>
(distFromMotorToMotorDriver = Dist.motorToDoorModule)]
[(motorDriver.ref = ht.bcm.ref) =>
(distFromMotorToMotorDriver = Dist.inlineToMotor + ht.dist.inlineToBCM)]

/* Command Wire */

109

wireCommand : PowerWireConnector ?
[src = motorDriver.ref]
[dest = ht.motor.ref]
[length = distFromMotorToMotorDriver]

[(motorDriver.ref = ht.motor.ref) <=> ht.motor.smart]
// if the driver is not the motor, then we need a power wire for the command
// we are not making discrete connection to the motor
[ht.motor.smart <=> no wireCommand]

/* Position Wire */

wirePosition : AnalogWireConnector ?
[src = ht.motor.ref]
[dest = motorDriver.ref]
[length = 2 * distFromMotorToMotorDriver]

[wirePosition <=> (fa.config.express.expressUp
&& (motorDriver.ref != ht.motor.ref))]
// the wire is present if and only if we have express-up,
// and the motor driver is not on the motor
[(fa.config.express.expressUp && motorDriver.ref = ht.switch.ref) =>
ht.switch.smart]

/* No Other Remote Control */

[!fa.config.otherRemoteControl =>
((fa.WinController.deployedTo.ref = ht.switch.ref)
=> no wireRequestDirect) &&
((fa.WinController.deployedTo.ref != ht.switch.ref) =>
(
((ht.switch.ref != motorDriver.ref && !ht.switch.smart)

=> wireRequestDirect) &&
((ht.switch.ref = motorDriver.ref) => no wireRequestDirect)
))

]

numberOfDiscreteWiresFromSwitch ->> integer

110

[numberOfDiscreteWiresFromSwitch = if fa.config.express then 3 else 2]

wireRequestDirect : DiscreteWireConnector ?
[src = ht.switch.ref]
[dest.ref in ht.localSmartComponents.ref]
[!fa.config.otherRemoteControl]

[(dest.ref = ht.motor.ref) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToMotor)]
[(dest.ref = ht.doorModule) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToDoorModule)]
[(dest.ref = ht.bcm.ref) =>
(length = numberOfDiscreteWiresFromSwitch * (Dist.inlineToSwitch

+ ht.dist.inlineToBCM))]
/* Other Remote Control */

[fa.config.otherRemoteControl => (
(!ht.switch.smart) <=> wireRequestIndirect)

]

wireRequestIndirect : DiscreteWireConnector ?
[src.ref = ht.switch.ref]
[dest.ref in ht.localSmartComponents.ref]
// from switch to any other local smart component
//{BCM, smartMotor, doorModule}
[fa.config.otherRemoteControl]

[(dest.ref = ht.motor.ref) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToMotor)]
[(dest.ref = ht.doorModule) =>
(length = numberOfDiscreteWiresFromSwitch * Dist.switchToDoorModule)]
[(dest.ref = ht.bcm.ref) =>
(length = numberOfDiscreteWiresFromSwitch * (Dist.inlineToSwitch

+ ht.dist.inlineToBCM))]

//////////////////////////////
// switch or motor being electronic
//////////////////////////////

111

[(!ht.switch.smart) =>
// if the switch is not smart
(ht.switch.electronic <=> (fa.config.express
&& fa.WinController.deployedTo.ref = ht.switch.ref))

// it’s electronic iff WnController is located to it, and we have express
]

[(!ht.motor.smart) =>
// if the motor is not smart
(ht.motor.electronic <=> (
// it’s electronic iff WnController is located to it, and we have express
// or we use hall sensor as a position sensor (it’s placed on the motor)
(fa.config.express && (fa.WinController.deployedTo.ref = ht.motor.ref))
|| (fa.config.express.expressUp &&

(fa.PositionSensor.deployedTo.ref = ht.motor.ref))
)
)
]

//////////// Load Power Supply /////////////////////////
// from the load power fuse, to the motor driver

wireFromLoadPowerFuseToMotorDriver : PowerWireConnector
[src.ref = ht.powerFuse]
[dest.ref = motorDriver.ref]
[(motorDriver.ref = ht.switch.ref) =>
(length = ht.dist.inlineToFuse + Dist.inlineToSwitch)]

// the door module is the switch
[(motorDriver.ref = ht.motor.ref) =>
(length = ht.dist.inlineToFuse + Dist.inlineToMotor)]
// the motor driver is the motor itself
[(motorDriver.ref = ht.doorModule) =>
(length = ht.dist.inlineToFuse + Dist.inlineToDoorModule)]
// the door module is the motor driver
[(motorDriver.ref = ht.bcm) => (length = 0)]
// BCM has it’s own power supply very close to that

112

//////////// Device Power Supply ///////////////////////////////
// from the device power fuse, to any electronic component

[ht.switch.electronic <=> wireFromDevicePowerFuseToSwitch]
wireFromDevicePowerFuseToSwitch: DevicePowerWireConnector ?
[src.ref = ht.powerFuse]
[dest.ref = ht.switch.ref]
[length = ht.dist.inlineToFuse + Dist.inlineToSwitch]

[ht.motor.electronic <=> wireFromDevicePowerFuseToMotor]
wireFromDevicePowerFuseToMotor: DevicePowerWireConnector ?
[src.ref = ht.powerFuse]
[dest.ref = ht.motor.ref]
[length = ht.dist.inlineToFuse + Dist.inlineToMotor]

[ht.doorModule <=> wireFromDevicePowerFuseToDoorModule]
wireFromDevicePowerFuseToDoorModule: DevicePowerWireConnector ?
[src.ref = ht.powerFuse]
[dest.ref = ht.doorModule]
[length = ht.dist.inlineToFuse + Dist.inlineToDoorModule]

abstract WireConnector
src -> Device
dest -> Device
[src.ref != dest.ref]
length ->> integer // wire length
thickness ->> integer // wire thickness
mass ->> integer = length * thickness // wire mass (thickness * length)

abstract DiscreteWireConnector : WireConnector// inherits WireConnector
[thickness = 1] // take as a base thickness

abstract AnalogWireConnector : WireConnector// inherits WireConnector
[thickness = 1] // take as a base thickness

abstract PowerWireConnector : WireConnector // inherits WireConnector
[thickness = 7] // power wire is ~7 times thicker than the discrete one

113

abstract DevicePowerWireConnector : WireConnector // inherits WireConnector
[thickness = 1] // devie power wire has the same thickness

abstract PowerWindowSystem
BCM : ECU ?
driverFAConfig : PWSubsystemConfig
driverFA : PWSubsystemFunctionalArchitecture
[config = driverFAConfig]
driverHardware: PWSubsystemHardware
[bcm = BCM]
driverDeploymentAndWiring : PWSubsystemDeploymentAndWiring
[ht = driverHardware]
[fa = driverFA]

quality
numberOfSmartComponents ->> integer =
#driverHardware.localSmartComponents

wireLength ->> integer = sum WireConnector.length
+ driverHardware.busLength

wireMass ->> integer = sum WireConnector.mass
+ driverHardware.busMass

system : PowerWindowSystem
<<min system.quality.numberOfSmartComponents >>
<<min system.quality.wireLength >>
<<min system.quality.wireMass >>

/*
PureElectric : PowerWindowSystem
[driverHardware.dumbSwitch]
[driverHardware.dumbMotor]
[no driverHardware.doorModule]
[no BCM]
[no driverFAConfig.express]
[no driverFAConfig.otherRemoteControl]

SmartSwitchAndMotorAndBCM : PowerWindowSystem
[driverFAConfig.express.expressUp]

114

[driverFAConfig.otherRemoteControl]
[driverHardware.smartMotor]
[driverHardware.smartSwitch]
[no driverHardware.doorModule]

[BCM]
*/

A.2 Query Performance Test

A.2.1 Method 1: Quantifiers

abstract Device
smart ?

abstract ECU : Device
[smart]

abstract Subsystem
switch : Device
motor : Device

bcm -> ECU ?
doorModule : ECU

localComponents -> Device 2..4
[localComponents = switch, motor, doorModule, bcm.ref]
localSmartComponents -> Device 0..4
[all d : localComponents | (d in localSmartComponents) <=> d.smart] // C2
[no d : localSmartComponents | !(d in localComponents)] // C3

System
s1 : Subsystem
[bcm = BCM]
s2 : Subsystem
[bcm = BCM]

115

s3 : Subsystem
[bcm = BCM]
s4 : Subsystem
[bcm = BCM]
... and so on, s5, s6, ...
BCM -> ECU ?

A.2.2 Method 2: Instances

abstract Device
smart ?

abstract ECU : Device
[smart]

abstract Subsystem
xor switch -> Device
smartSwitch : Device
[parent = this]
[smart]
dumbSwitch : Device
[parent = this]
[no smart]

xor motor -> Device
smartMotor : Device
[parent = this]
[smart]
dumbMotor : Device
[parent = this]
[no smart]

bcm -> ECU ?
doorModule : ECU

localComponents -> Device 2..4
[localComponents = switch.ref, motor.ref, doorModule, bcm.ref]

116

localSmartComponents -> Device 0..4
[localSmartComponents = smartSwitch, smartMotor, doorModule, bcm.ref]

System
s1 : Subsystem
[bcm = BCM]
s2 : Subsystem
[bcm = BCM]
s3 : Subsystem
[bcm = BCM]
s4 : Subsystem
[bcm = BCM]
... and so on, s5, s6, ...

BCM -> ECU ?

117

References

[1] Clafer Compiler. https://github.com/gsdlab/clafer.

[2] ClaferChocoIG Project. https://github.com/gsdlab/claferchocoig.

[3] ClaferIG Project. https://github.com/gsdlab/claferIg.

[4] ClaferSMT Project. https://github.com/gsdlab/clafersmt.

[5] DOJO Visualization Toolkit. http://demos.dojotoolkit.org/demos/.

[6] GA Tech ASDL. http://www.asdl.gatech.edu/.

[7] Google Charts. https://developers.google.com/chart/.

[8] META Tool Suite. https://www.youtube.com/watch?v=yog270kMUhQ.

[9] RAVE Tool. http://www.rave.gatech.edu/gallery.shtml.

[10] Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin, Rafael Olaechea, Jia
Hui (Jimmy) Liang, and Krzysztof Czarnecki. Clafer tools for product line engi-
neering. In Proceedings of the 17th International Software Product Line Conference
Co-located Workshops, SPLC ’13 Workshops, pages 130–135, New York, NY, USA,
2013. ACM.

[11] Michał Antkiewicz, Kacper Bąk, Dina Zayan, Krzysztof Czarnecki, Andrzej Wąsowski,
and Zinovy Diskin. Example-driven modeling using clafer. In First International
Workshop on Model-driven Engineering By Example, 2013.

[12] EAST-ADL Association. EAST-ADL domain model specification, version V2.1.12.

[13] Kacper Bąk. Modeling and analysis of software product line variability in clafer, 2013.

118

https://github.com/gsdlab/clafer
https://github.com/gsdlab/claferchocoig
https://github.com/gsdlab/claferIg
https://github.com/gsdlab/clafersmt
http://demos.dojotoolkit.org/demos/
http://www.asdl.gatech.edu/
https://developers.google.com/chart/
https://www.youtube.com/watch?v=yog270kMUhQ
http://www.rave.gatech.edu/gallery.shtml

[14] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models
in clafer: Mixed, specialized, and coupled. In Proceedings of the Third International
Conference on Software Language Engineering, SLE’10, pages 102–122, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[15] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Partial instances via subclassing. In Martin Erwig, RichardF. Paige, and
Eric Van Wyk, editors, Software Language Engineering, volume 8225 of Lecture Notes
in Computer Science, pages 344–364. Springer International Publishing, 2013.

[16] X. Blasco, J. M. Herrero, J. Sanchis, and M. Mart́ınez. A new graphical visualiza-
tion of n-dimensional Pareto front for decision-making in multiobjective optimization.
Information Sciences, 178(20), 2008.

[17] Hans Blom, Henrik Lnn, Frank Hagl, Yiannis Papadopoulos, Mark-Oliver Reiser, Carl-
Johan Sjstedt, De-Jiu Chen, and Ramin Tavakoli Kolagari. EAST-ADL an archi-
tecture description language for automotive software-intensive systems. white paper,
version M2.1.10.

[18] Manfred Broy. Challenges in automotive software engineering. In Proceedings of the
28th International Conference on Software Engineering, ICSE ’06, pages 33–42, New
York, NY, USA, 2006. ACM.

[19] A.E. Bucovsky and D. Jesse & Mavris. Design Space Exploration for Boom Mitigation
on a Quiet Supersonic Business Jet. http://arc.aiaa.org/doi/abs/10.2514/6.
2003-6802.

[20] Bastian Florentz and Michaela Huhn. Embedded systems architecture: Evaluation and
analysis. In Proceedings of the Second International Conference on Quality of Software
Architectures, QoSA’06, pages 145–162, Berlin, Heidelberg, 2006. Springer-Verlag.

[21] Software Testing Fundamentals. Integration Testing. http://
softwaretestingfundamentals.com/integration-testing/.

[22] Thomas Heurung and Stefan Walz. Designing and implementing architectures for
distributed automotive e/e systems.

[23] Mavris D. Virasak J. & Schrage D.P. Kim, H.-S. Selec-
tion and design optimization of a high speed, highly maneuver-
able rotorcraft configuration. http://vtol.org/store/product/

119

http://arc.aiaa.org/doi/abs/10.2514/6.2003-6802
http://arc.aiaa.org/doi/abs/10.2514/6.2003-6802
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://vtol.org/store/product/selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.cfm
http://vtol.org/store/product/selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.cfm

selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.
cfm.

[24] Stefan Kugele and Gheorghe Pucea. Model-based optimization of automotive e/e-
architectures. In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, CSTVA 2014, pages 18–29, New York,
NY, USA, 2014. ACM.

[25] J. Metzger L. S. Brandt, N. Krämer and U. Lindemann. Optimization approach for
function partitioning in an automotive electric electronic system architecture. Inter-
national Design Conference - Design 2012, 2013.

[26] Ralph Moritz, Tamara Ulrich, and Lothar Thiele. Evolutionary exploration of e/e-
architectures in automotive design. In Diethard Klatte, Hans-Jakob Lüthi, and Karl
Schmedders, editors, Operations Research Proceedings 2011, Operations Research Pro-
ceedings, pages 361–366. Springer Berlin Heidelberg, 2012.

[27] Alexandr Murashkin, Michał Antkiewicz, Derek Rayside, and Krzysztof Czarnecki.
Visualization and exploration of optimal variants in product line engineering. In
Proceedings of the 17th International Software Product Line Conference, SPLC ’13,
pages 111–115, New York, NY, USA, 2013. ACM.

[28] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Soft-
ware engineering for automotive systems: A roadmap. In 2007 Future of Software
Engineering, FOSE ’07, pages 55–71, Washington, DC, USA, 2007. IEEE Computer
Society.

[29] Andy Pryke, Sanaz Mostaghim, and Alireza Nazemi. Heatmap visualization of popula-
tion based multi objective algorithms. In Evolutionary Multi-Criterion Optimization,
vol. 4403, LNCS. 2007.

[30] Vladimir Rupanov, Christian Buckl, Ludger Fiege, Michael Armbruster, Alois Knoll,
and Gernot Spiegelberg. Early safety evaluation of design decisions in e/e architec-
ture according to iso 26262. In Proceedings of the 3rd International ACM SIGSOFT
Symposium on Architecting Critical Systems, ISARCS ’12, pages 1–10, New York, NY,
USA, 2012. ACM.

[31] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti. A
collection of models of a bike-sharing case study, 2014. http://blog.inf.ed.ac.uk/
quanticol/files/2014/05/TR-QC-07-2014.pdf.

120

http://vtol.org/store/product/selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.cfm
http://vtol.org/store/product/selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.cfm
http://vtol.org/store/product/selection-and-design-optimization-of-a-high-speed-highly-maneuverable-rotorcraft-configuration-388.cfm
http://blog.inf.ed.ac.uk/quanticol/files/2014/05/TR-QC-07-2014.pdf
http://blog.inf.ed.ac.uk/quanticol/files/2014/05/TR-QC-07-2014.pdf

[32] Tea Tušar and Bogdan Filipič. Visualizing 4D approximation sets of multiobjective
optimizers with prosections. In Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO, 2011.

[33] Josiah T. VanderMey and Hassan J. Bukhari. Optimization and
Design Space Exploration of a Supersonic Business Jet Plan-
form. http://ocw.mit.edu/courses/engineering-systems-division/
esd-77-multidisciplinary-system-design-optimization-spring-2010/
projects/MITESD_77S10_paper03.pdf.

[34] Zaur; Barthels Andreas; Michel Hans-Ulrich; Stechele Walter; Herkersdorf Andreas
Walla, Gregor; Molotnikov. A design space exploration framework for automotive
embedded systems and their power management. 27th European Conference on Mod-
elling and Simulation (ECMS 2013), 2013.

121

http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/projects/MITESD_77S10_paper03.pdf
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/projects/MITESD_77S10_paper03.pdf
http://ocw.mit.edu/courses/engineering-systems-division/esd-77-multidisciplinary-system-design-optimization-spring-2010/projects/MITESD_77S10_paper03.pdf

	List of Tables
	List of Figures
	Introduction
	Thesis Organization

	Background
	EAST-ADL
	Clafer Language and Tools
	Language
	Tools
	Prior Use

	Optimization
	Bus Topology Example
	Single-Objective Optimization
	Multi-Objective Optimization

	Related Work
	Analysis and Optimization of E/E architectures
	Design Space and Pareto Front Visualization and Exploration

	Principles of Creating Architecture Models in Clafer
	Domain Modeling
	Optimization in Clafer
	Modeling Problem Domain
	Stating a Single-Objective Optimization Problem
	Stating a Multi-Objective Optimization Problem
	Visualization and Exploration of Optimal Variants

	Micro-Level Modeling Patterns and Advices
	Working with References
	Modeling One-to-One Relationships
	Modeling Many-To-One Relationships
	Typecasting
	Queries

	Macro-Level Modeling Patterns
	Bottom-Up Development with Modularization
	When to Apply
	Rationale
	How to Apply
	Side Effects

	Collaboration
	When to Apply
	Rationale
	How to Apply
	Side Effects

	Power Window Control Case Study
	Introduction
	Motivation
	Challenges
	Structure and Scope

	Methodology
	Modeling Features, Functions and Hardware
	Vehicle Level: Features
	Analysis Level: Functional Architecture
	Design Level: Hardware Topology
	Design Level: Deployment and Wiring

	Integration of Features, Functional Architecture, Deployment and Wiring
	Design Space Complexity
	Constraint-Based Design Space Exploration
	Basic Electric Design Example
	Contradiction Example
	Complex Example with Smart Devices

	Optimization-Based Design Space Exploration
	Adding Quality Attributes
	Modeling Optimization Problem
	Running Optimization
	Performing Exploration

	Transition to Multiple Subsystems
	Vehicle Level: Features
	Analysis Level: Functional Architecture
	Design Level: Hardware
	Design Level: Deployment and Wiring
	Integration
	Optimization-Based Design Exploration

	Conclusions
	Domain Modeling
	Modeling Wiring and Deployment Problems
	Reasoning Performance
	Design Generation
	Visualization and Exploration

	Conclusions, Limitations, Threats to Validity and Future Work
	General Conclusions
	Limitations
	Threats to Validity
	Future Work

	Full Source Codes of Models
	Power Window Case Study: Driver Only Model
	Query Performance Test
	Method 1: Quantifiers
	Method 2: Instances

	References

