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Abstract

In survival data analysis, covariates are often subject to measurement error. A naive

analysis with measurement error ignored commonly leads to biased estimation of parame-

ters of survival models. Measurement error also causes efficiency loss for detecting possible

association between risk factors and time to event. Furthermore, it induces difficulty on

model building and model checking, because the presence of measurement error frequently

masks true underlying patterns of data.

Although there has been a large body of literature to handle error-prone survival data

since the paper by Prentice (1982), many important issues still remain unexplored in this

area. This thesis focuses on several important issues of survival analysis with covariate

measurement error.

One problem that has received little attention is on misspecification of measurement

error models. In this thesis, we investigate this important problem with the attention

particularly paid to error-contaminated survival data under the Cox model. In particular,

we conduct bias analysis which offers a way to unify many existing methods of survival

data with measurement error, and study the impact of misspecifying the error models in

survival data analysis. A simple expression is obtained to quantify the bias of “working”

estimators derived under misspecified error models. Consistent estimators under general

error models are derived based on this simple expression. Furthermore, we study hypothesis

testing with both model misspecification and measurement error present.

A second problem of our interest is about the validity of survival model assumptions

when measurement error is involved. In the literature, a large number of methods have been

developed to correct for measurement error effects, and these methods basically assume the

survival model to be the Cox model. When the Cox model or the error model assumptions

fail to hold, existing methods would break down. In this thesis, we address the issue of

checking the Cox model assumptions with measurement error. We propose valid goodness

of fit tests for survival data with covariate measurement error. This research offers us an

important addition to the literature of survival data with measurement error.
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Our third topic concerns survival data analysis under additive hazards models with

covariate measurement error. The additive hazards model is a useful and important alter-

native to the Cox model. However, this model is relatively less studied for situations where

covariates are measured with error. In this thesis, we make important contributions to this

topic. Specifically, we explore asymptotic bias induced from ignoring measurement error.

A number of inference methods are developed to correct for error effects. The validity of

the proposed methods is justified both theoretically and empirically. We investigate issues

of model checking and model misspecification as well.

In many studies, collection of data often includes a large number of variables in which

many of them are unimportant in explaining survival of an individual. An important task is

thus to identify relevant risk factors which are linked to the hazards of subjects. Although

there is work on variable selection for survival data analysis, the available methods typically

require all variables be precisely measured. This requirement is, however, often infeasible.

More challengingly, in some studies, the dimension of the risk factors can be quite large

or even much larger than the size of subjects. Our fourth topic concerns about estimation

and variable selection for survival data with high dimensional mismeasured covariates. We

propose corrected penalized methods. Our methods can adjust for measurement error

effects, and perform estimation and variable selection simultaneously. Our research on this

topic closes multiple gaps among the areas of survival analysis, measurement error and

variable selection.
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Chapter 1

Introduction and Overview

Survival data analysis deals with time from a time origin to occurrence of some event (or

endpoint). The time origin can be the date of birth, the disease onset, and the time of

entry to a randomized clinical trial. Examples of endpoints include time to death, time to

disease relapse, and time to failure of some component of a machine. A major goal of the

statistical analysis of survival data aims at assessing the association of the failure time and

risk factors (e.g., Kalbfleisch and Prentice 2002; Lawless 2003). For example, detection

of treatment effects on survival is a main concern in many randomized clinical trials, and

this is often accomplished by building an appropriate survival model which adjusts for

treatment and other risk factors, such as age, sex and measure of blood pressure. Survival

analysis provides tools to describe the trend of the risk of failure, estimate the frequency of

occurrence of events, and predict the chance of failure given specific levels of risk factors.

In clinical trials and observational studies, some risk factors (or covariates) are often

measured with error. Examples of error-prone risk factors are the CD4 lymphocyte counts

in AIDS studies, blood pressure in coronary heart disease studies, and energy intake in

nutrition studies. A naive analysis with measurement error ignored commonly leads to

biased estimation of parameters of survival models as well as efficiency loss for detecting

possible association of risk factors and time to event. In the following sections, we discuss
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these issues and review some literature on this topic. A less explored problem concerns

model building and model checking. Model building based on the mismeasured version

of the true data, though relatively straightforward, is lack of interpretability and of little

interest; on the other hand, model building based on the true but unobserved data is

more difficult, because measurement error tends to mask the pattern of the data. There is

little literature, if any, that provides valid model checking techniques applicable to survival

models with covariate measurement error. Most existing model checking techniques require

covariates to be precisely measured. Naively applying those checking procedures with

measurement error ignored is generally not feasible to evaluate survival model assumptions.

Although many problems remain unexplored, in this thesis, we focus on several par-

ticular topics, such as developing useful tools to handle survival models with covariate

measurement error, studying the impact of measurement error on inference as well as the

impact of misspecifying measurement error models, and providing appropriate procedures

to check survival models with covariate measurement error. Our discussion also provides

insights into the connections of several existing methods for survival data with mismea-

sured covariates. Before we present our work, we provide an overview of survival data

analysis with measurement error in the remainder of this chapter.

In Section 1.1, we review statistical analysis of survival data and several important

survival models, and describe some model checking techniques. In Section 1.2, we introduce

measurement error models and measurement error mechanisms. In Section 1.3, we study

the impact of measurement error on parameter estimation. In Section 1.4, we give a general

review of existing methods that handle survival models with covariate measurement error.

We conclude this chapter with an outline of subsequent chapters.

1.1 Survival Data Analysis

In Section 1.1.1, we define basic notation and introduce the concept of censorship. In

Section 1.1.2, we introduce several important survival models. In Section 1.1.3, we describe

2



the consequence of misspecifying the survival models, thus suggesting the necessity of model

checking. In Section 1.1.4, we briefly review some model checking techniques for survival

models.

1.1.1 Assumptions and Notation

A unique feature of survival data is that the observations of failure time may be incomplete

for various reasons: (i). subjects may survive during the study period or may be lost to

followup; (ii). we may know that the subject fails prior to some time point (or during some

time period), but the exact failure time is unknown; (iii). a subject who is eligible for the

study may not survive prior to the beginning of the study and thus never enters the study.

The incomplete patterns in (i), (ii), and (iii) are called right censoring, left censoring (or

interval censoring), and left truncation, respectively. We refer to Lawless (2003, Ch 2) for

a detailed discussion of censoring and truncation. In this thesis, we focus on right censored

data.

For i = 1, · · · , n, let Ti be the failure time and Ci be the right censoring time. Let

Zi(t) be a vector of external covariates (Kalbfleisch and Prentice 2002) for subject i. The

{Ti, Ci, Zi(t)} are assumed to be independent, i = 1, · · · , n. Suppose all the individuals are

observed over a common time interval [0, τ ], where 0 < τ <∞. Let Si = min(Ti, Ci), and

δi = I(Ti ≤ Ci). Let Ni(t) = I(Si ≤ t, δi = 1) be the number of observed failures for the ith

subject up to and including time t, and Yi(t) = I(Si ≥ t) indicate whether the ith subject

is at risk of failure at time t−. Let Ft = σ{Ni(s), Yi(s
+), Zi(s), 0 ≤ s ≤ t, i = 1, · · · , n} be

the σ− field generated by the observed event and covariates histories prior to time t for all

subjects.

The right censoring scheme is called independent if for any time point t,

lim
∆t→0

Pr{t ≤ Ti < t+ ∆t|Ti ≥ t, Ci ≥ t, Zi(t)}
∆t

= lim
∆t→0

Pr{t ≤ Ti < t+ ∆t|Ti ≥ t, Zi(t)}
∆t

.

Several special cases of independent censoring includes: (i). random censoring, where Ci

and Ti are independent given Zi(t); (ii). type I censoring, where Ci ≡ c is a constant; and

3



(iii). type II censoring, where the study is stopped when a given number of failures are

observed.

Let λ(t;Zi(t)) be the hazard function for subject i with covariates Zi(t), given by

λ(t;Zi(t)) = lim
∆t→0

Pr{t ≤ Ti < t+ ∆t|Ti ≥ t, Zi(t)}
∆t

.

Thus λ(t;Zi(t))dt = Pr{dÑi(t) = 1|Ti ≥ t, Zi(t)}, where Ñi(t) = I(Ti ≤ t), and dA(t)

represents A(t−+dt)−A(t−) for a process A(t). Since {dNi(t) = 1} = {dÑi(t) = 1, Yi(t) =

1} = {t ≤ Ti < t + dt, Yi(t) = 1}, the independent censoring assumption is equivalent to

Pr{dNi(t) = 1|Ft−} = Yi(t)λ(t;Zi(t))dt for each time t. Throughout this thesis, we assume

the independent censoring mechanism. We also assume noninformative censoring in the

sense of Lawless (2003, Ch 2.2.2).

1.1.2 Survival Models and Inference Functions

The hazard function λ(t;Zi(t)) is often modeled to feature the relationship between the

survival time and covariates. In this section, we introduce several important models.

Cox Model

The Cox model (Cox 1972) specifies that covariates have multiplicative effects on the hazard

function. A most appeal of such models is that the baseline hazard function can be left

unspecified when basing inference about covariate effects on the partial likelihood (Cox

1975). To be specific, the Cox model assumes that the hazard function of Ti is related to

Zi(·) through

λ(t;Zi(t)) = λ0(t) exp(ZT
i (t)β), (1.1)

where λ0(·) is the baseline hazard function, and β is the regression parameter. Let Λ0(t) =∫ t
0
λ0(u)du be the baseline cumulative hazard function. Inference about the regression

4



parameter β is typically based on the partial likelihood:

Lp(β) =
n∏
i=1

[
exp{ZT

i (si)β}∑
{j:sj≥si} exp{ZT

j (si)β}

]δi
. (1.2)

Maximizing Lp(β) with respect to β leads to the partial likelihood estimator β̂ of β. Al-

ternatively, β̂ can be obtained by solving the partial score function

Up(β) =
n∑
i=1

δi

[
Zi(si)−

∑
{j:sj≥si} Zj(si) exp{ZT

j (si)β}∑
{j:sj≥si} exp{ZT

j (si)β}

]

=
n∑
i=1

∫ τ

0

[
Zi(t)−

∑n
j=1 Yj(t)Zj(t) exp{ZT

j (t)β}∑n
j=1 Yj(t) exp{ZT

j (t)β}

]
dNi(t). (1.3)

The partial likelihood method is advantageous in that the baseline hazard function λ0(t)

is left unspecified, thus protecting us from obtaining invalid results about β when λ0(t) is

mismodeled.

Additive Hazards Model

The additive hazards model (Breslow and Day 1980; Cox and Oakes 1984; Lin and Ying

1994) assumes that covariates act on the hazard function via an additive form:

λ(t;Zi(t)) = λ0(t) + ZT
i (t)β,

where λ0(t) is the baseline hazard function, and β is the regression parameter.

Estimation of β can be carried out using the pseudo score function (Lin and Ying 1994):

U(β) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dMi(t),

where Z̄(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t), and Mi(t; β,Λ0) = Ni(t) −
∫ t

0
Yi(u){dΛ0(u) +

βTZi(u)du}. Note that Mi(t; β,Λ0) is an Ft-adapted martingale. By that E[U(β0)] = 0,

5



where β0 is the true value of β, solving U(β) = 0 leads to a consistent estimator β̂ of β,

given by

β̂ =

[
n∑
i=1

∫ τ

0

Yi(t){Zi(t)− Z̄(t)}⊗2dt

]−1 [ n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)

]
.

Since E[Mi(t; β0,Λ0)]=0 by martingale properties (e.g., Kalbfleisch and Prentice 2002), a

Breslow-type cumulative hazard estimator is obtained by solving

n∑
i=1

Mi(t; β,Λ0) = 0.

That is,

Λ̂(t; β̂) =

∫ t

0

∑n
i=1 dNi(u)∑n
j=1 Yj(u)

−
∫ t

0

∑n
i=1 Yi(u)ZT

i (u)β̂du∑n
j=1 Yj(u)

.

Accelerated Failure Time Model

The accelerated failure time model (AFT) (Cox 1972) assumes that covariates have mul-

tiplicative effects on Ti, or equivalently, additive effects on the natural log of Ti, named

Yi = log(Ti):

Yi = β0 + ZT
i β1 + σei,

where covariates Zi are time-invariant. The distribution of the error term ei, or equivalently

the error density f0(e), can be modelled either parametrically or nonparametrically. When

f0(e) is modelled parametrically, inference on β = (βT0 , β
T
1 )T can be based on the parametric

likelihood function

L(β) =
n∏
i=1

[
1

σ
f0

(
yi − β0 − ZT

i β1

σ

)]δi [
S0

(
yi − β0 − ZT

i β1

σ

)]1−δi
,

where S0(e) =
∫∞
e
f0(u)du. Several classes of classic parametric survival models, includ-

ing exponential model, Weibull model, log-normal model and log-logistic model, can be

regarded as special cases of parametric accelerated failure time models. Lawless (2003, Ch

5) provides a comprehensive treatment of parametric accelerated failure time models.
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When f0(e) is modelled nonparametrically, the accelerated failure time model is a semi-

parametric alternative to the Cox model, and inferences become more difficult. We refer

the readers to Kalbfleisch and Prentice (2002, Ch 7) and Lawless (2003, Ch 8) for details.

Proportional Odds Model and Transformation Model

The three survival models we introduced above are perhaps the most important and popular

choices in survival data analysis. These models have different advantages and strengthes,

and corresponding parameter interpretations could be substantially different. Recently,

the proportional odds model (Pettitt 1982; Bennett 1983) and its natural generalization,

the transformation model (Cuzick 1988; Cheng, Wei and Ying 1995), started to attract

increased attention. The proportional odds model assumes that

−logit{S(t;Zi)} = h0(t) + ZT
i β,

where logit(x) = log{x/(1 − x)}, S(t;Zi) = Pr(Ti ≥ t|Zi) = exp{−
∫ t

0
λ(t;Zi)dt} is the

survivor function, h0(t) is an unspecified increasing function, and Zi is time-independent.

The proportional odds model is a special case of the parametric transformation model

g{S(t;Zi)} = h0(t) + ZT
i β,

where g(·) is a known increasing function. Note that the Cox model can be rewritten as

log[− log{S(t;Zi)}] = h0(t) + ZT
i β,

where h0(t) = log{Λ0(t)}, and thus the Cox model with time independent covariates is

also a special case of the parametric transformation model. When the function g(·) is left

unspecified, then the transformation model is equivalent to

h0(t) = ZT
i β + εi,

where εi is a random error with an unknown distribution. Inference procedures for this

linear transformation is referred to Cheng, Wei and Ying (1995), among others.
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While we have discussed several survival models, in this thesis, we will mainly focus on

the Cox model and the additive hazards model. In Chapters 2, 3 and 4, we consider Cox

models, and in Chapters 5 and 6, we restrict our attention to additive hazards models.

1.1.3 Model Misspecification

The seminal paper by White (1982) originally studied the impact of model misspecification

on maximum likelihood estimators (MLE) of parametric models. The working MLE of a

possibly misspecified parametric model converges to a certain limit that minimizes the

Kullback-Leibler information criterion (Kullback and Leibler 1951), which measures the

“distance” between the true model and a parametric working family. If the true model is

contained in the parametric working family, then the limit of the working MLE is identical

to the true value of the parameter of the true model; otherwise, this limit differs from the

true parameter of the underlying model, and thus the working MLE is not a consistent

estimator. The degree of bias depends on the “distance” between the parametric working

family and the true model.

When full distributional models are not available, inferences are often based on marginal

features, such as mean and variance, of distributions. In such situations, unbiased esti-

mating functions are often invoked. Yi and Reid (2010) studied misspecified estimating

functions with finite dimensional parameters. They showed how to derive a consistent

estimator of the true parameter based on biased estimating functions.

Now we turn to the issues of misspecifying the Cox model. The Cox model is a semi-

parametric model, thus the theory of White (1982) is not readily applied. Solomon (1984),

O’Neill (1986), and Struthers and Kalbfleisch (1986) provided semiparametric general-

ization of the theory of White (1982) from parametric models to the Cox model. They

investigated the effect of wrongly using the Cox model, when the true model may be others

(e.g., the accelerated failure time model). They found that the relative importance of the

covariates is unchanged even when the Cox model is wrongly used, but the parameter es-

timation is considerably biased. Lin and Wei (1989) extended the results of Struthers and
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Kalbfleisch (1986); they established asymptotic normality of the pseudo partial likelihood

estimator and provided a robust variance estimator. Li and Ryan (2004) argued that the

naive inference procedure of the Cox model with measurement error can be viewed as a

type of model misspecification.

Model misspecification also has a significant impact on hypothesis testing. Lagakos

(1988a, 1988b) investigated the phenomenon of loss of efficiency of score test induced by

model misspecification. Kong and Slud (1997) proposed a robust log-rank test, and DiRien-

zo and Lagakos (2001a, 2001b) investigated the bias of score tests under misspecified Cox

models and provided modifications. Xu and O’Quigley (2000), Boyd, Kittelson and Gillen

(2012), and Hattori and Henmi (2012) proposed interpretable estimators for treatment

effects even when the Cox model is misspecified.

Sometimes some important covariates may be omitted or have misspecified functional

forms. Struthers and Kalbfleisch (1986) showed that simply ignoring a covariate in the

Cox model biases estimation of the corresponding covariate coefficient. However, the naive

test of no effect of risk factors on survival is still valid under some conditions of covariates

and censoring. The impact of omitting covariates was also studied by Gail, Wieand and

Piantadosi (1984), Lagakos and Schoenfeld (1984), Morgan (1986), Bretagnolle and Huber-

Carol (1988), Gail, Tan and Piantadosi (1988), Lin and Wei (1989), and Anderson and

Fleming (1995). Gerds and Schumacher (2001) investigated the problem of misspecifying

the functional forms of the covariates.

Studies of model misspecification are not restricted to the Cox model. Hattori (2006,

2012) studied the impact of misspecifying the additive hazards model and the accelerated

failure time model, respectively. In particular, he investigated the impact on tests of no

treatment effects. Clegg et al. (2000), Kosorok, Lee and Fine (2004), Boher and Cook

(2006), and Latouche et al. (2007) studied more complex event history models.
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1.1.4 Model Checking

In this section, we restrict our attention to the Cox model. There have been a large

body of model checking techniques for the Cox model since the early 1980’s (Schoenfeld

1980, 1981; Wei 1984; Barlow and Prentice 1988; Therneau, Grambsch and Fleming 1990;

Lin 1991; Lin and Wei 1991; Lin, Wei and Ying 1993; Grambsch and Therneau 1994;

Grambsch, Therneau and Fleming 1995). Comprehensive reviews are referred to Therneau

and Grambsch (2000) and Lawless (2003).

Lin, Wei and Ying (1993) proposed an omnibus test to check misspecification of the

Cox model using martingale residuals. Similar test statistics could be used to check the

proportional hazards assumption, the functional form of a covariate, and the exponential

link function. The model checking procedures by Lin, Wei and Ying (1993) have been

widely used and further developed by Spiekerman and Lin (1996) for marginal Cox models

with multivariate failure times, by Lin and Spiekerman (1996) for parametric survival

models, including accelerated failure time models, by Kim, Song and Lee (1998) for additive

hazards models, by Yin (2007) for marginal additive hazards models with multivariate

failure times, by Lin, Wei, and Ying (2002) for longitudinal data analysis, and by Pipper

and Ritz (2007) for grouped data under the Cox model, among others.

1.2 Measurement Error Models

When covariates are measured with error, characterizing the association of mismeasured

covariates and the underlying covariates is necessary for valid inference; different mea-

surement error mechanisms require different adjustments of naive inference procedures to

account for error effects. In this section, we introduce three widely used measurement error

models, distinguish two measurement error mechanisms, and address four data sources that

help build error models. For a comprehensive overview, we refer to Carroll et al. (2006).
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1.2.1 Measurement Error Models

In the covariate vector Zi(t) = (XT
i , V

T
i (t))T , we let Xi represent time-independent but

error-prone covariates, and Vi(t) be covariates that are precisely measured and possibly

time-dependent. SupposeXi is not observed, but its surrogate measurementWi is collected.

Classical Additive Model

The classical additive measurement error model assumes that

Wi = Xi + εi, (1.4)

where the εi are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite variance matrix Σ0, and are independent of Xi. Often, a multivariate normal

distribution is assumed for εi.

Berkson Model

The Berkson measurement error model has the form

Xi = Wi + εi,

where the εi are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite variance matrix, and are independent of Wi. Often, a multivariate normal distri-

bution is assumed for εi.

Multiplicative Model

The multiplicative measurement error model is given by

Wi = Xiεi,
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where the εi are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite variance matrix Σ0, and are independent of Xi.

The classical additive model (1.4) is perhaps the most popular error model, especially

in modelling covariate measurement error in survival data. However, it is important to

note that the choice of an error model is determined by the data at hand. See Carroll

et al. (2006) for details. When discrete variables are subject to error, it is usually called

a misclassification problem, and error modelling strategies are different from the three

models introduced. Buonaccorsi (2010) provided a detailed treatment for misclassification

problems.

1.2.2 Error Mechanisms

Two error mechanisms: nondifferential error mechanism and differential error mechanism

are often distinguished in survival analysis with covariate measurement error.

Nondifferential error mechanism occurs when Wi is independent of the underlying fail-

ure time Ti and censoring time Ci given the true covariates (XT
i , V

T
i (·))T . Equivalently,

the nondifferential error mechanism means that the distribution of Ti and Ci given Xi,Wi

and Vi(·), does not depend on Wi:

f(ti, ci|xi, wi, vi(·)) = f(ti, ci|xi, vi(·)), (1.5)

where ti, ci, xi, wi and vi(·) are realized values of Ti, Ci, Xi,Wi and Vi(·), respectively. Thus,

the surrogate Wi is noninformative in that it does not contribute information about Ti and

Ci if Xi were known. Measurement error is differential if (1.5) is not true. In this thesis,

we assume the nondifferential error mechanism, as consistent with the treatment done by

most authors.
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1.2.3 Data Sources

We restrict our discussion to the classical additive error model (1.4). If the observed data

only consist of {Ti, Ci,Wi, Vi(·), i = 1, · · · , n} and the error distribution is unknown, then

the error model (1.4) is not identifiable (Fuller 1987). Without additional data sources,

one needs to make a distributional assumption on the error εi, and the corresponding

parameters of this distribution require to be known or estimated by external data. The

distributional assumption may be restrictive, and usually sensitivity analysis is required to

assess the bias on estimation if the assumption is violated. In analysis with measurement

error models, additional data sources are often needed. Here we briefly discuss common

types of those data sources.

Replicated Measurements

Replication data assumes that Xi is repeatedly measured for ni times (ni > 1), resulting

in the surrogates Wir, r = 1, · · · , ni. The classical additive error model (1.4) becomes

Wir = Xi + εir,

where the εir are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite variance matrix Σ0, and are independent of Ni(·), Yi(·), and Zi(·), i = 1, · · · , n; r =

1, · · · , ni. With the replicates Wir, the covariance matrix Σ0 of εir can be consistently

estimated by

Σ̂0 =
n∑
i=1

ni∑
r=1

(Wir − W̄i·)
⊗2/

n∑
i=1

(ni − 1),

where a⊗2 = aaT for a column vector a, and W̄i· =
∑ni

r=1 Wir/ni.

Validation Subsample

When a validation subsample is available, both measurements of Xi and Wi are available

within this subsample. With validation data available, the measurement error problem
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can be treated as a missing data problem as well. The complete structure of measurement

error can be examined by the validation sample, and thus measurement error is relatively

easy to handle in this case. Validation data can be either internal or external. Distinctions

of internal and external data may be found in Carroll et al. (2006, Ch 2.3).

Instrumental Variable

Sometimes a second measurement of Xi, say X̃i, is available from another measurement

method. This variable is called an instrumental variable. To be an instrument, X̃i needs

to be uncorrelated with Ti, Ci, and Wi, given Xi, Vi(·). For the usage of the instrumental

variable, we refer to Carroll et al. (2006, Ch 6).

1.3 Impact of Measurement Error on Parameter Es-

timation

In the presence of measurement error, a naive inference procedure based on the partial

likelihood function (1.2) with Xi replaced by its surrogate Wi leads to biased estimates of

the regression parameters (Prentice 1982).

To demonstrate how measurement error may bias parameter estimation, we conduct

a simple simulation study. We consider a Cox model with a scalar error-prone covariate

Xi: λ(t;Xi) = λ0(t) exp(Xiβ), together with a classical error model Wi = Xi + εi, where

Xi ∼ N(0, 1), the true value of β is 1, and εi ∼ N(0, σ2). We refer the true estimator to

be the partial likelihood estimator from the Cox model with true covariates Xi, and the

naive estimator to be the partial likelihood estimator from the naive Cox model with Xi

replaced by Wi. We vary σ within [0, 2] to reflect different degrees of measurement error.

For each value of σ, we simulate the data for 200 times, and record the empirical averages

of the naive estimator and the true estimator, and plot them in Figure 1.1.
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We see from Figure 1.1 that measurement error tends to bias the naive estimator to

the null. The is the so-called attenuation phenomenon. The rate of the attenuation seem-

s to be faster in small error cases relative to large error cases. When the error is large

in that the reliability ratio (Carroll et al. 2006) σ2
x/(σ

2
x + σ2) < 0.5 with σ2

x representing

the variance of Xi, the bias of the naive estimator relative to the true estimator is over 60%.

Figure 1.1: An illustration of the impact of measurement error on parameter estimation
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In the following, the attenuation phenomenon is confirmed theoretically. Under the

Cox model (1.1) and the nondifferential measurement error assumption, the induce hazard

function (Prentice 1982) based on the observed data is given by

λ(t;Wi) = lim
∆t→0

Pr(Ti ≤ t+ ∆t|Ti ≥ t,Wi)

∆t

= lim
∆t→0

E[Pr(Ti ≤ t+ ∆t|Ti ≥ t,Xi,Wi)|Ti ≥ t,Wi]

∆t

= lim
∆t→0

E[Pr(Ti ≤ t+ ∆t|Ti ≥ t,Xi)|Ti ≥ t,Wi]

∆t

= E

[
lim

∆t→0

Pr(Ti ≤ t+ ∆t|Ti ≥ t,Xi)

∆t

∣∣∣∣Ti ≥ t,Wi

]
= E [λ(t;Xi)|Ti ≥ t,Wi]

= λ0(t)E[exp(XT
i β)|Ti ≥ t,Wi]. (1.6)

It follows that λ(t;Wi) no longer has the proportional hazards structure due to the impact

of measurement error. However, due to the complex form of (1.6), the consequence of

ignoring measurement error is unclear: what would happen if one adopts the naive inference

procedure? Now we discuss this point in detail.

Define the naive estimator β̂nv as the maximizer of the partial likelihood (1.2) with

Xi replaced by Wi, and the asymptotic limit of β̂nv in probability as β∗. Hughes (1993,

formula (8)) and Li and Ryan (2004) presented the relationship of β∗ and β in different

ways. However, it is difficult to quantify the difference between β∗ and β. When some

additional assumptions are made, the effect of measurement error on the relationship of β∗

and β can be explicit or approximately explicit, as illustrated below.

Prentice (1982) made the rare event assumption that Pr(Ti ≥ t) ≈ 1, and showed that

under such an assumption, (1.6) becomes

λ(t;Wi) ≈ λ0(t)E[exp(XT
i β)|Wi]. (1.7)

Thus, assuming that the conditional distribution of Xi, given Wi, is a normal distribution

with mean µw and variance Σw, one can approximately work out an explicit form of λ(t;Wi):

λ(t;Wi) ≈ λ0(t) exp(µTwβ +
1

2
βTΣwβ). (1.8)
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Note that µw and Σw are functions of Wi. Pepe, Self and Prentice (1989) showed that

under the normality assumptions on both of Xi and εi (which imply the normality of Xi

given Wi), µw = µx + Σx(Σx + Σ0)−1(Wi− µx) and Σw is deterministic, and thus (1.8) can

be simplified as

λ(t;Wi) ≈ λ∗0(t) exp{W T
i (Σx + Σ0)−1Σxβ}, (1.9)

where Σx is the variance of Xi, and λ∗0(t) is an unknown deterministic function with an

explicit form. See Augustin and Schwarz (2001) and Li and Ryan (2004) for details.

Thus, the induced hazards function λ(t;Wi) shares the proportional hazards structure

approximately, just as that of λ(t;Xi) in (1.1). However, the regression parameter of

λ(t;Wi) becomes (Σx + Σ0)−1Σxβ, compared to that of λ(t;Xi).

Hughes (1993) demonstrated that

β∗ = (Σx + Σ0)−1Σxβ (1.10)

holds approximately in numerical studies. Li and Ryan (2004, Theorem 1) proved that β̂nv

is a consistent estimator of β∗ = (Σx+Σ0)−1Σxβ as long as the rare event assumption holds.

Consequently, the naive estimator β̂nv based on the observed data is a biased estimator of β.

In particular, when Xi is univariate, it follows immediately that measurement error biases

β̂nv towards to the null, and the level of deviation increases as the degree of measurement

error increased. This is a theoretical justification for the attenuation phenomenon we

observed from Figure 1.1. We note that when the dimension of Xi is great than one,

or some accurately covariates Vi is available, complicated phenomena can happen. For

instance, reverse-attenuation phenomena can arise (Jiang, Turnbull and Clark 1999; Li

and Ryan 2004).
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1.4 Review of Existing Methods on Survival Data with

Measurement Error

Covariate measurement error has long been a concern in survival analysis, and it has

attracted extensive research interest. Since Prentice (1982), a large number of inference

methods have been developed to handle error-prone data. Although discussion on survival

data with measurement error is not restricted to a single type of model, the Cox model

has been the center of existing research. The impact of covariate error is well understood

for the Cox model.

In Section 1.3, we demonstrated how measurement error biases estimation of regression

parameters. In this section, we provide a review of valid inference methods to account for

measurement error effects under various survival models. Specifically, in Section 1.4.1, we

introduce the regression calibration approach, and illustrate how it is motivated from the

bias analysis in Section 1.3. In Sections 1.4.2 and 1.4.3, we present the likelihood and score

based approaches, respectively. In Section 1.4.4, we provide a comprehensive literature

review.

1.4.1 Regression Calibration and Simulation Extrapolation

It follows immediately from the relationship (1.10) that

β̂rc = Σ̂−1
x (Σ̂x + Σ̂0)β̂nv (1.11)

is a deattenuated estimator of β (Pepe, Self and Prentice 1989), where Σ̂x and Σ̂0 are

estimators of Σx and Σ0 obtained from a validation sample or replication data or other

data sources. This deattenuation procedure, however, requires the assumption that both

of Xi and εi are normally distributed.

Without making a distributional assumption on Xi or εi, λ(t;Wi) still has the approx-

imate expression (1.7). Applying the first-order Taylor expansion (e.g., Liao et al. 2011)

18



to the cumulant generating function of Xi|Wi , i.e., log(E[exp(XT
i β)|Wi]), (1.7) becomes

λ(t;Wi) ≈ λ∗∗0 (t) exp(µTwβ), (1.12)

where µw = E[Xi|Wi] is the so-called calibration function, which plays a central role in

the regression calibration approach. The idea of the regression calibration approach is

to replace µw in (1.12) by its estimated version, say µ̂w. A standard partial likelihood

procedure is then carried out based on the working model (1.12), and the resultant working

partial likelihood estimator is the so-called regression calibration estimator. A common

choice of µ̂w, derived by the best linear approximation approach (Carroll et al. 2006),

has the expression µ̂w = µx + Σx(Σx + Σ0)−1(Wi − µx). Correspondingly, (1.12) with µw

replaced by µ̂w is identical to (1.9), and the regression calibration estimator is identical to

(1.11).

Clayton (1992), Wang et al. (1997), Xie, Wang and Prentice (2001), Liao et al. (2011),

and Shaw and Prentice (2012) further extended the ordinary regression calibration ap-

proach for various contexts. In particular, Clayton (1992) and Xie, Wang and Prentice

(2001) proposed the risk set calibration approach, which drops the rare event assumption

by recalibrating within each risk set. Liao et al. (2011) extended the risk set calibration

approach to the internal/external time-varying covariates situation, which is a computa-

tionally effective alternative to the common joint model strategies (e.g., Tsiatis and Da-

vidian 2004). Shaw and Prentice (2012) developed the risk set calibration approach under

a general measurement error model proposed by Prentice et al. (2002).

The simulation-extrapolation (SIMEX) approach (Cook and Stefanski 1994; Stefanski

and Cook 1995; Carroll et al. 1996) is another popular approximate method that reduces

bias in parameter estimation. Normality of the error term εi with known variance is typi-

cally assumed when applying the SIMEX approach, or this assumption could be removed if

replication data is available. The general idea of SIMEX is to study the impact of various

degrees of measurement error on the estimation procedure. To be specific, for fixed ξ > 0

and a specified large number B, create

Wi(ξ, b) = Wi +
√
ξεib, b = 1, · · · , B,
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where εib ∼ N(0,Σ0) are generated independently and are independent of Wi. Thus the

variance of Wi(ξ, b) is inflated to (1 + ξ)Σ0. Substitute Wi(ξ, b) into (1.2), and denote

by β̂nv(ξ, b) the maximizer of the corresponding naive partial likelihood. Let β̂nv(ξ) =

B−1
∑B

b=1 β̂nv(ξ, b). Repeat this procedure by varying ξ within a set of pre-determined val-

ues 0 < ξ1 < · · · < ξM , then fit a regression model to the data {(ξr, β̂nv(ξr)), r = 1, · · · ,M}.
The final step is to extrapolate the fit of the model to the case ξ = −1, that is, to track

back the trend of the estimators under the M scenarios of different degrees of measure-

ment error, and thus obtain an estimator β̂nv(−1), called the SIMEX estimator, under the

scenario of no measurement error. See Carroll et al. (2006, Ch 5) for a comprehensive

introduction.

The regression calibration and SIMEX approaches are advantageous since they are easy

to use and reduce bias induced by measurement error considerably. Both approaches are

developed for various survival models; we defer the review to Section 1.4.4.

1.4.2 Likelihood-Based Methods

In this section, we first introduce a semiprametric likelihood method proposed by Hu, Tsi-

atis and Davidian (1998). Under the nondifferential error assumption and the measurement

error model (1.4), Hu, Tsiatis and Davidian (1998) proposed the full likelihood based on

the observed data:

L(β, λ0) =
n∏
i=1

[∫
{λ0(Si) exp(xTβ)}δi exp

{
−
∫ Si

0

λ0(u) exp(xTβ)du

}
fW |X(Wi|x)fX(x)dx

]
,

(1.13)

where fW |X(w|x) is the conditional density of the surrogate Wi given Xi, and fX(x) is the

marginal density of the true covariate Xi. Hu, Tsiatis and Davidian (1998) assumed that

λ0(t) has point mass only at the death times, and thus they essentially used the profile

likelihood approach (Murphy and van der Vaart 2000). In the absence of measurement

error, we illustrated in Section 1.1.2 that maximizing the product of the integrand inside
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(1.13) leads to a regression parameter estimator which is identical to the partial likelihood

estimator, and a cumulative hazards estimator which is identical to the Breslow estimator.

The conditional density fW |X(w|x), or the density of εi, is assumed to be known. The

covariate distribution structure fX(x) is treated by parametric, nonparametric and semi-

parametric methods. The EM algorithm is adopted to maximize this profile likelihood

and the asymptotic variance of the regression parameter estimator is estimated by a spe-

cial profile likelihood procedure. Dupuy (2005) provided a rigorous justification of this

semiprametric likelihood approach using the modern semiparametric theory (Bickel et al.

1993) and the weak convergence theory (van der Vaart and Wellner 1996). Wen (2010) pro-

posed an alternative full likelihood approach with a different factorization of the likelihood

function.

Yi and Lawless (2007) did not use the factorization in (1.13). Instead, they extended the

corrected likelihood method by Nakamura (1990) for generalized linear models. Let `(β, λ0)

be the log likelihood based on the model linking the reponse with the true covariates. Yi

and Lawless (2007) proposed to find a corrected log likelihood function `∗(β, λ0) based on

the observed data such that

EW |X [`∗(β, λ0)] = `(β, λ0), (1.14)

where EW |X represents the expectation evaluated under the conditional distribution of Wi

given Xi. Yi and Lawless (2007) imposed a piecewise constant structure on the base-

line hazard function λ0(t). Thus, by the regular estimating function theory, solving the

derivative of `∗(β, λ0) typically leads to a consistent regression parameter estimator and a

consistent cumulative hazard estimator.

Yi and Lawless (2007) proposed to use

`∗(β, λ0) =
n∑
i=1

δi{log λ0(Si) +W T
i β} −

(
E[exp(εTi β)]

)−1
∫ Si

0

λ0(u) exp(W T
i β)du,

which satisfies (1.14). The distribution of εi is assume to be known or well estimated, so

that the expression of the moment generating function E[exp(εTi β)] is known.
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Alternatively, Zucker (2005) adopted a pseudo partial likelihood approach. He con-

structed a pseudo partial likelihood by mimicking the standard partial likelihood procedure

(Cox 1975) and replacing the hazard function (1.1) with the induced hazard function (1.6).

This procedure gives the pseudo partial likelihood as

L∗p(β, λ0) =
n∏
i=1

[
E[exp(XT

i β)|Ti ≥ si,Wi]∑
{j:sj≥si}E[exp(XT

j β)|Tj ≥ si,Wj]

]δi
, (1.15)

where si is the observed version of Si. Note that the pseudo partial likelihood involves

the baseline hazard function λ0 through the conditional expectation E[exp(XT
i β)|Ti ≥

t,Wi]. Zucker (2005) adapted the profile likelihood approach (Murphy and van der Vaart

2000), and used an iterative procedure to estimate the cumulative induced hazard function

consistently. The estimated cumulative induced hazard function is then plugged into (1.15),

and maximized to obtain a consistent parameter estimator. A major advantage of this

pseudo partial likelihood procedure is that it is not restricted to the classical measurement

error model (1.4). However, the density of Xi given Wi needs to be known or properly

estimated.

1.4.3 Estimating Equation Methods

Rather than finding a “corrected” log likelihood function `∗(β, λ0) to satisfy (1.14), Naka-

mura (1992) aimed at finding a corrected score function U∗(β) based on the observed data

such that

EW |X [U∗(β)] = U(β), (1.16)

where U(β) is the partial score function defined in (1.3). The estimating function theory

usually guarantees the solution of (1.3) is consistent of β, although extra care is needed

since the baseline hazard λ0(t) is unspecified and thus semiparametric theory is needed.

By a first-order Taylor expansion, Nakamura (1992) showed that

U∗(β) =
n∑
i=1

∫ τ

0

[
Wi(t)−

∑n
j=1 Yj(t)Wj(t) exp{W T

j (t)β}∑n
j=1 exp{W T

j (t)β}
+ Σ0β

]
dNi(t) (1.17)
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satisfies (1.16) under the normality assumption of εi. Solving (1.17) leads to Nakamura

(1992)’s corrected score estimator of β. In addition, he proposed a second-order Tay-

lor series expansion to obtain an improved estimator. Kong and Gu (1999) justified the

asymptotic property of the corrected score estimator by Nakamura (1992) using standard

asymptotic arguments of Andersen and Gill (1982). Hu and Lin (2002, 2004), and Song

and Huang (2005) further extended the corrected score methods to various settings, replac-

ing the normality assumption of εi with the availability of replicated measurements or a

validation sample. Augustin (2004) showed that the corrected score method by Nakamura

(1992) could be viewed as a corrected Breslow likelihood method (Breslow 1972, 1974) by

assuming a piecewise constant hazard function.

Assuming replicated measurements for Xi are available, Huang and Wang (2000) devel-

oped a nonparametric correction method. One drawback of this method is that it can not

make use of subjects that have a single measurement. Song and Huang (2005) demonstrat-

ed that the nonparameric correction method by Huang and Wang (2000) could be viewed

as an approximate version of the corrected score method, and improved the nonparameric

correction method in that the information of subjects that have a single measurement is

included in the inference procedure. Song and Huang (2005) also proposed the conditional

score method by modifying the inference procedures developed by Tsiatis and Davidian

(2001) and Song, Davidian and Tsiatis (2002), and showed that it had better performance

than the corrected scored method in numerical studies.

Alternatively, the unbiased score functions by Buzas (1998) were constructed in a dif-

ferent way from (1.16), under the assumption that Σ0 is known and the distribution of εi

is symmetric but not necessarily normal. Zhou and Pepe (1995), Kong (1999), Zhou and

Wang (2000), Wang and Pepe (2000), Chen (2002), and Li and Ryan (2006) developed

other correction methods based on the score function of the Cox model.
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1.4.4 Additional Literature Review

In this section, we consider various extensions of methodologies to handle more complex

event history data, including recurrent event, multivariate failure time, and clustered data.

Other survival models, including the additive hazards model and the accelarated failure

time model, may better fit or explain the data at hand. In practise, the classical additive

measurement error model (1.4) is assumed mainly because of its simplicity or the lack of

data that can be used to construct a proper measurement error model.

There are some methods on additive hazards model with additive measurement error.

Kulich and Lin (2000) used the corrected score approach with a complicated measurement

error model when validation data are available. Sun, Zhang and Sun (2006), Sun and

Zhou (2008), and Sun, Song and Mu (2012) extended the nonparametric correction method

of Huang and Wang (2000), the bias-reduction method of Kong (1999), and the pseudo

partial likelihood method of Zucker (2005), respectively. He, Yi and Xiong (2007) and

Yi and He (2012) explored the SIMEX method under the accelarated failure time model

and the proportional odds model, respectively. Cheng and Wang (2001) considered linear

transformation models, which included the proportional odds model as a special case. Ma

and Yin (2008) discussed the cure rate model.

In the presence of measurement error, Turnbull, Jiang and Clark (1997) and Jiang,

Turnbull and Clark (1999) proposed parametric and semiparametric approaches to handle

recurrent event data with random effects. Hu and Lin (2004) and Yi and Lawless (2007)

extended their methods developed in the survival settings to the recurrent event cases.

In the context of clustered survival data, Li and Lin (2000) considered a frailty model

with normal covariates and errors. They conducted bias analysis to reveal the relationship

between the true parameter and the limit of the naive estimator. Li and Lin (2000)

proposed a profile likelihood for parameter estimation. Li and Lin (2003) relaxed the

distributional assumption on covariates while assuming the errors are normally distributed

and replicated measurements are available. They adopted the SIMEX method without

specifying the baseline hazard function.
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Gorfine, Hsu and Prentice (2003) considered a setting for bivariate survival data. They

showed that measurement error seriously biased the estimation of the dependence param-

eter when one adopted a naive full likelihood approach assuming a marginal Cox model,

along with a Copula model to capture the dependence within paired correlated failure time

data. They proposed a second-order Taylor expansion to correction the bias. Yi and He

(2006) considered bivariate survival data under a marginal accelerated failure time models

with covariate error.

For stratified data where different baseline hazards are assumed for different strata,

Gorfine, Hsu and Prentice (2004) pointed out that direct extensions of the corrected score

method and the nonparametric correction method of Huang and Wang (2000) by adopting

the marginal modelling method (Wei, Lin and Weissfeld 1989) usually performed poorly.

They modified the risk set calibration method of Xie, Wang and Prentice (2001) to obtain

an estimator that has satisfactory numerical performance. In particular, they proposed

an unbiased nonparametric corrected estimator by adopting the idea of Huang and Wang

(2001) using weighted estimating equations. Greene and Cai (2004) extended the bias

analysis technique of Hughes (1993) to stratified data, and proposed to use the SIMEX

method to obtain bias-adjusted estimators.

Recently, there is increasing interest in flexible but more complex measurement error

models, instead of the classical measurement error model (1.4). Examples can be found in

Kulich and Lin (2000), Li and Ryan (2004), Wang (2008), and Shaw and Prentice (2012).

In addition, Kuchenhoff, Bender and Langner (2007) considered additive and multi-

plicative Berkon error models for parameter estimation under the Cox model. Liao et

al. (2011) developed an extension of the additive Berkon error model with time varying

covariates, and proposed a modified risk set calibration method. When the covariates are

discrete, the additive error model (1.4) is generally not adequate. Zucker and Spiegelman

(2004) constructed an estimator based on Kaplan-Meier estimators. Zucker and Spiegel-

man (2008) extended the corrected score approach to this setting.

Finally, we point out that some topics are not covered in our literature review here.
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For example, we do not mention Bayesian analysis with measurement error (e.g., Cheng

and Crainiceanu 2009).

1.5 Outline of the Thesis

In the previous two sections, we gave a review of bias analysis and existing methods

for event history data with covariate measurement error. Although a large body of the

literature is available on survival data analysis with covariate measurement error, many

issues are overlooked or relatively less explored. In this thesis, we will look into several

important problems.

Since Prentice (1982), a large number of inference methods have been developed to

handle error-prone data that are modulated with the Cox model. However, similarity and

difference among the existing methods are rarely studied. In Chapter 2, we propose the

corrected profile likelihood approach, and show that some available methods can be unified

within our inference framework. Our derivation of the corrected profile likelihood sheds

light on understanding existing methods which are derived from different techniques which

may be more mathematically involved. In addition, we use these results to construct

consistent estimators under error models that are more general than the classical error

model, a model frequently used in practice.

Hypothesis testing is rarely studied in the literature for survival models in the presence

of covariate measurement error. Furthermore, no work seems available to study the impact

of misspecifying error models. In Chapter 3, we investigate these important problems. We

proposed corrected score and Wald tests under Cox models with mismeasured covariates

and study their validity and efficiency properties. Results of the impact of misspecification

on parameter estimation and hypothesis testing are provided.

Another issue that is ignored in the literature is the validity of the assumptions of the

survival models with covariate measurement error. In Chapter 4, we address the issue of

checking the Cox model assumptions with mismeasured covariates.
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In contrast to proportional hazards models, additive hazards models offer a flexible

tool to delineate survival processes. However, there is little research on measurement error

effects under additive hazards models. In Chapter 5, we systematically investigate this

important problem. New insights of measurement error effects are revealed, as opposed

to well-documented results for proportional hazards models. In particular, we explore

asymptotic bias of ignoring measurement error in the analysis. To correct for the induced

bias, we develop a class of functional correction methods for error effects to exemplify the

unique features of additive hazards models. The validity of the proposed methods is care-

fully examined, and issues of model checking and model misspecification are investigated.

Theoretical results are rigorously established, complemented by numerical assessments.

In many clinical studies, high dimensional risk factors are collected and included in the

data analysis procedure, and some risk factors may suffer from measurement error. There

exists little work on variable selection and estimation for high dimensional survival models

with measurement error. In Chapter 6, we propose corrected penalized methods to adjust

for measurement error, and show that the proposed methods are suitable for estimation

and variable selection theoretically. We illustrate their performance through simulation

studies and real data analysis.

A summary of this thesis is included in Chapter 7.
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Chapter 2

Corrected Profile Likelihood for Cox

Model with Covariate Measurement

Error

2.1 Introduction

The Cox proportional hazards model (Cox 1972) features that covariates have multiplica-

tive effects on the hazard ratio, and leaves the temporal effects indicated by the baseline

hazard function. This model is perhaps the most widely used model for survival data

analysis. Inferences under this model have been commonly conducted based on the partial

likelihood approach (Cox 1975) for which the baseline hazard function is left unattended

to. An alternative approach, developed by Murphy and van der Vaart (2000), has received

far less attention although it is more intuitive and convenient to estimate the regression

parameters and the baseline hazard function simultaneously.

Although the Cox model has proven to be useful for survival analysis, inferences under

this model are frequently challenged by the complexity of data. Covariate measurement

error is a ubiquitous phenomenon occurring in clinical trials and observational studies. For
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example, in AIDS studies, CD4 lymphocyte counts are an important biomarker, but they

are measured with unignorable error due to biological variability and measurement proce-

dures. As illustrated by Prentice (1982), simply ignoring measurement error in covariates

would normally result in substantially biased results. Consequently, many correction meth-

ods have been proposed to handle covariate measurement error under the Cox model. For

instance, Prentice (1982), Pepe, Self and Prentice (1989), and Wang et al. (1997) proposed

the regression calibration approach; Li and Lin (2003) explored the simulation extrapola-

tion (SIMEX) approach; and Li and Ryan (2004) proposed a bias corrected estimator under

the Cox model. These approaches can effectively reduce bias in many settings, although

they cannot produce exactly consistent estimators.

In contrast, methods that yield consistent estimators have been developed, and they

can be broadly classified into two categories: likelihood-based and score-based methods.

For example, Hu, Tsiatis and Davidian (1998) developed a full likelihood approach under

the assumption that measurement error is normal, and Augustin (2004) and Yi and Lawless

(2007) extended the corrected likelihood approach of Nakamura (1990) to the Cox model.

In particular, Yi and Lawless (2007) used a weakly parametric method to model the base-

line hazard function. Likelihood-based methods typically require attention to handle the

baseline hazard function when introducing corrections to adjust for measurement error ef-

fects. On the other hand, score-based methods focus on inducing corrections to the partial

likelihood or partial likelihood score functions. Such methods are attractive in the sense

that the baseline hazard function is left unattended to. Specifically, Zucker (2005) proposed

a pseudo partial likelihood approach, and Nakamura (1992) developed a corrected score

approach under the normality assumption of the errors. With replication data, Huang and

Wang (2000) developed a nonparametric correction method to modify the partial score

function. Hu and Lin (2002, 2004) developed semiparametric regression approaches for

cases with replicated measurements or validation data. Song and Huang (2005) provided

refinements of the method by Huang and Wang (2000) and proposed conditional score

approaches. Li and Ryan (2006) proposed a imputation-based score approach.

Those existing methods are useful in correcting for measurement error effects for error-
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contaminated survival data. However, their derivations and theoretical properties are

established very differently; many of them are considerably mathematically involved.

Those complex details somehow obscure the intrinsic connections among various meth-

ods. It is the goal of this chapter to explore this problem. We develop a general strategy

to correct for covariate measurement error under the Cox model. Our method pertains, in

principle, to the profiling method by Murphy and van der Vaart (2000) while the technical

details are different. There are several important implications of our method. Notably, it

supplies a unified framework into which many existing methods can be embedded. More-

over, in contrast to some existing methods that can only produce approximately consistent

estimators, our method can yield exactly consistent estimators under general measurement

error models, and asymptotic results of the resultant estimators are established rigorously.

We also extend our results to the Berkson error model. To explore the problem in depth,

we investigate the impact of model misspecification of the measurement error process; this

research receives little attention in the literature. Our study uncovers interesting findings.

The remainder is organized as follows. In Section 2.2, we introduce the basic model

setup. A brief review of some existing methods is included in Section 2.3. In Section 2.4,

we propose the corrected profile likelihood approach under general regression measurement

error models, and show that those existing methods can be unified by this approach.

Simulation studies and a data analysis are reported in Section 2.5. Concluding discussion

is provided in the last section.

2.2 Notation and model setup

Let Ti be the failure time, Ci be the censoring time, and Zi be a vector of time-independent

covariates, i = 1, · · · , n. As common in practise, the independent censoring mechanism

(Lawless 2003) is assumed. Suppose all the individuals are observed over a common time

interval [0, τ ], where 0 < τ < ∞. Let Si = min(Ti, Ci), and δi = I(Ti ≤ Ci). Let

Ni(t) = I(Si ≤ t, δi = 1) be the number of observed failures for the ith subject up to and
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including time t, and Yi(t) = I(Si ≥ t) indicate whether the ith subject is at risk of failure

at time t−. Let Ft = σ{Ni(s), Yi(s
+), Zi, 0 ≤ s ≤ t, i = 1, · · · , n} be the σ− field generated

by the observed event and covariates histories prior to time t for all subjects. Suppose Ti

is continuous and there are no ties in the observed event times s1, · · · , sn, i.e., the realized

values of S1, · · · , Sn, respectively.

2.2.1 Cox model

We consider that the hazard function of Ti is related to Zi through the Cox model (Cox

1972)

λ{t;Zi(t)} = λ0(t) exp(ZT
i β), (2.1)

where λ0(·) is the baseline hazard function, and β is a vector of unknown regression pa-

rameters. Let Λ0(t) =
∫ t

0
λ0(u)du. Inference about the regression parameter β is typically

based on the partial likelihood (Cox 1975):

Lp(β) =
n∏
i=1

[
exp(ZT

i β)∑
{j:sj≥si} exp(ZT

j β)

]δi
. (2.2)

Maximizing Lp(β) with respect to β leads to the partial likelihood estimator β̂ of β. Al-

ternatively, β̂ can be obtained by solving the partial score function Up(β) = 0, where

Up(β) =
∂log{Lp(β)}

∂β
=

n∑
i=1

δi

[
Zi −

∑
{j:sj≥si} Zj exp(ZT

j β)∑
{j:sj≥si} exp(ZT

j β)

]
. (2.3)

The partial likelihood method is advantageous in that the baseline hazard function λ0(t)

is left unspecified, thus protecting us from obtaining invalid results about β when λ0(t) is

mismodeled.

Alternatively, inference on β can be carried out using the profile likelihood approach

developed by Murphy and van der Vaart (2000). The key idea is to restrict the baseline

cumulative function Λ0(t) to the jumps only at s1, · · · , sn, and to treat the sizes of these
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jumps, say Λ0{s1}, · · · ,Λ0{sn}, as unknown parameters, together with the parameter β.

Then the full likelihood becomes

L(β,Λ0) =
n∏
i=1

[
exp(ZT

i β)Λ0{si}
]δi

exp

− ∑
{j:sj≤si}

exp(ZT
i β)Λ0{sj}

 , (2.4)

yielding the log likelihood

`(β,Λ0) =
n∑
i=1

δi [ZT
i β + log Λ0{si}

]
−

∑
{j:sj≤si}

exp(ZT
i β)Λ0{sj}

 . (2.5)

It is immediate that the likelihood score functions are

∂`(β,Λ0)

∂Λ0{si}
=

δi
Λ0{si}

−
∑

{j:sj≥si}

exp(ZT
j β), i = 1, · · · , n, (2.6)

and
∂`(β,Λ0)

∂β
=

n∑
i=1

δiZi − ∑
{j:sj≤si}

Zi exp(ZT
i β)Λ0{sj}

 . (2.7)

For a given value of β, setting (2.6) to be zero gives the solution:

Λ̂0{si} =
δi∑

{j:sj≥si} exp(ZT
j β)

, i = 1, · · · , n, (2.8)

which is identical to the usual Breslow estimator (Breslow 1972). Replacing Λ0{si} in (2.4)

with the solution (2.8) yields the profile likelihood for the β parameter:

Lprof (β, Λ̂0) = exp

(
−

n∑
i=1

δi

)
n∏
i=1

[
exp(ZT

i β)∑
{j:sj≥si} exp(ZT

j β)

]δi
.

It is seen that this profile likelihood is identical to the partial likelihood (2.2) up to a

constant. In addition, we note that the partial likelihood score function (2.3) is identical

to what is resulted from plugging (2.8) into (2.7). Thus, the profile likelihood estimator of

the regression coefficient β is the same as the partial likelihood estimator β̂.
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2.2.2 Measurement error models

Suppose that some covariates are subject to measurement error. We write Zi as Zi =

(XT
i , V

T
i )T , where Vi is a subvector of precisely observed covariates, and Xi includes error-

prone covariates. Suppose the dimension of Vi is q, and Xi is univariate for ease of expo-

sition. Extensions to accommodating multiple dimensions of Xi are straightforward. Let

Wi be a surrogate measurement of Xi. Write β = (βx, β
T
v )T so that βx and βv correspond

to Xi and Vi, respectively. We consider three useful scenarios of the measurement error

process.

In Scenario A, the measurement error model is specified as

Wi = γ0 +Xiγx + V T
i γv + εi, i = 1, · · · , n, (2.9)

where the error terms εi, i = 1, · · · , n are independent and identically distributed and are

independent of Ni(·), Yi(·), and Zi, and the distribution of εi is assumed known. The

regression coefficients γ0, γx, and γv are assumed known in order to highlight the ideas of

the inference methods accounting for error effects. Let η0(βx) = E{exp(εiβx)}, η1(βx) =

E{εi exp(εiβx)}, and D(βx) = η−1
0 (βx)η1(βx). If εi is assumed to be normal with variance

σ2
0, then D(βx) = σ2

0βx.

Scenario B relaxes the requirements of (2.9), but an external validation sample {(Wi, Xi, Vi) :

i ∈ V} is available in addition to the data {(Si, δi,Wi, Vi) : i ∈ M} in the main study.

Specifically, we assume

Wi = γ0 +Xiγx + V T
i γv + εi, i ∈M∪ V , (2.10)

where γ0, γx, and γv are unknown regression coefficients, the error terms εi, i = 1, · · · , n
are independent and identically distributed and are independent of Ni(·), Yi(·), and Zi, and

the distribution of εi is left unspecified. Let n and m be the size ofM and V , respectively.

Assume that ρ = limn→∞m/n exists.

Scenario C describes a different situation where Xi is repeatedly measured ni times by
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the surrogates Wir(r = 1, · · · , ni):

Wir = γ0 +Xiγx + V T
i γv + εir, i = 1, · · · , n; r = 1, · · · , ni, (2.11)

where the distribution of εir is left unspecified, but we follow the convention to assume that

the error terms εir are independent and identically distributed with mean 0 and an unknown

variance σ2
0, and are independent of Ni(·), Yi(·), and Zi. The regression coefficients γ0, γx

and γv are assumed known as in Scenario A. With replicates Wir, a consistent estimate of

σ2
0 is given by

σ̂2
0 =

∑n
i=1

∑ni
r=1(Wir − W̄i·)

2∑n
i=1(ni − 1)

,

where W̄i· =
∑ni

r=1Wir/ni. Let η0(βx) = E{exp(εirβx)}, η1(βx) = E{εir exp(εirβx)}, and

D(βx) = η−1
0 (βx)η1(βx).

Let Ẑi = (Wi, V
T
i )T denote the observed covariates for Scenarios A and B, and let

Ẑir = (Wir, V
T
i )T and Ẑi = (W̄i·, V

T
i )T for Scenario C.

We comment that Scenario B imposes least assumptions on the error model (2.10).

This gives us great flexibility to postulate the measurement error process. This flexibility

is possible at the cost of requiring “better” data in the sense that a validation subsample

is available. The availability of a validation subsample enables us to estimate the model

parameters γ0, γx, and γv, as well as understand the error distribution. When there are

no validation data, model parameters may be nonidentifiable or inestimable. To overcome

this problem, parameters γ0, γx, and γv in Scenarios A and C are assumed known. This

assumption may appear restrictive at the first sight, but it is useful in accommodating

models which are widely used in the literature. For example, when γ0 = 0, γx = 1, and

γv = 0, then the error model (2.9) reduces to the widely used classical additive error model

(Carroll et al. 2006)

Wi = Xi + εi, i = 1, · · · , n. (2.12)

When γ0 = 0, γx = 1, and γv = 0, then model (2.11) reduces to the error model considered

by many authors (e.g., Huang and Wang 2000)

Wir = Xi + εir, i = 1, · · · , n; r = 1, · · · , ni. (2.13)
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2.3 Brief review of existing methods

In this section, we briefly describe the methods proposed by Nakamura (1992), Huang

and Wang (2000), Hu and Lin (2002, 2004), Song and Huang (2005), and Yi and Lawless

(2007). These methods are developed under the Cox model with covariate measurement

error modeled by the classical error models (2.12) or (2.13), which are special cases of

Scenarios A-C.

2.3.1 Corrected score approach by Nakamura (1992) and Song

and Huang (2005)

Under the Cox model (2.1) and the classical error model (2.12) in Scenario A, Nakamura

(1992) applied the first-order Taylor expansion for the partial score function (2.2), and

obtained that

E

{∑
{j:sj≥si} Ẑj exp(ẐT

j β)∑
{j:sj≥si} exp(ẐT

j β)

∣∣∣∣∣Fτ
}
≈
∑
{j:sj≥si} Zj exp(ZT

j β)∑
{j:sj≥si} exp(ZT

j β)
+

(
σ2

0βx

0

)
.

As a result, Nakamura (1992) proposed the so-called corrected score functions

UNaka(β) =
n∑
i=1

∫ τ

0

{
Ẑi(t)−

∑n
j=1 Yj(t)Ẑi exp(ẐT

j β)∑n
j=1 Yj(t) exp(ẐT

j β)
+

(
σ2

0βx

0

)}
dNi(t). (2.14)

Nakamura (1992) showed that when σ2
0β

2
x is small, E[UNaka(β)|Fτ ] ≈ Up(β), and thus

E[UNaka(β)] ≈ 0, indicating that UNaka(β) are approximately unbiased. Solving (2.14)

gives a consistent estimator of β.

With replicated data Wij which are modeled by the additive error model (2.13) in

Scenario C, Song and Huang (2005) extended the corrected score method of Nakamura

(1992) and proposed the corrected score function

USH(β) =
n∑
i=1

∫ τ

0

{
Ẑi(t)−

∑n
j=1 Yj(t)n

−1
j

∑nj
r=1 Ẑjr exp(ẐT

jrβ)∑n
j=1 Yj(t)n

−1
j

∑nj
r=1 exp(ẐT

jrβ)
+

(
D̂SH(βx)

0

)}
dNi(t),

(2.15)
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where

D̂SH(βx) =

∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=s (Wir −Wis) exp(Wirβx)∑n
i=1 I(ni > 1)n−1

i

∑ni
r=1 exp(Wirβx)

is a consistent estimator of D(βx). Solving (2.15) gives a consistent estimator of β.

2.3.2 Semiparametric regression method by Hu and Lin (2002,2004)

When there are replicated data Wij and the additive error model (2.13) in Scenario C

holds, Hu and Lin (2004) observed that

E{exp(ẐT
irβ)|Zi} = η0(βx) exp(ZT

i β),

and E{Ẑir exp(ẐT
irβ)|Zi} = η0(βx)Zi exp(ZT

i β) + exp(ZT
i β)

(
η1(βx)

0

)
.

Assuming that the error distribution is symmetric, Hu and Lin (2004) proposed to estimate

η0(βx) and η1(βx) by

η̂0(βx) =

[∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=s exp {(Wir −Wis)βx}∑n
i=1 I(ni > 1)

]1/2

,

and η̂1(βx) =

∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=s(Wir −Wis) exp {(Wir −Wis)βx}
2η̂0(βx)

∑n
i=1 I(ni > 1)

,

respectively. Consequently, Hu and Lin (2004) proposed the estimating functions

UHL(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

S
(1)
HL(β, t)

S
(0)
HL(β, t)

}
dNi(t), (2.16)

where S
(k)
HL(β, t) = n−1

∑n
i=1 Yi(t)R

(k)
HL,i(β), k = 0, 1, R

(0)
HL,i(β) = η̂−1

0 (βx)n
−1
i

∑ni
r=1 exp(ẐT

irβ),

R
(1)
HL,i(β) = η̂−1

0 (βx)n
−1
i

∑ni
r=1 exp(ẐT

irβ){Ẑir−(D̂HL(βx), 0
T )T}, and D̂HL(βx) = η̂−1

0 (βx)η̂1(βx).

Solving (2.16) gives a consistent estimator of β.

Hu and Lin (2002) considered a validation subsample scenario that is slightly different

from Scenario B. They assumed a validation sample {(Si, δi,Wi, Xi, Vi) : i ∈ V} is available
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in addition to the data in the main study. The measurement error model assumes the form

(2.10) with γ0 = 0, γx = 1, and γv = 0. Let ξi = 1 if the subject i is in V , and 0 otherwise.

Let η̂HL2,k(βx) = m−1
∑

i∈V ε
k
i exp(βxεi) be a consistent estimators of ηk(βx), k = 0, 1.

Similar to Hu and Lin (2004), Hu and Lin (2002) developed the estimating functions

UHL2(β) =
∑

i∈M∪V

∫ τ

0

{
ξiZi + ξ̄iẐi −

S
(1)
HL2(β, t)

S
(0)
HL2(β, t)

}
dNi(t), (2.17)

where ξ̄i = 1− ξi, S(k)
HL2(β, t) = (n+m)−1

∑
i∈M∪V Yi(t)R

(k)
HL2,i(β), k = 0, 1,

R
(0)
HL2,i(β) = ξi exp(ZT

i β) + ξ̄iη̂
−1
HL2,0(βx) exp(ẐT

i β),

R
(1)
HL2,i(β) = ξiZi exp(ZT

i β) + ξ̄iη̂
−1
HL2,0(βx) exp(ẐT

i β){Ẑi − (D̂HL2(βx), 0
T )T},

and D̂HL2(βx) = η̂−1
HL2,0(βx)η̂HL2,1(βx).

Solving (2.17) gives a consistent estimator of β, provided suitable regularity conditions.

2.3.3 Nonparametric correction method by Huang and Wang

(2000)

When there are replicated data Wij and the additive error model (2.13) under Scenario C

holds, Huang and Wang (2000) observed that for any r 6= s,

E
{
Ẑir exp(ẐT

isβ)|Zi
}

= Zi exp(ZT
i β).

Using the empirical process techniques, Huang and Wang (2000) proposed the estimating

functions

UHW (β) =
n∑
i=1

∫ τ

0

[
n−1
i

ni∑
r=1

Ẑir −
∑n

i=1 Yi(t)n
−1
i (ni − 1)−1

∑
r 6=s;ni>1 Ẑir exp(ẐT

isβ)∑n
i=1 Yi(t)n

−1
i

∑ni
r=1 exp(ẐT

irβ)

]
dNi(t).

(2.18)

Solving (2.18) gives a consistent estimator of β, provided certain regularity conditions are

met.
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2.3.4 Corrected likelihood method by Yi and Lawless (2007)

Under the additive error model (2.12) in Scenario A, Yi and Lawless (2007) extended the

corrected likelihood method by Nakamura (1990) to the Cox model, and proposed the

corrected log likelihood

`c(β,Λ0) =
n∑
i=1

δi {ẐT
i β + log Λ0(si)

}
− η−1

0 (βx)
∑

{j:sj≤si}

exp(ẐT
i β)Λ0(sj)

 .
The corrected log likelihood `c(β,Λ0) is unbiased for the log likelihood

`(β,Λ0) =
n∑
i=1

δi {ẐT
i β + log Λ0(si)

}
−

∑
{j:sj≤si}

exp(ẐT
i β)Λ0(sj)

 ,
in the sense that

E[`c(β,Λ0)|Fτ ] = `(β,Λ0). (2.19)

With Λ0(t) modelled by a piecewise constant function, Yi and Lawless (2007) showed that

under certain regularity conditions, maximizing `c(β,Λ0) gives consistent estimators of β

and Λ0.

2.4 Corrected profile likelihood approach

Existing methods that handle survival data with measurement error are often developed

under the classical error models (2.12), (2.13), or Scenario B with γ0 = 0, γx = 1, and

γv = 0. These models can be restrictive in application. In this section we consider broader

classes of measurement error models which are specifically featured by Scenarios A, B, or

C. We propose corrected profile likelihood methods to account for measurement error.

2.4.1 Method for Scenario A

We first consider the special error model (2.12) under Scenario A. Unlike Yi and Lawless

(2007) who used a weakly parametric method to model the baseline hazard function, we
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take a different perspective to feature the baseline hazard function. Specifically, we adapt

the profile likelihood method outlined in Section 2.2.1, with Λ0(si), i = 1, · · · , n treated

as parameters along with the regression parameter β. We propose the the corrected log

profile likelihood

`c(β,Λ0) =
n∑
i=1

δi {ẐT
i β + log Λ0{si}

}
− η−1

0 (βx)
∑

{j:sj≤si}

exp(ẐT
i β)Λ0{sj}

 , (2.20)

where Λ0{t} is the size of the jump at t of Λ0(t), t ∈ [0, τ ]. It is clear that `c(β,Λ0) is unbi-

ased for the log likelihood `(β,Λ0) defined in (2.5) in the sense of (2.19). Correspondingly,

the corrected profile score functions are given by

∂`c(β,Λ0)

∂Λ0{si}
=

δi
Λ0{si}

− η−1
0 (βx)

∑
{j:sj≥si}

exp(ẐT
j β), i = 1, · · · , n, (2.21)

and
∂`c(β,Λ0)

∂β
=

n∑
i=1

[
δiẐi − η−1

0 (βx)
∑

{j:sj≤si}

{
Ẑi −

(
D(βx)

0

)}
exp(ẐT

i β)Λ0{sj}
]
.

(2.22)

We calculate the solutions of (2.21) and (2.22) by following the standard profile likelihood

procedure introduced in Section 2. To be specific, for fixed β, setting (2.21) equal to 0

gives a corrected estimator of the baseline hazard function

Λ̂c{si} =
δi

η−1
0 (βx)

∑
{j:sj≥si} exp(ẐT

j β)
, i = 1, · · · , n. (2.23)

Plugging (2.23) into (2.22), we obtain the corrected profile score functions

Uc(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

S(1)(Ẑ; β, t)

S(0)(Ẑ; β, t)
+

(
D(βx)

0

)}
dNi(t), (2.24)

where S(k)(Ẑ; β, t) = n−1
∑n

i=1 Yi(t)Ẑ
k
i exp(ẐT

i β) for k = 0 and 1.

Solving (2.24) gives a corrected estimator, say β̂c, of β. We note that under the normal

error assumption in (2.12), β̂c is identical to the corrected score estimator proposed by
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Nakamura (1992), who initially used the Taylor series expansion to correct for measure-

ment error effect on the partial score functions. Therefore, our proposed corrected profile

likelihood method bridges the corrected likelihood method by Yi and Lawless (2007) and

the corrected score method by Nakamura (1992). Asymptotic results of Kong and Gu

(1999) guarantee consistency of β̂c.

Now, we extend the corrected profile likelihood method to the general error model (2.9)

in Scenario A. Our idea is to start with a convenient working model for the measurement

process, and construct a working likelihood in combination with the survival model (2.1).

Maximizing this working likelihood gives us a working estimator which will be used for

developing a consistent estimator.

To be specific, we take the classical error model (2.12) in Scenario A to be a working

measurement error model. Then mimicking the arguments of corrected profile likelihood

from (2.20) to (2.24), we obtain working estimators. Let β̂c and Λ̂c(·) denote the resulting

working estimators of β and Λ0(·), and βc = (βc,x, β
T
c,v)

T and Λc(·) be the limit of β̂c and

Λ̂c(·) in probability, respectively. Let β0 = (β0,x, β
T
0,v)

T denote the true value of β. In

Appendix A2, we show the following result:

Lemma 1 Under the regularity conditions R1-R6 listed in Appendix A1, and under

Scenario A, we have

βc,x = γ−1
x β0,x, βc,v = β0,v − γvγ−1

x β0,x, (2.25)

and Λc(·) = exp(−γ0γ
−1
x β0,x)Λ0(·).

This result can then be used to construct a consistent estimator. Let

β̂cc,x = γxβ̂c,x, (2.26)

β̂cc,v = β̂c,v + γvβ̂c,x, (2.27)

and Λ̂cc(·) = exp(γ0β̂c,x)Λ̂c(·).

Write β̂cc = (β̂cc,x, β̂
T
cc,v)

T . The following theorem shows that β̂cc and Λ̂cc(·) are consistent

estimators of β0 and Λ0(·), respectively. Furthermore, the following theorem shows the
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asymptotic normality property of β̂cc and the weak convergence property of Λ̂cc(·). The

proof is outlined in Appendix A3.

Theorem 1 Under the regularity conditions R1-R6 listed in Appendix A1, we obtain

that

(1). β̂cc and Λ̂cc(·) are consistent estimators of β0 and Λ0(·), respectively.

(2).

n1/2(β̂cc − β0)
d−→ N(0,DTI−1TJ I−1D) as n→∞,

where

D =

(
γx γTv

0 I

)
;

I =

∫ τ

0

s(2)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
−

{
s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}⊗2

−

(
∂D(βx)
∂βTx
|βx=βc,x 0

0 0

) dE{Ni(t)};

J =E

[∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

Yi(t) exp(ẐT
i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dE{Ni(t)}

]⊗2

;

and s(k)(Ẑ; βc, t) = E{Yi(t)Ẑ⊗ki exp(ẐT
i βc)}, k = 0, 1, 2.

(3).

n1/2{Λ̂cc(t)− Λ0(t)} G(t) in l∞[0, τ ] as n→∞,

where  means weak convergence, l∞[0, τ ] is the space of all bounded functions on

[0, τ ] (van der Vaart and Wellner 1996), and G(t) is a zero-mean Gaussian process
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with covariance function Φ(s, t) = exp(γ2
0β

2
c,x)E{Ψi(s)Ψi(t)} at (s, t), and

Ψi(t) = −
∫ t

0

η0(βc,x)

[
s(1)(Ẑ; βc, s)

{s(0)(Ẑ; βc, s)}2
− 1

s(0)(Ẑ; βc, s)

(
D(βc,x)

0

)]T
dE{Ni(s)} × I−1

×
[∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

Yi(t) exp(ẐT
i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dE{Ni(t)}

]
+

∫ τ

0

η0(βc,x)

s(0)(Ẑ; βc, t)

{
dNi(t)− η−1

0 (βc,x)Yi(t) exp(ẐT
i βc) exp(−γ0βc,x)λ0(t)dt

}
.

2.4.2 Method for Scenario B

When the measurement error process is described by the error model (2.10) under Scenario

B with γ0 = 0, γx = 1, and γv = 0, we propose the corrected log profile likelihood

`c(β,Λ0) =
∑
i∈M

δi {ẐT
i β + log Λ0{si}

}
− η−1

0 (βx)
∑

{j:sj≤si}

exp(ẐT
i β)Λ0{sj}

 ,
which satisfies the property (2.19).

Mimicking the arguments in Section 2.4.1, we obtain the corrected profile score func-

tions,

Uc(β) =
∑
i∈M

(∫ τ

0

{
Ẑi −

S(1)(Ẑ; β, t)

S(0)(Ẑ; β, t)
+

(
D̂(βx)

0

)}
dNi(t),

where

D̂(βx) =

∑
i∈V εi exp(βxεi)∑
i∈V exp(βxεi)

,

and S(k)(Ẑ; β, t) = n−1
∑

i∈M Yi(t)Ẑ
k
i exp(ẐT

i β) for k = 0 and 1. Let β̂c be the solution of

Uc(β) = 0, and let βc denote the limit that β̂c converges to in probability.

Next, we consider the general error model (2.10) in Scenario B where γ0, γx, and γv are

unknown. It is important to note that under this scenario, the Cox model and the error
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model are identifiable. With an external validation sample, the parameters γ0, γx, γv in the

error model (2.10) can be consistently obtained by the least square method. Let γ̂0, γ̂x, γ̂v

denote the corresponding least square estimators for γ0, γx, and γv, respectively. We define

the corrected estimator β̂cc through (2.26) and (2.27), with γ0, γx, γv replaced by γ̂0, γ̂x, γ̂v,

respectively. The asymptotic properties of β̂cc are given in the following theorem, and its

proof is deferred to Appendix A4.

Theorem 2 Under the regularity conditions R1-R6 listed in Appendix A1, we have

(1). βc,x = γ−1
x β0,x, and βc,v = β0,v − γvγ−1

x β0,x.

(2). n1/2(β̂cc − β0)
d−→ N(0,B), as n→∞, where B is defined in Appendix A4.

The estimate of the cumulative hazard function Λ0(t) has asymptotic results analogous

to those in Lemma 1 and Theorem 1 under Scenario A.

2.4.3 Method for Scenario C

When the measurement error process is featured as in (2.13) under Scenario C, we propose

the corrected log profile likelihood by mimicking (2.20):

`c(β,Λ0) =
n∑
i=1

[
δi

{
ẐT
i β + log Λ0{si}

}
− η−1

0 (βx)
∑

{j:sj≤si}

n−1
i

ni∑
r=1

exp(ẐT
irβ)Λ0{sj}

]
,

which satisfies the property (2.19). Adapting the arguments in Scenario A, we obtain the

corrected profile score functions

Uc(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

S
(1)
re (Ẑ; β, t)

S
(0)
re (Ẑ; β, t)

+

(
D̂(βx)

0

)}
dNi(t), (2.28)

where S
(k)
re (Ẑ; β, t) = n−1

∑n
i=1 Yi(t)n

−1
i

∑ni
r=1 Ẑ

k
ir exp(ẐT

irβ) for k = 0 and 1, and D̂(βx) is

a consistent estimate of D(βx) for a given βx. Let β̂c be the solution of (2.28).
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Here we describe an expression of D̂(βx). Note that

E{Wir exp(Wisβx)} = η0(βx)E{Xi exp(Xiβx)},

E{exp(Wirβx)} = η0(βx)E{exp(Xiβx)},

and E{Wir exp(Wirβx)} = η0(βx)E{Xi exp(Xiβx)}+ η1(βx)E{exp(Xiβx)},

then D(βx) = η−1
0 (βx)η1(βx) can be expressed as

D(βx) =
η−1

0 (βx)E{Wir exp(Wirβx)} − E{Xi exp(Xiβx)}
E{exp(Xiβx)}

=
E{Wir exp(Wirβx)} − E{Wir exp(Wisβx)}

E{exp(Wirβx)}
. (2.29)

In view of (2.29), we can consistently estimate D(βx) by∑n
i=1 n

−1
i

∑ni
r=1 Wir exp(Wirβx)−

∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=sWir exp(Wisβx)∑n
i=1 n

−1
i

∑ni
r=1 exp(Wirβx)

for any fixed βx. Alternatively, if D̂SH(βx) or D̂HL(βx) is respectively used for D̂(βx) in

(2.28), then the resulting estimator is identical to the corrected score estimator proposed

by Song and Huang (2005) or the semiparametric regression estimator by Hu and Lin

(2004), respectively.

Next, we consider the general error model (2.11) in Scenario C. Let β̂cc be a corrected

estimator defined through (2.26) and (2.27), and βc be the limit to which β̂c converges in

probability. The following theorem descibes the asymptotic properties of β̂cc, and its proof

is deferred to Appendix A5.

Theorem 3 Under the regularity conditions R1-R6 listed in Appendix A1, we have

(1). βc,x = γ−1
x β0,x, and βc,v = β0,v − γvγ−1

x β0,x.
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(2). n1/2(β̂cc − β0)
d−→ N(0,DTI−1TJ2I−1D), as n→∞, where

J2 = lim
n→∞

n−1

n∑
i=1

[∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

[
n−1
i

ni∑
r=1

Yi(t) exp(ẐT
irβc)

s(0)(Ẑ; βc, t)

{
Ẑir −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
−

(
Di(βc,x)

0

)]
dE{Ni(t)}

]⊗2

,

s(k)(Ẑ; βc, t) = E{Yi(t)Ẑ⊗kir exp(ẐT
irβc)}, k = 0, 1, 2, and Di(βc,x) is specified in Ap-

pendix A5.

The estimate of the cumulative hazard function Λ0(t) has asymptotic results analogous

to those in Lemma 1 and Theorem 1 under Scenario A.

2.4.4 Application to Berkson error model

The adjustment methods described for Scenarios A-C are potentially useful for other models

as well. To see this, we consider the case that the true error model is the Berkson error

model:

Xi = Wi + εi, (2.30)

where we assume that both of Wi and the error term εi are normal. εi is assumed to be

independent of other variables and has mean zero and variance σ2
0. The variance σ2

0 is

known or estimated from additional data sources. Let σ2
w be the variance of Wi.

Note that the error model (2.30) can be rewritten as

Wi = γ0 +Xiγx + ε∗i , (2.31)

where γx = σ2
w/(σ

2
w + σ2

0), γ0 = 1− γx, and ε∗i is the error term with mean 0 and variance

γxσ
2
0, and is independent of Xi. The model (2.31) can be equivalently expressed as

γ−1/2
x Wi = γ−1/2

x γ0 +Xiγ
1/2
x + γ−1/2

x ε∗i ,
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where the variance of γ
−1/2
x ε∗i is now equal to that of εi.

We replace Ẑi by Ẑ∗i = (γ
−1/2
x Wi, V

T
i )T in the working likelihood (2.20), and obtain the

working estimator β̂c and Λ̂c(·) by maximizing the working likelihood. By Lemma 1 and

Theorem 1, we obtain that

β̂cc,x = γ
1/2
x β̂c,x, β̂cc,v = β̂c,v,

and Λ̂cc(·) = exp(γ−1
0 γ

1/2
x β̂c,x)Λ̂c(·),

are consistent estimators of β0,x,β0,v, and Λ0(·), respectively.

We note that when the normality assumption of Wi or εi does not hold, then E[ε∗i |Xi] =

0 and E[Wi|Xi] = γ0 +Xiγx may no longer hold, and the resulting estimator β̂cc could be

biased.

2.5 Empirical studies

We conduct simulation studies to evaluate the finite sample performance of the proposed

methods under Scenarios A-C. In addition, we uncover the impact of model misspecifica-

tion of the measurement error process. We generate 1000 simulations for each parameter

configuration, and let Zi = (Xi, Vi)
T be a 2× 1 vector of covariates.

2.5.1 General error model

We consider two cases for covariates. In Case 1, the Zi are uniformly simulated from the

bivariate normal distribution:

Zi ∼ N

{(
0

0

)
,

(
1 0.5

0.5 1

)}
, i = 1, · · · , n.
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In Case 2, the Xi are uniformly simulated from the exponential distribution Xi ∼ Exp(1),

and Vi follows a Bernoulli distribution with

Pr(Vi = 1|Xi) =
exp(Xi)

1 + exp(Xi)
.

This gives that the correlation of Xi and Vi is about 0.27.

Survival times Ti are independently generated using the Cox model (2.1), where the

true parameter β = (1, 1)T , and the baseline hazard function λ0(t) = t. About 30%

of censoringship is generated. In particular, the censoring time Ci are generated from

UNIF[0, c], where c is set to be 5.4 and 2.05 for the first and second case, respectively.

We consider Scenarios A, B and C for the measurement error process. In Scenario A,

we set n = 200, and generate εi ∼ N(0, σ2
0), where σ0 is known. Take σ0 to be 0.25 or 0.5

to represent different degrees of measurement error. Set γ0 = 0, γv = 1 and let γx be 1.25

or 1.5. To estimate the β parameter, we consider three methods. The first method ignores

measurement error by maximizing the partial likelihood (2.2) with Zi replaced by Ẑi;

let β̂nv denote the resulting naive estimator. The second method comes from Nakamura

(1992), and let β̂c denote the resulting estimator. The third approach is the proposed

method described in Section 2.4.1, and we let β̂cc denote the corresponding estimator. For

comparison, we also calculate β̂ which maximizes (2.2) with the true covariate Xi treated

available.

In Scenario B, we set n = 300, m = 100, and generate εi from the N(0, σ2
0) distribution,

where σ0 is set to be 0.25 or 0.5. β̂c and β̂cc are defined in Section 2.4.2. In Scenario C, we

set n = 200, ni = 2 for i = 1, · · · , n, and generate εir from the N(0, σ2
0) distribution, where

σ0 is set to be 0.25 or 0.5. β̂c and β̂cc are defined in Section 2.4.3, where we set D̂(βx) to

be D̂HL(βx). In both Scenarios B and C, we set γ0 = 0, γv = 1 and γx = 1.25 or 1.5.

Tables 2.1, 2.2, and 2.3 present the empirical results for Scenarios A, B, and C, respec-

tively, where we report the finite sample biases (Bias), the empirical variances (EVE), the

average of the model-based variance estimates (MVE), the mean square errors (MSE), and

the coverage rate of 95% confidence intervals.
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It is clearly seen that both β̂nv and β̂c incur considerable biases, and the coverage

rates for the 95% confidence intervals remarkably deviate from the nominal level. In

some situations, β̂c performs even worse than β̂nv. These demonstrates that ignoring

measurement error would lead to biased results; secondly, the attempt to correct for error

effects may be useless or even worse than not doing so if measurement error can not be

reasonably captured.

On the other hand, our proposed estimator β̂cc performs satisfactorily in all the situ-

ations. Finite sample biases are fairly small, and model-based variances estimates agree

well with empirical variance. The coverage rates of the 95% confidence intervals are in

good agreement with the nominal level. As expected, the estimate β̂ performs best with

the smallest finite sample biases and variance estimates. Reasonable agreement between

the results for β̂cc and β̂ further suggests that our method performs reliably.

[Insert Tables 2.1, 2.2, 2.3 here!]

2.5.2 Application to Berkson error model

Different from the covariate generation discussed in Section 2.5.1, here we consider three

cases for which surrogates Wi are first simulated, and then the true covariate Xi will be

generated from the Berkson error model Xi = Wi+εi, where εi follows a normal distribution

N(0, σ2
0) with σ0 = 0.25 or 0.5. We set n = 200.

In Case 1′, both of Wi and Vi are independently simulated from the standard normal

distribution N(0, 1). In Cases 2′ and 3′, we generate Wi from the exponential distribution

Exp(1), and use different ways to simulate the Vi covariate. In Case 2′, independent of Wi,

we generate Vi from the standard normal distribution N(0, 1), while in Case 3′, conditional

on Xi we generate Vi from a Bernoulli distribution Pr(Vi = 1|Xi) = exp(Xi)/{1+exp(Xi)}.

Survival times and censoring times are generated using the same procedure as in Sec-

tion 2.5.1. The only difference is to specify a different value for c to yield about 30%
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censoringship for each when σ0 = 0.25. In particular, set c to be 5.1, 3.1 and 2.1 for Cases

1′, 2′ and 3′, respectively.

Table 2.4 records the simulation results. Same patterns as those in Section 2.5.1 are

demonstrated here. In addition, we notice that with small measurement error, ignoring

measurement error or misspecifying measurement error model does not incur noticeably

bias. When measurement error becomes moderate, both β̂nv and β̂c incur considerable

bias with useless confidence intervals produced. More strikingly, β̂c even yields worse

results than the naive estimator β̂nv, and this suggests that leaving measurement error

unattended to is even better than attempting to correct it if there is not good knowledge

about modeling the measurement error process. In comparison, the proposed corrected

estimator β̂cc successfully corrects the bias induced by measurement error. In all the cases,

β̂cc outperforms both β̂nv and β̂c, even in Cases 2′ and 3′ where Wi is not normal.

[Insert Table 2.4 here!]

2.5.3 An example

We apply the proposed method to analyze the data of the AIDS Clinical Trials Group

(ACTG) 175 (Hammer, et al. 1996). The ACTG 175 was a double-blind randomized

clinical trial, comparing the effects of three HIV treatments for which three drugs were

used in combination or alone: zidovudine, didanosine, and zalcitabine.

There were n = 2139 individuals in this study whose baseline measurements on CD4

were collected, ranging from 200 to 500 per cubic millimeter. Following the definition of

Hammer et al. (1996), Ti is defined to be the time to the occurrence of the first event

among the following events: (i) more than 50% decline of CD4 counts compared to the

averaged baseline CD4 counts; (ii) disease progression to AIDS; or (iii) death. About 75.6%

of outcome values are censored.

We are interested in studying the relationship how Ti is associated with baseline CD4

counts and how treatment may affect outcome variable Ti. We let Vi denote the treatment
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indicator for subject i, where Vi = 1 if a subject receive one of the three treatments, and 0

otherwise. We define Xi to be log(CD4 counts + 1), a usual normalization version of CD4

counts.

We employ the Cox model to feature the dependence of Ti on the covariates Xi and Vi:

λ(t) = λ0(t) exp(Xiβx + Viβv),

where λ0(t) is the baseline hazard function, and β = (βx, βv)
T is the regression parameter.

It is well known that CD4 counts are subject to measurement error due to biological

variation and imprecise measurement procedures. The CD4 counts Xi for subject i are

repeatedly measured twice, and their measurements are denoted by Wir, r = 1, 2. It is

not clear how exactly the true value Xi and the surrogates Wir are linked. To assess how

sensitive the analysis could be to various degrees of measurement error, we consider the

model (2.11) in Scenario C.

With the replicate measurements Wir, we can estimate the variance σ2
0 of the error

term εir, but the parameters γ0, γx, and γv are not identifiable and thus not estimable.

To overcome the nonidentifiablity issue, we conduct sensitivity analyses by specifying the

values of γ0, γx, and γv to feature different measurement error situations.

We particularly consider two cases. For the first case, we set γ0 = 0, γv = 0 and let

γx vary from 0.5 to 1.5. For the second case, we set γ0 = 0, γx = 1 and let γx vary from

-0.5 to 0.5. In both cases, we are interested in evaluating the impact of measurement error

on parameter estimation and associated confidence intervals for the response parameters.

The estimator β̂cc and its variance estimate are obtained by the procedure in Section

2.4.3, where we set D̂(βx) to be D̂HL(βx). Results are reported in Figure 2.1. Although

the covariate effects and the length of confidence intervals are differently estimated under

different specification of measurement error models, all the analyses suggest significance of

CD4 counts and treatment on affecting the outcome variable.

[Insert Figure 2.1 here!]
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2.6 Discussion

Survival data with covariate measurement error have attracted extensive research attention.

Many inference methods have been proposed for the Cox model with covariate measurement

error using various techniques. In this chapter, we develop a new inference method to

address covariate measurement error effects under the Cox model. The proposed corrected

profile likelihood provides a simple and general way to correct for covariate measurement

error, and it can accommodate many existing methods as special cases. Moreover, our

method applies to a larger scope of measurement error scenarios than many available

methods which focus on the classical additive error model or the Berkson error model. In

addition, we study the impact of model misspecification of the measurement error process,

and interesting findings are obtained. Attempting to correct for measurement error effects

is not always rewarding; sometimes it can lead to more misleading results than ignoring

measurement error. It is critical to correctly model the measurement error process, in order

to develop valid inference methods.

Appendix

Appendix A1: Regularity conditions

R1. {Ni(·), Yi(·), Zi}, i = 1, · · · , n are independent and identically distributed.

R2. Pr{Y1(τ) = 1} > 0.

R3. Λ0(τ) <∞, and Λ0(t) is absolutely continuous over [0, τ ].

R4. The parameter space for β is a compact subspace of the Euclidean space.

R5. ||E(Z⊗2
1 )|| <∞, ||E(ε⊗2

1 )|| <∞, and log{η0(βx)} is twice continuously differentiable.

Here for a matrix A, ||A|| = supi,j |aij|, where aij is the (i, j)th element of A.
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R6. Condition D of Andersen and Gill (1982) holds.

Appendix A2: Proof of Lemma 1

Let β∗ = (β∗x, β
∗T
v )T , β∗x = γxβc,x, β

∗
v = βc,v + γvβc,x, and Λ∗(·) = exp(γ0βc,x)Λc(·). Here, we

need to prove (β∗,Λ∗) = (β0,Λ0). Indeed, β̂c is the root of

Uc(β) =
n∑
i=1

∫ τ

0

[
Ẑi −

∑n
i=1 Yi(t)Ẑi exp(ẐT

i β)∑n
i=1 Yi(t) exp(ẐT

i β)
+

(
D(βx)

0

)]
dNi(t).

Furthermore, it is seen that

Λ̂c(t, β̂c) =
n∑
i=1

∫ t

0

dNi(s)

η−1
0 (β̂c,x)

∑n
i=1 Yi(s) exp(ẐT

i β̂c)
.

By the Uniform Strong Laws of Large Numbers (Pollard, 1990), n−1Uc(β) converges

almost surely to

Uc(β) =

∫ τ

0

[
E{ẐidNi(t)} −

E{Yi(t)Ẑi exp(ẐT
i β)}

E{Yi(t) exp(ẐT
i β)}

dE{Ni(t)}+

(
D(βx)

0

)
dE{Ni(t)}

]
.

Thus, by convex analysis arguments (Rockafellar 1970, Theorem 10.8; Struthers and

Kalbfleisch 1986; Lin et al. 2000, Appendix A.1), βc is the unique root of Uc(β) = 0

when the error degree is not too large. Write Uc(β) = (Uc,x(β),UTc,v(β))T , then we obtain

that

Uc,x(βc) =

∫ τ

0

E{Yi(t)Wiλ0(t) exp(Xiβ0,x + V T
i β0,v)}dt−

∫ τ

0

E{Yi(t)Wi exp(Wiβc,x + V T
i βc,v)}

E{Yi(t) exp(Wiβc,x + V T
i βc,v)}

× E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt+D(βc,x)

∫ τ

0

E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

=

∫ τ

0

E{Yi(t)(Xiγx + V T
i γv)λ0(t) exp(Xiβ0,x + V T

i β0,v)}dt

−
∫ τ

0

E[Yi(t)(Xiγx + V T
i γv) exp{Xiγxβc,x + V T

i (βc,v + γvβc,x)}]
E[Yi(t) exp{Xiγxβc,x + V T

i (βc,v + γvβc,x)}]

× E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt = 0,
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and

Uc,v(βc)

=

∫ τ

0

E{Yi(t)Viλ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

−
∫ τ

0

E{Yi(t)Vi exp(Wiβc,x + V T
i βc,v)}

E{Yi(t) exp(Wiβc,x + V T
i βc,v)}

E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

=

∫ τ

0

E[Yi(t)Viλ0(t) exp(Xiβ0,x + V T
i β0,v)]dt

−
∫ τ

0

E[Yi(t)Vi exp{Xiγxβc,x + V T
i (βc,v + γvβc,x)}]

E[Yi(t) exp{Xiγxβc,x + V T
i (βc,v + γvβc,x)}]

E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

=0.

Thus,

Uc,x(βc)− γTv Uc,v(βc)

=γx

∫ τ

0

E{Yi(t)Xiλ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

− γx
∫ τ

0

E[Yi(t)Xi exp{Xiγxβc,x + V T
i (βc,v + γvβc,x)}]

E[Yi(t) exp{Xiγxβc,x + V T
i (βc,v + γvβc,x)}]

E{Yi(t)λ0(t) exp(Xiβ0,x + V T
i β0,v)}dt

= 0.

It follows that g(β0)− g(β∗) = 0, where

g(β) =

∫ τ

0

E{Yi(t)Zi exp(ZT
i β)}

E{Yi(t) exp(ZT
i β)}

E{Yi(t)λ0(t) exp(ZT
i β0)}dt.

Thus, both of β∗ and β0 are solutions of g(β0)− g(β) = 0.

To show β∗ = β0, it suffices to prove that g(β0)− g(β) = 0 has only a unique solution.

To see this, let

f(β) =

∫ τ

0

E{Yi(t)ZT
i βλ0(t) exp(ZT

i β0)}dt

−
∫ τ

0

log[E{Yi(t) exp(ZT
i β)}]E{Yi(t)λ0(t) exp(ZT

i β0)}dt.
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It follows that, by Cauchy-Schwarz inequality, the Hessian matrix of f(β), i.e.,

∂2f(β)

∂β∂βT
=−

∫ τ

0

(
E{Yi(t)Z⊗2

i exp(ZT
i β)}

E{Yi(t) exp(ZT
i β)}

−
[
E{Yi(t)Zi exp(ZT

i β)}
E{Yi(t) exp(ZT

i β)}

]⊗2
)

× E{Yi(t)λ0(t) exp(ZT
i β0)}dt

is always negative definite for all β in the parameter space. It follows that f(β) is strictly

concave (Boyd and Vandenberghe 2004) and thus has a unique maximum. Since the

necessary and sufficient condition for β to be a maximum point of the strictly convex

function f(β) is that ∂f(β)/∂β = 0 (Boyd and Vandenberghe 2004, (4.22)), thus setting

∂f(β)/∂β = 0 has at most one solution. Note that ∂f(β)/∂β = g(β0) − g(β), and we

already showed that both β0 and β∗ are solutions of g(β0)− g(β) = 0, thus β∗ = β0.

It remains to prove Λ∗(·) = Λ0(·). To see this, note that Λc(t) is the limit to which

Λ̂c(t, β̂c) converges almost surely as n → ∞. Equivalently, Λc(t) can be regarded as the

limit to which Λ̂c(t, βc) converges almost surely due to that β̂c converges to βc almost surely.

By the Uniform Strong Law of Large Numbers, Λ̂c(t, βc) converges almost surely to∫ t

0

E{dNi(s)}
η−1

0 (βc,x)E{Yi(s) exp(ẐT
i βc)}

=

∫ t

0

E{Yi(s) exp(ZT
i β0)λ0(s)}ds

η−1
0 (βc,x)E{Yi(s) exp(ẐT

i βc)}
=

Λ0(t)

exp(γ0βc,x)
,

uniformly in t. Thus, Λc(t) = Λ0(t)/exp(γ0βc,x) for all t. It follows that that Λ0(t) =

exp(γ0βc,x)Λc(t) = Λ∗(t) for all t, which completes the proof.

Appendix A3: Proof of Theorem 1

Proof of (1) of Theorem 1 : The strong consistency of β̂cc follows directly from Lemma

1 and the Slusky’s Lemma (van der Vaart 1998). Similarly, by the fact that Λ̂c(t, β̂c)

converges to Λc(t) almost surely uniformly in t as proved in Lemma 1, we obtain that

Λ̂cc(t, β̂c) converges to Λ0(t) almost surely uniformly in t.

Proof of (2) of Theorem 1 : By the delta method (van der Vaart 1998) and the Lemma,
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we only need to show that

n1/2(β̂c − βc)
d−→ N(0, I−1TJ I−1), as n→∞. (2.32)

To show this, note that by the Taylor series expansion, we obtain that

n1/2(β̂c − βc) =

{
−n−1∂Uc(β)

∂βT
|β=β̃

}−1

n−1/2Uc(βc),

where β̃ is on the line segment between β̂c and βc, and Uc(β) is defined in Lemma 1. By

the Strong Law of Large Numbers, it follows that

−n−1∂Uc(β)

∂βT
|β=β̃

a.s.−→ I, as n→∞.

Now we write Uc(βc) = Uc1(βc) + Uc2(βc), where

Uc1(βc) =
n∑
i=1

∫ τ

0

[
Ẑi −

∑n
i=1 Yi(t)Ẑi exp(ẐT

i βc)∑n
i=1 Yi(t) exp(ẐT

i βc)

]
dNi(t),

and Uc2(βc) = (D(βc,x), 0
T )T

∑n
i=1Ni(τ). By the proof of Theorem 2.1 of Lin and Wei

(1989),

n−1/2Uc1(βc) = n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dNi(t)

− n−1/2

n∑
i=1

∫ τ

0

Yi(t) exp(ẐT
i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dE{Ni(t)}+ op(1).

It follows that n−1/2Uc(βc) is asymptotically equivalent to a sum of i.i.d. random vectors,

and thus (2.32) is proved by using the Central Limit Theorem, and this completes the

proof.

Proof of (3) of Theorem 1 : By the functional delta method (van der Vaart 1998) and

Lemma 1, we only need to show that

n1/2{Λ̂c(t)− Λc(t)} Gc(t) in l∞[0, τ ] as n→∞ (2.33)
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where Gc(t) is a zero-mean Gaussian process with covariance function E{Ψi(s)Ψi(t)} at

(s, t). To show this, write n1/2{Λ̂c(t)− Λc(t)} = A1 + A2, where

A1 = n1/2

{
n∑
i=1

∫ t

0

dNi(s)

η−1
0 (βc,x)

∑n
i=1 Yi(s) exp(ẐT

i βc)
− Λc(t)

}

and A2 = n1/2

{ n∑
i=1

∫ t

0

dNi(s)

η−1
0 (β̂c,x)

∑n
i=1 Yi(s) exp(ẐT

i β̂c)

−
n∑
i=1

∫ t

0

dNi(s)

η−1
0 (βc,x)

∑n
i=1 Yi(s) exp(ẐT

i βc)

}
.

Similar to the argument of Lin et al. (2000, Appendix A.4), we obtain that A1 is tight and

A1 = n−1/2

{
n∑
i=1

∫ t

0

dNi(s)− η−1
0 (βc,x)Yi(s) exp(ẐT

i βc)dΛc(t)

η−1
0 (βc,x)n−1

∑n
i=1 Yi(s) exp(ẐT

i βc)

}

= n−1/2

{
n∑
i=1

∫ t

0

dNi(s)− η−1
0 (βc,x)Yi(s) exp(ẐT

i βc)dΛc(t)

η−1
0 (βc,x)s(0)(Ẑ; βc, t)

}
+ op(1)

uniformly in t. By the Taylor series expansion, A2 = HT (β̃, t)n1/2(β̂c − βc), where β̃ is on

the line segment between β̂c and βc, and

H(β, t) = −
n∑
i=1

∫ t

0

η0(βx)

∑n
i=1 Yi(s)Ẑi exp(ẐT

i β)

{
∑n

i=1 Yi(s) exp(ẐT
i β)}2

dNi(s)

+
n∑
i=1

∫ t

0

η0(βx)∑n
i=1 Yi(s) exp(ẐT

i β)

(
D(βx)

0

)
dNi(s).

Note that by the Uniform Strong Law of Large Numbers, we have

H(β̃, t)
a.s.−→ −

∫ t

0

η0(βc,x)

[
s(1)(Ẑ; βc, s)

{s(0)(Ẑ; βc, s)}2
− 1

s(0)(Ẑ; βc, s)

(
D(βc,x)

0

)]
dE{Ni(s)}

uniformly in t. Furthermore, since

n1/2(β̂c − βc) = I−1n−1/2

n∑
i=1

(∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

Yi(t) exp(ẐT
i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dE{Ni(t)}

)
+ op(1),

57



we thus obtain n1/2{Λ̂c(t) − Λc(t)} = A1 + A2 = n−1/2
∑n

i=1 Ψi(t) + op(1). As a result,

n1/2{Λ̂c(t) − Λc(t)} is tight and converges weakly to a mean-zero Gaussian process, and

the covariance function is E{Ψi(s)Ψi(t)} at (s, t). Thus, (2.33) holds. The proof is thus

completed.

Appendix A4: Proof of Theorem 2

(1) in Theorem 2 can be proved by the arguments of Lemma 1. In the following, we prove

(2) in Theorem 2. Write

n−1/2
∑
i∈M

∫ τ

0

(
D̂(βc,x)

0

)
dNi(t)

=

(
D̂(βc,x)−D(βc,x)

0

)
n1/2

[∑
i∈M

Ni(τ)/n− E{Ni(τ)}

]

+ n1/2

(
D̂(βc,x)−D(βc,x)

0

)
E{Ni(τ)}+

(
D(βc,x)

0

)
n1/2

∑
i∈M

Ni(τ)/n.

Since the first term is of order op(1), we have by Taylor series expansion that

n−1/2
∑
i∈M

∫ τ

0

(
D̂(βc,x)

0

)
dNi(t)

=n1/2

(
D̂(βc,x)−D(βc,x)

0

)
E{Ni(τ)}+

(
D(βc,x)

0

)
n1/2

∑
i∈M

Ni(τ)/n+ op(1)

=
E{Ni(τ)}
η0(βc,x)

n1/2

( ∑
i∈V εi exp(βc,xεi)/m− η1(βc,x)

0

)
− E{Ni(τ)}η1(βc,x)

η2
0(βc,x)

× n1/2

( ∑
i∈V exp(βc,xεi)/m− η0(βc,x)

0

)
+

(
D(βc,x)

0

)
n1/2

∑
i∈M

Ni(τ)/n+ op(1)

=
E{Ni(τ)}
η0(βc,x)

n1/2

m

∑
i∈V

(
εi exp(βc,xεi)−D(βc,x) exp(βc,xεi)

0

)
+ n−1/2

∑
i∈M

∫ τ

0

(
D(βc,x)

0

)
dNi(t)

+ op(1).
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Therefore,

n1/2(β̂c − βc) =I−1n−1/2
∑
i∈M

(∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

[
Yi(t) exp(ẐT

i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}]
dE{Ni(t)}

)

+ I−1n−1/2
∑
i∈M

∫ τ

0

(
D̂(βc,x)−D(βc,x)

0

)
dNi(t) + op(1)

=(n+m)−1/2 (1 + ρ)1/2 I−1

n+m∑
i=1

{
ξi

(∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−
∫ τ

0

[
Yi(t) exp(ẐT

i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}]
dE{Ni(t)}

)

+ (1− ξi)
E{Ni(τ)}
η0(βc,x)

1

ρ

(
εi exp(βc,xεi)−D(βc,x) exp(βc,xεi)

0

)}
+ op(1)

≡(n+m)−1/2

n+m∑
i=1

Aval,i + op(1).

Since Aval,1, · · · , Aval,n+m are i.i.d., by the Central Limit Theorem, we obtain that

n1/2(β̂c − βc)
d−→ N(0,A), as n→∞,

where A = E(A⊗2
val,i).

By the least square estimation,

n1/2(γ̂z − γz) =n1/2

{∑
i∈V

(Zi − µz)(Zi − µz)T
}−1∑

i∈V

(Zi − µz)(Wi − µw) + op(1)

=n1/2m−1{V ar(Zi)}−1
∑
i∈V

(Zi − µz)(Wi − µw) + op(1).
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where µz = (µx, µ
T
v )T = (E(Xi), E

T (Vi))
T , and µw = E(Wi). Therefore,

n1/2(β̂cc − β0) =n1/2

(
γ̂x 0

γ̂v I

)
β̂c − n1/2

(
γx 0

γv I

)
βc

=

(
γx 0

γv I

)
n1/2(β̂c − βc) + n1/2

{(
γ̂x 0

γ̂v I

)
−

(
γx 0

γv I

)}
β̂c

=DTn1/2(β̂c − βc) + n1/2β̂c,x(γ̂z − γz) + op(1)

=DTn1/2(β̂c − βc) + n1/2βc,x(γ̂z − γz) + op(1)

=DT (n+m)−1/2

n+m∑
i=1

Aval,i

+ n1/2m−1βc,x{V ar(Zi)}−1
∑
i∈V

(Zi − µz)(Wi − µw) + op(1)

=(n+m)−1/2

n+m∑
i=1

{
DTAval,i

+ (1− ξi)
(1 + ρ)1/2

ρ
βc,x{V ar(Zi)}−1(Zi − µz)(Wi − µw)

}
+ op(1)

≡(n+m)−1/2

n+m∑
i=1

Bval,i + op(1).

Since Bval,1, · · · , Bval,n+m are i.i.d., by the Central Limit Theorem, we obtain that

n1/2(β̂cc − β0)
d−→ N(0,B), as n→∞,

where B = E(B⊗2
val,i).

Appendix A5: Proof of Theorem 3

(1) in Theorem 3 is followed by the proof of Lemma 1. Next we prove (2). Similar to the

proof of Theorem 1, we write Uc(βc) = Uc1(βc) + Uc2(βc), where

Uc1(βc) =
n∑
i=1

∫ τ

0

[
Ẑi −

S
(1)
re (Ẑ; β, t)

S
(0)
re (Ẑ; β, t)

]
dNi(t),
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and Uc2(βc) = (D̂(βc,x), 0
T )T

∑n
i=1Ni(τ). Uc1(βc) can be written a sum of independent

terms as in the proof of Theorem 1. Next, we consider Uc2(βc). Since D̂(βc,x) is
√
n-

consistent, we have

n−1/2Uc2(βc) =

(
D(βc,x)

0

)
n−1/2

n∑
i=1

Ni(τ) + n1/2

(
D̂(βc,x)−D(βc,x)

0

)
n−1

n∑
i=1

Ni(τ)

=

(
D(βc,x)

0

)
n−1/2

n∑
i=1

Ni(τ) +

(
Di(βc,x)

0

)
n−1

n∑
i=1

Ni(τ) + op(1).

Since

n1/2(β̂c − βc) =

{
−n−1∂Uc(β)

∂βT
|β=β̃

}−1

n−1/2Uc(βc),

where β̃ is on the line segment between β̂c and βc. By the Strong Law of Large Numbers,

we obtain

−n−1∂Uc(β)

∂βT
|β=β̃

a.s.−→ I, as n→∞.

Thus, by the Central Limit Theorem and Slusky’s Theorem, Theorem 3 is proved.

Now we provide an example of D̂(βx) that is
√
n-consistent of D(βx). Let

η̂0(βx) =

[∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=s exp {(Wir −Wis)
Tβx}∑n

i=1 I(ni > 1)

]1/2

,

and η̂1(βx) =

∑n
i=1 I(ni > 1)n−1

i (ni − 1)−1
∑

r 6=s(Wir −Wis) exp {(Wir −Wis)
Tβx}

2η̂0(βx)
∑n

i=1 I(ni > 1)
.
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Then D̂HL(βx) = η̂1(βx)/η̂0(βx), Hu and Lin (2004) showed that

η̂0(βx)− η0(βx) ={2
n∑
i=1

I(ni > 1)η0(βx)}−1

×
n∑
i=1

[
I(ni > 1)n−1

i (ni − 1)−1
∑
r 6=s

exp {(Wir −Wis)βx}

− I(ni > 1)η2
0(βx)

]
+ op(n

−1/2);

η̂1(βx)− η1(βx) ={2
n∑
i=1

I(ni > 1)η0(βx)}−1

×
n∑
i=1

[
I(ni > 1)n−1

i (ni − 1)−1
∑
r 6=s

(Wir −Wis) exp {(Wir −Wis)βx}

− I(ni > 1)n−1
i (ni − 1)−1

∑
r 6=s

exp {(Wir −Wis)βx}η−1
0 (βx)η1(βx)

− I(ni > 1)η0(βx)η1(βx)

]
+ op(n

−1/2).

Therefore,

√
n{D̂HL(βx)−D(βx)} =

√
n

{
η̂1(βx)

η̂0(βx)
− η1(βx)

η0(βx)

}
=

√
n{η̂1(βx)− η1(βx)}

η0(βx)
− η1(βx)

η2
0(βx)

√
n{η̂0(βx)− η0(βx)}+ op(1)

=
1√
n
{2η2

0(βx)
n∑
i=1

I(ni > 1)}−1

×
n∑
i=1

(
I(ni > 1)n−1

i (ni − 1)−1

[∑
r 6=s

(Wir −Wis) exp {(Wir −Wis)βx}

− 2D(βx)
∑
r 6=s

exp {(Wir −Wis)βx}
])

+ op(1)

≡ 1√
n

n∑
i=1

Di(βx) + op(1).

62



0.6 0.8 1.0 1.2 1.4

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

γX

95
%

C
I

β̂x

95%CI

 95%CI for βx ; γv = 0

−0.4 −0.2 0.0 0.2 0.4

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

γV

95
%

C
I

β̂v

95%CI

 95%CI for βv ; γx = 1

Figure 2.1: Point estimation of β and the corresponding confidence interval by the corrected

profile likelihood method under the error model (2.11). Vertical lines show the confidence

intervals by the estimator of Hu and Lin (2004) under the error model (2.13), which is a

special case of (2.11).
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Table 2.1: Simulation results under Scenario A
Case γx σ Method Estimation of βx Estimation of βv

Biasa EVEb MVEc MSEd CP(%)e Bias EVE MVE MSE CP(%)

Case 1 1.25 0.25 β̂nv -0.250 0.009 0.008 0.072 23.0 -0.729 0.025 0.023 0.557 0.4

β̂c -0.188 0.012 0.010 0.048 51.7 -0.796 0.029 0.026 0.662 0.2

β̂cc 0.015 0.019 0.016 0.020 94.2 0.016 0.014 0.014 0.014 94.5

β̂ 0.005 0.015 0.014 0.015 94.6 0.015 0.013 0.014 0.014 94.7

0.50 β̂nv -0.377 0.008 0.007 0.150 1.5 -0.588 0.024 0.022 0.369 3.6

β̂c -0.158 0.024 0.019 0.049 67.4 -0.821 0.043 0.036 0.716 0.7

β̂cc 0.052 0.038 0.029 0.040 94.5 0.021 0.017 0.017 0.018 93.7

β̂ 0.005 0.015 0.014 0.015 94.6 0.015 0.013 0.014 0.014 94.7

1.50 0.25 β̂nv -0.362 0.007 0.006 0.138 1.1 -0.619 0.022 0.021 0.405 1.4

β̂c -0.326 0.008 0.007 0.114 4.8 -0.659 0.024 0.022 0.458 1.0

β̂cc 0.012 0.018 0.015 0.018 94.1 0.015 0.014 0.014 0.014 94.3

β̂ 0.005 0.015 0.014 0.015 94.6 0.015 0.013 0.014 0.014 94.7

0.5 β̂nv -0.442 0.006 0.005 0.202 0.2 -0.528 0.022 0.020 0.300 5.6

β̂c -0.310 0.013 0.010 0.109 17.8 -0.671 0.030 0.026 0.480 2.0

β̂cc 0.035 0.028 0.023 0.030 94.2 0.019 0.016 0.016 0.016 94.1

β̂ 0.005 0.015 0.014 0.015 94.6 0.015 0.013 0.014 0.014 94.7

Case 2 1.25 0.25 β̂nv -0.230 0.007 0.006 0.059 21.3 -0.749 0.064 0.059 0.626 14.9

β̂c -0.178 0.008 0.008 0.040 45.0 -0.812 0.069 0.062 0.728 12.7

β̂cc 0.027 0.013 0.012 0.014 94.7 0.009 0.056 0.051 0.056 93.2

β̂ 0.019 0.011 0.010 0.011 95.3 0.008 0.052 0.049 0.052 94.1

0.5 β̂nv -0.343 0.006 0.006 0.123 1.6 -0.606 0.065 0.058 0.432 30.0

β̂c -0.156 0.015 0.013 0.039 62.2 -0.833 0.089 0.076 0.783 15.7

β̂cc 0.055 0.023 0.020 0.026 94.4 0.011 0.067 0.058 0.068 93.5

β̂ 0.019 0.011 0.010 0.011 95.3 0.008 0.052 0.049 0.052 94.1

1.50 0.25 β̂nv -0.347 0.005 0.005 0.125 0.3 -0.636 0.061 0.056 0.465 23.8

β̂c -0.317 0.006 0.005 0.106 3.1 -0.674 0.064 0.058 0.518 21.3

β̂cc 0.025 0.013 0.012 0.013 94.9 0.009 0.055 0.050 0.055 93.6

β̂ 0.019 0.011 0.010 0.011 95.3 0.008 0.052 0.049 0.052 94.1

0.50 β̂nv -0.417 0.004 0.004 0.178 0.1 -0.543 0.063 0.056 0.357 36.7

β̂c -0.305 0.008 0.007 0.101 10.7 -0.685 0.075 0.066 0.544 24.2

β̂cc 0.042 0.018 0.016 0.020 94.5 0.010 0.062 0.055 0.062 93.1

β̂ 0.019 0.011 0.010 0.011 95.3 0.008 0.052 0.049 0.052 94.1

a Bias: finite sample biases;
b EVE: empirical variances;
c MVE: average of the model-based variance estimates;
d MSE: mean square errors;
e MCP: model-based coverage probability.
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Table 2.2: Simulation results under Scenario B
Case γx σ Method Estimation of βx Estimation of βv

Bias EVE MVE MSE CP(%) Bias EVE MVE MSE CP(%)

Case 1 1.25 0.25 β̂nv -0.248 0.006 0.005 0.067 9.6 -0.741 0.016 0.015 0.565 0.0

β̂c -0.187 0.009 0.008 0.044 43.0 -0.806 0.020 0.018 0.669 0.0

β̂cc 0.017 0.014 0.013 0.014 93.4 0.006 0.011 0.010 0.011 94.1

β̂ 0.008 0.009 0.009 0.009 93.3 0.006 0.009 0.009 0.009 94.7

0.50 β̂nv -0.375 0.005 0.005 0.145 0.0 -0.600 0.016 0.015 0.376 0.6

β̂c -0.164 0.022 0.023 0.048 67.7 -0.825 0.036 0.035 0.716 0.3

β̂cc 0.048 0.036 0.038 0.039 95.1 0.009 0.015 0.014 0.015 95.1

β̂ 0.008 0.009 0.009 0.009 93.3 0.006 0.009 0.009 0.009 94.7

1.5 0.25 β̂nv -0.360 0.004 0.004 0.134 0.0 -0.630 0.014 0.014 0.412 0.1

β̂c -0.324 0.005 0.005 0.111 1.9 -0.669 0.016 0.015 0.464 0.1

β̂cc 0.015 0.013 0.012 0.013 93.6 0.006 0.010 0.010 0.010 93.8

β̂ 0.008 0.009 0.009 0.009 93.3 0.006 0.009 0.009 0.009 94.7

0.50 β̂nv -0.441 0.004 0.003 0.198 0.0 -0.540 0.014 0.013 0.306 0.9

β̂c -0.313 0.010 0.010 0.108 14.7 -0.678 0.023 0.021 0.483 0.2

β̂cc 0.034 0.025 0.023 0.026 95.0 0.008 0.013 0.012 0.013 94.6

β̂ 0.008 0.009 0.009 0.009 93.3 0.006 0.009 0.009 0.009 94.7

Case 2 1.25 0.25 β̂nv -0.240 0.004 0.004 0.062 6.2 -0.732 0.040 0.039 0.575 5.9

β̂c -0.190 0.006 0.006 0.042 30.2 -0.794 0.043 0.042 0.673 3.5

β̂cc 0.013 0.010 0.010 0.010 93.9 0.017 0.037 0.036 0.037 95.1

β̂ 0.006 0.008 0.007 0.008 93.2 0.019 0.032 0.032 0.033 95.3

0.50 β̂nv -0.352 0.004 0.004 0.128 0.0 -0.591 0.040 0.039 0.390 16.5

β̂c -0.175 0.012 0.013 0.043 54.7 -0.811 0.057 0.056 0.714 5.6

β̂cc 0.031 0.021 0.021 0.022 96.3 0.016 0.050 0.048 0.051 95.3

β̂ 0.006 0.008 0.007 0.008 93.2 0.019 0.032 0.032 0.033 95.3

1.50 0.25 β̂nv -0.356 0.003 0.003 0.130 0.0 -0.619 0.038 0.037 0.422 12.1

β̂c -0.326 0.004 0.004 0.110 0.2 -0.657 0.039 0.039 0.472 9.9

β̂cc 0.011 0.009 0.009 0.009 93.9 0.017 0.035 0.035 0.036 94.9

β̂ 0.006 0.008 0.007 0.008 93.2 0.019 0.032 0.032 0.033 95.3

0.50 β̂nv -0.425 0.003 0.003 0.183 0.0 -0.529 0.039 0.037 0.319 23.1

β̂c -0.318 0.006 0.006 0.108 5.6 -0.667 0.047 0.046 0.492 13.5

β̂cc 0.023 0.016 0.016 0.016 95.6 0.016 0.045 0.043 0.045 95.1

β̂ 0.006 0.008 0.007 0.008 93.2 0.019 0.032 0.032 0.033 95.3
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Table 2.3: Simulation results under Scenario C
Case γx σ Method Estimation of βx Estimation of βv

Bias EVE MVE MSE CP(%) Bias EVE MVE MSE CP(%)

Case 1 1.25 0.25 β̂nv -0.223 0.009 0.008 0.058 32.4 -0.771 0.025 0.024 0.619 0.8

β̂c -0.191 0.010 0.010 0.046 49.7 -0.805 0.027 0.026 0.675 0.6

β̂cc 0.012 0.016 0.015 0.016 94.8 0.004 0.015 0.014 0.015 94.7

β̂ 0.008 0.014 0.014 0.014 94.4 0.003 0.015 0.014 0.015 94.2

0.50 β̂nv -0.298 0.008 0.008 0.097 9.6 -0.686 0.025 0.023 0.496 1.1

β̂c -0.177 0.015 0.015 0.047 60.0 -0.817 0.033 0.034 0.700 0.7

β̂cc 0.029 0.024 0.023 0.025 95.3 0.007 0.017 0.017 0.017 95.0

β̂ 0.008 0.014 0.014 0.014 94.4 0.003 0.015 0.014 0.015 94.2

1.5 0.25 β̂nv -0.345 0.006 0.006 0.125 1.6 -0.649 0.022 0.021 0.444 1.1

β̂c -0.326 0.007 0.007 0.113 3.8 -0.670 0.023 0.022 0.472 1.1

β̂cc 0.010 0.015 0.015 0.015 94.7 0.004 0.015 0.014 0.015 94.7

β̂ 0.008 0.014 0.014 0.014 94.4 0.003 0.015 0.014 0.015 94.2

0.50 β̂nv -0.391 0.006 0.005 0.159 0.2 -0.597 0.022 0.021 0.378 1.9

β̂c -0.319 0.009 0.008 0.111 9.7 -0.675 0.026 0.026 0.482 1.3

β̂cc 0.021 0.020 0.019 0.020 94.8 0.006 0.016 0.016 0.016 95.1

β̂ 0.008 0.014 0.014 0.014 94.4 0.003 0.015 0.014 0.015 94.2

Case 2 1.25 0.25 β̂nv -0.217 0.007 0.006 0.054 24.8 -0.770 0.057 0.059 0.651 12.0

β̂c -0.192 0.008 0.007 0.044 38.0 -0.802 0.059 0.062 0.703 11.4

β̂cc 0.011 0.012 0.012 0.012 94.9 0.006 0.049 0.051 0.049 94.8

β̂ 0.008 0.011 0.010 0.011 94.2 0.008 0.047 0.049 0.047 95.5

0.50 β̂nv -0.280 0.006 0.006 0.085 7.4 -0.692 0.059 0.059 0.538 19.0

β̂c -0.181 0.011 0.010 0.044 50.3 -0.814 0.070 0.074 0.733 13.7

β̂cc 0.023 0.017 0.016 0.017 95.0 0.004 0.055 0.059 0.055 94.3

β̂ 0.008 0.011 0.010 0.011 94.2 0.008 0.047 0.049 0.047 95.5

1.50 0.25 β̂nv -0.342 0.005 0.005 0.122 0.6 -0.647 0.055 0.056 0.474 22.4

β̂c -0.327 0.005 0.005 0.112 1.2 -0.667 0.056 0.058 0.500 21.3

β̂cc 0.010 0.012 0.011 0.012 94.7 0.006 0.049 0.050 0.049 94.9

β̂ 0.008 0.011 0.010 0.011 94.2 0.008 0.047 0.049 0.047 95.5

0.50 β̂nv -0.380 0.005 0.004 0.149 0.3 -0.599 0.056 0.056 0.415 28.2

β̂c -0.322 0.006 0.006 0.110 4.1 -0.674 0.062 0.065 0.515 24.8

β̂cc 0.017 0.015 0.014 0.015 95.2 0.005 0.053 0.055 0.053 94.5

β̂ 0.008 0.011 0.010 0.011 94.2 0.008 0.047 0.049 0.047 95.5
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Table 2.4: Simulation results under the Berkson error model
Case σ Method Estimation of βx Estimation of βv

Bias EVE MVE MSE CP(%) Bias EVE MVE MSE CP(%)

Case 1′ 0.25 β̂nv -0.022 0.013 0.011 0.014 91.4 -0.020 0.013 0.011 0.013 92.4

β̂c 0.093 0.020 0.016 0.029 88.5 0.021 0.015 0.013 0.016 92.7

β̂cc 0.021 0.017 0.014 0.018 92.5 0.018 0.015 0.013 0.015 92.4

β̂ 0.010 0.013 0.011 0.013 92.9 0.013 0.013 0.011 0.013 93.8

0.50 β̂nv -0.101 0.013 0.011 0.023 77.8 -0.100 0.013 0.011 0.023 79.0

β̂c 0.522 0.109 0.286 0.382 81.0 0.079 0.178 0.077 0.184 94.0

β̂cc 0.083 0.054 0.052 0.061 95.3 0.046 0.051 0.029 0.053 93.8

β̂ 0.011 0.011 0.010 0.011 93.2 0.013 0.012 0.011 0.013 93.8

Case 2′ 0.25 β̂nv -0.012 0.011 0.010 0.011 92.7 -0.020 0.012 0.011 0.013 92.0

β̂c 0.091 0.016 0.013 0.024 88.2 0.017 0.014 0.013 0.014 92.6

β̂cc 0.017 0.013 0.011 0.014 92.6 0.015 0.014 0.012 0.014 92.7

β̂ 0.015 0.010 0.009 0.011 93.0 0.012 0.012 0.011 0.012 93.4

0.50 β̂nv -0.083 0.011 0.009 0.018 83.2 -0.099 0.012 0.011 0.022 81.7

β̂c 0.362 0.324 0.080 0.455 57.9 0.095 0.034 0.033 0.043 93.8

β̂cc 0.008 0.029 0.020 0.029 90.7 0.033 0.022 0.019 0.023 93.8

β̂ 0.014 0.010 0.009 0.010 92.8 0.012 0.012 0.011 0.012 93.1

Case 3′ 0.25 β̂nv -0.020 0.012 0.011 0.012 93.3 0.035 0.056 0.049 0.057 93.8

β̂c 0.087 0.018 0.015 0.025 89.0 0.015 0.059 0.052 0.059 93.5

β̂cc 0.015 0.015 0.013 0.015 93.9 0.016 0.059 0.052 0.059 93.5

β̂ 0.014 0.011 0.010 0.011 94.3 0.013 0.055 0.049 0.055 93.8

0.50 β̂nv -0.106 0.012 0.010 0.023 78.0 0.094 0.057 0.050 0.066 91.6

β̂c 0.322 0.547 0.103 0.650 72.2 0.005 0.095 0.079 0.095 92.4

β̂cc 0.008 0.037 0.025 0.037 91.6 0.020 0.077 0.064 0.077 92.8

β̂ 0.013 0.010 0.009 0.010 94.5 0.007 0.056 0.051 0.056 93.5
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Chapter 3

Analysis of Survival Data with

Covariate Error under Possibly

Misspecified Error Models

3.1 Introduction

There are many well-known models for survival data analysis, including Cox proportional

hazards models (Cox 1972), accelerated failure time models, and additive hazards models

(Lin and Ying 1994). Although these models have been widely used for survival analysis,

parameter estimation under these models are frequently challenged by mismeasurement

of covariates. A well-known example is the CD4 lymphocyte counts in the AIDS studies,

which are an important biomarker measured with considerable error (Hammer et al. 1996).

Naively ignoring measurement error in covariates commonly leads to misleading results

(Prentice 1982). Consequently, researchers proposed numerous methods to handle covariate

measurement error, including the regression calibration approach (Prentice 1982; Pepe,

Self and Prentice 1989; Wang et al. 1997), the likelihood based approaches (Hu, Tsiatis

and Davidian 1998; Zucker 2005; Yi and Lawless 2007), and the score based approaches
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(Nakamura 1992; Huang and Wang 2000; Hu and Lin 2004; Song and Huang 2005).

These methods are successful in correcting for measurement error effects; they focus on

estimation of the parameters of survival models. In contrast to the large volume of esti-

mation methods in the literature, hypothesis testing is rarely studied for survival models

in the presence of covariate measurement error. In addition, when covariates are error-

contaminated, usual model checking techniques (e.g., Therneau and Grambsch 2000; Law-

less 2003) become invalid. It is desirable to develop valid testing procedures for a given

survival model with error-prone covariates. Furthermore, it is interesting to understand

the impact of model misspecification on inference of survival data with measurement error.

In this chapter, we explore these important problems. We first propose corrected score

and Wald tests under Cox models with mismeasured covariates and study their validity

and efficiency properties. Then we investigate the impact of model misspecification on

parameter estimation and testing.

3.2 Notation and Model Setup

For subject i, i = 1, · · · , n, let Ti be the failure time, Ci be the right censoring time, and

Zi = (XT
i , V

T
i )T be a vector of r-dimensional time independent covariates. Here, the Vi are

always observed, while the Xi are subject to measurement error. We assume {Ti, Ci, Zi} to

be mutually independent, i = 1, · · · , n. We assume that all subjects are under observation

over a common time interval [0, τ ], where τ is a positive constant. Define Si = min(Ti, Ci),

and δi = I(Ti ≤ Ci). For t ∈ (0, τ ], let Ni(t) = I(Si ≤ t, δi = 1) be a counting process,

and Yi(t) = I(Si ≥ t) be an at-risk indicator. Throughout this article, we assume the

conditional independent censoring mechanism, i.e., Ci and Ti are independent given Zi.

70



3.2.1 Cox Model

The Cox model (Cox 1972) assumes that the failure time Ti is related to Zi through the

hazard function

λ(t;Zi) = λ0(t) exp(ZT
i β),

where λ0(·) is the baseline hazard function, and β is the vector of regression parameters.

Here we assume that the distribution of Ti is continuous.

Let β0 = (βT0,x, β
T
0,v)

T be the true value of the parameter, where β0,x and β0,v are

the parameters corresponding to Xi and Vi, respectively. Inference about the regression

parameter β, named β̂, can be obtained by solving the partial score function (Cox 1975)

U(β) = 0, where

U(β) =
n∑
i=1

∫ τ

0

{
Zi −

∑n
j=1 Yj(t)Zj exp(ZT

j β)∑n
j=1 Yj(t) exp(ZT

j β)

}
dNi(t). (3.1)

3.2.2 Measurement Error in Survival Data

For i = 1, · · · , n, let Wi denote the surrogate measurement of Xi. Let Ẑi = (W T
i , V

T
i )T

denote a measured version of Zi. One may be tempted to ignore measurement error in Xi

by using a partial score function based on the observed data:

Unv(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

∑n
j=1 Yj(t)Ẑj exp(ẐT

j β)∑n
j=1 Yj(t) exp(ẐT

j β)

}
dNi(t)

to proceed with the estimation of β. Let β̂nv denote the root of Unv(β). It is shown that

this estimator is often an inconsistent estimator of β (Struthers and Kalbfleisch 1986; Li

and Ryan 2004).

To incorporate measurement error effects in inferential procedures, it is often necessary

to model the measurement error process. We consider that the true covariates Xi and

surrogate measurements Wi are featured by the classical additive measurement error model
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(Carroll et al. 2006)

Wi = Xi + εi, (3.2)

where the εi are independent and identically distributed with mean 0 and a positive-

definite variance matrix Σ0. We assume that εi are independent of Xi, Ti, and Ci, and thus

measurement error is nondifferential. Often, εi is assumed normally distributed (Carroll

et al. 2006). In practise, the parameters of the error distribution are usually estimated

through a validation subsample or replicated surrogate measurements (Yi and Lawless

2007).

We rewrite the classical measurement error model (3.2) as

Ẑi = Zi + ε̃i,

where ε̃i = (εTi , 0
T )T . Define

s(k)(Z; β, t) =E{Yi(t)Z⊗ki exp(ZT
i β)},

and s(k)(Ẑ; β, t) =E{Yi(t)Ẑ⊗ki exp(ẐT
i β)}, k = 0, 1, 2.

Let D(βx) = E{εi exp(εTi βx)}/E{exp(εTi βx)}.

Now, we describe the corrected score methods (Nakamura 1992; Hu and Lin 2002, 2004;

Song and Huang 2005) which correct for measurement error effects. Define

U0(β) =
∑n

i=1

∫ τ
0

(
D(βx)

T , 0T
)T
dNi(t), and

Uc(β) = Unv(β) + U0(β). (3.3)

Nakamura (1992), Hu and Lin (2002, 2004), and Song and Huang (2005) provided different

ways to consistently estimate D(βx). Without loss of generality, we assume that D(βx)

is known in this chapter to simplify our discussion. Solving Uc(β) = 0 gives an estimator

of β; let β̂c denote such an estimator. Kong and Gu (1999) showed the consistency and

asymptotic normality of β̂c, provided certain regularity conditions hold.
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3.3 Hypothesis Testing under Correctly Specified Mea-

surement Error Model

In contrast to numerous estimation procedures proposed in the literature to correct for

error effect, hypothesis testing procedures are rarely studied for survival models with mis-

measured covariates. In this section, we propose a corrected score test and a corrected

Wald test under the Cox model with covariate error, which are valid when the classical

error model is correctly specified.

Write β = (β+T , β−T )T , where β+ is a r+ dimensional subvector of interest to be tested,

and β− is the r− dimensional sub-vector. For simplicity of exposition, we let β+ be the

subvector that consists of the first r+ elements of β, and β− consists of the last r− elements

of β. We are interested in testing the null hypothesis:

H0 : β+ = β+
0 ,

where β+
0 is a given value.

Let Z+
i and Z−i be the subvectors of Zi that correspond to β+ and β−, respectively.

Let D̂+ and D̂− be the sub-vectors of D̂ corresponding to Z+
i and Z−i , and U+

c and U−c be

the sub-vectors of Uc in (3.3) corresponding to Z+
i and Z−i , respectively. That is,

U+
c (β) =

n∑
i=1

∫ τ

0

{
Ẑ+
i −

∑n
j=1 Yj(t)Ẑ

+
j exp(ẐT

j β)∑n
j=1 Yj(t) exp(ẐT

j β)
+D+(βx)

}
dNi(t),

and U−c (β) =
n∑
i=1

∫ τ

0

{
Ẑ−i −

∑n
j=1 Yj(t)Ẑ

−
j exp(ẐT

j β)∑n
j=1 Yj(t) exp(ẐT

j β)
+D−(βx)

}
dNi(t).
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In addition, for any β in the parameter space, let

I(β) =

∫ τ

0

s(2)(Ẑ; β, t)

s(0)(Ẑ; β, t)
−

{
s(1)(Ẑ; β, t)

s(0)(Ẑ; β, t)

}⊗2

+

(
∂D(βx)
∂βTx
|βx=βx 0

0 0

) dE{Ni(t)},

Ji(β) =

∫ τ

0

{
Ẑi −

s(1)(Ẑ; β, t)

s(0)(Ẑ; β, t)
+D(βx)

}
dNi(t)

−
∫ τ

0

Yi(t) exp(ẐT
i β)

s(0)(Ẑ; β, t)

{
Ẑi −

s(1)(Ẑ; β, t)

s(0)(Ẑ; β, t)

}
dE{Ni(t)},

and J (β) =E[{Ji(β)}⊗2].

Write I(β) as

I(β) =

(
I11(β) I12(β)

I21(β) I22(β)

)
,

where I11(β) and I12(β) are r+ × r+ and r+ × r− submatrices of I(β).

We propose a corrected score test statistic as

TS,c = n−1U+T
c (β+

0 , β̃
−
c )V̂ −1(β+

0 , β̃
−
c )U+

c (β+
0 , β̃

−
c ),

where β̃−c is the root of U−c (β+
0 , β

−) = 0, V̂ (β) is a sample version of

V(β) =
(
Ir+ , −I12(β)I−1

22 (β)
)
J (β)

(
Ir+

−I−1
22 (β)I21(β)

)
,

and Ir+ is a r+ × r+ dimensional identity matrix.

Let W11(β) be the upper left r+ × r+ submatrix of I−1T (β)J (β)I−1(β), and Ŵ11(β)

be a sample version of W11(β). Let β̂c = (β̂+T
c , β̂−Tc )T be the solution of Uc(β) = 0. We

propose the corrected Wald test statistic

TW,c = n(β̂+
c − β+

0 )T Ŵ−1
11 (β̂c)(β̂

+
c − β+

0 ).

The following theorem establishes the asymptotic properties of the test statistics TS,c

and TW,c under the null hypothesis H0. The proof is deferred to Appendix A1.
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Theorem 1 Under mild regularity conditions, and under the null hypothesis H0, we

have that as n→∞,

TS,c
d→ χ2

r+ ,

and TW,c
d→ χ2

r+ .

Theorem 1 shows that the proposed test statistics TS,c and TW,c correctly adjust for the

error effects, provide the basis of conducting inference of the regression parameters in the

Cox model. Moreover, TS,c and TW,c have the same asymptotic distribution.

Let P0(TS,c > χ2
r+,α) and P0(TW,c > χ2

r+,α) be the power functions of TS,c and TW,c,

respectively, where α ∈ (0, 1) is a constant, χ2
r+,α is the upper α-quantile of the χ2

r+

distribution, and P0 is the probability measure under the null hypothesis. Theorem 1

implies that limn→∞ P0(TS,c > χ2
r+,α) = α, suggesting a testing procedure based on TS,c for

testing H0: for a pre-specified size α, we reject the null hypothesis H0 if TS,c > χ2
r+,α. A

testing procedure based on TW,c is similarly defined.

Next, we study the power of the proposed test statistics TS,c and TW,c for a sequence of

local alternative hypotheses. Specifically, we consider a sequence of root n local alternatives

Hn : β+
n = β+

0 +
b√
n
, n = 1, 2, · · · ,

where b is a vector of non-zero constants. Let

δ = bT
{
I11(β0)− I12(β0)I−1

22 (β0)I21(β0)
}
V−1(β0)

{
I11(β0)− I12(β0)I−1

22 (β0)I21(β0)
}
b.

The following theorem establishes the asymptotic properties of the test statistic TS,c and

TW,c under the local alternative hypotheses Hn. The proof is deferred to Appendix A2.

Theorem 2 Under mild regularity conditions, and under the sequence of local alternative

hypotheses Hn, we have that as n→∞,

TS,c
d→ χ2

r+(δ),

and TW,c
d→ χ2

r+(δ),
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where χ2
r+(δ) is the noncentral Chi-squared distribution with the non-centrality parameter

δ.

Theorem 2 suggests that TS,c and TW,c have the same asymptotic behaviour under the

alternative hypotheses. Therefore, in the following discussion, we focus on TS,c only. Let

TS and δ0 be respectively defined as TS,c and δ with Ẑi replaced by Zi and D(βx) ignored.

That is,

TS =n−1U+T (β+
0 , β̃

−)V̂ −1
0 (β+

0 , β̃
−)U+(β+

0 , β̃
−
c ),

and δ0 =bT
{
I0,11(β0)− I0,12(β0)I−1

0,22(β0)I0,21(β0)
}
V−1

0 (β0)

×
{
I0,11(β0)− I0,12(β0)I−1

0,22(β0)I0,21(β0)
}
b,

where

I0(β) =

∫ τ

0

s(2)(Ẑ; β, t)

s(0)(Ẑ; β, t)
−

{
s(1)(Ẑ; β, t)

s(0)(Ẑ; β, t)

}⊗2
 dE{Ni(t)}

≡

(
I0,11(β) I0,12(β)

I0,21(β) I0,22(β)

)
,

V0(β) =
(
Ir+ , −I0,12(β)I−1

0,22(β)
)
I0(β)

(
Ir+

−I−1
0,22(β)I0,21(β)

)
,

U+ and U− are the sub-vectors of Uc corresponding to Z+
i and Z−i , respectively, β̃− is the

root of U−(β+
0 , β

−) = 0, V̂0(β) is a sample version of V0(β), and I0,11(β) and I0,12(β) are

r+ × r+ and r+ × r− submatrices of I0(β). Then following Theorem 2, we obtain that

under Hn,

TS
d→ χ2

r+(δ0), as n→∞.

Based on Theorem 2, we can compare the asymptotic relative efficiency (ARE) (Lehman-

n and Romano 2005) of the proposed test statistic TS,c relative to the true score test statistic

TS. For simplicity, we only consider the case where Z+
i is univariate. The proof is deferred

to Appendix A3.
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Corollary 1 Under mild regularity conditions, and under the sequence of local alterna-

tive hypotheses Hn, we have that as n→∞, the ARE of TS,c relative to TS is

ARE(TS,c;TS) =
δ

δ0

< 1.

Corollary 1 implies that the proposed test statistic TS,c incurs efficiency loss. This is

due to that the underlying covariate process is not fully observed. To illustrate the degree

of efficiency loss, we examine an example. In clinical trials, testing treatment effect is often

of primary interest. Let Vi be 1 if the subject i is assigned to the treatment group, and 0

otherwise. In randomized trials, it is reasonable to assume that Xi is independent of Vi. In

addition, we assume that Ci is independent of Vi. We show in Appendix A4 that Corollary

1 yields that

ARE(TS,c;TS) =

(
1 +

V ar{exp (εiβ0,x)}
[E{exp (εiβ0,x)}]2

E
{∫ τ

0
Yi(t) exp

(
XT
i β0,x

)
λ0(t)dt

}2

E
{∫ τ

0
Yi(t) exp (XT

i β0,x)λ0(t)dt
} )−1

. (3.4)

Furthermore, it is shown in Appendix A4 that(
1 + 2

V ar{exp (εiβ0,x)}
[E{exp (εiβ0,x)}]2

)−1

≤ ARE(TS,c;TS) < 1. (3.5)

It is interesting to note that this lower bound of the ARE depends only on the measurement

error magnitude and the covariate effect, but not on the baseline hazard and censoring

information. As the ARE is smaller than 1, thus the corrected score test loses efficiency

compared to the true score test. It can be shown that when the error is normally distributed

with variance Σ0, the efficiency loss of the corrected score test usually increases as the

magnitude of measurement error Σ0 increases. However, the corrected score test is typically

more efficient than the log-rank test (e.g., Kong and Slud 1997). For illustration, we

conduct a simple numerical study.

Suppose the failure times are generated from the Cox model λ(t;Xi, Vi) = λ0(t) exp(Xiβx+

Viβv), where λ0(t) = t, and the true parameter values are (β0,x, β0,v)
T = (1, 0)T . We are in-

terested in testing the null hypothesis H0 : βv = 0. The univariate covariate Xi is standard
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normal, and is independent of the treatment indicator Vi. Vi follows the Bernoulli distri-

bution Bernourlli(0.5). We observe Wi instead of Xi, where the error model Wi = Xi + εi

is correctly specified, where εi are generated from N(0, σ2
0). We let σ0 vary from 0 to 0.5 to

represent different magnitudes of measurement error. The censoring times are generated

from Unif(0, a), and we choose a = 5.4 and∞ to represent approximate 25% censoring rate

and no censoring cases, respectively. We plot the ARE of the corrected score test relative

to the true score test and its lower bound in Figure 3.1. For comparison, we also plot the

ARE of the log rank test relative to the true score test.

The figure shows that the corrected score test is substantially more efficient than the

log-rank test, even when measurement error is moderate or large. The ARE of the corrected

score test is above the lower bound in (3.5) we derived, and this lower bound is rather sharp,

especially for the case without censoring.

[Insert Figure 3.1 here!]

3.4 Inference under Misspecified Measurement Error

Model

The consistency of the corrected score estimator β̂c and our proposed testing statistics TS,c

and TW,c rely on an important assumption that the measurement error model (3.2) cor-

rectly postulates the measurement error process. However, no model checking procedure

is available for checking (3.2). It is thereby interesting to examine the impact of misspeci-

fication of the error model on point estimation and hypothesis testing about the regression

parameter β.

For ease of exposition, we consider in this section that β̂c is obtained by the method

of Nakamura (1992), which is the solution of Uc(β) in (3.3) with normally distributed

measurement errors.
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3.4.1 Estimation

Define Ũc(β) = Ũnv(β) + Ũ0(β), where

Ũnv(β) =

∫ τ

0

E
{
Yi(t)Ẑi exp

(
ZT
i β0

)}
λ0(t)dt

−
∫ τ

0

E
{
Yi(t)Ẑi exp

(
ẐT
i β
)}

E
{
Yi(t) exp

(
ẐT
i β
)} E

{
Yi(t)λ0(t) exp

(
ZT
i β0

)}
dt,

Ũ0(β) =

(
Σ0βx

0

)∫ τ

0

E
{
Yi(t) exp

(
ZT
i β0

)}
λ0(t)dt,

and the expectation is taken under the true survival and error models.

Assume that Ũc(β) = 0 has a unique solution. Let βc be the solution of Ũc(β) = 0. Let

I(β) and J (β) be the defined as in Section 3.3, where the expectations are taken under

the true models.

Suppose that the measurement error model (3.2) is misspecified, and the true error

model that links Wi and Xi is unknown. The following theorem characterizes the asymp-

totic property of β̂c under the misspecified error model (3.2). The proof is deferred to

Appendix A5.

Theorem 3 Under the regularity conditions, we have the following results:

(1) β̂c
p−→ βc as n→∞;

(2) n1/2(β̂c − βc)
d−→ N(0, I−1T (βc)J (βc)I−1(βc)), as n→∞.

The implications of this theorem are two-fold. First, if the measurement error model is

correctly specified, then β0 is a solution of Ũc(β) = 0; under the assumption of the unique

root of Ũc(β), this implies the consistency of β̂c. Secondly, if misspecification of the error

model occurs, this theorem offers us a tool to quantify the asymptotic bias incurred in the
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working estimator β̂c under the misspecified measurement error model. Specifically, the

difference between βc and β0 features consistency or inconsistency of the estimator β̂c. To

find the relationship between βc and β0, it suffices to solve Ũc(βc) = 0, or equivalently,

∫ τ

0

E
{
Yi(t)Ẑi exp

(
ZT
i β0

)}
λ0(t)dt−

∫ τ

0

E
{
Yi(t)Ẑi exp

(
ẐT
i βc

)}
E
{
Yi(t) exp

(
ẐT
i βc

)} E
{
Yi(t)λ0(t) exp

(
ZT
i β0

)}
dt

+

(
Σ0βc,x

0

)∫ τ

0

E
{
Yi(t) exp

(
ZT
i β0

)}
λ0(t)dt = 0, (3.6)

where the expectation is taken under the true survival and error models.

Equation (3.6) is usually complicated to evaluate, and there is generally no explicit

relationship between β0 and βc. However, under certain special but useful scenarios of

misspecification of the measurement error model, it is possible to gain interesting insights

into the impact of misspecification of error models. Now we discuss several important situ-

ations. To highlight the key idea without introducing complex exposition, we consider the

case that Xi is a univariate covariate. In the following, we examine only one scenario ex-

plicitly. Other scenarios and the proofs are included in Appendix S1 of the Supplementary

Material.

Suppose we misspecify the measurement error model to be (3.2), the true error model

is actually given by

Wi = γ0 + γxXi + γTv Vi + εi, (3.7)

where γx and γv are regression coefficients, and εi is the error term with mean zero and

is independent of other variables, and has the same distribution of the error term in the

classical error model (3.2). Note that Xi and Vi can be correlated, and the distributional

form of the error term εi is unknown.

This misspecification scenario includes several interesting cases. For example, it features

the case that some covariates are omitted in the working error model, and the surrogate

Wi does not have the same mean as Xi.

80



Using equation (3.6), we obtain the following relationship of βc and β0:

βc,x = γ−1
x β0,x, (3.8)

and βc,v = β0,v − γvγ−1
x β0,x. (3.9)

This analytic relationship indicates that β̂c can be substantially biased when the true error

model (3.7) is misspecified as the classical error model (3.2). The point estimates of βc,x

and βc,v under the misspecified error model (3.2) can be either attenuated or inflated,

depending on the coefficients γx and γv in the true error model (3.7).

3.4.2 Hypothesis Testing

In this subsection, we study the impact of misspecified error models on the proposed test

statistics. As in Section 3.3, we are interested in testing the null hypothesis:

H0 : β+ = β+
0 .

Let the expectations in I(β) and J (β) in Section 3.3 be taken under the Cox model

and the underlying unknown measurement error model. Let

T ∗S,c = n−1U+T
c (β+

c , β̃
∗−
c )V̂ −1(β+

0 , β̃
∗−
c )U+

c (β+
0 , β̃

∗−
c ),

where β̃∗−c is the root of U−c (β+
c , β

−) = 0. Let

T ∗W,c = n(β̂+
c − β+

c )T Ŵ−1
11 (β̂c)(β̂

+
c − β+

c ).

We show in the following theorem that the proposed corrected score and corrected Wald

tests may become invalid. Similar to Theorem 1, we obtain the following result:

Theorem 4 Under mild regularity conditions, and under the null hypotheses H0, we

have that as n→∞,

T ∗S,c
d→ χ2

r+ ,

and T ∗W,c
d→ χ2

r+ .
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As illustrated in Section 3.4, in many situations where the measurement error model

is misspecified, β+
c 6= β+

0 . Therefore, it is often the case that TS,c 6= T ∗S,c. It follows that

the corrected score test based on TS,c is often invalid in the sense that TS,c is not Chi-

Squared distributed asymptotically. Similarly, the corrected Wald test based on TW,c is

often invalid.

However, in certain scenarios with misspecified measurement error models, the corrected

score test and the corrected Wald test can still yield valid results. To see this, we consider

the situation where β+
c = β+

0 . Under this case,

β̂+
c

p→ β+
0 , as n→∞. (3.10)

Theorem 4 thus implies that TS,c
d→ χ2

r+ , and TW,c
d→ χ2

r+ , as n → ∞, showing that

the corrected score test based on TS,c and the corrected Wald test based on TW,c are

asymptotically valid. When these tests are valid under misspecified error model, their

efficiency property is similar to that described in Corollary 1.

In the following, we specify an important scenario where (3.10) is satisfied under a mis-

specified error model. The proof and other important scenarios are included in Appendix

S2 of the Supplementary Material.

Suppose Xi is independent of Vi, and the censoring mechanism is noninformative. The

underlying error model is unspecified. Let β+ = βv, and β− = βx. We are interested in

testing the null hypothesis H0 : β+ = 0 (i.e., βv = 0). Following Kong and Slud (1997), we

assume that

logP (Ci ≥ t|Xi, Vi) = a(t,Xi) + b(t, Vi), (3.11)

for some unknown positive deterministic functions a(·) and b(·). Note that the assumption

(3.11) can be satisfied under various situations, including (i) Ci is independent of Vi; or

(ii) Ci is independent of Xi; or (iii) Conditional on Xi, Ci is independent of Vi; or (iv)

Conditional on Vi, Ci is independent of Xi; or (v) the randomized trial setting in Section

3.3.
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Under H0 and (3.11), we have βc,v = 0, and thus (3.10) is satisfied. Therefore, the

corrected score test based on TS,c and the corrected Wald test based on TW,c are valid in

this scenario.

3.5 Numerical Studies

3.5.1 Parameter Estimation

In the subsection, we study the impact of misspecified error model on asymptotic bias

of parameter estimation determined by (3.6). We consider the case that there are no Vi

covariates, i.e., Zi = Xi, and Xi is a univariate variable generated from N(0, 1). Suppose

the failure times Ti are generated from the Cox model λ(t;Xi) = λ0(t) exp(Xiβx), where

λ0(t) = t, and the true parameter value is β0,x = 1. Suppose the censoring times Ci are

simulated from Unif(0, 5.4), leading to about 25% censoring rate. Suppose we incorrectly

use the classical error model Wi = Xi+εi as a working model for featuring the measurement

error process, where εi ∼ N(0, σ2
0) with given σ0.

We use the relationship (3.6) to derive the limit βc of the estimator β̂c. Similarly, we

derive the limit βnv of the naive estimator β̂nv. We are interested in the asymptotic bias

of βc relative to the true parameter value β0, defined as (βc − β0)/β0. As a comparison,

we also plot the asymptotic relative bias of βnv against β0, defined as (βnv − β0)/β0. In

Figure 3.2, we consider Case 1 that the true error model is Wi = Xi +Kεi. In Figure 3.2,

K = 0.8, 0.9, 1.1, 1.2, and σ varies from 0 to 0.5. In Figure 3.3, we consider Case 2 that the

true model is Wi = γ0 + γxXi + εi, where γ0 = 0, γx = 0.8, 0.9, 1.1, 1.2, and σ varies from

0 to 0.5. In Appendix S3 in the Supplementary Material, we provide numerical studies for

other misspecification scenarios.

Figures 3.2 and 3.3 reveal that the degree of asymptotic biases of the estimator β̂c can

be even worse than the naive estimator β̂nv when measurement error model is misspecified.

The asymptotic bias of β̂c can be attenuated, inflated, or even constant when the degree of
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measurement error increases. This typically differs from the usual attenuation phenomenon

we observed for the naive method in many settings.

[Insert Figures 3.2-3.3 here!]

Next, we study the finite sample biases of misspecifying the error model on parameter

estimation of the Cox model. Additional simulation studies are summarized in Appendix

S4 in the Supplementary Material.

Let the sample size n = 200 and generate 1000 simulations for each parameter config-

uration, and let Zi = (Xi, Vi)
T be a 2 × 1 vector of covariates. We consider two cases for

covariates. In Case 1, the Zi are bivariate normal, where both of Xi and Vi are standard

normal and the correlation is 0.50. In the Case 2, the Xi are standard exponential, and Vi

follow a Bernoulli distribution with

Pr(Vi = 1|Xi) =
exp(Xi)

1 + exp(Xi)
.

The correlation of Xi and Vi is about 0.27. In both cases, we generate the surrogate Wi

from error model Wi = Xi + εi, where εi ∼ N(0, σ2) and is independent of (Xi, Vi)
T .

We consider three methods to estimate the parameter β . The first one is the naive

method that ignores measurement error by solving the partial score function (3.1) with

Zi replaced by Ẑi; let β̂nv denote the resulting naive estimator. The second one is the

corrected score estimator β̂c. We also calculate β̂ which solves (3.1) with the true covariate

Xi treated available for comparison.

Let σ be 0.25 or 0.5 to represent different degrees of measurement error. In the following

analysis we assume that σ is known. Suppose the failure times are generated from the Cox

model λ(t;Xi, Vi) = λ0(t) exp(Xiβx+Viβv), where λ0(t) = t, and the true parameter values

are (β0,x, β0,v)
T = (1, 1)T . The censoring times Ci are generated from Unif(0, c), where c
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is set to be 5.4 and 2.05 for Cases 1 and 2, respectively, leading to about 30% censoring

rates in both cases.

Table 3.1 presents the empirical results for the scenario that the true error model is

Wi = Xi + Kεi, with K varying from 1/
√

2 to
√

2, representing different degrees and

directions of misspecification. We report the finite sample biases (Bias), the empirical

variances (EVE), the average of the model-based variance estimates (MVE), the mean

square errors (MSE), and the coverage rate of 95% confidence intervals.

We find in Table 3.1 that the finite sample biases of the estimator β̂c can be even

bigger than those of the naive estimator β̂nv. The direction of the biases of the estimator

β̂c resembles those of the limit βc in Figure 3.2. Furthermore, the coverage rates of 95%

confidence intervals produced by the estimator β̂c can be quite poor.

[Insert Table 3.1 here!]

3.5.2 Hypothesis Testing

Set the sample size n = 200, and the number of simulation runs m = 200. The univariate

covariate Xi are generated from standard normal distribution, and are independent of the

treatment indicator Vi, where Vi are generated from Bernourlli(0.5). Suppose we correctly

specify the Cox model λ(t;Xi, Vi) = λ0(t) exp(Xiβx+Viβv). The underlying baseline hazard

function is λ0(t) = t, the parameter value of β0,x = 1, and the parameter value of β0,v varies

from -1 to 1. The censoring time is uniformly distributed and the censoring rate is about

30%. We are interested in testing the null hypothesis H0 : βv = 0.

We observe the surrogate Wi instead of Xi, and suppose we specify the error model as

Wi = Xi + εi, where εi ∼ N(0, σ2
0) and σ0 = 0.25 or 0.5 is assumed known. We consider

two scenarios: In the first scenario, this error model is correctly specified; in the second

scenario, this error model is misspecified, and the true error model is Wi = Xi +Kεi with

K = 1.2. In both scenarios, we report the empirical power of the corrected score test, the

log rank test and the true score test.
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In Figure 3.4, we study the first scenario that the error model is correctly specified.

Measurement error tends to reduce the power of the corrected score test compared to the

true score test. However, it is more powerful than the log rank test, which matches the

observation in Section 3.3.

In Figure 3.5, we study the first scenario that the error model is misspecified. By the

results in Section 3.4.2, the corrected score test is still valid in this scenario. Furthermore,

the power of the corrected score test is still substantially higher than that of the log rank

test in the presence of measurement error and model misspecification.

[Insert Figures 3.4-3.5 here!]

3.6 An example

We conduct data analysis of the AIDS Clinical Trials Group (ACTG) 175 (Hammer, et

al. 1996) study. The ACTG 175 study is a double-blind randomized clinical trial that

evaluated the effects of the HIV treatments for which three drugs were used in combination

or alone: zidovudine, didanosine, and zalcitabine.

There were n = 2139 individuals in the study. The baseline measurements on CD4

were collected before randomization, ranging from 200 to 500 per cubic millimeter. Let

Vi denote the treatment indicator for subject i, where Vi = 1 if a subject receive one of

the three treatments, and 0 otherwise. Ti is defined to be the time to the occurrence

of the first event among the following events: (i) more than 50% decline of CD4 counts

compared to the averaged baseline CD4 counts; (ii) disease progression to AIDS; or (iii)

death. About 75.6% of outcome values are censored. Let Xi be the normalization version

of the true baseline CD4 counts: log(CD4 counts + 1). Xi were not observed in the study.

The average baseline measurements Wi were observed instead.

We are interested in studying the relationship how Ti is associated with unobserved

baseline CD4 counts Xi, and testing of treatment effect of the drugs on the event Ti is
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of particular interest. We employ the Cox model to feature the dependence of Ti on the

covariates Xi and Vi:

λ(t) = λ0(t) exp(Xiβx + Viβv),

where λ0(t) is the baseline hazard function, and β = (βx, βv)
T is the regression parameter.

Our interest in this example is H0 : βv = 0.

We employ the classical error model: Wi = Xi + εi, where the error εi is assumed

distributed as N(0, σ2
0). σ0 can be consistently estimated by replicated measurements

(Huang and Wang 2000).

We comment that in this example there is not enough knowledge what a reasonable

error model would be. Unfortunately, there is lack of model checking techniques to check

these models since Xi is unobserved. However, note that the correlation of Wi and Vi is

weak (-0.025) due to randomization. Thus, the data structure is the same as the scenario

described in Section 3.4.2. Therefore, the result in this scenario guarantees that if the error

model is misspecified, the corrected score test is still valid, and it is usually more efficient

than the log-rank test.

For comparison, we also carried out log rank test for this example. The p-values for

both corrected score and log-rank tests are almost 0, indicating strong evidence to reject

the null hypothesis.

3.7 Discussion

In this chapter, we propose the corrected score and Wald tests, and quantify the impact

of measurement error on efficiency loss of the proposed tests. Furthermore, we explore the

impact of model misspecification on the consistency of parameter estimation and validity

and efficiency of hypothesis testing. We find that the impact is striking. In many situation-

s, the effort of correcting error effects is not rewarding as the resulting corrected parameter

estimator or testing procedure perform even worse than those of simply ignoring measure-

ment error. Thus, developing goodness-of-fit test of the overall fit of the survival model
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and the error model is particularly important. This problem will be explored in Chapter

4. Finally, we note that under several important scenarios, our proposed corrected score

and Wald tests are valid even when the error model is misspecified.

The discussion of misspecification is not restricted to score-based methods. One may

apply the developments in this chapter to study the impact of misspecification on likeli-

hood estimators (e.g., Hu, Tsiatis and Davidian 1998). We comment that the sample size

required to achieve the prespecified size and power of the proposed tests can be calculated,

for example, when testing treatment effects in the presence of mismeasured covariates.

These extensions would be interesting to be further studied.

Appendix

Appendix A1

Proof of Theorem 1: In the following, we first show the asymptotic expansion of n−1/2Uc(β0).

Let

S(k)(Ẑ; β0, t) = n−1

n∑
i=1

Yi(t)Ẑ
⊗k
i exp(ẐT

i β0),

where k = 0, 1, 2. Note that Uc(β0) = Unv(β0) + U0(β0), where

Unv(β0) =
n∑
i=1

∫ τ

0

{
Ẑi −

S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)

}
dNi(t),

and

U0(β0) =
n∑
i=1

∫ τ

0

(
D(β0,x)

0

)
dNi(t).
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Note that

n−1/2Unv(β0) = n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dNi(t)

−n−1/2

n∑
i=1

∫ τ

0

{
S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
− s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dNi(t)

= n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dNi(t)

−
∫ τ

0

{
S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
− s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
d

(
n1/2

n∑
i=1

Ni(t)/n− E{Ni(t)}

)

−
∫ τ

0

n1/2

{
S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
− s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dE{Ni(t)}

≡ A1 − A2 − A3.

Note that by Weak Law of Large Numbers, as n→∞,

S(k)(Ẑ; β0, t)
p→ s(k)(Ẑ; β0, t), k = 0, 1, 2.

Thus,
S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
− s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)
= op(1).

Besides, n1/2
∑n

i=1 Ni(t)/n−E{Ni(t)} converges weakly to a mean-zero Gaussian process.

Therefore,

A2 = op(1).

Note that by Taylor series expansion,

S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
− s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)
=

1

s(0)(Z; β0, t)

{
S(1)(Ẑ; β0, t)− s(1)(Z; β0, t)

}
− s(1)(Z; β0, t)

{s(0)(Z; β0, t)}2

{
S(0)(Ẑ; β0, t)− s(0)(Z; β0, t)

}
+ op(n

−1/2)

=
S(1)(Ẑ; β0, t)

s(0)(Z; β0, t)
− s(1)(Z; β0, t)

{s(0)(Z; β0, t)}2
S(0)(Ẑ; β0, t) + op(n

−1/2).
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Hence,

A3 =

∫ τ

0

n1/2

{
S(1)(Ẑ; β0, t)

s(0)(Z; β0, t)
− s(1)(Z; β0, t)

{s(0)(Z; β0, t)}2
S(0)(Ẑ; β0, t)

}
dE{Ni(t)}+ op(1).

Thus,

n−1/2Uc(β0) = n−1/2Uc1(β0) + n−1/2Uc1(β0)

= (A1 − A2 − A3) + n−1/2Uc1(β0)

= n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dNi(t)

−
∫ τ

0

n1/2

{
S(1)(Ẑ; β0, t)

s(0)(Z; β0, t)
− s(1)(Z; β0, t)

{s(0)(Z; β0, t)}2
S(0)(Ẑ; β0, t)

}
dE{Ni(t)}

+
n∑
i=1

∫ τ

0

(
D(β0,x)

0

)
dNi(t) + op(1)

= n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)
+

(
D(β0,x)

0

)}
dNi(t)

−n−1/2

n∑
i=1

∫ τ

0

Yi(t) exp(ẐT
i β0)

s(0)(Ẑ; β0, t)

{
Ẑi −

s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}
dE{Ni(t)}+ op(1)

= n−1/2

n∑
i=1

Ji(β0) + op(1).

Note that Ji(β0) are independent mean-zero terms, and that V ar(Ji(β0)) = J (β0). There-

fore, as n→∞,

n−1/2Uc(β0)
d→ N(0,J (β0)).

Now, we investigate the asymptotic property of −n−1 ∂Uc(β)
∂βT
|β=β0 . Note that

−n−1∂Uc(β)

∂βT
|β=β0

= n−1

n∑
i=1

∫ τ

0

S(2)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)
−

{
S(1)(Ẑ; β0, t)

S(0)(Ẑ; β0, t)

}⊗2

+

(
∂D(βx)
∂βTx
|βx=β0,x 0

0 0

) dNi(t).
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Thus, by Uniform Weak Law of Large Numbers (Pollard 1990), we have

−n−1∂Uc(β)

∂β
|β=β0

p→
∫ τ

0

s(2)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)
−

{
s(1)(Ẑ; β0, t)

s(0)(Ẑ; β0, t)

}⊗2

+

(
∂D(βx)
∂βTx
|βx=β0,x 0

0 0

) dE{Ni(t)}

= I(β0),

as n→∞.

By Taylor series expansion,

n1/2(β̃−c − β−0 ) =

{
−n−1∂U

−
c (β+

0 , β
−)

∂β−T
|β−=β−

0

}−1

n−1/2U−c (β0) + op(1).

Thus, we obtain by Taylor series expansion that

n−1/2U+
c (β+

0 , β̃
−
c ) = n−1/2U+

c (β0) +

{
n−1∂U

+
c (β+

0 , β
−)

∂β−T
|β−=β−

0

}
n1/2(β̃−c − β−0 ) + op(1)

= n−1/2U+
c (β0) +

{
n−1∂U

+
c (β+

0 , β
−)

∂β−T
|β−=β−

0

}
×
{
−n−1∂U

−
c (β+

0 , β
−)

∂β−T
|β−=β−

0

}−1

n−1/2U−c (β0) + op(1)

=
(
Ir+ , −∂U+

c (β+
0 ,β

−)

∂β−T |β−=β−
0

{
∂U−

c (β+
0 ,β

−)

∂β−T |β−=β−
0

}−1 )
×

(
n−1/2U+

c (β0)

n−1/2U−c (β0)

)
+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2Uc(β0) + op(1)

d→ N

(
0,
(
Ir+ , −I12(β0)I−1

22 (β0)
)
J (β0)

(
Ir+

−I−1
22 (β0)I21(β0)

))
= N(0,V(β0)).

It follows that as n→∞,

TS,c
d→ χ2

r+ .

91



Next we show the asymptotic property of TW,c. Note that,

n1/2(β̂c − β0) =

{
−n−1∂Uc(β)

∂βT
|β=β0

}−1

n−1/2Uc(β0) + op(1)

=
{
I−1T (β0)

}
n−1/2Uc(β0) + op(1)

d→ N(0, I−1(β0)J (β0)I−1T (β0)), as n→∞.

Thus,

n1/2(β̂c − β0)
d→ N(0, I−1T (β0)J (β0)I−1(β0)),

as n→∞. Therefore,

n1/2(β̂+
c − β+

0 )
d→ N(0,W11(β0)),

as n→∞. Thus, as n→∞,

TW,c
d→ χ2

r+ .

Thus, Theorem 1 is proved.

Appendix A2

Proof of Theorem 2: Let Pn denote the probability measure under the alternative hypoth-

esis Hn, and let P0 denote the probability measure under the null hypothesis H0. Note

that a random vector A = opn(1) is equivalent to A = op(1).

First, we derive the asymptotic distribution of TS,c under the alternative hypothesis

Hn. Let β−n be the solution of

En{U−c (β+
0 , β

−)} = 0,

where the expectation is taken under Hn. Note that

En{Uc(β+
0 + b/

√
n, β−0 )} = 0,
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and β−n → β−0 as n → ∞. Then under the alternative hypothesis Hn, we have by Taylor

series expansion that,

0 = n−1/2En{U−c (β+
0 , β

−
n )}

= n−1/2En{U−c (β+
0 , β

−
0 )}+

[
n−1∂En{U−c (β+

0 , β
−)}

∂β−T
|β−=β−

0

]√
n(β−n − β−0 ) + op(1).

Therefore,

√
n(β−n − β−0 )

=

[
−n−1∂En{U−c (β+

0 , β
−)}

∂β−T
|β−=β−

0

]−1

n−1/2En{U−c (β+
0 , β

−
0 )}+ op(1)

=

[
−n−1∂En{U−c (β+

0 , β
−)}

∂β−T
|β−=β−

0

]−1(
n−1/2En{U−c (β+

0 + b/
√
n, β−0 )}

+

[
n−1∂En{U−c (β+, β−0 )}

∂β+T
|β+=β+

0 +b/
√
n

]√
n{β+

0 − (β+
0 + b/

√
n)}+ op(1)

)
+ op(1)

=

[
−n−1∂En{U−c (β+

0 , β
−)}

∂β−T
|β−=β−

0

]−1

×
[
−n−1∂En{U−c (β+, β−0 )}

∂β+T
|β+=β+

0 +b/
√
n

]
b+ op(1)

=I−1
22 (β0)I21(β0)b+ op(1).
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Furthermore,

n−1/2En{U+
c (β+

0 , β
−
n )}

=n−1/2En{U+
c (β+

0 + b/
√
n, β−n )}

+

[
n−1∂En{U+

c (β+, β−n )}
∂β+T

|β+=β+
0 +b/

√
n

]√
n{β+

0 − (β+
0 + b/

√
n)}+ op(1)

=n−1/2En{U+
c (β+

0 + b/
√
n, β−0 )}

+

[
n−1∂En{U+

c (β+
0 + b/

√
n, β−)}

∂β−T
|β−=β−

0

]√
n(β−n − β−0 )

+

[
−n−1∂En{U+

c (β+, β−n )}
∂β+T

|β+=β+
0 +b/

√
n

]
b+ op(1)

=

[
n−1∂En{U+

c (β+
0 + b/

√
n, β−)}

∂β−T
|β−=β−

0

]
I−1

22 (β0)I−1
21 (β0)b

+

[
−n−1∂En{U+

c (β+, β−n )}
∂β+T

|β+=β+
0 +b/

√
n

]
b+ op(1)

=− {I11(β0)− I12(β0)I−1
22 (β0)I21(β0)}b+ op(1).

Together with the fact that En{U−c (β+
0 , β

−
n )} = 0, we have

n−1/2En{Uc(β+
0 , β

−
n )} =

(
−{I11(β0)− I12(β0)I−1

22 (β0)I21(β0)}b
0

)
+ op(1).

Following the arguments in Appendix A2 , we have that under the alternative hypothesis

Hn,

n−1/2U+
c (β+

0 , β̃
−
c ) =

(
1r+ , −I12(β0)I−1

22 (β0)
)
n−1/2Uc(β0) + op(1).
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Thus,

n−1/2U+
c (β+

0 , β̃
−
c )

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)

×
(
n−1/2Uc(β

+
0 , β

−
n ) +

{
−n−1∂Uc(β

+
0 , β

−)

∂β−T
|β−=β−

n

}√
n(β−n − β−0 )

)
+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)(

n−1/2Uc(β
+
0 , β

−
n )

+

{
−n−1∂Uc(β

+
0 , β

−)

∂β−T
|β−=β−

n

}
{I−1

22 (β0)I21(β0)b+ op(1)}
)

+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2Uc(β

+
0 , β

−
n )

+
(
Ir+ , −I12(β0)I−1

22 (β0)
)( −n−1 ∂U

+
c (β+

0 ,β
−)

∂β−T |β−=β−
n

−n−1 ∂U
−
c (β+

0 ,β
−)

∂β−T |β−=β−
n

)
I−1

22 (β0)I21(β0)b+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2Uc(β

+
0 , β

−
n )

+
(
Ir+ , −I12(β0)I−1

22 (β0)
)( I12(β0)

I22(β0)

)
I−1

22 (β0)I21(β0)b+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2Uc(β

+
0 , β

−
n ) + op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2[Uc(β

+
0 , β

−
n )− En{Uc(β+

0 , β
−
n )}]

+
(
Ir+ , −I12(β0)I−1

22 (β0)
)( −{I11(β0)− I12(β0)I−1

22 (β0)I21(β0)}b
0

)
+ op(1)

=
(
Ir+ , −I12(β0)I−1

22 (β0)
)
n−1/2[Uc(β

+
0 , β

−
n )− En{Uc(β+

0 , β
−
n )}]

− {I11(β0)− I12(β0)I−1
22 (β0)I21(β0)}b+ op(1)

d→N
(
−{I11(β0)− I12(β0)I−1

22 (β0)I21(β0)}b, V(β0)
)
, as n→∞.
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It follows that

TS,c =n−1U+T
c (β+

0 , β̃
−
c )
{
V̂ −1(β+

0 , β̃
−
c )
}
U+
c (β+

0 , β̃
−
c )

=n−1U+T
c (β+

0 , β̃
−
c )V−1(β0)U+

c (β+
0 , β̃

−
c ) + op(1)

d→χ2
r+(δ), as n→∞,

where

δ =
1

2
bT
{
I11(β0)− I12(β0)I−1

22 (β0)I21(β0)
}
V−1(β0)

{
I11(β0)− I12(β0)I−1

22 (β0)I21(β0)
}
b.

Next, we derive the asymptotic distribution of TW,c under the alternative hypothesis

Hn. Note that under mild regularity conditions, β̂c is a regular estimator (Tsiatis 2006, p.

27). Thus,
√
n{β̂+

c − (β+
0 + b/

√
n)} d→ N(0,W11(β0)), as n→∞.

Therefore,

√
n(β̂+

c − β+
0 ) =

√
n{β̂+

c − (β+
0 + b/

√
n)}+ b

d→N(b,W11(β0)), as n→∞.

It follows that

TW,c =n(β̂+
c − β̂+

0 )T
{
Ŵ−1

11 (β̂c)
}

(β̂+
c − β̂+

0 )

=n(β̂+
c − β̂+

0 )T
{
W−1

11 (β0)
}

(β̂+
c − β̂+

0 ) + op(1)

d→χ2
r+(δ∗), as n→∞,

where

δ∗ =
1

2
bTW−1

11 (β0)b.

Following the arguments in Appendix A of Ma et al. (2011), we can show that δ∗ = δ, and

thus

TW,c
d→ χ2

r+(δ), as n→∞.

Thus, Theorem 2 is proved.
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Appendix A3

Proof of Corollary 1: Let Pn be the probability measure under Hn, and let Pn(TS,c > χ2
r+,α)

be the power function. By the proof of Appendix A2,

n−1/2U+
c (β+

0 , β̃
−
c )

d→ N
(
−{I11(β0)− I12(β0)I−1

22 (β0)I21(β0)}b, V(β0)
)
, as n→∞.

Therefore,

lim
n→∞

Pn(TS,c > χ2
r+,α)

= lim
n→∞

Pn

(
n−1[U+

c (β+
0 , β̃

−
c ) +

√
n{I11(β0)− I12(β0)I−1

22 (β0)I21(β0)}b]2/V(β0)

> χ2
r+,α + δ

)
=1−Ψ(χ2

r+,α + δ),

where Ψ is the cumulative distribution function of the χ2
r+ distribution. Let ρ be a constant

satisfying 0 < α < ρ < 1. Therefore, the limiting power of the corrected score test against

Hn is ρ if and only if

χ2
r+,α + δ = χ2

r+,ρ,

or equivalently,

{I11(β0)− I12(β0)I−1
22 (β0)I21(β0)}2b2/V(β0) = χ2

r+,ρ − χ2
r+,α.

Since b = limn→∞
√
n(β+

n − β+
0 ), the limiting power of the corrected score test against Hn

is ρ if and only if the sample size of the corrected score test satisfies

nS,c ∼
(χ2

r+,ρ − χ2
r+,α)V(β0)

{I11(β0)− I12(β0)I−1
22 (β0)I21(β0)}2(β+

n − β+
0 )2

=
(χ2

r+,ρ − χ2
r+,α)b2

δ(β+
n − β+

0 )2
,

where A ∼ B means limn→∞
A
B

= 1. Similarly, the limiting power of the partial score test

against Hn is ρ if and only if the sample size of the partial score test satisfies

nS ∼
(χ2

r+,ρ − χ2
r+,α)b2

δ0(β+
n − β+

0 )2
.
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Thus, the ARE of the corrected score test relative to the partial score test is

lim
n→∞

nS
nS,c

=
δ

δ0

.

It remains to prove that δ < δ0. Let V0(β0) be V(β0) with Ẑi replaced by Zi, and D(β0,x)

ignored. Note that V0(β0) is the asymptotic variance of the partial score estimator. There-

fore, V0(β0) < V(β0). Thus,
δ

δ0

=
V0(β0)

V(β0)
< 1.

Thus, Corollary 1 is proved.

Appendix A4

Note that

I(β) =

∫ τ

0

[
s(2)(Z; β, t)

s(0)(Z; β, t)
−
{
s(1)(Z; β, t)

s(0)(Z; β, t)

}⊗2
]
dE{Ni(t)}.

Note also that in this randomized trial setting, β+ = βv, D
+(βx) = 0, and Ẑ+

i = Vi. By

assumption, Vi ⊥⊥ Ci, and under the null hypothesis H0, Vi ⊥⊥ Ti, then we obtain that

E{Yi(t)Vi}
E{Yi(t)}

= E(Vi),

and

I12(β0) = IT21(β0) =

∫ τ

0

(
E{Yi(t)XT

i Vi exp(XT
i β0,x)}

E{Yi(t) exp(XT
i β0,x)}

− E{Yi(t)Vi exp(XT
i β0,x)}E{Yi(t)XT

i exp(XT
i β0,x)}

[E{Yi(t) exp(XT
i β0,x)}]2

)
dE{Ni(t)}

=

∫ τ

0

(
E(Vi)E{Yi(t)XT

i exp(XT
i β0,x)}

E{Yi(t) exp(XT
i β0,x)}

− E(Vi)E{Yi(t) exp(XT
i β0,x)}E{Yi(t)XT

i exp(XT
i β0,x)}

[E{Yi(t) exp(XT
i β0,x)}]2

)
dE{Ni(t)}

=0.
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Let J11(β) be the upper left first element of J (β). Then

V(β0) =
(

1, 0
)
J (β0)

(
1

0

)
=J11(β0)

=E

([∫ τ

0

{
Vi −

E{Yi(t)Vi exp(W T
i β0,x)}

E{Yi(t) exp(W T
i β0,x)}

}
dNi(t)

−
∫ τ

0

Yi(t) exp(W T
i β0,x)

E{Yi(t) exp(W T
i β0,x)}

{
Vi −

E{Yi(t)Vi exp(W T
i β0,x)}

E{Yi(t) exp(W T
i β0,x)}

}
dE{Ni(t)}

]2)
=E

[∫ τ

0

{Vi − E(Vi)}
{
dNi(t)−

Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

}]2

.

Note that

Ni(t)−
∫ t

0

Yi(u) exp(XT
i β0,x)λ0(u)du

is a martingale (Kalbfleisch and Prentice 2002). By martingale properties,

E

[∫ τ

0

{Vi − E(Vi)}
{
dNi(t)− Yi(t) exp(XT

i β0,x)λ0(t)dt
}]2

=E

[∫ τ

0

{Vi − E(Vi)}2 Yi(t) exp(XT
i β0,x)λ0(t)dt

]
.
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Therefore,

V(β0) =E

[∫ τ

0

{Vi − E(Vi)}
{
dNi(t)−

Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

}]2

=E

(∫ τ

0

{Vi − E(Vi)}
[{

dNi(t)− Yi(t) exp(XT
i β0,x)λ0(t)dt

}
+

{
Yi(t) exp(XT

i β0,x)λ0(t)dt− Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

}])2

=E

[∫ τ

0

{Vi − E(Vi)}
{
dNi(t)− Yi(t) exp(XT

i β0,x)λ0(t)dt
}]2

+ E

[∫ τ

0

{Vi − E(Vi)}
{
Yi(t) exp(XT

i β0,x)λ0(t)dt− Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

}]2

+ 2E

(∫ τ

0

{Vi − E(Vi)}
{
dNi(t)− Yi(t) exp(XT

i β0,x)λ0(t)dt

}
×
∫ τ

0

{Vi − E(Vi)}
{
Yi(t) exp(XT

i β0,x)λ0(t)dt− Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

})
=E

[∫ τ

0

{Vi − E(Vi)}2 Yi(t) exp(XT
i β0,x)λ0(t)dt

]
+ E

[∫ τ

0

{Vi − E(Vi)}
{
Yi(t) exp(XT

i β0,x)λ0(t)dt− Yi(t) exp(W T
i β0,x)

E{exp(εTi β0,x)}
λ0(t)dt

}]2

=V ar(Vi)E

{∫ τ

0

Yi(t) exp(XT
i β0,x)λ0(t)dt

}
+
V ar{exp (εiβ0,x)}
[E{exp (εiβ0,x)}]2

V ar(Vi)E

{∫ τ

0

Yi(t) exp(XT
i β0,x)λ0(t)dt

}2

,

and δ = b2I2
11(β0)/V(β0). Let V0(β0) be V(β0) with Ẑi replaced by Zi, and D(β0,x) ignored.

Similarly we have

V0(β0) = V ar(Vi)E

{∫ τ

0

Yi(t) exp(XT
i β0,x)λ0(t)dt

}
,

and δ0 = b2I2
11(β0)/V0(β0). Therefore,

ARE(TS,c;TS) =
δ

δ0

=

(
1 +

V ar{exp (εiβ0,x)}
[E{exp (εiβ0,x)}]2

E
{∫ τ

0
Yi(t) exp

(
XT
i β0,x

)
λ0(t)dt

}2

E
{∫ τ

0
Yi(t) exp (XT

i β0,x)λ0(t)dt
} )−1

,
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and thus (3.4) is proved. It remains to prove(
1 + 2

V ar{exp (εiβ0,x)}
[E{exp (εiβ0,x)}]2

)−1

≤ ARE(TS,c;TS),

or equivalently,

E
{∫ τ

0
Yi(t) exp

(
XT
i β0,x

)
λ0(t)dt

}2

E
{∫ τ

0
Yi(t) exp (XT

i β0,x)λ0(t)dt
} ≤ 2.

Let Λ(t) =
∫ t

0
λ0(u)du be the cumulative hazard function. Let fC,X(·) denote the

unknown joint density function of the censoring time Ci and the covariates Xi, respectively.

Let a(t) = Λ0(t) exp(xTβ0,x). Then

E

{∫ τ

0

Yi(t) exp
(
XT
i β0,x

)
λ0(t)dt

}2

=E
{

exp
(
2XT

i β0,x

)
Λ2

0(min(Ti, Ci))
}

=

∫ ∞
−∞

∫ τ

0

∫ c

0

exp
(
2xTβ0,x

)
Λ2

0(t)λ0(t) exp(xTβ0,x) exp{−Λ0(t) exp(xTβ0,x)}fC,X(c, x)dtdcdx

+

∫ ∞
−∞

∫ τ

0

∫ ∞
c

exp
(
2xTβ0,x

)
Λ2

0(c)λ0(t) exp(xTβ0,x) exp{−Λ0(t) exp(xTβ0,x)}fC,X(c, x)dtdcdx

=

∫ ∞
−∞

∫ τ

0

∫ a(c)

0

y2 exp(−y)dyfC,X(c, x)dcdx+

∫ ∞
−∞

∫ τ

0

∫ ∞
a(c)

a2(c) exp(−y)dyfC,X(c, x)dcdx

=

∫ ∞
−∞

∫ τ

0

{
2− 2 exp(−a(c))− 2a(c) exp(−a(c))− a2(c) exp(−a(c))

}
fC,X(c, x)dcdx

+

∫ ∞
−∞

∫ τ

0

a2(c) exp(−a(c))fC,X(c, x)dcdx

=

∫ ∞
−∞

∫ τ

0

2 {1− exp(−a(c))− a(c) exp(−a(c))} fC,X(c, x)dcdx.
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Similarly,

E

{∫ τ

0

Yi(t) exp
(
XT
i β0,x

)
λ0(t)dt

}
=E

{
exp

(
XT
i β0,x

)
Λ0(min(Ti, Ci))

}
=

∫ ∞
−∞

∫ τ

0

∫ a(c)

0

y exp(−y)dyfC,X(c, x)dcdx+

∫ ∞
−∞

∫ τ

0

∫ ∞
a(c)

a(c) exp(−y)dyfC,X(c, x)dcdx

=

∫ ∞
−∞

∫ τ

0

{1− exp(−a(c))− a(c) exp(−a(c))} fC,X(c, x)dcdx

+

∫ ∞
−∞

∫ τ

0

a(c) exp(−a(c))fC,X(c, x)dcdx

=

∫ ∞
−∞

∫ τ

0

{1− exp(−a(c))} fC,X(c, x)dcdx.

Therefore, by the fact that a(t) is a increasing function, we have

E

{∫ τ

0

Yi(t) exp
(
XT
i β0,x

)
λ0(t)dt

}2

≤ 2E

{∫ τ

0

Yi(t) exp
(
XT
i β0,x

)
λ0(t)dt

}
.

Appendix A5

Proof of Theorem 3: By Taylor series expansion,

n1/2(β̂c − βc) =

{
−n−1∂Uc(β)

∂βT
|β=βc

}−1

n−1/2Uc(βc) + op(1).

By following the arguments in Appendix A1, we have

n−1/2Uc(βc) = n−1/2

n∑
i=1

∫ τ

0

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
+

(
D(βc,x)

0

)}
dNi(t)

−n−1/2

n∑
i=1

∫ τ

0

Yi(t) exp(ẐT
i βc)

s(0)(Ẑ; βc, t)

{
Ẑi −

s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}
dE{Ni(t)}+ op(1)

= n−1/2

n∑
i=1

Ji(βc) + op(1).

102



Therefore, as n→∞,

n−1/2Uc(βc)
d→ N(0,J (βc)).

Note that

−n−1∂Uc(β)

∂βT
|β=βc

= n−1

n∑
i=1

∫ τ

0

S(2)(Ẑ; βc, t)

S(0)(Ẑ; βc, t)
−

{
S(1)(Ẑ; βc, t)

S(0)(Ẑ; βc, t)

}⊗2

+

(
∂D(βx)
∂βTx
|βx=βc,x 0

0 0

) dNi(t)

p→
∫ τ

0

s(2)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)
−

{
s(1)(Ẑ; βc, t)

s(0)(Ẑ; βc, t)

}⊗2

+

(
∂D(βx)
∂βTx
|βx=βc,x 0

0 0

) dE{Ni(t)}

= I(βc),

as n→∞. Therefore,

n1/2(β̂c − βc) =

{
−n−1∂Uc(β)

∂βT
|β=βc

}−1

n−1/2Uc(βc) + op(1)

=
{
I−1T (βc)

}
n−1/2Uc(βc) + op(1)

d→ N(0, I−1T (βc)J (βc)I−1(βc)), as n→∞.

Thus, Theorem 3 is proved.

The derivations above require certain regularity conditions, including those listed in

Appendix A1 of Chapter 2.

Supplementary Material

Appendix S1

We denote the scenario described in Section 4.1 as Scenario 1, where the true error model

(3.7) is misspecified. We then consider three more scenarios, where Zi = Xi, and Xi is a

univariate covariate.
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Scenario 2: classical additive error model with different degree of errors

Suppose we misspecify the measurement error model to be (3.2), but the true error

model is

Wi = Xi +Kεi, (3.12)

where K 6= 1 is a constant, and εi has the same distribution of the error term in the

classical error model (3.2).

We obtain the following results: (i). If β0,x = 0, then βc,x = 0. (ii). If β0,x 6= 0 and

K > 1, then |βc,x| < |β0,x|, and βc,x and β0,x have the same sign; the degree of attenuation

of βc,x increases as the degree of measurement error increases, or K increases. (iii). If

β0,x 6= 0 and K < 1 and K is close to 1, then |βc,x| > |β0,x|, and βc,x and β0,x have the

same sign.

Scenario 3: Berkson error model

Suppose that we misspecify the measurement error model to be (3.2) with normally

distributed covariate and error, but the true error model is the Berkson error model:

Xi = Wi + εi. (3.13)

The Berkson error model can be rewritten as

Wi = γ0 +Xiγx + ε∗i ,

where γx = Σw/(Σw+Σ0) with Σw being the variance of Wi, γ0 = 1−γx, and ε∗i is the error

term with mean 0 and variance γxΣ0, and is independent of Xi. When Σ0 is relatively small

compared to Σw, we obtain that |βc,x| > γ−1
x |β0,x| > |β0,x|, and βc,x and β0,x have the same

sign. Furthermore, the degree of inflation of βc increases as the degree of measurement

error increases.

Scenario 4: classical additive error model with different error distributions
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Suppose that the true error model is a classical additive error model

Wi = Xi + ε∗i , (3.14)

where the distribution of ε∗i and that of εi from the misspecified error model (3.2) are

different. That is, the scenario includes Scenario 2 as a special case. It is generally difficult

to sort out the relationship between βc and β0 deterministically. Numerical approximations

are often invoked to study the impact of misspecifying the error distribution on response

parameter estimation. In our simulation studies, we specifically consider the impact of

misspecifying the error distribution as normal, while the true distribution is a uniform, a

logistic, a mixture normal, or an exponential distribution.

Now we justify the claims in Scenarios 1-3. Let

Ũ(β) =

∫ τ

0

E
{
Yi(t)Zi exp

(
ZT
i β0

)}
λ0(t)dt

−
∫ τ

0

E
{
Yi(t)Zi exp

(
ZT
i β
)}

E {Yi(t) exp (ZT
i β)}

E
{
Yi(t)λ0(t) exp

(
ZT
i β0

)}
dt.

Note that β0 is the unique solution of Ũ(β) = 0.

We first consider Scenario 1. Under the underlying error model (3.2), we have

Ũc(β)

=

∫ τ

0

E
{
Yi(t)Ẑi exp

(
ZT
i β0

)}
λ0(t)dt−

∫ τ

0

E
{
Yi(t)Ẑi exp

(
ẐT
i β
)}

E
{
Yi(t) exp

(
ẐT
i β
)} E

{
Yi(t)λ0(t) exp

(
ZT
i β0

)}
dt

+

(
Σ0βx

0

)∫ τ

0

E
{
Yi(t) exp

(
ZT
i β0

)}
λ0(t)dt

=

(
γx γTv

0 I

)
Ũ(γxβx, βv + γvβx).

Since Ũc(βc) = 0, we have Ũ(γxβc,x, βc,v + γvβc,x) = 0. By the uniqueness of the solution

of Ũ(β) = 0, we obtain that β0,x = γxβc,x, and β0,v = βc,v + γvβc,x.
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Second, we consider Scenario 2. Under the underlying error model (3.12), we have

Ũc(βx) = Ũ(βx) + (1−K)Σ0βx

∫ τ

0

E {Yi(t) exp (Xiβ0,x)}λ0(t)dt.

It is obvious that when β0,x = 0, we have βc,x = 0. Now suppose K > 1. It is straight-

forward that ∂Ũc(βx)
∂βx

< 0. Thus Ũc(βx) is a decreasing function of βx, and there is unique

solution of Ũc(βx) = 0. Observe that

Ũc(β0,x) = (1−K)Σ0β0,x

∫ τ

0

E {Yi(t) exp (Xiβ0,x)}λ0(t)dt.

Therefore, when β0,x > 0, then Ũc(β0,x) < 0, and thus βc,x < β0,x; when β0,x < 0, then

Ũc(β0,x) > 0, and thus βc,x > β0,x. For the case where K < 1 and K is sufficiently close to

1,Ũc(βx) is a decreasing function of βx, and there is unique solution of Ũc(βx) = 0. When

β0,x > 0, then Ũc(β0,x) > 0, and thus βc,x > β0,x; when β0,x < 0, then Ũc(β0,x) < 0, and

thus βc,x < β0,x.

Next, we consider Scenario 3. Under the underlying error model (3.13), we have

Ũc(βx) = γxŨ(γxβx) + (1− γx)Σ0βx

∫ τ

0

E {Yi(t) exp (Xiβ0,x)}λ0(t)dt,

where γx = Σw/(Σw + Σ0). Under the assumption that βc exist and is unique, and when

Σ0 is relatively small, we have that Ũc(βx) is a decreasing function of βx. When β0,x > 0,

then Ũc(γ
−1
x β0,x) > 0, and thus βc,x > γ−1

x β0,x; when β0,x < 0, then Ũc(γ
−1
x β0,x) < 0, and

thus βc,x < γ−1
x β0,x.

Appendix S2

We denote the scenario described in Section 4.1 as Scenario 1′. We then consider three

more scenarios.

Scenario 2′: Suppose that Wi is linked with Xi and Vi through one of the four error

models (3.7), (3.12), (3.13), and (3.14) specified in Scenarios 1-4 in Section 3.4.1. We are
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interested in testing the null hypothesis H0 : βx = 0. Under H0, we have βc,x = 0, and

thus (3.10) is satisfied. Therefore, the corrected score test and the corrected Wald test are

valid.

Scenario 3′: Suppose Xi ⊥⊥ Vi, Ci ⊥⊥ Xi, and the error mechanism is noninformative.

The underlying error model is unspecified. We are interested in testing the null hypothesis

H0 : βx = 0. Under H0, we have βc,x = 0, and thus (3.10) is satisfied.

Scenario 4′: Consider the setting in Scenario 1′, except that we now are interested in

testing the null hypothesis that the failure time Ti does not depend on Vi. That is

H∗0 : Ti ⊥⊥ Vi.

Suppose that both the Cox model and the error model are misspecified. Then under the

null hypothesis H∗0 ,

TS,c
d→ χ2

r+ ,

and TW,c
d→ χ2

r+ ,

as n→∞. That is the corrected score test and the corrected Wald test are asymptotically

valid.

Now we justify the claims in Scenarios 1′ − 4′. Define Ũ(β) as in Appendix A6. Let

Ũc(β) = (Ũ+T
c (β), Ũ−Tc (β))T , where Ũ+

c (β) and Ũ−c (β) correspond to β+ and β−, respec-

tively. We need to verify that for Scenarios 1′ to 3′, (3.10) is satisfied.

First, we consider Scenario 1′. In this scenario βv = β+, and under H0, β0,v = β+
0 = 0.
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Note that

E
{
Yi(t)Vi exp

(
XT
i βx

)}
= EXi,Vi [ETi,Ci|Xi,Vi

{
I(Ti ≥ t)I(Ci ≥ t)Vi exp

(
XT
i βx

)}
]

= EXi,Vi [ETi|Xi,Vi {I(Ti ≥ t)}ECi|Xi,Vi {I(Ci ≥ t)}Vi exp
(
XT
i βx

)
]

= EXi,Vi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp{b(t, Vi)}Vi exp
(
XT
i βx

)
]

= EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp
(
XT
i βx

)
]EVi [exp{b(t, Vi)}Vi].

We can obtain similar expressions for E
{
Yi(t) exp

(
XT
i βx

)}
, E
{
Yi(t)Vi exp

(
W T
i βx

)}
, and

E
{
Yi(t) exp

(
W T
i βx

)}
, respectively.

Therefore,

Ũ+
c (0, βc,x)

=

∫ τ

0

E
{
Yi(t)Vi exp

(
XT
i β0,x

)}
λ0(t)dt

−
∫ τ

0

E
{
Yi(t)Vi exp

(
W T
i βc,x

)}
E {Yi(t) exp (W T

i βc,x)}
E
{
Yi(t)λ0(t) exp

(
XT
i β0,x

)}
dt

=

∫ τ

0

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp
(
XT
i β0,x

)
]EVi [exp{b(t, Vi)}Vi]λ0(t)dt

−
∫ τ

0

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp
(
W T
i βc,x

)
]EVi [exp{b(t, Vi)}Vi]

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp (W T
i βc,x)]EVi [exp{b(t, Vi)}]

× EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp
(
XT
i β0,x

)
]EVi [exp{b(t, Vi)}]λ0(t)dt

= 0.

Therefore, βc,v = 0.

We now consider Scenario 2′. In this scenario, β+ = βx, D
+(βx) = Σ0βx, and β+

0 = 0.

We first assume the underlying error model is (3.7). We obtain from (3.8) that under H0,

we have βc,x = 0 = β+
0 , and thus (3.10) is satisfied.

Next, we assume the underlying error model is (3.12) or (3.13). By the uniqueness

assumption of the solution of Ũc(β) = 0 and the derivation in Appendix A6, we obtain

that when β0,x = 0, then βc,x = 0. Thus (3.10) is satisfied.
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Now, we assume the underlying error model is (3.14). We have

Ũc(βx) = Ũ(βx) +

(
Σ0βx −

E{ε∗i exp(ε∗iβx)}
E{exp(ε∗iβx)}

)∫ τ

0

E {Yi(t) exp (Xiβ0,x)}λ0(t)dt.

Therefore, Ũc(0) = 0. By the uniqueness assumption of the solution of Ũc(β) = 0, we have

βc,x = 0. Thus (3.10) is satisfied.

Next, we consider Scenario 3′. In this scenario βx = β+, and under H0, β0,x = β+
0 = 0.

Under the assumption that βc exist and is unique, we only need to verify that Ũ+
c (0, βc,v) =

0. Note that under H0,
E{Yi(t)Wi exp(V T

i βv)}
E{Yi(t) exp(V T

i βv)}
= E(Wi),

and thus Ũ+
c (0, βc,v) = 0. Therefore, βc,x = 0.

Finally, we consider Scenario 4′. Let λi(t) be the underlying hazard function for subject

i conditional of the covariates., Note that under H0, λi(t) is independent of Vi, but it may

be associated with Xi. Similar to Scenario 3′, We only need to show that

Ũ+
c (0, βc,x) =

∫ τ

0

E[Yi(t)Viλi(t)]dt−
∫ τ

0

E[Yi(t)Vi exp(W T
i βc,x)]

E[Yi(t) exp(W T
i βc,x)]

E[Yi(t)λi(t)]dt = 0,

where λi(t) is the underlying hazard function for subject i conditional of the covariates.,

Note that under H0, λi(t) is independent of Vi, but it may be associated with Xi. Thus,

we write λi(t;Xi) to represent λi(t).

Note that

Ũ+
c (0, βc,x) =

∫ τ

0

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)}λi(t)]EVi [exp{b(t, Vi)}Vi]dt

−
∫ τ

0

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp
(
W T
i βc,x

)
]EVi [exp{b(t, Vi)}Vi]

EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)} exp (W T
i βc,x)]EVi [exp{b(t, Vi)}]

× EXi [ETi|Xi {I(Ti ≥ t)} exp{a(t,Xi)}λi(t)]EVi [exp{b(t, Vi)}]dt

= 0.

Therefore, βc,v = 0.
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Appendix S3

The setting of the survival model and working error model here is the same as in Section

3.5.1. In Figure 3.6, we consider Case S.1 that the true error model is Wi = Xi +Kεi. In

Figure 3.6, σ0 is fixed as 0.25 or 0.50, respectively, but K varies from 1/
√

2 to
√

2, indicat-

ing that the variance of the error term is misspecified from twice of the true one to a half

of the true one. In Figure 3.7, we consider Case S.2 that the true model is Wi = γxXi + εi,

where σ is fixed as 0.25 or 0.50, respectively, but γx changes from 1/
√

2 to
√

2. In Fig-

ure 3.8, we consider Case S.3 that the true model is Wi = γxXi + Kεi, where (K, γx) =

(0.8, 0.8), (0.8, 1.2), (1.2, 0.8) or (1.2, 1.2), and σ varies from 0 to 0.5. In Figure 3.9, we con-

sider Case S.4 the true model is the Berkson error model Xi = Wi+εi, and σ varies from 0 to

0.5. In Figure 3.10, we consider Case S.5 that the error distributionN(0, σ2
0) of εi is misspec-

ified, and the true distribution is respectively the uniform distribution Unif(−
√

3σ0,
√

3σ0),

exponential distribution Exp(1/σ0), and logistic distribution Logistic(0,
√

3σ0/π). The pa-

rameters in these distributions are chosen to satisfy that the error variance is the same as

the misspecified normal error variance. We also consider that the true error distribution is

the mixture normal distribution 0.5N(0, σ2
0) + 0.5N(0, σ2

0/4). In Figure 3.11, We consider

Case S.6 that the true error distribution is pN(0, σ2
0) + (1− p)N(0, 4σ2

0) with σ = 0.25 or

pN(0, σ2
0) + (1− p)N(0, σ2

0/4) with σ0 = 0.50, where p varies from 0 to 1. All the patterns

revealed by the theoretical findings in Section 3.5.1 and Appendix S1.

[Insert Figures 3.6-3.11 here!]

Appendix S4

In Table 3.2, we consider the scenario that the error distribution is misspecified as N(0, σ2
0),

whereas the true one is one of the uniform distribution Unif(−
√

3σ0,
√

3σ0), exponential

distribution Exp(1/σ0), logistic distribution Logistic(0,
√

3σ0/π), or the mixture normal

distribution 0.5N(0, σ2
0) + 0.5N(0, 4σ2

0) with σ0 = 0.25 or 0.5N(0, σ2
0) + 0.5N(0, σ2

0/4) with
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σ0 = 0.50. The data generating process of the true covariates, survival time, and censoring

time are the same as those in Table 3.1.

Analogous to the phenomenon of asymptotic biases displayed in Appendix S1, we find

in Table 3.2 that the finite sample biases of the estimator β̂c can be even bigger than those

of the naive estimator β̂nv. Furthermore, the coverage rates of 95% confidence intervals

produced by the estimator β̂c can be poorer than those of the naive estimator β̂nv.

[Insert Tables 3.2 here!]
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Figure 3.1: ARE of the corrected score and log rank tests compared to the true score test
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Figure 3.2: Case 1: True error model is Wi = Xi +Kεi.
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Figure 3.3: Case 2: True error model is Wi = γxXi + εi.
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Figure 3.4: Power plot under correctly specified error model
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Figure 3.5: Power plot under misspecified error model
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Table 3.1: Simulation results with misspecified error variance

Case K σ Method Estimation of βx Estimation of βv

Biasa EVEb MVEc MSEd CP(%)e Bias EVE MVE MSE CP(%)

Case 1 1/
√

2 0.25 β̂nv -0.049 0.015 0.013 0.017 89.8 -0.019 0.013 0.014 0.014 94.1

β̂c 0.084 0.024 0.020 0.031 91.4 0.012 0.015 0.015 0.015 94.6

0.50 β̂nv -0.181 0.013 0.011 0.046 56.6 0.031 0.014 0.014 0.015 93.5

β̂c 0.445 0.106 0.193 0.304 94.9 0.097 0.064 0.049 0.073 93.7

1.0 0.25 β̂nv -0.098 0.014 0.012 0.024 81.2 0.023 0.014 0.014 0.014 93.9

β̂c 0.020 0.022 0.018 0.022 94.1 0.017 0.015 0.015 0.015 94.5

0.50 β̂nv -0.308 0.011 0.009 0.106 15.0 0.045 0.014 0.014 0.016 93.0

β̂c 0.089 0.060 0.054 0.068 96.8 0.035 0.021 0.020 0.022 93.3

√
2 0.25 β̂nv -0.181 0.013 0.011 0.046 56.6 0.031 0.014 0.014 0.015 93.5

β̂c -0.086 0.019 0.016 0.026 83.8 0.025 0.015 0.015 0.015 93.8

0.50 β̂nv -0.471 0.008 0.007 0.230 0.1 0.065 0.015 0.014 0.019 90.5

β̂c -0.278 0.023 0.018 0.100 41.9 0.051 0.017 0.016 0.020 92.2

Case 2 1/
√

2 0.25 β̂nv -0.025 0.010 0.010 0.011 93.8 0.018 0.054 0.049 0.054 93.8

β̂c 0.081 0.016 0.014 0.022 90.5 -0.001 0.057 0.052 0.057 93.0

0.50 β̂nv -0.141 0.009 0.009 0.029 64.9 0.044 0.056 0.050 0.058 93.1

β̂c 0.356 0.075 0.093 0.202 80.5 -0.028 0.092 0.079 0.093 92.5

1.0 0.25 β̂nv -0.067 0.010 0.010 0.014 87.9 0.027 0.055 0.049 0.055 93.3

β̂c 0.031 0.015 0.014 0.016 94.4 0.010 0.058 0.052 0.058 92.9

0.50 β̂nv -0.263 0.009 0.009 0.078 19.2 0.069 0.057 0.050 0.062 92.8

β̂c 0.084 0.040 0.032 0.047 96.4 0.013 0.077 0.067 0.077 93.3

√
2 0.25 β̂nv -0.141 0.009 0.009 0.029 64.9 0.044 0.056 0.050 0.058 93.1

β̂c -0.057 0.013 0.012 0.016 89.4 0.028 0.059 0.052 0.060 92.8

0.50 β̂nv -0.432 0.008 0.008 0.195 0.4 0.104 0.057 0.050 0.068 91.8

β̂c -0.237 0.018 0.016 0.074 47.2 0.072 0.069 0.059 0.074 92.3

a Bias: finite sample biases;
b EVE: empirical variances;
c MVE: average of the model-based variance estimates;
d MSE: mean square errors;
e MCP: model-based coverage probability.
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Figure 3.6: Case S.1: True error model is Wi = Xi +Kεi.
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Figure 3.7: Case S.2: True model is Wi = γxXi + εi.
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Figure 3.8: Case S.3: True model is Wi = γxXi +Kεi.
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Figure 3.9: Case S.4: True model is the Berkson error model Xi = Wi + εi.
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Figure 3.10: Case S.5: The error distribution is misspecified.
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Figure 3.11: Case S.6: The error distribution is misspecified.
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Table 3.2: Simulation results for different misspecified error distributions
Case Distribution σ Method Estimation of βx Estimation of βv

Bias EVE MVE MSE CP(%) Bias EVE MVE MSE CP(%)

Case 1 Uniform 0.25 β̂nv -0.089 0.014 0.012 0.022 84.8 0.016 0.015 0.014 0.015 93.8

β̂c 0.030 0.021 0.018 0.022 93.1 0.009 0.016 0.015 0.016 94.1

Uniform 0.50 β̂nv -0.298 0.010 0.009 0.099 14.9 0.038 0.016 0.014 0.017 92.7

β̂c 0.114 0.060 0.060 0.073 96.7 0.023 0.031 0.021 0.032 93.2

Logistic 0.25 β̂nv -0.089 0.014 0.012 0.022 84.7 0.016 0.015 0.014 0.015 93.6

β̂c 0.030 0.021 0.018 0.022 93.6 0.009 0.016 0.015 0.016 94.1

Logistic 0.50 β̂nv -0.301 0.011 0.010 0.102 17.2 0.039 0.016 0.014 0.017 92.8

β̂c 0.094 0.064 0.059 0.073 96.8 0.023 0.023 0.020 0.023 92.9

Mixture Normal 0.25 β̂nv -0.211 0.012 0.011 0.057 47.2 0.034 0.015 0.014 0.016 93.5

β̂c -0.126 0.017 0.015 0.033 77.5 0.029 0.016 0.014 0.017 94.0

Mixture Normal 0.50 β̂nv -0.211 0.012 0.011 0.056 47.4 0.036 0.015 0.014 0.016 93.2

β̂c 0.348 0.103 0.140 0.224 95.9 0.061 0.036 0.033 0.040 94.4

Exponential 0.25 β̂nv -0.115 0.013 0.013 0.026 80.4 0.025 0.015 0.014 0.015 93.8

β̂c -0.066 0.020 0.018 0.020 93.5 0.019 0.016 0.015 0.016 94.0

Exponential 0.50 β̂nv -0.365 0.013 0.010 0.147 8.4 0.054 0.015 0.014 0.018 91.0

β̂c -0.096 0.061 0.041 0.070 78.0 0.048 0.021 0.018 0.023 91.5

Case 2 Uniform 0.25 β̂nv -0.079 0.010 0.010 0.016 84.7 0.026 0.050 0.049 0.051 94.7

β̂c 0.017 0.015 0.013 0.015 94.3 0.008 0.053 0.052 0.053 94.3

Uniform 0.50 β̂nv -0.269 0.009 0.008 0.081 16.6 0.066 0.051 0.050 0.055 94.1

β̂c 0.079 0.035 0.030 0.041 96.1 0.007 0.068 0.065 0.068 94.4

Logistic 0.25 β̂nv -0.080 0.010 0.010 0.017 85.0 0.026 0.051 0.049 0.051 94.2

β̂c 0.016 0.015 0.013 0.015 94.2 0.008 0.054 0.052 0.054 94.2

Logistic 0.50 β̂nv -0.274 0.010 0.009 0.085 18.1 0.068 0.052 0.050 0.057 94.3

β̂c 0.059 0.040 0.031 0.044 94.1 0.013 0.072 0.065 0.073 94.3

Mixture Normal 0.25 β̂nv -0.188 0.010 0.009 0.045 48.2 0.035 0.053 0.050 0.055 93.8

β̂c -0.112 0.013 0.012 0.026 77.7 0.021 0.057 0.052 0.057 93.9

Mixture Normal 0.50 β̂nv -0.189 0.010 0.009 0.046 47.9 0.035 0.055 0.050 0.056 93.8

β̂c 0.242 0.059 0.055 0.118 89.2 -0.039 0.090 0.073 0.092 92.4

Exponential 0.25 β̂nv -0.092 0.012 0.010 0.020 80.4 0.033 0.056 0.050 0.057 92.9

β̂c -0.001 0.016 0.014 0.016 92.4 0.015 0.060 0.053 0.060 92.7

Exponential 0.50 β̂nv -0.335 0.014 0.010 0.126 11.0 0.087 0.058 0.052 0.065 92.4

β̂c -0.096 0.044 0.024 0.053 77.5 0.051 0.080 0.065 0.082 92.6
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Chapter 4

Model Checking for the Cox Model

with Measurement Error

4.1 Introduction

In the past fourty years, the Cox model (Cox 1972) has been widely adopted to analyze

survival data with survival endpoints and correctly measured covariates. However, in many

studies, survival analysis is frequently challenged by mismeasurement of covariates. Ex-

amples include the CD4 lymphocyte counts in the AIDS studies (Hammer et al. 1996)

and the forced expiratoryexpiratory volume (FEV) in the randomized trial conducted to

evaluate the effect of rhDNase (Fuchs et al. 1994). Prentice (1982) showed that simply

ignoring measurement error in covariates leads to misleading results. Consequently, re-

searchers proposed numerous methods to handle covariate measurement error, including

Nakamura (1992), Hu, Tsiatis and Davidian (1998), Huang and Wang (2000), Hu and

Lin (2002, 2004), and Song and Huang (2005), Zucker (2005), and Yi and Lawless (2007).

These methods are successful in correcting for measurement error effects, and are common-

ly adopted in practise. They assumed a classical measurement error model (Carroll et al.

2006) that features the relationship between the underlying correct covariates and their ob-
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served surrogate measurements. However, standard model checking techniques (Therneau

and Grambsch 2000; Lawless 2003) can not be directly applied to check either the survival

model or the error model assumptions. Surprisingly, to the best of our knowledge, there is

little work to check the fit of the survival model and the measurement error model.

In this chapter, we aim at developing valid goodness-of-fit tests based on the observed

data. These tests can be used to check the overall fit of the survival model and the

measurement error model simultaneously. In particular, we consider two commonly used

measurement error scenarios, and propose model checking procedures under these two

scenarios, respectively.

In Section 4.2, we introduce notations and existing model checking methods in survival

data analysis in the absence of covariate error. In Section 4.3, we describe several scenarios

of measurement error. In Section 4.4, we propose model checking procedures in the presence

of covariate error, and show that they are valid to check the Cox model and the error model.

in Section 4.5, we report simulation studies and provide an example. Concluding discussion

is provided in the last section.

4.2 Cox Model and Model Checking

For subject i, let Ti be the failure time, Ci be the right censoring time, and Zi be the

vector of covariate, i = 1, · · · , n. We assume that all subjects are under observation over

a common time interval [0, τ ], where τ is a positive constant, and the {Ti, Ci, Zi} are

mutually independent. Define Si = min(Ti, Ci), and δi = I(Ti ≤ Ci). For t ∈ (0, τ ],

let Ni(t) = I(Si ≤ t, δi = 1) be the counting process, and Yi(t) = I(Si ≥ t) be the at-

risk indicator. Throughout this article, we assume the conditional independent censoring

mechanism, i.e., Ci and Ti are independent given Zi.

The Cox model (Cox 1972) assumes that the failure time Ti is related to Zi through

the hazard function

λ(t;Zi) = λ0(t) exp(ZT
i β),
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where λ0(·) is the baseline hazard function, and β is the vector of regression parameters.

Here we assume that the distribution of Ti is continuous.

Let β0 be the true value of the parameter. Let

Mi(t; β0,Λ0) = Ni(t)−
∫ t

0

Yi(u) exp(ZT
i β0)λ0(u)du

be the martingale with respective to the filtration Ft = σ{Ni(u), Yi(u), Zi; 0 ≤ u ≤ t, i =

1, · · · , n}. The regression parameter β can be estimated by solving the partial score func-

tion

U(β) = 0,

where

U(β) =
n∑
i=1

∫ τ

0

{
Zi −

∑n
j=1 Yj(t)Zj exp(ZT

j β)∑n
j=1 Yj(t) exp(ZT

j β)

}
dNi(t).

Let β̃ denote the resulting estimator of β. The cumulative hazard function Λ0(t) can be

estimated by the Breslow estimator:

Λ̃0(t) =
n∑
i=1

∫ t

0

dNi(u)∑n
i=1 Yi(u) exp(ZT

i β̃)
.

Let

Mi(t; β̃, Λ̃0) = Ni(t)−
∫ t

0

Yi(u) exp(ZT
i β̃)dΛ̃0(u) (4.1)

be the martingale residual that represents the difference of observed number and expected

number of events for the ith subject. Martingale residuals are demonstrated to be in-

formative about model misspecification and they have been served as building blocks of

constructing model checking procedures for the Cox model (Barlow and Prentice 1988;

Therneau, Grambsch and Fleming 1990; Lin, Wei and Ying 1993; Spierkerman and Lin

1998; Lin et al. 2000). Let

W (t, z) =
n∑
i=1

I(Zi ≤ z)Mi(t; β̃, Λ̃0), (4.2)
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where I(·) is the indicator function, and Zi ≤ z means that every component of Zi is no

larger than the corresponding component of z. Under the null hypothesis that the Cox

model is correctly specified, Lin, Wei and Ying (1993) showed that n−1/2W (t, z) converges

weakly to a mean-zero Gaussian process as n → ∞. Consequently, they proposed an

omnibus goodness-of-fit test statistic

sup
t,z
|n−1/2W (t, z)|. (4.3)

Lin, Wei and Ying (1993) proposed a testing procedure based on supt,z |n−1/2W (t, z)| for

testing the null hypothesis H0: the Cox model is correctly specified. For a pre-specified size

α, we reject H0 if supt,z |n−1/2W (t, z)| > wα, where wα is the estimated upper α-quantile

of the distribution of supt,z |n−1/2W (t, z)|.

4.3 Measurement Error Models and Estimation

We consider the situation where some covariates are subject to measurement error. Write

Zi = (XT
i , V

T
i )T , where Xi is a p × 1 vector of error-prone covariates, and Vi is a q × 1

vector of precisely measured covariates. Let Wi be a surrogate measurement of Xi. Write

β = (βTx , β
T
v )T so that βx and βv correspond to Xi and Vi, respectively. Let β0 = (βT0x, β

T
0v)

T ,

where β0,x and β0,v are the parameters corresponding to Xi and Vi, respectively. We

consider two scenarios of the measurement error process. Both of them have been widely

adopted in the literature (Carroll et al. 2006).

4.3.1 Scenario 1 : Additive Error Model with Replicates

First, we describe a situation where Xi is repeatedly measured ni times by the surrogates

Wir(r = 1, · · · , ni):

Wir = Xi + εir, i = 1, · · · , n; r = 1, · · · , ni, (4.4)
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where the error terms εir are independent and identically distributed with mean 0 and an

unknown covariance matrix Σ0, and are independent of Ni(·), Yi(·), and Zi. The distri-

bution of εir is left unspecified. Assume that ni > 1, i = 1, · · · , n. With replicates Wir, a

consistent estimate of Σ0 is given by

Σ̂0 =

∑n
i=1

∑ni
r=1(Wir − W̄i·)

⊗2∑n
i=1(ni − 1)

,

where a⊗2 = aaT for a column vector a, and W̄i· =
∑ni

r=1Wir/ni. Let Ẑir = (W T
ir , V

T
i )T

and Ẑi = (W̄ T
i· , V

T
i )T for Scenario 1.

Under this circumstance of the measurement error process, estimation of β can be pro-

ceeded as follows. Let S
(1)
nc (Ẑ; β, t) = n−1

∑n
i=1 Yi(t){n

−1
i (ni − 1)−1

∑
r 6=s Ẑir exp(ẐT

isβ)},
and S

(0)
nc (Ẑ; β, t) = n−1

∑n
i=1 Yi(t){n

−1
i

∑ni
r=1 exp(ẐT

irβ)}. Define the nonparametric correc-

tion function (Huang and Wang 2000) as

Unc(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

S
(1)
nc (Ẑ; β, t)

S
(0)
nc (Ẑ; β, t)

}
dNi(t),

Then solving Unc(β) = 0 gives the nonparametric correction estimator (Huang and Wang

2000) of β; let β̂nc denote such an estimator.

Define S
(2)
nc (Ẑ; β, t) = n−1

∑n
i=1 Yi(t){n

−1
i (ni−1)−1

∑
r 6=s ẐirẐ

T
is exp(ẐT

isβ)}. Let s
(k)
nc (Ẑ; β, t) =

E{S(k)
nc (Ẑ; β, t)}, where k = 0, 1, 2. Let

Inc(β) =

∫ τ

0

s(2)
nc (Ẑ; β, t)

s
(0)
nc (Ẑ; β, t)

−

{
s

(1)
nc (Ẑ; β, t)

s
(0)
nc (Ẑ; β, t)

}⊗2
 dE{Ni(t)},

and Jnc,i(β) =

∫ τ

0

{
Ẑi −

s
(1)
nc (Ẑ; β, t)

s
(0)
nc (Ẑ; β, t)

}
dNi(t)−

∫ τ

0

[
Yi(t){n−1

i (ni − 1)−1
∑

r 6=s Ẑir exp(ẐT
isβ)}

s
(0)
nc (Ẑ; β, t)

− Yi(t){n−1
i

∑ni
r=1 exp(ẐT

irβ)}s(1)
nc (Ẑ; β, t)

{s(0)
nc (Ẑ; β, t)}2

]
dE{Ni(t)}.

Define Jnc(β) = limn→∞ n
−1
∑n

i=1E[{Jnc,i(β)}⊗2]. Huang and Wang (2000) showed that
√
n(β̂nc − β0) is asymptotically normal, with mean zero and covariance matrix

I−1
nc (β0)Jnc(β0)I−1

nc (β0).
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4.3.2 Scenario 2 : Additive Error Model with Known Parameters

In Scenario 2, the measurement error model is given by

Wi = Xi + εi, i = 1, · · · , n, (4.5)

where the error terms εi, i = 1, · · · , n are independent and identically distributed and

are independent of Ni(·), Yi(·), and Zi, and εi ∼ N(0,Σ0) with the covariance matrix

Σ0 assumed known or consistently estimated for a priori study. Let D(βx) = Σ0βx, and

Σ1 = diag(Σ0, 0) be a (p + q)× (p + q) matrix. Let Ẑi = (W T
i , V

T
i )T denote the observed

covariates for Scenario 2.

Under this circumstance of the measurement error process, estimation of β can be pro-

ceeded as follows. Let S
(k)
c (Ẑ; β, t) = n−1

∑n
i=1 Yi(t)Ẑ

⊗k
i exp(ẐT

i β), and let s
(k)
c (Ẑ; β, t) =

E{S(k)
c (Ẑ; β, t)}, where k = 0, 1, 2. Define the corrected score function (Nakamura 1992)

as

Uc(β) =
n∑
i=1

∫ τ

0

{
Ẑi −

S
(1)
c (Ẑ; β, t)

S
(0)
c (Ẑ; β, t)

+ Σ1β

}
dNi(t).

Then solving Uc(β) = 0 gives the corrected score estimator (Nakamura 1992) of β; let β̂c

denote such an estimator.

Let

Ic(β) =

∫ τ

0

s(2)
c (Ẑ; β, t)

s
(0)
c (Ẑ; β, t)

−

{
s

(1)
c (Ẑ; β, t)

s
(0)
c (Ẑ; β, t)

}⊗2

− Σ1

 dE{Ni(t)},

and Jc,i(β) =

∫ τ

0

{
Ẑi −

s
(1)
c (Ẑ; β, t)

s
(0)
c (Ẑ; β, t)

+ Σ1β

}
dNi(t)

−
∫ τ

0

Yi(t) exp(ẐT
i β)

s
(0)
c (Ẑ; β, t)

{
Ẑi −

s
(1)
c (Ẑ; β, t)

s
(0)
c (Ẑ; β, t)

}
dE{Ni(t)}.

Define Jc(β) = E[{Jc,i(β)}⊗2]. Kong and Gu (1999) showed that
√
n(β̂c − β0) is asymp-

totically normal, with mean zero and covariance matrix I−1
c (β0)Jc(β0)I−1

c (β0).
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4.4 Model Checking Procedures with Error in Covari-

ates

In the presence of covariate measurement error, the martingale residual Mi(t; β̂, Λ̂0) cal-

culated from (4.1) is no longer available. Thus, the goodness-of-fit test based on the test

statistic (4.3) cannot be applied to check the validity of the Cox model. In this section

we develop a model checking procedure to assess whether or not a given model is the Cox

model in the presence of covariate measurement error.

Let

W (t, z; β) =
n∑
i=1

∫ t

0

{
I(Zi ≤ z)−

∑n
j=1 Yj(u)I(Zj ≤ z) exp(ZT

j β)∑n
j=1 Yj(u) exp(ZT

j β)

}
dNi(u).

Note that the process W (t, z) defined in (4.2) is equivalent to W (t, z; β̃).

The basic idea is to construct a function, say Ŵ (t, z; β), of parameter β, time t, and

covariate value z, based on the surrogate measurements Ẑi, such that

sup
β∈B,t∈[0,τ ],z∈Z

{
n−1|Ŵ (t, z; β)−W (t, z; β)|

}
a.s.−→ 0, (4.6)

as n→∞, where B is the parameter space, and Z is the covariate space. In the following

two subsections, we describe methods of constructing Ŵ (t, z; β) for Scenarios 1 and 2,

respectively. Let β̂ represent a
√
n-consistent estimator of β based on the observed data.

Using the property (4.6), we show that the processes n−1/2Ŵ (t, z; β̂) under Scenarios 1 and

2 converge weakly to a mean-zero Gaussian process asymptotically. These results provide

the basis of developing goodness-of-fit test procedures.

4.4.1 Model Checking under Measurement Error Scenario 1

We define the stochastic process

Ŵnc(t, z; β) =
n∑
i=1

∫ t

0

{
n−1
i

ni∑
r=1

I(Ẑir ≤ z)− V
(1)
nc (Ẑ; β, u, z)

S
(0)
nc (Ẑ; β, u)

}
dNi(u),
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where V
(1)
nc (Ẑ; β, u, z) = n−1

∑n
i=1 Yi(u){n−1

i (ni − 1)−1
∑

r 6=s I(Ẑir ≤ z) exp(ẐT
isβ)}. Let

V
(2)
nc (Ẑ; β, u, z) = n−1

∑n
i=1 Yi(u){n−1

i (ni − 1)−1
∑

r 6=s I(Ẑir ≤ z)Ẑis exp(ẐT
isβ)}. Define

v
(k)
nc (Ẑ; β, u, z) = E{V (k)

nc (Ẑ; β, u, z)}, k = 1, 2.

In Appendix A1, we verify that Ŵnc(t, z; β) satisfies the property (4.6). Furthermore,

n−1/2Ŵnc(t, z; β̂nc) is asymptotically equivalent to n−1/2W̃nc(t, z), where

W̃nc(t, z) =
n∑
i=1

[∫ t

0

{
n−1
i

ni∑
r=1

I(Ẑir ≤ z)− v
(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

}
dNi(u)

−
∫ t

0

[
Yi(u){n−1

i (ni − 1)−1
∑

r 6=s I(Ẑir ≤ z) exp(ẐT
isβ0)}

s
(0)
nc (Ẑ; β0, u)

− Yi(u){n−1
i

∑ni
r=1 exp(ẐT

irβ0)}v(1)
nc (Ẑ; β0, u, z)

{s(0)
nc (Ẑ; β0, u)}2

]
dE{Ni(u)}

−Hnc(t, z; β0)I−1
nc (β0)Jnc,i(β0)

]
≡

n∑
i=1

W̃nc,i(t, z),

and

Hnc(t, z; β) =

∫ t

0

[
v

(2)T
nc (Ẑ; β, u, z)

s
(0)
nc (Ẑ; β, u)

− v
(1)
nc (Ẑ; β, u, z)s

(1)T
nc (Ẑ; β, u)

{s(0)
nc (Ẑ; β, u)}2

]
dE{Ni(u)}.

The proof is deferred to Appendix A2.

Note that W̃nc(t, z) is a sum of zero-mean independent random variables W̃nc,i(t, z). In

Appendix A3, we establish the weak convergence property of n−1/2W̃nc(t, z) and

n−1/2Ŵnc(t, z; β̂nc), summarized in the following theorem.

Theorem 1 Under Regularity Conditions, we have

n−1/2W̃nc(t, z) Gnc(t, z) in l∞([0, τ ]×R(p+q)) as n→∞,

where  means weak convergence, l∞[0, τ ] is the space of all bounded functions on [0, τ ]

(van der Vaart and Wellner 1996), and Gnc(t, z) is a zero-mean Gaussian process with
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covariance function

Φnc(t1, t2, z1, z2) = lim
n→∞

n−1

n∑
i=1

E[W̃nc,i(t1, z1)W̃nc,i(t2, z2)]

for time points t1 and t2 and real values z1 and z2. Furthermore,

n−1/2Ŵnc(t, z; β̂nc) Gnc(t, z) in l∞([0, τ ]×R(p+q)) as n→∞.

Theorem 1 provides a basis for the subsequent development of goodness-of-fit test.

It says that if the Cox model and the additive error model are both correctly specified,

n−1/2Ŵnc(t, z; β̂nc) would fluctuate around zero randomly provided regularity conditions

hold. This motivates us to propose an overall goodness-of-fit test statistic

Snc = n−1/2 sup
t,z
|Ŵnc(t, z; β̂nc)|.

An abnormally large value of Snc indicates that the Cox model and/or the error model

are incorrectly specified. In Appendix A5, we investigate the consistency properties of the

proposed test based on Snc.

However, due to the complex structure of Gnc(t, z), the limiting distributions of Snc

and n−1/2Ŵnc(t, z; β̂nc) are difficult to evaluate. Thus, the p-value of Snc is difficult to

obtain. To overcome this difficulty, we adopt a resampling procedure. Let W̃ S
nc,i(t, z) be the

estimated version of W̃nc,i(t, z), where s
(k)
nc (Ẑ; β0, t) is replaced by S

(k)
nc (Ẑ; β̂nc, t), k = 0, 1, 2,

v
(k)
nc (Ẑ; β0, t) is replaced by V

(k)
nc (Ẑ; β̂nc, t), k = 1, 2, E{Ni(t)} is replaced by n−1

∑n
i=1Ni(t),

and β0 is replaced by β̂nc. Let

W̃ S
nc(t, z) =

n∑
i=1

W̃ S
nc,i(t, z)ξi,

where {ξi, i = 1, · · · , n} are i.i.d. standard normal variables. It is shown in Appendix A4

that conditional on the observed data {Ni(t), Yi(t),Wir, Vi, i = 1, · · · , n, r = 1, · · · , ni},
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n−1/2W̃ S
nc(t, z) converges weakly to Gnc(t, z). Correspondingly, conditional on the data, the

limiting distribution of SSnc = n−1/2 supt,z |W̃ S
nc(t, z)| is the same as that of Snc.

Therefore, to approximate the limit distribution of n−1/2Ŵnc(t, z; β̂nc), we simulate a

number of realizations of W̃ S
nc(t, z) by generating sets of i.i.d. standard normal variables

{ξi, i = 1, · · · , n} for N times, where N is a large number, say N = 200, while holding

the observed data fixed. Correspondingly, we have N independent replicates of SSnc, which

have the same limiting distribution as that of Snc. Therefore, the p-value Pr(Snc ≥ s) can

be estimated by Pr(SSnc ≥ s) based on the N replicates of SSnc.

4.4.2 Model Checking under Measurement Error Scenario 2

We define the stochastic process

Ŵc(t, z; β) =
n∑
i=1

∫ t

0

{
I(Ẑi ≤ z − Σ1β)− V

(1)
c (Ẑ; β, u)

S
(0)
c (Ẑ; β, u)

}
dNi(u),

where V
(1)
c (Ẑ; β, u) = n−1

∑n
i=1 Yi(u)I(Ẑi ≤ z) exp(ẐT

i β). Let

V (2)
c (Ẑ; β, u) = n−1

n∑
i=1

Yi(u)I(Ẑi ≤ z)Ẑi exp(ẐT
i β),

and v
(k)
c (Ẑ; β, u) = E{V (k)

c (Ẑ; β, u)}, k = 1, 2.

We verify in Appendix A1 that Ŵc(t, z; β) satisfies the property (4.6). Write I(Ẑi ≤
z) = I(Wi ≤ x)I(Vi ≤ v), where z = (x, vT )T . Let Fε(·) be the cumulative distribution

function of εi. In Appendix A2, we show that n−1/2Ŵc(t, z; β̂c) is asymptotically equivalent
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to n−1/2W̃c(t, z), where

W̃c(t, z)

=
n∑
i=1

[∫ t

0

{
I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)− v

(1)
c (Ẑ; β0, u)

s
(0)
c (Ẑ; β, u)

}
dNi(u)

−
∫ t

0

{
Yi(u)I(Ẑi ≤ z) exp(ẐT

i β0)

s
(0)
c (Ẑ; β0, u)

− Yi(u) exp(ẐT
i β0)v

(1)
c (Ẑ; β0, u)

{s(0)
c (Ẑ; β0, u)}2

}
dE{Ni(u)}

− {Hc1(t, z; β0)−Hc2(t, z; β0,x)}I−1
c (β0)Jc,i(β0)

]
≡ W̃c,i(t, z).

Here,

Hc1(t, z; β) =

∫ t

0

[
v

(2)
c (Ẑ; β, u)

s
(0)
c (Ẑ; β, u)

− v
(1)
c (Ẑ; β, u)s

(1)T
c (Ẑ; β, u)

{s(0)
c (Ẑ; β, u)}2

]
dE{Ni(u)},

and Hc2(t, z; βx) =

(
E

[
∂Fε(x− Σ0βx −Xi)

∂βTx
I(Vi ≤ v)Ni(t)

]
, 0T
)
.

Note that W̃c(t, z) is a sum of zero-mean independent random variables W̃c,i(t, z). In

Appendix A3, we establish the weak convergence properties of n−1/2W̃c(t, z) and

n−1/2Ŵc(t, z; β̂c), summarized in the following theorem.

Theorem 2 Under Regularity Conditions, we have

n−1/2W̃c(t, z) Gc(t, z) in l∞([0, τ ]×R(p+q)) as n→∞,

where Gc(t, z) is a zero-mean Gaussian process with covariance function

Φc(t1, t2, z1, z2) = E[W̃c,i(t1, z1)W̃c,i(t2, z2)]

for time points t1 and t2 and real values z1 and z2. Furthermore,

n−1/2Ŵc(t, z; β̂c) Gc(t, z) in l∞([0, τ ]×R(p+q)) as n→∞.
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We propose an overall goodness-of-fit test statistic

Sc = n−1/2 sup
t,z
|Ŵc(t, z; β̂c)|.

The p-value of Sc is difficult to obtain directly by Theorem 2, and thus we adopt a resam-

pling procedure. In Appendix A5, we investigate the consistency properties of the proposed

test based on Sc.

However, the term ∂Fε(x − Σ0βx − Xi)/∂β
T
x in Ŵc(t, z; β) is difficult to estimate as

it involves the unobserved variable Xi. In the following, we focus on the case that Wi is

univariate, as is common in many studies. Let Σ0 = σ2
0, where σ0 is the standard error of

the measurement error. Then,

∂Fε(x− Σ0βx −Xi)

∂βTx
= − σ0√

2π
A(Xi; βx),

where

A(Xi; βx) = exp

{
−(x− σ2

0βx −Xi)
2

2σ2
0

}
.

To make W̃ S
c,i(t, z) computable based on the observed data, it is tempting to construct a

function, say Â(Wi; βx), based on Wi, such that

E{Â(Wi; βx)|Xi} = A(Xi; βx),

where the conditional expectation is taken under the null hypothesis. Such Â(Wi; βx) can

be served as an accurate approximation of A(Xi; βx) (Stefanski, 1989; Novick and Stefanski,

2002).

Let W̃ S
c,i(t, z) be the estimated version of W̃c,i(t, z), where s

(k)
c (Ẑ; β0, t) is replaced by

S
(k)
c (Ẑ; β̂c, t), k = 0, 1, 2, v

(k)
c (Ẑ; β0, t) is replaced by V

(k)
c (Ẑ; β̂c, t), k = 1, 2, E{Ni(t)} is

replaced by n−1
∑n

i=1 Ni(t), and β0 is replaced by β̂c. Let

W̃ S
c (t, z) =

n∑
i=1

W̃ S
c,i(t, z)ξi,
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where {ξi, i = 1, · · · , n} are i.i.d. standard normal variables. Analogous to Scenario 1, con-

ditional on the observed data {Ni(t), Yi(t),Wi, Vi, i = 1, · · · , n}, n−1/2W̃ S
c (t, z) converges

weakly to Gc(t, z), and the proof is sketched in Appendix A4. Correspondingly, conditional

on the data, the limiting distribution of SSc = n−1/2 supt,z |W̃ S
c (t, z)| is the same as that of

Sc. Therefore, the p-value Pr(Sc ≥ s) can be estimated based on replicates of SSc .

The disscussion above assumes Â(Wi; βx) is available. However, by the arguments

of Stefanski (1989), there does not exist Â(Wi; βx) that is unbiased of A(Xi; βx). To

circumvent the difficulty, we use

Â(Wi; βx) = A(Wi; βx)

{
3

2
− (x− σ2

0βx −Wi)
2

2σ2
0

}
,

in the above arguments of estimating the p-value Pr(Sc ≥ s). Following the arguments of

Stefanski (1989), Â(Wi; βx) provides a reasonable approximation of A(Xi; βx).

4.5 Numerical Studies

4.5.1 Simulation Studies

We numerically assess the performance of the proposed test statistic Snc. We consider

the sample size n = 100, the number of replicates N = 200 in the resampling procedure,

and generate 500 simulations for each parameter configuration. The true covariates Xi are

generated from the standard exponential distribution EXP(1), and Vi are generated from

Pr(Vi = 1|Xi) =
exp(Xi)

1 + exp(Xi)
.

First, we evaluate the empirical size of the tests. The null hypothesis is that both of

the Cox model and the additive error model are correctly specified. Survival times are

independently generated from the Cox model, where we take the baseline hazard function

to be λ0(t) = αγtγ−1, with α = 0.5, and γ = 2. The true values of βx and βv are
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set to be (βx, βv) = (1, 1). Censoring times Ci are generated from uniform distribution

UNIF[0, C] where C is set to be 2.05, so that approximately 30% censoring is produced.

The error model (4.4) in Scenario 1 is used to generate Wir where εir ∼ N(0, σ2
0) for

r = 1, 2, i = 1, · · · , n. We consider settings with σ0 = 0.25 or 0.50 to indicate different

degrees of measurement error.

We generate N = 200 sets of i.i.d. standard normal variables {ξi, i = 1, · · · , n}, and

then calculate N = 200 copies of SSnc, say {SSnc,k, k = 1, · · · , N}. Empirical quantiles of Snc

can then be obtained based on {SSnc,k, k = 1, · · · , N}. The nominal level is set to be 0.05.

The results for the empirical size of Snc are around 0.075 for both settings with σ0 = 0.25

or 0.50, which are close to the nominal level.

4.5.2 An Example

We apply the proposed methods to analyze the data arising from the AIDS Clinical Trials

Group (ACTG) 175 study (Hammer, et al. 1996). The ACTG 175 study is a double-blind

randomized clinical trial that evaluated the effects of HIV treatments. In this example,

we are interested in evaluating how treatments are associated with the survival time Ti,

which is defined to be the time to the occurrence of one of the events that CD4 counts

decrease at least 50%, or disease progression to AIDS, or death. We consider a subset of

n = 344 subjects in the study, who did not receive non-zidovudine antiretroviral therapy

prior to initiation of study treatment, not use zidovudine in the 30 days prior to treatment

initiation, and not have one of the major risk factors: homosexuality, injetion-drug use,

and hemophilia before treatment.

Let Vi be the treatment assignment indicator for subject i, where Vi = 1 if a subject

received the zidovudine only treatment, and 0 otherwise. In the ACTG 175 study, the

baseline measurements on CD4 were collected before randomization, ranging from 200

to 500 per cubic millimeter. Let Xi be the normalization version of the true baseline

CD4 counts: log(CD4 counts + 1), which was not observed in the study. Two replicated
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baseline measurements of CD4 counts, denoted by Wi1 and Wi2, are available. An additive

measurement error model is specified to link the underlying transformed CD4 counts with

its surrogate measurements:

Wir = Xi + εir,

where r = 1, 2 for i = 1, · · · , 344. We employ the Cox model to feature the dependence of

Ti on the covariates Xi and Vi:

λ(t;Zi) = λ0(t) exp(Xiβx + Viβv).

We apply the proposed test based on the test statistic Snc to the dataset. The p-value

of the model test is 0.10, suggesting some evidence against the Cox model or the error

model.

4.6 Discussion

The Cox model has been widely used in practise, and there are numerous methods that

successfully correct measurement error effect under the Cox model since Prentice (1982).

However, all these methods presume that both Cox model and error model are correctly

specified. There is little work on model checking procedure of the Cox model and the error

model. In this chapter, we develop two goodness-of-fit tests to fill the gap. Theoretical

results are established together with some numerical studies. More simulation studies will

be conducted to assess the finite sample performance of the proposed tests under a broader

range of settings.

In this chapter, we assumed time-independent covariates for simplicity. It is interesting

to extend our tests to incorporate time-dependent covariates. Furthermore, the proposed

tests can be potentially adjusted analogue to Lin, Wei and Ying (1993), so that we may

check specific assumptions of the Cox model (e.g.. the proportional hazards assumption).
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Appendix

Appendix A1

We first prove Ŵnc(t, z; β) satisfies the property (4.6). The proof in Appendix 1 of Lin,

Wei and Ying (1993) implied that under regularity conditions,

n−1W (t, z; β) = oa.s.(1),

uniformly in t, z, and β. Therefore, it remains to prove that

n−1Ŵnc(t, z; β) = oa.s.(1),

uniformly in t, z, and β.

By the the Strong Uniform Law of Large Numbers (SULLN) (Pollard 1990, p.41), we

obtain that

n−1

n∑
i=1

n−1
i

ni∑
r=1

I(Ẑir ≤ z)Ni(t) =E{I(Ẑir ≤ z)Ni(t)}+ oa.s.(1),

V (1)
nc (Ẑ; β, t, z) =v(1)

nc (Ẑ; β, t, z) + oa.s.(1),

S(0)
nc (Ẑ; β, t) =s(0)

nc (Ẑ; β, t) + oa.s.(1),

and n−1

n∑
i=1

Ni(t) =E{Ni(t)}+ oa.s.(1),

uniformly in t, z, and β. Let ε̃ir = (εTir, 0
T )T , so that ε̃ir has the same dimension as Zi.
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Therefore,

n−1Ŵnc(t, z; β) =E{I(Ẑir ≤ z)Ni(t)} −
∫ t

0

v
(1)
nc (Ẑ; β, u, z)

s
(0)
nc (Ẑ; β, u)

dE{Ni(u)}+ oa.s.(1)

=E{I(ε̃ir ≤ z − Zi)Ni(t)}

−
∫ t

0

E{Yi(u) exp(ZT
i β)I(ε̃ir ≤ z − Zi) exp(ε̃Tisβ)}

E{Yi(u) exp(ZT
i β)}E{exp(ε̃Tirβ)}

E{Yi(u) exp(ZT
i β)}λ0(u)du

+ oa.s.(1)

=E{P (ε̃ir ≤ z − Zi|Zi)Ni(t)}

−
∫ t

0

E{Yi(u) exp(ZT
i β)P (ε̃ir ≤ z − Zi|Zi) exp(ε̃Tisβ)}
E{exp(ε̃Tirβ)}

λ0(u)du+ oa.s.(1)

=E

{
P (εir ≤ z − Zi|Zi)

∫ t

0

Yi(u) exp(ZT
i β)λ0(u)du

}
−
∫ t

0

E{Yi(u) exp(ZT
i β)P (ε̃ir ≤ z − Zi|Zi)}E{exp(ε̃Tisβ)}

E{exp(ε̃Tirβ)}
λ0(u)du+ oa.s.(1)

=E

{∫ t

0

Yi(u) exp(ZT
i β)P (ε̃ir ≤ z − Zi|Zi)λ0(u)du

}
−
∫ t

0

E{Yi(u) exp(ZT
i β)P (ε̃ir ≤ z − Zi|Zi)λ0(u)}du+ oa.s.(1),

uniformly in t, z, and β. Under certain regularity conditions, the expectation and inte-

gration are exchangeable by Fubini’s Theorem. It follows that n−1Ŵnc(t, z; β) = oa.s.(1)

uniformly in t, z, and β. Therefore, Ŵnc(t, z; β) satisfies the property (4.6).

Now, we prove Ŵc(t, z; β) satisfies the property (4.6). Similar to the above arguments,

we only need to show that

n−1Ŵc(t, z; β) = oa.s.(1),

uniformly in t, z, and β.
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Note that uniformly in t, z, and β,

n−1Ŵc(t, z; β) =E{I(Ẑi ≤ z − Σ1β)Ni(t)} −
∫ t

0

v
(1)
c (Ẑ; β, u, z)

s
(0)
c (Ẑ; β, u)

dE{Ni(u)}+ oa.s.(1)

=E{I(εi ≤ x− Σ0βx −Xi)I(Vi ≤ v)Ni(t)}

−
∫ t

0

E{Yi(u) exp(ZT
i β)I(Vi ≤ v)I(εi ≤ x−Xi) exp(εTi βx)}

E{exp(εTi βx)}
λ0(u)du+ oa.s.(1).

Note also that

E{I(εi ≤ x− Σ0βx −Xi)I(Vi ≤ v)Ni(t)}

=E{Fε(x− Σ0βx −Xi)I(Vi ≤ v)Ni(t)}

=E

{∫ t

0

Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT
i β)λ0(u)du

}
.

Furthermore,

E{Yi(u) exp(ZT
i β)I(Vi ≤ v)I(εi ≤ x−Xi) exp(εTi βx)}

=E

{
Yi(u) exp(ZT

i β)I(Vi ≤ v)

∫ x−Xi

−∞
(2π)−

p
2 |Σ0|−

1
2 exp(−1

2
εTΣ−1

0 ε) exp(εTβx)dε

}
=E

[
Yi(u) exp(ZT

i β)I(Vi ≤ v)

×
∫ x−Xi

−∞
(2π)−

p
2 |Σ0|−

1
2 exp(

1

2
βTx Σ−1

0 βx) exp

{
−1

2
(ε− Σ0βx)

TΣ−1
0 (ε− ΣT

0 βx)

}
dε

]
=E

{
Yi(u) exp(ZT

i β)I(Vi ≤ v)

∫ x−Xi−Σ0βx

−∞
(2π)−

p
2 |Σ0|−

1
2 exp(

1

2
βTx Σ−1

0 βx) exp(−1

2
εTΣ−1

0 ε)dε

}
= exp(

1

2
βTx Σ−1

0 βx)E
{
Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT

i β)
}
,

and

E{exp(εTi βx)} = exp(
1

2
βTx Σ−1

0 βx).
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It follows that

n−1Ŵc(t, z; β)

=E

{∫ t

0

Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT
i β)λ0(u)du

}
−
∫ t

0

exp(1
2
βTx Σ−1

0 βx)E
{
Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT

i β)
}

exp(1
2
βTx Σ−1

0 βx)
λ0(u)du+ oa.s.(1)

=E

{∫ t

0

Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT
i β)λ0(u)du

}
−
∫ t

0

E
{
Yi(u)Fε(x− Σ0βx −Xi)I(Vi ≤ v) exp(ZT

i β)λ0(u)
}
du+ oa.s.(1),

uniformly in t, z, and β. Under certain regularity conditions, the expectation and inte-

gration are exchangeable by Fubini’s Theorem. It follows that n−1Ŵc(t, z; β) = oa.s.(1)

uniformly in t, z, and β. Therefore, Ŵc(t, z; β) satisfies the property (4.6).

Appendix A2

We first consider n−1/2Ŵnc(t, z; β̂nc). Note that we have

n−1/2Ŵnc(t, z; β0)

=n−1/2

n∑
i=1

∫ t

0

{
n−1
i

ni∑
r=1

I(Ẑir ≤ z)− v
(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

}
dNi(u)

+n1/2

∫ t

0

{
v

(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

− V
(1)
nc (Ẑ; β0, u, z)

S
(0)
nc (Ẑ; β0, u)

}
dE{Ni(u)}

+

∫ t

0

{
v

(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

− V
(1)
nc (Ẑ; β0, u, z)

S
(0)
nc (Ẑ; β0, u)

}
d

(
n1/2

[
n∑
i=1

Ni(u)/n− E{Ni(u)}

])
.

By SULLN,∫ t

0

{
v

(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

− V
(1)
nc (Ẑ; β0, u, z)

S
(0)
nc (Ẑ; β0, u)

}
d

(
n1/2

[
n∑
i=1

Ni(u)/n− E{Ni(u)}

])
= oa.s.(1)
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uniformly in t and z. By Taylor series expansion,

n1/2

∫ t

0

{
v

(1)
nc (Ẑ; β0, u, z)

s
(0)
nc (Ẑ; β0, u)

− V
(1)
nc (Ẑ; β0, u, z)

S
(0)
nc (Ẑ; β0, u)

}
dE{Ni(u)}

=− n−1/2

∫ t

0

[
Yi(u){n−1

i (ni − 1)−1
∑

r 6=s I(Ẑir ≤ z) exp(ẐT
isβ0)}

s
(0)
nc (Ẑ; β0, u)

− Yi(u){n−1
i

∑ni
r=1 exp(ẐT

irβ0)}v(1)
nc (Ẑ; β0, u, z)

{s(0)
nc (Ẑ; β0, u)}2

]
dE{Ni(u)}+ op(1).

Furthermore, Huang and Wang (2000) showed that

√
n(β̂nc − β0) = n−1/2

n∑
i=1

I−1
nc (β0)Jnc,i(β0) + op(1).

By SULLN, we have

n−1∂Ŵnc(t, z; β0)

∂βT

∣∣∣∣∣
β=β0

= −Hnc(t, z; β0) + oa.s.(1),

uniformly in t and z. Therefore, by Taylor series expansion, we have

n−1/2Ŵnc(t, z; β̂nc) = n−1/2Ŵnc(t, z; β0) + n−1∂Ŵnc(t, z; β)

∂βT

∣∣∣∣∣
β=β0

√
n(β̂nc − β0) + op(1)

= n−1/2

n∑
i=1

W̃nc,i(t, z) + op(1).

Thus, n−1/2Ŵnc(t, z; β̂nc) is asymptotically equivalent to n−1/2W̃nc(t, z).

Now we consider n−1/2Ŵc(t, z; β̂c). Note that the class of indicator functions is a

Donsker class (van der Vaart and Wellner 1996), we have by Theorem 2.1 of van der
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Vaart and Wellner (2007) that

I(Wi ≤ x− Σ0β̂c,x)I(Vi ≤ v)Ni(t)

=I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)Ni(t) + E{I(Wi ≤ x− Σ0β̂c,x)I(Vi ≤ v)Ni(t)}

− E{I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)Ni(t)}+ op(
1√
n

)

=I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)Ni(t) + E{F (x− Σ0β̂c,x −Xi)I(Vi ≤ v)Ni(t)}

− E{F (x− Σ0β0,x −Xi)I(Vi ≤ v)Ni(t)}+ op(
1√
n

)

=I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)Ni(t) +Hc2(t, z; β0,x)(β̂c − β0) + op(
1√
n

).

Similar to the arguments that proved the asymptotically equivalence property of

n−1/2Ŵnc(t, z; β̂nc), we have

n−1/2Ŵc(t, z; β0)

=
n∑
i=1

∫ t

0

{
I(Wi ≤ x− Σ0β0,x)I(Vi ≤ v)− v

(1)
c (Ẑ; β0, u)

s
(0)
c (Ẑ; β, u)

}
dNi(u)

−
∫ t

0

{
Yi(u)I(Ẑi ≤ z) exp(ẐT

i β0)

s
(0)
c (Ẑ; β0, u)

− Yi(u) exp(ẐT
i β0)v

(1)
c (Ẑ; β0, u)

{s(0)
c (Ẑ; β0, u)}2

}
dE{Ni(u)}+ op(1).

Furthermore, Kong and Gu (1999) showed that

√
n(β̂c − β0) = n−1/2

n∑
i=1

I−1
c (β0)Jc,i(β0) + op(1).

By SULLN, we have

n−1∂Ŵc(t, z; β0)

∂βT

∣∣∣∣∣
β=β0

= −Hc1(t, z; β0) + oa.s.(1),
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uniformly in t and z. Therefore, we have

n−1/2Ŵc(t, z; β̂c) = n−1/2Ŵc(t, z; β0) + n−1∂Ŵc(t, z; β)

∂βT

∣∣∣∣∣
β=β0

√
n(β̂c − β0)

+Hc2(t, z; β0,x)
√
n(β̂c − β0) + op(1)

= n−1/2

n∑
i=1

W̃c,i(t, z) + op(1).

Thus, n−1/2Ŵc(t, z; β̂c) is asymptotically equivalent to n−1/2W̃c(t, z).

Appendix A3

We first show the tightness of n−1/2W̃nc(t, z). Note that

n−1/2Ŵnc(t, z; β̂nc) =n−1/2Ŵnc(t, z; β0) + n−1∂Ŵnc(t, z; β)

∂βT

∣∣∣∣∣
β=β∗

√
n(β̂nc − β0),

where β∗ is in the line segment of β̂nc and β0. The second term in the above equation

is tight since n−1 ∂Ŵnc(t,z;β0)
∂βT

∣∣∣
β=β∗

converges almost surely to −Hnc(t, z; β0) uniformly, and
√
n(β̂nc − β0) converges in distribution. Therefore, we only need to show the tightness of

n−1/2Ŵnc(t, z; β0) = n−1/2

n∑
i=1

∫ t

0

{
n−1
i

ni∑
r=1

I(Ẑir ≤ z)− V
(1)
nc (Ẑ; β0, u, z)

S
(0)
nc (Ẑ; β0, u)

}
dNi(u).

Note that n−1/2
∑n

i=1 n
−1
i

∑ni
r=1 I(Ẑir ≤ z)Ni(t) is sum of monotone functions, and thus is

manageable (Pollard 1990). Therefore, the first term is tight.

By the Lindeberg-Feller Central Limit Theorem, we obtain that n−1/2W̃nc(t, z) is asymp-

totically normal with mean zero, and covariance limn→∞ n
−1
∑n

i=1 E[W̃ 2
nc,i(t, z)]. Therefore,

n−1/2W̃nc(t, z) converges weakly to Gnc(t, z).

By the asymptotic equivalence property of n−1/2Ŵnc(t, z; β̂nc) proved in A2, we have

that n−1/2Ŵnc(t, z; β̂nc) also converges weakly to Gnc(t, z).
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Appendix A4

We prove the weak convergence property of W̃ S
nc(t, z) in the following, and the weak con-

vergence property of W̃ S
c (t, z) can be proved similarly.

Let W̃ s
nc(t, z) =

∑n
i=1 W̃nc,i(t, z)ξi. By Theorem 1, n−1/2W̃nc(t, z) = n−1/2

∑n
i=1 W̃nc,i(t, z)

converges weakly to Gnc(t, z) unconditionally. Since the weak convergence of

n−1/2
∑n

i=1 W̃nc,i(t, z) implies that the Donsker condition (van der Vaart and Wellner 1996,

Theorem 2.9.6) holds, it then follows from the conditional multiplier Central Limit The-

orem (van der Vaart and Wellner 1996, Sec. 2.9) that n−1/2W̃ s
nc(t, z) converges weakly to

Gnc(t, z) in probability conditional on the data. Thus, by Lemma 1 of Pipper and Ritz

(2007), it suffices to show that supt,z

{
n−1/2|W̃ S

nc(t, z)− W̃ s
nc(t, z)|

}
p→ 0. This can be

proved analogue to the arguments in the Appendices of Spiekerman and Lin (1998).

Appendix A5

Consistency of Snc: First, we study the scenario that the measurement error model is

correctly specified, whereas the Cox model is misspecified. We need to show that when

the error model (4.4) is correctly specified, the Snc supremum test is consistent against the

alternative hypothesis that there does not exist a constant vector β0 and a function λ0(·),
such that the hazard function has the form

λ(t; z) = λ0(t) exp(zTβ0).

for almost all t ∈ [0, τ ], and z in the support of Zi. Note that under this alternative, we

have β̂nc
a.s.→ β∗, and that

n∑
i=1

∫ t

0

dNi(u)∑n
i=1 Yi(u) exp(ZT

i β
∗)

a.s.→
∫ t

0

λ∗0(u)du,

as n→∞ (Lin and Wei 1989). Let λ(t;Zi) be the hazard function under the alternative.

Let Ea denote the expectation taken under this general alternative. Let H(·) be the

distribution function of Zi. Let ε̃ir be defined as in Appendix A1.
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n−1Ŵnc(t, z; β̂nc)

=n−1Ŵnc(t, z; β
∗) + oa.s.(1)

=Ea{I(ε̃ir ≤ z − Zi)Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(ZT
i β
∗)I(ε̃ir ≤ z − Zi) exp(ε̃Tisβ

∗)}
Ea{Yi(u) exp(ZT

i β
∗)}Ea{exp(ε̃Tirβ

∗)}
dEa{Ni(u)}+ oa.s.(1)

=Ea{P (ε̃ir ≤ z − Zi|Zi)Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(ZT
i β
∗)P (ε̃ir ≤ z − Zi|Zi) exp(ε̃Tisβ

∗)}
Ea{exp(ε̃Tirβ

∗)}
λ∗0(u)du+ oa.s.(1)

=Ea{P (ε̃ir ≤ z − Zi|Zi)Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(ZT
i β
∗)P (ε̃ir ≤ z − Zi|Zi)}λ∗0(u)du+ oa.s.(1)

=

∫ t

0

∫ ∞
−∞

P (εir ≤ z − a|a)E{Yi(u)|a}
[
λ(u; a)− λ∗0(u) exp(aTβ∗)

]
dH(a)du+ oa.s.(1).

Under the alternative, there usually exists some t and z, such that

λ(t; z) 6= λ∗0(t) exp(zTβ∗).

Thus, n−1Ŵnc(t, z; β̂nc) is nonzero for some t and z. Therefore, the Snc test is usually

consistent against the alternative.

Next, we study the scenario that the Cox model is correctly specified, whereas the

measurement error model (4.4) is misspecified, and the underlying true error model has

the following form

Wir = g(Zi) + ε∗ir, i = 1, · · · , n; r = 1, · · · , ni,

where the deterministic function g(·) satisfies that g(z)−x is not a constant vector for some

value z = (xT , vT )T in the support of Zi; the error terms ε∗ir are independent and identically

distributed with mean 0 and an unknown covariance matrix Σ0, and are independent of

Ni(·), Yi(·), and Zi. Furthermore, the Xi component of the true parameter β0,x 6= 0.
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Under this alternative, let β∗ and λ∗0(t), Ea be defined analogue to those in the previous

arguments. Write β∗ = (β∗Tx , β∗Tv )T . Let ε̃∗ir = (εTir, 0
T )T . Let g̃(·) = (g̃T (·), 0T )T . Since the

Cox model is correctly specified, we have

n−1Ŵnc(t, z; β̂nc)

=n−1Ŵnc(t, z; β
∗) + oa.s.(1)

=Ea{I(ε̃∗ir ≤ z − g̃(Zi))Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(g̃(Zi)
Tβ∗)I(ε̃∗ir ≤ z − g(Zi)) exp(ε̃∗Tis β

∗)}
Ea{Yi(u) exp(g̃(Zi)Tβ∗)}Ea{exp(ε̃∗Tir β

∗)}
dEa{Ni(u)}+ oa.s.(1)

=Ea{P (ε̃ir ≤ z − g̃(Zi)|Zi)Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(g̃(Zi)
Tβ∗)P (ε̃ir ≤ z − g̃(Zi)|Zi)}

Ea{Yi(u) exp(g̃(Zi)Tβ∗)}
Ea{Yi(u) exp(ZT

i β
∗)}λ0(u)du

+ oa.s.(1).

Thus, n−1Ŵnc(t, z; β̂nc) is nonzero for some t and z. Therefore, the Snc test is usually

consistent against the alternative.

Consistency of Sc: Now we show that the Sc test is usually consistent against the alterna-

tive when the error model is correctly specified. Under this alternative, we have β̂c
a.s.→ β∗,

and that
n∑
i=1

∫ t

0

dNi(u)∑n
i=1 Yi(u) exp(ZT

i β
∗)

a.s.→
∫ t

0

λ∗0(u)du,

as n→∞. Let Ea and λ(t; z) be defined as before. Write β∗ = (β∗Tx , β∗Tv )T . Note that

n−1Ŵc(t, z; β̂c)

=n−1Ŵc(t, z; β
∗) + oa.s.(1)

=Ea{I(εi ≤ x− Σ0β
∗
x −Xi)I(Vi ≤ v)Ni(t)}

−
∫ t

0

Ea{Yi(u) exp(ZT
i β
∗)I(Vi ≤ v)I(εi ≤ x−Xi) exp(εTi β

∗
x)}

Ea{exp(εTi β
∗
x)}

λ∗0(u)du+ oa.s.(1).
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Note also that

Ea{I(εi ≤ x− Σ0β
∗
x −Xi)I(Vi ≤ v)Ni(t)}

=Ea{Fε(x− Σ0β
∗
x −Xi)I(Vi ≤ v)Ni(t)}

=

∫ t

0

∫ z

−∞
E{Yi(u)|ax}Fε(x− Σ0β

∗
x − ax)I(av ≤ v)λ(u; a)dH(a)du,

where we write a = (aTx , a
T
v )T . Furthermore, analogue to the proof in Appendix A1, we

have

Ea{Yi(u) exp(ZT
i β
∗)I(Vi ≤ v)I(εi ≤ x−Xi) exp(εTi β

∗
x)}

=Ea

{
Yi(u) exp(ZT

i β
∗)I(Vi ≤ v)

∫ x−Xi−Σ0β∗
x

−∞
(2π)−

p
2 |Σ0|−

1
2 exp(

1

2
β∗Tx Σ−1

0 β∗x) exp(−1

2
εTΣ−1

0 ε)dε

}
= exp(

1

2
β∗Tx Σ−1

0 β∗x)Ea
{
Yi(u)Fε(x− Σ0β

∗
x −Xi)I(Vi ≤ v) exp(ZT

i β
∗)
}

= exp(
1

2
β∗Tx Σ−1

0 β∗x)

∫ z

−∞
E{Yi(u)|ax}Fε(x− Σ0β

∗
x − ax)I(av ≤ v) exp(aTβ∗)dH(a).

It follows that

n−1Ŵc(t, z; β̂c)

=

∫ t

0

∫ z

−∞
E{Yi(u)|ax}Fε(x− Σ0β

∗
x − ax)I(av ≤ v)λ(u; a)dH(a)du

−
∫ t

0

∫ z

−∞
E{Yi(u)|ax}Fε(x− Σ0β

∗
x − ax)I(av ≤ v) exp(aTβ∗)λ∗0(u)dH(a)du+ oa.s.(1)

=

∫ t

0

∫ z

−∞
E{Yi(u)|ax}Fε(x− Σ0β

∗
x − ax)I(av ≤ v)

{
λ(u; a)− λ∗0(u) exp(aTβ∗)

}
dH(a)du

+ oa.s.(1).

Under the alternative, there usually exists some t and z, such that

λ(t; z) 6= λ∗0(t) exp(zTβ∗).

Thus, n−1Ŵc(t, z; β̂c) is nonzero for some t and z. Therefore, the Sc test is usually consistent

against the alternative.
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Chapter 5

A Class of Functional Methods for

Error-Contaminated Survival Data

under Additive Hazards Models with

Replicate Measurements

5.1 Introduction

Covariate measurement error has long been a concern in survival analysis, and it has

attracted extensive research interest. Since Prentice (1982), a large number of inference

methods have been developed to handle error-prone data (e.g., Nakamura 1992, Buzas

1998, Hu, Tsiatis and Davidian 1998, Huang and Wang 2000, Li and Lin 2003, Hu and

Lin 2004, Song and Huang 2005, Yi and Lawless 2007, and Zucker and Spiegelman 2008).

Although discussion on survival data with measurement error is not restricted to a single

type of model, proportional hazards models have been the center of existing research. The

impact of covariate error is well understood for proportional hazards models.

Proportional hazards models (Cox 1972) specify that covariates have multiplicative
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effects on the hazard ratio; a most appeal of such models is that baseline hazard functions

can be left unspecified when conducting inference about covariate effects based on partial

likelihood functions. In contrast to proportional hazards models, additive hazards models

offer a flexible tool to delineate survival data (Breslow and Day 1980, Cox and Oakes 1984).

Lin and Ying (1994) developed an inference method for covariate effects based on pseudo-

score functions, and a key catch of this method is that the baseline hazard function is left

unmodeled. Furthermore, this method allows a close form of the estimator of regression

parameters.

Relative to a large body of literature on proportional hazards models with covariate

measurement error, there is little research on measurement error effects under additive

hazards models, although several authors investigated this problem. Sun, Zhang and Sun

(2006) considered additive hazards models for the case with replicates of mismeasured co-

variates, and justified asymptotic results using empirical processes theory. Kulich and Lin

(2000) proposed an unbiased corrected pseudo score approach for the case that a valida-

tion sample is available. However, a number of important questions remain unexplored.

For instance, as indicated by the work for proportional hazards models, many correction

methods can be developed to account for error effects. Are there any intrinsic connections

among those methods? How do we assess the validity of the proposed methods which es-

sentially rely on a correct model specification? Does measurement error in covariates have

the same effects on additive hazards models as those for proportional hazards models? Can

we reveal new insights by exemplifying the unique features of additive hazards models?

In this chapter we examine these important questions. In particular, we explore asymp-

totic bias induced in the naive analysis with measurement error ignored. To correct for the

induced bias, we develop a class of correction methods to exemplify the unique features

of additive hazards models. Our methods do not impose any distributional assumption-

s on the true covariates, thus appealing in protecting us from the risk of misspecifying

the covariate model. The validity of the proposed methods is carefully examined, and

we investigate issues of model checking and model misspecification. Theoretical results

are rigorously established, and are complemented with various numerical assessments. In
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addition, different from the most work which assumes classical additive error models with

error distributions specified, in this chapter we relax the requirement of specifying a full

distributional assumption for error terms. With availability of replicated measurements,

we consider a flexible model for measurement error processes which assumes only an ad-

ditive structure. Moreover, we employ the functional modeling approach for which the

distribution of the true covariates is left unmodeled.

The remainder is organized as follows. In Section 5.2, we introduce the basic model

setup and estimation in the absence of measurement error. In Section 5.3, we conduct a

bias study for the naive estimator which ignores covariate measurement error. In Section

5.4, we propose an approach based on pseudo score functions, to deal with survival data

with replicates of mismeasured covariates. Asymptotic results are established. In Section

5.5, we propose an estimating equation based method. In Section 5.6, numerical studies for

the estimators are provided. In Section 5.7, we study the impact of model misspecification

and propose a goodness of fit test statistic. In Section 5.8, a real data example is provided.

Concluding discussion is provided in the last section.

5.2 Notation and Model Setup

5.2.1 Additive Hazards Model

For i = 1, · · · , n, let Ti be the failure time, Ci be the censoring time, and Zi(t) =

(XT
i , V

T
i (t))T be a vector of covariates, where Xi is a p × 1 vector of time-independent

but error-prone covariates, and Vi(t) is a q × 1 vector of covariates that are precisely

measured and possibly time-dependent. As common in practise, Vi(t) are assumed to be

external covariates (Kalbfleisch and Prentice 2002, p.197). We consider that the hazard

function of Ti is related to Zi(·) through the additive hazards model

λ(t;Zi(t)) = λ0(t) + βTZi(t) = λ0(t) + βTxXi + βTv Vi(t), (5.1)
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where λ0(·) is an unspecified baseline hazard function, and β = (βTx , β
T
v )T is a vector

of unknown regression parameters. Let Λ0(t) =
∫ t

0
λ0(u)du be the baseline cumulative

hazard function. We assume that the failure time Ti is continuous and Λ0(t) is absolutely

continuous. Ti and Ci are assumed to be conditionally independent given Zi(t).

Suppose individuals are observed over a common time interval [0, τ ], where τ is a

positive constant. Let Si = min(Ti, Ci, τ), δi = I(Ti ≤ min{Ci, τ}), Ni(t) = I(Si ≤ t, δi =

1), and Yi(t) = I(Si ≥ t).

5.2.2 Estimation in the Absence of Measurement Error

If Xi were precisely measured, then estimation of β can be carried out using the pseudo

score functions proposed by Lin and Ying (1994):

U(β) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}d{Ni(t)− Yi(t)βTZi(t)dt}, (5.2)

where Z̄(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t). Solving U(β) = 0 gives an estimator of β, which

has an explicit form given by

β̂ =

[
n∑
i=1

∫ τ

0

Yi(t){Zi(t)− Z̄(t)}⊗2dt

]−1 [ n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)

]
. (5.3)

This estimator is consistent, provided certain regularity conditions hold. Indeed, U(β) can

be equivalently written as

U(β) =
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dMi(t; β,Λ0),

whereMi(t; β,Λ0) = Ni(t)−
∫ t

0
Yi(u){dΛ0(u)+βTZi(u)du}. Let Ft = σ{Ni(s), Yi(s), Zi(s), 0 ≤

s ≤ t, i = 1, · · · , n} be the σ− field generated by the event, covariates, and observation

histories prior to time t for all subjects. Then Mi(t; β,Λ0) is an Ft- adapted martingale

(e.g., Kalbfleisch and Prentice 2002, Sec. 5.3). Consequently, E{U(β)} = 0, i.e., U(β)
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are unbiased estimating functions of β. By estimating function theory, under regularity

conditions, solving U(β) = 0 leads to a consistent estimator of β (e.g., Yanagimoto and

Yamamoto 1991).

Noting that E{Mi(t; β,Λ0)}=0 by the martingale property of Mi(t; β,Λ0), we estimate

the baseline cumulative hazard function by solving
∑n

i=1Mi(t; β,Λ0) = 0. That is, Λ0(t)

is estimated by

Λ̂0(t; β̂) =

∫ t

0

∑n
i=1 dNi(u)∑n
j=1 Yj(u)

−
∫ t

0

∑n
i=1 Yi(u)β̂TZi(u)du∑n

j=1 Yj(u)
.

5.2.3 Measurement Error Model

Suppose Xi is repeatedly measured ni times, resulting in the surrogates Wir, r = 1, · · · , ni.
Given Ft for any time t, we assume that

Wir = Xi + εir, (5.4)

where the εir are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite variance matrix Σ0, i = 1, · · · , n; r = 1, · · · , ni. This assumption says that given

the true covariates Zi(t) at any time t, Ti and Ci are independent of surrogate measure-

ments Wij. This assumption is analogous to the usual nondifferential error mechanism for

uncensored data (Carroll et al. 2006, p.36).

Let W̄i· =
∑ni

r=1 Wir/ni, and Ẑi(t) = (W̄ T
i· , V

T
i (t))T . Then E{Ẑi(t)|Ft} = Zi(t), and

E{Ẑ⊗2
i (t)|Ft} = Z⊗2

i (t)+Σ1/ni, where a⊗2 = aaT for a column vector a, Σ1 = diag(Σ0, 0q),

0q is the q × q matrix of elements 0, and q is the dimension of Vi(t). With the replicates

Wir, we estimate the covariance matrix Σ0 by

Σ̂0 =
n∑
i=1

ni∑
r=1

(Wir − W̄i·)
⊗2/

n∑
i=1

(ni − 1).

Let Σ̂1 = diag(Σ̂0, 0q), then E(Σ̂1|Ft) = Σ1 for any time t.
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5.3 Asymptotic Bias Analysis

We investigate measurement error effects on the structure of the hazard function. We derive

the hazard function based on the observed covariates (W̄ T
i· , V

T
i (t))T , and let λ∗(t; W̄i·, Vi(t))

denote this hazard function. With the assumption made on the measurement error process,

λ∗(t; W̄i·, Vi(t)) = E{λ(t;Xi, Vi(t))|Ti ≥ t, W̄i·, Vi(t)}

= λ0(t) + βTxE{Xi|Ti ≥ t, W̄i·, Vi(t)}+ βTv Vi(t). (5.5)

The expression (5.5) indicates that the hazard function for the observed covariates retains

the additive structure while the risk difference has a more complicated form than (5.1).

Since the conditional expectation E{Xi|Ti ≥ t, W̄i·, Vi(t)} generally differs from W̄i·, (5.5)

suggests that the naive analysis with W̄i· replacing Xi would lead to biased results.

We now quantify the asymptotic bias resulted from the naive analysis. Let Z̃(t) =∑n
i=1 Yi(t)Ẑi(t)/

∑n
i=1 Yi(t). Define

Unv(β) =
n∑
i=1

∫ τ

0

{Ẑi(t)− Z̃(t)}{dNi(t)− Yi(t)ẐT
i (t)βdt}.

That is, Unv(β) is the naive pseudo score function that is obtained from replacing E{Xi|Ti ≥
t, W̄i·, Vi(t)} with W̄i· in (5.5), and then applying the pseudo score function form (5.2) to

the observed data. Let β̂nv be the solution of Unv(β) = 0.

Let ρ0 = limn→∞ n
−1
∑n

i=1 n
−1
i , and e(t) = E{Yi(t)Zi(t)}/E{Yi(t)}. Define

B1 =
∫ τ

0
E [Yi(t){Zi(t)− e(t)}⊗2] dt, and B2 = ρ0Σ1

∫ τ
0
E{Yi(t)}dt. Following the discus-

sion of Yi and Reid (2010), we can show that under certain regularity conditions, β̂nv

converges in probability to a limit, say β∗nv, as n → ∞. We can further characterize the

relationship between β and β∗nv, given by

β∗nv = (B1 +B2)−1B1β. (5.6)

The details are presented in Appendix A2 of the Supplementary Material.
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It is immediate that from (5.6), if ‖β‖ = 0, then ‖β∗nv‖ = 0, where ‖ · ‖ is the Euclidean

norm. If Zi(t) contains only a univariate Xi, then |β∗nv| < |β|, suggesting an attenuated

measurement error effect. If Xi and Vi(t) are univariates and are independent, and either

Vi(t) or Xi are independent of the followup process, then |β∗nv,x| < |βx| and β∗nv,v = βv,

where βx and βv (or β∗nv,x and β∗nv,v) are components of β (or β∗nv) corresponding to the

covariates Xi and Vi(t), respectively. The justifications are provided in Appendix A2 of

the Supplementary Material.

In the following, we numerically evaluate the asymptotic bias of the naive estimator

with measurement error ignored in estimation procedures. Suppose the failure times Ti are

generated from the additive hazards model

λ(t;Xi) = λ0(t) +Xiβ,

where the baseline hazard function is set as λ0(t) = 1, Xi is a univariate variable generated

from UNIF (−1, 1), and the true parameter value is set as β = 1. The censoring times Ci

are simulated from UNIF (0, 4.2), leading to about 30% censoring rate. The error model

(5.4) is used to generate Wir where εir ∼ N(0, σ2) for r = 1, · · · , ni, i = 1, · · · , n. We

consider settings where σ2 varies from 0 to V ar(Xi) (which is 1/3), and ni = 1, 2, 4, 8. We

are interested in the asymptotic bias of β∗nv relative to the true parameter value β, defined

as (β∗nv − β)/β. In Figure 5.1, we plot the asymptotic relative bias of β∗nv against σ.

It is seen that the naive estimator is attenuated to the null as the degree of measurement

error becomes large. Furthermore, the degree of attenuation decreases when the number of

replicated surrogate measurements increases. These results confirm the above theoretical

findings.

[Insert Figure 5.1 here!]
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5.4 Corrected Pseudo Score Approach

As shown in Section 5.3, the naive analysis with measurement error ignored yields biased

estimation of β. We now develop an inference method for β with measurement error effects

taken into account. The idea is to find sensible estimating functions of β which satisfy

two key conditions: (1) estimating functions must be computable in the sense of being

expressed in terms of the observed data and parameters, and (2) estimating functions are

unbiased. By estimating function theory, solving the resulting estimating equations leads

to a consistent estimator of β if suitable regularity conditions hold.

Using the pseudo score functions (5.2) with Xi replaced by W̄i· gives us computable

estimating functions, Unv(β), of β. But as implied by the discussion in Section 5.3, these

estimating functions Unv(β) are not unbiased. As suggested by Yi and Reid (2010), a quick

remedy to fixing this is to modify Unv(β) by subtracting their expectation E{Unv(β)} so

that the resulting estimating functions, Unv(β)−E{Unv(β)}, are unbiased. However, evalu-

ation of E{Unv(β)} is generally complicated due to the involvement of the joint distribution

of the survival, censoring, and covariate processes, thus making the modified estimating

functions Unv(β)− E{Unv(β)} unappealing. To get around this problem, we alternatively

evaluate the conditional expectation of Unv(β), given Fτ . As shown in Appendix A3 of the

Supplementary Material, E{Unv(β)|Fτ} = U(β)−
∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}∑n
i=1{Yi(t)Σ1β/ni}dt.

This identity motivates us to consider corrected pseudo score functions:

Ũc(β) = Unv(β) +

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{Yi(t)Σ1β/ni} dt.

By that E{U(β)} = 0, we obtain that E{Ũc(β)} = 0, implying that Ũc(β) are unbiased

estimating functions.

To use the corrected pseudo score function Ũc(β) to estimate β, we need to replace Σ1

with its consistent estimate Σ̂1, and let Uc(β) denote the resultant estimating functions.

One might expect that the substitution of Σ̂1 for Σ1 would break down the unbiasedness

of Ũc(β), but this is not the case here. Because E(Σ̂1|Ft) = Σ1 for any time t, it follows
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that

E{Uc(β)} = E{Unv(β)}+ E

(∫ τ

0

E

[{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt

∣∣∣∣∣Ft
])

= E{Unv(β)}+ E

[∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{Yi(t)Σ1β/ni} dt

]
= E{Ũc(β)}.

Therefore, Uc(β) are unbiased estimating functions due to that E{Ũc(β)} = 0.

Let β̂c be the solution to the equations Uc(β) = 0. It is seen that

β̂c =

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt−
∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt

]−1

×

[
n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
.

We comment that numerically, β̂c performs stably. This can be explained by that the

inverse matrix (scaled by n−1) in β̂c converges almost surely to a positive definite matrix

under mild regularity conditions, thus singularity does not occur in the asymptotic sense.

Details on this point are included in Lemma A.1 of Appendix A4 in the Supplementary

Material.

Next, we discuss estimation of the baseline cumulative hazard function Λ0(t). Let

M̃i(t; β,Λ0) = Ni(t)−
∫ t

0
Yi(u){dΛ0(u)+βT Ẑi(u)du}. After some algebra, E{M̃i(t; β,Λ0)} =

0. Solving
∑n

i=1 M̃i(t; β,Λ0) = 0 (Lin and Ying 1994) leads to an estimator of Λ0(t), say

Λ̂0(t; β̂c), given by

Λ̂0(t; β̂c) =

∫ t

0

{∑n
i=1 dNi(u)∑n
j=1 Yj(u)

}
−
∫ t

0

β̂Tc Z̃(u)du.

To ensure monotonicity, we propose to use Λ̃0(t; β̂c) = max0≤s≤t Λ̂0(s; β̂c) to estimate Λ0(t)

as in Lin and Ying (1994). Asymptotic properties of β̂c and Λ̂0(t; β̂c) are summarized
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in the following theorems, whose proofs are included in Appendices A4 and A5 of the

Supplementary Material.

Let ρ1 = limn→∞ n
−1
∑n

i=1(ni − 1), and Σ2 = diag(ρ0ρ
−1
1

∑ni
r=1(Wir − W̄i·)

⊗2E(Si), 0)

be the dimension (p+ q)× (p+ q) block diagonal matrix. Define

Dc = lim
n→∞

n−1E

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt

]
− ρ0E(Si)Σ1,

and Σc = lim
n→∞

n−1

n∑
i=1

E

[∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0) + Σ2β − ρ0E(Si)Σ1β +

SiΣ1β

ni

]⊗2

.

Theorem 1 Under Regularity Conditions R1-R8 listed in Appendix A1 of the Supple-

mentary Material, we have

n1/2(β̂c − β)
d−→ N(0,D−1

c ΣcD−Tc ), as n→∞. (5.7)

Theorem 2 Under Regularity Conditions R1-R8 listed in Appendix A1 of the Supple-

mentary Material, we have

n1/2{Λ̂0(t; β̂c)− Λ0(t)} G(t) in l∞[0, τ ] as n→∞, (5.8)

where  means weak convergence, l∞[0, τ ] is the space of all bounded functions on [0, τ ]

(van der Vaart and Wellner 1996), G(t) is a zero-mean Gaussian process with covariance

function Φ(s, t) = limn→∞ n
−1
∑n

i=1E[Ψi(s)Ψi(t)] for time points s and t, and

Ψi(t) =

∫ t

0

dM̃i(u; β,Λ0)

E[Yi(u)]
−
∫ t

0

eT (u)duD−1
c

[∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0)

+ Σ2β − ρ0E(Si)Σ1β +
SiΣ1β

ni

]
.
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We comment that as seen from the proofs of Theorems 1 and 2, the term Σ2β −
ρ0E(Si)Σ1β in Σc and Ψi(t) can be interpreted as the substitution effect of replacing Σ1 with

its consistent estimate Σ̂1. If there are no replicate measurements, i.e., ni = 1, i = 1, · · · , n,

and Σ1 is simply known, then the asymptotic results of β̂c and Λ̂0(t; β̂c) are given by

Theorems 1 and 2 with the term Σ2β − ρ0E(Si)Σ1β removed from Σc and Ψi(t). More

details are included in Appendix A6 of the Supplementary Material.

Theorem 2 implies that Pr{sup0≤t≤τ n
1/2|Λ̂0(t; β̂c)−Λ0(t)| ≤ x} → Pr{sup0≤t≤τ |G(t)| ≤

x} as n→∞ for any x ≥ 0. It is difficult to use this result to conduct inference about Λ0(t)

due to that the Gaussian process G(t) does not have the independent increment property

and has a complex form.

To get around this difficulty, we suggest using resampling techniques to construct confi-

dence bands for survival curves. Let Ψ̂i(t) be Ψi(t) with β,Λ0(t),Σ1, E{Yi(t)}, e(t) replaced

with β̂c, Λ̂0(t; β̂c), Σ̂1, Ȳ·(t), Z̃(t), respectively. Define

Ŵn(t) = n−1/2

n∑
i=1

ξiΨ̂i(t),

where ξi, i = 1, · · · , n are i.i.d. standard normal random variables, and are independent of

the data.

Theorem 3 Under Regularity Conditions R1-R8 listed in Appendix A1 of the Supple-

mentary Material, when conditional on the observed data {Ni(t), Yi(t), Ẑir(t), t ∈ [0, τ ], i =

1, · · · , n, r = 1, · · · , ni}, Ŵn(t) converges weakly to G(t) in l∞[0, τ ] in probability as n→∞.

The proof of Theorem 3 is deferred to Appendix A7 of the Supplementary Material.

This theorem suggests that we can legitimately use the distribution of sup0≤t≤τ |Ŵn(t)| to

approximate that of sup0≤t≤τ |G(t)|, and thus that of sup0≤t≤τ n
1/2|Λ̂0(t; β̂c)− Λ0(t)|.

To construct an approximate (1 − α) confidence band (Λ̂0(t; β̂c) − n−1/2qα, Λ̂0(t; β̂c) +

n−1/2qα) for Λ0(t) over [0, τ ], we first repeatedly generate a set of {ξi, i = 1, · · · , n} inde-

pendently from the standard normal distribution for a large number of times, say 1000,
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and calculate sup0≤t≤τ |Ŵn(t)| for each time. Thus, we obtain an empirical quantile q̃α,

and replace qα with q̃α to obtain an approximate (1 − α) confidence band of Λ0(t) as

(Λ̂0(t; β̂c)− n−1/2q̃α, Λ̂0(t; β̂c) + n−1/2q̃α).

5.5 Estimating Equation Approach

Instead of focusing on the pseudo score function U(β) alone as in the previous section, we

now jointly look at unbiased estimating equations for β and Λ0(·). Our starting point is

the fact that Mi(t; β,Λ0) is an Ft - adapted martingale, which implies that Mi(t; β,Λ0) is

a mean-zero process with

E{dMi(t; β,Λ0)|Ft−} = 0 (5.9)

for all 0 ≤ t ≤ τ . Since Zi(t) is external, we have E{Zi(t)dMi(t; β,Λ0)|Ft−} = 0, and

furthermore

E

{∫ t

0

Zi(u)dMi(u; β,Λ0)

}
= 0. (5.10)

These results suggest that dMi(t; β,Λ0) and Zi(t)dMi(t; β,Λ0) can be used to construct

unbiased estimating functions for Λ0(·) and β if Xi were error-free. As Mi(t; β,Λ0) contains

unobserved covariates Xi, it is tempting to substitute Zi(t) with observed Ẑi(t). By the

error model (5.4), it is easily seen that this replacement does not change the property (5.9),

but it breaks down (5.10). That is, E{M̃i(t; β,Λ0)} = 0, but E{Ẑi(t)dM̃i(t; β,Λ0)|Ft−} 6=
0. In fact,

E{Ẑi(t)dM̃i(t; β,Λ0)|Ft−} = Zi(t)dMi(t; β,Λ0)− Yi(t)Σ1β/nidt.

Hence, we construct two sets of unbiased estimating equations:

Ue1(t; β,Λ0) =
n∑
i=1

M̃i(t, β,Λ0) = 0; (5.11)

Ue2(t; β,Λ0) =
n∑
i=1

∫ t

0

Ẑi(u)dM̃i(u; β,Λ0) +
n∑
i=1

∫ t

0

Yi(u)Σ̂1β/nidu = 0. (5.12)
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Now, we need to investigate whether (5.11) and (5.12) are adequate for estimating β

(a finite dimensional parameter) and Λ0(t) (a function). Since the function Λ0(t) can be

regarded as an infinite dimensional parameter, the usual estimating equation theory does

not guarantee that solving (5.11) and (5.12) simultaneously leads to appropriate estimators.

For example, given an arbitrary estimator of Λ0(t), say Λ̂0(t), which satisfies both (5.11)

and (5.12), Λ̂0(t) + C would also satisfy (5.11) and (5.12) for any constant C, yielding an

unidentifiability issue. To resolve this problem, we adopt an ad hoc procedure, which shares

the same spirit as that of Lin and Ying (1994), and thus identifiability can be achieved.

Note that (5.11) leads to
∑n

i=1 Yi(t)dΛ0(t) =
∑n

i=1 dNi(t)−
∑n

i=1 Yi(t)Ẑ
T
i (t)βdt. Hence,

given any fixed β, we estimate Λ0(t) by Λ̂0(t; β) =
∫ t

0

∑n
i=1 dNi(u)/

∑n
j=1 Yj(u)−

∫ t
0
Z̃T (u)βdu.

Substituting Λ̂0(t; β) into (5.12), we obtain

β̂e =

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt−
n∑
i=1

∫ τ

0

Yi(t)Σ̂1/nidt

]−1 [ n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
as an estimator of β, where we set t = τ to fully use the whole data set.

Plugging β̂e back into Λ̂0(t; β), we obtain an estimator for the baseline cumulative

hazard function

Λ̂0(t; β̂e) =

∫ t

0

{∑n
i=1 dNi(u)∑n
j=1 Yj(u)

}
−
∫ t

0

β̂Te Z̃(u)du.

It is interesting to note that β̂e differs from β̂c by a factor {1 − 1/
∑n

j=1 Yj(t)}, and

Λ̂0(t; β̂e) and Λ̂0(t; β̂c) assume the same form but with a different estimator β̂e or β̂c. In the

following corollary, we show that asymptotically β̂e behaves the same as β̂c, and Λ̂0(t; β̂e)

behaves the same as Λ̂0(t; β̂c). The proof is sketched in Appendix A8 of the Supplementary

Material.

Corollary 1 Under Regularity Conditions R1-R8 listed in Appendix A1 of the Supple-

mentary Material, we have

n1/2(β̂e − β)
d−→ N(0,D−1

c ΣcD−Tc ), as n→∞,

and n1/2{Λ̂0(t; β̂e)− Λ0(t)}  G(t) in l∞[0, τ ] as n→∞,
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where G(t) is the Gaussian process defined in Theorem 2.

5.6 Empirical Studies

We conduct various simulation studies to evaluate the finite sample performance of the

proposed estimators. In particular, we contrast our proposed estimators β̂c and β̂e to

the naive estimator β̂nv, the regression calibration estimator β̂rc (Prentice 1982), and the

estimator by Sun, Zhang and Sun (2006) which is denoted as β̂szs.

5.6.1 Design of Simulation

We consider n = 200 and generate 1000 simulations for each parameter configuration. We

examine three scenarios for the bivariate time-independent covariates Zi = (Xi, Vi)
T . In S-

cenario 1, the covariates Xi and Vi are independently generated, where Xi ∼ UNIF (−1, 1),

and Vi is a binary variable taking value 1 or 0 each with probability 0.5. Scenarios 2 and 3

correspond to that covariates Xi and Vi are correlated. In Scenario 2, Zi = (Xi, Vi)
T is u-

niformly generated from the triangular {(Xi, Vi) : −1 ≤ Xi ≤ 1,−1 ≤ Vi ≤ 1, Xi+Vi ≤ 0},
while in Scenario 3, Xi ∼ EXP (1) and

Pr(Vi = 1|Xi) =
exp(Xi)

1 + exp(Xi)
.

Survival times are independently generated using the additive hazards model (5.1), where

we take the baseline hazard function to be λ0(t) = αγtγ−1, and we consider α = γ = 1

for Scenarios 1 and 2 and α = 0.5, γ = 2 for Scenario 3, respectively. The true values of

βx and βv are set to be (βx, βv) = (1, 0) for Scenario 1, and (0.5, 0.5) for Scenarios 2 and

3, respectively. Censoring times Ci are generated from uniform distribution UNIF (0, C)

where C is set as 4.6 for Scenario 1, 4.7 for Scenario 2, and 2.7 for Scenario 3, respectively.

Roughly, 30% censoring percentages are produced for each scenario. The error model (5.4)

is used to generate Wir where εir ∼ N(0, σ2) for r = 1, · · · , ni, i = 1, · · · , n. We consider

settings with σ = 0.25 or 0.75, and ni = 2.
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5.6.2 Performance of Estimators

In Table 5.1, we report the finite sample biases (Bias), the empirical variances (EVE), the

average of the model-based variance estimates (MVE), the mean square errors (MSE), the

coverage rate of 95% confidence intervals, calculated by β̂A±1.96

√
Var(β̂A), where Var(β̂A)

is the estimated variances, and the subscript A refers to nv, szs, rc, c and e accordingly.

It is seen that β̂nv is always biased toward 0, with an increasing magnitude as mea-

surement error becomes more substantial. These findings confirm the theoretical result

revealed by the bias analysis in Section 5.3. The regression calibration estimator β̂rc only

partially remove the bias induced from measurement error, and its variance estimate devi-

ates from the empirical variance in some settings. The two proposed estimates β̂c and β̂e

have small finite sample biases. Their variance estimates agree reasonably well with the

empirical variances, and the coverage rates agree well with the nominal level 95%. In con-

trast, when the measurement error is large, the variance of β̂szs is considerably larger than

those of β̂c and β̂e, and the model based variance estimates of β̂szs tend to deviate from

the empirical variance estimates with much larger magnitudes. Finally, we comment that

the estimator β̂szs tends to behave less stably than the proposed estimators β̂c and β̂e, and

the regression calibration estimator β̂rc. In our simulations, about 1% of divergence occurs

for the estimator β̂szs when measurement error is large, whereas only 0.5% of divergence

occurs for β̂c, β̂e and β̂rc.

[Insert Table 5.1 here!]

5.6.3 Impact of the Number of Replicates

We now further evaluate the performance of the estimators for situations that some subjects

may not have replicates Wij. Specifically, settings of different replicate numbers ni are

considered for Scenario 3 described above. In Setting I, 150 out of n = 200 subjects are

randomly selected to have two measurements, and the rest have a single measurement;
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whereas in Setting II, 100 out of n = 200 subjects are randomly selected to have two

measurements, and the rest have a single measurement. We further consider two settings

for which we use a probability mechanism to decide whether or not a subject has a single

measurement. That is, we treat ni as a random variable taking value 1 or 2. Specifically, in

Setting III, we assume that Pr(ni = 1) = 0.8 if Ti ≤ median of all Ti, and Pr(ni = 1) = 0.2

otherwise; in Setting IV, Pr(ni = 1) = 0.2 if Ti ≤ median of all Ti, and Pr(ni = 1) =

0.8 otherwise. Simulation results are summarized in Table 5.2. The primary finding is

that the estimator β̂szs is not appropriate when the number of measurements depends

on the underlying event failure time. The results show that when there is a portion of

subjects that have a single measurement, β̂c and β̂e have smaller variances than β̂szs. This

demonstrates that β̂c and β̂e can effectively use information from subjects that have only

a single measurement.

Finally, we consider Setting V where all subjects have only one single measurement,

and the error variance is known to be 0.252 or 0.752. The estimator β̂szs does not work

for this setting as it is developed only for the case where all subjects must have replicated

measurements for Xi. However, our estimators β̂c and β̂e can handle this scenario, and the

simulation results show that they have satisfactory performance.

[Insert Table 5.2 here!]

5.6.4 Results on Cumulative Hazard Function

In Table 5.3, we use the procedure described in Section 5.4 to construct confidence bands of

the baseline hazard function. Here, we consider only Scenario 1. For each simulation run,

we independently generate standard normal variables ξi, i = 1, · · · , n, and we repeat this

procedure for 1000 times; we calculate Ŵn(t) each time and thus obtain the empirical upper

0.05-quantile q̃0.05. In the total number of 1000 simulation runs, we record the number

of cases that supt∈[0,τ ]

√
n|Λ̂0(t; β̂c) − Λ0(t)| is less than q̃0.05, and produce the empirical

coverage rate accordingly. We repeat the above procedure for Λ̂0(t; β̂c) described in Section
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5.4, and the naive cumulative hazard estimator based on Lin and Ying (1994), and further

modify these two estimators by the procedure of Hall and Wellner (1980). Simulation

results reveal that naively ignoring measurement error could result in low coverage rates,

especially when measurement error is large. The corrected methods greatly outperform

the naive method.

[Insert Table 5.3 here!]

5.7 Model Misspecification and Model Checking

5.7.1 Model Misspecification

In the preceding sections we explore various methods to correct for bias induced by mea-

surement error. The validity of the proposed methods relies on the additive hazards model

structure for survival data. An important concern therefore arises: what if the true hazard

function λ(t;Zi(t)) is not of the additive hazards structure (5.1), but we incorrectly assume

model form (5.1) to fit data. In this subsection, we investigate this problem.

Suppose the true model is given by the Cox model

λ(t;Zi(t)) = λcox(t) exp{αTZi(t)}, (5.13)

but we incorrectly use the additive hazards model (5.1) to fit the data, where λcox(t) is the

true baseline hazard function, and α represents the true covariate effects.

Let β∗c be the asymptotic limit of β̂c developed in Section 5.4. Then following Hattori

(2006) and Yi and Reid (2010), we show that β∗c is given by

β∗c =

(∫ τ

0

Etrue
[
Yi(t){Zi(t)− etrue(t)}⊗2

]
dt

)−1 ∫ τ

0

Etrue [Yi(t){Zi(t)− etrue(t)}dΛ(t;Zi(t))] ,

(5.14)
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where Etrue represents the expectation taken under the true model (5.13) with cumulative

hazard function Λ(t;Zi(t)) =
∫ t

0
λ(u;Zi(u))du, and etrue(t) = Etrue{Yi(t)Zi(t)}/Etrue{Yi(t)}.

It is difficult to see how β∗c differs from α based on (5.14). To gain an understanding of

the relationship between β∗c and α, we consider an approximation of (5.14) for the situation

with small |αTZi(t)|. Using the Taylor series expansion exp{αTZi(t)} ≈ 1 + αTZi(t), we

approximate the true hazard function (5.13) with an additive form:

λ(t;Zi(t)) ≈ λcox(t){1 + αTZi(t)}.

As a result,

β∗c ≈
(∫ τ

0

Etrue
[
Yi(t){Zi(t)− etrue(t)}⊗2

]
dt

)−1

×
∫ τ

0

Etrue
[
Yi(t){Zi(t)− etrue(t)}λcox(t){1 + αTZi(t)}dt

]
= Rα, (5.15)

where

R =

(∫ τ

0

Etrue
[
Yi(t){Zi(t)− etrue(t)}⊗2

]
dt

)−1 ∫ τ

0

Etrue
[
Yi(t){Zi(t)− etrue(t)}⊗2

]
λcox(t)dt.

Expression (5.15) approximately quantifies the asymptotic bias of using the estimator

β̂c under the misspecified model (5.1) to estimate the true covariate effects α. It is seen that

the estimated covariate effects β∗c approximately differ from the true covariate effects α by

a product R of two nonnegative definite matrices. The factor R depends on both survival

and censoring processes. Although the estimated covariate effects β∗c and the true covariate

effects α are different in general, they tend to have the same sign when the covariate is

univariate. In a special situation that there is no covariate effect, the estimated effect β∗c

is close to zero.

5.7.2 Model Checking

In the above subsection, it is seen that using the developed methods can yield biased

estimates if the true covariate effects do not act additively on the hazard function. Thus,
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it is important to develop a model checking procedure for additive hazards models.

Let Σ̂c be the empirical counterpart of Σc defined in Theorem 1, (Σ̂−1
c )jj be the jth

diagonal element of Σ̂−1
c , and Σ2(t) = diag(ρ0ρ

−1
1

∑ni
r=1(Wir − W̄i·)

⊗2E{min(Si, t)}, 0) be

the block diagonal matrix. Define

Uc(β̂c, t) =
n∑
i=1

[∫ t

0

{
Ẑi(u)− Z̃(u)

}{
dNi(u)− Yi(u)β̂Tc Ẑi(u)du

}
+

∫ t

0

Yi(u)Σ̂1β̂c/nidu

]
,

Ai(t) =

∫ t

0

{
Ẑi(u)− e(u)

}
dM̃i(u; β,Λ0) + Σ2(t)β − ρ0E{min(Si, t)}Σ1β +

min(Si, t)Σ1β

ni
,

and Dc(t) = lim
n→∞

n−1E

[
n∑
i=1

∫ t

0

Yi(u)
{
Ẑi(u)− e(u)

}⊗2

du

]
− ρ0E{min(Si, t)}Σ1.

The following lemma describes the asymptotic behavior of n−1/2Uc(β̂c, t). The proof is

included in Appendix A9 of the Supplementary Material.

Lemma 1 Under Regularity Conditions R1-R8 listed in Appendix A1 of the Supplemen-

tary Material, we have

n−1/2Uc(β̂c, t) G2(t) in l∞[0, τ ] as n→∞,

where G2(t) is a zero-mean Gaussian process with covariance function

Φ2(s, t) = limn→∞ n
−1
∑n

i=1 E[Ψ2,i(s)Ψ2,i(t)] for time points s and t, and Ψ2,i(t) = Ai(t)−
Dc(t)D−1

c (τ)Ai(τ).

Lemma 1 provides a basis for the subsequent development of goodness-of-fit test. It says

that if the additive hazards model and the additive error model are both correctly specified,

n−1/2Uc(β̂c, t) would fluctuate around zero randomly provided regularity conditions hold.

This motivates us to propose an overall goodness-of-fit test statistic

Sc = sup
t∈[0,τ ]

p+q∑
j=1

(Σ̂−1
c )

1/2
jj |n−1/2Uc,(j)(β̂c, t)|,
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where Uc,(j)(β̂c, t) is the jth component of Uc(β̂c, t).

In the absence of measurement error, Sc reduces to the overall goodness-of-fit test

statistic by Kim, Song and Lee (1998), which is a generalization of the test statistic for

checking the Cox model assumption proposed by Lin, Wei and Ying (1993).

The asymptotic distribution of Sc is difficult to be identified due to the complexity of

the limit process G2(t) associated with n−1/2Uc(β̂c, t). However, an abnormally large value

of Sc can indicate that the additive hazards model and/or the error model are incorrectly

specified.

Now we describe an implementation procedure using the resampling techniques similar

to those in Section 5.4. We generate a set of {ξi, i = 1, · · · , n} independently from the

standard normal distribution, and calculate

Ŝc = sup
t∈[0,τ ]

p+q∑
j=1

(Σ̂−1
c )

1/2
jj |n−1/2Ûc,(j)(β̂c, t)|,

where Ûc,(j)(β̂c, t) is the jth component of Ûc(β̂c, t) =
∑n

i=1 ξi

{
Âi(t)− D̂c(t)D̂

−1
c (τ)Âi(τ)

}
,

and Âi(t) and D̂c(t) are the empirical versions of Ai(t) and Dc(t), respectively. Then Ŝc

can be used to assess goodness-of-fit because it mimics the behaviour of Sc asymptotically,

as indicated below. The proof is sketched in Appendix A10 of the Supplementary Material.

Theorem 4 Assume Regularity Conditions R1-R8 listed in Appendix A1 of the Supple-

mentary Material. Then conditional on the observed data {Ni(t), Yi(t), Ẑir(t), t ∈ [0, τ ], i =

1, · · · , n, r = 1, · · · , ni}, n−1/2Ûc(β̂c, t) converges weakly to G2(t) in l∞[0, τ ] in probability

as n→∞, where G2(t) is the Gaussian process defined in Lemma 1.

Theorem 4 also offers a justification to empirically evaluate the power of using Sc

for model checking. Specifically, we generate sets of i.i.d. standard normal variables

{ξi,k, i = 1, · · · , n} for N times, where N is a large number, say N = 1000. Then we

calculate N copies of Ŝc, say {Ŝc,k, k = 1, · · · , N}. Empirical quantiles of Sc can then be

obtained based on the Ŝc,k.
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Now we numerically assess the performance of the proposed test statistic Sc. First, we

evaluate the empirical size of the test. We take the setting of Scenario 1 to generate the

data. We consider two cases with no censoring or 30% censoring percentage.

The results for the empirical size of the corrected goodness-of-test statistic Sc are sum-

marized in Table 5.4, where the null hypothesis is that both of the additive hazards model

and the additive error model are correctly specified. For comparison purposes, we also

consider the naive goodness-of-test statistic Snv by naively applying the method of Kim,

Song and Lee (1998) with the difference between Xi and W̄i· ignored, and the “true”

goodness-of-test statistic, named Strue, obtained by applying the method of Kim, Song

and Lee (1998) to the true covariate measurements.

It is observed that in the presence of censoring, the test size of Snv is close to the

nominal level. However, when there is no censoring, the naive test statistic Snv yields

test sizes which completely deviate from the nominal size 0.05. In contrast, the proposed

statistic Sc produces test sizes that are fairly close to the nominal level in all cases, and its

performance is similar to the true goodness-of-test statistic Strue.

Next, we evaluate the power of the proposed test statistic. We generate the survival

times from the Cox model λ(t|Zi) = λ0(t) exp(Xiαx+Viαv) with λ0(t) = t and (αx, αv)
T =

(1, 0)T . The covariates Xi and Vi are generated as in Scenario 1 in Section 5.6.1. The error

model (5.4) is used to generate Wir where εir ∼ N(0, σ2) for r = 1, · · · , ni, i = 1, · · · , n. We

consider settings with σ = 0.25 or 0.75, and ni = 2. By taking Ci to be∞ or generating Ci

from UNIF (0, 4.6), we obtain two censoring scenarios: no censoring and 30% censoring,

respectively. The results are summarized in Table 5.4. It is seen that the power of the

proposed test statistic Sc is fairly satisfactory, although the power would decrease when

the degree of measurement error increases.

[Insert Table 5.4 here!]
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5.8 ACTG 175 Study

We apply the proposed methods to analyze the data arising from the AIDS Clinical Trials

Group (ACTG) 175 study (Hammer, et al., 1996). The ACTG 175 study is a double-blind

randomized clinical trial that evaluated the effects of the four types of HIV treatments:

zidovudine only, zidovudine and didanosine, zidovudine and zalcitabine, and didanosine

only. In this example, we are interested in evaluating how different treatments are as-

sociated with the survival time Ti, which is defined to be the time to the occurrence of

one of the events that CD4 counts decrease at least 50%, or disease progression to AIDS,

or death. We consider a subset of n = 2139 subjects in this study. About 75.6% of the

outcome values are censored.

Let Vi be the treatment assignment indicator for subject i, where Vi = 1 if a subject

received the zidovudine only treatment, and 0 otherwise. In the ACTG 175 study, the

baseline measurements on CD4 were collected before randomization, ranging from 200 to

500 per cubic millimeter. Let Xi be the normalization version of the true baseline CD4

counts: log(CD4 counts+1), which was not observed in the study. Two replicated baseline

measurements of CD4 counts, denoted by Wi1 and Wi2, after the same transformation as

for Xi, were observed for 2095 subjects, while the other 44 subjects were measured once

for the CD4 counts at the baseline. An additive measurement error model is specified to

link the underlying transformed CD4 counts with its surrogate measurements:

Wir = Xi + εir,

where r = 1, 2 for i = 1, · · · , 2095, and r = 1 for i = 2096, · · · , 2139. Here, no specific

distributional assumption is made for the errors εir except that the εir are assumed to

be independent and identically distributed with mean zero and variance Σ0. With the

replicates, we estimate the error variance as Σ̂0 = 0.035, and the variance of Xi as Σ̂xx =

0.079. These estimates give the reliability ratio Σ̂xx/(Σ̂xx + Σ̂0) = 69.3%, indicating a

considerable degree of measurement error in this study.

We employ the additive hazards model to feature the dependence of Ti on the covariates
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Xi and Vi:

λ(t;Zi) = λ0(t) +Xiβx + Viβv,

where λ0(t) is the unspecified baseline hazard function, and β = (βx, βv)
T is the regression

parameter.

We apply the methods considered in Section 5.6 to analyze the data: the data subsets

with replicates and the entire data set. The analysis results are shown in Table 5.5. The

naive estimate of βx is smaller than those obtained from the other methods, while the

naive estimate of βv is similar to those produced by the other methods. All the consistent

methods and the regression calibration method produce similar results. Although estimates

of βx and βv differ from method to method, all the results suggest that both CD4 counts

and treatment are statistically significant.

We also apply the proposed test statistic Sc to the ACTG 175 Study dataset. The

p-value of the model test is 0.859, suggesting no evidence against the additive hazards

model or the additive error model.

[Insert Table 5.5 here!]

5.9 Extension and Discussion

In this chapter, we make a number of contributions on additive hazards models with mea-

surement error. Our bias analysis and regression calibration method fill up gaps in the

literature. We propose several consistent and easily implemented estimators to correct for

measurement error effects, and our methods are robust to possible misspecification for the

distribution of the true covariates. Our methods embrace limited existing work, such as

Sun, Zhang and Sun (2006) as a special case. Furthermore, our comprehensive develop-

ment includes investigation of the impact of model misspecification of the survival process

and construction of a test statistic for model checking. We rigorously establish asymptotic
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properties for the proposed estimators. Extensive numerical studies demonstrate satisfac-

tory performance of our methods.

Our methods here are explicitly developed for the additive error model (5.4). In fact,

our methods can be modified to accommodate more general error models. For instance,

consider a regression measurement error model

Wir = γ0 + γxXi + γvVi + εir, r = 1, · · · , ni, (5.16)

where the error terms εir are i.i.d. with mean 0 and a positive-definite variance matrix

Σ0, and are independent of Ni(·), Yi(·), and Zi(·), i = 1, · · · , n; r = 1, · · · , ni. Here, γx is a

p × p matrix, and γv is a p × q matrix. Model (5.16) accommodates a wide class of error

models, including the classical additive model (5.4) if we set γ0 = 0, and γx = 1 with a

zero vector γv. In the following, we consider a special case that p = q = 1.

Let X̂g,i = (W̄i· − γvVi − γ0)/γx, then replacing Xi with X̂g,i in (5.2), we obtain a

corrected pseudo-score function

Ugc(β) =
n∑
i=1

∫ τ

0

{
Ẑg,i(t)− Z̃g(t)

}{
dNi(t)− Yi(t)βT Ẑg,i(t)dt

}
+

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1β/(γ

2
xni)

}
dt,

where Ẑg,i(t) = (X̂T
g,i, V

T
i (t))T . Consequently, solving Ugc(β) = 0 gives an estimator of β:

β̂gc =

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑg,i(t)− Z̃g(t)

}⊗2

dt−
∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1/(γ

2
xni)

}
dt

]−1

×

(
n∑
i=1

∫ τ

0

{
Ẑg,i(t)− Z̃g(t)

}
dNi(t)

)
,

where Z̃g(t) =
∑n

i=1 Yi(t)Ẑg,i(t)/
∑n

i=1 Yi(t). Note that the derivation of β̂gc is similar to

that of β̂c in Section 5.4. Similarly, we can construct other consistent estimator similar to

β̂e. Furthermore, we can construct estimators of Λ0(t) similar to previous sections, which,

however, further requires that γ0 is known or estimated by a validation subsample.
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Finally, we note that our methods are developed for error-contaminated survival data

that are modulated by the additive hazards model (5.1). The additive hazards model (5.1)

is a useful complement to the popularly-used proportional hazards model. This model

allows for a simple procedure for conducting inference on the model parameter β whose

estimator can be explicitly expressed. However, to ensure a legitimate hazard function, the

linear term βTZi(t) in model (5.1) must be constrained to be nonnegative (Aalen, Borgan

and Gjessing 2008, Sec. 4.2). To avoid this nonnegativity constraint, one may consider

alternative forms of model (5.1). For example, one may replace the linear term βTZi(t)

by an exponential form exp{βTZi(t)}. Alternative additive hazards models are discussed

by Lin and Ying (1995, 1997). It would be interesting to modify our development here to

other additive hazards models.

SUPPLEMENTARY MATERIAL

Appendix A1 of the Supplementary Material includes regularity conditions and the proofs

of the theorems in the chapter. Appendix A2 of the Supplementary Material includes

several more estimators are proposed and their theoretical properties are studied.

In the following derivations, we introduce some notations. For an m × 1 vector a =

(a1, a2, · · · , am)T , let ||a|| = (
∑
a2
i )

1/2 denote the Euclidean norm for a. For a matrix A,

define ||A|| = maxi,j |aij|, where aij is the (i, j)th element of A. For vector processes An(t)

and A(t), An(t) is said to converge almost surely to A(t) uniformly in t if

sup
0≤t≤τ

||An(t)− A(t)|| a.s.→ 0, as n→∞.

We define that a random matrix An = oa.s.(1) in the sense that Pr{limn→∞ ||An|| = 0} = 1.

Appendix A1: Regularity Conditions

R1. {Ni(·), Yi(·), Zi(·)}, i = 1, · · · , n are independent and identically distributed.
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R2. Pr{Yi(τ) = 1} > 0 for i = 1, · · · , n.

R3. Ti and Ci are conditionally independent given Zi(t), i = 1, · · · , n.

R4. supt∈[0,τ ] ||E{Z⊗2
i (t)}|| <∞, i = 1, · · · , n.

R5. Bounded variation condition: for i = 1, · · · , n; j = 1, · · · , p+ q,

|Zij(0)|+
∫ τ

0

|dZij(u)| ≤ K

holds almost surely for all the sample path, where K is a constant.

R6. All the ni(i = 1, · · · , n) are bounded by a constantN0, and limn→∞ n
−1
∑n

i=1 I{ni =

j} exists, where j = 1, · · · , N0.

R7. ||E(ε⊗2
ir )|| <∞, i = 1, · · · , n; r = 1, · · · , ni.

R8.
∫ τ

0
E [Yi(t){Zi(t)− e(t)}⊗2] dt and Σc are positive definite, i = 1, · · · , n.

These regularity conditions are imposed for the technical development. The condition-

s R1, R2, R3, R4, R5 and R8 are conventionally used for developing asymptotic theory

in survival analysis, and they are analogous to those by, for example, Andersen and Gill

(1982), Spiekerman and Lin (1998), Lin, Wei, Yang and Ying (2000), and Hu and Lin

(2004). In particular, condition R1 assumes homogeneity among the subjects in the s-

tudy. Condition R2 says that each subject in the study has a positive probability to be

observed, and this condition ensures the denominator of e(t) = E{Yi(t)Zi(t)}/E{Yi(t)}
to be bounded away from zero. Condition R3 is a common assumption for censoringship.

Conditions R4 and R5 control the variability of the covariates in which condition R5 is

a key assumption for using empirical process theory (e.g., Strong Uniform Law of Large

Numbers by Pollard 1990). Condition R6 guarantees the existence of ρ0 and ρ1; imposing

the upper bound for the ni is often plausible as in practice, the ni are usually not large.

Condition R7 controls the variability of the error terms εir, and condition R8 is needed for

developing asymptotic normality of the proposed estimators.
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Appendix A2: Proof of the relationship (5.6) and its consequence

Note that

β̂nv =

[
n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

]−1 [
n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
.

Let

Dnv = n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

denote the denominator of β̂nv. By the Strong Uniform Law of Large Numbers (USLLN)

(Pollard 1990), it follows that Dnv → Dnv almost surely as n→∞, where

Dnv = E

[∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt

]
+

∫ τ

0

ρ0E{Yi(t)}Σ1dt , B1 +B2.

Indeed, we have

n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)
{
e(t)− Z̃(t)

}⊗2

dt

+n−1

n∑
i=1

∫ τ

0

2Yi(t)
{
Ẑi(t)− e(t)

}{
e(t)− Z̃(t)

}T
dt

= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt

+

∫ τ

0

−n−1

n∑
i=1

Yi(t)e
⊗2(t)− n−1

{∑n
j=1 Yj(t)Ẑj(t)

}⊗2∑n
j=1 Yj(t)

+ 2n−1

n∑
i=1

Yi(t)Ẑi(t)e
T (t)

 dt.

By Condition R5, each component of the vector n−1
∑n

i=1 Yi(t)Zi(t) is of bounded variation,

so n−1
∑n

i=1 Yi(t)Zi(t) is the difference of two nondecreasing functions. By Lemma A.1

and A.2 of Bilias, Gu and Ying (1997), n−1
∑n

i=1 Yi(t)Zi(t) is manageable (Pollard 1990,
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p.38), and n−1
∑n

i=1 Yi(t)Ẑi(t) is manageable. Furthermore, Conditions R4, R6 and R7

justify that the envelope (Pollard 1990 p.19) Fi of {Ẑi(t), t ∈ [0, τ ]} is finite and could

only take at maximum N0 possible values, and thus maxi=1E(||F⊗2
i ||) < ∞. It follows

that
∑∞

i=1 E(||F⊗2
i ||)/i2 ≤ maxiE(||F⊗2

i ||)
∑∞

i=1 1/i2 < ∞. The two conditions of the

Strong Uniform Law of Large Numbers (SULLN) (Pollard 1990, p.41) are thus verified.

Consequently, we obtain that

n−1
∑n

i=1 Yi(t)Ẑi(t)
a.s.→ E{Yi(t)Zi(t)} uniformly in t. Similarly, n−1

∑n
i=1 Yi(t)

a.s.→ E{Yi(t)}
uniformly in t. By SULLN together with Condition R2,

∑n
i=1 Yi(t)Ẑi(t)/

∑n
i=1 Yi(t)

a.s.→ e(t)

uniformly in t. Thus, we obtain that

∫ τ

0

−n−1

n∑
i=1

Yi(t)e
⊗2(t)− n−1

{∑n
j=1 Yj(t)Ẑj(t)

}⊗2∑n
j=1 Yj(t)

+ 2n−1

n∑
i=1

Yi(t)Ẑi(t)e
T (t)

 dt

=

∫ τ

0

−E{Yi(t)}e⊗2(t)−

[
E{Yj(t)Ẑj(t)}

]⊗2

E{Yj(t)}
+ 2E{Yi(t)Ẑi(t)}eT (t)

 dt+ oa.s.(1)

=

∫ τ

0

(
−E{Yi(t)}e⊗2(t)− [E{Yj(t)Zj(t)}]⊗2

E{Yj(t)}
+ 2E{Yi(t)Zi(t)}eT (t)

)
dt+ oa.s.(1)

=

∫ τ

0

[
−E{Yi(t)}e⊗2(t)− E{Yi(t)}e⊗2(t) + 2E{Yi(t)}e⊗2(t)

]
dt+ oa.s.(1)

= oa.s.(1),

where the second last identity follows from the definition of e(t). Let ε̄i· = (n−1
i

∑ni
k=1 ε

T
ik, 0

T )T ,

and ρ0 = limn→∞ n
−1
∑n

i=1 n
−1
i , where the existence of the limit is ensured by the Regu-

larity Conditions. By SULLN and observing that E{Ẑ⊗2
i (t)} = E{Z⊗2

i (t)} + Σ1/ni, we
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obtain that

Dnv = n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+n−1

n∑
i=1

∫ τ

0

2Yi(t) {Zi(t)− e(t)} ε̄Ti·dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+

∫ τ

0

2E[Yi(t) {Zi(t)− e(t)} ε̄Ti· ]dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+

∫ τ

0

2E[Yi(t) {Zi(t)− e(t)}E(ε̄Ti· )]dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

lim
n→∞

[
n−1

n∑
i=1

E{Yi(t)ε̄⊗2
i· }

]
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

E{Yi(t)} lim
n→∞

{
n−1

n∑
i=1

E(ε̄⊗2
i· )

}
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

E{Yi(t)} lim
n→∞

{
n−1

n∑
i=1

Σ1/ni

}
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

ρ0E{Yi(t)}Σ1dt+ oa.s.(1),

where the last two steps follow from the definition of Σ1 and ρ0. Thus, by the definition

of Dnv, we obtain that

Dnv = Dnv + oa.s.(1),

i.e., Dnv → Dnv almost surely as n→∞.
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Similarly, by SULLN we have n−1
∑n

i=1 Ni(t)
a.s.→ E{Ni(t)} uniformly in t. By Lemma 1

of Lin, Wei, Yang and Ying (2000), n−1
∑n

i=1

∫ τ
0
Z̃(t)dNi(t)

a.s.→
∫ τ

0
e(t)E{dNi(t)}. Similarly,

n−1
∑n

i=1

∫ τ
0
Ẑi(t)dNi(t)

a.s.→
∫ τ

0
E{Zi(t)dNi(t)}. Thus, we obtain that

n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t) = n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− e(t)

}
dNi(t) + oa.s.(1)

= E

[∫ τ

0

{
Ẑi(t)− e(t)

}
dNi(t)

]
+ oa.s.(1)

= E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
+ oa.s.(1).

As a result, we obtain that β∗nv, the asymptotic limit of β̂nv, is given by

β∗nv = D−1
nvE

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
= (B1 +B2)−1E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
.

(5.17)

On the other hand, Lin and Ying (1994) showed that, in the absense of measurement error,

the estimator

β̂ =

[
n∑
i=1

∫ τ

0

Yi(t){Zi(t)− Z̄(t)}⊗2dt

]−1 [ n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)

]
converges in probability to β. By analogy to the preceding arguments, we can show that

β = B−1
1 E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
. (5.18)

Comparison between (5.17) and (5.18) leads to the expression of β∗nv and β, we obtain that

β∗nv = (B1 +B2)−1B1β. The proof is then completed.

It is straightforward that if ‖β‖ = 0, then ‖β∗nv‖ = 0. When Zi(t) is univariate, then

|(B1 + B2)−1B1| < 1, and it follows that |β∗nv| < |β|. If Xi and Vi(t) are univariates and

are independent, and either Vi(t) or Xi are independent of the followup process, then B1

is a 2× 2 diagonal matrix, i.e.,

B1 =

( ∫ τ
0
E [Yi(t){Xi − e1(t)}2] dt 0

0
∫ τ

0
E [Yi(t){Vi(t)− e2(t)}2] dt

)
,
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where e1(t) and e2(t) are the two components of the vector e(t). Note that

B2 =

(
ρ0Σ0

∫ τ
0
E{Yi(t)}dt 0

0 0

)
,

It follows that

(B1 +B2)−1B1 =

 ∫ τ
0 E[Yi(t){Xi−e1(t)}2]dt∫ τ

0 E[Yi(t){Xi−e1(t)}2]dt+ρ0Σ0

∫ τ
0 E{Yi(t)}dt

0

0 1

 .

Therefore, the relationship (7) implies that |β∗nv,x| < |βx| and β∗nv,v = βv.
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Appendix A3: Derivation of E{Unv(β)|Fτ}

E{Unv(β)|Fτ}

=
n∑
i=1

∫ τ

0

[E{Ẑi(t)|Fτ} − E{Z̃(t)|Fτ}]dNi(t)

−
n∑
i=1

∫ τ

0

E{Ẑ⊗2
i (t)|Fτ}Yi(t)βdt+

n∑
i=1

∫ τ

0

E{Z̃(t)ẐT
i (t)|Fτ}Yi(t)βdt

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)−
n∑
i=1

∫ τ

0

{Z⊗2
i (t) + Σ1/ni}Yi(t)βdt

+
n∑
i=1

∫ τ

0

{
Yi(t)E{Ẑ⊗2

i (t)|Fτ}+
∑

j 6=i Yj(t)E{Ẑj(t)ẐT
i (t)|Fτ}∑n

j=1 Yj(t)

}
Yi(t)βdt

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)−
n∑
i=1

∫ τ

0

{Z⊗2
i (t) + Σ1/ni}Yi(t)βdt

+
n∑
i=1

∫ τ

0

{
Yi(t){Z⊗2

i (t) + Σ1/ni}+
∑

j 6=i Yj(t)Zj(t)Z
T
i (t)∑n

j=1 Yj(t)

}
Yi(t)βdt

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)−
n∑
i=1

∫ τ

0

{Z⊗2
i (t) + Σ1/ni}Yi(t)βdt

+
n∑
i=1

∫ τ

0

{
Yi(t)Σ1/ni +

∑n
j=1 Yj(t)Zj(t)Z

T
i (t)∑n

j=1 Yj(t)

}
Yi(t)βdt

=
n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}dNi(t)−
n∑
i=1

∫ τ

0

Z⊗2
i (t)Yi(t)βdt−

n∑
i=1

∫ τ

0

Yi(t)Σ1β/nidt

+
n∑
i=1

∫ τ

0

{
Yi(t)Σ1/ni∑n

j=1 Yj(t)

}
Yi(t)βdt+

n∑
i=1

∫ τ

0

Z̄(t)ZT
i (t)Yi(t)βdt

= U(β)−
∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{Yi(t)Σ1β/ni} dt.
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Appendix A4: Proof of Theorem 1

Recall that

β̂c =

[
n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt− n−1

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt

]−1

×

[
n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
.

Let

Dc = n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt−n−1

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt

denote the denominator of β̂c. Let

Dc = E

[∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt

]
.

We first prove the following lemmas:

Lemma A.1 Under Regularity Conditions R1-R8, Dc converges to Dc almost surely as

n→∞.

Proof: The proof consists of two parts. In the first part, we examine the asymptotic

behavior of the first term of Dc while in the second part we look at the second term of Dc.
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Part 1:

n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)
{
e(t)− Z̃(t)

}⊗2

dt

+n−1

n∑
i=1

∫ τ

0

2Yi(t)
{
Ẑi(t)− e(t)

}{
e(t)− Z̃(t)

}T
dt

= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt

+

∫ τ

0

−n−1

n∑
i=1

Yi(t)e
⊗2(t)− n−1

{∑n
j=1 Yj(t)Ẑj(t)

}⊗2∑n
j=1 Yj(t)

+ 2n−1

n∑
i=1

Yi(t)Ẑi(t)e
T (t)

 dt.

Now we examine the second term of the expression above by applying the Strong

Uniform Law of Large Numbers individually to each term and obtain

∫ τ

0

−n−1

n∑
i=1

Yi(t)e
⊗2(t)− n−1

{∑n
j=1 Yj(t)Ẑj(t)

}⊗2∑n
j=1 Yj(t)

+ 2n−1

n∑
i=1

Yi(t)Ẑi(t)e
T (t)

 dt

=

∫ τ

0

−E{Yi(t)}e⊗2(t)−

[
E{Yj(t)Ẑj(t)}

]⊗2

E{Yj(t)}
+ 2E{Yi(t)Ẑi(t)}eT (t)

 dt+ oa.s.(1)

=

∫ τ

0

(
−E{Yi(t)}e⊗2(t)− [E{Yj(t)Zj(t)}]⊗2

E{Yj(t)}
+ 2E{Yi(t)Zi(t)}eT (t)

)
dt+ oa.s.(1)

=

∫ τ

0

[
−E{Yi(t)}e⊗2(t)− E{Yi(t)}e⊗2(t) + 2E{Yi(t)}e⊗2(t)

]
dt+ oa.s.(1)

= oa.s.(1),

where the second last identity comes from the definition of e(t).
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Then it follows by the Strong Uniform Law of Large Numbers that

n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+n−1

n∑
i=1

∫ τ

0

2Yi(t) {Zi(t)− e(t)} ε̄Ti·dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+

∫ τ

0

2E[Yi(t) {Zi(t)− e(t)} ε̄Ti· ]dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt

+

∫ τ

0

2E[Yi(t) {Zi(t)− e(t)}E(ε̄Ti· )]dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+ n−1

n∑
i=1

∫ τ

0

Yi(t)ε̄
⊗2
i· dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

lim
n→∞

[
n−1

n∑
i=1

E{Yi(t)ε̄⊗2
i· }

]
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

E{Yi(t)} lim
n→∞

{
n−1

n∑
i=1

E(ε̄⊗2
i· )

}
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

E{Yi(t)} lim
n→∞

{
n−1

n∑
i=1

Σ1/ni

}
dt+ oa.s.(1)

= n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

ρ0E{Yi(t)}Σ1dt+ oa.s.(1),

where the last two steps follow from the definition of Σ1 and ρ0.
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Part 2: Now we examine the second term of Dc:

n−1

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt

= n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt− n−1Σ̂1

∫ τ

0

n−1
∑n

i=1 Yi(t)/ni
n−1

∑n
i=1 Yi(t)

dt

= n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt− n−1Σ̂1

∫ τ

0

limn→∞ [n−1
∑n

i=1E{Yi(t)}/ni]
E{Yi(t)}

dt+ oa.s.(1)

= n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt− n−1Σ̂1ρ0τ + oa.s.(1)

= n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt− n−1Σ1ρ0τ + oa.s.(1)

= n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt+ oa.s.(1)

=

∫ τ

0

ρ0E{Yi(t)}Σ1dt+ oa.s.(1).

As a result, combining parts 1 and 2 gives

Dc = n−1

n∑
i=1

∫ τ

0

Yi(t) {Zi(t)− e(t)}⊗2 dt+

∫ τ

0

ρ0E{Yi(t)}Σ1dt−
∫ τ

0

ρ0E{Yi(t)}Σ1dt+ oa.s.(1)

= Dc + oa.s.(1).

The proof of Lemma A.1 is now completed.

From the the proof of Lemma A.1, we obtain that the inverse matrix in β̂c, i.e., Dc,

converges almost surely to a positive definite matrix under mild regularity conditions.

Thus, the estimator β̂c does not have the singularity and unstability issues.

Lemma A.2 Under Regularity Conditions R1-R8, β̂c converges to β almost surely as

n→∞.
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Proof: Recall that we have proved in Appendix A2 that

n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t) = E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
+ oa.s.(1).

Combined with Lemma A.1, we obtain that

β̂c = D−1
c n−1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

= D−1
c E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
+ oa.s.(1)

= D−1
c E

[∫ τ

0

{Zi(t)− e(t)} dNi(t)

]
+ oa.s.(1)

= β + oa.s.(1).

The proof of Lemma A.2 is now completed.

We now return to the proof of Theorem 1. Note that Uc(β) = U1 − U2, where

U1 =
n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dM̃i(t; β,Λ0),

and U2 =

∫ τ

0

{
1− 1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt.

We now separately study the asymptotic expansion of n−1/2U1 and n−1/2U2.

By analogy to the proof of Theorem 1 of Kulich and Lin (2000), we have

n−1/2U1 = n−1/2

n∑
i=1

∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0) + op(1).
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Note that

n−1/2U2

= n−1/2

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt− n−1/2

∫ τ

0

1∑n
j=1 Yj(t)

n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt

= n−1/2

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt+ op(1)

= n1/2(Σ̂1 − Σ1)ρ0E(Si)β + n−1/2

∫ τ

0

n∑
i=1

{Yi(t)Σ1β/ni} dt+ op(1)

= n1/2

∑n
i=1

∑ni
r=1(Wir − W̄i·)

⊗2∑n
i=1(ni − 1)

ρ0E(Si)β − n1/2Σ1ρ0E(Si)β + n−1/2

n∑
i=1

SiΣ1β/ni + op(1)

= n−1/2ρ0ρ
−1
1

n∑
i=1

ni∑
r=1

(Wir − W̄i·)
⊗2E(Si)β − n1/2Σ1ρ0E(Si)β + n−1/2

n∑
i=1

SiΣ1β/ni + op(1),

where the third identity comes from that

n1/2

[∫ τ
0

∑n
i=1 {Yi(t)/ni} dt

n
− ρ0E(Si)

]
(Σ̂1 − Σ1)β = op(1).

Therefore,

n−1/2Uc(β) = n−1/2

n∑
i=1

Uc,i + op(1),

where

Uc,i =

∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0)+ρ0ρ

−1
1

ni∑
r=1

(Wir−W̄i·)
⊗2E(Si)β−ρ0E(Si)Σ1β+

SiΣ1β

ni
.

By the Taylor series expansion, 0 = n−1/2Uc(β̂c) = n−1/2Uc(β)+
[
n−1 ∂Uc(β)

∂β

]
n1/2(β̂c−β),

we obtain that

n1/2(β̂c − β) = −
[
n−1∂Uc(β)

∂β

]−1

n−1/2Uc(β).
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By the derivation in Appendix A2,

−n−1∂Uc(β)

∂β
= n−1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt− n−1

∫ τ

0

n∑
i=1

{
Yi(t)Σ̂1/ni

}
dt

a.s.→ lim
n→∞

n−1E

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt

]
− ρ0E(Si)Σ1

= Dc.

By Condition R6, E(||n−1/2Uc,i||2)I(||n−1/2Uc,i|| > ε) can only take at most N0 possible

values for a given ε > 0. Without loss of generality, suppose when i = 1, it achieves

the maximum value. It follows from the Markov inequality that Pr{||n−1/2Uc,1|| > ε} ≤
n−1E(||Uc,1||2)/ε2 → 0 as n→∞, and thus

n∑
i=1

E(||n−1/2Uc,i||2)I{||n−1/2Uc,i|| > ε} ≤ E(||Uc,1||2)I{||n−1/2Uc,1|| > ε} → 0 as n→∞,

suggesting that the Lindeberg condition (van der Vaart 1998, p.20) is satisfied.

By the multivariate Lindeberg-Feller Central Limit Theorem (van der Vaart 1998, p.20),

we obtain that n−1/2Uc(β) is asymptotically normal with mean 0 and covariance matrix

Σc = limn→∞ n
−1
∑n

i=1E(Uc,i)
⊗2. It follows that that n1/2(β̂c−β) is asymptotically normal

with mean zero and covariance matrix D−1
c ΣcD−Tc .

Appendix A5: Proof of Theorem 2

It can be calculated that

n1/2{Λ̂0(t; β̂c)−Λ0(t)} = n1/2

∫ t

0

∑n
i=1 dM̃i(u; ; β,Λ0)∑n

j=1 Yj(u)
−

{∫ t

0

∑n
i=1 Yi(u)ẐT

i (u)∑n
j=1 Yj(u)

du

}
n1/2(β̂c−β).

By the arguments similar to those in Appendix A2, we obtain that

n1/2
∫ t

0
{
∑n

j=1 Yj(u)}−1
∑n

i=1 dM̃i(u; β,Λ0) converges weakly to a Gaussian process, and thus

is tight.
∫ t

0
{
∑n

j=1 Yj(u)}−1∑n
i=1 Yi(u)ẐT

i (u)du converges almost surely to
∫ t

0
eT (u)du, and
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thus
∫ t

0

∑n
i=1 Yi(u)ẐT

i (u)/
∑n

j=1 Yj(u)du is tight. Since tightness in l∞[0, τ ] equipped with

the uniform metric has the additivity property, and n1/2(β̂c− β) is asymptotic normal, we

obtain that n1/2{Λ̂0(t; β̂c)− Λ0(t)} is tight.

It follows from Appendix A4 that

n1/2(β̂c − β) = n−1/2D−1
c

n∑
i=1

[∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0)

+ρ0ρ
−1
1

ni∑
r=1

(Wir − W̄i·)
⊗2E(Si)β − ρ0E(Si)Σ1β +

SiΣ1β

ni

]
+ op(1).

Thus, n1/2
{

Λ̂0(t; β̂c)− Λ0(t)
}

is asymptotically equivalent to n−1/2
∑n

i=1 Ψi(t) uniformly

in t. Similar to the proof of the asymptotic normality of β̂c, it is shown that n−1/2
∑n

i=1 Ψi(t)

satisfies the Lindeberg condition, and thus the multivariate Lindeberg-Feller Central Limit

Theorem applies to n1/2
{

Λ̂0(t; β̂c)− Λ0(t)
}

. Together with the fact that n1/2{Λ̂0(t; β̂c)−
Λ0(t)} is tight, the weak convergence result is proved.

Appendix A6: Asymptotic properties of β̂c and Λ̂0(t; β̂c) when Σ1

is simply known

Now, we investigate the asymptotic property of β̂c when Σ1 is simply known. In this case,

note that

n−1/2U2 = n−1/2

∫ τ

0

n∑
i=1

{Yi(t)Σ1β/ni} dt

= n−1/2

n∑
i=1

SiΣ1β/ni.

It then follows from the proof of Theorem 1 that the asymptotic distribution of β̂c is

almost identical as the one in Theorem 1, with the only difference that Σ2β − ρ0E(Si)Σ1β

is removed from Σc.
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Now, we investigate the asymptotic property of Λ̂0(t; β̂c) when Σ1 is simply known. In

this case, note that

n1/2(β̂c − β) = n−1/2D−1
c

n∑
i=1

[∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0) +

SiΣ1β

ni

]
+ op(1).

It then follows from the proof of Theorem 2 that the n1/2{Λ̂0(t; β̂c) − Λ0(t)} is tight, and

the limiting process is almost identical as the one in Theorem 2, with the only difference

that Σ2β − ρ0E(Si)Σ1β is removed from Ψi(t).

Appendix A7: Proof of Theorem 3

Let W̃n(t) = n−1/2
∑n

i=1 ξiΨi(t). By the proof of the weak convergence of n1/2{Λ̂0(t; β̂c)−
Λ0(t)}, n−1/2

∑n
i=1 Ψi(t) converges weakly to G(t) unconditionally. Since weak convergence

of n−1/2
∑n

i=1 Ψi(t) implies that the Donsker condition (van der Vaart and Wellner 1996,

Theorem 2.9.6) holds, it then follows from the conditional multiplier Central Limit The-

orem (van der Vaart and Wellner 1996, Sec. 2.9) that W̃n(t) converges weakly to G(t)

in probability conditional on the data. Thus, by Lemma 1 of Pipper and Ritz (2007), it

suffices to show that supt∈[0,τ ] |Ŵn(t)− W̃n(t)| p→ 0.

Let M̂i(t) be the empirical version of M̃i(t), i = 1, · · · , n. Note that

sup
t∈[0,τ ]

|Ŵn(t)− W̃n(t)| ≤ sup
t∈[0,τ ]

|W (1)
n (t)|+ sup

t∈[0,τ ]

|W (2)
n (t)|+ sup

t∈[0,τ ]

|W (3)
n (t)|,
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where

W (1)
n (t) = n−1/2

n∑
i=1

ξi

{∫ t

0

dM̂i(u; β,Λ0)

n−1
∑n

i=1 Yi(u)
−
∫ t

0

dM̃i(u; β,Λ0)

E[Yi(u)]

}
,

W (2)
n (t) =

∫ t

0

Z̃T (u)du× D̂−1
c × n−1/2

n∑
i=1

ξi

[∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dM̂i(t; β,Λ0)

]
−
∫ t

0

eT (u)du×D−1
c × n−1/2

n∑
i=1

ξi

[∫ τ

0

{
Ẑi(t)− e(t)

}
dM̃i(t; β,Λ0)

]
,

and W (3)
n (t) =

∫ t

0

Z̃T (u)du× D̂−1
c × n−1/2

n∑
i=1

ξiSiΣ̂1β̂c
ni

−
∫ t

0

eT (u)du×D−1
c × n−1/2

n∑
i=1

ξiSiΣ1β0

ni
.

Employing the empirical process techniques used in Appendix A2, together with Lemma

A.3 and Theorem 2 of Spiekerman and Lin (1998), we show that

sup
t∈[0,τ ]

|W (j)
n (t)| p→ 0, j = 1, 2, 3,

and thus supt∈[0,τ ] |Ŵn(t)− W̃n(t)| p→ 0 holds.

Appendix A8: Proof of Corrolary 1

Note that the only difference between β̂c and β̂e is the term∫ τ

0

{
1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt

in their denominators. By the arguments in Appendix A2, we have

n−1/2

∫ τ

0

{
1∑n

j=1 Yj(t)

}
n∑
i=1

{
Yi(t)Σ̂1β/ni

}
dt = op(1).

Therefore, β̂e is asymptotically identical to β̂c, suggesting that the asymptotic normal distri-

bution of β̂e is identical to that of β̂c. Similarly, the limit process of n1/2
{

Λ̂0(t; β̂e)− Λ0(t)
}

is identical to that of n1/2
{

Λ̂0(t; β̂c)− Λ0(t)
}

.
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Appendix A9: Proof of Lemma 1

Using the proof of Theorem 1 and SULLN, we can show that

n−1/2Uc(β, t) = n−1/2

n∑
i=1

Ai(t) + op(1)

uniformly in t. Note that by the derivations in Appendix A4,

n1/2(β̂c − β) = D−1
c (τ)n−1/2

n∑
i=1

Ai(τ) + op(1).

Thus, applying the Taylor series expansion gives

n−1/2Uc(β̂c, t) = n−1/2Uc(β, t) +

[
n−1∂Uc(β, t)

∂β

]
n1/2(β̂c − β)

= n−1/2

n∑
i=1

Ai(t)−Dc(t)D−1
c (τ)n−1/2

n∑
i=1

Ai(τ) + op(1)

= n−1/2

n∑
i=1

{
Ai(t)−Dc(t)D−1

c (τ)Ai(τ)
}

+ op(1)

uniformly in t. The tightness of n−1/2
∑n

i=1 {Ai(t)−Dc(t)D−1
c (τ)Ai(τ)} can be shown

using the arguments similar to those in the proof of Theorem 2. The proof then follows.

Appendix A10: Proof of Theorem 4

The arguments are similar to those in Appendix A7 by adopting the conditional multiplier

Central Limit Theorem, and thus omitted.

Appendix B1: Bias Corrected Estimators

It is useful to note that the relationship (5.6) between the limit of the naive estimator and

the true value of the parameter provides a flexible way to construct a consistent estimator of
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β. Indeed, using the inverse version of (5.6), we obtain a class of bias-corrected estimators

for β as

β̂ = B̂−1
1 (B̂1 + B̂2)β̂nv, (5.19)

where B̂1 and B̂2 are any “reasonable” estimators of B1 and B2, respectively. By the slutsky

Theorem, as long as B̂1 and B̂2 are consistent estimators of B1 and B2, respectively, the

resulting estimator β̂ is consistent (e.g., Yi and Reid 2010). Depending on the choices of

consistent estimators of B1 and B2, various consistent estimators of β can be constructed.

We comment that the nonparametric correction estimator by Sun, Zhang and Sun (2006)

is a special case of β̂ in (5.19).

We conclude this subsection with the development of a new estimator by using the

result of (5.19) for the case with equal ni ≥ 2. Noting a key property that

E

[{
Ẑir(t)− Z̃r(t)

}{
Ẑis(t)− Z̃s(t)

}T ∣∣∣∣Fτ] = {Zi(t)− Z̄(t)}⊗2

for any 1 ≤ r 6= s ≤ ni, we estimate B1 and B2 consistently by

B̂1 = n−1

n∑
i=1

∫ τ

0

Yi(t)

ni(ni − 1)

∑
1≤r 6=s≤ni

{
Ẑir(t)− Z̃r(t)

}{
Ẑis(t)− Z̃s(t)

}T
dt

and B̂2 = n−1

n∑
i=1

∫ τ

0

Yi(t){Ẑi(t)− Z̃(t)}⊗2dt− B̂1,

respectively. Then using (5.19) gives us a consistent estimator of β:

β̂ =

[
n∑
i=1

∫ τ

0

Yi(t)

ni(ni − 1)

∑
1≤r 6=s≤ni

{
Ẑir(t)− Z̃r(t)

}{
Ẑis(t)− Z̃s(t)

}T
dt

]−1

×

[
n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
.

Simulation studies suggest that this new estimator performs similarly to the nonparametric

correction estimator by Sun, Zhang and Sun (2006). In fact, these two estimators are

asymptotically equivalent. Too see this, note that Note that

√
n
{
Z̃r(t)− e(t)

}{
Z̃s(t)− e(t)

}T
= op(1).
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Thus,

1√
n

n∑
i=1

∫ τ

0

Yi(t)

ni(ni − 1)

∑
1≤r 6=s≤ni

{
Ẑir(t)− Z̃r(t)

}{
Ẑis(t)− Z̃s(t)

}T
dt

=
1√
n

n∑
i=1

∫ τ

0

Yi(t)

ni(ni − 1)

∑
1≤r 6=s≤ni

Ẑir(t)Ẑis(t)
Tdt− 1√

n

n∑
i=1

∫ τ

0

Yi(t)Z̃(t)e(t)Tdt

− 1√
n

n∑
i=1

∫ τ

0

Yi(t)e(t)Z̃(t)Tdt+
1√
n

n∑
i=1

∫ τ

0

Yi(t)e
⊗2(t)dt+ op(1).

Thus, it follows that β̂ has the same asymptotic distribution as that of the nonparametric

correction estimator of Sun, Zhang and Sun (2006).

Appendix B2: Regression Calibration Estimator

As the survival information on Ti ≥ t is required in (5.5), evaluation of the conditional

expectation E{Xi|Ti ≥ t, W̄i·, Vi(t)} is generally difficult, unless certain simplistic assump-

tions are imposed. Under the rare event assumption (Prentice 1982), for example, we write

E{Xi|Ti ≥ t, W̄i·, Vi(t)} ≈ E{Xi|W̄i·, Vi(t)}. This approximation allows us to invoke the

best linear approximation method (Carroll, et al. 2006):

Ê{Xi|W̄i·, Vi(t)} = µx + (Σxx,Σxv)

[
Σxx + Σ0/ni Σxv

ΣT
xv Σvv

]−1(
W̄i· − µx
Vi(t)− µv

)
,

where µx = E(Xi), µv = E{Vi(t)}, Σxx = Var(Xi), Σvv = Var{Vi(t)}, and Σxv =

Cov{Xi, Vi(t)}.

Let X̂∗i (t) be the empirical version of Ê{Xi|W̄i·, Vi(t)}, with µx, µv, Σxx, Σxv, Σvv and

Σ0 replaced with their empirical estimates. Specifically, define

Arc,i =

[
A1,i A2,i

A3,i A4,i

]
=

[
Σxx Σxv

ΣT
xv Σvv

][
Σxx + Σ0/ni Σxv

ΣT
xv Σvv

]−1

,
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where A1,i, A2,i, A3,i and A4,i are p× p, p× q, q × p, q × q matrices, respectively. After

some matrix algebra, A1,i = (Σxx −ΣxvΣ
−1
vv ΣT

xv)(Σ0/ni + Σxx −ΣxvΣ
−1
vv ΣT

xv)
−1, A2,i = (I −

A1,i)ΣxvΣ
−1
vv , A3,i = O,A4,i = I.

We estimate Σxx, Σxv, Σvv, µx and µv(t) by Σ̂xx, Σ̂xv, Σ̂vv, W̄·· =
∑n

i=1

∑ni
j=1 Wij/

∑n
i=1 ni

and V̄·(t), respectively, where

Σ̂vv = (n− 1)−1

n∑
i=1

(Vi(t)− V̄·(t))(Vi(t)− V̄·(t))T ,

Σ̂xv =

∑n
i=1 ni

(
∑n

i=1 ni)
2 −

∑n
i=1 n

2
i

n∑
i=1

ni(W̄i· − W̄··)(Vi(t)− V̄·(t))T ,

and Σ̂xx =

∑n
i=1 ni

(
∑n

i=1 ni)
2 −

∑n
i=1 n

2
i

[
n∑
i=1

ni(W̄i· − W̄··)(W̄i· − W̄··)T − (n− 1)Σ̂0

]
.

Let Âr,i be Ar,i with Σxx, Σxv, Σvv and Σ0 replaced by their empirical estimates, r = 1, 2.

Let X̂∗i (t) denote Ê[Xi|W̄i·, Vi(t)] with (A1,i, A2,i) replaced by (Â1,i, Â2,i), i.e., X̂∗i (t) =

W̄·· + Â1,i(W̄i· − W̄··) + Â2,i(Vi(t)− V̄·(t)). Ârc,i is Arc,i with A1,i and A2,i replaced by Â1,i

and Â2,i, respectively.

Under the rare event assumption, the comparision of the induced hazard function (5.5)

to the true hazard function form (5.1) suggests that replacing Xi(t) with X̂∗i (t) in (5.3)

can yield an approximately consistent estimator of β. We let β̂rc denote this estimator and

call it a regression calibration estimator as in Prentice (1982) for the proportional hazards

models. Specifically,

β̂rc =

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑ∗rc,i(t)− Z̃∗rc(t)

}⊗2

dt

]−1 [ n∑
i=1

∫ τ

0

{
Ẑ∗rc,i(t)− Z̃∗rc(t)

}
dNi(t)

]
,

where Ẑ∗rc,i(t) =
(
X̂∗Ti (t), V T

i (t)
)T

and Z̃∗rc(t) =
∑n

i=1 Yi(t)Ẑ
∗
rc,i(t)/

∑n
i=1 Yi(t).

The regression calibration estimator β̂rc is easy to calculate, and it is expected to out-

perform the naive estimator β̂nv, especially when the rare event assumption is feasible.
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This estimator however can not completely remove the bias induced from covariate mea-

surement error. It is thus interesting and important to study the asymptotic behaviour of

β̂rc.

Now we investigate the properties of the regression calibration estimator β̂rc. Our

exploration is conducted using the naive estimator β̂nv as a reference. First we consider

the circumstance where every subject has an equal number ni of replicated measurements

Wir, i.e., all ni are equal. In this case, there is a simple relationship between β̂rc and β̂nv:

β̂rc = [Â−1
rc,i]

T β̂nv, (5.20)

where Ârc,i is the empirical version of Arc,i, and

Arc,i =

[
Σxx Σxv

ΣT
xv Σvv

][
Σxx + Σ0/ni Σxv

ΣT
xv Σvv

]−1

.

Furthermore, it can be shown that

β̂rc
a.s.−→ β∗rc, as n→∞, (5.21)

where β∗rc = [A−1
rc,i]

Tβ∗nv = [A−1
rc,i]

T (B1 + B2)−1B1β. Comparing (5.21) to (5.6) implies that

the regression calibration estimator β̂rc is not exactly but only an approximately consistent

estimator of β, as its analogue for the proportional hazards model (Prentice 1982, Wang

et al. 1997).

Under the more general situation where replicate numbers ni are not necessarily equal,

the preceding discussion can carry through with more notation involved. Here we end this

subsection with the description of the asymptotic normality property of β̂rc.

Theorem B1 Under Regularity Conditions R1-R8 listed in the Appendix A1, we have

n1/2(β̂rc − β∗rc)
d−→ N(0,Σ∗rc), as n→∞,

where Σ∗rc is specified in the following.
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Proof : First we confine ourselves to the case that all ni are equal. Extension to the

general case is deferred until the end. Note that

Arc,1 = I(p+q)×(p+q) +

[
−Σ0/n1 0p×q

0q×p 0q×q

][
Σxx + Σ0/n1 Σxv

ΣT
xv Σvv

]−1

,

and thus the lower left q× p block and the lower right q × q block of Arc,1 is 0q×p and Iq×p,

respectively. It follows that Ẑ∗rc,i(t) = Ârc,1Ẑi(t) + (I(p+q)×(p+q) − Ârc,1)µ̂z. Thus,

β̂rc =

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑ∗rc,i(t)− Z̃∗rc(t)

}⊗2

dt

]−1 [ n∑
i=1

∫ τ

0

{
Ẑ∗rc,i(t)− Z̃∗rc(t)

}
dNi(t)

]

=

[
n∑
i=1

∫ τ

0

Yi(t)Ârc,i

{
Ẑi(t)− Z̃(t)

}⊗2

ÂTrc,idt

]−1 [ n∑
i=1

∫ τ

0

Ârc,i

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]

=

[
Ârc,1

n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dtÂTrc,1

]−1 [
Ârc,1

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]

= Â−1T
rc,1

[
n∑
i=1

∫ τ

0

Yi(t)
{
Ẑi(t)− Z̃(t)

}⊗2

dt

]−1

Â−1
rc,1Ârc,1

[
n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t)

]
= [Â−1

rc,1]T β̂nv.

It follows that β̂rc
a.s.−→ β∗rc = [A−1

rc,1]Tβ∗nv = [A−1
rc,1]T (B1 +B2)−1B1β, as n→∞. Together

with the fact that
√
n([Â−1

rc,1]T − [A−1
rc,1]T )(β̂nv − β∗nv) = op(1),

we obtain

√
n(β̂rc − β∗rc) =

√
n([Â−1

rc,1]T β̂nv − [A−1
rc,1]Tβ∗nv)

=
√
n([A−1

rc,1]T β̂nv − [Â−1
rc,1]Tβ∗nv) + op(1)

=
√
n[A−1

rc,1]T (β̂nv − β∗nv)−
√
n([Â−1

rc,1]T − [A−1
rc,1]T )β∗nv + op(1).(5.22)

The asymptotic expansion of
√
n[A−1

rc,1]T (β̂nv − β∗nv) was obtained in the previous sections.

Thus, to derive the asymptotic expansion of
√
n(β̂rc−β∗rc), by (5.22) we only need to derive

that of
√
n([Â−1

rc,1]T−[A−1
rc,1]T )β∗nv. This can be done, in principle, by Taylor series expansion
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for example, but it is very complicated for the multivariate case. In the following, we first

study the asymptotic expansion for the univariate case, and then the multivariate case.

Observe that by Taylor series expansion, we obtain

√
n([Â−1

rc,1]T − [A−1
rc,1]T ) =

√
n

(
Σ̂xx + Σ̂0/ni

Σ̂xx

− Σxx + Σ0/ni
Σxx

)

=

√
n
(

Σ̂xx + Σ̂0/ni

)
Σxx

− Σxx + Σ0/ni
Σ2
xx

√
n(Σ̂xx − Σxx)

−
√
n (Σxx + Σ0/ni)

Σxx

+ op(1)

=

√
nΣ̂0/ni
Σxx

− Σ0/ni
Σ2
xx

√
nΣ̂xx + op(1).

Note that

√
nΣ̂xx =

√
n

{∑n
i=1(W̄i· − W̄··)2

n− 1

}
−
√
nΣ̂0/ni

=
√
n

{∑n
i=1(W̄i· − µx)2

n

}
−
√
n

{∑n
i=1

∑ni
r=1(Wir − W̄i·)

⊗2

ni
∑n

i=1(ni − 1)

}
+ op(1).

Plugging this result into (5.22), together with the asymptotic expansion of β̂nv that we

derived, and the fact that Σ̂0/ni is a sum of independent terms, we obtain that
√
n(β̂rc−β∗rc)

is a sum of independent terms asymptotically, and thus β̂rc is asymptotic normal with mean

β∗rc and variance Σ∗rc, which is the expectation of the square of the independent term and

is of a complicated form.

For the multivariate case, β̂rc is still asymptotic normal with mean β∗rc and variance of

a complicated form. We suggest only use the first term of (5.22) to obtain the approximate

variance of β̂rc: Σ∗rc ≈ [A−1
rc,1]TD−1

nv ΣnvD−Tnv [A−1
rc,1], which can be consistently estimated by

their empirical counterpart.

For the general case that the ni are not necessarily equal, it can be shown that β̂rc

is still asymptotic normal, with a very complicated mean and variance. In this case, we

suggest use the bootstrap method for variance estimate.
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Figure 5.1: Asymptotic relative bias of naive estimator β̂nv with different replicates num-

bers ni
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Table 5.1: Comparison of the performance of various estimators

Scenario σ Method Estimating βx Estimating βv

Biasa EVE b MVEc MSEd MCP(%)e Bias EVE MVE MSE MCP(%)

Scenario 1 0.25 β̂nv -0.088 0.018 0.017 0.026 85.6 -0.002 0.018 0.017 0.018 93.9

β̂szs 0.023 0.026 0.024 0.027 93.1 -0.002 0.020 0.018 0.020 94.1

β̂rc -0.001 0.022 0.020 0.022 92.8 -0.002 0.018 0.017 0.018 93.9

β̂c 0.019 0.025 0.023 0.026 93.5 -0.002 0.020 0.018 0.020 94.0

β̂e 0.022 0.026 0.024 0.026 93.7 -0.002 0.020 0.018 0.020 94.0

0.75 β̂nv -0.498 0.009 0.008 0.257 0.2 -0.002 0.018 0.017 0.018 94.7

β̂szs 0.159 0.222 0.271 0.247 95.0 -0.003 0.040 0.039 0.040 95.9

β̂rc -0.047 0.050 0.031 0.052 83.0 -0.003 0.021 0.017 0.021 92.8

β̂c 0.098 0.145 0.162 0.155 95.4 -0.003 0.035 0.034 0.035 95.1

β̂e 0.134 0.172 0.177 0.190 96.0 -0.003 0.037 0.036 0.037 95.1

Scenario 2 0.25 β̂nv -0.056 0.014 0.013 0.017 89.7 -0.037 0.029 0.027 0.030 92.7

β̂szs 0.013 0.019 0.017 0.019 93.1 0.016 0.032 0.030 0.032 93.7

β̂rc 0.019 0.019 0.017 0.020 92.6 0.028 0.032 0.030 0.033 93.6

β̂c 0.010 0.019 0.017 0.019 93.1 0.014 0.032 0.030 0.032 93.7

β̂e 0.012 0.019 0.017 0.019 92.9 0.015 0.032 0.030 0.032 93.8

0.75 β̂nv -0.278 0.008 0.007 0.085 10.3 -0.207 0.027 0.025 0.070 68.2

β̂szs 0.132 0.213 0.238 0.230 94.8 0.109 0.158 0.182 0.170 95.5

β̂rc 0.103 0.098 0.060 0.108 89.3 0.125 0.120 0.063 0.135 88.6

β̂c 0.077 0.114 0.132 0.120 94.5 0.066 0.099 0.108 0.104 94.4

β̂e 0.102 0.146 0.142 0.157 95.3 0.087 0.119 0.131 0.127 94.6

Scenario 3 0.25 β̂nv -0.003 0.027 0.024 0.027 93.3 0.002 0.042 0.040 0.042 93.8

β̂szs 0.024 0.031 0.027 0.031 93.3 -0.010 0.042 0.040 0.042 93.4

β̂rc 0.014 0.029 0.026 0.029 93.6 -0.009 0.042 0.040 0.042 93.3

β̂c 0.024 0.031 0.027 0.031 93.3 -0.010 0.042 0.040 0.042 93.4

β̂e 0.024 0.031 0.027 0.031 93.3 -0.010 0.042 0.040 0.042 93.4

0.75 β̂nv -0.144 0.015 0.015 0.036 74.4 0.062 0.041 0.040 0.045 92.9

β̂szs 0.037 0.045 0.042 0.046 94.2 -0.015 0.047 0.046 0.047 94.4

β̂rc -0.031 0.026 0.025 0.027 92.4 -0.005 0.044 0.042 0.044 93.8

β̂c 0.031 0.042 0.040 0.043 94.0 -0.013 0.046 0.045 0.046 94.4

β̂e 0.037 0.043 0.041 0.044 94.2 -0.015 0.046 0.046 0.046 94.4

a Bias: finite sample biases; b EVE: empirical variances; c MVE: average of the model-based variance estimates; d MSE: mean square errors;
e MCP: model-based coverage probability.
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Table 5.2: Performance of estimators when ni = 1 for some subjects
Estimating βx Estimating βv

Setting σ Method Bias EVE MVE MSE MCP(%) Bias EVE MVE MSE MCP(%)

I 0.25 β̂nv -0.006 0.025 0.023 0.025 92.4 0.011 0.041 0.040 0.041 94.2

β̂szs 0.027 0.039 0.036 0.040 93.1 0.004 0.058 0.054 0.058 94.8

β̂rc 0.015 0.027 0.025 0.028 93.7 -0.001 0.041 0.040 0.041 94.1

β̂c 0.027 0.030 0.027 0.030 93.7 -0.003 0.041 0.041 0.041 93.9

β̂e 0.027 0.030 0.028 0.031 93.7 -0.003 0.042 0.041 0.041 93.8

0.75 β̂nv -0.168 0.014 0.013 0.042 64.5 0.082 0.040 0.040 0.047 93.1

β̂szs 0.047 0.061 0.059 0.063 94.3 -0.003 0.065 0.063 0.065 94.3

β̂rc -0.035 0.027 0.026 0.028 93.5 0.004 0.044 0.043 0.044 94.4

β̂c 0.038 0.047 0.047 0.049 95.2 -0.006 0.048 0.048 0.048 94.3

β̂e 0.045 0.050 0.049 0.052 95.2 -0.009 0.049 0.048 0.049 94.4

II 0.25 β̂nv -0.013 0.028 0.023 0.028 90.3 0.029 0.039 0.040 0.040 94.6

β̂szs 0.044 0.074 0.055 0.076 90.3 0.009 0.087 0.082 0.087 94.0

β̂rc 0.013 0.031 0.026 0.031 91.8 0.013 0.039 0.041 0.039 94.9

β̂c 0.027 0.034 0.028 0.035 92.1 0.012 0.040 0.041 0.040 95.0

β̂e 0.027 0.034 0.028 0.035 92.0 0.012 0.040 0.041 0.040 95.0

0.75 β̂nv -0.192 0.014 0.012 0.050 55.4 0.106 0.038 0.040 0.050 91.4

β̂szs 0.083 0.123 0.109 0.130 94.0 -0.008 0.109 0.104 0.109 94.8

β̂rc -0.040 0.031 0.027 0.032 90.6 0.015 0.043 0.044 0.044 94.8

β̂c 0.047 0.065 0.069 0.067 93.9 0.002 0.049 0.054 0.049 95.4

β̂e 0.056 0.069 0.077 0.072 94.1 -0.002 0.050 0.056 0.050 95.5

III 0.25 β̂nv -0.023 0.024 0.023 0.025 92.6 0.003 0.038 0.040 0.038 95.5

β̂szs -0.168 0.030 0.027 0.058 73.7 -0.219 0.042 0.040 0.090 80.9

β̂rc 0.003 0.028 0.026 0.027 93.3 -0.012 0.039 0.041 0.039 95.3

β̂c 0.011 0.029 0.027 0.029 93.4 -0.012 0.039 0.041 0.039 95.3

β̂e 0.012 0.029 0.027 0.029 93.4 -0.012 0.039 0.041 0.039 95.3

0.75 β̂nv -0.185 0.013 0.013 0.047 57.4 0.076 0.038 0.040 0.043 92.8

β̂szs -0.144 0.055 0.062 0.076 79.2 -0.227 0.048 0.047 0.099 82.6

β̂rc -0.032 0.031 0.028 0.032 92.3 -0.013 0.043 0.044 0.043 94.8

β̂c 0.026 0.051 0.053 0.052 95.3 -0.018 0.047 0.050 0.047 95.8

β̂e 0.033 0.054 0.056 0.055 95.5 -0.021 0.047 0.050 0.048 95.7

IV 0.25 β̂nv -0.019 0.024 0.022 0.025 92.5 0.015 0.043 0.040 0.043 94.2

β̂szs 0.109 0.114 0.089 0.126 91.3 0.265 0.253 0.223 0.323 87.9

β̂rc 0.006 0.027 0.025 0.027 93.2 -0.001 0.044 0.040 0.044 94.3

β̂c 0.024 0.031 0.028 0.031 94.0 -0.004 0.044 0.041 0.044 94.2

β̂e 0.025 0.031 0.028 0.032 94.0 -0.004 0.044 0.041 0.044 94.2

0.75 β̂nv -0.202 0.011 0.011 0.052 49.0 0.020 0.015 0.018 0.018 90.5

β̂szs 0.150 0.184 0.156 0.206 93.0 0.247 0.287 0.251 0.348 87.8

β̂rc -0.054 0.027 0.025 0.030 90.4 0.007 0.049 0.043 0.049 94.0

β̂c 0.052 0.068 0.069 0.071 95.5 -0.013 0.058 0.053 0.059 94.4

β̂e 0.063 0.075 0.075 0.018 95.7 -0.018 0.060 0.055 0.060 94.6

Vb 0.25 β̂nv -0.028 0.026 0.022 0.027 91.0 0.018 0.043 0.040 0.043 93.7

β̂szs - - - - - - - - - -

β̂rc 0.005 0.030 0.025 0.030 92.0 -0.002 0.044 0.041 0.044 94.0

β̂c 0.022 0.035 0.028 0.035 92.1 -0.004 0.044 0.041 0.044 94.1

β̂e 0.023 0.035 0.029 0.035 92.1 -0.005 0.044 0.041 0.044 94.1

0.75 β̂nv -0.230 0.012 0.010 0.065 34.5 0.107 0.042 0.040 0.054 90.6

β̂szs - - - - - - - - - -

β̂rc -0.058 0.033 0.028 0.036 89.7 0.003 0.049 0.045 0.049 93.2

β̂c 0.041 0.066 0.057 0.068 93.7 -0.010 0.057 0.054 0.057 93.9

β̂e 0.052 0.067 0.061 0.070 94.0 -0.015 0.058 0.055 0.058 93.9
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Table 5.3: Empirical coverage rate (in percent) of confidence bands with nominal level 0.95

σ Methods No censoring 30% censoring

0.25 Naive HWa 92.4 94.1

Corrected HWb 93.5 94.0

0.75 Naive HW 67.7 91.8

Corrected HW 95.8 94.3

a Naive Hall-Wellner band; b Corrected Hall-Wellner band.

Table 5.4: Empirical size and empirical power of the proposed test statistic

True Model σ Method No Censoring 30% Censoring

Additive Hazards Model Strue 0.057 0.054

0.25 Snv 0.158 0.056

Sc 0.047 0.062

0.75 Snv 0.595 0.065

Sc 0.047 0.052

Cox Model Strue 0.920 0.791

0.25 Sc 0.872 0.740

0.75 Sc 0.462 0.402

203



Table 5.5: Analyse of the ACTG 175 dataset using different methods

Data Method log(CD4 counts + 1) Treatment

ESTa MVEb MCIc ESTd MVEe MCIf

Data Subsets with Replicates β̂nv -4.67 2.15 (−5.58,−3.77) -2.12 1.18 (−2.80,−1.45)

β̂szs -5.76 3.36 (−6.90,−4.63) -2.16 1.19 (−2.84,−1.49)

β̂rc -5.71 3.20 (−6.82,−4.60) -2.14 1.18 (−2.81,−1.47)

β̂c -5.78 3.40 (−6.93,−4.64) -2.16 1.19 (−2.84,−1.49)

β̂e -5.79 3.40 (−6.93,−4.64) -2.16 1.19 (−2.84,−1.49)

Full Data β̂nv -4.72 2.13 (−5.62,−3.81) -2.15 1.16 (−2.81,−1.48)

β̂rc -5.77 3.19 (−6.88,−4.67) -2.16 1.16 (−2.83,−1.50)

β̂c -5.85 3.41 (−7.00,−4.71) -2.18 1.17 (−2.86,−1.51)

β̂e -5.85 3.41 (−7.00,−4.71) -2.18 1.17 (−2.86,−1.51)

a EST: estimates ×104; b MVE: model-based variance estimates ×109; c MCI: confidence intervals ×104; d EST: estimates ×104;
e MVE: model-based variance estimates ×109; f MCI: confidence intervals ×104.
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Chapter 6

Estimation and Variable Selection for

High Dimensional Additive Hazards

Regression with Covariate

Measurement Error

6.1 Introduction

In many clinical studies, a large number of variables are measured in addition to survival

outcomes. To enhance model interpretation and identify important predictors, variable

selection procedures are usually needed. Traditional selection methods, e.g., the best subset

selection method, suffer from certain drawbacks, as discussed by Fan, Li and Li (2005). To

overcome the drawbacks of the traditional selection methods, Tibshirani (1996) and Fan

and Li (2001) proposed different types of penalized least square methods for linear models,

named Lasso and SCAD, respectively. These methods were applied to the Cox model (Cox

1972) by Tibshirani (1997) and Fan and Li (2002), to the additive hazards model (Lin and

Ying 1994) by Leng and Ma (2007), and to multivariate failure time data by Cai et al.
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(2005). All these methods are developed for the scenario that the number of variables p is

much smaller than the number of subjects n. In particular, Tibshirani (1997), Fan and Li

(2002), and Leng and Ma (2007) imposed the assumption that p is fixed; Cai et al. (2005)

considered the high dimensional scenario (Fan and Lv 2010) where p grows slowly with n

in the sense that p = o(n1/4).

In recent years, data collection and storage technologies develop rapidly, resulting in

ultra-high dimensional (Fan and Lv 2010) data where the number of variables p can be

much larger than the number of subjects n, meaning that p grows at a non-polynomial

rate as n. For example, in the leukemia study reported by Golub et al. (1999), the

expression levels of over 7000 genes were measured and recorded for around 70 leukemia

patients. In the diffuse large-B-cell study reported by Resenwald et al. (2002), gene

expressions measurements for over 7400 genes and survival information after chemotherapy

were obtained for 240 patients. Detecting the link of gene expressions and the leukemia

disease or survival outcome is challenging for ultra-high dimensional problems. To extract

useful information from ultra-high dimensional data, statisticians have made great efforts in

the past several years (e.g., Candes and Tao 2007; Bickel, Ritov and Tsybakov 2009; Bradic,

Fan and Wang 2011; Buhlmann and van de Geer 2011; Fan and Lv 2011; Negahban et al.

2012; Fan, Xue and Zou 2014; Wang, Liu and Zhang 2014). When survival information

is available in addition to ultra-high dimensional covariates, penalized methods have been

proposed and their theoretical properties are well studied. Specifically, for high dimensional

Cox models, Bradic, Fan and Jiang (2011) proposed a penalized partial likelihood method,

and showed that the corresponding regression parameter estimator enjoys the strong oracle

property (Bradic, Fan and Wang 2011), while Huang et al. (2013), Kong and Nan (2014),

and Lemler (2012) showed oracle inequalities for the Cox regression with the Lasso penalty.

For additive hazards models with high dimensional covariates, Lin and Lv (2013) showed

that the penalized least square-type method with nonconcave penalties have the oracle

property (Fan and Li 2001), while Gaiffas and Guilloux (2012) proposed a Lasso-based

method and derived oracle inequalities.

All these methods assume that covariates are measured precisely. However, in many
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studies, survival analysis can be complicated by mismeasurement of covariates. For exam-

ple, some clinical characteristics, e.g., blood pressure and CD4 counts, are measured with

error. More challengingly, the mismeasured covariates can be high dimensional. For ex-

ample, Chen, Dougherty and Bittner (1997) and Rocke and Durbin (2001) noted that the

measurements of gene expression with cDNA are inaccurate, and the standard deviation of

measurement error increases proportional to the expression level. High dimensionality of

mismeasured covariates increases difficulty of statistical estimation and variable selection.

Liang and Li (2009) and Ma and Li (2010) studied penalized methods for paramet-

ric and semiparametric regression models with mismeasured covariates. However, their

methods can not be directly extended to incorporate survival information. Furthermore,

they did not consider the high dimensional or ultra-high dimensional scenario. Recently,

some progresses have been made for ultra-high dimensional linear regression models and

generalized linear models (McCullagh and Nelder 1989). In particular, Rosenbaum and T-

sybarkov (2010, 2013) proposed the matrix uncertainty selectors and showed that they can

be used to consistently estimate the regression parameters, and have the sparsity pattern

recovery property; Loh and Wainwright (2012, 2013) developed regularized estimators and

showed their statistical consistency and rate of convergence; Sorensen, Frigessi and Thore-

sen (2014) proposed the corrected Lasso method to adjust for measurement error. However,

it is not clear how to extend these methods to incorporate survival information. Meth-

ods on estimation and variable selection with high dimensional or ultra-high dimensional

mismeasured covariates are limited in survival analysis.

In this chapter, we propose corrected penalized methods to do variable selection and

estimation for additive hazards models with mismeasured covariates for the high dimen-

sional scenario where p grows slowly with n in the sense that p = o(n1/4). The penalized

methods are further extended to the ultra-high dimensional scenarios with p � n that p

grows exponentially with n. Specifically, In Section 6.2, we introduce notation and model

setup. In Section 6.3, we study the impact of measurement error on estimation and variable

selection, and propose the corrected penalized methods for the high dimensional scenario.

In Section 6.4, we extend the proposed methods to the ultra-high dimensional scenario. In
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Section 6.5, we conduct simulation studies and real data analysis. Concluding remarks are

deferred to the last section.

6.2 Notation and Model Setup

For i = 1, · · · , n, let Ti be the failure time, Ci be the censoring time, and Zi(t) =

(XT
i , V

T
i (t))T be a vector of covariates, where Xi is a p1 × 1 vector of time-independent

but error-prone covariates, and Vi(t) is a p2 × 1 vector of covariates that are precisely

measured and possibly time-dependent. As common in practise, Vi(t) are assumed to be

external covariates (Kalbfleisch and Prentice 2002, p.197). Let p = p1 + p2 be the number

of parameters. Note that both of p1 and p2 can be high-dimensional.

We consider that the hazard function of Ti is related to Zi(·) through the additive

hazards model

λ(t;Zi(t)) = λ0(t) + βTZi(t) = λ0(t) + βTxXi + βTv Vi(t),

where λ0(·) is an unspecified baseline hazard function, and β = (βTx , β
T
v )T is a vector of

unknown regression parameters. Ti and Ci are assumed to be conditionally independent

given Zi(t). Suppose individuals are observed over a common time interval [0, τ ], where τ

is a positive constant. Let Si = min(Ti, Ci, τ), δi = I(Ti ≤ min{Ci, τ}), Ni(t) = I(Si ≤
t, δi = 1), and Yi(t) = I(Si ≥ t).

6.2.1 Penalized Methods

The pseudo score functions of Lin and Ying (1994) are defined as

U(β) =
1

n

n∑
i=1

∫ τ

0

{Zi(t)− Z̄(t)}{dNi(t)− Yi(t)ZT
i (t)βdt},
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where Z̄(t) =
∑n

i=1 Yi(t)Zi(t)/
∑n

i=1 Yi(t). Integrating −U(β) with respective to β gives

the loss function

L(β) =
1

2
βTV β − bTβ,

where

V =
1

n

n∑
i=1

∫ τ

0

Yi(t){Zi(t)− Z̄(t)}⊗2dt,

and b =
1

n

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(t)

}
dNi(t).

Leng and Ma (2007), Martinussen and Scheike (2009), and Lin and Lv (2013) proposed

to estimate the regression parameter β via the penalized partial least square method:

β̂ ∈ arg min
β∈Rp
{L(β) +Rλ(β)} , (6.1)

where Rλ(·) is a penalty function that depends on a tuning parameter λ ≥ 0. This

estimator does the variable selection automatically in the sense that β̂j = 0 for some j’s.

The estimation and variable selection properties of β̂ with different penalties were studied

by Leng and Ma (2007), Martinussen and Scheike (2009), and Lin and Lv (2013). They

showed that different choices of the penalty function ρλ(·) lead to different estimation and

variable selection results.

6.2.2 Penalties

In this chapter, we consider the following penalties. For convenience, we write

Rλ(β) = λ

p∑
j=1

ρλ(|βj|).

When λ = 0, then β̂ reduces to the pseudo score estimator by Lin and Ying (1994). We

write ρλ(·) as ρ(·) when it does not depend on λ. We consider the following penalties:
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• Lasso (Tibshirani 1996) penalty: ρ(t) = t, t > 0.

• SCAD (Fan and Li 2001) penalty:

ρ′λ(t) = I(t ≤ λ) +
(aλ− t)+

(a− 1)λ
I(t ≥ λ), t > 0,

where a > 2 is a fixed parameter.

• MCP (Zhang 2010) penalty:

ρ′λ(t) =
(aλ− t)+

aλ
, t > 0,

where a > 1 is a fixed parameter.

• SICA (Lv and Fan 2009) penalty:

ρ(t) =
(a+ 1)t

a+ t
, t > 0,

where a > 0 is a fixed parameter.

Note that the Lasso penalty is convex, whereas the SCAD, MCP, and SICA penalties are

nonconvex.

6.2.3 Measurement Error Model

Suppose Xi is not available, and we observe its surrogate Wi instead, i = 1, · · · , n. Suppose

Xi and Wi are linked through the classical error model (Carroll et al. 2006)

Wi = Xi + εi,

where the εi are independent and identically distributed (i.i.d.) with mean 0 and a positive-

definite covariance matrix Σ0. Σ0 is assumed known. Assume that εi is independent of

{Ti, Ci, Zi(t)}. Let Ẑi(t) = (W T
i , V

T
i (t))T , and Σ1 = diag(Σ0, 0p2), where 0p2 is the p2 × p2

matrix of elements 0.
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6.3 Corrected Penalized Methods for High Dimen-

sional Scenario

In this section, we consider the high dimensional scenario (Fan and Lv 2010) where p grows

slowly with n in the sense that p = o(n1/4). In the presence of covariate error, the penalized

estimator β̂ defined in (6.1) is not available since Xi may not be observed. An intuitively

appealing option is to directly replace Zi(t) with Ẑi(t) = (W̄ T
i· , V

T
i (t))T in U(β) and obtain

a naive pseudo score function

Unv(β) =
1

n

n∑
i=1

∫ τ

0

{Ẑi(t)− Z̃(t)}{dNi(t)− Yi(t)ẐT
i (t)βdt},

where Z̃(t) =
∑n

i=1 Yi(t)Ẑi(t)/
∑n

i=1 Yi(t). Then integrating −Unv(β) with respective to β

gives the naive loss function

Lnv(β) =
1

2
βTVnvβ − bTnvβ,

where

Vnv =
1

n

n∑
i=1

∫ τ

0

Yi(t){Ẑi(t)− Z̃(t)}⊗2dt,

and b =
1

n

n∑
i=1

∫ τ

0

{
Ẑi(t)− Z̃(t)

}
dNi(t).

The naive penalized estimator is defined as

β̂nv ∈ arg min
β∈Rp
{Lnv(β) +Rλ(β)} .

We write λ as λn to emphasize its dependence on the sample size n.

Let B1 =
∫ τ

0
Yi(t){Zi(t)− e(t)}⊗2dt, and B2 = Σ1

∫ τ
0
E{Yi(t)}dt, where

e(t) = E{Yi(t)Zi(t)}/E{Yi(t)}. In the following lemma, we show that β̂nv is not a consistent

estimator of the parameter β0 for all four penalties we discussed before. The proof is

sketched in Appendix A1.
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Lemma 1 Assume λn → 0 as n→∞. Then we have

β̂nv
p→ (B1 +B2)−1B1β0, as n→∞.

Lemma 1 implies that it is infeasible to estimate the regression parameter by using the

naive penalized method. To adjust for the bias of the naive penalized method, we propose

the corrected penalized method.

Let Vc1 = n−1(
∑n

i=1 Si − τ)Σ1, The corrected pseudo score functions of Yan and Yi

(2014b) are defined as

Uc(β) = Unv(β) + Vc1β.

We integrate −Uc(β) with respective to β, and obtain the corrected loss function

Lc(β) =
1

2
βTVcβ − bTc β,

where Vc = Vnv − Vc1, and bc = bnv.

We define the corrected penalized estimator as

β̂c ∈ arg min
β∈Rp
{Lc(β) +Rλ(β)} . (6.2)

When λ = 0, then β̂c reduces to the corrected pseudo score estimator by Yan and Yi

(2014b). Now we establish the oracle property (Fan and Li 2001) of the proposed corrected

penalized estimator β̂c.

Write β0 = (β0,1, · · · , β0,p)
T . Let A = {j : β0,j 6= 0} be the index set which contains

all nonzero components of β0. Let s be the size of A. Note that s can depend on the

sample size n. Let βA0 be the subvector of β0 which contains all nonzero components.

Write βA0 = (βA0,1, · · · , βA0,s)T . Let βA
c

0 be the complement of βA0 ,

an = max{λnρ′λn(|βA0,1|), · · · , λnρ′λn(|βA0,s|)},

bn = max{λnρ′′λn(|βA0,1|), · · · , λnρ′′λn(|βA0,s|)},

d = {λnρ′λn(|βA0,1|)sgn(βA0,1), · · · , λnρ′λn(|βA0,s|)sgn(βA0,s)}T ,

and Σλn = diag{λnρ′′λn(|βA0,1|), · · · , λnρ′′λn(|βA0,s|)},
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where sgn(·) is the sign function such that sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and

sgn(x) = −1 if x < 0.

The following theorem shows that there exists a local minimizer β̂c which satisfies (6.2)

so that its rate of convergence to β0 is Op(
√
p(n−1/2 + an)). The proof is sketched in

Appendix A2.

Theorem 1 If an → 0, bn → 0, as n → ∞, and p = o(n1/4), then with probability

approaching 1, there exists a local minimizer β̂c in (6.2) such that

‖β̂c − β0‖2 = Op(
√
p(n−1/2 + an)).

In Theorem 1, p can be growing as n increases at a slow rate. Furthermore, if an =

Op(n
−1/2), and p is fixed, then ‖β̂c−β0‖2 = Op(n

−1/2), suggesting that β̂c is a
√
n-consistent

estimator of β.

Let β̂Ac be the subvector of β̂c which corresponds to βA0 , and β̂A
c

c be the complement of

β̂Ac . Define

Σc =E

[∫ τ

0

{
Ẑi(t)− e(t)

}
dNi(t)−

∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

β0dt+ min(Si, τ)Σ1β0

]⊗2

;

Dc =E

[∫ τ

0

Yi(t)
{
Ẑi(t)− e(t)

}⊗2

dt−min(Si, τ)Σ1β0

]
.

Let ΣAA
c be the matrix formed by the components Σc,ij of Σc where i, j ∈ A, and DAAc be

defined similarly. The next theorem establishes the oracle property of β̂c. The proof is

sketched in Appendix A3.

Theorem 2 If bn → 0, λn → 0, λn
√
n/p → ∞ as n → ∞, an = Op(n

−1/2), and

p = o(n1/4), then with probability approaching 1, for any p × 1 unit vector cn, the local

minimizer β̂c in Theorem 1 has the following properties:
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(1). Sparsity: β̂A
c

c = 0;

(2). Asymptotic normality:

√
ncTn (ΣAA

c )−1/2(DAAc + Σλ)(β̂c − β0 − (DAAc + Σλ)
−1d)

d→ N(0, 1), as n→∞.

6.4 Corrected Penalized Methods for Ultra-high Di-

mensional Scenario

In this section, we consider the ultra-high dimensional setting n � p where p grows ex-

ponentially with n. More specifically, we consider the setting: s log p
n

= O(1), where s

is the number of non-zero parameters defined in Section 6.3. We define the regularized

M-estimator of the regression parameter β as

β̂c ∈ arg min
‖β‖1≤R

{Lc(β) +Rλ(β)} , (6.3)

where R is a positive number.

It is important to note that Lc(β) can be a nonconvex function. Indeed, Vnv has rank

at most n, and Vc1 has rank p1. Therefore, the difference Vc can have a large number

of negative eigenvalues and thus is nonconvex. Thus, unlike regularized convex optimiza-

tion problems, which usually optimize the loss function plus the penalty over the entire

Euclidean space, in our setting we impose a side constraint ‖β‖1 ≤ R (or equivalently,

β ∈ B1(R), where B1(R) is the l1 ball in the p-dimensional space with center at the origin

and radius R) to guarantee that there exists a global optimum (Loh and Wainwright 2013).

We first show that the defined loss function Lc(·) satisfies the restricted strong convexity

(RSC) condition (Loh and Wainwright 2012, 2013; Negahban et al. 2012):

〈∇Lc(β0 +4)−∇Lc(β0),4〉 ≥ α‖4‖2
2 − τ

log p

n
‖4‖2

1, for all ‖4‖2 ∈ Rp,
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where β0 is the true value of the regression parameter, α is a positive universal constant,

and τ is a nonnegative universal constant. Notation 〈a, b〉 represents the inner product of

vectors a and b.

The RSC condition is a key property that guarantees statistical consistency and compu-

tational efficiency of regularized optimization problems for various statistical models. The

RSC property has been shown to be satisfied for many model structures, including linear

models, generalized linear models, and linear models with additive measurement error or

missing data (Loh and Wainwright 2012, 2013).

However, verifying the RSC condition for our case is nontrivial since the additive haz-

ards model is a nonlinear survival model that consists of the nonparametric baseline hazard

function. Furthermore, verifying the RSC condition requires concentration results of cer-

tain random vectors and matrices that involves event and covariates information, which are

nontrivial even in the case of no measurement error (Bradic, Fan and Jiang 2011; Huang

et al. 2013; Lin and Lv 2013). We defer the proof of the RSC property of Lc(·) to the

Appendix.

Due to the nonconvexity of the regularized optimization problem (6.3), the global min-

imum β̂c is computationally intractable. Instead, we consider the statistical property of

any local minima β̃c that satisfies the first-order optimality condition (Bertsekas 1999; Loh

and Wainwright 2013):

〈∇Lc(β̃c) +∇Rλ(β̃c), β − β̃c〉 ≥ 0, for all β ∈ B1(R).

Assume that n ≥ C0 max{R2, s} log p for some constant C0. The following theorem

provides the non-asymptotic bounds of the l1 and l2 error of β̂c . The proof is sketched in

Appendix A4.

Theorem 3 Under Regularity Conditions, with probability at least 1−C1 exp(−C2 log p),

and λ satisfies that

C3

√
log p

n
≤ λ ≤ C4

R
,
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where C1, C2, C3, C4 are constants, we have

‖β̃c − β0‖2 ≤
K1λ
√
s

λmin(Vc)− 2µ
,

and ‖β̃c − β0‖1 ≤
K2λs

λmin(Vc)− 2µ
,

where λmin(Vc) is defined in the Appendix, and µ is a positive number that depends on the

penalty (Loh and Wainwright 2013).

6.5 Numerical Studies

The coordinate decent algorithm has been shown suitable for high dimensional and ultra-

high dimensional data analysis (Friedman et al. 2007; Friedman, Hastie and Tibshirani

2010; Breheny and Huang 2011; Fan and Lv 2011). We adapt this algorithm to produce

the solution path (Friedman et al. 2007) of the penalized estimators, and use ten-fold

cross-validation to select the optimal λ and the corresponding estimators.

6.5.1 Simulation Studies

We conduct simulation studies to evaluate the finite sample performance of the proposed

methods. We generate 100 simulations for each parameter configuration. We consider two

scenarios. In Scenario 1, n = 200, and p = 50, representing the high dimensional case; in

Scenario 2, n = 400, and p = 800, representing the ultra-high dimensional case that p is

much larger than n.

The Zi are simulated from the multivariate normal distribution: Zi ∼ MVN(0p,Σz),

i = 1, · · · , n. Here, the Σz is the Toeplitz matrix with the (j, k)th component of Σz given

by ρ|j−k|, j, k = 1, · · · , p. We set ρ = 0.5. Survival times Ti are independently generated

using the additive hazards model, where the first 15 components of true parameter β0 is
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(vT , vT , vT )T with v = (1, 0,−1, 0, 0), while the rest components of β0 are all set as zero.

Thus, s = 6. The baseline hazard function λ0(t) = 1. We impose the constraint that the

hazard function needs to be positive. The censoring time Ci is generated from UNIF[0, c],

where c is chosen to obtain about 25% censoring.

Suppose we do not observe the component Xi for all subjects. Instead, we observe the

surrogate version Wi. In Scenario 1, the dimension of Xi is set to be p1 = 50, while in

scenario 2, p1 = 200. We consider the classical additive error model for the measurement

error process: Wi = Xi + εi, where εi ∼MVN(0, σ2
0Ip1×p1) with a given σ0. Take σ0 to be

0.1 or 0.2 to represent different degrees of measurement error.

To estimate the β parameter, we consider three methods. The first method is the

proposed corrected penalized estimator β̂c in (6.2). For comparison, we also consider two

other methods. Specifically, the second method is the penalized estimator β̂ by Lin and

Lv (2013) based on the true covariates, and the third method is the oracle estimator based

on the corrected pseudo score method by Yan and Yi (2014b) that knows the sparsity set

Ac in advance.

We use four performance measures to compare these three estimators. l2 ERROR is

the l2 estimation error ‖β̃ − β0‖2, where β̃ stands for the three estimators; l1 ERROR is

the l1 estimation error ‖β̃ − β0‖1; #S is the total number of selected variables; #FN is

the number of falsely excluded variables. We report the means and standard deviations of

these measures for all three methods in Tables 6.1 and 6.2.

It is seen that the proposed corrected penalized methods performs satisfactorily com-

pared to the penalized methods based on the true covariates. The penalized methods

with nonconvex penalties outperform the corrected Lasso method. Mismeasurement of

covariates tends to reduce the precision of estimation results.

[Insert Tables 6.1 and 6.2 here!]
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6.5.2 Real Data Analysis

We conduct data analysis of the AIDS Clinical Trials Group (ACTG) 175 (Hammer, et

al. 1996) study. The ACTG 175 study is a double-blind randomized clinical trial that

evaluated the effects of the HIV treatments for which three drugs were used in combination

or alone: zidovudine, didanosine, and zalcitabine.

In the ACTG 175 dataset described in the R package ‘speff2trial’ (Juraska 2010), there

were n = 2139 individuals, with 26 observed variables for each individual. The names of

this variables are age, wtkg, hemo, homo, drugs, karnof, oprior, z30, zprior, preanti, race,

gender, str2, strat, symptom, treat, offtrt, cd40, cd420, cd496, r, cd80, cd820, cens, days, and

arms. We refer the detailed description of these variables to Juraska (2010).

True values of the CD4 counts were not available due to biological variability. Instead,

the baseline measurements on the CD4 counts were collected before randomization, ranging

from 200 to 500 per cubic millimeter. The variable cd40 represents the average baseline

measurement. The variable arms is the treatment arm indicator, where arms=0 for the

zidovudine treatment, 1 for the zidovudine and didanosine treatment, 2 for the zidovudine

and zalcitabine treatment, and 3 for the didanosine treatment, respectively. The failure

time Ti is defined to be the time to the occurrence of the first event among the following

events: (i) more than 50% decline of CD4 counts compared to the averaged baseline CD4

counts cd40; (ii) disease progression to AIDS; or (iii) death. About 75.6% of outcome

values are censored. The variable days represents the censored failure time, named Si.

Log transformation of the variables age, wtkg, karnof, preanti, cd40, cd420, cd80, cd820,

and days were employed to normalize the data. We removed four variables zprior, treat,

cd496, and r from our data analysis for the following reasons: zprior is the constant 1 for

all subjects; the variable treat indicates whether or not the subject received the zidovudine

treatment, which is overlapped with the the treatment indicator arms; the variable cd496

is missing for a large amount of subjects, and r is its missing indicator. As a result, we

included p=20 covariates in the analysis.
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Let Xi be the log transformation version of the true baseline CD4 counts, and Wi

indicate the log transformation version of the surrogates cd40. We adopt the classical error

model:

Wi = Xi + εi,

where the variance of εi is estimated by the replicated baseline measurements.

Let Zi represent the vector including Xi and 19 other precisely measured variables, and

Ẑi be its observed version, i = 1, · · · , n. In this example, the dimension of error-prone

covariates p1 = 1, whereas the dimension of precisely measured covariates p2 = 19. We

employ the additive hazards model to feature the dependence of Ti on Zi:

λ(t;Zi) = λ0(t) + ZT
i β,

where estimation and variable selection of the parameter β are of interest.

We apply the proposed corrected penalized method with four different penalties. For

comparison purposes, we also include three other methods: (1). the corrected pseudo score

estimator by Yan and Yi (2014b) (without penalties) which adjusts for measurement error;

(2). the naive pseudo score estimator by Lin and Ying (1994) (without penalties) which

ignores measurement error; (3). the naive penalized method by Lin and Lv (2013) which

ignores measurement error. The results are summarized in Table 6.3.

The results show that the proposed method with the Lasso penalty shrinks 6 out of 20

parameters to zero, the SCAD or MCP penalty sets 7 parameters to be zero, and the SICA

penalty sets 9 parameters to be zero. In contrast, all the parameters estimated by the

method by Yan and Yi (2014b) are nonzero. The naive methods of Lin and Ying (1994)

and Lin and Lv (2013) result in inconsistent estimates of β. The naive method of Lin

and Lv (2013) with SCAD or MCP penalty selects 1 additional variables compared to the

proposed penalized method.

[Insert Table 6.3 here!]
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6.6 Discussion

In this chapter, we propose corrected penalized methods for variable selection and esti-

mation in the presence of covariate measurement error for survival data. Furthermore, we

extend these methods to the ultra-high dimensional setting. The theoretical properties of

these penalized estimators are studied for the cases where p grows slowly with n, or p� n.

For the former case, we prove the oracle property of the proposed corrected penalized es-

timators with nonconvex penalties; for the latter case, we provide a sharp upper bound

of estimation error of the proposed estimators. The finite sample performance of these

estimators is evaluated by numerical studies.

Appendix

LetQc(β) = Lc(β)+Rλ(β). Let S(k)(t) = n−1
∑n

i=1 Yi(t)Ẑ
k
i (t) and s(k)(t) = E{Yi(t)Ẑk

i (t)}, k =

0, 1, 2. Let Ωz be the event that maxpj=1 supt∈[0,τ ] |Ẑj(t)| ≤ z for a fix z > 0. Let Ajk de-

note the element in the jth row and kth column of the matrix A. Let Bj denote the jth

element of the vector B. To avoid confusion, we remove the dependence of the random

terms on the subject index i. For example, we let N(t) to denote Ni(t). Let Pn denote

the empirical measure, and P denote the probability measure. For example, PnN(t) =

n−1
∑
N(t), and P{N(t)} = E{N(t)}. Let M̃(t) = N(t)−

∫ t
0
Y (u){dΛ0(u) + βT0 Ẑ(u)du}.

Let Vc = E
∫ τ

0
Y (t){Z(t) − e(t)}⊗2dt. Let λmin(A) denote the minimum eigenvalue of the

square matrix A.

Appendix A1

Proof of Lemma 1: When λn → 0, Rλn(β) → 0, as n → ∞. The result of Lemma 1 then

holds by Yan and Yi (2014b).
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Appendix A2

Proof of Theorem 1: Let αn =
√
p(n−1/2 + an). It suffices to show that for any given

constant ε > 0, there exists a sufficient large constant C, such that

P ( min
‖u‖2=C

Qc(β + αnu) > Qc(β)) ≥ 1− ε.

This inequality implies that there exists a local minimizer β̂c, such that ‖β̂c−β0‖2 = Op(αn).

The inequality can be proved by following the argument of Theorem 1 by Fan and Li (2001).

Appendix A3

Proof of Theorem 2: First of all, following Lemma A1 of Cai et al. (2005), we show that

with probability approaching 1, for any βA such that ‖βA − βA0 ‖2 = Op(
√
p/n) and any

constant C, the following equality holds:

Qc(β
A, 0) = min

‖βAc‖2≤C
√
p/n

Qc(β
A, βAc).

Therefore, sparsity of β̂c follows. It remains to prove the asymptotic normality of β̂c, which

follows by the Slusky’s Theorem and the Central Limit Theorem.

Appendix A4

Proof of Theorem 3: The following lemmas and theorem are used to prove the upper bound

in Theorem 3.

Lemma A1 Under Regularity Conditions, there exists universal constants C,K > 0,
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such that

Pr

(
sup
t∈[0,τ ]

|S(0)(t)− s(0)(t)| ≥ Kn−1/2(1 + x)

)
≤ exp(−Cx2),

Pr

(
sup
t∈[0,τ ]

|S(1)
j (t)− s(1)

j (t)| ≥ Kn−1/2(1 + x)

∣∣∣∣∣Ωz

)
≤ exp(−Cx2/z2),

and Pr

(
sup
t∈[0,τ ]

|S(1)
ij (t)− s(1)

ij (t)| ≥ Kn−1/2(1 + x)

∣∣∣∣∣Ωz

)
≤ exp(−Cx2/z4),

for all x > 0, i, j = 1, · · · , p.

Proof. The first concentration inequality is (A.5) of Lemma A.2 Lin and Lv (2013).

Now we prove the last two inequalities. Since Zj(·), j = 1, · · · , p are of uniformly bounded

variation, we have Ẑj(·), j = 1, · · · , p are also of uniformly bounded variation. Therefore,

following the proof of Lemma A.2 Lin and Lv (2013), we obtain (6.4) and (6.4).

Lemma A2 Under Regularity Conditions, there exists universal constants C1, C2, K >

0, such that

Pr
(
|Uc,j(β0)| ≥ Kn−1/2(1 + x)

∣∣Ωz

)
≤ C1 exp

(
−C2

x2 ∧ n
z4

)
.

for all x > 0, j = 1, · · · , p.

Proof. Note that

Uc,j(β0) = Pn
∫ τ

0

Ẑj(t)dM̃(t)− Pn
∫ τ

0

Z̃j(t)dM̃(t) + Pn
(
S − τ

n

)
(Σ1β0)j

≡ T1 − T2 + T3,

where (Σ1β0)j denotes the jth element of Σ1β0. Note that M̃i(t) is of bounded variation.

Thus,
∫ τ

0
|dM̃i(t)| ≡M0(z) ≤ zM1 <∞. Thus, |

∫ τ
0
Ẑj(t)dM̃(t)| ≤ supt∈[0,τ ] |Ẑj(t)|

∫ τ
0
|dM̃i(t)| ≤

z2M1 conditional on the event Ωz, where M0 is depends linearly on z, and M0 is a con-

stant. Furthermore, T1 is sum of i.i.d mean zero terms. Thus, by Hoeffding’s Inequality
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(e.g., Buhlmann, P. and van de Geer 2011, Lem 14.11), we have Pr(|T1| ≥ n−1/2x|Ωz) ≤
exp(−D1x

2/z4), where D1 > 0 is a constant.

Note that T2 and T3 are sum of i.i.d. terms, but their mean are not zero. Indeed, the

mean of T2 − T3 is zero. In the following, we bound the term T2 − T3. First, by Lemma

A1, there exists some constant δ > 0, the probability of the events supt∈[0,τ ] |S(0)(t) −
s(0)(t)| ≥ δ, or supt∈[0,τ ] |S

(1)
j (t) − s

(1)
j (t)| ≥ δ is bounded by exp(−D2n/z

4) for some

constant D2 > 0. Thus, we only need to bound T2 − T3 conditional on the event Ω0:

supt∈[0,τ ] |S(0)(t)−s(0)(t)| ≤ δ, and supt∈[0,τ ] |S
(1)
j (t)−s(1)

j (t)| ≤ δ. Let Gj = {
∫ τ

0
f(t)dM̃(t)+

(S − τ/n)(Σ1β0)j : f is of bounded variation; supt∈[0,τ ] |f(t)− ej(t)| is upper bounded}.
Let Gj = supg∈Gj |(Pn−P )g|. Proceed as the arguments of Lin and Lv (2013, Lemma A.3),

and observe that (S − τ/n)(Σ1β0)j does not depend on t, we obtain that PGj ≤ D3n
−1/2

for some constants D3 > 0. Thus, by Massart’s Inequality (Massart 2000; Buhlmann,

P. and van de Geer 2011, Thm 14.2), we have Pr(|T2 − T3| ≥ D4n
−1/2(1 + x)|Ωz) ≤

2 exp(−D5x
2/z4), where D4, D5 > 0 are some constants. Thus, the result follows.

Lemma A3 Under Regularity Conditions, there exists universal constants C1, C2, K >

0, such that

Pr
(
|Vc,ij − Vc,ij| ≥ Kn−1/2(1 + x)

∣∣Ωz

)
≤ C1 exp

(
−C2

x2 ∧ n
z4

)
.

for all x > 0, j = 1, · · · , p.

Proof. Note that

Vc,ij =

∫ τ

0

{
S

(2)
ij (t)−

S
(1)
i (t)S

(1)
j (t)

S(0)(t)

}
dt−

∫ τ

0

{
S(0)(t)− 1

n

}
Σ1,ijdt,

and Vc,ij =

∫ τ

0

{
s

(2)
ij (t)−

s
(1)
i (t)s

(1)
j (t)

s(0)(t)

}
dt−

∫ τ

0

s(0)(t)Σ1,ijdt.
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Therefore,

Vc,ij − Vc,ij =

∫ τ

0

{S(2)
ij (t)− s(2)

ij (t)}dt+

∫ τ

0

{
S

(1)
i (t)S

(1)
j (t)

S(0)(t)
−
s

(1)
i (t)s

(1)
j (t)

s(0)(t)

}
dt

−
∫ τ

0

{
S(0)(t)− s(0)(t)− 1

n

}
Σ1,ijdt

≡ T1 + T2 − T3.

By Lemma A1, T1 is bounded in the sense that Pr(|T1| ≥ D1n
−1/2(1+x)|Ωz) ≤ exp(−D2x

2/z4),

where D1, D2 > 0 are constants. T2 is bounded by the arguments in Lemma A.4 of Lin and

Lv (2013) such that Pr(|T2| ≥ D3n
−1/2(1+x)|Ωz) ≤ exp(−D4x

2/z2), where D3, D4 > 0 are

constants. By Lemma A1, T3 is bounded so that Pr(|T3| ≥ D5n
−1/2(1+x)) ≤ exp(−D6x

2),

where D5, D6 > 0 are constants. Combining these bounds, we obtain the result.

Theorem A1 Under Regularity Conditions, and assume n & log p, Lc(·) satisfies the

RSC condition with probability at least 1− C1 exp(−C2 log p), where C1, C2 are constants.

Proof. By Lemma A3, we have for any constant x > 0, there exists constants D1, D2 >

0, such that we have

Pr ( |Vc,ij − Vc,ij| ≥ x|Ωz) ≤ D1 exp

(
−D2

n(x2 ∧ 1)

z4

)
.

Thus, let x = λmin(Vc)
54

, and assume n & log p, we have

Pr

(
|vT (Vc − Vc)v| ≥

λmin(Vc)
54

∣∣∣∣Ωz

)
≤ Pr

(
‖Vc,ij − Vc,ij‖max ≥

λmin(Vc)
54

∣∣∣∣Ωz

)
≤

∑
i,j

Pr

(
|Vc,ij − Vc,ij| ≥

λmin(Vc)
54

∣∣∣∣Ωz

)

≤ p2D1 exp

(
−D2

n(
λ2

min(Vc)
542 ∧ 1)

z4

)

≤ D1 exp

(
−D3

log p

z4

)
,
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where D3 > 0 is a constant.

Together with the proof of Lemma 15 of Loh and Wainwright (2012), we have

Pr

(
sup

v∈K(2s)

|vT (Vc − Vc)v| ≥
λmin(Vc)

54

∣∣∣∣∣Ωz

)
≤ C1 exp

(
−C2

n(
λ2

min(Vc)
542 ∧ 1)

z4
+ 2s log p

)
.

where K(2s) = B0(2s) ∩ B2(1). Thus, by Lemma 12 of Loh and Wainwright (2012), we

have that for probability at least 1− C1 exp(−C2 log p) with constants C1, C2 > 0,

|vT (Vc − Vc)v| ≤
λmin(Vc)

2
(‖v‖2

2 +
1

s
‖v‖2

1),

holds any unit vector v, which leads to the RSC condition for α = λmin(Vc)
2

, and τ = λmin(Vc)
2s

,

where s is chosen to be greater than 1. The proof is thus completed.

Lemma A4 Under Regularity Conditions, and assume n & log p, for a constant K > 0,

there exists universal constants C1, C2 > 0, such that for any fixed p-dimensional unit vector

v (i.e., ‖v‖2 = 1), we have

Pr

(
|vT (Vc − Vc)v| ≥ K

√
log p

n

∣∣∣∣∣Ωz

)
≤ C1 exp

(
−C2

log p

z4

)
.

for all x > 0, j = 1, · · · , p.

Proof. By Lemma A3, we have for any constant x > 0, there exists constants D1, D2 >

0, such that we have

Pr ( |Vc,ij − Vc,ij| ≥ x|Ωz) ≤ D1 exp

(
−D2

n(x2 ∧ 1)

z4

)
.
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Thus, let x = K
√

log p
n

where K is sufficiently large, and assume n & log p, we have

Pr

(
|vT (Vc − Vc)v| ≥ K

√
log p

n

∣∣∣∣∣Ωz

)
≤ Pr

(
‖Vc,ij − Vc,ij‖max ≥ K

√
log p

n

∣∣∣∣∣Ωz

)

≤
∑
i,j

Pr

(
|Vc,ij − Vc,ij| ≥ K

√
log p

n

∣∣∣∣∣Ωz

)

≤ p2D1 exp

(
−D2

K log p

z4

)
≤ D1 exp

(
−D3

log p

z4

)
,

where D3 > 0 is a constant. The proof is thus completed.

Based on the above lemmas, the proof of Theorem 3 follows by Lemma 1 of Loh and

Wainwright (2012), and Corollary 1 of Loh and Wainwright (2013).
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Table 6.1: Simulation results for Scenario 1: n = 200, p = 50; values inside the brackets

are standard deviations
σ0 Method Penalty l2 ERROR l1 ERROR #S #FN

Oracle 0.406(0.189) 0.869(0.450) 6.0(0.0) 0.0(0.0)

β̂ Lasso 1.104(0.308) 3.612(0.892) 21.6(4.8) 0.0(0.4)

SCAD 0.505(0.283) 1.306(0.778) 10.8(2.9) 0.1(0.6)

MCP 0.504(0.273) 1.262(0.738) 9.0(2.4) 0.1(0.6)

SICA 0.485(0.226) 1.111(0.683) 6.7(2.0) 0.0(0.0)

0.1 β̂c Lasso 1.055(0.254) 3.526(0.862) 21.1(4.2) 0.0(0.0)

SCAD 0.560(0.325) 1.499(1.026) 11.4(2.9) 0.0(0.2)

MCP 0.553(0.310) 1.390(0.840) 9.3(2.1) 0.0(0.4)

SICA 0.514(0.265) 1.189(0.777) 7.0(2.5) 0.0(0.0)

0.2 Lasso 1.103(0.269) 3.625(0.870) 20.4(4.3) 0.0(0.0)

SCAD 0.663(0.382) 1.765(1.003) 12.0(2.7) 0.1(0.4)

MCP 0.693(0.435) 1.796(1.157) 9.9(2.2) 0.1(0.7)

SICA 0.613(0.385) 1.435(1.065) 6.9(2.5) 0.1(0.5)

Table 6.2: Simulation results for Scenario 2: n = 400, p = 800

σ0 Method Penalty l2 ERROR l1 ERROR #S #FN

Oracle 0.293(0.127) 0.624(0.298) 6.0(0.0) 0.0(0.0)

β̂ Lasso 1.574(0.284) 5.476(0.742) 50.7(14.6) 0.1(0.7)

SCAD 0.389(0.131) 1.406(0.509) 27.5(9.5) 0.0(0.0)

MCP 0.361(0.143) 1.061(0.525) 14.9(5.9) 0.0(0.0)

SICA 0.318(0.168) 0.718(0.564) 6.7(4.7) 0.0(0.0)

0.1 β̂c Lasso 1.572(0.281) 5.610(0.658) 53.6(14.7) 0.2(0.9)

SCAD 0.408(0.152) 1.538(0.537) 30.2(8.8) 0.0(0.0)

MCP 0.375(0.153) 1.418(0.501) 16.8(5.5) 0.0(0.0)

SICA 0.304(0.164) 0.660(0.442) 6.4(2.6) 0.0(0.0)

0.2 Lasso 1.537(0.330) 5.603(0.659) 54.5(17.6) 0.3(1.1)

SCAD 0.570(0.341) 2.227(0.967) 35.7(11.0) 0.1(0.7)

MCP 0.474(0.194) 1.577(0.640) 20.6(6.0) 0.0(0.0)

SICA 0.339(0.185) 0.753(0.510) 6.7(3.8) 0.0(0.0)
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Table 6.3: Parameter estimation (×1000). YanYi in the second column indicates the

corrected estimator by Yan and Yi (2014b); values inside the brackets in the second column

are the difference between the naive estimator by Lin and Ying (1994) and the corrected

estimator by Yan and Yi (2014b); values inside the brackets in the third to sixth columns

are the difference between the naive penalized estimator by Lin and Lv (2013) and the

proposed estimator; #S is the number of nonzero estimated parameters.

Covariate YanYi (LinYing) Lasso SCAD MCP SICA

age 7.71(-0.54) 6.75(-0.25) 10.97(-0.54) 10.56(-0.57) 4.63(-0.18)

wtkg 4.81(0.43) 3.28(0.32) 1.11(0.52) 1.11(0.76) 3.20(0.24)

hemo -4.97(-0.01) -2.38(0.00) -1.14(-0.31) -1.83(-0.39) 0(0)

homo 0.85(-0.05) 0(0) 0(0) 0(0) 0(0)

drugs -10.78(-0.07) -8.06(-0.04) -11.20(-0.01) -11.11(-0.03) -5.10(-0.03)

karnof -59.69(-0.41) -58.86(-0.23) -57.15(-0.32) -57.10(-0.37) -61.03(-0.17)

oprior -6.17(-0.02) -5.31(0.05) -8.91(-0.35) -9.10(-0.19) -1.77(0.04)

z30 6.91(-0.33) 0.75(0.01) 0(0.08) 0(0.13) 0(0)

preanti 5.45(0.05) 0(0) 0(0) 0(0) 0(0)

race -5.56(-0.02) -3.89(0.00) -3.64(-0.49) -4.61(-0.29) -1.71(0.00)

gender -1.04(-0.04) 0(0) 0(0) 0(0) 0(0)

str2 -33.07(0.53) 0(0) 0(0) 0(0) 0(0)

strat -3.04(-0.25) 0(0) 0(0) 0(0) 0(0)

symptom 12.73(-0.18) 10.65(-0.13) 12.84(-0.23) 12.72(-0.21) 8.82(-0.09)

offtrt 14.55(-0.10) 12.07(-0.12) 14.77(-0.19) 14.71(-0.19) 9.48(-0.08)

cd40 19.22(-6.48) 9.02(-3.30) 16.01(-4.59) 15.93(-4.58) 3.20(-2.40)

cd420 -86.90(3.69) -78.65(1.64) -84.98(2.28) -84.96(2.32) -74.10(1.20)

cd80 -7.67(2.99) 0(0) 0(0) 0(0) 0(0)

cd820 23.42(-2.75) 13.93(-0.17) 17.56(-0.26) 17.53(-0.28) 11.02(-0.12)

arms -3.96(-0.07) -1.55(-0.04) -1.15(-0.27) -1.57(-0.37) 0(0)

#S 20(0) 14(0) 13(1) 13(1) 11(0)
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Chapter 7

Summary and Discussion

We conclude this thesis with a brief summary and discussion of further extensions.

In Chapter 2, we proposed a correct profile likelihood approach for the classical error

model and general error model. The main part of this chapter formulates the paper Yan

and Yi (2014a).

In Chapter 3, we studied the impact of misspecifying the error model on score-based

estimation and hypothesis testing procedures on the Cox model with functional error mod-

els. It is of possible interest to extend the discussion to the full likelihood methods and

structural measurement error models.

In Chapter 4, we proposed goodness-of-fit tests for checking the Cox model with co-

variate measurement error. More simulation studies will be conducted to confirm the

theoretical justification of the proposed methods.

In Chapter 5, we proposed various estimation methods for the additive hazards model

with covariate error effects accounted for, and studied the impact of ignoring measurement

error. The material in this chapter formulates the papers Yan and Yi (2014b, c). Extensions

to other additive hazards models (Aalen 1980, 1989; Mckeague and Sasieni 1994) would be

an interesting topic to further explore.
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In Chapter 6, we considered estimation and variable selection for high dimensional (and

ultra-high dimensional) additive hazards model with covariate error through penalized

methods. To the best of our knowledge, these methods are the first ones to address high

dimensional problems for survival analysis with measurement error. In the future work,

we may consider investigating the variable selection properties of ultra-high dimensional

additive hazards model with covariate error. Furthermore, high dimensional (and ultra-

high dimensional) Cox models with covariate error is a challenging research topic that

deserves further research efforts.

Significant progress has been made in the area of survival models with covariate mea-

surement error in the past thirty years. However, many important and interesting problems

remain unexplored. In this thesis, we make several important contributions to this area.
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