
Efficient Zero-Knowledge
Proofs and Applications

by

Ryan Henry

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2014

© Ryan Henry 2014

Some rights reserved.

CC
BY NC SA

mailto:rhenry@cs.uwaterloo.ca?subject=Re:PhD thesis

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

License
This thesis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional license (CC BY-NC-SA 4.0). For full license details, please visit the following URL:

https://creativecommons.org/licenses/by-nc-sa/4.0/

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract

Zero-knowledge proofs provide a means for a prover to convince a verifier that some claim is
true and nothing more. The ability to prove statements while conveying zero information beyond
their veracity has profound implications for cryptography and, especially, for its applicability to
privacy-enhancing technologies. Unfortunately, the most common zero-knowledge techniques
in the literature suffer from poor scalability, which limits their usefulness in many otherwise
promising applications. This dissertation addresses the problem of designing communication-
and computation-efficient protocols for zero-knowledge proofs and arguments of propositions
that comprise many “simple” predicates. In particular, we propose a new formal model in which
to analyze batch zero-knowledge protocols and perform the first systematic study of systems for
batch zero-knowledge proofs and arguments of knowledge. In the course of this study, we suggest
a general construction for batch zero-knowledge proof systems and use it to realize several new
protocols suitable for proving knowledge of and relationships among large batches of discrete
logarithm (DL) representations in prime-order groups. Our new protocols improve on existing
protocols in several ways; for example, among the new protocols is one with lower asymptotic
computation cost than any other such system in the literature. We also tackle the problem of
constructing batch proofs of partial knowledge, proposing new protocols to prove knowledge of a
DL that is equal to at least k-out-of-n other DLs, at most k-out-of-n other DLs, or exactly k-out-
of-n other DLs. These constructions are particularly interesting as they prove some propositions
that appear difficult to prove using existing techniques, even when efficiency is not a primary
consideration. We illustrate the applicability of our new techniques by using them to construct
efficient protocols for anonymous blacklisting and reputation systems.

Thesis examining committee:

• Ian Goldberg (PhD Advisor), Associate Professor, University of Waterloo

• Douglas R. Stinson, University Professor, University of Waterloo

• Alfred Menezes, Professor, University of Waterloo

• David Jao, Associate Professor, University of Waterloo

• Nicholas J. Hopper, Associate Professor, University of Minnesota

Acknowledgements

First and foremost, I thank my PhD advisor, Ian Goldberg, whose expertise, understanding,
and patience have added considerably to my graduate experience. Our conversations over the past
four years have extended beyond the content and direction of my research to teaching, publishing,
writing grant proposals, “professoring”, mentoring, and even tequila-ing. Ian’s generosity in time,
ideas, and funding has truly enabled me to flourish as a graduate student. I also thank the other
members of my thesis examining committee — Professors Doug Stinson, Alfred Menezes, David
Jao, and Nick Hopper — for critiquing this dissertation.

The Cryptography, Security, and Privacy (CrySP) lab has been a potent incubator for ideas
and friendship. My conversations with fellow CrySPers have run the gamut from multivariate
polynomials to politics and have always been fun and enlightening. I especially thank my col-
laborators on research that appears in this dissertation, Yizhou Huang and Femi Olumofin, in
addition to Tariq Elahi, Sarah Harvey, Kevin Henry, Aniket Kate, Robin Smits, Sukhbir Singh,
Colleen Swanson, Jalaj Upadhyay, Tao Wang, and Gregory Zaverucha, among others, for in-
dulging me in countless discussions and debates.

I also thank my parents, Larry and Darlene Henry, for always believing in me, and last, but
by no means least, I thank my lovely wife, Lindsay, and our cockapoo, Mocha, for their love,
support, welcome distractions, tolerance, and encouragement. It is impossible to describe all the
direct and indirect ways Lindsay and Mocha have helped me maintain some semblance of sanity
as I pursued my PhD.

I was fortunate to receive generous financial support throughout my PhD studies from (i) the
David R. Cheriton School of Computer Science through a (Type I) Cheriton Graduate Scholarship,
from (ii) the Ontario Ministry of Training, Colleges and Universities through an Ontario Graduate
Scholarship (OGS), from (iii) the Government of Ontario and Bell Canada through a GO-Bell
Scholarship, and from (iv) the Natural Sciences and Engineering Research Council of Canada
(NSERC) through a Vanier Canada Graduate Scholarship (Vanier CGS).

iv

https://crysp.uwaterloo.ca/
https://crysp.uwaterloo.ca/

for Lindsay & Mocha

v

Table of Contents

FRONT MATTER
Table of Contents . vi
List of Tables . x
List of Figures . xi
List of Related Publications . xii

MAIN BODY
1 Introduction . 1
1.1 Background and motivation . 1
1.2 Thesis statement . 3
1.3 Research contributions . 3

2 Cryptographic preliminaries . 7
2.1 Mathematical notation . 7

2.1.1 Asymptotic behaviour of functions . 8
2.1.2 Languages and witnesses . 10

2.2 Interactive protocols . 11
2.2.1 Interactive proof systems . 11
2.2.2 Interactive argument systems . 12
2.2.3 Extractability and proofs of knowledge 14
2.2.4 Simulatability and zero-knowledge proofs 16
2.2.5 The Fiat-Shamir heuristic and non-interactive arguments 20

2.3 Discrete logarithms and the DL assumption . 22

vi

2.3.1 The DL problem . 23
2.3.2 The k-DLREP problem . 24

2.4 Cost model . 25
2.5 Schnorr’s protocol for DLs . 28

2.5.1 Sigma protocols . 30
2.5.2 Security analysis . 33
2.5.3 Brands’ protocol for DLREPs . 35

3 Batch proof and verification . 37
3.1 Batch tests and batch verifiers . 37

3.1.1 The naive verifier . 38
3.1.2 Defining batch verifiers . 39
3.1.3 Families of linear relations . 41
3.1.4 Batch tests for families of linear relations 42

3.1.4.1 The ARS test . 42
3.1.4.2 The RMP and RMP+ tests . 44
3.1.4.3 The RME and RME+ tests . 45
3.1.4.4 The m-ARP test . 49
3.1.4.5 The PRP and and PRP+ tests 51

3.1.5 Comparison of batch verifiers . 53
3.1.6 Batch verifying Schnorr’s protocol . 53

3.1.6.1 Batch tests for DLREP relations 57
3.2 Batch proofs of knowledge . 59

3.2.1 The naive conjunctive proof system . 60
3.2.2 Defining batch proofs of knowledge . 62
3.2.3 Conjunctive batch proofs for families of linear relations 65

3.2.3.1 The RMP-based common-base Schnorr protocol 67
3.2.3.2 The RME-based common-base Schnorr protocol 70
3.2.3.3 The RME-based common-exponent Schnorr protocol 73
3.2.3.4 The PRP+-based common-base Schnorr protocol 75

3.2.4 Communication-efficient conjunctive batch proofs 76
3.2.4.1 The

k
√

RME-based common-base Schnorr protocol 76
3.2.4.2 The polynomial-based common-base Schnorr protocol 80

vii

3.2.5 Cost comparison for batch Schnorr protocols 83
3.3 Chapter summary . 86

4 Batch proofs of partial knowledge . 88
4.1 Non-batch proofs of partial knowledge . 88

4.1.1 A disjunctive Schnorr protocol from additive secret sharing 90
4.1.2 Secret sharing schemes . 91
4.1.3 Proofs of partial knowledge for monotone languages 92
4.1.4 Shamir’s (k,n)-threshold secret sharing scheme 94

4.1.4.1 (k,n)-threshold Schnorr protocol from Shamir secret sharing . . 95
4.2 Peng and Bao’s proofs of disjunctive knowledge 97

4.2.1 Attacking Peng and Bao’s protocol . 99
4.3 L-mercurial commitments . 101

4.3.1 Formal definition . 103
4.3.2 An efficient (n − k,n)-threshold construction 105

4.3.2.1 PolyCommitDL polynomial commitments 106
4.3.2.2 Zero-knowledge protocols for PolyCommitDL commitments . . 109
4.3.2.3 (n − k,n)-threshold construction 110
4.3.2.4 Security analysis . 114
4.3.2.5 Cost analysis . 117

4.4 Batch Schnorr proofs of partial knowledge . 118
4.4.1 A (k,n)-threshold batch Schnorr protocol 119
4.4.2 Monotone proofs of partial knowledge 121

4.4.2.1 Proofs of partial knowledge from (n − k,n)-threshold mercurial
commitments . 126

4.4.2.2 Conjunctions of partial knowledge proofs 127
4.4.2.3 Disjunctions of partial knowledge proofs 129
4.4.2.4 Thresholds of partial knowledge proofs 132

4.4.3 Non-monotone proofs of partial knowledge 133
4.4.3.1 Camenisch and Shoup’s protocol for inequality of DLs 134
4.4.3.2 Proving equality among exactly k-out-of-n DLs 139
4.4.3.3 Proving equality among at most k-out-of-n DLs 142
4.4.3.4 Proving equality among between-k1-and-k2-out-of-n DLs 143

viii

4.4.3.5 Additional non-monotone access structures 144
4.5 Chapter summary . 144

5 Example applications and constructions . 145
5.1 Anonymous blacklisting and reputation systems 146

5.1.1 Blacklistable anonymous credentials 147
5.1.2 Variants of BLAC . 148
5.1.3 The scalability problem . 149
5.1.4 Threat model and design goals . 150
5.1.5 Security definitions . 152
5.1.6 Batch BLAC constructions . 153

5.1.6.1 Batch vanilla BLAC . 153
5.1.6.2 Batch d-BLAC . 155
5.1.6.3 Batch BLACR . 157

5.2 Chapter summary . 160

6 Conclusion . 161

References . 161

APPENDICES
A Intractability assumptions . 177

A.1 The computational Diffie-Hellman (CDH) problem 177
A.2 The decision Diffie-Hellman (DDH) problem 178
A.3 The strong Diffie-Hellman (SDH) assumption 179
A.4 The polynomial Diffie-Hellman (polyDH) assumption 180

B Attacking Peng and Bao’s protocol . 181

C Zero-knowledge protocols for PolyCommitDL . 185
C.1 Proving knowledge of a point on a committed polynomial 185
C.2 Proving knowledge of a committed polynomial 188
C.3 Proving that a committed polynomial has degree d < n 189

ix

List of Tables

2.1 Expected costs for common exponentiation operations 29

3.1 Cost comparison for batch verifiers . 54
3.2 Prover cost comparison for batch proofs . 84
3.3 Verifier cost comparison for batch proofs . 85
3.4 Communication cost comparison for batch proofs 86

x

List of Figures

Chapter 2: Cryptographic preliminaries
2.1 Universal knowledge extractor . 14
2.2 Simulator . 18
2.3 Straus’ multiexponentiation algorithm . 27
2.4 Schnorr’s protocol . 30
2.5 Non-interactive Schnorr protocol . 34
2.6 Brands’ protocol . 35

Chapter 3: Batch proof and verification
3.1 Chaum and Pedersen’s protocol . 56
3.2 RMP-based common-base Schnorr protocol 67
3.3 RME-based common-base Schnorr protocol 71
3.4 RME-based common-exponent Schnorr protocol 74
3.5
√

RME-based common-base Schnorr protocol 78
3.6 Polynomial-based common-base Schnorr protocol 81

Chapter 4: Batch proofs of partial knowledge
4.1 Disjunctive Schnorr protocol . 89
4.2 Peng and Bao’s protocol . 97
4.3 Camenisch and Shoup’s protocol . 135

Appendix C: Zero-knowledge protocols for PolyCommitDL

C.1 Proof of knowledge of a point on a committed polynomial 187

xi

List of Related Publications

The publications listed below introduced key results in this dissertation. I once again thank
my collaborators on those papers — Ian Goldberg, Yizhou Huang, and Femi Olumofin — without
whom some of those results might never have been conceived.

[HG13a] Ryan HenryRyan Henry and Ian Goldberg. Batch proofs of partial knowledge. In Proceedings of
ACNS 2013, volume 7954 of LNCS, pages 502–517, Banff, AB, Canada (June 2013).

[HG13c] Ryan HenryRyan Henry and Ian Goldberg. Thinking inside the BLAC box: Smarter protocols for
faster anonymous blacklisting. In Proceedings of WPES 2013, pages 71–81, Berlin,
Germany (November 2013).

[HHG13] Ryan HenryRyan Henry, Yizhou Huang, and Ian Goldberg. One (block) size fits all: PIR and SPIR
with variable-length records via multi-block queries. In Proceedings of NDSS 2013,
San Diego, CA, USA (February 2013).

[HG12] Ryan HenryRyan Henry and Ian Goldberg. All-but-k mercurial commitments and their applica-
tions. Technical Report CACR 2012-26, University of Waterloo, Waterloo, ON, Canada
(November 2012).

[HOG11] Ryan HenryRyan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for electronic commerce.
In Proceedings of CCS 2011, pages 677–690, Chicago, IL, USA (October 2011).

BIBTEX entry for this thesis:

@phdthesis{thesis:Henry14,

author = {Ryan Henry},

title = {Efficient Zero-Knowledge Proofs and Applications},

school = {University of Waterloo},

address = {Waterloo, ON, Canada},

month = {August},

year = {2014},

}

xii

http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://doi.acm.org/10.1145/2046707.2046784
http://doi.acm.org/10.1145/2046707.2046784

This page is intentionally left blank.

Chapter 1

Introduction

1.1 Background and motivation

The Internet can be a dangerous place to visit. As the proportion of our day-to-day activities that
occur online continues to increase, so too does our exposure to online privacy risks imposed on us
by fraudsters and identity thieves, by intrusive advertising companies, by oppressive governments,
and by countless unknown others. Privacy-enhancing technologies (PETs) are a class of services,
applications, and mechanisms that help mitigate such online privacy threats by empowering users
with control over the collection, dissemination, and use of information about themselves and
about their day-to-day activities. Modern PETs employ sophisticated cryptographic primitives in
order to provide privacy-friendly alternatives to otherwise privacy-agnostic technologies.

One important such primitive is zero-knowledge proofs of knowledge. Informally, a zero-
knowledge proof of knowledge is a conversation between two mutually distrusting parties — a
prover and a verifier — in which the prover convinces the verifier that some claim is true and
nothing more. The prover holds some kind of “evidence” that “proves” its claim in the traditional
sense (for example, the prover might hold an NP-witness 1); however, throughout its conversation
with the verifier, the prover will reveal neither this evidence nor any nontrivial information about
it. Nonetheless, as a “proof of knowledge”, the conversation must still, somehow, convince the
verifier beyond doubt that the prover’s claim holds.

1 A witness for the claim “∃x R(x) = 1” is just a specific value w in the domain of R for which R(w) = 1. An
NP-witness is a witness for some such claim in the complexity class NP [Gol01; Definition 1.3.2].

1

What makes a zero-knowledge proof of knowledge special, therefore, is what the verifier
learns from it: nothing beyond the veracity of the prover’s claim.2 The ability to prove statements
while conveying nothing beyond their veracity has had profound implications for PETs, and for
cryptography in general, since its introduction in a landmark 1985 paper by Goldwasser, Micali,
and Rackoff [GMR85]; indeed, zero-knowledge proofs of knowledge are integral to numerous PET
constructions in the literature, ranging from end-to-end verifiable voting schemes [Adi08, CH11,

JCJ05], through to anonymous blacklisting and reputation systems [AKS12, ATK11, HG13c, LH10,

TAKS10], private information retrieval protocols with novel features [HHG13, HOG11], threshold
ring signatures [TWC+04], verifiable shuffles for mix networks [Gro10, Nef01, SK95], and crypto-
graphically private auctions [Cac99, Bra06], among others. Other privacy-friendly cryptographic
primitives, such as verifiable secret sharing schemes [Fel87, RBO89, Sta96] and systems for se-
cure multi-party computation [KK09, CCD88, BOGW88], often employ zero-knowledge proofs of
knowledge to obtain security against malicious, arbitrarily deviating adversaries using crypto-
graphic building blocks that are only secure against honest-but-curious (or semi-honest) adver-
saries [GMW86, GMW87]. In these constructions, each participant must prove to all the others
that it is correctly carrying out its own security-critical obligations, in which case the others can
safely regard it as semi-honest. The zero-knowledge property is of course crucial here, as it is
what conceals each participant’s private information from its curious peers.

Alas, zero-knowledge does not come free. Each construction cited above gives rise to one or
more zero-knowledge proofs of knowledge of statements whose “fan-in” (i.e., number of inputs)
scales with a critical system parameter (such as the number of users [CH11, JCJ05, TWC+04],
the size of a database [AKS12, ATK11, HG13c, HOG11, TAKS10], or the circuit complexity of a
computation [KK09]). Such constructions tend to be inefficient in practice, as the communication
and computation overhead imposed by the underlying zero-knowledge protocols typically grow
in proportion to the fan-in of the statements under consideration. This might explain why, despite
their general applicability to cryptography and PETs, as of June 2014— when this dissertation
was completed — not a single widely deployed PET uses high fan-in zero-knowledge proofs of
knowledge to protect user privacy on the Internet.

2 Of course, the verifier might be able to deduce more by combining its newfound conviction in said veracity with
some prior knowledge. The zero-knowledge property cannot prevent the verifier from making such deductions;
however, it does minimize, to the fullest extent possible, how much the verifier is able to deduce.

2

1.2 Thesis statement

This dissertation considers batch zero-knowledge proof and verification techniques, which attempt
to reduce the communication and computation overhead imposed by certain zero-knowledge
proofs of knowledge when they are used to prove statements exhibiting high fan-in. Such com-
munication and computation overhead appears to be a significant — if not the most significant —
barrier to the adoption of several promising PETs; thus, it is the author’s hope that the batch
zero-knowledge proof and verification techniques introduced herein will have a direct impact
to online privacy by eliminating or reducing barriers to the adoption of new and existing PETs.
More concretely, this dissertation will establish that batch zero-knowledge proof and verification
techniques can significantly reduce the communication and computation overhead imposed by
the zero-knowledge protocols naturally arising in several privacy-enhancing technologies.

The technical contributions contained herein focus specifically on systems for batch zero-
knowledge proofs regarding knowledge of and relationships among batches of discrete logarithms
(DLs) in prime-order groups. (Nonetheless, we state most of the definitions and theorems in a
more general setting and some of our constructions for DLs in prime-order groups are immediately
applicable to proofs about other algebraic objects.) Zero-knowledge proofs of knowledge about
DLs in prime-order groups are by far the most widely utilized zero-knowledge protocols in the
current generation of PET designs; in fact, every one of the high-fan-in proofs arising in the PET
constructions cited in Section 1.1 concerns statements about such DLs. Therefore, using the new
protocols contained in this dissertation (in place of the equivalent “schoolbook” protocols) can
simultaneously reduce the communication overhead of, and speed up the bottleneck computations
in, each of those PET constructions, among myriad others.

1.3 Research contributions

This section briefly summarizes the most notable research contributions contained herein.

1. Formal treatment of batch verifiers and batch proof systems. Chapter 3 proposes a new
formal model with which to study batch verifiers and systems for batch zero-knowledge
proofs and arguments of knowledge. Section 3.1 begins with a new formal definition

3

for batch verifiers, which improves on the existing definition by Bellare, Garay, and Ra-
bin [BGR98b; Definition 2.1] in several important respects. That section also revisits Bellare
et al.’s batch verifier constructions for DLs and analyzes them within this new formal model.
Section 3.2 extends the new batch verifier definition to a definition of systems for batch
zero-knowledge proofs (or arguments) of knowledge. The latter definition is a significant
refinement of an existing definition proposed by the author and Ian Goldberg in a recent
ACNS 2013 paper [HG13a; §4].

2. Batch zero-knowledge proofs of complete knowledge. Section 3.2 suggests a generic
construction yielding systems for batch zero-knowledge proofs of complete knowledge for
linear relations, and then uses it to construct several new batch variants of Schnorr’s proto-
col [Sch89; §2] for proving knowledge of several DLs simultaneously. The new protocols
provide greater flexibility in trading off communication versus computation cost and one
of them has lower asymptotic computation cost than any previously suggested system for
batch zero-knowledge proofs of knowledge in the literature.

3. Lattice-based attack on batch proofs of partial knowledge. Section 4.2 revisits Peng
and Bao’s batch “partial knowledge” variant of Chaum and Pedersen’s protocol for proving
knowledge of and equality among 1-out-of-n DL pairs [PB08]. Our analysis uncovers a
critical flaw in Peng and Bao’s protocol and we outline a practical, lattice-based attack to
exploit it. The attack is practical even for computationally limited provers and, therefore,
renders Peng and Bao’s batch proof system completely insecure given reasonable assump-
tions about the prover’s knowledge. Prior to the aforementioned ACNS 2013 paper [HG13a],
Peng and Bao’s protocol was the only such proof system in the literature. This attack
first appeared in an appendix to the extended version of our ACNS 2013 paper [HG13b; Ap-

pendix A].

4. A new variant of trapdoor mercurial commitments. Section 4.3 proposes a new kind
of cryptographic commitments that generalize trapdoor n-mercurial commitments [LY10].
These new commitments, which we call trapdoor L-mercurial commitments, bind the
committer to a hidden subset of components from a length-n sequence. Section 4.3.2
provides an efficient and provably secure construction for the special case of trapdoor
(n − k,n)-threshold mercurial commitments, and then Section 4.4.1 uses this construction
to implement a provably secure system for batch honest-verifier zero-knowledge arguments

4

of knowledge of k-out-of-n DLs, for any constant k ∈ [1,n]. Section 4.4.2 discusses how
this latter protocol generalizes to a system for honest-verifier zero-knowledge arguments
of partial knowledge over any monotone access structure from a large class of such access
structures, given an efficient construction for a suitable L-mercurial commitment scheme.
The notion of L-mercurial commitments presented herein is a significant generalization of
the trapdoor (n − k,n)-threshold mercurial commitments recently proposed by the author
in collaboration with Ian Goldberg [HG12].

5. Batch arguments of knowledge for non-monotone access structures. Section 4.4.3 dis-
cusses batch zero-knowledge arguments of knowledge and equality of DLs over certain
non-monotone access structures. For instance, we present novel batch zero-knowledge
arguments of knowledge of a DL that is equal to exactly k-out-of-n other DLs, to at most
k-out-of-n other DLs, or to between k1- and k2-out-of-n other DLs. Using these protocols,
it is possible to construct efficient arguments of knowledge for several additional non-
monotone statements. The techniques in this section first appeared in a recent WPES 2013
paper [HG13c] by the author and Ian Goldberg, although the presentation herein extends
those results in several important respects.

6. Faster anonymous blacklisting without trusted third parties. Section 5.1 introduces the
anonymous blacklisting and reputation problem and discusses three variants of Tsang, Au,
Kapadia, and Smith’s Blacklistable Anonymous Credentials (BLAC) [TAKS10] system.
Section 5.1.6 presents batch protocols for the bottleneck zero-knowledge proofs in each of
the three variants [TAKS10, TAKS07, AKS12], thus yielding a suite of efficient and provably
secure anonymous blacklisting and reputation systems with strong privacy guarantees and
no trusted third parties that are capable of deanonymizing users at will. These improved
constructions for BLAC and its variants first appeared in the aforementioned WPES 2013
paper [HG13c] with Ian Goldberg.

7. Efficient zero-knowledge proofs about committed polynomials. Appendix C introduces
three novel systems for zero-knowledge proofs (and arguments) for claims about polyno-
mials committed to using Kate, Zaverucha, and Goldberg’s PolyCommitDL polynomial
commitments [KZG10a]. While the original motivation for developing these protocols was
to obtain provable security in our construction for trapdoor (n − k,n)-threshold mercu-
rial commitments, the new proofs are more generally useful, especially in the setting of

5

verifiable secret sharing [CGMA85]. The zero-knowledge protocols in this section first
appeared in the technical report that introduced trapdoor (n − k,n)-threshold mercurial
commitments [HG12].

6

Chapter 2

Cryptographic preliminaries

This chapter reviews the basic mathematical notation and cryptographic primitives used in the
rest of the dissertation.

2.1 Mathematical notation

Algebraic structures. Throughout, G will always denote a finite multiplicative group with
τ-bit prime order q and a fixed generator g ∈ G, and G∗ = G \ {1} will refer to its subset of
non-identity elements. Likewise, Zq will denote the field of integers modulo q, and Z∗q = Zq \ {0}
will refer to its multiplicative group of units. When convenient to do so, we will equate elements
of Zq with integers from

{
0, . . . ,q − 1

}
under arithmetic modulo q. We use Zq[x] to denote

the ring of polynomials with coefficients from Zq . R refers to the set of reals, R+ to the set of
positive reals, Z = {. . . ,−1,0,1, . . .} to the set of integers, N = {0,1, . . .} to the set of non-
negative integers, and N+ = {1,2, . . . , } to the set of positive integers. Any reader not familiar
with the above algebraic structures should consult a textbook on abstract algebra3 for definitions
and fundamental results about them. They will be used repeatedly throughout.

3 The author recommends Gallian’s Contemporary Abstract Algebra [Gal12] for this purpose.

7

If a ∈ R, then ⌈a⌉ is the smallest integer greater than or equal to a and ⌊a⌋ is the largest
integer less than or equal to a. For a given finite set U , u ∈R U denotes uniform random selection
of an element u from U and A ⊆d U indicates that the set A is a size-d subset of U . If U ⊆ N,
then U(j) denotes the j th smallest element in U .

If Λ is a finite set, then the set of all length-n sequences of elements from Λ is denoted
by Λn and the set of all finite sequences (of any finite, non-negative length) of elements from
Λ is denoted by Λ∗ =

⋃
n∈N

Λ
n. The sequences in Λ∗ are called finite strings over the alphabet Λ

and subsets of Λ∗ are called languages of strings over Λ. If the alphabet is Λ = {1}, then {1}∗

corresponds to N expressed in unary. As is customary in the literature, we drop the curly set
brackets in this case, writing 1τ to denote the integer τ ∈ N encoded as a unary string. Given
strings s and t , we use s ∥t to denote the concatenation of s and t . When s (or t) is not a string,
it is understood that the concatenation acts on some canonical string representation of s (or t)
and that the result of such concatenation is always a string. Finally, the notation |·| can have
three distinct meanings, depending on context: (i) |U | denotes the cardinality of a set U , (ii) |s |
denotes the length of a string s , and (iii) |a | denotes the absolute value of a real number a. No
confusion can arise as the precise meaning will always be clear from context.4

2.1.1 Asymptotic behaviour of functions

This section recalls important concepts about the asymptotic behaviour of functions. We begin
with Landau’s asymptotic notation, as espoused by Knuth [Knu76]. Given functions f : N→ R
and h : N→ R,

1. little-O: f (n) ∈ o
(
h(n)
)

if, for each c ∈ R+, there exists Nc ∈ N such that | f (n) | ≤ c |h(n) |
whenever n > Nc . The expression f (n) ∈ o

(
h(n)
)

reads as “ f (n) is little-O of h(n)”.

2. big-O: f (n) ∈ O
(
h(n)
)

if there exist c ∈ R+ and Nc ∈ N such that | f (n) | ≤ c |h(n) |
whenever n > Nc . The expression f (n) ∈ O

(
h(n)
)

reads as “ f (n) is big-O of h(n)”.

3. (big-)Theta: f (n) ∈ Θ
(
h(n)
)

if both f (n) ∈ O
(
h(n)
)

and h(n) ∈ O
(

f (n)
)
. The expres-

sion f (n) ∈ Θ
(
h(n)
)

reads as “ f (n) is (big-)Theta of h(n)”.

4 In fact, an ambiguous case does arise throughout: whether to treat 1τ as the integer τ expressed in unary or as a
length-τ string of 1s. Fortunately, both of these interpretations result in the same value for |1τ | and either choice is
therefore acceptable.

8

4. big-Omega: f (n) ∈ Ω
(
h(n)
)

if h(n) ∈ O
(

f (n)
)
. The expression f (n) ∈ Ω

(
h(n)
)

reads
as “ f (n) is big-Omega of h(n)”.

5. little-Omega: f (n) ∈ ω
(
h(n)
)

if h(n) ∈ o
(

f (n)
)
. The expression f (n) ∈ ω

(
h(n)
)

reads
as “ f (n) is little-Omega of h(n)”.

Polynomial functions. A function p : N → R+ is said to be polynomial in n if there exists
a constant a ∈ R+ such that p(n) ∈ O

(
na
)
; likewise, p(n) is poly-logarithmic in n if it is

polynomial in lg n and it is super-polynomial in n if it is not polynomial in n. By poly(n)
we denote the set of all functions polynomial in n. An algorithm is (expected) probabilistic
polynomial-time (PPT) if it is probabilistic and if its (expected) running time is polynomial in
the length of its inputs. More generally, we call any algorithm (whether it be deterministic or
probabilistic) efficient if its expected running time is polynomial in the length of its inputs.

Negligible functions. A function ε : N → R+ is called negligible if ε(n) ∈ o
(
1/na
)

for
every a ∈ R+. Conversely, a function µ : N→ R+ is non-negligible if there exists some a ∈ R+

such that µ(n) ∈ Ω
(
1/na
)
. An event E occurs with (non-)negligible probability in n if the

probability that it occurs is a (non-)negligible function of n, and E occurs with overwhelming
probability in n if the probability that ¬E occurs is negligible in n.

Note that a function being “not negligible” is not the same as a function being non-negligible.
For example, given a negligible function ε and a non-negligible function µ, one can define many
piecewise functions, for instance

η(n) =

ε(n) if n is even, and

µ(n) if n is odd,

which are neither negligible nor non-negligible. The reader should keep this distinction in mind
when interpreting definitions that reference functions that are negligible, non-negligible, or not
negligible.

9

2.1.2 Languages and witnesses

Fix a finite alphabet Λ and let S and W be arbitrary languages over Λ. A collection of ordered
pairs R ⊆ S × W is a (binary) relation on strings from Λ∗. We call the language of strings
LR =

{s ∈ S �� ∃w ∈ W, (s ,w) ∈ R
}

the language induced by R. In the following, we abuse
notation by treating R as the Boolean-valued function indicating whether its input is in R as a
relation; in other words, we treat R(s ,w) as a function evaluating to 1 if (s ,w) ∈ R and to
0 otherwise. Any pair of inputs (s ,w) ∈ S × W on which R may be evaluated is called an
instance for R. If R(s ,w) = 1, then the string w is called a witness that s ∈ LR. Given a string
s ∈ S, the set WR (s) =

{w ∈ W �� R(s ,w) = 1
}

is called the witness set for s ∈ LR. Of
course, WR (s) = {} if s < LR. Throughout, we assume that there are efficient algorithms to test
membership of arbitrary strings in S and W so that identifying instances for R is easy. We make
no assumptions about the ease or difficulty of testing membership of a string s in LR when no
appropriate witness w ∈ WR (s) has been provided. Intuitively, one should think of S as the
subset of strings s ∈ Λ∗ for which one can plausibly claim that s ∈ LR.

NP-relations and NP-languages. A language LR is called an NP-language if it belongs to
the complexity class NP; that is, if (i) there exists an efficient algorithm to evaluate R(s ,w) on
any instance (s ,w) ∈ S × W , and (ii) there exists a function p(n) ∈ poly(n) such that every
s ∈ LR has at least one witness w ∈ WR (s) satisfying |w | ≤ p(|s |). Any witness w ∈ WR (s)
that satisfies the latter bound is called an NP-witness that s ∈ LR. If LR is an NP-language,
then we call the relation R an NP-relation. Viewing WR (s) as the set of proofs that s ∈ LR, we
can interpret NP as the class of languages whose strings each have one or more “short” proofs
of membership (that can be checked in polynomial time). Note that while, by definition, every
NP-language has an efficient algorithm to verify its short proofs, it is widely believed that there
are NP-languages for which no efficient algorithm can find its short proofs [For09]. We refer
the reader to Goldreich’s Foundations of Cryptography–Volume 1, Basic Techniques [Gol01] for
further discussion about NP and its relevance to cryptography.

10

2.2 Interactive protocols

A protocol is a system of rules describing the sequence, syntax, and semantics of message
exchange between two or more interactive algorithms.5 A message transfer from one algorithm
to another in a protocol constitutes a move and two consecutive moves (by different parties)
constitute a round. Protocols comprising just one move are called non-interactive protocols
and those comprising two or more moves (hence, comprising one or more rounds) are called
interactive protocols.

2.2.1 Interactive proof systems

This dissertation concerns a special kind of two-party protocols called interactive proof systems,
which involve a pair of interactive algorithms that play two distinct roles: one algorithm is the
prover and the other algorithm is the verifier. The prover always has some advantage over
the verifier, whether it be additional computational resources or access to private information
about the common input; in particular, except where otherwise specified, the prover will always
have unbounded computational capacity and the verifier, by contrast, will always be PPT in the
common input. In general, many different interactive algorithms can send and receive messages
according to either role in a given interactive proof system; nonetheless, we always have two
specific “honest” algorithms — denoted by P and V — in mind. We use an asterisk to maintain
a clear distinction between these honest algorithms and potential “dishonest” impostors, writing
P∗ and V∗ to denote arbitrary algorithms taking on the prover and verifier roles in the protocol
under consideration. (Note that P∗ and V∗ can refer both to the honest algorithms and to dishonest
algorithms, whereas P and V can only refer to the honest algorithms.)

5 Formally, an interactive algorithm is a Turing machine [AB09; §1.2] enhanced with a read-only common input
tape and one or more read-and-appendive-write communication tapes. (In particular, each machine can read
from and write to any of its shared communication tapes, but no machine can delete or overwrite data on a
communication tape after it has been written.) All communicating algorithms share a common input tape and each
pair of communicating algorithms shares a communication tape over which to exchange messages. In addition,
each algorithm has three private tapes: a random tape containing an infinite sequence of unbiased coin tosses
with which it can seed probabilistic computations, a work tape on which it can carry out intermediate calculations,
and an auxiliary input tape on which it receives secret information that is not necessarily available to the other
interacting algorithms.

11

If P is an interactive algorithm, then P(w) denotes P given the string w ∈ Λ
∗ as its private

auxiliary input. If V is a second interactive algorithm, then
(
P,V
)

denotes the protocol arising
when P interacts with V, and

〈
P,V
〉
(s) denotes the random variable describing the output of V in

such an interaction when the common input string is s ∈ S. (So, for example, in a given discussion,(
P,V
)

and
(
P∗,V
)

reference the same protocol, but
〈
P,V
〉
(s) and

〈
P∗,V
〉
(s) generally do not

reference the same random variables.) P always makes the final move in an interactive proof, after
which V checks one or more verification equations to decide whether it should accept or reject
the interaction. Given a common input string s ∈ S for

(
P,V
)
, we write Pr

[
1←

〈
P,V
〉
(s)
]

for
the probability of the event “V accepts” and we write Pr

[
0 ←

〈
P,V
〉
(s)
]

for the probability of
the event “V rejects”. Intuitively, we want to ensure that, upon interacting with any arbitrarily
cheating P∗, V accepts if and (essentially) only if s ∈ LR. Such a property would imply that there
is no cheating strategy using which some dishonest P∗ can reliably “fool” V into concluding that
s ∈ LR when in fact s < LR. Definition 1 formalizes this intuitive requirement.

Definition 1. Fix an alphabet Λ and let S and W be infinite subsets of Λ∗. A two-party interactive
protocol

(
P,V
)

is an interactive proof system for the infinite relation R ⊆ S ×W if there exists
a negligible function ε : N → R+ such that, for every s ∈ S and for every (possibly dishonest)
prover P∗,

(
P,V
)

provides the following two guarantees.

1. Complete: If s ∈ LR, then Pr
[
1←

〈
P,V
〉
(s)
]
= 1.

2. Sound: If s < LR, then Pr
[
1←

〈
P∗,V
〉
(s)
]
< ε
(
|s |) .6

When P∗ and V execute an interactive proof system on a given input s ∈ S, the resulting
interaction is called an interactive proof that s ∈ LR; the interactive proof is an accepting proof
if V accepts and it is a rejecting proof otherwise.

2.2.2 Interactive argument systems

Because we assume that P has unbounded computation capacity, it follows that P can always
compute a witness attesting to the membership of s in LR, provided one exists. Sometimes
it is useful to assume that P∗ is PPT in the common input, in which case we must modify the

6 An alternative, weaker soundness criterion requires only that Pr
[
0 ←

〈
P∗,V
〉
(s) �� s ∈ S \ LR

]
be non-negligible

in |s | for every (possibly cheating) prover P∗. Running some number in poly(|s |) of independent trials of such a
protocol and having V accept only if it accepts in every trial yields a new PPT protocol whose soundness error is
negligible in |s |, as required by the stronger soundness criterion we use in Definition 1.

12

completeness criterion to provide honest P with an appropriate witness as private auxiliary input.
(Indeed, the fact that s ∈ LR does not imply that a given PPT prover can find a witness to prove
it.) The completeness criterion for PPT provers is therefore:

“If R(s ,w) = 1, then Pr
[
1←

〈
P(w),V

〉
(s)
]
= 1”.

This modified completeness criterion does not imply that a given PPT prover P∗ can only
make V accept when P∗ has access to an appropriate witness w ∈WR (s); rather, it implies that if
honest P is provided with such a witness, then honest P will always make V accept. In particular,
if s ∈ LR, then the definition does not preclude some other P∗ from making V accept even when
P∗ does not “know” any witness that s ∈ LR.

The interpretation — though not the statement — of the soundness criterion also changes when
we restrict the P∗ to be PPT: proving soundness with respect to all PPT provers implies that, for
any sufficiently long common input s ∈ S \ LR, it is computationally infeasible (rather than
impossible) for a (possibly dishonest) P∗ to make V accept with a probability that is not negligible
in |s |. In such protocols, it typically happens that a given P∗ can make V accept on input s ∈ S\LR

only if that same P∗ can solve some (presumed) intractable problem online, during the execution
of the protocol.

Because V’s confidence in concluding that “an accepting interaction implies that s ∈ LR” is
contingent on the assumption that P∗ cannot solve a particular, concrete problem instance, such
protocols involving PPT provers are called interactive argument systems so as to differentiate
them from interactive proof systems. This notion is formalized in Definition 2.

Definition 2. Fix an alphabet Λ and let S and W be infinite subsets of Λ∗. A two-party interactive
protocol

(
P,V
)

is an interactive argument system for the infinite relation R ⊆ S×W if there exists
a negligible function ε : N → R+ such that, for every s ∈ S and for every (possibly dishonest)
PPT prover P∗,

(
P,V
)

provides the following two guarantees.

1. Complete: If R(s ,w) = 1, then Pr
[
1←

〈
P(w),V

〉
(s)
]
= 1.

2. Sound: If s < LR, then Pr
[
1←

〈
P∗,V
〉
(s)
]
< ε
(
|s |) .

When P∗ and V execute an interactive argument system on a given input s ∈ S, the resulting
interaction is called an interactive argument that s ∈ LR; the interactive argument is an accepting
argument if V accepts and it is a rejecting argument otherwise.

13

sw

w ′

P∗ EP∗

...

Figure 2.1: A universal knowledge extractor for
(
P,V
)

having rewinding black box
oracle access to a prover P∗. If

(
P,V
)

is both a system for proofs of knowledge (in the
sense of Definition 3) for the NP-language LR and an interactive proof system (in the
sense of Definition 1), then EP∗ is expected PPT in |s | and its output w ′ is an NP-witness
that s ∈ LR.

2.2.3 Extractability and proofs of knowledge

If P∗ is computationally unbounded, then an accepting proof that s ∈ LR implies that P∗must, in
some sense, “know” a witness that s ∈ LR. After all, the proof establishes with overwhelming
probability that WR (s) is nonempty and the unboundedness of P∗ ensures that P∗ can easily be
made to compute the elements of WR (s). Of course, a real prover cannot be computationally
unbounded. Nonetheless, it is often useful for a real, computationally bounded prover to demon-
strate not only that s ∈ LR but also that it “knows” a witness in WR (s). This idea is captured
by the notion of knowledge extraction: we say that P∗ knows a witness in WR (s) if there is an
efficient algorithm to compute such a witness from s , given special access to P∗ as an oracle. We
emphasize that, although the notion of extractability is motivated by PPT provers, we do not
assume that the P∗ are in fact PPT; in particular, we use extractability to define interactive proof
systems that let honest P prove knowledge of a witness even though P is only PPT but that are
sound even when P∗ is computationally unbounded.

More precisely, we consider a probabilistic algorithm EP∗ endowed with rewinding black
box oracle access to P∗; in other words, EP∗ may (i) send arbitrary messages to P∗ and read the
responses P∗ generates (all in a single algorithmic time step), and (ii) “rewind” P∗ to any earlier

14

internal state. Such a probabilistic algorithm EP∗ having rewinding black box oracle access to
an interactive algorithm P∗ is called an oracle machine for P∗. As EP∗ only has black box oracle
access to P∗, it is not privy to P∗’s private inputs or internal state; however, through rewinding,
EP∗ can observe what moves P∗ makes in response to several distinct verifier moves at a given
point in a given protocol execution. This gives EP∗ computational power somewhere between that
of P∗ and that of V: V is strictly PPT and P∗ is potentially unbounded, whereas EP∗ is expected
PPT and is granted rewinding black box oracle access to P∗. Figure 2.1 illustrates the extraction
process.

If the ability for P∗ to make V accept with a probability non-negligible in |s | implies that EP∗

is an efficient algorithm for computing a witness w ′
∈ WR (s), then we say that an accepting

proof (or argument) that s ∈ LR implies not only that s ∈ LR but also that P∗ knows a witness
w ∈ WR (s); thus, we equate “knowledge of w ” with “the ability to efficiently compute w ”.
It is necessary to assume that LR is an NP-language and that the output of EP∗ is (essentially)
always an NP-witness, as EP∗ cannot possibly be efficient for any s ∈ LR that lacks an NP-witness.
Note that if ��WR (s)�� ≥ 2, then whatever witness P∗ actually knows (for example, if P∗(w) was
given w as private auxiliary input) might not be the same one that EP∗ outputs: in other words,
w ′
← EP∗(w) (s) does not imply that w = w ′.

Definition 3. Fix an alphabet Λ, let S and W be infinite subsets of Λ∗, and let R ⊆ S ×W be an
infinite NP-relation. A two-party interactive protocol

(
P,V
)

is a system for proofs of knowledge
for LR if there exists an oracle machine E, a positive function κ : S → R+, and a constant a ∈ R+

such that, for every (possibly dishonest) prover P∗,
(
P,V
)

provides the following two guarantees.

1. Complete: If s ∈ LR, then Pr
[
1←

〈
P,V
〉
(s)
]
= 1.

2. Extractable: Let ρ(s) = Pr
[
1 ←

〈
P∗,V
〉
(s)
]
. If ρ(s) > κ(s), then EP∗(s) outputs a

witness w ′
∈WR (s) in an expected number of steps at most |s |a/(ρ(s) − κ(s)

)
.

Note that the notation EP∗(s) here refers to the oracle machine E given the common input
string s and rewinding black box oracle access to P∗.

An oracle machine E satisfying the extractability criterion in Definition 3 is called a universal
knowledge extractor for

(
P,V
)

and the smallest function κ(·) for which the extractability criterion
holds (for every possible knowledge extractor) is called the knowledge error function for

(
P,V
)
.

The knowledge error function measures the probability (inherent to the protocol) with which a

15

dishonest P∗ can make V accept on input s ∈ S without actually knowing a witness w ∈WR (s).
Note that if the above denominator, ρ(s)−κ(s), is non-negligible in |s |, then the expected running
time |s |a/(ρ(s) − κ(s)

)
of EP∗(s) is polynomial in |s | and, consequently, the universal knowledge

extractor is efficient. (In other words, if P∗ causes honest V to accept with a probability non-
negligibly greater than κ(s), then EP∗(s) extracts a witness w ∈WR (s) in expected polynomial
time.) In some instances, we must assume that the P∗ are PPT in order to prove that ρ(s) − κ(s)
is non-negligible in |s |, in which case we call the protocol a system for arguments of knowledge
for LR. Similar remarks as those given for interactive argument systems apply to systems for
arguments of knowledge. The probability 1 − κ(s) is sometimes called the soundness of

(
P,V
)
.

If
(
P,V
)

is also an interactive proof (or argument) system in the sense of Definition 1, then the
knowledge error κ(s) is negligible and

(
P,V
)

has soundness overwhelming in |s |.

2.2.4 Simulatability and zero-knowledge proofs

We now discuss the zero-knowledge property of a protocol
(
P,V
)
. Informally, an interactive

proof system for LR is zero-knowledge if a trusted oracle merely proclaiming that s ∈ LR enables
any (possibly dishonest) V∗ to efficiently deduce anything it might have “learned” by engaging in(
P,V∗
)

on common input s ∈ LR. (We again equate “knowledge” with “the ability to efficiently
compute” and note that such computation is not limited to evaluating functions — it also applies to
generating probability distributions.) This idea is captured by the notion of simulation: we say that
a given verifier V∗ gains zero (extra) knowledge if, without any help from P, V∗ can “simulate”
an interaction that is “indistinguishable” from the real interactions that occur when honest P
executes the protocol with that particular V∗ on the same common input. This simulatability
requirement ensures that there is no PPT cheating strategy using which V∗ can “learn” things
from P that it could not just as easily compute on its own given the common input s and a promise
that s ∈ LR.

To formalize this notion, we define the transcript of a (two-party) protocol execution between
P and V∗ as the tuple of messages exchanged between P and V∗ up until V∗ halts. An accepting
transcript is a transcript of an accepting proof (or argument) and a rejecting transcript is a
transcript of a rejecting proof (or argument). The aggregate view of V∗ upon interacting with
P, denoted ViewP,V∗(s), consists of all the information that V∗ “sees” in the protocol execution,
including (i) the transcript, (ii) the common input string s , (iii) V∗’s own private inputs, and

16

(iv) V∗’s random coin flips (if any). At least one of P or V∗ will always be probabilistic, so
the aggregate view of V∗ for a given set of inputs is a random variable induced by the random
coin tosses of P and V∗. By parameterizing over all possible protocol executions, we obtain
a collection

{
ViewP,V∗(s)

}
s ∈LR

of random variables; such a parametrized collection of random
variables is called an ensemble of random variables.

Definition 4. Fix an alphabet Λ and let LR ⊆ Λ
∗ be an infinite language over Λ. Given two

probabilistic algorithm A and B operating on strings from Λ∗, the ensembles
{A (s)

}
s ∈LR

and{B (s)
}

s ∈LR
are said to be

1. perfectly indistinguishable on LR if, for all s ∈ LR, the random variables A (s) and B (s)
have the same distributions,

2. statistically indistinguishable on LR if there exists a negligible function ε : N → R+ such
that, for all s ∈ LR, ∑

α

���Pr
[
α ← A (s)

]
− Pr
[
α ← B(s)

] ��� ≤ ε(|s |),

where α ranges over all the possible outputs of A and all the possible outputs of B , and

3. computationally indistinguishable on LR if there exists a negligible function ε : N → R+

such that, for all s ∈ LR and for every PPT algorithm D,∑
α |D(α)=1

���Pr
[
α ← A (s)

]
− Pr
[
α ← B(s)

] ��� ≤ ε(|s |),

where α ranges over all the possible outputs of A and all the possible outputs of B for
which D(α) = 1.

Intuitively, statistical indistinguishability ensures that, although the distributions of A (s) and
B (s) may in fact be slightly different, they are sufficiently close that distinguishing between them
is not feasible for any PPT algorithm (in an asymptotic sense), as doing so requires sampling
from A (s) and B (s) a number of times super-polynomial in |s |. Likewise, computational indis-
tinguishability ensures that, although the distributions of A (s) and B (s) may in fact be quite
different, distinguishing between them becomes computationally infeasible for any PPT algorithm

17

s sz zw

ViewP,V∗(z)(s) SV∗(s ,z)

P V∗ SV∗

Figure 2.2: An interactive proof between P and V∗ (left) and a simulator for V∗ (right).
If
(
P,V
)

is zero-knowledge on LR, then ViewP,V∗(z)(s) and SV∗(s ,z) are sampled from
indistinguishable random variables.

as |s | grows sufficiently large. Proving that
{A (s)

}
s ∈LR

and
{B (s)

}
s ∈LR

are computationally indis-
tinguishable — assuming that they are not also statistically indistinguishable — typically requires
one or more assumptions about the intractability of certain mathematical problems. (We discuss
such intractability assumptions in Section 2.3.)

Definition 5. Fix an alphabet Λ, let S and W be infinite subsets of Λ∗, and let R ⊆ S ×W be an
infinite relation. A two-party interactive protocol

(
P,V
)

is (perfect, statistical, or computational)
zero-knowledge on LR if, for every (possibly malicious) verifier V∗ and for every auxiliary string
z ∈ Λ∗, there exists an expected PPT algorithm SV∗ such that the ensembles

{
ViewP,V∗(z)(s)

}
s ∈LR

and{
SV∗(s ,z)

}
s ∈LR

are (perfectly, statistically, or computationally) indistinguishable. An algorithm
SV∗ with this property is called a (perfect, statistical, or computational) simulator for V∗.

The string z in Definition 5 plays the role of “prior knowledge” of V∗; hence, including it
in the definition ensures that V∗ cannot leverage prior knowledge to help it extract additional
information from interactions with honest P. In particular, we demand that, for any given string
z known to V∗, the simulator SV∗ can efficiently reproduce any conversation that might arise
between V∗ and P given only s and z as input. Moreover, providing V∗with access to an arbitrary

18

string z ensures that the zero-knowledge property holds under arbitrary sequential composition
of zero-knowledge protocols, as z may include the view of V∗ from all prior interactions with P.7
Figure 2.2 illustrates a simulator for V∗.

The protocols that we consider in this dissertation are not zero-knowledge in the sense of
Definition 5; rather, they satisfy a weaker notion of the zero-knowledge property under which
there is a simulator for the honest verifier V, but not necessarily for any dishonest verifier V∗. This
property is aptly called honest-verifier zero-knowledge. We sometimes refer to a zero-knowledge
protocol (in the sense of Definition 5) as general zero-knowledge to distinguish it from a pro-
tocol that only satisfies this weaker “honest-verifier” version of the zero-knowledge property.
Note that focusing on honest-verifier zero-knowledge protocols is not a limitation in practice;
indeed, there exist many well-known techniques [GSV98,Gro04,FS86,DGOW95,Vad06] to convert
honest-verifier zero-knowledge protocols into equivalent general zero-knowledge protocols while
introducing only modest communication and computation overhead. Interested readers can find a
concise description of one such construction in Ivan Damgård’s lecture notes [Dam11; §8].

The Camenisch-Stadler notation

We use Camenisch and Stadler’s ubiquitous notation [CS97; §4] to denote systems for honest-
verifier zero-knowledge proofs of knowledge by expressing P’s intent. The advantage of this
notation is that it allows us to speak of zero-knowledge proofs of knowledge in the abstract,
without specifying the actual protocols. For example, if LR is an NP-language and if s ∈ S is
given as a common input to P∗ and to honest V, then we write PK

{w : R(s ,w) = 1
}

to denote
an honest-verifier zero-knowledge proof (or argument) of knowledge of a witness w ∈ WR (s).
By convention, any values that appear to the left of the colon constitute a witness that P∗ is proving
knowledge of, and any values that appear only to the right of the colon are public (and, hence,
known both to P∗ and to V).

7 In general, the zero-knowledge property does not hold under parallel composition; however, looking forward, it
turns out that for the particular class of protocols that we focus on in this dissertation — called sigma protocols —
the zero-knowledge property does indeed hold under arbitrary parallel and sequential composition.

19

2.2.5 The Fiat-Shamir heuristic and non-interactive arguments

An interactive proof system
(
P,V
)

is called public coin if the messages that honest V sends
to P on common input s ∈ S contain only uniform random strings from some publicly known
“challenge” domain C(s). (We typically assume that C(s) = C(s ′) whenever |s | = |s ′ |.) All of
the protocols that we consider in this dissertation are public-coin protocols.

Observation 2.1. To prove that a public-coin interactive proof system
(
P,V
)

is honest-verifier
zero-knowledge, it suffices to prove indistinguishability among the ensembles of real and simu-
lated interaction transcripts (rather than the verifier’s entire aggregate view). Doing so suffices
because the rest of the aggregate view is, by the very definition of a public-coin protocol, fixed
before P∗ and honest V ever exchange a message.8

We now describe a general construction for converting almost any public-coin system for
interactive, honest-verifier zero-knowledge proofs of knowledge into a system for non-interactive,
general zero-knowledge arguments of knowledge. This is accomplished by replacing V with a
cryptographically secure hash function Hs with range C(s); that is, an efficiently computable
function Hs : Λ∗ → C(s) that is both preimage-resistant and collision-intractable [RS04; §3].9
More precisely, in any move where honest V would normally send a (uniform random) message
from C(s) to P in the interactive proof, P instead computes the (still essentially random) message
by evaluatingHs on the entire protocol transcript up to the current move. Typically, V (or some
external, benevolent entity) will start off the transcript with an extra random nonce M ∈ Λ∗, whose
length is polynomial in τ. This effectively forces P∗ to compute the entire non-interactive proof
of knowledge in real time.

If we reinterpret the nonce M as a message, then an accepting transcript with common input
s and nonce M can be viewed as establishing that some prover holding a witness w ∈ WR (s)
has “signed” the message M . For this reason, such non-interactive protocols are sometimes

8 If
(
P,V
)

is not a public-coin protocol, then any verifier-selected values that arise in the transcript may depend on
P’s earlier messages and V∗’s private input.

9 Intuitively, a hash function Hs : Λ∗ → C(s) is preimage-resistant if no efficient algorithm can, given a random
c ∈ C(s), output a string s ∈ Λ∗ such thatHs(s) = c, and it is collision-intractable if no efficient algorithm can
produce distinct strings s1,s2 ∈ Λ

∗ such that Hs(s1) = Hs(s2). Formalizing the the latter collision-intractability
property requires that the hash function be keyed; otherwise, an efficient algorithm can simply have one or more
collisions “hard-wired” in [Rog06]. Note that the nonce M in the Fiat-Shamir transform serves the purpose of a
key. For formal definitions relating to cryptographically secure hash functions the author suggests the treatment
by Rogaway and Shrimpton [RS04].

20

called signature proofs of knowledge [CL06]. We indicate that a protocol is a signature proof of
knowledge on the message M using a notation derived from the above Camenisch-Stadler notation
by (i) replacing the prefix PK with SPK, and (ii) appending the suffix (M); thus, SPK

{w :
R(s ,w) = 1

}
(M) is the non-interactive form of PK

{w : R(s ,w) = 1
}

using the above
transformation and nonce M .

A special case of this transformation was first proposed by Fiat and Shamir [FS86]; for this
reason, the transformation is often called the Fiat-Shamir transform. To argue that Fiat-Shamir
transformed protocols are secure, Bellare and Rogaway [BR93] suggested modeling the hash
functionHs as a random oracle — that is, as a function that pairs any given input from its domain
with a uniform random output from its range. As P∗ cannot predict the output of such a random
oracle prior to choosing an input, the situation for P∗ is essentially equivalent to that which arises
when it interacts with honest V. (In both cases, no matter what P∗ does, it receives nothing but
apparently unrelated, random messages from C(s) in response.) The key difference between the
interactive protocol and the Fiat-Shamir transformed protocol is that, in the latter case, P∗ can
query the random oracle many times in hopes that some query will return a “lucky” message
to which it knows how to respond. (Of course, this does not work in the interactive protocol,
as V will reject in the overwhelmingly likely event that P∗’s first attempt fails.) However, if the
domain from which V draws its random messages in the interactive proof — and, hence, the
range of Hs in the non-interactive proof — has cardinality super-polynomial in |s |, then brute-
force searching for such lucky outputs would require time super-polynomial in |s |. This explains
why the resulting protocol is a system for non-interactive arguments of knowledge and not a
system for non-interactive proofs of knowledge: we need to assume that P∗ is PPT in the common
input to argue that it cannot use a brute-force search to discover the negligible portion of inputs
to the random oracle that yield lucky outputs.

Because obtaining overwhelming soundness in the non-interactive protocol requires that
��Hs
(
·
) �� be non-constant (indeed, super-polynomial in |s |), it is customary to assume that P and

V have access to a single random oracleH that outputs an infinite random string for any given
input and, moreover, that P and V can efficiently map such uniform random, infinite strings to
uniform random elements of C(s). 10 (In this case, P and V must prepend the common input s to

10 If H is a real, cryptographically secure hash function with fixed-length outputs, then we still obtain heuristic
soundness against any t-time probabilistic prover for certain, concrete values of t ∈ N+. For t sufficiently large,
this level of heuristic security might be adequate in some real-world applications; therefore, the assumption that a
given Fiat-Shamir-transformed protocol instantiation is secure in practice is known as the Fiat-Shamir heuristic.

21

each string they input to the random oracle.) Such non-interactive arguments are said to be sound
in the random oracle model. To prove that the zero-knowledge property still holds, we must allow
the random oracle to be programmed so that the simulator can choose some arbitrary inputs s ∥x
in the domain ofH and specify the corresponding outputsH

(s ∥x) ∈ C(s).

Theorem 2.2 (Pointcheval&Stern, 1996 [PS96]). If the protocol denoted in Camenisch-Stadler
notation by PK

{w : R(s ,w) = 1
}

is a system for public-coin honest-verifier zero-knowledge
proofs of knowledge for LR in which all messages from V come from a set C(s) whose cardinality
is super-polynomial in |s |, then the protocol denoted by SPK

{w : R(s ,w) = 1
}
(M) is a system

for non-interactive, general zero-knowledge arguments of knowledge for LR, with soundness
holding in the random oracle model.

Of course, real hash functions do not behave like programmable random oracles, a fact vividly
illustrated by Canetti, Goldreich, and Halevi [CGH04], who constructed several (contrived) pro-
tocols each provably secure in the random oracle model yet trivially insecure when the random
oracle is instantiated by any efficiently computable function. Nonetheless, the non-interactive
zero-knowledge arguments arising from the Fiat-Shamir transform are generally believed to be
sound in practice (with respect to PPT provers), provided the random oracle is instantiated using
a hash function that is both preimage-resistant and collision-intractable.

2.3 Discrete logarithms and the DL assumption

In the rest of this dissertation, we consider systems for zero-knowledge proofs of knowledge about
discrete logarithms (DLs) in prime-order multiplicative groups. This section briefly introduces
the DL problem and its generalization to several bases. Some other variations on the DL problem
appear in Appendix A and will be introduced in the text as needed. Whenever we define such
a problem, we begin with a concrete problem definition, stated with respect to a particular mul-
tiplicative group G, and we follow with an asymptotic definition of the associated intractability
assumption. For the latter asymptotic formulations, we require the notion of a group-generating
algorithm.

Definition 6. A group-generating algorithm G is a PPT algorithm that, on input 1τ , outputs a
description of a finite multiplicative groupG, its τ-bit prime order q, and a fixed generator g ∈ G∗.

22

We write
(
G,q,g

)
← G (1τ) to indicate that the tuple

(
G,q,g

)
is obtained from G by sam-

pling from its output distribution on input 1τ and we write (G,q,g1, . . . ,gk) ← G (1τ; k) as
shorthand for the process of sampling (G,q,g1) ← G (1τ) and having a trusted entity choose
k − 1 additional generators g2, . . . ,gk ∈R G

∗ uniformly at random. Intuitively, the quantity
τ ∈ N+ is a security parameter that controls the difficulty of solving random instances of certain
mathematical problems in G.

2.3.1 The DL problem

The discrete logarithm (DL) problem in G is:

DL problem: Given as input a pair (g,h) ∈ G∗ × G, output x ∈ Zq such that h = gx .

The exponent x is called the discrete logarithm of h with respect to the base g, which we express
in mathematical notation as x = logg h. Unlike computing traditional continuous logarithms in
R+, computing x = logg h from (G,q,g,h) appears to be a difficult problem for many groups
G; 11 on the other hand, given any pair (h, x) ∈ G × Zq , one can efficiently verify that x = logg h
by computing gx and checking that the result equals h. It is therefore natural to view the DL
problem in G as defining, for each generator g ∈ G∗, an NP-relation Rg =

{
(h, x) ∈ G × Zq ��

h = gx }.
An algorithm A solves the DL problem in G with advantage ε if

Pr
[
x ← A (g,h) �� h = gx] = ε,

where the probability is over the random choice of (g,h) ∈R G
∗
×G and the random bits consumed

by A . We say that the DL problem is
(
t, ε
)
-intractable in G if no t-time probabilistic algorithm

solves the DL problem in G with advantage greater than ε.

Our first intractability assumption, the so-called DL assumption, concerns the infeasibility of
solving DLs in the groups output by a fixed group-generating algorithm G . The DL assumption
has been one of the most studied and widely used intractability assumptions in the cryptographic
literature since its introduction in Diffie and Hellman’s seminal paper [DH76; §3].

11 In fact, not only is the DL problem apparently difficult in the worst case for many groups, but, in some settings,
one can exploit a property called random self-reducibility to show that the DL problem is equally difficult in the
average case [JMV05].

23

Definition 7. The DL assumption holds for a group-generating algorithm G if there exists a
negligible function ε : N → R+ such that, for all PPT algorithms A and for all τ ∈ N+, if(
G,q,g

)
← G (1τ), then A solves the DL problem in G with advantage at most ε(τ).

The DL assumption is widely believed to hold for several natural classes of group-generating
algorithms [Bon98; §1.1]. Most commonly, these group-generating algorithms output either (i) the
group of points on an elliptic curve over a finite field, or (ii) a multiplicative subgroup of the
integers modulo a prime. Throughout this dissertation, we will always assume that the DL
assumption holds for G without concerning ourselves with the specific representation of the
groups that G outputs.

2.3.2 The k-DLREP problem

The DL problem in G generalizes naturally to the k-base DL-representation (k-DLREP) prob-
lem [Bra00; §2.3.2] in G:

k-DLREP problem: Given as input a (k + 1)-tuple (g1, . . . ,gk ,h) ∈ (G∗)k ×G, output
(x1, . . . , xk) ∈ (Zq)k such that h = g

x1

1 · · · g
xk

k .

The tuple (x1, . . . , xk) is called a DL-representation of h with respect to the basis (g1, . . . ,gk).
The bases gi in the basis are typically pairwise distinct, though the definition does not require
this. Unlike DLs, the DL-representations of h with respect to a given basis are generally not
unique.

An algorithm A solves the k-DLREP problem in G with advantage ε if

Pr
[
(x1, . . . , xk) ← A (g1, . . . ,gk ,h) �� h = g

x1

1 · · · g
xk

k

]
= ε,

where the probability is over the random choices of (g1, . . . ,gk) ∈R (G∗)k and h ∈R G, and the
random bits consumed by A . In particular, the probability is not over the specific k-DLREP
(x1, . . . , xk) that A outputs; indeed, the advantage of A measures the probability that A can out-
put any — not just some particular — k-DLREP of h with respect to a random basis (g1, . . . ,gk).
We say the k-DLREP problem is

(
t, ε
)
-intractable inG if no t-time probabilistic algorithm solves

the k-DLREP problem in G with advantage greater than ε.

24

Definition 8. The DLREP assumption holds for a group-generating algorithm G if, for every
positive integer-valued function k (τ) ∈ poly(τ), there exists a negligible function ε : N → R+

such that, for all PPT algorithms A and for all τ ∈ N+, if (G,q,g1, . . . ,gk (τ)) ← G (1τ; k (τ)),
then A solves the k (τ)-DLREP problem in G with advantage at most ε(τ).

Theorem 2.3 (Brands, 2000 [Bra00; Proposition 2.3.3]). If the DL assumption holds for G , then
the DLREP assumption also holds for G .

The converse of Theorem 2.3 holds trivially.

2.4 Cost model

As the focus of this dissertation is efficient zero-knowledge proof systems for DLs, we take this
opportunity to introduce the cost model we employ in the analysis of such protocols.

Computation cost

In implementations of zero-knowledge proof systems for DLs, the CPU time required to compute
powers (exponentiation) and products of powers (multiexponentiation) dominates the running
time. We measure the costs of both kinds of operations by counting the expected number of
multiplications in G that they require. (For simplicity, we ignore the cost of arithmetic in Zq
required, for example, to determine which exponents to use in a given exponentiation.) Following
Bellare, Garay, and Rabin [BGR98b; §2.3], we write ExpCost(m)

G (τ) to denote the expected cost
of raising a single generator g ∈ G∗ to some number m ∈ N+ of pairwise distinct, random τ-bit
powers. When m = 1, we omit it from the notation.

The classic “square-and-multiply” algorithm [MvOV96; Algorithm 2.143] provides an upper
bound of

ExpCostG(τ) ≤ 1.5τ (2.1a)

25

multiplications in G, and more sophisticated windowing methods [BC89, SD92] easily reduce the
coefficient in this bound to about 1.2. Asymptotically, Erdös proved [Erd61] that, if one uses the
best exponentiation algorithm theoretically possible, then ExpCostG(τ) converges to

τ + τ/lg τ (2.1b)

multiplications in G as τ grows large. An algorithm proposed by Brauer [Bra39] two decades
prior to Erdös’ proof meets this asymptotic bound and is always within a factor of about lg τ from
optimal [Ber02]. The author suggests Bernstein’s presentation of Brauer’s algorithm [Ber02; §3],
which incorporates a number of concrete optimizations to the original algorithm.

For m > 1, we note the trivial bound

ExpCost(m)
G (τ) ≤ m ExpCostG(τ) (2.2a)

and remark that well-known techniques from the literature [Lim00, BGMW92, LL94, MN96, Yao76]
can make the inequality in this bound strict. Pippenger [Pip76; Theorem 2] generalized Erdös’
result to establish that, using the best possible algorithm, ExpCost(m)

G (τ) converges to

τ + mτ/lg(mτ) (2.2b)

multiplications in G as m and τ grow large, subject to lg m ∈ o
(
τ
)
. Yao [Yao76] proposed a

concrete algorithm for such computations (later rediscovered and popularized by Brickell, Gordon,
McCurley, and Wilson [BGMW92]) whose cost approaches τ + mτ/lg τ as m grows large.

For products of powers (i.e., multiexponentiations), we replace the bit length τ by a list of
ordered pairs, writing ExpCost(m)

G

(
(n1, τ1), . . . , (nk , τk)

)
to denote the expected cost to compute

m products of powers of a common set of n =
∑k

i=1ni bases of which, in each product, the same
ni bases are raised to distinct, random τi-bit exponents. Straus [Str64] suggested the multiexpo-
nentiation algorithm in Figure 2.3, which yields a concrete upper bound of

ExpCost(m)
G

(
(n1, τ1), . . . , (nk, τk)

)
≤ m
(
max
1≤ i≤k

{
τi
}
+

1
2

k∑
i=1

niτi
)

(2.3a)

26

Input: (g1, x1), . . . , (gn, xn) ∈ G∗ × Z∗q
Output: h =

∏n
i=1 g

xi

i

h B 1 // h = multiplicative identity

τ B
⌈

lg max
{
x1, . . . , xn

} ⌉
// τ = bit length of longest xi

for (j = τ down to 1) do
// N.B.: xi[j] is the j

th bit of xifor (i = 1 up to n) do
// xi[j] = 0 when j > lg xiif (x i[j] == 1) then

h B h ∗ gi // multiply conditionally

end
end
h B h ∗ h // but always square

end
return h // h = g1

x1 · · · gn
xn

Figure 2.3: A simple multiexponentiation algorithm attributed to Straus [Str64]. The
algorithm uses exactly ⌈lg max{x1, . . . , xn}⌉ squarings and an expected 1

2

∑n
i=1 lg x i

additional multiplications in G when the bases gi and the exponents x i are all pairwise
distinct.

multiplications in G. One can further reduce the cost of multiexponentiation by using precompu-
tation [LL94, Lim00, BGMW92], at the expense of additional storage for the precomputed values.
Pippenger’s analysis [Pip80] establishes general asymptotic bounds for ExpCost(m)

G

(
(n, τ)

)
as m,

n, and τ each tend to infinity subject to lg m ∈ o
(
τ
)

and lg n ∈ o
(
τ
)
; specifically, Pippenger

showed that ExpCost(m)
G

(
(n, τ)

)
approaches τ · min

{
m,n
}
+ mnτ/log(mnτ) multiplications in

G [Pip80]. Setting n =
∑k

i=1ni and τ = max
1≤i≤k

{
τi
}

yields the inequality

ExpCost(m)
G

(
(n1, τ1), . . . , (nk , τk)

)
≤ ExpCost(m)

G

(
(n, τ)

)
,

which provides (loose) asymptotic bounds for some additional multiexponentiation operations.
The author suggests a technical report by Lim [Lim00] for a concrete algorithm establishing
that

ExpCost(m)
G

(
(n, τ)

)
≤ 2mnτ/lg n (2.3b)

27

multiplications in G whenever n is sufficiently large.

In subsequent chapters, a frequently arising cost is ExpCostG
(
(1, τ), (n, λ)

)
with λ ∈ N+,

which is bounded above asymptotically by

τ + nλ/lg n + τ/lg τ

multiplications in G as τ and n grow large subject to lg n ∈ o
(
τ
)
.

We are interested both in the asymptotic behaviour of algorithms and in their concrete cost for
specific “realistic” parameter choices. Whenever we make an asymptotic comparison between
the cost of two algorithms, we will assume the best possible asymptotic cost for all operations
involved; however, when we make concrete comparisons between the costs of two algorithms
on specific “small” inputs, we will assume that exponentiations are evaluated using square-and-
multiply and that multiexponentiations are evaluated using Straus’ generalization of square-and-
multiply (as presented in Figure 2.3). We summarize the expected concrete and asymptotic costs
for various common exponentiation operations in Table 2.1.

Communication cost

For communication costs, we separately count the numbers of G and Zq elements that are sent
both from P to V and from V to P, and the quantity (and lengths) of all other strings that P and V
must exchange.

Round complexity

All of the protocols that we consider consist of a (small) constant number of rounds. Furthermore,
they can all be made non-interactive using the Fiat-Shamir transform.

2.5 Schnorr’s protocol for DLs

A fundamental building block of almost every zero-knowledge proof system in this dissertation
is Claus-Peter Schnorr’s system for honest-verifier zero-knowledge proofs of knowledge of a
DL [Sch89]. The protocol is denoted in Camenisch-Stadler notation by PK

{
x : h = gx }. The

28

Table 2.1: The expected number of multiplications in G (both concrete and asymptotic)
required to evaluate common exponentiation operations. For all rows, we assume that
each of m, n, and τ tends to infinity subject to lg n ∈ o

(
τ
)

and lg m ∈ o
(
τ
)
.

Operation Concrete cost Asymptotic cost

ExpCostG(τ)ExpCostG(τ) 3τ/2 τ + τ/lg τ

ExpCost(m)
G (τ)ExpCost(m)
G (τ) 3mτ/2 τ + mτ/lg(mτ)

ExpCostG
(
(n, τ)

)
ExpCostG

(
(n, τ)

)
τ + nτ/2 τ + nτ/lg(nτ)

ExpCost(m)
G

(
(n, τ)

)
ExpCost(m)

G

(
(n, τ)

)
mτ + mnτ/2 τ ·min{m,n} + mnτ/lg(mnτ)

common input (which was heretofore always denoted by ‘s ’) to Schnorr’s protocol in G is a pair
of group elements (g,h) ∈ G∗ × G. Hence, in the notation of Section 2.2, we have that both
S = G∗ × G and LR = G

∗
× G and that W = Zq . As Schnorr’s protocol is well-defined for any

prime-order group G, we also treat (G,q) as part of the common input so that
(
G,q,g

)
describes

the particular DL relation Rg =
{
(h, x) ∈ G × Zq �� h = gx } with respect to which P wishes to

prove knowledge of a witness x = logg h. We assume that it is easy to check membership of
(g,h) in G∗ × G (and that V always does so); hence, as G has prime order q, it follows that g
is a generator for G and that there exists an exponent x ∈ Zq with h = gx ; however, it does not
necessarily follow that either of P or V actually knows the exponent x ∈ Zq .

Schnorr’s protocol, which we illustrate in Figure 2.4, provides a means for P to prove knowl-
edge of x = logg h without revealing anything about x to V. In such protocol figures, the actions
performed by P appear within the leftmost box and the actions performed by V appear within the
rightmost box. Each move in the protocol is depicted by an arrow from the sender’s box to the
receiver’s box, with the message that is sent appearing as a label above the arrow. The protocol
figures should be read from top to bottom. V will accept if and only if every verification equation
after P’s last move holds.

P’s expected computation cost in Schnorr’s protocol is ExpCostG(τ) < 3τ/2 multiplications
in G and, after some rearrangement in the verification equation, V’s expected computation cost is
ExpCostG

(
(2, τ)

)
< 2τ multiplications in G. For communication cost, P sends one G∗ element

and one Zq element to V, and V sends one Zq element to P.

29

(G,q,g) ← G (1τ) and h ∈ G such that h = gx︸ ︷︷ ︸
x

accept/reject

P V

r ∈R Z
∗
q

A = gr

c ∈R Zq

v = cx + r

gv ?
= hc A

A

c

v

Figure 2.4: A system for honest-verifier perfect zero-knowledge proofs of knowledge
of a DL due to Schnorr [Sch89]. The protocol is c-simulatable and 2-extractable (see
Definitions 9 and 10). An accepting transcript is a tuple (A,c,v) ∈ G∗ × (Zq)2 such
that gv = hc A. The protocol is denoted by PK

{
x : h = gx }.

2.5.1 Sigma protocols

Schnorr’s protocol exemplifies a well-studied class of three-move public-coin protocols called
sigma protocols [Cra96]. The general structure of a sigma protocol is as follows:

1. P sends a randomized announcement (A) to V,
2. V issues a uniform random challenge (c) to P, and then
3. P computes a response (v) for V.

The transcript of a sigma protocol is the announcement-challenge-response triple (A,c,v).

Definition 9. A sigma protocol
(
P,V
)

is (perfectly, statistically, or computationally) c-simula-
table on LR if there exists a (perfect, statistical, or computational) simulator SV for honest V such
that, for any c in the domain of possible challenges, if C−1(c) denotes the subset of inputs s ∈ LR

to which c ∈ C(s) is a possible challenge from honest V, then the ensemble
{
SV(s ,c)

}
s ∈C−1 (c)

is (perfectly, statistically, or computationally) indistinguishable from the ensemble
{
ViewP,V(s) ��

V issues challenge c ∈ C(s)
}

s ∈C−1 (c).

30

In other words, a sigma protocol
(
P,V
)

is c-simulatable if there is a simulator SV for honest V
that takes both s ∈ LR and c ∈ C(s) as input, and outputs transcripts in which the common input
is s and the challenge is c. Another common name for this property is special honest-verifier
zero-knowledge. The following observation is immediate.

Observation 2.4. If
(
P,V
)

is (perfectly, statistically, or computationally) c-simulatable on LR,
then
(
P,V
)

is honest-verifier (perfect, statistical, or computational) zero-knowledge on LR.

Definition 10. A sigma protocol
(
P,V
)

is k-extractable on LR if there exists an efficient algorithm
that, on input a sequence of k accepting transcripts of

(
P,V
)

on the same common input s ∈ LR

and in which P∗ uses the same announcement A but V issues pairwise distinct random challenges
c1, . . . ,ck , outputs a witness w ′

∈WR (s) with probability overwhelming in |s |.

In other words, a sigma protocol
(
P,V
)

is k-extractable if the universal knowledge extractor
EP, having rewinding black box oracle access to honest P, can (essentially) always output a
witness after rewinding P to an earlier state at most k − 1 times. The special k = 2 case of this
property is often called special soundness. Again, the following observation is immediate.

Observation 2.5. If
(
P,V
)

is k-extractable on LR for some constant k ∈ N+, then
(
P,V
)

is a
system for proofs of knowledge for LR.

Both c-simulatability and 2-extractability are invariant under parallel composition [Dam11;

Lemma 1]; in particular, given c-simulatable and 2-extractable protocols
(
P,V
)

and (P′,V′), the
protocol obtained by running

(
P,V
)

and (P′,V′) in parallel is a c-simulatable and 2-extractable
sigma protocol. Moreover, it is easy to verify that, if the challenge domains C(s) and C ′(s ′) from
which V and V′ issue their uniform random challenges are the same, then the verifier in such a
parallel composition can issue a single challenge from C(s) = C ′(s ′) to be used in both parallel
sub-protocols. In this case, the soundness bound from Theorem 2.6 is useful.

Theorem 2.6 (Cramer, 1996 [Cra96; Proposition 2.1]). If
(
P,V
)

is a sigma protocol that is both
c-simulatable and 2-extractable on LR, then

(
P,V
)

is a system for honest-verifier zero-knowledge
proofs of knowledge for LR. Moreover, if s is the common input and C(s) is the set of possible
challenges for common input s , then

(
P,V
)

has knowledge error function κ(s) = 1/|C(s) |.

The proof of Theorem 2.6 uses the following technical lemma.

31

Lemma 2.7. Let
(
P,V
)

be a sigma protocol whose transcripts on common input s ∈ S are
elements of A(s) × C(s) × V (s). For a given prover P∗, let DA : N → A(s) be the function
describing the announcement output by P∗ in its ith invocation, and let E : N × C(s) → V (s) be
the function that describes the response of P∗ in its ith invocation when the challenge is c ∈ C(s).
If Pr
[
1←

〈
P∗,V
〉
(s)
]
= ϵ (s), then for i ∈ N+, we have, with probability exceeding ϵ (s)/2, that(

DA(i),c,E(i,c)
)

is accepting for at least a fraction ϵ (s)/2 of the c ∈ C(s).

Proof. Let H denote the subset of announcements A ← DA(i) from P∗ such that
(
A,c,E(i,c)

)
is accepting for at least a fraction ϵ (s)/2 of the c ∈ C(s), and let h be the probability (from
the perspective of V) that DA outputs an element from H in a given invocation. Then ϵ <

h + (1 − h)ϵ/2 so that h > ϵ/
(
2(1 − ϵ/2)

)
≥ ϵ/2, as desired. �

Proof (of Theorem 2.6). That
(
P,V
)

is a system for honest-verifier zero-knowledge proofs of
knowledge for LR follows directly from Observations 2.4 and 2.5; hence, we only need to prove
that
(
P,V
)

has knowledge error function κ(s) = 1/|C(s) |. It is clear that κ(s) ≥ 1/|C(s) |,
since a prover P∗ that responds correctly for one and only one challenge c ∈ C(s) for any given
announcement A will cause V to accept with probability 1/|C(s) |, yet EP∗ will never succeed
to extract a witness from P∗. Now, assume that Pr

[
1 ←

〈
P∗,V
〉
(s)
]
= ϵ (s), where ϵ (s) =(

1/|C(s) |
)
+ µ(s) and µ(s) is non-negligible in |s |.

As in the setup for Lemma 2.7, let DA : N→ A(s) be the function describing the announce-
ment output by P∗ in its ith invocation, and let E : N×C(s) → V (s) be the function that describes
the response of P∗ in its ith invocation when the challenge is c ∈ C(s). Upon receiving an
announcement A1 ← DA(1) from P∗, EP∗ can probe P∗ with a random challenge c(1)

1 ∈ C(s)
to learn E(1,c(1)

1) and, through rewinding, EP∗ can probe P∗ with a second random challenge
c(2)

1 ∈ C(s) \ {c(1)

1 } to learn E(1,c(2)

1). Likewise, if EP∗ runs the protocol to completion, it can start a
new invocation and, thereby, receive a second announcement A2 ← DA(2) and response E(2,c(1)

2)
from P∗. The goal is for P∗ to locate a triple (Ai ,c

(j)

i ,c
(k)

i) such that Ai ← DA(i) and c(j)

i , c(k)

i ,
and such that

(
Ai ,c

(j)

i ,E(i,c(j)

i)
)

and
(
Ai ,c

(k)

i ,E(i,c(k)

i)
)

are both accepting, in which case the 2-
extractability of

(
P,V
)

allows EP∗ to compute the desired witness with probability overwhelming
in |s |. For simplicity, we assume that C(s) =

{
0, . . . , |C(s) | − 1

}
and, for each i ∈ N+, we define

a uniform random permutation πi on the elements of C(s).

32

The extractor EP∗ probes P∗ for the following responses in the following order:
E
(
1, π1(1)

)
,

E
(
1, π1(2)

)
, E
(
2, π2(1)

)
,

E
(
1, π1(3)

)
, E
(
2, π2(2)

)
, E
(
3, π3(1)

)
,

E
(
1, π1(4)

)
, E
(
2, π2(3)

)
, E
(
3, π3(2)

)
, E
(
4, π4(1)

)
,

and so on, until it locates a triple (i, j, k) such that the transcripts
(
DA(i), πi (j),E(DA(i), πi (j))

)
and
(
DA(i), πi (k),E(DA(i), πi (k))

)
are both accepting.

By Lemma 2.7, if EP∗ queries P∗ for E
(
i, πi (j)

)
for each i + j < B, which requires B(B + 1)

queries, then the expected value of B at completion time is 2/ϵ (s) + 2/ϵ (s) = 4/ϵ (s). In
particular, EP∗ succeeds after about 16/ϵ (s)2 probes to P∗, on average. Since ϵ (s) is a non-
negligible function in |s | by assumption, it follows that 16/ϵ (s)2 ∈ poly(|s |), as desired. �

2.5.2 Security analysis for Schnorr’s protocol

We now prove that Schnorr’s protocol is, in fact, a system for honest-verifier zero-knowledge
proofs of knowledge for the various DL relations arising in G.

Theorem 2.8. Let
(
G,q,g

)
← G (1τ) for a fixed group-generating algorithm G . Schnorr’s

protocol, as depicted in Figure 2.4, is a system for honest-verifier perfect zero-knowledge proofs
of knowledge for the language induced by the DL relation Rg = {(h, x) ∈ G × Zq �� h =
gx
}. Furthermore, it is a c-simulatable and 2-extractable sigma protocol and so has constant

knowledge error function κ(G,q,g,h) = 1/q.

Proof. Complete: gv = gcx+r = gxc+r = (gx)cgr = hcgr = hc A.

2-Extractable: Given two accepting transcripts (A,c1,v1) ∈ G∗ × (Zq)2 and (A,c2,v2) ∈ G∗ ×
(Zq)2 that use the same announcement A but distinct challenges c1 and c2, we have that gv1 =

hc1 A and gv2 = hc2 A so that gv1−v2 = hc1−c2 . Taking logarithms with respect to base g reveals that
v1 − v2 = (c1 − c2) logg h with c1 , c2; thus, EP∗ can easily compute x = (v1 − v2)/(c1 − c2).
This establishes that

(
P,V
)

is indeed 2-extractable.

c-Simulatable: Given (G,q) and (g,h,c) ∈ G∗×G×Zq as input, SV chooses a random response
v ∈R Zq , and then it computes the corresponding announcement A = gv/hc . (In the unlikely
event that A = 1, SV chooses a different v ∈R Zq and tries again.) The simulated transcript

33

(
G,q,g

)
← G (1τ), M ∈ Λ∗, and h = gx︸ ︷︷ ︸

x

accept/reject

P V

r ∈R Z
∗
q

t = q∥g∥h∥M t = q∥g∥h∥M

c=H
(t ∥gr

)
mod q

v = cx + r
c ?
=H
(t ∥gvh−c

)
mod q

(c,v)

Figure 2.5: A system for non-interactive honest-verifier zero-knowledge arguments of
knowledge of a DL obtained from Schnorr’s protocol [Sch89] using the Fiat-Shamir
transform [FS86]. The protocol is denoted by SPK

{
x : h = gx }(M).

is (A,c,v) ∈ G∗ × (Zq)2. We must prove that SV’s output follows the same probability dis-
tribution as the transcripts in V’s aggregate view of a real interaction using the same common
input (G,q,g,h) and the same challenge c. But this is clearly the case: since the values in
(G,q,g,h,c,v) uniquely determine A, and since each of these values but v is fixed before the
simulation commences, it suffices to note that the one and only free variable, v , is distributed
uniformly at random in both the real transcripts and the simulated transcripts. (In the real tran-
scripts, P computes v = cx + r for a uniform random r ∈ Z∗q and, in the simulated transcripts,
SV chooses v ∈R Zq directly.)

By inspection,
(
P,V
)

is a public-coin sigma protocol; hence, the claimed knowledge error func-
tion κ(G,q,g,h) = 1/q follows from Theorem 2.6. �

We also point out that, since the set C(s) = Zq of possible challenges for a given common
input (G,q,g,h) to Schnorr’s protocol has cardinality super-polynomial (indeed, exponential)
in τ ≈ lg q, the Fiat-Shamir transform applies to produce a system for non-interactive zero-
knowledge arguments of knowledge for the languages induced by DL relations in G. In particular,
we can instantiate the protocol denoted by SPK

{
x : h = gx }(M) as follows: Given M ∈ Λ

∗,

34

(G,q,g1, . . . ,gk) ← G (1τ; k) and h ∈ G such that h = g
x1

1 · · · g
xk

k︸ ︷︷ ︸{
xi
}
k
i=1

accept/reject

P V

r1, . . . ,rk ∈R Z
∗
q

A = g
r1

1 · · ·g
rk
k

c ∈R Zq

v1 = cx1 + r1...
vk = cxk + rk

g
v1

1 · · · g
vk

k

?
= hc A

A

c

v = (v1, . . . ,vk)

Figure 2.6: A system for honest-verifier perfect zero-knowledge proofs of knowl-
edge of a k-DLREP due to Brands [Bra00]. An accepting transcript is a tuple
(A,c,v1, . . . ,vk) ∈ G∗ × (Zq)k+1 such that the verification equation g

v1

1 · · · g
vk

k = hc A.
The protocol is denoted by PK

{(
x1, . . . , xk

)
: h = g

x1

1 · · · g
xk

k

}
.

(i) P chooses r ∈R Z
∗
q , and then (ii) P computes the challenge c = H

(
q∥g∥h∥M ∥gr) mod q and

the response v = cx + r , and (iii) P outputs the proof (M,c,v) ∈ Λ∗ × (Zq)2. To verify such a
proof, V simply checks if c = H

(
q∥g∥h∥M ∥gv h−c

)
mod q.

As random oracles (and, we hope, cryptographically secure hash functions) are collision
intractable [Bra00; Definition 2.3.1], P need not send the announcement A to V; indeed, if A ,
gv h−c , then with probability overwhelming in τ, we have c . H

(
q∥g∥h∥M ∥gv h−c

)
mod q.

The Fiat-Shamir transformed Schnorr protocol is illustrated in Figure 2.5.

2.5.3 Brands’ protocol for DLREPs

Schnorr’s protocol generalizes naturally to a system for proofs of knowledge for the languages
induced by k-DLREP relations in G for any constant k ∈ N+. Figure 2.6 illustrates such a
generalization due to Brands [Bra00; §2.4.3].

35

Theorem 2.9. Let (G,q,g1, . . . ,gk) ← G (1τ; k) for a fixed group-generating algorithm G .
Brands’ protocol, as depicted in Figure 2.6, is a system for honest-verifier perfect zero-knowledge
proofs of knowledge for the language induced by the k-DLREP relation R = {(h, x1, . . . , xk) ∈
G× (Zq)k �� h = g

x1

1 · · · g
xk

k }. Furthermore, it is a c-simulatable and 2-extractable sigma protocol
and so has constant knowledge error function κ(G,q,g1, . . . ,gk ,h) = 1/q.

The proof of Theorem 2.9 is a straightforward generalization of that for Theorem 2.8.

36

Chapter 3

Batch proof and verification

This chapter introduces batch verification and systems for batch zero-knowledge proofs of knowl-
edge for NP-languages. It also presents several batch verifiers for DL relations in prime-order
groups and describes a new methodology for converting such batch verifiers into systems for
conjunctive batch zero-knowledge proofs of knowledge for languages induced by linear rela-
tions.

3.1 Batch tests and batch verifiers

Fix a finite alphabet Λ, let S and W be subsets of Λ∗, and let R ⊆ S ×W be an NP-relation. An
n-instance for R refers to any sequence of n instances (si ,wi)

n
i=1 for R, and a batch instance for

R refers to any n-instance for R with n ≥ 2. The quantity n is called the fan-in of the n-instance.
An n-instance is correct if R(si ,wi) = 1 for every i ∈ [1,n] and it is incorrect otherwise. If I is
an incorrect n-instance for R, then any component instance (sj ,wj) of I for which R(sj ,wj) = 0
is called a bad component instance.

Intuitively, a batch verifier is a probabilistic test that tries to verify the correctness of an n-
instance faster than doing each of the n component verifications individually. Bellare, Garay, and
Rabin [BGR98a,BGR98b] studied the batch verification problem, proposing several batch verifiers
for fixed-base DL relations in prime-order groups and providing the first (and, apparently, only)

37

formal treatment of batch verifiers in the literature. Below we review Bellare et al.’s batch verifiers,
each of which is suitable for verifying n-instances for a particular DL relation in a particular finite
group; thus, each of their batch verifiers comes with an implicit, finite upper bound on the fan-in
of n-instances that it can check. We wish to study the asymptotic behaviour of batch verifiers as
the fan-ins of their inputs grow without bound. We therefore extend Bellare et al.’s formal model
so as to define batch verifiers with respect to countably infinite families R =

(
Rτ

)
τ∈N+ in which

each Rτ ⊆ Sτ ×Wτ is a finite NP-relation. In particular, we assume that Sτ ⊆ Λ
p(τ) for some

fixed, positive integer-valued function p(τ) ∈ poly(τ). Given such an infinite family R and an
index τ ∈ N+, we call any n-instance for Rτ an (n, τ)-instance (or simply a batch instance) for
R. We assume that, given any batch instance I for R, it is easy to determine the index τ of the
particular relation Rτ that I is a batch instance for.

3.1.1 The naive verifier

We now introduce the naive verifier for R as a baseline against which to compare the expected
computation cost of competing verifiers. Definition 12 below requires that every batch verifier has
expected computation cost asymptotically lower than that of its corresponding naive verifier.

Definition 11. The naive verifier for R is the algorithm that, given an (n, τ)-instance (si ,wi)
n
i=1

for R, evaluates each instance using the lowest-cost algorithm available, and then outputs 1 if no
instance was incorrect and outputs 0 otherwise.

The naive verifier does not merely invoke the lowest cost algorithm for a single Rτ instance
n times; rather, it uses the lowest cost algorithm to evaluate Rτ on the entire (n, τ)-instance
simultaneously. (In other words, given an (n, τ)-instance forR, the naive verifier always evaluates
the entire sequence Rτ (s1,w1), . . . ,Rτ (sn,wn), without taking any “shortcuts”, but it does so as
efficiently as possible.) The naive verifier never makes mistakes: it always outputs 1 given a
correct batch instance (perfect completeness) and it always outputs 0 given an incorrect batch
instance (perfect soundness). Moreover, if the given batch instance is incorrect, then not only
does the naive verifier always determine this, but, in doing so, it automatically learns which of its
component instances are bad.

38

A batch verifier for R, in contrast, tries to determine
∏n

i=1Rτ (si ,wi) directly, at a much lower
cost than that of evaluating the entire sequence Rτ (s1,w1), . . . ,Rτ (sn,wn). If the batch verifier
outputs 1, then the given batch instance is probably correct. If the batch verifier outputs 0, then
the given batch instance is definitely incorrect. Unlike the naive verifier, the batch verifier in this
latter case cannot necessarily infer anything about which particular component instances are bad.
Zaverucha and Stinson [ZS09] observed that locating the bad instances in a known incorrect batch
instance is a special case of combinatorial group testing; their paper suggests and analyzes several
algorithms from the group testing literature that are suitable for identifying the bad instances in
an incorrect batch [ZS09; Section 2].

3.1.2 Defining batch verifiers

In the following discussion and definitions, Bτ denotes the set of batch instances for Rτ , B =⋃
τ∈N+ Bτ denotes the set of batch instances for R =

(
Rτ

)
τ∈N+ , andVτ (n) denotes the expected

computation cost for the naive verifier to check a random (n, τ)-instance for R.

A batch test for R refers to any Boolean-valued PPT algorithm R : B → {0,1} taking as
input batch instances for R. The naive verifier for R is therefore always a batch test for R. If a
batch test R has the properties listed in Definition 12, then we call it a batch verifier for R.

Definition 12. Let R =
(
Rτ

)
τ∈N+ be an infinite family of NP-relations. A batch test R : B →

{0,1} is a batch verifier for R if there exists a constant δ ∈ [0,1/2] and a function λ : N+ → R+,
with ��λ(τ) − δ�� negligible in τ, such that, for every positive integer-valued function n(τ) ∈
poly(τ), if I ∈ Bτ is an

(
n(τ), τ

)
-instance for R, then R provides the following three guarantees.

1. Complete: If I is correct, then Pr
[
1← R(I)

]
= 1.

2. Sound: If I is incorrect, then Pr
[
1← R(I)

]
≤ λ(τ).

3. Asymptotically efficient: R(I) has expected computation cost in o
(
Vτ (n(τ))

)
.

The smallest function λ : N+ → R+ satisfying the soundness bound in Definition 12 is called the
soundness error function for R, and the constant δ is its absolute soundness error. The soundness
error function measures the probability that R outputs 1 given an incorrect (n, τ)-instance as
input. The probability is over τ and the random coin tosses of R; in particular, assuming n

39

is appropriately bounded by some fixed polynomial in τ, the same soundness error probability
must apply to all (n, τ)-instances. Depending on the verifier, δ may be zero or it may be a small
constant, which is sometimes specified using a soundness parameter λ0 ∈ N

+. For R to be useful
in practice, δ must be small enough that R will almost certainly never — throughout its deployed
lifetime — output 1 on input an incorrect batch instance. If δ is not sufficiently small for this to
be the case, then we can construct a new batch verifier with lower absolute soundness error by
running several independent trials of R and then outputting 1 only if each trial outputs 1. The
Chernoff bound [Gol01; §1.2] ensures that the soundness error of the resulting batch verifier drops
off exponentially in the number of trials. 12 Usually, decreasing δ correspondingly increases the
expected cost to evaluate R; thus, the soundness parameter (if there is one) should be selected
with care.

The batch verifiers that we consider in this section all have positive absolute soundness error;
for example, we will see batch verifiers with constant soundness error function 2−λ0 and others
with soundness error function λ(τ) = max

{
1/q, 2−λ0

}
for a given soundness parameter λ0 ∈ N

+

and τ-bit prime q. Here we can set λ0 quite low by cryptographic standards, say λ0 = 40 or 60 so
that δ = 2−40 or 2−60, and still obtain acceptable soundness error for many practical applications.
(Note that we can safely do this only because the soundness error is independent of the particular
input instance under consideration.)

Definition 12 is similar to the definition for batch verifiers that Bellare et al. [BGR98b; Defini-

tion 2.1] proposed; however, the new definition differs from the old one in two important respects.
First, the new definition allows much greater flexibility in the acceptable soundness error. Bellare
et al.’s definition insists that the soundness error be a particular, positive probability (namely,
λ(τ) ≤ 2−λ0 regardless of τ ∈ N+); however, it is perfectly meaningful (indeed, potentially
useful) to consider the behaviour of batch verifiers with other soundness errors. Our definition
accommodates this by representing the soundness error as a function rather than as a scalar. In
practice, we often still aim for soundness error below a concrete bound of 2−λ0 , but we can tolerate
and reason about batch tests with any soundness error and applied to any sized batch instance.
Notably, our model can accommodate batch verifiers with soundness error functions in o

(
1
)

so
that δ = 0.

12 Note that our insistence that δ comes from [0,1/2] in Definition 12 is somewhat arbitrary: as R has perfect
completeness, the same Chernoff bound argument applies for any constant δ ∈ [0,1). On the other hand, if δ gets
too close to 1, then the required number of trials can grow prohibitively large for use in practical applications.
Having δ ≤ 1/2 guarantees that we can get absolute soundness error at most 2−λ0 by invoking R at most λ0 times.

40

The second difference between our Definition 12 and Bellare et al.’s definition [BGR98b;

Definition 2.1] is that our definition requires that every batch verifier be asymptotically faster than
its corresponding naive verifier. This is, of course, exactly what Bellare et al.had in mind; however,
it is not possible to formulate such a requirement in their model, which provides no meaningful
way to speak of infinite sequences of n-instances “growing large” without bound.

Definition 12 is inherently asymptotic. In practice, we are also concerned with the concrete
performance and soundness error of a batch verifier evaluated on an (n, τ)-instance for a given
choice of n and τ. We therefore propose Definition 13, which is closer to Bellare et al.’s defini-
tion.

Definition 13. A batch verifier R : B → {0,1} is a (n, τ, λ0)-batch verifier for R if, on input an
(n, τ)-instance, its expected computation cost is strictly less thanVτ (n) and its soundness error
function satisfies λ(τ) ≤ 2−λ0 .

3.1.3 Families of linear relations

An infinite family of relations R =
(
Rτ

)
τ∈N+ is a family of linear relations if each component

relation Rτ describes a linear map; that is, if, for each τ ∈ N+, (i) Rτ ⊆ Sτ ×Wτ for vector spaces
Sτ and Wτ , (ii) there exists a function fτ : Sτ → Wτ with Rτ (s ,w) = 1 if and only if fτ (s) = w ,
and (iii) there exist efficient operators ⊙τ : Sτ × Sτ → Sτ and ⊕τ : Wτ ×Wτ → Wτ , such that, for
all s1,s2 ∈ Sτ ,

1. Linear: fτ (s1) ⊕τ fτ (s2) = fτ (s1 ⊙τ s2), and

2. Scalar multiplication: k fτ (s1) = fτ (ks1) for any integer scalar k.

Note that there need not exist an efficient algorithm to evaluate the functions (fτ)τ∈N+ ; all that
is needed is for such functions to exist. There must, however, be algorithms, both efficient with
respect to τ, to evaluate the operators ⊙τ and ⊕τ .

The DL relations. Our canonical example of a (finite) linear relation is the base-g DL
relation in G; that is, the relation Rg =

{
(h, x) ∈ G × Zq �� h = gx }. Here, the linear map that R

describes is the base-g DL function fτ (·) = logg (·) mapping each h ∈ G to the exponent x ∈ Zq
satisfying h = gx . Thus, we have that Sτ = G and Wτ = Zq , where

(
G,q,g

)
← G (1τ), and that

the operators ⊙τ and ⊕τ respectively denote multiplication in G and addition in Zq .

41

3.1.4 Batch tests for families of linear relations

This section presents several batch tests for families of linear relations. We present each batch
test using the notation customary for the DL relations induced by

(
G,q,g

)
← G (1τ) with

τ ∈ N+; in addition, we analyze the soundness error of each batch test in this setting and, in
doing so, we prove that all but one of them is a batch verifier for the DL relations in prime-
order groups. Thus, except where otherwise specified, our infinite family of relations in this
section is always a family of fixed-base DL relations R =

(
Rτ

)
τ∈N+ where, for each τ ∈ N+,(

G,q,g
)
← G (1τ) and Rτ =

{
(h, x) ∈ G × Zq �� h = gx }. We write R ← GDL(1

∗) to
indicate that R =

(
Rτ

)
τ∈N+ is constructed in this way using the group-generating algorithm G . In

cryptographic applications, the DL assumption would typically hold for G , possibly among other
intractability assumptions.

Observation 3.1. The naive verifier for R ← GDL(1
∗) has expected cost ExpCost(n)

G

(
τ
)
, which

approaches τ + nτ/lg(nτ) multiplications in G as τ and n tend to infinity, subject to lg n ∈ o
(
τ
)
.

More generally, we write R ← GDL(1
∗; k) to denote that R is an infinite family of fixed-

basis k-DLREP relations induced by G . The naive verifier for this latter family has expected
computation cost ExpCost(n)

G

(
(k, τ)

)
, which approaches kτ + knτ/lg(nτ) multiplications in G

as τ and n tend to infinity, subject to lg n ∈ o
(
τ
)
.

Note that the batch tests we present below are applicable to linear relations other than the fixed-
base DL and fixed-basis k-DLREP relations in prime-order groups; however, for each new relation
that one wishes to apply a given batch test to, the soundness error must be reassessed.

3.1.4.1 The atomic random subset (ARS) test

Consider the following batch test.

Product test: On input an (n, τ)-instance (hi , x i)
n
i=1 for R ← GDL(1

∗), compute the
instance (h0, x0) in which h0 =

∏n
i=1hi and x0 =

∑n
i=1x i , and then output 1 if (h0, x0) is

correct (that is, if h0 = gx0) and output 0 otherwise.

42

It is easy to check that the product test is complete: if hi = gxi for each i = 1, . . . ,n, then∏n
i=1hi =

∏n
i=1g

xi = g
∑n

i=1xi and the product test will always output 1. Moreover, it is easy
to check that the product test is asymptotically efficient: by inspection, its expected cost on
input a random (n, τ)-instance for R ← GDL(1

∗) is just ExpCostG(τ) plus an additional (n − 1)
multiplications inG, which is much lower than the naive verifier’s expected cost of ExpCost(n)

G (τ).
Unfortunately, the product test is not sound for R. For example, choosing any r ∈ Z∗q and setting
x j = logg hj +r and xk = logg hk −r in an otherwise correct n-instance causes the product test to
output 1 despite hj , gxj and hk , gxk . This attack easily generalizes to larger collections of bad
instances; all that is required is that the “error terms” in the bad component instances collectively
sum to zero.

The following batch test attempts to thwart such attacks by splitting up the bad instances
in a batch. It does this by only applying the product test to a random subset of the component
instances [BGR98b; §3.1].

Atomic random subset (ARS) test: On input an (n, τ)-instance (hi , x i)
n
i=1 for R ←

GDL(1
∗), choose a subset U ⊆ [1,n] uniformly at random, compute the instance (h0, x0)

in which h0 =
∏

i∈Uhi and x0 =
∑

i∈U x i , and then output 1 if (h0, x0) is correct (that is,
if h0 = gx0) and output 0 otherwise.

The ARS test uses (slightly) fewer multiplications than the product test, and it has absolute
soundness error δ = 1/2.

Theorem 3.2. The ARS test is a batch verifier for R ← GDL(1
∗). It has absolute soundness error

δ = 1/2 and a constant soundness error function λ(τ) = 1/2.

Proof. Completeness and asymptotic efficiency easily follow by inspection. To prove that the
ARS test has soundness error λ(τ) = 1/2 for all τ ∈ N+, assume without loss of generality that
(hj , x j) is a bad instance. Partition the power set of the n component instances into two sets: the
set of subsets that contain (hj , x j) and the set of subsets that do not. For each subset that contains
(hj , x j), if the ARS test outputs 1 on that subset, then a simple calculation confirms that the ARS
test outputs 0 on the corresponding subset with (hj , x j) removed. Similarly, for each subset that
does not contain (hj , x j), if the ARS test outputs 1 on that subset, then the ARS test outputs 0
on the corresponding subset with (hj , x j) added. This establishes that at most half of all subsets

43

can possibly make the ARS test output 1 when the input is incorrect; hence, the soundness error
of the ARS test can be at most 1/2. To see that the bound 1/2 is tight, consider the case where
(hj , x j) is the only bad instance. Here the ARS test outputs 1 on exactly half the sets: the sets that
do not contain (hj , x j). 13 �

3.1.4.2 The random multiple product (RMP) test

Given a soundness parameter λ0 ∈ N
+, we can construct a batch verifier for R with absolute

soundness error 2−λ0 by performing λ0 independent trials of the ARS test and outputting 1 only
if all ARS trials output 1. (Hence the “atomic” qualifier on the ARS test.) Bellare et al. call this
λ0-fold parallelized ARS test the random subset (RS) test [BGR98b; §3.1]. We prefer to call it
the random multiple product (RMP) test because it invokes the well-studied multiple product
problem [Ber02; §6]: Given a set of n group elements h1, . . . ,hn and a set of λ0 subsets U1, . . . ,Uλ0

of [1,n], compute the λ0 products
(∏

i∈U1
hi

)
, . . . ,

(∏
i∈Uλ0

hi

)
.

Random multiple product (RMP) test: On input an (n, τ)-instance (hi , x i)
n
i=1 forR ←

GDL(1
∗), choose λ0 subsets U1, . . . ,Uλ0

⊆ [1,n], each uniformly at random, compute the
(λ0, τ)-instance

(
hUk

, xUk

)
λ0
k=1 in which hUk

=
∏

i∈Uk
hi and xUk

=
∑

i∈Uk
x i for each

k = 1, . . . , λ0, and then output 1 if
(
hUk

, xUk

)
λ0
k=1 is correct (that is, if hUk

= gxUk for each
k = 1, . . . , λ0) and output 0 otherwise.

We denote the RMP test instantiated with soundness parameter λ0 ∈ N
+ by R(λ0)

RMP. Note that the
last step in the RMP test is to evaluate a “random” (λ0, τ)-instance for R; thus, the naive verifier
for R has lower cost (and lower soundness error) than that of the RMP test whenever n < λ0

(assuming also that λ0 < τ). On the other hand, when n is large, the RMP test can have much
lower cost than that of its naive counterpart. More precisely, the expected cost to evaluate the RMP
test on input a random (n, τ)-instance for R ← GDL(1

∗) is at most about ExpCost(λ0)
G

(
(n,1)

)
+

ExpCost(λ0)
G (τ). Pippenger established [Pip76; Theorem 1] that ExpCost(λ0)

G

(
(n,1)

)
converges to

nλ0/lg(nλ0) as n increases under the assumption that λ0 ∈ ω
(
lg n
)
. In our case, λ0 ∈ N

+ is a

13 We can do slightly better by never choosing the empty set; however, the soundness error with this optimization
in place is still 2n−1/(2n − 1), which approaches the absolute soundness error δ = 1/2 exponentially fast as n
increases.

44

small constant and so the best we can say is that the expected cost to evaluate the RMP test on
input an (n, τ)-instance for R is fewer than

2nλ0/lg n + 3τλ0/2

multiplications in G when n is sufficiently large. Fortunately, this bound is good enough to
establish the RMP test as a batch verifier for R ← GDL(1

∗). We summarize the results just
discussed in a theorem.

Theorem 3.3. The RMP test is a batch verifier forR ← GDL(1
∗). For a fixed soundness parameter

λ0 ∈ N
+, it has absolute soundness error δ = 2−λ0 and a constant soundness error function

λ(τ) = 2−λ0 .

Concretely, the RMP test is an (n, τ, λ0)-batch verifier for R approximately when

nλ0/2 + 3τλ0/2 < 3nτ/2

so that

n(3τ − λ0) < 3τλ0.

If τ ≫ λ0, then the latter inequality very roughly states that the RMP test is an (n, τ, λ0)-batch
verifier for R whenever n > λ0.

3.1.4.3 The random multiexponentiation (RME) test

Consider the following batch test.

Random multiexponentiation (RME) test: On input an (n, τ)-instance (hi , x i)
n
i=1 for

R ← GDL(1
∗), choose t1, . . . , tn ∈R

[
0,2λ0 − 1

]
, compute the instance (h0, x0) in which

h0 =
∏n

i=1hti
i and x0 =

∑n
i=1t i x i , and then output 1 if (h0, x0) is correct (that is, if

h0 = gx0) and output 0 otherwise.

45

Bellare, Garay, and Rabin call this test the small exponent (SE) test. We call it the random
multiexponentiation (RME) test because it reduces n exponentiations into a random n-base
multiexponentiation (albeit with “small exponents”). We denote the RME test instantiated with
soundness parameter λ0 ∈ N

+ by R(λ0)

RME. On input a random (n, τ)-instance for R ← GDL(1
∗), the

RME test has soundness error function λ(τ) = max
{
1/q, 2−λ0

}
14 and expected computation cost

ExpCostG
(
(1, τ), (n, λ0)

)
, which is fewer than

3τ/2 + 2nλ0/lg n

multiplications in G when n is sufficiently large.

Theorem 3.4. The RME test is a batch verifier forR ← GDL(1
∗). For a fixed soundness parameter

λ0 ∈ N
+, it has absolute soundness error δ = 2−λ0 and soundness error function λ(τ) =

max
{
1/q, 2−λ0

}
.

Before proving Theorem 3.4, we first prove the following lemma.

Lemma 3.5. Let (h1, . . . ,hn) ∈ (G)n and (x1, . . . , xn) ∈ (Zq)n, and let j ∈ [1,n] such that
hj , gxj . For every possible assignment of the t i ∈

[
0,2λ0 − 1

]
for i ∈ [1,n] \ { j}, there exists a

unique choice for t j ∈ Zq such that
∏n

i=1hti
i = g

∑n

i=1ti xi .

Proof. Suppose that
n∏
i=1

hti
i = g

∑n

i=1ti xi .

Setting ui = logg hi for each i = 1, . . . ,n, the left-hand side of this expression is also equal to∏n
i=1(gui)ti = g

∑n

i=1tiui ; hence,

g
∑n

i=1tiui = g
∑n

i=1ti xi .

Taking logarithms with respect to base g yields
n∑
i=1

t iui =
n∑
i=1

t i x i .

14 If 2λ0 > q, then the exponents t i should be selected at random from
[
0,q−1

]
and not from

[
0,2λ0 −1

]
. Otherwise,

both the soundness error and the computation cost will be somewhat higher than is necessary.

46

Now, uj − x j , 0 by assumption, and we see that

t j =
(n∑
i=1, i, j

ti (ui − xi)
)
/
(
uj − x j

)
mod q.

�

Proof (of Theorem 3.4). Completeness is by inspection and efficiency follows from the analysis
above. To prove that the RME test has soundness error function λ(τ) = max

{
1/q, 2−λ0

}
, define

ui = logg hi for each i = 1, . . . ,n and assume without loss of generality that (hj , x j) is a bad
instance, so that uj , x j . By Lemma 3.5, for any fixed assignment of the t i with i ∈ [1,n] \ { j},
there exists a unique choice for t j ∈

[
0,q− 1

]
(and, consequently, there exists at most one choice

for t j ∈
[
0,2λ0 − 1

]
) for which the RME test outputs 1. Since t j is selected uniformly at random

from
[
0,2λ0 − 1

]
independent of the other t i , the probability of selecting this particular value for

t j is at most 2−λ0 . (If 2λ0 > q and the t i are drawn from Zq , then the probability is exactly 1/q.)
Finally, as this same argument holds for every fixed assignment of the t i with i ∈ [1,n] \ { j}, it
also holds when every t i is selected uniformly at random. This establishes that the soundness
error of the RME test can be at most 2−λ0 . To see that the bound 2−λ0 is tight, consider the case
where (hj , x j) is the only bad instance. Here the RME test outputs 1 if and only if t j = 0 (see
Lemma 3.6 below), which happens with probability 2−λ0 . �

Concretely, the RME test is an (n, τ, λ0)-batch verifier for R approximately when

3τ/2 + nλ0/2 < 3nτ/2,

which is the same as

nλ0 < 3(n − 1)τ.

The latter inequality holds for all n ≥ 2, provided λ0 < 3τ/2.

Observe that the expected cost to evaluate the RME test is asymptotically equal to that of
the RMP test; nevertheless, the RME test outperforms the RMP test quite handily when n is
reasonably small. Notably, whereas the RMP test is never a (λ0, τ, λ0)-batch verifier, the RME
test almost always is. Recalling that the last step of the RMP test is to evaluate a (λ0, τ)-instance
for R, the preceding observation suggests that we might be able to speed up the RMP test by
verifying this latter instance using the RME test. Of course, applying a batch test to the output of a

47

batch test in this manner introduces additional soundness error. To maintain the original absolute
soundness error of δ = 2−λ0 in the composed test, the underlying RMP and RME tests each need
to be instantiated with their soundness parameters set to λ0+1. We refer to the resulting batch test
as the RMP+ test and denote it by R(λ0)

RMP+ . For small values of n, the RMP+ test is more efficient than
the RMP test; however, as n grows sufficiently large, the additional cost from incrementing the
soundness parameter in the RMP test eventually exceeds the cost savings due to RME verification.
Moreover, neither the RMP test nor the RMP+ test ever outperforms the RME test for a given
choice of (n, τ, λ0); as such, it almost always makes more sense to simply use the RME test
instead of the RMP or RMP+ tests.

Modified random multiexponentiation test. We point out the following trivial modification
to the RME test, which very slightly improves on its computation cost. The modification follows
from Lemma 3.6. Unlike the standard RME test, the modified RME test has the nice property of
reducing to standard (non-batch) verification when evaluated on an instance with fan-in n = 1. In
addition, the modified RME test saves about λ0/2 multiplications compared to the standard RME
test for R. (Nonetheless, we revert to using the standard RME test in most of our discussions. We
do this purely for notational convenience; indeed, in implementations it is usually better, if only
slightly, to use the modified RME test.)

Lemma 3.6. Given as input an incorrect (n, τ)-instance (hi , x i)
n
i=1 for R ← GDL(1

∗) in which
only a single component instance, say (hj , x j), is bad, the RME test outputs 1 if and only if t j = 0.

Proof. Define ui = logg hi for each i = 1, . . . ,n. Since

n∏
i=1

hti
i = g

∑n

i=1ti xi ,

we can take logarithms with respect to base g to find that

logg

n∏
i=1

hti
i =

n∑
i=1

t i x i

or, equivalently, that
n∑
i=1

t i (ui − x i) = 0.

48

But ui − x i = 0 for each i ∈ [1,n] \ { j} by assumption; hence, t j (uj − x j) = 0. Finally, as
uj − x j , 0 by assumption, it follows that t j = 0. �

We now state the modified RME test:

Modified RME test: On input an (n, τ)-instance (hi , x i)
n
i=1 for R ← G (1∗), choose

t2, . . . , tn ∈R
[
0,2λ0 − 1

]
, compute the instance (h0, x0) in which h0 = h1

∏n
i=2hti

i and
x0 = x1 +

∑n
i=2t i x i , and then output 1 if (h0, x0) is correct (that is, if h0 = gx0) and

output 0 otherwise.

In other words, the modified RME test is exactly like the regular RME test, except with the
first exponent t1 always set to 1. We denote the modified RME test instantiated with soundness
parameter λ0 ∈ N

+ by R(λ0)

RME+ .

Theorem 3.7. The modified RME test is a batch verifier for R ← GDL(1
∗). For a fixed soundness

parameter λ0 ∈ N
+, it has absolute soundness error δ = 2−λ0 and soundness error function

λ(τ) = max
{
1/q, 2−λ0

}
.

Proof (Sketch). The proof of Theorem 3.7 is almost identical to that of Theorem 3.4. The only
difference arises when the first instance in the batch, (h1, x1), is bad. If (h1, x1) is the only bad
instance, then because t1 , 0 by construction, Lemma 3.6 implies that the RME test will never
output 1; otherwise, if there exists some j > 1 such that (hj , x j) is also bad, then the proof given
for Theorem 3.4 holds, with the caveat that the argument must focus on a bad instance such as
(hj , x j) with j > 1, and not on (h1, x1). �

3.1.4.4 The atomic random m-partition (m-ARP) test

Consider a variant of the ARS test in which the verifier selects a subset U ⊆ [1,n] uniformly at
random, but then, unlike in the ARS test, it outputs 1 only if both

∏
i∈U

hi = g
∑

i∈U
xi and

∏
i∈[1,n]\U

hi = g
∑

i∈[1,n]\U xi .

49

(In other words, rather than choosing a random subset of the instances and running the product test
on it, the verifier chooses a random partition of the instances into two subsets and runs the product
test on each of them.) Given an incorrect batch instance that contains only one bad component
instance, the ARS test outputs 1 with probability 1/2 whereas this modified test always outputs
0. In fact, it is easy to see that for any given input, the above modified ARS test has soundness
error less than or equal to that of the standard ARS test (albeit, with expected computation cost
nearly double that of the standard ARS test).

This idea generalizes naturally to a test using random partitions of [1,n] into m subsets, for
any choice of m ∈ N+.

Atomic random m-partition (m-ARP) test: On input an (n, τ)-instance (hi , x i)
n
i=1

for R ← GDL(1
∗), partition [1,n] randomly into m subsets U1, . . . ,Um by placing each

i ∈ [1,n] into one of U1, . . . ,Um uniformly at random, compute the (m, τ)-instance(
hUk

, xUk

)m
k=1 in which hUk

=
∏

i∈Uk
hi and xUk

=
∑

i∈Uk
x i for each k = 1, . . . ,m, and

then output 1 if
(
hUk

, xUk

)m
k=1 is correct (that is, if hUk

= gxUk for each k = 1, . . . ,m) and
output 0 otherwise.

On input a random (n, τ)-instance for R ← GDL(1
∗), the expected cost to evaluate the m-ARP

test is ExpCost(m)
G (τ), plus an additional (n − m) multiplications in G. This is somewhat fewer

than

3mτ/2 + (n − m),

multiplications in G. If we let m grow large subject to m ≤ n and lg n ∈ o
(
τ
)
, then the expected

cost approaches

τ + mτ/lg(mτ) + (n − m)

multiplications in G [Erd61]. When m = 1, the m-ARP test reduces to the product test (which
is not sound for R ← GDL(1

∗)); for any m ≥ 2, however, it yields a batch verifier for R ←
GDL(1

∗).

Theorem 3.8. The m-ARP test is a batch verifier for R ← GDL(1
∗) whenever m ≥ 2. For any

fixed number of partitions m ∈ N+, it has absolute soundness error δ = 1/m and a constant
soundness error function λ(τ) = 1/m.

50

Proof. Completeness is by inspection and asymptotic efficiency follows from the analysis pre-
sented above. To prove that the m-ARP test has a constant soundness error function λ(τ) = 1/m,
define ui = logg hi for each i = 1, . . . ,n and assume, without loss of generality, that instance
(hj , x j) is bad, so that uj , x j . Suppose the partitioning of [1,n] is into pairwise disjoint subsets
U1, . . . ,Um ⊆ [1,n]. Call the subset Uk bad if

∏
i∈Uk

hi , g
∑

i∈Uk
xi and call it good otherwise.

Finally, set U ′

k = Uk \ { j} for each k = 1, . . . ,m. There are three cases to consider: (i) no U ′

k is
bad, (ii) one U ′

k is bad, and (iii) several U ′

k are bad.

If no U ′

k is bad, then it is easy to see that the Uk containing j is bad; moreover, if several U ′

k

are bad, then at least one Uk is also bad, as Uk = U ′

k for all but one value of k. In either case,
the m-ARP test clearly outputs 0. For the remaining case, suppose that U ′

k is the only bad subset
and, moreover, that U ′

k ∪ { j} is good. If Uk = U ′

k ∪ { j}, then the m-ARP test outputs 1, despite
the input being incorrect. However, because each index j was placed in one and only one of the
Uk uniformly at random, the probability that Uk = U ′

k ∪ { j} is just 1/m. This establishes that the
m-ARP test can have soundness error at most 1/m. To see that the 1/m bound is tight, consider an
incorrect batch instance that has exactly two bad component instances, say (hj , x j) and (hk , xk),
with hj , gxj and hk , gxk yet hjhk = gxj+xk . The m-ARP test outputs 1 for such an instance if
and only if the two bad component instances appear in the same subset Uk , which happens with
probability 1/m. �

3.1.4.5 The parallel random partition (PRP) test

Given a soundness parameter λ0 ∈ N
+, we can construct a batch verifier with soundness error

less than 2−λ0 by performing at least λ0/lg m independent trials of the m-ARP test and outputting
1 only if each trial outputs 1. (Note that we are choosing the number of trials ℓℓ = ⌈λ0/lg m⌉ to
be the smallest positive integer ℓℓ satisfying m−ℓℓ ≤ 2−λ0 .) The expected cost to evaluate all ℓℓ trials
of the m-ARP test concurrently is ExpCost(ℓℓm)

G (τ), plus the cost of evaluating the ℓℓm products.
Determining the cost of these latter products is tricky: we could call the cost ExpCost(ℓℓm)

G

(
(n,1)

)
just to get an easy estimate; however, this bound is quite loose when m > 2, as each of the ℓℓm
products involves about n/m multiplicands, rather than the n/2 multiplicands one expects in a
random multiple product problem whose cost is described by ExpCost(ℓℓm)

G

(
(n,1)

)
. It is clear that

the actual cost to evaluate these products is always less than or equal to ℓℓ(n − m) multiplications
in G; in fact, the cost is likely closer to ExpCost(ℓℓm)

G

(
(2n/m,1)

)
, although we emphasize that this

51

is only a crude approximation. Nonetheless, given an assignment of (n, τ, λ0), we can use such
an approximation to solve for the number of partitions m (and the resulting number of trials ℓℓ)
that minimize the expected cost of the entire verification procedure while obtaining an absolute
soundness error of at most 2−λ0 . We call the batch test obtained by parallelizing the m-ARP test
using the optimal choice for (m,ℓℓ) the parallel random partition (PRP) test.

Parallel random partition (PRP) test: On input an (n, τ)-instance (hi , x i)
n
i=1 for

R ← GDL(1
∗),

1. solve for m and ℓℓ = ⌈λ0/lg m⌉ to minimize the cost of performing steps 2 and 3
below, for a fixed soundness parameter λ0 ∈ N

+,

2. for each j = 1, . . . ,ℓℓ, partition [1,n] into m subsets Uj1, . . . ,Ujm by placing each
i ∈ [1,n] into one of the Ujk uniformly at random, and then

3. compute the (ℓℓm, τ)-instance
(
(hU1k

, xU1k
)mk=1
)ℓℓ
j=1 in which hUjk

=
∏

i∈Ujk
hi and

xUjk
=
∑

i∈Ujk
x i for each j = 1, . . . ,ℓℓ and k = 1, . . . ,m.

Output 1 if
(
(hU1k

, xU1k
)mk=1
)ℓℓ
j=1 is correct (that is, if hUjk

= g
xUjk for each j = 1, . . . ,ℓℓ

and k = 1, . . . ,m) and output 0 otherwise.
We denote the PRP test instantiated with soundness parameter λ0 ∈ N

+ by R(λ0)

PRP . The PRP test
is both complete and sound by inspection and it is asymptotically efficient because the underlying
m-ARP test is asymptotically efficient and because ℓℓ ≤ λ0. This proves that the PRP test is a
batch verifier for R. We summarize this result in a theorem.

Theorem 3.9. The PRP test is a batch verifier forR ← GDL(1
∗). For a fixed soundness parameter

λ0 ∈ N
+, it has absolute soundness error δ = 2−λ0 and soundness error function satisfying

λ(τ) ≤ 2−λ0 for all τ ∈ N+.

The exact soundness error function for the PRP test depends on the particular choice of m
(and ℓℓ), which in turn depends on how one approximates the cost of computing the ℓℓm products.
Using the approximation suggested above, we get that the PRP test is a (n, τ, λ0)-batch verifier
approximately when

ExpCost(ℓℓm)
G (τ) + ExpCost(ℓℓm)

G

(
(2n/m,1)

)
≤ 3nτ/2

multiplications inG. For small values of m and n, we can approximate this inequality using

3mλ0τ/2 lg m + λ0(n − m)/lg m ≤ 3nτ/2,

52

which, for τ ≫ λ0, is roughly equivalent to

m/lg m ≤ n/λ0.

If n > kλ0 for some positive integer k > 1, then any choice of m ∈ [2, k] will satisfy the latter
inequality.

When n is large, the cost of the PRP test can be very low compared to that of the RMP and
RME tests. Moreover, as with the RMP test, the final step in the PRP test involves verifying
a new “random” batch instance for R; however, the fan-in ℓℓm of this latter batch instance is
potentially quite large and, unlike with the RMP test, this fan-in actually increases with n, at least
until n grows exponentially large relative to λ0. When ℓℓm is very large, a recursive application
of the PRP test might be the most efficient way to verify that the latter (ℓℓm, τ)-instance is correct.
However, for the values of ℓℓm that are likely to arise in practice, the RME test is usually more
efficient. Bellare et al. called this latter combination of the PRP and RME tests the bucket
test [BGR98b; §3.4]; we call it the PRP+ test and denote it by R(λ0)

PRP+ . (Note that, as in the RMP+

test, we must instantiate the underlying PRP and RME tests with soundness parameter λ0 + 1.)
The PRP+ is considerably more efficient than the RMP and RME tests when the fan-in is very
large.

3.1.5 Comparison of batch verifiers

Table 3.1 compares the expected computation cost for various batch verifiers for R ← GDL(1
∗)

when τ = 256 and λ0 = 40 (so that δ ≤ 2−40). The RME test is most efficient when the fan-in n
is relatively small and the PRP+ is most efficient when the fan-in n is large.

3.1.6 Batch verifying Schnorr’s protocol

Recall Schnorr’s protocol (Figure 2.4 on Page 30). Schnorr’s protocol is a system for honest-
verifier zero-knowledge proofs of knowledge for the languages induced by R ← GDL(1

∗). The
common input to P and V in Schnorr’s protocol is

(
G,q,g

)
← G (1τ) and h ∈ G, and the

transcript of the resulting interaction is (A,c,v) ∈ G∗ × (Zq)2 such that gv = hc A; thus, to
verify a run of Schnorr’s protocol, V checks if the transcript is in a particular NP-relation R ={
(A,c,v) ∈ G∗ × (Zq)2 �� gv = hc A

}
induced by the common input (G,q,g,h).

53

Table 3.1: The (approximate) expected computation cost for various batch verifiers for
R ← GDL(1

∗). In each case, we measure the cost of a batch verifier as the number of
multiplications in G required to get soundness error less than 2−40 on input a random
(n,256)-instance for R. (Thus, τ = 256 and λ0 = 40 so that δ = 2−40.) For each
fan-in n that the table displays, the cell containing the lowest expected cost to check
(n, τ)-instances is highlighted .

nn 55 1010 5050 100100 500500 10001000 5 0005 000 10 00010 000 50 00050 000

NaiveNaive 896 1536 6 656 13 056 64 256 128 256 640 256 1280 256 6 400 256

RMPRMP 5 476 5 576 6 376 7 376 15 376 25 376 105 376 205 376 1005 376

RMERME 484 584 1384 2 384 10 384 20 384 100 384 200 384 1000 384

PRPPRP 10 292 10 422 11416 12 416 20 416 28115 70 402 112 768 377 980

RMP+RMP+ 1327 1429 2 250 3 275 11475 21725 103 724 206 225 1026 225

PRP+PRP+ 1996 2126 2 994 3 808 9107 13 488 43 098 73 494 278 409

Common-base RME verification. We first show how V can use the RME test to speed up
verification for an n-fold parallelized variant of Schnorr’s protocol in which the common input
is
(
G,q,g

)
← G (1τ) and (h1, . . . ,hn) ∈ (G)n and in which P proves knowledge of x i = logg hi

for each i = 1, . . . ,n. The private input to P, therefore, is the n-tuple (x1, . . . , xn) ∈ (Zq)n. The
resulting protocol is sometimes called the common-base parallelization of Schnorr’s protocol,
since the base g of the DL relation is common to all component instances. The parallelized
protocol is still a sigma protocol, in which

1. P sends a randomized announcement A = (A1, . . . , An) to V,
2. V issues a uniform random challenge c to P, and then
3. P computes a response v = (v1, . . . ,vn) for V.

Here Ai = gri and vi = cx i + ri , where ri ∈R Z
∗
q for each i = 1, . . . ,n. Observe that V issues

a single challenge c ∈ Zq to which P must respond for each i = 1, . . . ,n. For the verification
equations, V checks that gvi = hc

i Ai for each i = 1, . . . ,n; if one or more of these expressions
does not hold, then V rejects the proof. The following observation is immediate.

54

Observation 3.10. The naive verifier for the common base parallelization of Schnorr’s protocol
has expected cost ExpCost(n)

G (τ) + n ExpCostG(τ), plus an additional n multiplications in G.
This cost approaches (n + 1)τ + nτ(1/lg τ + 1/lg(nτ)) multiplications in G as τ and n tend to
infinity, subject to lg n ∈ o

(
τ
)
.

Since the challenge c is common to all the verification equations, we can in fact treat the
right-hand sides of the verification equations as constants Hi = hc

i Ai ; thus, V needs to check if
Hi = gvi for every i = 1 . . . ,n, a task for which the RME test is well suited. Applying the RME
test to the expressions Hi = gvi for i = 1, . . . ,n yields

g
∑n

i=1tivi
?
=

n∏
i=1

H ti
i

=
n∏
i=1

(
hc
i Ai

) ti ,
and, after rearranging and regrouping, the right-hand side of this expression becomes

=
(n∏

i=1

hti
i

)c (n∏
i=1

Ati
i

)
,

where t i ∈R
[
0,2λ0 − 1

]
for each i = 1, . . . ,n. The expected computation cost to evaluate this

expression is at most about 2 ExpCostG
(
(n, λ0)

)
+ 2 ExpCostG(τ), which is fewer than

3τ + 4nλ0/lg n

multiplications in G when n is sufficiently large. This is a substantial reduction from the cost
of the naive verifier, even when n is fairly small, provided τ > λ0. Moreover, it follows from
Theorem 3.4 that the resulting batch-verified protocol has knowledge error function λ(τ) =
max
{
1/q, 2−λ0

}
.

Common-exponents RME verification. Next, we show how V can use the RME test to
speed up verification for a different n-fold parallelized variant of Schnorr’s protocol in which the
common input is (G,q,g1, . . . ,gn) ← G (1τ; n) and (h1, . . . ,hn) ∈ (G)n and in which P proves
knowledge of a single exponent x ∈ Z∗q such that x = loggi

hi for every i = 1, . . . ,n. In other
words, the protocol is a system for proofs of knowledge and equality among several DL pairs.
The special n = 2 case of this protocol (without batch verification) was proposed by Chaum and
Pedersen [CP92; §3.2]. The more general protocol for any n > 1 is illustrated in Figure 3.1.

55

(G,q,g1, . . . ,gn) ←G (1τ; n) and (h1, . . . ,hn) ∈ (G)n with hi = gx
i for i = 1, . . . ,n︸ ︷︷ ︸

x

accept/reject

P V

r ∈R Z
∗
q

A1 = gr
1...

An = gr
n

c ∈R Zq

v = cx + r

gv
1

?
= hc

1 A1...
gv
n

?
= hc

n An

A = (A1, . . . , An)

c

v

Figure 3.1: A system for honest-verifier zero-knowledge proofs of knowledge and equal-
ity among DLs due to Chaum and Pedersen [CP92]. The protocol is denoted by
PK
{

x :
∧n

i=1(hi = gx
i)
}
.

Similar to the common-base parallelization, the common-exponent protocol is a sigma pro-
tocol in which V issues a single challenge c ∈ Zq; however, unlike in the common-base case,
P only computes a single response v ∈ Zq . This is because P can — indeed, to prove that the
given DLs are pairwise equal, P must — use the same random exponent r ∈R Z

∗
q to produce each

commitment Ai = gr
i in the announcement. This results in P computing an identical response

v = cx + r for each of the n component instances. Setting each Hi = hc
i Ai as before, the

verification equations now ask whether Hi = gv
i for each i = 1, . . . ,n.

Observation 3.11. The naive verifier for the common-exponent parallelization of Schnorr’s pro-
tocol has expected cost n ExpCostG

(
(2, τ)

)
. This is fewer than 2nτ multiplications in G for any

positive integers τ and n, using Straus’ algorithm.

56

Given an arbitrary base g ∈ G∗, we can define ui = logg gi and then rewrite gi = gui so that
the verification equations ask whether guiv = hc

i Ai or, equivalently, whether (gv)ui = Hi , for
each i = 1, . . . ,n. Applying the RME test to this latter expression yields

(gv)
∑n

i=1tiui
?
=

n∏
i=1

H ti
i .

Of course, we cannot assume that V knows the exponents ui = logg gi . Fortunately, this does
not present a problem in practice, as V can still evaluate the left-hand side of this expression
without knowing the ui via

∏n
i=1(gv

i)ti =
(∏n

i=1g
ti
i

)v . We thus obtain the following verification
equation: (n∏

i=1

g
ti
i

)v ?
=

n∏
i=1

H ti
i

=
n∏
i=1

(
hc
i Ai

) ti
=
(n∏

i=1

hti
i

)c (n∏
i=1

Ati
i

)
,

where t i ∈R
[
0,2λ0 − 1

]
for each i = 1, . . . ,n. The expected computation cost to evaluate this

expression is at most 2 ExpCostG(τ) + 3 ExpCostG
(
(n, λ0)

)
, which is fewer than

3τ + 6nλ0/lg n

multiplications in G when n is sufficiently large. Again, this is a substantial reduction from
the naive verifier’s expected cost. Moreover, by Theorem 3.4, the batch-verified protocol has
knowledge error function λ(τ) = max

{
1/q, 2−λ0

}
.

3.1.6.1 Batch tests for DLREP relations

The RME test applies more generally: V can apply the RME test to batch verify any paral-
lelized variant of Schnorr’s protocol without any specific assumptions about uniqueness — or lack
thereof — among the bases and exponents arising in the component verification equations. If all
of the bases and all of the exponents are pairwise distinct, then the RME test saves only a modest

57

number of multiplications compared to the naive verifier; however, if some subset of verification
equations share either a common base or a common exponent, then V can regroup terms in the
resulting batch verification equation, as above, to make the savings more substantial.

In fact, the RME test naturally generalizes from the fixed-base DL relations in G to arbitrary
k-DLREP relations in G for any k ∈ N+: given a sequence of verification equations involving
k-DLREPs in G, say

h1
?
=

k∏
j=1

g
x1 j

1 j
...

hn
?
=

k∏
j=1

g
xn j

n j ,

we can fix an arbitrary generator g ∈ G∗ and define ui j = logg gi j for each i = 1, . . . ,n and
j = 1, . . . , k to yield the equivalent sequence of verification equations,

h1
?
= g
∑k

j=1u1 j x1 j

...

hn
?
= g
∑k

j=1un j xn j .

Applying the RME test to this latter sequence results in the expression

n∏
i=1

hti
i

?
= g
∑n

i=1ti

(∑k

j=1ui j xi j

)
.

Theorem 3.4 establishes that this verification procedure has soundness error function λ(τ) =
max
{
1/q, 2−λ0

}
. As before, V can evaluate the right-hand side without knowing the exponents

ui j via, for example,
n∏
i=1

hti
i

?
=

n∏
i=1

(k∏
j=1

g
xi j ti
i j

)
.

In the worst case, evaluating this expression has expected cost about ExpCostG
(
(n, λ0), (nk, τ)

)
,

which is around

2n(λ0 + kτ)/lg n

multiplications in G when n is sufficiently large.

58

The actual cost can be substantially lower if the same exponent x i j or the same base gi j
appears several times. By comparison, the naive verifier has expected cost n ExpCostG

(
(k, τ)

)
in the above general case, which is closer to 2nkτ multiplications in G when k is constant.

The results just described for the RME test can be generalized to prove the following.

Observation 3.12. Fix a positive integer-valued function k (τ) ∈ poly(τ) and let R denote an
infinite family of generalized k (τ)-DLREP relations induced by the group-generating algorithm
G ; that is, let R =

(
Rτ

)
τ∈N+ such that, for each τ ∈ N+,

(
G,q,g

)
← G (1τ) and

Rτ =
{(

(g1, . . . ,gk (τ)),h, (x1, . . . , xk (τ))
)
∈ (G∗)k (τ)

× G × (Zq)k (τ) ��� h =
k (τ)∏
i=1

g
xi

i

}
.

If R is a batch verifier for R ← GDL(1
∗) having soundness error function λ(τ), then R is a batch

verifier for R also having soundness error function λ(τ).

3.2 Batch proofs of knowledge

Fix an infinite family R =
(
Rτ

)
τ∈N+ of finite NP-relations Rτ ⊆ Sτ ×Wτ . An (n, τ)-predicate

over R is a sequence of n strings (s1, . . . ,sn) from Sτ , and a batch predicate over R is an
(n, τ)-predicate over R for any τ ∈ N+ and n ≥ 2. The quantity n is called the fan-in of
the (n, τ)-predicate. If Rτ (si ,wi) = 1 for each i = 1, . . . ,n, then the length-n sequence of
NP-witnesses (w1, . . . ,wn) is called an n-witness for (s1, . . . ,sn) with respect to R. In other
words, (w1, . . . ,wn) is an n-witness for (s1, . . . ,sn) with respect to R if (si ,wi)

n
i=1 is a correct

(n, τ)-instance for R. Likewise, we say that the (n, τ)-predicate (s1, . . . ,sn) ∈ Sn
τ is a correct

batch predicate over R if there exists a sequence of witnesses (w1, . . . ,wn) ∈ W n
τ for which the

(n, τ)-instance (si ,wi)
n
i=1 is correct or, equivalently, if (s1, . . . ,sn) ∈ (LRτ)

n.

The remainder of this chapter considers zero-knowledge protocols that take (n, τ)-predicates
as common input and scale efficiently with n. Several prior works [BDD07,GLSY04,Gro10,HOG11,

PB10, SK95] have proposed such protocols, calling them systems for “batch zero-knowledge
proofs of knowledge”. However, with no generally agreed upon definition of what constitutes a
system for batch zero-knowledge proofs of knowledge in the literature, each work assumes its own
ad hoc definition. Peng, Boyd, and Dawson suggested one semi-formal definition [PBD07; Defini-

tion 1], which they presumably modeled after Bellare et al.’s definition for batch verifiers. Their

59

definition speaks to the correctness and soundness of a system for batch zero-knowledge proofs
of knowledge; however, it is silent with regards to the asymptotic efficiency of such protocols and
it only applies to systems for conjunctive proofs of knowledge in which no component instance
is allowed to be bad. In any case, their definition was never embraced by the cryptographic com-
munity. In a recent collaboration with Ian Goldberg, the author of this dissertation proposed an
asymptotic definition [HG13a; Definition 3] covering systems both for batch zero-knowledge proofs
of knowledge and for batch zero-knowledge arguments of knowledge. This section presents a
new formal definition, which is a significant refinement of that definition and a direct analog of
Definition 12 for batch verifiers.

3.2.1 The naive conjunctive proof system

We first need to define a suitable notion of the naive system for (conjunctive) zero-knowledge
proofs of knowledge for the language of correct batch predicates overR, which will be our baseline
against which to compare the cost of competing protocols. Just as Definition 12 requires that
every batch verifier has cost asymptotically lower than that of its naive counterpart, Definition 17
below requires that every system for batch zero-knowledge proofs or arguments of knowledge
has expected cost asymptotically lower than that of its naive (conjunctive) counterpart.

Recall that the naive verifier for R =
(
Rτ

)
τ∈N+ is the lowest cost algorithm that checks the

correctness of a batch instance (si ,wi)
n
i=1 by evaluating the sequence Rτ (s1,w1), . . . ,Rτ (sn,wn).

We wish to translate this notion directly into the setting of zero-knowledge proofs of knowledge;
hence, the naive system for (conjunctive) zero-knowledge proofs of knowledge for R should
be the “lowest cost” protocol that “proves knowledge of each witness” in an n-witness (with
respect to R) for its common input. To be more precise than this, we require some additional
definitions. In the following — indeed, whenever we speak about a naive system for conjunctive
zero-knowledge proofs of knowledge — we use P̂ to refer to the (honest) naive prover and V̂ to
refer to the (honest) naive verifier. This convention avoids confusion when we speak of a batch
proof system

(
P,V
)

and its naive counterpart
(
P̂, V̂
)

in the same discussion.

60

Definition 14. Let T = (t1, . . . , tm) be a transcript from a two-party interactive protocol
(
P,V
)

in which each t i is a distinct “message”. Given any nonempty subset U ⊆d [1,m], we let TU

denote the ordered subsequence (tU(1)
, . . . , tU(d)

) of T . (Recall that U ⊆d [1,n] denotes that U is
a size-d subset of [1,n] and that, for any set U of positive integers, U(j) denotes the j th smallest
element in U .) Such a subsequence TU of T is called a sub-transcript of T .

Note that the sub-transcripts of T may comprise a non-contiguous subset of messages from T .
The following separability criterion characterizes what it means for

(
P̂, V̂
)

to “prove knowledge
of each witness” in an n-witness for the common input.

Definition 15. Let
(
P,V
)

be a system for honest-verifier zero-knowledge proofs of knowledge
for the language of correct batch predicates over R and, for each n ∈ N+, let m(n) denote the
number of distinct messages in transcripts of

(
P,V
)

when the common input is an (n, τ)-predicate
over R. We say that

(
P,V
)

is separable if, for every n ∈ N+ and for each j ∈ [1,n], there exists
a fixed subset Uj ⊆

[
1,m(n)

]
such that the ensemble of random variables describing the sub-

transcripts TUj
arising from

(
P,V
)

when the common input is (s1, . . . ,sn) ∈ Sn
τ is statistically

indistinguishable from the ensemble of random variables describing the transcripts T ′ arising in(
P,V
)

when the common input is just sj .

As a concrete example, if T = (A1, A2,c,v1,v2) ∈ (G∗)2
× (Zq)3 is an accepting transcript

from a run of the common base parallelization of Schnorr’s protocol in Section 3.1.6 when the
common input is (G,q,g,h1,h2), then the sub-transcripts (A1,c,v1) and (A2,c,v2) correspond to
accepting transcripts for the first component instance (G,q,g,h1) and second component instance
(G,q,g,h2), respectively. In fact, it is easy to verify that both of the parallel variants of Schnorr’s
protocol discussed in the last section are separable.

The notion of the “lowest cost” protocol is more difficult to pin down because the cost
of
(
P̂, V̂
)

can be measured in several ways, including (i) the expected computation cost for P̂,
(ii) the expected computation cost for V̂, (iii) the communication cost from P̂ to V̂, (iv) the
communication cost from V̂ to P̂, (v) the number of rounds, or (vi) any function of these, and
possibly other, metrics. All of the constructions that we deal with are proofs of knowledge for DL
or DLREP relations in prime-order multiplicative groups. To simplify our analysis, we assume
that the appropriate generalization of Schnorr’s protocol always has the “lowest cost” among the
separable protocols for such statements.

61

Definition 16. Let R =
(
Rτ

)
τ∈N+ be an infinite family of finite NP-relations. A protocol

(
P̂, V̂
)

is the naive system for conjunctive honest-verifier zero-knowledge proofs of knowledge for R
if (i) it is a system for honest-verifier zero-knowledge proofs of knowledge for the language of
correct batch predicates over R, (ii) it is separable, and (iii) it has the lowest cost among the
protocols satisfying both (i) and (ii).

It is understood that V̂ always uses the appropriate naive verifier (and never a batch verifier)
to check the verification equations in

(
P̂, V̂
)
.

3.2.2 Defining batch proofs of knowledge

For each τ ∈ N+, let ϕτ : Bτ → {0,1}∗ denote the function that maps each (n, τ)-instance
I = (si ,wi)

n
i=1 for R =

(
Rτ

)
τ∈N+ to the n-bit string

ϕRτ
(I) = Rτ (s1,w1)∥Rτ (s2,w2)∥ · · · ∥Rτ (sn,wn).

For a given binary NP-language Γ ⊆ {0,1}∗, we say that I is Γ-correct with respect to R if
ϕτ (I) ∈ Γ. Likewise, we say that an (n, τ)-predicate (s1, . . . ,sn) ∈ Sn

τ over R is Γ-correct if
there exists a sequence of witnesses (w1, . . . ,wn) ∈ W n

τ for which (si ,wi)
n
i=1 is Γ-correct. In this

case, (w1, . . . ,wn) is called a (Γ,n)-witness for (s1, . . . ,sn) with respect to R.

Below, Definition 17 defines systems for batch zero-knowledge proofs of knowledge with
respect to pairs (R,Γ) in which R is an infinite family of NP-relations and Γ is an infinite binary
NP-language. The protocol associated with the pair (R,Γ) is a system for (honest-verifier) zero-
knowledge proofs of knowledge for the language of Γ-correct batch predicates over R; in other
words, it is a system for proofs of knowledge of a (Γ,n)-witness for the common input. Thus, in
general, P is proving partial knowledge of an n-witness for the common input, with the bit strings
in Γ reflecting which subsets of component witnesses P might actually be proving to know. For
conjunctive (“AND”) proofs, Γ is the language of finite bit strings comprised entirely of 1s; for
disjunctive (“OR”) proofs, Γ is the language of finite bit strings that are not comprised entirely of
0s; for k-out-of-n threshold proofs, Γ is the language of finite bit strings with Hamming weight k
or greater; and so on.

In the following definitions, let
(
P̂, V̂
)

denote the naive system for conjunctive (honest-
verifier) zero-knowledge proofs of knowledge for R. Furthermore, let

62

(a) Vτ (n) denote the expected computation cost for V̂ in
(
P̂, V̂
)
,

(b) Pτ (n) denote the expected computation cost for P̂ in
(
P̂, V̂
)
, and

(c) Cτ (n) denote the length of the transcripts of
(
P̂, V̂
)
,

where, in each case, the common input is a random, correct (n, τ)-predicate over R.

Definition 17. Let R be an infinite family of finite NP-relations and let Γ ⊆ {0,1}∗ be an infi-
nite NP-language. An interactive protocol

(
P,V
)

is a system for batch (honest-verifier) zero-
knowledge proofs of knowledge for the language of Γ-correct batch predicates over R if there
exists a constant δ ∈

[
0,1/2

]
and a function λ : N+ → R+, with ��λ(τ) − δ�� negligible in τ, such

that, for every positive integer-valued function n(τ) ∈ poly(τ) and for every (possibly dishonest)
prover P∗,

(
P,V
)

provides the following four guarantees.

1. Proof of knowledge:
(
P,V
)

is a system for proofs of knowledge for the language of Γ-
correct

(
n(τ), τ

)
-predicates over R.

2. Zero-knowledge:
(
P,V
)

is (honest-verifier) zero-knowledge on the language of Γ-correct(
n(τ), τ

)
-predicates over R.

3. Sound: If (s1, . . . , sn) ∈ Sn
τ is not Γ-correct, then Pr

[
1←

〈
P∗,V
〉
(s1, . . . ,sn)

]
≤ λ(τ).

4. Asymptotically efficient: On input an (n, τ)-predicate (s1, . . . ,sn) ∈ Sn
τ over R,

(a) V has expected computation cost in o
(
Vτ (n(τ))

)
,

(b) if (w1, . . . ,wn) ∈ W n
τ is a (Γ,n)-witness for (s1, . . . ,sn) with respect to R, then

P(w1, . . . ,wn) has expected computation cost in o
(
Pτ (n(τ))

)
, and

(c) the transcript of
(
P̂, V̂
)

has length in O
(Cτ (n(τ))

)
.

If Γ = 1∗, then
(
P,V
)

is a system for conjunctive batch proofs of knowledge. Systems for
conjunctive proofs of knowledge are sometimes called systems for proofs of complete knowledge
so as to distinguish them from systems for proofs of partial knowledge, which are the focus of
Chapter 4. When Γ , 1∗, we call a system for (batch) proofs of knowledge for the language
of Γ-correct batch predicates over R as a system for (batch) proofs of Γ-partial knowledge over
R.

63

The smallest function λ : N+ → R+ satisfying the soundness bound in Definition 17 is called
the soundness error function for

(
P,V
)

and the constant δ is its absolute soundness error. The
soundness error function measures the probability that a dishonest P∗ can make V accept when
the common input is not Γ-correct. As before, lower values of δ usually necessitate a higher cost
to run

(
P,V
)
.

The first two asymptotic efficiency criteria require no explanation. The third criterion uses
the length of an interaction transcript as a proxy for the bidirectional communication cost of the
interaction that produced that transcript. It would also make sense to consider the unidirectional
communication cost in each direction, though no batch protocol in the literature would satisfy
this stronger definition. (In particular, no protocol in the literature reduces the outgoing commu-
nication cost from V to P relative to that from V̂ to P̂, if doing so is even possible; in fact, all
known batch protocols actually increase this cost, and sometimes substantially so.)

Definition 17 is inherently asymptotic. The following definition is analogous to Definition 13.
It requires, for a particular choice of (n, τ, λ0), that a system

(
P,V
)

for batch zero-knowledge
proofs of knowledge have cost strictly lower than that of its naive (conjunctive) counterpart(
P̂, V̂
)
.

Definition 18. Let R be an infinite family of finite NP-relations, let Γ ⊆ {0,1}∗ be an infinite
NP-language, and let

(
P,V
)

be a system for (honest-verifier) batch zero-knowledge proofs of
Γ-partial knowledge over R. We call

(
P,V
)

a system for (n, τ, λ0)-batch zero-knowledge proofs
of Γ-partial knowledge over R if the soundness error function for

(
P,V
)

satisfies λ(τ) ≤ 2−λ0

and if, in any accepting interaction in which the common input is an (n, τ)-predicate over R, each
of the following is true.

(a) Prover efficient: The expected computation cost for V is strictly less thanVτ (n).

(b) Verifier efficient: The expected computation cost for P is strictly less than Pτ (n).

(c) Communication efficient: The transcript of
(
P,V
)

has length strictly less than Cτ (n).

The next section introduces several systems for conjunctive batch honest-verifier zero-know-
ledge proofs of knowledge for linear relations. First, we introduce the following notion of
component-wise k-extractability. As its name suggests, component-wise k-extractability is a

64

component-wise generalization of k-extractability (see Definition 10 on Page 31), which stip-
ulates that the universal knowledge extractor should be able to extract any single component
witness of its choosing by rewinding honest P at most k times. Extracting additional witnesses
from P may require rewinding P more times.

Definition 19. A protocol
(
P,V
)

is component-wise k-extractable for the language of correct
batch predicates over R if there exists a knowledge extractor EP, whose running time is PPT in τ,
such that, for every (n, τ)-predicate (s1, . . . ,sn) over R, for any accepting transcript (A,c1,v1) of(
P,V
)

on common input (s1, . . . ,sn), and for any index j ∈ [1,n], there exist super-polynomially
(in λ0) many (k−1)-tuples of challenges (c2, . . . ,ck), such that, given (v1, . . . ,vk) with (A,ci ,vi)
accepting for each i = 1, . . . , k, there is an efficient algorithm to compute a witness wj ∈WRτ

(sj).

Note that the first challenge c1 in Definition 19 is arbitrary, whereas the subsequent choices for
c2, . . . ,ck may depend both on the first challenge c1 and on the index j for which a witness is
sought.

Observation 3.13. If
(
P,V
)

is component-wise k-extractable for the language of correct batch
predicates over R, then

(
P,V
)

is a system for proofs of knowledge for the language of correct
batch predicates over R.

3.2.3 Conjunctive batch proofs for families of linear relations

This section presents systems for batch zero-knowledge proofs of complete knowledge for families
of linear relations R =

(
Rτ

)
τ∈N+ . The most obvious construction for such systems involves

replacing the naive protocol
(
P̂, V̂
)
, denoted in Camenisch-Stadler notation by

PK
{(w1, . . . ,wn

)
:

n∧
i=1

Rτ (si ,wi) = 1
}
,

with the protocol
(
P,V
)

denoted by

PK
{(w1, . . . ,wn

)
: R
(
(s1,w1), . . . , (sn,wn)

)
= 1

}
,

65

where R : B → {0,1} is a suitable batch verifier for R. In other words, instead of directly proving
knowledge of (w1, . . . ,wn) such that Rτ (si ,wi) = 1 for each i = 1, . . . ,n, P proves knowledge
of (w1, . . . ,wn) such that the (n, τ)-instance (si ,wi)

n
i=1 passes a random trial of a suitable batch

test for R.

Of course, for the batch test R to be convincing, it is crucial that all the random coin tosses it
requires are indeed uniform random; thus, we must have V (or, perhaps, a random oracle) provide
these random values to P∗ at some point after both parties receive the common input predicate.
Depending on the underlying family of relations R, this might necessitate an additional opening
move in which V sends one or more uniform random strings to P; for other families, P does
not require (or, in some instances, is not allowed to see) the random strings immediately, and V
therefore includes them as part of some later move.

Peng et al. [PBD07] instantiated the above idea with the RME test to obtain systems for con-
junctive batch honest-verifier zero-knowledge proofs of knowledge and equality among several
DLs in a prime-order group. We discuss their protocols below, along with several new systems for
conjunctive batch honest-verifier zero-knowledge proofs of knowledge that we constructed in a
similar fashion using other linear batch verifiers. We also discuss a batch protocol due to Gennaro,
Leigh, Sundaram, and Yerazunis [GLSY04], which is not based on a linear batch verifier.

As before, we present and analyze each system for batch zero-knowledge proofs of knowl-
edge with respect to an infinite family of DL relations R ← GDL(1

∗) induced by a fixed group-
generating algorithm G . The generalizations to families of k-DLREP relations R ← G (1∗; k)
are all straightforward.

Observation 3.14. Let
(
P̂, V̂
)

be the naive system for conjunctive honest-verifier zero-knowledge
proofs of knowledge for R ← GDL(1

∗). Given an (n, τ)-predicate over R as input,

(a) V̂ has expected computation costVτ (n) = ExpCost(n)
G (τ) + n ExpCostG(τ), plus an addi-

tional n multiplications in G,

(b) P̂ has expected computation cost Pτ (n) = ExpCost(n)
G (τ), and

(c) the transcript of
(
P̂, V̂
)

is an element of (G)n × (Zq)n+1.

Furthermore, as τ and n grow large subject to lg n ∈ o
(
τ
)
,

(a) Vτ (n) approaches (n + 1)τ + nτ/lg(nτ) + nτ/lg τ multiplications in G, and

(b) Pτ (n) approaches τ + nτ/lg(nτ) multiplications in G.

66

(
G,q,g

)
← G (1τ) and (h1, . . . ,hn) ∈ (G)n such that hi = gxi for i = 1, . . . ,n︸ ︷︷ ︸{

xi
}
n
i=1

accept/reject

P V

r1, . . . ,rλ0
∈R Z

∗
q

A1 = gr1

...
Aλ0
= grλ0

U1, . . . ,Uλ0
⊆ [1,n]

v1 = r1 +
∑
i∈U1

x i...
vλ0
= rλ0
+
∑
i∈Uλ0

x i

gv1 ?
= A1

(∏
i∈U1

hi

)
...

gvλ0
?
= Avλ0

(∏
i∈Uλ0

hi

)

A = (A1, . . . , Aλ0
)

c = (U1, . . . ,Uλ0
)

v = (v1, . . . ,vλ0
)

Figure 3.2: A common-base batch variant of Schnorr’s protocol based on the RMP
test. The protocol is c-simulatable and component-wise 2-extractable and is denoted
by PK

{(
x1, . . . , xn

)
: R(λ0)

RMP

(
(h1, x1), . . . , (hn, xn)

)}
.

3.2.3.1 The RMP-based common-base Schnorr protocol

The first protocol we discuss is a new batch variant of Schnorr’s protocol based on the RMP
test. In particular, for a given a soundness parameter λ0 ∈ N

+, we construct a system for
conjunctive batch honest-verifier zero-knowledge proofs of knowledge with a constant soundness
error function λ(τ) = 2−λ0 by executing the protocol denoted in Camenisch-Stadler notation
by

PK
{(

x1, . . . , xn

)
: R(λ0)

RMP

(
(h1, x1), . . . , (hn, xn)

)
= 1

}
.

67

Given (x1, . . . , xn) ∈ (Zq)n and tasked with verifying that hi = gxi for each i = 1, . . . ,n using
the RMP test, V would choose λ0 subsets U1, . . . ,Uλ0

⊆ [1,n], each uniformly at random, and

then output 1 only if
∏

i∈Uk
hi = g

∑
i∈Uk

xi for each k = 1, . . . , λ0. The batch proof of knowledge
is similar, except V chooses the random subsets U1, . . . ,Uλ0

⊆ [1,n] and P merely proves knowl-
edge of (ϖ1, . . . ,ϖλ0

) such that
∏

i∈Uk
hi = gϖk for each k = 1, . . . , λ0. In the latter proofs of

knowledge, V uses c = (U1, . . . ,Uλ0
) as its challenge, so that P responds with vk = rk +ϖk for

k = 1, . . . , λ0, where each rk ∈R Zq . A simple calculation confirms that, for each k = 1, . . . , λ0,
the verification equation gϖk =

∏
i∈Uk

hi holds if and only if ϖk =
∑

i∈Uk
x i . Figure 3.2 illustrates

the interaction.

Theorem 3.15. The RMP-based variant of Schnorr’s protocol depicted in Figure 3.2 is a system
for conjunctive batch honest-verifier zero-knowledge proofs of knowledge for the language of
correct batch predicates overR ← GDL(1

∗). It is c-simulatable and component-wise 2-extractable
and, for a fixed soundness parameter λ0 ∈ N

+, it has absolute soundness error δ = 2−λ0 and
soundness error function λ(τ) = max

{
1/q, 2−λ0

}
.

Proof. Complete: For each k = 1, . . . , λ0, we have that

gvk = grk+
∑

i∈Uk
xi = grk

(∏
i∈Uk

gxi
)
= grk

(∏
i∈Uk

hi

)
= Ak

(∏
i∈Uk

hi

)
.

Component-wise 2-extractable: To extract x j = logg hj , the universal knowledge extractor EP∗

first challenges P∗ on a uniform random choice of c = (U1, . . . ,Uλ0
) to get an announcement

A = (A1, . . . , Aλ0
) and a response v = (v1, . . . ,vλ0

) satisfying

gvk = Ak

(∏
i∈Uk

hi

)
for each k = 1, . . . , λ0. Suppose that some subset Uθ in c does not contain the index j. In this
case, EP∗ rewinds P∗ and issues a new challenge c′ = (U ′

1 , . . . ,U
′
λ0

) in which U ′
θ = U ′

θ ∪ { j}. If P∗

responds with an accepting v ′ = (v ′1, . . . ,v ′λ0
) for c′, then

gv ′θ = Aθ

(∏
i∈U ′θ

hi

)
= Aθ hj

(∏
i∈Uθ

hi

)
,

68

and EP∗ can divide out the corresponding expression from P∗’s first response to get gv ′θ−vθ = hj ; the
exponent sought is then x j = v ′θ − vθ . In the unlikely event that j ∈ Uk for every k = 1, . . . , λ0

after the first step, EP∗ instead issues the second challenge having U ′
θ = Uθ \ { j}, and then

it computes x j = vθ − v ′θ . Note that for any initial challenge c = (U1, . . . ,Uλ0
), there are

(2n)λ0−1 < poly(λ0) additional challenges for which a valid response enables EP∗ to extract the
desired exponent x j = logg hj .

Sound: Consider a protocol run using soundness parameter λ0 = 1. We will show that the
soundness error function is λ(τ) = 1/2; our desired result for λ0 > 1 then follows by a standard
union-bound argument [Dam11; Lemma1]. Fix j ∈ [1,n] and let Mj denote the binary matrix with
a row for each possible announcement A ∈ G∗ from P∗ and a column for each possible challenge
U1 ⊆ [1,n] from V, subject to j < U1. (Hence, there are q−1 rows and 2n−1 columns.) The entry
(A,U1) of Mj is 1 if P∗makes V accept for both of the challenges U1 and U ′

1 = U1 ∪ { j} when the
announcement is A. Using P∗ as an oracle, EP∗ can probe P∗ for its response to a random challenge
U ′

1 and, through rewinding, EP∗ can also probe P∗ for its response to the challenge U1 ∪ { j}. The
extractor’s goal is to locate a challenge U1 for which the entry (A,U1) of Mj is 1, in which case
EP∗ can compute x j = logg hj using the component-wise 2-extractability of

(
P,V
)
.

Note that Pr
[
1 ←

〈
P∗,V
〉
(h1, . . . ,hn)

]
is related to the fraction of 1-entries in Mj as follows:

P∗ can make V accept with probability at most 1
2

(
1 + µ(τ)

)
, where µ(τ) ≥ 0 is the fraction of

1-entries in Mj . We have no information about the distribution of 1-entries in Mj ; in particular,
some rows of Mj might contain fewer than a fraction µ(τ) of 1-entries. Nonetheless, if µ(τ) > 0,
then EP∗ can locate a 1-entry in Mj by rewinding P∗ about 1/µ(τ) times on average; hence, if
µ(τ) is non-negligible in λ0, then EP∗ outputs x j in expected polynomial time. This proves that
λ(τ) ≤ 1/2 when λ0 = 1. This bound is clearly tight; for example, if P∗ makes V accept on
challenge U1 ⊆ [1,n] if and only if j < U1, then V accepts with probability 1/2, but EP∗ will
always fail to extract x j = logg hj from P∗.

c-Simulatable: Given c = (U1, . . . ,Uλ0
) as input, SV(c) chooses v1, . . . ,vλ0

∈R Zq , and then
it computes Ak = gvk/

(∏
i∈Uk

hi

)
for each k = 1, . . . , λ0. (In the unlikely event that Ak = 1

for some k = 1, . . . , λ0, SV chooses a different vk ∈R Zq and tries again.) The simulated
transcript is (A1, · · · , Aλ0

,U1, · · · ,Uλ0
,v1, · · · ,vλ0

). The proof that SV’s output follows the correct
distribution is a direct adaptation of the corresponding proof for Schnorr’s protocol: for each k =
1, . . . , λ0, the sub-transcript (G,q,g,h1, . . . ,hn,Uk ,vk) uniquely determines the corresponding

69

announcement Ak = gvk/
(∏

i∈Uk
hi

)
, and each of these values but vk is fixed before the simulation

begins; thus, our desired result follows from the fact that vk is distributed uniformly at random
in both the real and simulated transcripts.

Asymptotically efficient: By inspection, P’s expected computation cost is ExpCost(λ0)
G (τ) ∈

o
(
Pτ (n)

)
. This cost is independent of the fan-in n. 15 The expected computation cost for V on

common input (G,q,g,h1, . . . ,hn) is about ExpCost(λ0)
G (τ) + ExpCost(λ0)

G

(
(n,1)

)
∈ o
(
Vτ (n)

)
,

which is almost identical to the expected cost for evaluating R(λ0)

RMP

(
(h1, x1), . . . , (hn, xn)

)
given

access to the exponents (x1, . . . , xn). Finally, the transcripts are elements of (G∗)λ0×({0,1}n)λ0×

(Zq)λ0 . (Recall that the transcripts of
(
P̂, V̂
)

are elements of (G∗)n × (Zq)n+1.) If we let ℓℓG(τ)
denote the bit-length of G∗ elements, then the transcripts of

(
P,V
)

are shorter than those of(
P̂, V̂
)

whenever the fan-in n exceeds
(
ℓℓG(τ)λ0 + τ(λ0 − 1)

)
/
(
ℓℓG(τ) + τ + λ0

)
.

We could also implement the above system for batch zero-knowledge proofs using the RMP+

test. Doing so almost always reduces both the transcript length and the expected computation
cost for P relative to the RMP-based protocol. Depending on the fan-in n, using RMP+ sometimes
increases the computation cost for V and it sometimes decreases the computation cost for V; in
either case, the magnitude of the change for V is usually small relative to the overall cost of the
protocol.

3.2.3.2 The RME-based common-base Schnorr protocol

Peng et al. [PBD07] considered RME-based batch protocols for the common-base parallelization
of Schnorr’s protocol and for the common exponent parallelization of Chaum and Pedersen’s
protocol. In Figure 3.3, we apply the same construction to Schnorr’s protocol, thus instantiating
the protocol denoted in Camenisch-Stadler notation by

PK
{(

x1, . . . , xn

)
: R(λ0)

RME

(
(h1, x1), . . . , (hn, xn)

)}
.

15 Of course, P must still compute the responses vk , each of which involves a summation of about n/2 addends;
however, summation in Zq is typically much faster than multiplication in G and is, in any case, not counted under
our cost model.

70

(
G,q,g

)
← G (1τ) and (h1, . . .,hn) ∈ (G)n such that hi = gxi for i = 1, . . .,n︸ ︷︷ ︸{

xi
}
n
i=1

accept/reject

P V

r ∈R Z
∗
q

A = gr

t i ∈R
[
0,2λ0 − 1

]
v = r +

n∑
i=1

t i x i

gv ?
= A
(n∏

i=1

hti
i

)
A

c = (t1, . . . , tn)

v

Figure 3.3: A common-base batch variant of Schnorr’s protocol based on the RME
test. The protocol is c-simulatable and component-wise 2-extractable and is denoted
by PK

{(
x1, . . . , xn

)
: R(λ0)

RME

(
(h1, x1), . . . , (hn, xn)

)}
.

Theorem 3.16. The RME-based common-base Schnorr protocol depicted in Figure 3.3 is a sys-
tem for conjunctive batch honest-verifier zero-knowledge proofs of knowledge for the language of
correct batch predicates overR ← GDL(1

∗). It is c-simulatable and component-wise 2-extractable
and, for a fixed soundness parameter λ0 ∈ N

+, it has absolute soundness error δ = 2−λ0 and
soundness error function λ(τ) = max

{
1/q, 2−λ0

}
.

Proof. Complete: gv = gr+
∑n

i=1ti xi = gr (n∏
i=1

gti xi
)
= gr (n∏

i=1

gxi ti
)
= gr (n∏

i=1

hti
i

)
= A
(n∏

i=1

hti
i

)
.

Component-wise 2-extractable: Suppose that (hi , x i)
n
i=1 is a correct (n, τ)-instance for R. To

extract x j = logg hj , the universal knowledge extractor EP∗ first challenges P∗ on a uniform
random choice of c = (t1, . . . , tn) to get an announcement A and response v such that

gv = A
(n∏

i=1

hti
i

)
.

71

EP∗ then rewinds P∗ and issues the challenge c′ = (t ′1, . . . , t
′
n) such that t ′j ∈R

[
0,2λ0 − 1

]
and

t ′i = t i for each i ∈ [1,n] \ { j}, thereby obtaining a second response v ′ such that

gv ′ = A
(n∏

i=1

ht ′i
i

)
= A ht ′j−tj

j

(n∏
i=1

hti
i

)
.

Dividing out the corresponding expression from P∗’s first response, we get gv ′−v = ht ′j−tj
j ; the ex-

ponent sought is then x j = (v ′ − v)/(t ′j − t j). Note that for any initial challenge c = (t1, . . . , tn),
there are 2λ0 − 1 < poly(λ0) distinct second challenges, any one of which is sufficient to extract
x j = logg hj .

Sound: Suppose P∗ outputs announcement A ∈ G∗. Define the binary matrix MA with a column
for each possible assignment of t j ∈

[
0,2λ0 − 1

]
and a row for each possible assignment of the

t i ∈
[
0,2λ0 − 1

]
with i ∈ [1,n] \ { j}. (Hence, there are (2λ0)n−1 rows and 2λ0 columns.) The

entry (t1, . . . , tn) of MA is 1 if P∗ makes V accept when the challenge is c = (t1, . . . , tn), and
it is 0 otherwise. Using P∗ as an oracle, EP∗ can probe P∗ with a random challenge in hopes of
finding a 1-entry in MA and, through rewinding, EP∗ can probe P∗ with a different challenge in
hopes of finding a second 1-entry on the same row of MA. (In particular, EP∗ probes P∗with any
challenge c′ = (t ′1, . . . , t

′
n) in which t i = t ′i for each i ∈ [1,n] \ { j}.) EP∗’s goal is to locate a pair

of challenges (c,c′) each corresponding to 1-entries on the same row of MA and such that t j , t ′j ,
in which case EP∗ can compute x j = logg hj using the component-wise 2-extractability of

(
P,V
)
.

Suppose Pr
[
1←

〈
P∗,V
〉
(h1, . . . ,hn)

]
= ϵ (τ) such that ϵ (τ) = 2−λ0 + µ(τ) for some µ(τ) ≥ 0

and note that Pr
[
1 ←

〈
P∗,V
〉
(h1, . . . ,hn) | P∗’s announcement is A

]
is equal to the fraction of

1-entries in the matrix MA. By Lemma 2.7, with a probability exceeding ϵ (τ)/2, MA has a
fraction at least ϵ (τ)/2 of 1-entries, in which case a second application of Lemma 2.7 implies
that a fraction exceeding ϵ (τ)/4 of the rows of MA have a fraction at least ϵ (τ)/4 of 1-entries.
In particular, EP∗ can locate such a row after rewinding P∗ an expected 4/ϵ (τ) times. Such a
row has no fewer than 2λ0

(
2−λ0−2 + µ(τ)/4

)
− 1 > 1/4 + 2λ0−2µ(τ) − 1 additional 1-entries. It

therefore follows that, if µ(τ) is non-negligible in λ0, then EP∗ can find a pair of 1-entries in such
a row using an expected number of probes of P∗ polynomial in λ0.

72

c-Simulatable: Given c = (t1, . . . , tn) as input, SV(c) chooses v ∈R Zq and computes A =
gv/
(∏n

i=1hti
i

)
. (In the unlikely event that A = 1, SV chooses a different v ∈R Zq and tries

again.) The simulated transcript is (A,c,v). We must show that SV’s output follows the same
probability distribution as that of the transcripts in V’s aggregate view of a real interaction with
the same common input (G,q,g,h1, . . . ,hn) and challenge c = (t1, . . . , tn). As we have seen
before, the values in (G,q,g,h1, . . . ,hn,c,v) uniquely determine A and each of these values but
v is fixed prior to the simulation; thus, because v is distributed uniformly at random in both the
real and simulated transcripts, it follows that the distributions for real and simulated transcripts
are described by identical random variables.

Asymptotically efficient: P’s expected computation cost is ExpCostG(τ) ∈ o
(
Pτ (n)

)
, which is

independent of n and, in fact, is identical to its expected computation cost in Schnorr’s protocol
when the common input has fan-in equal to 1. The expected computation cost for V on input
(h1, . . . ,hn) is about ExpCostG

(
(1, τ), (n, λ0)

)
∈ o
(
Vτ (n)

)
, which is similar to the expected

cost to evaluate R(λ0)

RME

(
(h1, x1), . . . , (hn, xn)

)
given access to the exponents (x1, . . . , xn). Finally,

the transcripts are elements of G∗ × ({0,1}n)λ0 × Zq and, in particular, are always strictly shorter
than the corresponding transcripts of

(
P̂, V̂
)
.

Generalizing Figure 3.3 into an RME-based common-bases parallelization of Chaum and Ped-
ersen’s protocol is straightforward. Suppose the common input comprises (G,q,g1, . . . ,gk) ←
GDL(1

∗; k) and a k-tuple (hi1, . . . ,hik) ∈ (G)k for each i = 1, . . . ,n, and that P knows an n-
witness (x1, . . . , xn) ∈ (Zq)n such that gxi

j = hi j for each i = 1, . . . ,n and j = 1, . . . , k. For its
announcement, P chooses r ∈ Z∗q and then it computes A = (A1, . . . , Ak), where each Aj = gr

j ;
V checks that gv

j = Aj

(∏n
i=1hti

i j

)
for each j = 1, . . . , k. Peng et al. proposed and analyzed the

k = 2 case of the resulting protocol [PBD07; Figure 2].

3.2.3.3 The RME-based common-exponent Schnorr protocol

Next, we discuss the common exponent parallelization of Schnorr’s protocol [PBD07; Figure 4],
which requires an extra round of interaction. 16 The protocol is illustrated in Figure 3.4.

16 As a general rule of thumb, conjunctive parallelizations involving common exponents always require an additional
round of interaction, whereas conjunctive parallelizations that only involve common bases typically do not.

73

(G,q,g1, . . . ,gn) ← G (1τ; n) and (h1, . . . ,hn) ∈ (G)n with hi = gx
i for i = 1, . . . ,n︸ ︷︷ ︸

x

accept/reject

P V

t i ∈R
[
0,2λ0 − 1

]
r ∈R Z

∗
q

A1 = gr
1

A2 =
(n∏

i=2

g
ti
i

)r
c ∈R

[
0,2λ0 − 1

]
v = r + cx

gv
1

?
= A1hc

1(n∏
i=2

g
ti
i

)v ?
= A2

(n∏
i=2

hti
i

)c

t = (t2, . . . , tn)

A = (A1, A2)

c

v

Figure 3.4: A common-exponent batch variant of Schnorr’s protocol based on the RME
test. The protocol is c-simulatable and component-wise 2-extractable and is denoted
by PK

{
x : R(λ0)

RME

(
(h1, x), . . . , (hn, x)

) }
.

Theorem 3.17. The RME-based common-exponent Schnorr protocol depicted in Figure 3.4 is a
system for conjunctive batch honest-verifier zero-knowledge proofs of knowledge for the language
of correct batch predicates for the equality of DLs relations induced by GDL(1

∗). It is c-simulatable
and component-wise 2-extractable and, for a fixed soundness parameter λ0 ∈ N

+, it has absolute
soundness error δ = 2−λ0 and soundness error function λ(τ) = max

{
1/q, 2−λ0

}
.

The proof of Theorem 3.17 is similar to the proofs of Theorems 3.15 and 3.16. Note that having
two commitments in the announcement and two linearly independent verification equations is
necessary to ensure that P∗ has zero degrees of freedom in computing the response v . (See
our attack on Peng and Bao’s protocol in Section 4.2 for an example of why this is important.)
We could easily generalize the protocol to prove knowledge and equality among a sequence of
k-DLREPs induced by R ← GDL(1

∗; k). In this case, P∗’s response would be a k-tuple v =
(v1, . . . ,vk) and we would therefore require k + 1 linearly independent verification equations in
order to guarantee that P has zero degrees of freedom with which to compute v .

74

3.2.3.4 The PRP+-based common-base Schnorr protocol

One can easily construct a similar variant of Schnorr’s protocol from the PRP+ test 17 by imple-
menting the protocol denoted in Camenisch-Stadler notation by

PK
{(

x1, . . . , xn

)
: R(λ0)

PRP+

(
(h1, x1), . . . , (hn, xn)

)}
.

The expected computation cost for V in the PRP+-based Schnorr protocol on common input
(h1, . . . ,hn) is slightly lower than the expected cost to evaluate R(λ0)

PRP+

(
(h1, x1), . . . , (hn, xn)

)
given

access to the exponents (x1, . . . , xn); thus, the PRP+-based Schnorr protocol has the lowest ex-
pected verification cost among the batch protocols we have considered. In fact, the PRP+-based
Schnorr protocol has lower verification cost than any protocol previously proposed in the literature.
(Additionally, the expected cost for P is ExpCostG(τ), which is clearly the best possible.)

The communication cost of the PRP+-based Schnorr protocol, however, is much higher than
that of the RMP- or RME-based protocols. In particular, V challenges P with ℓℓ random partitions
of [1,n], each into m subsets, plus an additional ℓℓm random (λ0 + 1)-bit scalars for the final
RME verification. Each partitioning of [1,n] into m sets requires n⌈lg m⌉ bits to describe; thus,
as ℓℓ ≈ (λ0 + 1)/lg m, the overall length of V’s challenge is about

ℓℓn lg m + ℓℓm(λ0 + 1) ≈ n(λ0 + 1) + m(λ0 + 1)2/lg m bits;

moreover, since lg m approaches λ0+1 as n grows large, this latter expression converges to

≈ (λ0 + 1)(n + 2λ0+1) bits.

Theorem 3.18. The PRP+-based common-base Schnorr protocol is a system for conjunctive batch
honest-verifier zero-knowledge proofs of knowledge for the language of correct batch predicates
over R ← GDL(1

∗). It is c-simulatable and component-wise 2-extractable and, for a fixed sound-
ness parameter λ0 ∈ N

+, it has absolute soundness error δ ≤ 2−λ0 .

17 The diagram for this protocol is quite messy and we therefore omit it.

75

3.2.4 Communication-efficient conjunctive batch proofs

The communication costs of the RMP-, RME-, and PRP+-based Schnorr protocols are all linear in
the fan-in n of their common inputs. This cost may be prohibitively high for some potential use
cases; in particular, the batch tests we used to construct the above tests all require the verifier to
produce at least nλ0 uniform random bits, which become at least nλ0 uniform random challenge
bits that V must send to P in the resulting batch Schnorr protocol. The high communication
cost associated with sending so many challenge bits is not the only concern; indeed, merely
producing such a large number of uniform random bits can be burdensome for V, especially if V
is implemented on a server that must regularly engage in high fan-in interactive proofs with many
different provers. This section presents some common-base batch variants of Schnorr’s protocol
that use only sublinear random challenge bits. For instance, the next protocol we consider uses
2⌈
√

n⌉ (λ0+1) random challenge bits, while its most general form uses just ⌈lg n⌉
(
λ0+ ⌈lg lg n⌉

)
random challenge bits, and the last protocol we present requires only λ0+⌈lg n⌉ random challenge
bits.

3.2.4.1 The
k√
RME-based common-base Schnorr protocol

For our next batch proof system, we introduce a new batch verifier that extends the RME test to
use fewer random bits in exchange for a slightly higher expected computation cost. As a first
approximation to the new verifier, which we call the k

√
RME test, we consider the simple sub-case

with k = 2. For ease of exposition, we assume that the fan-in of the input predicate is n2, a square
number.

√
RME test: On input an (n2, τ)-instance (hi , x i)

n2

i=1 for R in which n ≥ 2, choose
t1, . . . , tn ∈R

[
0,2λ0+1

− 1
]

and t ′0, . . . , t
′
n−1 ∈R

[
0,2λ0+1

− 1
]
, compute the instances(

h0, x0
)

in which h0 =
∏n−1

j=0
(∏n

i=1hti
nj+i

) t ′j and x0 =
∑n−1

j=0 t ′j
(∑n

i=1t i xn j+i

)
, and then

output 1 if
(
h0, x0

)
is correct (that is, if h0 = gx0) and output 0 otherwise.

Intuitively, the
√

RME test divides an (n2, τ)-instance into a length-n sequence of (n, τ)-
instances, and then it “collapses” each of the resulting (n, τ)-instances into a single instance by
computing a random multiexponentiation (and linear combination) of its components, exactly

76

as in the RME test. The result is a sequence of n (non-batch) instances for R, which we regard
as a new (n, τ)-instance to be verified using a second application of the RME test. Note that
each of the n random multiexponentiations (and linear combinations) in the first step can use
the same sequence of random exponents, while the final RME verification must use a fresh
random sequence of exponents; hence, the

√
RME test requires the verifier to produce 2n(λ0 + 1)

uniform random bits, which grows much slower than the n2λ0 uniform random bits required by
the standard RME test. (If we swap in the RME+ test, then we can reduce this cost slightly, to
2(n − 1)(λ0 + 1) uniform random bits.)

If some component instance (hn j+i , xn j+i) is bad, then, by Lemma 3.5, the sub-instance(
(hn j+1, xn j+1), . . . , (hn j+n, xn j+n)

)
that contains it will “collapse” to an incorrect instance in the

first step, except with probability at most 2−(λ0+1). Likewise, if the input to the second application
of the RME test contains a bad instance, then, by a second application of Lemma 3.5, the output
of the

√
RME test will be 0, except with probability at most 2−(λ0+1). The absolute soundness error

of the
√

RME test therefore satisfies δ ≤ 2−(λ0+1) + 2−(λ0+1) = 2−λ0 .

The expected computation cost for the
√

RME test is at most about (n+1) ExpCostG
(
(n, λ0+

1)
)
, which is fewer than

(n + 1)
(
2n(λ0 + 1)

)
/lg n ≈ 4n2λ0/lg n2

multiplications in G when n is sufficiently large. Note that this cost is essentially always less (and
usually much less) than twice that of the standard RME test; hence, the

√
RME test is a batch

verifier for R ← GDL(1
∗). We summarize these results in the following theorem.

Theorem 3.19. The
√

RME test is a batch verifier for R ← GDL(1
∗). For a fixed soundness

parameter λ0 ∈ N
+, it has absolute soundness error δ = 2−λ0 and soundness error function

λ(τ) = max
{
2/q, 2−λ0

}
.

The above
√

RME test naturally generalizes to a verifier for batch instances for R ← GDL(1
∗)

with fan-in nk for arbitrary positive integers n ≥ 2 and k ≥ 1:

k√
RME test: On input an (nk , τ)-instance (hi , x i)

nk

i=1 for R ← GDL(1
∗), set Ik = (hi , x i)

nk

i=1

and then repeat the following steps (in descending order) for j = k, . . . ,1.

77

(
G,q,g

)
← G (1τ) and (h1, . . . ,hn2) ∈ (G)n2

such that hi = gxi for each i = 1, . . . ,n2︸ ︷︷ ︸{
xi
}n2

i=1

accept/reject

P V

r ∈R Z
∗
q

A = gr

t i ∈R

[
0,2λ0+1−1

]
t′j ∈R

[
0,2λ0+1−1

]
v = r−

n−1∑
j=0

t′j
(n∑

i=1

t i xnj+i

)
A ?
= gv

n−1∏
j=0

(n∏
i=1

hti
nj+i

) t ′j

A

c = (t1, . . ., tn , t
′
0, . . ., t

′
n−1)

v

Figure 3.5: A common-base batch variant of Schnorr’s protocol based on the
√

RME
test. This protocol requires V to send just 2n(λ0 + 1) uniform random challenge bits
to P.

1. Partition Ij into a length-(n j−1) sequence of (n, τ)-instances
(
Ij i
)n j−1

i=1,

2. choose random exponents t (j)

1 , . . . , t
(j)

n ∈R
[
0, k 2λ0 − 1

]
,

3. collapse each (n, τ)-instance Ij i into a single instance using the common-base
RME test with exponents (t (j)

1 , . . . , t
(j)

n), and then

4. combine the resulting n j−1 instances resulting from step 3 into an (n j−1, τ)-instance,
and call it Ij−1.

Output 1 if I0 = (h0, x0) is correct (that is, if h0 = gx0) and output 0 otherwise.

When k = 1, the k
√

RME test reduces to the RME test. By a similar argument as given above for
the
√

RME test, if instance Ij is incorrect, then instance Ij−1 can be correct with probability at
most 2−(λ0+lg k); hence, by the union bound, if the original batch instance was not correct, then the
final instanceI0 is correct with probability at most 2−(λ0+lg k)+ · · ·+2−(λ0+lg k) = k ·2−(λ0+lg k) = 2−λ0 .
In particular, the k

√
RME test has absolute soundness error satisfying δ ≤ 2−λ0 and soundness

error function satisfying λ(τ) ≤ max
{
k/q, 2−λ0

}
.

78

Suppose the input instance has fan-in N = nk . When n = 2 so that k = ⌈lg N⌉, the expected
computation cost in the j th level of recursion is about(

3 · 2 j−1/2
) (
λ0 + ⌈lg lg N⌉

)
.

When k ∈ N+ is constant so that n = ⌈ k
√

N⌉, the expected computation cost in the j th level of
recursion approaches

n j−1 (1 + (n − 1)/⌈lg n⌉
) (
λ0 + ⌈lg k⌉

)
.

In both expressions, the only term depending on j is n j−1. Summing this term over j =
1, . . . , k yields the j th partial sum of a geometric series; thus, this coefficient simplifies to
(n j − 1)/(n − 1) = (N − 1)/(n − 1). When n = 2 is fixed and k grows large, the total expected
computation cost is around (

3(N − 1)/2
)
(λ0 + ⌈lg lg N⌉)

multiplications in G. When k is a constant and n grows large, the total expected computation cost
is around (

(N − 1)/⌈lg n⌉
) (
λ0 + ⌈lg k⌉

)
multiplications in G.

Note that it is not strictly required that the input instance have fan-in exactly nk , provided the
actual fan-in N is not larger than nk . In fact, we can even implement an unbalanced design in
which the different levels of recursion partition the batch into different sizes. All that is required
is that each level of recursion uses a fresh sequence of uniform random challenges and that these
challenges each be at least λ0 + ⌈lg k⌉ bits long when there are k such recursion levels.

We can use the modified RME test from Section 3.1.4.3 (on Page 48) so that t (j)

1 = 1 in each
recursion level. The total number of random challenge bits required to check an (N, τ)-instance
with the resulting

k
√

RME test is then k
(
⌈

k
√

N⌉ − 1
) (
λ0 + ⌈lg k⌉

)
. We can minimize this cost by

setting k = ⌈lg N⌉ so that the test requires just

⌈lg N⌉
(
λ0 + ⌈lg lg N⌉

)
79

random challenge bits. This is a dramatic reduction compared to the Nλ0 random challenge bits
needed for the standard RME test.

Theorem 3.20. The
k
√

RME test is a batch verifier for R ← GDL(1
∗) for any fixed k ∈ [1, lg N],

where N is the fan-in of the input. For any fixed soundness parameter λ0 ∈ N
+, it has absolute

soundness error δ = 2−λ0 and soundness error function λ(τ) = max
{
k/q, 2−λ0

}
.

We can, of course, construct the corresponding
k
√

RME-based common base Schnorr protocol;
Figure 3.5 illustrates the special k = 2 case of this construction.

Theorem 3.21. The
k
√

RME-based common-base Schnorr protocol is a system for batch honest-
verifier zero-knowledge proofs of knowledge for the language of correct batch predicates over
R ← GDL(1

∗). It is c-simulatable and, for a fixed soundness parameter λ0 ∈ N
+, it has absolute

soundness error δ = 2−λ0 and soundness error function λ(τ) = max
{
k/q, 2−λ0

}
.

3.2.4.2 The polynomial-based common-base Schnorr protocol

The batch protocols that we have seen so far each require that R =
(
Rτ

)
τ∈N+ be a family of

linear relations Rτ ⊆ Sτ × Wτ . The next protocol, due to Gennaro, Leigh, Sundaram, and
Yerazunis [GLSY04] requires further that each domain Wτ of witnesses forms a commutative ring
and, consequently, Wτ[x] is a ring of polynomials. Note that Zq is a ring (indeed, a field) so that
Schnorr’s protocol and its variants satisfy this additional requirement.

Consider the single-input Schnorr protocol from the following perspective: The common input
h = gm is a commitment to the slope m ∈ Zq of a line in Zq[x], and P’s announcement A = gb

in the first move is a commitment to a random (non-zero) y-intercept b ∈ Z∗q . In particular, we
can view the pair (h, A) as a commitment to the line ℓℓ(x) = mx + b in the polynomial ring
Zq[x]. In the second move, then, V challenges P with a random x-coordinate, c ∈ Zq , and P
responds in the third move with the corresponding y-coordinate, v = mc + b. Finally, in the
verification equation, V checks that (c,v) is indeed a point on the committed line ℓℓ(x) by taking
advantage of the linearity of the DL relation: gv = hc A = (gm)cgb = gmc+b = gℓℓ(c). Intuitively,
since knowledge of any two points on a line is sufficient to recover that line and, hence, its slope,
the fact that P successfully produces v = mc + b for a given random, verifier-select challenge
c ∈R Zq provides overwhelming evidence that P indeed knows the slope m. (In other words, the

80

(
G,q,g

)
←G (1τ) and (h1, . . . ,hn) ∈ (G∗)n such that hi = gai for each i = 1, . . . ,n︸ ︷︷ ︸{

ai
}
n
i=1

accept/reject

P V

a0 ∈R Z
∗
q

A = ga0

c ∈R

[
0,2λ0+⌈lg n⌉−1

]
v = a0 +

n∑
i=1

ai ci

gv ?
= A
(n∏

i=1

hc i

i

)
A

c

v

Figure 3.6: A common-base batch variant of Schnorr’s protocol due to Gennaro, Leigh,
Sundaram, and Yerazunis [GLSY04; §3]. The protocol is c-simulatable and (n + 1)-
extractable.

protocol is 2-extractable.) On the other hand, knowledge of only one point on ℓℓ(x) = mx + b
reveals nothing about the slope m and so it would appear that V gains zero knowledge from the
interaction. (In other words, the protocol is honest-verifier zero-knowledge.)

In the standard, non-batch parallelization of Schnorr’s protocol, P commits to a length-n
sequence of random y-intercepts using the announcement A = (A1, . . . , An) in which each
Ai = gbi for some bi ∈R Z

∗
q; hence, each tuple (hi , Ai) is a commitment to a line ℓℓi (x) = mi x+bi .

V then challenges P to produce the sequence ℓℓ1(c), . . . ,ℓℓn (c). In Chaum and Pedersen’s protocol,
P commits to the same line using two or more distinct generators, and then V checks that all
committed lines intersect at the point (c,v). In this case, the fact that the lines intersect at a
random, verifier-selected c ∈ Zq provides overwhelming evidence that the lines are all equal and,
therefore, that they have the same slope.

Each of the systems for batch zero-knowledge proofs of knowledge that we have seen so far
instead have P commit to, and evaluate, some random, verifier-selected linear combinations of the
above lines ℓℓ1(x), . . . ,ℓℓn (x) ∈ Zq[x]. The intuition here is that, if P knows each such line, then it
can easily compute any given linear combination of those lines; however, if P∗ does not know one
or more of the lines, then it knows at most a small fraction of the possible linear combinations of
those lines.

81

Gennaro et al. propose a different way to batch Schnorr’s protocol, which we illustrate in
Figure 3.6. In particular, they propose to think of the sequence (h1, . . . ,hn) not as commitments
to the slopes of n lines in Zq[x] but, rather, as commitments to the coefficients of a degree-n
polynomial f (x) = a0 +

∑n
i=1ai x

i in which a0 ∈R Z
∗
q and ai = logg hi for each i = 1, . . . ,n.

V still challenges P∗ to evaluate f (c) for a random, verifier-selected challenge c ∈R Zq . In this
case, P∗ may know how to respond to up to n distinct challenges without actually knowing the
coefficients of f (x); however, if P∗ can respond for any n + 1 distinct challenges c1, . . . ,cn+1,
then it can easily interpolate the points

(
ci , f (ci)

)n+1
i=1 to recover the polynomial f (x) ∈ Zq[x]

and, thereby, to learn its coefficients. Thus, if P∗ does not know f (x), then it can respond to
a given challenge with probability at most about n/q. If V selects the challenges uniformly at
random from [0,T − 1] for some T < q, then the absolute soundness error increases to δ ≤ n/T .
In particular, to get absolute soundness error δ = 2−λ0 we should use T ≥ 2λ0+ ⌈lg n⌉ [GLSY04;

Theorem 2].

The polynomial proof is not component-wise 2-extractable: no universal knowledge extractor
can extract a witness from P using fewer than n rewinds; however, any set of n + 1 distinct
challenge-response pairs suffices to extract all n witnesses. The polynomial-based Schnorr proto-
col is therefore (n+1)-extractable, just not component-wise k-extractable for any k < n+1.

Theorem 3.22. The polynomial-based common-base Schnorr protocol depicted in Figure 3.6 is
a system for batch honest-verifier zero-knowledge proofs of knowledge for the language of correct
batch predicates over R ← GDL(1

∗). It is c-simulatable and (n + 1)-extractable and, for a fixed
soundness parameter λ0 ∈ N

+, it has absolute soundness error δ ≤ 2−λ0 and soundness error
function satisfying λ(τ) ≤ max

{
n/q, 2−λ0

}
.

Proof. Complete: gv = ga0+
∑n

i=1aic
i

= ga0
(n∏

i=1

gaic
i)
= ga0

(n∏
i=1

hc i

i

)
= A
(n∏

i=1

hc i

i

)
.

(n + 1)-Extractable: Any n + 1 responses for pairwise distinct challenges c1, . . . ,cn+1 is suf-
ficient for EP∗ to interpolate the polynomial f (x) and, thereby, to determine its coefficients
a0,a1, . . . ,an ∈ Zq . As the coefficients of the polynomial (except for a0, which is random)
correspond to the witnesses that P is proving knowledge of, it follows that the protocol is (n+1)-
extractable.

Sound: Let M be a binary matrix with a row for each possible announcement A ∈ G∗ from
P∗ and a column for each possible challenge c ∈

[
0,2λ0+ ⌈lg n⌉

− 1
]

from V. (Hence, there are
q − 1 rows and 2λ0+ ⌈lg n⌉ columns.) An entry (A,c) of M is 1 if P∗makes V accept in interactions

82

beginning (A,c) and it is 0 otherwise. Upon receiving the announcement A from P∗, EP∗ can
probe P∗ using a random challenge c1 ∈

[
0,2λ0+ ⌈lg n⌉

− 1
]

to learn the value in entry (A,c1) of M
and, through rewinding, EP∗ can probe P∗ using another random challenge c2 ∈

[
0,2λ0+ ⌈lg n⌉

− 1
]

to learn the value of entry (A,c2) of M . The goal is for EP∗ to locate a set of n + 1 distinct
challenges (c1, . . . ,cn+1) for which the values of entries (A,c1), . . . , (A,cn+1) of M are all 1, in
which case the (n + 1)-extractability of

(
P,V
)

allows EP∗ to compute the desired exponents.

Suppose the fraction of 1-entries in M is ϵ =
(
(n + 1)/2λ0+ ⌈lg n⌉

)
+ ε(s) for some ε(s) > 0. As

before, at least half of all 1-entries in M reside in rows in which a fraction ϵ/2 or more of the
entries are 1. In particular, if EP∗ locates a 1-entry at location (A,c1) in M , which happens after
an expected 1/ϵ probes, then, with probability at least 1/2, row A of M contains no fewer than
ϵ2λ0+ ⌈lg n⌉/2 − 1 additional 1-entries.

c-Simulatable: Given c ∈
[
0,2λ0+ ⌈lg n⌉

− 1
]

as input, SV(c) chooses v ∈R Zq , and then it
computes A = gv/

(∏n
i=1hc i

i

)
. (If A = 1, it selects a new v ∈R Zq and tries again.) It is easy to

verify that the simulated transcripts (A,c,v) follow the same distribution as the real transcripts.

Asymptotically efficient: The expected computation cost for P is just ExpCostG(τ) ∈ o
(
Pτ (n)

)
.

The expected computation cost for V on input (h1, . . . ,hn) is n ExpCostG(λ0 + ⌈lg n⌉) ≤
3n(λ0 + ⌈lg n⌉)/2 using Horner’s method: (h1(h2(· · · (hn−1hc

n)c · · ·)c)c)c
. As lg n ∈ o

(
τ
)

by assumption, this latter cost is in o
(
Vτ (n)

)
. Finally, the transcript is an element of G∗ ×

{0,1}λ0+ ⌈lg n⌉
×Zq , which is shorter than the corresponding transcripts of

(
P̂, V̂
)
, provided τ > λ0.

3.2.5 Cost comparison for batch Schnorr protocols

Tables 3.2–3.4 respectively compare the expected computation cost for P, the expected compu-
tation cost for V, and the aggregate communication cost for each of the batch Schnorr variants
discussed in this section. From Table 3.2 we see that all but the RMP- and PRP-based Schnorr
protocols have constant expected computation cost for P and, moreover, that this cost is identical
to P’s expected cost in a regular Schnorr protocol with a non-batch input. From Table 3.3 we see
that the lowest expected computation cost for V is realized by either the RME- or the PRP+-based
Schnorr protocols, depending on the fan-in of the input predicate. In particular, the RME-based

83

Table 3.2: The expected computation cost for P in several batch variants of Schnorr’s
protocol. Each protocol is new, unless otherwise indicated. The costs are measured
by the number of multiplications in G required to get soundness error less than 2−40

for a random (n,256)-instance. (Thus, we are using τ = 256 and λ0 = 40 so that
δ ≤ 2−40.) The k

√
RME row always uses k = ⌈lg n⌉. For each value of n displayed, the

cells containing the lowest expected cost on for (n, τ)-predicates are highlighted .

nn 55 1010 5050 100100 500500 10001000 5 0005 000 10 00010 000 50 00050 000

NaiveNaive 896 1536 6 656 13 056 64 256 128 256 640 256 1280 256 6 400 256

RMPRMP 5 376 5 376 5 376 5 376 5 376 5 376 5 376 5 376 5 376

RMEaRMEa 384 384 384 384 384 384 384 384 384

PRPPRP 10 240 10 240 10 496 10 496 10 496 15 232 25 600 33 024 78 592

PRP+PRP+ 384 384 384 384 384 384 384 384 384
√

RME
√

RME 384 384 384 384 384 384 384 384 384
3
√

RME3
√

RME 384 384 384 384 384 384 384 384 384
k
√

RMEk
√

RME 384 384 384 384 384 384 384 384 384

PolybPolyb 384 384 384 384 384 384 384 384 384

aThe RME-based Schnorr protocol was proposed by Peng, Boyd, and Dawson [PBD07].
bThe polynomial-based Schnorr protocol was proposed by Gennaro, Leigh, Sundaram and Yerazunis [GLSY04].

protocol is most efficient for relatively small fan-ins, while the PRP+-based protocol eventually
becomes more efficient when the fan-in grows large. (Note that both the RME- and PRP+-based
protocols exhibit constant expected cost for P.)

The k
√

RME- and polynomial-based Schnorr protocols do not appear to be very competitive
on Table 3.3; however, we see from Table 3.4 that both protocols have significantly lower com-
munication cost than their peers. The most striking difference is between the cost of the PRP+-
and polynomial-based Schnorr protocols: the former requires V to send nearly 3 000 times the
number of random challenge bits of the latter when the fan-in is n = 50 000. On the other
hand, V’s expected computation cost in the PRP+-based protocol is only about (1/16)th that of its
cost in the polynomial-based protocol. The k

√
RME-based protocols provide a tuneable trade-off

84

Table 3.3: The expected computation cost for V in several batch variants of Schnorr’s
protocol. Each protocol is new, unless otherwise indicated. The costs are measured
by the number of multiplications in G required to get soundness error less than 2−40

for a random (n,256)-instance. (Thus, we are using τ = 256 and λ0 = 40 so that
δ ≤ 2−40.) The k

√
RME row always uses k = ⌈lg n⌉. For each value of n displayed, the

cell containing the lowest expected cost for (n, τ)-predicates is highlighted .

nn 55 1010 5050 100100 500500 10001000 5 0005 000 10 00010 000 50 00050 000

NaiveNaive 2 821 5 386 25 906 51556 256 756 513 256 2 565 256 5130 256 25 650 256

RMPRMP 5 476 5 576 6 376 7 376 51376 25 376 105 376 205 376 1005 376

RMEaRMEa 484 584 1384 2 384 10 384 20 384 100 384 200 384 1000 384

PRPPRP 10 292 10 422 11416 12 416 20 416 28115 70 402 112 768 377 980

PRP+PRP+ 2 035 2165 3 039 3 856 9166 13 596 43 301 73 839 279147
√

RME
√

RME 630 794 1860 2 639 11700 22 032 105180 207 434 1033 584
3
√

RME3
√

RME 825 1476 2 589 4 290 14181 26 025 137 241 245 265 1123170
k
√

RMEk
√

RME 825 1329 4 448 8 576 34110 67 902 540 990 1081662 4 325 694

PolybPolyb 707 1044 3 834 7 434 37134 75 384 397 884 810 384 4 200 384

aThe RME-based Schnorr protocol was proposed by Peng, Boyd, and Dawson [PBD07].
bThe polynomial-based Schnorr protocol was proposed by Gennaro, Leigh, Sundaram and Yerazunis [GLSY04].

between these two extremes; for instance, the
√

RME-based protocol requires about 23 times as
many random challenge bits as the polynomial-based protocol (compared to 3 000 times as many
for the PRP+-based protocol) and has expected cost for V less than 24% that of its cost in the
polynomial-based protocol. The 3

√
RME test reduces the communication cost to just over 6 times

that of polynomial-based protocol with an expected cost for V that is still around 26% that of its
expected cost in the polynomial-based protocol.

85

Table 3.4: The bidirectional communication cost for several batch variants of Schnorr’s
protocol. Each protocol is new, unless otherwise indicated. The costs are measured
by the number of bits transmitted to get soundness error less than 2−40 for a random
(n,256)-instance. We assume that G is an elliptic curve group and count each G
element as 512 bits and each Zq element as 256 bits. (Thus, we are using τ = 256
and λ0 = 40 so that δ ≤ 2−40.) The k

√
RME row always uses k = ⌈lg n⌉. For each

value of n displayed, the cell containing the lowest expected cost for (n, τ)-predicates
is highlighted .

nn 55 1010 5050 100100 500500 10001000 5 0005 000 10 00010 000 50 00050 000

NaiveNaive 3 840 7 680 38 400 76 800 384 000 768 000 3 840 000 7 680 000 38 400 000

RMPRMP 968 1168 2 768 4 768 20 768 40 768 200 768 400 768 2 000 768

RMEaRMEa 968 1168 2 768 4 768 20 768 40 768 200 768 400 768 2 000 768

PRPPRP 60104 60 304 63 440 65 440 81440 129 856 352 064 596 608 2 470 016

PRP+PRP+ 4 088 4 288 5 968 7 968 23 968 45 448 208 688 411008 2 025 248
√

RME
√

RME 932 1014 1342 1506 2 572 3 310 6 508 8 886 19 054
3
√

RME3
√

RME 894 1020 1146 1272 1650 1902 2 910 3 414 5 304
k
√

RMEk
√

RME 894 936 1026 1069 1164 1208 1340 1384 1472

PolybPolyb 811 812 814 815 817 818 821 822 824

aThe RME-based Schnorr protocol was proposed by Peng, Boyd, and Dawson [PBD07].
bThe polynomial-based Schnorr protocol was proposed by Gennaro, Leigh, Sundaram and Yerazunis [GLSY04].

3.3 Chapter summary

This chapter proposed a new formal model with which to study batch verifiers and systems
for batch zero-knowledge proofs and arguments of knowledge. The new definitions for batch
verification improve on the existing definitions proposed by Bellare, Garay, and Rabin [BGR98b]
in several important respects, while the new definitions of systems for batch zero-knowledge
proofs (or arguments) of knowledge were sorely lacking from the literature. We then suggested a
generic construction yielding systems for batch zero-knowledge proofs of complete knowledge
for linear relations, and we used it to construct several new batch variants of Schnorr’s protocol

86

to prove knowledge of several DLs simultaneously. Compared to existing systems for batch zero-
knowledge proofs of knowledge in the literature, the new protocols provide greater flexibility in
trading off communication versus computation cost and one of them, the PRP+-based protocol,
has the lowest asymptotic computation cost of any known protocol.

87

Chapter 4

Batch proofs of partial knowledge

This chapter explores systems for batch zero-knowledge proofs of partial knowledge. Our inves-
tigation into systems for batch proofs of partial knowledge reveals that the only such protocols
in the literature are flawed. To harden those protocols, we introduce a new variant of trapdoor
mercurial commitments [CHL+13] with a novel binding property. The latter construction also has
some interesting implications for zero-knowledge proof systems in general, even when efficiency
is not a primary concern.

4.1 Non-batch proofs of partial knowledge

We first discuss systems for proofs of partial knowledge that are not batch protocols. Suppose we
are given a 2-extractable sigma protocol

(
P,V
)

for an infinite family R =
(
Rτ

)
τ∈N+ in which each

Rτ : Sτ ×Wτ is a finite NP-relation. Cramer, Damgård, and Schoenmakers [CDS94] proposed a
general methodology for constructing from

(
P,V
)

a system for proofs of Γ-partial knowledge over
R, where Γ ⊆ {0,1}∗ can be any monotone NP-language. At a high level, Cramer et al.’s method
involves converting a system for proofs of partial knowledge into a related system for proofs of
complete knowledge by having P simulate the sub-transcripts corresponding to witnesses that it
is not proving to know. V checks that each sub-transcript is correct, all the while oblivious to
which sub-transcripts are simulated and which sub-transcripts are real. Simultaneously, P proves

88

(
G,q,g

)
← G (1τ) and (h1,h2) ∈ (G)2 such that h1+b = gx for b ∈ {0,1}︸ ︷︷ ︸

(x,b)

accept/reject

P V

r,c2−b,v2−b ∈R Z
∗
q

A1+b = gr

A2−b = gv2−b hc2−b
2−b

c ∈R Zq

c1+b = c − c2−b

v1+b = r + xc1+b

gv1 ?
= hc1

1 A1

gv2 ?
= hc2

2 A2

c ?
= c1 + c2

A = (A1, A2)

c

v = (c1,v1,c2,v2)

Figure 4.1: A disjunctive variant of Schnorr’s protocol due to Cramer, Damgård, and
Schoenmakers [CDS94]. The protocol is c-simulatable and 2-extractable. It is denoted
by PK

{
x : (h1 = gx) ∨ (h2 = gx)

}
.

that the indices of the simulated sub-transcripts also index the zero bits of some length-n string
from Γ. Thus, if the common input is (s1, . . . ,sn) ∈ Sn

τ , then the resulting interaction establishes
that P holds a (Γ,n)-witness (w1, . . . ,wn) ∈ W n

τ for (s1, . . . ,sn) with respect to R.

It is not immediately clear from the above description how to instantiate Cramer et al.’s
methodology. After all, if P invokes SV to simulate a proper subset of the sub-transcripts, then pre-
sumably P must choose (or be told) whatever challenges appear in those simulated sub-transcripts
before the simulations complete; however, for the non-simulated proofs to be sound, it is crucial
that V — and not some potentially dishonest P∗— selects the challenges that appear in each of the
non-simulated sub-transcripts and, moreover, that it does so after it receives P’s announcements.
P, of course, cannot output announcements for the simulated sub-transcripts until after it runs the
simulations; thus, the only option seems to be for P to choose (and commit to, by way of the
simulations) the challenges that will appear in a subset of the sub-transcripts, and then for V to
issue the remaining challenges to P in a subsequent move. Given the complete set of challenges, P

89

must then prove the required correspondence between the simulated sub-transcripts and the zero
bits of a (secret) string from Γ, all the while ensuring that V cannot later distinguish between the
simulated and non-simulated sub-transcripts based on the challenges that appear in them.

Cramer et al. propose an ingenious way to do all this [CDS94]: have the challenge associated
with each sub-transcript be a secret share from a “suitable” secret sharing scheme. We provide
a formal definition for secret sharing schemes and clarify what we mean by “suitable” in the
next subsection; first, however, we illustrate a disjunctive (“OR”) variant of Schnorr’s protocol,
which is constructed from the method just described using a very simple, additive secret sharing
scheme.

4.1.1 A disjunctive Schnorr protocol from additive secret sharing

Figure 4.1 illustrates a disjunctive variant of Schnorr’s protocol in which P proves knowledge of
x ∈ Zq such that either h1 = gx or h2 = gx , without revealing which of the latter two expressions
actually holds. The generalization to input predicates with fan-in n > 2 is straightforward. If
the common input is (G,q,g,h1, . . . ,hn) and the private input to P is j ∈ [1,n] and x ∈ Zq such
that hj = gx , then we implement the protocol

(
P,V
)

denoted in Camenisch-Stadler notation by
PK
{

x :
∨n

i=1(hi = gx)
}

as follows.
Protocol 4.1 (Disjunctive variant of Schnorr’s protocol).

Common input:
(
G,q,g

)
← G (1τ) and (h1, . . . ,hn) ∈ (G)n

P’s private input: x ∈ Zq and j ∈ [1,n] such that hj = gx

P1: P chooses r ∈R Z
∗
q and uses it to compute the announcement Aj = gr . Then, for

each i ∈ [1,n] \ { j}, P selects ci ∈R Zq and runs the simulator to get (Ai ,ci ,vi) ←
SV(G,q,g,hi ,ci). P announces A = (A1, . . . , An) to V.

V2: V issues a challenge c ∈R Zq to P.

P3: P computes the challenge cj = c −
∑

i∈[1,n]\{ j } ci and response vj = r + cj x for the
non-simulated sub-transcript (Aj ,cj ,vj), and then it sends v = (c1,v1, . . . ,cn,vn) to V.

V4: V accepts if gvi = hci

i Ai for each i = 1, . . . ,n and if c =
n∑
i=1

ci ; otherwise, it rejects.

The first n verification equations ensure to V that each sub-transcript is accepting and the
last verification equation provides overwhelming evidence that at least one sub-transcript was
not simulated. In particular, if dishonest P∗ simulates every sub-transcript, then the sum of the

90

challenges
∑n

i=1ci is determined before V chooses c ∈R Zq; hence, the probability that V’s choice
for c ∈R Zq equals

∑n
i=1ci is just 1/q. Nonetheless, the interaction transcript (A,c,v) contains

no information to help V determine which particular sub-transcripts (Ai ,ci ,vi) are simulated and
which sub-transcripts are not.

Theorem 4.2. Let Γ1 =
{t ∈ {0,1}∗ �� t , 0 · · · 00

}
be the language of finite bit strings that

are not comprised entirely of 0s. The disjunctive variant of Schnorr’s protocol described in
Protocol 4.1 is a system for honest-verifier perfect zero-knowledge proofs of Γ1-partial knowledge
over R ← GDL(1

∗).

Damgård’s lecture notes [Dam11; Theorem 2] contain a detailed proof of Theorem 4.2.

4.1.2 Secret sharing schemes

Let U ⊆ N+ be a finite subset of the positive integers (typically U = [1,n]). An access structure
∆ on U refers to any collection of subsets of U . If ∆ has the property that H ∈ ∆ and H ′

⊆ U
with H ⊆ H ′ implies that H ′

∈ ∆, then ∆ is called a monotone access structure on U .

Definition 20 (Cramer, Damgård& Schoenmakers, 1994 [CDS94; Definition 5]). Let U ⊆ N+

be a finite subset of the positive integers and let ∆ be a monotone access structure on U . Given
a finite commitment domain C, a smooth secret sharing scheme for C with access structure ∆ is
a PPT algorithm that, on input a secret c ∈ C, outputs a sequence (c1, . . . ,c |U |) of secret shares,
such that the following conditions each hold.

1. Completable: For any H ∈ ∆, given the subsequence of shares (ci)i∈H indexed by H ,
there is an efficient algorithm that computes the secret c and the entire sequence of shares
(c1, . . . ,c |U |).

2. Independent: For every H ′
⊆ U such that H ′ < ∆, the distribution of the subsequence of

shares (ci)i∈H ′ indexed by H ′ is statistically independent of the secret c.
3. Uniform: For every H ′

⊆ U such that H ′ < ∆, each share in the subsequence of shares
(ci)i∈H ′ indexed by H ′ is distributed uniformly in its domain, independent of all the others.

A PPT algorithm that satisfies all but the third condition (uniformity) is called a semi-smooth
secret sharing scheme. If (c1, . . . ,cn) ∈ Cn so that each share is the same size as the secret, then
the secret sharing scheme is said to be perfect.

91

The typical use case for a secret sharing scheme is as follows: A trusted dealer distributes
shares of some secret c ∈ C to a set of |U | shareholders indexed by U . Later, any authorized
subset of shareholders — that is, any subset of shareholders indexed by a subset of U in the access
structure ∆— can cooperate to (efficiently) reconstruct the secret c, but no unauthorized subset
of shareholders can do so. In fact, no unauthorized subset of shareholders can use their shares to
deduce anything at all about c because the set of shares they hold is statistically independent of c
by definition.

4.1.3 Proofs of partial knowledge for monotone languages

Let ψU denote the function that maps each bit string t ∈ {0,1} |U | to the subset ψU (t) such that
U(i) ∈ ψU (t) if and only if the ith bit of t is equal to 1. Given an arbitrary Boolean language
Γ ⊆ {0,1}∗, we call ∆ =

{
ψU (t)

}
t ∈Γ∩{0,1} |U| the access structure induced by Γ on U .

Definition 21. A binary language Γ ⊆ {0,1}∗ is a monotone language if, for every finite set
U ⊆ N+, the access structure induced by Γ on U is monotone.

If ∆ is an access structure on U , then the dual of ∆ over U , denoted ∆∗, is the set of subsets of
U whose complements are not in ∆; that is, ∆∗ =

{
H∗ ⊆ U �� U \ H∗ < ∆

}
. It is straightforward

to verify that the dual of any monotone access structure is itself monotone and, moreover, that
(∆∗)∗ = ∆ [SJM91]. The following observation is another immediate consequence of the definition
of a dual access structure.

Observation 4.3 (Jackson and Martin, 1994 [JM94; Result 1]). If ∆ is a monotone access struc-
ture on U , then a given subset H ⊆ U is in ∆ if and only if H ∩ H∗ is nonempty for every
H∗ ∈ ∆∗.

We are especially interested in the equivalent (inverse) formulation of Observation 4.3: H∗<
∆
∗ if and only if there exists H ∈ ∆ for which H ∩ H∗ is empty; thus, if ∆ is induced by the

monotone language Γ ⊆ {0,1}∗, then the zero bits in a given string t ∈ {0,1} |U | are indexed by a
subset H∗ ⊆ U that is not in ∆∗ if and only if t ∈ Γ. We can now formally state what we meant
earlier by a “suitable” secret sharing scheme for use in Cramer et al.’s construction.

92

Proposition 4.4 (Cramer, Damgård&Schoenmakers,1994 [CDS94; Theorems 8&9]). Let
(
P,V
)

be a 2-extractable sigma protocol for R =
(
Rτ

)
τ∈N+ , let Γ ⊆ {0,1}∗ be any infinite monotone NP-

language, and, for each n ∈ N+, let ∆n be the access structure induced by Γ on [1,n]. Applying
Cramer et al.’s construction to

(
P,V
)

results in a system for honest-verifier zero-knowledge proofs
of Γ-partial knowledge over R if there exists a sequence

(
Cτ

)
τ∈N+ of challenge domains, with

|Cτ | super-polynomial in τ, such that, on input an (n, τ)-predicate over R, one of the following
is true:

1. each challenge ci is a secret share (of the verifier-selected challenge c) in a smooth secret
sharing scheme for Cτ with access structure ∆∗n, or

2.
(
P,V
)

is c-simulatable and each challenge ci is a secret share (of the verifier-selected
challenge c) in a semi-smooth secret sharing scheme for Cτ with access structure ∆∗n.

To avoid confusion, we herein refer to the prover-selected shares ci as sub-challenges and to
the verifier-selected secret c as the challenge. Both the simple additive secret sharing scheme
that we encountered in Figure 4.1 (and in Protocol 4.1) and Shamir’s threshold secret sharing
scheme, which we review momentarily, are smooth and perfect. Benaloh and Leichter [BL88]
provide a general construction for a semi-smooth secret sharing schemes with any access structure
described by a given Boolean formula comprising only AND, OR, and threshold operators. It is
easy to see that such formulas are always monotone and, therefore, always describe monotone
access structures. The overhead of Benaloh and Leichter’s construction depends on the size the
chosen Boolean function f ; 18 that is, it depends on the combined total number of occurrences of
all variables in f . In particular, if each variable si ∈ {0,1} occurs mi ∈ N

+ times in the formula
f (s1, . . . ,sn), then the ith share in Benaloh and Leichter’s construction is an mi-tuple ci ∈ Cmi .
In the corresponding proof of partial knowledge, P must produce an appropriate announcement
and response for each of the m =

∑n
i=1mi challenges; hence, the communication and computation

cost of the resulting interaction are each proportional to the size of f . We say that (fn)n∈N+ is
an infinite family of polynomial-sized Boolean formulas if there exists a positive integer-valued
function p(n) ∈ poly(n) such that each fn : {0,1}n → {0,1} has size at most p(n).

18 The problem of decomposing a given Boolean formula into a set of low-fan-in threshold operators has been
well-studied under the name threshold logic synthesis of Boolean formulas [SJF08, SR94].

93

Theorem 4.5. If a Boolean formula fn describes the monotone access structure ∆n, then the
formula f ∗n obtained from fn by replacing each (k,n)-threshold operator with an (n − k + 1,n)-
threshold operator describes the dual ∆∗n of ∆n. 19

It therefore follows that, given a c-simulatable, 2-extractable honest-verifier zero-knowledge
sigma protocol for R and a monotone language Γ ⊆ {0,1}∗ inducing access structures described
by a family of polynomial-sized Boolean formulas, Cramer et al.’s methodology yields a system
for honest-verifier zero-knowledge proofs of Γ-partial knowledge over R. Notably, Schnorr’s
protocol and its common generalizations are all c-simulatable, 2-extractable sigma protocols;
thus, we obtain the following corollary to Proposition 4.4.

Corollary 4.6 (Cramer, Damgård&Schoenmakers, 1994 [CDS94; Proposition 6]). For any lan-
guage Γ ⊆ {0,1}∗ inducing access structures described by a family of polynomial-sized monotone
Boolean formulas, Cramer et al.’s methodology yields systems for honest-verifier zero-knowledge
proofs of Γ-partial knowledge over R ← GDL(1

∗).

In Section 4.4.2, we extend the result of Corollary 4.6 to systems for batch honest-verifier zero-
knowledge proofs of partial knowledge for the above class of monotone languages, and then,
in Section 4.4.3, we extend it further to batch honest-verifier zero-knowledge proofs of partial
knowledge for certain non-monotone languages.

4.1.4 Shamir’s (k, n)-threshold secret sharing scheme

A special class of monotone access structures on U are the (k, |U|)-threshold access structures;
that is, the class of access structures of the form ∆ =

{
H ⊆ U �� |H | ≥ k

}
. Shamir’s threshold

secret sharing scheme [Sha79] is an elegant construction for such threshold access structures. It
is easy to confirm that the (k, |U|)-threshold access structure on U is dual to the (|U | − k +
1, |U |)-threshold access structure on U; thus, Shamir’s construction also yields a secret sharing
scheme with access structure dual to the (k, |U |)-threshold access structure on U , for any k ∈[
1, |U |

]
. We can therefore use Shamir’s secret sharing scheme to implement systems for zero-

knowledge proofs of “(k,n)-threshold knowledge” for arbitrary thresholds k ∈ [1,n]. The

19 Note that AND is an (n,n)-threshold operator and OR is a (1,n)-threshold operator.

94

secret sharing procedure for Shamir’s (k,n)-threshold construction is described in Algorithm 4.7;
reconstruction can use any polynomial interpolation algorithm (see Berrut and Trefethen [BT04],
for example). For simplicity, we assume that U = [1,n].

Algorithm 4.7 (Shamir’s (k, n)-threshold secret sharing scheme).

Input: A finite field C of possible secrets and a secret value c ∈ C
Output: A sequence (c1, . . . ,cn) ∈ Cn of (k,n)-threshold secret shares of c

1. Select k − 1 random coefficients a1, . . . ,ak−1 ∈R C.

2. Construct the degree-(k − 1) polynomial f (x) = c +
∑k−1

i=1 ai x
i in C[x].

3. Output the sequence (c1, . . . ,cn) ∈ Cn in which ci = f (i) for each i = 1, . . . ,n.

Given any H ⊆ [1,n] such that |H | ≥ k, the subsequence of shares (ci)i∈H is sufficient
to interpolate the secret sharing polynomial f and, thereby, to determine both the shared secret
c = f (0) and the complete sequence of shares

(
f (1), . . . , f (n)

)
∈ Cn. However, given any

H ′
⊆ [1,n] such that |H ′

| < k, the subsequence of shares (cj) j ∈H ′ is distributed uniformly at
random in C |H

′
|, independent of c.

Threshold secret sharing without a secret. Note that in a proof of partial knowledge, there is
no actual “secret” to be shared; rather, the “secret” is just V’s challenge c, which it broadcasts to
P as its only move. In particular, we treat c in a proof of partial knowledge not as a secret, but as
just another share that happens to have been selected by V instead of P; indeed, just as any subset
of k shares is sufficient to reconstruct both the secret c and the entire sequence (c1, . . . ,cn), so is
any k − 1 shares and c sufficient to reconstruct the entire sequence (c1, . . . ,cn). It is this latter
sequence of shares — and not the secret c — that P and V seek to reconstruct in a zero-knowledge
proof of partial knowledge.

4.1.4.1 (k, n)-threshold Schnorr protocol from Shamir secret sharing

Let H ⊆k [1,n] and let H = [1,n]\H . As noted above, in a system for proofs of (k,n)-threshold
knowledge, the prover-selected sub-challenges should be (n − k + 1,n)-threshold secret shares
of the challenge c. This allows P to select a subsequence (ci)i∈H comprising up to n − k shares
for simulations and then, upon receiving c from V, to construct the appropriate degree-(n − k)
secret sharing polynomial f with which to compute the remaining k shares, (cj) j ∈H . Note that,

95

although V cannot identify H from the sequence (c1, . . . ,cn), it can easily confirm that |H | ≥ k
by (i) interpolating (c1, . . . ,cn) to find f , and then (ii) checking that deg f ≤ n − k and that
f (0) = c. (In practice, it is more efficient to have P send V the n − k free coefficients of f (x)
instead of the length-n sequence (c1, . . . ,cn) of its evaluations. V then uses f to compute the
sub-challenges ci = f (i) for each i = 1, . . . ,n.)

Given the above, we can instantiate the protocol denoted in Camenisch-Stadler notation by
PK
{(

H, x1, . . . , xk

)
: H ⊆k [1,n] ∧

(∧k
i=1 hH(i)

= gxi
)}

using Protocol 4.8.

Protocol 4.8 ((k, n)-threshold variant of Schnorr’s protocol).

Common input:
(
G,q,g

)
← G (1τ) and (h1, . . . ,hn) ∈ (G)n

P’s private input: H ⊆k [1,n] and (x1, . . . , xk) ∈ (Zq)k with hH(j)
= gxj for j = 1, . . . , k

P1: Let H = [1,n] \ H . For each j = 1, . . . , k, P chooses rj ∈R Zq and uses it to compute
the announcement AH(j)

= grj. Then, for each i ∈ H , P selects a sub-challenge ci ∈R

Zq and runs the simulator to get (Ai ,ci ,vi) ← SV(G,q,g,hi ,ci). P announces A =
(A1, . . . , An) to V.

V2: V issues a challenge c ∈R Zq to P.

P3: P uses polynomial interpolation to compute the degree-(n − k) polynomial f ∈ Zq[x]
passing through (0,c) and through each point in

{
(i,ci)

}
i∈H . Then, for each j =

1, . . . , k, it computes the sub-challenge cH(j)
= f (H(j)) and response vH(j)

= rj + cH(j)
x j

for the non-simulated sub-transcript (AH(j)
,cH(j)

,vH(j)
). P sends v = (f ,v1, . . . ,vn) to V.

V4: V accepts if gvi = h f (i)
i Ai for each i = 1, . . . ,n and if deg f ≤ n − k with f (0) = c,

and it rejects otherwise.

Theorem 4.9 (Cramer, Damgård & Schoenmakers, 1994 [CDS94; Corollary 12]). Let (k,n) ∈
N × N+ with k ≤ n and let Γk ⊆ {0,1}

∗ denote the language of finite bit strings with Hamming
weight k or greater. The (k,n)-threshold variant of Schnorr’s protocol described in Protocol 4.8
is a system for honest-verifier zero-knowledge proofs of Γk-partial knowledge over R ← GDL(1

∗).

96

(G,q,g,h)←G (1τ; 2) and (g1,h1, . . . ,gn,hn) ∈ (G)2n such that
∨n

i=1
(
gi = gx

∧ hi = hx)︸ ︷︷ ︸
x

accept/reject

P V

ci ∈R
[
0,2λ0 − 1

]
(i, j) r ∈R Z

∗
q

A1 = gr(n∏
i=1, i, j

g
tici
i

)
A2 = hr(n∏

i=1, i, j

htici
i

)

t i ∈R
[
0,2λ0 − 1

]

c ∈R
[
0,2λ0 − 1

]
cj = c −

n∑
i=1, i, j

ci mod 2λ0

u = r − t jcj x
A1

?
= gu (n∏

i=1

g
tici

i

)
A2

?
= hu (n∏

i=1

htici

i

)
c ?
=

n∑
i=1

ci mod 2λ0

A = (A1, A2)

t = (t1, . . . , tn)

c

v = (u ,c1, . . . ,cn)

Figure 4.2: An interactive protocol due to Peng and Bao [PB08; Figure 2]. The protocol
was intended to be a disjunctive batch variant of Chaum and Pedersen’s protocol for
honest-verifier zero-knowledge proofs of knowledge and equality among DLs; however,
the protocol as specified is not sound.

4.2 Peng and Bao’s proofs of disjunctive knowledge

The protocol
(
P,V
)

depicted in Figure 4.2 is due to Peng and Bao [PB08; §5.1]. The common in-
put to

(
P,V
)

is (G,q,g,h) ← G (1τ; 2) and (g1,h1, . . . ,gn,hn) ∈ (G)2n; the protocol is intended
to be a common-base batch variant of Chaum and Pedersen’s protocol in which P proves knowl-
edge of an exponent x ∈ Zq and a secret index j ∈ [1,n] for which gj = gx and hj = hx . A review
of the literature reveals no other protocols that purport to be systems for batch zero-knowledge
proofs of partial knowledge, aside from two similar protocols in Peng and Bao’s same paper and
one protocol [CY08] that is known from previous work to be insecure [Pen12].

97

Conceptually, P proceeds just like it would in the non-batch protocol: it first chooses r ∈R Z
∗
q

and uses it to compute the “real” announcements Aj1 = gr and Aj2 = hr for the non-simulated sub-
transcript. Then, for each i ∈ [1,n] \ { j}, P invokes the simulator SV to produce the sub-transcript
(Ai1, Ai2,ci ,vi) ← SV(G,q,g,h,gi ,hi ,ci) satisfying Ai1 = gvig

ci
i and Ai2 = hvi hci

i . If P were to
announce A′ = (A11, A12, . . . , An1, An2) to V at this point, then the two could complete the proof
by engaging in a straightforward RME-based variant of Chaum and Pedersen’s protocol using A′

as the common input; however, computing and transmitting such a linear-sized announcement A′

is very costly. To avoid this cost, Peng and Bao have P — without ever showing the individual
commitments Aik to V — batch the announcement as A = (A1, A2) such that

A1 =
n∏
i=1

Atici

i1 and A2 =
n∏
i=1

Atici

i2

where each exponent t i ∈
[
0,2λ0 − 1

]
is selected in an opening move by V.

In practice, P need not actually compute the individual Aik as it can compute A1 and A2

directly at a much lower cost. P sends the RME-batched announcement A = (A1, A2) to V, and
the two proceed — as if V had seen the individual Aik and subsequently computed (A1, A2) on its
own — just as they would in the aforementioned RME-based variant of Chaum and Pedersen’s
protocol with common input A′ = (A11, A12, . . . , An1, An2).

Theorem 1 in Peng and Bao’s paper [PB08] states that “Soundness in [the protocol depicted
in Figure 4.2] only fails with an overwhelmingly small probability [in the soundness parameter
λ0].” Their proof derives an upper bound of δ = 2−λ0 on the absolute soundness error of the
protocol using an argument similar to the one we used to prove Theorem 3.4; however, their
proof assumes (incorrectly) that the RME-batched announcement A = (A1, A2) binds P∗ to a
subsequence of all but one sub-challenge cj from the sequence (c1, . . . ,cn). If that were true,
then P would have zero degrees of freedom to compute cj = c−

∑
i∈[1,n]\{ j }ci , and Peng and Bao’s

argument would hold to establish that the protocol is 2-extractable with absolute soundness error
δ = 2−λ0 . Unfortunately, the announcement A = (A1, A2) does not provide the needed binding
property; indeed, P∗ can sometimes exploit this observation in order to solve for several sequences
(c1, . . . ,cn) that are each consistent both with the announcement and with the challenge issued
by V. In such cases, P∗ may cause V to accept even when the common input is not Γ1-correct.
We give a high-level description of the attack below; additional details on how to implement

98

the attack are located in Appendix B. (We also note that the attack naturally extends to attacks
against the other two systems for batch zero-knowledge proofs of Γ1-partial knowledge in Peng
and Bao’s paper [PB08; Figures 3& 4].)

4.2.1 Attacking Peng and Bao’s protocol

Suppose that logg gi , logh hi for each i = 1, . . . ,n, but P∗ knows several pairs of exponents
(x j ,uj) ∈ (Zq)2 for which gj = gxj and hj = huj .20 Partition [1,n] into a pair (H,H) of disjoint
sets in which H comprises (a subset of) the indices j ∈ [1,n] for which P∗ knows the above
(x j ,uj) pair and H = [1,n] \ H comprises (a superset of) the indices i ∈ [1,n] for which P does
not know any such pair. Note that in some reasonable settings, P∗may know every such pair so
that H can be all of [1,n]. In its first move, P∗ chooses ci ∈R

[
0,2λ0 − 1

]
only for the i ∈ H , and

it likewise computes the announcement A = (A1, A2) only over H , so that

A1 = gr (∏
i∈H

g
tici

i

)
and

A2 = hr (∏
i∈H

htici

i

)
.

Such an announcement provides P∗ with |H | − 1 degrees of freedom when it comes time to
compute the missing sub-challenges (cj) j ∈H . In particular, P can solve for (cj) j ∈H to satisfy the
following system of two linear equations in k = |H | unknowns:

0 =
∑
j∈H

cjt j
(
x j − uj

)
(4.1)

and

c′ =
∑
j∈H

cj mod 2λ0 , (4.2)

where c′ = c −
∑

i∈H ci mod 2λ0 . Equation (4.1) implies that
∑

j ∈H cjt j x j =
∑

j ∈H cjt juj ; hence,
setting u = r −

∑
j ∈H cjt j x j , the response v = (u ,c1, . . . ,cn) satisfies each of V’s verification

equations, yet P∗ does not know any (Γ1,n)-witness for the common input.

20Of course, the attack works the same when logg gj = logh hj = x j for some j ∈ [1,n] but P∗ knows no such x j .

99

Of course, if P∗ just naively solves the above system of equations and obtains a solution
(cj) j ∈H having some cj ′ ≥ 2λ0 , then V can detect that P∗ is cheating, since all sub-challenges
should be elements of

[
0,2λ0 − 1

]
. Therefore, what P∗ really wants to do is find a solution to the

above system subject to the additional restriction that cj ∈
[
0,2λ0 − 1

]
for each j ∈ H .

A counting argument suggests that “sufficiently small” solutions are plentiful whenever kλ0

is “sufficiently large” compared to τ ≈ lg q.21 If X is an instance of the above system induced
by an actual interaction between P∗ and honest V, then we heuristically expect the distribution
of solutions of X to be uniform among all possible (cj1

, . . . ,cjk
) ∈ (Zq)k ; in particular, we

expect the proportion of solutions that are sufficiently small to be about (2λ0/q)k . Now, only qk−1

of the (cj1
, . . . ,cjk

) ∈ (Zq)k can satisfy Equation (4.1) and, of those, only about qk−1/2λ0 can
simultaneously satisfy Equation (4.2). This leads us to conclude that X has around(

qk−1/2λ
) (

2λ/q
) k
=
(
2λ) k−1

/q

sufficiently small solutions. Appendix B discusses how P∗ can find one of these solutions by
solving a short vector search problem in a particular lattice of dimension k + 3. When k is
reasonably small, P∗ can use a standard basis reduction algorithm, such as the celebrated Lenstra-
Lenstra-Lovász algorithm [LLL82], to find a sufficiently small solution very quickly. For example,
if λ0 = 40 and lg q ≈ 256, then P∗ only needs to know k = 8 exponent pairs to find a sufficiently
small solution. In our experiments, solving the above short vector search problem with λ0 = 40,
τ = 256, and k = 8 took about 12ms per trial, on average.

Towards repairing Peng and Bao’s protocol

The attack just outlined is only possible because cheating P∗ can wait until after it receives the
challenge c to choose the sub-challenges

(
cj

)
j ∈H for a subset of indices H such that |H | > 1. In

a standard, non-batch proof of partial knowledge, this does not pose any problem because each
sub-challenge that P∗ defers choosing introduces an additional linear equation to the system that

21 Recall that k = |H | is a lower bound on the number of exponent pairs that P∗ knows and that λ0 is the soundness
parameter. Higher values of λ0 are supposed to result in better soundness; however, what we find is just the
opposite: higher values of λ0 only make sufficiently small solutions to the above system more plentiful and easier
for cheating P∗ to compute.

100

P∗must ultimately solve in order to produce an accepting response. If we wish to maintain a fixed
number of verification equations, as in Peng and Bao’s protocol, then we must ensure that the
announcement binds P∗ to a specific choice for all but one of the sub-challenges.

Such a fix would require a special kind commitment scheme with which P can commit to
all but one sub-challenge from the sequence (c1, . . . ,cn) as part of its announcement and then,
upon receiving the challenge c from V, compute the missing cj and open the commitment to
the entire sequence (c1, . . . ,cn) without revealing the index j. Similarly, given a commitment
scheme with which P can commit to all but k sub-challenges from (c1, . . . ,cn) and later open
the commitment to all of (c1, . . . ,cn) without revealing the set of k shares that were chosen after
receiving c — yet explicitly revealing the number k of such shares — we could easily generalize
the repaired protocol to an RME-based system for proofs of (k,n)-threshold knowledge.

More generally still, given an arbitrary monotone language Γ ⊆ {0,1}∗ and an efficient
commitment scheme with a suitable generalization of the above binding property, we could
implement a system for batch honest-verifier zero-knowledge proofs of Γ-partial knowledge over
R ← GDL(1

∗). In the next section, we formally define such commitments for arbitrary binary
languages L ⊆ {0,1}∗, and in Section 4.4.1 we present an efficient construction for languages
inducing (n − k,n)-threshold access structures.

4.3 LL-mercurial commitments

Let C ⊆ N+ denote a fixed, finite set of positive integers called the commitment domain. Standard
cryptographic commitments provide a means by which a committer A can output a short string —
called a commitment — that binds it to a particular choice of c ∈ C, while temporarily hiding its
choice from the recipient B . A can subsequently open the commitment to c, thereby convincing
B that A had indeed chose that particular value prior to outputting the commitment. A trapdoor
mercurial commitment scheme [CHL+05; §2.2] is a special type of commitment scheme with a
carefully relaxed binding property that provides A with two distinct options:

1. A can “hard commit ” to a specific value c ∈ C, much like it would do using a standard
cryptographic commitment, or

2. A can “soft commit ” to nothing at all.

101

A “soft commitment” looks just like a “hard commitment” (indeed, the two kinds of commit-
ments are perfectly indistinguishable), but, unlike a hard commitment, a soft commitment does
not bind P to any specific value and P can, therefore, open the soft commitment arbitrarily. For
such a scheme to be useful, there needs to be an efficient way for P to (optionally) assert, upon
opening a commitment, that the given commitment is not a soft commitment. Whereas opening a
commitment to x together with such an assertion provides overwhelming evidence that P indeed
chose x prior to outputting the commitment, opening that same commitment to x with no such
assertion merely provides overwhelming evidence that P did not choose any different value y , x;
in particular, it could be that P hard-committed to x, or it could be that P soft committed to nothing
at all.

A variant of mercurial commitments called trapdoor n-mercurial commitments [CFM08] pro-
vide a means by which A can commit to an entire length-n sequence of values from C using
a single fixed-length commitment. A can open such a trapdoor n-mercurial commitment either
component-wise or vector-wise. Note that the binding property here is an “all-or-nothing” gen-
eralization of the above mercurial binding property: trapdoor n-mercurial commitments always
binds A either to an entire length-n sequence of values from C or to nothing at all — there are no
intermediate possibilities.

The commitment scheme we seek in order to fix Peng and Bao’s protocol is not a trapdoor
n-mercurial commitment scheme; nevertheless, whatever the scheme, it must have a decidedly
mercurial-esque binding property. We propose the new commitments below, calling them trap-
door L-mercurial commitments to highlight this connection to trapdoor n-mercurial commitments.
In a recent technical report, the author and Ian Goldberg [HG12] provided a thorough exposition
for the special case of trapdoor (n − k,n)-threshold mercurial commitments and discussed sev-
eral possible applications for the same. (The technical report refers to such commitments as
all-but-k mercurial commitments.) The discussion below is both more general and more limited
than the one in that technical report. In particular, below we restrict our attention to the sub-
set of functionality we need to implement systems for batch zero-knowledge proofs of partial
knowledge, providing a somewhat simplified definition and construction. The more general defini-
tion in our technical report considers both vector-wise and component-wise openings of trapdoor
(n − k,n)-threshold mercurial commitments, while this dissertation only considers the former

102

vector-wise openings.22 On the other hand, the definition in the technical report only considers
trapdoor (n − k,n)-threshold mercurial commitments and here we extend this notion to trapdoor
L-mercurial commitments for arbitrary Boolean languages L ⊆ {0,1}∗.

4.3.1 Formal definition

Intuitively, a trapdoor L-mercurial commitment scheme is a generalization of a trapdoor n-
mercurial commitment scheme with a binding property indicated by the access structures ∆n

induced by L on [1,n] for each n ∈ N+. In particular, a trapdoor L-mercurial commitment
binds the committer to a hidden subsequence of a sequence from Cn: given an authorized subset
H ∈ ∆n, A can hard commit to the subsequence

(
ci
)
i∈H and subsequently open the commitment

to any sequence (c1, . . . ,cn) consistent with this initial commitment.

Upon opening the commitment, A can optionally reveal (with proof) the set H indexing
the hard-committed subsequence. If A does not choose to explicitly reveal the set H , then the
L-mercurial hiding property ensures that B learns nothing about H beyond that H ∈ ∆n, a fact
which is guaranteed by the L-mercurial binding property. We observe that

1. trapdoor n-mercurial commitments are equivalent to trapdoor L-mercurial commitments
for the language L = {0}∗ ∪ {1}∗,23 and

2. non-mercurial vector commitments are equivalent to trapdoor L-mercurial commitments
for the language L = 1∗.

We therefore view trapdoor L-mercurial commitments as a substantial generalization both of
trapdoor n-mercurial commitments and of standard, non-mercurial vector commitments.

Definition 22. Let L ⊆ {0,1}∗ be an infinite binary language and, for each n ∈ N+, let ∆n be
the access structure induced by L on [1,n]. A trapdoor L-mercurial commitment scheme is a
4-tuple of PPT algorithms (KeyGenL,Com,Open,Ver), which are executed by entities taking on
three roles — the trusted initializer, the committer, and the recipient.

22Removing support for component-wise opening makes the construction both more efficient and easier to analyze.
23Asserting that such a commitment is not soft corresponds to revealing (with proof) that H = [1,n].

103

1. KeyGenL

(
C,1τ ,n

)
is run once by the trusted initializer to produce public parameters for

commitments that open to sequences from Cn. Given a finite commitment domain C, a secu-
rity parameter 1τ , and a sequence length n ∈ N+, it outputs public parameters PubL

(
C,1τ ,n

)
,

securely deletes its own memory, and then permanently exits the scene.

The trapdoor L-mercurial commitments created with PubL

(
C,1τ ,n

)
and opening to sequences in

Cn are called (L,n)-mercurial commitments. The next three algorithms take PubL

(
C,1τ ,n

)
as

an implicit input.

2. Com
(
(ci)i∈H

)
is run by the committer to commit to a subsequence of values

(
ci
)
i∈H in

which each ci ∈ C. If H ∈ ∆n, then it outputs a trapdoor (L,n)-mercurial commitment C

binding A to
(
ci
)
i∈H and auxiliary information G for the later opening of C ; otherwise, it

halts without output.

3. Open
(
C ,G,c1, . . . ,cn

)
is run by the committer to open a trapdoor (L,n)-mercurial com-

mitment C to the sequence (c1, . . . ,cn) ∈ Cn. If (c1, . . . ,cn) is consistent with the initial
subsequence

(
ci
)
i∈H committed to by C , then it outputs the decommitment π proving this

fact; otherwise, it halts without output.

4. Ver
(
C , π,c1, . . . ,cn

)
is run by the recipient to verify that (c1, . . . ,cn) ∈ Cn is a valid

opening of C . It outputs 1 if the decommitment π is correct and it outputs 0 otherwise.

Definition 23. A trapdoor L-mercurial commitment scheme (KeyGenL,Com,Open,Ver) is a
secure trapdoor L-mercurial commitment scheme if it provides the following three guarantees.

1. Complete: Let PubL

(
C,1τ ,n

)
← KeyGenL

(
C,1τ ,n

)
and let ∆n be the access structure

induced by L on [1,n]. For all (c1, . . . ,cn) ∈ Cn and for all H ∈ ∆n, if (C ,G) ←
Com
(
(ci)i∈H

)
and π ← Open

(
C ,G,c1, . . . ,cn

)
, then Ver

(
C , π,c1, . . . ,cn

)
= 1.

2. (Unconditional) LL-mercurial hiding: There exists a negligible function ε : N → R+

such that no (possibly unbounded) recipient B can win the following indistinguishability
game against an honest committer A with a probability exceeding 1/2 + ε(τ).24

24Despite hiding being unconditional, we permit B to win with success probability 1/2 + ε(τ) for a negligible func-
tion ε(τ) because the L-mercurial hiding property in our own trapdoor (n−k,n)-threshold mercurial commitments
relies on a protocol that is statistical zero-knowledge.

104

Game: LL-mercurial indistinguishability game

Initialization: A trusted initializer generates PubL

(
C,1τ ,n

)
← KeyGenL

(
C,1τ ,n

)
,

and then it passes PubL

(
C,1τ ,n

)
to A and B .

(a) B chooses (c1, . . . ,cn) ∈ Cn and H1,H2 ∈ ∆n and sends them to A .

(b) A tosses an unbiased coin to obtain b ∈R {0,1}, and then it computes (C ,G) ←
Com
(
(ci)i∈Hb

)
and π ← Open

(
C ,G,c1, . . . ,cn

)
and sends (C , π) to B .

(c) B outputs a bit b′ ∈ {0,1}.

Outcome: B wins the game if and only if b = b′.

3. (Computational) LL-mercurial binding: For any positive integer-valued function n(τ) ∈
poly(τ), there exists a negligible function ε : N → R+ such that, for all PPT algorithms
A and for all τ ∈ N+, if PubL

(
C,1τ ,n(τ)

)
← KeyGenL

(
C,1τ ,n(τ)

)
is output by a trusted

initializer and if C ← A (PubL

(
C,1τ ,n(τ)

))
, then there exists a fixed set H ∈ ∆n(τ) such

that, if
(
(π(0),c(0)

1 , . . . ,c
(0)

n(τ)), (π
(1),c(1)

1 , . . . ,c
(1)

n(τ))
)
← A (C) with Ver

(
C , π(0),c(0)

1 , . . . ,c
(0)

n(τ)

)
=

1 and Ver
(
C , π(1),c(1)

1 , . . . ,c
(1)

n(τ)

)
= 1, then

Pr
[

H \
{
i ∈
[
1,n(τ)

] �� c(0)

i = c(1)

i

}
, ∅

]
≤ ε(τ).

Intuitively, the computational L-mercurial binding property states that, for a given (L,n)-
mercurial commitment C output by a PPT committer A , there exists a fixed subset H ∈ ∆n

such that the sequences to which A can feasibly open C all “agree” on the subsequence indexed
by H . As equality is transitive, this trivially extends to openings of C to m > 2 different
sequences.

4.3.2 An efficient (n − k, n)-threshold construction

Let Γ−k ⊆ {0,1}
∗ denote the language of finite bit strings t ∈ {0,1}∗ with Hamming weight at

least |t | − k. We now provide an efficient construction for trapdoor Γ−k-mercurial commitments
(colloquially: (n−k,n)-threshold mercurial commitments). In particular, a trapdoor Γ−k-mercurial
commitment binds P to a subsequence of at least n − k components of a sequence from Cn.
Our construction uses Kate, Zaverucha, and Goldberg’s PolyCommitDL polynomial commitment
scheme [KZG10a; §3.2] as a building block.

105

4.3.2.1 PolyCommitDL polynomial commitments

Let p ∈ N+ be a τ-bit prime and let Zp[x] be the ring of polynomials over the finite field Zp .25 A
polynomial commitment scheme is a cryptographic commitment scheme with which a committer
A can commit to a polynomial f ∈ Zp[x] and later open the commitment either polynomial-wise
to f or point-wise to a point

(
i, f (i)

)
on f , for an arbitrary input i ∈ Zp . Kate et al.’s PolyCom-

mitDL scheme [KZG10a; §3.2] is a bilinear pairing-based construction (see Definition 24 below)
for polynomial commitments in which the size of a commitment does not depend on the degree
of the committed polynomial. Using a long-lived reference string comprising n + 1 elements
from an order-p bilinear group G̃, A can commit to any polynomial f ∈ Zp[x] of degree at most
n <
√

p using only a single G̃ element.

Definition 24. A (symmetric) bilinear pairing on the pair of groups (G̃,GT) of prime order p is
an efficient algorithm e : G̃ × G̃→ GT that satisfies the following two conditions.
1. Bilinearity: For all g̃1, g̃2 ∈ G̃ and for all x ∈ Zp , e(g̃x

1 , g̃2) = e(g̃1, g̃
x
2) = e(g̃1, g̃2)x .

2. Non-degeneracy: For all g̃ ∈ G̃∗, e(g̃, g̃) , 1.

If e : G̃ × G̃→ GT is a bilinear pairing, then the pair of groups (G̃,GT) is called a bilinear pair.

We use a symmetric pairing for ease of exposition; however, generalizing our constructions to use
asymmetric (specifically, Type III) pairings is not difficult and is substantially more efficient in
practice. For an overview of the available choices of cryptographic pairings, we refer the reader
to Galbraith, Paterson, and Smart [GPS08].

A degree-n PolyCommitDL common reference string is a tuple of the form

Polyτ

(
n
)
=
(
(G̃,GT,p, g̃,e), (g̃α j �� j ∈ [1,n])

)
,

where (G̃,GT) is a bilinear pair in which G̃ and GT have τ-bit prime order p, e : G̃ × G̃ → GT

is an efficient bilinear pairing on (G̃,GT), g̃ ∈ G̃∗ is a generator of G̃, and α ∈ Z∗p is a
random trapdoor exponent. On input the security parameter 1τ , a trusted initializer generates
(G̃,GT,p, g̃,e) ← G̃ (1τ) using a suitable bilinear group-generating algorithm G̃ (as defined

25We use p to denote our prime in this subsection in order to emphasize that we are not working in the field Zq

whose order matches our ubiquitous multiplicative group G.

106

in Definition 25 in Appendix A) with respect to which certain computational intractability as-
sumptions hold. (We discuss the necessary assumptions below.) It then selects the trapdoor
exponent α ∈R Z

∗
p , uses it to compute the power basis (g̃α, . . . , g̃αn

), and then securely discards
it immediately thereafter.26

To commit to a polynomial f (x) =
∑d

j=0aj x
j
∈ Zp[x] of degree d ≤ n, A computes

C =
∏d

j=0
(
g̃α j)aj = g̃ f (α) using the appropriate values from Polyτ

(
n
)
. A can of course open C

to f by simply revealing f to B and having B redo the calculation. Alternatively, A can open C

to a point
(
i, f (i)

)
on f by appealing to the Polynomial Remainder Theorem [Gal12; Corollary 2

to Theorem 16.2] and the properties of the bilinear pairing, as outlined in Protocol 4.10.

Protocol 4.10 (Point-wise opening in PolyCommitDL [KZG10a; §3.2]).

Common input: (C , i) ∈ G̃ × Zp \ {α} and
(
(G̃,GT,p, g̃,e), (gα j �� j ∈ [1,n])

)
AA’s private input: f ∈ Zp[x] such that deg f = d and C = g̃ f (α)

A1: Write f (x) = Q(x)(x − i) + f (i), where Q(x) =
∑d−1

j=0 bj x
j is the polynomial quotient

obtained upon dividing f (x) − f (i) by (x − i). A computes the evaluation witness
element wi =

∏d−1
j=0
(
g̃α j)bj = g̃Q(α) and sends

(
i, f (i),wi

)
to B .

B2: B outputs 1 if e
(
C /g̃ f (i), g̃

)
= e
(wi , g̃

α/g̃i
)
, and outputs 0 otherwise.

Note that the evaluation witness wi is itself a PolyCommitDL commitment whose length, like
that of C , is independent of deg f . The point-wise and polynomial-wise opening procedures are
each complete by inspection. Moreover, one can show that if A selects f ∈ Zp[x] uniformly
at random (subject only to deg f ≤ d), then (i) C is unconditionally hiding when B knows at
most d − 1 evaluations of f (and the associated witnesses), (ii) C is computationally hiding
under the DL assumption when B knows exactly d evaluations of f (and the associated wit-
nesses) and that deg f ≤ d, and (iii) C is trivially non-hiding when B knows d + 1 or more

26We can view PolyCommitDL as a trapdoor commitment scheme: given access to the trapdoor exponent α, A can
open a PolyCommitDL commitment to an arbitrary point (i, yi) ∈

(
Zp \ {α}

)
× Zp . Note that although knowledge

of the trapdoor exponent affects the binding property in PolyCommitDL, it does not affect the hiding property; thus,
it is sometimes acceptable for the recipient B to also be the trusted initializer. Alternatively, the trusted initializer
can be replaced by a secure multiparty computation between, say, all of the committers and recipients that intend
to use Polyτ

(
n
)
.

107

evaluations of f .27 Point-wise openings are computationally binding under a pair of DL-like
assumptions — the strong Diffie-Hellman (SDH) assumption [BB08; §2.3] and the polynomial
Diffie-Hellman (polyDH) assumption [KZG10a; Definition 2] — and polynomial-wise openings
are computationally binding under the DL assumption. See Appendix A for definitions of the
SDH and polyDH assumptions. We refer the reader to Kate et al.’s paper [KZG10a] for further
details on PolyCommitDL commitments, including proofs of the above security claims.

Change of basis in the PolyCommitDL common reference string

Given a polynomial f ∈ Zp[x] of degree n whose coefficients (a0, . . . ,an) are each bounded
above by a small constant, say 2λ0 , we can use Straus’ algorithm to compute a commitment
C = g̃ f (α) to f using fewer than λ0 + (n + 1)λ0/2 multiplications in G̃, on average. In our
construction below, it is not the coefficients (a0, . . . ,an) of f that are each bounded above by
2λ0 , but the evaluations

(
f (0), . . . , f (n)

)
at x = 1, . . . ,n. It is therefore advantageous for us to

perform a “change of basis” from the power basis (g̃, g̃α, . . . , g̃αn

) in the PolyCommitDL common
reference string to the appropriate Lagrange basis. (In fact, we keep both bases around as we still
find the power basis useful for efficiently committing to low-degree polynomials.) In particular,
the trusted initializer precomputes the sequence of PolyCommitDL commitments (g̃0, g̃1, . . . , g̃n)
in which each g̃j = g̃ℓℓj (α) for the Lagrange coefficient

ℓℓj (x) =
n∏

i=0, i, j

x − i
j − i

. (4.3)

The committer can then use Straus’ algorithm with this basis to evaluate C =
∏n

i=0 g̃
f (i)
i using

fewer than λ0 + (n + 1)λ0/2 multiplications in G̃, on average.

27More precisely, solving for f ∈R Zp[x] given (i) a PolyCommitDL commitment g̃ f (α) to f , (ii) a set of d distinct
points on f (and the associated witnesses), and (iii) a promise that deg f = d, is equivalent to solving a random
DL problem instance in G̃ (or in GT, if B prefers). The correct interpretation for the above binding property is
therefore: if the bilinear pairs (G̃,GT) are output by a bilinear group-generating algorithm G̃ with respect to which
the DL assumption holds (see Definition 25 in Appendix A), then no PPT algorithm can solve for a randomly
selected f from g̃ f (α) and a set of deg f distinct points on f , except with probability negligible in τ ≈ lg p. A
similar interpretation holds for the computational binding properties.

108

Note that this optimization does not affect the security of the underlying PolyCommitDL con-
struction, as A can easily compute the commitments (g̃0, g̃1, . . . , g̃n) in polynomial time from the
power basis (g̃, g̃α, . . . , g̃αn

). Indeed, we only have the trusted initializer output (g̃0, . . . , g̃n) as
part of the public parameters for convenience.

4.3.2.2 Zero-knowledge protocols for PolyCommitDL commitments

To facilitate our construction, we have developed three new zero-knowledge protocols for proving
(or arguing) assertions about polynomials committed to in PolyCommitDL commitments. Al-
though we developed these protocols specifically for the following trapdoor (n − k,n)-threshold
mercurial commitments, they will likely be useful in other applications, especially those related
to verifiable secret sharing [CGMA85]. The new protocols include:

1. a system for honest-verifier statistical zero-knowledge proofs of knowledge of a witness-
evaluation pair for a given commitment C and input i ∈ Zp \ {α} (colloquially: a system
for proofs of knowledge of a point on a committed polynomial), which we denote by
PK
{(wi , γi

)
: e(C/g̃γi , g̃) = e(wi , g̃

α/g̃i)
}
;

2. a system for honest-verifier statistical zero-knowledge arguments of knowledge of a com-
mitted polynomial, which we denote by PK

{
f : C = g̃ f (α) }; and

3. a system for honest-verifier statistical zero-knowledge arguments of knowledge of a com-
mitted polynomial with degree at most d, which we denote by PK

{
f : C = g̃ f (α)

∧

deg f ≤ d
}
.

The arguments of knowledge of a committed polynomial are computationally convincing under
the SDH assumption; additionally arguing that the committed polynomial has degree at most d
requires the polyDH assumption as well.

A full description and security analysis of each new zero-knowledge protocol is included in
Appendix C. The communication cost and computation cost for the verifier in each protocol is
independent both of deg f and of the maximum degree n allowed by Polyτ

(
n
)
. In each protocol,

the prover issues an announcement that includes a PolyCommitDL commitment to a polynomial
having approximately deg f non-zero coefficients; as such, the prover’s expected cost in each
protocol is roughly proportional to the degree of the polynomial under consideration. More pre-
cisely, the expected cost for the verifier in each protocol is ExpCostG̃

(
(2, τ)

)
+ExpCostGT

(
(2, τ)

)
109

plus two pairing evaluations, while the expected cost for the prover is ExpCostG̃
(
(deg f , τ)

)
+

ExpCostG̃
(
(2, τ)

)
+ ExpCostG̃(τ) plus two pairing evaluations. For communication cost, the

prover sends one G̃ element, one GT element, and two Zp elements to the verifier, and the verifier
sends either one Zp element (in the first protocol) or two Zp elements (in the second and third
protocols) to the prover.

Astute readers might notice that the secret trapdoor exponent α appears to the right of the
colon in our proposed Camenisch-Stadler notation for the above protocols. This is indeed an
abuse of notation, as α is emphatically not public; nonetheless, we feel that the proposed notation
is sufficiently clear. Moreover, we note that the protocols are still zero-knowledge if the verifier
happens to know the trapdoor exponent α; only soundness requires that α be kept secret from
any potentially dishonest provers.

4.3.2.3 (n − k, n)-threshold construction

We now present our construction for trapdoor (n − k,n)-threshold mercurial commitments. Trap-
door (n − k,n)-threshold mercurial commitments bind the committer A to an arbitrary subse-
quence comprising at least n − k components of a sequence (c1, . . . ,cn) ∈ Cn. As our ultimate
goal is to construct systems for batch zero-knowledge arguments of partial knowledge, we take
special care to maintain asymptotically low computation and (amortized)28 communication cost
in all steps. Our construction follows from the following fundamental property about polynomi-
als [Gal12; Corollary 1 to Theorem 16.2]:

f (i) = 0 if and only if x − i | f (x).

Throughout this section, we assume that the commitment domain C is an interval C = [0,T −
1], where T ∈ N+ can be any λ0-bit positive integer.

Public parameters generation. Given a security parameter 1τ and a maximum sequence
length n <

√
2τ/2, the trusted initializer invokes the trusted initializer for PolyCommitDL to

obtain a degree-n common reference string Polyτ

(
n
)
=
(
(G̃,GT,p, g̃,e), (g̃α j �� j ∈ [1,n])

)
. It

then precomputes

28 In particular, the public parameters in our construction comprises O
(
n
)

group elements; however, the commitments
C and decommitments π both have fixed lengths and have a relatively low cost to compute.

110

1. a PolyCommitDL commitment Z = g̃z (α) to z(x) =
∏n

i=1(x − i), and

2. the Lagrange basis (g̃0, g̃1, . . . , g̃n) ∈ (G̃)n+1 in which each g̃j = g̃ℓℓj (α) is a commitment to
the Lagrange coefficient ℓℓj (x), as described in Equation (4.3) above,

and then it outputs the public parameters

PubΓ−k
(
C,1τ ,n

)
=
(
(G̃,GT,p, g̃,e), (g̃α, . . . , g̃αn

), (g̃0, g̃1, . . . , g̃n),Z) .
Note that the threshold n − k is not used by KeyGenΓ−k; indeed, the same public parameters work
for trapdoor Γ−k-mercurial commitments for any k ∈ [0,n − 1].

Committing. Let H ⊆ [1,n] such that |H | ≥ n − k and let H = [1,n] \ H . A (n − k,n)-
threshold mercurial commitment to the subsequence (ci)i∈H has three components.

The first component is a PolyCommitDL commitmentF to the degree-n polynomial f ∈ Zp[x]
defined by

f (i) =

γ1 i = 0
ci i ∈ H
0 i ∈ H,

where γ1 ∈R Zp .

Observation 4.11. The expected cost for A to compute F = g̃ f (α) is ExpCostG̃
(
(1, τ), (n −

k, λ0)
)

using the Lagrange basis and the fact that f (i) ∈ C for each i ∈ H and f (i) = 0 for each
i ∈ H .

The second component is a pair of PolyCommitDL commitments S and Ŝ to the polynomials
s, s̄ ∈ Zp[x] such that

s(x) = γ2

∏
i∈H

(x − i)

and

s̄(x) = γ−1
2

∏
i∈H

(x − i)

111

for γ2 ∈R Z
∗
p . (If H = [1,n] and H = {}, then define s(x) = γ2.) Intuitively, the pair of

commitments (S, Ŝ) binds A to a subset H ⊆ [1,n], and F binds A to a particular choice of
ci ∈ C for each i ∈ H .

Observation 4.12. The expected cost for A to compute S = g̃s(α) is ExpCostG̃
(
(k +1, τ)

)
using

the power basis and the fact that deg s ≤ k. The expected cost for A to compute Ŝ = g̃ s̄(α) is
ExpCostG̃

(
(k + 1, τ)

)
using the Lagrange basis and the fact that s̄(i) = 0 for each i ∈ H .

The (Γ−k,n)-mercurial commitment is the tuple C = (F ,S, Ŝ, k) and the committer’s aux-
iliary information is the pair of polynomials G =

(
f (x), s(x)

)
. Note that k ∈ N+ indicates the

threshold n − k for the given commitment.

Opening a commitment. To open the commitment C = (F ,S, Ŝ, k) to (c1, . . . ,cn) ∈ Cn,
A computes a pair of PolyCommitDL commitments F̂ andH to the polynomials f̄ ,h ∈ Zp[x]
defined by

f̄ (i) =

−γ1 i = 0
0 i ∈ H
ci i ∈ H

and

h(x) =
f̄ (x)
s̄(x)

.

Observe that s̄(x) �� f̄ (x) by construction, which guarantees that h(x) = f̄ (x)/s̄(x) is indeed a
polynomial (whose degree is at most k).

Observation 4.13. The expected cost for A to compute F̂ = g̃ f̄ (α) is ExpCostG̃
(
(1, τ), (k, λ0)

)
using the Lagrange basis and the facts that f̄ (i) ∈ C for each i ∈ H and that f̄ (i) = 0 for each
i ∈ H . Likewise, the expected cost for A to computeH = g̃h(α) is ExpCostG̃

(
(k + 1, τ)

)
using

the power basis and the fact that deg h ≤ k.

To complete the opening, A engages the recipient in the zero-knowledge statistical argument
of knowledge denoted by

PK
{(

s(x),h(x)
)

: S = g̃s(α)
∧H = g̃h(α)

∧ deg s ≤ k
}
.

112

Observation 4.14. Since both deg s ≤ k and deg h ≤ k by construction, the expected cost for
A in the above protocol depends on k but it does not depend on n. The communication cost
and expected verification cost are each independent of both k and n. (See Section 4.3.2.2 for the
exact costs.)

The decommitment is π =
(
F̂ ,H

)
and the above argument of knowledge of

(
s(x),h(x)

)
such that S = g̃s(α) andH = g̃h(α) with deg s ≤ k.

Verifying an opening. To verify the opening of C = (F ,S, Ŝ, k) to a sequence (c1, . . . ,cn)
given the decommitment π = (F̂ ,H) and given that B accepted in the argument of knowledge
wherein A proved to know

(
s(x),h(x)

)
such that S = g̃s(α) andH = g̃h(α) with deg s ≤ k, B

interpolates the degree-n polynomial F ∈ Zp[x] defined by

F (i) =
{

0 i = 0
ci i ∈ [1,n],

and then it outputs 1 if

e(S, Ŝ) = e(Z, g̃), (4.4)

if

g̃F (α) = F · F̂ , (4.5)

and if

e(Ŝ,H) = e(F̂ , g̃); (4.6)

otherwise, it outputs 0.

Observation 4.15. The expected cost for B to compute g̃F (α) is ExpCostG̃
(
(n, λ0)

)
using the

Lagrange basis and the fact that f (0) = 0 and f (i) ∈ C for each i = 1, . . . ,n. In addition,
B must verify the above zero-knowledge argument of knowledge and evaluate the four bilinear
pairings; these latter two operations both have cost independent of both n and k.

113

4.3.2.4 Security analysis

We now analyze the security of our construction.

Theorem 4.16. The construction described in Section 4.3.2.3 is a secure trapdoor Γ−k-mercurial
commitment scheme under the SDH and polyDH assumptions.

Proof. Complete: Completeness follows by inspection of the algorithms.

(Unconditional) Γ−k-mercurial hiding: We prove that B wins the Γ−k-mercurial indistinguisha-
bility game (as defined in Definition 23) with probability at most 1/2+ ε(τ) for some negligible
function ε : N → R+ by proving that the distribution from which A draws (C , π) is statisti-
cally independent of the outcome b ∈ {0,1} of A’s random coin flip. It then follows that the
commitment-decommitment pair (C , π) reveals nothing to B about the outcome b, and so any
advantage that B has must result from the negligible knowledge it gains by engaging in the
statistical zero-knowledge argument of knowledge with A .

Suppose that B challenges A with (c1, . . . ,cn) ∈ Cn and a pair of subsets H0,H1 ⊆ [1,n]
satisfying |H0 | ≥ n−k and |H1 | ≥ n−k. Suppose further that A responds with C =

(
F ,S, Ŝ, k

)
and π =

(
F̂ ,H

)
such that Ver

(
C , π,c1, . . . ,cn

)
= 1. Let F ∈ Zp[x] denote the degree-n

polynomial such that

F (x) =
{

0 i = 0
ci i ∈ [1,n],

which is known both to A and to B .

It is easy to verify that the distribution of (F ,S) does not depend on b; in particular, for either
outcome b ∈ {0,1}, there exists one and only one corresponding choice for (γ1, γ2) ∈ Zp × Z

∗
p

that is consistent both with
(
F (x),Hb

)
and with (F ,S). But A chooses γ1 ∈R Zp and γ2 ∈R Z

∗
p

independently at random, so the pair (F ,S) is equally likely to arise for b = 0 and for b = 1.
Moreover, the pair

(
F ,F (x)

)
completely determines F̂ , the pair (S,Z) completely determines

Ŝ, and the pair (Ŝ, F̂) completely determines H ; hence, it follows that the distribution from
which A draws (C , π) is independent of b, as desired.

(Computational) Γ−k-mercurial binding: Suppose PubΓ−k
(
C,1τ ,n

)
← KeyGenΓ−k

(
C,1τ ,n

)
is

given and suppose that
(
C , (π(0),c(0)

1 , . . . ,c
(0)
n), (π(1),c(1)

1 , . . . ,c
(1)
n)
)
← A (PubΓ−k

(
C,1τ ,n

)
) such that

Ver
(
C , π(0),c(0)

1 , . . . ,c
(0)
n

)
= 1 and Ver

(
C , π(1),c(1)

1 , . . . ,c
(1)
n

)
= 1. Write C = (F ,S, Ŝ, k) and, for

114

each b ∈ {0,1}, write π(b) = (F̂ (b),H (b)) and let F (b)
∈ Zp[x] denote the degree-n polynomials

defined by

F (b)(x) =
{

0 i = 0
c(b)

i i ∈ [1,n].

Note that F (b)(x) is known both to A and to B . Suppose also that A has successfully argued
knowledge of

(
s(x),h(b)(x)

)
such that S = g̃s(α) andH (b) = g̃h(b)(α) with deg s ≤ k. Finally, we

note that both A and B are privy to the polynomial z(x) =
∏n

i=1(x − i) such that Z = g̃z (α).

We will prove that there exists a set H ⊆ [1,n] such that |H | ≥ n − k and such that x − i ��
F (0)(x) − F (1)(x) for each i ∈ H , which implies that F (0)(i) − F (1)(i) = 0 or, equivalently, that
F (0)(i) = F (1)(i), for each i ∈ H , as desired.

To begin, define the pair of rational functions
(
ṡ(x), s̈(x)

)
as

ṡ(x) =
z(x)
s(x)

,

and

s̈(x) =
(
F (0)(x) − F (1)(x)

)(
h(0)(x) − h(1)(x)

) .
Note that A knows the pair

(
ṡ(x), s̈(x)

)
by our assumptions above.

By Equation (4.4), it follows that Ŝ = g̃ ṡ(α).

Moreover, from Equation (4.5), it follows both that F · F̂ (0) = g̃F(0)(α) and that F · F̂ (1) = g̃F(1)(α)

so that F̂ (0)/F̂ (1) = g̃F(0)(α)−F(1)(α). Similarly, from Equation (4.6), it follows that e(g̃h(0)(α), Ŝ) =
e(F̂ (0), g̃) and that e(g̃h(1)(α), Ŝ) = e(F̂ (1), g̃) so that e(g̃h(0)(α)−h(1)(α), Ŝ) = e(F̂ (0)/F̂ (1), g̃).

Substituting F̂ (0)/F̂ (1) = g̃F(0)(α)−F(1)(α) in the latter expression, we find that

e(g̃h(0)(α)−h(1)(α), Ŝ) = e(g̃F(0)(α)−F(1)(α), g̃);

hence, Ŝ = g̃ s̈(α), and, in particular, we have that g̃ ṡ(α) = g̃ s̈(α).

115

Now, define the polynomial E(x) = z(x)
(
h(0)(x) − h(1)(x)

)
− s(x)

(
F (0)(x) − F (1)(x)

)
. Since

z(α)
s(α)

=
F (0)(α) − F (1)(α)
h(0)(α) − h(1)(α)

,

it follows that E(α) = 0. There are two cases to consider.

Case 1 (E (x) , 0): Here E(x) is a polynomial known to A and having at most 2n roots
(counting multiplicity), one of which is the trapdoor exponent α. As A can efficiently fac-
tor E(x), the SDH assumption implies that Case 1 occurs with probability negligible in τ.

Case 2 (E (x) = 0): Here z(x)
(
h(0)(x) − h(1)(x)

)
= s(x)

(
F (0)(x) − F (1)(x)

)
. Note that both sides

of this expression are polynomials known to A . Moreover, note that the z(x) factor on the
left-hand side ensures that both polynomials evaluate to 0 on input any i ∈ [1,n]. As A has
successfully argued that deg s ≤ k, it follows (with probability overwhelming in τ, under the
polyDH assumption) that there is a set H ⊆ [1,n] with |H | ≥ n− k such that F (0)(i)−F (1)(i) = 0
for each i ∈ H . �

Note that the set H derived in Case 2 depends only on the polynomials s(x) and s̄(x) to which
S and Ŝ commit; in particular, for each i = 1, . . . ,n, we must have that either F (0)(i) − F (1)(i) = 0
or s(i) = 0, always for the same degree-k polynomial s(x). Thus, we find not only that the
polynomial F (0)(x) − F (1)(x) has at least n − k roots in [1,n], but that it always has same set of
roots (or some sufficiently large subset thereof) for all feasible openings of C = (F ,S, Ŝ, k).

The opening and verification algorithms in our construction actually constitute an interactive
protocol. One can make the zero-knowledge arguments of knowledge non-interactive using the
Fiat-Shamir transform, in which case the opening procedure would be non-interactive and the
computational Γ−k-mercurial binding property would hold under the SDH and polyDH assumptions
in the random oracle model.

116

4.3.2.5 Cost analysis

Summing the expected computation costs indicated in Observations 4.11–4.15 and Section 4.3.2.2,
we find that the aggregate cost for A to produce and open a (Γ−k,n)-mercurial commitment is less
than

ExpCostG̃
(
(1, τ), (n − k, λ0)

)
+ 4 ExpCostG̃

(
(k + 1, τ)

)
+ ExpCostG̃

(
(2, τ)

)
+ ExpCostG̃

(
τ
)

+ ExpCostG̃
(
(1, τ), (k, λ0)

)
< 4kτ/lg τ + nλ0/lg n

multiplications in G̃, plus two pairing evaluations. Note that this cost is in O
(
kτ/lg τ+nλ0/lg n

)
.

Likewise, the cost for B to verify such an opening is

ExpCostG̃((n, λ0)) + ExpCostG̃
(
(2, τ)

)
< τ + τ/lg τ + nλ0/lg n

multiplications in G̃, plus ExpCostGT

(
(2, τ)

)
multiplications in GT and six pairing evaluations.

Hence, for any fixed k ∈ N+, the overall computation cost of the above construction is in O
(
nλ0
)

both for A and for B .

The commitments have constant size, comprising just three G̃ elements. An opening com-
prises three additional G̃ elements (two in the decommitment π, and one in the zero-knowledge
argument of knowledge), one GT element, and two Zp elements (beyond the actual values in the
opening). In addition, V must challenge P with two Zp elements in the zero-knowledge argument
of knowledge. The amortized communication overhead is therefore independent of both n and
k.

Observation 4.17. Fix a constant k ∈ N+. The aggregate computation cost for A and for B in
the above construction for trapdoor Γ−k-mercurial commitments are each asymptotically lower
than those of the naive prover P̂ and the naive verifier V̂ in an n-fold parallelization of Schnorr’s
protocol. Moreover, the bidirectional communication cost is constant; hence, we can employ the
above construction in a system for batch honest-verifier zero-knowledge arguments of Γk-partial
knowledge over R ← GDL(1

∗).

117

We also point out that PubΓ−k
(
C,1τ ,N

)
← KeyGenΓ−k

(
C,1τ ,N

)
can be used to commit to

sequences with any length n ∈ [1,N] by setting ci = 0 for each i > n. (In this case, the actual
sequence length n must be disclosed alongside k in the commitment C .) It is therefore possible
to generate a single public parameters suitable for creating (Γ−k,n)-mercurial commitments for
any length n up to some suitably large bound N .

4.4 Batch Schnorr proofs of partial knowledge

Given our construction for trapdoor Γ−1-mercurial commitments, we can easily repair (and sim-
plify) Peng and Bao’s RME-based disjunctive Chaum-Pedersen protocol. As before, the com-
mon input to

(
P,V
)

includes (G,q,g,h) ← G (1τ; 2) and (g1,h1, . . . ,gn,hn) ∈ (G)2n. In
addition, the repaired protocol also requires (long-lived) public parameters PubΓ−1

(
C,1τ ,n

)
←

KeyGenΓ−1
(
C,1τ ,n

)
for (n − 1,n)-threshold mercurial commitments over the challenge domain

C =
[
0,2λ0 − 1

]
.

We note that, as a 2-extractable common-base parallelization of Chaum and Pedersen’s proto-
col, there is no need to have V send random exponents t = (t1, . . . , tn) to P in an opening move,
despite Peng and Bao’s having V do so in their protocol (see Figure 4.2 on Page 97). Suppose
that (gi ,hi , x)ni=1 is Γ1-correct and let j ∈ [1,n] be the index for which P is proving that gj = gx and
hj = hx . In the opening move, P(x, j) selects r ∈R Z

∗
q and a sub-challenge ci ∈R

[
0,2λ0 − 1

]
for

each i ∈ [1,n] \ { j}, and then it uses these values to compute the announcement A = (A0, A1, A2),
in which

A1 = gr (∏
i∈[1,n]\{ j }

g
ci

i

)
,

A2 = hr (∏
i∈[1,n]\{ j }

hci

i

)
,

and

(A0,G) ← Com
(
(ci)i∈[1,n]\{ j }

)
.

118

Upon receiving the announcement, V challenges P with c ∈R
[
0,2λ0 − 1

]
, from which P com-

putes the missing sub-challenge cj = c−
∑

i∈[1,n]\{ j } ci mod 2λ0 , the response u = r − cj x, and the
opening π ← Open

(
A0,G,c1, . . . ,cn

)
of A0 to (c1, . . . ,cn). Finally, P sends v = (u , π,c1, . . . ,cn)

to V. To verify the proof, V checks if Ver
(
A0, π,c1, . . . ,cn

)
= 1, if c =

∑n
i=1ci mod 2λ0 , and if

A1 = gu (∏n
i=1g

ci

i

)
and A2 = hu (∏n

i=1hci

i

)
both hold.

The (Γ−1,n)-mercurial commitment A0 in the announcement binds P to no fewer than n − 1 of
the sub-challenges (with a probability overwhelming in τ, under the SDH and polyDH assump-
tions), while having the sub-challenges be shares in an additive secret sharing scheme ensures that
P∗ can choose no more than n−1 of the sub-challenges before it receives c (with a probability over-
whelming in λ0); thus, the only way for a PPT prover P∗ to satisfy both Ver

(
A0, π,c1, . . . ,cn

)
= 1

and c =
∑n

i=1ci mod 2λ0 with a probability that is not negligible in λ0 ∈ o
(
τ
)

is to choose
(and commit to) exactly n − 1 of the sub-challenges in the opening move. This leaves P∗ with
zero degrees of freedom to compute its response, thereby thwarting algebraic attacks of the sort
presented in Section 4.2.1.

Theorem 4.18. The repaired Peng-Bao protocol, just described, is a system for batch honest-
verifier statistical zero-knowledge arguments of Γ1-partial knowledge and equality among DLs
induced by GDL(1

∗) (colloquially: a system for batch arguments of knowledge and equality of 1-
out-of-n DLs). It is c-simulatable and 2-extractable and, for a fixed soundness parameter λ0 ∈ N

+,
it has absolute soundness error δ = 2−λ0 and soundness error function λ(τ) = max

{
1/q, 2−λ0

}
.

Arguments in the above protocol are computationally convincing under the SDH and polyDH
assumptions for the bilinear group-generating algorithm employed by KeyGenΓ−1.

The proof of Theorem 4.18 is (essentially) a special case of the proof of Theorem 4.26, which
we prove in Section 4.4.2 below. The next section considers a batch (k,n)-threshold variant of
Schnorr’s protocol along the same lines as the repaired Peng-Bao protocol; generalizing that
construction to a batch (k,n)-threshold variant of Chaum and Pedersen’s protocol is trivial.

4.4.1 A (k, n)-threshold batch Schnorr protocol

By replacing trapdoor Γ−1-mercurial commitments and additive secret sharing with trapdoor Γ−k-
mercurial commitments and Shamir’s (n−k+1,n)-threshold secret sharing, we can generalize the
repaired Peng-Bao protocol to a system for honest-verifier statistical zero-knowledge arguments

119

of Γk-partial knowledge over R ← GDL(1
∗). As explained below, it is necessary in this case to

reintroduce the short exponents t = (t1, . . . , tn). Protocol 4.19 gives the full construction applied
to Schnorr’s protocol. We use C = Zρ for the challenge domain, where ρ is an arbitrary λ0-bit
prime so that Zρ[x] is a ring of polynomials.

Protocol 4.19 (RME-based common-base (k, n)-threshold Schnorr protocol).

Common input:
(
G,q,g

)
← G (1τ), (h1, . . . ,hn) ∈ (G)n, and PubΓ−k

(
Zρ,1

τ ,n
)

P’s private input: H ⊆k [1,n] and (x j)
k
j=1 with hH(j)

= gxj for each j = 1, . . . , k

P1: Let H = [1,n] \ H . P chooses a sub-challenge ci ∈R Zρ for each i ∈ H , and then it
computes (A0,G) ← Com

(
(ci)i∈H

)
. P announces A0 to V.

V2: V chooses a random exponent t i ∈R
[
0,2λ0 − 1

]
for each i = 1, . . . ,n, and then it sends

t = (t1, . . . , tn) to P.

P3: P computes ai = t ici mod ρ for each i ∈ H , and then it chooses r ∈R Z
∗
q and computes

A1 = gr (∏
i∈H hai

i

)
. P sends A1 to V.

V4: V issues a challenge c ∈R Zρ to P.

P5: P uses polynomial interpolation to compute the degree-(n − k) polynomial f ∈ Zρ[x]
passing through (0,c) and through each point in

{
(i,ci)

}
i∈H , and then it computes

aH(j)
= tH(j)

f (H(j)) mod ρ for each j = 1, . . . , k, the response u = r −
∑k

j=1aH(j)
x j , and

the opening π ← Open
(
A0,G, f (1), . . . , f (n)

)
of A0. P sends v = (u , π, f) to V.

V6: V computes ai = t i f (i) mod ρ for each i = 1, . . . ,n, and then it accepts
if Ver

(
A0, π, f (1), . . . , f (n)

)
= 1, if deg f ≤ n − k with c = f (0), and if

A1 = gu (∏n
i=1hai

i

)
; otherwise, it rejects.

Theorem 4.20. The RME-based common-base Schnorr protocol described in Protocol 4.19 is
a system for batch honest-verifier statistical zero-knowledge arguments of Γk-partial knowledge
over R ← GDL(1

∗). It is c-simulatable and, for a fixed soundness parameter λ0 ∈ N
+, it has

absolute soundness error δ ≤ 2−λ0 . Its arguments are computationally convincing under the SDH
and polyDH assumptions for the bilinear group-generating algorithm employed by KeyGenΓ−k.

We omit a detailed proof of Theorem 4.20 because it is a special case of Theorem 4.26 below.
To see why it is necessary to reintroduce the short exponents t = (t1, . . . , tn) when k > 1,
consider the universal knowledge extractor EP∗ for Protocol 4.19. When k = 1, such an extractor

120

would issue a random challenge c(1)
∈R Zρ to obtain the response v (1) =

(u (1), f (1), π(1)) from P∗,
and then it would rewind P∗ and issue a second challenge c(2)

∈R Zρ \
{
c(1)} to obtain a second

response v (2) = (u (2), f (2), π(2)). The (n − 1,n)-threshold mercurial commitment A0 that P∗ outputs
in the opening move binds it to a fixed subsequence (ci)i∈H of sub-challenges, where H =

[1,n] \ { j} for some j ∈ [1,n]; hence, it follows that u (1)
− u (2) =

(
f (1)(j) − f (2)(j)

)
logg hj is

a linear equation in k = 1 unknown and EP∗ can easily solve for the desired witness logg hj =(u (1)
− u (2))/(f (1)(j) − f (2)(j)

)
.

When k > 1, the corresponding expression u (1)
− u (2) =

∑ |H |
j=1

(
f (1)(H(j)) − f (2)(H(j))

)
logg hH(j)

is a linear equation in k > 1 unknowns and, consequently, EP∗ requires a set of at least k linearly
independent such equations in order to solve for the sequence of exponents

(
x j

) |H |
j=1 in which each

x j = logg hH(j)
. Moreover, since both deg f (1) = n − k and deg f (2) = n − k, and since A0 binds

P∗ to f (1)(i) = f (2)(i) for each i ∈ H , it follows that f (1)(x) − f (2)(x) = ζ
∏

i∈H (x − i) for some
scalar ζ ∈ Z∗ρ . Therefore, if EP∗ merely rewinds P∗ and issues a third challenge c(3)

∈ Zρ , the
resulting expression u (1)

− u (3) is always a scalar multiple of u (1)
− u (2). In particular, the system of

equations that such an EP∗ obtains always has rank 1 and, consequently, the extractor will always
fail. The short exponents t = (t1, . . . , tn) provide a means for EP∗ to extract a set of random linear
equations in the same k unknowns, thus enabling it to extract the desired exponents. The full
extractor construction is described in the proof of Theorem 4.26.

4.4.2 Monotone proofs of partial knowledge

The construction for batch proofs of (k,n)-threshold knowledge described in Protocol 4.19 gener-
alizes to a construction for batch proofs of Γ-partial knowledge for any NP-language Γ ⊆ {0,1}∗

inducing access structures described by a family of polynomial-sized monotone Boolean formu-
las. The only things that must change in Protocol 4.19 are (i) the access structure with respect
to which each sub-challenge must be a secret share, and (ii) the binding property of the trap-
door L-mercurial commitment A0 in P’s announcement. The general protocol is described in
Protocol 4.21.

121

Protocol 4.21 (RME-based common-base Γ-partial Schnorr protocol).

Common input:
(
G,q,g

)
← G (1τ), (h1, . . . ,hn) ∈ (G)n, and PubL

(
C(τ),1τ ,n

)
P’s private input: H ⊆ [1,n] and (x j) j ∈H with H ∈ ∆n and hj = gxj for each j ∈ H

P1: Let H = [1,n] \ H . P chooses a sub-challenge ci ∈R C(τ) for each i ∈ H , and then it
computes (A0,G) ← Com

(
(ci)i∈H

)
and sends it to V.

V2: V chooses t i ∈R Zρ for each i = 1, . . . ,n, and then it sends t = (t1, . . . , tn) to V.

P3: P computes ai = t ici mod ρ for each i ∈ H , and then it chooses r ∈R Z
∗
q and computes

A1 = gr (∏
i∈H hai

i

)
. P sends A1 to V.

V2: V issues a challenge c ∈R C(τ) to P.

P3: P computes (c1, . . . ,cn) ← SS
(
c, (ci)i∈H

)
, and then it computes aj = t jcj mod ρ

for each j ∈ H , the response u = r −
∑

j ∈H aj x j , and the opening π ←

Open
(
A0,G,c1, . . . ,cn

)
of A0 to (c1, . . . ,cn). P chooses H̃ ∈R (∆∗n)− with |H̃ | ≤ |H̃ ′

|

for each H̃ ′
∈ (∆∗n)−, and it sends v = (u , π, (cj)j ∈H̃

)
to V.

V4: V computes (c1, . . . ,cn) ← SS
(
c, (ci)i∈H̃

)
and ai = t ici mod ρ for each i = 1, . . . ,n,

and it accepts if Ver
(
A0, π,c1, . . . ,cn

)
= 1 and if A1 = gu (∏n

i=1hai

i

)
; otherwise, V

rejects.

Notes:

1. SS is a semi-smooth secret sharing scheme on C(τ) with access structure ∆∗n on [1,n].
2. PubL

(
C(τ),1τ ,n

)
← KeyGenL

(
C(τ),1τ ,n

)
denotes public parameters for a secure L-mercurial com-

mitment scheme (KeyGenL,Com,Open,Ver), where L is any language inducing an access structure Πn

on [1,n] that satisfies (∇∗n)+ ⊆ Πn ⊆ (∇∗n)+∪ ∆∗n .

We now present necessary and sufficient conditions for a language L ⊆ {0,1}∗ to be such that
L-mercurial commitments are suitable to use in Protocol 4.21 in order to implement a system for
batch proofs of Γ-partial knowledge over R ← GDL(1

∗).

For the (k,n)-threshold protocol presented in Section 4.4.1, each sub-challenge is a secret
share of V’s challenge with the (n − k + 1,n)-threshold access structure on [1,n], and A0 is
an (n − k,n)-threshold mercurial commitment, which P must ultimately open to the complete
sequence of sub-challenges. The access structure of the secret sharing scheme prevents P∗ from
choosing more than n − k sub-challenges, while the (n − k,n)-threshold mercurial commitment
binds P∗ to no fewer than n − k sub-challenges; in particular, under this combination of access

122

structures, the announcement in any accepting interaction always binds P∗ to the largest number of
sub-challenges possible, thus ensuring that V’s challenge uniquely determines the sub-challenges
in every non-simulated sub-transcript. More generally, if Γ ⊆ {0,1}∗ is an arbitrary monotone
language inducing the access structure ∆n on [1,n] for each n ∈ N+, then the commitment A0

should bind P∗ to the sub-challenges indexed by some H ⊆ [1,n] such that H < ∆∗n and, moreover,
such that H is maximal among the subsets of [1,n] that are not in ∆∗n. To make the preceding
statement more precise, we require some terminology.

For a given access structure ∆ on U , we let ∇ =
{
H ⊆ U �� H < ∆

}
and ∇∗ =

{
H∗ ⊆ U ��

H∗ < ∆∗
}

respectively denote the complements of ∆ and ∆∗ in the powerset of U . Observe that if
∆ is monotone, then ∇ is anti-monotone: H ∈ ∇ and H ′

⊆ U with H ′
⊆ H implies that H ′

∈ ∇.
We write ∇+ to denote the set of maximal subsets in ∇; that is, ∇+ denotes the set of H ∈ ∇ for
which H ′

∈ ∇ and H ⊆ H ′ implies H
′
= H . The subsets in ∇+ are called maximal unauthorized

subsets for ∆. Observation 4.22 follows directly from the definition of ∇+.

Observation 4.22. If ∆ is monotone, then ∇+∪ ∆ is monotone.

We likewise write ∆− to denote the set of minimal authorized subsets in ∆; that is, ∆− denotes the
set of H ∈ ∆ for which H ′

∈ ∆ and H ′
⊆ H implies H ′ = H .

Observation 4.23. Let I be an arbitrary batch predicate over R. If P knows a (Γ, |U |)-witness
for I, then P knows a (Γ, |U |)-witness for Iwhose valid component witnesses are indexed by a
minimal authorized subset H ∈ ∆−.

Lemma 4.24 (Jackson and Martin, 1994 [JM94; Result 2]). For any monotone access structure
∆ on a finite set U , (∇∗)+ =

{
U \ H �� H ∈ ∆−

}
.

Observation 4.23 and Lemma 4.24 together imply that if P knows a Γ-witness for a given batch
predicate I, then P can always simulate the sub-transcripts indexed by some maximal unautho-
rized subset for ∆∗. Our next observation follows directly from Observation 4.3 and the definition
of ∇+.

Observation 4.25. Fix a finite set C, a secret sharing scheme SS for C with access structure ∆∗,
and a subsequence (ci)i∈H with H ∈ (∇∗)+ and with ci ∈ C for each i ∈ H . For any given secret
c ∈ C, there is a unique (and efficient) way to complete the sequence (c1, . . . ,cn) ∈ (C)n as
shares of c under SS.

123

Taken together, Observations 4.23–4.25 suggest that A0 should provide L-mercurial binding
for the language L inducing (∇∗n)+ on [1,n] for each n ∈ N+. Of course, languages inducing
certain supersets of the (∇∗n)+might also be fine. For instance, the language inducing the mono-
tone closure of (∇∗n)+ on [1,n] is clearly acceptable; indeed, if ∆n is the (k,n)-threshold access
structure on [1,n], then Lemma 4.24 implies that (∇∗n)+ is just the set of size-(n − k) subsets
of [1,n] so that the (n − k,n)-threshold access structure we use in Protocol 4.19 is, in fact, the
monotone closure of the associated (∇∗n)+. Theorem 4.26 characterizes which supersets of (∇∗n)+

it is acceptable for L to induce.

Theorem 4.26. Let Γ ⊆ {0,1}∗ and L ⊆ {0,1}∗ be infinite Boolean languages, with Γ mono-
tone, and let ∆n and Πn respectively denote the access structures induced by Γ and L on [1,n].
Protocol 4.21 with SS having access structure ∆∗n and with A0 being a secure (L,n)-mercurial
commitment is a system for honest-verifier statistical zero-knowledge arguments of Γ-partial
knowledge over R ← GDL(1

∗) if and only if (∇∗n)+ ⊆ Πn ⊆ (∇∗n)+∪ ∆∗n. In particular,

1.
(
P,V
)

is complete if and only if (∇∗n)+ ⊆ Πn,

2.
(
P,V
)

is statistically c-simulatable if and only if (∇∗n)+ ⊆ Πn, and

3.
(
P,V
)

is (computationally) sound if and only if Πn ⊆ (∇∗n)+∪ ∆∗n.

Proof. Complete: If (∇∗n)+ ⊆ Πn, then completeness follows by Observation 4.23 and inspec-
tion of the protocol; inversely, if (∇∗n)+ * Πn, then there exists H ∈ (∇∗n)+ \ Πn for which P
cannot compute the necessary (L,n)-mercurial commitment A0 for the sub-challenges indexed
by H . Now, it follows from Lemma 4.24 that H = [1,n] \ H is a minimal authorized set; hence,
this is equivalent to saying that there is some minimal authorized set H ∈ ∆ for which P cannot
prove knowledge of any (Γ,n)-witness whose valid component witnesses are indexed by H .

(Statistically) c-simulatable: Our standard argument establishes that the ensembles of random
variables describing real and simulated sub-transcripts having A0 and π omitted are identical. Let
S̃V be the simulator that outputs the above perfect sub-transcripts given the challenge c as input.
A simulator for the full transcripts invokes (A1,t ,c,u ,c1, . . . ,cn) ← S̃V(c), and then it chooses
H ∈ (∇∗n)+ arbitrarily and computes (A0,G) ← Com

(
(ci)i∈H

)
and π ← Open

(
A0,G,c1, . . . ,cn

)
.

Finally, the simulator chooses H̃ ∈R (∆∗n)− such that |H̃ | ≤ |H̃ ′
| for all H̃ ′

∈ (∆∗n)−, just like
honest P would do. The unconditional L-mercurial hiding property implies that the distribution

124

from which SV draws (A0, π) is statistically indistinguishable from the distribution from which
P draws (A0, π) in the real transcripts; hence, the joint distributions describing the real and
simulated transcripts

(
A0,t , A1,c,u , π, (ci)i∈H̃

)
are themselves statistically indistinguishable.

(Computationally) sound: Suppose that some PPT prover P∗ outputs the (L,n)-mercurial com-
mitment A0 in its opening move. If Πn ⊆ (∇∗n)+ ∪ ∆∗n, then by the computational L-mercurial
binding property, there exists a fixed subset H ∈ (∇∗n)+ ∪ ∆∗n, and a fixed subsequence of sub-
challenges (ci)i∈H , such that P∗ can only open A0 to sequences consistent with (ci)i∈H , except
with probability negligible in τ. Moreover, from Observations 4.3 and 4.25, it follows that, for
any such subsequence (ci)i∈H and for any challenge c from V, there is at most one possible way
to complete the sequence (c1, . . . ,cn) as shares of c in SS. (More precisely, there is exactly one
way to complete the sequence of sub-challenges if H ∈ (∇∗n)+, and there is no way to complete
the sequence of sub-challenges if H ∈ ∆∗n.)

Set H = [1,n] \ H and suppose the extractor EP∗ obtains from P∗ a pair of accepting tran-
scripts T (1)

1 = (A0,t (1), A(1)

1 ,c
(1)

1 ,u
(1)

1 , π
(1)

1 ,c
(1)

11, . . . ,c
(1)

1n) and T (1)

2 = (A0,t (1), A(1)

1 ,c
(1)

2 ,u
(1)

2 , π
(1)

2 ,c
(1)

21, . . . ,c
(1)

2n)
that use the same announcement pair (A0, A

(1)

1) and the same sequence of short exponents t (1) =

(t (1)

1 , . . . , t
(1)
n), but distinct challenges c(1)

1 , c(1)

2 . The final verification equation implies both that
A(1)

1 = gu(1)
1
(∏n

i=1ha(1)
1i

i

)
and A(1)

1 = gu(1)
2
(∏n

i=1ha(1)
2i

i

)
, where a(1)

1i = t (1)

i c1i and a(1)

2i = t (1)

i c2i for each
i = 1, . . . ,n; hence,

gu(1)
1 −u(1)

2 =
(n∏

i=1

ha(1)
1i−a

(1)
2i

i

)
.

Moreover, as T (1)

1 and T (1)

2 arose from interactions with the above PPT prover P∗, the above argu-
ment regarding the computational L-mercurial binding of A0 guarantees that the latter expression
simplifies to

gu(1)
1 −u(1)

2 =
(∏

j∈H

h
a(1)

1 j−a
(1)
2 j

j

)
with a probability overwhelming in τ. Taking logarithms to the base g yields a linear equation

u (1)

1 − u (1)

2 =
∑
j∈H

(
a(1)

1 j − a(1)

2 j

)
logg hj

125

in |H | = n − |H | unknowns. Given any linearly independent set of |H | ≤ n such equations, a
universal knowledge extractor EP∗ can efficiently solve for x j = logg hj for the indices j ∈ H .
To obtain a second linearly independent such equation, EP∗ rewinds P∗ to Step V2, and then it
issues a new sequence of short exponents t (2) = (t (2)

1 , . . . , t
(2)
n) and extracts another equation of the

form
∑

j ∈H (a(2)

1 j − a(2)

2 j) logg hj , where a(2)

1j = t (2)

j c(2)

1 j and a(2)

2j = t (2)

j c(2)

2 j . As the coefficients in this
latter expression are each distributed uniformly at random in Zρ , it follows, with a probability
overwhelming in λ0, that this latter equation is linearly independent from the first equation.
Moreover, by Chernoff’s inequality, it follows that if EP∗ repeats this process about |H | times
(or perhaps slightly more), then it will obtain |H | linearly independent such equations with
probability overwhelming in λ0.

4.4.2.1 Proofs of partial knowledge from (n−k, n)-threshold mercurial commitments

This section considers non-threshold languages Γ ⊆ {0,1}∗ for which an (n − k,n)-threshold
access structure, with k suitably chosen, satisfies the criteria in Theorem 4.26. In particular, we
establish the following generalization of Cramer et al.’s result for non-batch protocols.

Theorem 4.27. Protocol 4.21, instantiated with our trapdoor Γ−k-mercurial commitment scheme
(as described in Section 4.3.2.3) and Benaloh and Leichter’s secret sharing construction [BL88],
is sufficient to construct a system for batch honest-verifier statistical zero-knowledge arguments
of Γ-partial knowledge over R ← GDL(1

∗), where Γ can be any NP-language described by a
family of polynomial-sized monotone Boolean formulas. Arguments in the resulting protocol
are computationally convincing under the SDH and polyDH assumptions for the bilinear group-
generating algorithm employed by KeyGenΓ−k.

To facilitate this discussion, we define the shorthand T (U, k) to denote the
(
|U | − k, |U |

)
-

threshold access structure on the finite set U .

Recall that in Cramer et al.’s construction for proofs of Γ-partial knowledge, the “effective”
fan-in of the protocol is dictated not by the fan-in n of the common input predicate, but by
the size of the Boolean formula chosen to describe the access structure ∆n induced by Γ on
[1,n]; in particular, if the variable associated with a given component input appears several
times in the chosen formula, then every such occurrence of that variable results in a distinct

126

announcement-challenge-response triple in the resulting protocol. When we RME-batch the
protocol, this results in expressions of the form

(∏
i∈U1

ha (1)
i

i

)
· · ·
(∏

i∈Um
ha (m)

i

i

)
, wherein the Ui are

not necessarily disjoint so that
∑m

i=1 |Ui | may be larger than n. Fortunately, it is always possible to
rearrange such expressions to be of the form

∏n
i=1hâi

i , where each âi is of the form âi =
∑m

j=1t
(j)

i c(j)

i .
Hence, in the batch proof of Γ-partial knowledge, the numbers of sub-challenges ci and short
exponents t i are both dependent on the size of the formula chosen to describe ∆n, but the effective
fan-in to the rest of the protocol is not. In other words, if the access structure ∆n is equivalent to
the composition of several simpler access structures, then we can implement the proof of Γ-partial
knowledge by simply “repeating” the common input several times and proving an appropriate
composition of the simpler protocols that arise for those simpler access structures. The rest of
this section discusses how to implement such compositions.

4.4.2.2 Conjunctions of partial knowledge proofs

Our first set of composition results follow from Theorem 4.32 and deal with languages formed
by the conjunction of two or more monotone languages. Let L1 and L2 be monotone Boolean
languages inducing access structures ∆1 and ∆2 on disjoint sets U1 and U2, respectively. Define
∆1∧2 = ∆1 ⊎ ∆2 =

{
H1 ∪ H2

�� H1 ∈ ∆1 ∧ H2 ∈ ∆2
}
, the Cartesian union of ∆1 and ∆2. Intuitively,

∆1∧2 is the access structure that arises when we wish to prove knowledge of both an L1-witness
and an L2-witness. We write L1∧2 as shorthand for the language inducing ∆1∧2 on U1 ∪U2.

Observation 4.28. ∆1∧2 is a monotone access structure on U1 ∪U2.

Before stating our main result of this section, we prove several technical lemmas. In each
lemma, we assume that ∆1 and ∆2 are monotone access structures on the disjoint sets U1 and U2,
respectively.

Lemma 4.29. If H1 ∈ ∆
∗
1, then H1 ∪ H2 ∈ ∆

∗
1∧2 for all H2 ⊆ U2.

Proof. H1 ∈ ∆
∗
1 implies that U1 \ H1 < ∆1; hence, (U1 \ H1) ∪ (U2 \ H2) < ∆1∧2. As U1 and U2

are disjoint, this simplifies to (U1 ∪U2) \ (H1 ∪ H2) < ∆1∧2; hence, H1 ∪ H2 ∈ ∆
∗
1∧2. �

Lemma 4.30. ∆−1∧2 = ∆
−

1 ⊎ ∆
−

2 and (∇∗1∧2)+ = (∇∗1)+⊎ (∇∗2)+.

127

Proof. Suppose H ∈ ∆−1∧2 and write H = H1 ∪ H2 with H1 ∈ ∆1 and H2 ∈ ∆2. If H1 < ∆
−

1,
then there exists some proper subset H ′

1 ⊆ H1 such that H ′
1 ∈ ∆1 and, consequently, such that

H ′
1 ∪ H2 ∈ ∆1∧2. As U1 and U2 are disjoint, H ′

1 ∪ H2 is a proper subset of H , thus contradicting
our hypothesis that H ∈ ∆−1∧2. A symmetric argument holds if H2 < ∆

−

2; hence, ∆−1∧2 ⊆ ∆
−

1 ⊎ ∆
−

2.

Conversely, if H1 ∈ ∆
−

1 and H2 ∈ ∆
−

2, then H1 ∪ H2 ∈ ∆1∧2 by definition. If H1 ∪ H2 < ∆
−

1∧2,
then there exists some proper subset H ⊆ H1 ∪ H2 such that H ∈ ∆1∧2 and, consequently, such
that both H ∩ H1 ∈ ∆1 and H ∩ H2 ∈ ∆2. But H being a proper subset of H1 ∪ H2 implies
that H ∩ H1 is a proper subset of H1, or that H ∩ H2 is a proper subset of H2, or both, thus
contradicting our hypothesis that both H1 ∈ ∆

−

1 and H2 ∈ ∆
−

2; hence, ∆−1 ⊎ ∆
−

2 ⊆ ∆
−

1∧2.

This completes the proof that ∆−1∧2 = ∆
−

1 ⊎ ∆
−

2. The second result, (∇∗1∧2)+ = (∇∗1)+ ⊎ (∇∗2)+,
now follows from Lemma 4.24 and Observation 4.28. �

Lemma 4.31. For any monotone access structure ∆ on a finite set U , if T
(
U, k
)
⊆ (∇∗)+ ∪ ∆∗,

then |H | = |U | − k for every H ∈ (∇∗)+.

Proof. Note that ∆∗ and ∇∗ are disjoint by construction. Suppose for a contradiction that H ∈
(∇∗)+with |H | > |U | − k and let H

′
be any size-(|U | − k) subset of H . Clearly H

′
< (∇∗)+; thus,

as T (U, k) ⊆ (∇∗)+ ∪ ∆∗ by assumption, H
′
∈ ∆

∗. But ∆∗ is monotone; hence H
′
∈ ∆

∗ implies
H ∈ ∆∗, a contradiction. �

With the necessary groundwork in place, we now prove the main result of this section.

Theorem 4.32. If

(∇∗1)+ ⊆ T
(
U1, k1

)
⊆ (∇∗1)+∪ ∆∗1

and

(∇∗2)+ ⊆ T
(
U2, k2

)
⊆ (∇∗2)+∪ ∆∗2,

then

(∇∗1∧2)+ ⊆ T
(
U1 ∪U2, k1 + k2

)
⊆ (∇∗1∧2)+∪ ∆∗1∧2.

128

Proof. Let H1 ∈ (∇∗1)+ and H2 ∈ (∇∗2)+, and set H = H1 ∪ H2. By Lemma 4.31, |H1 | = |U1 | − k1

and |H2 | = |U2 | − k2; therefore, as U1 and U2 are disjoint, |H | = (|U1 | + |U1 |) − (k1 + k2).
Lemma 4.30 states that all such H ∈ (∇∗1∧2)+ can be expressed as such a product of maximal
unauthorized subsets; hence, (∇∗1∧2)+ ⊆ T

(
U1 ∪U2, k1 + k2

)
.

Now, suppose H ∈ T (U1∪U2, k1 + k2) and write H = H1∪H2 with H1 ∈ ∆1 and H2 ∈ ∆2. A
simple counting argument establishes that at least one of |H1 | ≥ |U1 | − k1 or |H2 | ≥ |U2 | − k2. If
both inequalities hold, then H1 ∈ (∇∗1)+∪∆∗1 and H2 ∈ (∇∗2)+∪∆∗2 by assumption; otherwise, one
of the inequalities, say Hi , is strict so that |Hi | > |Ui | − ki . In the latter case, Lemma 4.31 implies
that Hi ∈ ∆

∗
i . In both cases we therefore have either that (i) both H1 ∈ (∇∗1)+ and H2 ∈ (∇∗2)+ so

that H ∈ (∇∗1∧2)+ follows from Lemma 4.30, or (ii) at least one of H1 ∈ ∆
∗
1 or H2 ∈ ∆

∗
2 so that

H ∈ ∆∗1∧2 follows from Lemma 4.29; thus, T
(
U1 ∪U2, k1 + k2

)
⊆ (∇∗1∧2)+∪ ∆∗1∧2, as desired. �

Corollary 4.33. If we can implement systems for proofs of L1-partial and L2-partial knowledge
knowledge, both over R, using Protocol 4.21 instantiated with trapdoor Γ−k1

- and Γ−k2
-mercurial

commitments, respectively, then we can implement a system for proofs L1∧2-partial knowledge
over R using Protocol 4.21 instantiated with trapdoor Γ−k3

-mercurial commitments, where k3 =

k1 + k2.

Corollary 4.34. Given a language Γ expressed as the conjunction of some number m ∈ N+ of
(ki ,ni)-threshold (including OR) operands, we can implement a system for proofs of Γ-partial
knowledge for R ← GDL(1

∗) using Protocol 4.21 instantiated with Γ−k-mercurial commitments,
where k =

∑m
i=1ki .

Corollary 4.34 implies that we can construct systems for proofs of Γ-partial knowledge for
any language with a polynomial-sized representation in a generalized conjunctive normal form
(CNF) that permits arbitrary threshold operations in its operands.

4.4.2.3 Disjunctions of partial knowledge proofs

Our next set of results follow from Theorem 4.38 and deal with languages formed by the dis-
junction of two or more monotone languages. As before, let L1 and L2 be monotone Boolean
languages inducing access structures ∆1 and ∆2 on disjoint sets U1 and U2, respectively. Define

129

∆1∨2 =
{
H ⊆ U1 ∪U2

�� H ∩U1 ∈ ∆1 ∨ H ∩U2 ∈ ∆2
}
. Intuitively, ∆1∨2 is the access structure that

arises when we wish to prove knowledge of either an L1-witness or an L2-witness. We write L1∨2

as shorthand for the language inducing ∆1∨2 on U1 ∪U2.

Observation 4.35. ∆1∨2 is a monotone access structure on U1 ∪U2.

Before stating our main result of this section, we again prove some technical lemmas. In each
lemma, we assume that ∆1 and ∆2 are monotone access structures on the disjoint sets U1 and U2,
respectively.

Lemma 4.36. Let H1 ⊆ U1 and H2 ⊆ U2. Then H1 ∪ H2 ∈ ∆
∗
1∨2 if and only if H1 ∈ ∆

∗
1 and

H2 ∈ ∆
∗
2.

Proof. By definition, H ∈ ∆∗1∨2 if and only if U1 ∪U2 \H < ∆1∨2, which, by the disjointness of U1

and U2, is equivalent to (U1 \H)∪ (U2 \H) < ∆1∨2. Now, if either (U1 \H) ∈ ∆1 or (U2 \H) ∈ ∆2,
then (U1 \ H) ∪ (U2 \ H) ∈ ∆1∨2 by construction; hence, by taking the contrapositive, we get that
(U1 \ H) ∪ (U2 \ H) < ∆1∨2 if and only if (U1 \ H) < ∆1 and (U2 \ H) < ∆2, which is equivalent
to saying that U1 ∩ H ∈ ∆∗1 and U2 ∩ H ∈ ∆∗2. �

Lemma 4.37. ∆−1∨2 = ∆
−

1 ∪ ∆
−

2 and (∇∗1∨2)+ =
{
H1 ∪U2

�� H1 ∈ (∇∗1)+
}
∪
{
U1 ∪ H2

�� H2 ∈ (∇∗2)+
}
.

Proof. If H1 ∈ ∆
−

1, then H1 ∈ ∆
−

1∨2 as there are no proper subsets of H1 in ∆1 by definition and
there are no proper subsets of H1 in ∆2 by the disjointness of U1 and U2. A symmetric argument
holds for H2 ∈ ∆

−

2; hence, ∆−1 ∪ ∆
−

2 ⊆ ∆
−

1∨2. To prove that ∆−1∨2 ⊆ ∆
−

1 ∪ ∆
−

2, we suppose for a
contradiction that H ∈ ∆−1∨2 such that H < ∆−1∪∆

−

2 and note that, by definition, either H∩U1 ∈ ∆1,
or H ∩U2 ∈ ∆2, or both. Suppose that H ∩Ui ∈ ∆i . There are two possibilities: H ∩Ui = H
or H ∩Ui , H . If H ∩Ui = H , then H ∈ ∆i \ ∆

−

i by hypothesis; likewise, if H ∩Ui , Ui , then
H ′ = H ∩Ui is a proper subset of H and, moreover, it is in ∆i . In both cases, we have show that
there exists a proper subset of H in ∆i and, therefore, in ∆1∨2, thus contradicting the minimality
of H .

This completes the proof that ∆−1∧2 = ∆
−

1 ⊎ ∆
−

2. The second result, (∇∗1∨2)+ = (∇∗1)+ ∪ (∇∗2)+,
now follows from Lemma 4.24 and Observation 4.35. �

We now prove the main result of this section.

130

Theorem 4.38. If

(∇∗1)+ ⊆ T
(
U1, k
)
⊆ (∇∗1)+∪ ∆∗1

and

(∇∗2)+ ⊆ T
(
U2, k
)
⊆ (∇∗2)+∪ ∆∗2,

then

(∇∗1∨2)+ ⊆ T
(
U1 ∪U2, k

)
⊆ (∇∗1∨2)+∪ ∆∗1∨2.

Proof. If H ∈ (∇∗1∨2)+, then, by Lemma 4.37, there exists either H1 ∈ (∇∗1)+ such that H = H1∪U2

or H2 ∈ (∇∗2)+ such that H = U1 ∪ H2. In the first case, Lemma 4.31 implies that |H1 | = |U1 | − k
so that |H | = (|U1 | − k)+ |U2 | follows from the disjointness of U1 and U2. A symmetric argument
establishes that |H | = (|U2 |−k)+ |U1 | in the second case; hence, in either case |H | = |U1 |+ |U2 |−k
so that H ∈ T (U1 ∪U2, k). This establishes that (∇∗1∨2)+ ⊆ T (U1 ∪U2, k).

Now, suppose H ∈ T (U1 ∪U2, k) and set H = H1 ∪H2 with H1 ⊆ U1 and H2 ⊆ U2. A simple
counting argument establishes that |H1 | ≥ |U1 | − k and |H2 | ≥ |U2 | − k; hence, H1 ∈ (∇∗1)+∪ ∆∗1
and H2 ∈ (∇∗2)+ ∪ ∆∗2 by assumption. If H1 ∈ (∇∗1)+, then it follows from Lemma 4.31 that
|H1 | = |U1 | − k so that H2 = U2 and H ∈ (∇∗1∨2)+. A symmetric argument establishes that
H ∈ (∇∗1∨2)+ when H2 ∈ (∇∗2)+. Otherwise, if both H1 ∈ ∆

∗
1 and H2 ∈ ∆

∗
2, then it follows from

Lemma 4.36 that H ∈ ∆∗1∨2; thus, T
(
U1 ∪U2, k

)
⊆ (∇∗1∨2)+∪ ∆∗1∨2, as desired. �

Corollary 4.39. If we can construct systems for proofs of L1-partial and L2-partial knowledge
knowledge, both over R and both using Protocol 4.21 instantiated with trapdoor Γ−k-mercurial
commitments, then we can construct a system for proofs of a L1∨2-partial knowledge over R using
Protocol 4.21 also instantiated with trapdoor Γ−k-mercurial commitments.

Corollary 4.40. Given a language Γ expressed as the disjunction of some number m ∈ N+ of
(ni − k,ni)-threshold (including OR) operands, we can implement a system for proofs of Γ-
partial knowledge for R ← GDL(1

∗) using Protocol 4.21 instantiated with trapdoor Γ−k-mercurial
commitments.

131

Corollary 4.40 implies that we can construct systems for proofs of Γ-partial knowledge for any
language with a polynomial-sized representation in a generalized disjunctive normal form (DNF)
that permits arbitrary (k,ni)-threshold operations in its operands for any fixed k ∈ N+.

4.4.2.4 Thresholds of partial knowledge proofs

Our final set of results in this section generalizes Theorems 4.32 and 4.38 to the general threshold
case. Let L1, . . . ,Lm be monotone Boolean languages inducing access structures ∆1, . . . ,∆m on
disjoint sets U1, . . . ,Um, respectively. Define ∆(d,m) as the monotone closure of

{⋃
i∈A Hi

�� A ⊆d

[1,m] ∧ Hi ∈ ∆i for each i ∈ A
}

in
⋃m

i=1 Ui . Intuitively, ∆(d,m) is the access structure that arises
when we wish to prove knowledge of d batch witnesses from a set of m such witnesses. We write
L (d,m) as shorthand for the language inducing ∆(d,m) on U1 ∪ · · · ∪Um.

Observation 4.41. ∆(d,m) is a monotone access structure on
⋃m

i=1 Ui .

Lemma 4.42. ∆−(d,m) =
{⋃

i∈A Hi
�� A ⊆d [1,m] ∧ Hi ∈ ∆

−

i

}
and (∇∗(d,m))

+ =
{
(
⋃

i∈A Hi) ∪
(
⋃

i∈[1,m]\A Ui) �� A ⊆d [1,m] ∧ Hi ∈ (∇∗i)+
}
.

The proof of Lemma 4.42 is a direct extension of the proof of Lemma 4.37.

Theorem 4.43. If

(∇∗i)
+
⊆ T
(
Ui , k
)
⊆ (∇∗i)

+
∪ ∆

∗
i

for each i = 1, . . . ,m, then

(∇∗(d,m))
+
⊆ T
(
U1 ∪ · · · ∪Um,dk

)
⊆ (∇∗(d,m))

+
∪ ∆

∗
(d,m) .

The proof of Theorem 4.43 is a direct extension of the proof of Theorem 4.38.

Corollary 4.44. Given a language Γ expressed as a (d,m)-threshold operator applied to some
number m ∈ N+ of (k,ni)-threshold operands, we can implement a system for proofs of Γ-
partial knowledge for R ← GDL(1

∗) using Protocol 4.21 instantiated with trapdoor Γ−dk-mercurial
commitments.

132

Corollaries 4.40 and 4.44 imply that we can use Protocol 4.21 to construct systems for batch
proofs of Γ-partial knowledge for any language with a polynomial-sized representation in a thresh-
old normal form that permits arbitrary “balanced” thresholds of arbitrary balanced thresholds.
We remark that it is also possible to combine “unbalanced” threshold statements by using several
distinct trapdoor Γ−k-mercurial commitments, with the threshold k varying across commitments.29
In particular, given an unbalanced threshold statement, we treat each operand as a self-contained
“sub-predicate” and construct the appropriate commitment scheme for that sub-predicate only. If
some sub-predicate contains an unbalanced threshold, then we apply the same idea recursively
until all sub-predicates are expressible using one of the above normal forms. For Boolean formu-
las with a high “unbalanced threshold depth”, this recursive approach can impose a fairly high
overhead on the resulting protocol; nonetheless, it enables us to deal with precisely the same class
of Boolean formulas as Cramer et al.’s construction for non-batch proofs together with Benaloh
and Leichter’s secret sharing scheme. Moreover, we note that the overhead imposed by the secret
sharing is directly proportional to the cost of the corresponding non-batch protocol; hence, we
obtain our desired Theorem 4.27.

4.4.3 Non-monotone proofs of partial knowledge

This section introduces a new methodology for constructing batch zero-knowledge proofs of
Γ-partial knowledge for families of linear relations R when Γ ⊆ {0,1}∗ is a non-monotone
language. For each n ∈ N+, let ∆n denote the access structure that Γ induces on [1,n]. In
cases where Γ is monotone, P can prove Γ-partial knowledge for a given batch predicate I by
proving knowledge of witnesses for the component instances in I indexed by any authorized
subset H ∈ ∆n; indeed, even if P∗ actually knows witnesses for the component instances indexed
by some strict superset H ′ of H , the monotonicity of Γ ensures that H ′

∈ ∆n and, therefore, that
the predicate under consideration is indeed Γ-correct. Things are considerably more complex
when Γ is non-monotone as, by definition, Γ being non-monotone implies that there exists some
authorized subset H ∈ ∆n having one or more strict supersets in ∇n. Thus, to prove Γ-partial
knowledge in the non-monotone case, not only must P prove knowledge of witnesses for the

29Alternatively, one could design a trapdoor L-mercurial commitment scheme with the suitable binding property to
handle the full predicate all at once; this latter approach is potentially more efficient.

133

component instances of I indexed by an authorized subset H ∈ ∆n, but P must also prove that
it does not know witnesses for all the component instances of I indexed by any unauthorized
superset H ′ of H .

Of course, if a valid witness for some component instance exists, then P cannot prove not to
know it; thus, proofs of Γ-partial knowledge over R =

(
Rτ

)
τ∈N+ when Γ is non-monotone are

only meaningful when R is such that, for any given string s < LRτ, there is a means by which
P can (efficiently) prove to V that WRτ

(s) is empty.30 For example, it does not make sense to
consider proofs of Γ-partial knowledge of DLs in prime-order groups when Γ is non-monotone
since, in such prime-order groups, the DL always exists, regardless of whether P happens to know
it. On the other hand, it does make sense to consider proofs of Γ-partial knowledge and equality
among DLs when Γ is non-monotone: if two DLs are equal, then P can prove so with Chaum and
Pedersen’s protocol (see Figure 3.1 on Page 56) and, if two DLs are not equal, then P can prove
so with the variant of Chaum and Pedersen’s protocol depicted in Figure 4.3.

4.4.3.1 Camenisch and Shoup’s protocol for inequality of DLs

The protocol depicted in Figure 4.3 is due to Camenisch and Shoup [CS03; §6]. The common
input to Camenisch and Shoup’s protocol is (G,q,g0,g1) ← G (1τ; 2) and a pair of group elements
(h0,h1) ∈ (G)2. In the protocol, P proves knowledge of an exponent x ∈ Zq such that logg0

h0 = x
and logg1

h1 , x. We typically assume that y = logg1
h1 is unknown to P, although the proof

remains sound even if this is not the case. The protocol is denoted in Camenisch-Stadler notation
by PK

{
x : h0 = gx

0 ∧ h1 , gx
1
}
.

The protocol works as follows: P first chooses a random exponent r ∈R Z
∗
q , and then uses it

to compute the auxiliary commitment A1 =
(
gx

1 /h1

) r . P then engages V in the protocol denoted
by PK

{(
γ1, γ2

)
: 1 = g

γ1

0 hγ2

0 ∧ A1 = g
γ1

1 hγ2

1

}
, which is implemented using a straightforward

2-DLREP generalization of Chaum and Pedersen’s protocol. From the expression 1 = g
γ1

0 hγ2

0 , we
find that γ1 = −γ2 logg0

h0. Furthermore, by substituting for γ1 in the expression A1 = g
γ1

1 hγ2

1 ,

30More precisely, the language LRτ induced by Rτ : Sτ ×Wτ must be in NP ∩ co-NP for each τ ∈ N+, where co-NP
refers to the complexity class of languages LRτ for which the complement S′τ = Sτ \ LRτ is itself a non-trivial NP-
language. In other words, we can view co-NP as the class of languages Γ for which any string not in Γ is associated
with one or more short proofs of non-membership in Γ. We refer the reader to Arora and Barak [AB09; Section 2.5]
for further details about co-NP.

134

(G,q,g0,g1) ← G (1τ; 2) and (h0,h1) ∈ (G)2 with h0 = gx
0 and h1 , gx

1︸ ︷︷ ︸
x

accept/reject

P V

r, γ1, γ2 ∈R Z
∗
q

A1 =
(
gx

1/h1

)r
B0 = g

γ1

0 hγ2

0

B1 = g
γ1

1 hγ2

1

c ∈R Zq

v1 = γ1−xcr
v2 = γ2+ cr

A1
?

, 1
B0

?
= g

v1

0 hv2

0

B1
?
= g

v1

1 hv2

1 A−c1

A = (A1,B0,B1)

c

v = (v1,v2)

Figure 4.3: A variant of Chaum and Pedersen’s protocol for proving the inequality of
a pair of DLs, due to Camenisch and Shoup [CS03; §6]. The protocol is denoted by
PK
{

x : h0 = gx
0 ∧ h1 , gx

1
}
.

we find that A1 = (g1
− logg0

h0 h1)γ2 , from which it follows that logg0
h0 = logg1

h1 if and only if
A1 = 1. But V rejects when A1 = 1; hence, if V accepts, then logg0

h0 , logg1
h1 with a

probability overwhelming in τ. Finally, a universal knowledge extractor for the Chaum-Pedersen
sub-protocol can extract the pair (γ1, γ2) from P∗, and then use this pair of values to compute the
witness logg0

h0 = −γ1/γ2; thus, the protocol constitutes a system for proofs of knowledge of
x = logg0

h0.

Theorem 4.45 (Camenisch and Shoup, 2003 [CS03; Theorem 5]). The protocol depicted in
Figure ?? is a system for honest-verifier perfect zero-knowledge proofs of knowledge for the in-
equality of DLs relations induced by GDL(1

∗). Furthermore, it is a c-simulatable and 2-extractable
sigma protocol and so has constant knowledge error function κ(G,q,g0,g1,h0,h1) = 1/q.

135

P’s expected cost in Camenisch and Shoup’s protocol is less than ExpCost(2)
G

(
(2, τ)

)
+

ExpCostG
(
(2, τ)

)
< 6τ multiplications in G and V’s expected cost is ExpCostG

(
(2, τ)

)
+

ExpCostG
(
(3, τ)

)
< 4.5τ multiplications in G. For communication cost, P sends three G∗

elements and two Zq elements to V, and V sends one Zq element to P.

The RME-based common-exponent Camenisch-Shoup protocol. We now discuss how to par-
allelize Camenisch and Shoup’s protocol into a system for batch honest-verifier computational
zero-knowledge proofs of knowledge. Our idea is to ‘reuse’ each of the random exponents that
appear in the announcement so that we can employ an RME-based common-exponent paralleliza-
tion of Chaum and Pedersen’s protocol for the remainder of the interaction. The resulting protocol
is presented in Protocol 4.46. The common input is (G,q,g0,g1, . . . ,gn) ← G (1τ; n + 1) and
an (n + 1)-tuple (h0, . . . ,hn) ∈ (G)n+1. In the protocol, P proves knowledge of an exponent
x ∈ Zq such that logg0

h0 = x and loggi
hi , x for each i = 1, . . . ,n. The protocol is denoted in

Camenisch-Stadler notation by PK
{

x : h0 = gx
0 ∧ (

∧n
i=1 hi , gx

i)
}
.

We emphasize that each base gi in our parallelized protocol must be selected independently
at random from G∗. In particular, to prove that the protocol is computationally zero-knowledge
despite P reusing its random exponents in the announcement, it is necessary to assume that loggi

gj
is not known to V for any i , j. One common way to enforce this ‘lack of knowledge’ on V
is to have each gi be output by a random oracle H

G
. The common input to the protocol then

contains not the sequence of gi but, rather, a sequence of preimages of the gi with respect toH
G
.

In Section 5.1, we will encounter an anonymous blacklisting system that uses this approach. Note
that our protocol does not require any specific assumptions about how the hi are selected or about
P’s (lack of) knowledge.

136

Protocol 4.46 (RME-based common-exponent Camenisch-Shoup protocol).

Common input: (G,q,g0, . . . ,gn) ← G (1τ; n + 1) and (h0, . . . ,hn) ∈ (G)n+1

P’s private input: x ∈ Zq such that h0 = gx
0 and hi , gx

i for each i = 1, . . . ,n

P1: P chooses r ∈R Z
∗
q and then uses it to compute a commitment Ai =

(
gx
i /hi

) r for each
i = 1, . . . ,n. P announces A = (A1, . . . , An) to V.

V2: V chooses a random exponent t i ∈R
[
0,2λ0 − 1

]
for each i = 1, . . . ,n, and then it sends

t = (t1, . . . , tn) to P.

P3: P chooses (γ1, γ2) ∈R (Zq)2, and then it computes the commitments B0 = g
γ1

0 hγ2

0 and
B1 =

(∏n
i=1g

ti
i

)γ1
(∏n

i=1hti
i

)γ2 . P announces B = (B0,B1) to V.

V4: V issues a challenge c ∈R
[
0,2λ0 − 1

]
to P.

P5: P computes the responses v1 = γ1−cxr and v2 = γ2+cr , and then it sends v = (v1,v2)
to V.

V6: V accepts if B0 = g
v1

0 hv2

0 , if B1 =
(∏n

i=1g
ti
i

)v1
(∏n

i=1hti
i

)v2
(∏n

i=1 Ati
i

)c , and if Ai , 1 for
each i = 1, . . . ,n.

Theorem 4.47. The RME-based common-exponent variant of Camenisch and Shoup’s proto-
col described in Protocol 4.46 is a system for conjunctive batch honest-verifier computational
zero-knowledge proofs of knowledge for the inequality of DLs relations induced by GDL(1

∗).
It is c-simulatable and 2-extractable and, therefore, has constant knowledge error function
κ(G,q,g0, . . . ,gn,h0, . . . ,hn) = 1/q. The protocol is computationally honest-verifier zero-
knowledge under the decision Diffie-Hellman (DDH) assumption.31

Proof (Sketch). Protocol 4.46 is easily seen to be complete and efficient by inspection; moreover,
the above soundness argument for Figure 4.3 generalizes directly to prove that Protocol 4.46 is
sound.32 As the parallelized Chaum-Pedersen sub-protocol is itself a system for batch honest-
verifier perfect zero-knowledge proofs of knowledge, all we must show is that a PPT simulator
SV for V can efficiently sample A = (A1, . . . , An) from an ensemble of random variables that is

31 Briefly, the decision Diffie-Hellman (DDH) problem inG is: Given as input a 4-tuple (g0,g1,h0,h1) ∈ (G∗)2× (G)2,
determine whether logg0

h0 = logg1
h1. The DDH assumption for a given group-generating algorithm G posits that

no PPT algorithm can solve the DDH problem in groups (G,q,g1,g2) ← G (1τ ; 2) with advantage non-negligible
in τ. A formal definition for the DDH assumption is provided in Appendix A.

32The latter requires that the RME-based parallelization of Chaum and Pedersen’s protocol is sound. We proved a
single-base analog of this result in Theorem 3.17; the proof for the above 2-DLREP version is nearly identical to
that proof.

137

computationally indistinguishable from the ensemble describing P’s first announcement in a real
interaction transcript. Lemma 4.48 establishes that SV can indeed sample according to such an
ensemble, thus completing the proof Theorem 4.47. �

Lemma 4.48. Fix a group-generating algorithm G and a positive integer-valued function n(τ) ∈
poly(τ), and, for each τ ∈ N+, let

(
G,q,g

)
← GDL(1

τ). Define the following two ensembles of
random variables:{

Xτ

}
τ∈N+ =

{
g0, . . . ,gn(τ),H0, . . . ,Hn(τ),g

x
0 , (g

x
1 /H1)r , . . . , (gx

n(τ)/Hn(τ))
r }

τ∈N+ ,

where gi ∈R G
∗ and Hi ∈ G for i = 0, . . . ,n(τ), and where x ∈R Z

∗
q , and{

Yτ
}
τ∈N+ =

{
g0, . . . ,gn(τ),H0, . . . ,Hn(τ),g

x
0 , (g

y

1 /H1)r , . . . , (gy

n(τ)/Hn(τ))
r }

τ∈N+ ,

where gi ∈R G
∗ and Hi ∈ G for i = 0, . . . ,n(τ), and where x, y ∈R Z

∗
q . The ensembles

{
Xτ

}
τ∈N+

and
{
Yτ
}
τ∈N+ are computationally indistinguishable under the DDH assumption.

Proof (Sketch). Suppose D is a PPT algorithm that distinguishes between
{
Xτ

}
τ∈N+ and

{
Yτ
}
τ∈N+

with advantage non-negligible in τ. We exhibit a PPT algorithm A that, given oracle access to D,
solves the DDH problem in

(
G,q,g

)
← G (1τ) with advantage non-negligible in τ.

A works as follows: On input (G,q,g0,g1) ← G (1τ; 2) and (h0,h1) ∈ (G)2, choose sj ∈R Z
∗
q

for each j = 0, . . . ,n(τ), and then set g′0 = g
s0

0 and h′0 = hs0

0 and, for each j = 1, . . . ,n(τ), set
g′j = g

sj
1 and h′j = hsj

1 . Next, choose r ∈R Z
∗
q and, for each j = 1, . . . ,n(τ), choose Hi ∈ G

arbitrarily. Now, compute the tuple(
g′0, . . . ,g

′
n(τ),H0, . . . ,Hn(τ),h

′
0, (h′1/H1)r , . . . , (h′n(τ)/Hn(τ))

r) ,
which, as is easily seen by inspection, is distributed according to Xτ if logg0

h0 = logg1
h1 and is

distributed according to Yτ if logg0
h0 , logg1

h1. A then passes this tuple to D for a verdict. �

P’s expected cost in Protocol 4.46 is no more than

(n + 2) ExpCostG
(
(2, τ)

)
+ 2 ExpCostG

(
(n, λ0)

)
< (n + 2)

(
2τ + λ0

)
138

multiplications in G, and V’s expected cost is

ExpCostG
(
(2, τ)

)
+ 2 ExpCostG

(
(n, λ0)

)
+ ExpCostG

(
(2, τ), (1, λ0)

)
< 4τ + (2n + 3)λ0/2

multiplications in G. For communication cost, P sends n + 2 elements from G∗ and two elements
from Zq to V, and V sends n + 1 λ0-bit integers to P.

4.4.3.2 Proving equality among exactly k-out-of-n DLs

We now present a new protocol that combines Protocol 4.19 with Protocol 4.46 to implement
a system for batch proofs of knowledge and equality of exactly k-out-of-n DLs. The common
input to P and V is (G,q,g0, . . . ,gn) ← G (1τ; n+ 1) and an (n+ 1)-tuple (h0, . . . ,hn) ∈ (G)n+1,
and the private input to P is an exponent x ∈ Z∗q and a subset H ⊆k [1,n] such that h0 = gx

0

and hj = gx
j if and only if j ∈ H . The protocol is denoted in Camenisch-Stadler notation by

PK
{(

x,H
)

: h0 = gx
0 ∧ H ⊆k [1,n] ∧

(∧
j ∈H hj = gx

j

)
∧
(∧

i∈[1,n]\H hi , gx
i

)}
.

The idea is for P to prove knowledge of x = logg0
h0 while simultaneously proving that

x is (i) equal to k-out-of-n of the other DLs (a monotone statement), and (ii) not equal to
(n − k)-out-of-n of the other DLs (another monotone statement), thus establishing that x must
be equal to exactly k-out-of-n of the other DLs (a non-monotone statement).

To begin, we focus on the second (inequality) statement. In the first step of the conjunctive
protocol, in which k = 0, P computes commitments of the form Ai =

(
gx
i /hi

) r for each i =
1, . . . ,n. We already observed that Ai = 1 if and only if hi = gx

i ; thus, having P reveal the
resulting A = (A1, . . . , An) to V would also reveal the subset H to V; on the other hand, it is
necessary for V to check that Ai , 1 for each i ∈ [1,n] \ H . Our solution to this dilemma is to
let Ai =

(
gx
i /hi

) r as usual for the i ∈ [1,n] \ H , and then, for each j ∈ H , to let Aj = g
rj
0 for

a uniform random choice of rj ∈R Z
∗
q . Intuitively, this prevents V from learning H by merely

searching for the subset of 1s in the announcement A = (A1, . . . , An).

139

Given the announcement A = (A1, . . . , An) constructed above, we now consider the standard
RME-based verification equation: B1 =

(∏n
i=1g

ti
i

)v1
(∏n

i=1hti
i

)v2
(∏n

i=1 Ati
i

)c with each t i ∈R Zρ .
In particular, we note that

n∏
i=1

Ati
i =
(∏

j∈H

Atj
j

) (∏
i∈H

Ati
i

)
=
(∏

j∈H

g
rj tj
0

) (∏
i∈H

(gx
i /hi

)r ti
)

= g
∑

j∈H rj tj

0

(∏
i∈H

g
ti
i

) xr (∏
i∈H

hti
i

)−r
.

Now, using the standard responses v1 = γ1 − cxr and v2 = γ2 + cr , we additionally note that
g

v1
j hv2

j = g
γ1
j hγ2

j if and only if j ∈ H; hence, we can rewrite

(n∏
i=1

g
ti
i

)v1
(n∏

i=1

hti
i

)v2 =
((n∏

i=1

g
ti
i

)γ1
(n∏

i=1

hti
i

)γ2
) ((∏

i∈H

g
ti
i

)−cxr (∏
i∈H

hti
i

)cr)
, (4.7)

where the index i in the latter two products ranges only over the (secret) subset H = [1,n] \ H;
furthermore, as the pair (v1,v2) additionally satisfies g

v1

0 hv2

0 = g
γ1

0 hγ2

0 , Lemma 3.5 yields the
following result.

Lemma 4.49. If H ,
{
i ∈ [1,n] �� hi = gx

i

}
, then Equation (4.7) holds with probability at most

1/ρ.

However, if H =
{
i ∈ [1,n] �� hi = gx

i

}
, then Equation (4.7) always holds, and we find

that (n∏
i=1

g
ti
i

)v1
(n∏

i=1

hti
i

)v2
(n∏

i=1

Ati
i

)c
= g

ζ

0

(n∏
i=1

g
ti
i

)γ1
(n∏

i=1

hti
i

)γ2 ,

where ζ =
∑

j ∈Hrjt j is a random linear equation in |H | unknowns, which is induced by the
subsequence of short exponents (t j) j ∈H indexed by H . Hence, all that remains is a way for P to
prove knowledge of H ⊆k [1,n], and rj ∈ Z

∗
q for each j ∈ H , such that ζ =

∑
j ∈H t jrj in the

above expression. We can implement this latter proof using an RME-based common-base (k,n)-
threshold variant of Schnorr’s protocol with common input A = (A1, . . . , An). Protocol 4.50
assembles these ideas into a complete protocol.

140

Protocol 4.50 (RME-based exactly-k-out-of-n batch Camenisch-Shoup protocol).

Common input: (g0, . . . ,gn) ← G (1τ; n + 1) and (h0, . . . ,hn) ∈ (G)n+1

P’s private input: x ∈ Zq and H ⊆k [1,n] with h0 = gx
0 and hj = gx

j if and only if j ∈ H

P1: Let H = [1,n] \ H . P chooses a sub-challenge ci ∈R Zρ for each i ∈ H , and then it
computes (A0,G) ← Com

(
(ci)i∈H

)
. Next, P chooses r ∈R Z

∗
q and, for each j ∈ H , it

chooses rj ∈R Z
∗
q . Finally, for each i = 1, . . . ,n, P computes the announcement

Ai =

{ (
gx
i /hi

) r i ∈ H
g
ri
0 i ∈ H

P announces A = (A0, A1, . . . , An) to V.

V2: V chooses a random exponent t i ∈R
[
0,2λ0 − 1

]
for each i = 1, . . . ,n, and then it sends

t = (t1, . . . , tn) to P.

P3: For each i ∈ H , P computes ai = cit i mod ρ, and then it chooses (γ0, γ1, γ2) ∈R

(Z∗q)3, and computes B0 = g
γ1

0 hγ2

0 and B1 = g
γ0

0

(∏
i∈Hg

ai

i

)γ1
(∏

i∈H hai

i

)γ2 . P sends
B = (B0,B1) to V.

V4: V issues a challenge c ∈R Zρ to P.

P5: P uses polynomial interpolation to compute the degree-(n − k) polynomial f ∈ Zρ[x]
passing through (0,c) and through each point in

{
(i,ci)

}
i∈H , and then it computes

aj = t j f (j) mod ρ for each j ∈ H , the responses v0 = γ0 − c
∑

j ∈Hrjaj , v1 = γ1 − cxr ,
and v2 = γ2 + cr , and the opening π ← Open

(
A0,G, f (1), . . . , f (n)

)
of A0. P sends

v = (v0,v1,v2, π, f) to V.

V6: V constructs the exponents ai = t i f (i) mod ρ for each i = 1, . . . ,n. V accepts if
Ver
(
A0, π, f (1), . . . , f (n)

)
= 1, if deg f ≤ n − k with c = f (0), if both B0 = g

v1

0 hv2

0

and B1 = g
v0

0

(∏n
i=1g

ai

i

)v1
(∏n

i=1hai

i

)v2
(∏n

i=1 Aai

i

)c , and if Ai , 1 for each i = 1, . . . ,n,
and it rejects otherwise.

Theorem 4.51. Let Γ=k be the language of finite bit strings with Hamming weight equal to k ∈ N+.
The variant of Camenisch and Shoup’s protocol described in Protocol 4.50 is a system for batch
honest-verifier computational zero-knowledge proofs of Γ=k-partial knowledge for the equality
of DLs relations induced by GDL(1

∗) (colloquially: a system for batch arguments of knowledge
and equality of exactly-k-out-of-n DLs). The protocol is honest-verifier computational zero-

141

knowledge under the DDH assumption for G , and its arguments are computationally convincing
under the SDH and polyDH assumptions for the bilinear group-generating algorithm employed
by KeyGenΓ−k.

P’s expected cost in Protocol 4.50 is no more than

(n − k + 2) ExpCostG
(
(2, τ)

)
+ k ExpCostG(τ)

+ 2 ExpCostG
(
(n − k, λ0)

)
< (n − k + 2)(2τ + λ0) + kλ0

multiplications in G, plus about 2kτ + nλ0/2 multiplications in G̃ and two pairing evaluations
for the Γ−k-threshold mercurial commitment. V’s expected cost is

ExpCostG
(
(2, τ)

)
+ 3 ExpCostG

(
(n, λ0)

)
+ ExpCostG

(
(2, τ), (1, λ0)

)
< 4τ + (3n + 7)λ0/2

multiplications in G, plus about (3τ + nλ0)/2 multiplications in G̃, 3τ/2 multiplications in GT,
and six pairing evaluations, for the Γ−k-threshold mercurial commitment. For communication cost,
P sends n + 2 elements from G∗, five elements from G̃, three elements from Zq , and n − k λ0-bit
integers to V, and V sends n + 1 λ0-bit integers to P.

4.4.3.3 Proving equality among at most k-out-of-n DLs

We can easily generalize Protocol 4.50 to prove knowledge and equality of at most k-out-of-n
DLs. Again, the common input to P and V is (G,q,g0, . . . ,gn) ← G (1τ; n + 1) and an (n + 1)-
tuple (h0, . . . ,hn) ∈ (G)n+1, and the private input to P is an exponent x ∈ Z∗q and a subset
H ⊆ [1,n] with |H | ≤ k such that h0 = gx

0 and hj = gx
j if and only if j ∈ H . The protocol is

denoted in Camenisch-Stadler notation by PK
{(

x,H
)

: h0 = gx
0 ∧ H ⊆ [1,n] ∧ |H | ≤ k ∧(∧

j ∈H hj = gx
j

)
∧
(∧

i∈[1,n]\H hi = gx
i

)}
. The idea is not to change the protocol, but, rather, to

change the input to the protocol.

In particular, given a (n, τ)-predicate I = (G,q,g0, . . . ,gn,h0, . . . ,hn) as common input,
we permit P to “manufacture” an additional k “synthetic” component instances (gn+i ,hn+i) ∈
(G∗ × G), for i = 1, . . . , k, and then to append them to I. The augmented input is therefore an

142

(n + k, τ)-predicate (G,q,g0, . . . ,gn+k ,h0, . . . ,hn+k). By choosing the k synthetic inputs so that
exactly k-out-of-(n + k) DLs in the augmented batch predicate are equal to x = logg0

h0, P can
complete the proof exactly as in Protocol 4.50 without leaking any information about |H | beyond
that |H | ≤ k. As the threshold k is always less than or equal to n, it follows that the augmented
input predicate has fan-in at most twice that of the original input; hence, the resulting protocol is
still asymptotically efficient.

Theorem 4.52. Let Γ≤k be the language of finite bit strings with Hamming weight less than or
equal to k ∈ N+. The variant of Protocol 4.50 just described is a system for batch honest-verifier
computational zero-knowledge proofs of Γ≤k-partial knowledge for the equality of DLs relations
induced by GDL(1

∗) (colloquially: a system for batch arguments of knowledge and equality of
at-most-k-out-of-n DLs). The protocol is honest-verifier computational zero-knowledge under
the DDH assumption for G , and its arguments are computationally convincing under the SDH
and polyDH assumptions for the bilinear group-generating algorithm employed by KeyGenΓ−k.

4.4.3.4 Proving equality among between-k1-and-k2-out-of-n DLs

More generally, P can prove knowledge and equality of at least k1-out-of-n and at most k2-out-of-
n DLs using the approach described in Section 4.4.3.3. All that needs to change is the number of
inputs that we permit P to synthesize; in particular, to prove knowledge and equality of “between-
k1-and-k2-out-of-n” DLs, it suffices to have P synthesize k2−k1 inputs and then run Protocol 4.50
with threshold k2. It is easy to confirm that P can issue an accepting response in such a protocol if
and only if between k1 and k2 instances in the original predicate satisfy logg0

h0 = loggi
hi .

Theorem 4.53. Let Γ(k1,k2) be the language of finite bit strings with Hamming weight at least
k1 ∈ N

+ and at most k2 ∈ N
+. The variant of Protocol 4.50 just described is a system for batch

honest-verifier computational zero-knowledge proofs of Γ(k1,k2)-partial knowledge for the equality
of DLs relations induced by GDL(1

∗) (colloquially: a system for batch arguments of knowledge and
equality of between-k1-and-k2-out-of-n DLs). The protocol is honest-verifier computational zero-
knowledge under the DDH assumption for G , and its arguments are computationally convincing
under the SDH and polyDH assumptions for the bilinear group-generating algorithm employed
by KeyGenΓ−k2

.

143

4.4.3.5 Additional non-monotone access structures

Protocol 4.50 naturally generalizes to a system for batch proofs of Γ-partial knowledge over
several other non-monotone languages Γ. For instance, given an arbitrary monotone access
structure∆n that is suitable for use in Protocol 4.21, the “obvious” generalization of Protocol 4.50
using ∆n yields a system for proofs of Γ-partial knowledge for the language Γ inducing ∆−n on
[1,n]. By additionally employing the synthetic inputs idea described in Sections 4.4.3.3 and
4.4.3.4, it is possible to transform such a protocol into a system for batch proofs partial knowledge
with respect to some additional non-monotone languages, although the precise class of languages
that this approach can support is not clear. We leave further investigation along these lines as an
exciting area for future research.

4.5 Chapter summary

This chapter discussed batch proofs of partial knowledge for linear relations. We revisited Peng
and Bao’s disjunctive batch variant of Chaum and Pedersen’s protocol for proving knowledge of
and equality among of 1-out-of-n DL pairs. Our analysis uncovered a critical flaw in that protocol
and we devised a practical, lattice-based attack to exploit it. To defend against such attacks,
we proposed trapdoor L-mercurial commitments, a new kind of cryptographic commitments
that generalize trapdoor n-mercurial commitments, and provided an efficient construction for the
special case of (n−k,n)-threshold mercurial commitments. We then used these new commitments
to generalize Peng and Bao’s protocol to a system for batch honest-verifier zero-knowledge
proofs of knowledge for any language inducing monotone access structures described by a given
family of polynomial-sized Boolean formulas. Finally, we extended our approach for proofs of
partial knowledge over monotone access structures to work over certain non-monotone access
structures.

144

Chapter 5

Example applications and constructions

The introduction listed several constructions for privacy-enhancing technologies (PETs), each
of which leverages one or more high-fan-in zero-knowledge proofs of knowledge regarding DLs
in prime-order groups. As such, those constructions can each be sped up using the batch zero-
knowledge proof techniques introduced so far in this dissertation. Readers interested in learning
more about the role of batch zero-knowledge proof techniques in the construction of PETs are
encouraged to peruse the author’s papers listed in the List of Related Publications. For instance,
the author’s work on priced symmetric private information retrieval (PSPIR) [HOG11, HHG13]
demonstrates how batch zero-knowledge proofs of knowledge can yield PET constructions that are
both conceptually simpler and more efficient than competing approaches, while simultaneously
making it easier to implement novel additional functionality atop the basic construction. Likewise,
the technical report that introduced (n − k,n)-threshold mercurial commitments discusses how
batch zero-knowledge proofs of knowledge can lead to more efficient protocols for coercion-
resistant Internet voting [CH11].

In this chapter, we describe in detail applications of our new batch techniques to three con-
structions for anonymous blacklisting and reputation systems.

145

5.1 Anonymous blacklisting and reputation systems

Anonymous communications systems provide Internet users with a means to access services over
the public Internet while concealing their identities and usage patterns from prying eyes. The most
popular such system in deployment is Tor [DMS04], a worldwide-distributed overlay network
comprising some 5,500 volunteer-operated relays that forward encrypted traffic on behalf of its
users [Torb]. Using layered encryption with multiple levels of indirection, Tor seeks to defend
its users against traffic analysis attacks [BMS01], wherein an attacker leverages its privileged
position on the network to surreptitiously monitor the actions of certain users.

People from all walks of life leverage the anonymity provided by Tor in order to circumvent
online censorship, to research taboo and unpopular subjects, to report human rights violations,
to organize politically, and to speak their minds without fear of retaliation. Indeed, Tor currently
helps to protect the privacy of nearly one million privacy-conscious Internet users located in
hundreds of countries around the world each day [Torc]. Not only is this a win for online privacy
and free speech, but it is also a potential boon for many online communities that might benefit
from added diversity in their respective user populations. Compelling examples of such online
communities include collaborative encyclopedias like Wikipedia32 and community-driven review
sites like Yelp33.

Yet reality is rarely so simple. The providers of such online services must ultimately weigh
the expected benefits (both to themselves and to their user communities) of more inclusivity
against the risks posed by abusive users, especially those who would hide behind the veil of
anonymity to skirt accountability for their actions. A number of popular services — notably
including Wikipedia, Yelp, Slashdot34, Cloudflare35, Craigslist36, 4chan37, Vimeo 38, GitHub 39,
and some IRC networks [Tora] — presently block or limit participation by anonymous users,
despite the implied loss of diversity and the broader implications for free speech and the open
exchange of knowledge and ideas.

32https://en.wikipedia.org/
33https://www.yelp.com/
34https://slashdot.org/
35https://www.cloudflare.com/

36https://www.craigslist.org/
37https://www.4chan.org/
38https://vimeo.com/
39https://github.com/

146

https://en.wikipedia.org/
https://en.wikipedia.org/
https://www.yelp.com/
https://www.yelp.com/
https://slashdot.org/
https://slashdot.org/
https://www.cloudflare.com/
https://www.cloudflare.com/
https://www.craigslist.org/
https://www.craigslist.org/
https://www.4chan.org/
https://www.4chan.org/
https://vimeo.com/
https://vimeo.com/
https://github.com/
https://github.com/

In response, the cryptographic and privacy research communities have proposed several anony-
mous blacklisting designs, which seek to provide mechanisms through which service providers
(SPs) may hold anonymous users accountable for their individual actions without threatening
those users’ anonymity. SPs can thereby protect their user communities from abuse by the occa-
sional “naughty” anonymous user without inflicting collateral damage on all the “nice” users. An
early proposal called Nymble [JKTS07] solved the anonymous blacklisting problem both elegantly
and efficiently; however, Nymble and its progeny [LH10, LH11, HHG10] rely on powerful trusted
third parties (TTPs) that can deanonymize (or at least link) users’ connections undetectably and at
will. Subsequent designs [TAKS10, ATK11, BL12] have made clever use of zero-knowledge proofs
of knowledge to eliminate the need for TTPs, thus solving the trust problem at a cost of much
computation and communication overhead, both for the users and for the SPs.

5.1.1 Blacklistable anonymous credentials

One such TTP-free anonymous blacklisting design is Tsang, Au, Kapadia, and Smith’s Black-
listable Anonymous Credentials (BLAC) system [TAKS07]. In BLAC, a semi-trusted group
manager (GM) registers each new user into the system by issuing it an anonymous credential
C(x) that encodes as an attribute a secret identity key x, which is unique to, and known only by,
that particular user.41 The user holding C(x) authenticates to an SP by first choosing a random
generator g0 from a given prime-order group G, and then using it to produce a ticket T = (g0,g

x
0)

together with a zero-knowledge proof asserting that

1. the user holds a valid credential C(x) from the GM,

2. the exponent x in T = (g0,g
x
0) is the same as the secret identity key x in C(x), and

3. no ticket associated with any past abusive session uses the identity key x.

To facilitate the third part of the proof, the SP maintains a public blacklist of tickets associated
with any as-of-yet-unforgiven abusive sessions.

The SP grants the user access (and stores T for future reference) if and only if it accepts in
the above zero-knowledge proof of knowledge. If the SP later deems the user’s actions during
the session to have been abusive, then it can place T on its blacklist, thus curtailing any further

41 We emphasize that the GM learns nothing about x in this exchange; indeed, although the users and the SPs must
trust the GM if the system is to provide availability and accountability, the GM is only semi-trusted in the sense
that the users need not trust it to maintain their anonymity.

147

abuse by that user. Note that the SP here does not learn the secret identity key x in T, nor does
it learn anything to help it link T with other tickets that use the same identity key; hence, the
user holding C(x) remains completely anonymous yet, going forward, it is unable to authenticate
(until the SP removes T from its blacklist).

The notion of “abuse” in this model is entirely subjective: each SP must define, identify, and
penalize abusive behaviour in a way that is appropriate within the context of its user community
and the services it provides. For instance, the SPs comprising an IRC network may collectively
define “abuse” to include acts of hate speech, cyberbullying, circumventing bans, spamming,
or copyright infringement. Any ticket associated with an abusive act can then be placed on the
blacklist at the server operators’ discretion, and left there for a duration commensurate both with
the severity of the abuse and with the perceived likelihood that its perpetrator will re-offend.
Each server that comprises the IRC network must require all anonymous users to authenticate,
and they must refuse connection requests from those users that fail to prove they are not on the
blacklist.42

5.1.2 Variants of BLAC

BLAC’s all-or-nothing approach to revocation may be overly punitive in some settings. The
anonymous blacklisting literature includes two additional variants of BLAC that seek to address
this shortcoming. The first variant does so with a d-strikes-out revocation policy [TAKS10],
wherein each anonymous user may continue to authenticate until it has accumulated d or more
tickets on the blacklist (after which further authentications are not possible). The second variant
supports reputation-based blacklisting [AKS12], wherein SPs can assign scores (both positive and
negative) to the anonymous actions of users, and each user can subsequently authenticate only
if the aggregate score associated with all of its scored tickets exceeds some minimum threshold

42An alternative to such subjective revocation is objective (or contract-based) revocation [HG11b; §IV.A], introduced
by Schwartz, Brumley, and McCune and exemplified by their trusted hardware-based RECAP protocol [SBM10]. In
the objective revocation model, users and SPs enter into mutually binding contracts that stipulate unambiguously
the SPs’ terms of service. An SP can then revoke a given anonymous user’s authentication privileges if and
only if that user provably violates the terms set forth in its contract with the SP. Unfortunately, some perfectly
reasonable terms of service are far too nebulous to specify and enforce without some degree of human subjectivity.
For example, consider a contract that forbids hoaxes on Wikipedia or one that forbids disingenuous reviews on
Yelp — in both examples, identifying contract violations seems to necessitate a human in the loop.

148

value. (More generally, SPs may categorize positive and negative scores according to the nature
of the associated behaviours and require each authenticating user to prove a statement pertaining
to its aggregate scores across all categories of scored behaviours.) We herein refer to the first
variant as ‘d-BLAC’ and to the second variant as ‘BLACR’. We refer to the original system
simply as ‘BLAC’ or, occasionally, as ‘vanilla BLAC’ to emphasize when a remark applies to
BLAC but not to d-BLAC or to BLACR.

5.1.3 The scalability problem

BLAC and its variants provide very strong privacy guarantees under a standard cryptographic
assumption (namely, the DDH assumption); however, the BLAC approach to anonymous black-
listing suffers from some scalability problems. In all three of the above BLAC variants, the
bottleneck operation is the portion of the zero-knowledge proof of knowledge in which the user
demonstrates that its own tickets on an SP’s blacklist (if it has any) do not meet that SP’s criteria
for revocation. The fan-in of this proof scales as the total blacklist length, which can introduce
substantial delays and consume considerable bandwidth and computation capacity for large SPs
that must cater to millions of anonymous users.

Prior work [TAKS07, TAKS10, AKS12] essentially regards the zero-knowledge proofs as black
boxes, to be instantiated using the appropriate naive variants of Schnorr’s protocol. Such an
approach is prohibitively expensive even for moderate-sized blacklists (say, those containing a
few hundred tickets), which has contributed to the common conception [AK12, ATK11, HG11b]
that — despite being both novel and elegant — BLAC’s approach to anonymous blacklisting is
impractical at Internet scale.

This section outlines how to significantly reduce both the communication and computation
overhead of BLAC, d-BLAC, and BLACR using the batch zero-knowledge proof techniques pre-
sented in the earlier chapters. In particular, we observe that each of BLAC, d-BLAC, and BLACR
may be efficiently implemented using the techniques we developed in Section 4.4.3

149

5.1.4 Threat model and design goals

Our own contributions to BLAC and its variants are contained entirely within the black boxes
implementing their respective bottleneck zero-knowledge proofs of knowledge. Nonetheless,
we shall find it useful to provide some additional detail on the high-level design, if only for
completeness. (In fact, some aspects of the design are relevant in our security analyses.) We
claim no originality here; the BLAC design is due entirely to Tsang et al. [TAKS10] and any
differences in our presentation of it are purely cosmetic.

The basic setting is exactly as described above: A community of anonymous users wish to use
the services offered by one or more participating SPs and the SPs, in turn, will only service those
users whom the SPs can hold individually accountable for their respective actions. The SPs do this
by each maintaining a blacklist of tickets from (and possibly other meta-data about) past abusive
sessions. The SPs then require each authenticating user to prove that it is not responsible for “too
many” of those abuses. (The precise definition of “too many” abuses, of course, varies from
vanilla BLAC to d-BLAC to BLACR.) A semi-trusted (and possibly distributed) GM facilitates
all of this.

Initialization. The GM runs the initialization protocol once to set up the system. On input a
security parameter 1τ , it outputs (i)

(
G,q,g

)
← G (1τ) for some group-generating algorithm G

with respect to which the DDH assumption holds, (ii) a random oracleH
G

mapping every finite
bit string t ∈ {0,1}∗ to a uniform random generatorH

G

(t) in G∗, and (iii) a public-private key
pair (pk, sk) for anonymous credentials [CL02]. In an actual implementation, H

G
would be a

cryptographically secure hash function and G would be an elliptic curve group that can be effi-
ciently “hashed into” [Ica09]. Each of the remaining algorithms takes the tuple (G,q,g,H

G
,pk)

as an implicit input.

Registration. Each user runs the interactive registration protocol once with the GM to enroll
in the system. Upon successful completion of the protocol, the user obtains an anonymous
credential C(x) under the GM’s public key pk. The credential C(x) encodes a secret, uniform
random identity key x ∈R Z

∗
q , which serves as a sort of secret “pseudonym” for the user. We

emphasize that the GM learns zero information about x during this interaction and it therefore has
no computational advantage in, for example, linking tickets (g0,g

x
0) to the particular registration

150

that issued C(x). The choice of anonymous credential system is immaterial to the following
protocols, provided credentials in it (i) hide the secret identity key x unconditionally, (ii) are
fully anonymous (that is, distinct showings of the same credential are mutually unlinkable), and
(iii) admit efficient honest-verifier perfect zero-knowledge proofs of knowledge of the identity
key x. (Note that unconditional hiding and perfect zero-knowledge are not strictly required, but
they do help to simplify the security analysis.)

The authors of BLAC and its derivatives suggest using BBS+ signatures [ASM06; §4.2] for
the above anonymous credentials. BBS+ signatures satisfy each of the above criteria and are com-
putationally binding under the SDH assumption. As our new protocols do not affect registration,
we do not discuss it any further. Interested readers can consult the relevant sections of Tsang et
al.’s paper for the full details [TAKS10; §4.1.2 and §5.3].

Trust in the GM. Despite its learning nothing about the user’s secret identity key x during
registration, both the users and the SPs must trust the GM to some extent. For instance, SPs must
trust the GM to issue at most one credential to any given user, lest some users obtain several
credentials with which to launch Sybil attacks [Dou02] against the SPs. A reliable GM must
consequently collect (and retain, in some form) personally identifiable information (PII) about
each enrolled user; those users, in turn, must trust the GM to act responsibly with that PII.43

Authentication. The authentication protocol is an interactive protocol that an anonymous
user runs with a participating SP in order to initiate an anonymous session. The user’s private input
is its secret identity key x. The common input consists of (i) the user’s (freshly re-randomized)
credential C(x), (ii) a user-selected nonce t ∈R {0,1}

τ , (iii) a canonical name s ∈ {0,1}∗ for
the SP, (iv) the SP’s current blacklist ββ, (v) the SP’s revocation policy P, and (vi) a soundness
parameter λ0 ∈ N

+. One can think of the revocation policy as a Boolean-valued function that, on
input the SP’s current blacklist ββ and the authenticating user’s secret identity x, outputs 1 if the
entries on ββ with tickets encoding x meet the SP’s revocation criteria and outputs 0 otherwise.
The SP will accept the authentication only if the user convinces it that P(ββ, x) = 0. The output
of the authentication protocol is a return value b ∈ {0,1,⊥} and an authentication transcript
containing the ticket T =

(t ,H
G

(t ∥s) x) . A return value of 0 indicates that the SP rejected the
authentication and a return value of 1 indicates that the SP accepted the authentication. A return

43The author’s survey of anonymous blacklisting systems discusses this point in more detail [HG11b; §V].

151

value of ⊥ indicates that the user aborted the protocol prematurely (perhaps because it discovered
during the interaction that P(ββ, x) = 1). The SP should output b = 1 with probability at most
2−λ0 when P(ββ, x) = 1.

Blacklist management. Blacklist management involves three protocols that SPs use to man-
age their respective blacklists. The extraction protocol takes as input an authentication transcript
T and it outputs the associated ticket T. The revocation protocol takes as input a blacklist ββ and
a ticket T (and, in the case of reputation-based blacklisting, an associated score ς ∈ Z), and it
outputs a new blacklist ββ+ that contains every entry from ββ plus a new entry for ticket T (with
score ς). The pardon protocol takes as input a blacklist ββ and a ticket T, and it outputs a new
blacklist ββ− that contains every entry from ββ whose ticket is not equal to T.

5.1.5 Security definitions

We sketch (informal) definitions for the necessary security and privacy properties of a secure
BLAC construction below; interested readers should consult Tsang et al. [TAKS10] for the formal
versions. The informal definitions suffice for our purposes: since we only replace zero-knowledge
protocols inside of black boxes with more efficient protocols providing the same security guar-
antees, the existing system-level security proofs for BLAC and d-BLAC [TAKS10; §7.2] and
for BLACR [AKS12; Appendix A] also prove that our batch protocols each yield secure BLAC
constructions.

1. Completeness: If the GM and a given SP are both honest, and if a given user’s entries on that
SP’s blacklist do not meet its revocation criteria, then the user can successfully authenticate
to the SP.

2. Misauthentication resistance: A user can authenticate to an honest SP only if that user holds
a valid credential C(x) that was issued by the GM.

3. Blacklistability: A coalition of dishonest SPs and users holding credentials C(x1), . . . ,C(xk)
can successfully authenticate to an honest SP having blacklist ββ only if P(ββ, x i) = 0 for
some i ∈ [1, k].

152

4. Anonymity: No coalition of dishonest SPs, users, and the GM can distinguish authentication
transcripts associated with the same honest user from those associated with different honest
users. Moreover, no such coalition can link any given authentication transcript with the
registration in which the GM issued the associated credential.

5. Non-frameability: No coalition of dishonest SPs, users, and the GM can prevent an honest
user from successfully authenticating with an honest SP.

5.1.6 Batch BLAC constructions

We now discuss how to improve the efficiency of each of the above three BLAC variants using
the batch zero-knowledge proof techniques presented in the preceding chapters.

5.1.6.1 Batch vanilla BLAC

The simplest of the three authentication protocols is, of course, the one arising in vanilla BLAC.
In the vanilla BLAC authentication protocol, the user outputs a ticket T = (t ,H

G

(t ∥s) x) and
engages the SP in a zero-knowledge proof asserting that (i) it holds a valid credential C(x) from
the GM, (ii) the exponent x in T is the same as the secret identity key x in C(x), and (iii) no
ticket on the SP’s blacklist ββ also uses the exponent x. Note that the cost of the first two steps
does not depend on the contents of the blacklist and, moreover, the implementation details for
those steps are dependent on the particular choice of anonymous credential system; thus, we focus
our attention on the more costly (and credential-agnostic) portion of the protocol.

Suppose the SP’s blacklist is ββ =
(
(t1,HG

(t1∥s
) x1), . . . , (tn,HG

(tn ∥s) xn)
)
. We assume that

the nonces ti ∈ {0,1}τ occurring in ββ are pairwise distinct so that, with probability overwhelming
in τ, each H

G

(ti ∥s) ∈R G
∗ is a distinct, uniform random generator of G. (If H

G

(ti ∥s) =
H
G

(tj ∥s) for some i , j, then the user should abort.) For ease of exposition, we rewrite each
ticket

(ti ,HG(ti ∥s) xi
)

in the form T =
(
gi ,hi

)
, where gi = HG

(ti ∥s) and hi = g
xi

i . Then, by
our assumptions on the ti andH

G
, Lemma 4.48 applies and we can implement this proof using

Protocol 4.46 with common input I =
(
(g0,h0), (g1,h1), . . . , (gn,hn)

)
.

In fact, we can do slightly better than Lemma 4.48 suggests: since the first component of
I is output by the user as part of the authentication protocol, and since the user completes the
first two steps of that protocol using a perfect zero-knowledge proof of knowledge, it follows that

153

a simulator for the full authentication protocol can choose t0 ∈R {0,1}
τ and a “fake” identity

key y ∈R Z
∗
q arbitrarily, and then output the “simulated” ticket

(
g0,h0

)
, where g0 = H

(t0∥s
)

and h0 = g
y

0 , together with a perfectly simulated proof that y is the secret identity key in C(x).
(That the latter proof of knowledge is indeed perfectly simulatable for an arbitrary choice of
y ∈ Z∗q follows from the fact that C(x) is unconditionally hiding.) Now, because such a simulator
knows the exponent y used to compute (g0,h0), it can follow Protocol 4.46 honestly to complete
a perfect simulation for the entire authentication protocol. We summarize the results just sketched
in a theorem.

Theorem 5.1. Using Protocol 4.46 to implement the zero-knowledge proof that P(ββ, x) = 0
in vanilla BLAC’s authentication protocol yields a secure BLAC construction under the DDH
assumption for G and the SDH assumption for the group-generating algorithm used for BBS+
signatures.

Comparison with the original vanilla BLAC protocol. The creators of BLAC suggested
instantiating the above protocol using a naive parallelization of Camenisch and Shoup’s protocol.
In such a naive parallelization, the user’s expected cost is

n ExpCost(3)
G

(
(2, τ)

)
+ ExpCost(2)

G

(
(2, τ)

)
< 2(3n + 2)τ

multiplications in G, and the SP’s expected cost is

ExpCostG
(
(2, τ)

)
+ n ExpCostG

(
(3, τ)

)
< (3n + 2)τ

multiplications in G. For communication cost, the user sends 3n + 2 elements from G∗ and 2n
elements from Zq to the SP, and the SP sends one Zq element to the user.

Referring to the cost analysis for Protocol 4.46 at the end of Section 4.4.3.1, we observe that
our own protocol reduces these costs substantially. For instance, setting τ = 256 and λ0 = 40 and
letting n grow large, we find that the expected cost for the user in Protocol 4.46 approaches≈ 36%

154

of its expected cost in the naive protocol; likewise, the expected cost for the SP in Protocol 4.46
approaches ≈ 6% that of its expected cost in the naive protocol. Similarly, the communication
overhead in Protocol 4.46 approaches ≈ 25% that of the naive protocol.44

Most of the user’s remaining cost in Protocol 4.46 arises from computing the first announce-
ment A = (A1, . . . , An). We note that, given an up-to-date copy of the SP’s blacklist ββ, the user
can readily precompute these values [TAKS10; §7.1]; therefore, we should also consider the user’s
expected online cost when all (or essentially all) of the announcement A = (A1, . . . , An) has
been precomputed. Indeed, excluding the cost of computing A = (A1, . . . , An), we find that the
expected online cost for the user reduces to just

2 ExpCostG
(
(2, τ)

)
+ 2 ExpCostG

(
(n, λ0)

)
< 4τ + (n + 2)λ0

multiplications in G. If we let τ = 256 and λ0 = 40, as before, then the expected online cost for
the user in Protocol 4.46 is only ≈ 2.6% of its cost in the naive protocol.

Moreover, we note that once it has computed Ai =
(
gxi /hi

) r to use in one protocol run, the
user can choose a new blinding factor r ′ ∈R Z

∗
q and reblind each Ai as Ar ′

i =
(
gxi /hi

) r ·r ′ to use in
a subsequent protocol run. Such reblinding requires just n ExpCostG(τ) ≤ 3τ/2 multiplications
in G, which is a little over half of what is required to compute a new sequence of Ai from
scratch.

5.1.6.2 Batch d-BLAC

Next we discuss the authentication protocol arising in d-BLAC. Similar to in the vanilla BLAC
authentication protocol, the user in the d-BLAC authentication protocol outputs a ticket T =
(t ,H

G

(t ∥s) x), and then engages the SP in a zero-knowledge proof that (i) it holds a valid
credential C(x) from the GM, (ii) the exponent x in T is the same as the secret identity key x

44To arrive at this latter estimate, we assume that (i) G is an elliptic curve group whose elements are about 2τ = 512
bits long, and (ii) implementations use the Fiat-Shamir transform (see Section 2.2.5) to make Protocol 4.46
non-interactive in the random oracle model. The latter assumption implies that the SP need not send a challenge
or any short exponents to the user; indeed, the user and the SP will each compute the challenge and all such short
exponents locally using a cryptographically secure hash function. By using point compression for the elements
of G, the communication savings approach ≈ 20% that of the naive protocol, at the cost of some additional
computation overhead for point decompression.

155

in C(x), and (iii) at most d − 1 tickets on the SP’s blacklist ββ also use the exponent x. Again,
the cost of the first two steps does not depend on the contents of the blacklist and we focus our
attention on the more costly (and credential-agnostic) portion of the protocol.

Theorem 5.2. Using the variant of Protocol 4.50 described in Section 4.4.3.3 to implement the
zero-knowledge proof that P(ββ, x) = 0 in d-BLAC’s authentication protocol yields a secure
d-BLAC construction under the DDH assumption for G , the SDH and polyDH assumptions for
the bilinear group-generating algorithm used for (n − k,n)-threshold mercurial commitments,
and the SDH assumption for the group-generating algorithm used for BBS+ signatures.

Comparison with the original d-BLAC protocol. In the naive instantiation for the above
protocol, as proposed by the creators of d-BLAC [TAKS10; §6.3], the expected cost for the user
is

n ExpCostG
(
(2, τ)

)
+ d ExpCostG

(
(3, τ)

)
+ (n − d) ExpCostG

(
(2, τ)

)
< (4n + d)τ

multiplications in G, and the expected cost for the SP is

n ExpCostG
(
(2, τ)

)
+ n ExpCostG

(
(3, τ)

)
< 5nτ

multiplications in G. For communication cost, the user sends 2n elements from G∗ and 3n − d
elements of Zq to the SP. The protocol is non-interactive using the Fiat-Shamir transform; thus,
the SP sends nothing to the user.

Referring to the cost analysis for Protocol 4.50, we again find that our own instantiation
reduces the cost substantially. For instance, setting τ = 256 and λ0 = 40 and letting n grow
large, we find that the expected total and online costs for the user in the new protocol respectively
approach ≈ 51% and ≈ 2% of its expected total and online costs in the naive protocol; likewise,
the expected cost for the SP in the new protocol approaches ≈ 5% that of its expected cost in the
naive protocol. Similarly, the communication overhead in Protocol 4.46 approaches ≈ 25% that
of the naive protocol.

156

5.1.6.3 Batch BLACR

The last protocol that we address is the authentication protocol arising in BLACR. Similar to
in vanilla BLAC and d-BLAC, the user in the BLACR authentication protocol outputs a ticket
T =

(t ,H
G

(t ∥s) x) and engages the SP in a zero-knowledge proof that (i) it holds a valid
credential C(x) from the GM, and (ii) the exponent x in T is the same as the secret identity
key x in C(x). The third part of the proof, however, is quite different: given the SP’s blacklist
ββ =

(
(g1,h1, ς1), . . . , (gn,hn, ςn)

)
in which gi = HG

(ti ∥s) , hi = g
xi

i , and ςi ∈ Z for each
i = 1, . . . ,n, the user must prove that

∑
i∈Hςi > K for some constant integer K (as specified by

the SP’s revocation policy P), where H =
{
i ∈ [1,n] �� hi = gx

i

}
. Again, the first two steps do

not depend on the contents of the blacklist and we focus our attention on the more costly (and
credential-agnostic) portion of the protocol.

The construction follows almost directly from the results in Sections 4.1.3 and 4.4.3. Let g
and h be arbitrary generators ofG, and let H = [1,n]\H . The user chooses r ∈R Z

∗
q and ri ∈R Z

∗
q

for each i = 1, . . . ,n, and, for each i ∈ H , it chooses si ∈R Z
∗
q . The user then uses these values

to compute

Ai =

{ (
gx
i /hi

) r if i ∈ H
gsi if i ∈ H ,

as in Protocol 4.50, and

Di =

{
gri if i ∈ H

gri hςi if i ∈ H ,

for each i = 1, . . . ,n. The user then sends A = (A1,D1, . . . , An,Dn) to the SP and engages the
SP in a proof of knowledge of (γ1, γ2,r1, . . . ,rn) and (si)i∈H such that 1 = g

γ1

0 hγ2

0 and, for each
i = 1, . . . ,n, either Ai = g

γ1
i hγ2

i and Di = gri or Ai = gsi and Di/hςi = gri .

Observation 5.3. If the SP accepts in the above proof of knowledge, then, with probability over-
whelming in τ,

∏n
i=1Di = g

∑n

i=1ri h
∑

i∈Hςi and is a commitment to the user’s (correctly computed)
aggregate score

∑
i∈Hςi .

From here, the user can employ a standard range proof protocol [Bou00, CCas08, CLZ12] to
prove that

∑
i∈Hςi exceeds the necessary threshold K .

157

To instantiate the above protocol as a system for batch arguments of knowledge, we apply
RME parallelization to the n = 1 case. As the n = 1 case is a just a disjunctive proof, it follows
from Theorem 4.32 that we can implement this protocol using an (n,2n)-threshold mercurial
commitment. In particular, we associate each index i ∈ [1,n] with a pair of sub-challenges
(ci ,cn+i) such that each ci + cn+i = c mod ρ. (As usual, the modulus ρ here denotes an arbitrary
λ0-bit integer.) Because the (n,2n)-threshold mercurial commitment forces the user to commit
to at least n challenges (with a probability overwhelming in τ), and the secret sharing ensures the
user commits to at most one challenge from each pair (ci ,cn+i) (with a probability overwhelming
in λ0), it follows, with a probability overwhelming in λ0 ∈ o

(
τ
)
, that the user must commit to

either ci or cn+i , but not both, for each i = 1, . . . ,n. The full protocol follows.

158

Protocol 5.4 (RME-based BLACR authentication protocol).

Common input: (G,q,g,h,g0, . . . ,gn) ← G (1τ; n + 3), (h0, . . . ,hn) ∈ (G)n+1, and
(ς1, . . . , ςn) ∈ (Z)n

P’s private input: x ∈ Zq and H ⊆ [1,n] with h0 = gx
0 and hj = gx

j if and only if j ∈ H

P1: Let H = [1,n] \ H and let H̃ =
{
i ∈ [1,2n] �� i ∈ H ∨ (i − n) ∈ H

}
. P chooses a

sub-challenge ci ∈R Zρ for each i ∈ H̃ , and then it computes (A0,G) ← Com
(
(ci)i∈H̃

)
.

P chooses r ∈R Z
∗
q , ri ∈R Z

∗
q for each i = 1, . . . ,n, and si ∈R Z

∗
q for each i ∈ H , and

then it computes the announcements

Ai =

{ (
gx
i /hi

) r i ∈ H
gsi i ∈ H

and Di =

{
gri i ∈ H

gri hςi i ∈ H

for each i = 1, . . . ,n. P announces A = (A0, A1,D1, . . . , An,Dn) to the SP.

V2: V chooses a random exponent t i ∈R Zρ for each i = 1, . . . ,n, and then it sends t =
(t1, . . . , tn) to P.

P3: For each i ∈ H and for each j ∈ H , P computes ai = t i ci mod ρ and bj = t jcn+ j mod
ρ, and then it chooses (γ0, γ1, γ2, γ3, γ4) ∈R (Z∗q)5, and computes B0 = g

γ1

0 hγ2

0 , B1 =

gγ0
(∏

i∈Hg
ai

i

)γ1
(∏

i∈H hai

i

)γ2 , B2 = gγ3
(∏

i∈H (Di/hςi)ai
)
, and B3 = gγ4

(∏
j ∈H Dbi

i

)
.

P sends B = (B0,B1,B2,B3) to V.

V4: V issues a challenge c ∈R Zρ to P.

P5: For each i ∈ H , P computes cn+i = c − ci mod ρ and bi = t icn+i mod ρ, and, for each
j ∈ H , it computes cj = c − cn+ j mod ρ and aj = t jcj mod ρ. P then computes the
responses v0 = γ0 − c

∑
j ∈Haj sj , v1 = γ1 − cxr , v2 = γ2 + cr , v3 = γ3 −

∑
j ∈Hajr j ,

and v4 = γ4 −
∑

i∈Hbi ri , and the opening π ← Open
(
A0,G,c1, . . . ,c2n

)
of A0. P sends

v = (v0,v1,v2,v3,v4, π,c1, . . . ,cn) to V.

V6: V computes ai = t ici mod ρ and bi = t icn+i mod ρ for each i = 1, . . . ,n. V
accepts if Ver

(
A0, π,c1, . . . ,cn,c − c1, . . . ,c − cn

)
= 1, if each of B0 = g

v1

0 hv2

0 ,
B1 = gv0

(∏n
i=1g

ai

i

)v1
(∏n

i=1hai

i

)v2
(∏n

i=1 Aai

i

)c , B2 = gv3
(∏n

i=1(Di/hςi)ai
)
, and

B3 = gv4
(∏n

i=1Dbi

i

)
hold, and if Ai , 1 for each i = 1, . . . ,n, and it rejects otherwise.

159

Theorem 5.5. Using Protocol 5.4 to implement the zero-knowledge proof that P(ββ, x) = 0 in
BLACR’s authentication protocol yields a secure BLACR construction under the DDH assumption
for G , the SDH and polyDH assumptions for the bilinear group-generating algorithm used for
(n,2n)-threshold mercurial commitments, and the SDH assumption for the group-generating
algorithm used for BBS+.

5.2 Chapter summary

This chapter examined how to leverage the batch zero-knowledge proof techniques introduced
in this dissertation to speed up three constructions for anonymous blacklisting and reputation
systems. Interested readers can find additional details on these constructions in a WPES 2013
paper [HG13c] by the author and Ian Goldberg. (Applications of batch zero-knowledge proof
techniques to a different anonymous blacklisting construction can be found in an IEEE S&P 2011
paper [HG11a], also by the author and Ian Goldberg.) The new batch protocols result in consider-
able cost savings compared to the “schoolbook” protocols proposed by Tsang et al. [TAKS10] for
BLAC and d-BLAC, and by Au et al. [AKS12] for BLACR and, thereby, significantly improve
the practicality of the BLAC approach to anonymous blacklisting.

160

Chapter 6

Conclusion

This dissertation examined batch zero-knowledge proof and verification techniques, with a par-
ticular emphasis on batch zero-knowledge proof systems for discrete logarithms in prime-order
groups. The overarching goal was to convince the reader that such batch techniques have the
potential to substantially reduce the communication and computation overhead imposed by the
zero-knowledge protocols naturally arising in constructions for privacy-enhancing technologies
(PETs). Given the extensive list of PET constructions for which the cost of “high fan-in” zero-
knowledge proofs remains a primary obstacle to adoption, the author believes that the results
presented in this dissertation provide strong support for such a thesis.

The author hopes these results will motivate and provide a solid theoretical basis for the devel-
opment of additional batch zero-knowledge proof techniques, and, ultimately, have a direct impact
to privacy by eliminating or reducing barriers to the adoption of new and existing PETs.

161

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach,
First Edition. Cambridge University Press, New York, NY, USA (April 2009).

(Two citations on pages 11 and 134.)

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of USENIX Se-
curity 2008, pages 335–348, San Jose, CA, USA (August 2008). (One citation on page 2.)

[AK12] Man Ho Au and Apu Kapadia. PERM: Practical reputation-based blacklisting
without TTPs. In Proceedings of CCS 2012, pages 929–940, Raleigh, NC, USA
(October 2012). (One citation on page 149.)

[AKS12] Man Ho Au, Apu Kapadia, and Willy Susilo. BLACR: TTP-free blacklistable
anonymous credentials with reputation. In Proceedings of NDSS 2012, San Diego,
CA, USA (February 2012). (Seven citations on pages 2×2, 5, 148, 149, 152, and 160.)

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Proceed-
ings of SCN 2006, volume 4116 of LNCS, pages 111–125, Maiori, Italy (September
2006). (One citation on page 151.)

[ATK11] Man Ho Au, Patrick P. Tsang, and Apu Kapadia. PEREA: Practical TTP-free
revocation of repeatedly misbehaving anonymous users. ACM Transactions on
Information and System Security (TISSEC), 14(4):Article No. 29 (December 2011).

(Four citations on pages 2×2, 147, and 149.)

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryp-
tion without random oracles. In Proceedings of EUROCRYPT 2004, volume 3027
of LNCS, pages 223–238, Interlaken, Switzerland (May 2004). (One citation on page 179.)

162

http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://doi.acm.org/10.1145/2382196.2382294
http://doi.acm.org/10.1145/2382196.2382294
http://doi.acm.org/10.1145/2382196.2382294
http://www.internetsociety.org/sites/default/files/09_1.pdf
http://www.internetsociety.org/sites/default/files/09_1.pdf
http://www.internetsociety.org/sites/default/files/09_1.pdf
http://dx.doi.org/10.1007/11832072_8
http://dx.doi.org/10.1007/11832072_8
http://doi.acm.org/10.1145/2043628.2043630
http://doi.acm.org/10.1145/2043628.2043630
http://doi.acm.org/10.1145/2043628.2043630
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177 (April
2008). (Two citations on pages 108 and 179.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Proceedings of EUROCRYPT 2005, volume 3494
of LNCS, pages 440–456, Aarhus, Denmark (May 2005). (One citation on page 179.)

[BC89] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Proceedings
of CRYPTO1989, volume 435 of LNCS, pages 400–407, Santa Barbara, CA, USA
(August 1989). (One citation on page 26.)

[BDD07] Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical system for
globally revoking the unlinkable pseudonyms of unknown users. In Proceedings
of ACISP 2007, volume 4586 of LNCS, pages 400–415, Townsville, Australia (July
2007). (One citation on page 59.)

[Ber02] Daniel J. Bernstein. Pippenger’s exponentiation algorithm. To be incor-
porated into the author’s High-speed cryptography book, (January 2002).

(Three citations on pages 26×2 and 44.)

[BGMW92] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce Wilson.
Fast exponentiation with precomputation (extended abstract). In Proceedings of
EUROCRYPT1992, volume 658 of LNCS, pages 200–207, Balatonfüred, Hungary
(May 1992). (Three citations on pages 26×2 and 27.)

[BGR98a] Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch verification with applications to
cryptography and checking. In Proceedings of LATIN1998, volume 1380 of LNCS,
pages 170–191, Campinas, Brazil (April 1998). (One citation on page 37.)

[BGR98b] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Proceedings of EURO-
CRYPT1998, volume 1403 of LNCS, pages 236–250, Espoo, Finland (June 1998).

(Nine citations on pages 4, 25, 37, 40, 41, 43, 44, 53, and 86.)

163

http://dx.doi.org/10.1007/s00145-007-9005-7
http://dx.doi.org/10.1007/s00145-007-9005-7
http://dx.doi.org/10.1007/s00145-007-9005-7
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/0-387-34805-0_37
http://dx.doi.org/10.1007/0-387-34805-0_37
http://dx.doi.org/10.1007/978-3-540-73458-1_29
http://dx.doi.org/10.1007/978-3-540-73458-1_29
http://dx.doi.org/10.1007/978-3-540-73458-1_29
http://cr.yp.to/papers.html#pippenger
http://cr.yp.to/papers.html#pippenger
http://dx.doi.org/10.1007/3-540-47555-9_18
http://dx.doi.org/10.1007/3-540-47555-9_18
http://dx.doi.org/10.1007/BFb0054320
http://dx.doi.org/10.1007/BFb0054320
http://dx.doi.org/10.1007/BFb0054320
http://dx.doi.org/10.1007/BFb0054130
http://dx.doi.org/10.1007/BFb0054130
http://dx.doi.org/10.1007/BFb0054130

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Proceedings of CRYPTO1988, volume 403 of LNCS, pages 27–35,
Santa Barbara, CA, USA (August 1988). (Two citations on pages 93 and 126.)

[BL12] Ernie Brickell and Jiangtao Li. Enhanced Privacy ID: A direct anonymous at-
testation scheme with enhanced revocation capabilities. IEEE Transactions on
Dependable and Secure Computing (TDSC), 9(3):345–360 (May–June 2012).

(One citation on page 147.)

[BMS01] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis attacks and trade-
offs in anonymity providing systems. In Proceedings of Information Hiding 2001,
volume 2137 of LNCS, pages 245–257, Pittsburgh, PA, USA (April 2001).

(One citation on page 146.)

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In Proceedings of STOC1988, pages 1–10, Chicago, IL, USA (May 1988).

(One citation on page 2.)

[Bon98] Dan Boneh. The decision diffie-hellman problem. In Proceedings of
ANTS III (1998), volume 1423 of LNCS, pages 48–63, Portland, OR, USA (June
1998). (One citation on page 24.)

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
Proceedings of EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444, Bruges,
Belgium (May 2000). (One citation on page 157.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of CCS1993, pages 62–73, Fairfax,
VA, USA (November 1993). (One citation on page 21.)

[Bra39] Alfred Brauer. On addition chains. Bulletin of the American Mathematical Society,
45(10):736–739 (October 1939). (One citation on page 26.)

[Bra00] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy, First Edition. MIT Press, Cambridge, MA, USA (August
2000). (Five citations on pages 24, 25, and 35×3.)

164

http://dx.doi.org/10.1007/0-387-34799-2_3
http://dx.doi.org/10.1007/0-387-34799-2_3
http://dx.doi.org/10.1007/0-387-34799-2_3
http://doi.ieeecomputersociety.org/10.1109/TDSC.2011.63
http://doi.ieeecomputersociety.org/10.1109/TDSC.2011.63
http://doi.ieeecomputersociety.org/10.1109/TDSC.2011.63
http://dx.doi.org/10.1007/3-540-45496-9_18
http://dx.doi.org/10.1007/3-540-45496-9_18
http://dx.doi.org/10.1007/3-540-45496-9_18
http://doi.acm.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
http://doi.acm.org/10.1145/62212.62213
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/3-540-45539-6_31
http://doi.acm.org/10.1145/168588.168596
http://doi.acm.org/10.1145/168588.168596
http://doi.acm.org/10.1145/168588.168596
http://projecteuclid.org/euclid.bams/1183502136.
http://projecteuclid.org/euclid.bams/1183502136.
http://www.credentica.com/the_mit_pressbook.html
http://www.credentica.com/the_mit_pressbook.html
http://www.credentica.com/the_mit_pressbook.html

[Bra06] Felix Brandt. How to obtain full privacy in auctions. International Journal of
Information Security, 5(4):201–216 (October 2006). (One citation on page 2.)

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation.
SIAM Review (SIREV), 46(3):501–517 (September 2004). (One citation on page 95.)

[Cac99] Christian Cachin. Efficient private bidding and auctions with an oblivious third
party. In Proceedings of CCS1999, pages 120–127, Singapore (November 1999).

(One citation on page 2.)

[CCas08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set member-
ship and range proofs. In Proceedings of ASIACRYPT 2008, volume 5350 of LNCS,
pages 234–252, Melbourne, Australia (December 2008). (One citation on page 157.)

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols (extended abstract). In Proceedings of STOC1988, pages 11–19,
Chicago, IL, USA (May 1988). (One citation on page 2.)

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Proceedings
of CRYPTO1994, volume 839 of LNCS, pages 174–187, Santa Barbara, CA, USA
(August 1994). (Seven citations on pages 88, 89, 90, 91, 93, 94, and 96.)

[CFM08] Dario Catalano, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with
short proofs. In Proceedings of EUROCRYPT 2008, volume 4965 of LNCS, pages
433–450, Istanbul, Turkey (April 2008). (One citation on page 102.)

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. Journal of the ACM (JACM), 51(4):557–594 (July 2004).

(One citation on page 22.)

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable se-
cret sharing and achieving simultaneity in the presence of faults (extended abstract).
In Proceedings of FOCS1985, pages 383–395, Portland, OR, USA (October 1985).

(Two citations on pages 6 and 109.)

165

http://dx.doi.org/10.1007/s10207-006-0001-y
http://dx.doi.org/10.1007/s10207-006-0001-y
http://dx.doi.org/10.1137/S0036144502417715
http://dx.doi.org/10.1137/S0036144502417715
http://doi.acm.org/10.1145/319709.319726
http://doi.acm.org/10.1145/319709.319726
http://doi.acm.org/10.1145/319709.319726
http://dx.doi.org/10.1007/978-3-540-89255-7_15
http://dx.doi.org/10.1007/978-3-540-89255-7_15
http://dx.doi.org/10.1007/978-3-540-89255-7_15
http://doi.acm.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://doi.acm.org/10.1145/62212.62214
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/978-3-540-78967-3_25
http://dx.doi.org/10.1007/978-3-540-78967-3_25
http://dx.doi.org/10.1007/978-3-540-78967-3_25
http://doi.acm.org/10.1145/1008731.1008734
http://doi.acm.org/10.1145/1008731.1008734
http://doi.acm.org/10.1145/1008731.1008734
http://doi.ieeecomputersociety.org/10.1109/SFCS.1985.64
http://doi.ieeecomputersociety.org/10.1109/SFCS.1985.64
http://doi.ieeecomputersociety.org/10.1109/SFCS.1985.64

[CH11] Jeremy Clark and Urs Hengartner. Selections: Internet voting with over-the-shoulder
coercion-resistance. In Proceedings of FC 2011, volume 7035 of LNCS, pages 47–
61, Gros Islet, St. Lucia (February 2011). (Three citations on pages 2×2 and 145.)

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin.
Mercurial commitments with applications to zero-knowledge sets. In Proceedings
of EUROCRYPT 2005, volume 3494 of LNCS, pages 422–439, Aarhus, Denmark
(May 2005). (One citation on page 101.)

[CHL+13] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin.
Mercurial commitments with applications to zero-knowledge sets. Journal of Cryp-
tology, 26(2):251–279 (April 2013). (One citation on page 88.)

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In Proceedings of SCN 2002, volume 2576 of LNCS, pages 268–289, Amalfi, Italy
(September 2002). (One citation on page 150.)

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Proceedings
of CRYPTO 2006, volume 4117 of LNCS, pages 78–96, Santa Barbara, CA, USA
(August 2006). (One citation on page 21.)

[CLZ12] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A non-interactive range
proof with constant communication. In Proceedings of FC 2012, volume 7397 of
LNCS, pages 179–199, Kralendijk, Bonaire (March 2012). (One citation on page 157.)

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Proceedings of CRYPTO1992, volume 740 of LNCS, pages 89–105, Santa Barbara,
CA, USA (August 1992). (Two citations on pages 55 and 56.)

[Cra96] Ronald Cramer. Modular Design of Secure Yet Practical Cryptographic Protocols.
PhD thesis, CWI and University of Amsterdam, Amsterdam, Netherlands (November
1996). (Two citations on pages 30 and 31.)

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups (extended abstract). In Proceedings of CRYPTO1997, volume1294 of LNCS,
pages 410–424, Santa Barbara, CA, USA (August 1997). (One citation on page 19.)

166

http://dx.doi.org/10.1007/978-3-642-27576-0_4
http://dx.doi.org/10.1007/978-3-642-27576-0_4
http://dx.doi.org/10.1007/978-3-642-27576-0_4
http://dx.doi.org/10.1007/11426639_25
http://dx.doi.org/10.1007/11426639_25
http://dx.doi.org/10.1007/s00145-012-9122-9
http://dx.doi.org/10.1007/s00145-012-9122-9
http://dx.doi.org/10.1007/3-540-36413-7_20
http://dx.doi.org/10.1007/3-540-36413-7_20
http://dx.doi.org/10.1007/11818175_5
http://dx.doi.org/10.1007/11818175_5
http://dx.doi.org/10.1007/978-3-642-32946-3_14
http://dx.doi.org/10.1007/978-3-642-32946-3_14
http://dx.doi.org/10.1007/978-3-642-32946-3_14
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/BFb0052252

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proceedings of CRYPTO 2003, volume 2729 of LNCS, pages
126–144, Santa Barbara, CA, USA (August 2003). (Three citations on pages 134 and 135×2.)

[CY08] Koji Chida and Go Yamamoto. Batch processing for proofs of partial knowledge
and its applications. IEICE Transactions, 91-A(1):150–159 (January 2008).

(One citation on page 97.)

[Dam11] Ivan Damgård. On σ-protocols. Lecture notes for CPT 2011, University of Aarhus
BRICS, Aarhus, Denmark (March 2011). (Four citations on pages 19, 31, 69, and 91.)

[DGOW95] Ivan Damgård, Oded Goldreich, Tatsuaki Okamoto, and Avi Wigderson. Honest
verifier vs dishonest verifier in public coin zero-knowledge proofs. In Proceedings
of CRYPTO1995, volume 963 of LNCS, pages 325–338, Santa Barbara, CA, USA
(August 1995). (One citation on page 19.)

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654 (November 1976).

(One citation on page 23.)

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-
generation onion router. In Proceedings of Usenix Security 2004, San Diego, CA,
USA (August 2004). (One citation on page 146.)

[Dou02] John R. Douceur. The Sybil attack. In Proceedings of IPTPS 2002, volume 2429 of
LNCS, pages 251–260, Cambridge, MA, USA (March 2002). (One citation on page 151.)

[Erd61] Paul Erdös. Remarks on number theory III: On addition chains. Acta Arithmetica,
6(1):77–81 (1960–1961). (Two citations on pages 26 and 50.)

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Proceedings of FOCS1987, pages 427–437, Los Angeles, CA, USA (October 1987).

(One citation on page 2.)

[For09] Lance Fortnow. The status of the P versus NP problem. Communications of the
ACM (CACM), 52(9):78–86 (September 2009). (One citation on page 10.)

167

http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1093/ietfec/e91-a.1.150
http://dx.doi.org/10.1093/ietfec/e91-a.1.150
http://dx.doi.org/10.1093/ietfec/e91-a.1.150
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1007/3-540-44750-4_26
http://dx.doi.org/10.1007/3-540-44750-4_26
http://dx.doi.org/10.1007/3-540-44750-4_26
http://doi.ieeecomputersociety.org/10.1109/TIT.1976.1055638
http://doi.ieeecomputersociety.org/10.1109/TIT.1976.1055638
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://matwbn.icm.edu.pl/ksiazki/aa/aa6/aa618.pdf
http://matwbn.icm.edu.pl/ksiazki/aa/aa6/aa618.pdf
http://doi.ieeecomputersociety.org/10.1109/SFCS.1987.4
http://doi.ieeecomputersociety.org/10.1109/SFCS.1987.4
http://doi.acm.org/10.1145/1562164.1562186
http://doi.acm.org/10.1145/1562164.1562186

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Proceedings of CRYPTO1986, vol-
ume 263 of LNCS, pages 186–194, Santa Barbara, CA, USA (August 1986).

(Three citations on pages 19, 21, and 34.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of STOC1990, pages 416–426, Baltimore, MD, USA (May 1990).

(One citation on page 190.)

[Gal12] Joseph A. Gallian. Contemporary Abstract Algebra, Eighth Edition. Brooks Cole,
Boston, MA, USA (July 2012). (Three citations on pages 7, 107, and 110.)

[GLSY04] Rosario Gennaro, Darren Leigh, Ravi Sundaram, and William S. Yerazunis. Batch-
ing Schnorr identification scheme with applications to privacy-preserving autho-
rization and low-bandwidth communication devices. In Proceedings of ASIA-
CRYPT 2004, volume 3329 of LNCS, pages 276–292, Jeju Island, South Korea
(December 2004). (Eight citations on pages 59, 66, 80, 81, 82, 84, 85, and 86.)

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems (extended abstract). In Proceedings of STOC1985, pages
291–304, Providence, RI, USA (May 1985). (One citation on page 2.)

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements
in zero-knowledge and a methodology of cryptographic protocol design. In Pro-
ceedings of CRYPTO1986, volume 263 of LNCS, pages 171–185, Santa Barbara, CA,
USA (August 1986). (One citation on page 2.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of
STOC1987, pages 218–229, New York, NY, USA (May 1987). (One citation on page 2.)

[Gol01] Oded Goldreich. The Foundations of Cryptography – Volume 1, Basic Tech-
niques. Cambridge University Press, New York, NY, USA (June 2001).

(Three citations on pages 1, 10, and 40.)

168

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://doi.acm.org/10.1145/100216.100272
http://doi.acm.org/10.1145/100216.100272
http://www.nelsonbrain.com/shop/isbn/9781133599708
http://www.nelsonbrain.com/shop/isbn/9781133599708
http://dx.doi.org/10.1007/978-3-540-30539-2_20
http://dx.doi.org/10.1007/978-3-540-30539-2_20
http://dx.doi.org/10.1007/978-3-540-30539-2_20
http://dx.doi.org/10.1007/978-3-540-30539-2_20
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/3-540-47721-7_11
http://dx.doi.org/10.1007/3-540-47721-7_11
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121 (September
2008). (One citation on page 106.)

[Gro04] Jens Groth. Honest Verifier Zero-Knowledge Arguments Applied. PhD the-
sis, University of Aarhus BRICS DS-04-3, Aarhus, Denmark (October 2004).

(One citation on page 19.)

[Gro10] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Journal of
Cryptology, 23(4):546–579 (October 2010). (Two citations on pages 2 and 59.)

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of STOC1998,
pages 399–408, Dallas, TX, USA (May 1998). (One citation on page 19.)

[HG11a] Ryan Henry and Ian Goldberg. Extending Nymble-like systems. In Pro-
ceedings of IEEE S&P 2011, pages 523–537, Berkeley, CA, USA (May 2011).

(One citation on page 160.)

[HG11b] Ryan Henry and Ian Goldberg. Formalizing anonymous blacklisting systems. In
Proceedings of IEEE S&P 2011, pages 81–95, Berkeley, CA, USA (May 2011).

(Three citations on pages 148, 149, and 151.)

[HG12] Ryan Henry and Ian Goldberg. All-but-k mercurial commitments and their appli-
cations. Technical Report CACR 2012-26, University of Waterloo, Waterloo, ON,
Canada (November 2012). (Three citations on pages 5, 6, and 102.)

[HG13a] Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. In Proceedings
of ACNS 2013, volume 7954 of LNCS, pages 502–517, Banff, AB, Canada (June
2013). (Three citations on pages 4×2 and 60.)

[HG13b] Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. Technical
Report CACR 2013-08, University of Waterloo, Waterloo, ON, Canada (March 2013).

(One citation on page 4.)

169

http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://brics.dk/DS/04/3/BRICS-DS-04-3.pdf
http://brics.dk/DS/04/3/BRICS-DS-04-3.pdf
http://dx.doi.org/10.1007/s00145-010-9067-9
http://dx.doi.org/10.1007/s00145-010-9067-9
http://doi.acm.org/10.1145/276698.276852
http://doi.acm.org/10.1145/276698.276852
http://doi.acm.org/10.1145/276698.276852
http://doi.ieeecomputersociety.org/10.1109/SP.2011.17
http://doi.ieeecomputersociety.org/10.1109/SP.2011.17
http://doi.ieeecomputersociety.org/10.1109/SP.2011.13
http://doi.ieeecomputersociety.org/10.1109/SP.2011.13
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-26.pdf
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-08.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-08.pdf

[HG13c] Ryan Henry and Ian Goldberg. Thinking inside the BLAC box: Smarter protocols
for faster anonymous blacklisting. In Proceedings of WPES 2013, pages 71–81,
Berlin, Germany (November 2013). (Five citations on pages 2×2, 5×2, and 160.)

[HHG10] Ryan Henry, Kevin Henry, and Ian Goldberg. Making a nymbler Nymble using
VERBS. In Proceedings of PETS 2010, volume 6205 of LNCS, pages 111–129,
Berlin, Germany (July 2010). (One citation on page 147.)

[HHG13] Ryan Henry, Yizhou Huang, and Ian Goldberg. One (block) size fits all: PIR
and SPIR with variable-length records via multi-block queries. In Proceedings of
NDSS 2013, San Diego, CA, USA (February 2013). (Two citations on pages 2 and 145.)

[HOG11] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for electronic com-
merce. In Proceedings of CCS 2011, pages 677–690, Chicago, IL, USA (October
2011). (Four citations on pages 2×2, 59, and 145.)

[Ica09] Thomas Icart. How to hash into elliptic curves. In Proceedings of CRYPTO 2009,
volume 5677 of LNCS, pages 303–316, Santa Barbara, CA, USA (August 2009).

(One citation on page 150.)

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of WPES 2005, pages 61–70, Alexandria, VA, USA
(November 2005). (Two citations on page 2.)

[JKTS07] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble:
Anonymous IP-address blocking. In Proceedings of PETS 2007, volume 4776 of
LNCS, pages 113–133, Ottawa, ON, Canada (June 2007). (One citation on page 147.)

[JM94] Wen-Ai Jackson and Keith M. Martin. Geometric secret sharing schemes and
their duals. Designs, Codes and Cryptography, 4(1):83–95 (January 1994).

(Two citations on pages 92 and 123.)

[JMV05] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Do all elliptic curves
of the same order have the same difficulty of discrete log? In Proceedings of ASIA-
CRYPT 2005, volume 3788 of LNCS, pages 21–40, Chennai, India (December 2005).

(One citation on page 23.)

170

http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-642-14527-8_7
http://dx.doi.org/10.1007/978-3-642-14527-8_7
http://dx.doi.org/10.1007/978-3-642-14527-8_7
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://internetsociety.org/doc/one-block-size-fits-all-pir-and-spir-variable-length-records-multi-block-queries
http://doi.acm.org/10.1145/2046707.2046784
http://doi.acm.org/10.1145/2046707.2046784
http://doi.acm.org/10.1145/2046707.2046784
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://doi.acm.org/10.1145/1102199.1102213
http://doi.acm.org/10.1145/1102199.1102213
http://doi.acm.org/10.1145/1102199.1102213
http://dx.doi.org/10.1007/978-3-540-75551-7_8
http://dx.doi.org/10.1007/978-3-540-75551-7_8
http://dx.doi.org/10.1007/978-3-540-75551-7_8
http://dx.doi.org/10.1007/BF01388562
http://dx.doi.org/10.1007/BF01388562
http://dx.doi.org/10.1007/BF01388562
http://dx.doi.org/10.1007/11593447_2
http://dx.doi.org/10.1007/11593447_2
http://dx.doi.org/10.1007/11593447_2

[KK09] Murat Kantarcioglu and Onur Kardes. Privacy-preserving data mining in the mali-
cious model. International Journal of Information and Computer Security (IJICS),
2(4):353–375 (January 2009). (Two citations on page 2.)

[Knu76] Donald E. Knuth. Big Omicron and big Omega and big Theta. SIGACT News,
8(2):18–24 (April–June 1976). (One citation on page 8.)

[KZG10a] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size com-
mitments to polynomials and their applications. In Proceedings of ASIA-
CRYPT 2010, volume 6477 of LNCS, pages 177–194, Singapore (December 2010).

(Seven citations on pages 5, 105, 106, 107, 108×2, and 180.)

[KZG10b] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Polynomial commitments.
Technical Report CACR 2010-10, University of Waterloo, Waterloo, ON, Canada
(December 2010). (One citation on page 185.)

[LH10] Zi Lin and Nicholas Hopper. Jack: Scalable accumulator-based Nymble system.
In Proceedings of WPES 2010, pages 53–62, Chicago, IL, USA (October 2010).

(Two citations on pages 2 and 147.)

[LH11] Peter Lofgren and Nicholas Hopper. BNymble: More anonymous blacklisting at
almost no cost (a short paper). In Proceedings of FC 2011, volume 7035 of LNCS,
pages 268–275, Gros Islet, St. Lucia (February 2011). (One citation on page 147.)

[Lim00] Chae Hoon Lim. Efficient multi-exponentiation and application to batch verification
of digital signatures. Technical report, Sejong University, Seoul, South Korea
(August 2000). (Three citations on pages 26 and 27×2.)

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precomputa-
tion. In Proceedings of CRYPTO1994, volume 839 of LNCS, pages 95–107, Santa
Barbara, CA, USA (August 1994). (Two citations on pages 26 and 27.)

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534 (December
1982). (Two citations on pages 100 and 183.)

171

http://dx.doi.org/10.1504/IJICS.2008.022488
http://dx.doi.org/10.1504/IJICS.2008.022488
http://dx.doi.org/10.1504/IJICS.2008.022488
http://doi.acm.org/10.1145/1008328.1008329
http://doi.acm.org/10.1145/1008328.1008329
http://dx.doi.org/10.1007/978-3-642-17373-8_11
http://dx.doi.org/10.1007/978-3-642-17373-8_11
http://dx.doi.org/10.1007/978-3-642-17373-8_11
http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
http://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
http://doi.acm.org/10.1145/1866919.1866927
http://doi.acm.org/10.1145/1866919.1866927
http://dx.doi.org/10.1007/978-3-642-27576-0_22
http://dx.doi.org/10.1007/978-3-642-27576-0_22
http://dx.doi.org/10.1007/978-3-642-27576-0_22
http://dasan.sejong.ac.kr/~chlim/pub/multi_exp.ps
http://dasan.sejong.ac.kr/~chlim/pub/multi_exp.ps
http://dasan.sejong.ac.kr/~chlim/pub/multi_exp.ps
http://dx.doi.org/10.1007/3-540-48658-5_11
http://dx.doi.org/10.1007/3-540-48658-5_11
http://dx.doi.org/10.1007/3-540-48658-5_11
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454

[LY10] Benoı̂t Libert and Moti Yung. Concise mercurial vector commitments and inde-
pendent zero-knowledge sets with short proofs. In Proceedings of TCC 2010,
volume 5978 of LNCS, pages 499–517, Zürich, Switzerland (February 2010).

(One citation on page 4.)

[MN96] David M’Raı̈hi and David Naccache. Batch exponentiation: A fast DLP-based
signature generation strategy. In Proceedings of CCS1996, pages 58–61, New
Delhi, India (March 1996). (One citation on page 26.)

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, New York, NY, USA (October 1996). Fifth printing
(August 2001). (Two citations on pages 25 and 183.)

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Proceedings of CCS 2011, pages 116–125, Philadelphia, PA, USA (November 2001).

(One citation on page 2.)

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Proceedings of PKC 2001,
volume 1992 of LNCS, pages 104–118, Jeju Island, South Korea (February 2001).

(One citation on page 179.)

[PB08] Kun Peng and Feng Bao. Batch ZK proof and verification of OR logic. In
Proceedings of INSCRYPT 2008, volume 5487 of LNCS, pages 144–156, Beijing,
China (December 2008). (Five citations on pages 4, 97×2, 98, and 99.)

[PB10] Kun Peng and Feng Bao. Batch range proof for practical small ranges. In Proceed-
ings of AFRICACRYPT 2010, volume 6055 of LNCS, pages 114–130, Stellenbosch,
South Africa (May 2010). (One citation on page 59.)

[PBD07] Kun Peng, Colin Boyd, and Ed Dawson. Batch zero-knowledge proof
and verification and its applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 10(2):Article No. 6 (May 2007).

(Eight citations on pages 59, 66, 70, 73×2, 84, 85, and 86.)

[Pen12] Kun Peng. Attack against a batch zero-knowledge proof system. IET Information
Security, 6(1):1–5 (March 2012). (One citation on page 97.)

172

http://dx.doi.org/10.1007/978-3-642-11799-2_30
http://dx.doi.org/10.1007/978-3-642-11799-2_30
http://dx.doi.org/10.1007/978-3-642-11799-2_30
http://doi.acm.org/10.1145/238168.238187
http://doi.acm.org/10.1145/238168.238187
http://doi.acm.org/10.1145/238168.238187
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://doi.acm.org/10.1145/501983.502000
http://doi.acm.org/10.1145/501983.502000
http://dx.doi.org/10.1007/3-540-44586-2_8
http://dx.doi.org/10.1007/3-540-44586-2_8
http://dx.doi.org/10.1007/3-540-44586-2_8
http://dx.doi.org/10.1007/978-3-642-01440-6_13
http://dx.doi.org/10.1007/978-3-642-01440-6_13
http://dx.doi.org/10.1007/978-3-642-12678-9_8
http://dx.doi.org/10.1007/978-3-642-12678-9_8
http://doi.acm.org/10.1145/1237500.1237502
http://doi.acm.org/10.1145/1237500.1237502
http://doi.acm.org/10.1145/1237500.1237502
http://dx.doi.org/10.1049/iet-ifs.2011.0290
http://dx.doi.org/10.1049/iet-ifs.2011.0290

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems (preliminary
version). In Proceedings of FOCS1976, pages 258–263, Houston, TX, USA
(October 1976). (Two citations on pages 26 and 44.)

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal
on Computing (SICOMP), 9(2):230–250 (May 1980). (Two citations on page 27.)

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Pro-
ceedings of EUROCRYPT1996, volume 1070 of LNCS, pages 387–398, Saragossa,
Spain (May 1996). (One citation on page 22.)

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of STOC1989, pages
73–85, Seattle, WA, USA (May 1989). (One citation on page 2.)

[Rog06] Phillip Rogaway. Formalizing human ignorance: Collision-resistant hash functions
without the keys. In Proceedings of VIETCRYPT 2006, volume 4341 of LNCS, pages
211–228, Hanoi, Vietnam (September 2006). (One citation on page 20.)

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Def-
initions, implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance. In Proceedings of FSE 2004, volume 3017 of
LNCS, pages 371–388, Delhi, India (February 2004). (Two citations on page 20.)

[SBM10] Edward J. Schwartz, David Brumley, and Jonathan M. McCune. Contractual
anonymity. In Proceedings of NDSS 2010, San Diego, CA, USA (March 2010).

(One citation on page 148.)

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Proceedings of CRYPTO1989, volume 435 of LNCS, pages 239–252, Santa Barbara,
CA, USA (August 1989). (Five citations on pages 4, 28, 30, 34, and 189.)

[SD92] Jörg Sauerbrey and Andreas Dietel. Resource requirements for the application of ad-
dition chains in modulo exponentiation. In Proceedings of EUROCRYPT1992,
volume 658 of LNCS, pages 174–182, Balatonfüred, Hungary (May 1992).

(One citation on page 26.)

173

http://doi.ieeecomputersociety.org/10.1109/SFCS.1976.21
http://doi.ieeecomputersociety.org/10.1109/SFCS.1976.21
http://doi.ieeecomputersociety.org/10.1109/SFCS.1976.21
http://dx.doi.org/10.1137/0209022
http://dx.doi.org/10.1137/0209022
http://dx.doi.org/10.1007/3-540-68339-9_33
http://dx.doi.org/10.1007/3-540-68339-9_33
http://doi.acm.org/10.1145/73007.73014
http://doi.acm.org/10.1145/73007.73014
http://doi.acm.org/10.1145/73007.73014
http://dx.doi.org/10.1007/11958239_14
http://dx.doi.org/10.1007/11958239_14
http://dx.doi.org/10.1007/11958239_14
http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://dx.doi.org/10.1007/978-3-540-25937-4_24
http://www.isoc.org/isoc/conferences/ndss/10/pdf/13.pdf
http://www.isoc.org/isoc/conferences/ndss/10/pdf/13.pdf
http://www.isoc.org/isoc/conferences/ndss/10/pdf/13.pdf
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/3-540-47555-9_15
http://dx.doi.org/10.1007/3-540-47555-9_15
http://dx.doi.org/10.1007/3-540-47555-9_15

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613
(1979). (One citation on page 94.)

[SJF08] José Luis Subirats, José M. Jerez, and Leonardo Franco. A new decomposition
algorithm for threshold synthesis and generalization of boolean functions. IEEE
Transactions on Circuits and Systems – Part I: Regular Papers, 55-I(10):3188–3196
(November 2008). (One citation on page 93.)

[SJM91] Gustavus J. Simmons, Wen-Ai Jackson, and Keith M. Martin. The geometry of
shared secret schemes. Bulletin of the Institute of Combinatorics and its Application
(ICA), 1:71–88 (1991). (One citation on page 92.)

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme – a practical
solution to the implementation of a voting booth. In Proceedings of EURO-
CRYPT1995, volume 921 of LNCS, pages 393–403, Saint-Malo, France (May 1995).

(Two citations on pages 2 and 59.)

[SR94] Kai-Yeung Siu and Vwani P. Roychowdhury. On optimal depth threshold circuits
for multiplication and related problems. SIAM Journal on Discrete Mathematics,
7(2):284–292 (1994). (One citation on page 93.)

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In Proceedings of EURO-
CRYPT1996, volume 1070 of LNCS, pages 190–199, Saragossa, Spain (May 1996).

(One citation on page 2.)

[Str64] Ernst G. Straus. Additions chains of vectors (problem 5125). American Mathemati-
cal Monthly, 71(7):806–808 (August–September 1964). (Two citations on pages 26 and 27.)

[TAKS07] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable
Anonymous Credentials: Blocking misbehaving users without TTPs. In Pro-
ceedings of CCS 2007, pages 72–81, Alexandria, VA, USA (October 2007).

(Three citations on pages 5, 147, and 149.)

[TAKS10] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. BLAC: Re-
voking repeatedly misbehaving anonymous users without relying on TTPs. ACM
Transactions on Information and Systems Security (TISSEC), 13(4):Article No. 39
(December 2010). (14 citations on pages 2×2, 5×2, 147, 148, 149, 150, 151, 152×2, 155, 156, and 160.)

174

http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://dx.doi.org/10.1109/TCSI.2008.923432
http://dx.doi.org/10.1109/TCSI.2008.923432
http://dx.doi.org/10.1109/TCSI.2008.923432
http://link.springer.de/link/service/series/0558/bibs/0921/09210393.htm
http://link.springer.de/link/service/series/0558/bibs/0921/09210393.htm
http://link.springer.de/link/service/series/0558/bibs/0921/09210393.htm
http://dx.doi.org/10.1137/S0895480192228619
http://dx.doi.org/10.1137/S0895480192228619
http://dx.doi.org/10.1137/S0895480192228619
http://dx.doi.org/10.1007/3-540-68339-9_17
http://dx.doi.org/10.1007/3-540-68339-9_17
http://www.jstor.org/stable/2310929
http://www.jstor.org/stable/2310929
http://doi.acm.org/10.1145/1315245.1315256
http://doi.acm.org/10.1145/1315245.1315256
http://doi.acm.org/10.1145/1315245.1315256
http://doi.acm.org/10.1145/1880022.1880033
http://doi.acm.org/10.1145/1880022.1880033
http://doi.acm.org/10.1145/1880022.1880033

[Tora] Tor Project, Inc. doc/BlockingIrc – Tor Bug Tracker & Wiki. Retrieved: 2014-04-
05. (One citation on page 146.)

[Torb] Tor Project, Inc. Tor metrics portal: Network. Retrieved: 2014-04-05 from
https://metrics.torproject.org/users.html?graph= · · · . (One citation on page 146.)

[Torc] Tor Project, Inc. Tor metrics portal: Users. Retrieved: 2014-04-05 from
https://metrics.torproject.org/users.html?graph= · · · . (One citation on page 146.)

[TWC+04] Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au, Joseph K. Liu,
and Duncan S. Wong. Separable linkable threshold ring signatures. In Proceed-
ings of INDOCRYPT 2004, volume 3348 of LNCS, pages 384–398, Chennai, India
(December 2004). (Two citations on page 2.)

[Vad06] Salil P. Vadhan. An unconditional study of computational zero knowledge.
SIAM Journal on Computing (SICOMP), 36(4):1160–1214 (March 2006).

(One citation on page 19.)

[Yao76] Andrew Chi-Chih Yao. On the evaluation of powers. SIAM Journal on Computing
(SICOMP), 5(1):100–103 (March 1976). (Two citations on page 26.)

[ZS09] Gregory M. Zaverucha and Douglas R. Stinson. Group testing and batch veri-
fication. In Proceedings of ICITS 2009, volume 5973 of LNCS, pages 140–157,
Shizuoka, Japan (December 2009). (Two citations on page 39.)

175

https://trac.torproject.org/projects/tor/wiki/doc/BlockingIrc
https://trac.torproject.org/projects/tor/wiki/doc/BlockingIrc
https://metrics.torproject.org/network.html?graph=networksize&start=2013-04-05&end=2014-04-05#networksize
https://metrics.torproject.org/network.html?graph=networksize&start=2013-04-05&end=2014-04-05#networksize
https://metrics.torproject.org/network.html?graph=networksize&start=2013-04-05&end=2014-04-05#networksize
https://metrics.torproject.org/network.html?graph=networksize&start=2013-04-05&end=2014-04-05#networksize
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2012-04-05&end=2014-04-05&country=all&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2012-04-05&end=2014-04-05&country=all&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2012-04-05&end=2014-04-05&country=all&events=off#userstats-relay-country
https://metrics.torproject.org/users.html?graph=userstats-relay-country&start=2012-04-05&end=2014-04-05&country=all&events=off#userstats-relay-country
http://dx.doi.org/10.1007/978-3-540-30556-9_30
http://dx.doi.org/10.1007/978-3-540-30556-9_30
http://dx.doi.org/10.1137/S0097539705447207
http://dx.doi.org/10.1137/S0097539705447207
http://dx.doi.org/10.1137/0205008
http://dx.doi.org/10.1137/0205008
http://dx.doi.org/10.1007/978-3-642-14496-7_12
http://dx.doi.org/10.1007/978-3-642-14496-7_12
http://dx.doi.org/10.1007/978-3-642-14496-7_12

APPENDICES

Appendix A

Intractability assumptions

This appendix introduces four computational intractability assumptions that are used in the main
text. Two of the four assumptions require the following notion of a bilinear group-generating
algorithm.

Definition 25. A bilinear group-generating algorithm G̃ is a PPT algorithm that, on input 1τ ,
outputs a description of a pair of isomorphic multiplicative groups (G̃,GT), their τ-bit prime
order p, a fixed generator g̃ ∈ G̃∗, and a bilinear pairing function e : G̃ × G̃→ GT.

A.1 The computational Diffie-Hellman problem

The computational Diffie-Hellman (CDH) problem in G is:

CDH problem: Given as input a 3-tuple (g1,g2,h1) ∈ (G∗)2
× G, output h2 ∈ G such

that logg1
h1 = logg2

h2.

An algorithm A solves the CDH problem in G with advantage ε if

Pr
[
gx

2 ← A (g1,g2,g
x
1) �� g1,g2 ∈R G

∗
∧ x ∈R Zq

]
= ε,

where the probability is over the random choices of (g1,g2) ∈ (G∗)2 and x ∈ Zq and the random
bits consumed by A . We say the CDH problem is

(
t, ε
)
-intractable in G if no t-time probabilistic

algorithm solves the CDH problem in G with advantage greater than ε.

177

Definition 26. The CDH assumption holds for group-generating algorithm G if there exists a
negligible function ε : N → R+ such that, for all PPT algorithms A and for all τ ∈ N+, if
(G,q,g1,g2) ← G (1τ; 2), then A solves the CDH problem in G with advantage at most ε(τ).

We cast the following trivial observation about Definition 26.

Observation A.1. If the CDH assumption holds for G , then the DL assumption also holds for G .

A.2 The decision Diffie-Hellman problem

The decision Diffie-Hellman (DDH) problem in G is the “decision problem” variant of the CDH
problem in G:

DDH problem: Given as input a 4-tuple (g1,g2,h1,h2) ∈ (G∗)2
× (G)2, determine

whether logg1
h1 = logg2

h2.

An algorithm A solves the DDH problem in G with advantage ε if

��� Pr
[
1← A (g1,g2,h1,h2) �� g1,g2 ∈R G

∗
∧ h1,h2 ∈R G ∧ logg1

h1 , logg2
h2
]

− Pr
[
1← A (g1,g2,g

x
1 ,g

x
2) �� g1,g2 ∈R G

∗
∧ x ∈R Zq

] ��� = ε,

where the probability is over the random choices of (g1,g2) ∈ (G∗)2, (h1,h2) ∈ (G)2, and x ∈ Zq
and the random bits consumed by A . We can reinterpret the DDH problem as inducing an NP-
relation with witness x = logg1

h1. We say the DDH problem is
(
t, ε
)
-intractable in G if no t-time

probabilistic algorithm solves the DDH problem in G with advantage greater than ε.

Definition 27. The DDH assumption holds for group-generating algorithm G if there exists a
negligible function ε : N → R+ such that, for all PPT algorithms A and for all τ ∈ N+, if
(G,q,g1,g2) ← G (1τ; 2), then A solves the DDH problem in G with advantage at most ε(τ).

We cast a trivial observation about Definition 27.

Observation A.2. If the DDH assumption holds for G , then the CDH assumption also holds for
G .

178

The converse of Observation A.2 is not believed to be true. For instance, consider the DDH
and CDH problems with respect to

(
G̃,G̃T,p, g̃,e

)
← G̃ (1τ) for some bilinear group generating

algorithm G̃ ; in this case, there is an efficient algorithm — namely, the pairing algorithm e —
with which A can solve the DDH problem in G̃, yet the CDH problem in G̃ may nonetheless be
intractable. (Such groups G̃ in which the DDH problem is easy while the CDH problem is hard
are sometimes called gap-DH groups [OP01].)

A.3 The strong Diffie-Hellman assumption

For this section, let
(
G̃,G̃T,p, g̃,e

)
← G̃ (1τ) for a fixed bilinear group-generating algorithm

G̃ .

The n-strong Diffie-Hellman (n-SDH) problem in G̃ is [BB08; §3]:

n-SDH problem: Given as input an (n + 1)-tuple (g̃, g̃α, . . . , g̃αn

) ∈ (G̃∗)n+1, output(
i, g̃(α−i)−1)

for any i ∈ Zp \ {α}.

An algorithm A solves the n-SDH problem in
(
G̃,G̃T,p, g̃,e

)
with advantage ε if

Pr
[(

i, g̃(α−i)−1)
← A (g̃, g̃α, . . . , g̃αn) ��� α ∈R Z

∗
p

]
= ε,

where the probability is over the random choice of α ∈ Z∗p and the random bits consumed by
A . The n-SDH problem is

(
t, ε
)
-intractable in G̃ if no t-time probabilistic algorithm solves the

n-SDH problem in G̃ with advantage greater than ε.

Definition 28. The SDH assumption holds for bilinear group-generating algorithm G̃ if, for every
positive integer-valued function n(τ) ∈ poly(τ), there exists a negligible function ε : N → R+

such that, for all PPT algorithms A and for all τ ∈ N+, if
(
G̃,G̃T,p, g̃,e

)
← G̃ (1τ), then A solves

the n(τ)-SDH problem in G̃ with advantage at most ε(τ).

One can view the n-SDH problem as a generalization of the related n-Diffie-Hellman inversion
(n-DHI) problem [BB04; Appendix A]. (The n-DHI problem is: given

(
g̃, g̃α, . . . , g̃αn)

for α ∈R

Z∗p , output g̃α−1

or, equivalently [BBG05], output g̃αn+1

.)

179

A.4 The polynomial Diffie-Hellman assumption

For this section, let
(
G̃,G̃T,p, g̃,e

)
← G̃ (1τ) for a fixed bilinear group-generating algorithm

G̃ .

The n-polynomial Diffie-Hellman (n-polyDH) problem in G̃ is [KZG10a; Definition 2]:

n-polyDH problem: Given as input an (n+ 1)-tuple (g̃, g̃α, . . . , g̃αn

) ∈ (G̃∗)n+1, output(
f , g̃ f (α)) for any f ∈ Zp[x] such that

√
p > deg f > n.

An algorithm A solves the n-polyDH problem in
(
G̃,G̃T,p, g̃,e

)
with advantage ε if

Pr
[
(f , g̃ f (α)) ← A (g̃, g̃α, . . . , g̃αn) ��� α ∈R Z

∗
p ∧
(√

p > deg f
)
∧
(
deg f > n

)]
= ε,

where the probability is over the random choice of α ∈ Z∗p and the random bits consumed by
A . The n-polyDH problem is

(
t, ε
)
-intractable in G̃ if no t-time probabilistic algorithm has

advantage ε in solving the n-polyDH problem in G̃.

Definition 29. The polyDH assumption holds for bilinear group-generating algorithm G̃ if, for
every positive integer-valued function n(τ) ∈ poly(τ), there exists a negligible function ε : N→
R+ such that, for all PPT algorithms A and for all τ ∈ N+, if

(
G̃,G̃T,p, g̃,e

)
← G̃ (1τ), then A

solves the n(τ)-polyDH problem in G̃ with advantage at most ε(τ).

The n-polyDH problem also generalizes the n-DHI problem: whereas the n-DHI problem can
be viewed as the problem of outputting

(
xn+1, g̃αn+1)

given
(
g̃, g̃α, . . . , g̃αn)

, the polyDH problem
is to output such a pair in which xn+1 can be replaced by an arbitrary polynomial of degree at
least n + 1 and at most

√
p.

180

Appendix B

Attacking Peng and Bao’s protocol

Note from the author: I observed the weakness in Peng and Bao’s protocol and the
attack at a high level; however, the details around solving for sufficiently small solutions
by encoding the problem as a short vector search problem is due to Ian Goldberg and he
wrote the first draft of the text in this appendix. As such, I can only claim partial credit
for the contents of this appendix.

Details of the attack

This appendix provides additional details on how to implement the attack on Peng and Bao’s
protocol outlined in Section 4.2. We seek solutions cj ∈

[
0,2λ0 − 1

]
for each j ∈ H to satisfy

the system

0 ≡
∑
j∈H

cj γj (mod q) (4.1a)

and

c̄ ≡
∑
j∈H

cj (mod 2λ0), (4.2a)

181

where H ⊆k [1,n], c̄ ∈
[
0,2λ0 − 1

]
, and γj = t j (x j − uj) mod q are each given. We first shift

the range of each equation to center the desired solution about 0 by setting

d j = cj − 2λ0/2

for each j ∈ H ,

d̄ = c̄ − k (2λ0/2),

and

K = −
(
2λ0/2

)∑
j∈H

γj mod q.

We now seek solutions d j ∈
[
−2λ0−1,2λ0−1

− 1
]

to satisfy the system

K ≡
∑
j∈H

d j γj (mod q), (4.1b)

and

d̄ ≡
∑
j∈H

d j (mod 2λ0). (4.2b)

To find such solutions, we consider the (k + 3)-dimensional integer lattice M:

M =

X – KY – d̄ Y
1 γ1Y Y

1 γ2Y Y

. . .
...

...

1 γkY Y
qY

2λ0Y

,

where X and Y will be integers suitably chosen below.

182

If v⃗ = ⟨X,d1,d2, . . . ,dk ,0,0⟩ is a vector in M (that is, an integer linear combination of the
rows of M), then

{
d j

�� j ∈ [1,n]
}

forms a required solution to Equation (4.1b) and Equation (4.2b)
since, letting Mj denote the j th row of M (counting from 0), we observe that

v⃗ = M0 + d1M1 + · · · + dk Mk + aMk+1 + bMk+2

for some integers a and b. We thus use the Lenstra-Lenstra-Lovász (LLL) lattice basis reduction
algorithm [LLL82] to produce a reduced basis M ′ for M , which should enable us to find a vector
of the above form.

Let B denote the set of rows in the reduced basis M ′ for which the first entry is nonzero and the
last two entries are both zero. Because the rows of M ′ span the rows of M , the greatest common
divisor of the leading component of each row of M ′ is certainly X . Our hope is that, restricting
our consideration to just the rows in B, we find that the greatest common divisor of the leading
elements is still X ; if so, we can use the extended Euclidean algorithm [MvOV96; Algorithm 2.107]
to find a linear combination of the rows in B whose leading entry is X . This will be our row v⃗,
which contains our desired result.

We next very roughly compute the expected size of our solution. The determinant of M (and
thus also of M ′) is D = XY 2q2λ0 , and its dimension is k + 3. By choosing

X = Y =
⌈ k
√

q2λ0
⌉
,

we get that

D(k+3)−1

≈
k
√

q2λ0

≈ X.

We thus heuristically expect LLL to give us basis vectors whose entries are around the size of X ,
or not too much larger. This means the size of the coefficients produced by the extended Euclidean
algorithm step will also be small, as they will be about the size of the ratio of the leading elements
of the basis vectors and X . Therefore, the size of our resulting d j , j ∈ H , should also be about

183

the size of X , or just a little larger. Let k0 = (lg q)/λ0 + 2. When k ≥ k0,

X ≈ k
√

q2λ0 ≤ 2λ0/
(
2λ0/k0

)
,

= 2λ0 (1−k−1
0)

and we expect our solution to be in the required range.

We tested the attack using the implementation of LLL in version 6.1.1 of the mathematical
software package Sage44. When q = 2256

− 189 (the largest 256-bit prime), and λ0 = 40, we
find that setting k = 8 yields a solution to Equation (4.1b) and Equation (4.2b) in the appropriate
range almost every time (we observed only one failure in 10,000 trials). Solving the problem took
about 12ms per trial, on average. When we tried k = 7, the attack never succeeded (which is
what we expect, as for k < 8 we do not expect that a solution even exists in the required range,
by the counting argument in Section 4.2).

44http://www.sagemath.org/

184

http://www.sagemath.org/
http://www.sagemath.org/

Appendix C

Zero-knowledge protocols for
PolyCommitDL

This appendix presents three new systems for honest-verifier zero-knowledge proofs and argu-
ments of knowledge regarding committed polynomials. Given any positive integer-valued func-
tion n(τ) ∈ poly(τ) satisfying n(τ) <

√
2τ/2 for each τ ∈ N+, we call an interactive protocol(

P,V
)

a system for proofs (or arguments) of knowledge regarding PolyCommitDL if the appro-
priate soundness, simulatability, and extractability criteria hold asymptotically with respect to
Polyτ

(
n(τ)
)
← PK-Init

(
1τ ,n(τ)

)
as τ tends to infinity.

C.1 Proving knowledge of a point on a committed polynomial

In an appendix to the extended version of their paper on polynomial commitments [KZG10b; Ap-

pendix E], Kate, Zaverucha, and Goldberg proposed a system for honest-verifier zero-knowledge
proofs of knowledge of a point on a committed polynomial. More precisely, they proposed a sys-
tem for honest-verifier zero-knowledge proofs of knowledge of an evaluation witness wi ∈ G̃ and
a non-zero scalar γi ∈ Z

∗
p such that e(C /g̃γi , g̃) = e(wi , g̃

α/g̃i), where the commitment C ∈ G̃,
input i ∈ Zp \ {α}, and the PolyCommitDL public parameters Polyτ

(
n
)
=
(
(G̃,GT,p, g̃,e), (g̃α j ��

j ∈ [1,n])
)

are each part of the common input.

185

In Section C.2 below, we propose a system for honest-verifier zero-knowledge arguments of
knowledge of a polynomial f ∈ Zp[x] such that C = g̃ f (α). The latter protocol follows from the
observation that, if P∗ knows the witness-evaluation pair (wi , γi) for a random, verifier-selected
index i ∈R Zp , then, with probability overwhelming in τ, P knows a polynomial f ∈ Zp[x] such
that C = g̃ f (α). This is because, under the polyDH assumption, all committed polynomials have
degree at most n; hence, knowledge of any n + 1 points on a committed polynomial is sufficient
to interpolate it.

Of course, we cannot simply let V∗ challenge P to prove knowledge of an arbitrary point on
f using Kate et al.’s protocol, since doing so might leak information about f ’s roots. If honest
V selects its challenges i ∈R Zp uniformly at random, then with probability overwhelming in τ,
we have that f (i) = γi is non-zero and the resulting protocol is indeed honest-verifier statistical
zero-knowledge. However, if dishonest V∗ conjectures that f (i) = 0 for some particular input
i (which may or may not be feasible to do, depending on the application), then it can use P as
an oracle to confirm or reject this hypothesis. We could dismiss such attacks as being outside of
the threat model; after all, absent the attack, we must still assume an honest verifier to prove the
zero-knowledge property. Nevertheless, we feel that the simplicity and devastating power of this
attack makes Kate et al.’s protocol unpalatable as the subprotocol in our argument of knowledge
of a committed polynomial.

We therefore propose our own protocol, which is slightly more efficient than Kate et al.’s
protocol and, importantly, does not require that the evaluation f (i) = γi is non-zero. As a trade
off, our protocol does require that C /g̃ f (i) , 1. On the one hand, if f is non-constant, then this
is true with probability overwhelming in τ, regardless of the strategy cheating V∗ employs to
select i ∈ Zp \ {α}; on the other hand, however, if f is constant, then C /g̃ f (i) is always equal
to 1. Hence, the new protocol is suitable for proving knowledge of points on a committed, non-
constant polynomial. The protocol is depicted in Figure C.1. The idea is for P to choose a random
exponent r ∈ Z∗p with which to blind the witness as w ′

i = w 1/r
i , and then engage V in the protocol

denoted in Camenisch-Stadler notation by PK
{(

r, γi
)

: e(C , g̃) = e(w ′
i , g̃

α/g̃i)r · e(g̃, g̃)γi
}
. We

can implement the latter interaction using a slightly modified instance of Brands’ system for
honest-verifier zero-knowledge proofs of knowledge of a 2-DLREP in G̃ (see Figure 2.6 on page
35).

186

(
(G̃,GT,p,g̃,e), (g̃α j �� j ∈ [1,n])

)
←PK-Init

(
1τ
)

and (C , i) such that e(C/g̃γi , g̃) = e(wi , g̃
α/g̃i)︸ ︷︷ ︸

(wi, γi)

accept/reject

P V

r, s1, s2 ∈R Z
∗

q

A1 = w 1/r
i

A2= e(A1, g̃
α/g̃i)s1g

s2
T

c ∈R Zq

v1 = s1 − r c
v2 = s2 − γic

A2
?
= e(Av1

1 , g̃
α/g̃i) gv2

T e(C c, g̃)

A = (A1, A2)

c

v = (v1,v2)

Figure C.1: A system for honest-verifier statistical zero-knowledge proofs of knowl-
edge of a witness-evaluation pair for the PolyCommitDL commitment C . In the verifi-
cation equation, gT is used as shorthand for e(g̃, g̃). The protocol is c-simulatable
and 2-extractable. It is denoted in Camenisch-Stadler notation by PK

{(wi , γi
)

:
e(C /g̃γi , g̃) = e(wi , g̃

α/g̃i)
}
.

Theorem C.1. The protocol depicted in Figure C.1 is a system for honest-verifier statistical
zero-knowledge proofs of knowledge for the language of witness-evaluation pairs for a given
non-constant, PolyCommitDL-committed polynomial. Furthermore, it is a c-simulatable and 2-
extractable sigma protocol and so has knowledge error κ(Polyτ

(
n
)
,C , i) = 1/(p − 1).

We denote the new protocol by PK
{(wi , γi

)
: e(C /g̃γi , g̃) = e(wi , g̃

α/g̃i)
}
. As should be

clear from this notation, an accepting proof does not convince V that P∗ knows a polynomial-
evaluation pair (f , γi) such that C = g̃ f (α) and f (i) = γi ; rather, it proves that P∗ knows a
witness-evaluation pair (wi , γi) that, together with the public values (C , i) and Polyτ

(
n
)
, satisfies

V’s the appropriate PolyCommitDL verification equation. In particular, P∗ only requires the pair
(wi , γi), and not (f , γi), in its private auxiliary input.

Note that the protocol is sound even if f is constant; however, in this case, we have that wi

and, consequently, w ′
i , are both equal to 1 and the zero-knowledge property fails to hold. To

extend the protocol from a system for non-constant polynomials to a system for non-zero polyno-

187

mials, we could implement the protocol denoted in Camenisch-Stadler notation by PK
{(wi , γi

)
:

e(C /g̃γi , g̃) = e(wi , g̃
α/g̃i) ∨ C = g̃γi

}
, using the protocol depicted in Figure C.1 and Schnorr’s

protocol. We emphasize that if C is a PolyCommitDL commitment opening to the zero polyno-
mial, then C = 1; conversely, if C = 1, then, with probability overwhelming in τ, C opens to
the zero polynomial. In particular, the new protocol is suitable for proving knowledge of any
polynomial that can be “usefully” committed to in PolyCommitDL.

C.2 Proving knowledge of a committed polynomial

Consider a variant of the protocol depicted in Figure C.1 that starts with an additional step in
which V arbitrarily chooses the index i ∈R Zp \{α} with respect to which P must prove knowledge
of the witness-evaluation pair (wi , γi). Under the SDH and polyDH assumptions, a PPT prover
P∗ can open a given commitment C to evaluations consistent with at most one polynomial and,
moreover, the degree of this polynomial can be at most n. We now prove that this variant yields
a system of honest-verifier statistical zero-knowledge arguments of knowledge of a non-zero
polynomial f such that C = g̃ f (α), with the arguments being computationally convincing under
the SDH and polyDH assumptions. Completeness of the augmented protocol follows immediately
from the completeness of sub-protocol and the fact that f is non-zero. The augmented protocol is
clearly honest-verifier statistical zero-knowledge: a simulator for V merely chooses i ∈R Zp \ {α},
then invokes the simulator for V in the sub-protocol to produce a perfect simulation whenever
deg f = 1 or f (i) , f (α). Now, if a PPT prover P∗ does not know a (non-zero) polynomial
f such that C = g̃ f (α), then the probability that it knows an (wi , γi) pair to satisfy verifier V’s
challenge index i ∈R Zp \ {α} is at most about n/p under the SDH and polyDH assumptions. The
restriction n <

√
p implies that n/p < 1/√p so that the augmented protocol’s knowledge error is

negligible in τ. Thus, if P∗ convinces V with non-negligible probability in τ, then a knowledge
extractor for the augmented protocol can invoke the knowledge extractor for the sub-protocol
an expected polynomial number of times to extract deg f + 1 distinct points on f , and then use
polynomial interpolation to compute f from these extracted points. Note that the DL assumption,
which is implied by both the SDH and polyDH assumptions, ensures that each extracted point is on
the same polynomial, which is crucial for the extractor’s expected running time to be polynomial
in n ∈ poly(τ). We denote the augmented protocol by PK

{
f : C = g̃ f (α) }.

188

C.3 Proving that a committed polynomial has degree d < n

We now describe a simple extension to the above system for arguments of knowledge of a com-
mitted polynomial, which proves that the degree of that polynomial is at most d < n. Soundness
of this protocol requires that the PolyCommitDL reference string PK bounds the degree of com-
mitted polynomials by n <

√
p/2 (which, in practice, is not a restriction on n since

√
p/2 is still

super-polynomial in τ).

Under the polyDH assumption, it is infeasible for a non-trapdoor PPT P∗ to output
(

f ′, g̃ f ′(α))
for any polynomial f ′ ∈ Zp[x] with n < deg f ′ <

√
p. In particular, if P∗ knows a polynomial

f such that C = g̃ f (α) and d < deg f ≤ n, then it can exhibit a commitment Cd to fd (x) =
xn−d f (x) with at most negligible probability in τ. The restriction n <

√
p/2 is necessary to

ensure that deg fd = deg f + (n − d) does not exceed
√

p. Protocol C.2 is a noninteractive
trapdoor perfect zero-knowledge argument (i.e., it is zero-knowledge with respect a trapdoor
verifier who knows α) that exploits the above observation to prove that the committed polynomial
f (x) =

∑n
j=0 aj x

j has degree at most d < n.

Protocol C.2 (Proof that a committed polynomial has degree at most d).

Common input:
(
(G̃,GT,p, g̃,e), (g̃α j �� j ∈ [1,n])

)
← PK-Init

(
1τ ,n(τ)

)
and C ∈ G̃

P’s private input: f =
∑d

j=1 aj x
j
∈ Zp[x] such that C = g̃ f (α)

P1: Compute Cd =
∏d

j=0
(
g̃αn−d+ j)aj = g̃ f ′(α) using the appropriate values from Polyτ

(
n
)
,

and then send Cd to V.

PV2: Engage in the protocol denoted by PK
{

f : C = g̃ f (α) }.
V3: Output 1 if V accepts in Step 2 and if e(C , g̃αn−d

) = e(Cd, g̃), and output 0 otherwise.

We denote Protocol C.2 PK
{

f : C = g̃ f (α)
∧ deg f ≤ d

}
. It is straightforward to convert

Protocol C.2 from a noninteractive trapdoor zero-knowledge argument into a (non-trapdoor, in-
teractive) honest-verifier zero-knowledge argument by, for example, having P choose r ∈R Z

∗
p

and blind C ′ as C ′′ = (C ′)1/r . P can then use Schnorr’s proof of knowledge of a discrete loga-
rithm [Sch89] in the target group GT to prove knowledge of r such that e(C ′′, g̃) = e(C , g̃αn−d

)r .
Fortunately, the simpler trapdoor zero-knowledge variant in Protocol C.2 suffices for the security
of our all-but-k constructions. (In particular, our constructions only require that the argument be

189

witness indistinguishable [FS90; Definition 3.1], which is the case because PolyCommitDL hides
committed polynomials unconditionally; i.e., even with respect to a computationally unbounded
adversary that can compute the trapdoor.)

190

	Title page
	Front matter
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Related Publications

	Main matter
	Introduction
	Background and motivation
	Thesis statement
	Research contributions

	Cryptographic preliminaries
	Mathematical notation
	Asymptotic behaviour of functions
	Languages and witnesses

	Interactive protocols
	Interactive proof systems
	Interactive argument systems
	Extractability and proofs of knowledge
	Simulatability and zero-knowledge proofs
	The Fiat-Shamir heuristic and non-interactive arguments

	Discrete logarithms and the DL assumption
	The DL problem
	The k-DLREP problem

	Cost model
	Schnorr's protocol for DLs
	Sigma protocols
	Security analysis
	Brands' protocol for DLREPs

	Batch proof and verification
	Batch tests and batch verifiers
	The naive verifier
	Defining batch verifiers
	Families of linear relations
	Batch tests for families of linear relations
	The ARS test
	The RMP and RMP+ tests
	The RME and RME+ tests
	The m-ARP test
	The PRP and and PRP+ tests

	Comparison of batch verifiers
	Batch verifying Schnorr's protocol
	Batch tests for DLREP relations

	Batch proofs of knowledge
	The naive conjunctive proof system
	Defining batch proofs of knowledge
	Conjunctive batch proofs for families of linear relations
	The RMP-based common-base Schnorr protocol
	The RME-based common-base Schnorr protocol
	The RME-based common-exponent Schnorr protocol
	The PRP+-based common-base Schnorr protocol

	Communication-efficient conjunctive batch proofs
	The k-based common-base Schnorr protocol
	The polynomial-based common-base Schnorr protocol

	Cost comparison for batch Schnorr protocols

	Chapter summary

	Batch proofs of partial knowledge
	Non-batch proofs of partial knowledge
	A disjunctive Schnorr protocol from additive secret sharing
	Secret sharing schemes
	Proofs of partial knowledge for monotone languages
	Shamir's (k,n)-threshold secret sharing scheme
	(k,n)-threshold Schnorr protocol from Shamir secret sharing

	Peng and Bao's proofs of disjunctive knowledge
	Attacking Peng and Bao's protocol

	L-mercurial commitments
	Formal definition
	An efficient (n-k,n)-threshold construction
	PolyCommitDLpolynomial commitments
	Zero-knowledge protocols for PolyCommitDLcommitments
	(n-k,n)-threshold construction
	Security analysis
	Cost analysis

	Batch Schnorr proofs of partial knowledge
	A (k,n)-threshold batch Schnorr protocol
	Monotone proofs of partial knowledge
	Proofs of partial knowledge from (n-k,n)-threshold mercurial commitments
	Conjunctions of partial knowledge proofs
	Disjunctions of partial knowledge proofs
	Thresholds of partial knowledge proofs

	Non-monotone proofs of partial knowledge
	Camenisch and Shoup's protocol for inequality of DLs
	Proving equality among exactly k-out-of-n DLs
	Proving equality among at most k-out-of-n DLs
	Proving equality among between-k1-and-k2-out-of-n DLs
	Additional non-monotone access structures

	Chapter summary

	Example applications and constructions
	Anonymous blacklisting and reputation systems
	Blacklistable anonymous credentials
	Variants of BLAC
	The scalability problem
	Threat model and design goals
	Security definitions
	Batch BLAC constructions
	Batch vanilla BLAC
	Batch d-BLAC
	Batch BLACR

	Chapter summary

	Conclusion

	References
	Appendices
	Intractability assumptions
	The computational Diffie-Hellman (CDH) problem
	The decision Diffie-Hellman (DDH) problem
	The strong Diffie-Hellman (SDH) assumption
	The polynomial Diffie-Hellman (polyDH) assumption

	Attacking Peng and Bao's protocol
	Zero-knowledge protocols for PolyCommitDL
	Proving knowledge of a point on a committed polynomial
	Proving knowledge of a committed polynomial
	Proving that a committed polynomial has degree d<n

