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Abstract

The surface quasi-geostrophic (SQG) model describes the evolution of buoyancy at
vertical boundaries in the limit of infinitesimal Rossby number. In this regime, the quasi-
geostrophic approximations are expected to hold. Numerical simulation of the SQG model
often generate small-scale vortices which may have Rossby numbers that approach unity
and may be outside the range of SQG. In this thesis we investigate the evolution of a
surface trapped elliptical vortex in both the SQG model and the non-hydrostatic Boussi-
nesq primitive equations (PE) which are better able to describe a wider range of oceanic
dynamics. Thus, in the PE, we can vary the Rossby number in order to understand how
the surface trapped vortex breaks down at the smaller-scale during its evolution. For small
Rossby number, we confirm that the PE match the SQG prediction very well. For larger
Rossby number however, we find that the models do not agree and different dynamics begin
emerging in the PE. In particular, we find that the thin filament instability in the surface
buoyancy field, common to SQG, begins to stabilize as the Rossby number increases and
thus the emergence of the secondary small-scale vortices is halted. The core of the vortex
spreads out and becomes much more uniform for larger Rossby number. The energy spec-
trum of the surface trapped vortex steepens from a power law of −5/3 to about −3 and the
divergent energy grows as the Rossby number approaches unity. The growing divergent
energy is an indication that inertia-gravity waves are generated in the simulation and we
do indeed observe these in the vertical velocity field. We conclude that when the Rossby
number of the surface trapped elliptical vortex is at least 0.05 new dynamics emerge and
the PE must be used to attain an accurate description of the evolution of the flow.
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Chapter 1

Introduction and Background

The surface quasi-geostrophic (SQG) model describes rapidly rotating, large scale, rela-
tively slow moving flows whose motion is driven by surface buoyancy perturbations (due
to temperature or salinity differences) at vertical boundaries (e.g [19], [23]). In nature,
the SQG model can be used to describe the surface buoyancy of the ocean (e.g. [22],
[25]). This model makes a few major assumptions regarding the flow and, therefore, can
be limited in what oceanic flows it can describe accurately. As we shall see, this model
is essentially two-dimensional and is quite inexpensive to solve numerically in comparison
with three-dimensional models. Therefore, it is advantageous to use this model, assum-
ing it is appropriate for the flow under consideration. The question then becomes: under
what circumstances is the SQG model appropriate to use? To answer this, we can con-
sider a more general model: the non-hydrostatic Boussinesq primitive equations (PE). The
PE are very good at describing virtually all large-scale oceanic flows but they are three-
dimensional and, as a result, can be very expensive to solve numerically. In this thesis, we
compare numerical results of the SQG model to those of the PE and discuss when SQG
is appropriate for describing large-scale oceanic flows and how the model breaks down at
small-scales.

The outline for this thesis is as follows: in this chapter, we discuss the mathematical
models used in this thesis, including the PE and the SQG models, and, once the models
have been presented, we discuss some of the relevant research that has been done using
the SQG model. In chapter 2, the numerical methods are presented and discussed along
with the other tools used to compare and contrast the numerical results from the SQG
and PE simulations using a surface trapped elliptical vortex. In chapter 3, we present
results and analyze the output using the tools describe in chapter 2. Finally, chapter
4 concludes our findings and gives ideas about possible future work. The results of the
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surface trapped elliptical vortex have been submitted as a manuscript to the Journal of
Physical Oceanography and much of the thesis is based on the manuscript [3].

The thesis assumes knowledge of basic fluid mechanics and Fourier series. We assume
the reader has knowledge of the stratified Euler equations in a rotating reference frame.
Throughout the thesis, we use v to denote the full three-dimensional velocity fluid while u
denotes the two-dimensional horizontal velocity field. The horizontal gradient and Lapla-
cian are denoted by ∇H ,∇2

H and the full three-dimensional gradient and Laplacian are
denoted by ∇,∇2, respectively.

1.1 Mathematical Models of the Ocean

To describe oceanic flows, we turn to mathematics. While the Navier-Stokes equations
are able to describe fluid flow from large-scale motions encountered in the atmosphere and
oceans to small-scale flow in a cup of tea, we make use of the Euler equations, in particular,
we consider the stratified Euler equations in a rotating reference frame. The key difference
between the Navier-Stokes equations and the Euler equations is a lack of the viscosity term
in the latter set of equations. The absence of this term is usually valid away from solid
boundaries, in particular at the surface of the ocean away from the coasts.

We first discuss a common approximation to oceanic flows known as the Boussinesq ap-
proximation (e.g. [27], [46]). From there, we show how one can derive the quasi-geostrophic
(QG) model and, going further, the SQG model.

1.1.1 The Boussinesq Approximation

The Boussinesq approximation is used to describe fluids with varying density and assumes
that the variations in density are small compared to the mean density, as is true for
the ocean (e.g. [27], [46]). To derive these equations, we begin with the stratified Euler
equations in a rotating reference frame, given by,

ρ

(
Dv

Dt
+ f × v

)
= −∇p− gρk̂, (1.1)

∂ρ

∂t
+∇ · (ρv) = 0, (1.2)

where ρ = ρ(x, y, z) is the density, f×v is the Coriolis acceleration (and f = f k̂, where f
is the Coriolis parameter and k̂ is the unit vector in the vertical), p is the pressure, and g is
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acceleration due to gravity. Equation (1.1) is the conservation of momentum equation and
(1.2) is the conservation of mass equation or the continuity equation [27]. Some algebra
reveals that (1.2) can also be written as,

1

ρ

Dρ

Dt
+∇ · v = 0. (1.3)

The Boussinesq approximation decomposes the density field into a constant reference,
vertically-varying background, and space and time dependent perturbation densities: ρ =
ρ0 + ρ̄(z) + ρ′(x, y, z, t). Further, we make the assumption that the deviations in density
are small compared to the reference density: |ρ0| � |ρ̄|, |ρ′| (e.g. [27], [46]). Similarly, we
can decompose the pressure as p = p̄(z) + p′(x, y, z, t) and assume that,

dp̄

dz
= −g(ρ0 + ρ̄). (1.4)

Decomposing the density and pressure in this way, we find that (1.1) can be simplified to,

Dv

Dt
+ f × v = − 1

ρ0

1

1 + ρ̄/ρ0 + ρ′/ρ0
(∇p′ − gρ′k) . (1.5)

Due to the smallness of the background and perturbation densities, 1 + ρ̄/ρ0 + ρ′/ρ0 ≈ 1.
Furthermore, in equation (1.3), we take,

∇ · v � 1

ρ

Dρ

Dt
. (1.6)

This assumption allows us to write the continuity equation as the incompressibility condi-
tion,

∇ · v = 0. (1.7)

The requirements for the incompressibility condition to hold can be found in numerous
textbooks (e.g. [2], [27]). Letting U,L,H, and T denote the characteristic velocity, hor-
izontal length, vertical length, and time scales, respectively, and c denote the speed of
sound in the fluid medium, the conditions are [27]:

• The characteristic velocity in the flow is much smaller than the speed of sound in the
fluid medium (i.e. small Mach number): |U/c| � 1

• The period of sound waves is much smaller than the characteristic time-scale in the
flow: T � L/c
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• The vertical length scale is not too large: H � c2/g

In order to describe how the adiabatic density field evolves in time, we make use of the
energy equation [27],

DT

Dt
= 0, (1.8)

where T is the temperature and we neglect compressibility and heat diffusion. By assuming
a linear equation of state between density and temperature [27],

ρ = ρ0(1− α(T − T0)), (1.9)

we can re-write the energy equation in terms of the density,

Dρ

Dt
=
Dρ′

Dt
+
dρ̄

dz
w = 0. (1.10)

We define the buoyancy field by re-scaling the density,

b = −g ρ
ρ0
⇒ b̄(z) + b′(x, y, z, t) = −g ρ̄

ρ0
− g ρ

′

ρ0
. (1.11)

This substitution allows us to write the conservation of momentum equation as

Dv

Dt
+ f × v = − 1

ρ0
∇p′ + b′k̂, (1.12)

and the energy equation can be re-written in terms of buoyancy (in Vallis 2006 [46] this
equation is also called the thermodynamic equation),

Db′

Dt
+N2(z)w = 0, (1.13)

where,

N(z) =

√
− g

ρ0

dρ̄

dz
, (1.14)

is the buoyancy frequency. The buoyancy frequency is the frequency with which a particle,
initially at rest and displaced vertically, oscillates. The PE are given by the set of equations
(1.12), (1.7), and (1.13).
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Variable Scaling
(u, v) U
w W

(x, y) L
z H
t L/U
p′ ρ0fUL
b′ fUL/H

Table 1.1: Scaling in the PE equations.

1.1.2 The Quasi-Geostrophic Equations

The QG model is an approximation to large-scale oceanic flow that is derived from the PE.
It was first derived in Charney 1948 [8], however, for our derivation, we follow the details
in Vallis 2006[46]. We first non-dimensionalize the PE. In table 1.1 we show the scaling
assumptions made [46].

We scale the vertical velocity and length by a different scale compared to the horizontal
velocities and lengths because we assume a small aspect ratio. The pressure and buoyancy
are scaled as in table 1.1 due to assumed geostrophic and hydrostatic balance. To see this
in detail, the pressure scale is chosen under the assumption that the Rossby number,

Ro =
U

fL
, (1.15)

which gives the relative strength of rotation to advection, is very small. This implies that
we have geostrophic balance (defined in (1.41)) and, therefore,

|f × u| ∼ | 1
ρ0
∇Hp

′|, (1.16)

so that the scaling choice for pressure is,

p′ ∼ ρ0fUL. (1.17)

To understand why buoyancy perturbations scale like fUL/H, we begin with hydrostatic
balance. In large-scale oceanic flows, it is natural to assume a small aspect ratio. Therefore,
we consider the case where L � H and, using incompressibility in (1.7), find that the
vertical velocity scales like,

W ∼ U
H

L
⇒ W � U. (1.18)
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If we consider the vertical momentum equation, after non-dimensionalizing, we find,

U2H
2

L2

(
Dw̃

Dt̃

)
= fUL

∂p̃′

∂z̃
+Bb̃′, (1.19)

where the overhead tilde denotes non-dimensional variables. Since L � H, this suggests
that the vertical acceleration term is negligible and that the pressure term balances the
buoyancy. The scaling for buoyancy is therefore,

B ∼ fUL
∂p′

∂z
∼ fUL

H
. (1.20)

By transforming the physical variables to non-dimensional ones, one can write equations
(1.12), (1.7), and (1.13) as

Ro

(
Dũ

Dt̃

)
+ k̂ × ũ = −∇p̃′, (1.21)

∂p̃′

∂z̃
= b̃′ (1.22)

∇̃H · ũ+
∂w̃

∂z̃
= 0, (1.23)

Ro
Db̃′

Dt̃
+

(
Ld
L

)2

w̃ = 0, (1.24)

where Ld = NH/f is the Rossby radius of deformation. We have decomposed the mo-
mentum equation from (1.12) into the horizontal momentum equation (1.21) and vertical
momentum equation under assumed hydrostatic balance (1.22).

The QG approximation assumes (e.g. [8], [46]) that

• Rotation dominates advection: Ro� 1

• Horizontal length scales are on the order of the Rossby radius of deformation: L ∼ Ld

• Small aspect ratio: L� H

We note that the second assumption can be written in a number of ways. For example,
the assumption can be written in terms of the Burger number,

Bu =

(
Ld
L

)2

=

(
NH

fL

)2

∼ 1. (1.25)
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The size of the Burger number implies that the Froude number,

Fr =
U

NH
∼ Ro

L

Ld
� 1. (1.26)

Given the smallness of the Rossby number, one can perform an asymptotic expansion
(e.g. [4]), by expanding the variables in an asymptotic series,

ṽ = v0 +Ro v1 +O(Ro2), (1.27)

b̃′ = b′0 +Ro b′1 +O(Ro2), (1.28)

p̃′ = p′0 +Ro p′1 +O(Ro2), (1.29)

where the terms in the series expansion, vi, p
′
i, b
′
i, are understood to be non-dimensional.

One then substitutes the series expansion into the non-dimensionalized PE in (1.21)-(1.24)
and collects terms of the same order of Rossby number. As alluded to earlier, the leading
order (that is, after collecting terms of O(1)) horizontal momentum equation reduces to
geostrophic balance,

v0 =
∂p′0
∂x̃

, u0 = −∂p
′
0

∂ỹ
. (1.30)

Using the energy equation (1.24), we find that, at leading order, (Ld/L)2w0 ∼ 0. Therefore,
w0 = 0. Alternatively, this can be derived using the leading order continuity equation
(1.23) where, after integrating, we find that w0 = const. The constant is then specified
by vertical boundary condition. We make the rigid lid approximation at the surface and
assume a flat bottom. For vertical boundary conditions, we use the free-slip boundary
condition which implies no normal flow. Therefore, w0 = 0 everywhere. Using the vertical
momentum equation, we find that the leading order buoyancy field is in hydrostatic balance
as discussed during the start of this section,

b′0 =
∂p′0
∂z̃

. (1.31)

By taking a vertical derivative of geostrophic balance in equation (1.30) and substituting
hydrostatic balance, we find that the leading order buoyancy and horizontal velocity fields
are in thermal wind balance (e.g. [46]),

∂v0
∂z̃

=
∂b′0
∂x̃

and
∂u0
∂z̃

= −∂b
′
0

∂ỹ
. (1.32)

These balance equations are useful and will be used to simplify the derivation of the QG
model and the derivation of the ω equation (see section 2.3.1).
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In order to describe how the system evolves in time, we consider the O(Ro) energy
equation,

D0

Dt̃

[(
Ld
L

)2

b′0

]
+ w1 = 0, (1.33)

where w1 is an unknown function and

D0

Dt̃
=

∂

∂t̃
+ u0 · ∇̃H , (1.34)

is the material derivative with advection due to the leading order geostrophic velocity
(1.30). We note that, although Ld = N(z)H/f (i.e. a function of z), we can absorb the
ratio (Ld/L)2 into the material derivative in (1.34) since there is no vertical differentiation
present in D0/Dt̃. The challenge now becomes deriving a way to express the unknown
function w1 in terms of the known functions u0, v0, and b0. This can be readily done by
cross-differentiating the O(Ro) horizontal momentum equation and subtracting the result-
ing equations. This yields an evolution equation for the leading order vertical vorticity,
ζ0 = ∂x̃v0 − ∂ỹu0. We find that the leading order vertical vorticity equation is,

D0ζ0

Dt̃
= −∇̃H · u1. (1.35)

The O(Ro) incompressibility equation reads,

∇̃H · u1 = −∂w1

∂z̃
. (1.36)

We apply a vertical derivative to (1.33) and combine the result with (1.36) and (1.35) to
find

D0

Dt̃

[
ζ0 +

∂

∂z̃

(
L2

L2
d

b′0

)]
= −

(
L

Ld

)2
∂u0

∂z̃
· ∇̃Hb

′
0, (1.37)

where, using thermal wind balance in equation (1.32), we find

∂u0

∂z̃
· ∇̃Hb

′
0 =

∂u0
∂z̃

∂b′0
∂x̃

+
∂v0
∂z̃

∂b′0
∂ỹ

= −∂b
′
0

∂ỹ

∂b′0
∂x̃

+
∂b′0
∂x̃

∂b′0
∂ỹ

= 0. (1.38)

Therefore, at leading order, we have,

D0

Dt̃

[
ζ0 +

∂

∂z̃

(
L2

L2
d

b′0

)]
= 0, (1.39)
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or, in dimensional variables,

Dg

Dt

[
ζ +

∂

∂z

(
f

N2(z)
b′
)]

= 0, (1.40)

where Dg/Dt = ∂t+ug ·∇H and ug is the dimensional horizontal velocity due to geostrophic
balance,

v =
1

fρ0

∂p′

∂x
, u = − 1

fρ0

∂p′

∂y
. (1.41)

One final substitution that we can perform on (1.40) is noting that, given geostrophic
balance (1.41), one can introduce a streamfunction,

ψ =
1

fρ0
p′. (1.42)

Furthermore, hydrostatic balance (1.31) allows one to relate buoyancy perturbations to the
streamfunction via

b′ = f
∂ψ

∂z
. (1.43)

Thus, we can write all of the variables in (1.40) in terms of a single variable, the stream-
function,

Dg

Dt

[
∇2ψ +

∂

∂z

(
f 2

N2(z)

∂ψ

∂z

)]
=
Dgq

Dt
= 0 for −H < z < 0, (1.44)

where,

q ≡ ∇2ψ +
∂

∂z

[(
f

N(z)

)2
∂ψ

∂z

]
, (1.45)

is the QG potential vorticity (QG PV).

For vertical boundary conditions we make use of the energy equation (1.13) with the
knowledge that at solid boundaries we assume the free-slip boundary condition. This
implies that at vertical boundaries w = 0 and, therefore, (1.13) can be written as

Dgb
′

Dt
= 0 at z = −H, 0. (1.46)

There is a subtlety that can be overlooked here: the geostrophic velocities in the advection
term of (1.46) are also computed at z = −H, 0. Thus (1.46) is really a two-dimensional
evolution equation for the buoyancy perturbations.
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The QG model is defined as the set of equations (1.44) and (1.46). In particular,
in the interior of the fluid, −H < z < 0, the flow evolves according to (1.44) while at
the vertical boundaries, z = −H, 0, the flow evolves according to (1.46). Furthermore,
the relation between streamfunction and QG PV is given by (1.45) while the relationship
between buoyancy perturbations and streamfunction is given by (1.43). The system has
some interesting feedback characteristics in that the conserved quantities, q and b′, are
advected based on streamfunction and then the conserved variables, in turn, evolve the
streamfunction and so on. It is also evident that there are a variety of research questions
one can ask about this model. For this thesis, we reserve our study to the special case of
SQG which will be described in the next subsection.

1.1.3 The Surface Quasi-Geostrophic Model

The SQG model describes the evolution of buoyancy perturbations at vertical boundaries
(e.g. [19], [23], [43]). For our purposes, we also make the simplification that the surface
buoyancy perturbations drive all motion in the fluid. Mathematically, this means taking
the interior QG PV to be identically zero everywhere and neglecting all forces. While this
is a strict approximation for the ocean, it is commonly used to focus on how the buoyancy
evolves near the surface and it is a natural way to look at the effect of surface buoyancy
on the interior of the fluid (e.g. [19], [43]). For boundary conditions, we let the surface
buoyancy at z = 0 be some given field, b′(x, y, 0, t) = bt(x, y, t). At the bottom of the fluid,
we take b′(x, y,−H, t) = 0. While the original SQG model in Held et al. 1995 [19] assumed
a semi-infinite vertical domain, for our purposes we choose a finite vertical domain. The
reason for this is two-fold. First, the ocean is finite and second, we wish to compare the
numerical solutions of the SQG model to the PE, a three-dimensional model. The finite-
depth model was first described in Tulloch and Smith 2006 [43]. By assuming periodic
boundary conditions in the horizontal, we can decompose the streamfunction in terms of
a Fourier series,

ψ(x, y, z) = <

(
∞∑

k=−∞

∞∑
l=−∞

ψ̂(k, l, z)ei(kx+ly)

)
, (1.47)

where < denotes the real part of a quantity and we have suppressed the time-dependence for
clarity. Therefore, setting q = 0 in equation (1.45), for each horizontal Fourier coefficient,
we have,

−K2ψ̂ +
d

dz

[(
f

N(z)

)2
dψ̂

dz

]
= 0, (1.48)
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where the carat symbol denotes horizontal Fourier coefficient and K =
√
k2 + l2 is the

modulus of the horizontal wave-vector (k, l).

Constant Stratification

When the background stratification is non-constant (i.e. N = N(z)), finding an analytic
solution to (1.48) for ψ̂ can become difficult (see section 3.3). However, we can simplify the
problem by assuming a linear background stratification which allows for an exact solution
for the streamfunction in (1.48). A linear background stratification implies that N = const.
This simplifying assumption is commonly used (e.g. [19], [31], [43]). The solution to (1.48),
in spectral space, for a single Fourier coefficient, is,

ψ̂ = A sinh

(
NH

f
(z +H)

)
+B cosh

(
NH

f
(z +H)

)
. (1.49)

After applying the boundary conditions, we find

ψ̂ =
1

NK

cosh
(
NK
f

(z +H)
)

sinh
(
NKH
f

) b̂t. (1.50)

The corresponding three-dimensional buoyancy field is found by multiplying (1.50) by f
and taking a vertical derivative (i.e. computing (1.43)), giving,

b̂ =
sinh

(
NK
f

(z +H)
)

sinh
(
NKH
f

) b̂t. (1.51)

This solution was first described in Tulloch and Smith 2006 [43]. Evaluating (1.50) at
z = 0 gives the inversion formula,

b̂t = NK tanh

(
NKH

f

)
ψ̂. (1.52)

For comparison, we show the solution to the semi-infinite vertical domain SQG model
from Held et al. 1995 [19]. The bottom boundary condition in the semi-infinite vertical
domain problem becomes ψ → 0 as z → −∞ while the boundary condition at the surface
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remains the same as in the finite-depth case. Solving equation (1.48) and applying the
boundary conditions gives,

ψ̂ =
b̂t

NK
exp

(
NK

f
z

)
, (1.53)

and the inversion formula is,
b̂t = NKψ̂. (1.54)

Comparing (1.50) and (1.53) we see that both solution decay exponentially away from
the surface. However, we see that, depending on the parameter values in (1.50) and (1.52),
this decay can occur more quickly and is anomalous compared to the solution in Held et
al. 1995 [19]. By this we mean that the surface buoyancy field can be forced to decay much
more quickly than it would with a semi-infinite domain where it is allowed to freely decay.
The key parameter in (1.50) and (1.52) is the ratio NH/f = Ld. As described in Tulloch
and Smith 2006 [43], if K Ld � 1, then we can approximate,

tanh

(
NKH

f

)
≈ NKH

f
, (1.55)

and, therefore, the inversion relation is,

b̂t ∝ K2ψ̂. (1.56)

We recall that this is the same inversion relation for a two-dimensional fluid which can be
described by conservation of vorticity (see the discussion in section 2.1.4 or e.g. [1], [27] ).
This tells us that features with K Ld � 1 (or features with horizontal length scales larger
than Ld) behave similarly to two-dimensional conservation of vorticity.

In the other limit, if K Ld � 1 then

tanh

(
NKH

f

)
≈ 1. (1.57)

The inversion relation can then be approximated with

b̂t ≈ NKψ̂. (1.58)

This is the inversion relation in the semi-infinite domain SQG model in Held et al. 1995
[19] shown in (1.54). Therefore, features with K Ld � 1 (or features with horizontal length
scales smaller than Ld) behave like the SQG model presented in Held et al. [19]. We can see
that there is a transition between two-dimensional-like and SQG motion when K Ld ∼ 1.

12



Because we wish to study purely SQG motion, we want to ensure that all structures
in our simulation have K Ld � 1. Through experimentation, we found that by choosing
H = fL/N , where L is the largest length scale in our initial conditions and H is the
depth of fluid, we can ensure that all features behave according to pure SQG dynamics
(i.e. minimizing finite-domain effects) without sacrificing too much vertical resolution.

1.1.4 Internal Gravity Waves

Since the SQG model is an approximation to the PE, some of the physical phenomenon
which exist in the PE are not realizable in the SQG model. An example of this is inertia-
gravity waves which can and are generated in the PE simulations but not in the SQG
simulations. Here, we present a brief discussion of inertia-gravity waves which can be
found in Kundu 2010 [27].

Since we cannot solve the fully non-linear system in equations (1.12), (1.7), and (1.13)
(i.e. the PE), we linearize the equations in order to derive a dispersion relation. The
dimensional linearized equations read,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.59)

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
, (1.60)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
, (1.61)

∂w

∂t
= − 1

ρ0

∂p

∂z
+ b′, (1.62)

∂b′

∂t
+N2w = 0. (1.63)

Here, the only assumption that we make is that N = const.

Our goal is to write everything in terms of one variable. Specifically, we shall eliminate
u, v, p, and b′ in order to find one linear partial differential equation for the vertical velocity,
w. One can show that the system of linear partial differential equations can be reduced to
[27],

∂2

∂t2
∇2w +N2∇2

Hw + f 2∂
2w

∂z2
= 0. (1.64)
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In order to solve this equation, we assume that the vertical velocity can be decomposed
into Fourier modes via,

w = w̃(z)eik+il−ωt. (1.65)

This decomposition simplifies the partial differential equation in (1.64) to an ordinary
differential equation for each horizontal Fourier coefficient, w̃,

d2w̃

dz2
+
ω2K2 −N2K2

f 2 − ω2
w̃ = 0. (1.66)

We define,

m2 =
ω2K2 −N2K2

f 2 − ω2
. (1.67)

At the vertical boundaries we have no normal flow and, therefore, w = 0 ⇒ w̃ = 0 at
z = 0,−H. There are two cases one can consider depending on the sign of m2 in (1.67).
If m2 < 0, the solution to equation (1.66) are exponential in nature but it can be shown
that no solutions exists given our choice of boundary conditions. If m2 > 0 we can, again,
write the vertical velocity in terms of Fourier modes, this time, a sine series. In particular,
we let,

w̃(z) = ŵ sin
(πmz
H

)
, (1.68)

which satisfies the differential equation in (1.66) and the no normal flow boundary condi-
tions.

By re-arranging (1.67) for ω we can find the dispersion relation for internal gravity
waves. Namely, we find,

ω2 =
N2K2 + f 2m2

K2 +m2
. (1.69)

From the disperision relation (1.69), we note that the frequency of internal gravity waves
is bounded by

f ≤ ω ≤ N, (1.70)

and, therefore, the period of gravity waves is bounded by,

2π

N
≤ Tp ≤

2π

f
, (1.71)

where Tp denotes the period. The bounds on the period of inertia-gravity waves is an
important result and will be discuss further in the numerical approach discussion of section
2.1.5.
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1.2 The Surface Quasi-Geostrophic Model in the Lit-

erature

Now that we have described what the SQG model is, we discuss how this model has
been used to describe ocean dynamics and the various results that have been presented in
the literature. While the SQG model in this thesis and other work (e.g. [29]) [31]), has
been presented in the context of oceanic dynamics, it can also be used to describe some
atmospheric dynamics (e.g. [23], [43], [45]).

The SQG model has some major assumptions: first, the model assumes zero interior QG
PV and, second, a linear background stratification profile i.e. constant buoyancy frequency;
nevertheless, it has been quite successful. For example, Le Traon et al. 2008 [32] argued
that, in certain areas in the world, the SQG model agrees better with ocean data compared
to QG theory which describes evolution of interior QG PV. Their discussion was based on
the predicted energy spectra of turbulent flow in the SQG model and QG model compared
to the wavenumber spectra measured by altimeter data in the Gulf Stream, Kuroshio, and
Agulhas regions. They argued that the predicted energy spectra in the SQG model was a
better match than the predicted energy spectra of the QG model.

Rocha et al. 2013 [38] showed that SQG was consistent with a four-QG-mode combina-
tion in the Southwestern Atlantic. In particular, they showed that using a combination of
the barotropic, 1st, 2nd, and 3rd baroclinic QG modes showed very good agreement with
the SQG model. QG modes are a set of vertical basis functions for QG PV that are found
by solving the eigenvalue problem in (1.45) by assuming a seperation of variables. The
barotropic mode is constant in z while the n-th baroclinic modes are cosine modes,

φn(x) = cos
(nπz
H

)
. (1.72)

For a further discussion on QG-modes, see Vallis 2006 [46]. This suggests that one can use
the relatively simple SQG model instead of the more complicated four-QG-mode combina-
tion, at least in the Southwestern Atlantic, and find good agreement with data gathered
there.

Tulloch and Smith 2006 [43] showed that the finite depth SQG model (discussed in
detail in section 1.1.3 and used in this thesis) is able to attain a horizontal kinetic energy
spectrum with a power law of K−5/3 at small scales (i.e. for K Ld � 1) and K−3 at large
scales (i.e. for K Ld � 1) with a smooth transition in-between. This result is significant in
that the Global Atmospheric Sampling Program data has a spectral shape that resembles
what arises in the kinetic energy spectrum in the finite-depth SQG model [36]. Tulloch
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and Smith 2006 [43] argued a full understanding of why the data forms this spectral shape
must include finite depth SQG dynamics.

In regards to the assumptions of zero QG PV and constant buoyancy frequency, Lapeyre
and Klein 2006 [31] showed that using an “effective” SQG model, one is able to match data
quite well with flows with non-constant buoyancy frequency and even flows which had non-
zero QG PV near the surface. Far enough away from the surface, however, the model has
trouble matching observed data. The effective SQG model chooses the buoyancy frequency,
N , not from a physical description, but in order to match data closely near the surface. In
their paper, an algorithm is described in how one chooses N appropriately. From there,
one uses the exponentially decaying solution found in Held et al. 1995 [19] and stated
in (1.53) and (1.54). The effective SQG [31] model supports our use of constant N and
the assumption of zero QG PV. Furthermore, the effective SQG model has been used in
other studies to describe oceanic dynamics. For instance, in Isern-Fontanet et al. 2008
[22], it is shown that the effective SQG model, compared to an Ocean General Circulation
model simulation, is quite accurate in matching the surface velocity field. Furthermore,
it is shown that it does a reasonable job matching the velocity field in the upper 500 m.
In Klein et al. 2009 [25], it was, again, found that the effective SQG model was accurate
compared to a PE solution in reconstructing velocities at the surface and down to a depth
of 500 m.

While SQG has seen success there is a well-known limitation in the model. In partic-
ular, numerical simulations of SQG more often than not generate small scale vortices and
eddies which are beyond the extent of SQG (e.g. [19], [23]). The SQG model assumes
an infinitesimal Ro for all structures generated in the simulation. However, the Rossby
number of these structures increases as Ro(K) ∼ K2/3 (e.g. [10], [23]). To see this, we can
consider how the Rossby number depends on horizontal wavenumber,

Ro(K) ∼ U(K)

L(K)
. (1.73)

Clearly, L(K) ∼ K−1 and the horizontal velocity scales like U(K) ∼
√
KE(K) where

E(K) is the energy spectrum. The predicted energy spectrum, E(K), of turbulence in
the SQG model is K−5/3 which is derived in Pierrehumbert et al. 1994 [37] and further
discussed in Held et al. 1995 [19]. Therefore, we find that the horizontal velocity scales like
U(K) ∼ K−1/3, so that

Ro(K) ∼ K2/3. (1.74)

Thus, the dynamics in the SQG model generate features whose Rossby number grows like
K2/3. For large enough wavenumber (or small enough length scale), there is a breakdown of
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the assumptions of SQG and the model is no longer valid. To understand how these small
scale structures are actually evolving, we compare the results of numerical simulations of
SQG to the PE.

Studies comparing SQG to the PE based on simulations have been discussed in the
literature and we will discuss some of the more relevant results. Snyder et al. 2007 [40]
discussed a surface trapped vortex dipole chosen to represent a localized jet. This particular
setup does not generate any of the small-scale features that have been discussed within this
section of the thesis but one of the main results in the paper is regarding the inertia-gravity
waves that are generated. They argue that gravity waves are generated during the initial
part of the numerical simulation if one uses an unbalanced initial setup. Specifically, if
one uses initial conditions taken directly from the SQG solution (i.e. the leading order
solution) in the PE then gravity waves will be generated during the early stages of the
simulation. Danioux et al. 2012 [10] discussed spontaneous generation of inertia-gravity
waves in the PE for surface-intensified turbulence. Their simulation showed that gravity
waves tend to be emitted when the local Rossby number is O(1).

While SQG is the leading order solution in the asymptotic expansion to the PE, an
SQG+1 model, which includes the O(Ro) corrections in the asymptotic derivation is de-
rived in Hakim et al. 2002 [17] and Rotunno et al. 2000 [39].

For this thesis, we focus on the dynamics of a rotating elliptical surface trapped vortex
in the SQG model and the PE. For the PE, we shall vary the Rossby number of the initial
conditions in order to understand how the dynamics change for larger Rossby number
where the SQG model’s assumptions break down. Isolated vortices have been studied in
detail by Held et al. 1995 [19], who presented the surface trapped elliptical vortex as their
first example of SQG dynamics, Carton 2009 [7], and Dritschel 2011[12]. The latter two
papers discussed the stability of surface trapped elliptical vortices.

17



Chapter 2

Methodology

2.1 Numerical Methods

In order to find solutions to the SQG model and the PE we turn to numerical methods. The
components that we will discuss in computing a numerical solution are spatial discretization
and derivatives, time-stepping, and small-scale dissipation. We present basic details on
each of these topics.

2.1.1 Spatial Derivatives using the Pseudospectral Method

Periodic Boundary Condition

In order to compute derivatives accurately, we can make use of the pseudospectral method.
First, however, in the spectral method (e.g. [13], [42]), the basic idea is to express the
numerical solution, say U , in terms of a series of known orthogonal basis functions,

U(x, t) =

N/2∑
n=−N/2

an(t)φn(x). (2.1)

Generally, the choice of basis functions, φn(x), depends on the boundary conditions. Fol-
lowing Durran 1999 [13], for periodic boundary conditions, we choose φn(x) = einx, i.e., a
Fourier decomposition. The differential equation is written entirely in terms of the Fourier
coefficients by assuming that the residual is orthogonal to the basis functions (e.g. [13]).
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In contrast, the pseudospectral method sets the residual to zero at the grid points, and
therefore only refers to the Fourier coefficients when computing derivatives (e.g. [13]; al-
ternatively, the pseudo-spectral method can be derived using band limited interpolation,
see [42]). The details can be found in numerous textbooks (e.g. [13], [42]). To compute
a spatial derivative of some function u, we take the Discrete Fourier Transform (DFT) of
∂xu with the knowledge that spatial derivatives become algebraic multiplication in spectral
space. From there, we invert back into physical space and take the real part of the inverse
DFT. Mathematically, we have,

∂u

∂x
= <(F−1(ikF (u))), (2.2)

where F and F−1 denote the Fourier transform and inverse Fourier transform, respectively.

While this method is very accurate for computing derivatives, its applicability is some-
what limited in that one must use periodic boundary conditions. However, by performing
an even extension of a non-periodic function, one can use a Discrete Cosine Transform
(DCT). The extra requirement here though is the Neumann boundary condition on u, v,
and b′ which is required to ensure that a cusp does not appear about the point we are
performing the even extension (i.e. this would make the function not differentiable at this
point and would introduce error when trying to compute its derivative). The drawback
of the Neumann boundary condition for our study of SQG dynamics in the PE and is
discussed further in section 2.1.5.

Non-Periodic Boundary Condition

For non-periodic boundary conditions, one possible series expansion is to use Chebyshev
polynomials (e.g. [5], [42]). Chebyshev polynomials are defined, in Trefethen 2000 [42], as

Tn(x) = <(zn) =
1

2
(zn + z−n), (2.3)

where z is a complex number with |z| = 1. One can also define Chebyshev polynomials
recursively,

Tn+1(x) = 2xTn(x)− Tn−1(x), (2.4)

with the base cases defined as T0(x) = 1 and T1(x) = x. An alternate definition [42] is

Tn(x) = cos(n cos−1(x)), (2.5)
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which suggests using a change of variables,

θ = cos−1(x). (2.6)

Therefore, the n-th Chebyshev polynomial can be defined as

Tn(θ) = cos(nθ). (2.7)

This implies that the series expansion can be written in terms of a cosine series and,
therefore, we can use a DCT to transform the function into spectral space and compute
accurate derivatives.

This choice of series expansion uses a non-uniform grid which clusters points near the
boundary. The grid is defined by,

xj = cos(θj) = cos(jπ/N), for j = 0, 1, . . . , N, (2.8)

where N is the number of grid points and a schematic diagram is shown in figure 2.1.

Figure 2.1: Projection of cosine points onto a clustered grid. Image from Trefethen 2000
[42].

The clustering of grid points allow for increased resolution near the boundary but the
resolution in the interior is relatively coarse as a result. Increasing the number of grid
points in order to improve resolution in the interior can be detrimental since it would force
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a smaller time-step due to the Courant-Frederichs-Lewy (CFL) condition (e.g. [13]) which
stipulates a requirement to ensure stability of the numerical solution. However, increasing
the number of grid points near the surface is not necessarily a detriment for our study since
most of the dynamics in the SQG model occur near the solid boundary at the surface.

2.1.2 Time-Stepping

Time-stepping is an important process that allows one to evolve their solution forward in
time. For simplicity, suppose we are trying to solve the differential equation,

dφ

dt
= F (φ). (2.9)

There are a variety of different time-differencing methods one can use (see Durran 1999
[13]), however, both numerical models used in this thesis use the third-order Adams-
Bashforth scheme, a linear multistep method, given by,

φn+1 = φn +
∆t

12

[
23F (φn)− 16F (φn−1) + 5F (φn−2)

]
, (2.10)

where ∆t is the time-step and φn ≈ φ(n∆t) i.e., φn is the numerical solution at t = n∆t.
This method requires the numerical solution, φn, from two earlier time steps and so storage
can be an issue. However, we do find that the truncation error is O(∆t4) and is therefore
quite accurate.

2.1.3 Small-Scale Filtering

Since we cannot resolve down to the scale where physical viscosity becomes important, we
must remove energy from the smallest scales that our grid allows. To do this, we use an
exponential filter that mimics hyperviscosity (e.g. [5]). The general form of the exponential
filter is

s(k) = e−α|k|
β

, (2.11)

where k is wavenumber and α and β are parameters that we can vary. The filter is
applied in spectral space and decreases the magnitude of Fourier coefficients with large
wavenumbers (i.e. small-scales). Mathematically, to filter a variable, q, we compute its
Fourier coefficients using the DFT, multiply by the filter, and transform back into physical
space using the inverse DFT and take the real part:

qf = <(F−1(s(k)F (q))), (2.12)
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where qf is the filtered variable.

The reason this exponential filter is considered to mimic hyperviscosity is clear when
one considers a diffusion equation with hyperviscosity,

∂u

∂t
= (−1)p+1ν∇2pu, (2.13)

where ν is the hyperviscosity coefficient and p is a positive integer. For a single Fourier
coefficient, this implies,

dû

dt
= −νK2pû, (2.14)

and has solution,
û = û0 exp(−νK2pt). (2.15)

where û0(K) are the Fourier coefficients of the initial conditions, u(x, 0) = u0(x). For a
time interval of length ∆t, this implies

û = û0 exp(−ν∆tK2p), (2.16)

here, we identify that α = −ν∆t and β = 2p. Therefore, we note that the filter strength
depends on the size of the time-step, ∆t.

Comparing (2.15) and (2.16) to (2.11) suggests that the effects of the exponential filter
mimic that of hyperviscosity. Generally, the hyperviscosity allows for p be a positive
integer, however, with the filter in (2.11), we can let both α and β to be real numbers since
the filter only acts in spectral space. In order to choose appropriate parameter values, α
and β, we think of the problem in a different way. In particular, we ask the question, at
what wavenumber do we wish the filter to start decreasing the magnitude of their respective
Fourier coefficients and at what wavenumber do we want the magnitudes to be reduced by
half? Mathematically, we set,

s(km) = 0.9 = e−αk
β
m , (2.17)

s(ks) = 0.5 = e−αk
β
s , (2.18)

where km and ks denote the wavenumbers at which the filter reduces 10% and 50 % of the
corresponding Fourier coefficients’ magnitude, respectively. We can solve (2.17) and (2.18)
to find α and β in terms of km and ks. Some algebra reveals,

α = 0.69k
−1.88/ ln( ks

km
)

s , (2.19)

β =
1.88

ln
(
ks
km

) . (2.20)

This allows us to pick α and β in a way that is easily understandable.
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2.1.4 QG3

In order to compute solutions to the SQG model, we make use of the numerical model
QG3 written by Glenn Flierl (priv. comm.). In general, the code is able to solve multilayer
problems of the form,

∂θ

∂t
+ J(ψ,θ) = 0, (2.21)

where θ is a vector of any materially conserved quantities, and ψ is the corresponding
vector of streamfunctions. Each component of θ and ψ depend on the horizontal directions
(and time) only. Here, we use the Jacobian notation, J(A,B) = AxBy − AyBx. The
other requirement is a so-called inversion relation in spectral space between the conserved
quantities, θ, and streamfunctions, ψ,

θ̂ = Mψ̂, (2.22)

where M is a matrix which stores the inversion relations. The inversion relations are
derived from the physics of the system one is studying. Note that (2.22) is for the multilayer
problem. For a single layer (as in SQG), M is a scalar function which gives the inversion
relation between conserved quantity and streamfunction.

As an example of an inversion relation, if we consider two-dimensional fluid flow de-
scribed by the Euler equations, we can write the dynamics as a conservation of vertical
vorticity (e.g. [1], [27]),

∂ζ

∂t
+ J(ψ, ζ) = 0. (2.23)

Furthermore, we know that the relationship between the vorticity and streamfunction are
given by ζ = ∇ψ or, in spectral space, the inversion relation is given by,

ζ̂ = −K2ψ̂. (2.24)

For SQG, the inversion relation is defined in (1.52).

QG3 uses the pseudospectral method with a Fourier series expansion to compute hor-
izontal derivatives and uses the third-order Adams-Bashforth time-stepping scheme. The
exponential filter is applied radially in spectral space. Time-stepping in QG3 is fixed at
around ∆t = 5 minutes. The grid spacing is ∆x ≈ 390 m with 512× 512 grid points which
spans a domain of 200 km × 200 km. The numerical model is run in serial on a desktop
and the runtime is around 10 minutes.
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2.1.5 SPINS

To solve the PE we make use of the Spectral Parallel Incompressible Navier-Stokes (SPINS)
written by Subich et al. 2013 [41]. As with QG3, SPINS is a pseudospectral solver with
third-order Adams-Bashforth time-stepping and can describe the dynamics of the PE.
SPINS is parallelized using the Message Passing Interface (MPI) package and is run using
Sharcnet computing resources. In general, using MPI allows one to use multiple processors,
each solving a portion of the full domain. The result can be a dramatic speed-up in
computation. For a description of how SPINS uses MPI see Subich et al. 2013 [41].

While SPINS uses an adaptive time-step to satisfy the CFL condition based on the
momentum equation, we used a constant time-step. By allowing an adaptive time-step, we
found spurious oscillations in the three-dimensional velocity and buoyancy fields. These
oscillations are presented in figure 2.2 where we plot the xz cross-section of the vertical
velocity through the center of the y axis. In panel (a), we plot the vertical velocity at t = 1
day and in panel (b) we plot the vertical velocity at t = 4 days. We choose a simulation
with a very small Rossby number, Ro = 0.005 (for more details see section 3.1) because,
as will be seen in chapter 3, this case matches very well with SQG. We can see spurious
oscillations generated near the surface with relatively large velocities (indeed, as presented
in chapter 3, all of the cases we discuss have vertical velocities 3-4 orders of magnitude
smaller than these spurious oscillations). The velocities persist throughout the course of
the simulation and affect the evolution of the surface buoyancy (not shown). We conclude
that these oscillations are the result of numerical error.

These spurious oscillations are a results of the fact that the time-step chosen based on
the CFL condition does not properly resolve gravity waves. To properly resolve these waves,
we note that from section 1.1.4, the shortest period of inertia-gravity waves was found to
be T = 2π/N (see equation (1.71)). For the value of N we use, found in table 3.1, the
shortest period is around 600 seconds. Therefore, in order to properly resolve these waves,
we fix ∆t = 60 seconds. It can also be argued that since the time-step has been reduced,
this has the effect of increasing the strength of the filter (see 2.1.3, in particular equation
(2.16)). However, after spending a great deal of time trying stronger filter parameters
and finding these waves still being generated, albeit with larger wavelengths, the author
believes that the more likely reason has to do with the resolving gravity waves.

We use 512× 512× 512 grid points. The high number of vertical grid points is chosen
based on the result in Tulloch and Smith 2009 [44] which states that in order to resolve
wavenumber K, we need,

∆z ≤ 0.3
f

N

1

K
. (2.25)
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Figure 2.2: Vertical velocity at t = (a) 1 day and (b) 4 days. The simulation used the
adaptive time-step based on the CFL condition from the momentum equation.

The second reason for the high number of vertical grid points is that SPINS uses a staggered
grid. Since we want to study the dynamics at the surface, we need to try to minimize ∆z
which, for a fixed depth, is done by increasing the number of grid points. Depending on the
number of processors used to compute the solution up to 20 days on Sharcnet, we found
the runtime to vary between about 3 days (if we used 64 processors) to about 5 days (if
we used 32 processors).

For vertical boundary conditions, SPINS has three options: periodic, no-slip, and free-
slip. The periodic boundary condition, which we use in the horizontal directions, uses DFT
to compute derivatives implemented using FFTW [14]. The no-slip vertical boundary
condition imposes that all velocities are zero at vertical solid boundaries and therefore
won’t be used in this thesis. Finally, the free-slip vertical boundary condition gives us the
option to use a uniform grid or Chebyshev grid. In order to compute vertical derivatives
in the uniform grid, SPINS uses a DCT on u, v, and b′. For the vertical velocity on the
other hand, SPINS uses a Discrete Sine Transform (DST). The DCT forces the vertical
boundary condition to impose an additional Neumann boundary conditions for u, v, and
b′. Alternatively, we can use a Chebyshev grid. This has an advantage over the uniform
grid in that there is a clustering of grid points near solid boundaries, particularly near the
surface where we expect most of the dynamics to occur. Derivatives are then computed
by a change of variables and then using a DCT (see Subich et al. (2013) [41] and section
2.1.1).
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The exponential filter in SPINS is performed separately in each spatial direction. This
is a slight difference to the filtering in QG3 and makes for some discrepancies in the smallest
scales. Note also that there is no vertical dissipation in the QG3 model. In SPINS, the
filtering is of the form

s(k) =

1 if k < kc

exp

(
−α
(
|k|−kc
kmax−kc

)β)
if k ≥ kc

, (2.26)

where kmax = π/∆x and kc is the “cut-off” wavenumber. By setting kc = 0, we find
that the exponential filter is applied to all Fourier coefficients and is of the form of the
hyperviscosity-like filter in (2.11).

2.2 Energy Spectra

To quantify some differences between the SQG and PE solutions, we make use of energy
spectra. Energy spectra allows one to quantify how much energy is present at each length
scale. Furthermore, there are theories for turbulent energy spectra that allow one to make
a prediction of the fluid flow from a purely theoretical perspective.

We first present a derivation of the enery spectra that can be found in numerous text-
books (e.g. [11], [33]), then present how to compute the energy spectrum in practice, and,
finally, discuss the predicted energy spectra in SQG.

2.2.1 Energy Spectrum from Turbulence Theory

Here, we follow the derivation in Lesieur 2008 [33] and that of the AM900 course on
instability and turbulence [48] for a two-dimensional fluid. The reason for this is that SQG
is anisotropic in the z direction, while in the horizontal, isotropy can be realizable.

The total horizontal kinetic energy at the surface (i.e. a two-dimensional slice) is given
by

E =
1

L2

∫∫
L2

1

2

(
u2 + v2

)
dV, (2.27)
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or, using Parseval’s Relation,

E =
∞∑

k=−∞

∞∑
l=−∞

1

2

(
|û|2 + |v̂|2

)
. (2.28)

We can write this as an integral over continuous wavenumber by multiplying (2.28) by
1 = (L/2π)2(∆k)2. We define Û(k, t) = 1/2(|û|2 + |v̂|2)(L/2π)2 and take the limit as
∆k → 0. This limit corresponds to going from a finite domain to an unbounded domain.
Thus, Fourier coefficients become Fourier transforms. These steps make (2.28) a Riemann
sum and taking the limit gives,

E =

∫∫
k

Û(k, t)dk. (2.29)

Note the domain of integration in (2.29) is taken to be (k, l) = (−∞,∞)× (−∞,∞). We
make the assumption that, on average (i.e. ensemble or time-averaged), the dynamics are
isotropic in the horizontal. This implies that Û depends on the magnitude of the wave-
vector, Û(k, t) → Û(K, t), and allows us to simplify the integral in (2.29). Using polar
coordinates, one can show,

E =

∫ 2π

0

∫ ∞
0

KÛ(K, t)dKdθ =

∫ ∞
0

2πKÛ(K, t)dK. (2.30)

Finally, we define the energy spectrum as,

E(K, t) = 2πKÛ(K, t), (2.31)

which is interpreted as the amount of energy (per unit wavenumber) present between
wavenumbers K and K + dK. That is, it quantifies how much energy per unit wavenum-
ber is present at each particular length scale. The full horizontal kinetic energy is then
integrated over all wavenumbers,

E =

∫ ∞
0

E(K, t)dK. (2.32)

2.2.2 Energy Spectrum in Practice

The above derivation assumed an infinite domain along with integrating in polar coor-
dinates. However, our simulations are not in an infinite domain and, for simplicity, we
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instead choose to integrate in Cartesian wavenumber coordinates. Furthermore, due to the
discretization of our data, we approximate integrals with summations.

First, we consider a thin circular shell in spectral space, depicted in figure 2.3, centered
at K = K ′ and of width ∆K, called SK′ . Mathematically, we define the shell as,

SK′ =

{
k | K ′ − ∆K

2
≤ |k| ≤ K ′ +

∆K

2

}
. (2.33)
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Figure 2.3: A schematic in spectral space of a circular shell.

The amount of energy within the shell can be calculated as an integral, which we
approximate as,

ESK′ =

∫
SK′

E(K)dK ≈ E(K ′)∆K. (2.34)

Furthermore, using Parseval’s relation, the energy can also be defined as a sum of Fourier
coefficients,

E(K ′)∆K ≈
∑

k∈SK′

1

2

(
|û|2 + |v̂|2

)
. (2.35)
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In practice, we simply sum the horizontal kinetic energy of each of the Fourier coefficients
within the circular shell. This “binning” process is repeated for all of the other shells in the
spectral domain. The interpretation of (2.35) is the amount of horizontal kinetic energy
in the wavenumber range (K ′ −∆K/2, K ′ + ∆K/2).

We can also make use of the Helmholtz decomposition to write the horizontal velocity
field as a divergent (or curl-free) part and rotational (or divergence-free) part. Some algebra
reveals that,

1

2
(|û|2 + |v̂|2) =

1

2

(
|ζ̂|2

K2
+
|δ̂|2

K2

)
, (2.36)

where ζ̂ = ikv̂− ilû and δ̂ = ikû+ ilv̂ are the horizontal Fourier coefficients of the vertical
vorticity and horizontal divergence, respectively. Therefore, using equation (2.35), we can
write the energy in the shell, SK′ , as

E(K ′)∆K ≈
∑

k∈SK′

1

2

(
|ζ̂|2

K2
+
|δ̂|2

K2

)
. (2.37)

A similar process to the above described binning can also be done to find the contribution
of rotational and divergent motion for wavenumbers in (K ′ −∆K/2, K ′ + ∆K/2).

This decomposition is useful in that the divergent part of the energy spectrum is an
indication of gravity waves. In fact, it is trivial to note that QG and SQG have zero
horizontal divergence at leading order. On the other hand, gravity waves do have horizontal
divergence. This is most readily seen by using the incompressibility condition, ∇H · u =
−∂zw. Using the results in section 1.1.4, for a single Fourier mode, we have,

∇H · u = −∂w
∂z

= <{−m cos(mz)ŵei(kx+ly−ωt)}, (2.38)

in general the above equation will not be zero. Thus, we see that gravity waves have
non-zero divergent energy.

2.2.3 Energy Spectrum of the Surface Quasi-Geostrophic Model

In Kolmogorov 1941 [26] it is shown that the energy spectrum for three-dimensional
isotropic turbulence followed a K−5/3 power law. This result was very important and
was based entirely on dimensional analysis of the governing equations of motion. For QG
turbulence a similar results exists and was described by Charney 1971 [9]. Charney’s theory
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predicted a power law of K−3. For SQG, however, the predicted power law is not −3. In
Pierrehumbert et al. 1994 [37] the spectra of different types of two-dimensional turbulence
are discussed from a mathematical perspective. In particular, they consider the general
equation

∂q

∂t
+ J(ψ, q) = 0, (2.39)

with an inversion relation of the form

q̂ = −Kαψ̂, (2.40)

where α ∈ [0,∞). Note that only α = 1, 2 are physically realizable. The case with
α = 2 corresponds to two-dimensional dynamics described by the Euler equations (i.e.
conservation of vorticity [27]) while α = 1 corresponds to the SQG model in Held et
al. 1995 [19] (see also section 1.1.3). Pierrehumbert et al. 1994 [37] confirmed that the
case with α = 2 yields the classical K−3 energy spectrum for the down-scale enstrophy
cascade and showed that SQG turbulence, the case when α = 1, has an energy spectrum
of K−5/3 for the down-scale energy cascade. While SQG turbulence is two-dimensional,
the predicted power law is different from that of the two-dimensional Euler equations.

Here, we present the basic outline of the scale analysis that is used in Pierrehumbert et
al. 1994 [37] to show that SQG turbulence has a power law of K−5/3. First, suppose we force
the system at small wavenumber, ki, and viscous dissipation occurs at large wavenumber,
kd. For wavenumbers satisfying, ki � k � kd, the dynamics do not directly feel the input
of energy into the system nor the viscous dissipation of energy in the system. This set of
wavenumbers is known as the inertial range (e.g. [11], [33]). Furthermore, it can be shown
(e.g. [11], [33]) that, in the inertial range, the energy spectrum obeys,

∂E(K, t)

∂t
= T (K, t), (2.41)

where T (K, t) represents non-linear transfer of energy between length scales (e.g. [11], [33]).
The spectral flux is defined as

Π(K, t) = −
∫ K

0

T (K ′, t)dK ′, (2.42)

which implies that equation (2.41) can be equivalently written as

∂E

∂t
= − ∂Π

∂K
. (2.43)
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A fundamental assumption is that in the inertial subrange we have statistical stationarity,
dE/dt = T (K, t) = 0 (e.g. [33], [37]). This means that Π(K, t) = ε, where ε is a constant.
From here, one can turn to dimensional analysis. Since we assume we are in the inertial
range, the only relevant variables that describe the system are Π, E(K), K. Dimensionally,
we have,

[Π] = L2T−3, [E(K)] = L3T−2, [K] = L−1. (2.44)

In order to see how Π relates to the other two variables dimensionally, set,

[Π] = [E(K)]α[K]β. (2.45)

After substituting in the dimensions in (2.44), we have,

L2T−3 = L3αT−2αL−β. (2.46)

By equating exponents on the length and time scales, we find that α = 3/2 and β = 5/2.
This means that the energy spectrum has the form,

E(K) = ε2/3K−5/3. (2.47)

Therefore, as in Pierrehumbert et al. 1994 [37], we find that the predicted power law of the
energy spectrum for turbulent flows in the SQG model is K−5/3.

2.3 The ω Equation

The ω equation describes that vertical velocity that is induced by QG motion [20]. The
nomenclature comes from meteorology. In meteorology, it is common use pressure, p, as
the vertical coordinate (e.g. [16], [46]). As a result, the vertical velocity is defined (e.g.
[16], [46]) as,

ω =
Dp

Dt
. (2.48)

However, in Hoskins et al. 1978 [20] the vertical coordinate remains written as height, z,
and, therefore, we do not have to worry about writing things in pressure coordinates. The
ω equation will become a useful diagnostic in that it will allow us to differentiate between
gravity waves that are generated in our simulations from the vertical velocity due to the
balanced motion. This technique is commonly used (e.g. [10]) to identify gravity waves.
In this section, we shall give a brief derivation of the ω equation and discuss how we solve
it numerically.
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2.3.1 Derivation of the ω Equation

Preliminary Equations

We first note that the velocity field be written, in dimensional variables, as,

v = vg + vag, (2.49)

where vg is the geostrophically balanced horizontal velocity defined in (1.41) with vertical
component identically zero (see section 1.1.3) and vag the ageostrophic velocity. When the
Rossby number is small, we assume that |vg| � |vag|.

If we consider the horizontal momentum equation,

Du

Dt
+ f × u = − 1

ρ0
∇Hp, (2.50)

one can show, using,

f × u = f × uag + f × ug = f × uag − 1/ρ0∇Hp, (2.51)

that the geostrophic momentum equation (e.g. [16]) can be written as,

Dgug
Dt

+ f × uag = 0, (2.52)

or, in component form,

∂ug
∂t

+ ug · ∇Hug − fvag = 0, (2.53)

∂vg
∂t

+ ug · ∇Hvg + fuag = 0. (2.54)

The other equation required for the derivation of the ω equation is the energy equation in
(1.13). With N = const, we have,

∂b′

∂t
+ ug · ∇Hb

′ +N2w = 0. (2.55)

Finally, we have thermal wind balance which we first stated, non-dimensionally, in (1.32).
We state it here, dimensionally, as,

f
∂ug
∂z

= −∂b
′

∂y
, f

∂vg
∂z

=
∂b′

∂x
. (2.56)
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Derivation

Our derivation of the ω equation follows Hoskins et al. 1978 [20]. To begin, first take an x
derivative of (2.55),

∂2b′

∂x∂t
+N2∂w

∂x
= − ∂

∂x
(ug · ∇Hb

′). (2.57)

Since we have thermal wind balance (2.56), we take a vertical derivative of (2.54) and
multiply by f . Upon substitution into (2.57), we find,

N2∂w

∂x
− f 2∂uag

∂z
= − ∂

∂x
(ug · ∇Hb

′) + f
∂

∂z
(ug · ∇Hvg), (2.58)

and, after some simplification which includes use of thermal wind balance (1.32) and in-
compressibility (1.7), we find,

N2∂w

∂x
− f 2∂uag

∂z
= −2

(
∂b′

∂y

∂vg
∂x
− ∂b′

∂x

∂vg
∂y

)
≡ −2Q1. (2.59)

Similarly, we can take a y derivative of (2.55) and, using the same steps as described
above, can find

N2∂w

∂y
− f 2∂vag

∂z
= −2

(
−∂b

′

∂y

∂ug
∂x

+
∂b′

∂x

∂ug
∂y

)
≡ −2Q2. (2.60)

Next, we take an x derivative of (2.59) and y derivative of (2.60) and add the resulting
equations to find,

N2∇2
Hw + f 2 ∂

∂z

(
−∂uag
∂x
− ∂vag

∂y

)
= −2∇H ·Q. (2.61)

The last step is noting that the incompressibility condition of the ageostrophic velocity
is written as,

∂uag
∂x

+
∂vag
∂y

+
∂w

∂z
= 0. (2.62)

Upon substituting into (2.61), we find the ω equation,(
N2∇2

H + f 2 ∂
2

∂z2

)
w = −2∇H ·Q, (2.63)

where Q = −(∇Hb
′⊥ · ∇H)u⊥

g and u⊥
g = (−vg, ug) and ∇Hb

′⊥ = (−∂yb′, ∂xb′) (notation
follows [49]). Note that the ω equation does not state how the balanced vertical velocity
evolves in time. Thus, in order to find the field, we must compute the various terms in the
equation and solve the differential equation for the balanced vertical velocity. This can be
quite time consuming as will be described in the next section.
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2.3.2 Computing the ω Equation in Practice

In order to compute the vertical velocity due to thermal wind and geostrophic balance, we
write the ω equation (2.63), in spectral space, as,(

−N2K2 + f 2 d
2

dz2

)
ŵ = −2∇̂ ·Q. (2.64)

The definition of the vector Q (defined in equations (2.59) and (2.60)) involves geostrophi-
cally balanced horizontal velocities and a buoyancy field which is in thermal wind balance.
In order to compute the corresponding geostrophic velocities and thermal wind, we take
derivatives of the pressure field, p,

vg =
1

fρ0

∂p′

∂x
, ug = − 1

fρ0

∂p′

∂y
, and b′ =

1

ρ0

∂p′

∂z
. (2.65)

All derivatives are computed uses the DFT. The vertical derivative of p is computed by
performing an even extension of the pressure field and computing the derivative using DCT
to transform into spectral space.

In equation (2.64), we approximate the second vertical derivative using a centered finite
difference scheme. From there, we loop through all wavenumbers and invert the operator on
the left hand side of (2.64) to find ŵ(k, l, z) at each (k, l). Looping through each individual
wavenumber takes a non-trivial amount of time, on the order of hours. The final step is to
perform the inverse DFT to find the vertical velocity in physical space.
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Chapter 3

Results

In this chapter we discuss and analyze the numerical solutions to the SQG and PE models.
The SQG model assumes an infinitesimal Rossby number while in the PE the Rossby
number is finite. The initial conditions we consider is that of an elliptical vortex which
was the first example discussed by Held et al. 1995 [19]. The surface buoyancy anomaly
field is given by an asymmetric Gaussian profile,

bt = bmax exp

(
−
(
x

l/6

)2

−
(

4y

l/6

)2
)
, (3.1)

where bmax = 0.01 m s−2 and l = 200 km is the side length of horizontal domain. The
three-dimensional buoyancy field is computed via (1.51) and the horizontal velocity fields
are computed by taking horizontal derivatives of the three-dimensional streamfunction in
(1.50). The vertical velocity field is initially zero everywhere. The initial surface buoyancy
in equation (3.1) is shown in figure 3.1.

Our investigation is based on varying the Rossby number in the PE in order to determine
when the SQG model breaks down for the elliptical vortex. While the choice of an isolated
vortex is somewhat idealized, we felt it was a natural starting point in discussing SQG
dynamics in the context varying Rossby number. In order to vary the Rossby number,
Ro, we have a variety of choices. The most physical choice would be to vary the initial
characteristic horizontal velocity, U , and leave all other parameters the same (i.e. fix
f = 10−4 s−1, L = 100 km). However, the time-scale of the vortex, T ∼ L/U , would be
increased. In particular, using L = 100 km and f = 10−4 s−1, to get Ro = 0.005 (one of
the cases we explore), the velocity would need to be U = 0.05 m s−1. The corresponding
time-scale is T ∼ O(10) days. Since, we’ve integrated our initial conditions for 20 times the
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Figure 3.1: Initial surface buoyancy distribution. Surface buoyancy is normalized by bmax.

time-scale of the vortex (seen throughout this chapter), we would need to integrate up to at
least 200 days with a fixed time-step of 60 seconds to ensure that the inertia-gravity waves
are properly resolved (see section 1.1.4). This would require a huge amount of computing
time. Therefore, the characteristic velocity and length scales are held fixed throughout the
runs.

In order to vary the Rossby number, we choose to vary the Coriolis parameter, f . Since
the time scale of the vortex is L/U but the time-step in SPINS is controlled by N , we find
that by changing f we keep the time-scale of the vortex unchanged and, therefore, different
Rossby number simulations can be run in about the same amount of time. However, varying
f has the effect of changing the Burger number and, consequently, based on equations (1.50)
and (1.51), the e-folding vertical scale of surface buoyancy features changes. Thus, in order
to fix the Burger number, we can change either N or H. We choose to change H so that
the decay per vertical grid point is the same between each case. Another way to think
about this is that we change H to keep the depth of the domain relative to the depth of
the vortex fixed. We note that by changing H the aspect ratio, H/L, between simulations
changes but still remains much smaller than 1.

As discussed in section 2.1.5 we have two options in SPINS for the type of grid we can
use in the vertical. The free-slip boundary condition permits the use of a uniform grid or
Chebyshev grid. The uniform grid was first explored in this thesis but we note that, for
computational reasons, this option forces a Neumann boundary condition at the vertical
boundaries on the horizontal velocity fields and buoyancy field. This implies that the QG
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PV, q = ζ + (f/N)2∂zb
′, which is initially set to zero, will be spuriously generated near

the surface due to the term (f/N)2∂zb
′ being forced to zero. The other option is to use

the Chebyshev grid which has the advantage of high resolution near the surface where all
of the dynamics are occurring. The disadvantage is the coarse resolution in the center
which may filter out gravity waves propagating vertically. We first discuss the results of
the Fourier simulations which use a uniform grid and then of the Chebyshev simulations.

3.1 Fourier Simulations

To begin, we consider simulations performed with a uniform vertical grid with cosine
expansions for the horizontal velocities and buoyancy perturbations and sine expansions
for the vertical velocity. This choice allows for uniform vertical resolution at the cost
of imposing extra Neumann boundary conditions for the horizontal velocities, u, v, and
buoyancy perturbations, b′. This will be compared with a Chebyshev grid in the vertical
in section 3.2.

We consider cases for three different Rossby numbers that we classify based on the
initial conditions. Table 3.1 shows the parameter values for the three PE runs. The
characteristic velocity scale is chosen to be the maximum velocity induced by the surface
buoyancy vortex (roughly, U ≈ 0.5 m s−1) while the characteristic length scale is chosen
to be four times the standard deviation in the x-direction, 4σ ≈ 95 km, which we round
up to 100 km.

Ro f [s−1] H [km] N [s−1] U [m s−1] L [km] ∆x [m] ∆z [m] ∆t [s]
0.005 10−3 10 10−2 0.5 100 390 20 60
0.05 10−4 1 10−2 0.5 100 390 2 60
0.1 5 · 10−5 0.5 10−2 0.5 100 390 1 60

Table 3.1: The full set of parameter values for each run in the PE simulations.

The SQG solution is computed using the parameter values for the PE case with Ro =
0.05 in the QG3 solver (see section 2.1.4). Since SPINS uses a staggered grid where the
grid points are at the center of the cell, in order to compare solutions at the same depth,
we choose to project the SQG solution down half a grid point via equations (1.50) and
(1.51). Even though the depth changes between PE simulations, the decay per grid point is
identical. Throughout this section we often state that we are plotting fields at the surface.
In actuality, we are plotting at z = −∆z/2 but we use the concise phrasing of “plotting at
the surface.”
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For small scale dissipation, we use the exponential filter discussed in detail, including
how it is applied in spectral space, in section 2.1.3. The parameter values for the PE
simulations are given in table 3.2. For the SQG simulation, we use the same filtering
parameters as the cases with Ro = 0.005 and 0.05. We note that for the case with Ro = 0.1
the filtering strength was increased. This was due to a build up of energy at small scales
that was observed during the first few days of the simulation.

Ro α β km ks
0.005 133.79 10.31 0.4kmax 0.5kmax

0.05 133.79 10.31 0.4kmax 0.5kmax

0.1 26.64 5.27 0.35kmax 0.5kmax

Table 3.2: Filter parameters used in our numerical simulations with SPINS.

3.1.1 Surface Buoyancy

As a natural starting point, we first consider how the surface buoyancy field evolves in time
and space in both the SQG and PE models. Snapshots of the surface buoyancy at different
times are plotted in figure 3.2 for the SQG solution. The vortex rotates anticyclonically
and develops long thin filaments at the exterior of the vortex by the end of 5 days seen
in panel (a). The thin filaments are unstable due to the strong shear that they possess
and at around 10 days, instabilities can be observed. At t = 15 days we observe that
the filaments break up and form coherent vortices. The simulation ends at 20 days, panel
(d), and many small scale vortices have emerged. The evolution of the SQG vortex was
first studied in Held et al. 1995 [19] and the instability mechanism has been studied in
different contexts [19]. The generation of small scale vortices is a common feature of SQG
dynamics, however, we note that the size of these secondary vortices are about 100 times
smaller. This suggests that the Rossby number of these vortices may have increased (see
section 3.1.4 for further discussion). This raises the question, do SQG dynamics apply to
these small scale vortices and, if not, what dynamics are actually occurring? In order to
begin addressing this, we turn to the PE.

Figure 3.3 shows the surface buoyancy at t = 10 days for the SQG model and the PE
solutions corresponding to Ro = 0.005, 0.05, and 0.1 normalized by bmax. As should be
anticipated, the case with Ro = 0.005 matches closely to the SQG solution. There are
some subtle differences between the two solutions. In particular, the thin filaments in the
PE solution are slightly less sharp due to the vertical filtering that is present in SPINS
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(a) (b)

(c) (d)

Figure 3.2: Surface buoyancy evolution at t =(a) 5, (b) 10, (c) 15 and (d) 20 days in the
SQG model. Buoyancy fields are normalized by bmax.

but not in QG3. Increasing the Rossby number ten-fold, we begin to notice stronger
differences in the dynamics. Specifically, we see that the core of the vortex has expanded
quite significantly and looks much more uniform. Furthermore, the maximum magnitude
in the core has decreased from 1 to about 0.7. The thin filaments remain unstable and
instabilities can be seen developing. In the PE solution with Ro = 0.1 we find that the
dynamics have changed significantly. The core of the vortex has expanded out further and
the maximum amplitude has decayed to around 0.4. The thin filament instabilities have
vanished in this case.

Figure 3.4 shows the surface buoyancy field in the SQG model and the PE solutions at
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(a) (b)

(c) (d)

Figure 3.3: Surface buoyancy evolution at t = 10 days in (a) the SQG model and in the
PE solutions with Ro = (b) 0.005, (c) 0.05, and (d) 0.1. Buoyancy fields are normalized
by bmax.

t = 20 days. As is to be expected, the case with Ro = 0.005 looks remarkably similar to the
SQG solution. The biggest difference is the decreased sharpness in the PE solution. The
case with Ro = 0.05 departs quite dramatically from the SQG solution. In particular, no
coherent secondary vortices have formed. This simulation was run for an additional 20 days
and we observed that the instabilities were not able to form the secondary vortices seen
in the SQG solution. Finally, the case with Ro = 0.1 shows a complete lack of instabilites
on the filaments. Therefore, as the Rossby number increases, the thin filament instability
common to SQG is stabilized. We note that while the increased filtering in the case with
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Ro = 0.1 may explain the lack of instabilities present, the trend is quite clear between the
cases with Ro = 0.005 and Ro = 0.05.

(a) (b)

(c) (d)

Figure 3.4: Surface buoyancy evolution at t = 20 days in (a) the SQG model and in the
PE solutions with Ro = (b) 0.005, (c) 0.05, and (d) 0.1. Buoyancy fields are normalized
by bmax.

3.1.2 Energy Spectra

In order to further diagnose the differences between SQG and the varying Rossby number
solutions to the PE, we compute the time-averaged horizontal kinetic energy spectrum at
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the surface of the fluid. We also compute the rotational and divergent parts of the energy
spectrum in order to quantify how much divergent energy is growing as the Rossby number
increases (recall that, at leading order, the horizontal velocity field in SQG is divergence
free). The decomposition of horizontal kinetic energy into rotational and divergent parts
give a rough look at the partition of kinetic energy between QG and inertia-gravity waves.

In figure 3.5 we show the time-averaged energy spectra over the mature part of the
simulation between 15 - 20 days where each output is calculated over 12 hour intervals. As
discussed in section 2.2.3, the energy spectrum in SQG turbulence is predicted to have a
power law of K−5/3 [37]. In panel (a), we see that the energy spectrum follows this power
law quite closely. The PE solution with Ro = 0.005 matches quite closely with the SQG
solution with some small-scale differences. The differences observed may be due to the
fact that we have vertical dissipation in SPINS as well as the differences in how the filter
is applied in QG3 and SPINS (see 2.1.3 for more details). The close agreement of the PE
solution with Ro = 0.005 and SQG is to be expected since we have already seen remarkable
agreement between these two cases in the snapshots of the surface buoyancy evolution. We
also note that, while there is some divergent energy present, it is approximately 4 orders of
magnitude smaller that the rotational energy. In the case with Ro = 0.05, the horizontal
kinetic energy spectrum looks more closely to follow a −3 spectrum rather than a −5/3.
Finally, the case with Ro = 0.1, again steepens to a spectrum closer to −3. The divergent
part of the energy grows as the Rossby number increases. This is consistent with more
energetic inertia-gravity waves being generated for larger Rossby numbers.

In table 3.3 we compute the least squares linear fit to the horizontal kinetic energy,
rotational kinetic energy, and divergent kinetic energy spectra (log-log) for the SQG and
PE solutions. In the SQG solution and PE solutions corresponding to Ro = 0.005 and 0.05
we compute the linear fit over wavenumbers 10-60 while in the case with Ro = 0.1, due to
the increased strength of the filtering, we compute the fit over wavenumbers 10-30. The
gradual increase in spectral slope indicates that the SQG model is not a very good fit to
the PE solution when Ro ≥ 0.05 and perhaps even for smaller values of Ro.

Based on equations (1.50) and (1.51) we see that features decays quite quickly away
from the surface. In figure 3.6, we plot the energy spectra at z/H ≈ −0.1 i.e. 10% below
the surface (recall that the domain depth changes between simulations, see section 3.1 and
table 3.1). Despite being only 10% below the surface, we find that the energy at the small
scales has decayed significantly (2-3 orders of magnitude compared to that of the surface).
The energy in the large scale vortex is still present and has not decayed significantly (seen
here in small K). We also note that in the cases with Ro = 0.05 and Ro = 0.1 divergent
energy begins to dominate the rotational energy at small scales. Furthermore, it is clear
that smaller scale features are decaying in depth more slowly in the cases with Ro = 0.05
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Figure 3.5: Energy spectrum in (a) the SQG model and the PE solutions with Ro = (b)
0.005, (c) 0.05, and (d) 0.1. Energy has been normalized by the total initial horizontal
kinetic energy and has been time-averaged over t = 15 − 20 days. The solid blue line
corresponds to horizontal kinetic energy, while the green dash-dot line and red dash line
correspond to rotational and divergent energy spectra, respectively. References line of
powers laws pertaining to −5/3 and −3 are plotted in the dash black line and solid black
line, respectively.

and Ro = 0.1 than in the case with Ro = 0.005.

In order to describe how the vertical distribution of energy changes we compute the
ratio of divergent energy to rotational energy. Figure 3.7 shows the logarithm of the ratios
of divergent to rotational energy time-averaged over t = 15 − 20 days. In all three PE
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KE RKE DKE
SQG -1.91 - -

Ro = 0.005 -2.12 -2.12 -1.55
Ro = 0.05 -2.56 -2.56 -2.37
Ro = 0.1 -3.51 -4.00 -3.50

Table 3.3: Least-squares estimate of spectral slopes of horizontal kinetic energy (KE),
rotational kinetic energy (RKE), and divergent kinetic energy (DKE) for SQG solution
and PE solutions.

solutions, we find that the divergent energy below a certain depth dominates rotational
energy for most wavenumbers. This is not surprising since the gravity waves are able
to propagate vertically while the rotating vortex is trapped near the surface. Perhaps
unsurprisingly, the case with Ro = 0.005 (which had very little divergent energy) shows
that rotational energy dominates for more of the vertical domain compared to the cases
with Ro = 0.05 and 0.1.

3.1.3 Vertical Velocity and the ω Equation

The energy spectra in figures 3.5 and 3.7 showed a gradual increase of divergent energy as
the Rossby number increased. This suggest that gravity waves are being generated in the
PE simulations and should be identifiable in the vertical velocity field. In order to properly
classify these waves we must compare the full velocity field to the vertical velocity field
that is generated from geostrophically balanced motion. The vertical velocity due to the
balanced part of the motion can be computed using the ω equation [20] (see section 2.3.1
for a derivation).

Figure 3.8 shows the full vertical velocity (left panels) and the ω equation velocity (right
panels) computed at t = 5 days. The ω equation velocity is computed at z = −∆z while the
full vertical velocity is plotted at z = −∆z/2. Since we are simply trying to discern whether
or not we have gravity waves in our simulation, we only consider the qualitative features in
the velocity fields and, therefore, we argue that the discrepancy between plotting depths
should not be too much cause for concern. In the case with Ro = 0.005, both velocity fields
look similar. This suggests that the vertical velocity is dominated by the balanced part of
the flow and not gravity waves. This is in agreement with the minimal divergent energy
computed in the energy spectrum plot for the case with Ro = 0.005 in figure 3.5. On the
other hand, both cases with Ro = 0.05 and 0.1 do generate gravity waves which are seen
radiating away from the vortex. We note that in the case with Ro = 0.1, the wavelength
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Figure 3.6: Energy spectra in (a) the SQG solution and the PE solutions with Ro = (b)
0.005, (c) 0.05, and (d) 0.1. Energy spectra have been normalized by initial energy at
the surface and wave number has been normalized by 2π/L. These plots are plotted at
z/H ≈ −0.1.

of gravity waves has increased. A separate case of Ro = 0.05 with identical filtering as
the case with Ro = 0.1 (not shown) indicates that the wavelength of gravity waves is set
by the filtering strength. This suggests that we are not resolving the smallest wavelength
gravity waves and it is therefore possible that gravity waves with smaller wavelength would
be generated with increased resolution simulations.

In figure 3.9 we plot a vertical slice in the xz plane of the vertical velocity (left panels)
and ω equation velocity (right panels) in the PE solutions. Common to all PE solutions is
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(a) (b)

(c)

Figure 3.7: Logarithm of the ratio of divergent to rotational energy in the PE solutions
with Ro = (a) 0.005, (b) 0.05, and (c) 0.1.

the abundance of gravity waves propogating vertically (most readily seen in animations).
The ω-equation velocities show that the geostrophically balanced vertical motion is al-
ways trapped near the surface, although, as the Rossby number increases we see that the
geostrophically balanced velocities penetrate deeper into the fluid. The effect of the in-
creased filtering is quite clear between the case with Ro = 0.05 and Ro = 0.1 in that we
see larger wavelength waves in the case with Ro = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Vertical velocities (left panels) and vertical velocity induced by QG motion
(right panels) for the set of Rossby number. Velocities are normalized by 10−5.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Cross section of vertical velocity (left panels) and ω velocities (right panels) in
the PE solutions. Velocity has been normalized by 10−5

3.1.4 Vertical Vorticity and the Local Rossby Number

While we use a definition of the Rossby number based on the initial conditions to classify
each of the three cases, there are other ways to estimate the relative strength of advection
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to rotation. In particular, one can define a local Rossby number by,

Roloc =
ζ

f
, (3.2)

where ζ is the vertical vorticity. The advantage of Roloc is that it reveals how relevant
rotation is in different parts of the flow. In figure 3.10 we show the local Rossby number
at the initial state of the flow for the case with Ro = 0.05. Initially, we have a strong
anticyclone in the center which has two relatively weaker cyclones above and below the
core anticyclone. The other cases have identical structures but with varying extrema due
to the varying f values between cases. The extrema are

Ro = 0.005 : Roloc ∈ (−0.14, 0.02) (3.3)

Ro = 0.05 : Roloc ∈ (−1.4, 0.2) (3.4)

Ro = 0.1 : Roloc ∈ (−2.5, 0.5) (3.5)

The local Rossby number is a stronger indication of whether or not the the flow is QG,
however, we choose to use the Rossby number based on the initial conditions as the way
to differentiate between cases. Indeed, the case with Ro = 0.005 is the only case where
|Roloc| < 1 and this is the case which very closely resembles what SQG theory predicts
while the other two cases depart from the SQG solution.

Figure 3.10: Vertical vorticity divided by f in the PE case with Ro = 0.005 at t = 0) days.

Figure 3.11 shows the vertical vorticity normalized by f at t = 3 days in the PE
solutions. Here, we notice that the case with Ro = 0.05 and 0.1 have local Rossby numbers
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that are at least 1 while the case with Ro = 0.005 maintains Roloc ∼ O(0.1). Danioux
et al. 2012 [10] showed in their simulations that when Roloc ∼ O(1), gravity waves were
spontaneously generated. We similarly find this phenomenon in our simulations: the cases
with Ro = 0.05 and 0.1 both generate gravity waves and have local Rossby numbers that
are at least 1 but the case with Ro = 0.005 does not show any clear evidence of gravity
wave generation. Further, we see that the initial local Rossby number in (3.3)-(3.5) can
grow quite dramatically. In particular, the cases with Ro = 0.05 and 0.1 attain a maximum
local Rossby number of ≈ 2.5 and ≈ 4, respectively. This suggests that the local Rossby
number can grow quite dramatically in PE simulations.

(a) (b)

(c)

Figure 3.11: Vertical vorticity divided by f at t = 3 days in the PE model with Ro = (a)
0.005, (b) 0.05, and (c) 0.1.

Looking further in the simulation, figure 3.12 shows plots of the local Rossby number
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in the SQG solution along with the PE solutions with Ro = 0.005, 0.05, and 0.1 at t = 15
days. In the PE case with Ro = 0.005, all filaments and vortices remain O(0.1) and are
therefore within the SQG regime. In the cases with Ro = 0.05 and 0.1 we find local Rossby
numbers are O(1) which suggests that SQG should not be used to describe these dynamics.
Indeed, simply based on the evolution of surface buoyancy one could deduce that these
cases depart from SQG. Qualitatively, there is a weakening of vortex stretching as the
Rossby number increases from 0.005 to 0.05 to 0.1 and this decreased shearing could be
the reason for the stabilization of the thin filament instabilities seen in figures 3.2, 3.3 and
3.4. Finally, the SQG solution’s local Rossby number shows O(1) structures and therefore,
the initial vortex should not be evolved according to SQG dynamics.

(a) (b)

(c) (d)

Figure 3.12: Vertical vorticity divided by f at t = 15 days in (a) the SQG model and in
the PE model with Ro = (b) 0.005, (c) 0.05, and (d) 0.1.

51



3.1.5 Quasi-Geostrophic Potential Vorticity

In the SQG model, since QG PV is materially conserved in the interior of the fluid and
is initially set to zero, there can be no generation of QG PV. However, in the PE, QG
PV is not necessarily materially conserved and therefore some generation through non-
linear interactions is possible. In particular, in the PE, it is the Ertel PV that is materially
conserved. QG PV is an approximation to the Ertel PV and is a good approximation when
the Rossby number is small (i.e. when the relative strength of non-linear advection is weak
to rotation). For a further discussion of Ertel PV see Vallis 2006 [46]). Due to the no mass
flux condition at the top and bottom of the fluid, we find that QG PV is generated at z = 0
due to the enforced boundary condition. In figure 3.13 we plot ζ, (f/N2)∂zb

′ and q in depth
for the PE solution with Ro = 0.005 (since it matched closest with the SQG solution) at
t = 30 minutes (the earliest output) and t = 20 days (the end of the simulation). The even
extension of b′ has a cusp and, therefore, the derivative is discontinuous. Using a Fourier
basis results in Gibbs’ oscillations near the point of discontinuity [42].
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Figure 3.13: QG PV generation due to vertical boundary condition in the PE solution
with Ro = 0.005 at (a) t = 30 minutes and (b) t = 20 days. Blue curve represents vertical
vorticity, red curve represents f/N2∂zb

′, and black curve represents QGPV, q.

Far enough away from the surface, q is small compared to typical values of ζ but
near the surface, where the no mass flux condition is enforced, we see generation of q.
At t = 20 days, the error is quite striking: q = ζ since ∂zb

′ = 0. While we note that
our results matched very well between SQG and the PE solution with Ro = 0.005, we
find it necessary to understand what, if any, effect this discrepancy has on the underlying
dynamics. In the next section, we present results using a Chebyshev grid which does not
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enforce the Neumann condition on u, v, and b′ at the vertical boundaries and compare
the results to the Fourier simulations to draw some conclusion about how significant this
discrepancy is.
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3.2 Chebyshev Simulations

The spurious introduction of QG PV near the surface due to the Neumann boundary
condition on b′ may affect the underlying dynamics in the Fourier simulations. The error
comes about as a result of computing vertical derivatives of u, v, w, and b′ which only
occurs during the vertical advection step. As seen in section 3.1.3, the vertical velocity is
quite small and therefore it is possible that the error might remain small and the Fourier
simulation results still sound.

To understand how the spurious generation of QG PV near the surface affects the
Fourier simulations, a second set of simulations were run using a Chebyshev grid in SPINS.
Furthermore, a resolution test of the Chebyshev simulations was also done. The number
of vertical grid points in the two resolution tests were 64 and 128, which we refer to as
Cheb64 and Cheb128. Both of these choices improved the resolution near the boundary.

We discuss only the cases with Ro = 0.05 and 0.1 since the case with Ro = 0.005 was
virtually identically to that of the corresponding Fourier simulation. For the Chebyshev
simulations, the cases with Ro = 0.1 used the same filter as cases with Ro = 0.05 and
therefore we cannot directly compare this to the correspondingRo = 0.1 Fourier simulation.
We note that the lack of proper filtering can contaminate dynamics at the small scales due
to the pile-up of energy. Therefore, we focus on discussing the case with Ro = 0.05 with
minimal discussion of the Ro = 0.1 case.

Finally, due to the staggered grid in the Fourier simulations, the plots of surface dy-
namics were plotted at a depth of z = −∆z/2. For the Chebyshev grid simulations we try
to plot close to that depth to allow for a fair comparison. The exact depths are shown in
table 3.4 (recall that ∆z changes between free-slip simulations due to the varying depth
between simulations. See discussion in section 3.1).

Ro Fourier simulation depth [m] Chebyshev simulation depth [m]
0.005 -20 n/a
0.05 -2.0 -2.4
0.1 -0.98 -1.2

Table 3.4: Depths of surface plots in the Fourier and Chebyshev simulations
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3.2.1 Surface Buoyancy

The surface buoyancy field evolution remains qualitatively similar between the Fourier,
Cheb64, and Cheb128 simulations across the three Rossby number cases we have previously
discussed: Ro = 0.005, 0.05, and 0.1. In figure 3.14 we present the surface buoyancy for
the case with Ro = 0.05 at t = 20 days. Both buoyancy fields look very similar to the
case with Ro = 0.05 in the Fourier simulations shown in figure 3.4. In particular, we
see the same instabilities developing on the thin filaments and the lack of generation of
the secondary vortices. The core of the vortex has expanded and become quite uniform
with the maximum amplitude being around 0.7. These promising results suggest that the
Neumann boundary condition in the Fourier simulations does not have a dramatic impact
on how the surface buoyancy field is evolving. As well, the horizontal velocity fields match
quite well to the corresponding Fourier simulations.

(a) (b)

Figure 3.14: Surface buoyancy at t = 20 days in the Chebyshev simulations. Panel (a) has
64 vertical grid points while panel (b) has 128 vertical grid points. Surface buoyancy is
normalized by bmax.

3.2.2 Vertical Velocity

The major change that we find, perhaps unsurprisingly, is in the vertical velocity field. In
figure 3.15 we plot the vertical velocity at the surface at t = 5 days for the cases with
Ro = 0.05 and 0.1. The left panels show the vertical velocity in the Cheb64 simulations
while the right panels show the vertical velocity for the Cheb128 simulations. The vertical

55



velocity in the cases with Ro = 0.05 are normalized by 10−6 while the velocity in the cases
with Ro = 0.1 are normalized by 10−5. An immediate difference between the Cheb64 and
Cheb128 simulations in the case with Ro = 0.05 is that there is a larger abundance of
waves present in the Cheb128 simulation. In fact, we see smaller wavelength waves present
in the Cheb128. This result suggests that by increasing vertical resolution, we tend to
resolve smaller horizontal scale features is discussed in Tulloch and Smith 2006 [44]. If
we compare the vertical velocity in the Cheb128 simulation to its corresponding Fourier
simulation shown in figure 3.8, we note there is an increased quantity of gravity waves
being generated at surface. Since the Cheb128 simulation has better vertical resolution
near the surface, this result could be explained by the discussion in Tulloch and Smith
2009 [44].

In the cases with Ro = 0.1 we do not see a difference in the amount of gravity waves
which are generated nor the wavelength but there is quite a large difference in the dynamics
of the core of the vortex. In particular, we notice that, similar to discussion between the
Chebyshev cases with Ro = 0.05 , there is a large abundance of small-scale features present
in the core of the vortex in the Cheb128 simulation. Indeed, the Cheb128 simulation
shows a complex picture of up-welling and down-welling in the core compared to the
Cheb64 simulation. An interesting feature pertaining to the gravity waves in the cases
with Ro = 0.1 is that the waves are farther apart, indicating that the waves may have
been generated periodically during the first few days of the simulation. On the other hand,
in the cases with Ro = 0.05, the waves are much closer together which suggest they are
generated more frequently during the initial stages of the simulation. The free-slip case
with Ro = 0.1 also shows evidence that gravity waves are periodically generated in the
first few days of the simulation and also depicts a very smooth vortex core, however, the
smoothness of the vortex core is likely due to the increased filter strength.

In figure 3.16 we show an xz cross-section of the vertical velocity of the Chebyshev
cases with Ro = 0.05 through the center of the y axis. The increased resolution in the
Cheb128 case demonstrates that the core of the vortex (trapped in the first ≈ 200 m) has
a plethora of features. There is an alternating up-welling and down-welling pattern as we
move down the core of the vortex that is not realized in the Cheb64 simulation. As well, we
can see a large amount of gravity waves propagating in the Cheb128 run compared to the
Cheb64 run. In the corresponding Fourier simulation case with Ro = 0.05 plotted in figure
3.9, we note that both Cheb64 and Cheb128 match the qualitative features of the free-slip
simulation. However, near the surface of fluid, we find that Cheb64 does a poor job of
matching the up-welling and down-welling pattern. The Cheb128 simulation matches the
pattern much better and gives us confidence that the enforced Neumann vertical boundary
condition in the Fourier simulations does not seem to be affecting the dynamics very much.
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(a) (b)

(b) (b)

Figure 3.15: Vertical velocity near the surface in the Chebyshev simulations at t = 5
days. Panel (a) shows the simulation with 64 vertical grid points while panel (b) shows
the simulation with 128 vertical grid points for the case with Ro = 0.05. Panel (c) and (d)
show the case with Ro = 0.1 with 64 and 128 vertical grid points, respectively. Velocity is
normalized by 10−6 in the cases with Ro = 0.05 and by 10−5 in the cases with Ro = 0.1.

However, one of the features that the Chebyshev simulation is unable to resolve is that
propagation of small wavelength gravity waves that can be traced from the surface down
to the bottom of the fluid and reflected back up in the corresponding Fourier simulation.
Due to the relatively coarse resolution of the interior, small wavelength gravity waves are
filtered out as they pass through this region.
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(a) (b)

Figure 3.16: Vertical velocity cross-sections (xz slice through the center of the y axis) in
the Chebyshev simulations at t = 5 days. Panel (a) shows the simulation with 64 vertical
grid points while panel (b) shows the simulation with 128 vertical grid points for the case
with Ro = 0.05. Velocity is normalized by 10−6.

3.2.3 Energy Spectra

The horizontal kinetic energy spectra at the surface of the Chebyshev simulation for the
cases with Ro = 0.05 are shown in figure 3.17 in panels (a) and (b). We see that there is
somewhat less divergent energy present in the Cheb64 simulation compared to the Cheb128
simulation in the small-scales. This is to be expected due to the increased quantity of
gravity waves seen in the plots of vertical velocity in figure 3.15. Furthermore, the slope of
the Cheb64 run looks closer to a K−3 law while the Cheb128 simulation seems to be closer
to a K−5/3 law. Again, this may be a result of the increased resolution in the Cheb128
simulation. In panels (c) and (d) we show the energy spectra at z/H ≈ −0.1 for the Cheb64
and Cheb128 cases with Ro = 0.05. The spectra look very similar to their corresponding
Fourier simulation in figure 3.6. Between the Cheb64 and Cheb128 simulations we find a
quite significant lack of divergent energy in the Cheb64 case at the smaller scales. This
could be due to the relatively coarse resolution in the Cheb64 simulation that cannot resolve
the smaller vertical length scales at this depth. Hence gravity waves propagating vertically
are filtered out upon reaching the relatively coarse resolution in the interior. Similar to
the Fourier simulation with Ro = 0.05 we find that divergent energy begins to dominate
the rotational energy at the smallest resolved length scales.

Based on the Chebyshev simulations, we find that, while the Neumann vertical bound-

58



10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Averaged Energy Spectra, Ro = 0.05

K

E
n
e
rg

y

(a)

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Averaged Energy Spectra, Ro = 0.05

K

E
n
e
rg

y

(b)

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Averaged Energy Spectra, Ro = 0.05

K

E
n
e
rg

y

(c)

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

Averaged Energy Spectra, Ro = 0.05

K

E
n
e
rg

y
(d)

Figure 3.17: Energy spectra in the Chebyshev simulations. Panel (a) shows the spectra
in the Cheb64 case with Ro = 0.05 and panel (b) shows the spectra in the Cheb128 case
with Ro = 0.05. Panels (c) and (d) show the spectra at z/H ≈ −0.1 in the Cheb64 and
Cheb128 simulations, respectively.

ary condition in the Fourier simulations do generate QG PV, the discrepancy does not
seem to affect the surface buoyancy evolution nor the generation of gravity waves. Indeed,
we’ve seen that the Chebyshev simulations with the case Ro = 0.05 actually generate more
gravity waves but qualitative features remain quite similar.
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3.3 Non-Constant Buoyancy Frequency

In this section, we discuss some preliminary ideas regarding the case where the background
stratification is non-linear, i.e. N = N(z).

The advantage of having a constant buoyancy frequency, N , allowed one to find exact
solutions for the streamfunction in equation (1.48). While there are N(z) profiles which do
allow for an exact solution, for example LaCasce 2006 [29] showed exact solutions can be
found using an exponentially decaying N(z) and Lindzen 1994 [34] showed that the profile,

N2(z) =
N2

0

1−Dz
, (3.6)

can also be solved analytically, in general, one must turn to solving the problem numerically.

As is often done for the ocean (e.g. [10], [24], [31]) we take the background stratification
to have a pycnocline and define the buoyancy frequency to be

N2(z) = N2
0 + α2 sech2(β(z + p)), (3.7)

where N2
0 is the minimum buoyancy freqeuncy, α is a scaling parameter, β gives the

width of the pycnocline, and p is the location of the pycnocline. As in the constant N
case throughout the thesis, we set the interior QG PV to zero i.e. equation (1.48). To
numerically solve (1.48), we use a centered second-order finite difference method and loop
over all wavenumbers to find the solution in spectral space. We then use the inverse DFT
to find the solution in physical space.

As discussed in section 1.1.3, one of the major assumptions in SQG is that Bu ∼ 1.
Since,

Bu =

(
N(z)H

fL

)2

, (3.8)

now depends on z, it can be difficult to ensure it is order 1 for all z in the domain. Therefore,
one way to ensure that we choose a deep enough domain is to consider the minimum value
N(z) takes, i.e. N0 = 10−3 s−1, and formulate the restriction in terms of that. We also fix
f = 10−4 s−1 and L = 100 km. To ensure Bu ∼ 1, we take the depth of the domain to be
10 km.

In figure 3.18, we show a set of solutions to (1.48) using different parameter values
of β and p down the middle of the horizontal domain. The initial surface buoyancy field
remains the same as throughout the thesis: an elliptical vortex, described in detail during
the beginning of chapter 3 (see equation (3.1)). Table 3.5 shows the full parameter values of
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(3.7) used in solving (1.48). The first row of figure 3.18 shows a relatively thin pycnocline
near the surface. As can be seen in the fourth column, the full buoyancy field has an
area near the surface where the buoyancy decreases. This means that the initial setup is
unstably stratified and thus we would find upwelling. This would detract from the pure
SQG dynamics that we are trying to study. The second row has a wider pycnocline located
near the surface. Here, the full buoyancy field is monotonically increasing as we move up
from the bottom of the fluid and is an example of a suitable buoyancy profile for studying
SQG. Finally, the third row has the same sized pycnocline as the first row, albeit deeper
in the fluid. We can see that there is a slight decrease in buoyancy near the pycnocline.
These solutions are meant to demonstrate the rich variety of initial setups that can be
found using the buoyancy frequency profile, (3.7), in solving (1.48) for the steamfunction.
It also demonstrates the difficulty that one can run into, in terms of choosing an initially
stable buoyancy profile, when choosing parameter values in (3.7).

N0 [s−1] f [s−1] α [s−1] β [m−1] p [km]
First row 10−3 10−4 33 · 10−4 0.0025 1

Second row 10−3 10−4 33 · 10−4 0.00125 1
Third row 10−3 10−4 33 · 10−4 0.0025 3.5

Table 3.5: The full set of parameter values for the sample solutions to (1.48) shown in
figure 3.18.

A first attempt at trying to understand how one can prescribe an initially stable buoy-
ancy field is to consider scale analysis with N = const. In particular, we know that if,

db

dz
= N2 +

∂b′

∂z
> 0, (3.9)

then the fluid is initially stable. Since N2 > then an unstable buoyancy profile is possible
if the vertical derivative of the buoyancy perturbations is negative (and at least the size of
N2 at that depth). The second term in (3.9) scales like,

db′

dz
∼ fUL

H2
, (3.10)

and therefore if one considers the ratio,

db′

dz

N2
∼ fUL

H2N2
=

U

fL

f 2L2

N2H2
=
Ro

Bu
. (3.11)
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Figure 3.18: Solutions to (1.48) for buoyancy frequency defined in (3.7). Values of β and
p are given in table 3.5. The first column is a plot of the ratio N(z)/f , second column
shows the streamfunction solution, ψ, third column shows the buoyancy perturbation field,
b′ = f∂zψ, and, finally, the fourth column shows the full buoyancy field b = b̄(z) + b′.
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Equation (3.11) suggests that if Ro > Bu, then the resulting initial buoyancy field may be
unstable. Note that this is not a sufficient condition since we also require that ∂zb

′ < 0.

The work on non-constant stratification is ongoing.
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Chapter 4

Conclusions

This thesis investigated the range of validity of the SQG model in the context of a surface
trapped elliptical vortex and how SQG breaks down at the small scales. While we only
consider a single type of initial condition, we can hypothesize how the dynamics change as
the Rossby number approaches unity.

For very small Rossby number, we find that the SQG model agrees quite well with
the PE. This is most clearly seen in the evolution of the surface buoyancy field. However,
as the Rossby number gets larger, dynamics begin to depart from the predictions of the
SQG model. In particular, we find that the thin-filament instability, which is common in
SQG, begins to stabilize. While the free-slip case with Ro = 0.1 used a stronger filter, the
stabilization trend is clearly evident between the case with Ro = 0.005 to the case with
Ro = 0.05. As well, the core of the vortex spreads out and becomes quite uniform as the
Rossby number increases. The expanding of the vortex core also decreases the maximum
magnitude of the surface buoyancy field.

While the prediction of the power law of the energy spectrum only really apply for a flow
which is turbulent, we argue that there is still much to learn from discussing energy spectra
of the surface trapped elliptical vortex. In particular, we have observed that the horizontal
kinetic energy spectrum at the surface of the fluid in the elliptical vortex case changes as the
Rossby number increases. The observed power law becomes steeper, indicating less energy
in the small-scales which is reflected in the plots of the surface buoyancy, and more energy
is transferred from the rotational modes to the divergent modes as the Rossby number
increases. This increased divergent energy is seen through the emission of inertia-gravity
waves from the vortex. While the case with Ro = 0.005 showed no clear evidence of gravity
wave generation, it was found that the cases with Ro = 0.05 and Ro = 0.1 showed a large
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amount of gravity wave generation. Suggested by Snyder et al. 2007 [40] this may be a
result of using unbalanced initial conditions in a PE solver. We have also seen that in the
case with Ro = 0.05, gravity waves seem to be generated very frequently, while the case
with Ro = 0.1 suggests that gravity waves periodically generated. The difference in the
vertical velocity fields between the two cases was an order of magnitude larger in the case
with Ro = 0.1. The underlying reason for this is unclear but may have something to do
with how large the local Rossby number becomes in the simulations.

We’ve also performed some resolution tests with a Chebyshev grid which only imposes
no normal flow at the vertical boundaries. We find that, despite the spurious generation of
QG PV near the surface, the Fourier solutions agree well with the Chebyshev simulations
in terms of describing how the surface buoyancy field evolves. This is likely due to the
fact that the vertical derivative of the buoyancy field is computed only during advection
of vertical velocity which is quite small in magnitude. Comparing between 64 and 128
vertical grid points in the Chebyshev simulations we see quite large differences in vertical
velocity field between the cases with Ro = 0.05. The dramatic increase in the quantity of
gravity waves suggests that vertical resolution is extremely important. In fact, the vertical
resolution in our simulations is often better than in other studies. For example, in Danioux
et al. 2012 [10], vertical grid spacing ranges from 3 m near the sruface to 200 m at the
bottom for a depth spanning about 4 km. In the Cheb64 and Cheb128 simulation for
Ro = 0.05 whose depth spans 1 km, near the surface our resolution is 0.60 m and 0.15
m, respectively, to about 24 m and 12 m, respectively, in the interior. After re-scaling the
depth in the simulation in Danioux et al. 2012 [10], their resolution is 0.75 m near the
surface to 50 m near the bottom for a depth of 1 km.

Some preliminary ideas were also discussed for the scenario when N 6= const. In
particular, we’ve demonstrated that choosing appropriate parameter values to a setup
that includes a pycnocline can be difficult to do since the initial buoyancy profile can be
unstable. This initial instability of the buoyancy profile generates up-welling and detracts
from a pure SQG study.

There are several directions in which one can pursue further research with the SQG
model:

• Different initial conditions

• Non-constant buoyancy frequency

• Non-zero QG PV

• Varying Burger number or aspect ratio
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First, perhaps the most obvious choice, one can change the initial conditions. In particu-
lar, our study focused on the elliptical vortex and, therefore, it is not immediately obvious
whether the results can apply to other types of flows, for example, freely decaying turbu-
lence. Second, as was briefly described in this thesis, one can study how dynamics change
when we use a non-linear background stratification. The preliminary results discussed in
this thesis would help in choosing parameter values that ensure a stable buoyancy field.
This is a necessary step in order to study the SQG model since upwelling would detract
from the dynamics in SQG. Using code written during this thesis one is able to generate
the relevant initial conditions. In fact, some preliminary exploration of SQG with a py-
cnocline has already begun. Third, the SQG model assumes QG PV is zero everywhere.
To improve our understanding of ocean dynamics one can incorporate QG PV into their
setup (Tulloch and Smith 2009 [45] considered an SQG layer at the surface and bottom of
the atmosphere and a barotropic and first baroclinic mode of QG PV) and simulate how
the PE system evolves with this addition as the Rossby number changes. This would be a
relatively simple problem to setup since the numerical solver QG3 can solve the SQG-QG
system and setting up three-dimensional corresponding fields should be quite trivial. For
SPINS, no changes to the underlying code would be required. However, we note that the
use of the Chebyshev grid (which we feel gives a better description of SQG) would perhaps
be unsuitable for an SQG+QG study. Since this setup would have vertically varying struc-
tures throughout the entire depth, the relatively coarse resolution in the interior of the
Chebyshev grid could prove detrimental. Finally, we have only explored the SQG model
in the context of varying Rossby number. However, as discussed in section 1.1.2, the SQG
(and QG) model assumes that the Burger number is O(1) and that the aspect ratio is
very small. An exploration of varying Burger number or aspect ratio could similarly reveal
novel dynamics not found in the SQG model.
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