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Abstract

Credit risk modelling can take many different approaches. Each method has its strengths
and weaknesses and studying a variety of them can help find new ways of performing credit
risk analysis. We present here three different models, each classified either as static or dy-
namic, and structural or reduced-form. The static structural model from Lucas et al.
(2000) helps us derive a moment behaviour theorem within the dynamic structural setting
of Bush et al. (2011). For comparison, we also present the dynamic reduced-form model
of Giesecke et al. (2012). A calibration exercise of the dynamic structural model is im-
plemented and we study its performance through changing financial environment. This
highlights the horse race between simplicity and efficiency of a model that still needs to be
adequately addressed, as the results from the calibration show the difficulty of capturing
the key financial environment’s aspects.
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Chapter 1

Introduction

There is not one day that passes without hearing about the ups and downs of the economy,
the surprises of analysts, or the scepticism of investors. We hear so much about these news
because our way of living is intrinsically connected to our economic system. As soon as
humans got together as a society, they had to develop a way of exchanging skills and goods
to make their lives easier. The “I.O.U.” is the first and easiest way to develop an economic
system within a community. Indeed, two parties agreeing to help each other in exchange
for future services is the most basic form of contract in human history. It was the birth of
debt and credit.

Everyone taking part in a community is involved in the meanders of debt and credit.
Be it from a family borrowing money to buy a house, an entrepreneur asking funds to
develop a new technology, a bank managing clients’ deposits and lending to others, or a
big firm trying to diversify its cash by investing it in new products, everybody gives or
owns an “I.O.U.”. On top of that, the world being as interconnected as it has become, the
range of parties with which one might be linked is extremely broad. Banks acting on the
international level, a firm in China might be much closer to an investor in Canada than
meets the eye. This wide web of debts and credits forms what is called the credit market.

The credit market is broad, and extremely complicated. All these parties act on their
own, but affect the situation and actions of their interconnected counterparties. This web
of counterparties creates a web of risk. Each string reinforces the web, but could also
make it collapse. Every time a party lends to another one, it takes the risk of not seeing
its money again. Through bankruptcy, poor accountancy, felony, or any other means, the
debtor might not repay the creditor. Because of this risk, and because credit is ubiquitous
in our economic system, it is very important to understand it.
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1.1 Understanding Credit Risk

One of the significant events related to the credit market’s risk is the 2008 global financial
crisis. It clearly showed how important it is to understand the credit market and its risks.
During that crisis, it was realized that finance’s traditional tools had failed to prevent
the worst outcomes. We witnessed an overall systemic breakdown of the financial system,
leading into the worst economic crisis since the Great Depression. A lesson learned from
this crisis is that there is a need for more flexible and robust tools to manage the risk and
face the new challenges that credit brings to us. This thesis will focus on the analysis of
such tools.

The types of risks associated to credit, called credit risk, can in fact come from many
different situations. Either from default of the debtor, from concentration of the creditor’s
exposures, or from the country in which we execute the contract, credit risk is important
to manage and quite broad. In this thesis, we will define credit risk as credit default risk,
as it is the most common and unavoidable type to take into account when managing credit.

Assessing the risk of an investment is a difficult task. It requires an understanding of
the investment you made, both its nature, and the market it takes part in. One type of
investment that is relevant to this thesis is the now infamous Collateralized Debt Obligation
(CDO). A CDO is a financial product created by securitization. One would exchange money
today for a promise of future cash flows in a predetermined sequence. The amount paid in
each period of the cash flow is determined by the money the CDO is able to collect from
the pool of assets constituting its underlying base.

For example, a bank lends money to a firm. By lending this money, it exchanges
its money now for a promise of repayments, with interest. By doing this, it takes a
risky position, since the firm might not repay the loan. The idea for the bank is then to
turn around and sell this promise of cash flows to risk taking investors. Before doing this
however, it pools some debts together, and separates the pool in different risk layers, called
tranches. This process is known as securitization. It makes the product less vulnerable
to individual actions, treating in effect the CDO as an insurance policy. Therefore, even
though the investors may be willing to bear risk, the risk they will bear will be smaller
than what the bank bears before creating the CDO.

There are many reasons to explain the popularity of CDO’s. They can be created
from virtually anything the investor wishes (loans, bonds, mortgages, etc.), as long as the
payment structure defined above works. Since they can be tailor-made, they serve as a
good component to hedging strategies and risk transfer. Also, CDOs allow some funding
benefits due to their flexible structure. This flexible structure makes them very interesting
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to study since the theory developed can be applied to many other situations.
But even after we have an investment tool at our disposal, that does not mean that we

can sit back and enjoy the money flowing in. This activity entails the notion that we are
actually willing to take on some risks, which is at the core of the money-making game. But
since we can not take into account everything that happens in the economy and identify
every single force at work in the economy, we content to rely on an approximate reality.
This is where the use of models becomes handy. We use models in order to replicate as
closely as possible a particular aspect of reality, while keeping them easy to manipulate
and work with.

1.2 Credit Risk Models

When someone is looking into buying good or service, the price is a critical factor to
contend with. One would want to have a fair price and pay for what it is receiving. The
same thing applies to the credit market. We want to be able to find the fair price for an
instrument. The difference is that when buying good, you know what you are getting and
can use it. In finance, you are exchanging money now for money in the future, hence there
is some unknown inherent in the transaction and you might not even be able to recover
its value. Similarly with goods, when investing, you take the risk of the investment losing
its value before you retrieve the full benefits. Therefore, the price you pay must reflect the
different possibilities you might encounter while your investment comes to maturity.

To reflect these possibilities, we use models and assume that a number of parameters
will be influencing the value of our investment. Then, making sure that we do not allow
for arbitrage among other instruments, we give the price that reflects the fair value of the
investment relative to its future outcomes. The models we use to do so come in various
forms. Each allows us to control different parameters and each has its own strengths and
weaknesses. Each also tries to replicate the market in which they are applied in order to
understand the risk implied by the market. This enables us to take action to mitigate it.

In the case of credit risk, we want to be able to replicate the credit market, with its time
of defaults, size of defaults, losses and gains, etc. There is no consensus in the literature
as to what technique is best for this purpose, but two of the main approaches used for this
purpose are structural models and reduced-form models (Elizalde, 2012a).

Structural models try to explain reality by hypothesizing about the structure of the
market in which the portfolio evolves. They use asset and debt value as indicators to
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determine time of default (Elizalde, 2012b) of a company included in the portfolio.
They take their explanatory value through the economics of the financial portfolio.
The way to use these models is to assume a certain structure of the markets, with
the assumed relevant factors influencing the value of the company, then incorporate
the other characteristics of our setting before running the simulation. The assumed
structure influences the results of our simulations. These models are very intuitive
because we can identify the economic meaning of each variable. Hence, they can
be very useful for risk management and investment because we can see the effect of
real-world factors on our portfolio.

Reduced-form models do not consider the relation between firm’s value and their de-
fault time (Elizalde, 2012a). They rely mainly on the information given by the market
and model default as a random variable, for example using an intensity model where
the first jump of an exogenous jump process defines a default. The parameters of this
jump process are directly inferred from the market data. Because the explanatory
variables in the models do not have a specific economic interpretation, they tend to
be more malleable, but also harder to understand and explain. To an investor, these
models tend to replicate well market data and have been very popular in more quan-
titative analyses and valuations. They constitute an important part of the literature
in finance.

Once we have defined how the source of randomness in the market, we need to decide
how to model the credit market. We may chose to focus on a single period or the inter-
temporal nature of the model. The single-period model, as the name suggests, studies the
market within one period of time. It is also called a static model since it does not take
into account the way the market changes over time.

On the other hand, a dynamic model will try to model the impacts of future behaviours
based on today’s price. According to Schönbucher (2003), every good model should fill
certain properties in order to be considered reliable. Such properties include:

1. able to produce default correlations of realistic magnitudes;

2. able to keep the number of parameters in the model as few as possible (i.e. not to
let it grow too fast when adding more names to our portfolio);

3. dynamic, and able to count the number of defaults and their timing accurately;

4. able to reproduce clusters of time of defaults;
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5. easy to calibrate under different scenarios.

Thus, a dynamic model should be our preferred type when modelling credit risk. Unfor-
tunately, dynamic models require much more computing power and are sometimes very
costly to run, due to the great deal of information they try to simulate. Hence, it is im-
portant to control the number of parameters and the ease of calibration. Otherwise, such
models, even though being able to produce better results, might computationally be too
cumbersome and, moreover, give obsolete information when we need it most.

1.3 Thesis Structure

The rest of the thesis will be structured as follows:

In Chapter 2, we give an introduction to credit risk models. We will guide the reader
through the different models that have been studied in the literature in order to
position our contribution. We will thus introduce the building blocks required to
understand the work of this thesis. This includes an introduction to credit portfolio
analysis and a more detailed explanation of CDOs. Then the key aspects of structural
and reduced-form models will be laid out in the presentation of this chapter. Each
will constitute a stepping stone towards next, more refined models, until we reach
the ones that are the focus of this thesis.

In Chapter 3, we will present models addressing the need for simplicity. We will outline
the theory underlying these powerful tools. Proofs and key concepts of risk manage-
ment will be provided, as well as the strengths and weaknesses of each model. By
studying different types of models, we will be able to take key elements from each
model into the model studied in this thesis and lead us to the development of a new
theorem for the moments of the loss distribution and its tail behaviour. We will prove
that all the moments of the loss distribution in a factor model can be determined
by the joint distribution of the factors and of the idiosyncratic risk imparted to our
asset.

In Chapter 4, we will test our results from the previous chapter and provide insight on
implementation of the model. We will numerically implement and test the dynamic
structural model discussed earlier. We will provide explanation for the steps involved
in the implementation before proceeding with the replication of the results of Bush
et al. (2011). Moreover, testing with different data sets and through time series
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analysis will lead us to some conclusions about the robustness of the model. It will
also serve to provide an avenue for future research.

In Chapter 5, we will conclude this thesis by providing a summary of our findings, and
suggest avenues for future research.
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Chapter 2

Credit Risk

A casual internet search on the topics of credit market will show us the size of this mar-
ket and its importance to a well-functioning economy. Unfortunately, the credit market
is a complex world, as it has evolved from the simple “I.O.U.” system to a present sys-
tem characterized by jargon, complex instruments, and different approaches to analyse it.
Therefore when dealing with the credit market, we need to have a good understanding of
these terms, instruments, and approaches.

To manage our risk profile in the credit market, there are certain important factors to
be aware of. It is also important to realize how the market works and how instruments
are priced. Finally, we will want to know why the models we use are not performing as
well as they were intended to and why we need new and improved models. We will want
to understand the limits of the existing models and investigate potential improvements to
the models to better reflect the reality of today‘s market. To this end, a quick survey on
the history of financial models for credit risk will point towards desirable characteristics
for an optimal model to possess.

Therefore, we will examine broad aspects of Credit Portfolio Analysis. Then, we will
explain one particular tool we will use in this thesis to study credit risk, namely the CDO,
and understand why it is an interesting instrument to study. Finally, we will present the
evolution of the models over time, and highlight the particular characteristics upon which
our analysis will be built. These models will be of structural and reduced-form types. In
each section, we will highlight the building blocks used to explain our credit risk models.
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2.1 Credit Portfolio Analysis

When managing credit risk, one must be able to understand the economics and mathemat-
ics underlying the credit risk. The easiest way to do this is to start with single-name credit
risk, which is the credit risk associated with a single company. We will, in this section,
introduce the relevant tools and concepts used in credit risk management, and discuss the
challenges faced by the credit market.

In analysing a single name before a portfolio, we want to define the risk associated with
this company’s credit. As mentioned before, the risk is defined as failure to recover the full
benefits of our financial position. Therefore, we are interested in the probability of default
of the firm representing the single-name credit product. It quantifies the likelihood of the
company to default on its debt repayment at a given time. This probability of default
(PD) is expressed through a rank of credit worthiness, given by rating firms like Moody’s,
S&P, Fitch or an internal rating. This rank is computed by the firms according to their
internal model, usually using data and assumptions known only to them, to indicate the
likelihood of default. This gives the PD within a predetermined period of time, usually the
next calendar year.

One way of modelling credit in portfolio models is using a Creadit Worthiness Index
(CWI), defined as

CWI(t)
i = ρiΦ(t)

i +
√

1− ρε(t)i (2.1)

where
Φ(t)
i =

N∑
n=1

wi,nΨ(t)
n

where Ψn are market-wide risk factors such as country, industry, etc. and the wi,n’s are
weights of each factor of the i-th firm. The Ψ’s, and therefore the Φ’s are random variables,
and assumed to be independent of the ε’s. One can easily see that this model resembles
a linear regression model where one would want to estimate the ρ’s, corresponding to the
influence of the market on the underlying’s CWI. For example, the popular Capital Asset
Pricing Model (CAPM) uses the same kind of regression model to estimate the expected
rate of returns off of the market’s over performance with respect to the risk-free rate. One
major difficulty in the CWI regression is to choose which factors influence the underlying,
as well as the weight to put to each before performing the regression. Nevertheless, the
information about the PD inferred from the CWI can be important in assessing the risk
of a potential credit investment.

The PD can be represented as the probability that the i-th firm’s CWI value at time T
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falls below a default threshold Ki, given the current knowledge of the CWI at time t, i.e.,

PDi = P[CWI(T )
i < Di|CWI(t)

i ]

Once we know the likelihood of a default occurring, we want to know the impact this
default would have on an investor. This impact can be measured by the Exposure at
Default (EAD) and by Loss Given Default (LGD). The EAD represents all the principals
and the interest streams that could be lost if a default occurred. It takes into account
all the money, and is sometimes referred to as the outstanding notional exposure, or the
potential exposure.

On the other hand, LGD represents the portion of how much we would lose after
recovering some value from the default, either by liquidation at market value (MV) or
other means of recovery. Liquidation at market value means selling the remaining assets at
the best value we can get in the market. When estimating LGD, we consider the current
trading price of an asset to be the value at which we would be able to liquidate, even
though it might not be the same price at the time when we need to liquidate it. Also, we
might hold some defaultable assets, but ask for collateral. Collateral covers part of the loss
in case of a default. It is a way to protect oneself from bad events and to minimize their
gravity. Therefore, the loss incurred is not as big as our exposure. Thus, the expectation
of realized loss, conditional on the loss actually occurring, is given by

Loss = max[Exposure− Collateral, 0].

then, for the LGD, we compute the loss we would incur, then take the ratio of the Loss
to our exposure to have an idea of how risky our investment is. LGD implies that we
know how much value we would be able to save from the loss with the help of the existing
collateral. Then the LGD, representing the severity of the loss as a percentage of the loss
quote, is defined as

LGD = Loss
EAD .

Therefore, the LGD is the ratio of what we actually lose during a default against what we
could have lost. From this, we can extract the Expected Loss (EL) as

EL = PD× EAD× LGD

When modelling portfolio credit risk, these quantities serve as the basic variables since
they are economically meaningful and can be interpreted easily.

It is important to be able to model credit risk at the portfolio level because credit
portfolios are a major type of investment in the credit market. Correlation in the models
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allows us to understand better what is involved in trading credit risk. Trading credit risk
could be epitomized by trading correlation between underlying assets. The models used for
credit risk can also be used to measure the risk associated with loan portfolios losses. This
is an important part of retail banking. Finally, following the Basel III Accords, modelling
portfolio credit risk has become prominent in modelling counter-party credit risk losses
(Basel Comittee on Banking Supervision, 2011).

As mentioned earlier, one could model the CWI by regression on some factors in order
to find the probability of default. In fact, this would be giving us an estimate of the
real-world probability of default, as the required numbers could be obtained directly from
firms’ fundamentals. However, we will use risk-neutral PDs as they are consistent with
pricing assumptions of no arbitrage, and allowing pricing by replication. Indeed, risk-
neutral PDs are changed in a way that every agent would be considered to be risk-neutral,
therefore eliminating discrepancies in prices. This type of risk-neutral measure exists in
any complete market with no arbitrage opportunity. Therefore, another way to bootstrap
the PD is to use market data on Credit Default Swaps (CDS). As we assume that the
CDS market is complete and does not allow for arbitrage, we are able to retrieve the PD
that would reflect the market’s assessment on the probability that company X will default.
As we mentioned in Chapter 1 that CDOs could be built from many different types of
underlyings, the financial instruments we will use to build CDOs are based on CDS. We
turn to this next.

A CDS is an agreement between two parties to insure the default of a certain underlying.
Similar to a CDO, party B agrees to pay a certain amount to party A in the event that
a default occurs. This amount is computed to replace the loss that party A would’ve
incurred if he had held the underlying without a CDS contract. If there is no default,
party B does not pay anything. On the other hand, upon entering the contract until its
maturity, party A pays a protection fee to party B. This fee is computed to equate the
risk-free expected value of both sides of the contract.

Each side is also called a leg. In our example, party A holds a fixed, or fee-payment, leg,
and part B holds a floating, or default-insurance leg. Using the notation and formulas in
Schönbucher (2003), we present below how the fee, also called spread, is computed. Then
we show how to extract the probability of default from this.

The spread s of a CDS is calculated by equating the values of the two legs. By letting
the number of payment dates be N , the difference between two payment dates be δn, and
assuming the protection buyer pays s · δn−1 at Tkn if no default until Tkn , the value of the
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fixed leg is given by

V fixed = s
N∑
n=1

δn−1B(0, Tkn),

with B(0, Tk) being the price of a defaultable zero coupon bond with maturity Tk at time
0. In other words, B(0, Tk) = B(0, Tkn)P (0, Tk), where P (0, Tk) is the survival probability
until Tk and B(0, Tkn) is the price of a risk-free bond, which is usually proxied by short-term
government bills.

With a payment of (1−R) at Tk if default occurs in ]Tk−1, Tk], the value of the floating
leg is

V float = (1−R)
kN∑
k=1

δk−1H(0, Tk−1, Tk)B(0, Tk),

where H(0, Tk−1, Tk) is the implied hazard rate, i.e.,

H(0, Tk−1, Tk) = 1
δ

P def(0, Tk−1, Tk)
P (0, Tk−1, Tk)

,

for δ = Tk − Tk−1. Moreover, P def is the probability of default of the underlying and is
what we are interested in extracting. Therefore, the value of both legs must be equal at the
time we enter the contract, in order to mitigate any arbitrage opportunities. This means
that the spread we observe in the market gives us the value of the ratio of the two legs.

s = V float

V fixed

By assuming a constant hazard rate and default observation on the tenor dates, we can
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bootstrap the probability of default of the underlying as

s = V float

V fixed

= (1−R)
∑kN
k=1 δH(0, Tk−1, Tk)B(0, Tk)∑N

n=1 δB(0, Tkn)

= (1−R)H(0, T, T + δ)
∑N
k=1 δB(0, Tk)∑N
n=1 δB(0, Tkn)

= (1−R)H(0, T, T + δ)

= (1−R)
δ

P def(0, Ti−1, Ti)
P (0, Ti−1, Ti)

s = (1−R)
δ

P def(0, Ti−1, Ti)
1− P def(0, Ti−1, Ti)

δ

(1−R)
[
1− P def(0, Ti−1, Ti)

]
s = P def(0, Ti−1, Ti)

δs

1−R = P def(0, Ti−1, Ti)
(

1 + δs

1−R

)

P def(0, Ti−1, Ti) = δs

(1−R) + δs
. (2.2)

Therefore, the conditional probability of defaulting until the maturity, given that the
underlying has not defaulted as of T0 = 0, is given by

P def(0, 0,Maturity) = Maturity× s
(1−R) + Maturity× s. (2.3)

With this method, it more common to use either the most liquid maturity or piecewise
constant hazard rates to calibrate to the entire CDS term structure. In our pricing, we
will be using the most liquid maturity available, which is the 5 years maturity.

This gives a brief overview of the key elements needed to understand our study of credit
default risk and instruments used in this thesis. It is worth noting that the structure and
construction of one specific type of instruments is key to the reader’s understanding of our
motivation, and therefore deserves a section of itself.
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2.2 Collateralized Debt Obligations

We have briefly mentioned CDOs, but the short description we gave in Chapter 1 does not
give the whole picture of the instrument. We want to understand what type of investment
would occur if the investor considers a CDO. We also want to give a motivation to the use
of CDOs in this thesis.

It is important to emphasize the flexibility of the CDO. Since one can be developed by
using a variety of underlying instruments, it is an tool of choice in studying credit risk,
capturing various aspects of the credit market. It is thus important to understand their
structure and their relation to the credit market in order to grasp how they represent credit
risk. We will do this by focussing on their pricing practices, which highlights the heavy
reliance of our analysis on models.

First, consider the structure of the instrument. A CDO consists of two parts: the CDO
itself, fulfilling the contract, and the underlying reference pool, driving the performance of
the contract. The CDO contract acts as the liability side and is tranched and linked to the
performance of the asset side. The asset part is the reference pool that is securitized. A
CDO can be created with different types of credit products, either loans, bonds, mortgages,
Credit Default Swaps (CDS), or even other CDO tranches (then called CDO-squared). To
categorize CDOs, we can divide them by type of underlying, by type of cash flows, etc.

Once the contract has been agreed upon and the type of CDO has been determined,
we set up the two CDO legs: a fixed, or protection leg, and a floating, or fee leg. Similar
to the CDS, the floating leg is the payments the holders make if there is a default. It is
called floating because this payment is contingent on the default of the underlying. The
fixed leg constitutes the payment tranche holders receive; it is called fixed because it is
predetermined and known at the time the CDO contract is created. The cash flows are
accounted as positive cash flows.

When describing how a CDO works, we need to define the tranche loss and the outstand-
ing tranche notional. Tranching occurs when we allocate cash flows to different components
of the investment. For example, as is done in figure 2.1, by picturing the whole portfolio as
being 100%, senior tranches will usually occupy the top 60%, the mezzanine tranches will
range from 10% to 40%, and the equity ones will occupy the bottom 10%. The investor
chooses which tranche she wants to invest by choosing the attachment and detachment
points which, respectively are the lower and upper bounds of her tranche. After that, the
good cash flows (interest, repayments, etc.) go top-down, senior having priority over the
other, and each receiving a predetermined share of them. The bad cash flows (losses), on
the other hand, will go bottom-up, with the equity tranche being affected first. Thus their
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Figure 2.1: Example of a basic structure of CDO

name first loss piece.
The risk transfer is made possible because an investor takes risk in exchange of a

premium. Tranching can be considered as a process of partitioning the portfolio into slices
corresponding to certain percentage loss. By noting a certain tranche T with attachment
point a and detachment point d as Ta,d, and the cumulative loss as Lt, the relative tranche
loss Λ is

Λa,d(L(t)) = Λ(Lt; a, d) = 1
d− a

min[d− a,max[0, Lt − a]]

where the loss of tranche Ta,d, Λa,d(Lt) is normalized for size. This illustrates how choosing
a and d allows us to choose our risk position.

To define the evolution of Lt, we must take into account every name in our reference
pool, and their importance in value. The value of each name in our portfolio is called
notional. We will refer to the tranche notional as the value of the portion of the portfolio
in that tranche, and to the outstanding tranche notional at time T = t as the portion of
the tranche’s notional that is still receiving positive cash flows after a certain period of
time. Suppose that we have N entities in our reference portfolio of underlying assets, each
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with notional N0. We define the total loss Lt on the portfolio as

Lt =
N∑
i=1

Li1{τi≤t},

where Li = N0(1−Ri), Ri = 1− LGDi the recovery rate, and τi is the default time of the
i-th entity. The loss within a tranche is adjusted for the recovery rate. This is the portion
of the notional which can be recovered should a default occur. The outstanding tranche
notional, Zt, of a single tranche within a CDO is then given by

Zt = [d− Lt]+ − [a− Lt]+, (2.4)

and the absolute tranche loss Yt as

Yt = [Lt − a]+ − [Lt − d]+,

for a the tranche’s attachment point and d its detachment point. Therefore, we have the
cases

Lt < a ⇒ Zt = d− a Yt = 0
a < Lt < d ⇒ Zt = d− Lt Yt = Lt − a

Lt > d ⇒ Zt = 0 Yt = d− a.

To set up the payment the protection buyer needs to pay to the holder of the fee leg,
we must ensure that we do not create an arbitrage opportunity with the CDO. Therefore,
we should make sure that the risk-neutral expected present value of the two legs are equal,
since the initial price of a CDO is 0 in the risk-neutral environment. Since it relies on
the random events that cause some firms to default, we assume that the value of the fee
leg will be equal to the discounted expected outstanding tranche notional at each payment
date. The value of the protection leg will be given by the discounted expected changes
in the tranche notionals between payment dates. The payment, or spread, is paid on the
outstanding tranche notional and is calculated to make the initial value equal to zero. Note
that all expectations are computed with respect to the risk-neutral measure.

By denoting the payment dates by Ti, 1 ≤ i ≤ n, the intervals between each payment
date by δi = Ti − Ti−1 and the value of a risk-free investment of $1 at time t by b(t), the
value of the fee leg is given by

sV fee def= s
n∑
i=1

δi
b(Ti)

E[ZTi
], (2.5)
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where ZTi
represents the outstanding tranche notional. Notice the spread s multiplying

both sides of the equation. As mentioned previously, the spread is taken as a proportion
of the insured value. Therefore, the spread 0 ≤ s ≤ 1 is multiplied by the expected present
value of the fee leg V fee. We use this notation as it is consistent with the model developed
by Bush et al. (2011) which will be discussed in more details in Section 3.2.

In a similar fashion, we can express the value of the protection leg in terms of the
outstanding tranche notional Zt as

V prot =
n∑
i=1

1
b(Ti)

E[ZTi−1 − ZTi
], (2.6)

assuming that the losses are paid at the coupon dates Ti. Once the values of the protection
and the fee legs are known, the spread is computed as

s = V prot

V fee . (2.7)

This spread is computed for each tranche.
Therefore understanding how the study of CDOs and the different strategies they offer

can help us understand the credit market. Most importantly, CDOs’ structure stresses
the use of reliable and efficient models for credit events in order to make wise decisions.
Moreover, this theory can be adapted to many other situations, as CDOs are flexible and
can serve many different investment strategies.

2.3 Structural Models

In order to understand the need for new models, and where the new models originate from,
we need to present major building blocks in credit risk modelling. This section presents
the evolution from the structural models perspective whereas the next section will focus
on the reduced-form models. Both sections aim at developing basic understanding of the
majors tools used from the beginning of credit market modelling up until the most recent
and popular methods. We do not suggest which method might be more valid, but we
clearly identify the strengths and weaknesses of each approach in order to underline the
importance of innovation.

The first approach of modern finance to credit risk was made by Robert Merton (1974),
who adapted the Black-Scholes option pricing theory developed earlier to the context of
corporate debt. The setting of this approach is that the capital structure of a firm is
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composed of equity E and debt D, a zero-coupon bond with maturity T and face value D.
He then compares the equity to an European call option with maturity T and strike price
D, stating that, at time T , a firm defaults if its assets A are worth less than its debt. The
debt is calculated as

Debt = Asset− Equity.

Thus,
ET = max[AT −D, 0].

He stipulates that the firm’s asset value follows a geometric Brownian motion (GBM)
diffusion process, in the same way that Black and Scholes (1973) assume the stochastic
process of stock prices. The value A of the firm follows

dAt = rAtdt+ σAAtdWt

and this yields the following pricing formula for the equity at time t = 0, derived from the
Black-Scholes-Merton model:

E0 = E
[
e−rT (AT −D)+

]
E0 = A0N(d1)−De−rTN(d2)

where

d1 =
ln
(
A0erT/D

)
σA
√
T

+ 1
2σA
√
T ; d2 = d1 − σA

√
T .

Here σA is the volatility of the asset value and r is the risk-free rate of interest, both assumed
to be constant. Note that N(·) is the cumulative distribution function of a standard normal
random variable.

This model was used because of the simplicity involved in the implementation, but
it suffers from several flaws. Firstly, Merton assumes that a default may only occur at
maturity t = T . Secondly, it models the capital structure of a firm as a zero-coupon
bond, which is too simplistic, considering the multiple debt structures that are possible, as
presented in Geske (1977, 1979). Thirdly, the term structure of interest rates is assumed
to be constant and flat, which is counter factual. Finally, just as with option pricing
from the Black-Scholes model, as t approaches T , the predictability of a default increases
significantly, rendering short-term spreads practically immaterial. These flaws serve to
highlight the inherent trade-off between realistic assumptions and ease of implementation.

To address the time of default issue in the Merton model, Black and Cox (1976) de-
veloped a first-passage model (FPM) where a default threshold is defined, and default
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occurs as soon as it is hit. This threshold is either determined exogenously to act as safety
covenant for bondholders, or endogenously, to maximize the firm’s value by the managers.
This model has been studied with stochastic or non-stochastic interest rates and other ex-
tensions to account for taxes, jumps, etc. However, every extension to the model is made
at the expense of increased complexity.

The Black-Cox model has the advantage of allowing default to occur at any time,
according to a threshold. Moreover, this threshold could also be stochastic. Consider a
constant threshold K > 0. Then, building on Merton’s firm’s dynamics, the time of default
τ is given by

τ = inf{s ≥ t|Vs ≤ K}.

Thus, using the reflection principle of the Brownian motion (Elizalde, 2012b), the default
probability from t to T is

P[τ ≤ T |τ > t] = Φ(h1) + exp
{

2
(
r − σ2

A

2

)
ln
(
K

At

) 1
σ2
A

}
Φ(h2)

where

h1 =
ln
(

K
er(T−t)At

)
+ σ2

A

2 (T − t)
σA
√
T − t

h2 = h1 − σA
√
T − t

Some argue that only the ratio of At to K matters in the valuation process, and not the
specific ways of choosing the threshold (Elizalde, 2012b). They thus model the ratio only as
a stochastic process to price corporate bonds. Other modifications include a Liquidation
Process Model (François and Morellec, 2004), or a State Dependent Model (Hackbarth
et al., 2005), to take into account different characteristics of the reality, like the lapse of
time it takes to liquidate assets, in the former, or business cycles or other states affecting
cash flows in the latter.

The drawbacks of Black-Cox models are mainly due to its analytical complexity and
failure to pass empirical testing (Elizalde, 2012b). Moreover, we find the same problem in
this model as in the Merton model with the predictability of default, and predictability
of recovery, since both model assume complete information about the value process At.
This problem vanishes if we assume a stochastic and hidden threshold K. Also, empirical
evidence suggests that default can occur for reasons other than the value of the assets
falling below a threshold. For instance, a liquidity shortage or high funding costs could
also put the firm in a defaulting position.
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In order to address some of these problems, many researchers have considered incom-
plete information models, or tried to incorporate jumps and stochastic volatility in the
firm’s value dynamics (Fouque et al., 2006). There were attempts to introduce correlated
Brownian motions in these dynamics (Giesecke, 2004). More recently, a contagion effect
was added into the model in order to reproduce the observed concentration of default
through time (Giesekce and Goldberg, 2004). Through either a copula function, or using
an incomplete information model, or a common factor model with firm value being influ-
enced by market factors and idiosyncratic factors, increased realism was introduced into
the model. However, credible calibration results of these models remain inadequate with
these extensions (Elizalde, 2012a).

A successful implementation of a structural credit model in a practical setting has
been attempted on the so-called KMV model, named after Kealhofer, McQuown, and
Vasicek (Grasselli and Hurd, 2010a). KMV departs slightly from a strict implementation
of a structural model as it tries to circumvent the main difficulty of explicitly modelling
dynamics of the firm’s value At. Rather than trying to estimate At from the firm’s balance
sheet, it infers it from the value of debt and equity by exploiting the following equation

At = Dt + Et.

The equity is defined as the market capitalization which is observed. Therefore we can
infer At according to

Et = BSCall(At, T − t, r, σ,K)
where T is the maturity date representing the approximate time scale of the debt (e.g. the
duration), and K is the default trigger.

K is determined from the structure of the firm’s debt, placing the value somewhere
between the face value of short term debt, and the face value of total debt. This is justified
if we argue that the firm has to service its short term debt, but can be more flexible with
its long term debt. Typically, K is given by the full short term debt plus half of the long
term debt.

We then calibrate the model parameters to obtain µ̂ and σ̂ to an observed time series
{Êt1 , . . . , ÊtN} of market capitalization giving the time series {Ât1 , . . . , ÂtN}. This allows
us to compute the key credit score DDt, called distance to default.

DDt = log(At/K)
σ

This gives the amount by which logAt exceeds K measured in standard deviations σ. It
is called distance to default because it is to be interpreted as a measure of likelihood of
default, which serves as a certain risk measure.
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By following a strict interpretation of the structural model, the expected default fre-
quency, EDF, i.e. the probability of observing the firm default within one year, should
be equal to the normal probability EDF = N(DD). However, Moody’s Analytics, using
KMV, uses its large database of historical defaults to map DD to EDF using a proprietary
function EDF = f(DD). This breaks the model but has the advantage of making it to
produce more favourable empirical evidence. The function f is designed to give the actual
fraction of all firms with the given DD that have been observed to default within one year.
We should note that the DDt is a firm-specific dynamic quantity that correlates strongly
with credit spreads and observed historical default frequency.

In summary, structural models have he advantages of being economically intuitive and
easy to interpret. However, they might be too rigid since after correcting the structural
assumptions, we might have difficulties in calibrating to the market. This is why we turn
to reduced-form models next.

2.4 Reduced-form Models

Reduced-form models, in contrast to the structural models, do not try to replicate the
firms’ asset dynamics and relate it to defaults. They simply observe that default occurs
randomly in time, and try to match their outcome to reality, using only available market
data. The most popular reduced-form models studied in the literature are intensity based
models. In these models, a default is triggered by the first jump in an exogenous jump
process. The parameters for this process (associated with the physical probability measure)
are inferred from market data.

To begin the construction of our intensity-based model, we use a Poisson process to
model the arrival risk of credit-defaults (Elizalde, 2012a). By considering an increasing
sequence of stopping-times (τh < τh+1), we define the stochastic counting process Nt by

Nt =
∑
h

1{τh≤t}

Then, a (homogeneous)Poisson process with intensity λ > 0 is a counting process whose
increments are independent and satisfy

P[Nt −Ns = n] = 1
n! (t− s)

nλn exp (−(t− s)λ),

for 0 ≤ s ≤ t. Thus, Nt − Ns are independent and have a Poisson distribution with
parameter λ(t − s) for s ≥ t. By allowing for a time-dependent λt = λ(t), we have a
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time-inhomogeneous Poisson process, and hence a time-inhomogeneous diffusion process

dλt = µ(t, λt)dt+ σ(t, λt)dWt,

where Wt is a Brownian motion. This is a Cox process. A Cox process is sometimes called
a doubly stochastic Poisson process (Grasselli and Hurd, 2010b).

Once a Cox process is defined, we can start modelling the single entity credit-default
risk. The model is similar to the pricing model of a zero coupon bond. The only difference
between the formulas for the survival probability S with intensity and price P of default-
free zero coupon bonds lies in the discount rate, where λ is used instead of r. Therefore,

S(0, t) = E
[
exp(−

∫ t

0
λsds)

]
is treated the same way as

P(0, t) = E
[
exp(−

∫ t

0
rsds)

]
so we end up using short-term rate models for defaults intensities. In this context, a default
time would be defined by:

τ = inf{t > 0|exp(−
∫ t

0
λsds) ≤ U}

where U ∼ Unif(0, 1) is taken from a standard uniform distribution.
According to Schönbucher (2003), we should set up our models such that:

1. rt and λt should be stochastic;

2. rt and λt should have correlation between them;

3. rt and λt should be greater than zero at all times;

4. the model should be as easy to price as possible.

Also, we recall Schönbucher’s conditions for an optimal model, stated in Section 1.2.
The simplest model would be a Conditionally Independent Defaults (CID) model. In

this model, we have a set of different firms, with different intensities and unknown default
times. We observe the state of the market, Xt, and once these realizations are fixed, we
assume that the intensities are independent. Thus, the intensity process follows
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λi,t = a0,λi
+ a1,λi

X1,t + . . .+ aJ,λi
XJ,t + λ?i,t

where Xj,t, j = 1, . . . , J are all state variables, ai’s are constant coefficients, and λ?i,t is a
firm specific factor of stochasticity. Moreover,

dλ?i,t = κi(θi − λ?i,t)dt+ σi
√
λ?i,tdWi,t

where Wi,t is a standard Brownian motion.
Unfortunately, CID models tend to produce too small default correlation between names

due to the lack of sophistication in choosing our state variables. Some argue that this
could be overcome by choosing more wisely the parameters representing latent variables,
but this makes the model harder to calibrate (Yu, 2005). Also, since the model generates
risk through dependence of the firm’s intensity process to a set of state variables, once this
variable is fixed and a realization is observed, the defaults become independent.

Other researchers have tried to extend the CID model by adding joint jumps in the
firm’s default processes, or by having common default events. This makes calibration and
estimation even harder.

A second method used to model credit default risk is to introduce a contagion effect
among firms. From empirical evidence, we observe that there exist periods in which credit
risk increases simultaneously throughout the market. This leads us to believe that there is a
contagion effect through some market factors (Davis and Lo, 1999) or through commercial
or financial relationships (Jarrow and Yu, 2001).

Davis and Lo (1999) introduced a model where defaults occur infectiously. Each firm
has an initial hazard rate λi,t, but when a default occurs, an enhancement factor a > 1 is
applied to the remaining firms so their respective hazard rate becomes aλi,t. This enhanced
rate remains active for an exponentially distributed period of time.

On the other hand, as for the contagion mechanism developed by Jarrow and Yu (2001),
it is based on the propensity of firms to be influenced by others. It thus accounts for coun-
terparty risk. It basically takes the CID models, but adds symmetric dependence. When
one firm defaults, its counterparties have an increased chance of defaulting. Unfortunately,
this can create looping defaults, and be unsuitable for simulations. Jarrow and Yu (2001)
tried to implement asymmetric risk, with primary firms influencing secondary firms, but
not getting influenced and therefore simply following a CID pattern. This created a seri-
ous problem for primary firms because of the low correlation of defaults observed in CID
models.

The third method used in reduced-form models introduces correlation through copula
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functions. By estimating marginal distributions of default, and some joint distribution of
default, a dependence structure is completely specified by a chosen copula function. This
will not be studied further in this thesis, but it is worth mentioning since it is receives a
lot of attention in current research.

This selected review of the existing models has led us to better appreciate the challenges
faced by academics and practitioners in defining a suitable model for the credit market.
With these building blocks in mind, we can set forth to study, in the next chapter, more
recent developments in credit risk modelling.
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Chapter 3

Modelling Credit Risk

After reviewing a wide range of credit market models that have been studied in the liter-
ature, we come to appreciate the need for new, more realistic and adaptable models. As
a model developer, we are constantly being reminded that existing models would need to
be improved to reflect the new reality of our market better. Even as an investor, we were
reminded in 2008 that models could be far from reality. Therefore, there is a constant
pressure to seek better ones. Of course, they should be mathematically sound, and provide
a robust and viable alternative to the existing ones. Although as Schönbucher (2003) men-
tioned, an optimal model should be dynamic, we will still analyse a particularly interesting
static model as it will become useful in the analysis of similar but dynamic models. We will
then proceed to define and test the theory behind particular structural and reduced-form
dynamic models.

Each section will include theory, heuristics of the main theorem, main qualities and
worst flaws, as well as some possible avenues for improvement. We will then conclude this
chapter with a summary of which comparison and a verdict on the model will be deemed
most favourable in he context of our study.

3.1 Single Period Structural Model

As a first alternative to the industry-used model, we study a model relatively close to
what is used by practitioners, known as a single-period structural model. It is defined in
Lucas et al. (2000). The idea of this model is to simplify the credit portfolio modelling
by reducing the amount of required simulations. It should have an edge over modelling

24



every underlying individually, which would require more computing power, and hence be
more costly. The authors derive an analytic approximation to the loss distribution when
the portfolio contains a large number of exposures. It introduces a powerful Law of Large
Numbers and allows us to study extreme events, which have become a main concern in risk
management. This will lead us to the study of extreme value theory, and understanding
what type of events can possibly be reproduced by this model. We will then extend the
model, investigating the possibility of a different tail distribution, as well as the consequence
of such result.

The authors use a simple structural model and assume that the assets underlying the
bonds and loans in the portfolio follow a factor model defined as

Sn = µn + β>n f + εn, (3.1)

where the factors f ∈ Rm and innovations εn ∈ R follow a certain probability distribution.
Without loss of generality, we can set µn = 0. In the context of Lucas et al. (2000), they
assume that both random variables follow independent normal distributions with zero-
mean and covariance matrix Ωf and ωn, respectively. We could however, use the theory
developed by Schönbucher (2001) to allow for a more general distribution. The vector
β ∈ Rm corresponds to the factor loadings of each element of f , representing the influence
of each factor on the surplus variable Sn. This is the CWI model presented in Section 2.1.
We will present in the following section the setting of Schönbucher’s model, then use next
the section to study the model and results from Lucas et al. (2000).

3.1.1 Single-factor model

The motivation of Schönbucher (2001) is to study default correlation through conditional
default probabilities and joint default probabilities. Using Schönbucher’s setting for a large
uniform portfolio, i.e., N → ∞, N the number of names in our portfolio, we call X the
fraction of defaults that occurred until time T . The realized loss upon default is then

X(1−R)L

where R is the recovery rate assumed to be Ri ≡ R, and L is the exposed notional,
assumed equal for all names. The only thing we need to worry about in order to assess the
distribution of the default losses is the distribution of the fraction X of defaults. Since X
is a counting variable, it is based on N underlying processes of the firms’ values Sn. The
following assumption summarizes the context.
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Assumption 3.1.1 (Generalised One Factor Model). The default of each obligor is trig-
gered by the change of the value of the assets of its firm. We denote the value of the assets
of the n-th obligor at time t by Sn(t). We assume that the values of the assets of the
obligors are driven by a common factor f which has a distribution function G(y), and an
idiosyncratic noise component εn which is distributed according to the distribution function
H(ε). We thus have

Sn(T ) = β>n · f + εn ∀n ≤ N, (3.2)

where Y ∼ G and the εn, n ≤ N are i.i.d. H(ε)-distributed. If the respective moments
of Y and εn exist, we assume, without loss of generality that these random variables are
centered and standardised.

Obligor n defaults if its firm’s value falls below a pre-specified barrier Sn(T ) ≤ Kn.

Therefore, XN is defined as

XN = 1
N

N∑
n=1

1{Sn(T )≤Kn}, (3.3)

and XN
a.s.→ X as N →∞.

Using this approach, the values of the assets of two obligors n and m 6= n are correlated
with linear a correlation coefficient β. It is important to note that, conditional on the
realisation of the systematic factor f , the firm’s values and the defaults are independent.
This is key to the large portfolio approximation. If we assume that all obligors have the
same default barrier Kn = K and the same exposure Ln = 1, we can obtain some intuition
about the distribution of the portfolio’s credit loss. In order to do so, we build up on the
known facts about the different drivers. By fixing the market factor f = y, we first define
the individual conditional default probability

p(y) = P [Sn(T ) ≤ K|f = y]
= P [βnf + εn ≤ K|f = y]
= P [εn ≤ K − βnf |f = y]
= H (K − βny) . (3.4)

Thus, conditional on the realisation y of f , the individual defaults occur independently
from each other. Recall that X is the fraction of defaults in our portfolio, and is the limit as
N →∞ of XN defined in (3.3). Considering a large homogeneous portfolio approximation
as N → ∞ means that we can arrive to an almost sure relation between X and the
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conditional probability we have just derived. We have

P [X = p(y)|f = y] = 1, (3.5)

meaning that the fraction of obligors defaulting is almost surely equal to the individual
default probability. We can now proceed to incorporate the distribution of the market
factor Y in order to find the unconditional distribution function (df) of X. By invoking
the iterated expectations, for x ∈ [0, 1], we get

P [X ≤ x] = E [P [X ≤ x|f ]]

=
∫ ∞
−∞

P [X ≤ x|f = y] dG(y)

and using (3.5)

P [X ≤ x] =
∫ ∞
−∞

P [X = p(y) ≤ x|f = y] dG(y)

=
∫ ∞
−∞

1{p(y)≤x}dG(y)

=
∫ ∞
y?

dG(y)

(3.6)

where y? is chosen such that p(−y?) = x, and p(y) ≤ x ≤ 1 for y > −y?. Thus

y? = (H−1(x)−K)
β

.

By combining the results, we get that

F (x) := P [X ≤ x] = 1−G
(
K −H−1(x)

β

)
. (3.7)

We therefore have a form for the distribution function of a static one period single-factor
model of a large portfolio containing N → ∞ homogeneous underlying names. Having a
single factor affecting our underlyings is a big simplification. We can view this single factor
as capturing all of the exogenous randomness. Since we are allowed to put any distribution
on G, this simplification is not overly restrictive. Using a single-factor also eases the
presentation as it simplifies the algebra. Extending it to a multi-factor model would be
similar, after accounting for the covariance between factors. In addition, this simple model
will allow us to explore the extreme value theory and focus on the tail properties of the
model. We will therefore present the refined model of Lucas et al. (2000) to introduce their
tail index theorem and extend their conclusions to different tail behaviour.
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3.1.2 Limiting distribution

We refine the Schönbucher (2003) model by assigning a particular form to G and H in
order to obtain Lucas et al. (2000) model. Recall equation (3.1) where

Sn = β>n · f + εn,

We will study the static model in a simplified two-state setting of default or no default.
Let ln = 1, 2 and π(n, ln) represent the end-of-period state and the credit loss of asset n,
respectively. ln = 1 is the state in which firm n is still alive and contributing to the portfolio.
ln = 2 occurs when the n-th firm’s value falls below the default threshold, triggering a
default. Firm n then becomes inactive and the firm’s credit loss πn = (1−Rn)Ln adds to
the portfolio’s credit loss CN . Lucas et al. (2000) state that the firm’s credit loss occurs
if a firm defaults or its rating deteriorates. In our case, since we only assume two states
and do not worry about credit ratings, πn will refer to the LGD on firm n. We assume
that all firms share a common Markovian transition matrix P between states. Finally, the
portfolio credit loss is simply represented by the sum of the N individual credit losses:

CN =
N∑
n=1

π(n, ln). (3.8)

In Schönbucher’s notation, CN = NX(1 − R)L, for homogeneous assets in our portfolio
with common loss L and recovery rate R. We note that ln is a stochastic variable since
it is based on movements of the stochastic variable Sn. Therefore, π and CN are also
stochastic. We now take one more step towards studying the tail properties of the model
by presenting a theorem for the distribution of the portfolio credit loss CN for a large
number of exposures. Before proceeding, we need the following assumption:

Assumption 3.1.2. supn≥1 E[π(n, kn, ln)2|f ] <∞ (a.s.).

Assumption 3.1.2 assures that the conditional expectations of individual squared losses
are almost surely bounded uniformly. It is not a strong assumption as most financial
instruments technically satisfy it. Given this assumption, we can state Lucas et al. (2000)
main theorem concerning the limit distribution law for two states.

Theorem 3.1.3. Recall that Ωf is the covariance matrix of the random factor vector f .
Define

R2
n = β>n Ωfβn

ωn + β>n Ωfβn
(3.9)
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as the R2 of the factor regression model (3.1), i.e., the squared correlation between Sn and
its “fit” β>n f . Moreover, let

v>j =
β>j Ω1/2

f√
β>j Ωfβj

, (3.10)

such that v>j vj = 1. Define

BN = E[CN |f ] =
N∑
n=1

E[π(n, ln)|f ] =
N∑
n=1

Φ
s−

√
R2
jv
>
j Ω−1/2f√

1−R2
j

 . (3.11)

Then, given Assumption 3.1.2 and the framework described earlier, we have

1
N
CN −

1
N
BN

a.s.−−→ 0 (3.12)

with CN the portfolio credit loss as defined in (3.8) and a.s.−−→ denoting almost sure conver-
gence.

This theorem states that the average credit loss CN in (3.12) converges almost surely to
the conditional (on f) expectation of credit losses BN (see (3.11)). Therefore we average
out all of the idiosyncratic risks by using BN , since CN depends on (f, ε1, ε2, . . .) whereas
BN only depends on f .

As we are interested in studying tail behaviour and extreme events, we use the simplified
case of default or no default in order to derive simple but powerful conclusions. We assume
that f and εn follow independent univariate normal distributions, where systematic risk is
equal across all exposures (R2

n ≡ ρ2, ρ ≥ 0), and where vj ≡ 1. Setting s to be the default
threshold for all surplus variables Sn, we get

BN =
N∑
n=1

Φ
(
s− ρΩff√

1− ρ2

)

such that
CN
N
− Φ

(
s− ρΩff√

1− ρ2

)
a.s.−−→ 0. (3.13)

More details on these results and their derivations are given in Lucas et al. (2000).
Below we discuss the tail properties which are one focus of study in this thesis. The
discussion is preceded by a brief introduction to extreme value theory.
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3.1.3 Extreme value theory

We want to study in this section the extreme tail behaviour of distributions. Lucas et al.
(2000) state that their credit loss distribution has a tail expansion of the form

F (c) = 1− F (c) = (c̄− c)αL[(c̄− c)−1], (3.14)

where c̄ is the maximum credit loss, F (·) the credit loss distribution, and L(·) is a slowly
varying function. By slowly varying function, we mean limx→∞ L(tx)/L(x) = 1, for t > 0.
In our case, c̄ = 1 as in 100% of our portfolio. The intuition for this is that the larger
α is, the faster the tail decays to zero, therefore giving an indication about the shape of
the tail of the credit loss distribution for large credit losses. Here, F (x) ≡ P[X ≤ x] and
F (x) ≡ P[X > x] = 1− F (x).

The function indicates that there are two important parts determining the tail be-
haviour. The first one is the rate of tail decay α. We can see that when c → c̄, the
dominant factor of F becomes (c̄− c)α. The other important factor of F is obviously the
function L(·). We will focus our attention on the rate of tail decay α, but it is worth men-
tioning that different characterization of L(·) might lead to significantly different results,
even for the same α.

The following theorem is from Lucas et al. (2000) and summarizes the tail behaviour
of the setting presented earlier, and constitutes our main point of interest for this section:

Theorem 3.1.4 (Tail index). Consider the one-factor model and assume that a fraction
λ ∈ (0, 1) of the firms has R2

n = R̂2
1, while the remaining firms have R2

n = R̂2
2. The credit

loss distribution has a tail expansion as in (3.14) with a tail index

α = max
i∈{1,2}

1− R̂2
i

R̂2
i

(3.15)

This theorem says that the loss distribution has algebraically declining tails instead of
exponentially declining tails as could be expected. We notice that the exact proportion λ
of names with a certain R̂2 does not matter, as only the ones with the highest factor will
be determining the tail index. In the special case of a perfectly homogeneous portfolio,
we have R̂2

1 = R̂2
2 = ρ2, such that α = (1 − ρ2)/ρ2. We then clearly see that increasing

the degree of systematic risk (ρ2) leads to a decrease in the tail index α, thus indicating
a decrease in the rate of tail decay. By this simplistic illustration we can conclude that
even if the model’s exposures are driven by thin-tailed systematic and idiosyncratic shock
distribution (in our case normally distributed), the portfolio credit loss distribution can
still exhibit the empirical stylized fact of fat-tail shown by polynomially declining tails.
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A second conclusion from this theorem is that the highest idiosyncratic risk component
of an exposure, i.e., smallest R̂2

i , dominates the extreme tail behaviour. This implies a
higher rate of tail decay. Intuitively, we would expect the worst tails to occur when all
loans are very highly correlated, since there is more chance that all of our portfolio will
default at once. Similarly, we can interpret the theorem by stating that when the exposure
is exhibiting more idiosyncratic risk, it is less likely to have a joint default occurring.
Because idiosyncratic sources of risk are independent from each other, the correlation is
low, therefore one default does not attract other defaults. Our portfolio is thus less likely
to reach the maximum credit loss possible. In order to have thin tails, we would need a
high α, which would be created by having a small R̂2

i . Thus, a group within our portfolio
with high idiosyncratic risk lowers the probability of extreme events. Equivalently, higher
systematic risk implies higher probability of extreme event, as the tails get fatter. This
argues in favour of diversification.

In order to study the tail behaviour of the credit loss distribution in a more general
setting, it is useful to consider the proof of theorem 3.1.4.

Proof of Theorem 3.1.4. Using the Von Mises condition for Weibull distributions (Corol-
lary 3.3.13 of Embrechts et al. (1997)), it suffices to prove that

lim
C↑1

(1− C) · f(C)
1− F (C) = 1− ρ2

ρ2 (3.16)

with F (·) and f(·) the c.d.f. and p.d.f. of credit losses, respectively. Define u1 = 1 − C.
We can now rewrite (3.16) as

lim
u1↓0

u1 · f(1− u1

1− F (1− u1) . (3.17)

Using (3.13), we can rewrite (3.17) as

lim
u1↓0

u1 ·
√

1− ρ2 · φ
(

Φ−1(u1)
√

1−ρ2−C
ρ

)
ρ · Φ

(
Φ−1(u1)

√
1−ρ2−C

ρ

)
· φ(Φ−1(u1))

, (3.18)

with Φ(·) and φ(·) the standard normal c.d.f. and p.d.f., respectively. Using the substitu-
tion u2 = Φ−1(u1)⇔ u1 = Φ(u2), (3.18) transforms into

lim
u2→−∞

Φ(u2) ·
√

1− ρ2 · φ
(
u2·
√

1−ρ2−C
ρ

)
ρ · Φ

(
u2·
√

1−ρ2−C
ρ

)
· φ(u2)

. (3.19)
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Now from equation (26.2.13) of Abramowitz and Stegun (1970), we have that for large
negative u2

Φ(u2) = φ(u2)
|u2|

(1 + o(u−1
2 )). (3.20)

Applying this results to (3.19), we establish

lim
u2→−∞

Φ(u2) ·
√

1− ρ2 · φ
(
u2·
√

1−ρ2−C
ρ

)
ρ · Φ

(
u2·
√

1−ρ2−C
ρ

)
· φ(u2)

=

lim
u2→−∞

φ(u2) ·
√

1− ρ2 · φ
(
u2·
√

1−ρ2

ρ

) ∣∣∣∣u2·
√

1−ρ2

ρ

∣∣∣∣
|u2|·ρ · φ

(
u2·
√

1−ρ2

ρ

)
· φ(u2)

= 1− ρ2

ρ2 , (3.21)

which proves the theorem (Lucas et al., 2000).

Now we analyse the theory required for the proof of Theorem 3.1.4. It uses three results
from other works, and the rest involves simple manipulations. It starts by using Corollary
3.3.13 of Embrechts et al. (1997), then uses equation (3.13) from its previous theorem
3.1.3 and ends by using a tail expansion for the normal distribution from Abramowitz and
Stegun (1970). Let us see how and why we can use Corollary 3.3.13, as it is the basis for
this proof. The other two results are specific cases to the setting of the particular paper
by using the normal distribution for the factors and will not be of concern to us at the
moment since we want to introduce the more general case.

From Embrechts et al. (1997), we can get that their Corollary 3.3.13, on page 136,
states

Corollary 3.3.13 (from Embrechts et al. (1997), p.136). Let F be an absolutely continuous
distribution function with density f which is positive on some finite interval (z, xF ). If

lim
x↑xF

(xF − x)f(x)
F (x)

= α > 0, (3.22)

then F ∈MDA(Ψα).

A Maximum Domain of Attraction (MDA) is defined as
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Definition 3.1.5 (Maximum domain of attraction). We say that the random variable X
(the distribution function F of X, which is the distribution of X) belongs to the maximum
domain of attraction of the extreme value distribution D if there exist constants cn >
0, dn ∈ R, such that

c−1
n (Mn − dn) d−→ D (3.23)

for Mn ≡ max(X1, . . . , Xn), the maximum value of the iid sequence (Xn), holds. We write
X ∈MDA(D) (F ∈MDA(D)).

The Corollary thus says that as we progress in the tail of the distribution, if the ratio of
its density to its right tail distribution function is constant, then the distribution belongs to
the Weibull Maximum Domain of Attraction Ψα, α being the tail index of the distribution.
In our context, this tail index happens to be the ratio of linear correlation to the market
factor. We thus know that the probability of extreme events will change proportionally
to the level of market correlation. The MDA Ψα is what is referred to as the Weibull
df. The next theorem will illustrate why our situation falls into the Weibull distribution
function. It will also give an explanation of the use of the parameter α, which is required
to characterize the distribution functions and the thickness of the tail associated with each
of them. To fully grasp this theorem, a definition of heavy-tails as well as an introduction
to regular variation might be useful. We add details on those topics in Appendix B.

The following result, considered by Embrechts et al. (1997) and many others to be the
basis of classical extreme value theory, identifies the only limit laws possible for maxima
of i.i.d. r.v.’s.

Theorem 3.1.6 (Fisher-Tippett theorem, limit laws for maxima). Let (Xn) be a sequence
of i.i.d. random variables. If there exist constants cn > 0, dn ∈ R and some non-degenerate
distribution D such that

c−1
n (Mn − dn) d→ D, (3.24)

Then D belongs to the type of one of the following three distribution functions:

Fréchet: Φα(x) =

0, x ≤ 0
exp{−x−α}, x > 0

α > 0

Weibull: Ψα(x) =

exp{−(−x)α}, x ≤ 0
1, x > 0

α > 0

Gumbel: Λ(x) = exp{−e−x}, x ∈ R.
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Figure 3.1: Fréchet MDA for various tail indices a

The functions for the three different MDAs are presented graphically in Graphs 3.1,
3.2, and 3.3. When possible, we plotted them for different values of α, represented by a
in the legend, in order to show the variation of tail weight as the tail index changes. We
observe that a smaller a implies fatter tails.

At this point, it is important to note that the distribution functions F in the Maximum
Domain of Attraction of the Weibull distribution MDA(Ψα) have a finite end point xF .
This is particularly relevant since we are concerned with loss distributions which have finite
end points, namely a maximum loss of 100% of the initial portfolio. The following theorem
characterizes the MDA(Ψα) used in the proof of theorem 3.1.4.

Theorem 3.1.7 (Embrechts et al., 1997). The df F belongs to the maximum domain of
attraction of Ψα, α > 0, if and only if xF < ∞ and F (xF − x−1) = x−αL(x) for some
slowly varying function L.

If F ∈MDA(Ψα), then
c−1
n (Mn − xF ) d→ Ψα, (3.25)

where the norming constants cn can be chosen as cn = xF − F←(1 − n−1) and dn = xF .
Here F←(p) represent the p-quantile of F .
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Figure 3.2: Weibull MDA for various tail indices a

Figure 3.3: Gumbel MDA
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This previous theorem is the one from which Corollary 3.3.13 mentioned earlier is
derived. It is both easy and difficult at the same time to see why it makes sense for
our loss distribution to be part of MDA(Ψα). It is easy to see because we know our
losses are bounded. In our case, the rv for maximum credit loss C is bounded by c̄ = 1.
MDA(Ψα) characterizes the distribution of the maximum of an i.i.d. sequence when the
rv is bounded. For this reason, it doesn’t make sense for C to be in MDA(Φα), since
Φα is unbounded. This leads to the reason why it might be difficult to see why our loss
distribution can fit in MDA(Ψα). Indeed, our model assumes that both f and ε are
normally distributed, which are thin-tailed distributions. Yet, MDA(Ψα) exhibits heavy-
tails characteristics. This is rather surprising and raises another important issue. We want
to see if any distribution put in this model would exhibit heavy-tails or whether there is
any reason that we should be careful when choosing our distributions. It is obvious that
the same distribution function cannot be in two different MDA at once, but would we be
able to find a distribution function for credit losses that would be in MDA(Λ). This would
mean, by using Schönbucher’s model for underyling assets of our credit portfolio (3.1.1),
that Y and ε forge a rv Sn whose maxmimum’s distribution is in MDA(Λ).

In order to do so, we need an equivalent to theorem 3.1.7 for Λ. The characterization of
MDA(Λ) is less obvious than with MDA(Ψα), and is done mainly by defining Von Mises
functions.

Theorem 3.1.8 (Von Mises function for MDA(Λ), Embrechts et al., 1997). The df F with
right endpoint xF ≤ ∞ belongs to the maximum domain of attraction Λ if and only if there
exists some z < xF such that F has representation

F (x) = c(x) exp
{
−
∫ x

z

g(t)
a(t)dt

}
, z < x < xF , (3.26)

where c and g are measurable functions satisfying c(x) → c > 0, g(x) → 1 as x ↑ xf , and
a(x) is a positive, absolutely continuous function (with respect to Lebesgue measure) with
density a′(x) such that limx↑xF

a′(x) = 0.

3.1.4 Analysis of the model

Lucas et al. (2000) mention that their model produces a random variable with MDA(Ψα),
but we suggest that this is not the only possible characterization. This new result is
presented in the derivation hereafter. This contribution raises awareness on the choice of
the distribution functions for the factors in the initial setting of the model.
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By recalling the previous section and using Schönbucher (2001)’s characterization for
loss distribution, we try to find a function G and a function H for which FX(x) =
G
(
K−H−1(x)

β

)
would be part of MDA(Λ). This means

G

(
K −H−1(x)

β

)
= c(x) exp

(
−
∫ x

0

g(t)
a(t)dt

)

Such a function can be found by assuming that c(x) = 1 and g(x) = 1. Also, by simply
setting G(y) = exp(y), y ∈ [−∞, 0], we get

exp
(
K −H−1(x)

β

)
= exp

(
−
∫ x

0

1
a(t)dt

)

Therefore, we need to see if we can find a function a(·) defined in Theorem 3.1.8 that
would correctly define a distribution function H in our setting. In other words, we need

H−1(x) = K + β
∫ x

0

1
a(t)dt

In fact, by taking a(x) = 1
γ
, γ a constant, we have a function that satisfies the Von

Mises functions condition 3.1.8 and that creates a distribution H which is well-defined
within the model set up. Indeed, by setting a to be a constant function, we get

H−1(x) = K + βγx x ∈ [0, 1] (3.27)
= ã+ b̃x

where
ã = K b̃ = γβ.

By checking that H is still a well-defined as a distribution function, we have that

H(y) = y − ã
b̃

= y −K
γβ

⇒ y ≥ K.

Thus, H is a distribution function and we now know that the Scönbucher model we
study allows for Gumbel and Weibull MDAs. This is important to take into consideration
when working with a structural model of the type studied in Lucas et al. (2000) and
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Schönbucher (2001), as it may have influence on the pricing and risk management of credit
instruments.

A comment on the distribution is given here. Since the Gumbel distributions are often
considered to be decaying faster than Weibull’s, it is in fact not surprising that if the firms
are influenced by a common factor exponentially distributed while the idiosyncratic shocks
are uniform, we have a maximum credit loss that does not exhibit much thickness in the
tails. We therefore see the importance of both the common and idiosyncratic factors for
extreme events.

This was a simple way to verify the breadth of the single period factor model. We
realized that it has a great analytical capacity as we are able to retrieve many useful
behaviours of the random variables, especially their tail properties. On the other hand,
this model’s specification has to be carefully specified as a simple change in the definition of
our factors and innovations can have a dramatic effect of rendering our simulation results
far from being able to match market events.

3.2 Dynamic Structural Model

After studying the single-period structural model, we consider a closely related but im-
proved model. This is a dynamic structural model introduced by Bush et al. (2011) which
closely resembles the model of Lucas et al. (2000) in a dynamic setting.

This paper builds on static Conditionally Independent Factor (CIF) models and extends
them to dynamic large portfolios. The model is obtained by taking the large portfolio limit
of a multidimensional structural model, thus making the modelling of the value of a large
basket of underlying assets possible via a stochastic partial differential equation. In this
case, the key quantities of analysis are functions of the solutions of this SPDE.

The simple model developed by Bush et al. (2011) is considerably more useful because
most of the other models are not dynamic. The copula and Conditionally Independent
Factors (CIF) models, though the most popular ones, lack the specification of the evolution
of their underlyings and only model expected default in one time period. Allowing the
model to be dynamic increases the flexibility and puts within reach complex structured
credit instruments such as forward starting tranches, options on tranches, Single Tranche
CDO (STCDO), etc. We mention also Sircar and Zariphopoulou (2010), and Davis and
Rodriguez (2007) as other large portfolio analysis models.

Bush et al. (2011) introduce a multi-dimensional structural model with the goal of
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modelling the empirical measure of the asset prices in a basket when the underlyings have
dynamics obtained through a factor model. This means that the firms underlying our CDO
are influenced by common market factors, and we use these factors’ dynamics to model
the asset prices and distance to default. By interpreting the dynamics of the structural
variables, we can pull out an empirical measure of the portfolio. We then let the number of
firms grow to infinity in order to obey a law of large numbers (LLN) and find the density
of the limit, which satisfies a stochastic partial differential equation (SPDE)

The starting point of the SPDE model introduced by Bush et al. (2011) is similar to
the model introduced in Hull et al. (2010). The assets have same constant volatility and
are correlated via a single market factor. These are big simplifications but useful for the
purpose of developing a simple, dynamic model. The assets follow a diffusion process under
the risk-neutral measure Q such that

dAit = rAitdt+ σ
√

1− ρAitdW i
t + σ

√
ρAitdMt, i = 1, . . . , N (3.28)

until they hit a constant barrier Bi, representing their default threshold, or the horizon
time T . We assume that W i

t and Mt are Brownian motions representing idiosyncratic
fluctuations and common market fluctuations, respectively, and such that

d[W i
t ,Mt] = 0 ∀i

and
d[W i

t ,W
j
t ] = δijdt,

where [., .] represents the quadratic covariation. Here, δij is the Kronecker delta. We
assume that σ > 0 and ρ ∈ [0, 1) are constants and ρ is the correlation of the market factor
of each asset.

By writing this in terms of distance to default process X i
t = (lnAit − lnBi)/σ, we can

reinterpret this as

dX i
t = µdt+

√
1− ρdW i

t +√ρdMt, t < τ i0, (3.29)
X i
t = 0, t ≥ τ i0,

X i
0 = xi◦ > 0,
τ i0 = inf{t : X i

t = 0}

for i = 1, 2, . . . , N , and where µ = (r − 1
2σ

2)/σ.
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3.2.1 Large portfolio approximation

We introduce further notation to state the results in this setting. A more complete ex-
planation of these definitions can be found in Bush et al. (2011). Let (ΩM ,FM ,PM)
be a probability space supporting a one-dimensional Brownian motion (Mt,Ft). Let
GM denote a σ-algebra of predictable sets ΩM × (0,∞) associated with the filtration
FMt and H1((0,∞)) = {f : f ∈ L2((0,∞)), f ′ ∈ L2((0,∞))}, where L2((0,∞)) =
{
∫∞

0 f 2dx < ∞}. We write L2(ΩM × (0, T ),GM , H1((0,∞))) = {f(ω, t, ·) : f(ω, t, ·) ∈
H1((0,∞)), f(ω, t, ·) is FMt -measurable,EM [

∫ T
0 ‖ f(ω, t) ‖2

H1 dt] < ∞}). See Appendix A
for notation.

Let ν̄Nt denote the equally weighted empirical measure for the entire portfolio given by

ν̄Nt = 1
N

N∑
i=1

δXi
t

(3.30)

where δx is the Dirac measure at the point x. The following is from Bush et al. (2011):

Theorem 3.2.1. The limit empirical measure ν̄t = limN→∞ ν̄
N
t exists and is a probability

measure with a natural decomposition into two components, ν̄t = Ltδ0 + νt. The measure
νt is a measure on (0,∞) with density v(t, x), which is the unique solution in L2(ΩM ×
(0, T ),GM , H1((0,∞))) of the SPDE

dv = − 1
σ
(r − 1

2σ
2)vxdt+ 1

2vxxdt−
√
ρvxdM(t),

v(0, x) = v0(x), v(t, 0) = 0.
(3.31)

The weight of the Dirac mass at 0 is

Lt = 1−
∫ ∞

0
v(t, x)dx. (3.32)

Therefore, prices of typical large portfolio credit products are functions of this propor-
tionate loss function Lt. (Bush et al., 2011)

We show below how we can derive this SPDE from the structural model of distance
to default. Let R+ = [0,∞). We write P(R+) for the set of probability measures on R+
and P(CR+ [0,∞)) for the set of probability measures on CR+ [0,∞) where the topology on
spaces of measures is always that of weak convergence. We write C∞K (0,∞) as the set of
continuous functions on (0,∞) bounded by a constant K that are infinitely differentiable.
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First we start with our model for Xn
t given by equation (3.29). By recalling how we

defined the empirical measure in eq. (3.30), and by using the notation

〈ν̄Nt , φ〉 =
∫
φ dνNt = 1

N

N∑
i=1

φ(X i
t),

we can derive the heuristics of the proof. The Itō formula tells us that

d〈ν̄Nt , φ〉 = 1
N

N∑
n=1

(φ′(Xn
t )dXn

t + 1
2φ
′′(Xn

t )(dXn
t )2)

= 1
N

N∑
n=1

µφ′(Xn
t )dt

+
√

1− ρ 1
N

N∑
n=1

(φ′(Xn
t )dW n

t

+√ρ 1
N

N∑
n=1

(φ′(Xn
t )dMt

+1
2

1
N

N∑
n=1

(φ′′(Xn
t )(
√

1− ρ)2dt

+1
2

1
N

N∑
n=1

(φ′′(Xn
t )(√ρ)2dt

= µ〈νNt , φ′〉dt+
√

1− ρ 1
N

N∑
n=1

(φ′(Xn
t )dW n

t )

+√ρ〈νNt , φ′〉dMt + 1
2〈ν

N
t , φ

′′〉dt

Heuristically, as N →∞

d〈νt, φ〉 = µ〈νt, φ′〉dt+√ρ〈νt, φ′〉dMt + 1
2〈νt, φ

′′〉dt. (3.33)

For a full proof, see Bush et al. (2011).
Then, by setting

A = µ
∂

∂x
+ 1

2
∂2

∂x2 (3.34)

and by writing A† for the adjoint operator of A, and by taking the integrals over all of R
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unless specified otherwise, we get∫
φ(x) · v(t, x)dx =

∫
φ(x)v(0, x)dx+

∫ t

0

∫
Aφ(x)v(s, x)dxds+

∫ t

0

∫ √
ρφ′(x)v(s, x)dxdMs

=
∫
φ(x)

{
v(0, x) +

∫ t

0
A†v(s, x)ds−

∫ t

0

∂

∂x
(√ρv(s, x))dMs

}
dx.

As this holds, ∀φ ∈ C∞K (0,∞), we have shown that we have a weak solution to the SPDE
given by

v(t, x) = v(0, x) +
∫ t

0
A†v(s, x)ds−

∫ t

0

∂

∂x
(√ρv(s, x))dMs

with v(t, 0) = 0 ∀t ∈ [0, T ]. Alternatively, we can write this in a differential form as

dv(t, x) = −µ ∂

∂x
v(t, x)dt+ 1

2
∂2

∂x2v(t, x)dt−√ρ ∂
∂x
v(t, x)dMs,

with v(t, 0) = 0 ∀t ∈ [0, T ] and v(0, x) = v0(x). In summary, as the size of the portfolio N
grows to infinity, meaning when we look at the asymptotic behaviour of our credit portfolio,
we have that

ν̄Nt → ν̄t

where ν̄t follows the SPDE in equation (3.33). This is the empirical measure of our portfolio.
The stochastic PDE derived above describes the evolution of the distance to default of an
infinite portfolio of assets whose dynamics are given by (3.28).

We can now use the limiting empirical measure νt to approximate the loss distribution
for a portfolio of fixed size N whose assets follow (3.28). We do this by matching the initial
condition, thus setting

v(0, x) = 1
N

N∑
i=1

δXi
0
(x)

where the X i
0 > 0, i = 1, . . . , N are the initial values for the distance to default of the

assets in our fixed portfolio of size N that can be inferred from the firms’ CDS spreads as
mentioned in Chapters 2 and 4.

3.2.2 Moments of the Loss distribution

In this subsection, we take the theory developed by Bush et al. (2011) and combine it with
the characterization introduced by Lucas et al. (2000) and Schönbucher (2001) in order to
derive a theorem for the moments of the loss distribution. Define

τ = inf
s≤t

(√ρZt +
√

1− ρε(t)i < Kt),
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for Kt the default threshold. Z and εi are independent Brownian motions.
Following the introduction of the Lucas model in theorem 3.1.3 and its particular case

of equation (3.13), we can define the loss variable at time t as

Lt = 1
N

N∑
i=1

1{τi=t}

∼ E
[
1{infs≤t(

√
ρZt+

√
1−ρε(t)<Kt)}|Zs, s ≤ t

]
(3.35)

The expectation of this variable is

E[Lt] = E
[
E
[
1{infs≤t(

√
ρZt+

√
1−ρε(t)<Kt)}|Zs, s ≤ t

]]
.

Taking the square of this variable, by the conditional independence of the ε’s, we get

L2
t = E [11|Zs, s ≤ t]E [12|Zs, s ≤ t]

= E
[
1{infs≤t(

√
ρZt+

√
1−ρε(t)

1 <Kt)}
1{infs≤t(

√
ρZt+

√
1−ρε(t)

2 <Kt)}
|Zs, s ≤ t

]
with default threshold Kt. 11 and 12 represent the two indicator functions as in 3.35 with
independent idiosyncratic factors ε1 and ε2.

Then by the law of iterated expectations, we get the second moment of the loss distri-
bution:

E[L2
t ] = E

[
E
[
1{infs≤t(

√
ρZt+

√
1−ρε(t)

1 <Kt)}
1{infs≤t(

√
ρZt+

√
1−ρε(t)

2 <Kt)}
|Zs, s ≤ t

]]
= P

(
inf
s≤t

(√ρZt +
√

1− ρε(t)1 < 0), inf
s≤t

(√ρZt +
√

1− ρε(t)2 < 0)
)

= P(τ1 ≤ t, τ2 ≤ t),

where τ = infs≤t(
√
ρZt +

√
1− ρε(t) < Kt), and we can set Kt = 0 without loss of of

generality. τ then becomes the first passage time to the barrier Kt = 0 of a surplus
variable influenced by both systemic and independent idiosyncratic risk factors. We use
ε1 and ε2 to refer to individual independent idiosyncratic risk’s path. P(·, ·) is the two-
dimensional joint distribution function. Therefore, the second moment of the loss function
defined in (3.35) is equal to the probability that two individual surplus functions will cross
the default barrier before time t. This computation can be repeated n times in order to get
the n-th moment of our loss distribution. This gives way to our theorem for the moments
of the loss distribution.
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Theorem 3.2.2 (Loss distribution’s moments). Assume a dynamic structural model as in
(3.29) (Bush et al., 2011). Moreover, assume that the single factor Z and idiosyncratic
shocks εn follow independent Brownian motions. Define

τi = inf
s≤t

(√ρZt +
√

1− ρε(t)i < Kt), (3.36)

for Kt the default threshold. Without loss of generality, assume that Kt = 0.
We define the loss variable at time t as

LN(t) = 1
N

N∑
i=1

1{τi=t} (3.37)

Then, as N → ∞, the n-th moment of the loss distribution from the model of Bush et al.
(2011) is

E[Lnt ] = P

 ⋂
i=1,...,n

{τi ≤ t}

 , (3.38)

where P(·, ·) is the n-dimensional joint distribution function.

This way, we can get all of the moments of the loss distribution L. By observing that
the n-th moment is the joint probability of n defaults by time s, we see how studying the
moments might give us good insight on the whole df. This is an interesting characteristic
of this particular dynamic structural model. By being able to observe the loss distribution
at a specific time, we are able to determine the moments, which correspond to the joint
distribution of defaults.

Unfortunately, this ease of implementation comes at the cost of very simplifying assump-
tions. Assuming independence of the idiosyncratic shocks might not be that restrictive,
but assuming a single factor, distributed along a Brownian motion in the Bush et al. (2011)
model, is certainly far from reality. On the other hand, Lucas et al. (2000) have shown
that a combination of thin-tailed distributions may create a heavy-tailed one. Similarly, we
have shown that thin-tailed distribution could also create other thin-tailed ones, warning
us to be careful when choosing our model’s assumptions.

In our case, we would want to be able to understand better the tail of the distribution
in order to better price senior and super-senior tranches of a CDO. Indeed, such tranches
are often mispriced due to the very low amount of data on extreme events. In the next
chapter, we will contribute a section on calibrating this model to market data and analyse
its behaviour during the last financial crisis.
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3.3 Dynamic Reduced-form Model

When looking at financial data and at default rates among firms, we often observe clus-
tering of time of defaults. Given this empirical evidence, researchers have tried to propose
models for portfolio analysis that could capture these key aspects of reality. The commonly
called reduced-form models are based on market data and simulate defaults using random
variables. These are not based on economic variables but the objective is to replicate
the empirical observations. The most popular reduced-form model is the intensity based
model, where defaults are simulated by an intensity-based jump process, and correlation
can be applied between firm specific processes.

The papers (Giesecke et al., 2012), (Giesecke et al., 2013), and (Giesecke et al., 2014),
introduce a model where a default occurs at an intensity following a mean-reverting jump-
diffusion process driven by several terms. First, they assume a firm specific source of risk,
driven by a square-root diffusion, that is independent of other aspects of the economy.
Second, another source of risk is added by a systematic risk factor, influencing all firms,
reflecting the state of the general economy, and generating diffusive correlation between
the intensities. Finally, a contagion term affects the intensity by adding correlation with
default rate in the pool. Thus, a systematic risk factor and the history of past defaults
both add some dependence to pooled firms. Also, the impact of the history of defaults on
the surviving firms fades away with time due to a recovery effect.

With this model in hand, they try to analyse the limit as the number of firms in the
pool grows, in order to retrieve some macroscopic organization observations. This law
of large numbers will allow them to identify typical behaviours. We notice that this is
something we have been doing for all three models analysed in this thesis. It is thus worth
remembering why we do this. In fact, by taking the number of names in our portfolio to
grow to infinity, we are able to derive LLN, and it becomes much easier to find analytical
results than with finite portfolio. On the other hand, we do this while keeping in mind
that all of our real-life portfolios will be finite. Thus, our results must be robust for such
finite portfolios. In fact, since many instruments used will be based on many underlyings,
this approximation is considered to be flexible.

Giesecke et al. (2012) construct a point process model of correlated default timing in a
portfolio of firms. Assume that (Ω,F ,P) is an underlying probability triple on which all
of the random variables are defined. Let {W n}n∈N be a countable collection of standard
Brownian motions. Each will represent a source of risk which is idiosyncratic to the specific
firm n. Let {en}n∈N be an i.i.d. collection of standard exponential random variables. Each
en will represent a normalized default time for the specific firm n. Finally, let V be a
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standard Brownian motion independent of the W n’s and en’s. The process V will drive a
systematic risk factor process to which all firms are exposed.

Fix an N ∈ N, n ∈ {1, 2, . . . , N} and consider the following system:

dλN,nt = −αN,n(λN,nt − λ̄N,n)dt+ σN,n

√
λN,nt dW n

t (3.39)
+βCN,ndLNt + βSN,nλ

N,n
t dXt

λN,n0 = λ◦,N,n

dXt = b0(Xt)dt+ σ0(Xt)dVt, t > 0 (3.40)
X0 = x◦

LNt = 1
N

N∑
n=1

1[en,∞)

(∫ t

s=0
λN,ns ds

)
. (3.41)

Here, we use 1 as the indicator function. The initial condition value x◦ of X is fixed.
βCN,n ∈ R+ = [0,∞) and βSN,n ∈ R are constants which represent the exposure of the n-
th firm in the pool to LN and X, respectively. The αN,n, λ̄N,n and σN,n are in R+ and
characterize the dynamics of the firms. Their meanings for each N and n will be discussed
below. We can also define LN in a more standard way using stopping times. In particular,
define

τN,n
def= inf{t ≥ 0 :

∫ t

s=0
λN,ns ds ≥ en}.

Then 1[en,∞)
(∫ t
s=0 λ

N,n
s ds

)
= 1{τN,n≤t} and thus

LNt = 1
N

N∑
n=1

1{τN,n≤t}

The process LN represents the loss rate in a portfolio of N names, assuming a loss
given defaults of one unit. The process λN,n represents the intensity, or conditional event
rate, of the n-th name in the pool. More precisely, λN,n is the density of the Doob-Meyer
compensator to the default indicator 1{τN,n≤t} (see Appendix C. The results of Giesecke
et al. (2013) imply that the system has a unique solution such that λN,n ≥ 0, ∀ N ∈
N, n ∈ {1, 2, . . . , N} and t ≥ 0. Thus, the model is well-posed. This jump-diffusion model
is empirically motivated and addresses several channels of default clustering. First, an
intensity is driven by an idiosyncratic source of risk represented by a Brownian motion
W n, and a source of systemic risk common to all firms in the diffusion process X. The
sensitivity of λN,n to changes in X is measured by the parameter βSN,n ∈ R. The second
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channel for default clustering is modelled through the feedback term βCN,ndLNt . It creates a
contagion effect and this self-exciting effect is empirically found to be an important channel
of clustering defaults.

The main reason why we introduced the αN,n, λ̄N,n and σN,n on top of the βCN,n and
βSN,n is that we allow for a heterogeneous pool. This implies that the intensity dynamics of
each name can be different. This is in fact an interesting aspect of the model which makes
it model flexible. It is an important fact in practice, as homogeneity is rarely observed.
On the other hand, too much heterogeneity implies greater difficulty in extracting large
numbers results. We shall therefore be careful when using these types. Thus, the different
constants defined what Giesecke et al. call “types”

pN,n def= (αN,n, λ̄N,n, σN,n, βCN,n, βSN,n); (3.42)

the pN,n take values in parameter space P def= R4 × R. In order to expect a regular
macroscopic behaviour of LN as N → ∞, the pN,n’s and the λ◦,N,n’s should have enough
regularity as N →∞. For each N ∈ N, define

πN
def= 1

N

N∑
n=1

δpN,n

and
ΛN
◦

def= 1
N

N∑
n=1

δλ◦,N,n

as elements of P(P) and P(R+) respectively, for P(A) representing the power set of
A. The πN and ΛN represent the empirical measures of the equally weighted types and
initial intensities of the portfolio containing N names, respectively. The model studied in
Giesecke et al. (2013) requires three main conditions for a regular behaviour. First, assume
sufficient regularity for the types pN,n and the initial distributions λ◦,N,n. Second, the πN ’s
and ΛN

◦ ’s must all have compact support. Finally, regarding the systemic risk process X,
its corresponding SDE must have a unique solution and there must be a function u(x) such
that σ0(x)u(x) = −b0(x) that satisfies the Novikov condition for every T > 0. This means

E[e
1
2

∫ T

0 |u(Xs)|2ds] <∞.

With this definition, we assure the well posedness of the model and can develop a law
of large numbers for the portfolio loss rate LN . In order to develop the LLN, we must
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work in a system containing more information than the loss rate. For each N ∈ N and
n ∈ {1, 2, . . . N} define

MN,n
t

def= 1[0,en)

(∫ t

s=0
λN,ns ds

)
= 1{τN,n>t}

for τN,n is as defined previously. So MN,n
t = 1 means that the n-th name is still alive by

time t; otherwise MN,n
t = 0. Thus MN,n is non-increasing and right-continuous and we

easily see that

MN,n
t +

∫ t

s=0
λN,ns MN,n

s ds

is a martingale. Now, to define the empirical distribution of the names that are still alive,
we need to define P̂ def= P × R+, and for each N ∈ N, define p̂N,nt

def= (pN,n, λN,nt ) for all
n ∈ {1, 2, . . . , N} and t ≥ 0. Thus, the empirical distribution is defined as

µNt
def= 1

N

N∑
n=1

δp̂N,n
t

MN,n
t .

This allows us to keep track of the type and intensity for those asset which are still “alive”.
This obviously implies that

LNt = 1− µNt (P̂), t ≥ 0.

As we are interested in tracking the portfolio loss, this representation for the loss distribu-
tion in terms of the empirical distribution of the active names is crucial.

We provide the heuristic derivation of the paper’s main theorem. For a complete proof,
we refer to Giesecke et al. (2013), but the following derivation is not inspired by their proof.
First, for every f ∈ C∞(P̂) and µ in the set of sub-probability measures E (i.e. defective
probability measure such that µ(Ω) ≤ 1, for Ω being the possible universe), define

〈f, µ〉E
def=

∫
p̂∈P̂

f(p̂)µ(dp̂)

≡ 1
N

N∑
n=1

f(p̂N,nt )MN,n
t as N →∞.

Since MN,n
t is a discontinuous function acting as a jump in our process, we have to rely

on Itō’s product rule for jump processes, given in Shreve (2004). Hence

48



f(p̂N,nt )MN,n
t = f(p̂N,n0 )MN,n

0 +
∫ t

0
f(p̂N,n,s )dMN,n,C

s +
∫ t

0
MN,n
s df(p̂N,n,Cs ) (3.43)

+
[
f(p̂N,n,C),MN,n,C

]
(t) +

∑
0≤s≤t

[
f(p̂N,ns )MN,n

s − f(p̂N,ns− )MN,n
s−

]

where f(p̂N,n,C) and MN,n,C
s represent the continuous part of f(p̂N,n) and MN,n

s , respectively.
Also, f(p̂N,ns− )MN,n

s− corresponds to the function’s value at time (s − ds), as both are left-
continuous by definition. This formulation allows us to investigate the rate of change of
〈f, µ〉E, namely

d〈f, µ〉E = 1
N

N∑
n=1

d
(
f(p̂N,nt )MN,n

t

)
.

From the particularities of Itō calculus with jumps presented in (3.43), we get that

d
(
f(p̂N,nt )MN,n,C

t

)
= f(p̂N,nt )dMN,n,C

s + MN,n
t df(p̂N,nt ) + dMN,n,C

t df(p̂N,nt )

+ d
 ∑

0≤s≤t

[
f(p̂N,ns )MN,n

s − f(p̂N,ns− )MN,n
s−

] .
Before going further in the derivation, it is worth noticing key aspects of our for-

mula and proceed to some simplifications. First, note that dMN,n,C
t is a delta func-

tion, therefore dMN,n,C
t = 0 almost everywhere, since MN,n

t is an indicator function be-
ing either 1 or 0 in its continuous parts. Second, a similar reasoning applies to the∑

0≤s≤t

[
f(p̂N,ns )MN,n

s − f(p̂N,ns− )MN,n
s−

]
. Indeed, we have

∑
0≤s≤t

[
f(p̂N,ns )MN,n

s − f(p̂N,ns− )MN,n
s−

]
=

0 if no jump occurs within [0, t]
−f(p̂N,ns− ) if a jump occurs at time s

Furthermore, since MN,n
t serves as an indicator for a hazard rate, we know that, at each

time t, jumps occur with intensity λt. Therefore

d
 ∑

0≤s≤t

[
f(p̂N,ns )MN,n

s − f(p̂N,ns− )MN,n
s−

] = −f(p̂N,nt )MN,n
t λN,nt dt

and this leaves us with
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d
(
f(p̂N,nt )MN,n,C

t

)
= MN,n

t df(p̂N,nt )− λtf(p̂N,nt )MN,n
t dt.

Therefore, continuing our expansion of d〈f, µ〉E according to Itō’s lemma for the chain
rule and to the definitions of p̂N,nt and (3.39), we get

d〈f, µ〉E = 1
N

N∑
n=1

[
MN,n
t df(p̂N,nt )− λtf(p̂N,nt )MN,n

t dt
]

= 1
N

N∑
n=1

MN,n
t

[
f ′(p̂N,nt )dp̂N,nt + 1

2f
′′(p̂N,nt )

(
dp̂N,nt

)2
− λtf(p̂N,nt )dt

]

= 1
N

N∑
n=1

MN,n
t

[
f ′(p̂N,nt )

(
−αN,n(λN,nt − λ̄N,n)dt+ σN,n

√
λN,nt dW n

t

+ βCN,ndLNt + βSN,nλ
N,n
t dXt

)
+ 1

2f
′′(p̂N,nt )

(
σ2
N,nλ

N,n
t dt+

(
βSλN,nt

)2
(dXt)2

)
− λtf(p̂N,nt )dt

]
Then by using the definition of dX found in (3.40), we can find

(dXt)2 = σ2
0(Xt)dt

and using (3.41) and the formula for jump processes , we can get

dLt = 1
N

N∑
n=1

λN,nt MN,n
t dt

With these simplifications, and by reorganizing the terms to collect the dt, dWt, and
dVt together, we get
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d〈f, µ〉E = 1
N

N∑
n=1

MN,n
t

[(1
2σ

2
N,nλ

N,n
t f ′′(p̂N,nt )− αN,n(λN,nt − λ̄N,n)f ′(p̂N,nt )− λtf(p̂N,nt )

)
dt

+ βCN,nf
′(p̂N,nt ) 1

N

N∑
n=1

λN,nt MN,n
t dt

+
(
βSN,nλ

N,n
t b0(Xt)f ′(p̂N,nt ) + 1

2
(
βS
)2 (

λN,nt

)2
σ2

0(Xt)f ′′(p̂N,nt )
)

dt

+ βSN,nλ
N,n
t σ0(Xt)f ′(p̂N,nt )dVt

]

+ 1
N

N∑
n=1

MN,n
t σN,n

√
λN,nt dW n

t

We can thus define some operators to simplify the notation. Let

(L1f)(p̂) = 1
2σ

2λ∂
2f
∂λ2 (p̂)− α(λ− λ̄)∂f

∂λ
(p̂)− λf(p̂)

(L2f)(p̂) = βC ∂f
∂λ

(p̂)
(Lx3f)(p̂) = βSλb0(x)∂f

∂λ
(p̂) + 1

2(βS)2λ2σ2
0(x)∂2f

∂λ2 (p̂)
(Lx4f)(p̂) = βSλσ0(x)∂f

∂λ
(p̂).

(3.44)

We also define
Q(p̂) def= λ. (3.45)

the generator L1 corresponds to the diffusive part of the intensity with killing rate λ, and
L2 is the macroscopic effect of contagion on the surviving intensities at any given time.
Operators Lx3 and Lx4 are related to the exogenous systematic risk X.

Then, heuristically, as N → ∞, the idiosyncratic noises average out, and we get the
following theorem. For a rigorous proof, see Giesecke et al. (2013).

Theorem 3.3.1. We have that µN(·) converges in distribution to µ̄(·) in DE[0, T ]. The
evolution of µ̄(·) is given by the measure evolution equation

d〈f, µ̄t〉E =
{
〈L1f, µ̄t〉E + 〈Q, µ̄t〉E〈L2f, µ̄t〉E + 〈LXt

3 f, µ̄t〉E
}

dt (3.46)

+〈LXt
4 f, µ̄t〉EdVt, ∀f ∈ C∞(P̂) a.s.
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Suppose that there is a solution of the nonlinear SPDE

dv(t, p̂) =
{
L?1v(t, p̂) + L?,Xt

3 v(t, p̂) +
(∫

p̂′∈P̂ Q(p̂′)v(t, p̂′)dp̂′
)
L?2v(t, p̂)

}
dt

+LXt,?
4 v(t, p̂)dVt, t > 0, p̂ ∈ P̂ (3.47)

where L?i denote adjoint operators, with the initial condition
lim
t↘0

v(t, p̂)dp̂ = π × Λ◦.

Then
µ̄t = v(t, p̂)dp̂

Note that the SPDE (3.47) should be supplied with appropriate boundary conditions.
In the work below we will assume the conditions

v(t, λ = 0, p) = v(t, λ =∞, p) = 0.

With this theorem in hand, we might think that we would be in a good position to model
our credit portfolio containing a large number of names. In fact, many steps are left to be
taken. Indeed, even though this reduced-form model does not give an economical meaning
to its parameters, saving us from some rigid specification, the large amount of parameters
in its types creates another kind of problem. We are now left with the problem of correctly
identifying the type of each name in our portfolio, which might be quite complicated. This
feature might push us away from the model in that the practicality of the heterogeneity of
the types is very low and we will in fact refer to a homogeneous pool of assets in order to
derive our more detailed approximation.

3.3.1 Homogeneous pool

In order to study the model more in depth, Giesecke et al. (2013) develop the case of
a homogeneous portfolio. This gives further insight into the SPDE governing the limit
density. Therefore, p̂N,n = p̂ for all N ∈ N and n ∈ {1, 2, . . . , N}. The SPDE takes the
form

dv(t, λ) =
{
L?1v(t, λ) + L?,Xt

3 v(t, λ) + βC
(∫ ∞

0
λv(t, λ)dλ

)
L?2v(t, λ)

}
dt

+L?,Xt
4 v(t, λ)dVt, t, λ > 0

v(0, λ) = Λ◦(λ),
v(t, 0) = lim

λ→∞
v(t, λ) = 0
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where the adjoint operators are given by

L?1v(t, λ) = ∂2

∂λ2

(1
2σ

2λv(t, λ)
)

+ ∂

∂λ
(α(λ− λ̄)v(t, λ))− λv(t, λ)

L?2v(t, λ) = −∂v(t, λ)
∂λ

L?,x3 v(t, λ) = ∂2

∂λ2

(1
2(βS)2λ2σ2

0(x)v(t, λ)
)
− ∂

∂λ
(βSλb0(x)v(t, λ))

L?,x4 v(t, λ) = −βSσ0(x) ∂
∂λ

(λv(t, λ)).

We can then define the limiting portfolio loss L by

Lt
def= 1−

∫ ∞
0

v(t, λ)dλ, t ≥ 0.

For large N , Theorem 3.3.1 suggests the large portfolio approximation

LNt ≈ Lt, t ≥ 0.

Of course, with this large portfolio approximation, we can proceed to some modelling
and risk management, but the interesting part of the model is now reduced greatly. Indeed,
the homogeneous pool is not very realistic. Plus, its numerical results is too simplistic and
does not capture the dynamics of the market. Below we present a numerical implementation
as well as an example of the homogeneous pool model. As we will see, it exhibits too much
consistency and not enough clustering.

3.3.2 Numerical implementation

Approaches might differ according to the parameters and the set-up. In the case of an
homogeneous pool, we will concentrate on the case where βC > 0 and βS > 0. We provide
the finite difference scheme in the case of general diffusion dXt = b0(Xt)dt + σ0(Xt)dVt.
Since the term βSσ0(Xt)(λν)λdVt must be non-anticipating, the future time-steps being
dependent on the path of Vt, an implicit method such as Crank-Nicholson cannot be used.
Indeed, all of the other factors are deterministic, but this last term involving dVt makes the
problem dependent on past behaviour since the contagion factor transmits the risk through
time as well as through the space of names. This is in contrast to the model developed in
Bush et al. (2011), where we use the Crank-Nicholson method. In this latter method, the
randomness at each time is independent of the randomness at any other time, each step
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receiving an independent shock through a Brownian motion and the general movement
being passed through a PDE solving the heat equation with drift. Hence in this case, we
can observe the effect of the systemic factor at certain points in time and use an implicit
method between the observation dates. More details will be given on this technique in
Chapter 4.

We therefore provide an explicit scheme. This has the disadvantages of only first-order
accuracy in time and conditional stability. 1 The time-step is denoted by ∆ and the mesh-
size by δ. Let vi,j = v(i∆, jδ), λj = jδ,Xi = Xi∆, and ∆Vi = Vi∆−V(i−1)∆, for i = 0, . . . , N
and j = 0, . . . , J . We then have the explicit finite difference scheme as

vi,j = ∆[Ii−1
2δ −

σ2

2δ + σ2λj
2δ2 + (βSσ0(Xi−1)2)

λ2
j

2δ2 + α(λ̄− λj)
2δ + βS

λj
2δ (b0(Xi−1) + σ0(Xi−1)∆Vi

∆ )

− (βSσ0(Xi−1))2λj
δ

]vi−1,j−1

+ ∆[ 1
∆ + α− σ2λj

δ2 − (βSσ0(Xi−1))2λj
δ
− λj − βS(b0(Xi−1) + σ0(Xi−1)∆Vi

∆ )

+ (βSσ0(Xi−1))2]vi−1,j

+ ∆[−Ii−1
2δ + σ2

2δ + σ2λj
2δ2 + (βSσ0(Xi−1)2)

λ2
j

2δ2 −
α(λ̄− λj)

2δ − βS λj2δ (b0(Xi−1) + σ0(Xi−1)∆Vi
∆ )

+ (βSσ0(Xi−1))2λj
δ

]vi−1,j+1

with boundary conditions vi,0 = vi,J = 0 and Ii−1 = ∑J
j=1 δ

vi−1,j+vi−1,j−1
2 . Here Ii−1 and

the functions b0(·) and σ0(·) relying on Xi−1 are the reasons why we cannot rely on an
implicit method. Giesecke et al. (2012) propose an approximate criterion for the time-step
size, based on the criterion for a deterministic diffusion PDE where σ0 = 1. They have
numerically tested the approximation and found that ∆ . δ2

(βSλmax)2 is sufficient to ensure
stability.

With a homogeneous pool, we simulate the cumulative distribution function of the
portfolio loss through Monte Carlo simulation and get figure 3.4. We notice a lot of small
defaults, and no real cluster, as predicted by the model. This is caused by the fact that
we can only simulate an homogeneous portfolio, which greatly diminishes the power of the
model.

We thus recognize how the defaults seem to occur rather consistently. We do not
observe clusters or extreme events. Even by varying the systematic and contagion risk

1Giesecke et al. (2013) mention a “method of moments” to proceed to the numerical implementation
Giesecke et al. (2012). Due to lack of description about this method, we rely on a finite difference approx-
imation.
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Figure 3.4: Portfolio loss progression through time in homogeneous pool
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parameters, we do not vary greatly the results. Therefore, this model seems quite rigid in
its homogeneous form, and complicated to implement in its heterogeneous form.

3.4 Comparison

Having presented these three models, we are now in a position to analyse their strengths
and shortcomings. This is an important part of the analysis as it takes on a practical
perspective of the latest financial modelling techniques. All of the three models start by
tackling the cost of simulations problem. Indeed, by deriving a Law of Large Numbers
for infinite portfolios and using it to approximate large portfolios, it lowers the amount
of computations required, thereby reducing the costs of simulation. All of these three
models approach the problem from a practical perspective. It is clearly stated in Bush
et al. (2011), Bujok and Reisinger (2012), and in Giesecke et al. (2014) that they want to
reproduce the empirical measure of the portfolio for ease of implementation and practical
purposes. Furthermore, Lucas et al. (2000) use an already popular model and adds the
convergence to a theoretical distribution theorem, combining the ease of implementation
of the simple model to the theoretical results of tail behaviour needed in risk management.

Unfortunately, all three models have some serious drawbacks. First, Lucas et al. (2000)
uses a simplistic, one-period factor model, and assumes normally distributed and indepen-
dent random variables. This has been empirically proven to be counter factual. On the
other hand, they prove that despite this simplification can lead to a heavy-tailed distribu-
tion, which is a very important result for the validity of this model. Otherwise, to derive
their tail expansion and give it an economic interpretation, they assume homogeneity in
the portfolio, which can be very restrictive. Also, we have shown that the way we define
the factors’ distribution function can lead to some completely different tail behaviours.
This can be seen as both a strength and a weakness. It is a strength because it shows that
the model is flexible enough to allow for thin-tailed distributions. It is a drawback because
it requires us to be careful when choosing our factors’ distributions functions. Indeed, if
we were able to find a thin tailed distribution, that might indicate that using a normal
distribution for the factors and shocks might not create enough heavy-tail characterization
in our surplus variable.

Second, when looking at the model introduced by Bush et al. (2011), we observe the
same simplistic characterization of Lucas et al. (2000), namely with one market factor and
one idiosyncratic shock, with all being independent from each other. As mentioned, this
paper builds on CID models, whose drawbacks have been underlined in §2.3. The strong
assumptions required to derive the results might render this model less appealing, but the
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ease of representation of the loss variable and the intuitive economic meaning are working
in the model’s favour. Also, as the authors mention, and as will be pointed out in the
next chapter, the fast convergence of the method is very practical. Indeed, even though
the results are derived with N → ∞, the number of names in our portfolio needed to
observe the results within an acceptable range is only 120. See Bujok and Reisinger (2012)
for details. Finally, the connection with the static models, and the Theorem 3.2.2 for the
moments of the loss distribution are definitely add to the appeal of the model proposed by
Bush et al. (2011).

Third, and finally, the model suggested by Giesecke et al. (2012) has pros and cons. The
types it introduces allow more flexibility for the user of the model. Unfortunately, it is the
kind of flexibility that can be harmful, as it is very difficult to define such types, and using
them becomes more of a hassle than an empowerment. Even the authors themselves do not
spend much time using them, preferring to study homogeneous pools of assets in order to
derive their results and numerical tests. So even if the very convenient aspect of taking into
account systematic and contagion risk into the model, the difficulty of defining the model
reduces its practicality and hence its advantages. Also, the numerical implementation of
this model is hampered as we are required to use a less precise, less stable forward Euler
scheme because of the forward looking nature of the contagion effect. Finally, as was
mentioned in §2.4, the model does not have a clear economic interpretation. So even if it
has a greater capacity at reproducing the empirical facts, the model is not easy to interpret
and the possible conclusions we could draw from it are reduced.

The above analysis has shown a number of strengths and weaknesses of the existing
models in the literature and identified various problems and difficulties when modelling
credit risks. We thus want to try to understand the intricacies of the numerical implemen-
tation of one of these models, namely the one developed by Bush et al. (2011). Indeed,
as it has been presented as a novel and supposedly better approach than the traditional
ones, it would be interesting to know if it performs well in reproducing the market and
if it would be practical to price instruments such as CDOs. As we have mentioned, a
good model should be dynamic, so we will not use the model developed by Lucas et al.
(2000). Furthermore, we have mentioned the restrictions and difficulties in implementing
the model developed by Giesecke et al. (2012). Therefore, in the next chapter, we will be
analysing numerically the performance of Bush et al. (2011), using the method developed
in Bujok and Reisinger (2012) to calibrate our results.

57



Chapter 4

Numerical Analysis of a Dynamic
Structural Model

It will be important to be able to numerically prove the model’s capabilities with market
data. We first start by explaining the numerical implementation of the model and the novel
approach we used to circumvent potential problems. Then, a replication of the results in
Bush et al. (2011) is done in order to validate our method vis-a-vis theirs. Finally, we test
the calibration of the model through the different phases of the financial crisis of 2007. We
start with data from mid-2007 and show the performance of the model through the crisis
until the end of 2008, at the midst of the crisis.

4.1 Numerical implementation

In order to study the particularities of this model, we proceeded to reproduce their numer-
ical results. To do so, we replicate the simulation results reported in Bush et al. (2011)
according to the methods adopted in this thesis. When expressing the SPDE (3.33) in an
integral form, we get:

〈φ, νt〉 = 〈φ, ν0〉+
∫ t

0
〈Aφ, νs〉ds+

∫ t

0
〈√ρφ′, νs〉dMs, ∀φ ∈ C∞K (0,∞) (4.1)

where A defines the second order linear operator

A = µ
∂

∂x
+ 1

2
∂2

∂x2 .
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From Theorem 3.2.1, it follows that the density v describes the non-absorbed elements. In
particular, v satisfies

(φ, v(t, ·)) = (φ, v(0, ·)) +
∫ t

0
(Aφ, v(s, ·))ds+√ρ

∫ t

0
(φ′, v(s, ·))dMs,

where we write (·, ·) for the L2 inner product. Integrating by parts, noting v ∈ H1
0 with

dense subspace C∞K (0,∞) (Bush et al., 2011), we get

(φ, v(t, ·)) +
∫ t

0
a(φ, v(s, ·))ds = (φ, v(0, ·)) +√ρ

∫ t

0
(φ′, v(s, ·))dMs

for all φ ∈ H1
0 , where

a(φ, v) = 1
2(φ′, v′)−√ρ(φ′, v).

The model implicitly uses continuous monitoring for the defaults. In practice, the
closest we can get to continuous monitoring is the daily announcement of defaults. In
order to make the model computationally more tractable, Bush et al. (2011) assume that
default is detected on spread payment dates, i.e. quarterly.

Of course, such an assumption must be tested in order to confirm that it is not counter
factual. By calculating survival probabilities for m = 2, . . . , 252 monitoring dates i.e. from
half-year to daily monitoring, at the CDS maturity time of t = 5, Bujok and Reisinger
(2012) observe that the change in precision is small. Survival probabilities decrease as the
number of monitoring dates increase, but the difference between their quarterly monitoring
and the daily monitoring, which are the maximum realistic monitoring times per year, is
only 0.59 percentage point, dropping from 0.8761 for quarterly monitoring to 0.8702 for
daily monitoring.

As is pointed out in Broadie et al. (1997) Broadie et al. (1997), the error for discrete
monitoring a barrier option is of the order o

(
1√
n

)
, where n is the number of monitoring

dates. Thus, the probability of a jump in an interval of length ∆T is O(∆T ) and that
of an undetected down-up combination event is O(∆T 2). Therefore, discretely monitoring
the defaults quarterly is reasonable and makes the model more practical.

By making the assumption that defaults can only be observed at a discrete set of times,
we can set up a modified SPDE problem to solve for v. We assume that if a firm’s value
is below the default barrier on one of the observation dates Ti, it is considered defaulted
and therefore removed from the basket. Thus, we have to solve the problem
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dv = − 1
σ

(
r − 1

2σ
2
)
vxdt+ 1

2vxxdt−
√
ρvxdM(t) t ∈ (Tk, Tk+1), 0 ≤ k ≤ n(4.2)

v(0, x) = v0(x)
v(Tk, x) = 0 ∀x ≤ 0, 0 < k ≤ n

This way, we can use the solution to the SPDE without the boundary condition. This is
possible since, by making the boundary condition inactive within the intervals (Tk, Tk+1),
it does not matter whether default has occurred or not. Since Brownian driver produces
normally distributed increments with a variance proportional to the time elapsed, we pro-
ceed to apply the market factor only at the end of the interval, simulating the effect of
the market factor as accumulated over (Tk, Tk+1). Therefore, by observing the behaviour
of equation (4.2) without the market factor, we simply need to solve the PDE

ut = 1
2(1− ρ)uxx −

1
σ

(r − 1
2σ

2)ux

with u(0, x) = v0(x), then apply the market factor as a shift to the solution u(t, x) to
obtain

v(t, x) = u(t, x−√ρMt), ∀x ∈ R, t > 0.

Therefore, in our numerical set up, we have

v(t, x) =
{

0 if x ≤ 0 ∧ t ∈ {Tk, 1 ≤ k ≤ n}
v(k)(t− Tk, x−

√
ρ(M(t)−M(Tk))) else if t ∈ (Tk, Tk+1], 0 ≤ k ≤ n

(4.3)

where v(k) is the solution to the deterministic problem

v
(k)
t = 1

2(1− ρ)v(k)
xx −

1
σ

(
r − 1

2σ
2
)
v(k)
x , t ∈ (0, τ) = (0, Tk+1 − Tk) (4.4)

v(k)(0, x) = v(Tk, x)

assuming payment dates are equally spaced with intervals τ = Tk+1 − Tk.
This translates into the inductive steps for k = 0, . . . , n− 1:

1. Start with v(0) = v0(x).

2. Solve the PDE (4.4) numerically in the interval (0, T1), to obtain v(0)(T1, x)
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(a) Ordinates: Distance-to-default
Abscissa: Time (b) Perspective of the density’s SPDE

Figure 4.1: Sample path of portfolio’s density through time

3. Simulate M(T1), evaluate v(T1, x) according to (4.3).

4. For k > 0, having computed v(Tk, x) in the previous step, use this as the initial
condition for v(k), and repeat until k = n.

The finite difference method used is approximating the PDE (4.4) on a support [xmin, xmax],
with asymptotic boundary conditions v(t, xmin) = v(t, xmax) = 0. A suitable choice of
xmin < 0 and xmax > 0 can reduce the localization error for a given path M as small as
needed, assuming the initial distribution is localized. To lay out the approximation, we
introduce a grid x0 = xmin, x1 = xmin + ∆x, . . . , xmin + j∆x, . . . , xJ = xmin +J∆x = xmax,
where ∆x = (xmax − xmin)/J , time steps t0 = 0, t1 = ∆t, . . . , tI = I∆t = τ , where
∆t = τ/I. Figure 4.1 shows an example of one sample path calculated by the method
mentioned above. We can notice the shifts at every quarter of a year.

Finally, an approximation vij to v(ti, xj) can be made by finding the solution to the
scheme

vij − vi−1
j

∆t = θ

{
1
2(1− ρ)

vij+1 − 2vij + vij−1

∆x2 − 1
σ

(
r − σ2

2

)
vij+1 − vij−1

2∆x

}
(4.5)

+(1− θ)
{

1
2(1− ρ)

vi−1
j+1 − 2vi−1

j + vi−1
j−1

∆x2 − 1
σ

(
r − σ2

2

)
vi−1
j+1 − vi−1

j−1

2∆x

}
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When expressed in matrix terms, this scheme becomes
Bθvi = Fθvi−1

with Bθ a tridiagonal matrix representing the backward portion of the θ-method and the Fθ
representing its forward computations. In this case, as we are simply solving a particular
case of the heat equation with drift within the time period between two default observation
dates, we can use an implicit method. Indeed, these calculations are independent of the
past or future path of the market factor represented by the Brownian motion M . In
comparison with the previous model of Giesecke et al. (2012), where the dependence on
the past value of the loss function was needed in order to transmit the contagion effect,
no such thing is needed here, and, hence, each step is self contained. Therefore, for the
matrix Bθ, the elements on the the main diagonal are

1 + θ
∆t

∆x2 (1− ρ),

while those on the upper diagonal are

−θ2
∆t
∆x

(
(1− ρ)

∆x −
(r − 1

2σ
2)

σ

)
,

and those on the lower diagonal are

−θ2
∆t
∆x

(
(1− ρ)

∆x +
(r − 1

2σ
2)

σ

)
.

All of the other elements are set to 0. Similarly, the matrix Fθ is defined as a tridiagonal
matrix such that the elements on the main diagonal are

1 + (1− θ) ∆t
∆x2 (1− ρ),

those on the upper diagonal are

−(1− θ)
2

∆t
∆x

(
(1− ρ)

∆x −
(r − 1

2σ
2)

σ

)
,

and those on the lower diagonal are

−(1− θ)
2

∆t
∆x

(
(1− ρ)

∆x +
(r − 1

2σ
2)

σ

)
.

All of the other elements are set to 0.
This scheme is second order accurate in ∆x. The method used in our computations is

the Crank-Nicholson (C-N) scheme with θ = 1
2 , which is second order accurate in ∆t and

unconditionally stable in the l2-norm for sufficiently smooth solutions.
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4.1.1 Initial Distance to Default

Unfortunately, we are not facing a smooth solution per se. Indeed, since the problem starts
with a collection of point masses in the form of δ-distribution for distances to default for
each name in our portfolio, our initial distribution is not smooth. The C-N scheme becomes
rather erratic and unstable. Fortunately, the backward Euler scheme θ = 1 is strongly A-
stable (see Appendix C), even if only first order accurate in ∆t, and Bujok and Reisinger
(2012) suggest to use it in what is called a Rannacher start-up (Rannacher, 1984) in order
to address the instability of the C-N scheme.

In our case, we circumvent the problem by using a kernel-smoothing density estimation
for the initial distribution, provided by the Matlab function ksdensity(). A kernel is
defined in Wasserman (2004) to be any smooth function C such that C(x) ≥ 0,

∫
C(x)dx =

1,
∫
xC(x)dx = 0 and σ2

C ≡
∫
x2C(x)dx > 0. An example of a kernel is the Gaussian

(Normal) kernel C(x) = (2π)−1/2e−x
2/2, which will be used in our modelling. Thus, the

kernel density estimation is defined as

f̂(x) = 1
n

n∑
i=1

1
h
C
(
x−Xi

h

)
.

where h is a positive number called the bandwidth which controls the amount of smoothing.
For h close to 0, f̂n is simply a set of spikes, one at each data point Xi. This allows us
to have a smooth initial condition when our input data is discontinuous. Therefore, the
solution of the initial distribution is smooth, and the C-N scheme works properly.

When implying the initial distance to default for our model, we rely on market data
for CDS spreads for the names forming the iTraxx Europe series 6. By assuming that
the distance to default Xt = 1

σ
ln
(
At

Bt

)
as in equation (3.29), we base X0 on 5 years CDS

spreads. Since a CDS spread implies a default probability computed as in (2.3), it is
possible to infer the distance to default of a firm by using the distribution of the first
hitting time problem. As is explained in Björk (2009), let

ι = inf{t ≥ 0|Xt = 0}

and define the absorbing process

XObserved = X(t ∧ ι).

The minimum process is defined as

mX(t) = inf
0≤s≤t

X(s).
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Since our model defined in (3.29) assumes independence of the two Brownian motions
Wt and Mt, we have that

X ∼ N(µt+ x◦, t).

Given that x◦ ≥ 0, which we know because all the companies we are starting with in
our portfolio are active and have not defaulted, we get from Björk (2009) the distribution
function for the running minimum Fm(t)(x) to be

Fm(t)(x) = N

(
x− x◦ − µt

σ
√
t

)
− exp

{
2 · µ(x− x◦)

σ2

}
N

(
x− x◦ + µt

σ
√
t

)
,

for µ = (r − 1
2σ

2)/σ, and σ being the common unique volatility of the assets and of the
market, by assumption.

Therefore, our initial distance to default is the X0 that solves the equation

Fm(T )(0, X0) = PDef(0, 0, T,X0). (4.6)

In our case, we chose T to be our earliest maturity date, i.e., T = 5 years. As mentioned
in Section 2.1, the earliest and most liquid maturity will be used as reference to derive
the first hitting time problem’s initial distribution. We solved this equation numerically
using fsolve() function from Matlab for each firm contained in the iTraxx Europe Main
series 6 for our dates, then proceeded to the kernel smoothing estimation to get the initial
density of our SPDE.

Different market volatilities, represented by σ, will produce different results, and σ
mainly influences the initial distance to default. For illustration, we show in figure 4.2
the initial density of our portfolio’s distance to default for different values of the volatility
parameter σ. We notice that, as the volatility σ increases, so does the distance to default.
This is explained by the fact that the CDS spread we extracted implies a particular default
probability P def. When we increase the volatility, we increase the movements amplitude of
our random variable. So for a fixed distance to default, a higher volatility implies a higher
probability of default. Therefore, to match the market’s implied probability of default, we
must move our initial distance to default away from the origin.

4.1.2 Monte Carlo Simulation

We now want to approximate the loss functional (3.32) at time Tk by

L̂Tk
= (1−R)

(
1−

∫ xmax

0
v̂(Tk, x)dx

)
= (1−R)

1−∆x
J−1∑
j=1

vk+1,0
j

 . (4.7)
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Figure 4.2: Different initial densities for different values of volatility σ

To compute the expected tranche losses and outstanding tranche notionals, we explicitly
include the dependence on the Monte Carlo samples φi of √ρ(Mt−MTk

) in (4.7) by writing
L̂Tk

(φ), φ = (φi)1≤i≤n, for φi independent outcomes. Then for Nsims simulations with
samples φl = (φli)1≤i≤n, 1 ≤ l ≤ Nsims, we get

EQ[ZTk
] ≈ EQ[max(d− L̂Tk

, 0)−max(a− L̂Tk
, 0)]

≈ 1
Nsims

Nsims∑
l=1

(
max(d− L̂Tk

(φl), 0)−max(a− L̂Tk
(φl), 0)

)
. (4.8)

When doing Monte Carlo, we must simulate multiple sample paths and average them.
Figure 4.3 show some of those sample paths. We will be taking around 65, 000 of them to
compute expected losses and expected outstanding tranche notionals.

4.1.3 Convergence

We have tested the convergence of this method. This simulation took as initial condition
the estimated Normal distributionN(4.6, 0.16) as is proposed by the authors to characterize
the distribution of the data found in the iTraxx Europe Series 6 on 22 February 2007, in
order to speed the simulation and to concentrate on the observation of the convergence.
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Figure 4.3: Simulation of 64 sample paths to illustrate the behaviour of our model. We
observe that we get scenarios with multiple defaults as well as scenarios with very few.

The results obtained clearly show the fast convergence of the expected tranche loss. This
simulation shown in Figure 4.4 was done for the tranche 0% − 3% of the CDO, with the
ordinate corresponding to the expected tranche loss in % and the abscissa being the number
k of Monte Carlo samples, such that Nsims = 4k+1. Therefore, the expected tranche loss
for the junior tranche is 1.575% with a Confidence Interval of [1.558%, 1.592%]. We notice
the confidence interval starting rather wide, but narrowing down rather quickly, being less
than 5 basis points after simply 4, 000 simulations.

For this estimator, we expect (weak and strong) convergence of order ∆x2 + ∆t2. To
perform these simulations, direct guidance from Bush et al. (2011) has been obtained in

66



Figure 4.4: Monte Carlo estimators with 95%-confidence interval for expected losses in
tranche [0%− 3%] for N = 4k+1 simulations. Ordinates are Expected Tranche Loss;

Abscissa are k’s

order to have values for ∆x and ∆t which have been empirically proven to give negligible
discretisation error. We thus take ∆x = 0.28 for x ∈ [0, 20] and ∆t = 0.01 for ∆t ∈
(Tk, Tk+1] and ∆T = 0.1 for T0 = 0 and Tend = 5, 7, 10 for the maturities.

4.2 Results Reproduction

In this section, we aim at testing the performance of the model, and the reproducibility of
the results of Bush et al. (2011). To be an efficient model, we should be able to reproduce
their pricing method, as well at get results close to market data, since that would imply
appropriate calibration capacity. We will analyse the influence of the parameters on the loss
function, as well as compare our results with the ones obtained by Bush et al. (2011). This
will allow us to really judge whether the model performs well or if it needs improvement.

The results we present are the CDO tranche and index spreads computed as in (2.7),
using (4.8) to approximate the expected outstanding tranche notional ZTk

for V fee and
similarly for V prot. The loss distribution is estimated by Monte Carlo simulation as in (4.7),
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using 65, 000 simulations of the empirical distribution v as in (4.3) and the methodology
described in section 4.1. The approximated loss distribution for the Index is not scaled by
the recovery rate (1−R), as is common practice.

We present in Table 4.1 the results obtained by replicating Bush et al. (2011)’s Table
2 with the finite difference method. For reference, Table 4.2 corresponds to the results
from Table 2 in Bush et al. (2011). We notice that the results obtained by our simulations
are fairly close to their results. This difference is caused by a different initial distribution,
pulled from a different data set than their data set. On the other hand, we notice a similar
difference from the market data as the authors, even while using what they considered their
optimal parameters. This is not very encouraging for the usage of the model in practice.

Indeed, if both our results and their original results differ from the markets behaviour,
this could mean that our model is not flexible enough. By testing for different values of
ρ, we were able to see how much the prices change with the parameters. This allows us
to assess that our model was indeed flexible. Unfortunately, varying the parameter ρ has
not proven enough to efficiently calibrate all of the tranches spread. Indeed, when we fix a
set of parameters that make our computations for one tranche closely match the market’s
tranche, we notice that often the rest of the CDO will start diverging from it rather quickly.
We notice this especially for senior tranches.

This could mean that even if the model is flexible, it does not induce enough risk from
extreme events. These types of events would be the ones affecting the spreads of senior
tranches. This is a reason why the study of tail behaviour using the moments of the loss
distribution that we introduced in Theorem 3.2.2 from Section 3.2.2 could help to assess
how these events might affect our results. Another way of tackling this problem would be
to add some random jumps to our diffusion process, in order to obtain a jump-diffusion
process, as is done in Bujok and Reisinger (2012).

We will analyse into more details this ability of the model to calibrate in the next
section, as we test the model’s behaviour in the ramp-up that led to the crisis. We will
show how the model is responsive to the economic environment, all the while missing out
on some key aspects of credit risk management.

4.3 Statistical Significance

All of the spreads presented in the previous section have been computed using 48 = 65, 536
Monte Carlo simulations. As we extend their work and conduct our analysis based on
our datasets, we set forth to provide the statistical significance of our results. In the next
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5 Years
Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 7.25% 8.05% 5.05% 1.75% −1.50% −4.67% −7.73% −10.70%
3%-6% 40.29 19.88 60.62 88.60 104.33 110.89 110.70 105.17
6%-9% 10.38 0.88 11.78 28.30 43.11 54.29 61.57 64.88
9%-12% 4.75 0.04 2.80 10.72 20.98 30.83 38.70 44.31
12%-22% 1.68 0 0.25 2.11 6.14 11.62 17.80 23.75
22%-100% N/A 0 0 0.01 0.10 0.38 0.90 1.77

7 Years
Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 22.06% 27.98% 19.88% 13.15% 7.16% 1.64% −3.56% −8.55%
3%-6% 109.31 145.85 193.08 206.59 205.77 197.09 183.29 165.39
6%-9% 31.83 19.52 59.08 86.30 102.52 110.88 113.33 110.87
9%-12% 14.89 2.65 19.97 40.48 57.24 69.31 76.93 80.65
12%-22% 4.65 0.11 3.21 10.84 20.65 30.59 39.67 47.07
22%-100% N/A 0.00 0.01 0.15 0.58 1.41 2.66 4.40

10 Years
Tranche Market ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7

0%-3% 38% 42.32% 31.95% 23.06% 15.01% 7.50% 0.31% −6.71%
3%-6% 303.01 388.05 358.53 330.10 301.94 273.59 244.66 214.62
6%-9% 83.12 110.27 152.60 168.14 172.27 169.90 163.12 152.67
9%-12% 36.68 28.54 68.55 93.15 107.58 115.26 118.01 116.72
12%-22% 12.36 2.61 15.65 31.62 46.09 57.94 67.03 73.42
22%-100% N/A 0.00 0.13 0.69 1.80 3.43 5.55 8.17

Table 4.1: Computed tranche spreads (bp) for varying values of the correlation parameter
from our implementation of the model. The equity tranches are quoted as an upfront

assuming a 500bp running spread. The model uses data from the iTraxx Main Series 6
index for Feb 22, 2007. Market levels shown are for this date. Model parameters used are

the one from the Bush et al. (2011) calibration, i.e., r = 0.042, σ = 0.22, R = 0.4
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Table 4.2: Taken as Table 2 from Bush et al. (2011). Model tranche spreads (bp) for
varying values of the correlation parameter. The equity tranches are quoted as an upfront
assuming a 500bp running spread. The model is calibrated to the iTraxx Main Series 6

index for Feb 22, 2007. Market levels shown are for this date; model parameters are
r = 0.042, σ = 0.22, R = 0.4
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section, we want to test the model in a way that would take a reasonable amount of time for
a practitioner to compute the spreads. We therefore performed 47 = 16, 384 simulations.

As we are dealing with an estimator which is a complex function of our simulated data,
we rely on the bootstrap method (Wasserman, 2004) in order to pull out a standard error
estimate from the model. The standard error we provide here therefore required us to
perform more than 16, 384 simulations, but one could use these results for reference when
using this model. The statistic we compute is the estimate of the tranche spread s, i.e., ŝ.
This is computed as the ratio of the estimated protection leg over the estimated fee leg,
such that

ŝ = V̂ prot

V̂ fee
.

These two estimates are both composed of the sum of discounted averages through time.
One, V̂ prot, takes the discounted sum of the average change in tranche notional, whereas
the other, V̂ fee, takes the discounted sum of the outstanding tranche notional multiplied
by the observation step size. We thus have

V̂ prot

V̂ fee
=

∑T
t=1

1
b(t)(Z̄t−1 − Z̄t)∑T
t=1

δt

b(t)Z̄t
, (4.9)

where t is each observation date, which we assume to be 4 times per year to correspond to
the dividend paying dates. Therefore, δt = 1/4. Here, Z̄t is computed as

Z̄t = 1
N

N∑
n=1

Zn
t ,

where Zn
t is the simulated outstanding tranche notional as in (2.4), using the loss approxi-

mation L̂t of equation (4.7). As we simulate the loss variable and perform some calibration
to find the parameters of its distribution, we can replicate its empirical distribution with
the sample distribution F̂N . Therefore, as our estimated spread ŝ is a function of the loss
variable L̂, we will perform the bootstrap variance estimation of ŝ by following the steps
described in Wasserman (2004).

1. Draw L̂1, . . . , L̂N ∼ F̂N for each L̂i =
(
L̂it1 , L̂

i
t2 , . . . , L̂

i
tT

)
.

2. Compute ŝN = g(L̂1, . . . , L̂N).
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3. Repeat steps 1 and 2, B times, to get ŝN,1, . . . , ŝN,B.

4. Let

vboot = 1
B

B∑
b=1

(
ŝN,b −

1
B

B∑
r

ŝN,r

)2

. (4.10)

where g(·) is the function (4.9).
For our purposes, we have used B = 25 and N = 16, 384. This should give us a

relatively good standard error.

4.4 Time Series Analysis

The time series analysis takes the values of CDS from before the crisis until the middle
of the crisis in order to test the flexibility of the model and its ability to calibrate and to
respond to rapid changes in the market. We took the risk-free rate as the value of a 5 years
Euro-bond on AAA countries. This data was found on Bloomberg terminals. We thus try
to calibrate the parameters σ and ρ of our model in order to match as closely as possible
the market values for the iTraxx Europe Main series 6 CDO. The calibration problem we
considered is given in Bujok and Reisinger (2012) and consists of a weighted least-squares
problem. It states that

Problem 1. Given market spreads at time t=0 of CDO tranches Cj
0(Ti), and the CDO

index CI0(Ti), for maturities Ti, i = 1, . . . ,M, tranches j = 1, . . . , G, and given spreads
s0 = (s1

0, . . . , s
N
0 ) for CDSs written on N underlying companies, solve the minimisation

problem

M∑
i=1

G∑
j=1

αji
(
Cj

0(Ti)− Cj,θ,x0
0 (Ti)

)2
+

M∑
i=1

αi
(
CI0(Ti)− CIθ,x0

0 (Ti)
)2
→ min

θ
, (4.11)

where θ = (σ, ρ), subject to

1. x0 = (x1
0, . . . , x

N
0 ) is a solution to

s0 = sθ0(x0) (4.12)

2. ρ ∈ [0, 1), σ > 0
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where sθ, Cj,θ,x0
0 , CIθ,x0

0 denote CDS, CDO tranche and index spreads calculated in the
model with parameter vector θ, x0 is a vector of initial distance-to-default, α = (αji , αi) is
a scaling vector.

The scaling factor α comes in handy because CDO tranches and index spreads have
different orders of magnitude. We use α in order to make each observation roughly equally
important. Bujok and Reisinger (2012) states that by choosing α so that the scaled market
prices lie between 0.1 and 1, we get a good balance for each calibration. We have already
discussed, in section 4.1 equation 4.6, the condition for equation (4.12) to be satisfied,
therefore, we only need to implement the least squares minimisation function.

The calibration was done by testing all the parameter values for σ and ρ in the vectors

σ = (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6)
ρ = (0.1, 0.2, 0.3, 0.40.5, 0.6, 0.7, 0.8, 0.9),

and doing a grid-search because the optimization tool provided by Matlab has not proven
efficient in performing the optimization of our implementation. The available algorithms
did not converge to an appropriate minimal solution. Therefore, our optimized values
will be within those values. We performed the optimization problem stated by Bujok and
Reisinger (2012) and computed the sum in (4.11) for all of the parameter values stated
above. This gave us a surface as in Figure 4.5 for the data set of July 2007, and as in
Figure 4.6 for the data set of December 2008. We clearly see a shift in the calibrated
parameters. The correlation of our portfolio to the market factor has greatly increased,
while our calibrated volatility has stayed relatively low all through the crisis. This low
volatility is also observed throughout the calibrated time series presented hereafter.

Higher market correlation is to be expected. Indeed, during the crisis, most of the
actors were deeply affected, and the credit market suffered severe shock all at once. It
is therefore intuitive to observe a change in market correlation. On the other hand, this
constantly low calibrated volatility is quite concerning. In economic terms, this would
mean that the market does not fluctuate a lot around the mean return, even during the
crisis of 2008. This could be explained by how the σ is set up in the model, as can be seen
in equation (4.5). Indeed, as we observe high correlation and low volatility, this means that
there is less influence given to the second derivative and more to the first derivative of the
approximation of the heat equation with drift. This implies that, through time, in order to
replicate the loss function that would generate the market spreads, the model gives more
weight to the trend than the curvature of the density. The effect of the curvature of the
empirical measure function would be buried by the large dependence on the market factor
Mt inducing randomness in the model. This is a downside of the model as we know that
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Figure 4.5: Surface produced by the minimization problem for each parameter tested on
July 2007. Abscissa: σ, Ordinates: ρ.

during the crisis, the volatility went up by a factor of 3 from its level in October 2007 to
March 2009 (Manda, 2010).

To explain this reaction of the model, we turn to our definition of the probability of
default. As the CDS spreads were getting higher during the unravelling of the crisis, the
probabilities of default as calculated in (2.3) were getting higher. This is required in order
to have a distance to default x◦ as in (4.6) in accordance. Therefore it puts less emphasis
on the volatility in the PDE and more on the initial distance to default definition. Since
Bush et al. (2011) assume a single and constant volatility for both the individual underlying
CDS and for the CDO, this introduces a bias in favour of low calibrated volatility. One
way to remedy the situation would be to allow individual volatility for each name to be
treated as exogenous, then compute our initial distance to default for each name, take the
large number approximation and calibrate for the market volatility.

We now turn our attention on the time series analysis, and therefore refer to the tables
contained in Appendix D. They show the time series of the calibrated tranche spreads
for the 5, 7, and 10 years maturity CDO of iTraxx Europe Main series 6 from June 2007
until December 2008. We present also the market data for these spreads, which we used
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Figure 4.6: Surface produced by the minimization problem for each parameter tested on
December 2008. Abscissa: σ, Ordinates: ρ.
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to calibrate our parameters according to the grid-search method described above. Finally,
at the bottom of each table, we define a relative error comparison for each tranche, in
percentage points as

Relative Error = Computed spread−Market spread
Market spread × 100%.

We point out a missing data point, namely October 2007, as the data was too erratic at
this date to be able to perform the calibration properly. This does not affect our analysis
as we can still clearly observe the trend in the parameters, and the relative inefficiency of
the calibrated tranche spreads.

We first notice that the magnitudes of the computed spreads are comparable to the
ones of the observed market spreads. This is possibly the only encouraging observation.
Indeed, most of the relative errors are quite large, some being as big as 200%, and on
average the computed spreads being around 20% bigger than the market spreads. When
observing the relative errors per tranche, we notice that they are quite big, but on average,
the lower tranches, i.e., 0%− 3%, 3%− 6%, 6%-9%, are closer to the market spreads than
the more senior tranches 9%-12%, 12%-22%, 22%-100%. This could be explained by a
higher number of events happening in these tranches during the simulations, as opposed
to the senior tranches, which could influence their pricing. This could be solved by an
importance sampling method.

On the other hand, when we compare the relative errors through time, we observe the
average relative error to be increasing as we get closer to the height of the crisis. This would
mean that our model does not adapt well enough to changes in the market, and could be
explained by the way it treats volatility as a unique constant for all assets. Indeed, during
the crisis, volatility increased a lot and changed rapidly. The inability of the model to
capture such behaviour would translate into the poor calibration results through time.

Moreover, when comparing the relative errors for different maturities, we notice that
the longer term 10 years maturities are better calibrated than the shorter 7 years, and
themselves better calibrated than the 5 years. Indeed, the average relative percentage
error for 5 years maturity was 38.00%, while it was 20.55% for the 7 years maturity and
−0.49% for 10 years. Of course, this takes into account both positive and negative error,
and the standard deviations of these averages are great, but they are less important in
longer maturities than shorter ones, being 52.95, 39.05, and 30.10, respectively. The model
not incorporating enough volatility would again be an explanation for such a result. Longer
term allow for more events to happen, whereas short term would rely mostly on the diffusion
process, which is not representative of the market, therefore hampering the calibration
process.
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Finally, we could also change the calibration problem in order to have a better fit.
As is pointed out in Bujok and Reisinger (2012), fitting all of the tranches will be very
difficult, but for hedging purposes, one might prefer to put more weight on the index
spreads. Therefore changing its α parameter in the calibration problem to allocate more
importance to these spreads will affect the quality of the calibration. The senior tranche
will be the ones that will be the worst replicating market data, but that is a trade-off one
must be willing to make.

We might also add that performing the spreads calculations with more Monte Carlo
simulations did not prove effective in getting more accurate results. As was mentioned in
Section 4.1.3, the convergence is pretty fast. The spreads’ calculations in Table D.1 to
D.18 were performed with N sims = 47 = 16, 384 simulations, while we performed N sims =
49 = 262, 144 simulations for the spreads in the third column of D.19. We notice that
the calculations do not change significantly when we increased the number of simulations.
This shows that convergence is not an issue, but model definition might be.

In conclusion, this time series analysis of the model developed by Bush et al. (2011) has
shown that the model needs improvement in order to be applicable to real-world problems.
Indeed, it does not capture the volatility of the market, as well as being too stiff when being
tested through the crisis. Its heavy reliance on the market factor and on the drift term
to produce default events greatly hampers its capacity to explain the market’s behaviour.
A suggestion has been made by Bujok and Reisinger (2012) to add a jump term to its
definition in order to add more influential shocks to the model. It has indeed proven
efficient in recreating market spreads, but has not been tested through evolution of the
crisis. This would be an important test to do in order to assess the ability of the model
to react to economic turbulences. As we have shown here, the model dynamic diffusion
model as developed in Bush et al. (2011) does not perform well in high stress periods.

We also suggest to add a contagion factor to the model as in Giesecke et al. (2012). This
would reflect what is called in financial econometrics the leverage effect, that past negative
returns of the market imply larger future volatility, as has been demonstrated in Bélisle
and Egbewole (2012). Adding contagion and allowing for this leverage effect would put less
strain on the volatility parameter σ, as this parameter clearly makes the model too stiff.
Therefore, allowing more flexibility and better responsiveness to the market environment
would hopefully allow better calibration results.
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Chapter 5

Conclusion

In this work, we have presented the main concepts used to analyse credit risk and model
its behaviour. New models that exhibit better market replication capability need to be
developed. We have presented three such models, each following a key technique of repro-
duction.

The Lucas et al. (2000) model exhibiting a static single-period simplification of the
market was used to study the tail behaviour of the loss distribution modelled. This is
helpful when we are concerned with extreme events and large shocks. It is a key concept
to take into account in risk management and hedging strategies. The authors suggested a
form for the tail distribution, and we have noted that one ought to be careful when using
this model. We demonstrated the limits of the tail index theorem.

The Bush et al. (2011) model extends the structural modelling theory to a dynamic
setting. As Schönbucher (2003) mentioned, a good model should be dynamic, in order to
take into account the distribution and time of defaults. We have presented the derivation of
the main theorem, and have combined the theory developed by Lucas et al. (2000) with the
dynamic model by developing a theorem about the moments of the loss distribution. This
theorem enables us to study the tail behaviour of a structural diffusion dynamic model.
This is of great importance as it places within reach the theory of extreme values in a
dynamic setting.

The Giesecke et al. (2012) model was presented because of its reduced-form nature.
Reduced-form models are very popular in practice, and the authors of this paper try to
improve such model by adding some key component such as contagion and market sys-
tematic risk to the modelling of portfolio credit risk. Unfortunately, their implementation
has not proven as promising as first presented, since the numerical implementation of their
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model is tedious due to the large number of parameters to calibrate. As Schönbucher
(2003) mentioned, a good model must have a small number of parameters in order to pro-
duce better calibration results. As was shown, the simple homogeneous pool case of the
model does not exhibit empirical evidence of clustering and contagion. However, the idea
presented here can be used as a basis for improving the models in the future.

Finally, in Chapter 4, we have tested the numerical capabilities of the model developed
by Bush et al. (2011). It has proven to be not as efficient as indicated by the authors,
performing poorly in replicating the market data before and during the recent global fi-
nancial crisis. Even if we have been able to reproduce the authors results, our numerical
results have not been in favour of the model. When we tested their model through a time
series of market data through the financial crisis, the model has not been able to reproduce
consistently the market spreads, resulting in poor calibration, and counter intuitive results
for the estimated parameter of σ. Indeed, the assumption that the volatility is unique
and constant has been too restrictive for the model to survive the episodes of the financial
crisis.

We have suggested an importance sampling method in order to get better calibration
results for senior tranches, but in general, the modifications required to the model are
more important. Indeed, we should add a jump factor to the diffusion in order to make the
market more volatile. Also, adding a contagion factor that fades with time, as in Giesecke
et al. (2012), would allow the model to exhibit what is called in financial econometrics the
leverage effect. This could be of great value to increase the flexibility of the model without
increasing the number of parameters in the model excessively and keeping the calibration
relatively simple.
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Appendix A

Notation used for each model

Section 3.1 for Lucas et al. (2000)

1 : Indicator funtion

π : firm’s credit loss

l : state of the firm, either active or defaulted

f : market risk factor

ε : idiosyncratic risk factor

Ω : Variance-covariance matrix of the market risk factor

ω : variance of the idiosyncratic risk factor

Φ : Standard Normal cumulative distribution function

φ : Standard Normal density function

Φα : Fréchet distribution with tail index α

Ψα : Weibull distribution with tail index α

Λ : Gumbel distribution

α : tail index

ρ : correlation of the surplus variable to the market risk factor
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Section 3.2 for Bush et al. (2011)

Ω : sample space

M : Brownian motion

F : filtration created by the Brownian motion M

G : σ-algebra

P(A) : power set of A

ν̄ : empirical measure for the entire portfolio

ν: empirical measure for non-defaulted members of the portfolio

δx : Dirac delta function

σ : volatility of the portfolio

ρ : correlation to the market factor

φ : test function

A : operator defined in (3.34)

A† : adjoint operator of A

ε : idiosyncratic risk factor, independent of market and other idiosyncratic factors.

Section 3.3 for Giesecke et al. (2012)

P(A) : power set of A

P : space of types, defined in (3.42)

π : empirical measure of the portoflio’s types

Λ◦ : empirical measure of the portfolio’s initial distribution of intensities

L : operators defined in (3.3)

Q : operator defined in (3.45)
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Appendix B

Regular Variation

How do we define a distribution as having “heavy tails”? As Mikosch (1999) mentions,
the notion of heaviness of a distribution’s tail is not unique and only makes sense as a
qualitative characterization proper to the context of the model studied. Nonetheless, we
can still classify the tails of the distributions and will attempt in the following section to
give a brief introduction to understand what we will be working with for the remainder of
this chapter. This section is based on the report of Mikosch (1999), as well as on the very
comprehensive textbook from Embrechts et al. (1997), and occasionally on Bingham et al.
(1987).

We study regularly varying functions before introducing the concept of heavy or thin
tails because it gives a characterization of the function. Having an idea of a “regularly
varying” function, we can thereafter emphasize the key aspects of faster or slower varying
function. This will prove useful when studying heavy tail distributions. We thus start with
this introduction with some definitions relating to regular variation.

Definition B.0.1 (Karamata). A positive measurable function f is called regularly varying
(at infinity) with index α ∈ R if

• It is defined on some neighbourhood [x0,∞) of infinity.

•
lim
x→∞

f(tx)
f(x) = tα ∀t > 0.

If α = 0, f is said to be slowly varying (at infinity).
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Remark B.0.2 (Mikosch, 1999). We can easily observe that every regularly varying function
f with index α can be represented as

f(x) = xαL(x),

for L a slowly varying function.

A useful theorem concerning slowly varying function that gives some intuitive meaning
to the notion is the following representation theorem:

Theorem B.0.3 (Mikosch, 1999). A positive measurable function L on [x0,∞) is slowly
varying if and only if it can be written in the form

L(x) = c(x) exp
{∫ x

x0

ε(y)
y

dy
}

(B.1)

where c(·) is a measurable non-negative function such that limx→∞ c(x) = c0 ∈ (0,∞) and
ε(x)→ 0 as x→∞.

We can therefore see that if L is slowly varying, for every ε > 0

x−εL(x)→ 0 and xεL(x)→∞ as x→∞.

It is now useful to translate this notion of regularly varying function to probability
theory by defining a regularly varying random variable.

Definition B.0.4 (Mikosch, 1999). A non-negative random variable X and its distribution
are said to be regularly varying with index α ≥ 0 if the right distribution tail FX(x) =
1− FX(x) = P(X > x) is regularly varying with index −α.

Once the concept of regularly varying r.v. is defined, we want to study the extreme
value distributions of these r.v.’s. We will therefore consider a sequence of independent ran-
dom variables X, X1, X2, X3, . . . with common distribution F , and their partial maxima
sequence

M1 = X1, Mn = max
i=1,...,n

Xi, n ≥ 2. (B.2)

We can now define the only possible limit laws of the standardized maxima c−1
n (Mn −

dn), n ≥ 1 as max-stable distributions.
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Definition B.0.5. A non-degenerate random variable X and its distribution are called
max-stable if they satisfy the relation

Mn
d= cnX + dn, n ≥ 2, (B.3)

for i.i.d. X, X1, X2, X3, . . ., and appropriate constants cn > 0, dn ∈ R.

Mikosch (1999) then concludes by stating an important relationship between max-
stable distributions and limit distribution for maxima. He says that every max-stable
distribution is a limit distribution for maxima of i.i.d. random variable, and that max-
stable distributions are the only limit laws for normalized maxima.
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Appendix C

Mathematical setting of the models

C.1 Structural model

This definition is due to Dahlquist (1963).

Definition C.1.1 (A-stable). A k-step method is called A-stable if all solutions of the
formula

αkxn+k + αk−1xn+k−1 + . . .+ α0xn = h(βkfn+k + . . .+ β0fn)

for the differential equation

dx
dt = f(t, x), x(0) = x0, (x ∈ Rs, t ≥ 0)

tend to zero as n→∞ when the method is applied with fixed positiev h to any differential
equation of the form

dx
dt = qx

where q is a complex constant with negative real part.

C.2 Reduced-form model

The following definition is due to Doob (1953).
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Definition C.2.1. A Doob-Meyer compensator An of an adapted stochastic process Xn

with E[|Xn|] <∞ is an integrable process that allows the decomposition of a sub- (super-)
martingale into a martingale Mn and the compensator An. It is such that

Xn = Mn + An.

Also, a sub- (super-)martingale can be compensated by An in order to make the result a
martingale, such as

Xn − An = Mn.
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Appendix D

Tables for calibrated tranche spreads
and relative errors

The following tables present the results of our modelling of the Bush et al. (2011) model
presented in Chapter 3, Section 3.2. We present the calibrated parameters through time
for a time series from June 2007 to December 2008. The dates were chosen to capture
the drastic change in the financial environment, mid-2007 being relatively calm and the
end of 2008 being the height of the financial crisis. We present our computed spreads as
well as the standard error of the simulations, noted by SE. For comparison, we add the
market data for the studied dates, as well as the relative error between our computations
and the market data. The relative error is represented by RE and is in percentage points.
Note that all the tranches are quoted in basis points for the spread except the first 0%-3%,
quoted in percentage of upfront.
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5 years 2007-06-29 2007-07-31 2007-08-31
Risk-free rate r = 4.43% r = 4.28% r = 4.12%
Calibrated σ 0.15 0.35 0.15
Calibrated ρ 0.20 0.50 0.30
Tranches Computed SE SE SE

0%-3% 9.89 0.46 8.92 0.47 19.50 0.48
3%-6% 78.82 5.02 249.82 7.02 239.77 6.80
6%-9% 15.93 2.03 137.82 6.77 93.90 5.00
9%-12% 4.01 1.16 84.70 4.96 42.35 3.19
12%-22% 0.53 0.34 36.69 2.61 11.12 1.87
22%-100% 0.00 0.01 1.65 0.35 0.14 0.06
Index 37.92 0.72 63.75 1.39 62.59 1.26

Tranches Market

0%-3% 8.46 19.28 21.18
3%-6% 47.92 139.42 110.66
6%-9% 13.55 385.60 46.16
9%-12% 5.92 166.12 28.65
12%-22% 2.45 15.23 17.15
22%-100% N/A 1.44 10.25
Index 22.74 47.20 41.53

Tranches RE in %

0%-3% 16.868 -53.727 -7.929
3%-6% 64.501 79.192 116.665
6%-9% 17.517 -64.257 103.415
9%-12% -32.258 -49.011 47.789
12%-22% -78.178 140.926 -35.166
22%-100% 14.547 -98.662
Index 66.778 35.063 50.716

Average RE 7.890 14.676 25.261

Table D.1: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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5 years 2007-09-28 2007-11-30 2007-12-31
Risk-free rate r = 4.15% r = 3.91% r = 4.11%
Calibrated σ 0.15 0.1 0.15
Calibrated ρ 0.20 0.4 0.80
Tranches Computed SE SE SE

0%-3% 20.63 0.62 20.25 0.57 -3.50 0.45
3%-6% 162.36 5.50 322.36 12.33 205.88 7.75
6%-9% 42.02 2.68 162.72 8.31 148.19 6.50
9%-12% 12.44 2.18 91.58 6.06 114.38 5.30
12%-22% 1.70 0.66 34.02 2.60 74.49 5.20
22%-100% 0.01 0.02 1.02 0.21 9.72 1.21
Index 54.31 0.91 77.28 1.97 67.78 3.10

Tranches Market

0%-3% 15.73 22.74 18.62
3%-6% 60.02 126.06 117.45
6%-9% 24.01 65.58 71.28
9%-12% 14.30 51.67 45.31
12%-22% 8.89 30.12 24.13
22%-100% 5.11 13.63 10.69
Index 34.46 49.63 48.38

Tranches RE in %

0%-3% 31.147 -10.937 -118.776
3%-6% 170.530 155.728 75.289
6%-9% 75.058 148.111 107.914
9%-12% -13.006 77.256 152.429
12%-22% -80.859 12.948 208.774
22%-100% -99.801 -92.512 -9.057
Index 57.614 55.719 40.119

Average RE 20.098 49.473 65.242

Table D.2: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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5 years 2008-01-31 2008-02-29 2008-03-31
Risk-free rate r = 3.59% r = 3.43% r = 3.70%
Calibrated σ 0.10 0.20 0.15
Calibrated ρ 0.60 0.80 0.70
Tranches Computed SE SE SE

0%-3% 18.16 0.60 13.48 0.49 23.28 0.71
3%-6% 418.67 9.84 456.00 11.21 552.93 17.92
6%-9% 266.44 9.56 341.31 11.92 385.73 15.73
9%-12% 185.66 7.77 273.53 10.57 291.33 12.52
12%-22% 99.09 6.39 187.93 7.40 181.36 9.25
22%-100% 7.57 0.86 28.28 1.48 20.13 1.58
Index 108.38 2.74 156.37 4.34 160.68 5.70

Tranches Market

0%-3% 28.22 33.88 35.71
3%-6% 273.91 437.03 409.98
6%-9% 184.92 299.20 256.80
9%-12% 123.79 209.05 176.73
12%-22% 60.44 107.76 86.80
22%-100% 18.00 46.00 40.00
Index 77.08 120.50 112.00

Tranches RE in %

0%-3% -35.664 -60.201 -34.797
3%-6% 52.850 4.339 34.869
6%-9% 44.084 14.072 50.205
9%-12% 49.985 30.846 64.852
12%-22% 63.946 74.393 108.937
22%-100% -57.929 -38.523 -49.670
Index 40.607 29.769 43.460

Average RE 22.554 7.814 31.122

Table D.3: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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5 years 2008-04-30 2008-05-30 2008-06-30
Risk-free rate r = 3.95% r = 4.27% r = 4.63%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.50 0.60 0.60
Tranches Computed SE SE SE

0%-3% 27.53 0.63 20.15 0.55 27.45 0.78
3%-6% 464.26 13.77 426.81 11.12 554.24 17.21
6%-9% 262.97 9.86 266.05 9.65 352.91 13.02
9%-12% 166.59 6.48 183.09 9.90 246.80 9.48
12%-22% 74.90 5.01 96.89 6.12 133.75 6.37
22%-100% 3.74 0.57 6.95 0.82 10.16 0.91
Index 109.02 2.65 109.86 2.80 140.15 3.84

Tranches Market

0%-3% 27.04 28.52 28.63
3%-6% 248.85 238.91 354.75
6%-9% 152.93 147.12 218.22
9%-12% 91.28 89.09 133.14
12%-22% 30.43 39.18 60.40
22%-100% 24.80 17.67 37.20
Index 64.72 70.12 94.00

Tranches RE in %

0%-3% 1.826 -29.371 -4.109
3%-6% 86.563 78.653 56.233
6%-9% 71.958 80.835 61.724
9%-12% 82.519 105.519 85.375
12%-22% 146.185 147.318 121.433
22%-100% -84.911 -60.668 -72.692
Index 68.450 56.686 49.095

Average RE 53.227 54.139 42.437

Table D.4: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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5 years 2008-07-31 2008-08-29 2008-09-30
Risk-free rate r = 4.31% r = 4.11% r = 3.88%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.70 0.60 0.60
Tranches Computed SE SE SE

0%-3% 20.21 0.63 28.25 0.67 33.95 0.68
3%-6% 466.37 14.23 568.64 15.36 697.51 15.12
6%-9% 305.84 9.73 360.31 11.76 457.55 11.25
9%-12% 220.39 8.91 250.75 9.31 325.45 9.42
12%-22% 129.21 6.52 134.43 6.87 179.59 7.15
22%-100% 12.10 1.04 9.92 0.94 14.15 1.19
Index 126.65 3.99 141.66 3.95 173.64 3.66

Tranches Market

0%-3% 25.24 32.69 37.46
3%-6% 302.03 383.85 563.67
6%-9% 172.27 224.35 295.00
9%-12% 111.66 133.95 157.33
12%-22% 55.64 55.85 67.25
22%-100% 26.85 31.30 31.70
Index 84.71 94.83 110.25

Tranches RE in %

0%-3% -19.940 -13.564 -9.357
3%-6% 54.413 48.142 23.745
6%-9% 77.537 60.601 55.103
9%-12% 97.372 87.200 106.857
12%-22% 132.217 140.701 167.052
22%-100% -54.953 -68.310 -55.377
Index 49.519 49.379 57.497

Average RE 48.024 43.450 49.360

Table D.5: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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5 years 2008-10-31 2008-11-28 2008-12-31
Risk-free rate r = 3.58% r = 3.16% r = 2.95%
Calibrated σ 0.10 0.10 0.1
Calibrated ρ 0.40 0.80 0.9
Tranches Computed SE SE SE

0%-3% 66.41 0.31 44.76 0.56 39.23 0.71
3%-6% 1354.65 21.44 980.66 20.84 936.97 28.96
6%-9% 772.13 18.11 675.08 16.92 679.61 22.96
9%-12% 488.49 14.69 510.60 14.67 533.15 19.29
12%-22% 213.94 8.55 322.08 10.77 357.10 15.48
22%-100% 8.56 0.86 40.65 2.54 56.79 3.29
Index 245.70 3.80 270.30 6.37 292.77 9.77

Tranches Market

0%-3% 55.96 55.96 37.70
3%-6% 1083.00 1083.00 850.15
6%-9% 567.00 567.00 397.55
9%-12% 257.83 257.83 229.14
12%-22% 83.70 83.70 75.46
22%-100% 42.60 42.60 42.60
Index 180.17 228.67 246.87

Tranches RE in %

0%-3% 18.683 -20.008 4.053
3%-6% 25.083 -9.450 10.213
6%-9% 36.178 19.062 70.950
9%-12% 89.458 98.036 132.677
12%-22% 155.598 284.798 373.223
22%-100% -79.910 -4.575 33.299
Index 36.376 18.205 18.592

Average RE 40.210 55.152 91.858

Table D.6: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 5 years
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7 years 2007-06-29 2007-07-31 2007-08-31
Risk-free rate r = 4.43% r = 4.28% r = 4.12%
Calibrated σ 0.15 0.35 0.15
Calibrated ρ 0.20 0.50 0.30
Tranches Computed SE SE SE

0%-3% 19.91 0.53 20.30 0.51 28.45 0.48
3%-6% 170.53 6.44 414.66 7.90 355.71 7.68
6%-9% 48.50 3.92 262.86 7.03 164.82 5.18
9%-12% 15.69 1.82 179.44 5.83 84.90 4.20
12%-22% 2.42 0.59 91.85 4.80 26.78 2.59
22%-100% 0.01 0.02 5.72 0.63 0.50 0.11
Index 48.45 0.86 101.34 2.23 76.42 1.31

Tranches Market

0%-3% 22.93 27.06 33.09
3%-6% 115.63 199.81 197.17
6%-9% 33.02 176.21 95.40
9%-12% 14.12 90.10 56.78
12%-22% 6.51 177.18 31.10
22%-100% N/A 2.39 17.38
Index 32.36 59.43 51.50

Tranches RE in %

0%-3% -13.133 -25.007 -14.031
3%-6% 47.484 107.527 80.415
6%-9% 46.859 49.175 72.766
9%-12% 11.123 99.156 49.523
12%-22% -62.860 -48.162 -13.892
22%-100% 139.755 -97.139
Index 49.732 70.529 48.384

Average RE 11.315 56.139 18.004

Table D.7: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years
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7 years 2007-09-28 2007-11-30 2007-12-31
Risk-free rate r = 4.15% r = 3.91% r = 4.11%
Calibrated σ 0.15 0.1 0.15
Calibrated ρ 0.20 0.4 0.80
Tranches Computed SE SE SE

0%-3% 31.95 0.58 24.15 0.62 -3.15 0.52
3%-6% 299.56 9.11 358.95 9.56 239.81 7.70
6%-9% 103.73 3.74 193.47 7.75 179.22 6.27
9%-12% 39.39 2.26 115.10 5.92 142.28 4.83
12%-22% 7.19 1.07 46.35 2.67 97.93 4.72
22%-100% 0.04 0.03 1.65 0.25 14.43 1.22
Index 67.48 0.96 80.11 1.76 82.49 3.07

Tranches Market

0%-3% 28.69 31.50 28.82
3%-6% 127.72 204.11 198.17
6%-9% 62.08 105.66 107.43
9%-12% 34.91 74.49 70.46
12%-22% 21.42 42.88 39.05
22%-100% 9.23 18.04 15.18
Index 44.68 57.10 54.88

Tranches RE in %

0%-3% 11.368 -23.327 -110.934
3%-6% 134.543 75.862 21.017
6%-9% 67.082 83.101 66.824
9%-12% 12.838 54.523 101.933
12%-22% -66.428 8.076 150.823
22%-100% -99.521 -90.838 -4.954
Index 51.030 40.302 50.318

Average RE 15.844 21.100 39.290

Table D.8: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years
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7 years 2008-01-31 2008-02-29 2008-03-31
Risk-free rate r = 3.59% r = 3.43% r = 3.70%
Calibrated σ 0.10 0.20 0.15
Calibrated ρ 0.60 0.80 0.70
Tranches Computed SE SE SE

0%-3% 20.40 0.71 17.54 0.50 26.84 0.70
3%-6% 428.43 8.45 507.17 8.44 576.12 14.04
6%-9% 282.32 8.27 394.74 9.80 415.33 13.29
9%-12% 201.95 7.61 324.93 8.99 323.64 10.65
12%-22% 113.82 5.24 232.67 6.80 210.62 7.77
22%-100% 9.44 0.78 38.82 1.52 25.98 1.42
Index 110.08 2.55 182.97 4.03 171.36 4.83

Tranches Market

0%-3% 36.92 40.91 44.36
3%-6% 383.05 498.83 531.83
6%-9% 249.79 326.96 319.38
9%-12% 164.82 246.07 218.93
12%-22% 73.95 125.37 102.64
22%-100% 21.70 51.20 47.20
Index 84.76 133.50 121.78

Tranches RE in %

0%-3% -44.739 -57.124 -39.507
3%-6% 11.845 1.673 8.329
6%-9% 13.025 20.731 30.044
9%-12% 22.531 32.048 47.834
12%-22% 53.916 85.591 105.195
22%-100% -56.482 -24.177 -44.947
Index 29.880 37.053 40.709

Average RE 4.282 13.685 21.094

Table D.9: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years
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7 years 2008-04-30 2008-05-30 2008-06-30
Risk-free rate r = 3.95% r = 4.27% r = 4.63%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.50 0.60 0.60
Tranches Computed SE SE SE

0%-3% 30.07 0.70 23.88 0.62 30.72 0.84
3%-6% 468.97 11.42 466.43 11.71 572.24 15.91
6%-9% 277.15 9.47 304.76 7.63 379.14 11.17
9%-12% 182.00 6.87 217.86 7.36 273.01 8.26
12%-22% 87.63 4.22 123.08 5.87 156.07 6.15
22%-100% 4.83 0.58 10.41 0.77 13.50 0.90
Index 106.50 2.53 119.51 2.61 144.18 3.51

Tranches Market

0%-3% 38.83 40.81 40.04
3%-6% 385.08 381.39 491.61
6%-9% 220.85 221.98 297.12
9%-12% 144.45 142.99 193.28
12%-22% 60.07 68.00 91.78
22%-100% 30.60 24.82 46.20
Index 81.02 86.28 110.33

Tranches RE in %

0%-3% -22.559 -41.474 -23.277
3%-6% 21.788 22.297 16.403
6%-9% 25.492 37.290 27.606
9%-12% 25.996 52.358 41.254
12%-22% 45.883 80.997 70.052
22%-100% -84.222 -58.040 -70.782
Index 31.450 38.509 30.681

Average RE 6.261 18.848 13.134

Table D.10: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years

98



7 years 2008-07-31 2008-08-29 2008-09-30
Risk-free rate r = 4.31% r = 4.11% r = 3.88%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.70 0.60 0.60
Tranches Computed SE SE SE

0%-3% 20.07 0.70 32.13 0.68 38.15 0.80
3%-6% 433.99 12.26 595.96 12.78 718.28 16.24
6%-9% 291.87 9.03 396.60 9.09 491.22 13.71
9%-12% 215.10 7.88 287.19 8.40 362.66 10.67
12%-22% 129.63 6.15 163.95 5.52 212.04 8.41
22%-100% 13.11 0.99 14.04 0.86 19.10 1.35
Index 118.32 3.58 149.35 3.20 180.45 4.42

Tranches Market

0%-3% 36.50 44.37 47.67
3%-6% 416.56 522.35 683.00
6%-9% 235.92 306.05 373.00
9%-12% 154.55 189.85 214.67
12%-22% 86.48 88.35 101.00
22%-100% 34.60 42.20 44.70
Index 97.08 110.25 124.83

Tranches RE in %

0%-3% -45.013 -27.575 -19.976
3%-6% 4.184 14.091 5.166
6%-9% 23.718 29.587 31.693
9%-12% 39.176 51.272 68.940
12%-22% 49.884 85.574 109.937
22%-100% -62.115 -66.735 -57.278
Index 21.874 35.463 44.552

Average RE 4.530 17.382 26.148

Table D.11: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years
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7 years 2008-10-31 2008-11-28 2008-12-31
Risk-free rate r = 3.58% r = 3.16% r = 2.95%
Calibrated σ 0.10 0.10 0.1
Calibrated ρ 0.40 0.80 0.9
Tranches Computed SE SE SE

0%-3% 68.83 0.29 45.48 0.59 39.21 0.71
3%-6% 1296.62 20.05 880.59 19.02 827.96 23.12
6%-9% 758.09 14.76 618.24 13.45 610.10 19.74
9%-12% 491.30 12.36 475.26 10.80 486.96 16.81
12%-22% 228.12 7.32 309.12 8.25 338.24 13.87
22%-100% 10.72 0.90 43.00 2.09 58.78 2.82
Index 224.20 3.40 248.25 5.18 269.76 8.65

Tranches Market

0%-3% 64.21 64.21 47.27
3%-6% 1140.00 1140.00 840.01
6%-9% 627.33 627.33 427.64
9%-12% 324.50 324.50 257.90
12%-22% 115.35 115.35 91.47
22%-100% 53.20 53.20 53.20
Index 173.33 202.00 215.92

Tranches RE in %

0%-3% 7.199 -29.163 -17.051
3%-6% 13.739 -22.755 -1.434
6%-9% 20.843 -1.449 42.666
9%-12% 51.403 46.459 88.821
12%-22% 97.761 167.986 269.775
22%-100% -79.846 -19.174 10.494
Index 29.349 22.898 24.939

Average RE 20.064 23.543 59.744

Table D.12: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 7 years
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10 years 2007-06-29 2007-07-31 2007-08-31
Risk-free rate r = 4.43% r = 4.28% r = 4.12%
Calibrated σ 0.15 0.35 0.15
Calibrated ρ 0.20 0.50 0.30
Tranches Computed SE SE SE

0%-3% 27.34 0.52 29.59 0.50 34.32 0.43
3%-6% 257.38 6.70 545.63 9.40 426.88 7.79
6%-9% 93.19 3.89 379.85 7.61 222.46 6.01
9%-12% 36.91 2.83 281.06 6.41 125.17 4.15
12%-22% 7.20 0.94 164.11 4.80 45.23 2.69
22%-100% 0.05 0.02 13.63 0.77 1.15 0.17
Index 54.50 0.89 137.67 2.58 82.73 1.25

Tranches Market

0%-3% 39.56 39.00 45.20
3%-6% 337.43 504.28 427.83
6%-9% 97.82 2564.53 187.61
9%-12% 45.42 656.38 97.42
12%-22% 14.97 145.67 54.14
22%-100% N/A 4.40 21.38
Index 45.91 73.23 66.33

Tranches RE in %

0%-3% -30.883 -24.143 -24.065
3%-6% -23.724 8.199 -0.221
6%-9% -4.734 -85.188 18.578
9%-12% -18.737 -57.180 28.490
12%-22% -51.883 12.662 -16.449
22%-100% 210.150 -94.627
Index 18.720 87.998 24.720

Average RE -15.892 21.785 -9.082

Table D.13: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years
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10 years 2007-09-28 2007-11-30 2007-12-31
Risk-free rate r = 4.15% r = 3.91% r = 4.11%
Calibrated σ 0.15 0.1 0.15
Calibrated ρ 0.20 0.4 0.80
Tranches Computed SE SE SE

0%-3% 39.37 0.53 25.50 0.65 -4.50 0.56
3%-6% 407.16 9.47 357.09 7.84 248.78 6.26
6%-9% 172.49 5.63 199.14 5.94 190.78 4.93
9%-12% 77.16 3.22 122.73 5.28 154.47 3.85
12%-22% 18.05 1.11 51.99 2.77 109.09 3.64
22%-100% 0.16 0.06 2.10 0.25 17.46 0.99
Index 74.20 0.99 75.48 1.49 88.35 2.53

Tranches

0%-3% 40.79 40.42 38.17
3%-6% 357.04 380.54 370.25
6%-9% 136.13 163.91 163.92
9%-12% 73.37 100.56 91.79
12%-22% 39.73 58.24 50.46
22%-100% 13.28 22.28 19.20
Index 60.33 66.92 64.75

Tranches RE in %

0%-3% -3.479 -36.901 -111.795
3%-6% 14.037 -6.163 -32.808
6%-9% 26.713 21.493 16.388
9%-12% 5.164 22.045 68.289
12%-22% -54.558 -10.726 116.207
22%-100% -98.760 -90.569 -9.071
Index 22.992 12.804 36.450

Average RE -12.556 -12.574 11.952

Table D.14: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years

102



10 years 2008-01-31 2008-02-29 2008-03-31
Risk-free rate r = 3.59% r = 3.43% r = 3.70%
Calibrated σ 0.10 0.20 0.15
Calibrated ρ 0.60 0.80 0.70
Tranches Computed SE SE SE

0%-3% 20.40 0.71 20.02 0.52 28.53 0.79
3%-6% 404.24 8.29 518.09 7.87 561.70 12.16
6%-9% 271.36 7.51 412.12 8.48 413.81 11.05
9%-12% 197.32 6.58 346.60 8.31 327.54 9.17
12%-22% 114.75 5.53 256.59 7.32 219.52 6.33
22%-100% 10.29 0.72 46.33 1.68 29.11 1.11
Index 102.83 2.53 195.05 4.44 168.89 3.70

Tranches Market

0%-3% 43.10 47.09 52.01
3%-6% 478.17 591.31 676.83
6%-9% 301.50 366.35 383.03
9%-12% 204.04 282.46 249.90
12%-22% 89.17 150.09 133.30
22%-100% 26.18 56.30 52.80
Index 91.33 140.75 127.59

Tranches RE in %

0%-3% -52.677 -57.492 -45.141
3%-6% -15.460 -12.382 -17.009
6%-9% -9.996 12.493 8.038
9%-12% -3.290 22.706 31.067
12%-22% 28.687 70.961 64.683
22%-100% -60.673 -17.715 -44.876
Index 12.601 38.577 32.374

Average RE -14.401 8.164 4.162

Table D.15: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years
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10 years 2008-04-30 2008-05-30 2008-06-30
Risk-free rate r = 3.95% r = 4.27% r = 4.63%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.50 0.60 0.60
Tranches Computed SE SE SE

0%-3% 30.34 0.79 25.56 0.60 32.06 0.78
3%-6% 438.34 10.02 464.60 10.73 550.83 13.30
6%-9% 265.65 8.17 314.09 7.50 373.74 10.54
9%-12% 178.12 6.50 231.44 6.05 274.89 7.76
12%-22% 88.70 3.47 136.46 4.94 162.36 5.19
22%-100% 5.30 0.55 12.82 0.64 15.38 0.78
Index 96.47 2.24 119.17 2.24 137.90 2.98

Tranches Market

0%-3% 46.58 48.91 47.49
3%-6% 515.48 518.08 634.72
6%-9% 288.93 288.33 369.25
9%-12% 179.88 180.66 229.00
12%-22% 82.85 87.27 124.75
22%-100% 38.20 30.21 48.30
Index 85.02 89.95 114.25

Tranches RE in %

0%-3% -34.854 -47.744 -32.506
3%-6% -14.963 -10.321 -13.216
6%-9% -8.056 8.932 1.217
9%-12% -0.975 28.108 20.040
12%-22% 7.062 56.376 30.149
22%-100% -86.122 -57.573 -68.150
Index 13.474 32.484 20.701

Average RE -17.776 1.466 -5.966

Table D.16: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years
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10 years 2008-07-31 2008-08-29 2008-09-30
Risk-free rate r = 4.31% r = 4.11% r = 3.88%
Calibrated σ 0.10 0.15 0.15
Calibrated ρ 0.70 0.60 0.60
Tranches Computed SE SE SE

0%-3% 17.92 0.75 34.11 0.74 40.34 0.89
3%-6% 382.69 10.41 581.60 10.61 694.66 15.35
6%-9% 260.20 7.82 398.60 7.83 485.75 11.51
9%-12% 193.36 7.17 296.25 7.00 367.12 10.41
12%-22% 118.44 5.52 177.35 5.29 223.70 7.28
22%-100% 12.62 0.87 16.91 0.68 22.33 1.27
Index 103.64 3.15 146.30 2.63 174.73 4.02

Tranches Market

0%-3% 43.29 52.80 55.17
3%-6% 521.82 654.30 820.00
6%-9% 291.80 376.00 444.00
9%-12% 176.45 216.45 251.33
12%-22% 86.83 109.95 119.83
22%-100% 40.30 46.25 48.20
Index 103.09 112.33 128.08

Tranches RE in %

0%-3% -58.616 -35.404 -26.872
3%-6% -26.661 -11.112 -15.285
6%-9% -10.828 6.010 9.402
9%-12% 9.584 36.865 46.069
12%-22% 36.411 61.300 86.681
22%-100% -68.688 -63.429 -53.679
Index 0.527 30.237 36.420

Average RE -16.896 3.495 11.819

Table D.17: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years
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10 years 2008-10-31 2008-11-28 2008-12-31
Risk-free rate r = 3.58% r = 3.16% r = 2.95%
Calibrated σ 0.10 0.10 0.1
Calibrated ρ 0.40 0.80 0.9
Tranches Computed SE SE SE

0%-3% 69.93 0.31 44.76 0.60 37.61 0.75
3%-6% 1194.84 18.65 766.83 14.99 707.61 18.60
6%-9% 702.56 13.95 544.05 11.11 528.17 15.10
9%-12% 459.59 10.68 421.70 9.12 426.09 12.71
12%-22% 220.20 6.41 280.18 6.79 302.69 11.05
22%-100% 11.39 0.75 40.87 1.80 55.26 2.30
Index 194.38 2.91 217.25 4.52 236.68 6.94

Tranches Market

0%-3% 69.13 69.13 56.97
3%-6% 1181.00 1181.00 882.56
6%-9% 673.67 673.67 472.73
9%-12% 362.00 362.00 293.03
12%-22% 145.97 145.97 109.47
22%-100% 58.40 58.40 58.40
Index 163.83 180.50 190.25

Tranches RE in %

0%-3% 1.162 -35.254 -33.984
3%-6% 1.172 -35.069 -19.823
6%-9% 4.289 -19.240 11.727
9%-12% 26.957 16.492 45.407
12%-22% 50.853 91.949 176.494
22%-100% -80.502 -30.012 -5.378
Index 18.644 20.362 24.404

Average RE 3.225 1.318 28.407

Table D.18: Time Series of spreads computed and compared to actual market spreads for
a CDO iTraxx Europe Main series 6 with maturity of 10 years
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Tranches Market data 16, 384 simulations 262, 144 simulations
0%-3% 37.70% 39.23% 39.39%
3%-6% 850.15 936.97 937.42
6%-9% 397.55 679.61 679.47
9%-12% 229.14 533.15 533.55
12%-22% 75.46 357.10 356.11
22%-100% 42.60 56.79 56.83
Index 246.87 292.77 292.89

Table D.19: Comparison of the calibrated spreads for 2008-12-31 calculated with 47 or 49

simulations. We observe no significant difference between the calculated spreads, but
both are quite far from the market data.

107



References

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables. NBS Applied Mathematics Series 55. National Bureau
of Standards, 1970.

Basel Comittee on Banking Supervision. Basel III counterparty credit risk - frequently
asked questions. Technical report, Bank for International Settlements, 2011. Retrieved
on July 29 2014 from http://www.bis.org/publ/bcbs209.pdf.

L. Bélisle and C. Egbewole. Testing for presence of leverage in financial time series. Hon-
our’s thesis, University of Ottawa, 2012.

N.H. Bingham, C.M. Golide, and J.L. Teugels. Regular variation. Encyclopedia of math-
ematics and its applications; 27. Cambridge University Press, 1987.

T. Björk. Arbitrage Theory in Continuous Time. Oxford University Press, 2009.

F. Black and J. Cox. Valuing corporate securities: Some effects of bond indenture provi-
sions. Journal of Finance, 31:351–367, 1976.

F. Black and M. Scholes. The pricing of options and corporate liabilities. The Journal of
Political Economy, 81:637–654, 1973.

C. Bluhm and L. Overbeck. Structured Credit Portfolio Analysis, Baskets & CDOs. Chap-
man Hall & CRC Financial Mathematics. Taylor & Francis Group, LLC, 2007.

M. Broadie, P. Glasserman, and S. Kou. A continuity correction for discrete barrier options.
Mathematical Finance, 1997.

K. Bujok and C. Reisinger. Numerical Valuation of Basket Credit Derivatives in Structural
Jump-Diffusion Models. Journal of Computational Finance, 2012.

108



N. Bush, B.M. Hambly, H. Haworth, L. Jin, and C. Reisinger. Stochastic evolution equa-
tions in portfolio credit modelling. SIAM Journal on Financial Mathematics, 2011.

G.G. Dahlquist. A special stability problem for linear multistep methods. Numerical
Mathematics, 1963.

M. Davis and V. Lo. Infectuous defaults. Credit Metrics Monitor, Risk Metrics Group,
1999.

M. Davis and J. Rodriguez. Large portfolio credit risk modelling. International Journal of
Theoretical and Applied Finance, 2007.

J.L. Doob. Stochastic processes. Wiley, 1953.

A. Elizalde. Credit Risk Models III: Reconciliation Reduced - Structural Models. CEMFI
and UPNA, November 2005a. Retrieved July 8, 2013, from http://www.abelelizalde.com/
.

A. Elizalde. Credit Risk Models IV: Understanding and Pricing CDOs. CEMFI and UPNA,
December 2005b. Retrieved July 8, 2013, from http://www.abelelizalde.com/ .

A. Elizalde. Encyclopedia of Financial Models, chapter 22. Wiley, 2012a.

A. Elizalde. Encyclopedia of Financial Models, chapter 23. Wiley, 2012b.
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